
Learning Robot In-Hand Manipulation with Tactile Features

Herke van Hoof1, Tucker Hermans1, Gerhard Neumann1 and Jan Peters1,2

Abstract— Dexterous manipulation enables repositioning of
objects and tools within a robot’s hand. When applying dex-
terous manipulation to unknown objects, exact object models
are not available. Instead of relying on models, compliance and
tactile feedback can be exploited to adapt to unknown objects.
However, compliant hands and tactile sensors add complexity
and are themselves difficult to model. Hence, we propose acquir-
ing in-hand manipulation skills through reinforcement learning,
which does not require analytic dynamics or kinematics models.
In this paper, we show that this approach successfully acquires
a tactile manipulation skill using a passively compliant hand.
Additionally, we show that the learned tactile skill generalizes
to novel objects.

I. INTRODUCTION

Object and tool manipulation stands as a fundamental
problem in robotics. Often, the manipulated object needs
to be held in a specific configuration: cups should be held
upright, and screwdrivers must be held firm during use.
Objects cannot always be picked up in these configurations;
however, in-hand manipulation enables a robot to reconfigure
an object [1]. We believe in-hand manipulation to be a vitally
important capability for robots to achieve real-world tasks.

Most methods for in-hand manipulation rely on exact
models of both the hand and the objects. These models
can be used to apply methods from planning, control and
optimization to manipulate known objects [2–8]. To manip-
ulate unknown objects as well, systems could be designed to
reactively adapt to the object rather than relying on knowing
the object’s model.

Adaptation can be realized passively through compliant
hardware. Compliant hands are able to physically adapt to an
object’s shapes. Hence, even with a simple control strategy,
many objects can be grasped with such hands [9, 10]. The
finger configuration of such hands depends on both the
applied controls and the interaction with the environment,
which is hard to model.

In addition to passive adaptation, sensory feedback can be
exploited to make skills more adaptive. Tactile and haptic
feedback are especially useful for in-hand manipulation.
Apart from providing information on the object’s pose and
contact normals [11–17], tactile sensing can provide greater
robustness to variations in object properties [18–21], pertur-
bations [22, 23], and sensing errors [10, 18]. Tactile sensing
can also aid by detecting grasp instabilities and slippage that
can occur while manipulating an object [13, 20, 24, 25].

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007–2013)
under grant agreements #610967 (TACMAN) and #270327 (CompLACS).

1TU Darmstadt, Computer Science Department. {hoof, hermans,
neumann, peters}@ias.tu-darmstadt.de

2MPI for Intelligent Systems.

Fig. 1: Using reinforcement learning and tactile feedback,
a rolling primitive can be learned on an under-actuated
compliant robot hand.

Tactile and haptic sensors have been shown to improve
grasping performance [10, 18–21, 24, 25], and are promising
for in-hand manipulation. Strategies for feedback-based in-
hand manipulation [13–17] have been applied to unknown
objects, but commonly only work for fully actuated hands
with known dynamics and kinematics models. Exact models,
however, are often not available for compliant robots.

In this paper, we propose to directly learn a control
policy for the unknown system. This approach does not rely
on knowing the robot’s dynamics or kinematics, and can
therefore be applied to under-actuated compliant robots. We
formalize the in-hand manipulation problem as a Markov
Decision Process (MDP). The robot learns a policy for this
MDP using non-parametric relative entropy policy search, a
reinforcement learning method that combines smooth policy
updates with the ability to learn non-linear control policies
[26]. We evaluate this method on the task of learning to roll
an object between the fingertips of the compliant ReFlex
robot hand shown in Fig. 1. To our knowledge, this is
probably the first demonstration of reinforcement learning
to learn an in-hand manipulation skill.

In the next section, we discuss related work on manipula-
tion. In Sec. III, we explain the platform and the task in more
detail. Subsequently, we provide details on the reinforcement
learning method. Then, we introduce our experimental set-up
and present the results. Finally, we present our conclusions
and discuss possible future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/77000058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. RELATED WORK ON MANIPULATION AND LEARNING

In this section, we discuss related work on in-hand ma-
nipulation with and without tactile sensing, as well as rein-
forcement learning for various kinds of object manipulation.

A. Planning for in-hand manipulation

Many approaches for in-hand manipulation employ a
planning perspective. The assumption here is that analytic
descriptions of both the hand and the object are known
beforehand, so planning approaches and control methods can
be used to find open-loop trajectories.

Such approaches have been used successfully for finger
gaiting [2], manipulation with a rolling contact [2–5], slid-
ing [5], in-grasp-manipulation [6], and rolling objects over
the hand palm [7]. Optimization techniques have also been
used for a variety of in-hand motions [8]. We are, however,
interested in manipulating objects for which no model is
available, using an underactuated hand that is hard to model
exactly due to compliance. Therefore, these methods are not
applicable.

B. In-hand manipulation using sensor feedback

Another perspective is to use sensory feedback, especially
tactile sensing, to adapt to unknown object properties. The
sensed contact locations can be used to define a ‘virtual ob-
ject frame’ (the centroid of contacts), to act as a proxy for the
object’s location, helping in executing in-grasp manipulations
[13–16]. A similar method is used in [17] for local control,
augmented by a finger gaiting strategy for larger movements.
Instead of tactile sensing, in-grasp control of an object can be
realized using only internal joint angle and angular velocity
sensors [27]. These methods, however, still assume knowing
the hand dynamics and kinematics, whereas for our under-
actuated and compliant hand exact models are not available.

If no accurate model of the robot is available, iterative
learning control can be used to learn feedback controllers
for manipulation [28]. However, this requires knowing the
trajectory of the contact points in advance.

Sensory feedback has also been used in another way. When
manipulating a held object, through planning methods or
otherwise, grasp instabilities or slippage can occur. Multiple
researchers, e.g. [13, 20, 24, 25], focused on detecting
slippage and instabilities. Furthermore, [13] subsequently
used tactile sensing to find stable grasps similar to the current
grasp, and adapt the current grasp. These methods can be
used to augment other strategies.

C. Reinforcement learning for manipulation

In previous work, reinforcement learning (RL) has been
used to learn how to manipulate objects on a symbolic
level [29]. For low-level motor control, however, a sub-
symbolic level is more suitable. Continuous RL has been
used for reaching and grasping objects [30–32], as well as
for the transportation of grasped objects [12, 32–35]. These
methods are driven by feedback from tactile sensing [12, 35],
Cartesian- and joint-space coordinates [33, 34], or both [32].
However, these approaches have not been applied at in-hand

manipulation, i.e., changing the object’s pose with respect to
the hand.

The problems of grasping and door opening have been
addressed in [36]. Like in-hand manipulation, these tasks
require stability and force control. For that reason, [36] uses
RL to optimize both a Cartesian trajectory as well as desired
forces along this trajectory. However, the disadvantages of
optimizing a trajectory is that it assumes a fixed starting
location. In this paper, we will instead focus on learning
time-independent policies.

III. LEARNING POLICIES WITH TACTILE FEATURES

In this paper, we aim at demonstrating the possibility
of learning feedback controllers for in-hand manipulation
using reinforcement learning on an underactuated, compliant
platform. First, we will describe the platform that we use and
the task we want to perform. Then, we will address how we
represent the task as a Markov Decision Process (MDP). In
Sec. IV, we will explain how non-parametric policy search
can be used to solve this MDP.

A. Compliant robotic platform with tactile sensing

For the experiment we use the three fingered, under-
actuated ReFlex robot hand. A single tendon drives each
two-link finger, which include position sensors on the tendon
spool and proximal joint. The hand has nine MEMS barom-
eters embedded in each finger to generate tactile feedback
signals. Two of the fingers can additionally be controlled by
a single, coupled pre-shape joint.

Difficulty arises in applying more conventional methods to
this hand, as the state of the compliant connection between
the proximal and distal finger segments depends on the
history of the executed commands and there is no joint
sensor measuring the angle between these two links. Under-
actuation also poses a problem for any method that relies on
workspace control. Moreover, most of the sensors are quite
noisy.

The hand is mounted with the fingers pre-shaped so that
two fingers oppose each other. The third finger is unused in
our experiments. The set-up is shown is Fig. 1.

B. In-hand manipulation task

We desire our robot to perform a rolling task on an object
grasped between its two fingers. Since the robot can only
control the individual fingers along one axis, the object is
rolled horizontally between the robot’s fingers, while sliding
along the ground plane, as shown in Fig. 2. To keep control
of the object, the robot should maintain contact with both of
its fingers, while moving them from one side of its workspace
to the other in a coordinated manner.

C. MDP formalization

In an MDP, an agent in state s selects an action a ∼ π(a|s)
according to a (possibly stochastic) policy π and receives a
reward Ra

s ∈ R. We will assume continuous state-action
spaces: s ∈ S = RDs , a ∈ A = RDa . If the Markov decision
process is ergodic, for each policy π, there exists a stationary

(a) (b) (c)

Fig. 2: Illustration of the rolling task: from an initial state (a),
the robot has to coordinate finger movement (b) to move the
object to the goal location (c), while maintaining pressure.
Compliance and under-actuation make such motions difficult
to plan.

distribution µπ(s) such that
∫
S
∫
A P

a
ss′π(a|s)µπ(s)dads =

µπ(s
′), where Pa

ss′ = Pr(s′|a, s). The goal of a reinforce-
ment learning agent is to choose a policy such that the joint
state-action distribution p(s,a) = µπ(s)π(a|s) maximizes
the average reward J(π) =

∫
S
∫
A π(a|s)µπ(s)Ra

sdads.
To apply an RL method to solve this task, we have

to formalize the task as an MDP by defining a state and
action representation and a reward function. The transition
probability is implicitly defined by the physical system, and
not explicitly known.

D. State and action representation

The state of the system comprises the robot state, as given
by joint- and motor-side sensors, as well as the relation
between the robot and the object, which is observed through
the tactile sensors. Therefore, we define a six-dimensional
state representation s, where s1, s2 represent the tactile
sensors, s3, s4 represent the two proximal link joint angles
and s5, s6 represent the distal link angles.

The proximal link is the easiest to represent, as the joint
encoders ql and qr of the left and right finger encode this
position exactly, so s3 = ql, s4 = qr. The ReFlex hand
uses the difference between the joint encoders and the motor
encoders ml,mr as proxy for the distal segment’s position,
so s5 = ml − ql, s6 = mr − qr.

The tactile sensing is hardest to encode meaningfully, as
for higher forces the sensor response signal can be highly
non-linear. We obtained the best results by applying the
following non-linear functions to sensor vectors xl and xr

s1 =
2

π
arctan

(π
80
|xl|1

)
, s2 =

2

π
arctan

(π
80
|xr|1

)
,

which scale the vector-valued sensors to single scalar values
for the left and right distal sensors. Taking the l1-norm sums
absolute contributions from each of the tactile sensors, as
both positive or negative change in sensor pressure can occur
depending on where contact is made. The factor of π/80
makes sure the arctan function is close to linear near 0,
where differences are meaningful, and flattens out for large
pressures where more of the variance is due to noise. Finally,
the result is scaled between 0 and 1.

We define actions as the velocity applied by the robot for
two time steps (0.04 s), with limits of ±2.5s−1 for each
finger. After each action, the system pauses for 0.06 seconds
such that despite any observation delays, the correct resulting
state is recorded.

E. Reward function

We want the robot to roll the object between its fingers
to a goal location while maintaining pressure. To avoid
unnecessarily large actions, we also punish the squared
magnitude of the actions. Combined, this gives the reward
function

r(s,a) = w1|a|22 + w2rpress(s) + w3rgoal(s),

rpress = |s1−sd|+ |s2−sd|, rgoal = |s3−ql,d|+ |s4−qr,d|,

where xd = 0.7 is the desired pressure value, ql,d = 1.8
and qr,d = 1.0 are the goal locations for the fingers, and
w1, w2, and w3 are trade-off factors. We found setting w1 =
0.8, w2 = 80, and w3 = 30 achieved a good balance between
the different goals and yielded good learning progress in
practice.

IV. LEARNING OPTIMAL CONTROL POLICIES

There are many approaches to solving MDPs. In this
paper, we will focus on one of these, Relative Entropy Policy
Search [37], as it provides an information-theoretic bound on
the size of the policy update that provides smooth and safe
updates in robotic experiments. Recently, we proposed a non-
parametric version, NPREPS [26], that has the advantages
of not requiring a parametric form of the value function or
policy to be provided, and of being robust to noisy state
transitions. As a consequence, the user does not need to
define non-linear features for the sensors by hand, reducing
design effort. Note that many RL algorithms require a
discretization of the state space. Even though we only use
two fingers, the state space is six-dimensional which makes
discretization of the state-space impracticable: just four bins
in each dimensions would already yield 4096 discrete states;
but would still be too coarse for fine coordination.

A. Non-parametric REPS

REPS is formulated as the optimization problem

max
π,µπ

J(π) = max
π,µπ

∫∫
S×A
π(a|s)µπ(s)Ra

sdads, (1)

s.t.

∫∫
S×A
π(a|s)µπ(s)dsda = 1, (2)

∀s′
∫∫
S×A
Pa
ss′π(a|s)µπ(s)dads = µπ(s

′), (3)

KL(π(a|s)µπ(s)||q(s,a)) ≤ ε, (4)

where Eqs. (1-3) specify the general reinforcement learning
objective in a slightly unusual form, which will be conve-
nient in deriving our algorithm. Equation (1) states that the
joint state-action distribution should maximize the expected
average reward, and Equation (2) constraints π(a|s)µπ(s) to

be a probability a distribution. With just these constrained,
an optimizer could choose any state distribution, whereas
in reality the state distribution is specified by the policy and
the real-world transition dynamics Pa

ss′ of fingers and object.
Equation (3) enforces µπ(s) to be the stationary distribution
under π(a|s) under the actual system dynamics.

Equation (4) specifies an additional bound on the KL
divergence between the proposed state-action distribution
and sampling distribution q, that ensures smooth policy
updates. In this equation,

KL(p||q) =
∫
p(x) log(p(x)/q(x))dx.

Reference distribution q is usually set to the state-action
distribution induced by previous policies. Learning starts
with samples from an initial explorative policy π̃0, usually
chosen to be a wide, uninformed distribution. The variance
typically shrinks after every iterations, such that the policy
converges to a (locally) optimal deterministic policy.

The solution to the optimization problem obtained through
Lagrangian optimization is given by

π(a|s)µπ(s) ∝ q(s,a) exp
(
δ(s,a, V)

η

)
,with

δ(s,a, V) = Ra
s + Es′ [V (s′)|s,a]− V (s) (5)

where V (s) and η denote Lagrangian multipliers [37]. The
Lagrangian multiplier V (s) is a function of s and resembles
a value function, so that δ can be interpreted as the Bellman
error. Therefore, the policy can be seen as a re-weighted
version of the old distribution, with weights given by a soft-
max of the advantage function: in other words, for higher
expected future rewards, the action will be taken with a
higher probability.

The Lagrangian multipliers are obtained through mini-
mization of the dual function

g(η, V) = ηε+ η log

(
n∑
i=1

1

n
exp

(
δ(si,ai, V)

η

))
, (6)

where the samples (si,ai) are drawn from q(s,a). To
calculate the Bellman error δ, the transition distribution is
required. As this distribution is generally not known, δ needs
to be approximated. In earlier work [26], we showed that this
approximation can be done efficiently using kernel methods

δ(s,a,α) = Ra
s +αT

(
K̃sβ(s,a)− ks(s)

)
,with

β(s,a) = (Ksa + λI)−1ksa(s,a). (7)

In this equation, Ksa and K̃s signify matrices containing the
value of kernel functions between state-action pairs or states,
respectively. ksa(s,a) and ks(s) are vectors of such values,
whereas α is a vector of coefficients that is obtained through
maximization of the dual (6).

Algorithm 1 The NPREPS algorithm

Require: Initial explorative policy π̃0
for i = 1, . . . ,max iteration do

generate roll-outs according to π̃i−1
minimize kernel-based dual:
η∗,α∗ ← argmin g(η,α) Eq. 6

calculate kernel-based Bellman errors:
βj ← (Ksa + λI)−1ksa(sj ,aj) Eq. 7

δj ← Rj +α∗T
(
K̃sβj − ks(sj)

)
Eq. 7

calculate the weighting factors:
wj ← exp(δj/η

∗) Eq. 8
determine cost-sensitive GP:
π̃i(a|s) = N (µ(s;w), σ2(s;w)) Eq. 9

end for

B. Fitting non-parametric control policies

The desirability of state-action pairs is given by (5). How-
ever, (5) can only be evaluated for sampled state-action pairs,
as we only know Ra

s at those points. To obtain a generalizing
policy, cost-sensitive Gaussian Processes (GPs) are used, as
introduced in the cost-regularized kernel regression (CrKR)
algorithm [38]. This policy requires a weighting factor for
each data-point, which in the bandit case [38] was given
by the obtained reward. These weighting factors need to be
transformed to be strictly positive, as discussed in [39].

In REPS, such a transformation naturally appears as
a result of solving the constrained optimization problem
[26, 37], as given in (5). The resulting weighting factors
take into account not only the immediate reward, but also
the cumulative long-term reward through the value function
V . Because generally we are working with samples from
reference distribution q, the weighting factors w should
be normalized by q: w(a, s) = π(a|s)µπ(s)/q(a, s). The
parameter η, that specifies the transformation and determines
how greedy the optimization is, is a Lagrangian parameter
that is naturally set through optimization of the dual function
(6). The resulting weighting factors are

wj ← exp(δ(sj ,aj ,α)/η), (8)

and they define a diagonal cost matrix C with Cjj = w−1j .
The corresponding cost-sensitive Gaussian process policy

π̃(a|s)=N (µ(s), σ2(s)), µ(s)=ks(s)
T (Ks + λC)−1A,

σ2(s) = k + λ− ks(s)
T (Ks + λC)−1ks(s), (9)

where A = [a1, . . . ,an]
T is a matrix containing all sampled

actions, and λ is a regularization parameter that is set with
free kernel parameters using weighted maximum likelihood.
Algorithm 1 shows all steps of our algorithm.

Using all past data makes the learning algorithm very slow,
but a simple forgetting mechanism that only retains data from
the M most recent policies addresses this issue sufficiently.
In this paper, we will use M = 3.

V. EXPERIMENTS

For each trial in our experiments, we initialize the policy,
and then go through ten iterations of gathering data with
the current policy, and using this data to improve the policy
according to Alg. 1. After these ten iterations, we evaluate
how well the policy generalizes to different rollable (i.e.,
cylindrical) objects. Each of these steps will be explained in
the following sub-sections.

A. Policy initializations

The system needs to be initialized with a starting policy. A
completely random (e.g. Gaussian) policy is possible, but it
might require many roll-outs to sufficiently cover the relevant
state-space. Therefore, we use a rough hand-coded policy
with additive Gaussian noise with a standard deviation of
80% of the action limit as the initial exploration policy.
Although the hand-coded policy succeeds in exploring the
relevant parts of the state-space, it sub-optimal in terms of
speed and coordination. We expect the final learned policy
to outperform it (i.e., obtain higher average rewards).

B. Using finite roll-out lengths

The non-parametric REPS algorithm is designed for
infinite-horizon settings. To work with finite episodes, a
state-independent reset probability can be used that resets
the system to an initial state [26]. If this is done, as a
result the length of individual roll-outs follows a geometric
distribution. However, the disadvantages is that this leads to
a high variance in roll-out length, and so makes it hard to
evaluate learning progress and compare across conditions.

To address this problem, in this paper, we represent
the geometric distribution using 10 samples chosen at the
5th, 15th, . . . , 95th percentile of the distribution, leading to a
roll-out length of 50 steps on average.

C. Evaluation

Fig. 3: The objects used in the
experiment. The wooden cylin-
ders on the left were used for
training; the four objects on the
rights were used to evaluate skill
generalization.

When training with a
single object, could ob-
tain high rewards even
if they are non-adaptive.
In order to ensure the
learned controller uses
tactile sensing to adapt to
the object, we use two
objects of different di-
mensions in the training
stage (shown in Fig. 3).
We always switch ob-
jects after every roll-
out. After performing ten
roll-outs, the policy is
updated according to Al-
gorithm 1.

We perform two kinds of evaluation. To begin with, the
rewards obtained in each iteration are stored, so that we can
compare the learned policies at each stage of learning to a
hand-coded feedback policy. Furthermore, the final learned

2 4 6 8 10
−50

−40

−30

−20

iterations

re
w

ar
d

learned controller
feedback controller

Fig. 4: Average reward and standard deviation across four
independent learning trials. The feedback controller has been
hand-tuned to successfully complete the tasks, matching its
performance shows learning is successful. Each iteration
represents approximately 500 time steps (50 s.) of robot data.

policy is executed without exploration noise to grasp various
novel objects to evaluate the generalizability of the learned
controller.

These objects are shown in Fig. 3, and they differ in
properties such as diameter, surface texture, and weight (two
of the containers are full, whereas the toy fire extinguisher
and the pill bottle are empty). The policy, however, is only
optimized for the training objects. As such, this evaluation
shows the robustness margin of the learned policy; but cannot
generally be expected to perform optimally for objects that
are not similar to the objects it has been trained on. For that
reason, we only used cylindrical objects.

We perform four independent trials where we learn a
policy from scratch and evaluate it on the various objects.
We also perform four independent trials with the feedback
policy.

VI. RESULTS

The performance during the course of learning is shown in
Fig. 4. This figure illustrates how the starting policy obtains
quite poor results, which the learning algorithm successfully
improves. The final policy, on average, obtains better rewards
than the feedback policy. We observed from the robot’s be-
havior, that the learned policy executes the desired movement
quickly, but incurs the risk of slipping away from the object,
leading to occasional very low rewards and, therefore, more
variable rewards than the hand-coded feedback policy. From
this graph, we see that we can successfully learn policies
that are competitive with manually-designed policies.

The results for generalization over different objects are
shown in Fig. 5. Here, we see that performance on three
of the objects was comparable (if slightly worse) to the
performance on the two wooden cylinders the policy was
trained on. The performance on the container of vitamin
pills, however, is markedly worse. This object is markedly

reward

-40-35-30-25-20-15

Fig. 5: Average reward and standard deviation obtained by
the trained policies on four novel objects. Except for the
vitamin container, which is hard to grasp due to its small
diameter and low friction, we obtain performance close to
the performance on the original training objects (shown by
the leftmost bar).

smaller than the objects that the policy was optimized for,
furthermore, it has low surface friction. As the robot has not
been trained to deal with these properties, this results in the
robot losing grips much easier and consequentially obtaining
lower rewards.

VII. DISCUSSION AND CONCLUSION

In this paper, we have employed a reinforcement learning
method to learn a tactile skill on a compliant, under-actuated
robot hand. We have shown, first of all, that such a technique
is feasible for finding controllers for dexterous manipulation
task even for an underactuated hand with unknown dynamics
and kinematics. The learned policies obtain a higher average
reward than a hand-coded feedback policy, although the
learned policy is more risk-seeking and obtains a higher
reward variance. We have also shown that the policies learned
on two simple training objects can be generalized to novel
objects with, in most cases, only a small loss in performance.

In one case of the generalization trials, the learned policy
did not perform well. This was probably because the vitamin
container’s properties make it inherently different to manip-
ulate (larger curvature with lower surface friction) and the
policy has not been optimized for this particular object. We
expect that re-training for new objects would enable learning
policies to handle such objects, as well as objects of non-
cylindrical shape.

We believe that the focus on learning a reactive feedback
policy that directly depends on the tactile sensor data was
one of the elements that made generalization successful. If
we had learned trajectories, it would not be straightforward
to adapt to different situations.

Compared to many of the existing methods for planning
in-hand manipulations, our method has the advantage that
we can apply it to an under-actuated, compliant hand without

analytic models. The disadvantage, however, is that learning
a policy requires system interaction. Our experiments show,
that generalization to roughly similar objects is successful,
so that once a policy is learned it can be generalized.

There are a couple of issues we would like to address
in future work. By adapting the reward function to prefer
lower-risk policies, e.g. by increasing the importance of
maintaining grasp pressure, we want to learn controllers with
lower variance. We also want to extend the method to learn
grasps without an initial demonstration policy that general-
izes to a wide range of initial object positions. Generalization
over initial positions and learning without demonstration
policy will require more data, and hence we will work on
approximations that make our method applicable to large
data sets.

REFERENCES

[1] R. Ma and A. Dollar, “On dexterity and dexterous ma-
nipulation,” in International Conference on Advanced
Robots, 2011.

[2] L. Han and J. Trinkle, “Dextrous manipulation by
rolling and finger gaiting,” in International Conference
on Robotics and Automization, vol. 1, 1998.

[3] Z. Doulgeri and L. Droukas, “On rolling contact motion
by robotic fingers via prescribed performance control,”
in International Conference on Robotics and Automiza-
tion, 2013.

[4] A. Bicchi and R. Sorrentino, “Dexterous manipula-
tion through rolling,” in International Conference on
Robotics and Automization, vol. 1, 1995.

[5] M. Cherif and K. Gupta, “Planning quasi-static fin-
gertip manipulations for reconfiguring objects,” Trans.
Robotics and Automation, vol. 15, no. 5, 1999.

[6] K. Hertkorn, M. Roa, and C. Borst, “Planning in-hand
object manipulation with multifingered hands consid-
ering task constraints,” in International Conference on
Robotics and Automization, 2013.

[7] Y. Bai and K. Liu, “Dexterous manipulation using
both palm and fingers,” in International Conference on
Robotics and Automization, 2014.

[8] I. Mordatch, Z. Popović, and E. Todorov, “Contact-
invariant optimization for hand manipulation,” in Symp.
Computer Animation, 2012.

[9] R. Deimel and O. Brock, “A novel type of compliant,
underactuated robotic hand for dexterous grasping,” in
Robotics: Science and Systems, 2014.

[10] L. Jentoft, Q. Wan, and R. Howe, “Limits to compliance
and the role of tactile sensing in grasping,” in Interna-
tional Conference on Robotics and Automization, 2014.

[11] P. Payeur, C. Pasca, A.-M. Cretu, and E. M. Petriu,
“Intelligent haptic sensory system for robotic manipula-
tion,” Trans. Instrumentation and Measurement, vol. 54,
no. 4, 2005.

[12] Y. Chebotar, O. Kroemer, and J. Peters, “Learning robot
tactile sensing for object manipulation,” in International
Conference on Intelligent Robots and Systems, 2014.

[13] M. Li, Y. Bekiroglu, D. Kragic, and A. Billard, “Learn-
ing of grasp adaptation through experience and tactile
sensing,” in International Conference on Intelligent
Robots and Systems, 2014.

[14] K. Tahara, S. Arimoto, and M. Yoshida, “Dynamic
object manipulation using a virtual frame by a triple
soft-fingered robotic hand,” in International Conference
on Robotics and Automization, 2010.

[15] H. Maekawa, K. Tanie, and K. Komoriya, “Tactile
sensor based manipulation of an unknown object by
a multifingered hand with rolling contact,” in Interna-
tional Conference on Robotics and Automization, vol. 1,
1995.

[16] M. Li, H. Yin, K. Tahara, and A. Billard, “Learning
object-level impedance control for robust grasping and
dexterous manipulation,” in International Conference
on Robotics and Automization, 2014.

[17] Q. Li, M. Meier, R. Haschke, H. Ritter, and B. Bolder,
“Rotary object dexterous manipulation in hand: a
feedback-based method,” Int. J. Mechatronics and Au-
tomation, vol. 3, no. 1, 2013.

[18] K. Hsiao, S. Chitta, M. Ciocarlie, and E. Jones,
“Contact-reactive grasping of objects with partial shape
information,” in International Conference on Intelligent
Robots and Systems, 2010.

[19] J. Laaksonen, E. Nikandrova, and V. Kyrki, “Probabilis-
tic sensor-based grasping,” in International Conference
on Intelligent Robots and Systems, 2012.

[20] T. Takahashi, T. Tsuboi, T. Kishida, Y. Kawanami,
S. Shimizu, M. Iribe, T. Fukushima, and M. Fujita,
“Adaptive grasping by multi fingered hand with tactile
sensor based on robust force and position control,” in
International Conference on Robotics and Automiza-
tion, 2008.

[21] H. Dang and P. K. Allen, “Stable grasping under
pose uncertainty using tactile feedback,” Autonomous
Robots, vol. 36, no. 4, 2014.

[22] P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal,
“Towards associative skill memories,” in Humanoids,
2012.

[23] H. Zhang and N. Chen, “Control of contact via tactile
sensing,” Trans. Robotics and Automation, vol. 16,
no. 5, 2000.

[24] J. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and
K. Kuchenbecker, “Human-inspired robotic grasp con-
trol with tactile sensing,” Trans. Robotics, vol. 27, no. 6,
2011.

[25] Y. Bekiroglu, J. Laaksonen, J. A. Jorgensen, V. Kyrki,
and D. Kragic, “Assessing grasp stability based on
learning and haptic data,” Trans. Robotics, vol. 27,
no. 3, 2011.

[26] H. van Hoof, J. Peters, and G. Neumann, “Learning of
non-parametric control policies with high-dimensional
state features,” in AIStats, 2015.

[27] R. Ozawa, S. Arimoto, S. Nakamura, and J.-H. Bae,
“Control of an object with parallel surfaces by a pair
of finger robots without object sensing,” IEEE Trans-
actions on Robotics, vol. 21, no. 5, pp. 965–976, 2005.

[28] K. Tahara, S. Arimoto, M. Sekimoto, M. Yoshida, and
Z.-W. Luo, “On iterative learning control for simul-
taneous force/position trajectory tracking by using a
5 d.o.f. robotic thumb under non-holonomic rolling
constraints,” in International Conference on Robotics
and Automization, 2008, pp. 2611–2616.

[29] O. Brock, D. Katz, and Y. Pyuro, “Learning to manip-
ulate articulated objects in unstructured environments
using a grounded relational representation,” Robotics:
Science and Systems, 2009.

[30] T. Lampe and M. Riedmiller, “Acquiring visual servo-
ing reaching and grasping skills using neural reinforce-
ment learning,” in International Joint Conference on
Neural Networks, 2013.

[31] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Com-
bining active learning and reactive control for robot
grasping,” Robotics and Autonomous Systems, no. 9,
pp. 1105–1116, 2010.

[32] O. Kroemer, C. Daniel, G. Neumann, H. van Hoof,
and J. Peters, “Towards learning hierarchical skills
for multi-phase manipulation tasks,” in International
Conference on Robotics and Automization, 2015.

[33] M. Deisenroth, C. Rasmussen, and D. Fox, “Learning
to control a low-cost manipulator using data-efficient
reinforcement learning,” in Robotics: Science and Sys-
tems, 2011.

[34] S. Levine, N. Wagener, and P. Abbeel, “Learning
contact-rich manipulation skills with guided policy
search,” in International Conference on Robotics and
Automization, 2015.

[35] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou,
and S. Schaal, “Skill learning and task outcome pre-
diction for manipulation,” in International Conference
on Robotics and Automization, 2011.

[36] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal,
“Learning force control policies for compliant ma-
nipulation,” in International Conference on Intelligent
Robots and Systems, 2011.

[37] J. Peters, K. Muelling, and Y. Altun, “Relative entropy
policy search,” in AAAI Conference on Artificial Intel-
ligence, 2010.

[38] J. Kober, E. Oztop, and J. Peters, “Reinforcement
learning to adjust robot movements to new situations,”
in International Joint Conference on Artificial Intelli-
gence, 2011.

[39] J. Peters and S. Schaal, “Reinforcement learning by
reward-weighted regression for operational space con-
trol,” in International Conference on Machine Learn-
ing, 2007.

