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Abstract—The development of accurate fault detection and 
diagnosis (FDD) techniques are an important aspect of 
monitoring system health, whether it be an industrial 
machine or human system. In FDD systems where real-time 
or mobile monitoring is required there is a need to minimise 
computational overhead whilst maintaining detection and 
diagnosis accuracy. Symbolic Aggregate Approximation 
(SAX) is one such method, whereby reduced representations 
of signals are used to create symbolic representations for 
similarity search. Data reduction is achieved through 
application of the Piecewise Aggregate Approximation 
(PAA) algorithm.  However, this can often lead to the loss of 
key information characteristics resulting in misclassification 
of signal types and a high risk of false alarms. This paper 
proposes a novel methodology based on SAX for generating 
more accurate symbolic representations, called Self-
Organising Symbolic Aggregate Approximation (SOSAX). 
Data reduction is achieved through the application of an 
optimised PAA algorithm, Self-Organising Piecewise 
Aggregate Approximation (SOPAA). The approach is 
validated through the classification of electrocardiogram 
(ECG) signals where it is shown to outperform standard 
SAX in terms of inter-class separation and intra-class 
distance of signal types. 

1. INTRODUCTION 
 
Similarity search is an important aspect of fault 

detection and diagnosis (FDD), particularly when dealing 
with large databases of signals. Specifically, a similarity 
search is a method for determining the similarity between 
a query object and a (typically large) database of objects. 
It has had important application in bioinformatics, pattern 
recognition and computer vision. Typical approaches 
involve two distinct stages. Firstly, a dimensionality 
reduction technique is used to create simplified signal 
representations. Many such algorithms have been reported 
e.g. such as Piecewise Aggregate Approximation (PAA) 
[1], Discrete Fourier Transform (DFT) [2], Discrete 
Wavelet Transform (DWT) [3], Singular Value 
Decomposition (SVD) [4] and Piecewise Linear 
Approximation (PLA) [5]. PAA is one such technique that 
has received much attention in recent years due to its 
relative simplicity and high performance. PAA, originally 
proposed by Keogh et al. [1], reduces the dimensionality 
of the data by taking mean values over equally spaced 
sized frames. For instance, consider a time series S of 
length n.  Using the PAA approach it is possible to 
represent the time series in a w-dimensional vector space 

by a vector wsss ,...,1 . The ith element of s is calculated 
from the following equation: 
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Once the data-reduced representation is obtained, a 

suitable indexing structure is applied. Symbolic Aggregate 
Approximation (SAX) is one such technique that has 
received attention since being first proposed in 2003 by 
Lin and Keogh [6]. Considered essentially as an extension 
of PAA, SAX allows the time series of length n to be 
reduced to a symbolic string of length w (w<n). This is 
achieved by the setting of breakpoints, where mean values 
that fall within certain breakpoint limits are allocated a 
symbol or character, e.g. a, b, c, or d. These breakpoints 
are defined such that the normalised time series data 
assume a Gaussian distribution [7] as in Table 1.  

 

 
Table 1 – SAX Breakpoints 

 
Table 1 shows the breakpoints for a 3-10 letter 

symbolic representation. For example, if a three letter 
representation is considered, a, b, and c, then the break 
points are set at -0.43 and 0.43. This means that a mean 
frame value falling below -0.43 would be allocated the 
letter a. A mean frame value falling between -0.43 and 
0.43 would be allocated the letter b and a mean frame 
value falling above 0.43 would be allocated the letter c, as 
shown in Figure 1. The number of breakpoints selected 
should be the minimum required to retain important signal 
characteristics, but as this is usually unknown a priori, 
should be based on the trade-off between computational 
demand and information loss. 
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Figure 1 – SAX representation of time series data [6] 

 
Although SAX has been shown to be very effective in 

providing accurate similarity search indexing, for example 
in the analysis of Electrocardiogram (ECG) signals [8], 
the fact that it employs PAA for dimensionality reduction 
and the allocation of symbols is based on average values 
falling within a certain breakpoint range, discrete changes 
in signal characteristics can be inadvertently missed.  

Consider the two signals in Figure 2. Both are identical 
apart from a small discrete change (circled) added to the 
signal on the right. 
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Figure 2 - Raw signals (right signal with discrete change added) 

 
Now consider the PAA and associated three letter SAX 

representations of the same two signals, shown in Figure 
3. It can be seen that the SAX representation (accba) is 
identical for both signals and hence the discrete change is 
lost during the reduction process.  
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Figure 3 - SAX representations showing loss of signal information 
 
Clearly, increasing the number of PAA frames around 

this area will increase the accuracy of SAX in this case. 
This is illustrated in Figure 4 which shows a finer PAA 
frame distribution around the area of interest, leading to a 
new SAX representation of accbca.  
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Figure 4 - Improved SAX representation without loss of key 

signal information 
 
Of course, this can also be achieved by using standard 

PAA with more equi-distributed frames, but in so doing, 
leads to an increased risk of false alarms and higher 
computational demands. Furthermore, determining the 
optimum number of frames is difficult without numerous 
iterative reruns.  

In this paper, a novel SAX-based methodology, termed 
Self-Organising Symbolic Aggregate Approximation 
(SOSAX), is proposed, for use in real-time FDD systems 
where fast similarity search is important but without loss 
of key signal information. The method utilizes an 
improved dimensionality reduction technique called Self-
Organising Piecewise Aggregate Approximation 
(SOPAA) [9] that determines the optimum PAA 
parameters to provide maximum separation of signal types 
and hence leads to improved SAX representations. The 
approach is validated through application to a similarity 
search in the classification of electrocardiogram (ECG) 
signals, where it is shown to outperform standard SAX in 
terms of inter-class separation and intra-class similarity.  

 

2. SELF-ORGANISING SYMBOLIC AGGREGATE 
APPROXIMATION (SOSAX) 

 
To generate SAX representations without loss of 

transient signal characteristics, SOPAA is applied to 
provide optimum dimensionality reduction. SOPAA is 
based on optimising the PAA parameters for individual 
data sets. Optimisation in this case (SOPAA) is a process 
of finding the optimum solution(s) for frame size, 
distribution and the number of classes (if unknown). The 
optimality of a given set of decision variables can be 
measured through one or more objective function(s), for 
instance, the number of samples correctly classified.  In 
many practical problems, however, finding the global 
optima is a difficult task as the objective functions tend to 
be highly non-linear and there is no way of guaranteeing 
initial estimates that are close to the global optimum. To 
tackle such issues, a series of meta-heuristic optimizers 
have been developed. These optimizers, the Genetic 
Algorithm (GA), Differential Evolution (DE), Particle 
Swarm Optimisation (PSO) and Adaptive Simulated 
Annealing (ASA) being common in the literature, use a 
population of trial solutions and apply probabilistic rules 
to generate a new population which typically converge to 
the global optimum with high probability. Although 



popular, a number of problems remain with these 
optimizers; one being premature convergence where the 
population converges to a point that is a local optimum. 
They do have built-in functions that attempt to overcome 
this but frequent re-runs are good practice to give 
confidence that the global optimum has been reached. 
SOPAA utilises the DE optimiser to determine SOPAA 
parameters.  

DE is an example of an evolutionary algorithm that 
uses mechanisms inspired by biological evolution; namely 
recombination, where two or more candidate solutions 
(so-called parents) are combined to give rise to one or 
more candidate solutions (so-called children), and 
mutation, where one candidate solution results in one new 
candidate solution. This process gives rise to a new 
population (so-called offspring) that competes for a place 
in the next generation.  Considering a population of 
NP solutions in a D-dimensional search space, the 

population G for each iteration (so-called generation) is 
given by, 

 
NPix Gi ,...,1,,   

 
Two operators, mutation and crossover, are applied to 

each candidate solution at each generation, producing a 
new population. For each candidate vector solution Gix , , a 
mutant vector is generated with random indexes 

^ `NPrrr ,...,2,1,, 321 �  according to, 
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F is a real constant factor which controls the 

amplification of the differential variation � �GrGr xx ,3,2 � . 
Crossover is introduced in order to increase the diversity 
in the new population and new solution vectors generated 
according to, 
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Each candidate solution in the new population is then 

compared to the corresponding candidate solution in the 
previous population and the best selected as a member of 
the next generation [10, 11]. The objective, in this case, is 
to maximise the classification rate of signals belonging to 
known classes by altering SOPAA frame number and 
distributions. The distribution of SOPAA frames ix  is 
given by, 
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where, eD  is the even distribution corresponding to ix  
^ `Ni ,...,1  , N is the number of SOPAA frames and B is 

the form factor [0.05, 5]. To provide greater flexibility 
during the optimisation process, the optimiser has the 
freedom to define two different distributions (left 
distribution and right distribution) either side of the signal 
centre, within the same reduced representation. The 
distribution of SOPAA frames is governed by altering the 
value of the form factor, B, during the optimisation 
process until the global optimum is found. Once 
identified, the optimum SOPAA parameters are then used 
to generate data reduced representations of all signals 
within the dataset, followed by the generation of symbolic 
SOSAX representations.  

  

2.1 SAX Distance Measure 
 
Once the SOSAX representations of signals have been 

obtained, similarity between two symbolic strings is 
determined using a distance measure; the Euclidean 
distance measure being chosen here for convenience. This 
is achieved by sequentially comparing a query string qŜ  

to each string dŜ  held in the database. Considering two 
time series, Sq and Sd, then the Euclidean distance between 
the two signals is calculated using, 
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Now, generating the data reduced PAA representations 

qS  and dS  and transforming them into SAX 

representations qŜ  and dŜ , a lower bounding 
approximation of the Euclidean distance measure between 
the signals can be calculated using, 
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where, n is the length of the original time series, P is the 
number of PAA frames, and the dist() function between 
two symbols is given by, 
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Distances can be summarised using a lookup table, as 

shown in Table 2 for a four-letter SAX representation. 
 

 
Table 2 - 4-letter SAX lookup table 



A distance of zero is considered a complete match and 
the aim is to minimise the distance between two strings in 
the same class and maximise the distance between two 
strings in different classes. This will lead to an increase in 
matching accuracy and a reduced risk of false alarms. 

 

3. RESULTS AND DISCUSSION 
 

To demonstrate the improvements in search accuracy 
provided by the proposed SOSAX methodology, results 
are compared to SAX using an ECG dataset obtained from 
the Physionet database [12]. The data consists of 120 
samples and 2 classes, Normal and Right Bundle Branch 
Block (RBB). Class 1 (Normal) consists of 100 individual 
heartbeats considered as healthy and taken from 10 
patients (10 beats from each). Class 2 (RBB) consists of 
20 individual heartbeats taken from two patients who have 
been diagnosed with a right bundle branch block. An 
example signal from each class is shown in  

Figure 5. 
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Figure 5 - ECG signals (a) Normal (b) Right Bundle Branch 

Block (RBB) 
 
The dataset for each class is separated into a training 

and testing set, with 60 training (from six patients) and 40 
testing (from 40 patients) for the Normal class and 10 
training (from one patient) and 10 testing (from one 
patient) for the RBB set. Since the number of classes is 
known, single objective SOPAA is used to identify 
optimum PAA parameters using the training data. SOPAA 

identifies 13 frames as the optimum number in order to 
achieve a maximum classification rate. The frame 
distributions and classification rates for both SOPAA and 
PAA are shown in  

Table 3. 
 

No. 
Frames 
to Left 

Left 
Dist. 

No. 
Frames 

to 
Right 

Right 
Dist. 

SOPAA 
Class. 
Rates 

PAA 
Class. 
Rates 

9 4.98 4 0.57 Total = 
100% 

Class 1 = 
100% 

Class 2 = 
100% 

Total = 
56.9% 

Class 1 = 
53.3% 

Class 2 = 
100% 

 
Table 3 - SOPAA parameters and classification rates 

 
Cluster plots for frames 2 and 3 using SOPAA and 

PAA are shown in  
Figure 6 where it can be clearly seen that SOPAA 

achieves 100% correct classifications, as well as more 
compact and better separated clusters. Standard PAA with 
13 frames, however, only achieves 40% Class 1 and 100% 
Class 2. 

2 2.5 3 3.5 4 4.5 5 5.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

SOPAA Frame 2

SO
PA

A 
Fr

am
e 

3

 

 
Normal
RBB

 
(a) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PAA Frame 2

PA
A 

Fr
am

e 
3

 

 
Normal
RBB

 
(b) 

 
Figure 6 - Cluster plots for frames 2 and 3 (a) SOPAA (b) PAA 

 
SAX and SOSAX representations are generated for 

each sample in the training and test sets using a six-letter 
alphabet size. Each test SAX and SOSAX query string is 
then compared to the respective SAX and SOSAX 



database of training strings and the distance measures 
calculated using the six-letter lookup table shown in  

Table 4.  
 

 
 

Table 4 - 6-letter lookup table 
 
Instances where the distance between a query string and 

a string in the training set is zero are considered a match. 
The class with the highest number of matches for a given 
query string is considered the ‘winning class’. The 
objective is to maximise the classification accuracy 
obtained by SOSAX, as well as maximise the difference 
in the number of matches between each class. For 
example, a query string that belongs to Class 1 should 
match a maximum number of strings in Class 1 of the 
training set and a minimum number of strings in Class 2. 
This gives greater confidence in classification and will 
reduce the risk of false alarms. Classification rates are 
100% Class 1 and 20% Class 2 for SOSAX and 80% 
Class 1 and 0% Class 2 for SAX. Although the 
classification rates for SOSAX and SAX are relatively 
close, with a 20% increase in classification rate for both 
classes obtained by SOSAX, the number of matches 
between the test data and training data in the same class 
increases significantly using SOSAX, particularly in Class 
1. SAX fails to achieve any matches between Class 2 
query strings and Class 2 training strings—as shown in  

Figure 7.  

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Test Query String

Nu
m

be
r o

f M
at

ch
es

 in
 T

ra
in

in
g 

Se
t

 

 
SOSAX
SAX

 
(a) 

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Test Query String

Nu
m

be
r o

f M
at

ch
es

 in
 T

ra
in

in
g 

Se
t

 

 
SOSAX

 
(b) 

 
Figure 7 - Intra-class matches (a) Class 1 (b) Class 2 

SOSAX achieves a total of 378 correct matches in 
Class 1 and 7 in Class 2, compared to 243 in Class 1 and 0 
in Class 2 for SAX. The increase in the number of intra-
class matches shows that SOSAX is able to generate much 
more compact and accurate symbolic representations of 
signals within the same class, ultimately leading to greater 
confidence in classification accuracy.  

 

4. CONCLUSIONS 
 
The paper has presented an extension to the Symbolic 

Aggregate Approximation (SAX) algorithm, termed Self-
Organising Symbolic Aggregate Approximation 
(SOSAX). Optimum data reduced representations for a 
training dataset are achieved through the application of the 
single objective Self-Organising Piecewise Aggregate 
Approximation (SOPAA) algorithm, leading to optimum 
SOSAX symbolic representations. The methodology has 
been applied to the classification of real patient ECG data 
with two classes. SOSAX is shown to outperform the 
standard SAX algorithm in reducing the intra-class 
separation between SOSAX strings and improving 
matching accuracy and reliability. This ability to improve 
symbolic representations is significant and leads to more 
accurate and robust classification whilst maintaining 
computational efficiency. The methodology is applicable 
to the development of any FDD system where there is a 
requirement for fast similarity search of large databases 
whilst minimizing the loss of transient signal 
characteristics. 
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