
APS/123-QED

Field Compressing Magnetothermal Instability in Laser Plasmas

J. J. Bissell, C. P. Ridgers and R. J. Kingham
The Blackett Laboratory, Imperial College London, SW7 2BZ, England

(Dated: August 3, 2010)

The mechanism for a new instability in magnetized plasmas is presented and a dispersion relation
derived. Unstable behaviour is shown to result purely from transport processes - feedback between
the Nernst effect and the Righi-Leduc heat-flow phenomena in particular - neither hydrodynamic
motion nor density gradients are required. Calculations based on a recent nanosecond laser gas-jet
experiment [1] predict growth of magnetic field and temperature perturbations with typical wave-
lengths of order 50µm and characteristic growth times of ∼0.1ns. The instability yields propagating
magneto-thermal waves whose direction depends on the magnitude of the Hall Parameter.

PACS numbers: 52.25.Fi, 52.25.Xz, 52.35.-g

The existence of large self-generated magnetic fields in
laser-produced plasmas (∼100T) has long been known
[2, 3]. These fields can significantly affect the distribu-
tion of thermal energy in plasma targets by suppressing
the cross-field thermal conductivity [4]. In recent years
several experiments have been designed to assess their
impact on inertial confinement fusion (ICF) schemes [5]
and to study more general magnetic phenomena in laser
plasmas, such as magnetic reconnection [6] and instabil-
ity [7]. In addition, there has been increased discussion
of the possible uses for applied magnetic fields in the
suppression of non-local transport [1], control of plasma
density channels [8], wakefield acceleration [9] and mag-
netized target fusion (MTF) schemes [10].

In this letter we report a new instability shown com-
putationally to impact on magnetized plasmas, though
it may also take effect in the presence of self-generated
fields. The instability compresses the magnetic field
and distorts thermal energy profiles by concentrating the
heat-flow (see figure 1), and may be important when a
high degree of symmetry or control of heat transport is
needed, or where uniform fields are applied for a specific
purpose, such as those cases mentioned above [1, 8–10].

Feedback is driven solely by classical (Braginskii)
transport processes [4]: specifically the interaction of the
Nernst effect, which describes advection of magnetic field
with heat-flow down temperature gradients q⊥ and with
velocity vN ≈ 2q⊥/5Pe, where Pe is the isotropic pres-
sure [11]; and the Righi-Leduc heat-flow, the cross-field
thermal-flux ‘bent’ by magnetic fields acting on nega-
tively charged heat-carrying electrons. Consequently we
require only the presence of temperature gradients ∇Te
perpendicular to an existing magnetic field for instability.
Gradients in electron number density ne are not needed
(i.e. ∇ne = 0, precluding ∇Te × ∇ne field generation),
nor hydrodynamic motion or anisotropic pressure. Thus,
what we see is distinct from instabilities existing in the
literature: such as those of Tidman-Shanny [12–14], for
which ∇Te × ∇ne is necessarily non-zero; Weibel [15],
where magnetic fields are not essential; Haines [16, 17],
which does not require either Righi-Leduc heat-flow or
the Nernst effect; and Davies [18], where unstable fila-
mentation arises from plasma motion.

In our case, terms responsible for growth go as k
3
2 ,

where k is the wavenumber of a perturbation (not the
more usual k), yielding traveling waves rather than
purely growing perturbations. These, however, differ
from the thermal-magnetic waves described by Pert [19]
who neglected the Nernst effect.

We present an analytical theory of the instability
alongside results from numerical simulation in the con-
text of an experimental arrangement which uses applied
magnetic fields; specifically the conditions of Froula et al.
[1], in kinetic modeling of which it was first observed [20].
In this experiment, designed to measure the suppression
of non-local heat transport by magnetic fields, a nitro-
gen gas-jet (atomic number Z = 7), with electron num-
ber density ne = 1.5× 1019cm-3 and initial temperature
Te = 20eV, was subject to inverse bremsstrahlung heat-
ing for 1ns by a long-pulse laser of wavelength 1054nm
and intensity 6.3× 1014 Wcm-2. Uniform magnetic fields
of strengths up to 12T were imposed parallel to the laser-
heating beam and the radial heat-flow inferred. These
parameters should be assumed throughout.

Though the instability was originally observed in ki-
netic simulations [20], no theory was derived and to
this end a classical transport model better elucidates the
physics of the problem. Data presented here is thus taken
primarily from our classical transport code CTC. Where
appropriate, however, we present results from our kinetic
code IMPACT [21] and from CTC+: a version of CTC
which includes hydrodynamic motion. For the conditions
considered here, simulation using CTC+ reveals that nei-
ther hydrodynamics nor density gradients impact heavily
on the the instability (see figure 2), so that both effects
are neglected in the theory at this stage.

For consistency with Froula et al. [1], we focus on
a two-dimensional cross-section through a plasma per-
pendicular to both the applied magnetic field and the
laser-heating beam. However, for simplicity we consider
an x-y, rather than r-θ geometry, with a laser-heating
strip resulting from a heating operator U̇L(x) in place of
a circular laser spot. We thus suppose a plasma with
principal temperature and magnetic field gradients along
the x-axis of the system only. The magnetic field is ap-
plied parallel to the z-axis, i.e. B = Bẑ, where B = |B|,
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so that plasma scalar quantities f and vector quantities
A are such that B · ∇f = B ·A = 0. Snapshots of the
instability in this geometry are shown in figure 1.
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FIG. 1: Snapshots of the instability taken at 700ps (top),
800ps (centre) and 900ps (bottom), from CTC simulations of
the experiment of Froula et al. [1] for the case of an 8T field
given a 1% perturbation at the laser ‘switch-on’ time.

Our transport code incorporates the full Braginskii
model with corrected coefficients [4, 22, 23]. However, the
theory presented here includes just the most important
damping terms, resistive and thermal diffusion, alongside
the main feedback terms describing the Nernst effect and
Righi-Leduc heat-flow. The Ettingshausen term, which
helps to mitigate diffusive effects, is also retained. In this
way, using Braginskii’s expression for the electric field E
and Ampère’s Law to write the current as j = (∇×B)/µ0,
and by neglecting hydrodynamics and density gradients
(∇ne = 0), the induction equation is:

∂B
∂t

= −∇×E

= −∇×
(

meα⊥
e2necBτTµ0

∇×B− β∧
e

ẑ×∇Te
)
. (1)

Similarly, by neglecting Ohmic heating, using Bragin-
skii’s form for the heat-flow q, and with a laser-heating
operator U̇L(x), the thermal-energy continuity equation
of our reduced model becomes:

3
2
ne
∂Te
∂t

= −∇ · q + U̇L = ∇ ·
(
Te
eµ0

ψ∧ẑ× (∇×B)
)

+∇ ·
(
necBτTTe

me
[κ⊥∇Te + κ∧ẑ×∇Te]

)
+ U̇L. (2)

In these equations e is the electronic charge; cB =
3
√
π/4 is a dimensionless constant; and the thermal col-

lision time τT = 4πv3
T /ni[Ze

2/ε0me]2 ln Λei is defined

by the thermal velocity vT = (2Te/me)
1
2 , the ion num-

ber density ni ≈ ne/Z and the Coulomb logarithm
ln Λei ≈ 8. The transport coefficients - the resistivity
α⊥, thermal conductivity κ⊥, Nernst, Ettingshausen and
Righi-Leduc terms, β∧, ψ∧ and κ∧ respectively - are di-
mensionless functions of the atomic number Z and Hall
parameter χ = ωgcBτT only, where ωg = eB/me is the
electron gyro-frequency. These are calculated using poly-
nomial fits in the Lorentz approximation [22, 23].

Taking zeroth order solutions to equations (1) and (2)
of the form B = B0(x, t) and Te = T0(x, t), we add wave-
like perturbations with wavenumber k and frequency ω
at an (anticlockwise) angle θ to the x-axis. In this way
we have Te = T0 + δT and B = B0 + δB, where δT =
δT ′ exp i(kxx+kyy−ωt), δB = δB′ exp i(kxx+kyy−ωt),
kx = k cos θ, ky = k sin θ, and δT ′ and δB′ are complex.
Hence, by defining temperature and magnetic field scale
lengths LT = T0/(∂T0/∂x) and LB = B0/(∂B0/∂x) re-
spectively, and assuming |kLT,B | � 1 and |∇(1/LT,B)| .
1/L2

T,B , the first order forms of equations (1) and (2)
yield a quadratic in ω and the dispersion relation:

ω± =
1
2
{sBk − (dR + dT )ik2} ± 1

2
{s2Bk2 (3)

+[sP + 2sB(dR − dT )]ik3 − [(dR − dT )2 + sE ]k4} 1
2 .

Here the additional d and s coefficients are defined in
terms of the mean free path λT = τT vT and the skin
depth δ = c/ωpe, where c is the speed of light and ωpe =
(e2ne/meε0)

1
2 is the plasma frequency:

sP =
2β∧c2Bλ

4
T

3LT τ2
T

∂κ∧
∂χ

sin θ, sB =
cBχλ

2
T

3LBτT
∂κ∧
∂χ

sin θ,

sE =
4λ2

T δ
2

3τ2
T

β∧ψ∧, dR =
α⊥δ

2

cBτT
and dT =

cBκ⊥λ
2
T

3τT
.

Note that dR and dT represent the coefficients for re-
sistive and thermal diffusion respectively. The solution
for ω+ yeilds unstable modes for a range of k up to a
cut-off kc with growth rates given by ={ω+} (see figure
2), though the local approximation subjects us to the
additional restriction |1/LT,B | � |k| � 1/λT .

Perturbations grow primarily as a result of interplay
between the Nernst effect and the Righi-Leduc heat-flow
in the sP source term in equation (3), yielding growth
that goes as k

3
2 ; while the main damping terms in dR

and dT are proportional to k2, giving us the form of the
dispersion curve in figure 2 (the term in sB also con-
tributes as a source, but is not essential). The angular
dependence of sB and sP means that a y-component to
the perturbation is needed for instability. In our simula-
tions, and from henceforth in this letter, we take θ = π/2,
i.e. sin θ = 1. Feedback between the Nernst and Etting-
shausen effects, which goes like k2 and is accounted for
by sE , acts to reduce the impact of diffusion, but cannot
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itself drive instability due to its equivalent power in k.
Thus, the instability is perhaps best understood by as-
sessing the phenomena in the principal source term sP .

The effect of a temperature perturbation on an unper-
turbed magnetic field (B = B0) may be considered by
examining the first order correction due to the Nernst
term in the induction equation:

(
∂B

∂t

)O(1)

β∧

=
β∧
e
k2δTeiπ. (4)

Hence, a magnetic field perturbation is induced in anti-
phase. Physically this is a result of the compressional
aspect of Nernst advection. The Nernst velocity - the
velocity of advection - is proportional to ∂Te/∂y, so that
magnetic field is compressed in the troughs of the tem-
perature perturbation and rarefacted at the peaks.

Similarly, we consider the impact of a magnetic field
perturbation on an unperturbed temperature profile
(∂T0/∂x < 0) using the first order correction due to the
Righi-Leduc term in the energy continuity equation:

(
∂T

∂t

)O(1)

κ∧

∝ ∂T0

∂x

∂κ∧
∂χ

kδBei
π
2 . (5)

For χ greater than about 10−1 we have ∂κ∧/∂χ < 0,
in which case the magnetic field perturbation will induce
a temperature perturbation that leads by π/2. This is
due to the dependence of κ∧ on χ, which is itself directly
proportional to B. Since ∂κ∧/∂χ < 0, regions of higher
magnetic field strength have a lower Righi-Leduc heat-
flow, so that heat is transported away from these regions
more slowly than those of lower B. Thus, as we move
along the positive y-axis, thermal energy is built up in
places where heat-flow goes from high to low and removed
from places where it goes from low to high. The reverse
is found if χ is less than about 10−1, where ∂κ∧/∂χ > 0.

The two stages of this feedback process result in in-
duced perturbations which have different phases. Mag-
netic field perturbations will tend to ‘push’ temperature
perturbations towards a phase difference of ±π/2 (sign
identical to that of [∂T0/∂x][∂κ∧/∂χ]), while tempera-
ture perturbations ‘pull’ magnetic field perturbations to-
wards a phase of π. The net result of this ‘push-pull’ in-
teraction is that perturbations propagate as waves with
a phase difference of φ ≈ 3π/4 and in the direction ±ŷ
(again, sign identical to that of [∂T0/∂x][∂κ∧/∂χ]).

The dependence of the d and s coefficients on T0(x, t)
and B0(x, t) means that the growth rate varies both tem-
porally and spatially. Evaluation of the dispersion rela-
tion is thus limited to a particular plasma cross-section x
and based on a given snapshot of the bulk profile. When
using profiles taken from computational simulation of the
experiment of Froula et al. [1], the theoretical model and
growth rates measured from full heating simulations show
good agreement (see figure 2).
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FIG. 2: The theoretical dispersion relation of our reduced
model - for a 6T magnetized plasma at a distance x ≈120µm
from the laser strip centre after 500ps of heating - based on
one-dimensional profiles taken from CTC (top plot, solid line),
CTC+ (top plot, dashed line) and IMPACT (bottom plot).
These may be compared with growth-rates measured from full
two-dimensional simulations.

As indicated in figure 2, for the conditions considered
here hydrodynamics does not significantly affect the in-
stability. Non-local effects, on the other hand, which are
relevant to the experiment of Froula et al. [1], do re-
duce the predictive power of the theory by modifying the
transport coefficients; though the physical mechanism of
the instability remains the same. However, simulation
using IMPACT (see figure 2) shows that this reduction
is not dramatic: the peak wavenumber is effectively un-
changed, while the cut-off wavenumber and peak growth
rate agree to within ∼ 35%. Indeed, it is noteworthy
that though growth rates measured from kinetic simula-
tions are lower than those predicted by the theory, the
different bulk profiles mean that rates are approximately
twice those taken from CTC and CTC+.

The cut-off wavenumber for unstable modes kc, calcu-
lated by solving ={ω+} = 0, may be expressed in terms
of the dimensionless parameters χ and Λ = (λT /δ):

kcLT =
cB
3
∂κ∧
∂χ

(
3

α⊥κ⊥ − β∧ψ∧

) 1
2

(
β∧
2
− κ⊥χ

3
LT
LB

) 1
2

×
(
α⊥χ

LT
LB

+
β∧c

2
B

2
Λ2

) 1
2

(
α⊥
cBΛ2

+
cBκ⊥

3

)−1

. (6)

This equation makes clear the necessity of both the
Nernst effect and Righi-Leduc heat-flow in driving insta-
bility: without the former (β∧ = 0), kc becomes imagi-
nary, and without the latter (∂κ∧/∂χ = 0), kc is zero. It
also demonstrates how feedback between the Nernst and
Ettingshausen effects reduces the impact of the diffusive
term in α⊥κ⊥ - thus extending the range of instability.
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No equivalent expression for the peak wavenumber kM
exists, however, for the experiment of Froula et al. [1] we
find |s2B−[(dR−dT )2+sE ]k2

M | ≈ |[sP+2(dR−dT )sB ]kM |,
so that the peak growth rate γM and wavenumber kM
may be approximated by γ′M and k′M respectively, where:

γ′M =
1
2

[sP +2(dR−dT )sB ]
1
2 k′M

3
2 − 1

2
(dR+dT )k′M

2 (7)

and k′M =
9
16

[sP + 2(dR − dT )sB ][dR + dT ]−2. (8)

More precise values for both γM and kM may be found
computationally under the assumption LT ≈ −LB . Us-
ing Λ = 20 (characteristic for the experiment of Froula et
al. [1]) and by comparing these values with γ′M and k′M ,
we find that the approximate expressions agree to within
a factor of five for 10−2 < χ < 102.

To enable more qualitative discussion, we simplify fur-
ther by assuming no magnetic field gradients (LB →
∞), so that sB = 0, take Λ � max{1, χ}, for which
dT � dR, and combine equations (7) and (8) to ex-
press the peak growth rate as γ′M = (3/8)3s2P d

−3
R , i.e.

γ′MτT ≈ [(β∧λT /LT )(∂κ∧/∂χ)]2κ−3
⊥ . Writing γ′M in this

way emphasizes the importance of steep temperature gra-
dients, through 1/L2

T , and of intermediate Hall Parame-
ter, to allow significant β2

∧(∂κ∧/∂χ)2/κ3
⊥. More specif-

ically, we require χ in the region of 10−2 to 102, but
avoiding χ ∼ 10−1 where ∂κ∧/∂χ ∼ 0. Furthermore, the
dimensionless form indicates relevance to other plasmas
in self-similar regimes.

Under the conditions considered in this letter, the in-
stability has growth rates of order 10GHz, optimal wave-
lengths of ∼ 50µm and can significantly disrupt magnetic
field and temperature profiles over nanosecond timescales
when compared to stable heating simulations. By con-
centrating the heat-flow in regions where the magnetic
field is rarefacted, the instability enhances the spread of
thermal energy (see figure 3).
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FIG. 3: A comparison between the spread of thermal energy
when the instability is active (solid line) and when it is not
(dashed line) after 1ns of laser heating for the case of an 8T
applied field (c.f. figure 1). The data, taken from CTC, is
averaged in y for each x cross-section.

To conclude, we have derived the linear theory for a
new plasma instability in magnetized plasmas, which pre-
dicts propagating waves with growing amplitude for a
range of wavenumbers, and have shown that this theory
compares well with simulation. Uniquely, the instability
results solely from feedback between collisional transport
processes, principally the Nernst effect and Righi-Leduc
heat-flow; though further investigation of the effects of
hydrodynamics and non-local heat-flow are key areas of
future work. The instability is likely to be important for
ICF (particularly hohlraum gas-fill conditions which are
similar to those considered here) and most likely MTF.
Furthermore, its existence highlights the necessity of in-
cluding the Nernst effect and Righi-Leduc heat-flow in
magneto-hydrodynamic models for any plasma of inter-
mediate magnetization.
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