
α-shapes for local feature detection

Christos Varytimidis∗, Konstantinos Rapantzikos, Yannis Avrithis, Stefanos Kollias

National Technical University of Athens, Iroon Polytexneiou 9, 15780 Zografou, Greece

Phone: +302107722521, Fax: +302107722492

Abstract

Local image features are routinely used in state-of-the-art methods to solve many computer vision

problems like image retrieval, classification, or 3D registration. As the applications become more

complex, the research for better visual features is still active. In this paper we present a feature

detector that exploits the inherent geometry of sampled image edges using α-shapes. We propose a

novel edge sampling scheme that exploits local shape and investigate different triangulations of sampled

points. We also introduce a novel approach to represent the anisotropy in a triangulation along with

different feature selection methods. Our detector provides a small number of distinctive features that

is ideal for large scale applications, while achieving competitive performance in a series of matching

and retrieval experiments.
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1. Introduction

Local features provide a balance between the sparseness of global representations and the density

of features extracted on a fixed grid of locations. By ignoring non-salient image parts and focusing

on distinctive regions they provide repeatability, discriminative power, computational efficiency and

compactness. These properties boost computer vision applications including large-scale recognition,

retrieval or 3D reconstruction.

State-of-the-art detectors like Hessian-Affine [1], MSER [2] and SURF [3] have been used in many

computer vision applications and are quite mature and popular. However, the speed, stability and

image coverage provided by those detectors are not ideal. The speed and image coverage of the Hessian-

Affine detector are limited, while multiple detections often appear on nearby locations at different

scales. The MSER detector is fast, but often extracts sparse regular regions that are not representative

enough. SURF is also fast, but detections are often not stable enough. Recent publications compare
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Figure 1: Example of the α-filtration. Different instances of the filtration for different values of α: starting from the

point set for α = 0 (top left) and adding triangles and edges, we end up to the convex hull for α = ∞ (bottom right).

Observe how the cavities of the α-shapes correspond to cavities of the objects and blob–like regions.

state-of-the-art detectors not only by common statistics (e.g. repeatability/matching score), but also

in diverse applications like image classification [4] or retrieval [5, 6, 7].

In an attempt to capture the dominant structural features in an image, we propose a detector based

on a local shape representation rather than first- or second-order image derivatives. In this direction

we employ α-shapes, a well known method in computational geometry introduced by Edelsbrunner et

al . [8]. An α-shape is a subset of a triangulation of a point set in a Euclidean space, where scale-like

parameter α ≥ 0 determines the faces of the triangulation (points, edges or triangles) that are included

in the particular subset (see section 3.3). Given a set of points, α-shapes involve a grouping process

guided by α, and capture the shape of structures generated by this process. They can be thought of

as a generalization of the convex hull, being parametrized by α. Starting from the point set for α = 0,

the subset of the triangulation expands to the convex hull at the other extreme α =∞ (see Fig. 1).

The set of all α-shapes (for all possible values of α) is a filtration over a triangulation of the

point set, i.e. a partial ordering of simplices (edges and triangles in two dimensions) [9]. Delaunay

triangulation is the most common choice, but since it is only based on point coordinates, it may be

a poor representation depending on the application, e.g . a sampled function over an image may be

more informative. Weighted α-shapes [10] on the other hand are based on a regular triangulation

and provide a more flexible representation, by associating an additional scalar parameter per point.

Teichmann & Capps introduce the anisotropic α-shapes [11], using an even richer representation per

point. Anisotropic α-shapes are a generalization of weighted α-shapes, defined on non–Euclidean

metric spaces.

In [12] we introduce WαSH, a detector based on weighted α-shapes that groups edge samples by
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Figure 2: Overview of our detector. (a) Edges of the input image are (b) non-uniformly sampled. (c) We create the

α-filtration of a triangulation over the samples and track the evolution of connected components. (d) We extract features

by selecting stable and prominent components.

exploiting location, gradient strength and local shape. To capture local shape, we devise an efficient

way to overcome the main weakness of α-shapes, namely the automatic selection of α value that best

represents the underlying point set. We also show how noisy points or groupings can be automatically

filtered out by a shape-based stability measure. WαSH performs quite well and is controlled by a single

and intuitive parameter.

In this paper we treat a local feature as a region delineated by a set of points sampled from its

contour, but instead of using a uniform sampling scheme along the edges, as in WαSH, we explore a

non-uniform scheme whose sampling density is guided by local edge shape. The major steps of the

algorithm are summarized in Fig 2, namely (a) edge extraction, (b) non-uniform sampling based on

local anisotropy, (c) triangulation of the samples and α-filtration construction, and (d) local feature

extraction based on shape measures. Compared to WαSH, we improve and extend the method by

• applying non-uniform sampling based on image edges and local shape;

• introducing anisotropically weighted α-shapes, also adapted to local shape;

• comparing several triangulations to build the α-shapes; and

• proposing and evaluating different measures to select dominant components.

The remaining of the paper is organized as follows: In section 2 we discuss related work, followed

by the description of our method. In section 3.1 we describe the different sampling strategies and in

section 3.2 we provide an overview of the triangulations used. In section 3.3 we introduce anisotropically

weighted α-shapes. In section 4.1 we describe the component trees used to track evolving shapes and

in section 4.2 we propose different measures to select dominant components as features, followed by

an overview of our algorithm in section 4.3. In section 4.4 we show visual examples and discuss the
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qualities of our detector. The performance of our detector is experimentally evaluated and compared

to the state-of-the-art in section 5, followed by conclusions and discussion in section 6.

2. Related work

Early region detectors were based on extending ideas found in corner detectors like Beaudet [13]

and Harris and Stevens [14], which were based on the Hessian and the second moment matrix respec-

tively. In his inspiring work, Lindeberg et al . [15] studied scale-invariant detectors and established the

theoretical foundations for making them affine-invariant [16]. Based on these foundations, Lowe [17]

introduced the scale invariant feature transform (SIFT), still one of the most popular detectors, which

achieves invariance to scale and rotation based on the Difference-of-Gaussian(DoG) operator. Mikola-

jczyk et al . [1] extended the Harris-Laplace and Hessian-Laplace operators towards affine invariance

using the Laplacian-of-Gaussian (LoG) operator in affine scale space.

More recently, Alcantarilla et al . [7] introduce the KAZE operator, which detects maxima of the

Hessian in a nonlinear scale space built by diffusion filtering. Although the statistics are comparable

to the state-of-the-art, the creation of the nonlinear scale-space is computationally expensive and the

number of features is high. The fast variant of KAZE in [18] is still slower than the state-of-the-art,

while not providing better performance.

The maximally stable extremal regions (MSER) of Matas et al . [2], one of the best performing

region detectors in [19], detects regions of stable intensity and therefore avoids common problems of

gradient-based methods like localization accuracy and noise. The idea is to compute a watershed-like

segmentation and to select those regions that remain stable over a predefined set of thresholds. MSER

are widely adopted due to their high performance, especially on images with planar structures. Most

importantly, MSER are arbitrarily shaped areas with explicitly represented boundaries, giving rise to

more descriptor alternatives than e.g . elliptical regions.

The recent trend of achieving a good balance between efficiency and performance has led to a

group of computationally efficient detectors like SURF [3], an approximate version of SIFT, as well

as FAST along with its variants (FAST-9, FAST-ER) [20], introducing fast corner detection based on

an intensity comparison test in a small neighborhood. BRISK [21] and ORB [22] detectors build on

FAST and provide real-time detection and description of local features with matching performance

being comparable to SIFT and SURF. Most of these detectors are invariant to scale and rotation, but

not affine invariant.

Although image edges are naturally related to object boundaries and therefore to distinct regions,

they have attracted less attention, mainly due to instability and computational cost. One of the earliest

attempts, edge-based region detector (EBR) [23], starts from corner points and expands along nearby
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edges by measuring photometric quantities. It is suitable for scenes containing intersecting edges (e.g .

man-made structures like buildings), but not for generic matching, as shown in [19]. Mikolajczyk

et al . [24] propose an edge-based detector that combines Canny edge detection with automatic scale

selection and use it for object recognition. For efficiency, they start from densely sampled edge points.

Starting also from Canny edges, Rapantzikos et al . [25] compute the binary distance transform and

detect regions by a grouping process that is initialized by local maxima of the distance transform and

guided by the gradient strength of nearby edges.

Several recent methods are indirectly related to edges by exploiting gradient strength without

thresholding. Zitnick et al . [5] apply an oriented filter bank to the input image and detect edge foci

(EF), i.e. points that are roughly equidistant from edgels with orientations perpendicular to the points.

This takes region shape into account, but is computationally expensive. Avrithis and Rapantzikos [6]

compute the weighted medial axis transform directly from image gradient, partition it in a way similar

to topological watershed, and hierarchically detect medial features (MFD) taking both contrast and

shape into account. Although those methods exploit richer image information, the gradient strength

is often quite sensitive to lighting and scale variations. Certain of the above edge-based detectors

like [25, 6] yield arbitrarily shaped regions like MSER.

Computational geometry is rich in applications based on α-shapes, as opposed to computer vision.

One of the earliest applications has been to surface reconstruction from an unorganized set of points [8,

10]. α-shapes have been also used for studying pockets, defined as regions with limited accessibility

from the outside, measuring the surface area and volume of macromolecules, and the packing density

of proteins [10]. Meine et al . [26] use them for reconstructing boundaries of noisy edge maps. Starting

from binary edge samples they construct the Delaunay triangulation and select a subset of its edges

to complete the object boundaries. Their main criteria are triangle size and average color.

Teichmann and Capps [11] introduce the anisotropic α-shapes in an attempt to overcome limitations

mainly related to discontinuities of the shape, as well as neighboring surfaces that tend to merge. They

do not explicitly create an anisotropic triangulation; they rather use Delaunay triangulation and then

anisotropically reshape the space covered by each triangle and flip edges when necessary. On the other

hand, Labelle and Shewchuk [27] create an anisotropic triangulation via an anisotropic Voronoi diagram

that is always well defined, i.e. there are no orphan regions that do not contain their generating point.

Related is the work of Cazals et al . [28], introducing the conformal α-shapes and the corresponding

filtration. Conformal α-shapes are based on a global scale parameter α̂ and two local ones, adjusted

to some neighborhood of each point. This representation is applied to surface reconstruction of non-

uniformly sampled surfaces. Along the same direction, Zomorodian et al . [9] predict protein structure

by employing α-shapes to detect interacting atoms in a protein molecule.

Building on edge-based methods, we start from sampled edges like [24, 23]. We then create a
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Figure 3: Features extracted by our detector, using anisotropically weighted α-shapes and non-uniform sampling.

2D triangulation of the points and construct the α-filtration like [8, 29, 11, 27], experimenting with

different triangulations. We employ the component tree, which is a hierarchical representation of

nested sets, similar to MSER [2]. However, we apply this representation on the α-filtration rather

than the level sets of image intensity. To select image features we use shape-based criteria, a choice

that bears similarities to [6], although our geometrical representation is entirely different.

Our method is able to detect regions that are adjacent to both brighter and darker ones, as opposed

to MSER that can only detect bright or dark extremal regions. Furthermore, the proposed detector can

handle regions determined by cavities of the boundary shape, bearing similarities to the pockets [10],

and regions that are not enclosed by complete boundaries.

3. Building α-shapes from images

3.1. Image sampling

In this section we discuss our sampling methods, following our visual representation and edge

detection. We introduce two alternative sampling methods. By uniform sampling, points are sampled

uniformly along edges with a fixed sampling interval s. On the other hand, non-uniform sampling

is controlled by a measure of local anisotropy. Samples typically do not correspond to key-points

like maxima of curvature. Instead, the goal is to capture the shape of the detected boundaries while

keeping samples as sparse as possible.

3.1.1. Image representation

We assume a grayscale input image is given as a function f on the plane and that g is its gradient

magnitude ‖∇f‖ normalized in [0, 1]. We apply a binary edge detector on g and sample the resulting
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edge map E to obtain a discrete set of edge points P ⊆ R
2. The domain and range of functions f, g

are both bounded and discrete, and P is finite.

The binary edge map is obtained by the Canny edge detector [30]. After the non-maxima suppres-

sion stage of the algorithm, we follow all candidate edge pixels and apply the hysteresis thresholds. We

do not rely on a clear edge map and therefore the high and low hysteresis thresholds of the detector

are kept fixed. We start from a random image pixel that is an edge candidate (maximum from the

previous stage) and sample points along the edge based on an 8-connected neighborhood. The first

point visited in an edge is automatically considered a sample.

3.1.2. Uniform sampling

Using a fixed sampling interval s, we count the steps taken from the initial sample while moving

along an edge using an 8-connected neighborhood. When the number of steps reaches s, we sample

a new point at the current location and reset the counter. This implies that the Euclidean distance

between two adjacent samples will be greater than or equal to s.

For each sample point p ∈ P , we define its weight w(p) ≥ 0 to be proportional to its gradient

strength g(p),

w(p) = g(p)
(s

2

)2

, (1)

with g(p) ∈ [0, 1]. The reason for this choice of weight w will be made clear at the end of section 3.3.1.

3.1.3. Non-uniform sampling

To adapt the sampling interval to local edge shape, we capture the local affine shape at the current

sample, measure a number of properties and determine the sampling interval for the following sample.

The local affine shape adaptation scheme we use is based on Lindeberg’s shape adaptation [31, 32].

Given a sample point p, we follow an iterative process whereby at each iteration i we measure the local

shape U (i) of a shape-adapted neighborhood p of p, where U (i) is modeled by a 2× 2 transformation

matrix. We initialize local shape to isotropic of unity scale, i.e. U (0) is the identity matrix I. At

iteration i, we transform neighborhood p to p̂ = U (i)p, resample image intensity on p̂, and compute

the average second-moment matrix

µ =





µ11 µ12

µ12 µ22



 =





L2
x LxLy

LxLy L2
y



 . (2)

over p̂, where Lx, Ly are the first order derivatives. The transformed neighborhood p̂ is resampled

at the same size as the initial neighborhood p, which is fixed (see section 5.2). In order to prevent

overfitting in case of straight lines in the small neighborhood of p, we set an upper bound k on the
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eccentricity of the ellipse associated to µ. Following [32], we measure the following quantities for µ:

B = µ11 + µ22 (3)

C = µ11 − µ22 (4)

S = 2µ12 (5)

Q =
√

C2 + S2 (6)

Here Q measures the degree of anisotropy, while Q̂ = Q/B is normalized in [0, 1]. The eccentricity of

the associated ellipse of µ is then (1+Q̂)/(1−Q̂). It is thus shown in [32] that the regularised diffusion

matrix

Σ = (µ+ ǫI)−1 (7)

with ǫ = Q
k−1 , has an associated ellipse of the same orientation as that of µ, but not too elongated—its

eccentricity is upper bounded by k.

We compute a square root of Σ and normalize its eigenvalues λmin, λmax, so that

λminλmax = 1. (8)

Finally, we concatenate transformation matrices by applying Σ− 1

2 to U (i) so that

U (i+1) = Σ− 1

2U (i). (9)

The ratio of the eigenvalues is considered for convergence. If it is close to 1, we assume to have reached

convergence, at which point we measure the final local shape matrix U . Convergence typically occurs

in 3 to 5 iterations.

The largest eigenvalue is used to compute the scale of the adapted neighborhood p. Since the shape

of p is described by U (i), its scale is the product of the largest eigenvalues over all iterations up to i.

The sampling interval s is controlled by this scale, and is now dependent on p:

s(p) =
∏

i

λ(i)
max. (10)

This means that the next point after p is sampled after s(p) steps along the edge. Finally, if U is the

final local shape matrix measured at p at termination, metric tensor

Mp = UTU (11)

is used to define distances in the neighborhood of p. This tensor is used by the anisotropically weighted

α-shapes in section 3.3.2.

Fig. 4 illustrates how the proposed non-uniform sampling method captures local shape changes

while minimizing the number of samples. Where edges tend to straight lines, the sampling is sparse,
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k = 2 k = 3 k = 6

Figure 4: Sample points using variable density sampling. Increasing the upper bound of eccentricity k of the regions

results in sparser samplings.

yet limited by the upper bound k on eccentricities. Where the curvature increases, the sampling

density increases as well to capture the local details of the shape. The same figure illustrates the effect

of upper bound k. Small k leads to fine representation, hence increased complexity; excessively large

k not only leads to coarse representation, but may cause nodes to disappear due to overlapping of

ellipses, as will be explained in section 3.2.1.

Discussion. In the above non-uniform sampling method, the sampling interval is affected by neigh-

boring edges but there is no exact relation between the two in theory. An ǫ-sample of the edges as

defined in [28] provides such theoretical guarantees; however, this requires constructing the medial axis

first, which is not only harder to compute, but also typically requires some form of sampling in the

first place.

Alternatively, the more common option of adjusting the sampling interval according to edge curva-

ture is very fast since it effectively operates in one dimension, but does not take into account neighboring

edges at all. This potentially results in too sparse representations when two edges are close, and can be

detrimental to subsequent triangulation and feature detection. Our semi-local approach can be seen

as a compromise between these two alternatives.

3.2. Triangulations

In the following we define the different triangulations used in our method, which form the basis for

the computation of α-shapes.
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3.2.1. Regular triangulation

Regular triangulations are in fact a family of triangulations, parametrized by a height function.

A triangulation of a point set P in R
n is called regular if it can be obtained by projecting the lower

envelop of a lifting of P to R
n+1 [33]. A 2D set of points is lifted to 3D by assigning a height value to

each point p, using height function ω : R2 → R. A lifted point is a 3D point located at (px, py, ω(p)).

Next, the lower envelop of the lifted points in R
3 is computed, which is the lower part of the 3D convex

hull of the points. By projecting this lower envelop to R
2, a tessellation of the 2D convex hull of the

points is produced. This tessellation is a regular triangulation.

In this work, we use the additively weighted height function

ω(p) = ‖p‖2 − w(p), (12)

with w(p) as defined in (1). A point p ∈ P along with its weight w(p) makes up a pair (p, w(p)) that is

called a weighted point. A weighted point can be seen as a circle centered at p, with radius
√

w(p). We

will say this is the circle of point p. We will also use the same symbol p for both a circle or weighted

point, and will disambiguate as necessary.

The weights w have to be carefully selected because they can make a point disappear. This occurs

in case the circle of a point p is contained in the interior of the circle of another point q. In 3D space,

the lifted point of p does not belong to the lower hull in this case.

The regular triangulation can be computed incrementally, by adding the points one by one. Edels-

brunner and Shah [34] have proved that such a construction is possible and its time complexity is

O(n log n+ n) in the 2D case, where n = |P |.

3.2.2. Delaunay triangulation

The Delaunay triangulation is the most commonly used triangulation. It belongs to the family

of regular triangulations, and corresponds to height function ω(p) = ‖p‖2. This is equivalent to zero

weight, w(p) = 0 for all p ∈ P in our regular triangulation with additive weights (12). Since the weight

function is directly computed from the coordinates of the sample points in R
n, no additional input is

required.

An incremental edge-flipping algorithm is used to construct the Delaunay triangulation, with time

complexity O(n log n). The algorithm starts from a set of three points determining a single triangle and

adds one point at a time. The new triangles formed at each iteration are checked against the Delaunay

properties and if these are not satisfied, then the common edge of two such adjacent triangles is flipped.

3.2.3. Constrained Delaunay triangulation

The constrained Delaunay triangulation is only partially Delaunay. The properties of the Delaunay

or in general the regular triangulations are not necessarily satisfied here. As input, apart from the
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(a) (b)

Figure 5: (a) Delaunay triangulation. (b) Constrained Delaunay triangulation, obtained from (a). Constraints are

shown as thick black edges; constraints causing flips as thick white edges. Edge pixels are shown in green. Observe

that constraints enforce triangulation edges to follow image edges, hence the triangulation represents the underlying

structures more accurately.

spatial coordinates of the sample points in R
n, a set of constraints is given, indicating the presence of

particular edges. Each constraint cij is represented by an edge of the form cij = (vi, vj), indicating

that vertices vi and vj should be connected in the triangulation. The constraints override the Delaunay

properties.

In our case, the constraints are defined as consecutive line segments on image edges. In particular,

while following an image edge to sample points (see section 3.1), we add as a constraint each pair of

consecutive sampled points. This ensures that the triangulation edges do not cross the image edges,

creating a representation of the image that respects object boundaries.

A constrained triangulation is typically constucted by a variant of the previous algorithm for

Delaunay. In this case, constraints are always added as edges; however, if two such edges intersect,

they are first split at their intersection point. This may happen in the case of junctions in the image

edges. On the other hand, a sequence of flips is performed to accommodate for non-constrained edges

that intersect with constrained ones. An example of a constrained Delaunay triangulation is shown in

Fig. 5.

3.3. α-shapes

The construction of α-shapes is based on the Delaunay triangulation. Weighted α-shapes are based

on a regular triangulation with an additively weighted height function (12). Anisotropically weighted

α-shapes further use metric tensor (11) obtained by non-uniform sampling.
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Figure 6: Size of a 2-point set {p, q}, as the squared radius of a circle (weighted point) cT that is orthogonal to circles p, q,

on a (a) regular and a (b) Delaunay triangulation. (c) On anisotropically weighted α-shapes, the space is transformed

to “isotropic” before measuring the size.

3.3.1. Weighted α-shapes

The discussion given here mostly follows [29], but simplifies for the case of 2 dimensions. We begin

with a definition of a regular triangulation that is alternative to that of section 3.2.1, because we need

a number of additional quantities for the definition of weighted α-shapes. Recall that we use the same

symbol p to refer to either a circle or weighted point (p, w(p)). Each triangle, line segment or point in

a triangulation is a 2-, 1-, or 0-simplex respectively, and we will refer to it as simplex in general.

Given two weighted points p, q ∈ P , we define

π(p, q) = ‖p− q‖2 − w(p)− w(q). (13)

Circles p, q intersect at right angles iff π(p, q) = 0; we then say that p, q are orthogonal. Given a point

x of zero weight, π(p, x) is called the power of point x with respect to circle p [35]. Given a subset

T ⊆ P of three non-collinear points, there is a unique circle that is orthogonal to all circles of T . Its

center has equal powers with respect to the circles of T , and is called their radical center [35]. We

denote the corresponding weighted point by cT . Now, consider the 2-simplex (triangle) σT = conv(T ),

the convex hull of T . This simplex is called regular if

π(p, cT ) = 0 for all p ∈ T, (14)

π(p, cT ) > 0 for all p ∈ P \ T, (15)

where (14) is equivalent to cT being orthogonal to all points of T . The collection R of all regular

triangles over P is called the regular triangulation of P . This definition is equivalent to that of

section 3.2.1. Observe that, if w(p) = 0 for all p ∈ T , weighted point cT reduces to the circumcircle

of triangle σT , while power function (13) reduces to the Euclidean distance. In this unweighted case,

the triangulation reduces to Delaunay.
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Figure 7: Size of a 3-point set {p, q, r}, as the squared radius of a circle cT that is orthogonal to p, q, r, on a (a) regular

and a (b) Delaunay triangulation. (c) On anisotropically weighted α-shapes, the space is transformed to “isotropic”

before measuring the size.

The collection K of all 2-simplices (triangles) and their faces (line segments and points) in R is a

simplicial complex. If we define a size ρT ≥ 0 for each simplex σT ∈ K, then the weighted α-complex

of P is the subset of K containing all simplices up to a given size α ≥ 0,

Kα = {σT ∈ K : ρT < α}. (16)

Finally, the weighted α-shape of P [10] is the union of all such simplices,

Wα =
⋃

σ∈Kα

σ. (17)

Wα is a polytope that is neither convex nor connected, in general. In the particular case of α = +∞,

W+∞ =
⋃

σ∈R

σ = conv(P ), (18)

the convex hull of P . The difference between the α-shape and the α-complex is analogous to the

difference between the convex hull and the triangulation of a point set.

It remains to define the size ρT of a point, line segment or triangle σT , when T contains 1, 2 or 3

points of P , respectively. The size of a point p ∈ P is always zero. For line segments and triangles, we

use again orthogonal circles, as illustrated in Fig 6, 7.

Given a set of two points T = {p, q} ⊆ P , there is a pencil (infinite collection) of coaxial circles that

are orthogonal to circles p, q; their centers lie on a line perpendicular to the line segment σT = σ{p,q},
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that is called the radical axis of p, q [35]. However, there is a unique circle cT of minimum radius over

this pencil, subject to (15). The size ρT of line segment σT is the squared radius of circle cT . In the

absence of other points, the center of cT lies on σT , as shown in Fig. 6a. In the Delaunay case (zero

weights), σT is a diameter of cT (see Fig. 6b).

Similarly, given a set of three non-collinear points T = {p, q, r} ⊆ P , there is a unique circle cT

that is orthogonal to p, q, r, as noted above. Again, the size ρT of triangle σT is the squared radius

of circle cT , as shown in Fig. 7a. In the Delaunay case, cT is the circumscribed circle of triangle σT

(see Fig. 7b). In general, since cT is also orthogonal to p, q alone, and since the size of edge σ{p,q} is

the smallest such circle, a triangle is by definition not smaller than any of its edges. This is evident

by comparing Fig. 6a,b to Fig. 7a,b respectively.

From the definition of weight function (1) it follows that the weight w(p) of any point p takes values

in [0, (s/2)2], where s is the sampling interval. For any two consecutive points T = {p, q} sampled

along an image edge, this ensures that the associated circles shown in Fig. 6a do not intersect, in which

case the size of the edge σT would be zero. This also prevents one circle being contained in another in

general, which would make points disappear from the triangulation.

The above general definition of the weighted α-shape may apply to regular, Delaunay, or constrained

Delaunay triangulations. For Delaunay, we simply set all point weights to zero. For constrained

Delaunay, this does not suffice; we also set the size of all constrained edges to zero. As discussed in

section 4.1, this makes constrained edges indeed preserve the boundary of adjacent image regions.

3.3.2. Anisotropically weighted α-shapes

Our anisotropically weighted α-shape is based on weighed samples accompanied by the metric

tensor M (11) obtained by the shape adaptation process of non-uniform sampling, as described in

section 3.1.3. This applies even to uniform sampling, by invoking the shape adaptation process and

explicitly computing M at each sample.

We begin by creating a regular triangulation using weighted points as described in section 3.3.1.

Given the metric tensor Mp associated with each point p, we compute an effective metric tensor MT for

each remaining simplex T in the triangulation. In particular, we define tensor MT of 1- or 2-simplex

(edge or triangle) T as the average of metric tensors of individual points in T , normalized for unit

determinant such that area is preserved. That is, given points p, q, r with metric tensors Mp,Mq,Mr

respectively, we define

MT =
Mp +Mq

√

det(Mp +Mq)
(19)

for an edge defined by T = {p, q}, and

MT =
Mp +Mq +Mr

√

det(Mp +Mq +Mr)
(20)
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Figure 8: Measuring the size ρT of a line segment σT between two points p, q in the anisotropic case, for different

orientations θp, θq of associated ellipses, where θp is fixed to horizontal in upper row (a,b) or vertical in lower row (d,e).

In each case, the right column (c,f) shows the ratio of ρT to the same measurement in the isotropic case versus θq .

for a triangle defined by T = {p, q, r}.
Fig. 8 gives an example of applying (19) to the edge between points p and q for different relative

orientations between associated ellipses, and the ratio of the resulting edge size to the corresponding

measurement in the isotropic case. If the major axes of the ellipses are aligned as in Fig. 8a, the edge

size decreases as if p, q are coming closer (θq = 0, π in Fig. 8c). At the other extreme, if the axes are

parallel as in Fig. 8e, the edge size increases as if p, q are moving apart (θq = π/2 in Fig. 8f). Finally,

if the two major axes are normal as in Fig. 8b,d, the effects of the two metric tensors cancel and the

edge size is equal to that of the isotropic case (θq = π/2 in Fig. 8c and θq = 0, π in Fig. 8f).

The effect of metric tensor MT can be seen as applying a linear transformation to the space around

simplex T , given by an effective local shape matrix U , such that MT = UTU . This transformation

makes the space “isotropic”, i.e. ellipses reduce to circles in Fig. 6c, 7c before measuring the simplex

size. Equivalently, it gives raise to local inner product defined by 〈x, y〉T = 〈Ux,Uy〉 = xTMT y for

x, y ∈ R
2, hence to local distance metric dT defined by

dT (x, y) =
√

(x− y)TMT (x− y) (21)

for x, y ∈ R
2. We use dT to measure all distances between two or three points in an edge or triangle T ;

these would be identical to the Euclidean distances measured in the transformed space of Fig. 6c, 7c,
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respectively. Given the distances and point weights, we measure the size of the simplex exactly as in

the isotropic case.

Discussion. Our work differs from Teichmann and Capps [11] in that they only use an orientation

per point and transform the space using prefixed scales, whereas we exploit the entire metric tensors

obtained from shape adaptation, corresponding to general linear transformations. Further, the trian-

gulation in [11] is initialized as Delaunay and subsequently transformed to partially anisotropic via

a sequence of local flips, which is expensive and not guaranteed to terminate. To overcome this, the

authors propose to only allow each edge to be flipped once, which is not deterministic since triangu-

lation depends on the visiting order of simplices. We rather use a regular triangulation with direct

measurements of simplex sizes using the metric tensors; this gives comparable results to [11] while

being much faster.

On the other hand, Labelle and Shewchuk [27] start from an anisotropic Voronoi diagram using

a metric tensor at each point to define a local distance metric per cell, as in (21). To convert to a

triangulation, the Voronoi diagram is relaxed such that it does not contain any orphan regions. The

time complexity of creating an anisotropic Voronoi diagram is O(n2+ǫ), where ǫ is a positive constant,

which is prohibitive.

4. Exrtacting local features

4.1. Tracking components in the filtration

All simplices of the simplicial complex K are typically ordered by ascending size to obtain what

is called a weighted α-filtration [10]. In this work, we deviate from this standard setting in two ways.

First, we only consider triangles and their edges (line segments), discarding points. We thus construct

complex

K′ = {σT ∈ K : |T | ≥ 2}. (22)

This choice is justified because edge size helps control connectivity of triangles, while points do not.

Second, contrary to (16), we consider the upper α-complex

Kα = K′ \ Kα = {σT ∈ K′ : ρT ≥ α} (23)

ordered by descending size. As in [10], we need only consider a finite set of values for α. In particular,

we sort all σT ∈ K′ by descending size ρT to obtain the sequence (σ1, . . . , σn) where n = |K′|. If ρi

is the size of σi for i = 1, . . . , n, then ρ1 ≥ . . . ≥ ρn. Now, if Ki = {σ1, . . . , σi}, we obtain the upper

α-filtration

∅ = K0 ⊆ · · · ⊆ Kn = K′. (24)

16



Starting from the largest element of size ρ1 and decreasing the value of α towards ρn, the upper

α-complex models the growing cavities of the original shape. To capture its evolving topology, we

construct a component tree, similar to [36].

To define connectedness on the complex, we specify neighboring relations as follows: the neighbors

of each triangle σT ∈ K′ (with |T | = 3) are its three edges, while the neighbors of each edge σT (with

|T | = 2) are the two adjacent triangles in the triangulation. We denote the neighborhood of simplex

σ ∈ K′ by N(σ). According to the descending order, and since an edge in a regular triangulation is

not larger than its two adjacent triangles, the intuition is that this edge can keep the two triangles

disconnected until it is processed itself. Eventually, this timing depends on image gradient and local

shape.

Given this neighborhood system, we start off with all simplices in K′ being individual components,

and process them in descending order of size, joining them with their neighbors that have already been

processed. This process is specified in Algorithm 1. For each component κT in the component tree,

we define a size ρT . This is the size of the last simplex σT that was added to the component (smallest

one) and changed its area. Alternatively, this is the first added simplex that caused a merging of two

previously disjoint components.

In Fig. 9 we see an example of the upper α-filtration, along with the proposed neighborhood

definition. For α =∞ we start by the empty set, and as the value of α decreases, more triangles and

edges are added to the upper α-complex. For α = 0 we end up with the convex hull of the input points.

Observe the blue edges, which are not part of the α-complex at each instance. Using the proposed

neighborhood definition, these edges prevent the different components from merging. The resulting

components correspond to interpretable parts of the depicted objects.

4.2. Measuring significance

Starting from large values of α and tracking the evolution of the upper α-complex up to the entire

image for α = 0, different connected components are formed. These components typically lie on image

regions with distinctive boundaries. The significance of a component depends on stability, as measured

across the α-filtration, of the corresponding image region.

In order to measure this significance, we compute a strength for each component. In particular,

consider component κU of size ρU , which is a set of simplices (triangles and edges) of size greater than

ρU . When κU is joined via a boundary edge σT of size ρT to another component (say κU ′) to create a

new component κT , we compute the strength of κU (as well as κU ′). This means that the image region

underlying κU is surrounded by image edges and the length of its widest opening is
√
ρT .

We choose to evaluate strength measures requiring minor computational overhead, focusing on

information that is readily available. We have experimented with different strength measures that
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Figure 9: Example of the upper α-filtration. From top left to bottom right α decreases, resulting in different instances of

the filtration. Edges in blue are not yet processed, keeping the components disjoint. This is in contrast to Fig. 1, where

neighboring triangles always belong to the same component and α is in increasing order.

exploit different visual and geometrical properties of image regions under consideration. The first one,

is based on the area of a component compared to its maximum boundary opening:

s(κU ) =
a(κU )

ρT
, (25)

where a(κU ) is the total area of component κU—precisely, the area of the union of all simplices in κU .

Since we are processing simplices in descending order of size, ρT stands in fact for the largest opening

over the boundary of component κU . It follows that this strength measure favors large components

with small (or no) openings on their boundary, so it is called closure. Since simplex size ρ measures

squared length, closure is a scale invariant quantity. In order to select a component as an image feature,

we compare its strength against a threshold τ .

A second computationally inexpensive strength measure is associated with the lifetime of each

component. The lifetime is measured as the difference between the component size ρU and the size ρT

of the newly added edge, which forms component κT . This lifetime strength measure defined as

s(κU ) = ρU − ρT , (26)

which, due to the descending order, is always positive. Again, all components with lifetime greater

than a threshold τ are selected as features.

A third measure is similar to that used in MSER. The MSER detector forms components on actual

image pixels, where processing order is determined by intensity level. Its strength measure is defined

as the relative change of the area of a component for a given change in intensity. In our case, when

component κU is merged with another one and creates component κT , this measure would be

s(κU ) =
a(κU )− a(κT )

a(κU )
,
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which is also positive. However, since changes in component areas are not as smooth in our case as

when working with pixels, this measure is rather noisy. Hence we propose a strength measure that

combines lifetime as well:

s(κU ) = (ρU − ρT )
a(κU )

a(κU )− a(κT )
. (27)

The form of (27) is inversely proportional to a relative rate of change in area, so this strength measure

is called stability. As in MSER, a component is stable if its strength is locally maximum over the

filtration. A stable component is selected as feature if this local maxima exceeds neighboring values

by at least a threshold τ .

Finally, we exploit an ellipticity measure to evaluate its natural connection to the shape of regions

we aim to detect. We first compute the moments up to order 2 (namely m00, m10, m01, m11, m20

and m02) of all triangles in the triangulation. Moments are computed analytically using only the

coordinates of the three vertices of each triangle. Then, while constructing the component tree, we

incrementally compute the moments of every component in the filtration using the moments of its two

children components. This requires only a few extra additions at each tree node.

After the component tree is constructed, we traverse it once more to compute the central moments

µ at each tree node, as described in [37]. At the same time, we compute the simplest affine moment

invariant, as described in [38]:

I1 =
µ20µ02 − µ2

11

µ4
00

.

Finally, the ellipticity of a shape is defined as

s(κU ) =











16π2I1 if I1 ≤ 1
16π2 ,

1
16π2I1

otherwise.

(28)

This measure takes values in [0, 1], and is maximized for a perfect ellipse [39]. Again, ellipticity is

compared to a threshold τ in order to select a component as a feature.

4.3. Feature detection algorithm

The pseudocode of the entire method is given in Algorithm 1. Initially, the normalized gradient per

pixel is computed and given as input to the Canny operator. The resulting edges E are sampled using

one of the methods described in section 3.1. The sampled points P are triangulated using Delaunay,

constrained Delaunay or regular triangulation as described in section 3.2. Given the triangulation R,
the simplicial complex K and the simplex size map ρ are then computed. In the case of anisotropically

weighted α-shapes, the triangulation has to be regular. The neighborhood map N of the triangles and

edges is computed, while complex K′ is as defined in (22).

We use two different tree structures to keep track of connected components, as in [36]. The first

is a forest where each simplex serves as the root of a subtree containing all larger simplices in the
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Algorithm 1: Proposed feature detector

input : grayscale image f

output: local feature set F

1 g ← ‖∇f‖/max{‖∇f‖} ⊲ normalized gradient

2 E ← Canny(g) ⊲ edge detection

3 P ← Sample(E; uniform | non-uniform) ⊲ edge sampling

4 R ← Triangulation(P ; Delaunay | constrained | regular)
5 (K, ρ)← Complex(R; iso | aniso) ⊲ simplicial complex + sizes

6 N ← Neighbor(K′) ⊲ neighborhood system

7 F ← ∅
8 foreach σT ∈ K′ do ⊲ initialize each simplex

9 MakeSet(σT ) ⊲ as an individual component

10 σT .root ← σT

11 foreach σT ∈ K′ in descending order of ρT do ⊲ current simplex

12 κT ← Find(σT ) ⊲ current component κT

13 rT ← κT .root

14 foreach σU ∈ N(σT ) such that ρU ≥ ρT do ⊲ adjacent, processed

15 κU ← Find(σU) ⊲ adjacent component κU

16 rU ← κU .root

17 if κT 6= κU then ⊲ if different components

18 if |U | = 3 ∧ Strength(U ) > τ then

19 F ← F ∪ rU ⊲ select κU if triangle & strong

20 rT .AddChild(rU) ⊲ add it below κT

21 rT .area ← rT .area + rU .area ⊲ merge areas

22 κT ← Union(κT , κU) ⊲ merge disjoint sets

23 κT .root ← rT
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(a) WαSH (b) Constrained, NU (c) Anisotropic, NU

(d) Hessian Affine (e) MSER (f) Edge Foci

Figure 10: Detections on objects with simple texture. The number of features per image for all detectors is limited to

around 20. WαSH: 23, Constrained: 20, Anisotropic: 21, Hessian-Affine: 21, MSER: 22, Edge Foci: 23 features. We use

non-uniform sampling (NU) for our detector (constrained and anisotropic).

same component. We maintain a list of children for each simplex, using function AddChild, while all

simplices are initially assumed to be leaves. The second is a standard disjoint set forest, with simplices

pointing only to their parent, manipulated by the functions MakeSet, Find and Union [40].

The two structures are interconnected via pointer root. The second is used for efficiency, and the

first is used to collect information. In particular, for each selected component, we collect its simplices

via breadth-first search in the subtree of its root simplex and fit a patch to their convex hull, which

is not shown in Algorithm 1. The complexity of constructing the component tree is quasi-linear in n,

that is, linear for all practical purposes [36].

4.4. Qualitative results

In order to obtain a deeper understanding of the quality of detected features, we show in the

sequel a number of examples that highlight different aspects of the proposed detector and visually

compare to other detectors. Fig. 10, 11 show detected features on an image of the textureless dataset

of [4], depicting three hand tools. All detectors are tuned to return approximately the same number

of features per image in Fig. 10, while default settings are used in Fig. 11. WαSH [12] uses weighted

α-shapes on a regular triangulation and uniform sampling.

Our detector captures well-delineated regions that cover all objects of interest. The anisotropic

variant appears to better capture elongated structures compared to the constrained one. Both cover
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(a) WαSH (b) Constrained, NU (c) Anisotropic, NU

(d) Hessian Affine (e) MSER (f) Edge Foci

Figure 11: Detections on objects with simple texture, using default parameters. WαSH: 85, Constrained: 53, Anisotropic:

94, Hessian-Affine: 808, MSER: 88, Edge Foci: 284 features.

all essential parts of the objects when asked for more features, as shown in Fig. 11. The Hessian-Affine

detector extracts multiple overlapping features at different scales, so fails to capture significant object

details when the number of features is limited. This is corrected using the default settings, however

the number of features increases dramatically in this case.

Fig. 12, 13 depict two more examples on an outdoor and an indoor scene. For fair comparison,

detectors are again tuned towards a fixed number of features, different for each image. In Fig. 13,

the anisotropic variant performs best, capturing most of the outstanding regions of the image like the

almost circularly shaped color rings. Our detectors are the only ones to capture the repeating tile

structure on the wall. MSER performs well, but also yields several noisy elongated regions along tile

boundaries. Edge Foci are expected to perform very well on circular regions. However, the concentric

circles of different radii are not detected here.

5. Experiments

We first investigate the pros and cons of all variants of the proposed detector and fine-tune param-

eters on a matching experiment using the standard dataset of Mikolajczyk et al . [19]. A comparison

to the state-of-the-art follows on a matching and a retrieval experiment using the dataset of [19] and

Oxford 5K [41], respectively. The first dataset involves matching across different viewpoint, rotation,

zoom etc., while performance is measured in terms of repeatability and matching score. To enhance
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(a) WαSH (b) Constrained, NU (c) Anisotropic, NU

(d) Hessian Affine (e) MSER (f) Edge Foci

Figure 12: Detections in outdoor scene. Detector thresholds are tuned to extract around 130 features per image. W

αSH: 122, Constrained: 136, Anisotropic: 114, Hessian-Affine: 137, MSER: 134, Edge Foci: 135 features.

objectiveness we use the VLBenchmarks framework, which is a recently introduced implementation

by Lenc et al . [42]. The second dataset contains 5K images depicting buildings and 55 query images

with ground-truth. It is used in a larger scale retrieval experiment, where performance is measured in

terms of mean average precision (mAP).

5.1. Strength measures

In this section we compare the strength measures of section 4.2 and select the most appropriate

one. The selection is based upon computing the repeatability and matching score on a small-scale

experiment. We extract approximately the same number of features per image by modifying the

thresholds for every different strength measure.

We use six image sequences from the dataset of [19] to evaluate the effect of scale and rotation (boat),

changes in viewpoint (wall and graffiti), illumination (leuven) and image blur (bikes and trees). Each

image sequence consists of six images where matching of the first to the remaining five is increasingly

difficult. Fig. 14 shows the measurements of our detector using all strength measures under varying

effect of blur, scale, rotation, illumination and affine transformation. These measurements are obtained

using weighted (isotropic) α-shapes on a regular triangulation with uniform sampling.
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(a) WαSH (b) Constrained, NU (c) Anisotropic, NU

(d) Hessian Affine (e) MSER (f) Edge Foci

Figure 13: Detections in indoor scene. Detector thresholds are tuned to extract around 400 features per image WαSH:

413, Constrained: 380, Anisotropic: 405, Hessian-Affine: 425, MSER: 432, Edge Foci: 413 features. Observe the tiles at

the lower part of the image that trigger our detector.
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Figure 14: Evaluation of the proposed strength measures. Keeping the number of features approximately the same for

each measure, we plot (a) repeatability and (b) matching score versus target image (2 to 6), with increasing difficulty

from left to right. Measurements are averaged over the six image sequences.

While the number of features per image is kept approximately the same, we observe a high variation

of the values depending on the different measures that is indicative of their role. Overall, the closure

and lifetime measures exceed the other measures in both scores. For all the following experiments we
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adopt the closure measure.

5.2. Sampling, triangulation, and α-shapes

In the following we evaluate all α-shape variants, i.e. for each two sampling methods of section 3.1

(uniform, non-uniform), we consider four combinations of the triangulations discussed in section 3.2

(Delaunay, constrained Delaunay, regular) with the two α-shapes discussed in section 3.3 (weighted,

anisotropic). The four combinations are given in Fig. 15. As in section 5.1, for each combination we

measure the average repeatability and matching score on the same image sequences.
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(i) Delaunay, U (ii) Constrained, U (iii) Weighted, U (iv) Anisotropic, U

(i) Delaunay, NU (ii) Constrained, NU (iii) Weighted, NU (iv) Anisotropic, NU

Figure 15: Repeatability and matching score for (i) α-shapes on Delaunay, (ii) α-shapes on constrained Delaunay, (iii)

weighted (isotropic) α-shapes on regular, and (iv) weighted anisotropic α-shapes on regular triangulation. U: uniform

sampling; NU: non-uniform sampling. Measurements are averaged over the six image sequences.

The results of the evaluation are depicted in Fig. 15. α-shapes on Delaunay triangulation with either

uniform or non-uniform sampling are inferior to the rest. On the other hand, constrained Delaunay

gives the best results followed by the anisotropically weighted α-shapes on regular triangulation, so we

limit the following matching experiments to these two combinations.

The sampling step s is empirically set to 11 for the uniform sampling case. In certain cases, non-

uniform sampling is outperformed by the uniform one, presumably because at these cases the fixed step

of the latter is close to the optimal one. For the non-uniform sampling case, after a series of qualitative

experiments on images of varying detail, we set the eccentricity upper bound of non-uniform sampling

to k = 3 (see section 3.1.3). The initial size of neighborhood p of each sample point p is set to 11× 11

pixels. Due to adaptation, the effect of this initial size on the final sampling density is minor, so we

keep it relatively small to prevent increasing the computational cost of the sampling method.
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5.3. Comparisons: matching

Hess MSER EF MFD KAZE Constrained, U Anisotropic, NU
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Figure 16: Comparison of our constrained and anisotropic detectors to state-of-the-art in sequences boat, wall and

graffiti. #features: number of features detected per image. Hess: Hessian-affine. U: uniform; NU: non-uniform.

Focusing on the constrained and anisotropic cases of our detector, we compare to a number of state

of the art methods on the matching experiment. In particular, we select the best performing detectors

of [19], namely Hessian-Affine and MSER, along with three recent detectors, namely MFD [6], EF [5]

and KAZE [7]. Features are extracted by the corresponding publicly available executables, which we

have integrated in VLBenchmarks. For all detectors, default parameters are used.

The scores for all image sequences are depicted in Fig. 16-17 along with the number of detected

features per image. Our detectors achieve a great balance between performance and number of features.

They perform among the best in all cases, while keeping the number of features considerably low and

remaining quite invariant to all examined transformations. The latter is mainly attributed to the

proposed selection criterion applied to the α-filtration and—naturally—to the stability of image edges
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Hess MSER EF MFD KAZE Constrained, U Anisotropic, NU
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Figure 17: Comparison of our constrained and anisotropic detectors to state-of-the-art in sequences leuven, bikes and

trees. #features: number of features detected per image. Hess: Hessian-affine. U: uniform; NU: non-uniform.

across scale.

5.4. Comparisons: image retrieval

In the following we evaluate the performance of our detectors and compare to state of the art by

setting up an image retrieval experiment using the Oxford 5K dataset. Comparisons are performed

against the same detectors as in the matching experiment of section 5.3 as well as the SIFT and SURF

detectors which are commonly used.

Again, default parameters are used for all competitive detectors. This results in SURF having the

lowest number of features (6.84 × 106 for the whole dataset). Considering that a small number of

features is crucial for retrieval efficiency, we adjust the selection threshold of all our proposed detector

variants so that they also give approximately 7 × 106 descriptors for the entire dataset. Though

we are not reporting all relevant results, performance does not change much when choosing default
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(a) WαSH (b) Constrained, NU (c) Anisotropic, NU

(d) Hessian Affine (e) MSER (f) Edge Foci

Figure 18: Detections on a sample image from Oxford 5K, using the parameters of the retrieval experiment. WαSH:

1453, Constrained: 1250, Anisotropic: 1315, Hessian-Affine: 6921, MSER: 1229, Edge Foci: 4294 features.

parameters instead, and in many cases it is higher, at the expense of more features. Fig. 18 shows

example responses on an Oxford 5K image, using the settings of the retrieval experiment.

We extract SIFT descriptors for all detectors except SURF and KAZE, for which we use the SURF

descriptor. This is a natural choice for SURF, while KAZE performs better with SURF descriptors

than with SIFT. We build two visual codebooks of different sizes for each detector, namely 50K and

200K, by clustering descriptors on a sample of the dataset using approximate k-means [41]. We use

the bag-of-words (BoW) model with tf-idf weighting for representation, an inverted file for indexing,

and fast spatial matching (FastSM) [41] for spatial verification. BoW histograms are matched using

histogram intersection following ℓ1 normalization, while for verification we set the minimum number

of inliers to 7. The evaluation metric is mean Average Precision (mAP).

Tables 1 and 2 provide detailed statistics including the total number of features, the average detec-

tion time per image, inverted file size, average query time and mAP measurements for all detectors,

using the 200K and 50K visual codebooks respectively. The number of detected features and the
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HessAff 29.02 6.54 128.8 1.61 6.10 0.578 0.608

MSER 13.33 0.40 78.8 0.88 2.20 0.568 0.593

SIFT 11.13 5.24 84.0 0.95 5.29 0.494 0.516

SURF 6.84 0.43 53.5 0.64 3.45 0.575 0.591

EF 19.72 13.63 146.2 1.81 4.69 0.528 0.566

KAZE 13.82 6.59 99.6 1.67 1.91 0.487 0.541

MFD 7.64 2.98 58.4 0.68 0.93 0.600 0.600

u
n
if
o
rm

Delaunay 7.54 1.38 52.1 0.88 1.11 0.580 0.577

Constrained 7.17 1.57 50.3 0.84 1.01 0.588 0.590

Weighted 6.85 2.01 48.1 0.83 1.16 0.595 0.594

Anisotropic 7.00 3.90 48.6 0.85 1.08 0.621 0.615

n
o
n
-u
n
if
o
rm

Delaunay 7.09 2.89 50.4 0.84 0.96 0.592 0.592

Constrained 7.27 3.52 50.9 0.86 0.99 0.610 0.597

Weighted 7.71 3.98 53.6 0.88 1.07 0.557 0.560

Anisotropic 7.47 6.60 50.4 0.89 1.08 0.602 0.594

Table 1: Retrieval results on Oxford 5K with a 200K codebook. The number of features refers to the entire dataset.

Detection time is average per image. Query times are average per query.

detection time per image are the same in both cases, but they are repeated for easier reference and

comparisons. The number of features used is critical, since it determines both the amount of memory

used for the index and the query time especially for spatial verification, with FastSM being quadratic

in the number of features.

The performance of all our proposed detector variants is at or above the state-of-the-art, despite

using a low number of features, hence having a much lower memory footprint. In particular, we get

roughly 1/4 of the features detected by Hessian-affine. The benefit in terms of query time is also

considerable. A comparison of Tables 1, 2 shows clearly that increasing the size of the codebook

boosts the performance of all detectors.

Using the anisotropically weighted α-shapes on a regular triangulation gives the best results, ex-
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HessAff 29.02 6.54 116.2 2.71 25.17 0.489 0.516

MSER 13.33 0.40 71.2 1.32 6.57 0.489 0.524

SIFT 11.13 5.24 75.9 1.51 8.35 0.422 0.446

SURF 6.84 0.43 47.8 0.88 3.75 0.466 0.497

EF 19.72 13.63 132.1 3.11 26.01 0.455 0.500

KAZE 13.82 6.59 89.4 2.62 7.30 0.403 0.464

MFD 7.64 2.98 51.9 0.94 2.45 0.531 0.540

u
n
if
o
rm

Delaunay 7.54 1.38 47.0 1.15 1.60 0.521 0.537

Constrained 7.17 1.57 45.3 1.20 1.27 0.541 0.553

Weighted 6.85 2.01 43.2 1.05 1.37 0.544 0.566

Anisotropic 7.00 3.90 43.6 1.12 1.32 0.553 0.567

n
o
n
-u
n
if
o
rm

Delaunay 7.09 2.89 45.4 1.08 1.43 0.514 0.526

Constrained 7.27 3.52 45.9 1.11 1.45 0.551 0.567

Weighted 7.71 3.98 48.3 1.13 1.51 0.476 0.465

Anisotropic 7.47 6.60 45.4 1.13 1.20 0.532 0.551

Table 2: Retrieval results on Oxford 5K with a 50K codebook. The number of features refers to the entire dataset.

Detection time is average per image. Query times are average per query.

ceeding the state-of-the-art, followed by the constrained and weighted cases, confirming the results of

sections 5.2 and 5.3. The high performance of the anisotropic detector comes with the cost of higher

detection time per image, which is due to the warping done per simplex (see section 3.3.2) and the

extraction of the metric tensor describing the local shape (see section 3.1.3).

Non-uniform sampling in many cases slightly decreases performance. When combined with the

weighted α-shapes, the performance drop is significant. The reason is that when the sampling step

s increases along a straight image edge, so does the weight of the points by (1). This causes the

circle of the weighted point to grow isotropically, and make points of neighboring edges disappear (see

section 3.2.1).

Non-uniform sampling also adds a computational overhead that is not negligible. However, it
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50K 100K 50K 100K 50K 100K

MFD 2.59 18.8 20.4 0.516 0.534 0.517 0.537

u
n
if
o
rm

Delaunay 3.13 20.8 22.2 0.530 0.544 0.523 0.537

Constrained 3.06 20.3 21.7 0.537 0.552 0.524 0.548

Weighted 3.09 20.5 21.9 0.527 0.546 0.520 0.543

Anisotropic 3.27 21.4 22.8 0.532 0.552 0.537 0.563

n
o
n
-u
n
if
o
rm

Delaunay 3.19 21.6 23.0 0.522 0.532 0.530 0.538

Constrained 3.07 20.5 21.8 0.539 0.549 0.529 0.542

Weighted 2.96 20.0 21.4 0.469 0.486 0.460 0.476

Anisotropic 3.10 20.1 21.5 0.511 0.531 0.518 0.531

Table 3: Retrieval results comparing our detectors to MFD, with a lower number of detected features, targeting 3× 106

features for the entire dataset. Here smaller 50K and 100K codebooks are used to avoid overfitting.

eliminates one parameter from the detector, which can significantly decrease the time needed for

tuning. In small scale applications, where fine-tuning the sampling step is feasible, using uniform

sampling can lead to better results. On the other hand, non-uniform sampling should be preferred

for large-scale applications, where features are practically extracted without fine-tuning to minimize

off-line preprocessing.

MFD performs similar to our detector and has approximately the same number of features, an

observation that led us to an additional experiment where both detectors are tuned to produce a

significantly smaller number of regions. Our aim is to test the ability of these detectors to scale up. By

reducing the number of features detected, we need to also decrease the size of the codebook to prevent

overfitting. In this setup, we create codebooks of 50K and 100K visual words. The performance of

all proposed detectors is still high in all cases, especially with the 100K visual codebook, as shown

in Table 3. These results verify our previous observations, as the anisotropically weighted α-shapes

perform best.
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6. Discussion

In this paper we have proposed a local feature detector based on edge-driven triangulation and

geometrical representations that produces distinctive and stable image features. We extend our previ-

ous work [12] by proposing a non-uniform sampling method based on local image shape, requiring no

user input. We also exploit local shape information at each sample by introducing the anisotropically

weighted α-shapes. Finally, we propose and evaluate a number of different measures to select dominant

components of the resulting α-filtration.

Our detector extracts a relatively small number of features that are highly distinctive and exhibit

high image coverage. The resulting features are also remarkably tolerant to image transformations

(scale, rotation and affine), lighting changes and blurring. These properties make our detector an ideal

choice for large scale applications (e.g . large scale image retrieval or classification). Our experimental

validation supports these observations: in most cases, our detector outperforms the state of the art in

a number of matching and retrieval experiments.
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