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ABSTRACT
Fiducial markers have a wide field of applications in robotics,
ranging from external localisation of single robots or robotic
swarms, over self-localisation in marker-augmented environ-
ments, to simplifying perception by tagging objects in a
robot’s surrounding. We propose a new family of circular
markers allowing for a computationally efficient detection,
identification and full 3D position estimation. A key con-
cept of our system is the separation of the detection and
identification steps, where the first step is based on a compu-
tationally efficient circular marker detection, and the iden-
tification step is based on an open-ended ‘Necklace code’,
which allows for a theoretically infinite number of individ-
ually identifiable markers. The experimental evaluation of
the system on a real robot indicates that while the proposed
algorithm achieves similar accuracy to other state-of-the-art
methods, it is faster by two orders of magnitude and it can
detect markers from longer distances.

CCS Concepts
•CCS → Computing methodologies → Artificial
intelligence → Computer vision → Computer vision
tasks → Vision for robotics
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1. INTRODUCTION
Although originally designed for Augmented Reality (AR)
applications, fiducial-based visual localisation systems are
widely used in a number of areas throughout the field of
robotics where robust and efficient full pose vision-based
estimation is required. Thus, typical applications of such
marker-based systems include swarm and bio-inspired robotics
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(a) WhyCon (b) ARTags (c) AprilTag (d) WhyCode

(e) Swarm of robots tagged with WhyCode markers

Figure 1: Four types of fiducial markers: the state-
of-the-art WhyCon, ARTags, AprilTag and the pro-
posed WhyCode and a robotic swarm tagged with
the WhyCode markers.

[1, 2, 10], which requires reliable localisation of large num-
ber of robots from an external camera(see also Figure 1(e)),
visual-servoing that needs highly precise robot motion [19,
23], and semantic scene understanding [6, 15], where the
scene objects are tagged with the fiducial markers to miti-
gate the drawbacks of general vision-based object recogni-
tion.

In any of these applications, and also more generally, visual
fiducial marker detection and tracking systems must, ideally,
fulfil all the following requirements to a high standard:

• Robustness: Markers must be robustly detectable in
adverse conditions, e.g. while rapidly moving, from
a considerable distance, under varying lighting condi-
tions, etc.
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• Distinguishability: In most applications, a single
marker is not enough, either because several robots
are to be tracked in parallel, or several objects or fea-
tures in the environment need to be identified simul-
taneously. Thus, markers need to be both robustly
identifiable and distinguishable to the vision system.
The number of markers required, however, varies con-
siderably from application to application. The marker
tracking method must, therefore, be able to scale ac-
cordingly to the requirements imposed by the specific
application or scenario.

• Economic Feasibility: Markers should ideally be af-
fordable and easy to produce in large quantities, whilst
also using cheap and readily available sensor(s). Hence,
fiducial makers are often printed on paper and detected
with standard RGB or grey-scale cameras. This, to-
gether with freely-available, open-source software, makes
them customisable, minimising the burden for devel-
opers and researchers alike.

• Precision: The purpose of fiducial markers is to pro-
vide a precise position, and most often also an orien-
tation, in 3D space. Accordingly, most markers often
have properties that allow the estimation of their 6 de-
grees of freedom (DoF) pose, while still being planar.

In this paper, we propose a novel marker system that can
generate suitable markers that can easily be printed on pa-
per and an integrated software component that addresses the
above requirements to a very high standard. In this work, we
extend an open-source detection system for circular mark-
ers called WhyCon [11] by adding a novel encoding system
based on the concept of Binary Necklaces [18], which we
shall refer to as WhyCode. Necklaces are a mathematical
concept of combinatorics providing a generator for rotation
invariant, uniquely identifiable patterns that can scale to a
theoretically infinite number of individual markers, similar
to the one shown in Fig. 1(d). The resulting markers are
robustly and efficiently detectable in the environment and
at the same time allow for discrimination between individ-
ual markers using the Necklace coding. With our exten-
sion of the original system we now present a 6-DoF fiducial
marker system. The performance of the proposed system
is demonstrated through a range of experiments which com-
pare the new WhyCode method against the frequently used
ARTags and AprilTag fiducial marker detection systems.

2. RELATED WORK
As discussed above, the need for vision based markers within
robotics is evident. To meet this demand, several marker-
based tracking and identification methods have been devel-
oped. Many of the markers commonly used within this area
are designed to store large amounts of information, one such
example being a QR code. This marker consists of a two-
dimensional matrix barcode which encodes data in a pat-
tern of black and white squares. In-built error correction
codes allow the information to be correctly read, even if the
marker is partly damaged, although these characteristics do
restrict the range and angles from which the codes can be
read. Consequently, although there is the potential to use

such markers as part of a larger tracking system, their design
makes them less suitable for tracking than both the methods
discussed below and the proposed method.

Although this system utilises passive vision-based markers,
a widely used approach within the field at the minute is the
commercial motion capture system, ViCon [21]. By com-
bining high-resolution and high-speed cameras with strong
infra-red (IR) emitters, this system enables tracking with
sub-millimetre precision by attaching IR reflective markers
to mobile robots. Although these attributes give ViCon
a solid ground truth, this approach remains a very costly
system and is therefore not always an appropriate solution.
This issue has, however, motivated a variety of works which
propose a number of alternative low-cost tracking systems,
many of which focus on passive vision-based tracking. Many
of these newer methods use simple planar printable patterns
which significantly lower not only the cost, but also the dif-
ficulty of use and set-up.

Another system often employed in this area is augmented-
reality orientated markers, which, similarly to the proposed
marker, allow additional information to be encoded such as
a target ID. These systems often use the ARTag [7] and
ARToolKit+ [22] software libraries.

The current ARTags developed from these software libraries
utilise a square box fiducial marker which encodes informa-
tion through the use of a large 2D black and white bar code.
The real time performance of the system, coupled with its
accuracy and robust nature, make it an ideal candidate for
a comparison to the proposed system.

Further to this, the square marker of the AprilTag [17]
system also provides a robust and reliable system which can
provide the position, orientation and identity of a tag. Simi-
larly to the proposed system, the AprilTag also stems from
a lexicographic coding system [20] which, although concep-
tually similar to the QR code mentioned above, is designed
to encode far smaller data payloads. Although this system
is capable of providing robust detection at both short and
long range, computational simplicity is sacrificed.

Despite the success of square markers within this field of
research, the use of circular markers is quickly becoming
a regular occurrence in many applications. This is largely
due to the need to counter the shifting of the centroid of a
square marker under perspective transformation. The less
expensive centroid operation for circles has led to its use in a
number of systems such as SyRoTek e-learning platform [13],
which uses ring-shaped patterns with binary tags, and [23],
a planar pattern which consists of the letter ‘H’ surrounded
by a ring. In the latter, the pattern is initially detected us-
ing adaptive thresholding and later processed for connected
component labelling. In order to determine whether the
marker has been correctly tracked, its geometric properties
are then tested after which false matches are discarded and
a Canny edge detector and ellipse fitting method are applied
to the positive matches.

The ARToolKit and ARTags markers mentioned above have
also been developed into another system known as ArUco
[9], which promotes a robust ID system which itself involves
an error correction system which can handle up to 1024 in-
dividual codes. The detection process of the AR markers



used within the ArUco system combines the aforementioned
adaptive thresholding step with contour extraction and code
identification, thus determining the extrinsic parameters of
the marker using the intrinsic camera parameters.

Finally, a system relatively similar to the proposed mark-
ers is the TRIP localisation system [5], where the marker
comprises a number of concentric circles broken into several
angular regions and coloured either black or white. This
method can distinguish between 39 patterns, a performance
comparable to the 30 options available when 8 beads are
used within the proposed marker. Similarly to the ArUco
system mentioned above, this system appropriates an adap-
tive thresholding method, with the system as a whole ex-
tracting the edges of the markers and processing the edges
which correspond to the circular border of the ring patterns.
These detected edges are then passed through an ellipse-
fitting method which checks the concentricity of the ellipse.
As the adaptive thresholding can be quite computationally
expensive, this system can be costly in its performance, how-
ever, this disadvantage may be counteracted by the system’s
ability to achieve a precision of between 1% and 3% of rela-
tive error.

Although the aforementioned methods are widely consid-
ered to be the state-of-the-art methods currently existing
within this field, the real-world performance and low com-
putational cost of the proposed method makes it superior to
many of the systems indicated above. The ability to expand
the recognisable patterns by incorporating a greater number
of segments also makes the proposed method preferable to
a number of the most commonly used systems.

3. MARKER LOCALISATION
The WhyCon algorithm was originally intended for compu-
tationally efficient localisation of a large number of patterns
composed of concentric black and white circles of known di-
ameter. The article [12] shows that the method achieves the
same precision as state-of-the-art black-and-white pattern
detectors while being faster by two orders of magnitude.

To find a circular pattern, the algorithm searches the image
using a combination of flood-fill techniques and on-demand
thresholding. The algorithm gathers statistical data of the
patterns during their segmentation, which allows for rapid
rejection of false candidates. The pattern search can be initi-
ated from any position in the image, which, when combined
with tracking, typically causes the algorithm to process only
the pixels that are occupied by the patterns tracked. From a
computational complexity perspective, this results in a sig-
nificant performance boost.

In the initial phase of the pattern detection, the image pixels
are searched for a continuous segment of black pixels, which
are classified by an adaptive thresholding method that en-
sures good robustness to adverse lighting conditions. Once a
continuous segment of black pixels is found by the flood-fill
method, a simple circularity test is performed. A pattern
consisting of s pixels, with bounding box dimensions bu, bv
and inner and outer diameters di, do is considered circular if
its ‘roundness’ ρout is smaller than a predefined value ρmax,

i.e.

ρmax > |ρout| =
∣∣∣∣ π4sbubv d2o − d2id2o

− 1

∣∣∣∣ . (1)

Once the black segment passes the circularity test, a new
flood-fill search is initiated from its centre to locate the in-
ner white segment. Since the inner segment is a circle, its
circularity test is simpler than Equation 1:

ρmax > |ρin| =
∣∣∣ π
4s
bubv − 1

∣∣∣ . (2)

If the inner segment passes Equation 2, the algorithm com-
pares positions of their centres to verify if the segments are
concentric. Then the method calculates the ratio of their
number of pixels and verifies if this ratio conforms to the
known ratio of the black and white segments’ areas.

After passing these tests, the positions of the segments’ pix-
els ui, vi that were stored during the flood-fill search are used
to calculate the pattern’s centre u, v and covariance matrix
C as follows:

C =
1

s

s−1∑
i=0

(
uiui uivi
uivi vivi

)
−
(
uu uv
uv vv

)
. (3)

Note that ui, vi are integers, and the computationally most
expensive part of Equation 3 is calculated using integer arith-
metic. The ui, vi and C actually represent an elliptical pro-
jection of the pattern in the image.

Then, we calculate the eigenvalues λ0, λ1 and eigenvectors
v0, v1 of the covariance matrix C and use them to determine
ellipse semiaxes e0, e1 as follows:

e0 = 2λ
1
2
0 v0,

e1 = 2λ
1
2
1 v1.

(4)

Knowing the length of the ellipse semiaxes, we perform a
final segment test, which verifies if the number of pixels s
corresponds to the area of the ellipse:

ξ > |πe0e1/s− 1| . (5)

The constant ξ represents a tolerance value much lower than
ρmax, because the ellipse dimensions e0, e1 are obtained from
the covariance matrix with sub-pixel precision. If the de-
tected segments satisfy Equation 4, they are assumed to
represent the pattern. The obtained eigenvalues and eigen-
vectors are then used to calculate the spatial position of the
pattern.

To obtain the relative distance of the pattern, we calculate
the pixel coordinates of the ellipse (co-)vertices, transform
these into canonical camera coordinates using the intrin-
sic camera parameters that were obtained through standard
camera calibration procedure. The transformed coordinates
of the (co-)vertices are used to calculate the centre and axes
of the ellipse in the canonical camera form. The vertices are
used to calculate a conic Q such that all the ellipse points
u′, v′ satisfy  u′

v′

1

T

Q

 u′

v′

1

 = 0. (6)



Then, we calculate the eigenvalues λ0, λ1, λ2 and eigenvec-
tors q0, q1, q2 of the conic Q and use them to obtain the spa-
tial position of the pattern by the method presented in [23]:

x =
do√
−λ0λ2

(
s1q0λ2

√
λ0 − λ1

λ0 − λ2
+ s2q2λ0

√
λ1 − λ2

λ0 − λ2

)
,

(7)
where do is the circular pattern diameter.

In this work, we also implement a calculation of the pattern
attitude. At first, we calculate the normal t by

t =

(
s1q0

√
λ0 − λ1

λ0 − λ2
+ s2q2

√
λ1 − λ2

λ0 − λ2

)
. (8)

Note that the constants s1 and s2 are undetermined signs
that have to be selected so that the n points towards the
camera and x is in front of it. In other words, s1 and s2 are
chosen so that the inequalities:

n(0, 0, 1)T < 0
x(0, 0, 1)T > 0

(9)

are satisfied. While the roll and pitch of the pattern can
be expressed from the normal n, the yaw of the original
circular marker can not be determined. However, the yaw
can be calculated in the subsequent step, which uses the
Necklace code for the pattern identification.

4. MARKER IDENTIFICATION
Considering our requirements outlined in the introduction,
and building upon the good detection performance of the
WhyCon system discussed in the previous section, our de-
velopment of a new marker system focused on creating a
marker which is compatible with the circular features of
WhyCon, but also capable of providing a scalable encod-
ing of IDs. The proposed encoding chosen for the Why-
Code marker was originally identified within the combina-
torics field of mathematics, and currently used widely in
the fields of combinatorial chemistry [3] and computational
biology [4]. These sequence patterns known as Necklaces
are “lexicographically the smallest element in an equivalence
class of strings under string rotation” [18].

Although not currently used in the field of robotics, this
encoding is a highly suitable option for the system due to
its rotational invariant nature. By bit-shifting the detected
sequence of code until the lowest binary value is reached,
the system is able to identify a starting point regardless of
the position of the code that is being detected. This ability
to alter the detected code without confusing the IDs also
means that the inability to identify a yaw rotation, and thus
a starting point, on the circular markers is circumvented.

In addition to this benefit, the Necklace Encoding system
also allows the rotation of the marker to be calculated. By
adjusting the detected code by the number of times the
code was bit-shifted to achieve the lowest binary value, the
marker’s yaw rotation in 3D space can be calculated. As the
ID is encoded by bit-shifting each number to their lowest bi-
nary value, both the ID calculation and subsequent yaw ro-
tation can both be pre-calculated to minimise computational
costs. However, for this to work reliably all codes which have

rotational symmetry, must also be removed from the encod-
ing system, as they allow for the lowest binary value to be
reached from multiple start locations, which would result in
ambiguity when establishing the markers’ yaw. To see an
example of a marker with ambiguous yaw, see the leftmost
quadcopter on Figure 1(e).

Value 1 Value 1 Value 1 Value 0 Value 0 Value 0

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

1 1 1 0 0 0

0 0 0 1 1 1

ID 4 + 3 bit shifts

Figure 2: An example of how the Manchester En-
coding is used with the Necklace System: The in-
ner circle of the WhyCode marker encodes a binary
string which is bit-shifted to match a Necklace code.
Apart from identification, the number of bit-shifts
allows us to identify the marker’s rotation.

To create a system which reliability identifies the markers
and preserves backward compatibility with the WhyCon
marker, we encoded the Necklace-based ID into the inner
circle of the tag using Manchester Encoding [8]. Thus, each
individual bit of the Necklace code is encoded by two con-
secutive segments of opposite colour, as demonstrated in
Figure 2. Although the use of Manchester Encoding halves
the number of segments available on the marker, it allows us
to calculate an identification confidence rating based on the
expected number of pixels in each segment of the Necklace
code.

In theory, the Necklace Encoding supports higher-than bi-
nary bases, and it would be possible to encode the marker
IDs in greyscale values along the inner circle rim. However,
preliminary tests showed that the edge-based Manchester
Encoding is more suitable due to its robustness. This has
the benefit of making the system more robust, especially
when subject to various lighting condition, but does have
the negative effect of only allowing binary-code sequences
when encoding IDs. As a result, this restricts the encoding
system and limits the number of potential IDs to:

N =
1

n

n∑
d=1

ϕ(d)2n/d, (10)

where ϕ() is totient function [14] and n is the Necklace code
length in bits. The Equation 10 is further illustrated in
Table 1 which shows the number of combinations valid for
the proposed marker, given that the Necklace code consists
of a sequence of n bits:

5. EXPERIMENTS
To evaluate the performance of the proposed marker, we
compared its localisation accuracy, detection range and iden-
tification reliability to state-of-the-art fiducial markers in a
series of real experiments. Each of these tests used an RGB



Table 1: Necklace code length in bits and corre-
sponding number of unique marker identities

Code length [bit] 4 6 8 10 12 14 16

Unique IDs [-] 3 9 30 99 335 1161 4080

camera of an ASUS Xtion RGB-D sensor, as it corresponds
with the type of sensor that is widely used on robotic plat-
forms, providing a standard 640×480 image at 25 frames per
second. This sensor was fixed to a FLIR E46-17.5 Pan Tilt
Unit (PTU) which provided a ground truth for the marker
position, attitude and velocity. This PTU was also mounted
atop a mobile platform with a SICK s300 laser scanner. As
the detectable range of the markers exceeds the range of a
ASUS depth camera, the laser scanner with a range of up to
30m provided a reliable distance measurement that was also
used for the ground truth in some of the experiments. To al-
low for a fair comparison of the proposed marker against the
ARTags and AprilTag, each of these markers were resized
to occupy the same area of 3.817cm2. A default calibration
was also used, rather than specifically calibrating the cam-
era, to demonstrate the system’s performance in standard
circumstances.

5.1 Detection and identification range
The first test aimed to evaluate the effect that distance had
on the performance of the system. The markers were affixed
to the wall at a height equal to that of the camera. The
mobile platform was then programmed to move backwards
from a distance of 0.2 metres until the platform reached a
distance of 7 metres from the wall. The movement occurred
at a constant speed of 0.02 metres per second, which was
selected in order to ensure that motion blur was not a factor.

Table 2: Maximum distances at which the markers
were consistently detected and identified [m]

WhyCon AprilTag WhyCode ARTags

Detection 5.4 2.1 4.9 3.4
Identification – 2.1 2.4 2.7

WhyCon
AprilTAG

ArTag (detected)
ArTag (identified)

WhyCode (identified)
WhyCode (detected)
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Figure 3: Maximum distances at which the markers
were consistently detected and identified

As can be seen in Table 2 and Figure 3 the original WhyCon

marker has proven to achieve the longest detection range of
5.4 m. Although the WhyCode marker was almost able to
achieve a similar range, the new marker started to provide
incorrect IDs once the distance had surpassed 2.4 metres.
Similarly to that, the ARTags were undetectable at a range
of 3.5 metres or more, and their correct identification was
not reliable when the distance of the marker exceeded 2.7
metres. As for the AprilTag, no incorrect IDs were re-
ported. However, the distance at which the marker was
reliably detectable was the lowest of the markers tested at
only 2.1 metres.

5.2 Identification range vs. code length
A similar test was also conducted on the WhyCode marker
to identify how changing the number of encoding bits affects
the range at which the encoding can be correctly identified.
As can be seen in Figure 4 using less than 8 bits for the
code does not affect the range, while increasing it has a neg-
ative impact on the identification range. This corresponds
with the expectation that the limiting factor of identifica-
tion range is the size of the individual elements that make
up the encoding pattern.
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Figure 4: Dependence of maximal identification
range on the Necklace code length n. The estimate
is based on a formula min(2.4, 200/n)

5.3 Robustness to motion blur
This test, which was intended to analyse the effect of motion
blur on the markers, involved keeping the markers station-
ary whilst rotating the PTU. This setup not only ensured
the equal movement of all the markers, but also created a
stable, continuous and repeatable experiment which repre-
sented one of the system’s intended applications: mobile
robotic platforms with a moving on-board camera. With
the markers affixed to the wall, the camera was placed ex-
actly 1 metre from the wall and the PTU rotated from -90
degrees to +90 degrees at a constant speed. Figure 5 shows
the speeds that were tested during this experiment with the
resulting detection and identification ratios.

These results indicate that while both WhyCode and Why-
Con systems are less susceptible to motion blur, the April-
Tag identification scheme is more robust to motion blur
compared to WhyCode.

When attempting to decode the ID, the WhyCode marker
reported a number of incorrect results at the faster motions,
which is caused by the fact that the code does not employ
any error detection or self-correction scheme. In contrast,
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Figure 5: The results of the Motion Blur experiment
- dependence of the detection rate on the marker
velocity.

the lexicographic error correcting [20] used by the AprilTag
meant that no incorrect IDs were detected during our tests.

5.4 Accuracy of angle estimation
Since the x, y, z position estimation is identical to the orig-
inal WhyCon method [12], which reports that its localisa-
tion accuracy is comparable to ARTags based markers, we
tested only the accuracy of angle estimation. In contrast to
the earlier experiments, the markers were this time placed
on the robot’s PTU which, whilst facing the free-standing
stationary camera, used the pan and tilt functions to vary
the angle of the markers. The recorded positions and rota-
tions of the markers were then compared to the angle taken
from the PTU. This comparison was then used to calculate
an error rate for the system, see Table 3.

Table 3: Average error of angle estimates [radians]

WhyCon AprilTag WhyCode ARTags

Pitch/roll 0.024 0.023 0.020 0.038
Yaw —– 0.034 0.042 0.044

As can be seen from the above table, all markers exhibited
average errors lower than 0.05 radians demonstrating that
the system’s ability to establish the marker’s orientation was
successful across all four systems. It should be noted that
while the original WhyCon marker is unable to provide the
yaw rotation, WhyCode can estimate the yaw rotation with
a high level of accuracy using the Necklace Encoding.

5.5 Robustness to illumination changes
The last test aimed to verify the performance of the system
when subjected to various lighting conditions. To achieve
this, the markers were positioned next to a large window in
order to utilise natural, ambient light and avoid the flicker-
ing sometimes caused by artificial light. By taking a photo
every 10 seconds during the 25 minutes before and during
sunrise, the markers were able to go from complete darkness
to normal daytime lighting conditions. While the ARTags
were detected in 64% of these images, AprilTag, WhyCon
and WhyCode were detected in 71%, 72%, 74% of images

respectively. Since the slight differences in performance may
be attributable to slight variations in light, we can state that
all the markers demonstrated a similar robustness to vari-
able illumination.

5.6 Computational complexity
In addition to the above tests, a number of computational
performance tests were conducted on each of the systems.
The first of these were conducted using procedurally gen-
erated images of size 5000×5000 pixels containing over 550
randomly placed markers. This test helped to evaluate each
of the systems ability to handle, not only large images, but
also images which contain high number of markers and vary-
ing levels of clutter. Although WhyCon and WhyCode
took more than a second to process the first frame, each sub-
sequent frame was then processed significantly faster. The
average time to process a single frame when comparing the
AprilTag and the WhyCode systems can be seen in Ta-
ble 4, which shows the main advantage of the WhyCode
method – its computational efficiency. Table 4 also shows
that identification and yaw estimation step do not slow down
the original WhyCon method, which is two orders of mag-
nitude faster than the ARTags and AprilTag.

The performance boost WhyCon and WhyCode results
from the on-the-fly calculation of the detected segment statis-
tics, which is naturally achieved by the flood-fill segmenta-
tion technique and which allows tracking without any com-
putational overhead. Although the computational efficiency
of both ARTags and AprilTag could be improved by em-
ploying some tracking scheme, it is unlikely to achieve a
two-orders of magnitude speed-up.

Table 4: Average processing time of an image with
550 markers [seconds]

Clutter WhyCon AprilTag WhyCode ARTags

none 0.06 3 0.06 3
little 0.07 16 0.07 14
large 0.07 15 0.07 15

6. CONCLUSION
In this paper, we present an extension to the marker used
by the WhyCon tracking system. The proposed marker not
only utilises a new encoding method which allows identifica-
tion of each marker, but also extends the algorithm to allow
the full localisation of a marker with 6 DOF. By keeping
the simple roundel design, the proposed marker is not only
backwards compatible with the previous system, but also
maintains its sub-pixel (2D) and millimetre (3D) precision,
and high computational efficiency.

The results of our study show that the WhyCode system,
despite the additional overhead of having to decode marker
IDs, performed similarly to the original WhyCon system
and outperformed the comparative systems in both accu-
racy and speed. By exceeding the high level of performance
demonstrated by the AprilTag and ARTags, and at two
orders of magnitude faster, the proposed system achieves



a strong level of accuracy without the high computational
requirements. These achievements therefore make the pro-
posed system particularly applicable to resource-constrained
systems and scenarios, where the reliable and swift tracking
of multiple robots is a necessity. Moreover, the WhyCon
system can reliably detect smaller markers at longer ranges,
which is also makes it a popular alternative to AprilTag or
ARTags. The entire system is available as an open-source
package at https://github.com/LCAS/whycon.

In the future, we will explicitly model uncertainty of the
marker locations, which should not only improve our sys-
tem’s accuracy [16], but also its coverage by allowing to fuse
input from multiple cameras.
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