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Abstract

The study of flow in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An
important application of such flows is in the context of coolants, where the principle issue of interest is convective heat transfer. For
fully developed laminar flows, the problem can be characterised in terms of two coupled partial differential equations. In the case of
perfectly electrically insulating boundaries, there is a well known analytical solution due to Shercliff, which provides the velocity
and induced magnetic field profiles. In this paper, we demonstrate analytical solutions to H1 and H2 heat transfer problems for the
Shercliff case in rectangular ducts and obtain temperature profiles and corresponding Nusselt numbers as functions of aspect ratio
and Hartmann number.
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1. Introduction

The flow in a rectangular duct, subject to strong transverse
magnetic fields, is of significant interest in fusion applications
due to the use of liquid metal coolants employed in some fusion
blanket designs. Depending on the circumstances, this magne-
tohydrodynamic problem may be simplified by assuming a lam-
inar fully-developed flow with perfectly electrically insulating
walls. The problem then reduces to two coupled partial differ-
ential equations, whose solution was first obtained by Shercliff
[1]. Shercliff obtained explicit analytical solutions for the ve-
locity and magnetic field profiles for this case and his work was
subsequently extended to the case of imperfectly and perfectly
conducting walls by Hunt [2, 3].

In the context of fusion blankets, of equal or greater impor-
tance is the concomitant heat transfer, as the extraction of heat
is one of the main roles of the blanket itself. Despite the ex-
istence of analytical solutions for the velocity profile, there is
as yet (to the authors knowledge) no corresponding solution
to the heat transfer problem for the Shercliff case (and indeed
the Hunt cases). Such solutions exist for flow between parallel
plates and flows in circular channels [4, 5], and for 1-D heat
transfer [6]. There are also some experimental and many nu-
merical studies of heat transfer for Shercliff and related cases
[7, 8, 9, 10, 11, 12]. It should be noted that even though numer-
ical solutions exist, analytical solutions play an important role
in the validation of such computational codes and can give sig-
nificant insight into the underlying physics, as well as provid-
ing approximate parameters for 1-D thermal-hydraulic systems
codes. In this article we extend an analytical solution of the
temperature profile in rectangular ducts for both the H1 and H2
heat transfer cases, already well developed for the non-MHD
case, to the electrically insulating wall MHD case (Shercliff
flow). To the author’s knowledge this is novel.

2. Problem Formulation

Referring to Fig. 1, the momentum equation in a fully devel-
oped MHD flow in a rectangular duct of size −adh ≤ X ≤ adh

and −bdh ≤ Y ≤ bdh (where dh is the hydraulic diameter), sub-
ject to an applied X-directed magnetic field B0

x is given by

ν

(
∂2U
∂X2 +

∂2U
∂Y2

)
−

1
ρ

∂p
∂Z

+
1
ρµ

∂Bz

∂X
B0

x = 0 (1)

The flow of conducting fluid generates an induced magnetic
field Bz, satisfying

1
µσ

(
∂2Bz

∂X2 +
∂2Bz

∂Y2

)
+ B0

x
∂U
∂X

= 0 (2)

Where U is the velocity, ν is the kinematic viscosity, µ the mag-
netic permeability, ρ the density and σ the electrical conductiv-
ity of the fluid.

X 

Y 
dhb 

-dhb 

dha -dha 

Bx
0

Figure 1: Duct coordinate system
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Nomenclature

Γ Wetted perimeter (m).
µ Fluid magnetic permeability (Hm−1).
ν Kinematic viscosity (m2s−1).
ρ Fluid density (kgm−3).
σ Fluid electrical conductivity (Sm−1).
A Duct cross-sectional area (m2).
a Duct half-width (m).
b Duct half-height (m).
B0

x Applied x-directed magnetic field (Wb m−2).
Bz Induced magnetic field (Wb m−2).
dh Hydraulic diameter (m).
h Dimensionless magnetic field.
Ha Hartmann number.

Hg Hagen number.
Nu Nusselt number.
p Pressure (Pa).
Pr Prandtl number.
q′′ Heat flux (Wm−2).
Re Reynolds number.
T Temperature profile (K).
t Dimensionless temperature.
Tm Bulk temperature (K).
Tw Wall temperature (K).
U Velocity profile (ms−1).
u Dimensionless velocity.
Um Mean velocity (ms−1).

Non-dimensionalising, by setting

x =
X
dh
, y =

Y
dh
, z =

Z
dh

(3)

u =
U

Um
(4)

where

Um =
1
A

∫
A

UdA (5)

and

h =
1
µ

1
√
ρνσ

1
Um

Bz (6)

we obtain

∂2u
∂x2 +

∂2u
∂y2 + Ha

∂h
∂x

=
Hg
Re

(7)

where

Ha = B0
xdh

√
σ

ρν
(8)

and the Hagen number is defined as

Hg =
(∂p/∂Z) d3

h

ρν2 (9)

The no-slip condition requires that u = 0 at the wall. The in-
duced magnetic field h satisfies

∂2h
∂x2 +

∂2h
∂y2 + Ha

∂u
∂x

= 0 (10)

in the fluid region. For the Shercliff problem considered here,
the induced magnetic field vanishes at the wall. The solution to
this problem is well known, and is given in the appendix for the
case.

In the following we consider the energy equation, which in
steady state, fully developed flow, can be written as

ν

Pr

(
∂2T
∂X2 +

∂2T
∂Y2

)
= U

∂T
∂Z

(11)

For now, we leave this equation in its dimensional form. The
process of non-dimensionalization differs markedly between
H1 and H2 cases and is dealt with at the beginning of sections
3.1 and 3.2 for the H1 and H2 cases, respectively.

3. Analytical Solution

3.1. H1 Heat transfer case

The H1 transfer case describes circumstances where the heat
flux is uniform in the axial direction and the wall temperature
Tw is uniform in the peripheral direction. Under the conditions
of fully developed Shercliff flow, it can be assumed that

∂T
∂Z

=
dTm

dZ
= const (12)

where the bulk temperature Tm is defined as

Tm =

∫
A UTdA∫
A UdA

(13)

We non-dimensionalize as before, with the non-dimensional
temperature profile t (x, y) being defined by

t =
T

(dTw/dZ) dh
(14)

Inserting these into equation (11) gives

∂2t
∂x2 +

∂2t
∂y2 = (RePr) u (15)
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We now proceed to determine the non-dimensional temperature
profile t (x, y) by decomposing the solution into a particular in-
tegral and a general solution. We obtain the following particular
integral, which satisfies (15).

tp (x, y) = HgPr
∞∑

n=1

fn (x) cos λny (16)

where

fn (x) =
kn

λ2
nb

− 1
λ2

n
−

sinh pn2a cosh pn1x(
p2

n1 − λ
2
n

)
sinh (pn2 − pn1) a

+
sinh pn1a cosh pn2x(

p2
n2 − λ

2
n

)
sinh (pn2 − pn1) a


where pn1, pn2 and λn are defined in the appendix. This expres-
sion vanishes on the upper and lower walls (y = ±b), but does
not vanish at x = ±a.

It can be easily shown that there is a general solution to the
Laplace equation on the same geometry, which vanishes on y =

±b, but is non-zero on x = ±a:

tl (x, y) = HgPr
∞∑

n=1

(an sinh λn (x − a)

+ bn sinh λn (x + a)) cos λny (17)

for constants an and bn. We will now require that tp + tl vanishes
on x = ±a. Using these expressions we can calculate an and bn

as

an =
fn (−a)

sinh 2λna
(18)

bn = −
fn (a)

sinh 2λna
(19)

Note also that fn (−a) = fn (a), so an = −bn.
Given these results, we can re-dimensionalize and obtain the

following solution to equation (11) satisfying T = Tw at the
boundary:

T (x, y) = Tw + dhHgPr
dTm

dZ

∞∑
n=1

gn (x) cos λny (20)

where

gn (x) = fn (x)+
fn (a)

sinh 2λna
(sinh λnπ (x − a) − sinh λn (x + a))(21)

from which the local Nusselt number Nun for a wall with unit
normal n as

Nun =
dhn · ∇T

(Tw − Tm)
(22)

and the overall mean Nusselt number as

Nu =
dh

Γ

∫
∂A n · ∇Tds

(Tw − Tm)
(23)

where Γ is the wetted perimeter.

3.2. H2 Heat transfer case

The H2 transfer case describes circumstances where the heat
flux is uniform in the axial direction and is also uniform in the
peripheral direction. We follow an analysis similar to [13]. The
same magnetohydrodynamic conditions arise as in the H1 case,
but the treatment of the energy equation differs somewhat. Due
to the uniform peripheral and axial heat flux q′′ we can perform
an energy balance:

q′′ΓdZ = ρcpAUmdT (24)

from which it follows that

∂T
∂Z

=
dTm

dZ
=

q′′Γ
ρcpAUm

=
4q′′

ρcpdhUm
(25)

In this case we define the non-dimensional temperature profile
t (x, y) as

t =
k

q′′dh
(T − Tm) (26)

Inserting these into equation (11) gives

∂2t
∂x2 +

∂2t
∂y2 = 4u (27)

The boundary conditions at the wall are

k
∂T
∂n

= q′′ (28)

which take the non-dimensional form

∂t
∂n

= 1 (29)

Following [13] we homogenise this equation by defining θ (x, y)
as

θ (x, y) = t (x, y) −
(

x2

2a
+

y2

2b

)
(30)

Substituting for t into equation (27) and considering only one
quarter of the duct due to symmetry we obtain

∂2θ

∂x2 +
∂2θ

∂y2 = 4 (u − 1) (31)

∂θ

∂x
= 0, on x = 0 (32)

∂θ

∂x
= 0, on x = a (33)

∂θ

∂y
= 0, on y = 0 (34)

∂θ

∂y
= 0, on y = b (35)

To solve this equation, we begin by considering the homo-
geneous form and decomposing via a separation of variables
approach. As shown in [13], the solution to (31) is of the form

θ (x, y) = X0 (x) +

∞∑
n=1

Xn (x) cos
(nπy

b

)
(36)
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Substituting this expression into equation (31) gives

X′′0 (x) +

∞∑
n=1

(
X′′n (x) −

(nπ
b

)2
Xn (x)

)
cos

(nπy
b

)
(37)

= 4 (u (x, y) − 1)

Considered as a Fourier series, the zeroth order term is the mean
value of the RHS of (37), so

X′′0 (x) =
4
b

∫ b

0
(u (x, y) − 1) dy (38)

which can be evaluated to give

X′′0 (x) = −4

1 +
1
b

Hg
Re

∞∑
n=1

(−1)n

λn
un (x)

 (39)

Following two successive integrations with respect to x, we ob-
tain

X0 (x) = −2x2 + c1x + c2

+
8
b2

Hg
Re

∞∑
n=1

1
λ4

n

(
x2

2
−

sinh pn2 a cosh pn1 x
p2

n1
sinh

(
pn2 − pn1

)
a

+
sinh pn1 a cosh pn2 x

p2
n2

sinh
(
pn2 − pn1

)
a

)
(40)

It now remains to compute the Xn terms, which is achieved by
applying an orthogonality relation to equation (37) which gives

X′′m (x) −
(mπ

b

)2
Xm (x) =

8
b

∫ b

0
(u (x, y) − 1) cos

(mπy
b

)
dy (41)

which can be written as

X′′m (x) −
(mπ

b

)2
Xm (x) =

8
b

Hg
Re

∞∑
n=1

γmnun (x) (42)

where

γmn =
1
2

(−1)m+n−1
(

1
λn −

mπ
b

+
1

λn + mπ
b

)
(43)

The solution to this equation is decomposed into the sum of a
particular integral Xp

m and a general solution, Xg
m, to the homo-

geneous form of (42). The particular solution is given by

Xp
m (x) =

∞∑
n=1

(
amn + bmn cosh pn1 x + cmn cosh pn2 x

)
(44)

Substituting this into (42) and equating coefficients gives

amn = −
8

m2π2

Hg
Re

kn

λ2
n
γmn (45)

bmn = −
8
b2

Hg
Re

kn

λ2
n

sinh pn2 a(
p2

n1
−

(
mπ
b

)2
)

sinh
(
pn2 − pn1

)
a
γmn (46)

cmn =
8
b2

Hg
Re

kn

λ2
n

sinh pn1 a(
p2

n2
−

(
mπ
b

)2
)

sinh
(
pn2 − pn1

)
a
γmn (47)

The homogeneous solution of equation (42) is given by

Xg
m (x) = dm sinh

mπx
b

+ em cosh
mπx

b
(48)

Substituting equation (48), (44) and (40) into (36), we obtain
θ (x, y). Finally we apply the remaining boundary conditions,
giving at x = 0,

c1 +

∞∑
n=1

dn

(nπ
b

)
cos

(nπy
b

)
= 0⇒ c1 = dn = 0 (49)

and at x = a, we have
∞∑

n=1

(
en

(nπ
b

)
sinh

(nπa
b

)
+

∞∑
m=1

bnm pm1 sinh pm1 a + cnm pm2 sinh pm2 a

 cos
(nπy

b

)
= 0 (50)

So

en = −
b

nπ

∑∞
m=1 bnm pm1 sinh pm1 a + cnm pm2 sinh pm2 a

sinh
(

nπa
b

) (51)

Combining these results we obtain the following expression for
t in terms of the coefficients:

t (x, y) = c2 +

(
x2

2a
+

y2

2b

)
− 2x2 (52)

+
8
b2

Hg
Re

∞∑
n=1

1
λ4

n

(
x2

2
−

sinh pn2 a cosh pn1 x
p2

n1
sinh

(
pn2 − pn1

)
a

+
sinh pn1 a cosh pn2 x

p2
n2

sinh
(
pn2 − pn1

)
a

)
+

∞∑
n=1

[
en cosh

nπx
b

+

∞∑
m=1

(
anm + bnm cosh pm1 x

+ cnm cosh pm2 x
)]

cos
(nπy

b

)
It can be shown that as the Hartmann number tends to zero, this
expression tends to that given in [13].

It remains to compute the constant c2. The determination of
c2 is achieved by applying the following constraint proposed in
[13]:∫

A
utdA = 0 (53)

In that paper the authors justify this by demonstrating its appli-
cation to a circular geometry. In fact, this can be very easily
proven as follows: From (26) we see that

ut =
k

q′′dh

U
Um

(T − Tm) =
k

q′′dhUm
(UT − UTm) (54)

Integrating over the cross-sectional area of the duct gives∫
A

utdA =
k

q′′dhUm

(∫
A

UTdA − Tm

∫
A

UdA
)

(55)

4



From (5) and (13) we see that∫
A

utdA =
k

q′′dhUm
(AUmTm − TmAUm) = 0 (56)

and the constraint is proved. Once applied, this constraint de-
termines c2 and hence the non-dimensional temperature field
t.

It is worth noting that the dimensional temperature T is de-
termined only up to an additive constant, eg. T0, in the H2 case.
However, such an additive constant is not related to the con-
stant c2 in equation (52). This is clear, firstly, from the fact that
if we have a temperature distribution T ′ = T + T0 where T0 is a
constant, then

T ′m =

∫
A U (T + T0) dA∫

A UdA
= Tm + T0 (57)

Equation (26), defining the non-dimensional temperature t is
then left unchanged since

t′ =
k

q′′dh

(
T ′ − T ′m

)
=

k
q′′dh

(T + T0 − Tm − T0) = t (58)

We can conclude that adding a constant to the dimensional tem-
perature T , does not affect t. Conversely, arbitrarily changing
c2 clearly changes t. Secondly, as we shall now show, we are
not free to disregard the constant c2, indeed, it is closely related
to a non-dimensional bulk temperature τm. Let us write (52) as
t = c2 + τ, then from the constraint (53),

0 =

∫
A utdA∫
A udA

=

∫
A u (c2 + τ) dA∫

A udA
= c2+

∫
A uτdA∫
A udA

= c2+τm(59)

hence

c2 = −

∫
A uτdA∫
A udA

= −τm (60)

Thus, we are not free to choose c2; it is determined from the
velocity field u and the solution (52). Of course, once c2 has
been obtained, we can determine the dimensional temperature
field T up to an additive constant, from equations (26) and (52).

The local Nusselt number at the wall can be determined from

Nun =
dhn · ∇T

(Tw − Tm)
=

dhq′′

k (Tw − Tm)
=

1
tw

(61)

where tw is the non-dimensional temperature evaluated at the
wall. In accordance with [14] we compute the mean Nusselt
number as the reciprocal of the weighted mean wall tempera-
ture.

4. Results and Discussion

4.1. H1 Case
Fig. 2 presents the temperature profiles along a section

through a square duct (a/b = 1) at y = 0, for a range of Hart-
mann numbers. There is clearly the expected drop in temper-
ature difference with increasing Hartmann number as the flow
velocity is increasingly suppressed. The Nusselt numbers are

computed for this case of uniform axial heat flux and uniform
peripheral temperature for a range of Hartmann numbers. Un-
like the non-MHD case, the profile of the flow field is not the
same in both x and y directions. Indeed, the profiles perpendic-
ular to the Hartmann and side walls have significantly different
profiles, shown in [1]. One can view this in terms of individual
wall mean Nusselt numbers. In Fig. 3 we see the mean Nus-
selt numbers for a Hartmann wall (Nui) and a side wall (Nu j).
As expected, for low Hartmann numbers, the results converge
to the non-MHD case with a value of 3.608 [13, 14]. Both
Nusselt numbers increase significantly as the electromagnetic
forces begin to dominate the viscous forces (Ha > 1). The
Nusselt number for the Hartmann wall increases more rapidly
(than that for the side layer) due to the thinner boundary layer
which is O

(
Ha−1

)
for the Hartmann wall and O

(
Ha−

1
2

)
for the

side wall. For large Ha, the velocity profile in Shercliff flow
exhibits a flat core region, the velocity of which is asymptoti-
cally O

(
Ha−1

)
, as is shown in [1]. The wall shear stress is ap-

proximately the ratio of the core velocity to the boundary layer
thickness, and as such is asymptotically O (1) for the Hartmann
wall. As a result, Nui reaches a plateau for large Ha and the
heat transfer rate saturates, in general agreement with Blum et
al. [4] for the case of a circular duct.
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Figure 2: Temperature profiles across the midsection of a square duct

We now consider the effect of duct aspect ratio in the case of
b > a. In Fig. 4 we present the overall mean Nusselt number
(ie. the wall length-weighted sum of the wall Nusselt numbers)
vs Hartmann number for a range of aspect ratios. In all cases
the results reduce to the non-MHD case for Ha = 0, as shown
in Table 1, where good agreement is obtained with other solu-
tions. As expected, beyond Ha = 1, the electromagnetic forces
dominate the viscous forces. As b/a increases, the heat transfer
is increasingly dominated by the relatively long Hartmann wall.
The larger the aspect ratio, the more the heat transfer from the
Hartmann wall dominates the heat transfer from the side wall
and the steeper the rise in Nu. For large b/a, a clear plateau is
reached as the heat transfer rate at the Hartmann wall saturates.

Alternatively, we could consider aspect ratios where a > b.
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Figure 3: Mean Nusselt number vs Hartmann number

These results are shown in Fig. 5. In this case, as a/b increases,
the length of the Hartmann wall reduces relative to the side wall.
The contribution to heat transfer by the Hartmann walls reduces
with increasing aspect ratio, becoming dominated by the heat
transfer through the side walls. For small Ha, the shear stress
at the side wall is essentially entirely due to viscous forces.
As Ha increases, a Shercliff layer develops at the side wall,
of thickness O

(
Ha−

1
2

)
. Once this layer becomes thinner than

the viscous layer, the shear stresses increase and increase the
heat transfer. As the aspect ratio decreases further (for a fixed
dh), the shear stresses at the side wall due to the viscous forces
must increase. These stresses are then only exceeded for a cor-
respondingly thinner Shercliff layer and, inter alia, a larger Ha.
This is seen clearly from Fig. 5, where the onset of the MHD
effect is progressively delayed for increasing aspect ratio. The
slope of the curves in Fig. 5 are worthy of note: The Hart-
mann wall, with its higher wall shear stresses, provides better
heat transfer per unit length than the side wall. The contribu-
tion of the Hartmann wall to overall heat transfer is dominant in
the case of a square duct, resulting in a steep increase in Nu as
Ha increases. As the aspect ratio increases, the Hartmann wall
contributes less to the overall heat transfer and Nu increases as
a function of Ha at a progressively slower rate, dictated by heat
transfer through the side wall (see Fig. 3). This accounts, for
instance, for the intersection of the cases a/b = 1 and a/b = 2.

Table 1: Comparison of Nu from literature against this paper for H1 case for
Ha=0

Aspect Ratio Shah and London [15] Wang [16] This Paper
1 3.608 3.6079 3.6068
2 4.1233 4.1233 4.1220
4 5.3311 5.331 5.3289
6 6.0495 6.0494 6.0464
8 6.4903 6.4903 6.4864
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Figure 4: Overall Nusselt number vs Hartmann number for various aspect ratios
(b > a) for the H1 case
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Figure 5: Overall Nusselt number vs Hartmann number for various aspect ratios
(a > b) for the H1 case
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4.2. H2 Case

The expression for the H2 case involves numerous ratios of
hyperbolic functions. For small aspect ratios and small Hart-
mann numbers, this expansion is used in its standard form and
results are computed in MATLAB. For higher aspect ratios and
Hartmann numbers, the arguments of these hyperbolic func-
tions become large. This results in numerical errors and ulti-
mately computational failure as the numbers involved exceed
the normal machine precision. For such cases it is important to
group these ratios and evaluate them by taking logarithms.

We first consider the effect of duct aspect ratio in the case of
b > a. In Fig. 6 we present the overall mean Nusselt number
vs Hartmann number for a range of aspect ratios. Note that the
effect of aspect ratio is significantly reduced in the H2 case, rel-
ative to the H1 case, with Nu ≈ 3. In all cases the results reduce
to the non-MHD case for Ha = 0, as shown in Table 2, where
again good agreement is obtained with other solutions. The
heat transfer is largely dominated by the Hartmann wall and the
Nusselt number increases with Ha. The larger the aspect ratio,
the more the heat transfer from the Hartmann wall dominates
the heat transfer from the side wall and the steeper the rise in
Nu. Again, for large b/a, a clear plateau is reached as the heat
transfer rate at the Hartmann wall saturates. For small Ha, the
Nusselt number decreases as the aspect ratio increases. How-
ever the heat transfer rate through the Hartmann wall increases
more rapidly for high aspect ratios, as evidenced by the steeper
gradient between Ha ≈ 10 and Ha ≈ 100.
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Figure 6: Overall Nusselt number vs Hartmann number for various aspect ratios
(b > a) for the H2 case

Alternatively, we consider the aspect ratio where a > b.
These results are shown in Fig. 7. In this case, as the aspect
ratio increases, the length of the Hartmann wall reduces rela-
tive to the side wall. Note also that the contribution to heat
transfer of the Hartmann wall reduces with increasing aspect
ratio in this H2 case. The general increase in Nusselt number
with Ha is clear. However, for increasing aspect ratio, a mini-
mum develops. This is an interesting feature and deserves some

explanation.

Table 2: Comparison of Nu from literature against this paper for H2 case for
Ha=0

Aspect Ratio Spiga and Morini [17] Wang [16] This Paper
1 3.091 3.0873 3.0871
2 3.022 3.0192 3.0187
4 2.935 2.9326 2.9315
6 - 2.9126 2.9102
8 2.909 2.9074 2.9031

In Fig. 8 we show the velocity profile for a modest Hart-
mann number (Ha = 1), where MHD effects are negligible.
The profile is relatively uniform over much of the x-direction.
At Ha = 25, shown in Fig. 9, which corresponds to the min-
imum Nusselt number, Hartmann layers are developing along
the shortest sides, but crucially the velocity profile in the x-
direction becomes non-uniform and in particular velocity is
suppressed near the short sides. The reasons for this are clear
from Fig. 11 which shows the magnetic field in this orientation.
The contour lines also represent the current paths and it is clear
that for low to modest Ha, that there is little or no current near
the centre and concomitantly low velocity suppression. This is
in marked contrast to the vertical orientation (b > a) shown in
Fig. 12. The effect of this is a suppression of the shear stress
along the Shercliff walls near these shorter sides. Since the
Hartmann walls are short with this aspect ratio, the heat transfer
is dominated by the Shercliff layers and the high shear stresses
in the Hartmann layers contribute little to the overall heat trans-
fer. It is not until the Hartmann number increases sufficiently to
produce a narrow Shercliff layer along the long side, that uni-
formity in the core region is re-established (shown in Fig. 10)
and the subsequent high shear stress in the Shercliff layer, gives
rise to increased heat transfer for Ha = 1000.
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Figure 7: Overall Nusselt number vs Hartmann number for various aspect ratios
(a > b) for the H2 case
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Figure 9: Velocity profile for Ha=25, a/b=8
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Figure 10: Velocity profile for Ha=1000, a/b=8
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Figure 12: Induced magnetic fields, b/a=8

5. Conclusions

The heat transfer problem for MHD flow in rectangular ducts
with electrically insulated walls subject to a transverse mag-
netic field is solved analytically for both H1 and H2 heat transfer
cases. To the authors knowledge these results are new. Nusselt
numbers are computed and show the expected results - notably
convergence to the well known non-MHD values at low Hart-
mann number and saturation for high Hartmann number. In-
terestingly, in the H2 case for large aspect ratios where a > b,
the Nusselt number has a minimum as a result of the distorted
velocity distribution.

These results should prove useful for the validation of nu-
merical codes where heat transfer effects are important - partic-
ularly in the design of liquid metal coolant fusion blankets.
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Appendix A. The Shercliff Solution

The following Shercliff solution is valid for a rectangular
duct −a ≤ x ≤ a and −b ≤ y ≤ b non-conducting walls.

u (x, y) =
Hg
Re

∞∑
n=1

un (x) cos λny (A.1)

h (x, y) =
Hg
Re

∞∑
n=1

hn (x) cos λny (A.2)

un (x) =
kn

λ2
nb

1 − sinh pn2 a cosh pn1 x − sinh pn1 a cosh pn2 x

sinh
(
pn2 − pn1

)
a

(A.3)

hn (x) =
kn

λ2
nb

 sinh pn1 a sinh pn2 x − sinh pn2 a sinh pn1 x

sinh
(
pn2 − pn1

)
a

 (A.4)

pn1 = λ −
√
λ2 + λ2

n (A.5)

pn2 = λ +

√
λ2 + λ2

n (A.6)

λn =

(
n −

1
2

)
π

b
(A.7)

λ =
Ha
2

(A.8)

kn = 2
sin λnb
λn

(A.9)
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