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Abstract

The automated analysis of medical images plays an increasingly significant part in many clini-

cal applications. Image registration is an important and widely used technique in this context.

Examples of its use include, but are not limited to: longitudinal studies, atlas construction,

statistical analysis of populations and automatic or semi-automatic parcellation of structures.

Although image registration has been subject of active research since the 1990s, it is a chal-

lenging topic with many issues that remain to be solved. This thesis seeks to address some of

the open challenges of image registration by proposing fast and robust methods based on the

widely utilised and well established registration framework of B-spline Free-Form Deformations

(FFD).

In this work, a statistical method has been incorporated into the FFD model, in order to obtain

a fast learning-based method that produces results that are in accordance with the underlying

variability of the population under study. Several comparisons between different statistical

analysis methods that can be used in this context are performed. Secondly, a method to improve

the convergence of the B-Spline FFD method by learning a gradient projection using principal

component analysis and linear regression is proposed. Furthermore, a robust similarity measure

is proposed that enables the registration of images affected by intensity inhomogeneities and

images with pathologies, e.g. lesions and/or tumours.

All the methods presented in this thesis have been extensively evaluated using both synthetic

data and large datasets of real clinical data, such as Magnetic Resonance (MR) images of the

brain and heart.
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Chapter 1

Introduction

The analysis of medical images plays an increasingly significant part in many clinical appli-

cations. Patiens are nowadays imaged on a routine basis with a number of different imaging

systems. Patients are also monitored over time to assess disease development or response to

therapy. However, in order to be able to measure physiological and/or structural changes over

time, or to combine the complementary information that the different imaging systems produce,

it is necessary to perform image registration between the acquired images.

Image registration, also known as spatial normalisation, motion estimation and image align-

ment, is the process in which corresponding objects, structures or landmarks depicted in two

or more images are put into spatial correspondence. In medical image registration, the images

can come from different modalities such as X-rays, positron emission tomography (PET), ultra-

sound (US), magnetic resonance imaging (MRI), computed tomography (CT) or single-photon

emission computed tomography (SPECT). A common approach for solving this problem is to

consider one of the images as fixed and find the optimal spatial transformation that warps the

other image into correspondence with it. The fixed image is referred to as the target, study or

reference image, and the warped image is referred to as the source, moving, or template image.

Throughout this thesis, we will refer to these images as the target and source images.

1
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In a clinical context, the need of finding the optimal spatial transformation that places the

target and source images into alignment can have several causes. The most common motiva-

tions are fusion of images from different modalities, motion between different scans, different

patient positioning inside a scanner, disease progression, and the natural anatomical discrep-

ancies between two different individuals. This makes image registration a critical procedure

for many clinical workflows that involve medical images, including computer-aided diagnosis,

computer-assisted interventions, and therapy planning and monitoring. Further details on these

motivations will be given later in this chapter.

1.1 A generic image registration framework

Every image registration method can be decomposed into three main elements, which constitute

the building blocks of a registration framework: A transformation model, a similarity measure

and an optimisation. All these elements will be described in detail in the next chapter.

Transformation models characterise the spatial transformation being sought. An important

distinction between linear and non-linear (also known as non-rigid) transformation models

has to be made. While linear transformations models describe simple linear mappings such

as translations, rotations, scalings and shears, non-rigid transformation models can represent

mappings which are much more complex. The similarity measure aims to provide an estimation

of how “similar” the images are given the current transformation. This measure can be based,

for example, on points or surfaces within the images or, more commonly, on the intensity

information. The optimisation seeks the optimal transformation parameters that maximise

the similarity measure. These optimisation parameters can be regarded as being continuous or

discrete. With this in mind, an image registration algorithm can be described by the interaction

of the three building blocks in an iterative fashion, as shown in Figure 1.1.
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Figure 1.1: Framework of a generic image registration algorithm

1.2 Applications of medical image registration

1.2.1 Multimodal fusion

Different image modalities highlight different aspects of the imaged patient. For example, MR

images provide information of the soft tissues, whereas CT images emphasise denser structures

such as bones, as can be visualised in Figure 1.2. By fusing images from these two modalities a
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combined image is obtained, which is clinically more useful than any of the original images alone.

Another example of image fusion is to mix the anatomical information provided by MRI or CT

with functional information given by PET or fMRI, in order to have more information to assess

or diagnose diseases (see Figure 1.3). In order to be able to fuse two images, they have to be in

spatial correspondence. Thus, an image registration process between them is key. Applications

of medical image fusion include, but are not limited to: The study of Alzheimer’s Disease [20],

thermal ablation of prostate cancer [54], head and neck cancer treatment [213, 176, 152], breast

cancer diagnosis [23], pancreatic cancer diagnosis [137], lung cancer treatment [109], prostate

cancer brachytherapy [3, 159, 208, 207, 117, 138], rectal cancer diagnosis [64, 5], and computer-

assisted neurosurgery [153]. We refer the interested reader to a survey of medical image fusion

methods recently given by James and Dasarathy [104].

(a) (b)

Figure 1.2: Example of the different appearences of CT and MR images. (a) T2-weighted MR
image. (b) CT image.

1.2.2 Longitudinal studies

Longitudinal studies are aimed at the imaging of individuals at different points in time. The

image taken at the first point in time is usually called the baseline image, and the subsequent

scannings are referred to as follow-up images. As an example, Figure 1.5 shows baseline and

24-month follow-up MR images of the brain, together with the corresponding voxel-wise mea-

surement of volume change between both time points. By registering images of two different
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.3: Example of image fusion of an MR and a PET image using registration. (a)-(c)
MR image. (d)-(f) PET image (g)-(i) Fusion of MR image with PET image in green colour.

timepoints, a quantification of the changes occuring over that period of time can be estab-

lished. For example, brain atrophy is an important biomarker in neurodegenerative diseases

such as Alzheimer’s disease [230, 210, 103]. Other examples of clinically important quantifica-

tion performed with longitudinal studies are tumour progression [6, 72, 240, 229], analysis of

the amount and location of heart dyssynchrony [50] and measurement of myocardial mechanics
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[236].

(a) (b)

(c) (d)

Figure 1.4: Example of a baseline and 24-month follow-up image with their corresponding voxel-
wise measurement of volume change. (a) Baseline MR image. (b) Follow-up MR image. (c)
Difference image after affine registration. (d) Volume change scaled between 50% contraction
(blue) and 50% expansion (red).

1.2.3 Cross-sectional studies

Cross-sectional studies are mainly performed by means of computational anatomy, e.g., for

quantitative analysis of the shape variability and morphometry within a population. These

procedures usually involve the registration of a large group of subjects to a common template.

This allows clinicians and researchers to systematically investigate morphometric differences

across population groups and also permits the creation of so-called templates that represent

the average anatomy of the group. An average template of the brain computed from 820
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subjects including patients with Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI)

and healthy controls is shown in Figure 1.5.

(a) (b) (c)

Figure 1.5: An average atlas of the brain computed from 820 subjects including patients with
Alzheimer’s disease, Mild Cognitive Impairment and healthy controls. (a) Axial view. (b)
Coronal view. (c) Sagital view.

1.2.4 Segmentation through registration

Segmentation of anatomical regions of interest within medical images is of clinical interest.

One of the most common ways of automatically segment an image is to register it to an image

with pre-computed segmentations (usually carried out manually by an expert) and warp them

using the resulting transformations [242, 243]. The images with pre-computed segmentations

are usually refer to as atlases. Fusing techniques between several registrations are also often

utilised to obtain a more refined automatic segmentation [83, 11, 123]. Figure 1.6 shows an

example of segmentation fusion over 32 registrations using a simple majority vote scheme.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.6: Result of atlas fusion over 33 registrations using a simple majority vote scheme.
(a)-(c) Original target image. (d)-(f) Original target image with superimposed labels. (g)-(i)
Original target image with superimposed label contours.
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1.3 Main challenges of medical image registration

1.3.1 Computational challenges

Most medical applications which involve registration require the estimation of trasformations

that are non-rigid. Non-rigid image registration is usually a time-consuming process. Further-

more, the development of medical imaging acquisition techniques in recent years means that

nowadays 3D medical images have a number of voxels in the order of tens of millions. This

means that the underlying non-rigid transformations may need to be defined by a number of

parameters which is at least in the order of hundreds of thousands to produce sensible match-

ings. There is normally also a tradeoff between accuracy and speed, where a compromise has to

be made. This compromise tends to be application-driven. For example, image-guided surgery

usually requires real-time registrations, whereas computational anatomy or longitudinal stud-

ies can be performed during days or sometimes even weeks without compromising the clinical

applicability of the outcomes. Finally, a growing number of registration approaches based

on graphical processing units (GPUs) or CPU multicore paralellisation have been proposed

[190, 58].

1.3.2 Multimodality challenges

As mentioned before, different modalities in medical imaging are utilised to characterise different

aspects of the patient being imaged. Although this opens the possibility to fuse these different

types of information, this also poses great challenges from an image registration point of view.

This is because images from different modalities are usually acquired with different scanners

and thus at different points in time. Hence, the anatomical features of the images might have

different spatial arrangements due to motion (e.g. abdominal scans). Furthermore, different

modalities show different anatomical or functional properties of the patient being imaged, as

shown in Figure 1.7. This makes näıve intensity based registration methods unsuitable, since
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the fusion is not clinically relevant if the images are not correctly registered. The rise of

multimodal hybrid scanners (e.g. PET-CT or PET-MR scanners) which image the patient

using more than one modality at the same time has partially alleviated this problem. However,

there are still many clinical centres that rely on more than one scanner for diagnosis.

(a) (b) (c) (d)

Figure 1.7: Example of the same patient scanned with different image modalities. (a) T1-
weighted MR. (b) T2-weighted MR, (c) CT, (d) PET image. Images from the Cancer Imaging
Archive (public.cancerimagingarchive.net)

1.3.3 Ill-posedness

As previouly mentioned, image registration involves an optimisation on a search space of a

dimensionality that can be in the order of hundreds of thousands or even millions, if the

transformation to be estimated is non-rigid. This makes non-rigid registration an ill-posed

problem in the Hadamard sense [76]. Hadamard states three conditions for a problem to

be well-posed: The existence of a solution, the uniqueness of a solution, and the continuous

dependency of the solution on the initial conditions (a small change in the initial conditions

must lead to a small change in the solution). Non-rigid registration problems usually violate

the last two conditions. As a consequence, regularisation terms or models are needed in order

to reduce the space of solutions as much as possible and obtain stable results. However, even

though a substantial amount of research has been devoted to different regularisation models

[177, 132, 180, 201, 214], it still remains an open problem that has to be taken into account

when designing registration algorithms.

public.cancerimagingarchive.net
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1.3.4 Ambiguous correspondences

Ambiguous correspondences between two medical images arise when one of them depicts bi-

ological features not present in the other. For example, when registering a brain image of a

healthy subject with a brain image of a subject with brain pathology, such as lesions or tu-

mours. These ambiguous correspondences can be challenging image registration methods and

can lead to these methods performing unexpectedly in those areas. This is especially true for

intensity-based registration approaches. Figure 1.8 shows an example of a healthy brain and

another of a patient with traumatic brain injury (TBI). Note the presence of a considerable

area in the upper-left corner of the TBI subject that has not a clear correspondence in the

healthy brain.

(a) (b)

Figure 1.8: Example of ambiguous correspondence between a normal healthy brain and a brain
with traumatic brain injury (TBI). Note how the TBI subject’s anatomy deviates from that
of the healthy subject. (a) Healthy brain. (b) TBI brain. Images from the TBIcare study
(www.tbicare.eu)

1.3.5 Image acquisition artefacts

All medical image acquisition techniques can produce artefacts, such as noise, motion artefacts

and intensity inhomogeneities. As a consequence, image registration techniques must be de-

signed to be as robust as possible to these type of image acquisition artefacts. The following

sections review the most common types of artefacts in medical imaging.

www.tbicare.eu
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Noise

Noise is an inherent artefact in medical imaging. Even though the acquisition parameters

of a scanner may be tuned to minimise this artefacts, they are seldom completely removed.

Therefore, this issue has to be taken into account when designing image registration methods.

Figure 1.9 illustrates an MR image of the brain with a considerable amount of noise artefacts.

Figure 1.9: Example of noise in an MR image of the brain. Image registration methods,
especially gradient-based ones must take these type of artefacts into account.

Motion artefacts

The motion of patients inside the scanner may produce misalignment between acquisition slices,

which is usually problematic for registration algorithms. Furthermore, natural motion such as

cardiac or respiratory motion may also be troublesome. A rather extreme case is when scanning

the fetus inside the womb. This occurs since the fetus is often moving inside the womb while

being scanned. Figure 1.10 illustrates this issue. Note the severe slice misalignment in the

coronal and sagital views.

Intensity inhomogeneities

Intensity inhomogeneities correspond to a variation in intensity as a result of spatial position.

These variations in intensity can usually be modelled as a multiplicative bias field. This type of
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Figure 1.10: Example of motion artefact produced by the motion of the fetus inside the womb.
This type of artefact is produced by the movement of the fetus during acquisition. This usually
produces severe slice misalignment in the coronal and sagital views.

artefact is often produced by Magnetic Resonance (MR) scanners. The main causes for these

artefacts to occur is due to inhomogeneities of the magnetic field of the scanner and the patient’s

position. Intensity inhomogeneities can hamper the robustness and accuracy of intensity-based

registrations considerably, since the intensity profile in the images is not spatially consistent.

This issue can be seen in Figure 1.11.

(a) (b) (c)

Figure 1.11: Example of intensity inhomogeneities in MR images. (a) Image without inhomo-
geneities. (b) Image with inhomogeneities. (c) Bias field.

1.4 Thesis contributions

This thesis aims to provide methods that tackle some of the challenges of image registration

presented in the previous section. The main contributions of this thesis are given in chapters 4
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through 6 and are focused on providing novel methods for each of the building blocks in the im-

age registration framework, namely transformation model, similarity measure and optimisation.

These contributions are as follows:

� The development of a learning-based statistical registration method, which extends a

non-rigid transformation model to incorporate information in the form of a statistical

deformation model (SDM) that accounts for the mean and variability of deformations

across a population. The SDM is learned by applying statistical analysis techniques over

precomputed training transformation data. The learnt SDM is then utilised to drive

the registration in order to obtain deformations that are in accordance with the training

population and can be parameterised using significantly fewer degrees of freedom. The

proposed registration method is also considerably faster than most standard registration

methods. We also show that the SDM can encode information to better register important

landmarks. Comparisons between different method to learn the SDMs are also provided.

Parts of this chapter were previously reported in [170].

� A learning-based approach to improve the convergence of the optimisation of any

chosen parametric image registration method is proposed. From a set of training images

and their corresponding deformations, the proposed registration method learns offline a

projection from the gradient space of the similarity measure to the parameter space of

the chosen registration method using PCA dimensionality reduction and standard least

squares regression. The proposed learning-based gradients are subsequently used online

to approximate the optimisation of the energy functional for unseen images. A state-

of-the-art parametric approach is utilised as underlying registration method, but other

parametric methods can be used as well. This chapter is based on a previous 2D-only

version published in [171].

� A novel similarity measure based on normalised gradients for non-rigid registration

is proposed. This new similarity is robust in images with intensity inhomogeneities or

outliers (e.g. lesions or pathologies). We provide both theoretical and experimental proof
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of the robustness and evaluate the approach on manually segmented images, as well as im-

ages with real and simulated pathologies, and images with manually annotated landmarks.

Compared to commonly used similarity measures, we obtain significant improvements in

terms of overlap of anatomical structures for images with intensity inhomogeneities. We

also show that the proposed measure is robust to the presence of pathologies such as

tumours or lesions in the images being registered. A preliminary version of this work can

be found in [172].

1.5 Thesis Overview

Chapter 2 provides a detailed overview of the main components of image registration methods.

Examples of how some of these components are designed in different registration approaches

are also presented. Chapter 3 provides an extensive review of the state-of-the-art in non-

rigid medical image registration. Chapter 4 describes a learning-based statistical registration

method that requires substantially less degrees of freedom to parameterise deformations than

a standard registration method without compromising its accuracy, by constraining the de-

formation to comply with a statistical deformation model that accounts for the mean and

variability of a population of subjects. This method is evaluated on manually segmented and

landmark-annotated MR images of the brain, as well as on cardiac MR images. In Chapter

5, a learning-based registration method is proposed. This method improves the convergence

of standard registration approaches, by learning the projection of the energy gradient with

respect to the deformation field into parametric space using PCA dimensionality reduction and

standard least squares regression. We demonstrate this method on cardiac MR data as well

as on MR images of the brain. Chapter 6 outlines a similarity measure based on normalised

gradient fields. This similarity shows robustness to the presence of intensity inhomogeneities

as well as robustness to ambiguous correspondences due to the presence of tumours or lesions

in the images. We evaluate the proposed similarity on cardiac data, on manually segmented

and landmark-annotated MR images of the brain, on images with simulated tumours and on
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images of a patient with traumatic brain injury. Finally, Chapter 7 gives the conclusions,

future work and final remarks of this thesis.



Chapter 2

Background

As previously mentioned, image registration comprises three main aspects or building blocks:

(1) A transformation model that maps points in the target image into points in the source

image, (2) a measure of how “similar” the two images are given the current transformation

and, (3) an optimisation strategy for maximising the similarity functional as a function of the

transformation parameters. In this chapter we give a detailed overview of each one of these

components of image registration.

2.1 Transformation models

During the process of image registration, the spatial transformation between two images is iter-

atively estimated. This transformation maps every point x = (x, y, z)> of the target image I0 to

its corresponding point y = T(x, y, z) = (u, v, w)> in the source image I. This correspondence

is constrained to be functionally and/or anatomically meaningful. The mapping T allows the

intensity of the source image at point y to be estimated (e.g. via interpolation) and associated

with the intensity at point x of the target image. If this process is performed for every voxel in

the target image, a warped or transformed version of the source image IT
1 = I ◦T is obtained. If

the spatial transformation is the optimal one, we say that image I is registered to image I0 and

17
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IT
1 is the “registered version” of I. It is important to bear in mind that the point y does not

necessarily coincide with a discrete voxel location. Thus, an interpolation of the source image

intensities around y must be performed in order to obtain the intensity that will be associated

to the target point x. An example of a transformation between two MR images of the brain

can be seen in Figure 2.1.

Figure 2.1: A point x in a target image I0 is mapped onto its corresponding point y = T(x) on
a source image I by applying the transformation T. The warped image IT

1 is then obtained by
interpolation in the neighbourhood of y. In this example the registration was performed only
in the brain area.

In addition to the identity transformation, there are three generic classes of geometric transfor-

mations that can be used to represent the underlying correspondences: rigid transformations,

affine transformations and non-rigid transformations. Figure 2.2 shows an example of these
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transformation types, which will be discussed in more detail in the following.

(a) Identity (b) Rigid (c) Affine (d) Non-rigid

Figure 2.2: Different types of transformations applied to a square. Figure adopted from [77].

2.1.1 Rigid transformations

Rigid transformations can be represented by the application of rotations and translations.

Under this type of transformation, lengths and angles are preserved. In the 2D case, images

are embedded in a plane, thus the only rotation that has to be considered is the rotation about

the axis that is perpendicular to that plane. In the following, we use homogeneous coordinates

to represent points, in order to represent transformations using matrix notation. In this type

of coordinates, an N-dimensional Euclidean point aeuc = (a1, · · · , aN) is represented by a N+1-

dimensional vector ahom = (b · a1, · · · , b · aN , b), where b 6= 0. Thus, ahom is the homogeneous

coordinate of aeuc. In the following, we adopt the most common choice for b, which is b = 1.

An anti-clockwise rotation of the xy-plane about the z -axis by an angle γ is given by:

RR2

z (γ) =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1


and translations are represented by a vector that represents a point in R2:

vR2
=


tx

ty

1
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Hence, the rigid transformation that maps a point (x, y, 1)T into a point (u, v, 1)T can be written

in matrix form as 
u

v

1

 =


cos γ − sin γ tx

sin γ cos γ ty

0 0 1



x

v

1


It can be seen that this transformation can be represented using three parameters: γ, tx, ty.

The 3D case of rigid transformations is more complex, since there are a greater number of

degrees of freedom for rotations and translations. Rotations can be decomposed into rotations

about each of the x -, y- and z -axes, which are called roll, pitch and yaw, respectively; while

translations need three parameters to be represented. The rotations about each coordinate axis

are given by

RR3

x (α) =



1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 1



RR3

y (β) =



cos β 0 sin β 0

0 1 0 0

− sin β 0 cos β 0

0 0 0 1



RR3

z (γ) =



cos γ − sin γ 0 0

sin γ cos γ 0 0

0 0 1 0

0 0 0 1


and translations are represented by
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vR3
=



tx

ty

tz

1


Without loss of generality, if we consider that the x -, y- and z -axes as fixed, i.e., not affected

by rotations, a 3D rotation can be represented by considering a rotation with respect to the

z -axis, then a rotation with respect to the y-axis, and finally a rotation with respect to the

x -axis

RR3

(α, β, γ) = RR3

x (α)RR3

y (β)RR3

z (γ)

Hence, the rigid transformation that maps a point (x, y, z, 1)T into a point (u, v, w, 1)T can be

written as



u

v

w

1


=



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1





x

y

z

1


where

r11 = cos β cos γ

r12 = − cosα sin γ + sinα sin β cos γ

r13 = sinα sin γ + cosα sin β cos γ

r21 = cos β sin γ

r22 = cosα cos γ + sinα sin β sin γ

r23 = − sinα cos γ + cosα sin β sin γ

r31 = − sin β

r32 = sinα cos β

r33 = cosα cos β
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It can be seen that this transformation can be represented using 6 parameters: α, β, γ, tx, ty,

tz.

There are also other possible parameterisations that can be used to represent spatial rotations.

One of them are quaternions [78, 150]. The advantages of using quaternions compared to Euler

angles (α, β and γ) are that compositions between them are simpler and they do not have the

problem of a gimbal lock [228] ocurring. A gimbal lock corresponds to the loss of one degree

of freedom when one or more of the rotation matrices become the identity transform. For

example, Rx(α) coincides with the identity transform when α = 0.

2.1.2 Affine transformations

In addition to rotations and translations, affine transformations account for scalings and shears.

Under this type of transformation, parallel lines are preserved, but lengths and angles may vary.

As rotations, scalings can be represented as a composition of individual scalings on each axis.

The 2D case can be written as

SR2

(sx, sy) =


sx 0 0

0 sy 0

0 0 1


and scaling in 3D can be expressed as

SR3

(sx, sy, sz) =



sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1


where sx, sy and sz are the scalings with respect to the x -, y- and z -axes, respectively.

In addition, shears in 2D with respect to the x -axis in the xy-plane can be represented as
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HR2

xy−x(δ) =


1 tan δ 0

0 1 0

0 0 1

 .

Note that shears with respect to the x -axis in the xy-plane are sufficient to represent any shear

in 2D, since a shear with respect to the y-axis in the xy-plane can be computed as:

HR2

xy−y(δ) = RR2

z (π/2)HR2

xy−x(−δ)RR2

z (−π/2). (2.1)

Hence, in general, the affine transformation that maps a 2D point (x, y, 1)T into a point (u, v, 1)T

can be written as the multiplication of three matrices: one that accounts for rotations and

translations, another that accounts for shearing and a last one that accounts for scaling:
u

v

1

 =


cos γ − sin γ tx

sin γ cos γ ty

0 0 1




1 tan δ 0

0 1 0

0 0 1



sx 0 0

0 sy 0

0 0 1



x

y

1


thus, it can be represented using 6 parameters: γ, tx, ty, δ, sx, sy.

In the 3D case, the shears with respect to the x -axis in the xy-plane, with respect to the x -axis

in the xz -plane, and with respect to the y-axis in the yz -plane can be respectively represented

as

HR3

xy−x(δ) =



1 tan δ 0 0

0 1 0 0

0 0 1 0

0 0 0 1



HR3

xz−x(µ) =



1 0 tanµ 0

0 1 0 0

0 0 1 0

0 0 0 1
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HR3

yz−y(ν) =



1 0 0 0

0 1 tan ν 0

0 0 1 0

0 0 0 1


where δ, µ and ν are the shear angles in the xy-, xz - and yz -planes, respectively. Analogous to

the 2D case, the other possible 3D shears can be computed as:

HR3

xy−y(δ) = RR3

z (π/2)HR3

xy−x(−δ)RR3

z (−π/2)

HR3

xz−z(µ) = RR3

y (π/2)HR3

xz−x(−µ)RR3

y (−π/2)

HR3

yz−y(ν) = RR3

x (π/2)HR3

yz−z(−ν)RR3

x (−π/2).

(2.2)

Without loss of generality, an arbitrary 3D shear can be represented as a matrix multiplication

of 3 individual shears as:

HR3

(δ, µ, ν) = HR3

yz−z(ν)HR3

xz−x(µ)HR3

xy−x(δ)

=



1 tan δ tanµ 0

0 1 tan ν 0

0 0 1 0

0 0 0 1


.

(2.3)

Hence, in general, the affine transformation that maps a 3D point (x, y, z, 1)T into a point

(u, v, w, 1)T is given by
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u

v

w

1


=



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1





1 tan δ tanµ 0

0 1 tan ν 0

0 0 1 0

0 0 0 1





sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1





x

y

z

1


and can be represented using 12 parameters: γ, α, β, tx, ty, tz, δ, µ, ν, sx, sy, sz. This can be

summarised as 

u

v

w

1


= A ·



x

y

z

1


or y = Ax,

with matrix A containing the 12 parameters of the affine transformation.

2.1.3 Parametric non-linear transformations

In this section, we describe parametric transformation models that deform the images in a

non-linear (more commonly known as non-rigid) fashion and, hence, are defined by a greater

number of parameters or degrees of freedom than rigid or affine transformations. In the case of

medical imaging, the need of this type of transformations becomes apparent when considering

that the underlying deformation of organs (due to respiration or progression of pathology, for

example) normally does not follow a linear pattern, i.e, different regions in the image may

deform in different ways. Moreover, this difference in deformation becomes even more apparent

when performing registration of images from different subjects.

Thin-plate splines transformations

Thin-plate splines (TPS) are interpolating and smoothing functions which are a generalisation

of 1D splines. They were first developed for the interpolation of scattered data [51, 143]. In the
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context of medical image registration, the use of TPS was first proposed by Bookstein [26, 27].

Since then many other researchers have also used them [178, 179, 42, 247, 173]. The main idea

of TPS is to find a smooth interpolating function that minimises the bending energy applied

to a thin plate of metal. A TPS tranformation function for a point x = (x, y, z)> is given by

one TPS for each x−, y− and z− component

T ξ(x) = Aξ0 + Aξ1 x+ Aξ2 y + Aξ3 z +
N∑
i=1

wξi U(|x− Φi|), ξ ∈ {x, y, z} (2.4)

where Aξi correspond to affine transformation coefficients and Φi are the locations of N land-

marks (or control points) in the target image, at which the radial basis functions (RBFs) U are

centered. These locations satisfy the interpolation condition:

T(Φi) = Φ
′

i, (2.5)

where Φ
′
i are the locations of the landmarks Φi in the source image.

The RBFs U can be written as:

U(s) =

 |s|
2 ln(|s|) in 2D

|s| in 3D
. (2.6)

In 3D, equation (2.5) provides 3N interpolation equations U . However, there are 3N + 12

unknown coefficients (3N non-rigid coefficients w and 12 affine coefficients A). In order to be

able to solve the system of linear equations, twelve additional constraints are incorporated as

follows:

� The sum of forces applied to the plate per component (non-rigid coefficients) is zero:

N∑
i=1

wξi = 0, ξ ∈ {x, y, z} (2.7)
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� The moments with respect to each component are zero:

N∑
i=1

Φζ
i w

ξ
i = 0, ξ ∈ {x, y, z}, ζ ∈ {x, y, z}. (2.8)

In matrix form, the TPS in 3D can be formulated as:

 U Φ

Φ> 0


W

A

 =

Φ
′

0

 , (2.9)

where A is the 4×3 matrix of affine coefficients, W is the N×3 matrix of non-rigid coefficients,

Φ is the N × 4 matrix of landmark locations in the target image (with the first column being

a column of 1s), Φ′ is the N × 3 matrix of landmark locations in the source image, and U is

an N ×N matrix such that uij = U(|Φi − Φj|).

Rohr et al. [179] extends the interpolating thin-plate splines approach by considering the use of

approximating thin-plate splines instead. The use of approximating TBS relaxes the condition

of exact landmark matching of interpolating thin-plate splines (equation 2.5), in order to allow

the registration to account for landmark localisation errors. In matrix form, the approximating

TBS can be formulated as: U + λS−1 Φ

Φ> 0


W

A

 =

Φ
′

0

 . (2.10)

Here, λ is a tradeoff parameter between interpolation and approximation of landmark locations

and S = diag{1/σ2
1, · · · , 1/σ2

N}. In this formulation, σi represents the uncertainty on the

location of landmark i.

A disadvantage of the radial basis function of equation 2.6 is their global support. This means

that purely local deformations are not easy to model. To overcome this issue, Fornefett et al.
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[60] propose to use the locally supported ψ31-functions of Wendland to define the RBS U :

U(s, ρ) =

(
1− |s|

ρ

)4(
4|s|
ρ

+ 1

)
. (2.11)

Here, ρ is a radius parameter that controls the function support. This parameter can be fixed or

adaptively computed for different clusters of landmarks according to cluster shape, as proposed

by Shusharina and Sharp [195].

Free-form deformations (FFD)

Free-form deformations (FFD) are a powerful and efficient transformation model introduced in

the context of computer graphics by Sederberg and Parry [189]. They are parameterised by a

regular lattice of uniformly spaced control points. One of its main characteristics is that (in

contrast to thin-plate splines) the displacements in each image point can be computed using

blending functions with local support, i.e., only a small subset of the control points is needed

for the computation. This provides a computationally efficient alternative, even when large

number of control points are used to parameterise the transformation.

Let Φ denote a uniform lattice of size N = nx × ny × nz and x = (x, y, z) a point in the target

coordinate space. FFD have the following form:

T(x) = x +
∑
l

∑
m

∑
n

pl,m,n(s, t, u)Φi+l,j+m,k+n, (2.12)

where pl,m,n corresponds to the chosen blending function and i, j, k are given by

i = b x
nx
c − 1 j = b y

ny
c − 1 k = b z

nz
c − 1. (2.13)

One possible choice of blending function is the Bernstein polynomial as in [189]. In this case,

bl,m,n corresponds to the trivariate tensor product of Bernstein polynomials:
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T(x) = x +
3∑
l=0

3∑
m=0

3∑
n=0

Pl(s)Pm(t)Pn(u)Φi+l,j+m,k+n, (2.14)

where 0 < {s, t, u} < 1 are the coordinates of x in a local coordinate system on a parallelpiped

region [189] and

Pr(s) =

(
3

r

)
sr(1− s)3−r (2.15)

are the 3rd order Bernstein polynomials (see Figure 2.3).
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Figure 2.3: 3rd order Bernstein polynomials from equation (2.15).

An alternative choice of blending function are the locally supported cubic B-splines [125]. Here,

bl,m,n is expressed as the 3D tensor product of 1D cubic B-splines

T(x) = x +
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)Φi+l,j+m,k+n, (2.16)

where 0 < {u, v, w} < 1 are the relative positions of x in lattice coordinates

u =
x

nx
− b x

nx
c v =

y

ny
− b y

ny
c w =

z

nz
− b z

nz
c. (2.17)
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and Br corresponds to the r-th basis function of the B-spline (see Figure 2.4)

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6,

(2.18)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
B

0

B
1

B
2

B
3

Figure 2.4: B-spline basis functions from equation (2.18).

The use of B-spline blending functions gained significant interest in medical imaging [46, 183,

120, 181, 188]. Furthermore, several extensions to the FFD B-spline model have been proposed

[187, 226, 156, 55, 199, 194].

The transformation models in equations (2.14) and (2.16) assume both target and source images

to be defined in the same coordinate space. In medical imaging this is usually not the case,

hence a pre-registration step using a rigid or affine transformation model is usually carried out

to transform the source image into the target coordinate space. To account for this, Rueckert et
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al. [183] propose to use a transformation model that is the sum of a global affine tranformation

and a local B-spline FFD displacement

T(x) = Tglobal(x) + Tlocal(x), (2.19)

where

Tglobal(x) = Ax, (2.20)

and

Tlocal(x) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)Φi+l,j+m,k+n. (2.21)

The registration proposed in [183] is usually performed in a multiresolution coarse-to-fine fash-

ion. The idea behind this algorithm is to first use an FFD with a large control point spacing to

capture global deformations. Then, the resulting FFD mesh is subdivided into an equivalent

mesh with half the control point spacing [61] to capture more localised deformations. This

process is repeated for a user-specified number of resolution levels. To make the registration

faster, an image pyramid is used in which the images are blurred and downsampled according

to the resolution level. Figure 2.5 shows an example of a source image being warped into the

target coordinate space via a multiresolution B-spline FFD.

It is important to mention that although B-spline blending functions produce a smooth interpo-

lation between control points, they do not prevent tearings and foldings in the transformation.

This means that the resulting transformation might not be one-to-one. Therefore, the transfor-

mation may not be realistic and thus suitable for medical applications. Hence, regularisation

terms like the ones discussed in Section 2.1.5 or hard constraints [181] are additionally needed.

In this section, we described the most common and widely used types of parametric transfor-

mations. Other types of parametric transformations include, but are not limited to: discrete

cosine transforms [14], wavelet-based transformations [232, 66, 32], Riesz basis of polynomial

splines [151, 154, 155], piecewise affine transformations [88, 238, 165, 38, 41, 31] and poly-affine
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Figure 2.5: Result of non-rigid registration using multilevel B-spline FFDs. Left column: Target
image. Centre column: Source image. Right column: Warped image with FFD mesh overlaid.
The registration was masked to be performed only in the brain area.

transformations [10, 8].
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2.1.4 Non-parametric transformations

Although parametric transformations have the great advantage of requiring a substantially

lower number of degrees of freedom, this comes at the cost of having to evaluate the parametric

transformation at every voxel of interest. This can be less or more expensive depending on

the particular type of parametric transformation that is being used. In addition, parametric

deformation models may not always be able to represent the desired transformation accurately.

An alternative formulation is to utilise non-parametric non-rigid transformations, which are

characterised by a dense set of displacements or velocities, one for every voxel in the target

image. As a consequence, the transformation is defined only for the discrete voxel locations. To

compute the transformation at locations between voxels, an interpolation scheme is required.

A general differentiation can be made for non-parametric transformations, which can be either

based on the small or large deformation models.

Small deformation model

In the small deformation framework, the transformation for every voxel is defined as the sum

of the identity transformation Id(x) = x and a displacement vector u(x)

T(x) = Id(x) + u(x). (2.22)

It is clear that this model is of a highly localised nature, which renders the problem of finding

the optimal displacement field an ill-posed problem. In order to constrain the space of possible

displacement fields, a regularisation of the displacements is required. Details on a number of

different regularisation schemes will be given in section 2.1.5.

An important limitation of this framework is that it is intrinsically limited in its ability to

produce large diffeomorphic deformations, i.e., differentiable one-to-one mappings with a dif-

ferentiable inverse. In this model, the combination of N transformations is performed by adding
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the identity transformation and the sum of the individual displacements

T(x) = Id(x) +
N∑
i=1

ui(x). (2.23)

However, even if all the individual transformations are diffeomorphic, the resulting combi-

nation may no longer be diffeomorphic. Another problem is the estimation of the inverse

transformation. In the small deformation model, this estimation is performed by subtracting

the deformation from the identity

T−1(x) = Id(x)− u(x). (2.24)

However, this is in general a valid approximation only for very small deformations.

Large deformation model

The large deformation framework serves as an alternative in order to overcome the aforemen-

tioned limitations of the small deformation framework. In this framework, transformations are

modelled as compositions of other transformations. The idea in the large deformation model

is that the set of transformations should form a group under composition. Usually, this set is

chosen to be the set of diffeomorphic transformations. The combination of N transformations

is thus modelled as:

T(x) = TN ◦ · · · ◦T1 ◦ x = (Id+ uN) ◦ · · · ◦ (Id+ u1) ◦ x = y. (2.25)

Similarly, the inverse transformation is obtained by simple backward composition:

T−1(y) = T−1
1 ◦ · · · ◦T−1

N ◦ y = x. (2.26)

One way to characterise the individual composed transformations is through integration of
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time-varying velocity fields. When using such model, the transformation T(x) = y is modelled

as a time-dependant flow w(x, t), where w(x, 0) = x and w(x, 1) = y. This flow is defined as

the one satisfying the following ordinary differential equation (ODE):

∂w(x, t)

∂t
= v(w(x, t), t). (2.27)

As mentioned before, the displacements are obtained by integrating over the time-varying

velocity field v(w(x, t), t))

T(x) =

∫ 1

0

v(w(x, t), t)dt. (2.28)

A common approach for computing this integral is to use Euler integration

w(x, t+ δ) = w(x, t) + δv(w(x, t), t) (2.29)

where δ is the time step used for the integration.

One of the main drawbacks of the using time-varying velocity fields is that they are very memory

consuming and expensive to compute and evaluate. An alternative is to use stationary velocity

fields, i.e., velocity fields that do not depend on time. In this case, the ODE becomes:

∂w(x, t)

∂t
= v(w(x, t)). (2.30)

To model deformations using stationary velocity fields, Arsigny et al. [9] provide a mathematical

framework based on Lie Group theory, where the exponential of a (smooth enough) vector field

exp(V) is the flow at time 1 of the stationary ODE ẋ = V(x). Hence, the sought diffeomorphic

deformation field w(1) can be expressed as

w(1) = exp(v), (2.31)

where v correspond to the stationary velocity field. A very attractive property of this formula-
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tion is that the exponentiation can be very efficiently performed using the scaling and squaring

algorithm [147, 9] as follows:

w(1/2N) = Id+ v/2N

w(2/2N) = w(1/2N) ◦w(1/2N)

w(4/2N) = w(2/2N) ◦w(2/2N)

...

w(1) = w(2N−1/2N) ◦w(2N−1/2N).

(2.32)

Here, N is chosen so that v/2N is close enough to zero, depending on the desired accuracy.

Another appealing property of the framework is that the inverse transformation can be com-

puted in a similar fashion:

w(−1/2N) = Id− v/2N

w(−2/2N) = w(−1/2N) ◦w(−1/2N)

w(−4/2N) = w(−2/2N) ◦w(−2/2N)

...

w(−1) = w(−2N−1/2N) ◦w(−2N−1/2N).

(2.33)

Similarly to the small deformation framework, a regularisation approach is still needed when

using the large deformation model, but this time the regularisation is performed on the velocity

field vt rather than the displacement field. One of such method is the fluid regularisation

described in section 2.1.5.

2.1.5 Regularisation

Regularisation responds to the need of constraining the space of transformations to those that

pose certain desired properties, depending on the particular application. In the case of rigid and

affine transformations, explicit regularisation is often not performed, due to the very reduced
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number of degrees of freedom of these models. However, when using non-rigid models (either

parametric or non-parametric) the number of degrees of freedom is increased significantly,

making regularisation a key element to ensure the well-behavedness of the registration problem.

Elastic regularisation

Elastic regularisation was first proposed by Broit [30] and then extended to a coarse-to-fine

approach by Bajcsy and Kovačič [18]. This model tackles a linear elastostatics problem where

the images are viewed as flexible sheets of elastic material such as rubber. In such elastic

materials, any external force applied to them is counteracted by an internal force resisting

deviations from the equilibrium. The magnitude and direction of the internal forces depend

on the properties of the material. The images are deformed until an equilibrium between the

external and internal forces is reached. If µ and λ are the elastic constants of the material, the

equilibrium solution satisfies the Navier’s displacement equation at each point:

µ∇2u + (λ+ µ)~∇(~∇ · u) + f = 0. (2.34)

Here, u is the displacement field and f corresponds to the external force used to drive the

registration and is chosen to be the gradient of a similarity measure between the target and

source images. The PDEs of equation (2.34) can be solved using finite differences. Alternatively,

a Bayesian formulation derived from a variational equivalent of the linear elastostatics problem

can be used [65].

A further extension to the elastic model was proposed by Davatzikos [45]. In this model,

spatially-varying elastic constants of the material are incorporated to allow different anatomical

structures to deform differently.
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Fluid regularisation

Elastic regularisation penalises large deformations, since the magnitudes of the internal forces

increase monotonically with the strain. Furthermore, the elastic model is derived using the

small deformation framework described in section 2.1.4. These limitations motivated the use

of fluid transformations to accommodate large deformation kinematics [36]. In this approach,

images are modelled as a highly viscous fluid allowing to smoothly recover large and small

(localised) deformations. Deformations are described using an Eulerian frame of reference,

which specifies the time evolution of positions and velocities at fixed points. The equation

governing the model is given by

µ∇2v + (λ+ µ)~∇(~∇ · v) + f = 0 (2.35)

where f corresponds to the force used to drive the registration (as in the elastic case). Note

that equation (2.35) resembles equation (2.34), except that λ and µ represent coefficients of

viscosity and that a time-varying velocity field is used, as described in section 2.1.4. In the

approach of Christensen et al. [36], equation (2.35) is solved using successive overrelaxation

(SOR) [202].

The bottleneck of the algorithm is solving equation (2.35). An alternative approach to solve the

PDE using a convolution filter was proposed by Bro-Nielsen [29]. This algorithm is reported to

be at least an order of magnitude faster, but requires the coefficients of viscosity to be constant

over the whole volume, which is not always the case. Hence, when modelling fluids with

spatially-varying viscosity (e.g. [129]), conventional numerical schemes like SOR are required.
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Diffusion regularisation

Diffusion regularisation is one of the simplest regularisation models [4, 209]. It approximates

the energy of a membrane subjected to stretching forces

Rdiffusion =

∫
R3

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2

dx. (2.36)

This regularisation energy is very simple to compute, since it is based solely on the first-order

gradients of the displacement u.

Curvature regularisation

Another commonly used regularisation model is curvature regularisation [225]. It is also com-

monly referred to as bending energy [219] or thin-plate spline regulariser [26], since it approxi-

mates the energy of a thin plate of metal which is subjected to bending deformations [43]. It

is given by

Rcurvature =

∫
R3

(
∂2u

∂x2

)2

+

(
∂2u

∂y2

)2

+

(
∂2u

∂z2

)2

+ 2

[(
∂2u

∂xy

)2

+

(
∂2u

∂xz

)2

+

(
∂2u

∂yz

)2
]
dx. (2.37)

A useful property of curvature regularisation is that it uses only second-order derivatives of

u. Therefore, only penalises non-rigid transformations, since it is zero for any rigid or affine

transformation.

Volume preserving regularisation

The observation that many tissues in the human body are approximately incompressible for

small deformations and short time periods motivated the introduction of volume preserving
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regularisation [177]. This regularisation depends on the determinant of the Jacobian matrix of

the transformation:

J(x) = detJT(x) = det


∂Tx(x)
∂x

∂Tx(x)
∂y

∂Tx(x)
∂z

∂Ty(x)

∂x

∂Ty(x)

∂y

∂Ty(x)

∂z

∂Tz(x)
∂x

∂Tz(x)
∂y

∂Tz(x)
∂z

 , (2.38)

where T(x) = (u, v, w). According to the value of the determinant, it is possible to determine

whether the deformation is locally an expansion or contraction:

J(x) =


> 1 Volume expansion

= 1 No volume change

< 1 Volume compression

(2.39)

If the value of the determinant is zero, the transformation is no longer a one-to-one diffeomorphic

mapping. If the value of the determinant is negative, folding occurs and topology is no longer

preserved. The volume preserving regularisation term is given by

Rvolume =

∫
R3

| log(J(x))| dx. (2.40)

As pointed out in [177], an alternative volume preserving term is:

Rvolume =

∫
R3

|J(x)− 1| dx. (2.41)

However, this alternative does not pose the appealing property of the regularisation in Equation

(2.40) of allowing to equally penalise compressions and expansions. To verify this property, one

can observe that an expansion by a factor of s applied on an object with volume V yields the

same regularisation penalty than a compression by the same factor on the same volume, since

| log(sV )| = | log(V
s

)|.
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Rigidity regularisation

Loeckx et al. [132] proposes to use a local rigidity constraint for regularisation. It is based on

the observation that for a transformation to be locally rigid at a specific location (e.g. bony

structures), the Jacobian matrix at that position must be orthogonal, i.e., the product of the

Jacobian matrix with its transpose yields an identity matrix I3×3. The regularisation constraint

is thus formulated as:

Rrigidity =

∫
R3

w(x)‖JT(x)JT(x)> − I3×3‖F dx, (2.42)

where ‖ · ‖F denotes the matrix Frobenius norm. The voxel-wise weighting function w(x)

allows different structures to exhibit different amounts of influence on the regularisation. The

weighting can be obtained by simple thresholding or more advanced segmentation techniques

like level-set segmentation or by performing simultaneous segmentation and registration. A

similar rigidity regularisation approach with no spatially adaptive weighting was presented by

Ruan et al. [180]. This approach uses the square of the Frobenius norm as penalty function.

Finally, in the work by Staring et al. [201] a rigidity penalty term for regularisation is also

proposed. This term is the sum of squared affinity, orthogonality and properness conditions.

2.2 Similarity measures

In image registration, a similarity (or dissimilarity) measure produces an estimation of how

“similar” the target image and the transformed source image are. The goal of image registration

is to find a transformation T chosen appropriately for the particular application that, when

applied to the source image, maximises (or minimises) this similarity.
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2.2.1 Point-based similarity measures

In order to be able to use point-based similarity measures, two sets of corresponding points

(one for each image) have to be identified. These points may be defined by external markers

or landmarks that are introduced to the images during acquisition, i.e., they are physically

placed on the object being imaged. Another possibility is to use internal markers or landmarks

that describe anatomical features within the images. These internal markers can be manually

annotated or automatically detected.

Let pi,qi, i ∈ {1, 2, ..., N} be two sets of N corresponding points located on the target and

source images, respectively. Point-based similarities seek to minimise the mean weighted dis-

tance between corresponding points

S =
1

N

N∑
i=1

wiD(T(pi),qi), (2.43)

where wi is a weighting term that represents the degree of confidence on which the corresponding

points have been located. D is a distance function, usually D(a,b) = ‖a−b‖2, although robust

functions can be used as well [95, 33, 2].

2.2.2 Voxel-based similarity measures

One of the main drawbacks of point-based similarities is that internal or external landmarks are

not always available. This is because the task of defining these landmarks can be very tedious

and time-consuming. Furthermore, automatically annotated landmarks are usually not very

reliable, since images commonly have ambiguous information and it is not easy to reliably and

accurately detect them. In addition, landmarks are usually very sparsely scattered and do not

provide dense spatial information. For these reasons, monomodal voxel-based similarities have

been widely used in the context of medical image registration. The idea of these similarities is

to use the intesities of every voxel in the target domain Ω to provide a measure of similarity
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between the target image I0 and transformed source image IT
1 = I ◦T.

Sum of squared differences (SSD)

One of the most widely used similarity measures [24, 212, 223] is the squared sum of intensity

differences (SSD). For a target image and a source image I, this measure is defined as

SSD(I0, I
T
1 ) =

1

‖Ω‖
∑
x∈Ω

(I0(x)− IT
1 (x))2. (2.44)

This measure only includes voxels within the overlap of both images. Note that SSD is actually

a measure of dissimilarity between the images.

Sum of absolute differences (SAD)

A more robust alternative to SSD is the sum of absolute differences (SAD) [94, 77]. This

similarity measure, does not penalise large deviations in intensity as strongly as SSD does.

Hence, it exhibits greater robustness against outliers. SAD is defined as

SAD(I0, I
T
1 ) =

1

‖Ω‖
∑
x∈Ω

|I0(x)− IT
1 (x)|. (2.45)

One of the main reasons why this similarity is not extensively used in medical image registration

is because it is not a continuously differentiable function. This makes it unsuitable for gradient-

based optimisation schemes.

Normalised cross-correlation (NCC)

Another measure commonly used in medical image registration is normalised cross correlation

(NCC) [126, 186]. This measure also includes only the voxels that are within the overlap of
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both images and is defined as

NCC(I0, I
T
1 ) =

∑
x∈Ω(I0(x)− Ī0)(IT

1 (x)− ĪT
1 )√∑

x∈Ω(I0(x)− Ī0)2

√∑
x∈Ω(IT

1 (x)− ĪT
1 )2

, (2.46)

where Ī0 and ĪT
1 denote the average intensity of the target and transformed source image,

respectively. This measure has values in the [0, 1] range and is invariant to linear intensity

scalings.

2.2.3 Multimodal similarities

All the similarity measures described so far are mono-modality measures that assume that the

intensities in the target and source images are linearly related. The main drawback of the

monomodal voxel-based similarities is that they cannot handle multimodal images, i.e., images

taken from different image aquisition systems, e.g. MR, CT and PET. This issue motivated the

use of similarity measures that are robust to complex intensity changes, such as local normalised

cross-correlation and entropy-based similarity measures derived from information theory.

Local normalised cross-correlation (LNCC)

One such multi-modality similarity measure is local normalised cross-correlation (LNCC) and

has been proposed in the work by Avants et al. [16]. In addition to being suitable for multimodal

registration, this measure is also robust against slowly varying local intensity inhomogeneities.

LNCC is defined as

LNCC(I0, I
T
1 ) =

1

‖Ω‖
∑
x∈Ω

NCC(NI0(x),NIT1 (x)), (2.47)

where NI(x) correspond to a cubic patch from image I and centered at position x.

An alternative way of computing the LNCC measure was proposed by Lorenzi et al. [134]. In
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this formulation, the LNCC is given by:

LNCC(I0, I
T
1 ) =

∑
x∈Ω

I0(x) · IT
1 (x)√

(I0(x))2 · (IT
1 (x))2

, (2.48)

where I(x) = Gσ ∗ I(x) corresponds to the local mean image defined by convolution with a

Gaussian kernel of size σ.

Joint entropy (JE)

Another multimodal similarity measure is the joint entropy of images I0 and IT
1 [204]. It

measures the common or shared information between both images. Maximising this common

information aims at maximising the alignment. In order to be able to compute the value of an

entropy-based similarity measure, a 2D joint histogram H has to be constructed. This joint

histogram contains the occurence of each pair of intensities at the same locations (intensities

from I0(x) and from IT
1 (x)) and is normalised by the total number of occurrences to contain

pair-distribution probabilities. The joint histogram can be filled in a näıve way by adding each

occurence as a 1 and then normalise. Alternatively, one can use a partial volume approach,

where a weight between 0 and 1 is added to the joint histogram according to the transformation

[136]. A further possibility is to perform a Parzen window smoothing of the normalised näıvely

filled joint histogram [141]. Figure 2.6 shows an example of two smoothed joint histograms.

Let N I0 and N IT1 be the user-defined number of histogram bins for I0 and IT
1 , respectively.

Then, the joint entropy can be computed using the Shannon formula for entropy [191]:

H(I0, I
T
1 ) = −

NI0∑
t=1

NIT1∑
s=1

P (t, s) logP (t, s), (2.49)

where P (t, s) = H(t, s) is the probability of an intensity in I0 coming from histogram row t

being aligned with an intensity in IT
1 coming from histogram column s.
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Figure 2.6: Joint histograms in monomodal and multimodal cases. A Parzen window approach
[141] has been used to smooth the histograms. Top row: Monomodal MR-MR. Bottom row:
Multimodal MR-PET

Mutual information (MI)

The joint entropy measure can yield values which are close to the optimum, even when a very

poor alignment between the images is observed. To overcome this issue Maes et al. [136] and

Viola and Wells [224] propose the use of mutual information (MI) instead. Mutual information

takes into account the joint entropy, but also the marginal entropies for each image. These

marginal entropies are given by

H(I0) = −
NI0∑
t=1

P (t) logP (t) (2.50)

H(IT
1 ) = −

NIT1∑
s=1

P (s) logP (s) (2.51)
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where P (t) =
∑NIT1

s=1 P (t, s) and P (s) =
∑NI0

t=1 P (t, s). Mutual information is then defined as

MI(I0, I
T
1 ) = H(IT

1 ) +H(I0)−H(I0, I
T
1 )

=
∑NI0

t=1

∑NIT1

s=1 P (t, s) log P (t,s)
P (t)P (s)

(2.52)

which is the Kullback-Leiber divergence between the joint probablility distribution and the

product of the marginal probability distributions.

Normalised mutual information (NMI)

In addition to MI, Studholme et al. [205] proposed the use of normalised mutual information

(NMI) as a similarity measure. It has been shown to be more robust than MI with respect to

variations in image overlap. NMI is defined as:

NMI(I0, I
T
1 ) =

H(I0) +H(IT
1 )

H(I0, IT
1 )

(2.53)

2.2.4 Interpolation

Since a transformation T estimated via image registration may map a discrete grid location

x in the target image into a non-grid location T(x) in the source image, an interpolation in

the source image must be performed in order to obtain the intensity that will be associated

to the target point x in the warped image to compute the similarity in that point. The most

commonly used interpolation methods are:

� Nearest neighbour: In this method, the intensity of the pixel in the source image that is

nearest to T(x) is associated with the target point x.

� Linear: Here, the intensity associated to the target point x is obtained by interpolating

the intensity values linearly along each axis using a neighbourhood of 8 voxels around

T(x).
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(a) Nearest neighbour (b) Linear

Figure 2.7: (a) Nearest neighbour and (b) linear interpolation. Note the sharp nature of the
nearest neighbour result against the smoothness provided by linear interpolation.

� Cubic: The linear approach is used, but instead of performing linear interpolation along

each axis, a cubic polinomial kernel is applied.

Figure 2.7 shows the result of a nearest neighbour and linear interpolation in a brain MR image.

For an assessment of these and other interpolation methods see the work of Park et al. [161].

2.3 Optimisation strategies

As mentioned earlier, the aim of image registration is to find the optimal transformation T

that brings the target and source images into alignment. More specifically, the optimal trans-

formation is the one that minimises an energy or objective functional E(I0; I; T). The most

common formulation of the optimisation problem in the context of image registration is

arg min
T

E(I0; I; T) = −Esim(I0; I ◦T) + αEreg(T). (2.54)
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Here, Esim is a similarity measure (e.g. the ones described in section 2.2), Ereg is a regularisation

term as described in section 2.1.5, and α ≥ 0 is a tradeoff parameter between the two terms.

Note, however, that when using elastic or fluid models, the regularisation is implicit in T,

therefore Ereg is usually not explicitly utilised in those cases. The optimisation method can

treat the parameter (or displacement) space of the transformation as either a continuous or

a discrete space. In the following, we describe the most common optimisation approaches for

both models.

2.3.1 Continuous optimisation

In the context of image registration, the most widely used optimisation approaches are gradient-

based iterative methods. These methods use a general update rule to iteratively recompute the

set of parameters or voxel-wise displacements Φ. Upon convergence, the resulting estimate

minimises the objective function E(I0; I; T), either locally or globally, depending on the initial

estimate of Φ. The update rule of gradient-based optimisation methods is given by:

Φt+1 = Φt + ηt · gt(Φt). (2.55)

Here, t corresponds to the iteration during the optimisation, ηt > 0 is the step size and gt(Φt)

defines the search direction. The parameter ηt can be constant, decrease with each iteration, or

be chosen such as it minimises the objective function along gt(Φt). In the following, we describe

the most commonly used gradient-based optimisation methods utilised for image registration.

A distinctive feature of different approaches is the choice of the search direction gt(Φt).
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Gradient descent

Gradient descent optimises the objective function by following the direction that decreases the

energy (its negative gradient). This means the search direction is given by:

gt(Φt) = − ∂E
∂Φt

. (2.56)

Image registration methods that employ this type of optimisation include [24, 49, 105, 183].

Conjugate gradient descent

Conjugate gradient descent aims to improve the convergence rate of standard gradient descent

methods. This is achieved by employing information from previous iterations. More specifically,

by using a search direction that does not follow the negative gradient, but is conjugate to the

previous estimation of gt. To this end, the conjugate search direction is defined as

gt(Φt) = − ∂E
∂Φt

+ µtgt−1(Φt−1). (2.57)

Among the different methods to compute µt, one may mention the Polak-Ribière-Polyak formula

[167, 168], the Hestenes-Stiefel formula [92], and the Fletcher-Reeves formula [57]. Among

image registration methods that rely on conjugate gradients for the optimisation one can cite

[169, 67, 144, 107, 216].

Gauss-Newton method

The Gauss-Newton method is specifically tailored for least-squares fitting optimisation prob-

lems. This type of optimisation problems are usually seen in registration approaches that

optimise SSD as a similarity measure [220, 221, 223, 15]. Contrarily to Newton’s or Newton-

Raphson methods where the Hessian matrix ∂2E
∂Φ2

t
is utilised, this method uses an approximation



2.3. Optimisation strategies 51

of the Hessian that ignores derivatives higher than first order

∂2E

∂Φ2
t

≈ 2J(Φt)
>J(Φt). (2.58)

Here J(Φt) = ∂E
∂Φt

. Therefore, the search direction for this method is formulated as

gt(Φt) = −
(
J(Φt)

>J(Φt)
)−1 ∂E

∂Φt

. (2.59)

Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm, also known as damped least-squares method is another

opimisation approach, which is related to the previously described Gauss-Newton method. For

this approach, the search direction is given by

gt(Φt) = −
(
J(Φt)

>J(Φt) + ζI
)−1 ∂E

∂Φt

, (2.60)

where I is the identity matrix and ζ is a damping parameter that balances between speed of

convergence and stability of the algorithm. Increasing the value of ζ results in a slow down in

the speed of convergence, but increases stability. Note also that setting this parameter to zero,

results in the Gauss-Newton algorithm. Image registration approaches using this optimisation

method can be found in [97, 232, 66, 13].

2.3.2 Discrete optimisation

Starting from the seminal work of Glocker et al. [69, 68, 70], medical image registration tech-

niques using discrete optimisation have gained increased attention in the research community

[192, 218, 244, 198, 37, 196, 34, 119, 84, 85, 185]. These techniques are usually formulated

using Markov Random Fields (MRF) [112]. In the context of image registration, the energy

of an MRF with unary potentials fp representing the data term and pairwise potentials gpq



52 Chapter 2. Background

representing the regularisation term is defined as

Emrf(l) =
∑
p∈V

fp(lp) +
∑

(p,q)∈E

gpq(lp, lq). (2.61)

Here, V and E are the vertices and edges of an undirected graph G = (V,E) and each random

variable lp ∈ l takes its value from a discrete label set L corresponding to a quantised version

of the deformation space.

The optimisation of the energy in equation (2.61) can be performed using graph-based methods

following the max-flow min-cut principle [59] like the α-expansion algorithm of Boykov et

al. [28]. Another approach for discrete MRF optimisation is to utilise Belief Propagation

[162] or Loopy Belief Propagation in cases of graphs with loops [62]. Komodakis et al. [115,

116] proposed a linear programming method for MRF optimisation. Other MRF optimisation

methods include Fusion Moves [127, 128], Quadratic Pseudo Boolean Optimisation (QPBO) [80]

and Higher-order Clique Reduction (HOCR) [101, 102]. Note that none of these optimisation

methods require the computation of the derivative of the registration cost function. This is the

main advantage of MRF based optimisation methods, since this opens the possibility of using

more complex similarity measures that do not need to be differentiable.

2.4 Summary

In this chapter, a description of the components of a generic registration algorithm has been

provided. These components are: a transformation model, a similarity measure and an opti-

misation. In the case of the transformation model, we have introduced both parametric and

non-parametric formulations. We have also discussed the main types of similarity measures

that can be used to align the images. Finally, we have provided details on the main continuous

and discrete optimisation methods for medical image registration.

Different registration approaches use different combinations of transformation model, similarity
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measure and optimisation method. The particular choice of which approach to use is rather

application specific, since all of them have advantages and disadvantages and perform better in

certain contexts than in others. In the case of transformation models, parametric formulations

allow to perform fast registration of volumetric images, but at the cost of potentially breaking

the topology of the warped images if the deformation to be recovered is large. On the other

hand, transformation models based on time-varying or stationary velocity fields can ensure

that the mapping is one-to-one and invertible, but at the cost of increased computational

time. This makes them unsuitable for real-time or near real-time requirements. Monomodal

similarity measures like SSD yield fast registration and are very simple to optimise, but cannot

be utilised for registration between images of different modalities such as MR, CT and PET.

Finally, continuous optimisation methods usually provide very accurate results, but requires the

computation of derivatives of the similarity measure and regularisation term, which eliminates

the possibility of using non-differentiable measures. On the other hand, discrete optimisation

methods allows to employ any similarity measure, but normally provide lower accuracy than

continuous optimisation approaches.

In the next chapter, we focus on a number of important registration methods and new paradigms

of this research area.
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Intensity-based non-rigid registration

of medical images: Methods

Due to its importance in medical imaging applications, and also for other fields of computer

vision, there has been a large amount of research in the area of image alignment and registra-

tion. The deformable nature of many of the objects in medical images is the reason for the fact

that the vast majority of the registration techniques in this area are intensity-based non-rigid

registration techniques. In this chapter, we describe some of the foundational intensity-based

non-rigid registration approaches that enabled the development of the field of image registra-

tion to what is today. Furthermore, we describe some state-of-the-art registration methods

that comply with important properties, such as inverse-consistency or symmetry of the trans-

formations. We also describe registration methods that use attributes as a high dimensional

alternative to pure intensity data. Finally, since most of the contributions of this thesis are

learning-based approaches, we also describe prior work on this field. Further information on

image registration techniques in general can be found on the survey by Zitová et al. [246]. More

recently, another survey focused specifically on medical image registration has been presented

by Sotiras et al. [197].

54
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3.1 Optical flow estimation

Optical flow is the distribution of displacements in which intensities move between two consec-

utive frames of an image sequence. The first approach to estimate optical flow was developed

by Horn and Schunck [96]. The basic premise of optical flow is the assumption that object

intensities I(x) of a point x = (x, y, z) do not change between frames. In the context of image

registration, it means that patterns or structures in one image “move” to form the pattern or

structure in the next one. This constant intensity assumption can be formulated as:

I0(x, y, z, t) = I(x+ ∆x, y + ∆y, z + ∆z, t+ ∆t), (3.1)

where I0(x, y, z, t) corresponds to the intensity of point (x, y, z) in the target image (at time

t), and I(x+ ∆x, y + ∆y, z + ∆z, t+ ∆t) corresponds to the intensity of the same point in the

source image, after being displaced by ∆x = (∆x,∆y,∆z) over ∆t unit of time. By using a

Taylor expansion of equation (3.1) and ignoring high order terms, it is possible to derive the

equation for optical flow (see [96] for details):

∂I

∂x

∆x

∆t
+
∂I

∂y

∆y

∆t
+
∂I

∂z

∆z

∆t
+
∂I

∂t
= 0. (3.2)

A more concise representation of equation (3.2) is:

∂I

∂t
+∇I · u = 0. (3.3)

Here, ∂I
∂t

is the temporal difference between frames, ∇I is the spatial gradient of the target

image, and u corresponds to the displacement field describing optical flow. Note that equation

(3.3) has 3 unknowns, but only one equation is available. This is known as the aperture problem

of optical flow and can be resolved by adding aditional smoothness constraints on u [96, 21].
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3.2 Demons algorithm

The diffusion transformation model of Thirion [211] is based on on the concept of demons

introduced by Maxwell to explain the Gibbs paradox of thermodynamics. The main idea is to

model the source image as a deformable grid, where the vertices of the grid are particles that

can be classified as ’outside’ or ’inside’. This grid is allowed to diffuse through the contour

of an object in the target image on which several demons are scattered. These demons act as

effectors that, using forces inspired from the optical flow equations [96, 21], locally push the

grid inside the contour if the corresponding point is labelled ’inside’, and outside the contour

if it is labelled ’outside’. There are various possibilities on how the demons can be placed. In

[211] three alternatives are proposed: (1) placing one demon on each voxel; (2) placing demons

on voxels labeled as edge by an edge detector (such as [47, 148]); (3) placing demons along

label boundaries of already segmented images.

Pennec et al. [164] shows that the demons formulation can be thought as an approximation

of a second order gradient descent using the sum of squared differences as a similarity mea-

sure. Vercauteren et al. [223] reformulated the demons model by adapting it to the space of

diffeomorphic transformations.

3.3 Large Deformation Diffeomorphic Metric Mapping

(LDDMM)

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) is a registration approach

proposed by Beg et al. [24]. The transformations in this model are guaranteed to be diffeo-

morphic. In this setting, the target image I0 and source image I are registered by generating

a diffeomorphic deformation u using the large-deformation framework of section 2.1.4. The
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optimal time-dependant velocity field v̂ is found by solving a variational problem of the form:

v̂ = arg max
v:u̇t=vt(ut)

∫ 1

0

‖vt‖2
V dt+

1

σ2
‖I0 ◦ u−1 − I‖2

L2
. (3.4)

Here, vt is the velocity field at time t, ‖vt‖V is an appropiate Sobolev norm on the velocity

field, and ‖ · ‖L2 corresponds to the L2 error norm that enforces matching of the images. To

ensure that the solution to the underlying ODE is in the space of diffeomorphisms, a differential

operator L is used for regularisation, such that ‖vt‖V = ‖Lvt‖L2 . An important property of

this framework is that the length of the shortest path (also known as geodesic path) which

connects the target and source images

inf

∫ 1

0

‖vt‖V dt (3.5)

defines a metric, i.e, gives a notion of distance between the two images.

3.4 DARTEL algorithm

The DARTEL algorithm, which stands for “Diffeomorphic Anatomical Registration using Ex-

ponentiated Lie algebra”, has been proposed by Ashburner [13]. The algorithm utilises the

previously described stationary velocity field framework of Arsigny et al. [9] to generate the

deformation, i.e. by means of the scaling and squaring algorithm (see section 2.1.4). The ob-

jective function is modelled as the most probable stationary velocity field vi given the image

data D. This can be formulated using Bayes’ theorem:

P (vi|D) =
P (D|vi)P (vi)

P (D)
. (3.6)

The term P (D) is ignored since it is constant and the objective is to find the most probable

velocity field vectors vi, not the probability distribution itself. The final objective function

is then formulated by taking advantage of the monotonic nature of the logarithm function
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(log-likelihoods):

− logP (vi|D) = − logP (vi)− logP (D|vi). (3.7)

This objective function can be interpreted as a general energy formulation:

E(vi) = ER(vi) + ED(vi). (3.8)

Here, ED is the similarity (or data) term and ER corresponds to the regularisation term. In

DARTEL, the data term is the sum of squared intensity differences between the target and

source images and several alternatives are provided for the regularisation term (membrane

energy, bending energy and linear elastic energy). The author also argues that solving the

optimisation problem using the maximum a posteriori estimate poses some technical difficulties.

Hence, the optimisation strategy of this approach is performed using the Levenberg-Marquardt

algorithm (see section 2.3.1).

The work of Hernandez et al. [90, 91], is based on an essentially similar concept. However,

the authors derive the Euler-Lagrange equations asociated with the minimisation of a different

energy in an inverse consistent variational formulation. Another difference is that integration

is performed using a semi-Lagrangian algorithm [200].

3.5 Inverse-consistent or symmetric approaches

Christensen and Johnson [35] present an inverse consistent approach based on the small de-

formation framework. In this approach, the forward transformation Tforw and the backward

transformation Tback between the target image I0 and the source image I are optimised simul-

taneously. In order to achieve inverse consistency, the authors propose to optimise an energy

function with three terms: The first term correspond to the data term which enforces that both

the forward and backward transformations warp the corresponding images is such way that the
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SSD between them is minimised in both cases. This term is given by:

Edata =
∑
x∈Ω

(I0(x)− I(Tforw(x)))2 +
∑
x∈Ω

(I0(Tback(x))− I(x))2. (3.9)

The second term enforces the forward and backward transformations to be the inverse of each

other:

EIC =
∑
x∈Ω

‖Tforw(x)−T−1
back(x)‖2 +

∑
x∈Ω

‖Tback(x)−T−1
forw(x)‖2. (3.10)

Here, the inverse transformations are computed using a discrete approximation method that

assumes that the transformations have a positive Jacobian over the entire space Ω. The fi-

nal term is a linear elastic regularisation constraint that enforces the transformations to be

diffeomorphisms:

Ereg =
∑
x∈Ω

‖Luforw(x)‖2 +
∑
x∈Ω

‖Luback(x)‖2. (3.11)

Here, L is a differential linear elasticity operator acting on the displacement fields uforw and

uback. A fourth energy term, which can be used either to replace the regularisation term or in

addition of the three previous terms, is also proposed. It prevents both forward and backward

transformations to produce extreme local compression (Jacobian values close to zero) or extreme

local expansion (very large Jacobian values):

Ejac =
∑
x∈Ω

J (Tforw(x))−2 + J (Tback(x))−2 + J (Tforw(x))2 + J (Tback(x))2. (3.12)

Here, J (T(x)) corresponds to the local Jacobian value of transformation T at point x.

The SyN registration method is presented in the work by Avants et al. [16]. This approach

is based on a previous formulation using time-varying velocity fields [17]. This formulation

provides symmetric diffeomorphisms, i.e., diffeomorphisms where the geodesic path connecting

the target image and the source image is the same as the geodesic path connecting the source

and target. Hence, the integration is performed “half way” (up to t = 0.5) of this geodesic path
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using a greedy algorithm. The energy formulation for this approach is as follows:

Esym = inf
uforw

inf
uback

∫ 0.5

0

(
‖vforw(x, t)‖2

L + ‖vback(x, t)‖2
L

)
dt

+

∫
Ω

LNCC(I0(u−1
forw(x, 0.5)), I(u−1

back(x, 0.5))). (3.13)

Here, ‖ · ‖L induces regularity on the velocity field via a linear differential operator and LNCC

is the local normalised cross correlation similarity measure described in section 2.2.3. An im-

portant property is that, unlike the inverse consistent formulation of [35], in this framework the

deformation field inversions are guaranteed to have sub-voxel accuracy. The final deformations

are then given by:

uforw(1) = u−1
back(0.5) ◦ uforw(0.5)

uback(1) = u−1
forw(0.5) ◦ uback(0.5).

(3.14)

Figure 3.1 provides an overview of the SyN registration framework.

Figure 3.1: SyN registration framework.

A symmetric log-domain diffeomorphic registration approach is proposed in [222]. In this work

the authors extend their diffeomorphic Demons approach of [221], where the update step s is a

velocity field that is mapped into the space of diffeomorphisms via the exponential map. Hence,

the update step is u← u ◦ exp(s). In the proposed log-domain approach, the deformation field

u is also the result of the exponential mapping of a velocity field, yielding an update step of
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the form u = exp(v) ← exp(v) ◦ exp(s). To find the smooth velocity field Z(v, s) such that

exp(Z(v, s)) ≈ exp(v) ◦ exp(s) the authors use the Baker-Campbell-Hausdorff approximation:

Z(v, s) ≈ v + s +
1

2
[v, s] +

1

12
[v, [v, s]]. (3.15)

Here, [·, ·] corresponds to the Lie bracket operator that, given two velocity fields, yields a third

velocity field defined for each point x such that:

[v, s](x) = Jv(x) · v(x)− Js(x) · s(x). (3.16)

Here, Jv is the Jacobian matrix of the field v. The advantage of using a log-domain approach

is that the inverse of a transformation can be easily computed as u−1 = exp(−v), as discussed

in Section 2.1.4. Taking this into account, the authors also propose a symmetric extension

that optimises the sums of squared differences obtained by forward and backward (inverse)

transformation:

EsymSSD = SSD(I0, I,u) + SSD(I, I0,u
−1). (3.17)

In each optimisation step, the forward and backward update steps in log-domain are indepen-

dently obtained from the respective demon forces and then (thanks to the log-domain repre-

sentation) projected onto the space of symmetric transformations by simply averaging them.

This yields the log-domain update step that is finally used to update the transformation.

A symmetric approach using free-form deformations is presented in the work by Modat et al.

[145]. For inverse consistency, the authors optimise both the forward and backward transfor-

mations simultaneously using an inverse consistency penalty which is similar to the one used in

[35]. It is based on the norm of the composition of the forward and backward transformations:

EIC =
∑
x∈Ω

‖Tforw(Tback(x))‖2 +
∑
x∈Ω

‖Tback(Tforw(x))‖2. (3.18)

As a similarity measure, the authors choose to use a symmetric approach similar to the one in
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[222], but using normalised mutual information instead:

EsymNMI =
∑
x∈Ω

NMI(I0, I ◦Tforw) + NMI(I, I0 ◦Tback). (3.19)

Further curvature and volume-preserving regularisation penalties complete the proposed energy

model.

The LCC-Demons registration framework has been proposed by Lorenzi et al. [134]. It extends

the log-Demons approach of [222] by replacing the SSD similarity measure by a symmetric

version of the LNCC similarity of section 2.2.3 which is robust to additive and multiplicative

intensity inhomogeneities:

EsymLNCC =
∑
x∈Ω

(I0 ◦ exp(−v
2
))(x)(I ◦ exp(v

2
))(x)√[

(I0 ◦ exp(−v
2
))(x)

]2 [
(I ◦ exp(v

2
))(x)

]2 . (3.20)

Here, I = Gσ ? I is the local mean image of image I defined by Gaussian convolution Gσ with

kernel size σ.

3.6 Attribute-matching registration approaches

The HAMMER algorithm [193], which stands for “Hierarchical Attribute Matching Mechanism

for Elastic Registration” is an attribute-matching registration method for MR images of the

brain. In this method, attribute vectors a are defined as the concatenation of two values a1, a2

and a vector a3:

a(x) = (a1(x), a2(x), a1
3(x), · · · , aK3 (x))>. (3.21)

Here, a1(x) defines the edge-type of voxel x. It takes one of seven possible values: no edge or

any of the six combinations of boundaries between grey matter (GM), white matter (WM) and

cerebrospinal fluid (CSF). a2(x) corresponds to the image intensity value normalised between

0 and 1. Finally, a3(x) is a vector of K = 13× 3× L values representing 13 rotation-invariant
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moments computed from the zeroth-, second- and third-order 3-D regular moments [130], for

each GM, WM and CSF tissue label volume in L different scales (spherical neighbourhoods) of

voxel x. The energy model is a function of the similarity between the target attribute vector

aT at voxel x and the source attribute vector aS at voxel y = T(x) plus a weighted bending

energy regularisation term. This attribute similarity is defined as

S(aT (x), aS(y)) =

 0 aT1 (x) 6= aS1 (y)

C(aT (x), aS(y)) otherwise
, (3.22)

where

C(aT (x), aS(y)) = (1− |aT2 (x)− aS2 (y)|) ·
K∏
i=1

(1− |aT i3 (x)− aS
i

3 (y)|). (3.23)

To reduce the risk of getting trapped in local minima, the algorithm reduces the complexity

of the similarity by finding driving voxels in both images based on their attribute vectors.

Then, displacements are found by hierarchically matching driving voxels in the target and the

source images according to how similar their attribute vectors are, and interpolating outside

the driving voxel positions using a Gaussian kernel. The standard deviation of the Gaussian

kernel is chosen so that every non-driving voxel depends on the distance from only one driving

voxel.

In the paper by Ou et al. [158], the authors propose an alternative attribute matching image

registration approach named “Deformable Registration via Attribute Matching and Mutual-

Saliency Weighting” (DRAMMS). This approach utilises multi-scale and multi-orientation 3D

Gabor attributes aT and aS extracted form each voxel in the target and source images, respec-

tively. The energy model comprises a mutual saliency term and an attribute matching term

plus a weighted regularisation term:

EDRAMMS =
∑
x∈Ω

(
ms(x,T(x)) · 1

D
‖âT (x)− âS(T(x))‖2

)
+ α R(T). (3.24)
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Here, D is the dimensionality of the attribute vectors. The mutual-saliency term is given by

ms(x,T(x)) =
MEANy∈CN(T(x))[sim(aT (x), aS(y))]

MEANy∈PN(T(x))[sim(aT (x), aS(y))]
, (3.25)

where the matching similarity sim(·, ·) is given by

sim(aT (x), aS(y)) =
1

1 + 1
D
‖aT (x)− aS(y)‖2

∈ [0, 1]. (3.26)

CN(x) corresponds to an immediate neighbourhood of voxel x and PN(x) corresponds to a

peripherical area further away from it. The idea behind this is that two matching voxels have

high mutual saliency if they are similar to each other, but are not similar to anything else in the

vicinity. In contrast to HAMMER [193] where all attributes are used, DRAMMS only considers

the vectors of optimal attributes â. To select this optimal attribute set, the target image space

ΩT is partitioned into J regular regions ΩT
j . A training voxel pair (p̂, q̂) is selected for each

region, so that p̂ is in that region ΩT
j , q̂ is anywhere in the source image space ΩS and both

maximise the following similarity based on the full attribute vectors ã:

(p̂j, q̂j) = arg max
p∈ΩTj
q∈ΩS

[
sim(ãT (p), ãS(q)) ·ms(p,q)

]
. (3.27)

The optimal attributes are then selected from the full set of attributes by an iterative backward

elimination and forward inclusion strategy trained using the voxel pairs (p̂j, q̂j) such as:

(âT , âS) = arg max
aT

aS

J∑
j=1

[
sim(aT (p̂j), a

S(q̂j)) ·ms(p̂j, q̂j)
]
. (3.28)

3.7 Learning-based registration approaches

A learning-based method for non-rigid registration of multi-modal 2D images is presented in

Guetter et al. [73]. The main idea consists on adding an additional term to a mutual information
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(MI)-based energy function with regularisation:

E = −α MI(I0, I ◦T) + (1− α) KL(I0, I ◦T) + λ R(T) α ∈ [0, 1]. (3.29)

The additional learning-based term KL(·, ·) accounts for the Kullback-Leibler divergence of the

observed joint intensity distribution for the target and source images, and a joint intensity

distribution learnt from pre-aligned training images:

KL(I0, I ◦T) =
NI0∑
t=1

NI◦T∑
s=1

P o(t, s) log
P o(t, s)

P l(t, s)
. (3.30)

Here, P o corresponds to the joint probability of the observed data under registration and P l

is the joint probability drawn from the learnt probability distribution. This learnt distribution

steers the registration proccess and can be acquired in several ways, e.g., using clinical expert

knowledge or hybrid scanner data. For improved robustness, a density distribution representing

the mean prior information of the pre-aligned training images can be used.

In the work by Tang et al. [206], the RABBIT algorithm (which stands for “Rapid Alignment

of Brains by Building Intermediate Templates”) is presented. In this approach, registration is

performed with the help of intermediate templates generated by a statistical deformation model

learnt from deformation fields warping training source images to a common template, which

are then analysed using PCA. The generation of these intermediate templates is performed

by interpreting the statistical deformation model as a multidimensional Gaussian distribution

where each dimension is an eigenvector of the covariance matrix. In this way, the coefficients of

the statistical deformation model for the P eigenvectors with highest corresponding eigenvalues

ci i = 1, · · · , P can be found using a uniform coefficient sampling method proposed in [122]:

ci =
√

2 · erf−1(2hj − 1) j = 1, · · · , n. (3.31)

Here, hj is the set of coefficients uniformly distributed in the interval [0, 1) and erf−1(·) is the

inverse of the Gaussian Error Function. Once the nP intermediate templates are constructed
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offline, an unseen image is registered to the common template by finding the closest inteme-

diate template (using sum of squared intensity differences) to initialise the statistical model

parameters and further optimised using Powell’s optimisation algorithm iteratively. This yields

an image that is closer to the common template. These two close images are further registered

using a standard registration method (the HAMMER registration algorithm in the case of this

work), resulting in the final transformation.

Figure 3.2: Algorithm for the estimation of the transformation parameters using the pull-back
operation. Figure adopted from [212].

A different approach for the estimation of image distortion has been proposed by Tian et al.

[212]. In this work, the authors introduce the concept of a pull-back operation, which is used to

estimate the parameters of a dense deformation field that aligns the target (undistorted) and

source (distorted) images. The nearest neighbour of the source image in parameter space from

a set of several training image samples with known deformation parameters is used to pull-back

the source image, i.e., the parameters of this nearest neightbour are applied on the image,

yielding a less distorted image. Then, the process is iterated until convergence, which is proven

to result in the global optimum being estimated. The algorithm is outlined in Figure 3.2. To

counteract the effects of possible error accumulation, a cummulative parameter estimation is

used to pull-back the original source image on each iteration. A key feature of this method

is that the chosen nearest neighbour does not need to be in the neighbourhood of the source

image (is not ε-close) in parameter space. Hence, only a number of training images that grows

logarithmically with the desired accuracy is needed, thus breaking the curse of dimensionality

[140].

Another registration method that learns the appearance-deformation correlation is proposed

by Kim et al. [111]. The basic idea is to learn a PCA statistical deformation model from
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deformation fields warping training source images to a common template, as in RABBIT [206].

Then, different deformation fields are generated by randomly perturbing the coefficients of the

statistical model. These are then inverted to generate additional training images. From this

augmented set of training images, a number of signature images are obtained. These signature

images capture the boundaries between grey matter, white matter and cerebrospinal fluid labels

to represent the shape variations of the training images (although a standard edge detector can

be used as well). By using these signature images, a PCA signature model is constructed and

applied to them, yielding low-dimensional signature vectors. Finally, a support vector regression

approach is used in order to relate each of the coefficients of the statistical deformation model to

the set of low-dimensional signature vectors. When registering an unseen image to the common

template, the PCA signature model is utilised to obtain the low-dimensional representation of

this unseen image. Then each coefficient of the statistical deformation model is estimated using

the corresponding regressor and the computed low-dimensional vector. This allows to obtain

the deformation that is applied to the image, yielding an intermediate template which is much

closer to the common template. Similar to RABBIT, the deformation is further optimised by

means of a standard registration method between these two close images.

Loeckx et al. [131] presents a method for registration of 2D thorax X-ray radiography im-

ages of the same subject. In this approach, a B-spline FFD transformation model is utilised.

A statistical deformation model trained from previous registrations of a set of similar pairs

of follow-up images of several subjects is used to constrain the B-spline FFD transformation

parameters. In general, to construct a statistical deformation model, the transformation pa-

rameters Φi of the N training registrations are vectorised and assembled together to form a

matrix Φ = [Φ1| · · · |ΦN ] and PCA is applied to Φ. In this method, the affine translation and

scaling components of the transformation are explicitly removed from matrix Φ:

Φ
′
= Φ−ΦaffΦ>affΦ. (3.32)

Here Φaff = [tx|ty|s] contains the affine components. Then, PCA is performed on Φ
′

yielding
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the statistical deformation model basis B
′
, which is augmented with the affine components to

yield the final basis matrix B:

B = [tx|ty|s|B
′
]. (3.33)

Once the statistical deformation model is learnt, the transformation parameters for any new

pair of follow-up images is given by:

Φnew = Φ + Bw. (3.34)

Here, Φ is the mean of the training transformation parameters and w is the parameter vector

that has to be optimised. The number of elements in w corresponds to the number of principal

components retained in the PCA step plus three to account for the affine components.

The GRAM framework, which stands for “Geodesic Registration on Anatomical Manifolds”,

has been proposed by Hamm et al. [79]. This method allows large deformation registrations

over a dataset of images using a learnt manifold of anatomical variation over this dataset.

The main advantage is that the learnt manifold restricts deformations to represent biologically

plausible geodesic paths of registration, in contrast to the much broader analytical manifold of

diffeomorphisms. To construct the empirical manifold, coarse diffeomorphic registrations are

performed between all N images I1, · · · , IN in the dataset. Then, their pairwise distances are

computed as:

dij = w · SSD(Ii, Ij(Tij)) + (1− w) · HE(Tij). (3.35)

Here, w is a weighting term and HE(Tij) corresponds to the harmonic energy of the trans-

formation, i.e., the mean Frobenius norm of the Jacobians. The next step is to construct a

k-NN graph based on the distances and find the shortest paths between all pairs (e.g., by using

Dijkstra’s or Floyd-Warshall’s algorithm). The length gij of a geodesic path is then the sum

of the edge lengths along that path. The next step is to define the “template” image. In

this work the template image is the median image It such that t = arg min
i

∑
j gij. The large

deformations from the template image to all other images are then computed by a recursive
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composition of the small deformations from its edges along the geodesic path. From this point,

any unseen image I∗ is coarsely registered to all the images in the dataset, generating N new

transformations T∗i. Finally, the transformation T∗j for which d∗j is minimal is composed with

Tjt to obtain the large deformation between the unseen image and the template.

3.8 Summary

Table 3.1: Summary of the image-based non-rigid registration methods described in this chap-
ter.
Type Methods

Foundational Optical flow [96]; Demons [211]; LDDMM [24]; DARTEL [13].
Inverse-consistent/symmetric Christensen et al. [35]; SyN [16]; Log-domain [222]; Modat et al. [145];

LCC-Demons [134].
Attribute-matching HAMMER [193]; DRAMMS [158].
Learning-based Guetter et al. [73]; RABBIT [206]; Tian et al. [212]; Kim et al. [111];

2D Statistical Deformation Model [131]; GRAM [79].

In this chapter, a number of important registration methods have been described (see Table 3.1).

We have focused on the main classical approaches that aided in the development of intensity-

based non-rigid image registration, such as optical flow estimation, Demons algorithm, LD-

DMM, and DARTEL. We also focused on inverse consistent and symmetric approaches, which

pose important properties for many applications that require inversion of the transformations.

Attribute-matching aproaches were also described to show that high dimensional data can be

used as an alternative to pure intensity data. Finally, we outlined a number of learning-based

approaches since they closely relate to most of the methods outlined in this thesis. The different

nature and properties of all methods have been outlined here. This demonstrates that image

registration is usually an application-specific task and that no approach is general enough to

work well on every possible scenario. This makes medical image registration a fruitful area for

research, but on the same time a very challenging one. In the next three chapters, a detailed

description of the main contributions of this thesis is provided.
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Non-rigid image registration using

Statistical Deformation Models

This chapter is based on:

� Stefan Pszczolkowski, Luis Pizarro, Ricardo Guerrero, and Daniel Rueckert. “Nonrigid

free-form registration using landmark-based statistical deformation models.” In Proceed-

ings of SPIE, vol. 8314, p. 831418. 2012.

70
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4.1 Introduction

One of the most clinically important applications of image registration are cohort studies.

Since the anatomical variability within the population in these studies can be potentially very

large, non-rigid registrations to a common template space have to be performed in order to

be able to subsequently conduct voxel-based or statistical comparisons within that common

space. However, standard non-rigid image registration problems usually involve a large amount

of degrees of freedom. This amount is normally in the order of hundreds of thousands or even

millions. Therefore, it is necessary to further impose certain constraints to these registrations

so as to produce results that are coherent with respect to the group in study.

In this chapter, a new registration approach referred to as statistically-based FFD registration

(SFFD) is proposed. This registration method is a modification of a well-known free-form

deformations (FFD) approach [183]. Within this new framework any new unseen subject can

be registered in a very efficient way by means of a statistical deformation model (SDM) learnt

a priori from N known deformations of similar images to a given common template space.

These SDMs capture the variability of the known deformations and constrain the registration

procedure to produce only statistically likely warps. Also, the number of parameters that must

be optimised is dramatically reduced. Only a single-resolution optimisation is needed to account

for coarse and fine local displacements, in contrast to the multi-resolution strategy commonly

employed by the FFD-based registration. Moreover, in case where anatomical landmarks are

available, we propose to encode them within the statistical framework, in order to provide a

better alignment of the anatomical structures described by these landmarks.

4.1.1 Related work

A related approach has been previously proposed by Loeckx et al. [131]: Here, a statistical

deformation model is trained using Principal Component Analysis (PCA) for the registration

of thorax X-ray radiography images of the same subject for temporal substraction. In contrast
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to this work, the proposed method uses deformations to train the SDM that are obtained auto-

matically via registration, rather than (semi-)manually. Furthermore, we investigate different

statistical learning approaches beyond PCA. Another important difference is the ability of this

approach to perform intra- and inter-subject registration on more complex images, such as 3D

brain MR images.

Other previous contributions on the use of statistics for medical image registration include the

work by Wang and Staib [227], where statistical information of boundary points is incorporated

into a Bayesian formulation of the objective function, which is subsequently used for elastic

and fluid registrations. Benameur et al. [25] use a statistical deformable template to constrain

a set of admissible deformations for the registration of scoliotic vertebrae. Xue et al. [234] per-

forms PCA on each band of wavelets coefficients of voxel-wise deformations to obtain an SDM

that permits the construction of a statistically-constrained voxel-wise registration framework.

Finally, PCA models are used to generate intermediate templates for faster registration in the

methods by Kim et al. [110] and Tang et al. [206].

Manually determined anatomical landmarks or salient points automatically detected within

the images via feature extraction algorithms can be used to drive the registration process to

produce deformations that align them as accurately as possible. In Johnson and Christensen

[105] images are registered by iteratively aligning landmark positions and image intensities away

from these locations. A similar approach is presented by Fischer and Modersitzki [56], but in

this case the landmark locations are used as a constraint for the energy function. Hartkens

et al. [82] uses point and surface information to correct for large differences between pre-

and post-resection images. Rohr et al. [179] proposes a landmark-based elastic registration

algorithm where thin-plate splines resulting from a minimising functional allow to weight the

landmarks according to their localisation uncertainty. Finally, Pennec et al. [163] present an

approach to extract features like crest lines and extremal points and perform rigid registration

between them.
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4.2 Methods

4.2.1 Statistical model construction

To construct the statistical deformation model (SDM) that is subsequently used in the proposed

approach, we register a population of N subjects S1, . . . , SN to a common reference template

using the standard B-spline free-form deformation (FFD) model of Rueckert et al. [183], which

is described in section 2.1.3. The P control point values of the resulting free-form deformations

(FFDs) are vectorised to form a matrix Φ = [Φ1| · · · |ΦN ] ∈ RP×N . Generalising the approach

of Rueckert et al. [182] and assuming that matrix Φ has been mean centered, the proposed

method seeks to find a factorisation such that

Φ ≈ BW>, (4.1)

Here, B ∈ RP×C is the statistical model encoding matrix we are interested in, and W ∈ RN×C

just acts as a matrix whose rows correspond to vectors of weighting factors. Note there is a

free parameter C ≤ N . This parameter is user-defined and controls the number of basis vectors

used to describe the statistical deformation model. As a result, C also controls the number of

parameters that are required to instantiate the SDM. The factorisation approach is illustrated

in Figure 4.1. As we later show in this chapter, the purpose of this factorisation model in

the context of image registration is twofold: (1) capture the variability of the known training

deformations with a reduced number C of basis vectors, and (2) constrain the subsequent

statistical registration to produce only statistically likely types of mappings.

In the approach by Rueckert et al. [182] principal component analysis (PCA) is utilised, albeit

only for statistical analysis, not for registration. We explore two further techniques, namely

independent component analysis (ICA) and semi-Nonnegative matrix factorisation (SNMF).

All three factorisation methods are described in the following section, with emphasis on how

they are used in the proposed framework.
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Figure 4.1: Factorisation approach to learn the statistical deformation model encoded in matrix
B.

4.2.2 Statistical factorisation techniques

Principal Component Analysis (PCA)

Principal component analysis (PCA) [106] is utilised to decompose multidimensional input

data, which is assumed to be mean centered, into a set of C orthogonal components sorted

according to the amount of variance in the data that they explain. In other words, it finds the

matrix B which corresponds to the eigendecomposition of the covariance matrix S of the input

data S = cov(Φ). Hence, each of the C columns bi, i = {1, .., C} of B is an eigenvector that

satisfies

Sbi = λibi (4.2)

with corresponding eigenvalue λi such that λi ≥ λi+1. The columns of B (eigenvectors) are

thus sorted by the amount of variance that is explained (eigenvalues). Therefore, it is possible

to control the amount of variance that is taken into consideration by choosing different values

for C (the higher the value of C, the higher the amount of variance that is explained).
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The covariance matrix S is a P×P matrix. This means that computing the eigendecomposition

of this matrix is an intractable task if P is large (typically, P � N). Luckily, the eigendecom-

position can still be computed by solving on a much smaller eigenvector problem for a N ×N

matrix [40]:

S
′
=

1

N
Φ>Φ. (4.3)

From the eigendecomposition of S
′
, eigenvalues λ

′
i and eigenvectors b

′

i are obtained. Then, λi

and B are computed as [40]:

λi = λ
′
i

bij = 1√
C·λj

[ΦB
′
]ij,

(4.4)

where B
′
= [b

′

1| · · · |b
′

C ].

Independent Component Analysis (ICA)

The method of independent component analysis (ICA) [108, 39] separates multidimensional

input data, which is assumed to be mean centered, into components that are maximally inde-

pendent, where different measures of independence can be utilised. ICA is normally used for

the separation of mixed signals, a process known as blind source separation. From the point of

view of matrix factorisation, it finds a matrix B such that

Φ ≈ BW>. (4.5)

where W is an orthogonal weighting matrix and the rows of B are maximally independent.

During the process of ICA the data Φ has to be whitened (i.e., made unit variance and uncor-

related). To whiten the data, PCA is performed on it, yielding a matrix of eigenvectors U and

a diagonal matrix Σ with the corresponding eigenvalues in the main diagonal. The whitened

data Φ̃ is then obtained as follows:

Φ̃> = Σ−1/2U>Φ>. (4.6)
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The PCA step in the whitening process is often utilised to reduce the dimensionality of the data,

in order to perform ICA on simplified data. If the whitening process reduces the dimensionality

to Cwhite dimensions, then C independent components can be obtained from the ICA algorithm,

where 1 ≤ C ≤ Cwhite ≤ N .

As previoulsy mentioned, the goal of ICA is that the rows of B are maximally independent.

Hence, each observation of the whitened data φ̃ij =
∑C

k=1 bikwjk is a weighted sum of maximally

independent variables bi,1...C . One way of achieving statistical independence for a set of random

variables is by minimising their (pairwise) mutual information. The motivation for minimising

mutual information comes from the observation that two variables are independent if informa-

tion about the value of one of them does not contain any information about the value of the

other. This means that their mutual information is zero. Another approach to achieve statisti-

cal independence is to maximise non-Gaussianity. The fact that non-Gaussianity is a measure

for independence arises from the Central Limit Theorem which states that the distribution of a

sum of independent random variables converges towards a Gaussian distribution. Moreover, in

the papers of Hyvärinen [99] and Hyvärinen and Oja [100], the authors show that minimising

the mutual information of the resulting components is (roughly) equivalent to maximising their

negentropy J(·), which is a measure of non-Gaussianity:

J(bi,1...C) = H(bgaussi,1...C)−H(bi,1...C). (4.7)

Here, bgaussi,1...C is a random variable from a Gaussian distribution with the same mean and variance

as the distribution of bi,1...C , and H(x) is the entropy of the (multidimensional) random variable

x:

H(x) = −
∫
u

fx(u) log(fx(u))du. (4.8)

Here, fx(u) is the probability density function of x. Negentropy can be considered as a measure

of non-Gaussianity since a Gaussian variable has the largest entropy among all random variables

of equal variance [44, 160]. Hence J(bi,1...C) is strictly non-negative, and reaches a minimum of

zero when bi,1...C has a Gaussian distribution.
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Algorithm 1 FastICA algorithm with simultaneous update. 1N is a column vector whose N
entries are equal to one, Avg(X) corresponds to averaging over the columns of X, and ⊗ is the
Hadamard product.

Input: C Number of desired components
Input: Φ> ∈ RN×P Matrix containing the mean centered data in row-layout
Output: B> ∈ RC×P Matrix encoding the statistical deformation model

Obtain U and Σ by performing PCA on Φ retaining Cwhite = N eigenvectors and eigenvalues

Xwhitening = Σ−1/2U>

Φ̃> = XwhiteningΦ
>

Randomly initialise orthonormal matrix A ∈ RN×C

while not converged do
A← A(A>A)−1/2

A← 1
P
· Φ̃> · g(Φ̃A)−

[
1N · Avg(g′(Φ̃A))

]
⊗A

end while
W> ← A>Xwhitening

return B> = W>Φ>

The authors in [99, 100] also propose one of the most popular algorithm for ICA: The FastICA

algorithm. This algorithm has two variants: One where each column of W is estimated one-

by-one, and another where all columns are simultaneously estimated. We utilise a version

based on the second variant, which is described in Algorithm 1, including the preprocessing

and postprocessing steps. Note that the algorithm involves the use of a function g(·) and its

derivative g′(·). This function is utilised to obtain an approximation of negentropy, since it

is difficult to compute in practice. The authors in [99, 100] state that a good function for

general-purpose FastICA is g(x) = tanh(x), with g′(x) = 1 − tanh2(x). This is also the g(·)

and g′(·) we use in this thesis.

Semi-Nonnegative Matrix Factorisation (SNMF)

Non-negative matrix factorisation (NMF) [124] is a matrix decomposition method that assumes

that the input data and resulting factors have only non-negative entries. These constraints cause

the decomposition to produce non-holistic parts-based representations, since only additive, but

no substractive combinations are allowed. In order to expand the suitability of NMF to cases
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where the input data is not strictly non-negative (as is the case with our application), Ding et

al. [48] proposed an NMF variant called semi-Nonnegative matrix factorisation (SNMF). This

algorithm seeks to find a factorisation of the input data Φ

Φ ≈ BW>, (4.9)

constraining only W to have non-negative entries, while leaving B unconstrained. The SNMF

algorithm can also be motivated from a soft-clustering point of view: Here, the columns of B

represent cluster centroids and W contains the soft membership indicators for each column

of Φ. In contrast to PCA and ICA, SNMF does not pose any assumption on the data being

mean centered and is thus usually run on the original data (with no prior mean centering).

The procedure starts by running a hard-clustering k-means algorithm [81] with k = C over the

input data Φ. This yields an indicator matrix W, where wik = 1 if Φi belongs to cluster k.

Then, B and W are alternately updated in an iterative fashion until convergence

(1) B = ΦW(W>W)−1

(2) wik ← wik

√
(Φ>B)+

ik+[W(B>B)−]
ik

(Φ>B)−ik+[W(B>B)+]
ik

.

(4.10)

Here, A+
ik = (|Aik| + Aik)/2 and A−ik = (|Aik| −Aik)/2. After the process finishes, we apply

a Gram-Schmidt process [93] on the resulting matrix B as a postprocessing step to obtain

orthogonal bases.

4.2.3 Statistically-based FFD registration (SFFD)

Once the SDM matrix B is obtained, the proposed approach seeks to register a new unseen

subject S∗ /∈ {S1, . . . , SN} by introducing a modification to the classical FFD transformation

model of equation (2.19):
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Tsffd(x) = Tglobal(x) + Tsffd

local(x) = Ax + Tsffd

local(x) (4.11)

Here, Tsffd

local(x) are the local displacements for S∗ given by:

Tsffd

local(x) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)Φ
(w)
i+l,j+m,k+n, (4.12)

where Φ(w) are the FFD control point values parameterising the transformation computed from

the SDM:

Φ(w) = Bw + Φ. (4.13)

Here, Φ is the arithmetic mean of the control point values of the training FFDs and w ∈ RC×1

is a vector containing the actual parameterisation of the transformation. The mean control

point vector Φ is added back because we assume mean centered data. This effectively models

the bias of the transformation to the common template. One way of avoiding this bias is to use

groupwise registration. Note that registering S∗ directly with the standard FFD registration

method involves optimising P variables, in contrast of the C variables of the proposed method.

Thus, since in most cases C � P , this method allows for a substantial reduction in the number

of degrees of freedom in the optimisation. A summary of the proposed framework is depicted

on Figure 4.2.

4.2.4 Landmark-based FFD registration (LFFD)

The statistical registration assumes that a set of N pre-computed FFDs are available. As

already discussed, these examples can be obtained via the standard FFD registration algorithm.

However, if a priori information about the position of anatomical landmarks is available, it is

posible to incorporate this information into the statistical deformation model. For this purpose,

we propose an alternative approach to obtain the pre-computed FFDs. This approach can be

realised as the standard FFD optimising an energy functional as the one in equation (2.54)
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Figure 4.2: Proposed statistical framework. Note that the training process needs to be per-
formed only once in order to be able to statistically register any number of unseen images.

with an additional term that accounts for the alignment of the landmarks:

Elffd(I0; I; lI0 ; lI ; Φ) = Effd(I0; I; Φ)− γ Elandmark(lI0 ; lI ; Φ). (4.14)
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Figure 4.3: Cauchy function Ψ(x2) = δ2 log(1 + (x2/δ2)) with different values of the parameter
δ togheter with Ψ(x) = x2 (black). Note how large errors are less severely penalised. Note also
the inflection poins in x = −δ and x = δ.

Here, Effd(I0; I; Φ) is the standard FFD energy functional defined in equation 2.54 (as a function

of the parameters Φ of the transformation), γ is a tradeoff parameter and Elandmark is defined

as

Elandmark(l
I0 ; lI ; Φ) :=

1

L

L∑
i=1

Ψ
(
‖lIi −TΦ(lI0i )‖2

)
. (4.15)

Here, L is the number of landmarks, lIi is the location of the i-th landmark in the source image

I, and TΦ(lI0i ) is the location of the i-th landmark in the reference template I0 mapped onto I.

We employ a robust function Ψ to control the penalisation of large landmark discrepancies [98].

We choose the Cauchy function Ψ(x2) = δ2 log(1+(x2/δ2)) [95]. The parameter δ represents an

inflection point on the curve from which large deviations (outliers) are less strongly penalised.

Figure 4.3 shows a plot of Ψ for different values of the parameter δ and Ψ(x2) = x2.

We refer the interested reader to appendix A for a detailed derivation of the gradient of the

energy function in equation 4.14.
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Algorithm 2 Conjugate gradient optimisation employed on all registrations.

max step ← voxel size (in mm)
min step ← 0.01 × max step
repeat

Compute conjugate gradient using Polak-Ribière-Polyak formula [167, 168]
step size ← max step
repeat

Make line step according to step size and evaluate energy value
if energy improvement then

step size ← 1.1 × step size
if step size > max step then

step size ← max step
end if

else
step size ← 0.5 × step size

end if
until step size < min step

until no energy improvement

4.3 Results

In all experiments presented in this section, we compare the standard B-spline FFD registra-

tion method and the statistical training approaches described in the previous section: Principal

Component Analysis (PCA), Independent Component Analysis (ICA), Semi-Nonnegative Ma-

trix Factorisation (SNMF). We also perform the comparisons using Semi-Nonnegative Matrix

Factorisation performed on zero-centered data (SNMF-C). For all training and testing registra-

tions, we optimise normalised mutual information (NMI) as similarity measure and thin-plate

bending energy as regulariser with a weight of α = 0.0002 for brain data and α = 0.002 for

cardiac data using conjugate gradient descent and line search as summarised in Algorithm 2.

For the landmark-based registrations, we set the robust function parameter δ to 3mm. Finally,

all the reported p-values are obtained using paired Wilcoxon signed rank tests.
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4.3.1 Data

In this section we describe the datasets employed to test the performance of the proposed

method. For convenience, the data is also summarised in table 4.1.

Table 4.1: Summary of the datasets utilised to test the proposed method.
Dataset Number of Images Modality Organ Annotation Size Resolution (mm)

ADNI 820 MR Brain 20 landmarks 182× 218× 182 1× 1× 1
OASIS 30 MR Brain 134 structures 256× 256× Z,Z ∈ [261, 320] 1× 1× 1
Cardiac 10 sequences × 30 frames MR Heart 3 structures N ×N,N = 240, 256, 288 1.2308× 1.2308

The first set of image data corresponds to 820 preprocessed 1.5 Tesla T1-weighted images from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [149] with L = 20 landmarks

per subject, as defined in [182] (see Figure 4.4 and Table 4.2). All the images have 182×218×182

voxels with an isotropic resolution of 1mm. They are also skull stripped and affinely aligned

to the Montreal Neurological Institute (MNI) template [71]. Exemplary subjects can be seen

in Figure 4.5.

Table 4.2: Summary of the 20 landmarks utilised for the landmark-based registrations as defined
in [182].

Landmark ID Anatomical landmark
1 Splenium of corpus callosum (outer aspect)
2 Splenium of corpus callosum (inferior tip)
3 Splenium of corpus callosum (inner aspect)
4 Genu of corpus callosum (outer aspect)
5 Genu of corpus callosum (inner aspect)
6 Superior aspect of the pons
7 Inferior aspect of the pons
8 Superior aspect of the cerebellum
9 Fourth ventricle
10 Putamen posterior (left)
11 Putamen anterior (left)
12 Putamen posterior (right)
13 Putamen anterior (right)
14 Anterior commissure
15 Posterior commissure
16 Inferior aspect of the cerebellum
17 Anterior tip of lateral ventricle (left)
18 Anterior tip of lateral ventricle (right)
19 Inferior tip of lateral ventricle (left)
20 Inferior tip of lateral ventricle (right)

Secondly, we utilise 35 preprocessed T1-weighted MR brain images originating from the OASIS

database [139], which have been manually segmented by experts1 into 138 anatomical structures.

1provided by Neuromorphometrics, Inc. under academic subscription. (www.neuromorphometrics.com)

www.neuromorphometrics.com
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Figure 4.4: Distribution of the 20 landmarks defined in [182]. See table 4.2 for details on the
landmark IDs.

Four structures are ignored because they do not appear consistently across the dataset (see

Table 4.3 for the final list of structures). From this set of images, 5 duplicates (follow-up

versions of images already in the dataset) were discarded, leaving a final set of 30 images. The

images are skull stripped, with an image size of 256× 256× Z voxels with Z ranging between

261 and 320, and isotropic resolution of 1mm. Figure 4.6 illustrates some example subjects

with their anatomical segmentations as coloured contours.

Finally, an image set of 3 + t-dimensional 1.5T Philips Achieva SSFP MR cardiac sequences

from 10 subjects is used. Each sequence covers one complete cardiac cycle over 30 frames, the

first frame being where the end of diastole occurs. We extract one mid-ventricular short-axis

slice to produce 2 + t-dimensional sequences. Additionally, both end-diastole and end-systole

frames of each subject are manually segmented into 3 structures: right ventricle cavity (RVC),
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Figure 4.5: Example subjects from the ADNI dataset. The first and second columns depict
control subjects (CN) in axial and coronal view, respectively. The third and fourth columns
depict subjects with mild cognitive impairment (MCI) in axial and coronal view, respectively.
The fifth and sixth columns depict subjects with Alzheimer’s Disease (AD) in axial and coronal
view, respectively.



86 Chapter 4. Non-rigid image registration using Statistical Deformation Models

Table 4.3: Summary of the 134 structures used in this thesis for the OASIS data. The original
structure list includes 4 more labels, which we ignore because they do not appear consistently
across the dataset.

Structure ID Label
1 3rd Ventricle
2 4th Ventricle
3 Right Accumbens Area
4 Left Accumbens Area
5 Right Amygdala
6 Left Amygdala
7 Brain Stem
8 Right Caudate
9 Left Caudate
10 Right Cerebellum Exterior
11 Left Cerebellum Exterior
12 Right Cerebellum White Matter
13 Left Cerebellum White Matter
14 Right Cerebral White Matter
15 Left Cerebral White Matter
16 Cerebrospinal Fluid
17 Right Hippocampus
18 Left Hippocampus
19 Right Inf Lateral Ventricle
20 Left Inf Lateral Ventricle
21 Right Lateral Ventricle
22 Left Lateral Ventricle
23 Right Pallidum
24 Left Pallidum
25 Right Putamen
26 Left Putamen
27 Right Thalamus Proper
28 Left Thalamus Proper
29 Right Ventral DC
30 Left Ventral DC
31 Optic Chiasm
32 Cerebellar Vermal Lobules I-V
33 Cerebellar Vermal Lobules VI-VII
34 Cerebellar Vermal Lobules VIII-X
35 Left Basal Forebrain
36 Right Basal Forebrain
37 Right anterior cingulate gyrus
38 Left anterior cingulate gyrus
39 Right anterior insula
40 Left anterior insula
41 Right anterior orbital gyrus
42 Left anterior orbital gyrus
43 Right angular gyrus
44 Left angular gyrus
45 Right calcarine cortex
46 Left calcarine cortex
47 Right central operculum
48 Left central operculum
49 Right cuneus
50 Left cuneus
51 Right entorhinal area
52 Left entorhinal area
53 Right frontal operculum
54 Left frontal operculum
55 Right frontal pole
56 Left frontal pole
57 Right fusiform gyrus
58 Left fusiform gyrus
59 Right gyrus rectus
60 Left gyrus rectus
61 Right inferior occipital gyrus
62 Left inferior occipital gyrus
63 Right inferior temporal gyrus
64 Left inferior temporal gyrus
65 Right lingual gyrus
66 Left lingual gyrus
67 Right lateral orbital gyrus

Structure ID Label
68 Left lateral orbital gyrus
69 Right middle cingulate gyrus
70 Left middle cingulate gyrus
71 Right medial frontal cortex
72 Left medial frontal cortex
73 Right middle frontal gyrus
74 Left middle frontal gyrus
75 Right middle occipital gyrus
76 Left middle occipital gyrus
77 Right medial orbital gyrus
78 Left medial orbital gyrus
79 Right postcentral gyrus medial segment
80 Left postcentral gyrus medial segment
81 Right precentral gyrus medial segment
82 Left precentral gyrus medial segment
83 Right superior frontal gyrus medial segment
84 Left superior frontal gyrus medial segment
85 Right middle temporal gyrus
86 Left middle temporal gyrus
87 Right occipital pole
88 Left occipital pole
89 Right occipital fusiform gyrus
90 Left occipital fusiform gyrus
91 Right opercular part of the inferior frontal gyrus
92 Left opercular part of the inferior frontal gyrus
93 Right orbital part of the inferior frontal gyrus
94 Left orbital part of the inferior frontal gyrus
95 Right posterior cingulate gyrus
96 Left posterior cingulate gyrus
97 Right precuneus
98 Left precuneus
99 Right parahippocampal gyrus
100 Left parahippocampal gyrus
101 Right posterior insula
102 Left posterior insula
103 Right parietal operculum
104 Left parietal operculum
105 Right postcentral gyrus
106 Left postcentral gyrus
107 Right posterior orbital gyrus
108 Left posterior orbital gyrus
109 Right planum polare
110 Left planum polare
111 Right precentral gyrus
112 Left precentral gyrus
113 Right planum temporale
114 Left planum temporale
115 Right subcallosal area
116 Left subcallosal area
117 Right superior frontal gyrus
118 Left superior frontal gyrus
119 Right supplementary motor cortex
120 Left supplementary motor cortex
121 Right supramarginal gyrus
122 Left supramarginal gyrus
123 Right superior occipital gyrus
124 Left superior occipital gyrus
125 Right superior parietal lobule
126 Left superior parietal lobule
127 Right superior temporal gyrus
128 Left superior temporal gyrus
129 Right temporal pole
130 Left temporal pole
131 Right triangular part of the inferior frontal gyrus
132 Left triangular part of the inferior frontal gyrus
133 Right transverse temporal gyrus
134 Left transverse temporal gyrus

left ventricle myocardium (LVM) and left ventricle cavity (LVC). The image sizes are N × N

pixels with N being 240, 256 or 288. All images have an isotropic resolution of 1.2308mm. The

end diastole and end systole frames with anatomical segmentations can be seen in Figure 4.7.

For the ADNI and OASIS brain data, we use the MNI single-subject T1-atlas [142] as common
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Figure 4.6: Example subjects from the OASIS dataset in axial and coronal view. Coloured
contours represent the anatomical segmentations.

reference template. In the case of the cardiac data, we utilise the first frame (end diastole) of

the corresponding sequence, cropped to depict only a rectangular region around the heart. All

FFD registrations where performed with control point spacings of 20, 10, and 5mm. Thus, all

the statistical registrations are performed with a single resolution level using a control point

spacing of 5mm.

4.3.2 Visualisation of SDMs

To visualise the SDM, we show the first 3 components of SDMs trained with different methods:

Figure 4.8 shows the magnitude of the components at each FFD control point (middle slice)

obtained by applying the statistical approaches to the registration results of 820 brain images

from the ADNI database. Figure 4.9 also shows the magnitude of the first 3 components
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Figure 4.7: End diastole and end-systole frames of all 10 subjects from the cardiac dataset with
anatomical segmentations. Coloured contours represent the anatomical segmentations. First
and third columns depict end-diastole frames. Second and fourth columns depict end-systole
frames

of resulting SDMs, but for registrations over a 2D cardiac sequence. Note that for the ADNI

data, the first component accounts for a significant proportion of the variability in the ventricles
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Figure 4.8: Visualisation of the first 3 components in FFD control point space obtained by
different statistical training approaches using the registration results of 820 images from ADNI
data (see section 4.3.1).

(which is a very important characteristic in ADNI data), while the other two components aid in

the alignment of other subcortical areas. In the case of cardiac data, the first two components

mainly account for radial contraction. The third component principally accounts for twisting

motion.

4.3.3 Compactness of the SDM

An important feature that can be used to assess the quality of statistical deformation models

is their compactness, i.e., how much of the variance of the training data can be explained as



90 Chapter 4. Non-rigid image registration using Statistical Deformation Models

Template

P
C

A

First component Second component Third component

IC
A

S
N

M
F

S
N

M
F

−
C

Figure 4.9: Visualisation of the first 3 components in FFD control point space obtained by
different statistical training approaches using the registration results of 28 frames from a cardiac
sequence (see section 4.3.1).

a function of the number of components retained in the matrix B. We investigate this aspect

using the 820 registration results of all ADNI images as training data with four different values

for the landmark energy weight γ. Since of the four statistical training approaches, only PCA is

designed to maximise the explained variance directly, we perform this analysis on PCA only. If

the eigenvalues λi are sorted in descending order into a vector λsort, the percentage of explained

variability V obtained by keeping C out of N principal components can be computed as

V = 100×
∑C

i=1 λ
sort
i∑N

i=1 λ
sort
i

. (4.16)
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Figure 4.10: Percentage of explained variance using 820 training registrations for ADNI with
different values of the landmark weight γ as a function of the number of principal components
retained in PCA.

The results are shown in Figure 4.10. The first aspect that becomes apparent is that the training

deformations have a great amount of variability since more than 600 components are needed

to account for 95% of the variance in all cases. Moreover, even if only 70% of the variance is

to be explained, more than 220 components are still needed. Another interesting observation

is that the more we enforce landmark alignment, the higher the compactness of the statistical

model. This means that the training registrations are less variable with increasing landmark

weight. Finally, we observe that the compactness of the PCA statistical deformation model

using γ = 1 and γ = 2 is very similar. We believe that this is due to the fact that using γ = 1

is enough to enforce all the landmarks to get very closely aligned. Hence, increasing the value

of this parameter does not produce a different result, as there is no room for further landmark

alignment.
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Figure 4.11: Representation error over OASIS data for each of the four statistical training
approaches trained with ADNI data and using 188 and 718 components (50% and 95% of
variance, respectively).
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Figure 4.12: Representation error over cardiac data for each of the four statistical training
approaches using 4 and 10 components (90% and 98% of variance, respectively).
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4.3.4 Reconstruction capability of the SDM

Another key aspect of a statistical deformation model is its ability to represent unseen data.

This representation can be obtained by projecting the high-dimensional parameterisation (con-

trol point values) of the unseen testing registration Φtrue into the low-dimensional parameter

vector w

w = B>(Φtrue − Φ). (4.17)

We can now compute the estimated representation Φestim of the unseen data by combining

equations 4.13 and 4.17:

Φestim = B
(
B>(Φtrue − Φ)

)
+ Φ. (4.18)

Finally, the normalised reconstruction error e of the SDM is given by

e =
1

P
‖Φtrue − Φestim‖L1 . (4.19)

We investigate the ability of statistical deformation models trained with ADNI brain MR im-

ages to represent testing registrations results from the OASIS brain MR image dataset, using

188 and 718 components, which account for approximately 50% and 95% of the training set

variability, respectively. The results are shown in Figure 4.11. We observe that, as expected,

the representation error decreases significantly for all four methods when using more compo-

nents (p < 10−5). Another observation that can be made is that ICA appears to have less

reconstruction capabilities than the other statistical methods, which have similar reconstruc-

tion errors between them. We also study the reconstruction ability of statistical deformation

models trained using the cardiac data. For each sequence, we train the statistical approaches

using all 28 frames which do not correspond to end-systole (sources), by registering them to the

end-diastole frame (target). We utilise 4 and 10 components, which account for approximately

90% and 98% of variability among the training registrations, respectively. Figure 4.12 shows

these results. A similar picture to that of the brain MR images is observed: Increasing the

number of components decreases the error significantly (p = 0.002, 0.004, 0.002, 0.002 for PCA,
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ICA, SNMF and SNMF-C, respectively), and ICA appears to have much less reconstruction

capabilities than the other statistical methods. What is different for the cardiac MR images is

that the errors themselves are much lower, with a difference of almost an order of magnitude

for PCA, SNMF and SNMF-C. This is expected due to two reasons: (1) Almost all the cardiac

variablity can be explained by just 3 components, since cardiac motion is essentially described

by a radial contraction, a longitudinal contraction and a twisting motion. Deformations across

brain MR images, on the other hand, have a much less predictable deformation pattern. (2),

the cardiac deformations are obtained from images of the cardiac cycle of the same subject and

therefore represent an intra-subject registration. On the other hand, the brain deformations

correspond to results of inter-subject registrations.

4.3.5 Statistical registration results

Table 4.4: Number of components utilised for each of the 5 ADNI image groups and values of
the landmark weight γ in the training set.

Group 1 Group 2 Group 3 Group 4 Group 5
γ = 0 578 579 579 578 578
γ = 0.5 487 490 487 486 488
γ = 1 474 476 474 470 476
γ = 2 472 472 470 472 473

We first perform both standard and statistical FFD registration for each subject from the ADNI

dataset. The subjects from the ADNI datasets are randomly separated once into 5 groups of

164 images. We use 4 groups (656 images) to learn B and the remaining group is used for the

testing phase. Thus, each image in a group is registered using a statistical deformation model

trained on the images of the other 4 groups. The number of components we retain correspond

to the amount needed to account for 95% of the training data variability using PCA. Table 4.4

provides details on the number of retained components for each group and landmark weight γ

in the training set.

We compare both standard and statistical FFD models by measuring the mean target regis-

tration error, i.e., how well landmarks are aligned after registration. Note that no landmark
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Table 4.5: Mean (Median) target registration errors and standard deviation over all images
for the proposed statistical registration method (SFFD) using different statistical techniques,
trained with examples from landmark registration using different values of the landmark weight
γ, compared to the standard FFD approach. Since the image have isotropic voxel size of 1mm,
the errors can be considered to be either in mm or in voxels. Significant differences (p < 10−5)
of ICA, SNMF and SNMF-C with respect to PCA are marked in bold.

PCA ICA SNMF SNMF-C
γ = 0 2.98(2.95)± 0.37 3.07(3.05)± 0.38 3.04(3.01)± 0.41 2.98(2.96)± 0.37
γ = 0.5 2.74(2.70)± 0.36 2.77(2.72)± 0.39 2.86(2.83)± 0.39 2.74(2.70)± 0.36
γ = 1 2.68(2.66)± 0.35 2.77(2.74)± 0.39 2.85(2.82)± 0.39 2.68(2.65)± 0.36
γ = 2 2.65(2.61)± 0.35 2.76(2.72)± 0.38 2.76(2.74)± 0.39 2.64(2.61)± 0.35

FFD 2.93(2.87)± 0.48

information is explicitly used to drive the statistical FFD registration. Table 4.5 shows the

results for different values of the trade-off parameter γ. We observe than PCA and SNMF-C

produce the best results, with almost no difference between the two. ICA and SNMF on the

other hand have slightly lower performance than PCA. If we focus on the best overall results

(PCA), it can be observed that the FFD method produces significantly more accurate landmark

alignment (p < 10−5) than statistical registration when there is no utilisation of the landmark

information (i.e. γ = 0). On the contrary, increasing the value of γ does lead the statistical

registration to yield significantly better landmark alignments than standard FFD (p < 10−5 for

γ ∈ {0.5, 1, 2}). Thus, our method embeds both the variability across the population and the

landmark information. Note also that the standard deviation of errors also tends to decrease

with increasing γ. This supports the intuition that a greater weight on the landmark penalty

should tend to better align them and, hence, reduce the variability.

We also look at the individual alignments of each of the 20 landmarks for different values

of the landmark energy weight γ. In this case, we only use PCA to learn the statistical

deformation model. These results are shown in Figure 4.13. It can be observed that for 16 out

of 20 landmarks we obtain lower registration error when using a statistical model trained with

landmark alignment enforcement via the weight γ, albeit this error does not always decrease

monotonically with γ. This, toghether with the results shown in table 4.5, confirms that the

statistical deformation model has a good degree of learning capabilities in terms of how to
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Figure 4.13: Mean errors over all ADNI images for each individual landmark using the statistical
registration trained with PCA. We show results for different values of the landmark penalty
weight γ

better align the landmarks.

Visual results of registration between the template image and a subject’s image from the ADNI

dataset are given in Figure 4.14. We utilise both FFD and the proposed statistical method

with no landmark information, i.e., γ = 0 . We observe that the FFD-based method appears

more accurately aligned than the statistical method. However, the proposed method is capable

of providing a good alignment, with the added benefit that we can also enforce landmark

alignment.

We also explore the utilisation of statistical deformation models trained with ADNI data for

statistical registration of images from the OASIS database. In this experiment, we first make

use of the FFD registrations with no landmark information (i.e., γ = 0). To evaluate the

performance of the proposed statistical registration, we use it to register all images in the

OASIS data to the common template and compute all the mean pairwise similarity indices

of the propagated labels for each image. We perform this experiment in two settings: In

the first setting we retain 188 componens for each statistical model. This corresponds to the
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.14: Visual comparison of the proposed statistical registration for ADNI data trained
with no landmark information (γ = 0) against FFD registration (axial view). (a): Target
image. (b): Source image. (c): Transformed source isolines using FFD registration result over-
layed on the target image. (d): Transformed source isolines using statistical PCA registration
result overlayed on the target image. (e): Transformed source isolines using statistical ICA
registration result overlayed on the target image. (f): Transformed source isolines using statis-
tical SNMF registration result overlayed on the target image. (g): Transformed source isolines
using statistical SNMF-C registration result overlayed on the target image.

number of principal components that explain 50% of the variability of the deformations in the

training set from ADNI. In the second setting, we utilise 718 components per statistical training

approach, which correspond to 95% of the variability. Figures 4.15 and 4.16 show results for
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Figure 4.15: Mean pairwise similarity index per image per label for the OASIS data using 188
components (i.e., 50% of ADNI’s results’ variance explained by PCA), compared to standard
FFD. (a) Standard FFD (b) Trained with PCA. (c) Trained with ICA. (d) Trained with SNMF.
(e) Trained with SNMF-C.

the first and second settings, respectively. Each row corresponds to one image and each column

correspond to one of the 134 structure labels. It is possible to observe that for some structures

the performance is very poor for both standard FFD and statistical registrations. This is due to

these structures being relatively small and hard to segment (e.g. Right Inf Lateral Ventricle (ID

19) and Right Inf Lateral Ventricle (ID 20)), or due to the structure being isolated and not well
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Figure 4.16: Mean pairwise similarity index per image per label for the OASIS data using 718
components (i.e., 95% of ADNI’s results’ variance explained by PCA), compared to standard
FFD. (a) Standard FFD (b) Trained with PCA. (c) Trained with ICA. (d) Trained with SNMF.
(e) Trained with SNMF-C.

defined by intensity features, like the Optic Chiasm (ID 31). Another important observation is

that, when compared to the standard FFD registration, the proposed method have comparable

results in subcortical structures (IDs 1 to 36). However, it performs considerably worse in

cortical areas (IDs 37 to 134). This can be explained by the fact that the cortical anatomy is

extremely variable across different subjects and therefore very hard to match. This means that
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Figure 4.17: Mean pairwise similarity index for each statistical training approach using statis-
tical registrations on the OASIS data trained keeping 188 components and employing different
values of the landmark weight γ. FFD result is also given for comparison.
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Figure 4.18: Mean pairwise similarity index for each statistical training approach using statis-
tical registrations on the OASIS data trained keeping 718 components and employing different
values of the landmark weight γ. FFD result is also given for comparison.

the trained statistical deformation models are not able to represent the deformation pattern in

those areas in such a way that it could be explained with a limited number of parameters.
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Figure 4.19: Results on cardiac data measuring Right ventricle cavity (RVC), Left ventricle
myocardium (LVM) and Left ventricle cavity (LVC) similarity indices for each of the four
statistical training approaches using 4 components. FFD result is also given for comparison.

We perform the previous experiment a second time, but with different values of the landmark

energy weight γ. The results for the two settings (with 188 and with 718 components) are

illustrated in Figures 4.17 and 4.18, respectively. Of the four statistical training approaches,

ICA performs worse than the other appoaches in both settings when no landmark information

is encoded in the SDMs. The remaining methods performing very similarly, although with

relatively poor overall results when compared to FFD. This is mainly due to the fact that

cortical areas are not well registered. This means that for 98 out of the 134 labels, we obtained

similarity indices of around 0.5 or less, which greatly biases the evaluation. We also observe

that the number of components used for the statistical registration does have an important

impact, with a difference of more than 1.5% between the two settings. Moreover, in the first

setting (188 components), the landmark penalty weight does not have great influence on the

final similarity index of the results. We believe that this is because using less components means

that there is much less landmark information encoded in the model. In contrast to this, in the

second setting (718 components), a much stronger influence of enforcing landmark alignment

can be observed in the final similarity indices.
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The effectiveness of the proposed framework in cardiac MR images is also investigated. For

each sequence, we train the statistical approaches using all 28 frames which do not correspond

to end-systole (sources), by registering them to the end-diastole frame (target). We keep 4

components on all experiments, which account for approximately 90% of the variability. Using

the resulting statistical deformation models for each subject, we register the end-systole frame

to the end-diastole frame using the proposed registration method and measure the similarity

index after propagating the three cardiac labels. Figure 4.19 shows the overlap results across

the 10 subjects. We observe results that are very comparable to FFD for all three labels.

Additionally, all four statistical methods perform similarly well in the left and right cavity

areas. However, they tend to have more difficulty aligning the myocardium, albeit this is also

true for FFD. Comparatively, PCA is the statistical method that performs the best and, as

in the case of brain MR images, ICA performs worst. We also perform the same experiment

using 10 components. Nevertheless the improvement in the reconstruction capability by using

additional components (Figure 4.12) was not sufficient to produce any noticeable difference in

the results.

A visual example is given in Figure 4.20 using a cardiac MR image of a subject with noticeable

difference between the end systole and end diastole frames. We observe that the results for

FFD and statistical registration have no important visual difference, except for the proposed

method trained with ICA. These results are in concordance with the fact that ICA has a much

poorer representation capability than PCA, SNMF and SNMF-C.

4.3.6 Runtime

Finally, we measured the runtimes of the FFD registration and proposed registration trained

with PCA for all 30 OASIS images. Statistics of these runtimes are summarised in table

4.6. All registrations were performed using a multithreaded implementation of the algorithms

on a standard PC desktop with 8 cores (3.40GHz) and 16GB of RAM. We observe that the

proposed statistical method is up to 6 times faster than the original FFD implementation. This
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.20: Visual comparison of the proposed statistical registration for one of the cardiac
sequences against FFD registration. (a): Target image. (b): Source image. (c): Transformed
source isolines using FFD registration result overlayed on the target image. (d): Transformed
source isolines using statistical PCA registration result overlayed on the target image. (e):
Transformed source isolines using statistical ICA registration result overlayed on the target
image. (f): Transformed source isolines using statistical SNMF registration result overlayed on
the target image. (g): Transformed source isolines using statistical SNMF-C registration result
overlayed on the target image.

is due to two reasons: Firstly, the statistical registration is performed using only one resolution

level, since the SDM encodes the whole multiresolution pyramid of the training registrations.



104 Chapter 4. Non-rigid image registration using Statistical Deformation Models

Table 4.6: Mean (Median) registration runtimes and standard deviation over all 30 registrations
for the standard FFD method and the proposed statistical FFD method trained with PCA for
different values of γ.

Method Runtime (seconds)
Original FFD 344.7(308.9)± 158.7

Statistical FFD (γ = 0) 81.4(53.9)± 41.3
Statistical FFD (γ = 0.5) 234.4(218.6)± 54.9
Statistical FFD (γ = 1) 67.7(59.8)± 44.3
Statistical FFD (γ = 2) 54.0(49.6)± 7.3

Secondly, in our proposed statistical registration the number of degrees of freedom to optimise

is substantially less than that of the standard FFD, allowing the registration to converge with

fewer iterations.

4.4 Summary

In this chapter, we introduced a registration approach based on statistical deformation models

learnt from a population of registered subjects. These models are employed as prior infor-

mation knowledge to guide the alignment of a new subject to a common reference template.

Furthermore, the learning stage of our framework can take advantage of annotated informa-

tion to enforce the alignment of certain anatomical structures. We focused on annotations of

anatomical landmark, although other types of annotations such as segmentations in the form

of label maps can be used as well. If a set of deformations registering a group of subjects

to a common template is already available, any subsequent registration of an unseen image

to that template space can be performed via the proposed framework. Our results suggest

that the proposed statistical registration method can provide registration results comparable

to the standard FFD-based approach, especially for cardiac MR images. On the other hand,

when using brain data, it is important to consider the fact that the set of subjects employed

to train the statistical model might be very variable, which can have a significant impact in

the performance of a statistical registration. It is important to mention, however, that this

problem can be alleviated by using the proposed approach as an initialisation to a standard
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FFD approach, as proposed by Onofrey et al. [157]. The number of training samples is also a

crucial factor to consider when designing a statistical registration approach. This number has

to be large enough in order to allow the statistical model to learn sufficient information to drive

the registration. This is especially true when the variability of training data is large. Finally, a

relevant feature of the proposed framework is that it has a much lower computational cost than

standard FFD. It also uses substantially less degrees of freedom, and also constrains the set of

possible transformations to be in statistical concordance with the training data. In conclusion,

the proposed registration framework is particularly useful when the underlying transformations

can be characterised by a reduced number of degrees of freedom, making the use of complex

high-dimensional models such as standard B-spline FFD unjustified. In the next chapter, we

further explore the learning capabilities of PCA in order to devise a registration method that

is able to improve the convergence of the optimisation of any chosen parametric registration

method.



Chapter 5

Gradient projection learning for

parametric non-rigid image registration

This chapter is based on:

� Stefan Pszczolkowski, Luis Pizarro, Declan P. O’Regan, and Daniel Rueckert. “Gradi-

ent Projection Learning for Parametric Nonrigid Registration.” In Machine Learning in

Medical Imaging, pp. 226-233. Springer Berlin Heidelberg, 2012.
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5.1 Introduction

The large anatomical variability across subjects in a population makes non-rigid image registra-

tion techniques prone to inaccuracies. Moreover, the cost functions typically used for non-rigid

alignment are highly non-convex, which increases the chances that the optimisation of the reg-

istration may be trapped in local minima. In this chapter, we propose a new learning-based

estimate of the gradient to improve the convergence of the optimisation of any chosen paramet-

ric energy-based image registration method. This computed gradient is shown to yield better

registration accuracy than standard analytical methods, and aids the optimisation method to

potentially avoid early local minima. From a set of training images and their corresponding de-

formations, the proposed method learns offline a projection from the gradient of the similarity

measure in voxel space to the parameter space of the chosen registration method using PCA

dimensionality reduction and standard least squares regression. The learnt gradient is subse-

quently used online to approximate the optimisation of the energy functional for unseen images.

We employ the B-spline FFD approach [183] as underlying registration method, but any other

parametric method can be used instead. We perform experiments on 3D brain MRI data and

2D+ t cardiac MRI sequences to demonstrate that our approach improves the accuracy of the

chosen registration method.

5.1.1 Related work

Learning-based image registration techniques have captured the interest of many researchers in

the last few years. A popular approach is to capture the statistics of deformations by applying

PCA over each band of wavelet coefficients [234] or over the control point values of B-splines

that provide a parametric representation of the deformation fields [131, 182, 206, 170]. In [212],

the parameters of the deformation are estimated by a nearest neighbour search over training

images that have been generated according to a special criterion that breaks the curse of dimen-

sionality. A low dimensional representation of images, with maximally discriminative power is
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obtained in [22] by combining generative and discriminative objective functions in a constrained

optimisation problem. The work in [231] presents a method where features are extracted from

regions obtained by adaptively partitioning brain images. The statistics of deformation fields

are used to robustly place the control points that parameterise the deformations. In [1], a par-

tial least squares approach is employed to relate cardiac deformation due to respiration with

surface intensity traces. Finally, in [111], support vector regression is utilised to estimate the

principal modes of a deformation model of the brain given low dimensionality image features.

One of the main issues of image registration techniques is their high computational cost. Re-

cently, a new type of methods for improving optimisation convergence have been developed,

albeit these methods are not learning-based. These type of schemes are the so-called pre-

conditioning schemes, where the image gradient is scaled differently for different areas of the

image. The main contributions on this kind of approaches are [245, 113]. The difference be-

tween these two approaches is that in [113], the preconditioner is thought to work specificly for

sum of squared differences, while the precontitioning scheme by [245] works for any similarity

measure.

5.2 Methods

5.2.1 Gradient projections

Non-parametric methods, e.g. [96, 18, 36, 211, 221], estimate a dense (voxel-wise) displacement

field u that aligns the target and source images. This flow u is obtained as the solution of an

energy functional. As previously mentioned (see Section 2.3.1), a standard gradient-based

scheme updates the solution with a step size η > 0,

ut+1 = ut − ηt · gt(ut). (5.1)
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Here, t corresponds to the iteration number and g(u) is the gradient of the energy functional

of equation (2.54). When using steepest gradient descent as the optimisation method, g(u)

corresponds to

g(u) = −∂E
∂u

= −∂Esim
∂u

− α∂Ereg
∂u

. (5.2)

The gradients are computed according to the specific choice of similarity and regularisation

terms. For our later developments, we call the term ∂Esim
∂u

similarity gradient image (SGI).

In parametric registration approaches, such as the B-spline based free-form deformation (FFD)

registration algorithm [183], the unknown deformation field is parameterised by N = nx×ny×nz

control points. In order optimise the parameters (control point values) Φξ, with ξ ∈ {x, y, z}, it

is necessary to compute the energy gradient in parametric space rather than voxel space. Thus,

the energy gradient is calculated with respect to the control point values, by taking the SGI

and regularisation terms, and projecting them from voxel space to parameter space by means

of the chain rule:

gξ(uξ) = − ∂E
∂Φξ

= −∂Esim
∂uξ

· ∂uξ

∂Φξ
− α∂Ereg

∂uξ
· ∂uξ

∂Φξ
. (5.3)

For the B-spline FFD approach, the projection term ∂uξ

∂Φξ
is given by the tensor product of the

1D cubic B-splines

∂uξ

∂Φξ
i

=
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w) (5.4)

where u, v, w correspond to relative positions in control point space. Finally, the update step

for the transformation parameters is given by

Φξ
it+1

= Φξ
it
− ηt ·

∂E

∂Φξ
it

. (5.5)
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5.2.2 Learning the projection

We introduce a learning-based method (LB-FFD) in order to project the SGI from the gradient

space of the energy functional to parameter space, in such a way that it avoids local minima. In

our setting, the projection is not constrained to be computed using the B-spline tensor product.

Instead, it can be estimated as follows.

Given M training SGIs based on any similarity metric (e.g. normalised mutual information

(NMI), sum of squared differences (SSD) or normalised cross correlation (NCC)), the first step

of our method is to extract patches pξi,j ∈ Rsx·sy ·sz×1 from all control point locations i = 1 . . . N

and training SGIs
(
∂Esim
∂u

)
j
, j = 1 . . .M :

pξi,j = Psi
(
∂Esim
∂u

)
j

(5.6)

where Psi is an operator that extracts a patch of size s = sx · sy · sz centered on the location of

the control point i in the ξ component of the SGI. The motivation of using these patches comes

from the fact that the B-spline tensor model has local support, i.e., only the voxels of the SGI

within a neighbourhood of a control point have to be considered to perform the corresponding

projections. The patch sizes in each direction sx, sy and sz may take any arbitrary value. In

this work, we choose them such that they cover the support region of the B-spline basis centered

at each control point.

Since the patches pξi,j are of high dimensionality, a PCA dimensionality reduction step is per-

formed for each control point separately, using the M patches centered on that control point.

More specifically, for each control point i, we take all the patches pξi,j, j = 1 · · ·M in the

training set that are centered on it, and assemble them into a matrix Pξ = [pξi,1| · · · |p
ξ
i,M ]. We

then compute the mean patch pξi =
∑M

j=1 pξi,j and the covariance matrices Sξi

Sξi =
1

M − 1

M∑
j=1

(pξi,j − pξi )(p
ξ
i,j − pξi )

>. (5.7)
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An eigendecomposition of Sξi is subsequently performed, yielding matrices Bξ
i ∈ Rsx·sy ·sz×C ,

which contain the C eigenvectors of Sξi with the highest eigenvalues. From this point we can

compute low dimensionality patches pξ
low

i,j ∈ RC×1 by projecting the original patches pξi,j into

the low dimensional space using the PCA projection rule:

pξ
low

i,j = Bξ
i

> · (pξi,j − pξi ) (5.8)

Finally, for each training SGI, a non-rigid FFD registration is performed between the target

and source images that define it, yielding “optimal” training FFD control point values φ̂ξi,j. We

regard φ̂ξi,j as a good approximation of the direction of the similarity gradient term ∂Esim
∂Φξi

, plus

an error ε. This means that

φ̂ξi,j ≈ κ · ∂Esim
∂Φξi

+ ε

≈ κ · ∂Esim
∂u

∂u

∂Φξi
+ ε.

(5.9)

Here, κ is a positive constant. Given that we have the training FFD control point values φ̂ξi,j and

the low dimensionality SGI patches representing ∂Esim
∂u

, we can learn the gradient projections

ˆ
βξi ≈ κ ∂u

∂Φξi
using standard least squares regression over each of the x -, y- and z - components of

the training control point values separately

ˆ
βξi = (X>X)−1X>φ̂ξi,1···M . (5.10)

Here, X ∈ RM×C+1 is a matrix containing ones in the first column and the low dimensionality

patches spanning the C remaining columns in each row. To this end, the learnt coefficients
ˆ
βξi

satisfy

φ̂ξi,j ≈
(

ˆ
βξi

)
0

+
C∑
k=1

(
ˆ
βξi

)
k
·
(
plowi,j

)
k
. (5.11)

An important disadvantage of the previously described approach for learning the projection is

that is necessary to perform PCA for each control point on each SGI image during training.

This is very computationally expensive, as the total number of control points can reach several
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millions just by using a few dozen training SGIs in 3D (the number of control points in 2D

would be considerably less). To alleviate this problem, we propose to learn the projection by

performing only three PCA operations, each one over the x -, y- and z -components of all possible

SGI patches combined. We then regress all x -, y- and z -related low dimensionality patches with

the x -, y- and z -components of their respective training control point value. Hence, only three

regression calculations are needed. To account for this new setting, equation (5.11) can be

rewritten as

φ̂ξl ≈
(
β̂ξ
)

0
+

C∑
k=1

(
β̂ξ
)
k
·
(
plowl

)ξ
k
, l = 1 · · ·M ×N. (5.12)

5.2.3 Registration of unseen images

Once the learning procedure described in the previous section is performed, it is possible to

register an unseen image to any of the target images used to produce the training SGIs, e.g.

the ones depicted in Figure 5.1. For this purpose, we devise an optimisation scheme similar to

(5.5) which uses a mixture of our learning-based gradient and the standard analytical gradient

of equation (5.3)

Φξ
t+1 = Φξ

t + η ·
[
(1− ω) · (gffd)ξt + ω · (glb)ξt

]

(glb)ξt :=
(
β̂ξ
)

0
+
∑C

k=1

(
β̂ξ
)
k
· (plow∗l )ξk

(gffd)ξt := ∂E
∂Φξ

.

(5.13)

Here, 0 ≤ ω ≤ 1 is a parameter that controls the gradient mixture. The unseen low dimensional

patch (plow
∗

l )ξk is computed by projecting the corresponding high dimensionality patch (p∗)ξ,

taken from the SGI between the target and the current transformed source, using the PCA

projection rule

(plow
∗

l )ξk = Bξ> ·
(

(p∗)ξ − pξ
)
. (5.14)

Note that pξ and Bξ are computed analogously to pξi and Bξ
i . The only difference is that they

are obtained using all the training patches taken from every control point. A summary of the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 5.1: One example of the brain data used and its similarity gradient in all x -, y- and
z -directions. (a)-(b): Axial and coronal views of target image. (c)-(d): Axial and coronal views
of source image. (e)-(f): Axial and coronal views of SGI in x -direction. (g)-(h): Axial and
coronal views of SGI in y-direction. (i)-(j): Axial and coronal views of SGI in z -direction.

proposed framework is depicted on Figure 5.2.

5.2.4 Multi-resolution framework

The procedure described in section 5.2.2 is only valid for a single-resolution registration frame-

work. In order to extend it to be able to perform in a multi-resolution framework with L levels

starting from the coarsest level L down to the finest level 1, some considerations have to be

made. For level L, the method requires no change, but for all other levels l with 1 ≤ l ≤ L− 1,
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Figure 5.2: Proposed learning based framework. Note that the training process needs to be
performed only once in order to be able to subsequently register any number of unseen images.

the source images used to generate the training SGIs are first deformed according to the FFD

deformation field obtained down to level l + 1 (while the target remains the same), and the

FFD control point values used for regression are the difference between the FFD control point

values down to level l and the FFD control point values down to level l + 1.

5.3 Results

As previously mentioned, we utilise the B-spline FFD approach [183] as underlying parametric

method for our approach. All registrations (both training and testing) where performed with

control point spacings of 20, 10, and 5mm. We use Algorithm 2 of Chapter 4 for the opti-



5.3. Results 115

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Number of principal components

%
 o

f 
v
a

ri
a

n
c
e

 e
x
p

la
in

e
d

x−direction

 

 

20mm control point spacing

10mm control point spacing

5mm control point spacing

(a)

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Number of principal components

%
 o

f 
v
a

ri
a

n
c
e

 e
x
p

la
in

e
d

y−direction

 

 

20mm control point spacing

10mm control point spacing

5mm control point spacing

(b)

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Number of principal components

%
 o

f 
v
a

ri
a

n
c
e

 e
x
p

la
in

e
d

z−direction

 

 

20mm control point spacing

10mm control point spacing

5mm control point spacing

(c)

Figure 5.3: Percentage of explained variance as a function of the number of PCA components
for the three utilised resolution levels. (a) Explained variance in x -direction. (b) Explained
variance in y-direction. (c) Explained variance in z -direction.

misation. In the case of testing registrations, the gradient that is conjugated is the complete

mixture (1−ω) ·(gffd)+ω ·(glb). In all the conducted experiments, we utilise normalised mutual

information (NMI) as similarity measure and the thin-plate bending energy of the deformation
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field with a weight of α = 0.002 as a regularisation term. We also learn the low dimisionality

patches using PCA, retaining the number of components necessary to account for 98% of the

total SGI patch variance. The patch sizes needed to cover the B-spline support regions are

9× 9× 9 for the brain images used in our experiments and 9× 9 for the cardiac ones. Finally,

all the reported p-values are obtained using paired Wilcoxon signed rank tests.

5.3.1 Data

We employ an image set of 2+ t-dimensional 1.5T Philips Achieva SSFP MR cardiac sequences

from 10 subjects and 35 preprocessed T1-weighted MR brain images originating from the OASIS

database [139]. See Section 4.3.1 from Chapter 4 for a detailed description of these datasets.

5.3.2 Compactness of the patch data

We investigate the compactness of the patch data obtained from the OASIS brain dataset.

Compactness determines how much of the total variance of the data can be explained as a

function of the number of retained PCA components. We perform the analysis in all three x -,

y- and z - directions and with patches taken for all three resolution levels (20mm, 10mm and

5mm control point spacing). Compactness of the patch data is an important aspect, since it

describes the amount of dimensionality reduction achieved by the PCA step. The results are

summarised in Figure 5.3. We observe that the finer the resolution level, the more compact

the patches are. This is expected because on coarser resolution levels, the patches are taken

from SGIs generated with downsampled versions of the target and source images, increasing

their variability. Another important observation is that the dimensionality reduction in our

approach (retaining 98% of the variability) is very limited, since the low dimensionality patches

are described using at least 600 parameters.
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5.3.3 Appearance of the learnt coefficients

We study the appearance of the projections utilised over high-dimentional patch data, compared

to the B-spline projections of the standard FFD approach. Since the learnt coefficients β̂ξ

are trained using low-dimensional patches, the projections πξ are given by projecting these

coefficients (ignoring the first one) into the high-dimensional space:

πξ =
(
β̂ξ
)

1···C
·Bξ>. (5.15)

Figure 5.4 provides a visualisation of the projections πξ, alongside the B-spline projections of

standard FFD for three different cardiac subject. We show these results on cardiac data since

they are 2D images and thus simpler to visualise. The main fact that becomes apparent is that

the learning-based projections do not resemble a symmetric kernel, but a rather random one.

We also observe that the projections look different for different subjects. These observations

mean that the learned projections are specific to the particular data used for training. Another

observation is that the learned projections may have both positive and negative coefficients, in

contrast to the strictly non-negative coefficients of the B-spline kernel.

5.3.4 Learning-based registration results

In our experiments, we compare the registration performance of four different settings: The first

setting corresponds to the standard B-spline FFD algorithm (ω = 0). In the second setting,

we register images using a purely learning-based gradient (ω = 1). The third setting is a

mixture of FFD and learning-based gradients (ω = 0.5). In the final setting, the gradients are

hierarchically combined by setting the value of ω to 1 at the beginning. The registration then

proceeds until convergence. Subsequently, this valued is halved and the registration continues

again until convergence. The algorithm continues by halving the value of ω until a new value

does not produce any improvement in the line search, or until ω < 0.001.
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Figure 5.4: Visualization of the 2D projection factors πξ applied over patches taken from 3
subjects of the cardiac data.

We perform registrations using each of the four experimental settings using the MNI single-

subject T1-atlas [142] as target and the 30 OASIS images as source. The learning-based gradi-

ents for each registration are trained using patches from SGIs generated using the target image

and all other 29 images of the OASIS dataset. For evaluation, we compute all the pairwise
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Figure 5.5: Mean pairwise similarity index per image per label for the OASIS data. We show
results for each of the four experimental settings. (a) FFD (b) Learning based. (c) Mixed. (d)
Hierarchically mixed.

FFD Learning based Mixed Hierarchically mixed
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

S
im

ila
ri
ty

 i
n
d
e
x

Figure 5.6: Results on OASIS brain data for each of the four experimental settings.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Visual comparison of the proposed registration for OASIS data against FFD reg-
istration (axial view). (a): Target image. (b): Source image. (c): Transformed source isolines
using FFD registration result overlayed on the target image. (d): Transformed source isolines
using pure learning based registration result overlayed on the target image. (e): Transformed
source isolines using mixed registration result overlayed on the target image. (f): Transformed
source isolines using hierarchically mixed registration result overlayed on the target image.
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Figure 5.8: Results on cardiac data measuring Right ventricle cavity (RVC), Left ventricle
myocardium (LVM) and Left ventricle cavity (LVC) similarity indices. We show results for
each of the four experimental settings.

similarity indices of 134 labels propagated into the target space. These results are shown in

Figure 5.6. We observe that the proposed learning-based gradient yields an improvement on

the overlaps over the standard FFD approach. Furthermore, this is observed in all the settings

where a learning-based gradient is involved. Moreover, the improvements are statistically sig-

nificant at a 5% significance level (p = 0.0132 for mixed and p < 10−5 for learning-based and

hierarchically-mixed). These results suggest that the proposed method is able to converge to a

better solution, as it does not get prematurely trapped in a local minima. Further visualisation

of the mean overlaps for each of the anatomical labes and each image in the OASIS dataset

can be seen in Figure 5.5.

Visual results of registration between the template image and a subject’s image from the OASIS

dataset are given in Figure 5.7. We observe that the purely learning-based hierarchical gradients

yield better visual results than standard FFD registration and the mixed gradient, especially

in the ventricles.

We also perform registrations over the cardiac MR dataset according to all four experimental
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Visual comparison of the proposed registration for one of the cardiac sequences
against FFD registration. (a): Target image. (b): Source image. (c): Transformed source
isolines using FFD registration result overlayed on the target image. (d): Transformed source
isolines using pure learning based registration result overlayed on the target image. (e): Trans-
formed source isolines using mixed registration result overlayed on the target image. (f): Trans-
formed source isolines using hierarchically mixed registration result overlayed on the target
image.

settings. We use the first frame (end diastole) of the corresponding sequence as target image

and the end systole frame of the same sequence as source. Hence, a total of 10 registrations



5.3. Results 123

are performed on each setting. The learning-based gradients for each registration are trained

using patches from SGIs generated using the target image and all other 28 frames of the

corresponding sequence. As there are segmentations of the right ventricle cavity, left ventricle

myocardium and left ventricle cavity available for both end diastole and end systole frames,

we measure the similarity index between the target and the propagated source labels. Figure

5.8 shows the overlap results. The first observation that we make is that all four settings yield

very similar results for the right ventricle, with differences that are not statistically significant

(p = 0.084, 0.2324, 0.375 for learning-based, mixed and hierarchically-mixed compared to FFD,

respectively). For the two labels on the left ventricle, the settings with mixed gradients yield the

best results, with overlaps which are more consistent, especially for the myocardium, although

these improvements are significant only for the hierarchical setting on a 5% significance level

(p = 0.0488, 0.0273 for the left myocardium and left ventricle, respectively). However, purely

learning-based registrations perform much worse for these two labels, although this is only

statistically significant for the left ventricle cavity (p = 0.0059). This may be explained by the

fact that the cardiac frames are in 2D, hence a much lower number of patches can be extracted

to learn the projection.

Visual results for one of the subjects in the cardiac MR dataset is given in Figure 5.9. It

is possible to visually confirm the previous result that all registration approaches have good

alignment capabilities in the right ventricle cavity. We also observe that the pure learning

based and standard FFD registrations are limited in its ability to register the cavity of the left

ventricle accurately. This is not the case for the proposed hierarchical mixing, which visually

appears to have very good registration capabilities for all structures.

5.3.5 Runtime

Finally, we measure the mean runtime of registrations over the OASIS dataset for each of

the four experimental settings. The registrations were run on a standard PC desktop with

3.40GHz core frequency (they run only on one core) and 16GB of RAM. These results are
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Table 5.1: Mean (Median) registration runtimes and standard deviation over all 30 registrations
for the standard FFD method and the proposed statistical FFD method trained with PCA for
different values of γ.

Setting Runtime (seconds)
FFD 311.3(300.3)± 155.3

Learning based 173.5(172.9)± 14.6
Mixed 324.5(311.3)± 155.1

Hierarchically mixed 477.3(483.4)± 26.7

summarised in table 5.1. It can be observed that the purely learning-based registration is

significantly faster than standard FFD. Furthermore, this speedup comes together with a better

registration accuracy, as previously reported. The mixed gradients setting yields registrations

that are comparable to standard FFD in terms of runtime. On the other hand, registrations

using hierarchically mixed gradients perform substantially slower. This is expected, since the

hierarchical mixing involves several serial optimisations.

5.4 Summary

We developed a new general learning-based non-rigid registration approach to improve the con-

vergence of the optimisation of any chosen parametric energy-based image registration method.

A projection from the gradient space of the energy functional to the parameter space is learnt

offline from reduced-dimensionality data and subsequently used online to approximate the op-

timisation of the energy functional for unseen images. This computed gradient is able to

yield better registration accuracy than standard analytical methods, by aiding the optimisa-

tion method to potentially avoid early local minima. Our preliminary results from experiments

on brain MR image data and MR cardiac sequences show that the proposed gradient can be

utilised in conjunction with the standard analytical gradient in order to improve the registration

accuracy. If utilised in isolation, the proposed gradient can also significantly decrease registra-

tion runtimes and provide a better registration accuracy than FFD, if a sufficient amount of

training data is available.
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The training scheme of the proposed approach may be limited in the sense that SGI patches

are taken from all control points. This can potentially restrict the number of training SGI that

can be used, as the patch matrix may occupy a non-negligible amount of memory. For example,

when using 1000 3D training images, the matrix takes approximately 300GB of memory using

double precision, which is a memory capacity seldom found on standard desktop computers.

As future work, we will investigate how to restrict the number of patches taken from each SGI

without compromising the learning outcomes. Another possible avenue of further development

is to replace the PCA dimensionality reduction and standard regression steps by one Partial

Least Squares regression step using the original high-dimensional patches. In the next chapter,

we propose a novel robust similarity measure for image registration.
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A robust similarity measure for image

registration

This chapter is based on:

� Stefan Pszczolkowski, Stefanos Zafeiriou, Christian Ledig and Daniel Rueckert. “A Ro-

bust Similarity Measure for Non-rigid Image Registration with Outliers.” In Biomedical

Imaging (ISBI), 2014 IEEE 11th International Symposium on, pp. 568-571. IEEE, 2014.
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6.1 Introduction

Most of the research in the context of medical image registration focuses on alignment where

correspondences can be established everywhere in the images. However, standard registration

methods usually fail to perform well when the assumption of correspondence locally breaks

down and does not hold. For example, the spatial correspondence between an image of a

healthy subject and an image of a subject with a tumor is not defined in the pathological area.

As a consequence, registrations using standard similarity measures may produce unsatisfactory

results in those cases. In addition, MR imaging can introduce intensity inhomogeneities into

images as a result of inhomogeneities in the magnetic field of the MR scanner. This also poses

a problem for registration, since this means that the intensities of the images being registered

are not spatially consistent, impeding the registration results. Therefore, there is a significant

need for improved robustness of registrations involving images with ambiguous correspondences

and/or intensity inhomogeneities. To the best of our knowledge, there is no previously pro-

posed similarity measure for image registration that is robust to both imaging artefacts such

as intensity inhomogeneities caused by bias fields and outliers in the images, e.g., in form

of pathology. To address this chalenge, we utilise a simple, but effective similarity measure

based on the angle between gradient orientations, which are obtained from the normalised im-

age gradients. A similar approach has been recently successfully applied for the robust affine

alignment of facial images [217] and shown to be robust towards occlusions and changes in

illumination. Specifically, we employ this similarity measure within a widely and successfully

used non-rigid registration framework based on free-form deformations (FFD) [183]. We pro-

vide both theoretical and experimental evidence of its robustness and evaluate on manually

annotated MR images, comparing the proposed similarity measure to other similarity measures

such as normalised mutual information and an alternative similarity measure based on nor-

malised gradients. We also confirm robustness of the proposed similarity measure on simulated

pathological imaging data from a tumour database and on real brain MR images from patients

with traumatic brain injury.
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6.1.1 Related work

In medical imaging, several methods have been proposed for registration of images with am-

biguous correspondences, focusing on robustness [175], tumour models [237], resection cavity

and recurrence models [118], or Bayesian models [75]. However, all these methods require prior

knowledge in order to aid in the alignment of the regions where the spatial correspondences

are not clear. Additionally, a number of methods have been proposed to reduce the effect of

intensity inhomogeneities in the registration. They can be based on local similarity measures

[89, 7, 203, 114, 235, 133, 241], Markov Random Fields [233, 52, 239], or correction of intensity

distortions [63, 146]. Moreover, a number of robust similarity measures have also recently been

presented in the computer vision community [19, 53, 217, 135].

One of the earliest approaches using normalised image gradients in the field of medical image

registration was proposed by Pluim et al. [166]. In this work, normalised mutual information

(NMI) [205] is weighted voxelwise by the normalised image gradients in order to incorporate spa-

tial information. After this initial work, the first similarity measure based solely on normalised

gradients was proposed by Haber et al. [74]. Since its introduction, this similarity measure has

been successfully utilised for CT liver registration [87], ultrasound-CT liver registration [121],

tracking in fluoroscopy images [174], and optical flow based tracking [86]. However, as we show

in this chapter, this similarity measure is less robust to image inhomogeneities and may be

affected when gross outliers, such as lesions or tumours, are present in the images.

6.2 Methods

6.2.1 Proposed similarity measure

In the paper by Haber et al. [74], the authors use the observation that a target and a source

image come into alignment when the square of the cosine of the angle between the target

and warped source gradient orientations is maximised. In contrast, we propose to adopt the
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similarity measure introduced by Tzimiropoulos et al. [217], which corresponds to only the

cosine (not squared) between gradient orientations, and introduce it into the problem of medical

image registration. Hence, we propose to utilise the following similarity measure as energy

functional:

Esimilarity(I0; I; T) = − 1
|Ω|
∑

x∈Ω cosα(∇I0(x),∇I1(x)). (6.1)

Here, Ω is the set of indices corresponding to the target image voxels, α(·, ·) is the angle between

two gradient orientations, T is the current spatial transformation, and I1 = I ◦T denotes the

warped source image. The proposed energy term in Equation (6.1) can be expressed in terms

of the dot product 〈·, ·〉 between gradients

Esimilarity(I0; I; T) = − 1
|Ω|
∑

x∈Ω
〈∇I0(x),∇I1(x)〉
||∇I0(x)|| ||∇I1(x)|| . (6.2)

As we later show, the minor difference between the proposed similarity and that of Haber et

al. has an important impact in the ability of the similarity measure to deal with ambiguous

corespondences.

We refer the interested reader to appendix A for a detailed derivation of the gradient for both

the proposed similarity measure and the similarity measure proposed by Haber et al. [74].

6.2.2 Numerical stability

As discussed in [74], normalised gradient field are not differentiable in homogeneous areas

because the terms in the denominator become zero. We thus compute the energy term using

regularised normalised gradient fields as presented in [184]:

Esimilarity(I0; I; T) = − 1

|Ω|
∑
x∈Ω

〈∇I0(x),∇I1(x)〉%,τ
||∇I0(x)||% ||∇I1(x)||τ

, (6.3)
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where 〈·, ·〉%,τ = 〈·, ·〉 + %τ and || · ||∗ =
√
〈·, ·〉∗,∗. In other words, this normalisation scheme

corresponds to a reformulation of the image gradients as:

∇I0 ≡
(
∂I0
∂x
, ∂I0
∂y
, ∂I0
∂z
, %
)>

∇I ≡
(
∂I
∂x
, ∂I
∂y
, ∂I
∂z
, τ
)> . (6.4)

In this work, % and τ are not user-defined parameters as in [184]. Instead, they are computed

following a choice based on total variation [12]:

% =
η

VI0

∑
x∈ΩI0

|∇I0(x)|, τ =
η

VI

∑
x∈ΩI

|∇I(x)|. (6.5)

Here, V∗ is the volume of interest in the image domain Ω∗ and η > 0 is a parameter to allow noise

filtering. Note that the value of η (and consequently the values of % and τ), sets a threshold

that separates small gradients (noise) from the strong gradients that drive the registration.

6.2.3 Robustness of the proposed similarity measure

Robustness against intensity inhomogeneities

A significant advantage of normalised gradient-based methods is their invariance towards low

frequency intensity changes, as we now demonstrate. Consider an image signal M with no

intensity inhomogeneities and a multiplicative, non-negative bias field F which is assumed

to be smooth, i.e., constant in the small neighborhood N (x) = (∆x,∆y,∆z). This means

F (p) ≈ F (x),∀p ∈ N (x). We have for ∆x:

Ibias(x) = M(x)F (x) + ε

Ibias(x + ∆x) = M(x + ∆x)F (x + ∆x) + ε.
(6.6)
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Here, ε is an additive noise term that does not depend on the spatial variable x. Given that

F (x) is constant within the neighborhood, we have:

∂Ibias(x)
∂x

= lim∆x→0
Ibias(x+∆x)−Ibias(x)

∆x

≈ lim∆x→0
F (x)(M(x+∆x)−M(x))

∆x

= F (x)∂M(x)
∂x

.

(6.7)

Using this result, we now show that the proposed cost function is indeed robust to any locally

constant bias field using the normalisation scheme in (6.3). If the contributions of % and τ are

disregarded, we have:

∇xIbias(x)
||∇Ibias(x)|| =

∂Ibias(x)
∂x√

( ∂Ibias(x)
∂x )

2
+( ∂Ibias(x)

∂y )
2
+( ∂Ibias(x)

∂z )
2
. (6.8)

By using equation (6.7) we obtain

∇xIbias(x)
||∇Ibias(x)|| =

F (x)
∂M(x)
∂x√

(F (x)
∂M(x)
∂x )

2
+(F (x)

∂M(x)
∂y )

2
+(F (x)

∂M(x)
∂z )

2
. (6.9)

Here we observe that F (x) vanishes, yielding

∇xIbias(x)
||∇Ibias(x)|| =

∂M(x)
∂x√

( ∂M(x)
∂x )

2
+( ∂M(x)

∂y )
2
+( ∂M(x)

∂z )
2
.

= ∇xM(x)
||∇M(x)||

(6.10)

Equations (6.6)-(6.10) are analogous for ∆y and ∆z. This leads to

∇Ibias(x)
||∇Ibias(x)|| = ∇M(x)

||∇M(x)|| , (6.11)



132 Chapter 6. A robust similarity measure for image registration

demonstrating the invariance of normalised gradient-based similarity measures with respect to

F .

Robustness against ambiguous correspondences
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Figure 6.1: Integrals for both cosine and cosine squared functions in the [0, π] range. Note that
the mean of the cosine is zero in that range, which is not the case for cosine squared.

As we later show in the results, the similarity measure presented in [74], is not robust against

ambiguous spatial correspondences. Consider a region Ω0 in the target image with no such

correspondences in the source image. Intuitively, the angles form by the normalised gradients

are random and thus uniformely distributed in the [0, π] range. Hence, the sum of the values

for the inner product of the normalised gradients taken from Ω0 can be approximated by

the integral in that range. As shown in Figure 6.1, the integral for cosine squared similarity

measure is strictly positive. Thus,
∑

x∈Ω0
cos2 α(∇I0(x),∇I1(x)) � 0. Consequently, the

total cost function can be arbitrarily biased by the presence of outliers producing ambiguous

correspondences. In contrast, the integral for cosine similarity measure is exactly zero. As a

consequence,
∑

x∈Ω0
cosα(∇I0(x),∇I1(x)) ≈ 0, which means that the presence of outliers does

not bias the proposed similarity measure.
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6.3 Results

As previously mentioned, we incorporate the proposed similarity measure into a B-spline FFD

approach [183]. For comparison, we also incorporate the cosine squared similarity measure of

Haber et al. [74] and normalised mutual information (NMI) [205] into our framework. In all the

conducted experiments, we utilise the thin-plate bending energy of the deformation field with

a weight of α = 0.002 as a regularisation term and optimise using conjugate gradient descent

(see Algorithm 2 of Chapter 4). We use the same regularisation weight for every similarity

since the empirical range of values that they take using our experimental image datasets are of

very similar width for all of them. Finally, all the reported p-values are obtained using paired

Wilcoxon signed rank tests.

6.3.1 Data

We employ an image set of 2+ t-dimensional 1.5T Philips Achieva SSFP MR cardiac sequences

from 10 subjects. We also use 35 preprocessed T1-weighted MR brain images originating

from the OASIS database [139] and 820 preprocessed 1.5 Tesla T1-weighted images from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [149]. See Section 4.3.1 from

Chapter 4 for a detailed description of these datasets.

Additionally, we use a dataset of 10 simulated MR images of the brain depicting tumours.

These images are taken from the BraTS MICCAI 2012 challenge 1. Half of these images show

high grade gliomas and the other half has low grade ones. The images are labelled into white

matter (WM), gray matter (GM), cerebrospinal fluid (CSF) and 2 further labels for the tumour

areas. All the images are skull stripped, and have 256 × 181 × 256 voxels with an isotropic

resolution of 1mm. A visualisation of all the subjects from this dataset is provided in Figure

6.2.

Finally, a pair of MR brain images of a patient with traumatic brain injury (TBI) is also

1http://www2.imm.dtu.dk/projects/BRATS2012/

http://www2.imm.dtu.dk/projects/BRATS2012/
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Figure 6.2: BraTS subject in axial and coronal view. First and second columns depict subjects
with high-grade gliomas. Third and fourth columns depict subjects with low-grade gliomas.
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Table 6.1: Summary of the datasets utilised to thest the proposed method.
Dataset Number of Images Modality Organ Annotation Size Resolution (mm)
BraTS 10 MR Brain 5 structures 256× 181× 256 1× 1× 1
TBI 2 MR Brain N/A 176× 240× 256 1× 1× 1

(a) (b) (c)

Figure 6.3: Axial view of a T1-weighted brain images utilised for intensity inhomogeneity
simulation. (a): Original. (b): With simulated bias field applied. (c): Bias field

used. One image corresponds to a baseline scan and the other is the followup scan taken after 4

months and 19 days at Turku University Hospital. Both images have 176×240×256 voxels with

an isotropic resolution of 1mm. These images are later shown in Figure 6.9. For convenience,

we also summarise the datasets used exclusively in this Chapter in table 6.1.

6.3.2 MR images with intensity inhomogeneities

Here we evaluate the performance of our proposed similarity measure against intensity inhomo-

geneities. This relaxes the necessity of an explicit intensity correction step in the registration

pipeline (e.g. [215]), which can be time consuming and a potential source of errors, especially

for non-brain images.
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Bias field simulation

To introduce intensity inhomogeneities into the images, we simulate several two-dimensional

complex-valued MRI sensitivity maps using a MATLAB tool2. For each image, we simulate the

effect of 8 uniformly placed coils. Then, we randomly select one of the 8 generated sensitivity

maps as the final map S for the image. Since the sensivity maps are two-dimensional, we apply

them to every 2D slice of the image along the Z-axis in a weighted fashion. The idea behind

this weighting is to apply the simulated 2D bias field along the z -direction with peak strength

in the middle slice and gradually decaying towards the extreme slices. Hence, if we denote the

original image as M , then the simulated image with intensity inhomogeneities I is constructed

according to

I(·, ·, z) = int [w(z)⊗ ‖S(·, ·, z)‖ ⊗M(·, ·, z)] z ∈ [1, Nz], (6.12)

where Nz corresponds to the number of image slices along the z -direction, ⊗ is the voxelwise

multiplication and w(z) is given by

w(z) = 1 + 10 · G
(
Nz − 1

2
, σ

)
. (6.13)

Here, G(µ, σ) is the Gaussian distribution function with mean µ and standard deviation σ. We

use a factor of 10 in order to amplify the range of the Gaussian function. For all the simulations

we use σ = 0.15 · (Nz − 1). As an example, we show in Figure 6.3 the middle slice of an image

before and after applying the simulated bias on it and the resulting bias field.

Behaviour of the similarity measures for rigid transformations

We study the behaviour of the proposed similarity measure, cosine squared by Haber et al. and

normalised mutual information (NMI) with respect to translations and rotations for a 3D MR

2bigwww.epfl.ch/algorithms/mri-reconstruction

bigwww.epfl.ch/algorithms/mri-reconstruction
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Figure 6.4: Effect of (a) shift and (b) rotation when using the original image and the image
with bias field as target. We observe that the values of proposed similarity measures are almost
not affected by the presence of intensity inhomogeneities

image of a brain. The target image corresponds to either the original image or the image with

simulated inhomogeneities. The source image corresponds to the translated/rotated original

image (with no intensity inhomogeneities). Figure 6.4 shows how each of the similarity measures
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behave as a function of the rigid transformations. We observe that all three similarity measures

achieve a peak when there is no translation/rotation. However in contrast to NMI, the values

of the normalised gradient field based similarity measures are hardly affected by the presence

of intensity inhomogeneities.

Non-rigid registration

To evaluate the proposed similarity measure for non-rigid registration, we perform the 30 ×

29 = 870 pairwise registrations with control point spacings of 20, 10, 5 and 2.5mm, using the

original images from the OASIS dataset. We subsequently introduce different smooth intensity

inhomogeneities individually to all the images according to the procedure described in section

6.3.2 and repeat the registrations again using the original images as target and the affected

ones as source.

We compare the gradient-based similarity measures with noise parameter η set to 0.1 against

NMI in their ability to produce a deformation field able to accurately propagate the manual

segmentation labels. We measure the registration accuracy using the similarity index (SI),

both for the original images and the images with bias field applied. We compute the mean

and standard deviation of the SI values calculated on the propagated and reference labels

for all 870 propagations. We differentiate between the 98 cortical and 36 subcortical labels.

The results are shown in Figure 6.5. We observe that NMI performs well when there are no

intensity inhomogeneities in the images. On the contrary, it is severely affected by the presence

of intensity inhomogeneities. Conversely, both gradient-based similarity measures show similar

performance for registrations with and without intensity inhomogeneities, demonstrating their

robustness. Nevertheless, the proposed similarity measure performs slightly better that cosine

squared, and the differences are statistically significant (p < 10−5). To complement the analysis,

we show the same results for each of the images and each label in Figure 6.6.

It is important to note that in the case where no intensity inhomogeneities are present, the

proposed similarity measure performs not as well as NMI (p < 10−5). We observe that in the



6.3. Results 139

Cortical Subcortical Overall
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
im

ila
ri
ty

 i
n

d
e

x

 

 

NMI
NMI with bias field

Proposed

Proposed with bias field

Haber et al.
Haber et al. with bias field

Figure 6.5: Mean similarity index and standard deviation over cortical and subcortical labels
for all 30× 29 = 870 registrations.

particular case of MR brain images, the discrimination between noise- and structure-related

gradients is very challenging, especially in cortical areas, as can be deducted from the results

shown in Figure 6.6-(a), -(c) and -(e).

6.3.3 MR images with pathologies

Registration of images depicting pathology is a challenging task, since the images may exhibit

strong structural differences that cannot always be matched. Here, we show that our similarity

measure is capable of handling images with areas of ambiguous spatial correspondences, e.g.,

areas of pathology, without any prior knowledge nor any subsequent correction step.

Affine registration

For a quantitative evaluation, a labelled image of a healthy subject is registered to all 10 images

in our BraTS dataset using NMI and both normalised gradient field based similarity measures.

The registrations using either the cosine or cosine squared similarity measure were run in two
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Figure 6.6: Mean pairwise similarity index per image per label for the OASIS data. (a) NMI
(b) NMI with bias field. (c) Proposed similarity. (d) Proposed similarity with bias field. (e)
Haber et al. [74]. (f) Haber et al. [74] with bias field.

settings. In the first setting, the noise parameter η is set to 0.1. In the second, we set the value

of η to 1. We measure registration accuracy using SI over three labels, namely WM, GM and

CSF. We ignore the two available tumour labels as there is no equivalent in the healthy scan.

A good overlap for non-tumour labels is an indicator that the similarity measure is not biased

by the presence of pathology.
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Table 6.2: Images with pathology: Mean (Median) overlap measures and standard deviation
for white matter (WM), grey matter (GM) and ventricular cerebrospinal fluid (CSF) labels
propagated using affine registration.

WM GM CSF Overall
NMI 61.0(61.0)± 0.01 64.2(64.6)± 0.01 57.3(54.5)± 0.08 60.8(60.1)± 0.03
Proposed similarity (η = 0.1) 62.1(62.0)± 0.00 64.2(64.6)± 0.01 62.1(61.5)± 0.06 62.8(62.7)± 0.02
Haber et al. [74] (η = 0.1) 61.3(61.2)± 0.01 64.1(64.4)± 0.01 58.0(56.1)± 0.07 61.1(60.6)± 0.03
Proposed similarity (η = 1) 62.6(62.6)± 0.01 64.8(65.1)± 0.01 64.7(64.8)± 0.05 64.0(64.1)± 0.02
Haber et al. [74] (η = 1) 62.1(61.9)± 0.01 64.7(64.9)± 0.01 61.9(61.8)± 0.07 62.9(63.0)± 0.03

Table 6.3: Images with pathology: Mean (Median) overlap measures and standard deviation
for white matter (WM), grey matter (GM) and ventricular cerebrospinal fluid (CSF) labels
propagated using non-rigid registration.

WM GM CSF Overall
NMI 78.1(78.1)± 0.03 79.0(78.0)± 0.03 88.4(88.9)± 0.02 81.8(81.3)± 0.02
Proposed similarity (η = 0.1) 78.1(78.1)± 0.00 76.4(76.6)± 0.01 83.4(84.5)± 0.03 79.3(79.9)± 0.01
Haber et al. [74] (η = 0.1) 74.2(74.4)± 0.01 75.1(75.0)± 0.01 80.9(82.2)± 0.03 76.8(77.2)± 0.02
Proposed similarity (η = 1) 80.9(80.8)± 0.00 79.1(79.3)± 0.01 88.1(89.1)± 0.03 82.7(83.3)± 0.01
Haber et al. [74] (η = 1) 81.2(81.2)± 0.00 79.6(79.7)± 0.01 88.4(89.0)± 0.03 83.1(83.7)± 0.01

Table 6.2 shows the overlaps obtained using affine registration. We observe the best overall

alignment for the proposed similarity measure, thus demonstating increased robustness against

the presence of tumours. When comparing the results of the proposed similarity measure

with either NMI or cosine squared similarity measure, we observe that the improvements are

statistically significant with 99% confidence (p < 0.01), both with η = 0.1 and η = 1.

Non-rigid registration

To evaluate the proposed similarity in the context of non-rigid registration of pathological

images, we first utilise the BraTS dataset and the same two settings as for affine registration.

Overlap results for non-rigid registration are shown in Table 6.3. It can be observed that

for the case where η = 0.1, the proposed similarity measure yields a worse alignment than

NMI (p = 0.0098). However, when compared to the cosine squared similarity, a much better

result is obtained for the proposed similarity measure (p = 0.002). Further visual results for

this comparison are shown in Figure 6.7. The main areas where the registration using cosine

squared similarity measure is affected by the tumour presence are highlighted by a red ellipse.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.7: Reference and propagated labels using η = 0.1. (a)-(c): Reference. (d)-(f): Prop-
agated using NMI. (g)-(i): Propagated using proposed similarity. (j)-(l): Propagated using
Haber et al. [74]. Boundaries of the tumours and image are provided for visualisation.
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On the other hand, when setting η to 1 the proposed similarity yields greater similarity indices

than NMI, although this is not statistically significant (p = 0.193). The indices slightly less than

those of the cosine squared similarity measure, and are also statistically significant (p = 0.002).

The observation that the proposed similarity performs worse than cosine squared similarity

measure in this case is explained by the fact that increasing values of η reduce the relative effect

of the gradient components, thus hampering the cancellation property of the cosine similarity

in areas of ambiguous correspondences. This effect is further supported by the experimental

evidence shown in Figure 6.8. We observe that for η = 0.1, the histogram of values for cos(φ)

in the tumour areas is roughly symmetric within the range [−1, 1], with a mean value of 0.031.

On the other hand, the histogram for cos2(φ) has strictly positive values, with a mean of 0.296

hence biasing the energy computation. In the case of η = 1, the angles φ are skewed towards

zero due to the fact that the values of the gradients become comparably much smaller than the

values of % and τ . This causes the mean of the histogram of cos(φ) to become even greater than

that of the histogram of cos2(φ). It is hence important to stress that when appropiate values of

the parameter η are used (e.g. 0.1 or less) the robustness of the proposed similarity measure is

met and the performance is good. In contrast, the performance of the cosine squared similarity

measure is heavily affected by the change of this parameter.

In addition, we perform registrations using NMI, the proposed similarity measure and cosine

squared similarity measure on TBI data. We utilise the baseline image as target and the

followup image as source. For the gradient-based similarity measures we set η to 0.1. Visual

results are given in Figure 6.9. The main observation is that, in contrast to NMI and the cosine

squared similarity measure, the proposed measure is able to recover most of the underlying

changes in shape within the pathology area (as pointed out with a red arrow). This is because

the registration inside the area of pathology affect the value of both NMI and cosine squared

similarity measure significantly, causing the optimisation to converge very quickly. On the

other hand, the proposed similarity is almost unaffected by the forces in the area of pathology,

allowing the optimisation to continue until good alignment is achieved.
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Figure 6.8: Angle φ and histograms of cosφ and cos2φ using (a) η = 0.1 and (b) η = 1 between
a healthy subject and the BraTS simulated images in the tumour areas. The means are 0.031
and 0.296 respectively for η = 0.1 and 0.548 and 0.410 respectively for η = 1.
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(a) (b)

(c) (d) (e)

Figure 6.9: Visual comparison of the proposed similarity, normalised mutual information and
cosine squared for TBI data. (a): Baseline image. (b): Followup image. (c): Transformed
followup isolines using NMI registration result overlayed on the baseline image. (d): Trans-
formed followup isolines using cosine registration result overlayed on the baseline image. (e):
Transformed followup isolines using cosine squared registration result overlayed on the baseline
image.

6.3.4 MR images with no outliers

We also evaluate the performance of NMI, the proposed similarity measure and cosine squared

similarity measure using images from the ADNI dataset. We register all 820 images to the

MNI single-subject T1-atlas [142] with control point spacings of 20, 10, 5 and 2.5mm. We

measure the target registration error at 20 landmarks. The results are shown in Table 6.4. We

can observe that the normalised gradient field based similarity measures perform significantly

better than NMI in terms of the alignment of the landmarks (p < 10−5 in both cases). The
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Figure 6.10: Mean errors over all ADNI images for each individual landmark. We show results
for normalised mutual information, the proposed similarity and the similarity by Haber et al.
[74].

cosine squared similarity performs slightly better than the proposed similarity, with statistically

significant differences (p < 10−5). To further investigate this result, we assess the errors for

each landmark individually. These errors are show in Figure 6.10. It can be observed that

the normalised gradient field based similarity measures have little difference in general. On

the other hand, normalised mutual information only performs noticeably better than the other

similarity measures for landmark number 8 (superior aspect of the cerebellum) with a difference

in performance of more than 1mm. This is explained by the fact that this landmark is located

in an area where the folia of the cerebellum are more visible and thus image intensity gradients

are more noisy.

Table 6.4: Mean (Median) target registration errors and standard deviation over all ADNI
images for the proposed similarity, the similarity by Haber et al. [74] and normalised mutual
information. Since the image have isotropic voxel size of 1mm, the errors can be considered to
be either in mm or in voxels.

Target registration error
NMI 2.64(2.54)± 0.55

Proposed similarity 2.47(2.42)± 0.42
Haber et al. [74] 2.44(2.34)± 0.47
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Finally, we assess the behaviour of the proposed similarity in cardiac MR images. We register

the end-systole frame to the end-diastole frame of each subject with control point spacings

of 20, 10, and 5mm using normalised mutual information, the proposed similarity measure

and the cosine squared similarity measure. We employ a noise parameter η = 0.1 for both

normalised gradient field similarity measures. To evaluate the quality of the registration, we

measure similarity indices after propagating the three cardiac labels (see Figure 6.11 for the

results). The first observation that we make is that both normalised gradient based similarity

measures perform comparatively well in the right ventricle with respect to normalised mutual

information, with the proposed similarity measure being more consistent than cosine squared.

Nonetheless, these similarity measures have a considerably worse performance in both the

cavity and myocardium of the left ventricle. To illustrate the reason behind this issue, we show

a visual example of registration results in Figure 6.12. We can infer from the figure that the

main problem is the fact that papillary muscles in the target image produces strong gradients

that confuse both cosine-based similarity measures, causing them to align the boundary of the

myocardium to these muscles. Furthermore, the size of these muscles is not sufficient as to

allow the proposed similarity measure to detect them as potential outliers. Finally, intensity

gradients produced by the blood flow within the cavity of the left ventricle seem to have an

important influence in the cosine squared similarity measure. However, this is not the case for

the proposed similarity measure.

6.4 Summary

In this chapter, we have proposed a similarity measure for medical image registration that is

robust towards bias fields and outliers in form of pathologies. We demonstrated the effective-

ness and robustness of our similarity measure on MR brain images with simulated bias fields

and on images with both simulated and real pathology, showing improved robustness compared

to NMI and the cosine squared similarity measure of Haber et al. [74], especially for affine

registration and when using appropiate values for the noise parameter η. We also evaluated
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Figure 6.11: Results on cardiac data measuring Right ventricle cavity (RVC), Left ventricle
myocardium (LVM) and Left ventricle cavity (LVC) similarity indices. We show results for
normalised mutual information, the proposed similarity and the similarity by Haber et al. [74].

the proposed similarity measure in landmark-annotated images, showing that the proposed

gradient-based similarity and the gradient-based cosine squared similarity measure show better

performance than of normalised mutual information in terms of target registration error. Fi-

nally, an evaluation in cardiac MR images shows that the presence of the papillary muscle and

the gradients produced by the flow of blood inside the heart cavities can affect the performance

of gradient-based similarity measures and, hence, normalised mutual information seem more

appropiate in that case.

The main contribution of this chapter is that our similarity measure relaxes the need for using

preprocessing steps like bias field correction, which can be time consuming and prone to errors.

This is especially true for images depicting organs different from the brain, since most intensity

inhomogeneity correction methods are tailored toward particular images (e.g. images of the

brain). Morover, the proposed similarity measure can also be utilised to register images in the

presence of pathologies, without the need for relying on any particular deformation model and

without requiring segmentations of the outliers.
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(a) (b)

(c) (d) (e)

Figure 6.12: Visual comparison of the proposed similarity, normalised mutual information and
cosine squared for cardiac data. (a): Target image. (b): Source image. (c): Transformed source
isolines using NMI registration result overlayed on the target image. (d): Transformed source
isolines using cosine registration result overlayed on the target image. (e): Transformed source
isolines using cosine squared registration result overlayed on the target image.

As future work, we plan to investigate possible extensions to the proposed method, in order

to be able to deal with multimodal registrations tasks such as T1-T2 MRI registration. An-

other important avenue of work is to investigate about alternative ways of utilising normalised

gradient fields in order to reduce or eliminate the influence of the noise parameter η in the

robustness against ambiguous correspondences. Preliminary results show that computing the

cube of cosine (cos3) from the normalised gradient field might lead to improved registration

results with high levels of noise filtering (e.g. η = 1), without compromising the ability of being

unbiased with respect to these kind of unpredictable correspondences. This is mainly because

cos3 tends to have a more symmetric histogram than cos.



Chapter 7

Conclusion

7.1 Summary

This thesis has proposed new methods that tackle some of the challenges of medical image

registration. All of the proposed approaches are based upon the free-form deformation (FFD)

framework of Rueckert et al. [183]. We focused particularly on providing techniques that are

not only comparably accurate to state-of-the-art techniques, but are also robust and compu-

tationally efficient. The evaluation of the described methods has been carried out on several

datasets of 3D MR images of the brain, including images annotated with anatomical land-

marks, images with segmentations of anatomical structures, images of patients with traumatic

brain injury and synthetic images depicting brain tumours. We also demonstrate the proposed

approaches on a dataset of 2D + t MR images of the heart.

7.2 Contributions

Chapter 4 presents a learning-based statistical registration method, which extends the FFD

transformation model to incorporate information in the form of a statistical deformation model.
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This SDM is learnt a priori from a number of known deformations of medical images of a pop-

ulation to a given common template space. It also accounts for the mean and variability of

deformations across this population and constrains the set of possible transformations to be

in statistical concordance with the training data. The proposed registration method is also

considerably faster than most standard registration methods, since only a single-resolution op-

timisation is needed to account for coarse and fine local displacements. This is in contrast

to the multi-resolution strategy employed by the FFD-based registration. Another important

feature of the proposed registration method is that the transformations are parameterised by

significantly fewer degrees of freedom than standard FFD transformations. Finally, the learning

stage of our framework can take advantage of annotated information to enforce plausible align-

ment of certain anatomical structures. We focused on annotations of anatomical landmarks,

although other type of annotations such as segmentations in the form of label maps can be

used as well. Experiments on 3D MR brain data and 2D + t MR sequences of the heart show

that the proposed approach is able to perform with a similar accuracy as the standard FFD

approach, but with lower computational cost.

In chapter 5, a learning-based approach to improve the convergence of the optimisation of

any chosen parametric image registration method is proposed. This method computes a novel

learning-based estimate of the gradient that is able to yield better registration accuracy than

standard analytical methods, by aiding the optimisation method to avoid local minima. This

is achieved by learning offline a projection from the gradient of the similarity measure in voxel

space to the parameter space of the chosen registration method using PCA dimensionality re-

duction and standard least squares regression. The learnt projection is subsequently used online

to approximate the optimisation of the energy functional for unseen images. We employ the B-

spline FFD approach as underlying registration method, but any other parametric registration

method can be used instead. We perform experiments on 3D brain MRI and 2D + t cardiac

MRI sequences to show that our approach can improve the accuracy of the FFD registration

method.
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Chapter 6 introduces a novel similarity measure based on normalised gradients for non-rigid

registration. The main contribution is that the proposed measure, relaxes the need of using

preprocessing steps like bias field correction, which can be time consuming and prone to errors.

This is especially true for images depicting organs different from the brain, since most intensity

inhomogeneity correction methods are tailored to the intensity profiles of that particular organ.

Moreover, the proposed similarity measure can also be utilised to register images in the presence

of pathologies, without the need to rely on any particluar deformation model and without

requiring segmentations of the outliers. We provide both theoretical and experimental proof

of the robustness using 3D MR images of the brain, both on healthy subjects and subjects

suffering from traumatic brain injury or brain tumours.

7.3 Limitations and future work

There are a number of possible avenues to explore in extending the proposed methods and

tackling their limitations. For example, an extension to chapter 4 can be the use of cortical

surface information or anatomical segmentations to learn a better statistical deformation model

for brain data. This may help overcome the limitation that the cortical anatomy is very variable

across different subjects. Another possible development is the use of sparsity constraints when

learning the SDM in order to be able to characterise the way in which different regions of the

training data are deformed. This would enable the analysis of deformations in a non-holistic

manner, which can potentially help to determine disease progression for specific areas in the

images. A limitation of the method proposed in chapter 5 is that, even though the learning

process must be performed only once, it is very memory consuming. This is due to the fact

that we extract a large number of training patches from several images, and these patches must

all be aggregated into a matrix to perform PCA. This may restrict the number of training

images that can be used (around 300GB may be needed for 1000 3D training images). One

way of alleviateing this problem is by taking only a subset of the available patches. This subset

may be defined such as it does not contain outliers or is defined only for salient regions of the
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training data. However, care must be taken in order to not reduce the amount of patches to a

point of having insufficient training information to learn sensible projections. One of the main

limitations of the novel similarity measure of chapter 6 is that it is not designed to work in a

muti-modal context. A possible way of mitigating this problem is to investigate the feasibility

of a preprocessing step in either of the images being registerd in order to ensure that gradients

in corresponding areas point in the same direction. Another limitation is that ability of the

proposed similarity to be robust to ambiguous correspondences is hampered when the value

of the noise parameter increases. This is problematic since usually large values of this noise

parameter are needed to render gradient field similarities insensitive to noise. Preliminary

results show that computing the cube of cosine (cos3) from the normalised gradient field might

lead to improved registration results with high levels of noise filtering, without compromising

the ability of being unbiased with respect to these kind of unpredictable correspondences.
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Appendix A

Derivations

A.1 Gradient of Statistical Transformation Model

Considering that the proposed statistical transformation model of Equation (4.12) is based on

the free-form deformation (FFD) model of Rueckert et al. [183] (Equation (2.21)), we look into

the gradient of the FFD transformation model first. In this model, the gradient of the energy

functional with respect to the transformation parameters (control point values) Φ is computed

by means of the chain rule as:

∂E(x)

∂Φ
=
∂E(x)

∂T(x)

∂T(x)

∂Φ
, (A.1)

where ∂E(x)
∂T(x)

is the standard voxelwise gradient of the energy functional and

∂T ξ(x)

∂Φi

=
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w). (A.2)

Here, Br, u, v, w have the same meaning as in Equation (2.16). Now, in order to compute the

gradient for the statistical transformation model, i.e, the gradient with respect to the statistical

parameterisation w, we can simply apply the chain rule once again. This yields

∂E(x)

∂w
=
∂E(x)

∂Φ

∂Φ

∂w
. (A.3)
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Since we model the control point value parameterisation as Φ ≡ Φ(w) = Bw + Φ, we have:

∂Φ

∂w
= B. (A.4)

By combining equations (A.1), (A.3) and (A.4), we obtain the final gradient of the energy

functional with respect to the statistical parameterisation:

∂E(x)

∂w
=
∂E(x)

∂T(x)

∂T(x)

∂Φ
B. (A.5)

A.2 Gradient of Landmark Alignment term

Recall the landmark alignment term, which is given by

Elandmark(l
I0 ; lI ; TΦ) =

1

L

L∑
i=1

Ψ
(
‖lIi −TΦ(lI0i )‖2

)
. (A.6)

We also have that the derivative of this energy term has to be computed by following the chain

rule:

∂Elandmark
∂Φ

=
∂Elandmark
∂TΦ(lI0)

∂TΦ(lI0)

∂Φ
. (A.7)

The first term of Equation (A.7) is given by:

∂Elandmark
∂TΦ(lI0)

= −2
L∑
i=1

Ψ′
(
‖lIi −TΦ(lI0i )‖2

)
(lIi −TΦ(lI0i )), (A.8)

where Ψ′(x2) = 1
1+x2/δ2 . And the second term of Equation (A.7) is expressed as:

∂TΦ(lI0)

∂Φ
=

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w), (A.9)

where, Br, u, v, w have the same meaning as in Equation (2.16), except in that u, v, w are

relative to the target landmark positions lI0 instead of voxel positions.
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A.3 Gradient of Cosine Similarities

Since cosine similarities aim to match vector fields rather than intensities, it is necessary

to utilise vector (matrix) calculus to derive the gradients. In the following derivations, the

Numerator-layout notation of matrix calculus is used.

A.3.1 Cosine similarity

Let x = (x, y, z)> be a 3D point in space and y = (u, v, w)> = T(x) be its transformed location. Given

the target image I0 and the transformed source image I1 = I ◦T the cosine similarity corresponds

to:

cosα(∇I0(x),∇I1(x)) =
∇I0(x) · ∇I1(x)>

‖∇I0(x)‖‖∇I1(x)‖ . (A.10)

By using the quotient rule, the partial derivative of the similarity with respect to a transfor-

mation parameter Φi is given by:

∂ cosα(∇I0(x),∇I1(x))

∂Φi
=
‖∇I0(x)‖‖∇I1(x)‖ · ∂(∇I0(x)·∇I1(x)>)

∂Φi

‖∇I0(x)‖2‖∇I1(x)‖2

−
(∇I0(x) · ∇I1(x)>) · ∂(‖∇I0(x)‖‖∇I1(x)‖)

∂Φi

‖∇I0(x)‖2‖∇I1(x)‖2 . (A.11)

Considering the fact that the gradient of the target image ∇I0(x) does not depend on the

transformation parameters, we have

∂(∇I0(x) · ∇I1(x)>)

∂Φi
= ∇I0(x) ·

[
∂(∇I1(x))

∂Φi

]>
(A.12)

∂(‖∇I0(x)‖‖∇I1(x)‖)
∂Φi

= ‖∇I0(x)‖ · ∂‖∇I1(x)‖
∂Φi

. (A.13)
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Hence, we can rewrite equation (A.11) as

∂ cosα(∇I0(x),∇I1(x))

∂Φi
=

∇I0(x)

‖∇I0(x)‖‖∇I1(x)‖ ·
[
∂(∇I1(x))

∂Φi

]>
− ∇I0(x) · ∇I1(x)>

‖∇I0(x)‖‖∇I1(x)‖2 ·
∂‖∇I1(x)‖

∂Φi
(A.14)

Now, we focus on ∂‖∇I1(x)‖
∂Φi

. We have:

‖∇I1(x)‖ =
√
∇I1(x) · ∇I1(x)>, (A.15)

thus

∂‖∇I1(x)‖
∂Φi

=
1

2‖∇I1(x)‖ ·
∂(∇I1(x) · ∇I1(x)>)

∂Φi

=
1

2‖∇I1(x)‖ ·

(
2 · ∇I1(x) ·

[
∂(∇I1(x))

∂Φi

]>)

=
∇I1(x)

‖∇I1(x)‖ ·
[
∂(∇I1(x))

∂Φi

]>
. (A.16)

By replacing equation (A.16) into equation (A.14), we realise that a common term
[
∂(∇I1(x))

∂Φi

]>
appears, which we can factorise yielding:

∂ cosα(∇I0(x),∇I1(x))

∂Φi
=

(
∇I0(x)

‖∇I0(x)‖‖∇I1(x)‖ −
∇I0(x) · ∇I1(x)

‖∇I0(x)‖‖∇I1(x)‖2 ·
∇I1(x)

‖∇I1(x)‖

)
·
[
∂(∇I1(x))

∂Φi

]>

=

(
∇I0(x)

‖∇I0(x)‖‖∇I1(x)‖ −
∇I0(x) · ∇I1(x)

‖∇I0(x)‖‖∇I1(x)‖ ·
∇I1(x)

‖∇I1(x)‖2

)
·
[
∂(∇I1(x))

∂Φi

]>

=

(
∇I0(x)

‖∇I0(x)‖‖∇I1(x)‖ − cosα(∇I0(x),∇I1(x)) · ∇I1(x)

‖∇I1(x)‖2

)
·
[
∂(∇I1(x))

∂Φi

]>
. (A.17)
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Now we focus in the common term ∂(∇I1(x))
∂Φi

. This term is given by:

∂(∇I1(x))

∂Φi

I1=I◦T
=

∂(∇I(T(x)))

∂Φi

y=T(x)
=

∂(∇xI(y))

∂Φi

=
∂

∂Φi

(
dI(y)

dx

)

=
∂

∂Φi

(
dI(y)

dy
· dy
dx

)

=
∂

∂Φi

(
dI(y)

dy

)
· dy
dx

+
dI(y)

dy
· ∂

∂Φi

(
dy

dx

)

=
∂2I

dy∂Φi
· dy
dx

+
dI(y)

dy
· ∂2y

dx∂Φi

=
∂y

∂Φi
·
[
d2I(y)

dy2

]>
· dy
dx

+
dI(y)

dy
· ∂2y

dx∂Φi
. (A.18)

Here, dI(y)
dy

is the transformed gradient of the source image I, d2I(y)

dy2 is the transformed Hessian of

the source image I and dy
dx

is the Jacobian matrix of the transformation. The remaining terms

∂y
∂Φi

and ∂2y
dx∂Φi

depend upon the particular transformation model in use (rigid, affine, Thin-plate

splines, B-spline FFD, etc). By combining equations (A.17) and (A.18), we obtain the final

expression for the partial derivative of the similarity with respect to a transformation parameter
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Φi:

∂ cosα(∇I0(x),∇I1(x))

∂Φi
=

(
∇I0(x)

‖∇I0(x)‖‖∇I1(x)‖ − cosα(∇I0(x),∇I1(x)) · ∇I1(x)

‖∇I1(x)‖2

)

·

[
∂y

∂Φi
·
[
d2I(y)

dy2

]>
· dy
dx

+
dI(y)

dy
· ∂2y

dx∂Φi

]>

=

(
∇I0(x)

‖∇I0(x)‖‖∇I1(x)‖ − cosα(∇I0(x),∇I1(x)) · ∇I1(x)

‖∇I1(x)‖2

)

·

([
dy

dx

]>
· d

2I(y)

dy2
·
[
∂y

∂Φi

]>
+

[
∂2y

dx∂Φi

]>
·
[
dI(y)

dy

]>)
(A.19)

To simplify the gradient computation, we regard the term ∂2y
dx∂Φi

as a zero matrix. This also has

benefits in terms of memory savings and computation time. Hence, our final gradient is given

by:

∂ cosα(∇I0(x),∇I1(x))

∂Φi
≈
(

∇I0(x)

‖∇I0(x)‖‖∇I1(x)‖ − cosα(∇I0(x),∇I1(x)) · ∇I1(x)

‖∇I1(x)‖2

)

·

([
dy

dx

]>
· d

2I(y)

dy2
·
[
∂y

∂Φi

]>)
(A.20)

To show that the gradient in Equation (A.20) is a good approximation of the gradient in

Equation (A.19) we registered two images from the ADNI database using the proposed similarity

measure with both the exact and approximate gradient computations. The results in axial,

coronal and sagital views are shown in figures A.1, A.2 and A.3, respectively. We observe the

results are extremely similar between the two approaches, demonstrating that the approximate

gradient is a suitable option for registration. The multi-threaded registration using the exact

gradient took 5 minutes and 23 seconds, while the approximate version took 3 minutes and 19
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seconds, both on a standard PC desktop with 8 cores (3.40GHz) and 16GB of RAM.

A.3.2 Cosine squared similarity

The gradient of the cosine squared similarity with respect to the transformation parameters

corresponds to

∂ cos2 α(∇I0(x),∇I1(x))

∂Φi
= 2 · cosα(∇I0(x),∇I1(x)) · ∂ cosα(∇I0(x),∇I1(x))

∂Φi
, (A.21)

where ∂ cosα(∇I0(x),∇I1(x))
∂Φi

is given by equation (A.20).
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure A.1: Registration results using both exact and approximate gradients (axial view). (a):
Target image. (b): Source image. (c): Difference image. (d): Warped source using exact
gradient. (e): Warped source using approximate gradient. (f): Difference image using exact
gradient. (g): Difference image using approximate gradient. (h): Resulting FFD using exact
gradient. (i): Resulting FFD using approximate gradient.
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure A.2: Registration results using both exact and approximate gradients (coronal view).
(a): Target image. (b): Source image. (c): Difference image. (d): Warped source using exact
gradient. (e): Warped source using approximate gradient. (f): Difference image using exact
gradient. (g): Difference image using approximate gradient. (h): Resulting FFD using exact
gradient. (i): Resulting FFD using approximate gradient.
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure A.3: Registration results using both exact and approximate gradients (sagital view).
(a): Target image. (b): Source image. (c): Difference image. (d): Warped source using exact
gradient. (e): Warped source using approximate gradient. (f): Difference image using exact
gradient. (g): Difference image using approximate gradient. (h): Resulting FFD using exact
gradient. (i): Resulting FFD using approximate gradient.
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