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Investigating the model ship dynamic positioning system by simulating the actual sea conditions in the laboratory can not only
avoid the risks caused by the directly experiments on a true ship, but also reduce the costs. With the purpose of realizing the high
accuracy control of the dynamic positioning, besides a high accuracy mathematical model of the ship, an important condition is that
the position information provided by the position detection system must be accurate, reliable and continuous. The global positioning
system (GPS) signal is restricted when the model ship dynamic positioning system is set indoors. This paper describes a novel
scheme for ship target tracking based on the multi-sensor data fusion techniques. To improve the accuracy of indoor positioning
and ship target tracking, the characteristics of many sensors are systematically analyzed, such as radar, difference global positioning
system (DGPS) and ultrasonic sensors. Other important factors, including the indoor temperature, position and environment, are
also taken into account to further optimize the performance. Combining the Kalman filter method, the time alignment method,
the coordinate transformation method and the optimal fusion criterion method, the core algorithm of our framework employs the
track correlation as the performance index of the optimal fusion. The experimental results indicate that our method outperforms
the methods based on a single ultrasonic sensor. The maximum error between the estimated location and the real location is only
1.32 cm, which meets the standard for engineering applications.

Index Terms—Multi-sensor, data fusion, Kalman filter, optimal fusion, time registration, target track, ship model

I. INTRODUCTION

D ISTRIBUTED multi-sensor data fusion (DMSDF) has
been developed to solve a diverse set of problems that

share some common characteristics [1], [2], [3]. The target
tacking trajectory estimation problem has been a fruitful area
of multi-sensor applications [4], [5], [6]. Many problems
have been solved, yet new and diversified applications still
challenge systems engineers [7]. Issues related to multi-
sensor fusion include data association and management, sensor
uncertainty, data traffic, noise filtering, making predictions
and dynamic system modeling [8], [9]. They arise from the
inherent uncertainties in the sensory information caused by
not only device imprecision, but also noise sources within the
system and the sensors [10]. In recent years, there has been
increasing emphasis on using distributed multi-sensor data
sources for various applications, e.g., designing distributed
systems, incorporating scenario based design approaches [11],
high level information fusion (HLIF), tracking, classification
and situation assessment [12], [13]. Being able to deal with
these uncertainties, DMSDF has become an important method
to improve the performance of target tracking and detecting
systems when various sensors are available [14], [15]. More-
over, compared with single sensor based methods, DMSDF
combines data from multiple sensors and thus can perform
inferences more efficiently and accurately [7], [14].

Due to the desired properties mentioned above, DMSDF has
been found widely applicable in the area of target tracking dur-

ing the past 20 years [16]. Liggins [9] proposed architectures
for distributed data fusion and algorithms for target tracking.
Their framework can be viewed as distributed extensions
of linear and nonlinear estimation theories. The DMSDF
[14], [15] is mainly used for dissimilar sensors (sensors with
different observed frames), e.g., infrared and radar. For wide
area surveillance applications, both the synthetic aperture radar
(SAR) and the moving target indicator (MTI) types are useful
for detecting the object of interest. However, while being able
to detect and track an object from a long distance [14], [15],
[17], the radar based systems suffer some disadvantages such
as high noise, strong clutter interference and high cost for
both hardware and software [17]. Moreover, the precision
of the distance measurement is insufficient for applications
involving indoor positioning [18], [19], [20]. Similarly, the
ranging accuracy of a differential global positioning system
(DGPS) [18], [21], [22] is up to 3-5m, which fails to meet
the distance measurement requirement for indoor applications
[23], [24]. On the other hand, systems based on the ultrasonic
sensors not only are insensitive to the external light and the
electromagnetic fields but also have simpler structures and
relatively lower costs [19]. Furthermore, systems based on the
ultrasonic sensors improve the precision that now range from
decimeters to centimeters. But when a ship is at sail in the sea,
it is affected by environmental factors such as winds, waves
and currents. The ship has six degrees of freedom including
surge, sway, heave, roll, yaw and bow [25], [26]. Each action
is composed of low frequency components and high frequency
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components [15], [17], [18]. In order to effectively simulate
the sea environment an achieve ship’s real time positioning
[17], [18], we propose a scheme on indoor target tracking for
ship model based on distributed multi-sensor data fusion. The
schematic of the DMSDF is as shown in Fig. 1.

Fig. 1. The schematic of the DMSDF

Our aim is to improve the accuracy of indoor positioning
and ship target tracking, the characteristics of multi-sensors
are systematically analyzed with winds, waves, currents, and
in the 26 ◦C.

This paper’s contributions are presented as follows.

• Considering the limit of Global Position System (GPS)
signal indoor for dynamic positioning ship model and
the complexity of the sea conditions, environmental dis-
turbances model (wind, wave and current), we propose a
high accurate indoor location scheme based on ultrasonic.

• Considering the lack of a unified functional model and
fading of indoor GPS signal, we propose a distributed
fusion model to solve the problems of target track extrac-
tion, time alignment, track correlation, spatial alignment,
coordinate transformation.

• To improve the signal to noise ratio and hence the
accuracy of the ship indoor dynamic positioning, we
propose a kind of the Kalman Filter (KF) multi-sensor
signal preprocessing methods.

• This paper can achieve the weighted optimal fusion
of many estimates in accordance with the principle of
minimum variance.

This paper is organized as follows. Section II, III and IV
introduce the related work about multi-sensor information fu-
sion, system model and the DMSDF architecture, respectively.
Section V describes the signal preprocessing of the DMSDF
structure and Section VI focuses on the application of the
novel data fusion approach and presents our implementation
for optimized data fusion. Section VII describes a series of
experiments and the related results to quantify the performance
of the multi-sensor data fusion. Finally, a conclusion and future
work are drawn in Section VIII.

II. RELATED WORKS

A. Related work on distributed multi-sensor data fusion

As the multi-sensor information fusion technology is widely
applied, the number of research works have developed it
aiming at many specific application fields [2], [3], [4]. These
research works can be classified into [6], [7], [8]: (1) Several
data fusion models of multi-sensor data fusion system [8], [9],
[14]; (2) The multi-sensor data fusion (MSDF) process, fusion
architectures involve centralized fusion, distributed fusion and
hybrid fusion when designing a multi-sensor data fusion
system [27].

Data fusion models: the scholars propose some general
function models of multi-sensor information fusion system
from different aspects [2], [7], [8]: the Joint Directors of
Laboratories (JDL) model, the waterfall fusion processes
(WFFP) model, the intelligent cycle-based (IC) model, the
Boyd circuit and the Omnibus model [9], [14]. The JDL model
has five levels of data processing and a database. The JDL
model is supported by a database-management system, which
monitors, evaluates, adds, updates, and provides information
for the fusion processes [2], [7], [8]. The WFFP model has
six levels of processing and some similarities with the JDL
model. The advantage of the WFFP model is the simplicity
in understanding and applying [2], [7], [14]. The intelligence
cycle-based model consists of five stages: planning and direc-
tion stage, collection stage, collation stage, evaluation stage,
and dissemination stage. The IC model tries to capture some
inherent processing cyclic characteristics among stages. The
Boyd model represents the classis decision support mechanism
in military information operations and has been widely used
for multi-sensor fusion; it is considered a cyclical model. The
Omnibus model is a better fusion process model that can be
obtained by a combination of the Boyd and IC models. It is
simple and easy to apply and follow for many non-defense DF
applications.
However, there are some shortages of those models. The JDL
model does not indicate the flow of the whole system. The new
information after the decision of waterfall model cannot effec-
tively used in other links. The intelligent circuit model does
not contain the management requirements knowledge base and
system data [8], [9], [14]. The Boyd loop and intelligence
cycle realize closed loop flow control to the information re-
spectively through the “action” and “spreading” modules when
the division on fusion process is relatively rough. The Omnibus
model, the practicability of which is weak, is not taken into
account of the management requirements of knowledge base
and system data. With the development of information process-
ing technology, the continuous emerging of new equipment
and new methods, the raising of collaborative development,
big data, cloud computing, machine analytics, data sharing,
resource management, other new methods and new concepts,
the design model of fusion system is suffering new challenges.
Consequently, the traditional information fusions JDL, WFFP,
the intelligent loop fusion, the Boyd circuit and the Omnibus
function model need to be revised, mainly including the revise
of the division and the definition of the function level.

Data fusion architectures: In MSDF process, the data fusion
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architecture involves centralized fusion, distributed fusion,
hybrid fusion [6], [14]. (1) The centralized fusion architecture
used similar multi-sensor. The data fusion decisions are based
on the maximum possible information gathered from the
system sensor in the centralized fusion [28], [29]. (2) The
distributed fusion is mainly used for dissimilar multi-sensor
that sensor with observation frames [9]. This architecture has
been used for smart structures and large flexible, monitoring
of spacecraft health or aircraft, large sensors, huge automated
plants, target tracking applications and chemical industries
[14]. (3) The Hybrid fusion has both distributed and cen-
tralized fusion schemes for the disposition of the required
sensor configurations. This structures is very suitable for the
information fusion and processing system of a flight test range
and cloud computing[14].

B. Related work on target tracking for dynamic system

In [22], the authors survey various mathematical models
of target motion/dynamics proposed for maneuvering target
tracking. According to the coupling among motions along dif-
ferent environment, these models developed for target tracking
can be classified into 1D, 2D, and 3D categories.

However, few models have been developed that are par-
ticularly suitable for ships, submarines, and ground targets
[22]. In order to achieve the target tracking of direction, there
are various algorithms used to realize the multi-sensor data
fusion, such as the particle filter [4], [6], [18], Kalman filter
method [21], [26], [31], [32], the least square method, the α
filter method [7], [14], [18] and the β filter method [18]. It is
well known that the so-called measurement origin uncertainty
and the target motion uncertainty are two major challenges in
target tracking [22]. According to the uncertain measurement
sources, Sun [21] proposed a series of methods, aiming at
the ascertain measurement sources, Roecker [16] proposed the
vector state and the measurement fusion. This article, in the
view of the uncertain ship motion trajectory, presents a kind of
average weighted fusion method to achieve the optimal fusion
of N estimate values according to the minimum variance
principle.

C. Related work on indoor target tracking for ship model

Considering the influence of wind, wave, current, working
environment (sailing speed, operational model), navigational
conditions and other uncertainties, it’s hard to effectively
achieve the ship position on the sea [15], [18], [30]. We used
a variety of sensors: wind vane and anemometer are used to
measure the wind direction and speed, gyro-compass (heading
sensor) is used to measure the ship’s directing, the gyro-
compass has a long life and a rich experience on the sea,
so it completely suit for the offshore drilling ship’s dynamic
positioning system [24], [33]; MRU sensor is motion sensor,
it can measure the ship’s dynamic linear motion and attitude
[34], [35], [36]. It can measure the ship’s rolling, pitching,
yawing and heaving that has a high accuracy. In order to
effectively achieve the ship indoor location, we used for
dissimilar sensors, i.e. Infrared, GPS, Radar, DGPS, RFID,
WLAN, UWB, Time Difference of Arrival (TDOA), and

TABLE I
COMPARISON OF VARIOUS TECHNOLOGIES

Method Signal types Device
cost

PrecisionRestricting factors

GPS[14] Electromagnetic
wave

Higher 15m Fails to meet the indoor
requirement.

Radar[15] Rlectromagnetic
wave

Higher 5m Suitable for indoor and
long distance use.

DGPS[14] Electromagnetic
wave

High 3-5
m

Fails to meet the indoor
requirement.

RFID[17] Electromagnetic
wave

Lower 5m Complex model and en-
vironmental change to
modeling.

WLAN[17],
[18]

Electromagnetic
wave

Lower 10m Complex model and en-
vironmental change to
modeling.

UWB[20] Electromagnetic
wave

Highest 1m Devices require precise
time synchronization.

TDOA[19] Ultrasonic and
Electromagnetic
wave

Lower <50cm Suitable for indoor use
with distances<50m.

HPPM[19] Ultrasonic and
Electromagnetic
wave

Lower <30cm Suitable for indoor use
with distances<24m.

Ultrasonic[19] Ultrasonic Lower <10cm Suitable for indoor use
with distances<7.2m.

Ultrasonic. The infrared sensor has following problems: the
design and the development of it are complex and have a large
power consumption, which means that the cost is high, the
applicability is weak and the measuring distance is short. As
the ultrasonic sensor exactly overcomes these shortcomings,
the independent developed ultrasonic receptor is adopted to
carry out the indoor ship tracking experiments [14], [15], [17].
In the actual measurement,the received sound waves from the
ultrasonic receptor are not amplified,so for easy observation,
two stage amplifier and a band-pass filter are added near the
transducer. In total, the received sound waves are amplified
50 times to be observed. A comparison of these technologies
[18], [19], [20] is shown in Table I.

Due to the ultrasonic ranging by the echo metering distance
principle, calculation of the distance from transducer to the
ship center through measuring the time that the transducer
sending and receiving sound waves.

However, for the environments like high temperature, high
humidity, amounts of dust, steam that was not applicable.
If indoor temperature is higher than 28 ◦C, the error of the
system will deviate to negative direction, and if it is lower
than 20 ◦C, the error will deviate to positive direction. In order
to improve the detecting accuracy of the ultrasonic sensor,
plentiful experiments were carried out in the 26 ◦C laboratory
via the independent designed ultrasonic sensor, effectively
reduced the error caused by temperature. After plentiful trials,
we found that if the humidity in 50%-60%, the ultrasonic
ranging accuracy will be relatively high.

III. SYSTEM MODEL

Ships are exposed to waves, wind, and current forces in
the sea [24]. The ships motion system provides reliable mea-
surements of heading and position, collects information from
the multi-sensor, such as MRU, compass, speed log, gyros,
ultrasonic sensor, and accelerometers [24]. So, we independent
researched a set of control version, propeller and designed a
2.8m ship model, the ship model is 0.76m wide, 1m tall is
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TABLE II
SUMMARY OF INDOOR TRACKING VARIABLES USED FOR SHIP MODEL

AND DISTRIBUTED MULTI-SENSOR DATA FUSION APPLICATIONS

Variable Name Variable Name
N The Number of sensor Ztruth The true value of the target

location
Xk(t) Thetthstate ∆η The inherent system error in

the ultrasonic
Wk(t),νk(t) White noises Nji The noise of sensor j which

scans for the i times
ψ(t),Hk(t) ψ(t) is state transition

matrix; Hk(t) is the
measurement matrices.

Dik The distance between the
mean value and the observed
value

Zk(t) Measure data Ẑi The robust estimation
k The kth sensor Rii The variance about the target

trajectory by estimating
t The times Zi The value of the sensor i mea-

surements for ni times
Q(t) The variance of Wk(t) Z(k) The observed signal at k mo-

ment
νk(t) The variance of νk(k) Ẑ(k|k) The predictive value at k mo-

ment
T The transpose R The estimation of the ultra-

sonic accuracy
δtj The Kronecker delta

function
Rg The optimal fusion estimated

variance
X̃k(t+ 1) State time propagation Wi The weight matrix
P̃k(t+ 1) Covariance time propa-

gation
I The identity matrix

Kkt+ 1 The Kalman filter gain Z̄i The true position value
Pkt+ 1 The prediction covari-

ance matrix
Z̃ The unbiased estimation of

the true position of the target
x̂(k) Interval estimated value

for 3 points
l The pond length

∆t The interval time w The pond wide
tk−1 The time of k − 1 lab, lcd The side length of triangle
Zji Observation value ob-

tained by sensor
hab, hbc The height of triangle

M The number of all the
tracks

Sab, Sbc The area of triangle

Scd, Sad The area of triangle lbc, lad The side width of triangle
Zji Observation value ob-

tained by sensor
hcd, had The height of triangle

as shown in Appendix. Above all, we use the DMSDF model
that is implemented with some multiple parallel (not in the
real sense of parallelism or on parallel computers. However,
this is feasible and should be implemented in this way for
reducing the computation time) filters. Each filter corresponds
to one of the multiple models. Due to the switching between
the different models, there is an exchange of some information
between the filters. During each sampling period, it is likely
that all the filters of DMSDF approach are in operation.
The overall state estimation is a combination of the state
estimations from the individual filters [14].

According to Section II and Table I, we use ultrasonic
sensor to implement indoor target tracking for ship model.
Each local ultrasonic sensor is used to process the signal that
can form a local track [37]. For the local track estimations,
the distributed Kalman filter method is used to preprocess the
signals and thereby obtain better accuracy in determining the
local track. By considering the collection of the discrete time
varying linear stochastic control system with N sensors, the
DMSDF model is obtained. The distributed multi-sensor single
target strategy is validated using ship tracking data. The state
and measurement models are given by

Xk(t+ 1) = ψ(t)Xk(t) +Wk(t) (1)

Zk(t) = Hk(t)X(t) + vk(t), t = 1, 2, ..., N (2)

where Xk(t) ∈ Rn is the tth state, Wk(t) is white noises,
Zk(t) is the measurement of the kth sensor for tth time, vk(t)
is the measurement noise. In order to ensure the distributed
Kalman filtering is not diverging, the model in [38] is used
as the Kalman filtering, that is x̂k(0) = E[x(0)], Pk(0) =
σ[x(0)], ψ(t) is the N×N transition matrix that propagates the
state Xk(t) from t to t+ 1; Hk(t) is the measurement model
or sensor-dynamic matrix; ψ(t) = 0.9048I and Hk(t) = 1I
are time varying matrices with suitable dimensions [38], I is
a unit matrice, Zk(t) is the measured data, the subscript k
denotes the kth sensors and N is the number of times. Wk(t)
and vk(t), t = 1, 2, ..., N are white noise with zero mean and
E[W (t)] = 0, E[W (t)WT (j)] = Q(t)δtj , the summary of
indoor tracking variables used for ship model and distributed
multi-sensor data fusion applications is shown in Table II.

E[vk(t)] = 0, E[vk(t)v
T
k (j)] = R(t)δtj (3)

where Q(t) is the variance of Wk(t), R(t) is the variance
of vk(t), the superscript T denotes the transpose, and δtj is
the Kronecker delta function. The method is validated using
experimental trajectory data and also actual tracking data as
shown in Fig. 3.

IV. STRUCTURE OF THE DMSDF APPROACH

The DMSDF approach provides two significant advantages
over single sensor source data: one is the statistical advantage
gained by combining data from the same source and the other
one is the use of multiple types of sensors to increase the
accuracy of the DMSDF approach, with which a quantity
can be observed and characterized. The DMSDF approach
would primarily involve the following [23]: (1) the hierarchical
transformations between the parameters of observation and
the generation of decisions regarding the location (kinematics
and even dynamics), characteristics (features and structures),
and the target of an entity [25] and (2) the inference and
interpretation based on the detailed analysis of the observed
scene or the entity in the context of a surrounding environment
and the relationships with the other entities.

According to the stage on which the data fusion takes
place, the DMSDF approach can be implemented at two
different processing layers: the signal preprocessing layer and
the optimal data fusion layer. In fact, the DMSDF approach
has a target processing track [18], [21] shown in Fig. 2.
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Fig. 2. The two layer structure of the DMSDF approach
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The first layer - the signal preprocessing layer: the
prediction and estimation of the signal state are based on
the signal layer data association (e.g., the collections of the
information systems, the eliminating outliers, and the target
data distribution processing). With the first step prediction and
the smoothing errors between any sensors, the signal prepro-
cessing layer has nested parallel structures. Due to the different
positions of the reference system, the sampling frequency is
not necessarily the same. For example,one system may get a
measured value when another system has not sent a measured
value at a period. As a result, each measuring system has the
measured data in real time and requires a unified sampling
frequency to be used in the specific algorithm [26]. Owing
to the influence of the difference of the sensors’ sampling
period and boot time, the different delay of communication
network and other factors, there may be time differences
among the observation data of the same target on the air from
different sensors. In order to maximize the advantages of the
multi-sensor data fusion system, the temporal alignment to
the multi-sensor data would be the premise of data’s parallel
fusion. Before data fusion, the time synchronization of the
same target of the real time data must be performed. For each
different reference coordinate used by the measuring system,
there are many ways to define an arbitrary rotation, scale and
transformation to map one coordinate frame into another. In
this paper, the some state point is used to transform into the
Cartesian coordinate system, as shown in Fig. 4.

The second layer - the optimal fusion layer: the optimal
fusion layer, which is mainly used for similar sensors, involves
time synchronization and bias correction of the sensor data.
This layer is the fusion center where data are fused to
determine the optimal weights and to achieve the optimal
weighted data fusion.

V. SIGNAL PREPROCESSING LAYER

A. DMSDF Kalman filter

Random noise is a part of the measured data from a sensor.
To weaken the effect of the noise on the signal, the sampled
data are processed to eliminate outliers and are smoothed via
a filter. The purpose of data filter smoothing is to eliminate the
interference components and change the characteristics of the
original data. The DMSDF method can be applied to the track
reconstruction of the maneuvering target. In the distributed
multi-sensor track environment, it is important to know how
to fuse the information from multiple sensors together [28].
Commonly, all the measurement vectors are combined from
the different sensors into one measurement vector, and then
the centralized filter with the standard Kalman filtering [21]
can be obtain. However, the centralized filter [29] will lead
to a high computational burden in the fusion center due to
the high-dimension computation and the large data memory
required. Recently, the data fusion distributed Kalman filter
was widely studied and applied in the communications and
control fields because the parallel structures can increase the
input data rates and enhance reliability. According to [10],
[22], [39], [40], the DMSDF Kalman filter [30], [39], [40] is
given by:

(1) The state and covariance time propagation is given as:

X̂k(t+ 1) = ψ(t)X̂k(t) (4)

(2) Covariance matrix:

Pk(t+ 1) = ψ(t)Pk(t)ψ(t)
T +R(t) (5)

Where Pk(t + 1) = E[X̃k(t + 1)X̃k
T
(t + 1)]; X̃k(t + 1) =

Xk+1(t+ 1)− X̂k(t+ 1).
(3) Kalman gain:

Kk+1(t+ 1) = P̃k(t)H
T
k (t)[Hk(t)P̃k(t)H

T
k +R(t)]−1 (6)

(4) The state and covariance update equations are given as:

X̃k+1(t+ 1) = ψ(t)X̃k(t) +Kk+1(t+ 1)[Zk(t)

−ψ(t)X̃k(t+ 1)] (7)

(5) The state and covariance update equations are given as:

Pk+1(t+ 1) = [I −Kk+1(t+ 1)ψ(t)] + Pk(t+ 1) (8)

Where Pk+1(t+1) = E[X̃k+1(t+1)X̃T
k+1(t+1)]; X̃k+1(t+

1) = Xk+1(t+1)−X̃k+1(t+1); Kk(t+1) is the Kalman filter
gain and Pk(t + 1) is the prediction covariance matrix. The
same DMSDF model is involved in the distributed Kalman
filters. The distributed Kalman filter process signal initializing
value can be seen in Section VII.A.

B. Time synchronization

A distributed Kalman filtering algorithm is used to estimate
the optimal state and then the estimated result is sent back to
the fusion center. To achieve the ultimate goal of multi-sensor
fusion, the fusion center must perform real time synchroniza-
tion to be sent the same goal of the data for each time point.
A time alignment synchronizes the measurement information
from the same target coming from the desynchronized signals
of different sensors. The results of using data without time
synchronization may be worse than the one of using data
from a single sensor to fuse. Therefore, to maximize the
superiority of the multi-sensor data fusion system, achieving
the time alignment of multi-sensor data is a prerequisite for the
integration in parallel, and the pros and cons of the registration
method directly affects the data fusion [41].

In terms of implementing time synchronization by the
nearest neighbor interpolation method, to minimize the error
of the interpolation, the principle of the interpolation node
selection is used to achieve time synchronization in the middle
of the interpolation interval. According to the principle of the
interpolation method, it is assumed that the time synchroniza-
tion node is in the middle of the interval, and the interval
estimated value for three points are x̂(k− 1), x̂(k), x̂(k+1).
The corresponding instants for them are tk−1, tk, tk+1. As
the difference between the moving distances of a target in
the adjacent scan interval is small, the three moments can
be considered as equal intervals (the interval is ∆t). It can
be assumed that tk−1, tk, tk+1 are equally spaced,that is
tk − tk−1 = T . Suppose the time of interpolation node is
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TABLE III
THE EXPERIMENTAL COORDINATE TRANSFORMATION RESULTS OF THE

DMSDF

The number of ultrasonic sensors 1 2 3 4 ... N-1 N
Track number extraction 1 1 3 6 ... C2

N−1 C2
N

t: the measured value of t can be calculated by the Lagrange
3 point interpolation method [25], [32], [33].

x(t) =
(t− tk)(t− tk−1)

(tk−1 − tk)(tk−1 − tk+1)
x̂(k − 1)

+
(t− tk−1)(t− tk+1)

(tk − tk−1)(tk − tk+1)
x̂(k)

+
(t− tk−1)(t− tk)

(tk+1 − tk−1)(tk+1 − tk)
x̂(k + 1) (9)

Corresponding algorithm for time synchronization:
Each ultrasonic sensor station determines different trajecto-

ries after data processing; first determine the tracks that are
overlapped in duration. The minimum and maximum time in
these track groups are taken as the starting and ending times of
the time synchronization. Through the track prediction algo-
rithm (this paper takes the relatively simple linear prediction
algorithm), the entire track can be forecasted in the missing
part. One path is taken as a benchmark for the time axis
for time synchronization. The other tracks are interpolated at
the corresponding times through the Lagrange interpolation
method in 3 points. Finally, a matrix of data that has the same
time coordinates, which is used in the following track related
steps, is obtained. Note that according to the corresponding
algorithm of time synchronization, the following two main
problems should be resolved:

1) Ensure the reference point for the time of measuring
station of the sensor to be consistent.

2) The sampling measurement period for the sensors is
inconsistent and not the same as the synchronized time period.

C. Coordinate transformation

Ship moving targets normally maneuver on circular paths
which have led to tracking filters on circular turns. In this
section, this paper will transform the tracking maneuvering
target problems from the ultrasonic distance to the Cartesian
coordinate. The distance values can be obtained from the N
ultrasonic sensors. The corresponding distance values should
be transformed into the Cartesian coordinate system points.
This method defines the position of a point by its perpendicular
distance from two or more reference lines. Two straight
lines, called the x-axis and the y-axis, form the basis of a
two-dimensional Cartesian-coordinate system. The x-axis is
usually horizontal and the y-axis is perpendicular to it. The
intersecting point of the two axes is called the origin (O) [18],
[22], [34]. Any points on this plane can be identified by an
ordered pair of numbers that represents the distances to the
two axes. According to this algorithm, the data observed by
N ultrasonic sensors is extracted, and the resulting numbers
are shown in Table III.

VI. THE DMSDF OPTIMIZED FUSION

A. Ultrasonic sensor track correlation

After time synchronization, the track groups can be deter-
mined that having the same time slot and interval. Then, the
track correlation is determined by the recent field correlation
algorithm. This paper first confirms the size of the tracking
gate of the target track, and determines the primarily related
observation. The tracking gate is a rough inspection method
to assign observation echoes to target tracks whatever they
have been established or not. It can be concluded from the
analysis that if the chosen gate is too large, there will be many
untargeted observations and noise waves that fall into the gate,
negatively influencing the performance of the gate. Conversely,
if the chosen gate is too small, the probability of performing
the target observation out of the gate will increase. This also
negatively influences the data association performance. So for
the DMSDF method, the appropriate wave gate size should be
identified firstly. When the tracking wave is determined, the
approximation of the track and the observation point, which
fell into the gate, the approximate statistical distance, and the
distances between every track and all of the observed waves
will be calculated. A M ∗ N statistics matrix, where M is
the number of all the tracks and N is the number of all the
observed waves, is finally got [41].

B. Accuracy of the estimated ultrasonic sensor observations

Owing to the inherent systematic errors of the ultrasonic
sensor and noise caused by measurement error, which can lead
to a large position error obtained by a single ultrasonic sensor
scan, the results of the continuous and repeated scans should
be optimized. Optimizing repeated scan is robust method
which reduces the measurement error. The measurement model
of ultrasonic sensor j which scans the target i times can be
expressed as:

Zji = Ztruth +∆η +Nji (10)

where Zji is the observation value obtained by sensor j
which scans i times. The Ztruth is the true value of the
target location. The ∆η is the inherent system error in the
ultrasonic sensor. Nji is the noise of sensor j which scans i
times. To make the method more suitable for determining the
accuracy of the ultrasonic optimal data fusion, two methods
are introduced (Section VI.B.(1) and VI.B.(2)).

(1) Accuracy estimate based on the overall data
For the distributed multi-sensor data fusion measurement

model, Zi = [Zi1, Zi2, ...Zini] is the value of the sensor i
measurements for ni times, the robust estimation Ẑi and the
variance Rii about the target trajectory of the estimates can
be obtained [35].

Let

Z̄i
′
=

1

ni

ni∑
k=1

Zik; (11)

and set

R′
ii =

1

ni

ni∑
k=1

[Zik − Z̄i
′
][Zik − Z̄i

′
]T (12)
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The distance between the mean value and the observed value
is calculated as:

Dik =

√
[Zik − Z̄i

′
][Zik − Z̄i

′
]T (13)

where Zik is rearranged according to ascending order of Dik,
and (ni

2 + 1) is the number of observation values that are in
the valid estimated basis. Taking Ẑi as effective observation
mean value [35], [36], that is:

Ẑi =
1

mi

mi∑
k=1

Zik (14)

where mi ≤ ni

2 + 1 is the maximum integer. Rii is effective
variance of observation values, that is:

Rii =
1

mi

mi∑
k=1

[Zik − Ẑi][Zik − Ẑi]
T (15)

Now, the δ is taken as a smaller positive number to control
the x-axis data of the robust estimate, (where δ = 0.3), if
|Ẑi−Ẑi

′
| < δ, the estimating value is achieved. Ẑi and Rii are

the location of the counted target estimate and robust variance
estimate, respectively. If |Ẑi − Ẑi

′
| ≥ δ, Z ′

i = Ẑi, R′
ii = Rii

are taken as the new observation mean value and are taken
back for the cycle estimation.

(2) Accuracy estimation based on the predicted value and
the estimated trajectory interpolation value

Since the accuracy of the ultrasonic sensor may also lead
to prediction bias, which makes errors between the prediction
points and the observation points become small, the prediction
points and the deviation of the actual observation points can
be used as a standard to measure the accuracy of the ultrasonic
sensor.

It is assumed that Z(k) is the observed signal at the tth

moment, Ẑ(k | k) is the predictive value at tth moment, then
the following equation can be obtained:

R =
1

n

n∑
k=2

[Z(k)− Ẑ(k | k)][Z(k)− Ẑ(k | k)]T (16)

The obtained value of R can be taken as an estimate of the
ultrasonic accuracy [18]. If the optimal fusion is required, R
should be minimized. Using the experimental results, a series
of data are processed from four ultrasonic sensors by the
above two methods (Section VI.B.(1) and VI.B.(2)) and the
corresponding variance estimate for each ultrasonic sensor are
obtained. The data obtained by the latter method is relatively
(Section VI.B.(2)) stable, so it can be concluded that the latter
method is more suitable for determining the accuracy of the
ultrasonic sensors.

C. The DMSDF optimized fusion rule

After performing the time synchronization and trajectory
estimation, several groups of relevant (judged to represent the
same target) track data can be obtained, then it is necessary to
consider which convergence criterion is required to fuse the
target tracking data [35]. Here this paper uses the weighted

optimal method and achieves the optimal fusion of N estima-
tions in accordance with the principle of minimum variance
[18], [36]. According to the minimum variance principle, this
paper proposes a kind of weighted average fusion method that
can achieve the optimal fusion of N estimate values.
Assumption 1. Wi, i = 1, 2, ...N is a set of matrices with
W1 +W2 + ...WN = I , where I is a identity matrix,and the
expression of optimal fusion estimation is given by

Z̃ =W1Z̄1 +W2Z̄2 + ...+WN Z̄N (17)

where Z̄i is a true position value and Z̃ is an unbiased
estimation of the true position of the target. N is the number
of ultrasonic sensors.
The DMSDF optimal fusion criterion: First, Z̃ should be an
unbiased estimation of the true position of the target, which
means E(Z̃) = Z̄. Second, Z̃ should minimize the trace of the
estimation error variance matrices,which means the optimal
fusion estimated variance Rg is smaller than any other variance
estimation of a single sensor.
Lemma 1. Under Assumption 1 and the DMSDF optimal
fusion criterion, N ultrasonic sensor signals are used in the
fusion of the target tracking data, we obtain.

Z̃N =
N∑
i=1

R−1
ii Zi/

N∑
i=1

R−1
ii , Rg,N = 1/

N∑
i=1

R−1
ii (18)

Proof. (i) Let K = 2. From Eq.(14), one has that

Z̃k =W1Z̄1 +W2Z̄2 = Z̄1 +W2(Z̄2 − Z̄1) (19)

Rg,k = E[(Z̃ − Z̄)(Z̃ − Z̄)T ]

= (I −W2)(I −W2)
TR11 + (I −W2)W

T
2 R12

+W2(I −W2)
TR21 +W2W

T
2 R22 (20)

If it is assumed that Z̄1 and Z2 are not correlated, R12 =
R21 = 0, and Wi =WT

i , the Eq.(17) will reduce to:

Rg,k = (1−W2)
2R11 +W 2

2R22 (21)

Taking the derivative on both sides of the equation and
setting it zero, the following equation is eventually obtained:

W1 =
R22

R11 +R22
,W2 =

R11

R11 +R22
(22)

Substituting Eq.(19) and Eq.(17) into Eq.(16) yields:

Z̃k =
R−1

11 Z̄1 +R−1
22 Z̄2

R−1
11 +R−1

22

(23)

Rg,k =
1

R−1
11 +R−1

22

(24)

(ii) Let K=N-1, from Eq.(15), one has that

Z̃k =
N−1∑
i=1

R−1
ii Z̄i/

N−1∑
i=1

R−1
ii , Rg,k = 1/

N−1∑
i=1

R−1
ii (25)

Similarly, the algorithm is promoted to N signals to the
integration of the track using mathematical induction

Z̃k+1 = W1Z̄1 +W2Z̄2 + ...+WkZ̄k +Wk+1Z̄k+1

= Z̃k +Wk+1Z̄k+1 (26)
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Z̃k+1 − Z̄k+1 = W1Z̄1 +W2Z̄2 + ...+WkZ̄k

+Wk+1Z̄k+1 − Z̄k+1

= Z̃k +Wk+1Z̄k+1 − Z̄k+1 (27)

Rg,k = E[(Z̃k+1 − Z̄k+1)(Z̃k+1 − Z̄k+1)
T ]

= (I −Wk+1)(I −Wk+1)
TRk,k

+(I −Wk+1)W
T
k+1Rk,k+1

+Wk+1(I −Wk+1)
TRk,k+1

+Wk+1W
T
k+1Rk+1,k+1 (28)

If it is assumed that Z̃k and Z̄k+1 are not related, Rk,k+1 =
Rk+1,k = 0, and Wi =WT

i , the Eq.(17) will be reduced to:

Rg,k = (1−Wk+1)
2Rk,k +W 2

k+1Rk+1,k+1 (29)

Taking the Wk+1 derivative on both sides and setting it zero,
we get Wk, Wk+1, which in addition to Eq.(24) are merged
into Eq.(23) to yield:

Z̃k+1 =
k+1∑
i=1

R−1
ii Z̄i/

k+1∑
i=1

R−1
ii (30)

Rg,k+1 = 1/

k+1∑
i=1

R−1
ii (31)

From (i) and (ii), we prove Eq.(15) is true.

VII. EXPERIMENTAL RESULTS

To effectively achieve the indoor ship location, we inde-
pendent researched a set of control version, propeller and
designed a 2.8 m ship model, the ship model is 0.76m wide,
1m tall is as shown in Appendix. To effectively simulate the
sea environment, we used a variety of sensors: wind vane and
anemometer are used to measure the wind direction and speed,
gyro-compass (heading sensor) is used to measure the ship’s
heading, the gyro-compass has a long life and a rich experience
on the sea, so it completely suit for the offshore drilling ship’s
dynamic positioning system; MRU sensor is motion sensor, it
can measure the ship’s dynamic linear motion and attitude. It
can measure the ship’s rolling, pitching, yawing and heaving,
and has a high accuracy. The ultrasonic used for indoor
distance detection, to get ship’s actual position, achieves the
purpose of indoor positioning. A Personal Computer(PC) is
used to realize the real-time 3D simulation of the ship. The
main controller is mainly used to achieve the data collection,
processing and the realization of the control algorithm. The
handle work station is used to achieve the active work station,
and it can achieve real-time moving.

According to the above algorithm, this section illustrates the
characteristics of the DMSDF algorithms through the exper-
iment. There are four ultrasonic sensors for measuring state
around the ship. The length of the ship is L = 2.8m, the depth
of the ship is H = 1m, the width of the ship is B = 0.76m,
wind speed is 3m/s and the meaningful height of waves is
0.3m. The specific physical map is shown in Appendix. Using
the OPC technology in [26], programming under matlab 7.1,
achieved reliable and high speed data communication among

PC, main controller and sensors, the sampling time is T = 1s.
The experimental figure of the DMSDF is shown in Fig. 1.

Fig. 1 shows that the length and the width of the pond are
11m and 6m, respectively. It could be found that the positions
of the 4 ultrasonic receivers around the pond. There is an
ultrasonic sender on the ship. The 4 ultrasonic receivers detect
the signal from the ultrasonic sender on the ship and send the
data to a local computer (the optimal data fusion center). We
gathered a set of real time data and performed filtering in
Matlab 7.1. The sampling time is 1s, and the sample size is
300 times.

A. Kalman filter process signal experiment

The extended Kalman filter (EKF) was introduced in [38],
[39] for implementing target tracking in a single-sensor sys-
tem. However, because the EKF only uses the first order
terms of the Taylor series expansion of nonlinear functions
[40], [41], it often introduces large errors in the estimated
statistics of the posterior distributions of the states. So, using
the distributed Kalman filter process signal in Section V.B, we
initialize ψ(t) = e−0.1 = 0.9048I , R(t) = 1I , Hk(t) = 1I ,
Q(t) = 1 − e−0.2 = 0.1813I , x̂k(0) = E[x(0)], Pk(0) =
σ[x(0)]. In order to show the advantages of our proposal
method, the results are optimum with the raw measurements
and least square filter values. The Kalman filter and least
square filter process signal experiment is shown in Fig. 3.

For the following problems: the sensor faults or exceptions
in the data recording or reading, the sudden change and
interference of the surrounding environment, and the error of
operator, some large error discontinuities values exist in the
collected data. The Kalman filtering can effectively achieve
the dynamic data filtering and smooth processing. Fig. 3 shows
that Kalman filtered data are smoother than the measured data.
In particular, the measured data change greatly, whereas the
filtered data are smoother. Fig. 3 shows that the least square
filter data are smoother than the Kalman filter data. But the
least square filter is bad for real-time data.

B. Time synchronization and coordinate transformation ex-
periment

According to Section V.B and V.C, 4 ultrasonic sensors are
used for the DMSDF test, as shown in Fig. 4. After time
synchronization, this paper uses the state point transformation
into the Cartesian coordinate system.

(1) The a, b and AB composition of the triangle
It is assumed that the area is Sab, the ∆abAB perimeter

is Lab, l=11 m is the pond length, and w=6m is the pond’s
width. Then the following equations are obtained:

lab =
a+ b+ 1

2
, Sab =

√
lab(lab − a)(lab − b)(lab − l),

(32)

hab =
2Sab
l
, ab1 =

√
a2 − h2ab =

√
a2 −

4S2
ab

l2
(33)

ab2 =
√
b2 − h2ab =

√
b2 −

4S2
ab

l2
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Fig. 3. The Kalman filter process signal experiment

Fig. 4. DMSDF plot of the 4 ultrasonic sensors responses for target tracking

The coordinate value of the point O, (ab1, hab) or (l −
ab2, hab), can be got.

(2) The b, c and BC composition of the triangle is ∆bcBC
Similarly, it is called that the area is Sbc, the ∆bcBC

perimeter is Ibc. Then the following equations are obtained:

lbc =
b+ c+ w

2
, Sbc =

√
lbc(lbc − b)(lbc − c)(lbc − w),

(34)

hab =
2Sbc
w

, bc1 =
√
b2 − h2bc =

√
b2 −

4S2
bc

w2
(35)

bc2 =
√
c2 − h2ab =

√
b2 −

4S2
bc

w2

The coordinate value of the point O, (l − hbcbc1) or (l −
hbc, w − bc2), can be got.

(3) The c, d and CD composition of the triangle is ∆cdCD
Similarly, it is called that the lcd area is Scd. The ∆cdCD

perimeter is Icd. Then the following equations are obtained:

lcd =
c+ d+ l

2
, Scd =

√
lcd(lcd − c)(lcd − d)(lcd − l), (36)

hcd =
2Scd
w

, cd1 =
√
c2 − h2cd =

√
c2 −

4S2
cd

l2
(37)

cd2 =
√
d2 − h2cd =

√
b2 −

4S2
cd

l2

The coordinate value of the point O, (l − cd1, hcd) or
(cd2, hcd), can be got.

(4) The a, d and AD composition of the triangle is ∆adAD
Similarly, it is called that the ∆adAD area is Sad, the

∆adAD perimeter is lad. Then the following equations are
obtained:

lad =
a+ b+ w

2
, Sad =

√
lad(lad − a)(lad − d)(lad − w),

(38)

had =
2Sad
w

, ad1 =
√
d2 − h2ad =

√
d2 −

4S2
ad

w2
(39)
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ad2 =
√
a2 − h2ad =

√
b2 −

4S2
ad

w2

The coordinate value of the point O,(had, ad2) or (had, w −
ad1), can be got. Using time synchronization and coordinate
transformation, 4 coordinate values are obtained as shown
in Fig. 5, the sampling time is 1s and the sampling occurs
300 times, the coordinate transformation data and 4 track
trajectories are discrete points.

Fig. 5. The extraction of 4 track trajectories from 4 ultrasonic sensors

Fig. 5 shows t in the case that a, d and AD composition
of the trajectory has the minimum estimated error. The c, d
and CD composition of trajectory has the maximum estimated
error.

C. The DMSDF track fusion experiment

According to Section VI and VI.C, these four tracks can
be fused or combined using the optimal fusion method. The
algorithm is promoted to 4 signals for the integration of the
track. The optimal fusion estimated variance is smaller than
any other variance estimation from a single sensor. Here, it
is assumed N=4, the matrix Wi, i=1,2,3,4, and W1 +W2 +
W3 + W4 = I , where I is a identity matrix. The optimal
fusion trajectory is better than the single sensor measurement
trajectory, as shown in Fig. 6.

Fig. 6 shows that the optimal fusion trajectory is smoother
than the other trajectories based on single sensor data. The
estimated error is small for the optimal fusion trajectory. If
the signal cannot be received from an ultrasonic sensor,the
optimal fusion system will know the precise location of the
ship via the measured signal from the other ultrasonic sensors.

To further demonstrate the performance of the proposed
MSDF algorithm, data in 300s is sampled. The MSDF al-
gorithm,state vector fusion [16] and truth-value are compared
with experiment map, which is shown in Fig. 7.
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Fig. 7. The fusion value and the truth value

When the ship is in the static pool and protected from the
influence of wind, wave and flow, a hand-held laser ranger is
used to measure distance (the accuracy is less than 1 mm),
and the measured value is called true value. However, when
the ship is influenced by wind, wave and flow conditions, the
accuracy of laser ranger would be seriously affected. Usually,
the laser ranger needs total reflection prism to cooperate,
but the ranger used in house measures directly utilizes the
reflection of smooth metope. And mainly because the distance
is close, the strength of reflected signal from light is strong,
meanwhile, it should be vertical. Otherwise, the return signal
would be too weak to get the accurate distance [3], [42].

Fig. 7 shows that the MSDF fusion values are close to the
truth values. The MSDF fusion algorithm is more accurate than
the state vector fusion in [16], [43]. According to Section VI,
the result shows that the MSDF fusion algorithm is able to
improve the precision of the data, as shown in Fig. 8.
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Fig. 8. The x- and y-axis estimated error values for the optimal fusion
trajectory

Fig. 8 shows the x- and y-axis estimated error values for
the MSDF fusion trajectory. The maximum error is 1.32cm
between the true value and the MSDF fusion value. After data
fusion, the precision of the data is effectively improved. But
the state vector fusion value [16] of the maximum error is
5.78cm.

In summary, several experiments indicate that the proposed
DMSDF track fusion approach has greatly improved the target-
tracking performance. Note that the performance of the data
fusion is significantly affected by the dynamic positioning of
the ship being tracked [2], [44], [47].

VIII. CONCLUSIONS AND FUTURE WORK

We have introduced a proposed data fusion scheme in the
distributed multi-sensor environment using the optimized fu-
sion theory. The data fusion algorithm is used to track a ship’s
location based on the input signals from ultrasonic sensors.
The method is used to predict a ship’s moving path and can
be fused to provide improved track performance. It is suitable
to single object indoor ships tracking with multi-sensor. The
DMSDF optimized fusion theory yields the combination of

information fusion theory and Kalman filtering theory in the
applied indoor ships tracking. The practicality picture of ship
control system is shown in Appendix. The DMSDF can be
performed at two different processing layers. The optimized
fusion trajectory x and y axis estimated maximum error value
is 1.32cm which is between the true value and fusion value
[45], [2], [47]. The DMSDF model is robust and accurate. The
results imply that the DMSDF model is suitable for dealing
with ultrasonic sensors systems that are suitable for indoor
track ships. It has the following insights of the research work
[45], [46], [48]:

• The novel scheme of target tracking with the DMSDF can
be further exploited and widely applied in communication
and control fields since the parallel structures can increase
the input data rates and have reliability.

• The novel scheme of target tracking with the DMSDF
has better accuracy than any local measurement does.

• According to the experimental condition limit, it is not
necessary to consider the presence of the multi-target
tracking.

• It is not considered that the centralized fusion will bring
a large computational burden in the fusion center due to
the high dimension computation and large data memory.
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APPENDIX A
2.8 M SHIP MODEL

The project of Ship Dynamic Positioning System Experi-
ment uses scale ratio of 26: 1. And the real ship is a work
ship with 75 meters electric DP2. In the laboratory, the ship
model is total length of 2.8m. It’s total width of 0.762 m
(symmetrical, half-width 0.381 m) and the total height 0.492m
(0.24m deep main influenza). It draft of 0.167m, this is the spe-
cific kind as shown in Fig.9 . In order to effectively simulate
the sea environment and achieve ship’s real-time positioning
as shown in Fig. 10. We made an indoor pool, the pool is
11m long, 6m wide, 1m deep. The ultrasonic receptor was
independent developed. After plentiful experiments, we have
found that we can effectively improve the positioning accuracy
using multiple ultrasonic receptors. But if too many receptors
were used, it would lead to much more cost. Therefore, we
installed a 1m tall receptor in each angle of the pool.
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Fig. 9. 2.8 m ship model
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Fig. 10. Ship’s real-time positioning
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