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Graphene, a hexagonal sheet of sp2-bonded carbon
atoms, has extraordinary properties which hold immense
promise for future nanoelectronic applications. Unfor-
tunately, the popular preparation methods of microme-
chanical cleavage and chemical exfoliation of graphite do
not easily scale up for application purposes. Epitaxial
graphene provides an attractive alternative, though there
are many challenges, not least of which is the absence
of an understanding of the complex atomistic assembly
kinetics of graphene. Here, we present a simple rate the-
ory of epitaxial graphene growth on close-packed metal
surfaces. Based on recent low-energy electron-diffraction
microscopy experiments (LEEM)1, our theory supposes
that graphene islands grow predominantly by the addi-
tion of five-atom clusters, rather than solely by the cap-
ture of diffusing carbon atoms. With suitably chosen ki-
netic parameters, our theory produces a time-dependent
carbon adatom density that is in quantitative agreement
with measured data. The temperature-dependence of
this adatom density at the onset of nucleation leads us
to predict that the smallest stable precursor to graphene
growth is an immobile island composed of six five-atom
clusters. Our findings provide a starting point for more
detailed simulations which will yield important input to
developing strategies for the large-scale production of epi-
taxial graphene.

The epitaxial growth of graphene on transition-metal
surfaces has been studied by surface scientists for many
years2. The broader scientific community took notice
of graphene in 2004, when two groups independently
pointed out its unusual transport properties and poten-
tial for microelectronic applications3,4. Subsequent work
has revealed additional remarkable properties, such as
anomalies in the integer quantum Hall effect5 and in
quasi-particle coupling6, which are signatures of charge
carriers that behave as massless Dirac fermions.

The exfoliation technique of Ref. [3] is often used to
produce samples of graphene for two-dimensional elec-
tron gas studies. This method is quick and easy, but it
is uncontrolled and unsuitable for scale-up to the pro-
duction volumes that will be necessary for the most in-
teresting and important commercial applications. An at-
tractive alternative is to grow graphene epitaxially on
a hexagonal substrate. Considerable progress has been
achieved in this direction, both using silicon carbide7,8

and close-packed metals9 as the substrate. Nevertheless,
almost nothing is known about the atomistic formation
kinetics of epitaxial graphene on any substrate.

The present paper is motivated by particularly elegant
LEEM experiments reported by Loginova and co-workers
for the growth kinetics of the Gr/Ru(0001) system10. Us-
ing electron reflectivity to monitor the evolution of the
density of carbon adatoms deposited either from a heated
carbon rod or from an ethylene source, it was discovered
that the step edges of two-dimensional (2D) graphene is-
lands advance with a velocity v that varies as the fifth

power of the ratio of the carbon adatom density n to its
equilibrium value neq:

v = k

[(

n

neq

)5

− 1

]

. (1)

This led the authors to suggest that the islands grow
by the attachment of five-atom clusters, rather than by
the usual mechanism of single adatom attachment. More
recent work by the same group extends this conclusion
to the Gr/Ir(111) system1.
In this paper, we develop a rate theory for the epi-

taxial growth of graphene on metal surfaces. Rate equa-
tions have been used for some time for modelling epi-
taxial systems11 and for establishing general principles
such as the existence of scaling regimes for concentra-
tions of surface species and scaling forms for island-size
distributions12. Scanning tunneling microscopy images,
both as “snapshots” of quenched surfaces and in situ

scans13, are usually interpreted in terms of kinetic Monte
Carlo simulations because of the wealth of spatial infor-
mation contained in such images14. Nevertheless, rate
equations continue to provide the conceptual framework
for interpreting essentially all growth scenarios. The
amount and quality of time-resolved data in the present
case is unprecedented and, as we will show, the temper-
ature dependence of the carbon adatom density at the
onset of nucleation and at equilibrium encode key infor-
mation about the atomistic processes of graphene forma-
tion on Ru(0001)1 that would be unavailable without a
theoretical analysis.
A simple model based on the experiments of Loginova

et al.10 assumes that carbon atoms arrive at the surface
with a flux F and migrate across the surface with diffu-
sion constant D. Adatoms can attach to the perimeter of
2D islands, but this is not the predominant mechanism
of island growth. Instead, clusters composed of i = 5
carbon atoms form when i adatoms collide. These clus-
ters migrate with surface diffusion constantD′ and, when
j = 6 such clusters collide, an island of size i×j is formed.
Islands growmainly by the attachment of i-atom clusters.
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The value i = 5 for the size of mobile clusters is derived
from experiment, as noted above, while the value j = 6
is obtained from a fit to the temperature dependence of
the carbon adatom density at the onset of nucleation.
The latter is a new and striking result, and suggests that
the collision of fewer than six clusters leads to the forma-
tion of transient, possibly mobile, species whose struc-
ture bears little resemblance to graphene. Even islands
formed from six mobile clusters are unlikely to immedi-
ately transform into graphene, but instead pass through
a series of intermediate structures. This general scenario
is consistent with tight-binding, grand canonical Monte
Carlo simulations which produce small carbon chains as
a precursor to graphene formation on Ni(111)15.
The rate equations for these kinetic steps are expressed

in terms of the homogeneous densities of carbon adatoms
n, five-atom clusters c, and islands N as

dn

dt
= F − iDni + iKc−DnN +K ′N , (2)

dc

dt
= Dni

−Kc−D′cN − jD′c j , (3)

dN

dt
= D′c j . (4)

In these equations, K is the cluster dissolution rate and
K ′ is the detachment rate of adatoms from islands. For
simplicity, we have omitted refinements to these equa-
tions, such as capture numbers, that make them more
realistic12,16, but also more numerically cumbersome17.
Thus, our proposed rate equations are sufficiently mini-
mal to enable a straightforward optimization of param-
eters, while retaining enough physical content to permit
a detailed interrogation of experimental data. We will
demonstrate below that this set of equations is capable
of providing a quantitative account of all of the measured
data reported in Ref. [1]. Moreover, our analysis will re-
veal the presence of new kinetic mechanisms for graphene
formation on metal surfaces.
Each of the rates parametersD,D′,K, and K ′ is taken

to have the Arrhenius form ν0e
−βE with the prefactor

ν0 = 2kBT/h assumed to be the same for all processes.
Otherwise, kB is Boltzmann’s constant, T is the absolute
temperature of the substrate, h is Planck’s constant, β =
1/(kBT ), and E is the energy barrier to the process. For
the temperature range of interest (790 K–1050 K), ν0 ∼

1013 s−1. We have set the lattice constant a = 1, but
the required factors of a can be reinstated into (2)–(4)
by straightforward dimensional analysis.
There are four energy barriers that must be deter-

mined, as well as the value of j. However, this is not
an unconstrained optimization, as there are restrictions
which limit the ranges of these parameters. For exam-
ple, the equilibrium carbon adatom concentration neq

[Fig. 1(a)], determined from the time-independent solu-
tion to (2) with F = 0, yields

neq ∼
K ′

D
= e−β(E

K′−ED) . (5)

As neq is found to be an increasing function of
temperature1, we must choose EK′ > ED. Indeed, by
fitting this form of neq to the corresponding experimen-
tal values, we find that EK′−ED = 0.35 eV. In obtaining
(5), we have used the fact that n ≫ c ≫ N , which results
from the unusually large values of i and j. This can be
checked afterward for self-consistency (Fig. 1).
Further insight into the growth parameters is obtained

by examining the stationary concentration ns in the pres-
ence of a non-zero flux. Again invoking the ordering
n ≫ c ≫ N , we find,

nij+1
s = (ij + 1)−1

(

DD′

F 2

)

−1(
D

K

)

−j

θ−1 , (6)

where θ = Ft is the coverage. At fixed θ, the tem-
perature-dependence of ns is

ns ∼ exp

{

β

ij + 1

[

ED′ − jEK + (j + 1)ED

]

}

. (7)

As the behavior with temperature of ns is qualitatively
similar to that of nnuc, which is observed to be an in-

creasing function of temperature1, we must require that

ED′ − jEK + (j + 1)ED < 0 . (8)

Note that this condition involves j but not i. For our
energy parameters, we must choose j > 2. Beginning
with five parameters (ED, ED′ , EK , EK′ , and j), the
restrictions in (5) and (8) reduce our optimization to an
effective three-parameter fit.
The solutions of the rate equations for the evolutions

of the densities of the carbon adatoms, the five-atom
clusters, and the immobile islands are shown in Fig. 1
with the optimized parameters in Table I. These solu-
tions are most sensitive to the energy barriers for D, K,
and K ′, with variations of ±0.01 eV producing notice-
able changes in the solutions. In contrast, variations by
as much as ±0.05 eV of the diffusion barrier D′ for the
five-atom clusters produce minimal changes, especially
for the adatom solution. This is due, in part, to the
fact that the processes that most influence the adatom
density are the formation and dissolution of the clusters.
The density of islands and their sizes have a smaller ef-
fect because the attachment and detachment processes
between adatoms and islands occur much less frequently,
as the island step velocity in (1) indicates.
Most apparent from the solutions in Fig. 1 is how

qualitatively different the adatom and island profiles are
from those found in the “usual” epitaxial growth scenario
where only adatoms are mobile and there is a critical size
for island formation12,18. The presence of mobile clusters
composed of five atoms and the large size (j = 6) of the
smallest immobile islands formed from five-atom clusters
are responsible for this behavior. The clusters and is-
lands both show sudden increases in their densities due
to bursts of aggregation when there is a sufficient adatom
density to first form five-atom clusters. The onset of is-
land formation is further delayed until there are enough
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five-atom clusters so that a six-cluster collision becomes
likely. The islands are formed over a short time period
after which the island density sasturates with essentially
no additional nucleation.
Figure 2 shows the solution for the carbon adatom den-

sity in Fig. 1(a) overlayed with the experimental data in
Fig. 12 of Ref. [1]. The theoretical solution reproduces
all of the main features of the experimental data, though
there are small differences in some of the details. The rate
equations account for the position of the nucleation peak
at approximately 150 s after the flux is introduced into
the system, but underestimate the experimental value of
nnucl by ≃ 10%. The subsequent stationary regime is
also accounted for by our theory, but the solution overes-
timates the steady experimental value by a few per cent.
After the cessation of the flux, the theoretical and exper-
imental equilibration curves are indistinguishable.
The most likely cause of the discrepancies between the

theoretical and experimental carbon adatom evolutions is
the omission of any spatial information in the rate equa-
tions. By using spatially averaged densities for all surface
species, the local spatial arrangements of five-atom clus-
ters and islands, which affects adatom attachment and
detachment through the notion of “capture zones”12,18,
and any preferential sites for cluster or island formation,
are excluded. These would first be apparent at the on-
set of nucleation, where the spatial arrangement of is-
lands is critical to establishing their growth rates19. The
subsequent discrepancy in steady-state regime is then a
consequence of this underestimate of the nucleation rate.
On the other hand, the rate equations provide an ex-

cellent account of the equilibration of the adatom con-
centration after the cessation of the incident mass flux.
The comparative immunity of the equilibration regime
to spatial correlations between islands suggests that neq

is dominated by the detachment of adatoms from an is-
land followed by re-attachment to the same island. An
immediate consequence of this is that the distribution
of island sizes would not change over the time scale of
equilibration. This can be tested experimentally.

Figure 3 compares the temperature-dependence of nnuc

and neq [Fig. 1(a)] obtained from the rate equations with
those observed in experiments1. As Fig. 2 indicates,
neq is expected to be more accurate than nnuc, although
both quantities provide good accounts of the experimen-
tal data. The computed equilibrium concentrations from
the full solution are indistinguishable from that in (5),
which shows that, while single adatom attachment and
detachment do not have a significant direct impact on
island kinetics during growth, they do have experimen-
tally observable consequences during equilibration. On
the other hand, the temperature-dependence of nnuc em-
bodies more information about kinetics during growth,
as Eq. (7) indicates, especially with regard to the num-
ber of five-atom clusters required to form an incipient
graphene island. The choice j = 6 yields the best fit
to the data in Fig. 3. This comparison, more than any
other reported here, indicates the value of our rate equa-
tion analysis. An increasing nnuc with temperature is not
at all typical of epitaxial systems, and its consequences
would have been difficult, if not impossible, to ascertain
without a theoretical model that abstracts all but the
most essential kinetic steps.

Methods Rate equations are typically formulated phe-
nomenologically for a particular system with basic guid-
ance from experiments and fundamental calculations. In
this case, we began with processes involving the diffusing
carbon adatoms and five-atom clusters. Additional pro-
cesses and all parameters were identified through com-
parison with the available experimental data. The math-
ematical structure of rate equations for epitaxial systems
is a system of coupled autonomous nonlinear ordinary dif-
ferential equations that often have a property known as
“stiffness,” which arises from the disparity of rates in the
equations. This means that their solutions become unsta-
ble in certain parameter regimes. Our calculations were
carried out with Mathematica

20, which has a solver
that can accommodate such cases.
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FIG. 1: Solution of rate equations. Coverage dependence of (a) the carbon adatom density n, (b) the five-atom mobile
cluster density c, and (c) the total immobile island density N obtained from the rate equations (2)–(4) at T = 1020 K. The
adatom densities at the onset of nucleation nnuc and at equilibrium neq are indicated in (a). The kinetic parameters are
ED = 0.92 eV, ED′ = 0.87 eV, EK = 1.72 eV, EK′ = 1.27 eV, and j = 6.
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FIG. 2: Rate theory and LEEM measurements for time-dependent carbon adatom coverage. The evolution of the
carbon adatom density in Fig. 1(a) (black curve) compared with the corresponding LEEM data in Ref. [1] (red points)
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FIG. 3: Rate theory and LEEM measurements for adatom coverage at onset of nucleation and at equilibrium.

The temperature dependence of the concentration of carbon adatoms nnuc required to nucleate graphene (red symbols) and
the carbon adatom concentration neq at equilibrium (blue symbols) compared with the corresponding quantities obtained from
rate equations (black symbols) as indicated in Fig. 1. Experiments1 were carried out with carbon vapor (filled red and blue
symbols) and ethylene (open red and blue symbols).
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TABLE I: The optimized energy barriers (in eV) in the Arrhenius forms of D, D′, K, and K′ in (2)-(4). The accuracy of each
barrier refers to the sensitivity of the solutions to variations of that barrier.

Rate Barrier Accuracy

D 0.92 0.01

D′ 0.87 0.05

K 1.72 0.01

K′ 1.27 0.01


