ASTRONOMICAL ELECTRONOGRAPHIC PHOTOMETRY

by

SUSAN PATRICIA WORSWICK, B.Sc., A.R.C.S.

March 1975

A thesis submitted for the degree.	Astronony Group
of Doctor of Philosophy of the	Physics Department
University of London and for	Imperial College
the Diploma of Imperial College.	London S.W.7.

ABSTRACT

An outline is given of the various systems that have been developed for the production and reduction of electronographic exposures. The typical limits to photometric accuracy are discussed.

The performance of the individual constituents of a particular system consisting of a Spectracon image tube, nuclear emulsion and Joyce-Loebl MkIII CS microdensitometer is described.

The problems of mounting the image tube on a telescope are discussed and are illustrated by a description of a camera design for the Cassegrain focus of the 60 -inch reflector at Boyden Observatory.

The computing procedures followed for the extraction of morphological and photometric data are given and are illustrated by some of the data produced so far. The need for monochromatic photometry of planetary nebulae is outlined and the suitability of electronography is shown by preliminary results from an ongoing observation programme.

The problem of the removal of photocathode non-uniformities is tackled and the limitations set by this procedure are discussed together with the implications for astronomical photometry.

Some improvements are proposed which might be made to existing systems and which should be considered in setting up new equipment.

ACKNOWLEDGEMENTS

I would like to express my thanks to Professor J. Ring for his supervision and his continued interest in this work. I am also grateful for the help extended by many members of the Astronomy Group, both past and present, in particular Dr C.I. Coleman, Mr M.J. Cullum, Dr B.L. Morgan, Dr N.K. Reay and Mr C.L. Stephens.

My thanks go to Messrs. Jack Crabtree and Roy Barr for trying to instil in me some understanding of mechanical design and to Mr Peter Sharp whose patient assistance has ensured that the microdensitometer has been kept in working order.

The 60-inch Boyden telescope was used by kind permission of the Director, Professor A.H. Jarrett. Time on the Isaac Newton telescope was allocated by the Large Telescope Users Panel; I am grateful to the staff of the Royal Greenwich Observatory for their assistance during these observing periods.

From October 1971 to October 1974 I was in grateful receipt of a Science Research Council studentship.

My thanks also go to Miss Y . Dearlove for typing this thesis.

Finally, I would like to dedicate this volume to my parents, whose support and encouragement have helped me throughout my studies.

NGC 7662

NGC 3242
"I at last deliver to the world a Work which I have long promised, and of which, I am afraid, too high expectations have been raised....

The labour and anxious attention with which I have collected and arranged the materials of which these volumes are composed, will hardly be conceived by those who read them with careless facility."

James Boswe 11

```
Advertisement to the First Edition
    of Boswell's Life of Johnson
```


PREFACE

The only method by which information can be obtained about astronomical objects is by careful observation of that proportion of their radiation which reaches us. There is no way in which we can affect the processes within these objects and indeed, unless one restricts observations to the very closest of our neighbouring stars, all the photons that we are likely to detect in our lifetime have already left their sources.

Therefore the astronomer must rely on collecting as large a fraction as possible of the incoming light and on processing it to yield spectral, spatial and photometric information. To undertake this sort of work one must always be aware of the improvements in detection techniques and their possible application to both old and new problems.

For over one hundred years the predominant tool for optical observations has been the photographic plate which provides a practical means of integrating and storing the incoming light. The "two-dimensional" nature of this detector means that accurate relative positions can be obtained while a knowledge of the characteristic curve, relating density to exposure, for each plate yields photometric data. Over the years emulsions have been tailored to the needs of the astronomer so that long exposures of fairly faint objects may be undertaken. The detection efficiency of the plates has also been improved by various techniques such as baking and nitrogen flushing which increase the sensitivity.

The inability of the emulsion to record incident fluxes lower than a certain threshold value, coupled with limited storage of the plate, requires that exposures be tailored to specifically faint or bright features within any given field. Then a cross-calibration between plates
is required. However, for survey work, where a detector of very large surface area is required, the photographic plate remains the only practical solution.

The photoelectric effect is a process which has true linearity; it is also more efficient than photography. If the electrons released from a photocathode can be detected and stored a fairly straightforward method for photometry can be obtained. Originally the process was employed in single channel detectors (using photomultipliers) for photometry of stars and for the measurement of integrated fluxes from objects. The area of sky from which the light is being collected is defined by a diaphragm and the total amount of light which falls within this aperture is measured. The signal from the photomultiplier can either be recorded in analogue form or the amplified pulses from individual photo-electrons can be counted. The severe drawback of this method is its single channel nature which necessitates the use of a large amount of telescope time if a large area is to be covered. Very often photoelectric measurements are used to calibrate photographic photometry which can cover a much larger field.

Obviously if the advantages of linearity and high sensitivity of the photoelectric process are coupled to a two-dimensional form of image recording an improvement in detection limits should be expected.

The development of image tubes which retain spatial information within a focussed electron image has produced several variants, each with different read-out systems. Cascade devices simply act as image intensifiers, the final stage having a phosphor screen at the output end, the light being focussed onto a photographic emulsion using a coupling lens or more recently, a fibre-optic plate. Electronographic detectors, which are single stage devices, use nuclear track emulsions to register
the electron image directly. Television-type systems, where charge is stored in a target, produce an analogue signal using an electron beam read-out. Finally there are photon counting systems or more strictly photoelectron counting systems which use computer memory or magnetic tape as the storage medium. These latter devices have only produced onedimensional information (e.g. Spectra) so far but two-dimensional readout with about 10^{5} picture points is now technically feasible.

In each of these types of systems it is necessary to evaluate the efficiency of the detection process and the amount of noise that is introduced by the detector. This has led to the concept of detective quantum efficiency ($D Q E$) as a figure of merit. This compares the performance of the measuring device with a so-called "perfect" detector which would register every incoming photon with equal weight. If the measured signal-tomoise ratio of the detected signal is $|\mathrm{S} / \mathrm{N}|_{\text {OUT }}$ and the incoming signal-to-noise ratio is $|S / N|_{I N}$ then the $D Q E(E)$ is given by

$$
E=\frac{|S / N|_{\mathrm{OUT}}^{2}}{|S / N|_{\mathrm{IN}}^{2}}
$$

The incoming signal-to-noise ratio is just the photon flux (M) divided, by its shot noise (\sqrt{M}); thus the $D Q E$ is given by

$$
\mathrm{E}=\frac{|\mathrm{S} / \mathrm{N}|_{\mathrm{OUT}}^{2}}{\mathrm{M}}
$$

It can be seen that to maximise this quantity it is necessary to - detect as many of the incident photons as possible with an equal weighting.

Photoelectron counting, when available in two dimensions, will provide the nearest approximation to this process. However, at the moment other forms of detection must be investigated. They are all analogue techniques and therefore each photoelectron event will not be given equal weighting in the read-out process.

Another important consideration is the dynamic range of the device which is basically limited by the amount of storage available per picture element. With image intensifier systems this limit is set by the photographic emulsion. In electronographic systems again it is emulsion which provides the limitation but the grain size of the nuclear track emulsions is small; thus the storage per picture element is larger than for photographic plates. Television-type systems can be limited by the charge that can be stored on the target while a photoelectron counting system will have virtually unlimited storage for any single element but the range of brightness within a single exposure is governed by the maximum data rate that can be handled by the system.

If a useful comparison is to be made between the various methods of detection the data have to be compared at a comparable point. That is the stage where one has extracted the numerical information that is going to be processed to produce the final photometric and spatial data. Thus, in the case of emulsions being used as an intermediate store, the method by which the density data is obtained becomes an integral part of the overall system.

The refore, it is only by a knowledge of the interaction of the various parts of the system of image tube, emulsion and microdensitometer that the true limiting performance can be defined.

Part of the work for this thesis has been to undertake a study of the interaction of various parts of a specific electronographic system and to understand the resultant limitations to photometric accuracy. - At the same time the application of the system to astronomical problems has led to a clearer understanding of the practical aspects of operating an image tube on a telescope and the areas where minor modifications would greatly assist the observer and would help to obtain the best performance from the device.

LIST OF CONTENTS

Chapter I: Electronographic Photometry. 1
Spectra 7
Star Fields 10
Extended Objects 19
Chapter II: The Photometric System 26
2.1 The Spectracon 26
2.2 Nuclear Track Emulsion 31
2.3 The Microdensitometer 38
2.3.1 The Joyce-Loeb1 Mk III CS Microdensitometer 39
2.3.2 Accuracy of Spatial Sampling 46
2.3.3 Linearity 56
2.3.4 Microdensitometer Noise 63
Chapter III: Astronomical Observations 69
3.1 Spectracon Cameras 69
3.1.1 Weight and Dimensions 69
3.1.2 Cooling 71
3.1.3 Power Supplies 72
3.1.4 Adjustments to Position Angle and Focus 72
3.1.5 Aquisition and Setting 73
3.1.6 Additional Requirements 73
3.1.7 Spectracon Camera for a 60 inch Reflector 75
3.2 Observing Procedures 78
3.3 Scanning and Computer Processing of Electronographs 79
3.3.1 Scanning 79
3.3.2 Computer Processing 81
3.4 Astronomical Observations 89
3.4.1 Planetary Nebulae 90
3.4.1.1 Formation 90
3.4.1.2 Spectra 93
3.4.1.3 Structure 99
3.4.2 Monochromatic Photometry 102
3.4.3 Spectracon Observations 104
3.4.3.1 Nebular Dimensions 106
3.4.3.2 NGC 6543 108
3.4.3.3 NGC 7662 112
3.4.3.4 NGC 3242 117
Chapter IV: Limitations set by Photocathode Non-uniformities 127
4.1 The Calibration Process 127
4.1.1 Location 128
4.1.2 Matching 131
4.1.3 Correction of Data 133
4.2 Practical Limitations of the Calibration Process 133
4.3 Noise Power Spectra 141
4.4 Limitation to Photometric Accuracy 153
Chapter V: Conclusions and Future Work 159
APPENDICES 165
Appendix I: Processing of Electronographic Emulsions 166
Appendix II: Computer Programs 167
REFERENCES 203

CHAPTER 1

ELECTRONOGRAPHIC PHOTOMETRY

> "The naked papers, without an historical treatise interwoven, require some other book to make them understood."

Samuel Johnson (1709-1784)

The original concept behind the electronographic process was put forward by Kiepenheuer in 1934 (1). Despite the simplicity of the idea of using the quantum efficiency and linearity of the photoelectric process coupled to the information storage capabilities of an emulsion, the development of viable detectors has been a long and involved process.

The present-day devices fall into two main categories, those in which the emulsion and the photocathode are contained within the same envelope for the duration of the exposure, as in the Kron camera (2), or for longer periods, as in the Lallemand camera (3), and the devices such as the Spectracon (4) and the McMullan wide-field camera (5) where a permanent thin mica membrane is placed between the emulsion and the main part of the tube containing the photocathode and electron optics. The latter devices require a higher operating potential to ensure that a substantial proportion of the electrons released from the photocathode pass through the mica membrane, while retaining sufficient energy to leave tracks in the emulsion. The typical operating voltage for the Kron and Lallemand devices is about $25 \rightarrow 30 \mathrm{KV}$, whereas for the Spectracon and McMullan cameras a voltage of 40 KV is required. Due to scattering within the mica the emergent photoelectrons (about 75% of the incident electron flux) have an energy distribution which peaks at about 28 KV

ELECTRON ENERGY DISTRIBUTION IMPOSED BY MICA WINDOW

FIGURE I.I
(see Fig. 1.1). Thus, al.though a thin membrane output window improves the potential shelf life of the device by preventing contamination of the photocathode by substances outgassed from the emulsion and, in the case of the Spectracon, means that the unit can be used without complicated auxiliary vacuum equipment, its effects on the photoelectrons can also have a bearing on the overall photometric performance of the device. Since each photoelectron reaching the emulsion leaves a track, the length of which is energy-dependent, the higher working voltage and the energy distribution of emergent electrons can affect both the storage capabilities of the emulsion and the "weighting" given to the individual tracks. Coleman (6) has shown that these are important considerations when making an assessment of the detective quantum efficiency (DQE) of a device such as the Spectracon.

Three of the devices mentioned, the Lallemand camera, the Kron camera and the Spectracon are in regular use on telescopes. Thus substantial quantities of electronographic data are becoming available to the general astronomical community, and the emphasis is moving towards the development of methods for the efficient retrieval of the large amount of information stored on each exposure.

Due to the high storage capacity of fine-grain nuclear track emulsions, such as Ilford L4, used for electronography and the linear relationship between the density and exposure which has been shown to hold to densities of the order of 5D (7), any measuring machine used for data retrieval must be capable of accurate and linear measurement over this whole range. Since density can be related to the transmission of a sample in the following way

$$
\mathrm{D}=-\log _{10} \mathrm{~T}
$$

it can be seen that the measuring system, which responds to the light transmitted by the plate, will have to cope with incident fluxes varying by about five orders of magnitude.

The resolution of electronographic devices is high - the electrostatically-focussed Lallemand and Kron cameras reach about $70 \mathrm{lp} / \mathrm{mm}$ as does the magnetically-focussed Spectracon when operated at single-loop focus. Higher resolutions have been obtained using magnetically-focussed devices, for example of the order of $120 \mathrm{lp} / \mathrm{mm}$ at two-loop focus for the Spectracon. In most cases the resolution of the astronomical exposure will be set by the size of the "seeing" disc and the spatial sampling rate required will be similar to that for a photographic plate. However, in certain cases, where either the optics have been designed to match the resolution of the device, or where measurements for accurate photometry in regions of rapidly changing density are needed, samples may be required at separations amounting to only a few microns.

Since each photoelectron is capable of leaving a track in the emulsion the electronographic process does not suffer from reciprocity failure. That is to say, there is no "threshold" incident photon flux required before an image starts to build up. The only effects that have to be taken into account when measuring plates at low density are those of plate fog which can be very low (less than 0.03 D for L 4 (8)) and those arising from any dirt picked up on the emulsion during processing. Due to the fine grain and high storage of the emulsions such as $L 4$ the human eye is totally incapable of assessing the information stored in the exposure, and, even for straightforward morphological studies, contour maps produced from density measurements of the plates are required to reveal the structure present in the object. Therefore, when using electronographic techniques, the measuring machine
and the subsequent data processing are equally as important as the primary detector.

As with many new astronomical techniques, some of the first work done using electronography was to take spectra $(9,10)$. When working with spectral data the reduction of the exposures can be straightforward and the amount of data fairly small if it is possible to reduce the information to "one dimension". This is true where the spectrum has been artificially broadened and where the image geometry is good. In this case the measuring aperture of the machine can be extended perpendicular to the dispersion and a fairly slow scan along the length of the spectrum can be used, thus allowing a larger "dwell time" per sample point. Both of these methods serve to improve measurements of high density where the microdensitometer may be photon noise-limited and, since only a few scans are required, without making the measuring time prohibitively long. If, however, one is dealing with time-resolved spectra (11), or spectra containing spatial information (for example across the diameter of a galaxy), or distorted spectra, then the sampling aperture must be made small and thus the number of sample points becomes laxge. The problems are then the same as those of the extraction of spatial information from direct exposures.

For two-dimensional data, whether it be from star fields, extended objects or spectra, it is necessary to be able to produce accurate density measurements from samples taken at small intervals and at fairly high rates if the scan time is not to be too long. Of late several scanning machines which are capable of high-speed sampling have been developed, mainly for work on aerial survey photographs. Since many of the problems of information retrieval
and data handling are comnon to the fine-grain, high-storage, astronomical, photographic emulsions such as IIIaJ, these devices are finding their way into use by astronomers. However, photographic emulsions generally saturate at a density not much greater than 2D. With this limited density range fast scanning machines can be used to good advantage but, with the high densities present in electronographs and the short sampling periods dictated by high-speed scanning, the measurement of density may become very inaccurate due to the low photon-flux reaching the microdensitometer detector. Also, due to the linear density-exposure relationship, a stringent set of conditions are set on the inherent linearity of the measuring machine.

Therefore, when studying the limiting photometric accuracy of observations, it is necessary to consider the overall performance of a system comprised of the image tube, the emulsion and the scanning machine. The final results will obviously be peculiar to a particular set of equipment, but it should be possible to outline general trends which have a bearing on other systems.

Once having obtained numerical data from electronographic exposures the subsequent processing is usually tailored to the specific problem being studied. However, in some cases the problems that have been tackled have been dictated by the form in which data can be extracted. The rest of this chapter is taken up with a brief description of some of the methods used so far for processing of electronographic exposures and an outline of the advantages and limitations of various systems.

Broadly speaking, the photometry that has been undertaken using electronography can be split into three main categories:

1) Spectra
2) Starfields
3) Extended Sources

This roughly follows the chronological order in which electronography was first usefully applied in each branch. The sequence stems partly from the availability of detectors and partly from the development of the necessary tools for extracting the information from the exposures.

1) Spectra

The first electronographic camera that was available for use on a telescope was the one developed by Lallemand in France. Work on this device was first started in 1936 (12) but it was not until the early sixties that it really came into regular use. It was originally mounted at the Coude focus of the Lick 120-inch reflector in 1959. It was used with a grating giving a dispersion of $48 \AA / \mathrm{mm}$ at the photocathode, which corresponds to a dispersion of about $64 \mathrm{~A} / \mathrm{mm}$ at the plate since there is a demagnification of about 0.75 produced by the electron optics. The first result from this device was obtained on the nucleus of M31 (13), This was shown to be in rapid rotation by the curvature of the lines that showed up due to the large scale of the Coudé spectrograph perpendicular to the dispersion. Mainly, this was a case of utilising the speed of the device to register an image that could not be easily obtained using a photographic plate. Ilford G5, a fairly fast emulsion, was used, and the data reduction took the form of accurate positional measurement of the lines rather than that of accurate densitometry. As well as applying this device
to other problems involving the dynamics of objects as derived from their spectra $(14,15)$ it has been turned to the problem of time resolved spectra of variables (16). The star is trailed along the slit manually, giving a time resolution of the order of a few minutes. As well as obtaining relative fluxes by scanning along the spectrum, a scan along a line perpendicular to the dispersion will yield a record of the variations within one line. Again it is a case of utilising the speed of the device to obtain information that could not be registered using a photographic plate.

The linear response has been used to derive energy distributions of stars and nuclei of galaxies $(15,17,18)$ and to study the intensities of emission lines in planetary nebulae (19,20). In these cases the photometry is of more importance. However, in all these observations the information which has been extracted has been in the form of single scans and, perhaps of necessity, only portions of the total. information present have been selected. Similar work is now being undertaken with the Spectracon on the same telescope and using identical techniques $(21,22)$. For both the Lallemand camera and the Spectracon, Walker has found that the limitations on positional measurement are set by the accuracy of the measuring engine and that the wavelength resolution is equal to, or better than, that normally obtained with photographic spectra of the same dispersion.

The Spectracon, as its name implies, was originally considered as a device for studying spectra. The output mica window was made long and narrow ($30 \mathrm{~mm} \times 5 \mathrm{~mm}$) since it was thought necessary to keep to this sort of configuration to retain sufficient strength in the $4 \mu \mathrm{~m}$ mica sheet to withstand atmospheric pressure. Being a fairly compact
sealed unit the Spectracon has been used as a primary detector in two astronomical spectrographs designed to accommodate image tubes (23). In both cases special optics were required (24) together with a focussing solenoid designed to give the required uniformity of field at the focal plane. Once designed, these spectrographs will accept standard Spectracon image tubes which may have photocathodes of different types and therefore differing spectral responses. The focussing solenoid is provided with scan coils so that the image may be trailed electronically in a direction perpendicular to the dispersion. Thus the spectrum may be artificially broadened without movement of the telescope or instrument. The two spectrographs have been used regularly on the $98^{\prime \prime}$ Isaac Newton Telescope and $36^{\prime \prime}$ telescope at the Royal Greenwich Observatory, Herstmonceux, and on the $74^{\prime \prime}$ reflector which, until recently, was sited at Pretoria, South Africa and is now being moved to a better site at Sutherland.

Being "user instruments" the spectrographs have been used on many different problems of both stellar spectra $(25,26)$ and studies of extended objects (27). Again in some cases accurate photometry has only been obtained for what is virtually "one-dimensional information" and the faster electronographic emulsions have been used to obtain spectra in fairly short exposure times for the purposes of line identification rather than photometry. Using the linear response, coupled with fairly simple reduction methods, it is possible to obtain information which would not be readily available from a single photographic plate.

Starfields

It is perhaps in the study of star clusters that electronography has one of its primary applications and also where the most difficulties in data reduction arise. The advantages of the process are threefold:
a) The large dynamic range of the process means that both bright and faint stars can be registered on the same plate. Therefore it is possible to measure stars in the very bright central regions of the cluster and relate them to those in outer regions that are easy to measure as standards using conventional photoelectric techniques.
b) The linearity of the process makes the transference of magnitudes from the standards to the rest of the cluster easy. Only a few standards are required and there is no need to set up different sequences for different magnitude regions as is required for photographic photometry.
c) Basically one is performing photoelectric photometry in two dimensions. Since the data is recorded on emulsion the "diaphragm" through which one makes a measurement of the stellar magnitude can be set during data reduction and thus effects such as crowding of the field can be taken into account. Also one is simultaneously measuring many stars so that the telescope time required is greatly reduced.

However, the rapid extraction of data from such plates is still not a routine process, although various methods have been tried.

Table 1.1

Errors obtained fron profile method of magnitude determination

Magnitude Interval	Observed (mag)	Probable Error Predicted (mag)
$16.0<{ }_{\mathrm{m}}<16.9$	± 0.020	± 0.001
$17.0<{ }_{\mathrm{m}}<17.9$	± 0.023	± 0.002
$18.0 \ll_{\mathrm{m}}<18.9$	± 0.028	± 0.005
$19.0<_{\mathrm{m}}<19.9$	± 0.035	± 0.010
$20.0 \ll_{\mathrm{in}}<20.9$	± 0.050	± 0.028
$21.0 \ll_{\mathrm{m}}<21.9$	± 0.072	± 0.062
$22.0<{ }_{\mathrm{m}}<22.9$	$\pm 0.146 \%$	

* Small sample

Measurements taken from a 180 minute exposure using a Spectracon plus L4 emulsion on a 60 -inch reflector. Half-height dianeter of inage $=2 \hat{.} 0(110 \mu \mathrm{~m})$.

The most regular production of results has come from Walker $(28,29,30,31,32)$, who used the Spectracon on the $60^{\prime \prime}$ reflector at Cerro Tololo to obtain B and V observations of 13 clusters in the Magellanic Clouds. The method used for extracting the data is simple but slow, and only a fraction of that present on the plate is used. Walker and Kron (33) showed that magnitudes of stars could be determined by using the profiles of stellar images on in-focus electronographic exposures over a range of 5 magnitudes up from the plate limit. To extract the full information the density volume of the image should be taken, and using an integrating microdensitometer designed by Hewitt (34), the range can be pushed to 7 magnitudes (35). Walker found that the use of the volume method in the crowded regions of the cluster led to a larger scatter in the magnitudes obtainet than of the cluster led to a larger scatter in the magnitudes obtained $\lambda^{\text {when }}$ the profile method was used (28). To obtain the profile the image is scanned using a Joyce-Loebl microdensitometer operated as a simple manually-controlled device. Using a measuring aperture of $12.5 \times 12.5 \mu \mathrm{~m}$ the image is moved back and forth until centred in the " Y " direction, and then a scan is made across the diameter. Variations in local sensitivity of the photocathode are corrected by using a map obtained from an exposure of the dawn sky.

Table 1.1 shows the errors obtained using this method for different magnitude regions (36). These are compared with the error one would expect from an ideal detector registering sources of differing brightness against a fixed background which is the predominant source of noise (37). It can be seen for the brighter stars a limiting accuracy of about $0.02^{\text {in }}$ is reached. Wallo. attributes this effect to the grain structure of $L 4$ emulsion, since using a volume-integral method on a small sample of the stars produces a drop in the error.

However, apart from the random effects of grain statistics one must take into account microdensitometer noise at the bright magnitudes and residual effects of local variations in sensitivity due to both photocathode and emulsion.

Wlérick et al (38) have undertaken stellar photometry using the Lallemand camera and methods that are somewhat similar to those used by Walker. The reduction of the data is limited to manual scanning of the images and several procedures have been investigated. They have found local variations in sensitivity across both the photocathode and the emulsion of the order of 20% over distances of 20 mm and 8 mm respectively. Therefore they use the night sky background around an object as a measure of the sensitivity of the overall system from point to point within the exposure. There are certain limitations to this method. Since one is using the night sky as a uniform light source emulsion fog must be low, as must the tube background. Also, scattered light and reflections within the optical system must be removed, since all these may produce effects which are not uniform across the image plane. Also this method will only work with those objects that are small as compared with the scale of the sensitivity variations.

Four methods of measuring stellar magnitudes have been studied. Low scattering in nuclear emulsion means that bright star images do not tend to spread as they do in photographic plates. Therefore, assuming that the image diameter is the same for a bright or faint star, the peak density of the image can be taken as a measure of the magnitude. Wlérick et al have also used the profile method of Walker, a variant on this where three sections are used, the central one and one either side spaced by approximately the width of the measuring slit, and finally the density volune of the object obtained from the areas of several profiles across the whole star. With the Lallemand camera
there is a pincushion distortion produced by the electron optics, which leads to an increase in the size of the inages at the edge of the field. Since the sky background and the stellar image are spread in the same way there is no need to correct the measures made using the maximum density measurement. For the other methods corrections must be put in for the effect of image spreading on the measurement of local sensitivity. More important in the outer regions of the photocathode are astigmatism and field curvature, which distort the image - in these cases the density volume method is the one most easily applied. Practically, the simpler and faster methods are limited to the region of the exposure where these distortions are small as compared with the image sizes (typically $60 \mu \mathrm{~m}$ to $80 \mu \mathrm{~m}$, corresponding to $1.5^{\hat{1}}$ to $2^{\hat{11}}$); this area is a circle of about 12 mm diameter. To obtain 1\% accuracy on the stellar images it is necessary to allow for the effects from pincushion distortion right across the field. Using these methods a study of stars in the field of BL Lacertae was undertaken; the sample contained about 15 stars which had been measured photoelectrically. Using both the density volume method and the three-area method an accuracy of approximately 2% has been obtained on stars in the region $14^{\mathrm{m}}<\mathrm{B}<19.3^{\mathrm{m}}$.

All the methods described so far are slow and, apart from the integrating microdensitometer used by Ables et al (35), all the data is obtained by manual scanning. With the general use of measuring systems which produce digital output, the application of computer processing to the large amounts of data has been investigated. The scanning of the plate need not now be selective, providing that either the program is sufficiently "intelligent" to recognise a star, or there is some form of interaction between the system and the user. However,
to store digital data of a whole starfield, even from tubes of fairly restricted image area, over a million picture points must be kept so that they are readily available to the computer. Also, to produce such large amounts of data, there is a minimum speed required of the measuring machine if problems of long-term stability are not to be important.

An interactive program for the processing of star fields has been produced at Imperial College (39). Data produced by a Joyce-Loebl microdensitometer is stored on magnetic tape and is subsequently processed using a CDC 6600 computer coupled to an interactive graphics terminal. The magnitude of the star is estimated by making repetitive fits of two orthogonal gaussian profiles to the raw data and then using these to calculate the density volume of the image. The various stars can be "called up" by using rough coordinates obtained from a CALCOMP plot of the whole field. The area around the stellar image is displayed and the position of the window over which the fit is to be performed can be changed. Residuals between the gaussian fit and the raw data can then be displayed.

In the method mentioned above the locations of the stars have to be fed into the program by the user. A system developed by Newe 11 and 0^{\prime} Neill (40,41,42) for ESP (Electrographic Stellar Photometry) has a data "thresholding" procedure for searching large arrays of data. This locates a peak by two criteria:

1) It must have a density greater than, or equal to, that of the surrounding eight points.
2) It must lie above a preset threshold density level.

These peaks are plotted on a map. Those that are due to dirt and non-stellar objects are rejected and then small subsets of data centred on the remaining peaks are retrieved from the random access disc, where the main scan is stored, and are processed using the main photometric reduction routines.

The density volume of the star is extracted by using either curve-fitting routines or a numerical integration technique which is faster than the curve-fitting and therefore used for large amounts of data. The method does not require that a zero level be set for each star and so can be used in fairly crowded fields. In effect, a variable diaphragm is used on the stellar image and the optimum size of this window, for a numerical integration, is determined by the variation of the difference in magnitudes obtained by integrating in two orthogonal directions with the different window sizes. When this difference reaches a minimum the window size can be set. This is obviously dependent on the crowding of the field and the seeing conditions, and so it can be tailored to a particular group of stars. Once a pseudomagnitude of the star is found by one, or an average of several, integrations the whole field is calibrated by comparing the measured magnitudes with established magnitudes of standard stars. Using this method a curved magnitude calibration curve has been obtained. The curvature is attributed to two main causes:

1) The effects of transmission averaging in the microdensitometer on the measured density.
2) The effects of the upper density limit of the microdensitometer at the centres of dense images.

Table 1.2

Plate-to-Plate agrenent of Electronographic Stellar Marnitudes obtained from the cluster M13

Magnitude m_{V}	Error in magnitude determination $\Delta \mathrm{m}_{\mathrm{V}}$
12.76	± 0.037
13.51	± 0.034
14.58	± 0.015
15.45	± 0.013
16.30	± 0.014
17.43	± 0.035
18.47	± 0.066
19.07	± 0.100

Both effects cause an underestimation of the magnitudes of the bright stars. The former can be minimised by using as small an aperture as possible, and the latter can be improved by increasing the area of integration. However, departures from linearity then occur in the faint stars due to the inclusion of parts of surrounding objects, and the fainter objects are systematically measured too bright. In practice it has been found that the calibration curve maintains its shape from plate to plate and is wavelength-independent. Thus it can be used for all plates obtained and reduced under the same conditions.

In a study of two short-exposure plates of MI3 Newell and O'Neill have shown that this method can provide accurate photometry. Using a PDS microphotometer to produce digital data with a raster scan of $10 \mu \mathrm{~m}$ in X and Y and a projected measuring aperture of $20 \mu \mathrm{~m}$, which corresponds to 1 arcsec on the plate, a whole exposure of $1.8 \mathrm{~mm} \times 1.8 \mathrm{~cm}$ was measured producing about $3 \frac{1}{4}$ million densities. The integration for the magnitude determination was carried out over an effective aperture of 8.5 arcsecs. This method of integration suffers from centring errors. The machine can accurately repeat measurements to about $\pm 0.003^{\mathrm{m}}$, but if the scan pattern is shifted across the image a variation of about $\dot{ \pm} 0.01^{\mathrm{m}}$ can arise in the magnitude obtained. This is for images of about $40 \mu \mathrm{~m}$ diameter scanned at $10 \mu \mathrm{~m}$ intervals. Reducing these effects by reducing the step length, or increasing the aperture over which the integration is made, results in greatly increased computing time and data storage problems in the first case, and effects arising from background crowding in the latter. A plate-to-plate agreement test was then undertaken using two exposures of different length. The results are shown in Table l.2. The increase
in standard error in the magnitudes of the brighter stars is attributed to calibration errors as the microdensitometer upper density limit was approached for stars brighter than 14^{m}.

It can be seen that for regular reduction of large numbers of cluster plates methods such as the one above have to be used. To be able to employ these sorts of techniques one needs not only the machine to extract the data from the plate but also the availability of fairly sophisticated computing facilities. Investigations into similar techniques are being undertaken by Heckathorn and Chincarini (43) and Purgathofer (44a).

3) Extended Objects

The study of extended objects by electronographic means has mainly come into its own with the availability of digital output from microdensitometers. As pointed out previously an electronographic image does not reveal much when visually inspected and it is necessary to produce some sort of contour map to study the morphology of the source. Machines such as the Joyce-Loebl isodensitracer will produce maps with a varying number of grey levels, but the one scan of the object will present spatial details at the expense of photometric information. Equally well, manual scans across sections within the object, or the use of an integrating microdensitometer such as that used by Ables and Kron (44), will extract photometric information while losing a fair proportion of the morphological detail. By scanning the image and storing the data in digital form it is possible to process the results from one scan in several ways to yield the required spatial and photometric information.

Using a Joyce-Loebl isodensitracer, Walker $(22,45)$ has undertaken morphological studies of both planetary nebulae and extra-galactic nebulae from exposures taken with Spectracon image tubes. Various emission lines from the planetaries are isolated using narrow-band filters, and the subsequently-produced contour maps reveal the varying structure of these objects in the light of particular ions. Broadband observations have been made of QSOs and compact radio sources to investigate the faint outer structure of these objects and to look for the existence of luminous bridges between galaxies of different redshift. On these sorts of exposures structure has been revealed by contours set at about 1% above the night sky brightness.

Ables and Ables $(46,47)$ used narrowly-spaced contours of the sort described abcve to obtain the luminosity profile of the galazy $\operatorname{NGC} 4881$, from exposures using the Kron camera. Several maps were made and the density-above-sky for the outer isophote was estimated for each map. The profile was plotted by taking the dimensions of each contour; circular symmetry was assumed so that the data was presented as a single profile. To extract photometric information in this manner is a long process and also is subject to difficulties arising from the quantised density levels. As mentioned before, Hewitt (34) has modified' an isodensitracer to produce an integrated density along one line of a raster scan. A potentiometer driven by the density-wedge carriage provides a voltage (which is proportional to the density) that is integrated using analogue techniques and displayed on a chart recorder. Measuring errors are estimated at less than 1% for this method. The application of this device can be somewhat limited since spatial information is only retained in one direction, but it has been used to good advantage by Ables and Kron (44) and Kron et al (48) on the photometry of jets in M87 and 3C273 where they retained spatial

Table 1.3

Colour	Seeing arcsec	Night Sky Brightness mag/arcsec	Limiting Stellar Magnitude	Limiting Isophotal Magnitude Used mag/arcsec	Emulsion	Exposure Time
Lelièvre	V	3.7	21.3	24.1	26.0	Mins

Plate scale $1^{\prime \prime}=40 \mu \mathrm{~m}$
information across the width or along the length of the jet.

Similar integration techniques call be performed by using several manual scans across an object. These methods have been used by Wlérick (49) for work on BL Lacertae and by Lelièvre (50) in a study of N Galaxies. With a single scan across an exposure of BL Lacertae, taken using the Lallemand camera, nebulosity round the object has been detected down to a level that is about 6 magnitudes down on night sky brightness. This result was obtained using a measuring aperture of $25 \mu \mathrm{~m}$ by $25 \mu \mathrm{~m}$. To increase the size of the measuring aperture would improve the emulsion noise, but limitations to accuracy are set below this level by the residual effects of variations of sensitivity within both the emulsion and photocathode. Separating BL Lacertae into a bright central core and an outer faint nebulosity the magnitude of the latter has been estimated out to the contour at $V=26.2^{m} \operatorname{arcsec}^{-2}$ to an accuracy of 0.2^{m}. Lelièvre has estimated magnitudes of galaxies and stellar-1ike objects in the field of $3 C 303$ to an accuracy of $0.05^{\text {m }}$ and 0.10^{m} respectively. The galactic magnitudes are assessed within a "diaphragm" set by an outer isophote of given brightness per square arcsec. Table 1.3 summarises the detection limits of Lelièvre and Wlerick. Lelièvre comments that the larger granularity of the G5 emulsion served to reduce the overall photometric performance of the system.

The application of scanning machines producing digital data has meant that not only can a larger volume of data be handled but the reduction routines can be more sophisticated and varied.

A whole series of routines for studying the structure of galaxies has been developed at the University of Texas and the Johnson Space-Craft Centre for the analysis of data produced by a Boller and Chivens PDS 1010A microdensitometer $(43,51,52,53)$. The system is used on exposures obtained with the Kron camera. The microdensitometer is operated under computer control (from a PDP-8/e with 20 K memory) and the data may be stored on either disc or magnetic tape. The system is also supplied with a high-speed teletype, a paper tape reader/punch and a precision CRT plotter. The data $c a n$ be processed in two ways, either using a quick-look facility on the PDP which can produce density profiles, dummy contours and a playback of the raster, and display them on the CRT, or by using a larger computing facility to handle scans read from magnetic tape. Some of the routines used for the handling of large data arrays are based on methods outlined by Jones et al (54). This includes a program for fitting a polynomial to the sky background surrounding an object and interpolating over the object so that the sky background can be subtracted. The data can be corrected for non-1inearity in the camera-emulsion-microdensitometer system and emulsion defects can be removed, as are stellar images that are superimposed on the nebulosity under study. The corrected data is then used to produce isophotes and integrated magnitudes (53). An investigation into the performance of the microdensitometer shows that slow scanning speeds are required for images with high peak densities (51) since there is an apparent shift in position of the measured image due to the response time of the photometric system. Benedict et al (52) calculate a limiting surface brightness at $3{ }^{\prime} \sigma_{D}$ above the background density, which would be 3.8 magnitudes down on the sky background. This is based purely on the microdensitometer noise at high density which amounts to about 1% of the measured density.

Gull (55), in an assessment of the performance of various emulsion and image intensifier combinations, has shown that 44 emulsion noise is swamped by the machine noise of the PDS over most of its density range for measuring apertures larger than $10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$. To obtain results on a $40 \mu \mathrm{~m} x 40 \mu \mathrm{~m}$ aperture it was necessary to make measurements of the plates taken on the Kron camera using a $10 \mu \mathrm{~m} x 10 \mu \mathrm{~m}$ aperture and then to add them to produce the given resolution. Even so, the effects of microdensitometer noise were seen for densities in excess of 2.4 D as measured on the PDS. The peak signal-to-noise performance of the system was found to be about 150:1. This would give a limiting surface brightness about 5.4^{m} down on the sky background with an exposure taken to a background density of 2.4 D and an analysing aperture of $40 \mu \mathrm{~m} \times 40 \mu \mathrm{~m}$. Gull has used the Kron camera to take narrow-band exposures of the Orion Nebula to produce both straight isophotes and also maps of the ratio of continuum emission to HB .

It is the large dynamic range of the electronographic process which is probably of the greatest importance in surface photometry. The ability to record, on the same exposure, both bright central regions and faint outer extensions of an object and thus to relate the relative fluxes accurately provides a powerful tool for both general morphology and luminosity studies.

It can be seen that the general trend in electronography has been to move toward more automated methods of reduction as the machines have become available. At the moment most of the astronomy is still coming from fairly simple measurements made with unsophisticated equipment. This partly stems from the complexity of an automated photometric system as such. Since no one part can be considered totally in isolation, it is only by studying interaction of the constituent elements that the final
overall performance can be defined. However, once such a system is established it should be possible to process large amounts of data on a routine basis.

CHAPTER II

THE PHOTOMETRIC SYSTEM

"Observe how system into system runs,"

Alexander Pope (1688-1744)

As outlined in Chapter I, it is necessary to consider the photometric limitations of a complete system. Each constituent part will contribute to the overall performance and, by a knowledge of the role that each one plays, areas for improvement can be defined.

The system under study consists of the following components:

1) The Spectracon electronographic image tube
2) $L 4$ nuclear track emulsion
3) A Mk III CS Joyce-Loebl microdensitometer, producing digital output on magnetic tape.

This sequence basically deals with the incoming data, from the image at the focal plane of the telescope to the scan data on magnetic tape. The computer processing is tailored to a particular type of observation and will be dealt with in a later chapter.

2.1 The Spectracon

The design and operating characteristics of this device have been described in full detail in many publications (4,6,56,57). Therefore an outline will be given of those features of the instrument which have a bearing on its photometric performance.

A Photocathode
B Annular electrodes
C Mica window
D Coolant inlet
E Coolant outlet
F Mu-metal screens
G Focussing coil

Fig. 2.1.1 is a cross-sectional diagram of the encapsulated tube sitting inside the focussing solenoid. The standard photocathode size is $10 \mathrm{~mm} \times 30 \mathrm{~mm}$, although tubes of larger image area have been built by placing two such cathodes side by side (58). The photocathode is processed in a separate cell and transferred to the main tube through a side arm. Careful handling is required during this transfer to avoid scratching the photocathode surface. The plate is manoeuvered down the tube and is locked in place in a metal frame which is mounted inside the glass tube-window. To a certain extent a pre-selection process can be used to find photocathodes of fairly high sensitivity before the transfer is undertaken. Using this technique cathodes vith $s-9, S-10, S-11, S-20$ and $S-25$ responses have been successfully put into Spectracons. However, the re has.been little success with cathodes of the S-1 type (56) which tend to lose up to 50% of their efficiency during transfer. Typical photocathode sensitivities are $50-70 \mu \mathrm{~A} / \mathrm{lumen}$ for $\mathrm{S}-11$ and 90 - $120 \mu \mathrm{~A} / 1$ umen for $\mathrm{S}-20$. These white 1 ight responses correspond to quantum efficiencies of approximately 14% at $4200{ }^{\circ}$ and 15% at $4900{ }^{\circ}$ respectively.

Obviously the speed of the device will be governed by the quantum efficiency of the photocathode. Coleman (59) has calculated the detective quantum efficiency (DQE) of the Spectracon used in conjunction with various different methods for recording the photoelectrons. The overall DQE ranges from about 70% of the quantum efficiency of the photocathode for track counting in emulsions and diode detection of photoelectrons, to 30% to 50% of the cathode efficiency for different electron-sensitive emulsions scanned using a microdensitometer. The primary mechanism which reduces the performance is the effect of the
output mica window, which transmits about 75% of the incident electrons and imposes an energy distribution on those emerging from it (see Fig. 1.1).

The overall sensitivity of the photocathode affects the speed of the Spectracon, but of equal importance, from the point of view of relative photometry within a field, are the changes in sensitivity across the cathode surface. Peak-tompeak variations of the order of 50% of the overall sensitivity have been measured over the whole photocathode by Smyth and Brand (60). Typical measurements over areas of about 2 mm by 2 mm give variations ranging between 2% and 7% depending on the photocathode quality. These fairly low spatial frequency effects arise from non-uniform deposition of the photosensitive layer during manufacture, possibly due to varying temperature along the surface of the plate or poor geometry within the cell. There are also photocathode defects, which are small areas of zero-sensitivity and can take the form of pinholes or fine scratches. These are produced by dust particles masking part of the cathode plate during evaporation, and scratches may occur as the photocathode is manoeuvered into the tube.

When the tube is in focus the se dead spots are indistinguishable from dust specks on the outside of the mica window. However, on an out-of-focus exposure the latter show up as in-focus spots on the plate. Any dust lying on the surface of the window can be removed using a soft brush. Usually the output window of the Spectracon consists of a uniform cleaved sheet of mica about $4 \mu \mathrm{~m}$ thick. Windows ranging from $5 \mathrm{~mm} \times 30 \mathrm{~mm}$ to $20 \mathrm{~mm} \times 25 \mathrm{~mm}$ have been constructed and used on Spectracons. Sometimes, during use, some of the mica may be removed by contact with moist emulsion. The resulting structure in the mica window is then revealed by a change in sensitivity across the image
area of the tube. This usually leads to a step-function in sensitivity and this has to be compensated for if accurate relative photometry across the field is required.

The resolution of the Spectracon is dependent on the emulsion that is used with it. When operated at two-loop focus, resolutions of $70 \mathrm{lp} / \mathrm{mm}$ have been obtained with Ilford $\mathrm{XM}, 90 \mathrm{lp} / \mathrm{mm}$ with G 5 and $120 \mathrm{lp} / \mathrm{mm}$ with L4. Since this greatly exceeds the resolution required for most astronomical optical systems and, by going to single-loop focus the heat output of the solenoid can be reduced by a factor of four, the tube is normally operated at single-loop focus for astronomical exposures. The limiting resolution is then $70 \mathrm{lp} / \mathrm{mm}$ to $80 \mathrm{lp} / \mathrm{mm}$ on L 4 over the whole field. The resolution limit of the tube itself is set by the electron optics and scattering of the electrons within the mica and is about $150 \mathrm{lp} / \mathrm{mm}$.

The image geometry of the Spectracon is generally good. Distortions of the order of $5 \mu \mathrm{~m}$ or less occur between the centre of the photocathode and a radius of 2 mm . Over the usual extent of mostiof the astronomical images obtained with this device no correction is required. The emulsion is on a Melinex backing of $25 \mu \mathrm{~m}$ or $50 \mu \mathrm{~m}$ thickness, which provides dimensional stability.

For the photometry of faint objects, and narrow-band observations, the background of the tube must be low. Extremely high values of dark current stem from electrical breakdown within the tube and the subsequent corona being detected at the photocathode. These sources can of course be non-uniform. There will also be thermionic emission from the photocathode. Oliver $(61,62)$ has investigated another source of background which is only important for tubes with $\mathrm{S}-20$ cathodes. This is the occurence of multiple-electron events (ion spots) where groups
of 10 to 20 electrons are released from the photocathode by Cs^{+}ions. These ions are formed by the evaporation of caesium from the tri-alkali photocathode to the tube electrodes and its subsequent field desorption from these as Cs^{+}ions.

With careful encapsulation and cooling of the photocathode dark currents in the range of 50 to 500 electrons $/ \mathrm{cm}^{2} / \mathrm{sec}$ have been obtained for both $S-11$'s and $S-20$'s $(56,57)$. This upper level amounts to a density increment of about $0,002 \mathrm{D} / \mathrm{hr}$ on L 4 and $0.02 \mathrm{D} / \mathrm{hr}$ on 65 .

Signal-induced background (SIB) can a1so serve to reduce the performance of the device. Coleman $(6,59)$ has investigated the various sources of SIB in the Spectracon and has shown that the predominant effects are from light scatter within the face plates of the tube (there are five glass-air or glass-vacuum surfaces), and reflection of transmitted light by the electrode structure. The effect appears to be fairly uniform over most of the image surface but rises at the extreme ends of the photocathode due to almost specular reflection from the first electrode. Coleman gives a value for the SIB of (10 ± 2) \% This would lead to a loss of limiting magnitude of 0.05^{m} for stellar photometry.

As can be seen from the figures presented so far, the performance of the Spectracon cannot be defined in isolation from the method that is used to detect the electrons. Therefore the next stage in the assessment of the system is the storage medium.

2.2 Nuclear Track Emulsion

Over the past few years extensive work has been carried out on the various nuclear track emulsions used for electronography (Brand (63), Cohen (64), Harwood (65), Kehan and Cohen (7), Cohen and

Kahan (66), Coleman $(6,59)$, Griboval et al (8), Kron and Papiashvili (67), Ables and Kron (68)). One of the prime areas of investigation has been the linearity of the response of the detector-emulsion combination. Valentine (69) has proposed that the linear density versus exposure response of electronography comes from the single hit nature of the process (that is, one electron producing one registered "event" in the emulsion).

Considering the definition of optical density (D)

$$
\mathrm{D}=\log _{10} \frac{1}{\mathrm{~T}}
$$

where T is the transmission and is given by

$$
T=1-S
$$

S is the total projective area of all the blackened grains per unit area of the emulsion. Thus the relation between D and S is

$$
D=-\log _{10}(1-S)
$$

Silberstein and Trivelli (70) have taken the shielding effect of the grains into account and replaced S by S^{\prime}, the effective projective area of the blackened grains per unit area. S ' is related to S by the following means

$$
S^{\prime}=1-e^{-S}
$$

Hence $D=-\log _{10}\left(1-S^{\prime}\right)=\log _{10} e^{S}$
S can in turn be replaced by the product of the number of developed grains per unit area (i) and the effective area of each grain (a).

$$
\mathrm{D}=0.434 \mathrm{~N} \mathrm{a}
$$

This is Nuttings Formula. Therefore it can be seen that if, as Valentine suggests, a single hit process is taking place with a mean

The grain area a^{\prime} is the effective cross-section of the undeveloped grain and is associated with the scattering and detection of incident electrons. The effective grain area a is related to the size of the developed grain and is involved with the measurement of the density of the emulsion.
number of electrons/track and the number of tracks in the emulsion proportional to the incident flux, that a linear density versus exposure relationship should follow. However, in expressing the number of grains/unit volume (N) rendered developable by an exposure to E electrons/unit area, one must take into account the probability of a grain being hit. With an electron range of R and a total number of halide grains per unit volume of N^{\prime}, each of area a^{\prime}, the number of exposed grains (N), assuming a single hit law, is given by the following expression

$$
N=N^{\prime} R\left(1-e^{-E a^{\prime}}\right)
$$

Therefore the density D can be related to the exposure E in the following manner

$$
\mathrm{D}=0.434 \mathrm{Na}=0.434 \mathrm{~N}^{\prime} \mathrm{Ra}\left(1-\mathrm{e}^{-\mathrm{Ea}}{ }^{\prime}\right)
$$

When E is infinitely large the saturation density of the emulsion is reached.

$$
\mathrm{D}=\mathrm{D}_{\mathrm{SAT}}=0.434 \mathrm{~N}^{\prime} \mathrm{Ra}
$$

Thus

$$
D=D_{S A T}\left(1-e^{-E a^{\prime}}\right)
$$

and for $D \ll D_{S A T}$

$$
D=D_{S A T} E a^{\prime}
$$

and the linear density versus exposure relationship holds. Cohen (64) has shown that at densities which are a substantial proportion of the saturation density of the emulsion $\left(D>D_{S A T}\right)$, the linearity of the single hit process breaks down, departing \bar{g}^{4} by more than 15%. However, the saturation density of nuclear track emulsion is high and thus linearity is still maintained over a useful density range.

Table 2.2.1

Emulsion/type	Mean Grain Size $\mu \mathrm{m}$	Thickness of Emulsion Layer $\mu \mathrm{m}$	Relative Speed at Unit Density	Useful Linear Range	Reference

Varying degrees of linearity have been found for different emulsions. The most consistent results come from Ilford L4, a slow fine-grain emulsion, when exposed either to mono-energetic electrons (69) or to the range of electron energies present from the Spectracon $(6,59)$. Most measurements have been taken to densities in excess of 5 . The useful linear range of an emulsion seems to some extent to decrease with increasing speed (see Table 2.2.1). This will be due, at least in part, to the lower storage of the coarser grained emulsions. Exposures to test the linearity of $G 5$ were undertaken by several workers (67) in an attempt to verify the relationship. An identical method of development was used for all the exposures, and measurements were made on both the experimenter's own measuring machines and the Joyce--Loebl microdensitometer at Imperial College. Substantial agreement was found except for the results from Griboval, the disparity being attributed to the performance of the different measuring devices.

Coleman (59) has tested the linearity of $L 4$ using three different developers and has found that the emulsion was linear up to densities in excess of 5 for all three. However, stringent precautions were taken to ensure rapid and even development. The methods used for processing these exposures, and all those taken by the author for experimental work and observations, are described in Appendix I.

As well as considerations of linearity and speed the noise of the emulsions is important when accurate photometry is required. In this respect 44 produces by far the best results. The zero frequency noise power of the emulsion has been found to be proportional to density up to about 4.5D (67). This relationship implies that the distribution of the developed grains in the emulsion is still random at high density. This can be compared with similar measures made for G5 (64) which show some evidence for grain clumping at higher densities. Cohen (64) has
shown that despite the lower speed of L4, the signal-to-noise performance of $L 4$ and $G 5$ is similar for an exposure of fixed level. Coleman (6) has explained this better performance in terms of the higher uniformity of the dimensions of the 44 emulsion crystals.

The zero frequency noise power is given by the following expression

$$
\mathrm{n}(0)=\sigma_{\mathrm{D}}^{2} \mathrm{~A}
$$

where A is the area of the measuring aperture and σ_{D} is the r.m.s. density variation obtained with that aperture. Providing the noisepower spectrum of the emulsion is flat over the range in spatial frequencies to which the measuring machine is capable of responding, aperture this value is independent of scanning area. Since a linear relationship between $n(0)$ and density implies a random distribution of grains at quite high density an assumption of a flat noise-power spectrum for 44 would seem justified. Simple checks using different-sized apertures bear this out (6).

The zero frequency noise power can in turn be related to the Selwyn granularity, S(A)

$$
n(0)=\frac{1}{2} S^{2}(A)
$$

Shaw (71) has related the granularity to the distribution in developed track areas by the following expression

$$
\frac{1}{2} S^{2}(\mathrm{~A})=0.434\left(\overline{\alpha_{\mathrm{D}}^{2}} / \overline{\alpha_{\mathrm{D}}}\right) \mathrm{D}
$$

where $\bar{\alpha}_{D}$ is the mean area of a developed track at density D. Thus

$$
\mathrm{n}(0)=0.434\left(\overline{\alpha_{\mathrm{D}}^{2}} / \overline{a_{\mathrm{D}}}\right) \mathrm{D}
$$

This may be rewritten as

$$
n(0)=0.434 \overline{D \alpha_{D}}\left(1+{\overline{\sigma_{\alpha}^{2}}}_{\alpha_{D}^{2}} /{\overline{\alpha_{D}}}^{2}\right)
$$

The two sources of density noise are as follows. The first term in the bracket arises from the random variation of the number of tracks within the area A of the aperture. The second term indicates the increase in noise over that obtained if all the tracks were of equal area. For a narrow distribution in track areas $n(0)$ will be proportional to D, a result that has been found experimentally for $L 4$.

The signal-to-noise power ratio $\left|\frac{S(0)}{n(0)}\right|^{2}$ at zero frequency is given by $D^{2} / \mathrm{n}(0)$ - thus $\left|\frac{\mathrm{S}(0)}{\mathrm{n}(0)}\right|^{2}$ should also be proportional to density. The detective quantum efficiency of the emulsion at zero spatial frequency can be defined as follows

$$
\mathrm{E}_{\mathrm{D}}(0)=\frac{\left|\frac{S(0)}{n(0)}\right|_{\text {OUT }}^{2}}{\left|\frac{S(0)}{n(0)}\right|_{\text {IN }}^{2}}
$$

$\left|\frac{S(0)}{n(0)}\right|_{I N}^{2}$ is simply the number of electrons E impinging on unit area of the emulsion.

The density for a given number of tracks per unit area $\left(N_{T}\right)$ is given by

$$
\mathrm{D}=0.434 \mathrm{~N}_{\mathrm{T}} \bar{\alpha}_{\mathrm{D}}
$$

Thus the zero-frequency $D Q E$ is given by

$$
\left.\mathrm{E}_{\mathrm{D}}(0)=\frac{\mathrm{D}^{2}}{0.434 \mathrm{D} \bar{\alpha} \mathrm{D}\left(\frac{1+\overline{\sigma_{\alpha}^{2} \mathrm{D}}}{\frac{-\bar{\alpha}}{\alpha_{D}}}\right)^{\mathrm{D}}}\right)^{\mathrm{E}}
$$

$$
\begin{aligned}
= & \left.\frac{0.434 N_{T} \overline{\alpha D}}{0.434 \bar{\alpha}_{D} \mathrm{E}\left(1+\bar{\sigma}_{\alpha_{D}}^{2}\right.} \frac{{\overline{\sigma_{D}}}^{2}}{2}\right) \\
E_{D}(0) & =\frac{N_{T}}{E}\left(\frac{1+\bar{\sigma}_{\alpha_{D}}}{\frac{\bar{\alpha}_{D}}{2}}\right)^{-1}
\end{aligned}
$$

where N_{T} is the fraction of electrons which form tracks and the other term \bar{E} arises from the non-equal weighting of tracks. Obviously this last term requires to be kept as small as possible. Coleman (6) has investigated the various factors affecting this spread in track area. One of the prime requirements is a low spread in the dimensions of the undeveloped halide grains. Again $L 4$ is shown to have the advantage of a fairly low spread (6).

Therefore it seems that, for performing accurate photometry, L4 is the prime candidate as far as emulsions go. $X M$ and $G 5$ still have their applications in the detection of faint images that would be below the measuring capabilities of the microdensitometer on $L 4$, and for positional rather than photometric work.

2.3 The Microdensitometer

As stated in Chapter I the full detail of the electronographic image can only be revealed by using a microdensitometer to scan the plate. Electronographic data impose rigorous conditions on the performance of any measuring machine (Pilkington (72)). The requirements are not only the accurate representation of spatial
information, which is necessary for any high-resolution emulsion, but also the accurate measurement of densities that may be much higher than those that are useful for photographic emulsions and also, for applications where large areas of plate must be digitised, speed is important. The microdensitometer is the final link in the chain from photon image to numerical data. The three primary areas of investigation to define its performance are:

1) Accuracy of spatial sampling
2) Linearity
3) Noise levels at high density.

Before discussing these in detail, the general properties of the Joyce-Loebl machine used for the work. presented in this thesis will be outlined.

2.3.1 The Joyce-Loeb1 Mk III CS Microdensitometer

The microdensitometer consists of two elements - the density measuring device and the control and digitisation electronics.

The system for the measurement of density was originally designed to operate as a one-dimensional scanner for spectra with fixed pre- and post- slits and the sample table being moved through the measuring beam. The sample table can be coupled to the recording table by various ratio arms which will give a sample travel ranging from 25 cn down to $125 \mu \mathrm{~m}$ for one complete stroke of the recording table. In this simple form the "Y" position of the table can be adjusted to about $1 / 10 \mathrm{~mm}$. In order to use the machine for two-dinensional scanning, stepping motors and lead-screws are added to both X and Y motions, the smallest increment in each direction being $5 \mu \mathrm{~m}$. These motors can be disengaged

PQR	measuring beam
XYZ	reference beam
a	1 amp
b	pre-slit
c	sample plane
d	post-slit
e	synchronous motor and chopper
f	photomultiplier
g	density wedge \quad.
h	zero-effect wedge
j	neutral density filter
k	filter to prevent light from red glass jaws of pre-slit system from reaching the photomultiplier
1	amplifier
m	wedge servo motor -
n	specimen table servo system
-	electrical connections
- -	light paths

for manual scans. The position angle of the specimen can be altered by about $\pm 20^{\circ}$.

The measurement of density is made using a two beam optical system (see Fig. 2.3.1). Measuring and reference beams are taken from either side of the quartz iodine lamp (a). The measurement beam passes through the sample (c) while the reference beam is diverted through the motor-driven grey wedge (g). Both beams are brought together and are mechanically chopped so that they fall alternately onto a photomultiplier. The signal from this detector is used to drive the grey wedge carriage, thus a servo-loop is formed that balances the attenuation in both beams. The position of the wedge is then taken as a measure of the density. When the sample is being manually scanned a second servo-system drives the recording table so that it moves at a slower speed when high density gradients are present. When operated in manual mode, a pen is connected to the wedge carriage to provide density output, when digital data is required a $100 \mathrm{~K} \Omega$ potentiometer is driven by the carriage and provides a voltage input for an A / D converter. The density range and resolution of the device can be changed by using different wedges (see Table 2.3.1). There is also a facility for providing zero level density offsets. Tests have been made of the stability of the photometric system. It has been found that, after a warm up period of about two hours during which density measurements change due to mechanical drift of the optics arising from temperature changes, residual drifts in density of the order of $0.002 \mathrm{D} / \mathrm{hr}$ remain. One cause of this may be the fact that the two beams are taken from opposite sides of the lamp and are looking at different parts of the filament. However, the effect is small for the typical duration of scans and as compared with the density content of the exposures.

Table 2.3.1

Density Ranges and Resolution of Joyce-Loeb1

Wedge	Density Range	Density Resolution of Digital Output
A	.39	0.00022
B	.79	0.00048
D	1.67	0.001
F	2.5	0.0015
J	3.9	0.0022

The optical system has both pre- and post- slits which serve to reduce scattered light. Since the machine was originally designed for spectrum scanning the Y slit control is not quite as accurate as the X. With care, the area of the pre-slit can be set so that it differs fron that of the post-slit by less than 50% for a $10 \mu \mathrm{~m}$ aperture and by less than 10% for a $40 \mu \mathrm{~m}$ aperture. There is a facility for changing the objective; for electronography those of magnifications $x 10$ and $x 20$ are most frequently used, having numerical apertures of 0.25 and 0.5 respectively. The exposures are sometimes mounted on glass plates and are measured with the emulsion face-up and uncovered. However, most of the emulsion is on a Melinex backing and during scanning these exposures are held between two glass plates of about 1 mm thickness.

The design of the control electronics has been described by Cullum and Stephens (39). The table can be moved under manual control (using a joystick) or in an automatic raster scan. The output of the potentiometer is fed to the A / D converter when a "wedge balanced" signal is received. The table is then stepped and another measurement is made. The scan rate is slow, basically limited by the response of the mechanical system and the wedge-servo balance time at high density. The maximum sample rate is 18 samples/sec; an average figure obtained from exposures of varying density content is about 10 samples/sec.

Any wedge range can be divided into about 1,700 levels and the density increment per level can be found by simple calibration techniques. There is a small keyboard to write numerical identifications at the head of a scan and the facility for writing single densities onto the magnetic tape. The scan data is written to tape with "beginning of scan line" and "beginning of density-word" characters. The structure

FIGURE 2•3•2: STRUCTURE OF SCAN

```
Header Record
    AA|BBBBBIC[WDDD|WDDD|.. . . .
```

$\cdots \cdot \cdot 10000 \mid$ EOR

Scan

LDDDIWDDDI •••••
-IWDDDIEOR

WDDDIWDDDILDDDIWDDDI....

- - -IWDDDIEOR

Last Record

WDDDIWDDDI 00001
-• 10000 |EOF

End of Scan

AA User Identity
BBBEE Scan Identity
C Nuber of Standard Densities
D Density

PROJECTION OF SCAN PITTERN ON SAMPLE

$A \rightarrow B$	Samples
$B \rightarrow C$	Steps in Y direction
$C \rightarrow D$	Flyback
$D \rightarrow E$	Takes up backlash
$E \rightarrow F$	Samples
G	Returns to zero taking up backlash

of a typical scan is shown in Fig. 2.3.2. The 7-track magnetic tape produced by the machine is processed on a CDC 6400 computer at the College computer centre.

2.3.2 Accuracy of Spatial Sampling

For mapping and photometry it is necessary to have an accurate representation of the spatial distribution of the emission from any object. Also, if comparison or matching of two scans is required, there must be good repeatability of a given scan pattern.

Positional information used for the mapping of images scanned with the Joyce-Loebl is based on the assumption of equal spacing between samples within the raster. The stepping motors and lead-screws providing the X and Y motions of the table have a minimum step length of $5 \mu \mathrm{~m}$ and the scan length and sampling interval are set up as multiples of this dimension. Since there is no check on absolute or relative position during scanning some general investigations have been made into the table motion.

There is a certain amount of backlash between the sample table and the lead-screw and this was taken into account when the control of the automatic scan was designed. During scanning a pattern is followed as shown in Fig. 2.3.3. The table overshoots on the flyback and sampling commences as the stepping motors return the table to the zero point. Of course, if the backlash is not taken up before starting there will be errors in the first few data points. However, it is a fairly simple matter to perform a short scan, which will automatically take up the backlash, or to position the table correctly using the joystick.
Lu muras bisiliy

FIGURE 2-3.5: CHECK FOR ZERO-SHIFT IN SCAN PATTERN

_ normal scan pattern

- - - - scan pattern with systematic zero shift

SCAN A
SCAN B

Form of the plots of scans of a bar pattern with a systematic shift in the zero position

Cullum (73) has made some measurements of the cumulative error obtained on a 25 mm stroke of the sample table (25 mm is about the longest length of scan required for a Spectracon exposure). The r.m.s. error was found to amount to $\pm 6 \mu \mathrm{~m}$ in the Y direction and slightly better than this in X.

To look for effects arising from individual sample intervals being of non-standard length a check can be made by scanning a pattern of equi-spaced lines with a fairly close separation. A diffraction grating of $250 \mathrm{lp} /$ inch was used for this test. Obviously the edges of the bars will be smoothed out by the finite width of the slit, but it is possible to check the length of the dark and bright bars and look for gross irregularities (a typical scan is shown in Fig. 2.3.4). On measurements made so far, no evidence for large differences in sample interval has been found. Another effect that can be checked is a systematic shift in zero position. To do this one must eliminate effects due to the grating being at an angle to the direction of the scan (see Fig. 2:3.5). If the sense of the scan is reversed in the X-direction and then the two scans are plotted so that the data represents the same spatial orientation, the bars in the two plots should be at the same angle unless the zero position shifts. This has been checked and again a null result obtained.

Thus, with care, it is possible to obtain quite good positional accuracy within a set of scan data, and if the same features are visible within two scans it should be possible to match them.

FIGURE 2.3.6: TYPICAL KNIFE-EDGE TRACES

Table 2.3.2

FIGURE 2.3.7: TRANSHISSION VERSUS POSITION OF KNIFE-EDGE ACROSS THE SLIT

POSITION OF KNIFE-EDGE ACROSS SLIT \rightarrow

\leftarrow POSITION OF KNIFE-EDGE ACROSS SLIT

Microdensitometer Modulation-Transfer Function

As well as considering the effects of positional accuracy on the representation of the distribution of the data on the plate, one has to take into account the effects of the microdensitometer in filtering the spatial frequencies of the measured image. The modulation-transfer function (MTF) of the device gives a measure of these effects. The MTF of the microdensitometer can be measured from traces of a knife-edge either by obtaining the line-spread function and performing a Fourier transform, or by using a method described by Scott, Scott and Shack (74) which yields the square-wave response of the system, which is then converted to the sine-wave response or MTF. For this latter method the output of the microdensitometer in terms of the measured relative brightness is required. Therefore the density measurements must be converted to transmission.

Scans of a knife-edge were undertaken using the range of aperture widths most likely to be used for digitisation of electronographs. Thus the smallest slit used was about $5 \mu \mathrm{~m}$ wide, coinciding with the minimum available step length of the stepping motor. Table 2.3.2 gives the details of the scans and Fig. 2.3 .6 shows the typical edge traces. When these traces are converted into plots of transmission versus the position of the knife-edge across the slit a series of straight lines are obtained, Fig. 2.3.7. This is the result one would expect if the MTF of the microdensitometer is predominantly the filter function of the slit rather than stemming from any limitation of the optical system. Fig. 2.3 .8 shows the calculated variation of density and transmission with displacement for a knife-edge being drawn across a slit. Thus it seens, in the range of slit widths likely to be used for digitisation purposes, that the MTF of the microdensitometer can be adequately described by the slit function alone. This takes the

FIGURE 2-3.9: MODULATION TRANSFER FUNCTION FOR A SLIT \times MM WIDE

form of a sinc function so that the MTF $M(f)$ is given by

$$
M(f)=\frac{\sin \pi f x}{\pi f x}
$$

where f is the spatial frequency in cycles/mm and x is the width of the slit in mm. A plot of the function is shown in Fig. 2.3.9.

2.3.3 Linearity

The linear response of the electronographic process requires that the microdensitometer itself be highly linear. Certainly the combination of the Joyce-Loebl plus L 4 has been shown to be linear over a large range in density (Kahan and Cohen (7), Ables and Kron (68)), and it would seem fortuitous if this arose from mutually compensating non-linearities in the two components.

With the two-beam system used in the Joyce-Loebl, one possible source of non-linearity is the grey wedge. Cohen (64) reports small scale departures of 2% or less due to inhomogeneities in the wedge and states that these cancel out over the full wedge range. Two methods can be used to remove these effects, either to calibrate the wedge (Ables and Ables (47) have used the electronograph itself to do this) or to scan twice using a small zero offset so that densities are measured at slightly different parts of the wedge. It is also fairly simple to check the relationship between the position of the wedge and the output that is written onto the magnetic tape (see Fig. 2.3.10) to look for non-linearities in the potentiometer.

A problem with all microdensitometers, and probably the major source of non-linearity with the Joyce-Loebl, is the low assessment of true density due to transmission averaging across the measuring slit. The machine is balancing the amount of light passing through the sample against that coming through the grey wedge, and has no means of

FIGURE 2•3•10: LINEARITY OF DIGITISATION PROCESS

compensating for the density structure across the measuring aperture. Taking a trivial example of a slit, half of which contains zero density and the other half contains density $1 D$, it can be shown that the true average density is 0.5 D while the measured density from the average transmission is 0.26 D . Pilkington (72) has calculated these effects for stellar images with a gaussian profile of half density width W and peak density D_{0} above background, scanned with a square aperture of side L. He has shown that the error $\left(\Delta_{m}\right)$ in the magnitude derived from the density solid of the image is given by

$$
\Delta_{\mathrm{m}}=0.29 \mathrm{D}_{0}\left(\frac{\mathrm{~L}}{\mathrm{~W}}\right)^{2}
$$

Thus for an image peak density 3 an error of 0.1^{m} requires a slit of widith at $1 / 3$ the half density height of the image (W) and an error of 0.01^{m} (about 1% accuracy) requires a slit of approximately $\frac{1}{10} \mathrm{~W}$.

Taking a fairly simple case of a linear density gradient across the measuring slit it is possible to do some order-of-magnitude calculations on the change in density across the slit that is tolerable for a given percentage error in density measurement.

Using the relationship between density (D) and transmission (T)

$$
D=-\log _{10} T
$$

it can be shown that

$$
T=10^{-D}=e^{-K D} \quad \text { where } K=\log _{e} 10
$$

if D is of the form that

$$
D=G x+C
$$

where x is the displacement across the aperture and C is the background density level, then the average transmission T across a slit of width
' a ' is given by

$$
\begin{aligned}
\bar{T} & =\frac{1}{a} \int_{0}^{a} T d x \\
& =\frac{1}{a} \int_{0}^{a} e^{-K(G x+C)} d x \\
& =\frac{-e^{-K C}}{K G a}\left[e^{-K G x}\right]_{0}^{a} \\
\bar{T} & =\frac{e^{-K C}}{K G a}\left[1-e^{-K G a}\right]
\end{aligned}
$$

Therefore if we now turn this into the measured density D^{*}

$$
\begin{aligned}
& \mathrm{D}^{*}=-\log _{10} \overrightarrow{\mathrm{~T}}=\frac{1}{\mathrm{~K}} \log _{e} \frac{1}{\mathrm{~T}} \\
& \mathrm{D}^{*}=\mathrm{C}+\mathrm{Ga}+\log _{10} \frac{\mathrm{KGa}}{\left(10^{\mathrm{Ga}}-1\right)}
\end{aligned}
$$

But \bar{D} is the true average density

$$
\overline{\mathrm{D}}=\mathrm{C}+\frac{\mathrm{Ga}}{2}
$$

Therefore the percentage departure from the true density $\Delta \%$ is given by

$$
\Delta \%=\frac{\overline{\mathrm{D}}-\mathrm{D}^{*}}{\mathrm{D}} \times 100=\left(\frac{-\log _{10} \frac{\mathrm{KGa}}{\left(10^{\mathrm{Ga}}-1\right)}-\frac{\mathrm{Ga}}{2}}{\frac{\mathrm{Ga}}{2}+\mathrm{C}}\right) \times 100
$$

FIGURE 2.3.11

Ga is simply the density change across the slit. Let this be equal to $\Delta \mathrm{D}$, then $\Delta \%$ is given by the following expression

$$
\Delta \%=\frac{100}{\frac{\Delta \mathrm{D}+\mathrm{C}}{2}}\left(-\log _{10} \cdot \frac{\mathrm{~K} \mathrm{\Delta D}}{10^{\Delta \mathrm{D}}-1}-\frac{\Delta \mathrm{D}}{2}\right)
$$

A Hewlett Packard calculator was used to evaluate $\Delta \mathrm{D}$ for different values of background density C for $a \%$ of 1 . The results are shown in Fig. 2.3.11.

It is very simple to extend the treatment to two gradients in both x and y directions across a slit of side ' a ' such that the density (D) at any given point is

$$
D=A x+B y+C
$$

D*. the measured density is then given by

$$
D^{*}=C+A a+B a+\log _{10} \frac{K^{2} A B a^{2}}{\left(10^{B a}-1\right)\left(10^{A a}-1\right)}
$$

now if $A=B=G$ the percentage density change ($\Delta \%$) is given by

$$
\begin{aligned}
\Delta \% & =\frac{100}{\mathrm{Ga}+\mathrm{C}}\left(-2 \log _{10} \frac{\mathrm{KGa}}{\left(10^{\mathrm{Ga}}-1\right)}-\mathrm{Ga}\right) \\
& =\frac{100}{\Delta \mathrm{D}+\mathrm{C}}\left(-2 \log _{10} \frac{\mathrm{~K} \Delta \mathrm{D}}{\left(10^{\Delta \mathrm{D}}-1\right)}-\Delta \mathrm{D}\right)
\end{aligned}
$$

which at zero background density yiclds the same limit as the onedimensional treatment. This may at first seem odd since there is a total change of $2 \Delta \mathrm{D}$ across the diagonal of the aperture. However, by considering the aperture spit up into strips of equal density (see Fig. 2.3.12) one can see that a heavier weighting is given to those areas clustered round the true mean density.

FIGURE 2.3.12: VARIATION OF DENSITY ACROSS MEASURING SLIT

\qquad isodensity lines
line of true mean density

Therefore, for given image content, these figures can be used as a guide to the maximum size of measuring aperture that can be used. At this point it might be valuable to stress the distinction between the "measuring aperture" and the "analysing aperture". In the first case one is considering the effective size, at the emulsion surface, of the measuring slit of the microdensitometer. In the second case the analysing aperture is the area which is considered as a single element in the numerical analysis undertaken using computer programs. It can be the same size as the measuring slit or an integer multiple of it. This effect is achieved by adding adjacent samples from a scan to form a new array of data for processing. Experiments have shown that, for emulsion noise data, the noise scales down with the addition of samples, as would be expected. That is, the noise is reduced by \sqrt{N} where N is the number of samples added together. However, for systematic rather than random fluctuations this addition does not reduce the noise. Therefore, even if a fairly large analysing aperture is required, sampling must still be undertaken with the size of aperture dictated by linearity and accuracy considerations and the data then added together to give the required resolution element.

2.3.4 Microdensitometer Noise

Having considered the systematic errors of the microdensitometer it is necessary to deal with the random noise arising from both the photometric system and the digitising electronics. Since the digitisation process is used purely to register the position of the grey wedge, the noise arising from this source should not change over the different density ranges. It should only be of importance at low densities since at high density the predominant effect should arise from photon shot noise within the photometric system.

Measurements of system noise have been made for the Joyce-Loebl by holding neutral density filters fixed in the measuring beam while scanning the table in the normal manner. The densities produced were written to magnetic tape and were subsequently processed on an INTERDATA 70 minicomputer to produce r.m.s. noise values. For each density, 5 scans of 1,000 points were taken, each scan on a different part of the grey wedge. Fig. 2.3 .13 shows results for $10 \mu \mathrm{~m}$ and $40 \mu \mathrm{~m}$ square measuring apertures. The r.m.s. density noise (σ_{D}) is plotted against the density of the neutral filters as measured on the JoyceLoebl. Using the relationship between density (D) and transmission (T)

$$
\begin{equation*}
D=-\log _{10} T \tag{i}
\end{equation*}
$$

one can relate the density variation $\left(\sigma_{D}\right)$ to the change in transmission d'T

$$
\begin{equation*}
\sigma_{D}=d D=-\frac{1}{\log _{e} 10} \frac{d T}{T} \tag{ii}
\end{equation*}
$$

If N^{*} is the number of photons passing through the slit at zero density, in the time it takes to make a measurement, then the number of photons (N) passing through the slit at transmission T are given by

$$
\mathrm{N}=\mathrm{TN} *
$$

Thus

$$
\begin{equation*}
\mathrm{dN}=\mathrm{N}^{*} \mathrm{dT} \tag{iii}
\end{equation*}
$$

and so

$$
\begin{equation*}
\frac{N}{d N}=\frac{T}{d T} \tag{iv}
\end{equation*}
$$

Therefore $\frac{N}{d N}$, which is the photon signal-to-noise ratio of the photometric system of the machine, can be related to the density fluctuation σ_{D}

FIGURE $2 \cdot 3 \cdot 14$

$$
\begin{equation*}
\frac{\mathrm{N}}{\mathrm{dN}}=\left|\frac{1}{\sigma_{\mathrm{D}} \log _{\mathrm{e}} 10}\right| \tag{v}
\end{equation*}
$$

However, since photons obey Poissonian statistics

$$
\begin{equation*}
d \mathrm{~N}=\sqrt{\mathrm{N}^{*} T} \tag{vi}
\end{equation*}
$$

substituting (vi) in (iii)

$$
d T=\frac{1}{\sqrt{N^{*}}} \sqrt{T}
$$

Therefore a plot of $d T$ versus \sqrt{T} should yield a straight line if the machine is limited by the photon shot noise of the system. Fig. 2.3.14 shows the plots for different slit widths. It can be seen for the $40 \mu \mathrm{~m}$ aperture that there are two distinct parts to the plot. It must be remembered that what is actually being measured is σ_{D}, which from equation (ii) is proportional to $\frac{d T}{T}$. This quantity, which in turn is proportional to $\frac{1}{\sqrt{N}}$, will decrease at high transmissions and so eventually the limiting electronic noise of the digitisation system will begin to dominate, resulting in an over-assessment of photon noise at low density. One can also argue that at higher transmission the closer spacing of points serves to give a better fit for a straight line. However, if the slopes of the two lines, taken from the low transmission measurement, are used to make an estimate of the number of photons passing through the slit at zero density, a factor of 16.2 is found between the two results. This is in pood agreement with the factor of 16 one would expect from the difference in areas of the measuring apertures.

The useful working density range of the microdensitometer can be defined by comparing its own noise with that of the emulsion for the same given measuring aperture. The machine should always be operated so that it is the emulsion noise that dominates - then one obtains the correct reduction in emulsion noise when samples are added together
to provide a given analysing aperture. This limiting density will then define the highest accuracy that can be reached for a given resolution element. (Referring to section 2.2 , for L 4 emulsion, where the zero frequency noise power $n(0)$ is proportional to density, then the signal-to-noise power ratio $\left|\frac{S(0)}{n(0)}\right|^{2}$ should also be proportional to density.)

Having outlined the general properties of the photometric system, the next process is to examine its use and performance in astronomical observations.

CHAPTER III

ASTRONOMICAL OBSERVATIONS

```
"The universe is full of magical things,
    patiently waiting for our wits to grow sharper."
    Eden Phillpots
```

This chapter deals with the acquisition of astronomical exposures and their subsequent reduction to useful information. There are three main aspects to be considered - the mounting of the inage tube on the telescope and the observational procedures, the scanning and processing of the exposures and the interpretation of the results obtained.

3.1 Spectracon Cameras

This section deals with some of the general aspects of mounting a Spectracon on a telescope, together with a description of a simple camera developed by the author.

3.1.1 Weight and Dimensions

The present-day Spectracon solenoid (see Fig. 2.1.1) was specifically designed to be as light and compact as possible while maintaining an adequately uniform magnetic field. The use of mu-metal shields ensures that the effects of stray magnetic fields external to the coil (such as the earth's magnetic field) are reduced below the level that would cause a serious shift in the image. (A shift of $5 \mu \mathrm{~m}$ occurs for a transverse field of 0.003 oersted at double-loop focussing. (Bacik (56).) The solenoid has been described in full detail by McCee et al (75) and a variation of that design, not requiring liquid cooling,

FIGURE $3 \cdot 1 \cdot$: DIMENSIONS AND CLEARANCES FOR SOLENOID

has been produced for operation at the prime focus of a large telescope (McGee et al (4)).

The outer diameter of the solenoid is about 10 cm and the length is approximately 40 cm . When the tube and film holder are in place a further clearance at the back end of about 20 cm is required if the film is to be loaded and retracted without undue damage (see Fig. 3.1.1). The entrance aperture of the solenoid is about 4 cm diameter and the tube sits well back so that the photocathode lies about 28 mm inside the solenoid. The total weight of the combination of Spectracon plus focussing coil is about 11 kg to 12 kg . Thus, with design of a sufficiently-rigid, light-weight support, this device can be mounted on a fairly small telescope (76).

3.1.2 Cooling

The solenoid can be operated at 1 or 2 -loop focussing, producing 16 W and 65 W respectively. When located at Cassegrain and Coudé foci, liquid coolant can be circulated through the solenoid. This liquid can be either tap water or anti-freeze circulated by a cooler. As has been mentioned previously a solenoid has been developed for operation at the prime focus, where it is not feasible to use liquids. In this case four Peltier coolers are located at the front of the coil to cool the photocathode. This system is only operated at single-loop focus and good thermal contact with a large heat sink is required. A temperature differential of about $20^{\circ} \mathrm{C}$ is maintained between the photocathode and ambient temperature.

In both solenoids the cooling is concentrated towards the photocathode end of the tube while the mica window is allowed to warm up. This prevents condensation on the window and problems with the emulsion becoming sticky.

3.1.3 Power Supplies

Two sets of cabling must be run to the camera, a high voltage cable carrying the 40 KV supply to the Spectracon and a 12-way low voltage cable which supplies the solenoid. A high voltage connector is usually located close to the solenoid and an adequate form of clamping and support must be provided to stop the cable shifting when the telescope is moved. A good earth return is absolutely essential.

3.1.4 Adjustments to Position Angle and Focus

The number of degrees of freedom which have to be built into the camera depends very much on the properties of the mounting flange and telescope to which it is being matched.

Because of the rectangular shape of the image area of the Spectracon an adjustment of position-angle is necessary so that objects which are greatly extended in one direction can be accommodated. This rotation need only have a complete range of 180° and is fairly easy to provide by rotating the assembly of solenoid and tube in its mounting.

The position of the focal plane of the telescope can usually be set with sufficient accuracy using the telescope controls and only a coarse location adjustment need be built into the camera.

The location of the photocathode 28 mm inside the solenoid causes no problems when there is a large back focal-distance to play with. However, some difficulties can arise at the prime focus. For example there is approximately 75 mm between the surface of the Wynne corrector and the focal plane at the prime focus of the Isaac Newton Telescope. This is sufficient space to fit in a filter holder and shutter arrangement but not enough for any form of reflex viewer or field finder.

3.1.5 Acquisition and Setting

The limited image area of the Spectracon is often cited as a disadvantage in astronomical observations (Walker (9)). Certainly for work on large star clusters this can be a drawback, but there is quite a substantial class of objects that can be easily fitted onto the photocathode provided that they can be set with a fairly high accuracy.

The general problem of acquiring an object obviously varies in nature with the complexity of the telescope. With a mechanically accurate and fairly sophisticated instrument such as the Isaac Newton Telescope accurate co-ordinates and off-setting techniques can be used to good advantage. If such co-ordinates are not available or if the telescope cannot be set to within the accuracy required, then some form of field viewing device and a means of relating the photocathode position to that field are needed. This can range from a television finding system, if it is already available, to a simple combination of cross-wire and eyepiece. Certainly it is an advantage to be able to view the field as seen by the photocathode and very often the efficiency of an observing programme will be governed by the ease of acquisition and setting of the objects.

3.1.6 Additional Requirements

As with any instrunent there must be provision for some sort of guiding eyepiece, a shutter mechanism and filters. A1so care must be taken to exclude stray light. This is particularly important when the observing floor is illuminated with red lamps and a $\mathrm{S}-20$ response tube is being used. Light levels that are not visible when a phosphor screen is placed near the mica window can still produce clearly visible background within an hour on $L 4$.

FIGURE 3.1.2: BOYDEN CAMERA

3.1.7 Spectracon Camera for a $60^{\prime \prime}$ Reflector

During April 1973 observations of some southern radio sources and planetary nebulae were undertaken using a Spectracon on the $60^{\prime \prime}$ reflector at the Boyden Observatory, Blocmfontein, South Africa. The camera that was built for the Cassegrain focus of this instrument is shown in Fig. 3.1 .2 and a cross-sectional diagram is shown in Fig. 3.1.3.

The camera was to be mated to a fixed mounting flange so a facility for adjusting the position angle had to be provided. The setting accuracy of the telescope was known to be worse than $2 \hat{\imath}$ and, since the Spectracon photocathode represented a field of $1 \frac{1 / 3}{} \hat{\imath} \times 4^{\hat{\prime}}$, it was necessary to provide an adequate field-finding eyepiece for acquisition and setting. The telescope was provided with only a 4 -inch finder so that a guiding eyepiece also had to be built into the canera. Focusing was achieved using movements of the secondary mirror of the telescope, although positional adjustment of the solenoid was built in.

When working on certain parts of the sky the back of the $60^{\prime \prime}$ mirror-cell comes within a couple of feet of the floor. Since the focal plane lies in a range between $14^{\prime \prime}$ and $18^{\prime \prime}$ from the back of the ce11, a "straight through" system for the Spectracon was clearly not feasible. Therefore, it was decided to use an accurately locating 45° mirror to deflect the image onto the tube, this mirror being moved to one side of the beam when the field finder was being used. The system had been used before at the Cassegrain focus of the Isaac Newton Telescope (INT) with satisfactory results.

The finding and guiding eyepieces were mounted on a circular plate; this could be rotated through a full 360° and clamped in position. The guiding eyepiece was also provided with a radial motion by being

A 45° flip-in mirror
E Position of photocathode
B Finder eyepiece
F Base plate
C Guider eyepiece
D Filter holder + shutter assembly
G Solenoid
H Top plate providing rotation for guider
mounted on a dovetail slide. This provided a total search area for the guider of a little under 500 square arcmins. The guider eyepiece was provided with a graticule with a guiding box of $2 \hat{\prime} \times 2 \hat{\prime}$. The unvignetted field of view of the finder eyepiece was about $5 \hat{\imath}$ in diameter and a graticule with a central box of $5 \mathrm{~mm} x 5 \mathrm{~mm}$ ($44^{\hat{\prime \prime}} \times 44^{\prime \prime}$) was fitted. The camera was built so that the finder eyepiece could be adjusted to be confocal with the photocathode. Therefore, by setting the object using the main finder graticule it was possible to make it fall on the photocathode when the 45° mirror was put into the beam. The whole top plate assembly was supported from the base plate by four pillars. The 45° mirror-mount was attached to one wall of the camera, which was made of $\frac{1}{4}$ dural plate, while the remaining three sides of the box were made from light-weight cladding.

Since water cooling was used there was no need to provide a large heat sink at the front end of the solenoid. Therefore a layer of black rubber was used between the solenoid and the filter holder and shutter assembly to provide a light seal. As an added precaution a hood was fitted over the front part of the tube. Light leaks through the slot in the guider plate were reduced by fitting a strip of black paper which was free to move back and forth with the guider and which was held down on the plate by light-weight runners made from small strips of plastic.

The total weight of the finished camera plus solenoid came to about 40 kg . Various parts of it have since been incorporated in a slightly heavier version for use on the Isaac Newton Telescope. This latter arrangement can also accomodate a narrow-gap Fabry-Perot interferometcr which can be used as a tunable filter (Reay, Ring and Scaddan (77)).

Further descriptions of the mountings for the Spectracon are given by Walker $(22,78)$, NcGee et al (4) and Coleman et al (76). The tube and solenoid has also been incorporated as the detector in a coherence interferometer described by Dainty and Scaddan (79).

3.2 OBSERVING PROCEDURES

\therefore The Spectracon system is fairly easy to set up and run and only simple precautions are necessary.

1) The EHT connections to the tube should be checked to ensure good contacts throughout, and the tube should be properly earthed. The most common cause of corona in the connectors is bad contact between the plug and socket. However, high humidity can cause trouble, and in this case dessicant can be packed round the mouth of the EHT junction box and an extra seal added.
2) The cooling, focussing current and EHT should be run up well before observing is started to allow time for both thermal and electrical stabilisation of the tube. The EHT should be applied fairly slowly (over 1 minute minimum) to allow for the gradual charging up of the glass spacers.
3) The mica window of the tube is surprisingly strong and it should not implode unless treated carelessly. Any dust should be removed from it using a soft brush. These small particles are unlikely to break it but will mask the emulsion and mar the exposure. The main trouble will arise if the window becomes damp, because the emulsion will stick to it when put in contact and will pull the mica away when removed.
4) To obtain good exposures care must be taken to ensure that the emulsion remains clean during processing (sce Appendix I). Small pieces of dirt can usually be recognised when the plates are measured, but
smears and patches due to uneven drying will look like features of the object, particularly in the very low contrast images.

With very elementary care the Spectracon can be mounted and operated on many different sorts of telescopes and sites. For example, during the past three years, as well as being used at both the prime and Cassegrain foci of the INT, it has been used for observations in South Africa, Tenerife and Hawaii, on telescope apertures ranging from $20^{\prime \prime}$ to $60^{\prime \prime}$.

3.3 SCANNING AND CONPUTER PROCESSING OF ELECTRONOGRAPHS

Once having obtained an electronograph one has to set about producing useful information from it. The exposure must be scanned and the resultant data processed to produce the required output. The Joyce-Loebl microdensitometer (described in Chapter II) was designed to produce magnetic tape in a format that could be easily handled by the CDC 6400 computer at the College computer centre, and most of the reduction routines have been developed using this machine. However, it is a fairly simple matter to transfer them to the CDC 6600 that is available at the University of London computer centre. Some of the programs that will be described were originally used on data produced by a Joyce-Loebl Autodensidater at the Royal Greenwich Observatory, Herstmonceux. In these cases the author has had a hand in modifying them and getting them to work with the data produced by the Imperial College densitometer.

3.3.1 Scanning

When scanning the exposure the following parameters have to be chosen: slit width, sample step length, extent of scan and angle of scan. The slit width and sample length are normally chosen to be the same. The slit width is set by linearity considerations (sce Chapter II)
combined with the density content of the object and the plate scale of the exposure. The scan area is usually chosen to be somewhat larger than the visible object since, through experience, it has been found there can be extensions to the object which are not apparent to the eye. The angle of scan can be easily adjusted and is usually set up to be $\mathrm{E}-\mathrm{W}$ or $\mathrm{N}-\mathrm{S}$ for convenience. The density range of the object can be assessed by moving the sample back and forth in the measuring beam and the appropriate grey wedge is chosen.

The data is written onto magnetic tape with a header record containing scan identification and standard densities. The magnetic tape records are made up of 256,60 bit words, each word representing ten characters. Each density word is made up of four characters, thus a full record holds 640 densities. The header record is filled up with zeros after the last standard density has been written, and the scan is started at the beginning of a new record. All the records are filled up, the beginning of a new line being represented by a different leading character from the one used for the beginning of a density word. The last record of the scan is filled up with zeros after the last measured density and then a file mark is put on automatically. After a scan is completed the machine returns to the starting point and the tape is ready to receive a new scan.

This binary tape produced by the machine can be read into the CDC 6400 computer; it is then possible to translate it into a format that is readable using FORTRAN programs. It is in this form that all the scans are stored for archive purposes, the scan tapes being re-used once the data has been translated.

3.3.2 Computer Processing

Listings of the computer programs referred to in this section are to be found in Appendix II.

JLTRAN (Translation Program)

The advantage of producing digital data on magnetic tape is that it can be processed in many different ways. Since the output from the mi.crodensitometer is used by a lot of people it is necessary to get it into a form that can be handled using a high level language like FORTRAN. Thus, if all users adhere to the same data format on the tape, a pool of programs, that can be used on all tapes, can be built up.

The original translation routine was written by C.L. Stephens (80) and has been modified by the author. The data can be handled in three ways:

1) The tape can be dumped in Octal onto the line printer.
2) The tape, with a header, can be translated and written to an archive file in "standard format".
3) The tape, without a header, can be translated and then an addition to the program must be made to write the data to a given output device.

The archive format stores all the information considered necessary to identify the scan and to retain its usefulness if the original log data for the scan has been lost. The header consists of identifying characters for the user and scan number, the number of lines in the scan and number of points along a line, two 80 -character alphanumeric arrays containing exposure and scan parameters and two arrays containing the values of standard densities and their corresponding measured values on the machine.

The identifying characters, the measured densities and the number of points in the scan are all obtained from the tape produced on the JoyceLoebl. The other data are read-in from cards. If there is a fault with the tape, so that it does not translate properly, the scan is not written to the archive and a message is put out on the line printer. The program is capable of translating several files and if one is faulty it will proceed to the next scan.

Display Programs

Having obtained a translated scan some form of display routine is required. Most of the programs have been designed to use the plotting package, available at Imperial College, for the CALCOMP incremental plotter. These routines are easily transferred to the MICROFILM plotter available at the University of London computer centre.

1) "Quick Look" Prograns (LARD and MICSIT)

The first plot of any scan is used to get a general idea of the quality of the data and also of the position of the object within the scan. Two programs exist to do this job. The first, LARD, was written by C.L. Stephens (80) for use on data from scans of star fields produced by the Joyce-Loebl Autodensidater at Herstmonceux. It has since been modified to take the standard format tapes produced at Imperial College. A plot array is formed from either the complete scan or part of it, each plotting point being a single sample or an addition of adjacent samples. As this array is formed it is searched for its maximum and minimun value. This range in the data is then set equal to a given value of the plot "height". The array is drawn out line by line, the variations in density being represented by changes in the height of the plot from a given base line. Although this routine is economical in computer time the plot time can be fairly long when large arrays are being handled. An example of this form of display is shown in Fig. 3.3.1.

The LARD display has certain drawbacks in that it is not very easy to see "behind" the object, therefore a program working on similar principles (MICSIT) was written for the microfilm plotter. This again forms a plotting array from the same data, but the range in data is divided into a given number of grey levels. These grey levels are displayed by using a single character in an on/off mode to produce a set of dummy contours. This is a fairly crude form of display but has sufficient accuracy to locate the object and to give an idea of its extent for subsequent plotting by contour routines (see Fig. 3.3.2).

Each plot is labelled with the two alphanumeric arrays on the archive tape plus an array fed in from cards giving details about the area of the scan used. A scale marker, 10 plot steps in length, is also drawn on.
2) Contour Program (DSPLY) (C.L. Stephens (80))

Again a plot array is formed from the scan data (since this job has to be performed in many programs it was written as a sub-routine (SECTN)). The major sub-progran (CONT) finds and draws a contour at a given level within the data array. The contour heights can be set to fixed levels, or a number of contours can be equispaced within the range of data. There is also a facility for logarithmic contour levels if required. The search mode of the contouring routine requires that the complete plot array be stored in the computer. To reduce the storage required, the "Quick Look" programs are used to select the minimum area of the plot required to obtain contours of the complete object. An example of the contouring routine producing 15 equispaced contours is shown in Fig. 3.3.3.

Photometric Routines

The display routines, as such, reveal the general morphology of the object. Thus one obtains results that are available from machines such
as the Joyce-Loebl isodensitracer which use the exposure as a read-only memory to produce isodensity maps. Therefore one also needs routines which will produce information about fluxes from the object and which can be used to obtain more information from the contour maps. Most of the simple jobs have been written into one program (VOL) which is used in conjunction with the "Quick Look" routines.
a) Background level assessment

Using a display of the scan, to locate the object, areas of background can be selected. The co-ordinates of these areas are fed into the program and the background level and the noise on that background are assessed for each area. An average value is also calculated. The r.m.s. noise can be used to set the level of the outermost contour of the object.
b) Density volume assessment

The raster scan-pattern of the Joyce-Loebl most readily accommodates a rectangular or square "window" over which to make an assessment of the density volume, particularly if the size of the window is an integer multiple of the step length. At present an average value of the background level is subtracted since the program has been used on narrow band observations where the background level is very low and predominantly set by the plate fog.

For the total flux from the object the rectangular window is probably quite sufficient: However, it is useful to compare data from electronographs with integrated fluxes measured using circular diaphragms of different sizes with a photomultiplier. This will also provide a method for absolute calibration of contour levels. Therefore a sub-routine has been written into VOL which will take the density volume within a dummy circular aperture projected in the scan. Again, at the moment, it works with an integer number of samples, the data being read-in line by line. The difference in the value of the area of the "diaphragm"

as compared with the actual area required is plotted against the number of steps across a diameter (see Fig. 3.3.4). Since most diaphragms used for astronomical photoelectric observations are in excess of $5 \hat{\prime \prime}$ across and the image scales used for the exposures such that at least 15 samples may be put across a diameter, this leads to an accuracy of at least 3%. If a higher accuracy is required two assessments of the volume can be made with two different diameters stradding the required value and the average volume can be found.

The programs as a whole tend to be changed and modified by different users to produce an output to suit themselves. The basic routines described here have served as general building blocks from which many variants have arisen.

3.4 ASTRONOMICAL OBSERVATIONS

During the past three years the author has been associated with Spectracon observations of several types of objects including radio-galaxies, pulsars and planetary nebulae. This has afforded opportunities for working with the device at different telescope foci and for learning about the requirements of different observing programes. However, the main area of interest, where the majority of the data reduction has been undertaken, has been in the narrow-band photometry of planetary nebulae.

In many ways the Spectracon is well suited to the study of these objects since they exhibit a wide range of surface-brightness which can be accomodated by the high dynamic-range of the electronographic process. Also the majority of the nebulae are of fairly limited angular extent; thus the small image area of the tube does not serve as a limitation.

3.4.1 Planetary Nebulae

3.4.1.1 Fornation

A't present, it is believed that planetary nebulae represent a fairly common phase in the evolution of a large number of stars (Miller (85)). The most likely progenitors seem to be the red giants. These objects satisfy the mass (about $1.5 \mathrm{M}_{\odot}$ (Liller and Aller (82))) and distribution requirements (Perek (86)) set by the nebulae. Also, studies of the structure of the atmospheres of these stars show that there are processes which can provide naturalejection mechanisms.

From observations of spectra of both the central stars and the surrounding nebulae, there seems to be a clear distinction between the hydrogen-deficient nucleus and the outer envelope which, being predominantly hydrogen, has a composition similar to Population I objects. This requires an ejection process which will produce a clear separation between an outer, largely unprocessed, stellar-envelope and a highly evolved core containing helium and heavier elements. There are three, not necessarily mutually exclusive, models that have been considered.

1) Ionisation instability (Lucy (88), Paczynski and Ziolkowski (89)). This is based on the fact that high-Iuminosity red giants can have envelopes with net positive energy if ionisation energy is taken into account. If this energy is converted to a motion of the outer envelope, the latter will escape from the nucleus with a terminal velocity of about $30 \mathrm{~km} / \mathrm{sec}$. This is close to typical observed expansion velocities of planetaries (Wilson (90)). So far the full dynamics of this mechanism has not been worked out and the instability has only been shown to exist. However, it is an attractive proposition in that it is associated with stars slightly more luminous than the long-period variables and would come as a result of evolution up the asymptotic red-giant branch of the

H-R diagram (see Fig. 3.4.1).
2) Helium-burning-shell instability (Rose (91), Smith and Rose (92))

In this case ejection of the envelope results from relaxation oscillations caused by instability in the helium-burning shell. Calculations for models of helium-shell-burning stars have been made showing that, in the unstable cases, the rate of nuclear-energy generation attains a high value for a short interval during each relaxation oscillation, the highest rate being obtained in the last oscillation, that is at the end of the helium burning and before the star starts to contract towards the white-dwarf stage. Cahn and Kaler (82) have shown that the local birth rate of planetary nebulae ($3.2 \times 10^{-3} \mathrm{kpc}^{-3}$ year ${ }^{-1}$) tallies quite closely with the local birth rate of white dwarfs $(1.6 \rightarrow 5) \times 10^{-3} \mathrm{kpc}^{-3}$ year $^{-1}$ (Weidemann $(83,84)$). Therefore it is possible that plenetary nebulae account for the production of a large proportion of white dwarfs.
3) Radiation-pressure forced ejection (e.g. Faulkner (93), Finzi and Wolf (94)).

Given the correct set of initial conditions radiation pressure can directly force the ejection of a stellar envelope. However, it is not clear how these conditions are reached during stellar evolution (Osterbrock (81)).

Of all these processes the ionisation instability mechanism seems the most likely but the link between the formation and the observed structure of nebulae has not yet been made. If multiple shell objects (Gurzadian (95), Kaler (96)) result from successive ejections of envelopes, some mechanism must be found to account for this process. One object which has a possible bearing on planetary evolution is F G Sge which is located in the centre of a fairly old planetary, Hz 1-5
(Faulkner and Ressel (97)). This star has been steadily brightening since the turn of the century, and certain spectral features show evidence of expansion velocities in the envelope of the order of $70 \mathrm{~km} / \mathrm{sec}$. Herbig and Boyarchuk $(95,99)$ have proposed that F G Sge could be in the process of producing a second planetary shell. From measurements of the expansion velocity Flannery and Herbig (100) have set the age of the surrounding nebula at about 6,000 years.

3.4.1.2 Spectra

Whatever the details are of the mechanism for the production of planetary nebulae, observations can provide us with an idea of the general properties of the well evolved nebula.

The nebulae are characterised by an emission line spectrum with a background continuum in the visible. The central star is of high temperature $\left(30,000 \rightarrow 100,000^{\circ} \mathrm{K}\right.$ depending on the stage of evolution (87)) and emits mainly in the ultra-violet. Observations of these stars are to some extent hindered by the bright surrounding nebulosity which derives its emission from the degradation of the ultra-violet photons. The primary process within the nebula is photo-ionisation of atoms from the ground state. There are three main mechanisms which explain the observed emission line spectrum:

1) Recombination
2) Forbidden line emission
3) Fluorescence
4) Recombination

When an electron is recaptured into a highly excited level of an atom or ion it can cascade to lower levels emitting permitted lines. The most abundant element in the nebula is hydrogen, while there are about

[SII]

one-fifth that number of helium atoms. The strengths of the recombination Iines are dependent on the element abundances, so that the spectra due to hydrogen and helium predoninate. However, weak recombination lines may be observed for ions of other atoms, for example carbon, nitrogen, oxygen and neon (Seaton (101)). Extensive calculations on the recombination spectrum of hydrogen have been undertaken and now there is substantial agreement between calculated and observed values (Miller (85)). This means that the comparison of observed Balmer decrements with theory can be used to evaluate interstellar reddening effects.

2) Forbidden line emission

The photo-ionisation process provides a source of random kinetic energy in the nebula. This energy may be lost in inelastic collisions and subsequent radiations. The most important inelastic collisions are those which produce excitation of low-lying metastable states of various atoms and ions. These states have lifetimes that are long (a few seconds) as compared with those of non-metastable states $\left(10^{-8} \mathrm{sec}\right)$. However, if there is a sufficiently low material density within the nebula, there will be enough time between collisions for these states to decay, emitting "forbidden lines" by magnetic-dipole or electric quadrupole transitions. In practice, collisional deactivation is by no means negligible as compared with forbidden line emission, and both collisional effects as well as transition probabilities have to be considered when making calculations of line strengths.

Physical conditions within the nebula can be inferred from ratios of forbidden lines emitted by the same ion (see Fig. 3.4.2). For example, the ratio of the intensities of the nebular lines to the auroral line of [OIII] is found to be heavily dependent on the electron temperature (T_{e}) of the nebula (Seaton (101)). Ratios of doublets from nebular transitions in $[S I I]$ and [$O I I]$ will give values for the electron density (N_{e}) while
remaining fairly insensitive to the electron temperature.

The strength of the forbidden line emission from the nebula stems from two main sources. First, the lack of high energy electrons (15-30e.v.) that can excite the higher configurations that lead to the emission of permitted lines and, secondly, the vast extent of the nebula, which permits the surface brightness in the forbidden radiation to build up.

The optical depth of the nebula, for the forbidden line radiation, is very small. Thus, once emitted, the energy contained in this radiation is lost to the nebula. This provides a mechanism by which the gas may be "cooled".
3) Bowen Fluorescence (Bowen 102))

The effects of this mechanism c an be seen in the spectra of many high-excitation planetaries. Certain permitted lines of OIII and NIII are observed to be of high intensity while other lines, which under laboratory conditions would be as strong or even stronger, are missing. Bowen (102) showed that all the OIII lines could be produced by atoms cascading from a given level $\left(2 \mathrm{p} 3 \mathrm{~d}^{3} \mathrm{P}_{2}\right)$ and that the re was a near coincidence in the energy required for a transition, within OIII, to this level ($2 \mathrm{p}^{2}{ }^{3} \mathrm{P}_{2}-2 \mathrm{p}_{2} \mathrm{~d}^{3} \mathrm{P}_{2}$) and that associated with the resonance Ly α transition of the ionised helium. Therefore, in high-excitation planetaries, where there is a high proportion of doubly-ionised helium, the Lya of ionised helium is strong and the OIII fluorescence is triggered. The final transition in this cycle has a wavelength that is, in turn, nearly coincident with a resonance line of NIII, setting up a somewhat similar cycle in that ion.

Continum emission from planetaries originates from the following mechanisms:
a) The recombination of electrons to excited levels of hydrogen and helium

The intensity jump in the continuum at the head of the Balmer series is produced by recombination into the second level of hydrogen. These second level recombinations contribute to the continuum for wavelengths shorter than $3650 \AA$. Recombination into higher levels will produce continuum emission in the visible and near infrared regions. Similar processes for ionised helium will be of importance in highexcitation planetaries.
b) Free-Free Transitions

These involve a loss of kinetic energy by free electrons moving in an electro-static field produced by the ions. This is the predominant source of the radio continuurn emission from planetary nebulae.
c) 2-photon emission

This is produced by hydrogen atoms escaping from the 2 s metastable level by jumping to a fictitious $p-l e v e l$ and then to the $1 s$ ground level, releasing two photons (Mayer (103), Spitzer and Greenstein (104)). This process is only important under low density conditions, since at high density the 2 s-level is collisionally depopulated.
d) Emission from dust

This process has been invoked to explain the high fluxes found in the infrared spectra of planetary nebulae. The continuum levels in this region are well above those that would be expected from the other processes mentioned above. At the moment the heating mechanism for the grains is not fully understood. However, at least part of the energy comes from Lya radiation (Miller (85)).

Using the data obtained from spectra of nebulae it is possible to extract information about the physical conditions of density and temperature and the chemical abundances within those objects. However, one major factor, which can produce anomalous results, is the effect of the structure of the nebula on the values obtained.

For calculations on chemical abundances, made using model atmospheres, assumptions have to be made about the dilution of the radiation of the central star; this requires information about the geometry and the stratification of the nebula. Also the effects of inhomogeneities in temperature and density and the distribution of the atoms causing the various states of ionisation must be taken into account (Aller and Czyzak (105)). Several models have produced too low a flux in the lines of [OII] and [NIT (Williams (106), Flower (107), Harrington (108)). Both Flower and Harrington were attempting models of the fairly regular planetary nebula NGC 7662. To explain the low fluxes in the forbidden lines Flower invokes higher temperatures in the areas where the lines are formed, and Harrington explains the effects in terms of neglected density fluctuations. Kirkpatrick (109) produced a better agreement between the observed and modelled spectra by taking into account optically thick condensations and by adjusting the central star energy distribution.

Boeshaar (110) has taken spectra of different regions of nebulae and has shown that, using ratios of the [SII] and [NIT] lines, the filamentary areas have a generally higher electron density and lower temperature than the surrounding nebula. This leads to increased fluxes in the forbidden lines from these areas. Thus, when integrated fluxes are taken either from spectral lines or from the whole nebula, the filaments are given a heavier weighting in subsequent temperature and density calculations. To some extent this explains the discrepancy between temperatures obtained fron forbidden line emission and from radio fluxes.

Thus it is only with a general picture of the morphology of the nebula that accurate abundances and physical parameters can be determined.

3.4.1.3 Structure

When viewed through a telescope planetary nebulae appear as pale green discs resembling the planets Neptune and Uranus, hence the name. As has been explained, their spectra are composed of a series of emission lines, the predominant ones arising from hydrogen and the forbidden lines of $[O I I \bar{I}]$. Much of the classification of the various forms of nebula has been made from either white light photographs or exposures of the bright emission lines. However, their structure can appear strikingly different when observed in the light of different atoms and stages of ionisation. One well-known example of this is the so-called stratification of radiation, where the image of the nebula appears smaller in the light of ions of higher ionisation potential.

Several classification systems for the various observed forms have been used (Curtis (111), Stoy (112), Vorontsov-Velyaminov (113), Thackeray and Evans (114), Westerlund and Henize (115), Hromov and Kohoutek (116), Gurzadian (117)). The proliferation of these different systems reflects the wide range of forms that have to be included within the one general term planetary nebula. The different groups range from stellar-like objects, through various kinds of discs to helical, annular and irregular or amorphous structures. Also, a high proportion of the observed nebulae exhibit some symmetry about an axis lying in the plane of the sky; these objects are classified as bi-polar.

Apart from the single-envelope objects there are those classified as double-envelope nebulae (e.g. NGC 3242 , NGC 7009) and there is also evidence for other forms of peripheral structure and possibly third envelopes (Duncan (117), Kaler (96)).

There have been several attempts to explain the observed intensity distributions in terms of the two-dimensional projection of a threedimensional structure. By far the largest classes of planetary nebulae are the stellar and disc-1ike objects. Some of the se will be young planetaries but a large proportion are obviously well-evolved objects at large distances. Of the remaining groups, the ring nebulae predominate; various different models have been suggested for this configuration:

1) A hollow shell of low opacity
2) A toroid viewed normally
3) A uniform sphere or cylinder with decreased emission in the central regions
4) A uniform sphere or cylinder with increased opacity in the central regions

Wilson (118) has ruled out the last model on the basjs of the intensjities of the Doppler-separated emission-Iine components arising from the "back" and the "front" of the nebula. Since the two components of the lines appear to be of equal intensity for several nebulae there can be very little absorption in the central regions of these objects. The three remaining models are possible. Hromov and Kohoutek (119) have managed to explain other than annular forms in terms of a right-angled toroid inclined at different angles to the line of sight, and have produced calculated isophotes of the resulting structures. From observations of IC 418 (120), IC 3568 (121), NGC 650-1 and NGC 6720 (122) and IC $4660(123,124)$ it has been found that IC 418 and IC 3568 can be explained by spherical or ellipsoidal shells, while the others require some sort of cylindrical symmetry. More recently the radio structure of NGC 7027 has been explained in terms of a cylindrical shell (125) although the visible object is largely obscured by dust.

Obviously these models are only a rough approximation to the real nebulae, and it is only with the extremely regular objects that comparisons can be made. However, a knowledge of the three-dimensional structure of the envelope, when coupled with the gas dynamics, can give more insight into the formation of the nebula.

An important problem in the small-scale structure of the nebulae is the formation of and maintenance of density fluctuations in the envelopes. These filaments are most obvious in the nearest planetary nebula, NGC 7293. Van Blerkom and Arny (126) have explained the low excitation of these features in terms of the shielding effect of optically-thick knots which prevent the radiation from the central star from ionising the filaments. Thus they are only subject to the diffuse radiation field present in the nebula. Capriotti (127) has suggested a mechanism for the formation of such condensations. He has shown that a dynamical instability can be set up in the ionisation front of the expanding nebula. This front distorts around spikes of neutral gas, Which are finally completely surrounded by the ionised envelope. These condensations are capable of surviving for the lifetime of the nebula (about 10^{4} years) although they will be ionised, to some extent, by the stellar radiation.

Gurzadian (95) has suggested that both the large-scale and smallscale structure of planctaries can be explained in terms of magnetic fields. He estimates the required nebular field at about 10^{-3} gauss, by equating the magnetic energy of the nebula to its thermal energy. Isophotes can be constructed by assuming equilibrium at all parts in the nebula. (That is, the sum of the themal and magnetic energies is a constant.) By comparing these calculated contours with isophotes such as those produced by A11er (121) a value of approximately 10^{-3} gauss is again obtained for the nebular magnetic field. Several nebular forms
can be explained in this manner and the knots and condensations are considered to be the results of fragmentation of the dipole field of the nebula.

3.4.2 Monochromatic Photometry

It can be seen that a knowledge of the morphology of planetary nebulae is required to clarify the theoretical calculations of both element abundances and three-dimensional structure. Quantitative as well as qualitative data is required in order to assess, for example, the effective contribution of radiation from high density regions to the overall flux from the nebula.

To obtain this sort of data it is necessary to isolate the important emission lines and to take an exposure of the nebula in each one. For the smaller objects the use of a slitless spectrograph (121) produces a series of images in the different spectral lines. This method suffers from two main drawbacks. First, the images will be distorted due to the width of the lines, and secondly the images of the larger nebulae will tend to overlap even at high dispersion. Therefore, in most cases, it is preferable to isolate the emission lines using narrow-band filters. In the case of the weaker emission lines or those nebulae of low surface brightness it is also necessary to have an efficient detector.

Feibelman (128) has described a system which has been optimised for narrow-band photometry using photographic plate. The mirrors of the telescope are coated for high reflectivity. Other workers have used the combination of an image intensifier with a photographic plate to obtain exposures of faint nebulae in the forbidden lines of [NII] and [SII] which fall at the red end of the spectrum (Ford and Rubin (129), Capriotti, Cromvel. 1 and Williams (130)).

Table 3.4.1

Telescopes used for Observations of Planetary Nebulae

Telescope	Aperture	Focus/f/no	Plate scale
Isaac Newton Herstmonceux	2.5 m	$\begin{gathered} \text { Cassegrain } \\ f / 14_{4} . \end{gathered}$	$61 / \mathrm{mm}$
Rochefeller Reflector Boyden Observatory South Africa	1.5m	Cassegrain f/16	8.8'/mm
Mons Tenerife	50 cra	$\begin{gathered} \text { Cassegrain } \\ \mathrm{f} / 15 \end{gathered}$	$28^{\prime \prime} / \mathrm{min}$

The electronographic process offers certain advantages in having virtually no threshold (only that set by the fog level of the emulsion), a large dynanic range and a linear density versus exposure response. The latter property makes the investigation of relative fluxes across the nebula a fairly straightforward process, while the reciprocity and dynamic range should allow investigation of both bright and faint regions of the nebula from the same exposure. A low tube background is also required, since the sky background, which in broad-band photometry usually sets the limit to the smallest observable signal, is greatly reduced.

Obviously, to undertake full documentation of representative nebulae in all the different emission lines necessary for a full understanding of their structure, an extensive research programme is required. Exposures to reveal filaments and condensations must be taken in the low excitation lines of OI, [NII] and [SII] which fall longward of $6000{ }^{\circ}$; thus a tube with a $\mathrm{S}-20$ response is needed. The latter device has only recently become readily available. So far contour maps have been obtained from observations restricted to the spectral range defined by the S-11 photocathode.

3.4.3 Spectracon Observations

Spectracon observations of planetary nebulae have been undertaken on three telescopes (see Table 3.4.1). Generally the Cassegrain focus is utilised, since a highly convergent light beam will broaden the pass-band and reduce the transmission of the interference filter used to isolate the emission-1ine. The typical filter pass-bands have a half-power width of $10 \AA^{\circ}$ to $15 \AA$, with the exception of the filter used for observations of the combined emissions of the N1 and N2 1ines of [OIII] which has a width of $50 \AA$.

Table 3.4.2
Planetary Nebulae Observed Using the Spectracon
Northern Hemisphere Southern Hemisphere

NGC 40	$\mathrm{H} * 1$	(NN 3-2)
2022	H 7	
3587	H 19	(IC2448)
6210	H 74	(NGC3918)
6543	H 89	(IC4191)
6720	H98	(NGC5307)
6826	H110	(IC4406)
7009	H122	(NGC5882)
7027		
7662		(NV 78)

* Henize catalogue published in Ap.J. sumplenent, 14, 1967.

The observations taken in South Africa were limited to exposures in $H B$ and [OIII] (N1 + N2). On the other telescopes electronographs also were obtained in emission from He I, He II, [OIII] $\boldsymbol{\lambda} 4363 \AA^{\circ}$ and the nearby continuum. A list of the objects that have been observed is given in Table 3.4.2.

Much of the data reduction was held up until the microdensitometer and the associated software were in reliable working order. Hand scans were used for a preliminary inspection of the exposures. When scanning the whole nebula an area is chosen that is somewhat larger than the visible extent of the object. Note is also taken of dimensions quoted in the literature to ensure that the complete object is measured. In some cases this is not possible; for example NGC 6543 possesses a giant halo that has been shown to be about $6 \frac{1}{2} \hat{i}$ in diameter (Millikan (131)) and thus extends off the edge of the photocathode.

Some of the results of this work have been reported elsewhere $(76,132)$ and there follows a discussion of a selection of the data that illustrates the general quality that has been obtained.

3.4.3.1 Nebular Dimensions

In order to find the maximum observed dimensions of the nebulae it is necessary to assess the limitations set by the detection process. Preliminary plotting with 15 equispaced contours very often reveals an outer contour which is quite smooth and is obviously well above the noise level of the plate. In order to set the "1imiting" outer contour an assessment of the background level and the noise on that background is made at several points round each object. These figures are used to set contour levels at multiples of the standard deviation above the general background. It is found that, for most of the data, an outer contour at two standard deviations above background

Table 3.4.3

Object Dimensions ${ }^{\text {a }}$ Outer Contour Level ${ }^{\text {b }}$ Dimensions c Level ${ }^{\text {d }}$

NGC 6210	$25^{\hat{\prime}} \times 23 \hat{\prime}$	0.8\%	$20^{\hat{1}} \times 13^{\hat{n}} \mathrm{e}$	$\sim 5 \%$
NGC 6543	$38 \hat{\prime} \times 35 \hat{}$	0.2\%	$23 \hat{.} 4 \times 19 \hat{.7}{ }^{\text {f }}$	~15\%
			$(300)^{8}$	<0.2
NGC 6826	$36 \hat{\prime} \times 36 \hat{}$	1.6\%	$25 \hat{\square} 7 \times 24 \hat{4} 4^{h}$	~18\%
			$(110)^{i}$	<1.6
NGC 7009	$36 \hat{\prime} \times 30 \hat{}$	2.3	$30^{\hat{\prime \prime}} \times 26^{\hat{1}} \mathrm{e}$	$\sim 6 \%$
			$(110)^{j}$	<2.3
NGC 7027	$25^{\hat{\prime}} \times 22^{\hat{\prime}}$	0.4	$18 \hat{\prime \prime} \times 11^{\hat{e}}$	$\sim 6 \%$
NGC 7662	$35^{\hat{1}} \times 30^{\hat{1}}$	1.5	$30 \hat{\prime} 2 \times 26 \hat{1} 2{ }^{\text {f }}$	12\%
			(130) ${ }^{\text {j }}$	<1.5

a Major and minor aves of region enclosed by outer contour
b Level of outer contour expressed as percentage of peak surface brightness in image
c Maximum recorded dimensions, not necessarily for monochromatic $H \beta$ observations. The figures in brackets refer to faint outer halos only found in long broadband exposures
d Approximate percentage of peak surface brightness at boundary defined by previous studies
e Perek L., Kohoutek L., Catalogue of Galactic Planetary Nebulae (Prague Academic Publishing House) 1967
f Feibelman, W.A., R.A.S.C. Journal, 65 no.1, 25, 1971
g Gurzadian, G.A., D.A.N. 133, 1053, 1960
h Feibelnan, W.A., R.A.S.C.,Journal, 65, no.6, 251, 1971
i Duncan, J.C., Ap.J. 86, 496, 1937
j Kaler, J.B., A.J. 79, 594, 1974
provides a good guide to the maximum observed dimensions of the nebula.

It has been found that when these measurements are compared with those from previous studies there is a general trend to larger images from the electronographic data. It is simple enough to check for systematic effects by comparing separations of recognisable features. These distances measured from the electronographs are found to be in good agreement with those from other sources. Thus the increased dimensions are a real effect. As Baum (133) has pointed out, with the improvement of detection techniques the observed size of an object tends to increase. Therefore, in order to make the inter-comparison of results easier it is useful to give a flux level at the defined boundary in terms of a fraction of the peak surface brightness; this also serves as a guide to the dynamic range of the exposure.

Table 3.4 .3 gives details of the dimensions found from a study of $\mathrm{H} \beta$ emission from six nebulae (132). The general background level is predominantly due to plate fog. The noise on this background has two components, one from the emulsion and the other from any dirt or defects picked up during processing. Obviously, with care, this noise can be very low as compared with the peak density of the image.

3.4.3.2 NGC 6543

A prime example of the large dynamic range that can be obtained is shown in the plot of NGC 6543 (see Fig. 3.4.3) where the outer contour is at 0.2% of the peak surface brightness. The print at the top shows the typical visible extent of the object on the electronograph. This nebula has a large faint halo which is several arcminutes in diameter. It can be seen from the cross-sectional plot that there is a tail-off from the central core of the nebula into this outer envelope. Details of the exposure are given at the bottom of Fig. 3.4.3.

FIGURE 3.4.3: NGC 6543 HB CONTOURS

FIGURE $3 \cdot 4 \cdot 4:$ STRUCTURE OF NGC 6543

Velocities in km/sec relative to the central star obtained from the emission lines of [OIII].

FIGURE 3-4.5: NCC 6543 RADIO AND HBCONTOURS

The central part of the nebula presents a complex structure which Mưnch (134) has interpreted, using radial velocity data, as two helical surfaces with the generatrix passing through the central star and forming an angle of 55° with the line of sight (see Fig. 3.4.4). Terzian et al (135) have produced a high resolution radio map at $8,085 \mathrm{MHz}$ for this object. A comparison of this with the $H \beta$ contours for the central region of the nebula (see Fig. 3.4.5) shows that there is substantial agreement between the two sets of data. The central depression found in radio measurements is also present in the $H \beta$ contours. By a comparison of the radio flux with that from $H \beta$ it is possible to search for effects of differential extinction across the nebula; the good agreement between the two sets of contours implies that there is no localised dust concentration. Therefore, if continum emission from dust is to be invoked to explain the large infrared flux from this object (Woolf (136)) the grains must be fairly evenly distributed throughout the nebula.

3.4.3.3 NGC 7662

This object is an example of a double envelope nebula. The $H \beta$ contours (Fig. 3.4.6) show the elongated core surrounded by a more circular outer-envelope. When a comparison is made between radio-contours (Terzian et al) and the $H \beta$ map there seems to be little evidence for differential obscuration.

Kaler (96) has reported that this nebula has a third shell that is just visible on the Palomar Sky Survey plates. He estimates the diameter of this halo to be about 130'今. The outer shell does not appear on the relatively short exposure $H B$ electronograph (see Fig. 3.4.6 for details). However, scans of a fairly long exposure taken with the [OIII] ($\mathrm{N} 1+\mathrm{N} 2$) filter show some evidence for this feature. Repeated scans were made across the central region of the nebula and a rise in emission was found to the east of the planetary at a distance of about $60 \hat{"}$ to $70 \hat{\prime \prime}$ from the

FIGURE 3.4.6: NGC 7662 HBCONTOURS

FIGURE 3•4•8:NGC 7662

EXPOSURE DETALLS

ION/GAvelemgrie \%)		EXPOSURE DETAILS				DIMENSIONS (ARCSEC)			
		TELESCOPE	EMULSICN	EXP. TIME (MINS)	$\begin{aligned} & \text { POSITION } \\ & \text { AVGLE }(D E G) \end{aligned}$	PRESE	STUDY ${ }^{\text {b }}$	PREVIOUS	STUDIES
H阝	4851	MONS	L4	15	37	50\% level	61\% leve 1	Dimensions	Levei(\%) ${ }^{\text {c }}$
						20×15	34×30	$13.9{ }^{\text {d }}$	80
								$14.6 \times 8.7^{\text {e }}$	70
								$30.2 \times 26.2^{\text {f }}$	13
HeI	4922	MONS	G5	30	35	20×13	35×32	$14.8{ }^{\text {d }}$	77
HeII	4636	MONS	L4	30	37	15×13	23×24	$12.1{ }^{\text {d }}$	69
								13.8×10.0^{e}	56
[OIIT]	(5007+4959)	MONS	$\underline{L 4}$	5	35	22×17	36×31	$14.1{ }^{\text {d }}$	>75
	.							$14.8 \times 10.0^{-}$	>75
a Accurate to $\pm 5^{\circ}$									
b Major and minor axes of resions enclosed by contour at 50% and $6 \frac{1}{2} \%$ peak surface brightness levels									
c Approximate contour levels in the new data (expressed as percentage of peak surface brightness) that would correspond to these previcusly measured dimensions									
d Wilscr, O.C., Ap.J., 111, 279, 1950									
e Wizitit, W.H., Publ.Lick.Obs., 13, 191, 1918									
£ Feivelman, W.A., R.A.S.C. Journal 65, No.1, 25, 1971									

centre of the nebula (see Fig. 3.4.7). This exposure was taken at the Cassegrain focus of the Isaac Newton Telescope and the image scale is such that the westerly end of the shell does not fall on the exposure; nevertheless there is evidence of a general rise in intensity in this direction. An upper limit of about 0.5% of the peak [OIII] surface brightness of the nebula can be taken for the surface brightness of the halo.

The structure of this nebula in different emission lines is shown in Fig. 3.4.8. The contour maps are for $\mathrm{H} \beta$, $[\mathrm{OIII}](\mathrm{N} 1+\mathrm{N} 2)$, He I (4922 A) and He II (4686 A) and consist of a series of 15 contour levels equispaced between the background leve 1 and the brightest part of the image. The data has also been smoothed in the computer to remove the effects of sull defects on the film (Youll (137)). The outermost contour is at about 6.25% of the peak surface brightness.

There is a striking similarity between the general features of the $H B$ and [OIII] isophotes despite the difference in ionisation potentials for Ha I (13.6 ev) and OII (35.1 ev). The map of He I emission is noisy due to the intrinsic weakness of the line, but the extent of the nebula is seen to be similar to that found from the $H B$ exposure. The central , star is also visible. The structure in the He II line is more compact due to the high ionisation potential of de $I(246 \mathrm{ev}$) and the two bright spots seem "twisted" with respect to those in the [OIII] map. Table 3.4.4 sumarises the data for these maps and compares the results with previous measurements.

3.4.3.4 NGC 3242

This nebula is an example of a bi-polar structure with an outer halo. The cross-sectional display of the complete scan (Fig. 3.4.9) of an [OIII] exposure shows clearly the halo, the two peaks and the

FIGURE 3.4.9:[OIII] EMISSION FROM NGC 3242

FIGURE 3.4.11: H β CONTOURS OF NGC 3242

60 inch Boyden telescope
star. Figures 3.4 .10 and 3.4 .11 show $[O I I I](N 1$ and $N 2)$ and $H B$ contours respectively. There are 16 contours in all, the first being 3σ above the background; this corresponds to about 1.5% of the peak surface brightness of the nebula. The heights of the other contour levels are listed in the figures.
$A B$ and C denote the major and minor axes of the nebula along which the profiles of the object have been plotted (fig. 3.4.12). It can be seen that the general shape of the nebula is the same in both [OIII] and $H B$, al though the absolute flux is much highor for the [OIII] emission. Taking the profile along the major axis it is found that, when the fluxes are related to the peak flux in the nebula, the [OIII] is lower than $H \beta$ in the contre of the nebula and in the smaller peak, while there is good agrement in the higher peak and the halo. Taking the minor-axis profile, there is good agreement again in the halo, but a lower flux from [OIII] towards the central star.

Hromov and Kohoutek (119) have produced a model which they believe can be applied to a large proportion of nebulae. It is possible to consider it qualitatively with respect to the central structure of NGC 3242. The model consists of a hollow cylinder of gas which can have, different orientation of its axis with respect to the line of sight (fig. 3.4.13). Using this distribution of gas, various sets of isophotes can be produced for different orientations. Hromov and Kohoutek have found that some of the nebular forms observed in the hydrogen lines resemble the calculated isophotes quite closely.

It can be seen that this model can be used to produce a bi-polar structure. As a simple test, the calculated isophotes were scaled to match the HB contours of NCC 3242 and profiles along the major and minor axes of the model were taken. For the cylinder at 45° to the

FIGURE 3•4•12: PROFILES ACROSS NGC 3242

ISOPHOTES FOR DIFFERENT VAIUES OF P

line of sight the peaks are somewhat too broad along the major axis, while the general distribution along the minor axis gives peaks that are too far apart. This would imply that a larger angle between the axis of the cylinder and the line of sight is necessary. Checking the isophotes for the angle of 67.5° the peaks along the major axis are in better agreement, although the centre of the nebula, when viewed along the minor axis, is almost completely filled in (Fig. 3.4.1 4).

Of course there is an involved interaction between the observed form of isophotes and the angle to the line of sight, but if the foreshortening effect of tilt is considered for the bi-polar isophotes produced for the 45° orientation, one would get the correct space between the peaks along the minor axis for an angle of about 56.5°. At the sane time there would obviously be some associated filling-in of the central depression and a narrowing of the bi-polar peaks along the major axis.

This is only a qualitative discussion of the form of the central region of this nebula, the effects of the halo having been ignored. However, it can be seen that the observed isophotes can be explained in terms of a cylinder of gas. It is obviously possible to interpret the two-dimensional brightness distribution as a projection of a three- . dimensional structure. With a knowledge of the dynamics of the nebula it would be possible to produce a much clearer idea of the actual distribution of gas in the object.
"The use of the Spectracon for observations of planetary nebulae can yield high quality data which, for the brighter objects, can be obtained on a fairly small telescope. One problem that has not been mentioned in this chapter is the effects of photocathode non-miformity. Most of the images presented here are of fairly small extent, and the variations across typical image areas are about 2% to 7% of the overall sensitivity
for the tubes used. However, larger images have shown distortions in contours due to both dead spots and sensitivity changes, and therefore it was necessary to set up a system for removing these variations. The results of this investigation are discussed in the next chapter.

CHAPTER IV

LIMITATIOAS SET BY PHOTOCATHODE NON-UNIFORMITIES
"Out, out......................accursed spot!"

Robert Southey (1774-1843)

In Chapter I some of the different approaches that have been taken to the removal of photocathode sensitivity variations were outlined. The ease with which the se effects can be compensated is highly dependent on the form that the processed electronographic data takes. Maps of exposures to a uniform light source can provide a general idea of the shape of the function but, for ease of manipulation, numerical data is required.

Since the predominant application of the electronographic system, described in Chapter II, is to the surface photometry of extended objects, the use of sky background as a measure of local sensitivity (Wlérick et al (38)) did not seem the best approach. It was decided to set up a me thod whereby an exposure to a uniform light source could be used as the "calibration" data for the correction of an astronomical exposure. Limitations to the process have been investigated.

4.1 The Calibration Process

The process of removing the photocathode non-uniformities can be divided into three main steps.

1) Location of the same area of photocathode in both the calibration data and the exposure to be corrected.
2) The production of two sets of data which are matched in spatial orientation.
3) The production of the corrected data.

4.1.1 Location

To be able to match two scans, produced from electronographic exposures, the same features must be located in both sets of data. These features should define an unambiguous set of co-ordinates with a fairly high spatial accuracy. Ideally, șome form of fiducial mark should be provided on the photocathode but, in the absence of this facility, the small areas of zero sensitivity known as dead spots provide the reference points. To locate these spots a clearly visible background-density is required to throt them into relief. The measuring machine can be set up so that roughly the same areas are scanned on both exposures. The positions of the dead spots are then fixed in each scan.

The location of the centre of each dead spot is undertaken manual.1y. Plots of the complete scans are produced and the same features are located in both. Data from the areas around each spot are used to obtain an estimate of the centre point. The dead spots are a few tens of microns in diameter - thus the accuracy of location of the centre will depend on the sampling aperture and the step length used. For the smallest table step length of $5 \mu m$ the limiting accuracy on a single position should be about $\pm 2.5 \mu \mathrm{~m}$.

Having located the positions of these fiducial features in both scans it is possible to produce two sets of data that have the same spatial orientation.

 11111111:11111:11111191111111123.56:4 32:

 11:111111111:11:11111111111111111961142011111111111111:11:11:11:11:111111:111111111

FIGURE 4.1.2: ARRAY OF DATA ROTATED THROUGH 45 DEGREES

4.1.2 Matching

For ease in the further processing of the data one of the scans should be translated and rotated so that the resultant array matches the other scan point for point. Having set up a co-ordinate system from the positions of the dead spots it is a fairly straightforward process to produce the required data for such a transformation.

A program has been written which, using the positions of three or more features in each scan, will rotate and translate one scan so that it matches the other. The listing of the program (MATCH) can be found in Appendix II. The co-ordinates are taken from an origin at the top lefthand corner of the array. A section in the program to take care of a change of scale between the two scans was put in so that the program could be used for matching two astronomical exposures from different telescopes. It has no application in the calibration process. A check has also been put in for any anomalous changes in scale arising from the matching of two points that are not, in fact, the same features.

The densities in the new array are found by linear interpolation between adjacent points since the small sampling distance required for accurate matching is usually very much less than the resolution element of the astronomical exposure and the size of the typical scale of photocathode sensitivity variations. If an application is found which requires a polynomial fit, a different subroutine can be inserted.

As a check of the program a dummy tape was written and the scan rotated through 45°. Figures 4.1 .1 and 4.1 .2 show the two maps produced, on the line printer, of the original and rotated arrays. The letters in the second map represent the interpolated numbers. Nllowance must be made for the 8 by 5 matrix of the line printer wich stretches the array in the 'Y' direction.

FIGURE 4.2•1: PHOTOCATHODE NON-UNIFORMITIES

4.1.3 Correction of Data

Having produced the two arrays of data that match, the calibration of the exposure can be undertaken with a simple program which obtains the ratio of the data point by point and forms a new array, on magnetic tape, in the standard archive format. This corrected array can then be processed using any of the routines already described in Chapter III.

4.2 Practical Limitations of the Calibration Process

In order to check the limitations of the calibration process a series of laboratory exposures were made. A Spectracon tube was selected which exhibited as wide a collection as possible of the various defects. These included dead spots, a general drift in sensitivity along the length of the photocathode and a step in sensitivity where there was a change in thickness of the mica window (see Fig. 4.2.1).

The photocathode was illuminated by light reflected from a sheet of white card. The uniformity was checked used a photomultiplier with a $500 \mu \mathrm{~m}$ aperture placed in front of it. The whole assembly was scanned across the region of the photocathode and measurements were taken every mm. The illumination was found to be uniform to better than 1%.

Exposures were taken using L4 emulsion in a $5 \mu \mathrm{~m}$ layer on a $25 \mu \mathrm{~m}$ Melinex backing. All the strips of emulsion used for this work came from three plates in the same batch. The electronographs were processed using the techniques outlined in Appendix I. The intensity of the light source was adjusted so that exposure times were between one and ten minutes, producing a range of densities from 0.25 D to 2.5 D .

$400 \mu \mathrm{~m}$

FIGURE 4.2.2: DIVISION OF TWO EXPOSURES

Areas of the exposures were sampled at $10 \mu \mathrm{~m}$ intervals using a $10 \mu \mathrm{~m}$ x $10 \mu \mathrm{~m}$ measuring aperture. A region of the photocathode was chosen that had easily recognisable dead spots and also contained the step in sensitivity due to the mica window. This later feature was used as a check of the matching process since any edge mis-alignment would show up. Fig. 4.2.2 shows both the original scans and the calibrated scan for the 0.25 D exposures. The data has been "blocked up" so that each plotting point represents an element $40 \mu \mathrm{~m} \times 40 \mu \mathrm{~m}$. On the two originals the intensity step is about 14% of the overall level, while the emulsion noise at this density is about 2% for a $40 \mu \mathrm{~m}$ aperture. The feature in the top right-hand corner of the right-hand scan was a small fibre picked up on the emulsion during processing. There is also a general drift downards in sensitivity along the length of the scan.

The two scans were matched and divided in the computer, the fog level of the emulsion being assessed and subtracted. The resultant array of data is shown at the bottom of Fig. 4.2.2. The step has been removed to the overall level of the noise of the plot, which is about 3%, as has the general drift in sensitivity.

To obtain a measure of the emulsion noise on the uncorrected data a^{\prime} rough fit to the varying sensitivity was made by taking the average background level at several points along a line and interpolating between them. Areas free of dead spots were chosen for this measurement. Using this process a factor of $\sqrt{2}$ was found between the noise of the calibrated scan and the enulsion noise of the originals for resolution elements up to $40 \mathrm{~mm} \times 40 \mu \mathrm{~m}$ and a background density of 0.25 D - that is for noise levels on the calibrated data down to about 3%.

FIGURE $4 \cdot 2 \cdot 3: 1.4$ EMULSION NOISE FOR A $10 \mu \mathrm{~m}$ APERTURE

FIGURE 4.2•A:NOISE ON CALIBRATED EXPOSURE AS A FUNCTION OF DENSITY FOR A $10 \mu \mathrm{~m}$ ANALYSING APERTURE

Using exposures taken to a higher density it is possible to check the relationship between the noise on the corrected data and that on the original scans for a single measuring aperture. Emulsion noise figures obtained from this work tie in well with the estimates that can be made using Coleman's (6) figures for the detective quantum efficiency and sensitivity of the Spectracon combined with L4 emulsion (see Fig. 4.2.3). The emulsion noise for a given density and measuring aperture can be roughly estimated by treating the emulsion as a detector that registers 5 events per square micron per unit density. Using these figures it is possible to check measured values of the noise on the corrected data with that which would be expected if there was just the straightforward addition of the two sets of emulsion noise. Fig. 4.2 .4 shows just such a plot for a $10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$ masuring aperture and different background densities. On the whole the agreement is quite good to the level of the noise at the highest density, which is about 4%.

Therefore from the measurements made so far both with a single resolution element and varying density and a single density and varying analysing aperture, residual effects of photocathode non-uniformities do not seem to be present. The noise levels of the calibrated data (3\% to 4%) can be explained purely in terms of addition of emulsion noise. In order to find the limiting accuracy of the process the emulsion noise must be further reduced until a point is reached where the noise on the corrected data cannot be explained in terms of emulsion statistics.

One such method is to block up the data from a corrected scan so that larger resolution elements are obtained. This was done for data taken from two exposures with a density of 0.62 D. The resultant noise obtained from elements ranging in size from $10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$ was compared with that which would be expected from emulsion grain statistics alone. The comparison is shown in Fig. 4.2.5. It can be seen
emulsion noise as percentage of signal

that there is a general trend to a higher value for the measured noise as the overall accuracy increases. In the region of 1 to 1.5% the predicted noise from the emulsion is well outside the errors of the measurements. Thus it would seem that, in the region of one to two percent, the residual effects of non-uniformities become apparent. However, by blocking up this data to resolution elenents $100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$ the effects of dead spots must be smoothed out to a certain extent, since each element will be of the same size or somewhat larger than the average dead spot. Therefore noise figures are required that have been obtained from areas that are clear of dead spots to see if there is any correlation between the measured noise of the calibrated data and the visible defects on the photocathode.

For the two exposures at a density of 2.5 D the corrected data should have a contribution of 1% from the emulsion to the noise for an analysing aperture $40 \mu \mathrm{~m} \times 40 \mu \mathrm{~m}$. Therefore, taking this data and obtaining noise figures from those areas free of dead spots, it should be possible to assess whether there is still an increase in noise from some other source or whether the observed noise levels can be explained in terms of the presence of dead spots. From regions carefully selected to be clear of visible defects on the originals (that is only areas with a slow drift in sensitivity) noise levels of the order of $1.03 \pm 0.08 \%$ have been obtained. However, in the areas where there are several dead spots, and thus no systematic relationship between the density within them and that over the rest of the exposure the overall noise level of strips $40 \mu m$ wide and about 2.5 mm long sampled at $40 \mu \mathrm{~m}$ intervals can rise to 1.5 to 2%. Obviously these results are only true for a specific distribution of dead spots, but it would seem to point to these features providing the most troublesome source of noise as far as the calibration of the system for a
uniform surface-response is concerned. This would also point to the necessity of keeping the mica window dust-free, since areas of zero sensitivity on the emulsion due to the screening effect of dust particles would have the same effect of reducing the performance of the system.

4.3 Noise Power Spectrum

The spatial frequency distribution of the noise on both the uncalibrated exposures and the corrected data serves as a guide to the frequency at which the slowly varying sensitivity changes of the photosensitive surface become important. The noise power spectrum of the L4 enulsion has been shown to be sensibly flat up to $80 \mathrm{cy} / \mathrm{mm}$ (64); thus any substantial peaking in the raw and calibrated data should not stem from this source.

The calculation of noise power or Wiener spectra from digital data is fully described in several references (Bendat and Piersol (138), Dainty and Shaw (139), Blackman and Tukey (140)). Only those features relevant to the particular calculations made for this work will be outlined.

The Wiener spectrum for the electrongraphic exposures was obtained from the Fourier transform of the auto-correlation function of the data. Given a density record N samples long with values $D_{1} \ldots \ldots D_{N}$, the first stage was to obtain the mean value of the sample $\overline{\mathrm{D}}$. The data was then transformed to an array of numbers with a zero mean-value, i.e. $X_{1} \ldots \ldots . X_{N}$, where $X_{N}=D_{N}-\bar{D}$. From this set of data the auto-correlation function (R) could be obtained for displacements which were an integer (r) multiple of the sample length h.

The auto-correlation function for this displacement is given by

$$
R_{r}=\frac{1}{N-r} \sum_{n=1}^{N} X_{n} X_{n+r}
$$

r can have a value between zero and m, where m is the maximum lag number and gives the largest displacement of the data with respect to itself. This maximum displacement will set the resolution bandwidth (Be) of the resulting noise power density estimate, these two quantities being related in the following manner

$$
\mathrm{Be}=\frac{1}{\mathrm{mh}} \text { cycles } / \mathrm{rm}
$$

For continuous data the noise power spectrum (S) which is a function of the spatial frequency (f) can be related to the auto-correlation function which is a function of the lag distance (ℓ). Thus

$$
S(f)=\int_{-\infty}^{\infty} R(\ell) e^{-j 2 \pi f \ell} d \ell
$$

The auto-correlation function is an even function of ℓ, therefore

$$
S(f)=2 \int_{0}^{\infty} R(\ell) \cos 2 \pi f \ell d \ell
$$

and

$$
S(f)=S(-f)
$$

A one-sided noise power spectrun $G(f)$ may also be defined where f only varies from 0 to ${ }^{+\infty}, G(f)$ is twice $S(f)$ over this region and is otherwise zero. Thus

$$
G(f)=4 \int_{0}^{\infty} R(\ell) \cos 2 \pi f \ell d l
$$

For digital calculations the maximum length of ℓ is given by mh. The integration can be replaced by a sumation using the following substitution

```
\ell = rh
d\ell = dr h dr = 1
fc}=\frac{1}{2h}\quad\mathrm{ (Nyquist or cut-off frequency)
```

This leads to a raw estimate of $G(f)$, known as the periodogram ($\tilde{G}(f)$)

$$
\widetilde{G}(f)=2 h\left[R_{0}+2{ }_{r=1}^{m-1} R_{r} \cos \frac{\pi r f}{f_{c}}+R_{m} \cos \frac{\pi m f}{f_{c}}\right]
$$

However, this value approximates to taking the integral of the continuous function R over a finite range given by $\ell=m h$. Therefore

$$
G(f)=2 \int_{-m h}^{m h} R(\ell) \cos 2 \pi f \ell d \ell
$$

which is equivalent to modifying the auto-correlation function by a top hat function of width 2 mh . Therefore the true noise power spectrum, will in turn be convoluted with a sinc function to yield the raw estimate $\widetilde{G}(f)$. To reduce the effects of this process some form of smoothing is required. First, the function is only calculated at $m+1$ discrete frequencies, given by

$$
\mathrm{f}=\frac{\mathrm{kf} \mathrm{c}}{\mathrm{~m}} \quad \mathrm{k}=0,1,2 \ldots \ldots \ldots . \mathrm{m}
$$

This will yield $\mathrm{m} / 2$ independent estimates since it has already been
shown that the resolution bandwidth is set at $\frac{1}{\mathrm{mh}}$, which is equal to $\frac{2 f}{m}$. At these discrete frequency points the periodogram is given by

$$
\tilde{G}_{k}=2 h\left[R_{0}+2{ }_{r-1}^{m-1} R_{r} \cos \frac{\pi r k}{m}+(-1)^{k^{2}} R_{m}\right]
$$

where k is the harmonic number.

A final smooth estimate of the noise power spectrum at the harmonic k is given by a procedure known as Hanning. This value results in an averaging process which is as follows

$$
\begin{aligned}
& G_{o}=0.5 \widetilde{G}_{o}+0.5 \widetilde{G}_{1} \\
& G_{k}=0.25 \widetilde{C}_{k-1}+0.5 \widetilde{G}_{k}+0.25 \tilde{G}_{k+1} \quad \mathrm{k}=1, \ldots \mathrm{~m}-1 \\
& G_{m}=0.5 \widetilde{G}_{m-1}+0.5 \widetilde{G}_{m}
\end{aligned}
$$

The smoothing is carried out during calculation using a Hanning lag weighting function C_{r} which is given by

$$
\begin{array}{ll}
C_{r}=\frac{1}{2}\left(1+\frac{\cos \pi r)}{\mathrm{m}}\right. & r=0,1,2 \ldots \ldots \ldots m \\
C_{r}=0 & r>m
\end{array}
$$

Thus the smoothed noise power spectrum may be calculated using the following expression

$$
G_{k}=2 h\left[R_{0}+2 \sum_{r=1}^{m-1} C_{r} R_{r} \cos \left(\frac{\pi r k}{m}\right)\right]
$$

A program (POW) was written to perform these calculations on data stored on the standard archive tapes; it is listed in Appendix II.

These techniques for analysing data have been developed for stationary random processes. Strictly speaking the uncalibrated data is not random or isotropic since the emulsion noise is superimposed on a fixed noise-pattern due to the changes in sensitivity of the photocathode. However, the figures from these data are only to be used to obtain qualitative information. In particular the area around the large step in density due to the change in thickness of the mica window was avoided since this will swamp the low frequency contributions from the true photocathode variations.

When an aperture is used to scan an emulsion the measured noise power spectrum (S^{\prime}) can be related to the real function (S) in the following manner

$$
S^{\prime}(u, v)=S(u, v)|T(u, v)|^{2}
$$

where u and v are spatial frequencies related to the two directions x and y and T is the transfer function of the aperture. For a scan, along one line of data the relationship between the one-dimensional information and the two-dimensional power spectrum must be found. The auto-correlation function and the power spectrum are a Fourier pair, thus

$$
R(\ell, p)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(u, v) e^{i 2 \pi(u \ell+v p)} d u d v
$$

Therefore the measured auto-correlation function R^{\prime} for a one-dimensional scan (where $p=0$) is given by

$$
R^{\prime}(\ell)=\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} S(u, v)|T(u, v)|{ }^{2} d v\right) e^{i 2 \pi u \ell d u}
$$

Equally we 11

$$
R^{\prime}(\ell)=\int_{-\infty}^{\infty} S^{\prime}(u) e^{i 2 \pi u \ell} d u
$$

Thus

$$
S^{\prime}(u)=\int_{-\infty}^{\infty} S(u, v)|T(u, v)|^{2} d v
$$

If the transfer function of the measuring optics can be ignored, then $T(u, v)$ can be expressed in terms of the filter function of the slit. If the slit has a width a and a height b

$$
\begin{aligned}
& S^{\prime}(u)=\int_{-\infty}^{\infty} S(u, v) \operatorname{sinc}^{2}(a u) \operatorname{sinc}^{2}(b v) d v \\
& S^{\prime}(u)=\operatorname{sinc}^{2}(a u) \int_{-\infty}^{\infty} S(u, v) \operatorname{sinc}^{2}(b v) d v
\end{aligned}
$$

If $S(u, v)$ is constant over the region that $\sin ^{2}(b v)$ is appreciably non-zero, then this relationship reduces to

$$
\begin{aligned}
& S^{\prime}(u)=\operatorname{sinc}^{2}(a u) S(u, 0) \int_{-\infty}^{\infty} \operatorname{sinc}^{2}(b v) d v \\
& S^{\prime}(u)=\frac{\operatorname{sinc}^{2}(a u)}{b} S(u, 0)
\end{aligned}
$$

FIGURE 4.3.1: FILTER FUNCTION OF $10 \mu \mathrm{~m}$ SLIT

If $S(u, v)$ varies over the range of spatial frequencies defined by the slit length b then the measured one-dimensional spectrum is an integration over the v spatial frequency of the two-dimensional function weighted by the transfer function of the slit.

The scans which were obtained for the investigation of the calibration process were measured using a $10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$ slit with samples taken every $10 \mu \mathrm{~m}$. This leads to a folding frequency (f_{c}) of $50 \mathrm{cycles} / \mathrm{mm}$. However, the emulsion noise power is known to be flat out to 80 cycles/mm and the power in the frequencies above 50 cycles $/ \mathrm{mm}$ will be folded into the calculated spectrum, producing an aliased spectrum. For any frequency f in the range $0<f<f_{c}$ the higher frequencies that are aliased with f are given by ($2 \mathrm{n} \mathrm{f}_{\mathrm{c}} \pm \mathrm{f}$) $\mathrm{n}=1,2 \ldots \ldots$. . Thus the power at 60 cycles/rm will be folded into the calculated spectrun at 40 cycles $/ \mathrm{mm}$.

To avoid these effects the spectrum should only be calculated up to a frequency such that the power which might be folded in is small. The $10 \mu \mathrm{~m}$ measuring slit serves as a filter which attenuates the higher spatial frequencies, dropping to zero at $100 \mathrm{cycles} / \mathrm{mm}$ and only reaching a peak of about 5% in its second lobe (fig. 4.3.1). Taking 10% as the , highest accuracy one is likely to obtain in these calculations the filter has dropped to this level at about 75 cycles $/ \mathrm{mm}$. This frequency will be aliased with 25 cycles $/ \mathrm{mm}$ in the calculated spectrum so that the function from 0 to 25 cycles should be substantially correct.

The resolution bandwidth (Be) of the final spectrum had to be fairly small since the interest lay in the region round the low frequency end of the spectrum. The maximun number (m) of lag values for the calculation of the auto-correlation function was chosen such that Be was 3.33 cycles $/ \mathrm{mm}$. For a string of N samples the normalised standard error

for the noise-power calculations is given by

$$
e=\sqrt{\frac{n}{N}}
$$

Therefore for a fixed length of scan the error goes up with the number of lag values, i.e. as the resolution increases. For the typical scan lengths of about 300 points this leads to an error of about 30% on the individual noise-power estimates.

To compare the results before and after calibration the same areas of scan had to be selected and processed in the same way. A fairly narrow strip well clear of the main step in density due to the change in mica window thickness was chosen. The calculated spectrum was corrected for the effects of the measuring slit which produces an attenuation at 25 cycles/rim of 0.81 . The two sets of power spectra both before and after calibration are shown in Fig. 4.3.2. It can be seen that the low frequency components of the noise in the uncalibrated data fall off by about 5 to 6 cycles/mm while the calibrated data produces a fairly flat spectrum. The emulsion noise at the density of these exposures (0.6 D) should yield a noise power of $0.12 \mathrm{D}^{2} \mu^{2}$ for the uncalibrated data and $0.24 \mathrm{D}^{2} \mu^{2}$ for the corrected scan. The average levels from the two sets of data are $0.11 \mathrm{D}^{2} \mu^{2}$ and $0.22 \mathrm{D}^{2} \mu^{2}$ respectively.

These figures were obtained fron a fairly restricted area of the scan which was free of dead spots. Another spectrum was calculated for the corrected data but taking in a fairly large area. The lines were added together to form a set of data which was equivalent to measuring the exposures with a slit $600 \mu \mathrm{~m}$ long and $10 \mu \mathrm{~m}$ wide. This spectrum

FIGURE $4 \cdot 3 \cdot 3$: NOISE POWER SPECTRA FROM LARGE AREA OF PHOTOCATHODE

(Fig. 4.3.3) again shows a reduction in the low frequency noise components. The overall noise power has risen slightly in the calibrated data; this might be expected if dead spots are taken in with the emulsion noise. There is a peak in the spectrum around 20 cycles/mm which is also present in the uncalibrated data. This would imply that there is some periodic variation which is not being calibrated out.

From these power spectra it can be seen that the low frequency components of the noise due to sensitivity changes of the photocathode can be removed. These effects seem to be restricted to spatial frequencies lover than about 6 cycles/mm, i.e. they are of the order of $200 \mu \mathrm{~m}$ in size or greater.

4.4 Limitation to Photometric Accuracy

It has been shown that emulsion noise-limited performance can only be obtained in areas of the photocathode that are free from dead spots. Therefore when studying objects which extend over substantial areas of photocathode photometric accuracy is limited by these features to the region of 1% to 2% of the background level, depending on the concentration of these areas of zero sensitivity. Figure 4.4 .1 shows a summary of the contributions arising from different sources of noise, as a function of background density. It can be seen for the case of emulsion and microdensitometer noise alone that the same limiting density, that is the density at which the microdensitometer noise exceeds that of the emulsion, is reached for all the different sizes of measuring aperture. This would seem reasonable since the improvement in machine noise due to the increased photon flux from a larger slit will be matched by the drop in emulsion noise due to grain statistics. A straight line indicating 1% residual photocathode non-uniformities after calibration shows that these do not severely limit the measurcments made using $10 \mu \mathrm{~m}$ or $20 \mu \mathrm{~m}$

slits, but for the $40 \mu \mathrm{~m}$ analysing aperture they prevent full use being made of the possible storage of the emulsion. The two broken lines show the effects 2% and $\frac{1}{2} \%$ residual non-uniformities would have.

One way of reducing the effect of dead spots would be to use some form of interpolation routine. However, this will only be possible if they are of a size that is small compared with the resolution element in the exposure.

Since the emulsion noise on the calibration exposure is added to that of the astronomical data, the scan used for correction purposes should ideally have a substantially lower noise value than that required of the final processed image. Thus the astronomical exposure need only be long enough to reach a density which gives an emulsion noise of the order of the final accuracy required. The noise of the calibration data can be reduced by either taking it to higher density or by some form of artificial smoothing, provided this does not limit the correction of the slow changes in sensitivity.

Taking 1% as the best limiting accuracy, it is possible to calculate the emulsion density required for 1% photometry and different sizes of analysing aperture. Figure 4.4 .2 shows that for slits smaller than $20 \mu \mathrm{~m}$ the microdensitometer noise will limit the performance of the system and of course the higher the background density required the smaller the dynamic range of the exposure. That is to say if D_{B} is the background density and D_{L} is the limiting density fixed by microdensitometer noise the dynamic range is given by

$$
\frac{D_{\mathrm{L}}-\mathrm{D}_{\mathrm{B}}}{0.01 \mathrm{D}_{\mathrm{B}}}
$$

when the photocathode is limiting the photometric accuracy. If it is the emulsion noise that is providing the limitation then the dynamic range is given by

Thus for a $40 \mu \mathrm{~m}$ aperture with the emulsion noise reduced to the level of 1% (background density 1.25 D) the dynamic range available is about 350:1. The maximum dynamic range is set by the smallest and largest density that the microdensitometer can measure; Cohen (64) has calculated that this is at least three orders of magnitude.

Figure 4.4 .3 shows the densities required for 1% emulsion accuracy on a 1 arcsec resolution element for telescopes of different apertures and f-numbers. If better image resolution is required, in terns of the number of samples per arcsecond, then a trade-off must be made between photometric accuracy, field, dynamic range and exposure time. For example, if the resolution element is increased to $\frac{1}{2}$ arcsec then the density must be increased by a factor of 4 . Also, as the f-number increases so the relative exposure goes up by the square of that quantity. Thus there is a difference in exposure time of 25 between an $f / 16.25,0.5 \mathrm{~m}$ telescope and a $f / 3.25,2.5 \mathrm{~m}$ telescope, although the image scale and the required background density are the same in both cases.

The limitation of 1% to 2% photometry set by the photocathode means that features 4 to 5 magnitudes down on the sky background should be discernible. This limitation is important for broad band photometry where one is trying to distinguish faint features against a high sky background. The accuracy of measurcment of relative fluxes across an object is set by the dynamic range of the electronograph and although
each individual measurement may be accurate to the order of a few percent the smallest measurable flux may be only a few tenths of a percent of the peak flux from the object. Therefore in stellar photometry, although the flux from each star can only be obtained to an accuracy of 1% to 2%, the dynamic range and linearity allow the estimation of relative brightness over more than five stellar magnitudes.

Therefore it would seem that the extra effort required to reduce the effects of photocathode non-uniformities is still recompensed by the linearity and dynamic range of the electronographic process.

Some of the work described in this chapter was presented at the Sixth Symposium on Photoelectronic Imaging Devices, London (1974).

CHAPTER V

CONCLUSTONS AND FUTURE WORK

"From the end spring new beginnings"
Pliny the Elder (23-79)

The foregoing pages have served as a documentation of three years postgraduate research. Perhaps they represent an unbalanced picture in that much of the routine can be written off in a short sentence while the thoughts of a day may be expanded to several pages. However, it can probably be said that the routine provides the building blocks that enable one occasionally to make a quick advance.

What, then, is the general picture that has emerged from the drawing together of all the different parts of the photometric system? Clearly, it can be seen that except when sampling with a very small aperture, where emulsion noise is large, the limit to photometric accuracy is set by the quality of the photocathode. The slowly varying sensitivity changes due to uneven deposition of the photosensitive surface are easily dealt with, but a large concentration of dead spots ' serves to drastically lower the performance. If these spots are small, as compared with the resolution element within the image, then a certain improvement could be obtained by interpolation across the area of zero sensitivity. If this procedure is used it might be possible to obtain a close approximation to the emulsion-limited noise across the photocathode.

It has been shown, for apertures ranging from $10 \mu \mathrm{~m} x 10 \mu \mathrm{~m}$ upwards, that the point at which the microdensitometer noise becomes comparable with that from the emulsion is a constant value between 5D and 6D. This "limiting" density leads to a value for the highest accuracy that
can be obtained for each measuring aperture and thus for a given spatial resolution. The residual effects of photocathode non-uniformities have been shown to overtake the emulsion noise in the region of 1% to 2% of the signal level; therefore they set the practical limit to photometry for analysing apertures larger than $10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$.

These limitations to the accuracy of a single measurement must not be confused with the criteria which set the dynamic range of the device. The latter are basically the smallest and largest densities which can be taken as a true representation of an incoming flux. The lower density level is set at 1% to 2% of the general background (provided it can be resolved by the microdensitometer) while the upper value is simply the "Iimiting" density set by the microdensitometer noise. Cohen (64) has calculated the dynamic range to be about three orders of magnitude and practically a range of just over 500 to 1 has been obtained (Chapter III). This large dynamic range, coupled with the linearity of the electronographic process, certainly compensates for the extra care that must be taken to remove the effects of photocathode non-uniformities.

Taking the present system as being somewhat less than perfect, what would be the general areas for improvement?

1) The Image Tube

Obviously attention must be given to the production of high quality photocathodes. Defects such as dead spots should be removed as far as possible while an improvement in the general uniformity would also be useful.

Fiducial marks of some sort should be provided. At the moment all of the matching procedures are undertaken using dead spots as location points. For the slowly-varying surface-sensitivity a positional accuracy of about $10 \mu \mathrm{~m}$ is perfectly sufficient. The marks
should define an unambiguous set of co-ordinates for ease in matching exposures.

The reproduction of such marks on the exposure is no problem when there is a sufficiently high background density to throw them into relief. However, for narrow-band photometry, where the background is very low, a means must be found of providing illumination to the areas of the photocathode around the fiducial marks. Probably a simple mask which leaves just the extreme ends of the photocathode uncovered would be sufficient, but the effects of light scattered into the image area would have to be taken into account.

2) Emulsion

The results presented in this thesis have been explained on the basis that the $L 4$ emulsion used for the experiments had a fairly uniform surface-sensitivity. In fact there has been no evidence to the contrary.

Recently the quality of nuclear track emulsion has been criticised (McKay (141), Wlérick (142)) and clearly in some respects this is a less easily-handled problem than photocathode non-uniformity. The sensitivity of the emulsion (in terms of the density for a given exposure) will be dependent on the thickness of the emulsion layer up to the point that this exceeds the electron range. Therefore if there is a change in the depth of the emulsion across the exposure a variation in sensitivity will be found that cannot be calibrated out. Coleman (6) has given the range for 40 KV electrons as about $8 \mu \mathrm{~m}$ to $10 \mu \mathrm{~m}$ in nuclear track emulsion.

The uniformity of the emulsion layer will be dependent on the flatness of the surface onto which. it is deposited. For glass plates this should be no problem, provided they are kept level, but the Melinex backing used with the Spectracon must first be attached to a glass plate before it is coated with emulsion. If this process is not properly done the Melinex may lift and cause the emulsion to flow unevenly.

Therefore, to obtain repeatable results, the uniformity of the emulsion layer must be good and it is probably necessary to increase its thickness to exceed the electron range. Coleman (6) has shown that an increase of this sort would also improve the detective quantum efficiency of the process.

3) The Measuring Machine

By far the longest part of the production of astronomical information from this system is taken up in the retrieval of data from the electronographs and its processing into the required form. Because of the nature of the machine presently used for plate measurement, most of the manipulation of the data (spatial as well as photometric) is undertaken using a fairly large computer. For instance the matching of two sets of data is undertaken by handling large arrays, one being rotated with respect to the other. This process will work quite we 11 for a small number of picture elements, but if whole exposures are to be handled then it very rapidly becomes cumbersome.

Obviously one still wants the scan in digital form so that both photometric and spatial information can be obtained from the same set of data, but if the measuring machine is more flexible one can obtajn the specific measurements required.

The electronograph itself presents the most compact method of storing the astronomical data on it. If it is considered as a readonly memory then it should be possible to transfer from it to some other storage medium (such as tape or disc) only that information that is required for a specific job. To do this a microdensitometer with a table of high positional accuracy, operated under computer control, is necessary. With sufficient interaction between the operator and the machine it should be possible to use fiducial marks to define a fixed set of co-ordinates and to position the table so that, for example, the same areas of photocathode are measured from an astronomical exposure and a calibration exposure. The subsequent data handling to obtain the calibrated scan then is trivial and fairly fast since the two sets of data can be superimposed point by point or line by. line.

As stated in Chapter I, machines capable of this type of operation have been produced for work on aerial surveys. They are also fast but, as has been pointed out, their very speed limits their photometric accuracy. However, for work on single objects, rather than star fields, a very high scanning rate is not particularly necessary. If the photometric performance can be improved by slowing the machine down, the loss in speed will probably be negligible as compared with the time saved in obtaining data with the correct spatial orientation.

The problems of producing a method of measuring high densities during fast scanning are extensive. If the high density (greater than 2 D) content of the electronographs is low an improvement might be achieved by a selective slowing of the scanning rate above a certain density level, without greatly increasing the total scan time. This would be important for stellar photometry where the high density images will represent the bright standard stars which will be used to estimate the magnitudes of the rest of the objects in the field. It
remains to be seen if measures such as these can improve the photometric performance of fast, single-beam scanners to the stage that they are comparable, over the whole density range, with the very much slower two-beam system such as that used in the Joyce-Loebl.

The combination of image tube, emulsion and microdensitometer is as much a photometric system as television-type sensors or photoncounting systems which produce digital data on the telescope. Some thought must be given to the optimisation of the whole so that the routine production of data is straightforward. Obviously in the future the photometry of extremely faint sources of limited angular extent (less than 10^{5} picture elements) will be undertaken using two-dimensional photoncounting detectors. However, electronography will still have certain advantages which are not to be ignored. Electronographic devices potentially will have available a much larger number of picture elements, and despite the problems of microdensitometry, the nuclear emulsion represents a very compact and stable form of information storage. For example, to digitise a complete Spectracon exposure $3 \mathrm{~cm} \times 1 \mathrm{~cm}$ a 7 -track magnetic tape 1,200 feet 1 ong is required. If the digital image of an object is to be preserved for any length of time a more compact form of storage than tape must be used. Thus for two-dimensional photoelectric photometry of larger fields and for the storage of this data in an archival form electronography must be considered as a prime candidate for some time to come.

APPENDICES

"This concludes the supplement, with the exception of forty pages of illustrative and mathematical notes, which could greatly enhance the size and price of this work, without commensurably adding to its general interest. Ed. Sun."

Richard Adams Locke

Note at the end of:
Great Astronomical Discoveries Lately Made by
Sir John Herschel at the Cape of Good Hope.
"Supplement to the Edinburgh Journal of Science" Published in the New York Sun, August 21st-31st 1835.

APPENDIX I

Processing of Electronographic Emulsions

1) 2 minute soak in distilled water.

This serves to swell the emulsion and reduces the diffusion time of the developer by a factor of about 100 .
2) 5 minutes development in Kodak D-19.

A nitrogen bubble burst system is used to maintain a continuous exchange of developer and reaction products within the emulsion.
3) 1 minute stop bath in $\frac{1}{2} \%$ acetic acid.
4) Fix for $1 \frac{1}{2}$ times the clearing time in Hypam fixer plus hardener.
5) Wash for $\frac{1}{2}$ an hour in running filtered water.
6) 2 minutes rinse in 50% alcohol, 50% distilled water.
7) 1 minute rinse in 95% alcohol, 5% distilled water.

The last two processes help to shrink the gelatin and to aid in quick drying.

APPENDIX II

Computer Programs
This appendix contains the listings of the computer programs described in Chapters III and IV.

Program
 Page

JLTRAIN (ZTRAN) 16δ
LARD 173
MICSIT 175
DSPLY 179
VOL . 192
MATCH 196
POW 201


```
                    NDAT=1
```

 NDAT=1
 !**** N\&=RUNNT OF YCROS IN LIN:
!**** N\&=RUNNT OF YCROS IN LIN:
* NPX=mAX W'URDS IN LINE
* NPX=mAX W'URDS IN LINE
* NL=LINE uUmEER
* NL=LINE uUmEER
EUFFER IN (1.IPAR) (IGUF(1), IENF(256))
EUFFER IN (1.IPAR) (IGUF(1), IENF(256))
19
19
CALL_xRCl
CALL_xRCl
1, WRTUN[5,11, 19,54,24,10
1, WRTUN[5,11, 19,54,24,10
22 FGGMA, (18HO no dRTA in file, i3)
22 FGGMA, (18HO no dRTA in file, i3)
i
i
20 CAL! Z2WRO IRUF:I, J, IN, IER, NRI

```
    20 CAL! Z2WRO IRUF:I, J, IN, IER, NRI
```



```
    81 DATN(NOAY) =TM
```

 81 DATN(NOAY) =TM
 NOAT=NDAT $1
 NOAT=NDAT $1
 NF=NP+1
 NF=NP+1
 IF(NOMT.LT.S13) &o To 20
 IF(NOMT.LT.S13) &o To 20
 i.**** OUTPUT A GLOCK
i.**** OUTPUT A GLOCK
WNITE (7) DATA
WNITE (7) DATA
40
40
Notio 2.0
Notio 2.0
C**+* TEST ENO OF LINE
C**+* TEST ENO OF LINE
84 IF (NH.NE. 1:60T0 S3
84 IF (NH.NE. 1:60T0 S3
NPM=N2
NPM=N2
NPKI=HSP-1
NPKI=HSP-1
83
83
NL=NL+1
NL=NL+1
NL1=NL
NL1=NL
NP=C
NP=C
NDAT=1NSAT-1 , (WOAT.EQ,O) \&O TO g7
NDAT=1NSAT-1 , (WOAT.EQ,O) \&O TO g7
U**** ELUSH SUFFER
U**** ELUSH SUFFER
WRITE (7) (DATA(KK),KK=1,NDAT)
WRITE (7) (DATA(KK),KK=1,NDAT)
\ IFOAT=FTS.NE.O (WZITE (G,LO) (DATA(KK), KK=1,NQAT)
\ IFOAT=FTS.NE.O (WZITE (G,LO) (DATA(KK), KK=1,NQAT)
8G KONTINUE
8G KONTINUE
MRTTE(6,25) NP, NFX,NL, NR,NF
MRTTE(6,25) NP, NFX,NL, NR,NF
2% FORMAT (LHU, IS, 2IH, POINSTSWGEN NORM IS, IS, GH LINE, IS,
2% FORMAT (LHU, IS, 2IH, POINSTSWGEN NORM IS, IS, GH LINE, IS,
NLI-NL GIN FILE,J.5.
NLI-NL GIN FILE,J.5.
NLI-NL
NLI-NL
C**** get past file mark
C**** get past file mark
8J SUFFEG IN (1,IPAR) (IGNF(1). I \&UF(256))
8J SUFFEG IN (1,IPAR) (IGNF(1). I \&UF(256))
33 caEL (UNET,1) 33,39,32,10
33 caEL (UNET,1) 33,39,32,10
32 GO (UNIT:1) % (53,34), \&FLiGG2,10
32 GO (UNIT:1) % (53,34), \&FLiGG2,10
C:*** FILE FINISH FOR SIMPLE TRANSLATE
C:*** FILE FINISH FOR SIMPLE TRANSLATE
3Y NF=NF+3
3Y NF=NF+3
ENO FZLET ? (NOFONF) 16,28.34.
ENO FZLET ? (NOFONF) 16,28.34.
!**.** ILGEGAL CHARACTER
!**.** ILGEGAL CHARACTER
35 NPGNP-1,

```
    35 NPGNP-1,
```



```
        2TEO, (, SH INFILE, IG. BN REKORG. IS, &H WONO,IS,4H tH.,
```

 2TEO, (, SH INFILE, IG. BN REKORG. IS, &H WONO,IS,4H tH.,
 IF NRR,EN,NR,AND.NKF,EG,NF, &O TO 3S
    ```
        IF NRR,EN,NR,AND.NKF,EG,NF, &O TO 3S
```



```
        1) ISUF(KKF+4)
```

 1) ISUF(KKF+4)
 WRITE (6,24) KK. IRUF(KK)
    ```
        WRITE (6,24) KK. IRUF(KK)
```

```
        NKR=NR
```

 NKR=NR
 38 IM=-1000
 38 IM=-1000
 CEEIDS1
 CEEIDS1
 C.** GET recdcd header and read cards
 C.** GET recdcd header and read cards
 54COTO 641,20), 呓AG
    ```
        54COTO 641,20), 呓AG
```



```
        44 WRITEGT(6.44)
```

 44 WRITEGT(6.44)
 43 WOITE (6,43) wus.ISC
    ```
    43 WOITE (6,43) wus.ISC
```



```
        AJ=22CH1156F,1,1)*10+22C+(IEME, A1, 2)
```

```
        AJ=22CH1156F,1,1)*10+22C+(IEME, A1, 2)
```



```
        IF I J.ER.ICR.AND,KK.EQISC, LO RO, 4,7)
```

 IF I J.ER.ICR.AND,KK.EQISC, LO RO, 4,7)
 WNITE (ESGIGR.AND.KK.EQ.ISC, 50 TO 46
 WNITE (ESGIGR.AND.KK.EQ.ISC, 50 TO 46
 FORMAT (iGH IO.S DO NOT AGREE;
    ```
        FORMAT (iGH IO.S DO NOT AGREE;
```



```
        [*** PICK UP PENSITIES AND OUTRUT
```

 [*** PICK UP PENSITIES AND OUTRUT
 46 J=4
 46 J=4
 M={\mp@code{z2ch(18UF.1,5)}
 M={\mp@code{z2ch(18UF.1,5)}
 NOM=Jy
 NOM=Jy
 1F(JJ.EE,a) G0 T0 60
    ```
        1F(JJ.EE,a) G0 T0 60
```



```
    48 QENM(KK)=IM
```

```
    48 QENM(KK)=IM
```



```
    SI FORMAT (LZH MEASURGD'YENSİIES, qF10.2)
```

 SI FORMAT (LZH MEASURGD'YENSİIES, qF10.2)
 C*** SKIP REST OF RECORD
C*** SKIP REST OF RECORD
G0 OUFFER IN (1,IPAR) (IBUF(11, EELF(256*))
G0 OUFFER IN (1,IPAR) (IBUF(11, EELF(256*))
61 CNLL XNCL, (1) 61,62,63,10
61 CNLL XNCL, (1) 61,62,63,10
62. }\begin{array}{l}{I=3}
{=}
{=1}
62. }\begin{array}{l}{I=3}
{=}
{=1}
l}==
l}==
NG=NR+1
NG=NR+1
63 4. 4Tif (6, 64)
63 4. 4Tif (6, 64)
64. FGRMEY', 14HUNEXPECTEO EOF)
64. FGRMEY', 14HUNEXPECTEO EOF)
Y**** NO standard RECCRO
Y**** NO standard RECCRO
50 W8ITE (6,52) IER
50 W8ITE (6,52) IER
S2 SCCMAT ('3LIO ERROR IN INITIAL RECORD IER=, INO)
S2 SCCMAT ('3LIO ERROR IN INITIAL RECORD IER=, INO)
C**** FILE FINISH for standard tape
C**** FILE FINISH for standard tape
53 IFNNRR.EO,O) 50 70 160

```
    53 IFNNRR.EO,O) 50 70 160
```



```
        2LENE
```

 2LENE
 gENTND,
 gENTND,
 IF (NOF-NF) 16.18,57
    ```
    IF (NOF-NF) 16.18,57
```



```
    39 WCiro(6;3N)NH,NNX, IS,LOH LINES Or, Ib, GH POINTS,
```

 39 WCiro(6;3N)NH,NNX, IS,LOH LINES Or, Ib, GH POINTS,
 &CWN
 &CWN
 00 SS J.j=1,NL{
 00 SS J.j=1,NL{
 If (K.Ga,o\GcTo 55
 If (K.Ga,o\GcTo 55
 PO S6 KK=1,K
 PO S6 KK=1,K
 KF+G :7IDAla
    ```
        KF+G :7IDAla
```



```
    55 K=NPX-KNSZ2 &o To 58
```

```
    55 K=NPX-KNSZ2 &o To 58
```



```
    HLURESS LENGIH
    G: 1
        HZMany LUnTVLL f.f%US.
        新品 ?LH
EMT:Y PCTHITS.
ZZ1.M I+
73H
```



```
\begin{tabular}{|c|c|}
\hline 1 &  \\
\hline \multicolumn{2}{|l|}{₹} \\
\hline & - ¢ ¢ ¢ ¢ ¢ \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|r|}{- \(6+{ }^{\circ}\)} \\
\hline \multicolumn{2}{|r|}{} \\
\hline & L. \(\because 11612\) \\
\hline 1: & ! \(\quad \therefore . .1\) + \\
\hline
\end{tabular}
```



```
\[
\begin{array}{r}
25 \\
0.125 \text { stivicisiols }
\end{array}
\]
```



```
ZZI.n it
```



```
22%H 1 PMLGRO** 2/02.E 2/i:%L 2/24
```

```
#n. n, %
Oncor?
0000re
00910t%
yr:rys
4011:2
arcri4
onnoleg
gnnceg
#% &,6
&4!⿱⿱亠䒑日\zh20
0n9,675
46!1.7%
70147
ner 113
ln!113
04152
00.15L
1:0%15%
90c15,G
%M16
\11+2
40.15-4
0n:17%
#3:3
```



```
            GIMENSION LINE (ZOOO). PBUF(2OCOA,DATA (SI2), ASDT(S), SCOT (B), PKDY(E)
```

 GIMENSION LINE (ZOOO). PBUF(2OCOA,DATA (SI2), ASDT(S), SCOT (B), PKDY(E)
 3 EXTRRNM, DENS (9), DENK4(9)
 3 EXTRRNM, DENS (9), DENK4(9)
 EXTRRNNA EOPFOR
 EXTRRNNA EOPFOR
 L**** INLTIALTSE
 L**** INLTIALTSE
 NAFL}\mathrm{ START
 NAFL}\mathrm{ START
 6) REWI
 6) REWI
 4. RRWIND 3
 4. RRWIND 3
 NT=NT+1
 NT=NT+1
 r
r
C**** REAO HZADER DATA AND CHECK SCAN ID
C**** REAO HZADER DATA AND CHECK SCAN ID
31. READ (3) IUR,ISC,M,NPR,ASDT,SCDT,NDM, (DENS(JJ), DENH(JJ)
31. READ (3) IUR,ISC,M,NPR,ASDT,SCDT,NDM, (DENS(JJ), DENH(JJ)
IF (NT, CT, a) CO TO , j}\=1,NOH
IF (NT, CT, a) CO TO , j}\=1,NOH
IF{NT-GT, I) GOCT
IF{NT-GT, I) GOCT
LC1 FORMAT ISOEIIO\
LC1 FORMAT ISOEIIO\
HZITE(G,102) TUR, ESC, ASDT, SCDT
HZITE(G,102) TUR, ESC, ASDT, SCDT
02 FCRHAT (1H1,14H
02 FCRHAT (1H1,14H
4HOATE,SAIO, SX, SAPLATE,AIO, SX,7HFELTEZ, A1C, SX

```
                                    4HOATE,SAIO, SX, SAPLATE,AIO, SX,7HFELTEZ, A1C, SX
```



```
            TFCISCP.TO. ICLI GS TO 30
```

 TFCISCP.TO. ICLI GS TO 30
 JF(ISCR.fa. ISC) GC 70 30
    ```
            JF(ISCR.fa. ISC) GC 70 30
```



```
            cALL ENPGUT(O.O)
```

 cALL ENPGUT(O.O)
 G**** READ IN CARD DADA TO SELECT AREA OF SGAN REQUIRED
G**** READ IN CARD DADA TO SELECT AREA OF SGAN REQUIRED
MFST,NFST******MFST,NLST
MFST,NFST******MFST,NLST
MLST,N*゙SH******+MLST,NLST
MLST,N*゙SH******+MLST,NLST
1**** CONSIDER SCAN AS aN ARCMH WITH M RCWS mNDS N COLUNAS

```
                                    1**** CONSIDER SCAN AS aN ARCMH WITH M RCWS mNDS N COLUNAS
```



```
    L**** IRLKKSSTHE NUHALR OF PUINTS IN ROW OK COLEHA
```

 L**** IRLKKSSTHE NUHALR OF PUINTS IN ROW OK COLEHA
 F*** TOSE ADDED TO GIVE GNE PLETTING POSNT
 F*** TOSE ADDED TO GIVE GNE PLETTING POSNT
 30 REAOL5,100) MFST,NFST, MLST,NLST,TELK, PLDT
 30 REAOL5,100) MFST,NFST, MLST,NLST,TELK, PLDT
 100 Fcenat(SIIc/ENTIO)
 100 Fcenat(SIIc/ENTIO)
 I**** CHEKA THNT AARIA FOR PLGTTINN LTES WITHIN SCAN
 I**** CHEKA THNT AARIA FOR PLGTTINN LTES WITHIN SCAN
 1**** ANDD CALCLLITTE SIZE OF PGOTTING ARRAY
 1**** ANDD CALCLLITTE SIZE OF PGOTTING ARRAY
 IF(MLST,CT:NLSMLST =NL
 IF(MLST,CT:NLSMLST =NL
 TFCWLST,GT. NPGFNLST:NPE
 TFCWLST,GT. NPGFNLST:NPE
 JLST= MMST-HFST+i)/ISL*
 JLST= MMST-HFST+i)/ISL*
 KLST=(NLST-NFPY+1)/IGLK
 KLST=(NLST-NFPY+1)/IGLK
 1:*** PagtTIUN SCAN
 1:*** PagtTIUN SCAN
 IFKMFGY. EQ 11GO TO 2
 IFKMFGY. EQ 11GO TO 2
 MFMI=MFST-1
 MFMI=MFST-1
 !**** READ IN UNNSECS SCANS
!**** READ IN UNNSECS SCANS
DC: }3\quadJ=1,MFM
DC: }3\quadJ=1,MFM
I**** NOTE. OATA RLOCK CONSISTS OF 512 wORDS WHEN FULL
I**** NOTE. OATA RLOCK CONSISTS OF 512 wORDS WHEN FULL
NB=NP*/S:2
NB=NP*/S:2
IF (NB, EA. () \&OTO 40
IF (NB, EA. () \&OTO 40
41 READ NOSN二1,
41 READ NOSN二1,
MB=NNA-NB*STCD
MB=NNA-NB*STCD
ff(HGGFQ.O)द0 TO 3
ff(HGGFQ.O)द0 TO 3
3CCNTINUCENTA(YHB),MMB=1,NB)
3CCNTINUCENTA(YHB),MMB=1,NB)
3 CONIINU它
3 CONIINU它
i*** FOR RACH valur dFF}

```
i*** FOR RACH valur dFF}
```

 \(2004 J=\{\) JLST
 \(2004 J=\{\) JLST
 1.** 2REO THE PLOTJING ARRAY
 1.** 2REO THE PLOTJING ARRAY
 DO \(5 \quad k=1\), KL ST
 DO \(5 \quad k=1\), KL ST
 i*** RRDLCE INJ DIREKTECN
 i*** RRDLCE INJ DIREKTECN
 Do 6 I二1, iblK
 Do 6 I二1, iblK
 \(N B=N P A / S 32\)
 \(N B=N P A / S 32\)
 KL= NPR-NJ34512
 KL= NPR-NJ34512

45 $40 \sum_{51}^{16}+\frac{1}{5 i}=1$, NB
45 $40 \sum_{51}^{16}+\frac{1}{5 i}=1$, NB
$k K=110512$
$k J=k K-511$
$k K=110512$
$k J=k K-511$
$51 \operatorname{READ}(3)$ (LINE (K), $K=K J, K K)$
$51 \operatorname{READ}(3)$ (LINE (K), $K=K J, K K)$
$K J=k K+1$
$K J=k K+1$

43 k $\begin{aligned} & =1 \\ & 1\end{aligned}$
43 k $\begin{aligned} & =1 \\ & 1\end{aligned}$
$52 C E A D(3) \quad$ (LINZ $(K), K=K J, K K)$
$52 C E A D(3) \quad$ (LINZ $(K), K=K J, K K)$
STO $6 K=1, k L S T$
STO $6 K=1, k L S T$
(**** REDVCE IN K DERECTIOA
(**** REDVCE IN K DERECTIOA
DCi 7 IK $=1$, IELK
TKIO S IKI
STUFKK)=FtLink (K) +STOT
(**** INITIAL VALVE OF LIHITS

XHIN $=$ XRAX
C

C**** PLCTTING CONSTANIS: HICM IS DISTANCE IN INCHES
C**** CORKESPONDING TO XHAX-XMIN

SCALE = (KHGX-XHIN) /WIGH

C*** PLOT HEADER UNOLR MAIN PLCF
L**** TLETYTLE LRENKTH JN YNLHES
l.*** gind makilium ef plot and header lengtias.
PL=FLCit (HLST)AOIST
60

EAL SYMBCL ($x 2,0,0,0,0,1, P L D T, 40.0,80$)

62
CAL SYMREL ($0.0,0.0,0, A, P L D T, 00, L, 80)$
CALL SYMEC (C.0,0.5,0.1,5LDT, ©0.0.80)

Go TO \& 3

Cith SyHith ($C .0,0.0,0.1$, PLDT, CC. 0.80)

$x=0.0$
XIHC=OIST
TFST=1
SLST=KLST
i. i .** Plor array line by line
13

CAD (4) PTVFE (GA), $\mathrm{EO}=1, \mathrm{KL}$ ST)

IFifst
14
x $=x+x$ NuC
11 CnLi $\operatorname{Coj}(X, Y+(P g \cup F(i)-X M J N) / S C A L E, 2)$

ISTニJLST
ICST=IFST
Trs $7=151$

10
fF(N1,

* CNEL ENPLOT (2.04FLOAT (KLST)*OIST)
STO


```
\sigma
    000402
    000002
    000002
        00000?
    0júciz
C
00901?
    009015
    007017
    000020
    000022
    001023
    000025
    000026
    00003?
    000032
    000034
    003035
    0000040
    000072
    003076
    0001r5
    000105
    000121
    000121
    000123
    000133
    000133
    000134
        1
            FROGNAM MICSITIINOUT,OUTOJT,SCAN,IADES=SCAN,TAPES=INPIT,TAPEG=
            ミ自L LIHE
```



```
        1
        ,\mp@code{Es(E), JFidM(9)}
        EXTERHHL E:PLOT
        GALL O.JTKA:2 (#HPLOT)
    C
    C+*** I:ITINLIS=
        REA\(E,100) IC/L
    10G fo.3i1AT(I10)
C
C****ISAL IS FLAG FLE DIFFEFFNT CALL TO STAPT
C
        IF(ICC(-1) 10,11,12
        10 GALL START(J)
        GOTO 13
        11 GALL STAMT(1)
        Gu TO 13
        12 CALL STAPT(2)
        13 NT=0
        N=ITE(G,200)
    20) F:`:MAT (1H1)
        65 踇INO 3
        REWIND 4
        N.T=NT+I
C
C**** PEAD HEASE? DATA AHJ CHECK SCAN IO
C 14 READ(3) IUR ,ISC,HL,NPX, 4SOT,SCOT,ND:1, (OEIS(JJ),DEN田(JJ)
            1 ,JJ=1, (|JM)
        IF(HT.GT.1) go TO 1:
        F549E,101)ISEP,HJP
    101 FOR:1AT(I1J/土10)
        NGITE(6,201) こ|K,ISO,ASOT,SOOT
    201 FURMAT(1H, 10H, USEP.I.O,,Iv,20x,104SCAN I.D., IF,/,
```



```
        2 4HJATS,N1J, 5x,5HPLSTE,010
```



```
        IF (ISOP.ET.ISO) ro TO 15
        VEITE(S,202) -50, IS2F
    202 FUR!AAT//,X,?JH SGAN ID'S JUN'T AGREE ,/,X,GHTAPE ID =,IE,
        1 1JX,34こA२D ID =,IS
        CALL EAPLOT
        STOP 1
            C
C C MFST,NFST******MFST,NLST
                        * *
                            * *
                                    MLST,HFST******MLST,ILST
C*+4* CONSIOEE SCM!AS LN ARPAY RITH H HO:NS ANO N GOLUMMS
C**** HFST,NFST CSFIHE START OF SELTSTED AREA
```

```
```

C***** MLST,ULST DEFI:S TOM OF SELECTEO A\&EA

```
```

C***** MLST,ULST DEFI:S TOM OF SELECTEO A\&EA
C+*** ITLY IS THE :|!|:E? OF JOI!!TS I!N RUN O' OJLUMN
C+*** ITLY IS THE :|!|:E? OF JOI!!TS I!N RUN O' OJLUMN
C+*** TO OE ADOEO T: GIVE DNE FLUTTIAT, POINT
C+*** TO OE ADOEO T: GIVE DNE FLUTTIAT, POINT
C

```
```

C

```
```



```
```

 10? FO\14AT(FIHO/EA10)
    ```
```

 10? FO\14AT(FIHO/EA10)
 O
O
C**** CHECK THAT AFFA FOR PLUTTINF LIES WITHIN SコAN
C**** CHECK THAT AFFA FOR PLUTTINF LIES WITHIN SコAN
C**** ANO ChLCULATE SIZE OF PLOTTIMG ANRAY

```
C**** ANO ChLCULATE SIZE OF PLOTTIMG ANRAY
```

```
C
```

C
IF(IILST.GT.INL)ILSST=NL
IF(IILST.GT.INL)ILSST=NL
IF (!:LST.GT.|FX)NLST=!?PX
IF (!:LST.GT.|FX)NLST=!?PX
JLST=(MLST-4FST+1)/IBLK
JLST=(MLST-4FST+1)/IBLK
KLST = (TLLST-IFST+1)/ISLK
KLST = (TLLST-IFST+1)/ISLK
C
C
C**** POSITIOU SOAN
C**** POSITIOU SOAN
IF(IAFST.EO.1)GOT0 2
IF(IAFST.EO.1)GOT0 2
MF:1I=MFST-1
MF:1I=MFST-1
C
C
C***+ READ IN UNUSEO SCONS
C***+ READ IN UNUSEO SCONS
00 3 J=1,MFMI
00 3 J=1,MFMI
C**** NOTE. DATA ELOCK CORSISTS OF \&I2 WORJS WHEU FULL
C**** NOTE. DATA ELOCK CORSISTS OF \&I2 WORJS WHEU FULL
C
C
NB=|P\times/512
NB=|P\times/512
IF(N3.Eq.0) G0 TO 40
IF(N3.Eq.0) G0 TO 40
00 41 जNS=1, H3
00 41 जNS=1, H3
L1 READ (3) JATA
L1 READ (3) JATA
40 MO=11PX-NG*512
40 MO=11PX-NG*512
IF(:19.[7.0)50 T0 3
IF(:19.[7.0)50 T0 3
RE40(3)(0ATA(AI-E),N1E=1,N3)
RE40(3)(0ATA(AI-E),N1E=1,N3)
3 CONTINUE
3 CONTINUE
C
C
6**** FOR EASH VALUE OF J
6**** FOR EASH VALUE OF J
2 00 4 J=1,JLST
2 00 4 J=1,JLST
C
C
C**** 7ERO THE PLOTTILSG ARFAY
C**** 7ERO THE PLOTTILSG ARFAY
0) 5K=1,KLST
0) 5K=1,KLST
5 P`UF(K)=0.0 5 P`UF(K)=0.0
C
C
C+*** RETUCE IN J OIPEETION
C+*** RETUCE IN J OIPEETION
C
C
006 I=1,ISLK
006 I=1,ISLK
NB=1/PX/512
NB=1/PX/512
KL =1/PX-113+j12
KL =1/PX-113+j12
IF (NO-1)4.3,46,4.5
IF (NO-1)4.3,46,4.5
44 READ(3) (LINE(K), K=1,512)
44 READ(3) (LINE(K), K=1,512)
GO TO 40
GO TO 40
45 70 3゙1 iI=1,NB
45 70 3゙1 iI=1,NB
KK=I1*512
KK=I1*512
KJ=KK-j11
KJ=KK-j11
51 REAO(3) (LINE(K), <=қJ,KK)
51 REAO(3) (LINE(K), <=қJ,KK)
KJ=K<+1
KJ=K<+1
KK=KK+KL

```
        KK=KK+KL
```

000158
0001E:
000154
000171
000130
000155
に
000175
000177
009200
000201
007204
000205
000207
000217
0リリ222
009224
000232
000235
000237
000243
000245
007248
000251
000253
000255
000253
007264
0092.36
000270
013272
001304
000305
('

```
```

 IF(KL-1)40,52,5?
    ```
```

 IF(KL-1)40,52,5?
 43 KJ=1
 43 KJ=1
 KK=KL
 KK=KL
 52 P=in(て) (LIME(K), 吕にJ,KK)
 52 P=in(て) (LIME(K), 吕にJ,KK)
 46 i< i='にST-1
 46 i< i='にST-1
 DO E K=1,KLST
 DO E K=1,KLST
 STOT=0.0
 STOT=0.0
 C
C
C**** KEJUCE IN K OIRECTION
C**** KEJUCE IN K OIRECTION
OO 7`IK=1,IBLK OO 7`IK=1,IBLK
IKI=I<I+1
IKI=I<I+1
7 STOTこちTUTHLNE(IKI)
7 STOTこちTUTHLNE(IKI)
6 P\XiUF(K) = PBUF (K) +5TOT
6 P\XiUF(K) = PBUF (K) +5TOT
c
c
C**** INITIAL VALUE OF LIMITS

```
C**** INITIAL VALUE OF LIMITS
```

```
C
```

C
IF (J.GT.1) GO TO 8
IF (J.GT.1) GO TO 8
X:AY=P \UF(1)
X:AY=P \UF(1)
XMIP=XMAX
XMIP=XMAX
C
C
C****FIH1O XNAX-XIIIN
C****FIH1O XNAX-XIIIN
8 DO ? K=1,KLST
8 DO ? K=1,KLST
IF(SJJF(K),GT, XMAX)XMAX=POUF(K)
IF(SJJF(K),GT, XMAX)XMAX=POUF(K)
IF(PGJF(K),LT,XNIH)XMINH=PBUF(K)
IF(PGJF(K),LT,XNIH)XMINH=PBUF(K)
4 W\SigmaGTE(L)(D3UF(1?),IT=1,KLST)
4 W\SigmaGTE(L)(D3UF(1?),IT=1,KLST)
NEHIHO4
NEHIHO4
C
C
C**** SCNLE THE PLOT
C**** SCNLE THE PLOT
IF(ICAL-1) 20,21,22
IF(ICAL-1) 20,21,22
20 x=41.9
20 x=41.9
x=31.0
x=31.0
60 T0 23
60 T0 23
21 X=?8.6
21 X=?8.6
r=21.4
r=21.4
G0 T0' 23
G0 T0' 23
22 X=20.6
22 X=20.6
Y=15.3
Y=15.3
23 DI ST1=(X-1.5)/FLOAT(KLST)
23 DI ST1=(X-1.5)/FLOAT(KLST)
UIST2=(Y-2.0)/FLONT(JLST)
UIST2=(Y-2.0)/FLONT(JLST)
OIST=~HIH1(OIST1,OIST2)
OIST=~HIH1(OIST1,OIST2)
C
C
C**** TAKE OLST TO THE NERZEST 1/100TH INCH
C**** TAKE OLST TO THE NERZEST 1/100TH INCH
C
C
JIST=\IST+100.0
JIST=\IST+100.0
NOIST=JIST
NOIST=JIST
OIST=:MIST
OIST=:MIST
DIST=3IST/100.0
DIST=3IST/100.0
IF(OIST.GT,0.1) OIST=0.1
IF(OIST.GT,0.1) OIST=0.1
C
C
C**** CENTRE PLOT IH FQAME
C**** CENTRE PLOT IH FQAME
C
C
PL= JIST*FLUAT(KLST)
PL= JIST*FLUAT(KLST)
TL=9.0
TL=9.0
XL=A14X1(TL,PL)
XL=A14X1(TL,PL)
YL=1.!+DIST*FLOAT(JLST)

```
    YL=1.!+DIST*FLOAT(JLST)
```

000350
00035.3
000353
000355
000363
00036
$00037 ?$
060403
000405
009410
000411
000413
000414
000415
000417
000420
000421
000423
$000+20$
000432
000435
000436
000440
$000+41$
000442
000446
000450
000452
000455

000307 030311 000312
007314 00932.3 009325 000327

000330
000335 000336 000341

00353 000353

00035 ع
000363
00037 ？ 060403

000405
000410
000413
000414 000417
000420
000421
$000+20$
000432

000435
000436
$000+41$ 010442

000446
$0004=2$ 000455

007321
000727
000725
000727
000730
000732
003733
0011734
001735 001737 009740 $000: 3$ 000740 000151 009755 00リ7ン？ 000765 007755 （1） 7 「と＂ 000777 000772
nう 73 KK＝1，KLST

$\mathrm{LV}=\mathrm{OL}$
$\mathrm{L}=\mathrm{LV}+1$
$\mathrm{FL}=\mathrm{L}$
$\mathrm{kR}=\mathrm{a}$ して， 3
し2＝1／？
R1．2＝L2
$R=22-3$ ？
IF（0．en．0．3）CL T2 70

70 cintive
lf（ili．je．iap）go io an
cale mumage
GO $10 \% 6$
so Conctrot
srop
［ N$]$

```
            PRUGRA, DSPLY (TMAUT, OJTPUT,SGNN,T:OTS=INDJT,TAPEG=OUTPUT,
```



```
        OIMFNSION ASDT(B), SÕT(S),PLOT(B),HT(1]0)
        1
```



```
        comava A(15000)
    c
    C**** RE10 FILE JATA ANO SHECK SCAN IO
    C
        REMINO 3
        RE{O(3)IU?,ISC,N,IdPX,ASOT,SCOT, NO:,(0EN:S(JJ), DE:A(JJ),JJ=1,
        1
        NOM)
        HPITE(G,100)
    100 FO?MAT(1H1)
        hF:ItE(5, 1:1)ASOT, SCJT
```



```
        4 4H3TE,M10,5x,SHELATE,A10,
        2 /f,1x,+&IC,OX,EHSLIT,A10,5x,10HTELESCOPE,A10,
        3 SX,5HTUSE,ALE,5X,EH FILM,M10)
        REAO(5,200) ISCP
    200 F刀PM,9T(I10)
        IF(ISOD.ET.ISC) GO T0 2
        WPITE(G,102)ISC,ISCP
```



```
        1 泣,1JHPLOT IO = ,I10)
        STOP
    c
    C**** kEAJ IA card data fuर SUBrOUTINE Whigh forms plotting afray a
    C
    C
    C+*** COISSIDE? DATA TO 3E SELECTEO AS A GlUCK DEFINED GY
    C****:MFST, IFST ANO {LST,NLST. I3LX IS THE NUMEE: OF POI:ITS
```



```
    C+*** PLJT IS AMA ALFHGYERİ SUMMARY OF ABOVE FOR PUTTING ON PLOT
        ? nEAD(5,201)MFST,NFST,HLST,NLST,ICLK,PLDT
    201 FURiGAT (EINJ/EA1O)
        M=(NLST-:4FST+1)/I3LK
        N=(NLST-1.FST+1)/I 3LK
        CALL SECT!('4FST,HFST,MLST,NLST,IBLK,A,NL,NPX,M,N)
    C
    C**** InItIALise plottivg package
    c call start
    C C+**** calullite plot lenfth for use in labellivg plot
        PL=FLOAT (!)*0.1
        TL=3.0
        IF (TL-PL) 50,61,52
    bo PL2=PL/2
        x2=PL/2-4.0
        CALL SYMEUL (X2,0.0,0.1,PLDT,00.0,50)
```

UR114：？ 00711,1 00：177 001173 $0011 / 4$ coceg？ 093204 099210 000213 00.5×14 009 P15 （0）？？？ 030226 000232 009236
000345
000347
000350
000331
000333
000337
000341
003343
000241
000253
003253
010255
030265
000265
003207
001271
000271
000303
000303
000305
007305
009311
000315
003317
000321
000323
000325
000325
000326


```
i,0 i) し3
```

```
i,0 i) し3
```



```
CALL Sr:MOL (6.0,1,0,0.1,NちIT,00.0,80)
```

CALL Sr:MOL (6.0,1,0,0.1,NちIT,00.0,80)
ジLL ",0! (!.J,1.2,-3)
ジLL ",0! (!.J,1.2,-3)
CO TO 6.3
CO TO 6.3
园, !=:12
园, !=:12
x = +, (1-PL/?

```
x = +, (1-PL/?
```



```
CALL PLOT (X,?,1,N,-3)
```

CALL PLOT (X,?,1,N,-3)
C
C
C**** RENO I:\ CAरJ JATA FON INSTRUCTIONS FOR PLUTTIHG

```
C**** RENO I:\ CAरJ JATA FON INSTRUCTIONS FOR PLUTTIHG
```



```
C**** 1FIX=FLAG FU:, SFCOIFIED HEISHT CONTOU?S.
```

C**** 1FIX=FLAG FU:, SFCOIFIED HEISHT CONTOU?S.
C**** ICOH=1 IS ALSO REJUIA:S FOR THIS PPOPESSIHG
C**** ICOH=1 IS ALSO REJUIA:S FOR THIS PPOPESSIHG
C**** ICLOM=FLAT FCSS LUS CONTOUSS
C**** ICLOM=FLAT FCSS LUS CONTOUSS
C

```
C
```



```
C**** G:D FIXES MEIGHT COMTOURS
```

C**** G:D FIXES MEIGHT COMTOURS
C**** HT IS THE AR\&\&Y CJUTAI:IING THE HEISIHTS OF THE FIXED CU.\TOURS

```
C**** HT IS THE AR&&Y CJUTAI:IING THE HEISIHTS OF THE FIXED CU.\TOURS
```



```
C**** 2Fij=ZERO pOINT FO: LOG CJidTOURS
```

C**** 2Fij=ZERO pOINT FO: LOG CJidTOURS
C*+
C*+
63 REAJ(5,202)ICOH,IFIX,ICLOG
63 REAJ(5,202)ICOH,IFIX,ICLOG
202 FO?HAT(3:1O)
202 FO?HAT(3:1O)
NEAO(5,203) NCOH,NICLOG,ZPO
NEAO(5,203) NCOH,NICLOG,ZPO
203 FU2NAT(2I10,F10.5)
203 FU2NAT(2I10,F10.5)
IF(IFIX.NE.1) GOTO 3
IF(IFIX.NE.1) GOTO 3
EO 4 KL=1,NCO:1
EO 4 KL=1,NCO:1
4 EEAO (5,20%)LL,HT(LL)
4 EEAO (5,20%)LL,HT(LL)
204 FuZ!4T(I10,F1O.4)
204 FuZ!4T(I10,F1O.4)
3 RE:NIND 3
3 RE:NIND 3
RN=N
RN=N
C
C
C**** PLOT LITJEA? CCIITOURS
C**** PLOT LITJEA? CCIITOURS
C
C
IF(ICOH.NE. 1) GO TO 5
IF(ICOH.NE. 1) GO TO 5
GALL GOMTHz(A,H,N,NCOH,言FIX,HT)
GALL GOMTHz(A,H,N,NCOH,言FIX,HT)
OL'J=?N/10.J
OL'J=?N/10.J
IF (RLIN.LT.9.0) GO TJ G
IF (RLIN.LT.9.0) GO TJ G
XL=RLTN+1.0
XL=RLTN+1.0
C:LL PLUT (XL, -0.4,-3)
C:LL PLUT (XL, -0.4,-3)
GO TO 5
GO TO 5
5 CLLL PLOT (3.3,-0.4,-3)
5 CLLL PLOT (3.3,-0.4,-3)
C
C
C*+** PLOT LOG CONTOURS
C*+** PLOT LOG CONTOURS
5 IF (ICLUG.NE.1) GO TO }
5 IF (ICLUG.NE.1) GO TO }
C\&LL CO'dLOO (m,!!N,NCLOG,2 マO)
C\&LL CO'dLOO (m,!!N,NCLOG,2 マO)
OLI=,2N/10.0
OLI=,2N/10.0
IF (RLT.LT.8.0) GO T0 8
IF (RLT.LT.8.0) GO T0 8
XL. =RL!I+1.0
XL. =RL!I+1.0
CALL PLOT (KL,-0.4,-3)
CALL PLOT (KL,-0.4,-3)
CO TO 7
CO TO 7
CO TO 7 (XL, 0, (0, 3)

```
                            CO TO 7 (XL, 0, (0, 3)
```


| | $\begin{aligned} & C \\ & C+* *+ \\ & C+*+* \\ & C \end{aligned}$ |
 | 181. |
| :---: | :---: | :---: | :---: |
| 00701. | | マの成－\％r | |
| 00901：． | | | |
| | C | | |
| | $\begin{aligned} & \mathrm{C}+\cdots+ \\ & \mathrm{C}^{+\cdots++} \\ & \mathrm{C} \end{aligned}$ |
 | |
| 000014 | | | |
| $00001 ?$ | | | |
| aijas？ | | | |
| 10002i | | $k L$ ST＝（iLL ST－：IFST＋1）／İLK | |
| | C | | |
| | $\begin{aligned} & \mathrm{C}^{++++} \\ & \mathrm{C} \end{aligned}$ | POST110．Scall | |
| 000032 | | IF（Mfsr．En．1）Go T0 2 | |
| 000034 | | | |
| | C | | |
| | $\begin{aligned} & C^{* * * *} \\ & C \end{aligned}$ | READ IH UAUSED SCAlls | |
| 000035 | | $003 \mathrm{~J}=1, \mathrm{HFMI}$ | |
| | C | | |
| | $\mathrm{C}^{* * * *}$ | HOTE．DATA 3LOCK O：STANOAZD AECAIVE TAPF COMSISTS OF | |
| | $\begin{aligned} & C+\hbar *+ \\ & C \end{aligned}$ | E12 HJROS WHEH FULL | |
| 000036 | | $N B=11 P \times / 512$ | |
| 000041 | | IF（19．EQ．0） 20 TO 42 | |
| 000043 | | $00+1 \quad \mathrm{Ha} 3=1, \mathrm{~N} 3$ | |
| 000044 | 41 | 25AD（3）OATA | |
| 000057 | 42 | M13 $=118 \mathrm{P}-\mathrm{HBrs} 12$ | |
| 097063 | | IF（13．E2．0）G0 TO 3 | |
| 000054 | | $P=A D$（3）（JATA（M：13）， $113=1, M 3)$ | |
| 000076 | 3 | Cudtinje | |
| | C | | |
| | $\begin{aligned} & C^{+*+*} \\ & C \end{aligned}$ | ZEzO Pl．OTTING ARRAY | |
| 000101 | 2 | iL ST $=\mathrm{JLST}$＊KLST | |
| 000104 | | $0051=1$ ，ILST | |
| 000111 | 5 | $A(I)=0.0$ | |
| | C | | |
| | $\begin{aligned} & C^{* 2 * *} \\ & C \end{aligned}$ | FOR ETCh VALUE OF J | |
| 000113 | | $004 \mathrm{~J}=1, \mathrm{JLST}$ | |
| | C | | |
| | $\begin{aligned} & C^{*+* *} \\ & C \end{aligned}$ | FEJJEE INJ DIRECTION | |
| 000129 | | DO 6 IZ $=1, \mathrm{I} 3 \mathrm{LK}$ | |
| 000121 | | $N \mathrm{~S}=14 \mathrm{P} \times / 512$ | |
| 000124 | | $\mathrm{KL}=1 \mathrm{PPX}-1+3 \times 512$ | |
| 000127 | | IF（ $\mathrm{N} \cdot \mathrm{J}-1) 43,44,4.5$ | |
| 000132 | 44 | 2EA3（3）（LIHE（k），$K=1,512)$ | |
| 000137 | | 60 T0 46 | |
| 000143 | 45 | DO $47 \mathrm{II}=1$ ， NB | |
| 000145 | | KK＝II＊；12 | |
| 000147 | | $K J=K K-511$ | |

```
47REAO (3) (LINE(K),K=KJ,KK)
009156 KJ=kK+1
COO170
000171
001173
000174
000176
000?11
000213
000214
000215
00022?
0111?;
000226
009230
000265
000?:9
000250
KJ=KK+1
1F(KL-1)46,45,48
    43 kJ=1
        KK=KL
        (3 REAO (3) (LIHE(K):K=KJ,KK)
        40 IKI={FST-1
        OOOK=1,KLST
        STMT=0.0
    C
        00 7 IK=1,I.3LK
        IKI=IKI+1
```



```
        I= f+J_si-(`-1)
        OA(I):(II)+STOT
        4 CJ, TINW
            =50!2:1
            Eฯ7
```



```
031000
```



```
                        +4++*+*
        * * *
            4* *2
            ****
            A(I,J) 1 a( I,J+1 )
THIS SJBROUTINE CALLS HIHIES, NEDG, DIST, WEY AHD ARCIST
    OIMENSIUNA(M,M), X(EQ0), Y(509), IXY( 15.00), CX(4), CY(4),
1
                OA(3), lH(4)
                    Cavidy%
                    CJ.d1 J!:
                                    COHT 00!.
                                    cjitT,Ne
                                    COHTJJJ:
                                    ConTOJ口:
                                    CJNT 009:
                            cOHT 353S
CONT M010
                                    co:dT JT11
Cuht Oa:2
COHT00:Z
CJNT JO: :
cont mon:
COHT 0018
CONT OO1%
COHT 001:
conTOOLS
COHT002?
CONTOO2:
cJNT002?
COHT 00?%
contog?:
CONTOO2,
CONT 002:
C
LOGICAL NIHJEC, NEDG
Sul'to:1/Cu'NOCM/ LE.3(4)
DATA IH/ 3,4,1,2;
KA=0
<0=1
2IH=FLOAT (II)*0.1-0.1
RI:1=FLONT(1)*0.1-0.1
II < =it-1
KLOOK=1
KF=1
00 51 I=1,1500
    MA IH LOOP WITH INITIAL CONOITIONS SET UP
CO'1T 0027
GONT0.2%5
COHT002?
COHETgO 3S
DO 2. IK=2,:4
DO 2 JK=1,NIK
II=IK
IJ=JK
3JJ=JK (K.0-1500),40,45,47
47 WPITE (G,+9) IK,JK, KO, KA 
000025
000032
009033
000034
000036
000041
CONTOO31
000005
```



```
                A( - - , ) ) = 3 A
```



```
C
    000006
    000005
    000005
    000305
    000006
    00000%
    000012
    000014
    00001i
    000017
        000027
        000024
61 IXY(I) =0
1TVS?
00005;
47 WRTTE (E,+3) IK,JK, KO, KA 
000060
1 GH KD IS, I4, 9H KA IS, I3)
RETUR:I
coinT003:
COHT IOB:
4 GH KD IS I4, GH KA IS IJ, IOMGE SOMT 1030
CONT 103
46IF(K4-500) 74,74,75
47 WPITE ( E,q9) IK,JK, KO, KA 
000060
75 HEITE (5,リ,马) IK, JK, KD, KA
RETUNH
CONT 103?
convons?
000053
cJNTDOAO
000077
7400 4 I Z=1,4
CX(1Z)=0.0
CY(II )=0.0
4LAB(IO)=0
4 LA.B(IF)=0
Kecc=1
IF (KK.EO.O) I='&
KOUHT=1
COHT00%:
000100
000106
000107
000107
000107
009110
000111
000111
000112
COMT 00442
    Hこrc, NEDG
KD=1
CONT1035
CJHTOO3,
O
COHT 00:%
CX(IZ)=0.0
CONT OD:5
CONTOO&:
CONTOO+5
CONTDO+5
0OO
EXAHINS FOR INTERSEGTIUN OF CONTOUR AND BOX
CONTOD&%
CONT004:
000120
000135
000137
000141
000157
000161
IF (:IINSEC, (A(II,JJ), A(II,JJ+1), VAL)),G0TO 5
CONT 004%
*O
COHTOOS:
CONT U051
cont 035?
CONT 00:3
LA.3 (KO!J:T)=1
CONT
CONT00%-
LAJ(KJ!AT)=1
cu:1T 905:
CX(1)=FLOAT(JJ)*0.1+2IST(A(II,JJ), A(II,JJ+1),VAL )-0.1
CONT 00SS
kOUIT= KOU:!T+1
CONT 00%:
5 IF ( &IHSEj(A(II,JJ+1), A(II-{,JJ+1), VAL) , Gu TO.ó
co:dTjuc?
COHTOUE;
```

```
                                    OこNT011:
            0004712
    000511
    000513
    000515
    000523
    000525
000526
    000534
000535
000540
000543
000545
000545
000547
001554
000555
007567
000570
000572
000573
000575
000601
000604
000610
000612
009615
000616
000635
00.5636
000640
000641
000643
000051
000652
000653
000654
000662
000604
009665
000671
000572
000677
000702
000704
000705
        IF (12) L5,04,6:
    65 IF (AJS( \X(I2)-&X(I) ).GT. .000001.0R. LBS(GY(I2)-CY(I)).GT.
        i .00JJj01, ;0 10 66
                                    0113
        64 CONTIHUE
                                    covT112D
                                C0.1T012
    66 1= I2
        G0 TO ( 50,49),KC
untol?
50 IF(KA.ER.1) GOTO 72 GONTO124
        GO TO 17
    C
        52 GO TO (53, 54), <C
C
54 I=2
        IF(II.EO.M) I=4
        IF (II.ET.2) I=3
        x(1)=0x(I)
        X(I)=VX(I)
        KA=2
        Ir (X(1).EП.0.0 .OR. X(1).E#.RIN.OR. Y(1).EO.0.0.0?. Y(1).ED.
        1 RI,1) GO TO 45
        ISTON=I
        IISTR=II
        jJडTV=jJ
        KLUOK=2
    45 KF=I
    K4=2
    CALL HAY (CX, CY, KF, I, K:H2, KM3)
    GO T0 49
C
53 CALL WAY ( EX, CY, KF, KM1, I, KM3 )
    X(1)=0X(I)
    Y(1)=人 Y(I)
        KA =2
        IF (X(1).EQ.0.0 .OR. X(1).EQ.RIN .OR. Y(1).ER.D.0..OR. Y(1).EO.
        1 RI.1, r,O To 71
        ISTOR=I
        JJSTR=JJ
        IISTR=II
        KLOOK=2
        71 IXY(KS)=IXY(KB)+2-10*KF+10*I
    KB=-7
    I=K:M
C
    GO ro 43
        11 60 TO ( 55, 50), KC
    C
        55 I=IN(I)
    IF (KF .EQ. I ) GO ro 17
    CALL WAY ( CX, CY, KF, KM1, KM2, K:{3)
    KC=I
    IF (KM2.\IE.KC ) I =KM2
    IF (KH3.HE.KC) I =KM3
    IXY(K3)=IXY(KB)+2
    K3=-7
    G0 10 40
C
56 I=IW(I)
    CALL \AY (CX, CY, I, KH1, KH2, KHIS )
    KF=I
CO:IT 0123
    GO TO 17
C
000662
CONTOL2
        =2
        X(I)=こX(I)
        ISTON=I
    CONTO125
    co:1T0125
    COHTJ127
covT0129
CONT012S
CONT1123
CuNTM123
contr31.31
cyital32
COHTO132
CONTO134
COHTJ135
CONTJ135
CONT 0137
CONTO133
CONTD133
CuNTJJ140
CONT131:1
CONTO14?
CONT 01:3
CONTO144
CONTO144
CJNTOI4;
CONTO145
COHTO14%
ConTm14;
CONTO142
CONTO147
CJNTO150
COMTOLS1
COMTO1S1
CONTO153
CONT0154
COMTO15;
CO:ITO155
COHT0157
CONT0153
CONT01:3
CONT015O
CONT0150
COHTO161
conT01E2
COHTE163
CONTO154
COPT01.55
CJNT01E5
CONT0165
CONT0167
CONTT16S
C0:1T016?
C0:TT016?
CONT0170
COHTO171
CMNTJ171
CONT0173
cointu174
CONT0175
```


GJIT 9175
cjir317\％
CJT．T 9173
C3HT］1：3
CC：IT 1130
COHT 3131
COHT $11+2$
OJHT0183
colvo134
CONT 10185
Coit 0186
contoid
CONTO138
co：tTj13
Cult 3193
CうHT 3：01
CONT 0132
c．JIT 0193
coliro19．
COHTO19；
COHTO175
COHT3197
CONT 3193
CONT 31；3
CONTO200
golit 0211
Contra212
COHTJ2．3．
COHTT $020 t_{1}$
30×10235
cont 1200
cuntozir
collt 0238
cJ：4tu20．
colrt 0210
CJHTOS．1．1
GUNTA2ま？
cint 021．3
colnt in 1．
CONT $02 \pm$ ：
GOHTO21：
05：1T3217
CONT 2218
co：1T0213
Cuitt 02？
contul 21
cont 322？
Coint ge？ 3
co：IT 02？：4
CONT aてa
cJnt 322 j
CJITT0227
COHT 0223
Cont 3229
COHT 023 S
CONTIOZ31
contor 3
cont 023
$00111 ?$
001127
00113
001141
001142
001143 001144

001145
001145
001157
001160
001161
001102
001164
001166
001155
001170
001172
001174
001210
001212
001213
00 ± 227
001231
001233
001247 001250

001251
001257
001261
001272
001273
001274

001277
001330
001302
001316
001317
$0013 ? 1$
001321
$00132 ;$
$00: 326$
001339
001332
001342
0013414
001347
001353
001356

UNUEST COMPILER SPACE
02530 I


```\(A B\)
```



```
000014
```



```
        C**** Lごご3
        CLLL JLOT (X(II), Y(II), 3)
        A C
        AN:C
        IS=T1+1
000030 EALL PEUF (X(J), Y(J), ?)
00004? 2 CALLLEIU\ (X(J), Y(J), -1)
000050 IF (IS:NCH.EQ.1; GGLLPLOT (X(I1), Y(I1), 2)
A2C
0
000072
000073
    A2C
EETUR|
A2C
UHUSED GOMPILER SPACE
031700
```

```
000005 SUGROJTINE LINUM ( X, Y, I ',
```



```
            C IH OFJEP HIT TO PJT A NUHIBER ONTC THE GRAPH PUT RIVAL= 0.5
DA TA ID/i,1/
000005
000005 IF ( IES (SIVAL) .LT. 1.0) REETURN
IF (I) 2,3,5
2 J= J+1
```



```
5 CALL 'IUMBE? (X-.025, Y-.025, .05, RIVAL, 0.0, -1)
000011
000013
```



```
000016
\begin{subarray}{c}{\textrm{J}=\textrm{J}}\end{subarray}
000025
000033 
000035 ENO
UNISEO COIPILER SPACE
032000
```

LI HU:90
Lifumoc
LI:N:130
LIVUAT?
LINU13:
I! !
Liliu打:
LIiUU101
Iiturot

```
0.10007
000007
    000007
000010
000017
000031
000934
00037
000042
0000%4
000040
003051
001054
000057
000055
000067
09910?
009106
000107
000114
009124
000142
000142
00014?
UNUSEO COMPILER SPACE
031400
```

```
                        SU3FOMTING CONLOG (A,M,H, IVAL,ZFO)
```

 SU3FOMTING CONLOG (A,M,H, IVAL,ZFO)
 C****
C****
CO:410'1/COMDA/LAS(4),RIVAL,K
CO:410'1/COMDA/LAS(4),RIVAL,K
C**** THIS jURFOIJTINE PLOTS IVAL CONTOURS
C**** THIS jURFOIJTINE PLOTS IVAL CONTOURS
C+***
C+***
00 5;7 IZ=1, 14
00 5;7 IZ=1, 14
00 5;7 IZ=1,H
00 5;7 IZ=1,H
E7 IF(A(I),In).LE.ZR2) \&(I2,1%)=ZRO
E7 IF(A(I),In).LE.ZR2) \&(I2,1%)=ZRO
WP.ITE(4,5)
WP.ITE(4,5)
5 FORMAT(1H1)
5 FORMAT(1H1)
C4**4
C4**4
C++** OPAW JOX
C++** OPAW JOX
C++4*
C++4*
RNIK=FLOAT(1-1)/10.0
RNIK=FLOAT(1-1)/10.0
R:1IK=FL门{T(:1-1)/10.0
R:1IK=FL门{T(:1-1)/10.0
GALL PLOT(0.0,0.0,3)
GALL PLOT(0.0,0.0,3)
CALL PLUT(1.0,QUIK,2)
CALL PLUT(1.0,QUIK,2)
CALL PLOT(ZA\&K,NIIK,?)
CALL PLOT(ZA\&K,NIIK,?)
CALL PLOT(3A\&K,NINIK,?)
CALL PLOT(3A\&K,NINIK,?)
Call Plot(0.0,0.0,2)
Call Plot(0.0,0.0,2)
C****
C****
C**** SGALE THE ARRAY
C**** SGALE THE ARRAY
C****
C****
13 CALL : SHNGE(A,Y,N,:MAX,RMIH)
13 CALL : SHNGE(A,Y,N,:MAX,RMIH)
SOALV=ALOG(iNHAX-RNII:1)/FLCAT(IVAL+1)
SOALV=ALOG(iNHAX-RNII:1)/FLCAT(IVAL+1)
C****
C****
C**** PLOT CJNTOURS WITH VAL AS HEIGHT
C**** PLOT CJNTOURS WITH VAL AS HEIGHT
C*+**
C*+**
00 50 J=1, IVAL
00 50 J=1, IVAL
FlVFiL=J
FlVFiL=J
VAL=RUIN+EXP(SCALV*PIVAL)
VAL=RUIN+EXP(SCALV*PIVAL)
CALL COUT(A,M,N,VALS
CALL COUT(A,M,N,VALS
5% W:゙TE(自号)J,VAL
5% W:゙TE(自号)J,VAL
E9 FOR!MAT(2OH CCNTOUP WITH :HH3EF,IB,11H UAS 4EISH7,5X,F9.4)
E9 FOR!MAT(2OH CCNTOUP WITH :HH3EF,IB,11H UAS 4EISH7,5X,F9.4)
EFTURM
EFTURM
MF.TUR
MF.TUR

```
    ditiscuit a(figli)
```

```
    ditiscuit a(figli)
```


SUbroutild : AngGe \& A, i, id, RMAX, RHIN)

000907
000007 000007 00 0911 009712 000021 000024 000034 0.10?? 000036 000037

DIMENS LOM A (: 4 , $\bar{j}=7(1,1)$
$C=3$
DO ? $==1,1$ $002 \mathrm{~J}=1 \mathrm{n}, 4$

a=amI!:1($3, \Delta(I, J))$
R: $14 x=\hat{0}$

\therefore| $11:=5$ |
| :---: |

HTOM
ENJ

Wayg000?

dayocoo: We Yo 303 , Whyoued: HAYODOO WA YJJ00 7 WAYOOOOS WAYOTOJ? We Yojo 10
Wh YOU011
WAYO 9012
WaYOJO 13
Ha yó 001.
WRYODOL
WQYJOD:
WAYOOD: 7
WAYOJO15
WCYJ0913
ha Yooje
WhYojoz?
WAYU00?
WaYogo?
WA YOOOR'
NAYj002:
harcoo?

HEDG
NEDG HEDG HEDG HEDG
NEDT NEDG NEOT NEOT,
$N=O G$ NEOG

```
u0u0E2
GGuCz
Cu40,g
uしたびる3
cogzc
LCCj41
ccoj41
G6C075
Ouc1:5
```



```
GC:25?
U!27%
yu427%
CEESj
ramMon
C
L
PROGRAN VOL,IINPUT, OUTPUT,SCAN, TAPESIINPUT,TAPEG=CJTPNT,TAFE3ESCAN
```



```
OAIA(512), ALINE (1000), BUF(1000), SUML (1000), OSDI(E),
SCDT(8),DENS(9), DENM(4),GK(IO),RNS(IO)
    READ IN IDENTITY OF SCAN,NUMRER OF AREAS OVER WHICH BALKGRCUNO
    mSITE(6, 200)
    200 FORMET(11+1)
        qEAD<S,1001ISC1.N,IBLK
    100 FOKMAT'(IIOIINO/ILOS
C
        * read in co-ordinates of areas te se used for backgrcund
        READ{5,101)(JI(I),K1(I; ,J2(I),KZ(I),I=1,N)
    {O1 FORHAT(4LS)
* 2. READ DATA HEADER OF TAPE
        READ(3)IUR, IS ,NL,N\rhoX, ASDT, SCDT,NDM, (DENS(JJ), DENM(JJ),JJ=1,NDM)
        IF CISCA,EQ. ISCSGOTO 20
```



```
        $TOP }
C:. ASSESS SEPARATE gACKGRDUND LEVELS ANO RMS mOISE VALUES
    20 00 1 J=2,N
        If (J2(J).GT-N4),2 (J)=NL
        JL=(J2(J)-J1(J)+1)/TBLK
        kL= kR (J)-ku(j)+1)
        CALL SECTN{JI(J),K1(J),J2(J),K2{J),IBLK,A,NL,NPX,JL,KL)
        1A=JL*KL
        SUM=0.O
        &F(T,GT: I GOO TO 21
        Arax}(J)=A(1
    21 AH-N(J)=AMAX(J)
    If (A(I)+GT:A+HA*(S)AMAX (J)={(IL
    SUTi=SUM+A(I)
        RIA=FLOAT (IA)
        EK(J)=S(M/RIRA
        CHLL NLYS(A,IA,BK(S), RNE (JA)
    RENH(S) WUR,ISC,NL,NFX, ASDT, SCPT,NDH:(OENS{JJ), DENM(JJ), JJ=1,NOM)
        5B=0.0
        SINS=0.0
        DO 3 L=1,N
        SN5S=5N5 +2NS(1)
    3 SG=SGEBK(L)
        RNSFLOGYTCN
        ANS SNS/RN
        C.. saK IS THE AVERAGE GACKGRGUND NEVEL TAKEN OVEE NAREAS
    N.ANONLIS FLAGFGR VOLLME ASSESSMRNT TO GE OMITTEO
    162
        REAOC5,1021 NOVCLL
        FGRMAT([20)
        IF (NCUOL. FO.2AGO TO 30
        RRAD(S,1GZ) IDO Ta 30
C.. HON PROCESS THE MAIN OBJECT LINE BY LINE
    READES, 101IMFST, PFST, MLST,NLST
    &F(rLSJ.GE.NL)NLST=Ni
```



```
    JLSI=(MLS:MFST+1)/TBLK
    MFSTEGNLST-NFSN*:/iE
    MFMT=MFST-i
    MFMI=MFST-1
```



```
    # SHBQOUTINE SECTN (mFST,NFST,MLST,NEST,TELK,A,MM, NPX, NLST,KLST)
    C:*: NHIS SUBROGIINE SELECTS AND GLOCKS PATARFROM A FILE
    GEARLCTNE A(JLST,KLST), LINE(20Q0), ONT&(512)
    C*.... SHECK THAT AREA FOR PLOTTING LIES WIEHEN SCAN
    ND (allulate SIle co plciting arRar
    UNOQ14 
        R.KLSTO(MEST-NFST+1)/IEGK
        C:** PUSITLCN SLAN
            \FHMFST*EA. 11 &O TO 2
        C+7+4 READ IN UNUSED SEANS
        DO 3 J=1,MFML
        C<*.* NOTE.DATA GLOCK ON STAWOARO ARCHIVE TAPE CONSISTS OF
            Ng+NEN/512
            NBENEX/5I2
            OO 41 NN =1,N
            41 READ (3) DATA
            N&=NPK-NB+SL2
```



```
            3 cONTLNNE
    C
            2 ELST=JLSTHKLST
            5 AOFS =0.0 I,ILST
        [.F. FOR EACH NALUE OF J
            DO 4 J=1:51.5T
        C
            DO 6 IR IZ = I_TSLK
            NB=NPM+512
            KG工NPN-NB+S12
            45
```



```
            kJ=kk+1
            MKK=KK+KL
            43 KJ=1
            4S READ (3) (LINECN) K=KN,KK)
            $KI=MKS7-1
            SOOT=0:0,
        C.** REDUCE IN K DIREETION
            唯 % IK=1, 「BLK
            7KI=IKI+1.LDSE(IKI)
            I=J+JLST +(k-1)
            GA(I)=A(E)*STOT
            4CONTIANE
                CETURN
                EENP
```


000052
000054
000064
000064
0000E6
000070
000076
000114
000114
00121
000125
000137
00162
000162
000200
000200
003201
000212
00214
000216

000002
000000
000306 000020

000020
000052
00054

000064
000066 000076

000076
000114
00121
000125

000137
000162
000200

```
```

 PROGRSH MATCH (I:GPUT,OUTPUT,SNMN,POTA,TAPES=INPUT,TAPEG=OUTPUT,
    ```
```

 PROGRSH MATCH (I:GPUT,OUTPUT,SNMN,POTA,TAPES=INPUT,TAPEG=OUTPUT,
 TAPE3=Sこ4H,TAPE4=20TA,T{PE7)
    ```
```

 TAPE3=Sこ4H,TAPE4=20TA,T{PE7)
    ```
```



```
```

 1 A(10000),ASDT(8),RSU(0),SCOT(3),OENS(9),GENH(9)
    ```
```

 1 A(10000),ASDT(8),RSU(0),SCOT(3),OENS(9),GENH(9)
 C
 C
 C**** THIS PROGRAMME TAKES KHOWN CO-OROINATES OF FIOUCIAL
 C**** THIS PROGRAMME TAKES KHOWN CO-OROINATES OF FIOUCIAL
 C**** FEATLNSS IN TMO APPAYS AND USES T!RM TO PUT THE DATA
 C**** FEATLNSS IN TMO APPAYS AND USES T!RM TO PUT THE DATA
 C**** FROM DIE ARRAY IUTO A HEK ONE GITH THE SAME X,Y ORINTATION
 C**** FROM DIE ARRAY IUTO A HEK ONE GITH THE SAME X,Y ORINTATION
 C**** AS THE ARKAY YOU ARE TRYING TO HATCH
 C**** AS THE ARKAY YOU ARE TRYING TO HATCH
 C
C
WRITE(5,200)
WRITE(5,200)
200 FON1吕(1H1)
200 FON1吕(1H1)
RENO(5,100)IUR,ISC1,ISC2

```
```

 RENO(5,100)IUR,ISC1,ISC2
    ```
```



```
```

C

```
```

C
C**** IUR IS USER IO, ISCI SCAN TO WHICH ONE IS MATCHING
C**** IUR IS USER IO, ISCI SCAN TO WHICH ONE IS MATCHING
C**** ISU2 SGAN HHICH IS TO EE TNAHSFORMED
C**** ISU2 SGAN HHICH IS TO EE TNAHSFORMED
C
C
READ(3)IUR,ISU,NL,HPX,ASOT,SCOT,NOY,(DENS(JJ),OENM(JJ),JJ=1,NOM)
READ(3)IUR,ISU,NL,HPX,ASOT,SCOT,NOY,(DENS(JJ),OENM(JJ),JJ=1,NOM)
IF(ISC.E日.ISC2)60 TO 2
IF(ISC.E日.ISC2)60 TO 2
HRITE(C,201)ISi,ISC?
HRITE(C,201)ISi,ISC?

```
    201 FURHAT (1H,194 I.U.'S DON'T AGREE/X,104TAPE ID =, IIO/
```

 201 FURHAT (1H,194 I.U.'S DON'T AGREE/X,104TAPE ID =, IIO/
 1 X,13H&EQUEST 10 = ,I10)
 1 X,13H&EQUEST 10 = ,I10)
 STOP 1
 STOP 1
 WRITE(6,202)ASOT,SCOT
 WRITE(6,202)ASOT,SCOT
 202 FOR|AT //,X,AA1O,5X,Q4EXPOSURE,A10,5X,7HFILTER ,A10,5X,
 202 FOR|AT //,X,AA1O,5X,Q4EXPOSURE,A10,5X,7HFILTER ,A10,5X,
 1 4HOATE,A10,5X,5HPLATE,A10
 1 4HOATE,A10,5X,5HPLATE,A10
 1 ,//,1X,4&10,5X,5HSLIT, 110,5X,10HTFLESCOPE,A10,
    ```
            1 ,//,1X,4&10,5X,5HSLIT, 110,5X,10HTFLESCOPE,A10,
```



```
    101 FORHAT(5I10)
```

 101 FORHAT(5I10)
 M= (:14ST-MFST+1)/ISLX
 M= (:14ST-MFST+1)/ISLX
 N=(MLST-iNFSTi 1)/ISLK
 N=(MLST-iNFSTi 1)/ISLK
 CALL SECTN(HFST,NFST,HLST,NLST,IBLK,A,NL,NPX,H,N)
 CALL SECTN(HFST,NFST,HLST,NLST,IBLK,A,NL,NPX,H,N)
 C
C
C**** THIS SUSROUTINE FORHS THE ARRAY A IN MEMORY
C**** THIS SUSROUTINE FORHS THE ARRAY A IN MEMORY
C
C
PEGO(5,102) IX,({XA(IJ),YA(IJ),XZA(IJ),YZA(IJ)),IJ=1,IX)
PEGO(5,102) IX,({XA(IJ),YA(IJ),XZA(IJ),YZA(IJ)),IJ=1,IX)
102 FO\%AT(%10/(4%10.4))
102 FO\%AT(%10/(4%10.4))
REAO(5,103)IFST,LFST,ILST,LLST,ISCALE
REAO(5,103)IFST,LFST,ILST,LLST,ISCALE
103 FORMST(5I10)
103 FORMST(5I10)
C
C
C**** I AND L REFER TO THE Y ANO X CO-ORJINATES OF THE ARRAY
C**** I AND L REFER TO THE Y ANO X CO-ORJINATES OF THE ARRAY
C**** TO WHICH ONE IS MATCHING
C**** TO WHICH ONE IS MATCHING
C
C
ISTOP=0
ISTOP=0
GALL STPECH(XA,YA, X2A,YZA,R,SC,IX,ISTOP,ISCALE)
GALL STPECH(XA,YA, X2A,YZA,R,SC,IX,ISTOP,ISCALE)
IF(ISTOP.NE.1)GO TO 4
IF(ISTOP.NE.1)GO TO 4
STOP 2
STOP 2
4 REHIHO 7
4 REHIHO 7
C
C
C**** EACH LINE OF THE FIRST ARRAY IS'LOCATED POIMT BY POINT
C**** EACH LINE OF THE FIRST ARRAY IS'LOCATED POIMT BY POINT
G**** IN THE SECOMO ANJ A NEI ARRAY IS FORNED ANO HRITTEN
G**** IN THE SECOMO ANJ A NEI ARRAY IS FORNED ANO HRITTEN
G**** ON TO TAFE }7\mathrm{ LINE BY LINE
G**** ON TO TAFE }7\mathrm{ LINE BY LINE
C
C
IEND=ILST-IFST+I
IEND=ILST-IFST+I
LEHO=LLSY-LFST+1
LEHO=LLSY-LFST+1
II=IFST-1

```
    II=IFST-1
```

```
        0072?6
        000227
        000230
    C+
    C+*4* ELAHK THE LINE OF THE NEH ARRAY
    C CO 12 KK=1,LEHO
        000232
        000235
        000240
        000242
        000243
        000244
        00.2240
        000257
        000253
        000270
        000272
        000274
        000275
        000277
        000301
        000313
        000314
        000320
        000327
        000332
        000334
        00336
        000344
        000344
        000346
        000400
        000402
        000405
        000426
        000410
        000415
        000425
        000430
        000432
        000440
        000446
        000451
        000453
        003455
        00 10 I= i,IENO
    12 &LI:G(KK)=0.0
        LL=LFSY-1
        DD i1 L=1,LENO
        LL=LL+1
        RL=L.L
        CALL CARRY(XA,YA,X2A,Y2A,R,SC,RI,RL,X,Y)
        CALL FUDGIT (X,Y,Z,A,H,H)
        11 ALGN二心し)=2
        IL =LE:10/512
        IFIIL.EO.DIGO TO 42
        00 41 IIL=1,IL
        KIt=XL*512
        KIL=KIL-511
        41 WRITE(7)(ALINE\LI|,LI=KILL,KIL)
    42 IL I=LENO
        ILL=IL*512*1
        HRITE(7)(ALIHE(LI),LI=ILL,ILI)
        10 CusTINUE
            EN] FILE ?
            REHIHD 7
C
C**** PUT NEW &RRAY OH TO TAPE HITH IDEMTIFICATION IN HEADER
C**** RENAASE SOJT WIT:H A NEG LRRAY FSOT HHICH CONTAIHS IHFORMATION
C**** ON HHICH SSAN THE NEW ARRAY HAS COHE FROH AND TO WHICH ONE
C**** IT IS OEING Matcheo
C
            REAO(5,104) RSOT
    104 FO:=MAT (BA1O)
        REHIT:O 4
        WRITE(G) IUR,ISC,IEND,LEHO,ASOT,RSOT,NOM,(OENS (JJ),DENM(JJ),
        1
            OO 14 NN=1,IEND
            NI=LEMO/512
            IF(:`I.En.0)G0 T0 50
            OO 51 NII=1,NI
            READ(7) OATA
    51 WRITE(%).OATA
    50 IMI=1EH0-NI*512
            IF(INT.EG.3)GO TO }1
            RE\lambdaO(7)(DATA(NH:),\N=1, INT)
            WKITE(4)(OATA(NN),NN=1,INI)
    14 COHTI:UUE
            END FILE 4
            STOP 3
            END
        UNUSEO COMPILER SPACE
        030100
```

000013

00014 000015 000020 $0000 ? 1$ 000023 000026 000037 000041 000044 000047 000051 000063 000070 000073 000074 000076 000102 000111 000112 000115 000120 000133 000137 000140 000141 000142 000143 000150 000156 000157

000160 000162
000203
000207
000207
000211
000215
000224
009225
000230
000233
000246
SU.JROJTIHE STRE CH (XA, YA, XS,YB,R, EC,IX, ISTOP, ISCALE.
$\stackrel{C}{C}$
C*FFF II HILL DALYULATE THE ROTAIIDN ANO CHECK FOQ
C**** A VASIATEO:N GFEATER THAN ONE PERCENT
c
P2 $=P I / 2.0$
$I I=I X-1$
$001 I=1, I$
$X Z=X A(I+1)-X A(I)$
$Y Z=Y A(I+1)-Y A(1)$
$G=A T A H(X Z / Y Z)$
$X X=X 3(I+1)-X Q(1)$
$Y X=Y U(I+1)-Y B(1)$
$B=A T A Y(X X / Y X)$
RR(I)=B-G
IF (RR(I). ©T.PR)RR(I) $=R R(I)-P I$

IF(I.GT.1)GO TO 2
RMAX $=$ KF, (I)
RMIH=2iAA X
2 IF (RR(I).GT. PMAX) RMAX=RR(I)
1 If(RR(I).LT. KMIN)RMIN=RR(I)
EN $=R: A X-R 1$ IIN

IF (VRT.LE.L.0) GO TO 3
HRITE 6,30) Pr:AX, RMIN, (R2(JJ), JJ=1,II)
30 FORMATIIH, 164 MAX OF AH:GLE $=, F 7.4,16 H$ MIN OF ANGLE $=, F 7.41$
113 H APKAY ANSLE, $1,(1 \mathrm{H}, F 10.4)$)
IS TOP $=1$

- RETURiN
3 IS TOP:= 0
RSUM $=0.0$
$004 \mathrm{~L}=1$, II
4 R.SU: $4=$ RSU:irRR(L)
$R I=I I$
$R=$ RSUM $/ R I$
C
C**** CALCULATE SCALING FAOTOR
C**** ANO CAECK FOR LARGE VARIATION
C
$005 \mathrm{~J}=1$, II
$\operatorname{SCALE}(J)=5 Q R T((X B(J+1)-X B(J)) * * 2+(Y S(J+1)-Y B(J)) * * 2) /$
1
$((X A(J+1)-X A(J))+* 2+(Y A(1+1)-Y A(J) * * 2))$
IF (J.GT. 1) GO TO 5
SCALEX=SCATE(1)
SOALEN=SCALEX
6 IF (SCALE (J).GT.SGALEX) SCALEX=SCALE (J)
5 IF (SCALE(J).LJ.SCALEM) SCALEH=SCALE(J)
C
C**** CHECK VARIATION IN SCALE IS LESS THAN THO PERCENT
SCAR=SCALEX-SCALEN
VARN=(SCROf(SCALEN+SEARノ2.0)) 7100.0
IF (VAPH. L.E. . . : O) GO TO 7
WRITE(6,31)SCALEX,SCALEN, (SCALE $J J), J J=1$, II)
31 FORMAT (IH, 15 H HAX OF SUALE $=, F 7.4,15 \mathrm{H}$ HIN OF SCALE $=, F 7.4 /$
C
θ
000252
007253
000254
000255
000257
003260
000206
002274
003275
000276
00027
003300
000301
$112 H$ ARRAY SGALE, $1,(1 H, F 10.4))$
IS TOP $=1$
RETURN
7 ISTOP=0
IF(ISCALE.Eก.1) GO TO 8
SUM=0.0
$009 \mathrm{~L}=1, I$

RIX=II

GO 1010
(3) $S C=1.0$
10 RETURN
Enu
con:C11!? space
$03 リ 5=0$

C

C

000014 000114 0 07016 000020 003037 000057 000060 000063 000084

$X H=P L-X A(1)$
$X H=O L-X A(1)$
$Y H-O I-Y!: 1)$

$x=0,1+x: 1(1)$
$\mathrm{Y}=\mathrm{h}!+\mathrm{Y}$ Y(1)
RETURH
ENO
UNUSED COAPILER SPACE
031700


```
    C**** THIS SUMEDUHIHE SELECTS AMD BLORKS DATA FROM A FILE
    C**** A:IO FEEOS IT INTO TIE PGOYTING ARRAY A
000744
003314
000014
000017
000022
000026
000032
000034
000035
000036
000041
000043
000044
000057
000053
000064
000076
000101
000104
000111
000113
000120
000121
005124
000127
000132
003137
00014.3
000145
000147
        ar.al line
        01:C:W:ONLINE(2000},DATA(512),A(JSST,KLST)
    C**** GHEOK THAT ARCA FOR PLOTTIHE LIES WITHIH SCAN
    C+*** NHO CALCULATE SI2E OF PLOTIIIG ARRAY
    C+*
        IF(MLST.GT.NL)PLST=NL
        IF (!LLST=GY.N:X)MLST=NPX
        JST=(MLST-MFST+1)/IBLK
        KLST=(NLST-HFST+1)/1GLK
    C
    C**** FOAITION SCAN
    C
        IF(MFST.ET.1) GO TO 2
        MFNI= HFST-1
    C
    C**** REAO IN UNUSEO SCANS
    00 3 J=1,MFMI
    C**** HOTE,DATA GLCOK ON STANDARO ARCHIVE TAPE COMSISTS OF
    C**** S12 WOROS WHEN FULL
    C
        N3}=NPX/51
        IF(1:3.EQ.0) GO TO 42
        0) 41 : ANB=1,113
        41 REAO (3) DATA
        42 :3=1:3x-4B*512
        IF (12.EQ.0) CO 10 3
        READ (3) (OAYA (MABI,YMB=1,YB)
        3 Co:itllu=
    C
    C*AN* ZERO PLOTTING ARRAY
        2 ILST=JLST*KLST
        OO 5 I= 1, ILST
        5 A(I)=0.0
    C
    C+*** FOR EACH VALUE OF }
        004 J=1,JLST
    C
    C**** REDUCE IN J DIRECTION
        00 6 12=1,13LK
        N3=:1PX/512
        KL =ipx-11音512
        IF (110-1)43,46,45
        44 READ (3) (LIHE(K),K=1,512)
        GO TO 46
    4 5 0 0 4 7 ~ I I = 1 , N B
        KK=IL*512
        KJ=KK-511
```

 000151
 000166
 \(000 \pm 71\)
 000171
 000173
 0.30174
 000176
 003?11
 \(003: 1\)
 00日21"
 47 READ (3) (LIME \(K\)) , \(K=\{J, K K\))
 \(K J=\times 2 \cdot 1\)
 \(K \mathrm{~K}=\mathrm{KK} \mathrm{K} \mathrm{KL}\)
 IF (XL-1)46,48,48
 \(43 \mathrm{KJ}=1\)
 \(K 6=K L\)
 \(4 B R E A D(3)(L I G E(X), K=K J, K K)\)
 \(46 \mathrm{IK} \mathrm{i}=\mathrm{NiFST}-1\)
 (2) © \(X=1, \mathrm{KLST}\)
 stor-3.0
 \(c\)
 C*** RCOUCE IN K UIFECTION
 $000: 215$
$000 \therefore 2$
(iO 7 IK=1, IOLK

Cuのかっい
©!!

```
nחnnrs
クロッก!
クロッド
```



```
onnomit
ann mit
omnery
annory
```



```
nron
```



```
anตryt
7nの1ヶ1
กnの117
กnता17
```



```
nnni
nnの1 77
クロッ1?
nont
ŋn!ic:
nreier
nnity
nn naty
nलmín
nomito
non
?
mnnos
```



```
nnの?
```



```
のกnうこと
AEn? 07
nnतyze
nnciza
nnr?
```



```
กคก \(\because \therefore 1\)
nnnst.
```



```
nrasis:
```



```
กロロうに我
かんnごの
```



```
nn ajog
```



```
nnतz
nname
nenzoń
nrazne
nringit
```



```
ตn \(n \rightarrow 4\)
クロクマロ
7ックプーロ
nncoーf.
non? 07
のnnフロ?
のnのアロ方
```



```
    PROGRAM FOWI INPLT, OUTPUT, SCAN, TAPES= ENPUT, TAPEG=OUTFUJ, TAPE \(3=\) SCAN
```



```
        BLSNT(8),SCDT(8), DENS(9B. DENH(9)
    WRIT EE G, 200
    200 FUGMAT \((1 \mathrm{HY})\)
    200 FOKMAK \((1 H 1) 500\)
    GOBNE \(\overline{15}=1,500\)
    READ (3)IUR,ISC, NL,NEX.ASDT, SCOT. NDM, (OENS(J,J). DENM JJ?, JJ= I, NDH)
    WRITE G. 20 IIASOT, SCOT
    201 FORHATH21snich)
    201 FEAD (5, OC)TSCB)
    100 FCRHAT (I 10)
    IF(ISCGERISCF) 40 TO
```



```
    STOf \(\frac{1}{5}, 101\) N. N.M.K.H.D
```



```
    く1二人なー1
    \(M 1=M+1\)
    RN=N
    RM=M
    \(F C=1000,0 /(2 . C * 1-1)\)
    \(F C=1000, C /(2,6 * 1-1)\)
    ESSQRTRM RN
```



```
                        \(21 H\) SHMPLING INTERUIH = F3.0.8H MICROHSS I/
```



```
    \(N R=0\)
        NREO \(K\) S IOO: IK
    14 READ (S 10 d) TY
        \(R E A D C S:\)
\(N R=N R+I Y\)
        NS:NP: \(15: 2\)
        NNB: NPX-NENS: 2
        NO \(2[=1\), in
```



```
    \(3 \begin{aligned} & D E \\ & 3 \\ & 2\end{aligned}\)
    EFTNO CG, Dico io 2
    READS3) (DATA( \(K C)\), KK=1, NNG)
    2 RONTINUE
        READK 510 WHIY
        READCS \(C^{10}\)
```



```
        \(D_{0} 7 L L=1\), NB
```



```
    \(7 R E A D(3)\) NLINZ (kL), KLL \(=K J, K Z 1\)
    56708
```



```
        \(k J=k K+1\)
\(k=10 K+N N B\)
```



```
    g CONTINKE
    CONTINE
    - Go 32 IT \(=1, k k\)
    32 BLi NE (ET) SOLNAN(IT) REVI
```



```
    CAL ( 2.7n Rewits
    GALL (HKく亻又, R
```



```
    CNS:GXSKKA) \(G \times S\) CI
```



```
                            IFGIENGEEO.S) 4O TO 12
                            SíOI
                            OIMENSION ARN). A(N)
    OHNTOEO
    OU I=1,N
    CNN:N
    RHN=RMN4RN
    X(J)=(R(M+J)-RMN)*D
    REND
```



```
SUSROUT，WE WPS（R，दX，GKS，K，H，M，MI．KK）
OIMENSION R（HI）．GX（KK）．GKSikK）
กnクロ！
\(P 1=3.14154265\)
C＊＝＊FKIS HARNONIC YALUE LPQER LIMIT
De，\(L=1, k k\)
```



```
\(\left\{\begin{array}{l}x(L)=R(2) \\ x S(E)=R(1)\end{array}\right.\)
\(002, j=2, M\)
RJこFLOLT \((J-1)\)
Rle＝． K
BMEM
AN：FITRJ／RM
```



```
\(D=(1,0+\operatorname{Cos}(A N)) / 2,0\)
```



```
\(C \times S(L)=C \times S(C)+\hat{C}, 0 \times D F R(J)=C \in E(N W G)\)
\(\left\{\begin{array}{l}x(L)=G x(L)+(6(-1.0) * * L K) * R(M 1))\end{array}\right.\)
\(G \times(L)=C \times(L) X 2 \sim C * H\)
\(G \times S(L)-G \times S U\)
1．\(G \times S(L)=G \times S(L) \times 2,0 \times H\)
```



```
30790．
```



```
annary
クロロッデァ
```



```
nonnis
```



```
nnrn
nnのñ？
ワのヘリ．
そのグが
RN：N
RO \(I=1, \mathrm{MH}\)
\(R(E)=0.0\)
\(I I=I=1\)
NNEN－IL
DOZ J＝1，NN．
\(2 R(I)=R(C)+\times(d) \times \times(J+T I)\)
RNN＝NW
\(a(i)=R(I) / E N N\)
\(C R T C E N\)
ENS
```



```
QSUN:SNM/RE1SHRM)
```

QSUN:SNM/RE1SHRM)

```
QSUN:SNM/RE1SHRM)
nnncic. RSUM:SUM/RCi)
```

nnncic. RSUM:SUM/RCi)

```
nnncic. RSUM:SUM/RCi)
```



```
Mrna:`% LETORN
```

Mrna:`% LETORN

```
Mrna:`% LETORN
END
END
END
7nonr%
```

7nonr%

```

\section*{References}
A.E.E.P. represents Advances in Electronics and Electron Physics (Academic Press).
1. Kiepenheuer, K.0., Die Sterne, 9, 190 (1934).
2. Kron, G.E., Ables, H.D., Hewitt, A.V., A.E.E.P., 28 A,1 (1969).
3. Lallemand, A., A.E.E.P., 22A, 1. (1966).
4. McGee, J.D., Bacik, H., Coleman, C.I., Morgan, B.L., A.E.E.P., 33A, 13 (1972).
5. McMullan, D., Powell, J.R., Curtis, N.A., A.E.E.P., 33A, 37 (1972).
6. Coleman, C.I., Ph.D Thesis, University of London (1974).
7. Kahan, E., Cohen, M., A.E.E.P., 28B, 725 (1969).
8. Griboval, P., Griboval, D., Marin, M., Martinez, J., A.E.E.P., 33A, 67 (1972).
9. Walker, M.F., Proceedings of the Conference on Electronography and Astronomical Applications, Austin, Texas, 1 (1974).
10. Aller, L.H., Walker, M.F., Ap.J., 161, 917 (1970).
11. Walker, M.F., Chincarini, G., Ap.J., 154, 157 (1968).
12. Lallemand, A., Comptes Rendues, 203, 243 and 990 (1936).
13. Lallemand, A., Duchesne, M., Walker, M.F., Pub.A.S.P., 72, 76 (1960).
14. Walker, M.F., Ap.J., 136, 695 (1962).
15. Walker, M.F., Ap.J., 151, 71 (1968).
16. Chincarini, G., Walker, M.F., Proceedings of the Conference on Electronography and Astronoujcal Applications, Austin, Texas, 249 (1974).
17. Walker, M.F., Astronomical. Journal, 73, 854 (1968).
18. Walker, M.F., Ap.J., 175, 89 (1972).
19. Aller; L.H., Walker, M.F., Ap.J., 141, 1318 (1965).
20. Aller, L.H., Walker, M.F., Ap.J., 161, 917 (1970).
21. McGee, J.D., Khogali, A., Baum, W.A., Kraft, R.P., M.N.R.A.S., 137 , (1967).
22. Walker, M.F., Proceedings of the Conference on Electronography and Astronomical Applications, Austin, Texas, 221 (1974).
23. Palmer, D., Milson, A.S., A.E.E.P., 33B, 769 (1972).
24. Wynne, C.G., Kidger, M.J., A.E.E.P., 28B, 759 (1969).
25. Fosbury, R., M.N.R.A.S., 169, 147 (1974).
26. Tritton, K.P., Henbest, S.N., Penston, M.V., M.N.R.A.S., 162, 31p (1973).
27. Reay, N.K., Private communication (1975).
28. Walker, M.F., Ap.J., 161, 385 (1970).
29. Walker, M.F., Ap.J., 167, 1 (1971).
30. Walker, M.F., M.N.R.A.S., 156, 459 (1972).
31. Walker, M.F., M.N.R.A.S., 159, 379 (1972).
32. Walker, M.F., M.N.R.A.S., 169, 199 (1974).
33. Walker, M.F., Kron, G.E., Pub.A.S.P., 79, 551 (1967).
34. Kewitt, A.V., Pub.A.S.P., 81, 541 (1969).
35. Ables, H.D., Hewitt, A.V., Kron, G.E., Pub.A.S.P., 81, 530 (1969).
36. Walker, M.F., Proceedings of ESO/CERN Conference on Auxiliary Instrumentation for Large Telescopes, 339 (1972).
37. Whitford, A.E., Handbuch der Physik, 54, 240 (1962).
38. Wlérick, G., Michet, D., Labeyrie, C., Proceedings of the Conference on Electronography and Astronomical Applications, Austin, Texas, 117 (1974).
39. Cullum, M.J., Stephens, C.L., A.E.E.P., 33B, 757 (1972).
40. Zinn, R.J., Newell, E.B., A.A.S. Photobulletin, 2, 6 (1972).
41. Newe11, E.B., O'Neill, E.J., Proceedings of the Conference on Electronography and Astronomical Applications, Austin, Texas, 153 (1974).
42. Newell, E.B., Proceedings of ESO/CERN Conference Research Programmes For New Large Telescopes, 347 (1974).
43. Heckathorn, H., Chincarini, G., Proc. S.P.I.E., 42, 147 (1973).

44a. Purgathofer, A.Th., Proceedings of the Conference on Electronography and Astronomical Applications, Austin, Texas, 199 (1974).
44. Ables, H.D., Kron, G.E., Ap.J., 181 (1973).
45. Walker, M.F., A.E.E.P., 33B, 697 (1972).
46. Ables, H.D., Ables, P.G., Astronomical Journal, 77, 642 (1972).
47. Ables, H.D., Ables, P.G., A.A.S. Photobulletin, 2, 8 (1972).
48. Kron, G.E., Ables, H.D., Hewitt, A.V., Pub.A.S.P., 84, 303 (1972).
49. Wlérick, G., Proceedings of the Conference on Electronography and Astronomical Applications, Austin, Texas, 323 (1974).
50. Lelièvre, G., Proceedings of the Conference on Electronography and Astronomical Applications, Austin, Texas, 323 (1974).
51. Wray, J.D., Benedict, G.F., Proc. S.P.I.E., 44, 137 (1974).
52. Benedict, G., Chincarini, G., Heckathorn, H., Wray, J., Proceedings of the Conference on Electronography and Astronomical Applications, Austin, Texas, 205 (1974).
53. Chincarini, G., Heckathorn, H., Proceedings of the Conference on Electronography and Astronomical Applications, Austin, Texas, 343 (1974).
54. Jones, W., Obitts, D., Gallet, R., de Vaucouleurs, G., Pub.Dept. Astron.Univ. of Texas, Series 11, 1, 8, (1967).
55. Gu11, T.R., Proceedings of the Conference on Electronography and Astronomical Applications, Austin, Texas, 273 (1974).
56. Bacik, H., Ph.D Thesis, University of London (1973).
57. McGee, J.D., Vistasin Astronomy, 15, 61 (1973).
58. McGee, J.D., Coleman, C.I., Philiips, E.G., Nature, 241, 264 (1973).
59. Coleman, C.I., Presented at Sixth Symposium on Photoelectronic Imaging Devices, London (1974). To be published in A.E.E.P.
60. Smyth, M., Brand, P., A.E.E.P., 28B, 737 (1969).
61. Oliver, M., A.E.E.P., 33A, 27 (1972).
62. Oliver, M., Ph.D Thesis, University of London (1970).
63. Brand, P.J.L.W., Ph.D Thesis, University of Edinburgh (1967).
64. Cohen, M., Ph.D Thesis, University of London (1972).
65. Harwood, J.A., Ph.D Thesis, University College of North Wales, Bangor (1972).
66. Cohen, M., Kahan, E., A.E.E.P., 33A, 53 (1972).
67. Kron, G.E., Papiashvili, I.I., Pub.A.S.P., 79, 9 (1967).
68. Ables, H.D., Kron, G.E., Pub.A.S.P., 79, 423 (1967).
69. Valentine, R.C., Advances in Optical and Electron Microscopy, 1 , 180 (1966).
70. Silberstein, L., Trive11i, A., J.O.S.A., 28, 441 (1938).
71. Shaw, R., J.Phot.Sci., 17, 141 (1969).
72. Pilkington, J.D.H., Interim report on requirements of measuring machines at R.G.O. (1972).
73. Cullum, M.J., Private Comunication (1973).
74. Scott, E., Scott, R.M., Schack, R.V., Phot.Sci.Eng., 7, 345 (1963).
75. McGee, J.D., McMullan, D., Bacik, H., Oliver, M., A.E.E.P., 28A, 61 (1969).
76. Coleman, C.I., Reay, N.K., Worswick, S.P., Presented at Sixth Symposium on Photoelectronic Imaging Devices, London (1974). To be published in A.E.E.P.
77. Reay, N.K., Ring, J., Scaddan, R.J., J.Phys.E:Sci.Inst., 7, 673 (1974).
78. Walker, M.F., Sky and Telescope, 40, 132 (1970).
79. Dainty, J.C., Scaddan, R.J., M.N.R.A.S., 167, 69p (1974).
80. Stephens, C.L., Private Communication (1974).
81. Osterbrock, D.E., 18th Liège Astrophys. Symposium, 391 (1973).
82. Cahn, J.H., Kaler, J.B., Ap.J. Supplement, 189, no.22, 319 (1971).
83. Weidermann, V., Zs fur Ap., 67, 286 (1967).
84. Weidermann, V., I.A.U. Symposiụn no. 34 "Planetary Nebulae", 423 (1968).
85. Miller, J.S., Ann.Rev.Astron. and Astrophys. (1974).
86. Perek, L., I.A.U. Symposium no. 34 "Planetary Nebulae", 9 (1968).
87. Aller, L.H., Liller, W., Nebulae and Interstellar Matter, ed. B.H. Middlehurst and L.H. Aller (Chicago: University of Chicago Press) (1968).
88. Lucy, L.B., Astronomical Journa1, 72, 813 (1967).
89. Paczynski, B., Ziolkowski, J., I.A.U. Symposium no. 34 "Planetary Nebulae", 396 (1968).
90. Wilson, O.C., Ap.J., 111, 279 (1950).
91. Rose, W.K., I.A.U. Symposium no. 34 "Planetary Nebulae", 390 (1968).
92. Smith, R.L., Rose, W.K., Ap.J., 176, 395 (1972).
93. Faulkner, D.J., Ap.J., 162, 573, (1970).
94. Finzi, A., Woolf, R.A., Astronomy and Astrophys., 11, 415 (1971).
95. Gurzadian, G.A., Planetary Nebulae, Gordon and Breach (1967).
96. Kaler, J.B., Astronomical Journal, 79, 594 (1974).
97. Faulkner, D.J., Besse1, M.S., Pub.A.S.P., 82, 1333 (1970).
98. Herbig, G.H., Boyarchuk, A.A., Ap.J., 152, 397 (1968).
99. Herbig, G.H., Boyarchuk, A.A., I.A.U. Symposium no. 34 "Planetary Nebulae", 383 (1968).
100. Flannery, B.P., Herbig, G.H., Ap.J., 183, 491 (1973).
101. Seaton, M.J., Reports of Progress in Physics, 23, 113 (1960).
102. Bowen, I.S., Pub.A.S.P., 46, 146 (1934).
103. Mayer, M.G., Ann.d'Phys., 9, 273 (1931).
104. Spitzer, L., Greenstein, J.L., Ap.J., 114, 407 (1951).
105. Aller, L.H., Czyzak, S., 18 th Liège Symposium, 285 (1973).
106. Williams, R.E., I.A.U. Symposium no. 34 "Planetary Nebulae", 190 (1968).
107. Flower, D.R., M.N.R.A.S., 146, 243 (1969).
108. Harrington, J.P., Ap.J., 156, 903 (1969).
109. Kirkpatrick, R.C., Ap.J., 176, 381 (1972).
110. Boeshaar, G.O., Ap.J., 187, 238 (1974).
111. Curtis, H.D., Lick Observatory publication, 13, 57 (1918).
112. Stoy, R., Observatory, 56, 269 (1933).
113. Vorontsov-Velyaminov, B.A., Astronomical Journal (U.S.S.R.), 11, 40 (1934).
114. Thackeray, A.D., Evans, D.S., M.N.R.A.S., 10, 429 (1950).
115. Westerlund, B.E., Henize, K.G., Ap.J. Supplement Series Volume XIV, 154 (1967).
116. Hromov, G.S., Kohoutek, L., B.A.C., 19, 1 (1968).
117. Duncan, J.C., Ap.J., 86, 496 (1937).
118. Wilson, O.C., Rev.Mod.Phys., 30, 1025 (1958).
119. Hromov, G.S., Kohoutek, L., B.A.C., 19, 81 (1968).
120. Wilson, O.C., Aller, L.H., Ap.J., 114, 421 (1951).
121. Aller, L.H., Gaseous Nebulae (London. Chapman Ha11) (1956).
122. Minkowski, R., Osterbrock, D., Ap.J., 131, 537 (1970).
123. Evans, D.S., M.N.R.A.S., 110, 37 (1950).
124. Zanstra, H., Brandenburg, W.J., B.A.N., 11, 350 (1951).
125. Scott, P.F., M.N.R.A.S., 161, 35p (1971).
126. Van Blerkom, P., Arny, T.T., M.N.R.A.S., 156, 91 (1972).
127. Capriotti, E.R., Ap.J., 179, 495 (1973).
128. Feibelman, W.A., R.A.S.C. Journal, 64, 305 (1970).
129. Ford, W.K., Rubin, V.C., Astrophysical Letters, 8, 67 (1971).
130. Capriotti, E.R., Cromwell, R.H., Williams, R.E., Astrophysical Letters, 7, 241 (1971).
131. Millikan, A.G., Astronomical Journal, 79, 1259 (1974).
132. Coleman, C.I., Reay, N.K., Worswick, S.P., M.N.R.A.S., In Press (1975).
133. Baum, W.A., Astronomical Techniques ed. W.A. Hiltner, (Chicago: University of Chicago Press) (1968).
134. MUnch, G., I.A.U. Symposium no. 34 "Planetary Nebulae", 259 (1968).
135. Terzian, Y., Balick, B., Bigne11, C., Ap.J., 188, 251 (1974).
136. Woo1f, N.J., Ap.J. (Letters), 157, L37 (1969).
137. You11, D.P., Private Communication (1975).
138. Bendat, J.S., Piersol, A.G., Random Data: Analysis and Measurement Procedures, Wiley (1971).
139. Dainty, J.C., Shaw, R., Image Science, Academic Press (1974).
140. Blackman, R.B., Tukey, J.W., The Measurement of Power Spectra, Dover (1968).
141. McKay, C.D., Private Communication (1974).
142. Wlérick, G., Private Communication (1974).```

