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Extensive kinetic Monte Carlo simulations are presented for ballistic deposition (BD) in (1 + 1)
dimensions. Asymptotic scaling is found only for lattice sizes L ' 212. Such a large system size for
the onset of scaling explains the widespread discrepancies of previous reports for exponents of BD in
one and likely higher dimensions. The exponents obtained from our simulations, α = 0.499± 0.004
and β = 0.336 ± 0.004, are in excellent agreement with the exact values α = 1

2
and β = 1

3
for the

one-dimensional Kardar–Parisi–Zhang equation. Our findings enable a more informed exploration
of exponents for BD in higher dimensions, accurate estimates of which have proven to be elusive.
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Fluctuations of growing surfaces are often described by
idealized models [1–3] wherein the complex interactions
between atoms or molecules are replaced by simple tran-
sition rules on a lattice that abstract the essence of these
interactions. The appeal of such models stems from the
fact that their rules can be easily implemented in efficient
kinetic Monte Carlo (KMC) algorithms. This enables a
comprehensive analysis of their statistical characteristics,
which can be compared directly with experiments [4–6].
A complementary approach is based on postulating a

stochastic differential equation. Solutions of such equa-
tions typically focus on the asymptotic kinetic roughen-
ing regime, where the standard deviation W (L, t) of the
surface profile exhibits dynamic scaling [7]:

W (L, t) = [〈h2〉 − 〈h〉2]1/2 ∼ Lαf(t/Lz) . (1)

Here, h(x, t) is the surface height at position x and time
t, L is the lateral viewing scale, α is the roughness expo-
nent, z is the dynamic exponent, and f is a scaling func-
tion. At early times (t ≪ Lz), f(x) ∼ xβ and W ∼ tβ,
where β is the growth exponent and z = α/β. For long
times (t ≫ Lz) f → constant, so the saturated roughness
Wsat ∼ Lα. The connection to a lattice model is based
on comparing exponents and invoking universality [2].
The foregoing paradigm can be justified for many mod-

els [2, 8], but outstanding issues persist in some cases,
most notably, ballistic deposition (BD). Originally for-
mulated as a model for aggregation and sedimentation
[9, 10], BD is the prototypical model of nonconserved
growth, in which the volume of material over the sub-
strate is not equal to that deposited, in this case be-
cause of void formation. In classic BD [9, 10] a parti-
cle impinges on a randomly chosen lattice site and irre-
versibly attaches to the first vertical or lateral nearest
neighbor encountered. The updating algorithm for the
integer heights hi(n) at site i after n depositions is

hi(n+ 1) = max (hi−1(n), hi(n) + 1, hi+1(n)) , (2)

for i = 1, 2, . . . , L, where max(x, y, z) yields the maxi-
mum of the three arguments.

The continuum formulation of BD is thought to be the
Kardar-Parisi-Zhang (KPZ) equation [11],

∂u

∂t
= ν∇2u+ λ(∇u)2 + ξ , (3)

where u(x, t) is the deviation of the height from its mean
at position x and time t on a d-dimensional surface, ν is
the surface tension, λ is the “excess velocity,” and ξ is a
Gaussian noise with mean zero and covariance

〈ξ(x, t) ξ(x′, t′)〉 = 2Dδ(x− x
′)δ(t− t′) . (4)

Although among the first surface growth models to be
studied with KMC simulations [7], discrepancies remain
between the scaling properties of BD and the KPZ equa-
tion [12–14], even on one-dimensional (1D) surfaces.
Their relationship is even less certain in higher dimen-
sions [15–27], including the suggestion [28] that the two
models belong to different universality classes.
In this paper, we report the results of extensive KMC

simulations of BD on 1D lattices with up to 220 sites, well
beyond the onset of saturation, for up to 106 independent
realizations. In view of the pitfalls associated with hid-
den correlations in random number generators [29], which
may be especially acute for BD [13], we have used the
Mersenne Twister MT19937 [30, 31]. This pseudoran-
dom number generator has a period of 219937− 1, output
that is uniformly distributed in 623 dimensions, imply-
ing negligible serial correlation, and has passed the most
stringent statistical tests [32]. These properties, and its
computational efficiency, make the Mersenne Twister em-
inently suitable for large-scale KMC simulations.
The massive computational resources required for the

simulations reported here relied upon unconventional
“overnight office computing.” Social networking skills
were employed in the development of the Simulation
through Social Networking (STSN) project, in which 120-
130 computers were utilized for some nine months to
drive the KMC simulations of even the largest lattices
deep into the saturation region [33]. Details may be
found in Refs. [34, 35].
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FIG. 1: (Color online) Log-log plot of Wsat against L for the
data in Table I. Error bars are of the order of the symbol
size or smaller. The slope α = 0.499 ± 0.004 of a linear fit
to the data points for L = 212–216 (red dots) is in excellent
agreement with the KPZ value of 1

2
. The broken line indicates

the approximate range of system sizes used in previous work
(L = 24–212) for calculating α and the resulting slope.

Figure 1 shows a log-log plot of Wsat against L using
the data in Table I. Wsat was calculated by taking sam-
ples every 4τ to τ monolayers (ML), depending on the
lattice size, where τ ∼ L3/2 is the relaxation time [38],
to ensure that the data points were statistically indepen-
dent, and taking binned horizontal averages to alleviate
any drift in the data over time [2, 39]. Simulations for
L = 16, 384, L = 32, 768, and L = 65, 536 were carried
out for up to 33.5 × 106 layers, but many data points
were excluded because of the stretched exponential tail
in Wsat. Stretched exponential tails have also been ob-
served in the dynamical structure factor in the stationary
regime of the 1 + 1-dimensional KPZ equation [40, 42].
Most apparent from Fig. 1 is that an accurate estimate

of α requires system sizes beyond L = 211 because of the
slow approach to asymptotic scaling. For the smallest
systems there is appreciable deviation from the asymp-
totic behavior because of finite-size effects which persist
even to system sizes of 211. Our estimate of

α = 0.499± 0.004 , (5)

obtained from the fit between L = 212 and L = 216, cap-
tures the value of α = 1

2
for the 1D KPZ equation [11].

To our knowledge, this is the first time that the roughness
exponent of BD has been shown to agree with the KPZ
value (within the error bounds) directly from an analy-
sis of simulation data and without invoking any scaling
corrections [2, 14, 28]. To put our results into perspec-
tive, the line from L = 24 to L = 212 in Fig. 1 indicates
the approximate range and slope of the simulation data
used in previous work for calculating α, resulting in an
appreciable underestimate of this exponent.
The slow approach of α to its asymptotic value suggests

that a similar trend should be expected for β. However,
in contrast to the calculation of α, which requires sim-
ulations that extend well into the saturation regime to

TABLE I: The saturated roughness Wsat of 1D lattice sizes
L = 2n for n = 2, 3, . . . , 16 obtained from KMC simulations
with the indicated number of independent realizations. The
time t× to saturation is t× and ts indicates how far the sim-
ulations were continued into the saturation regime. Where
none is indicated, the calculated error is smaller than 10−2.

L Wsat Error Realizations t× (ML) ts (106 ML)

4 1.33 – 100,000 – 4
8 1.97 – 100,000 – 1

16 2.63 – 93,000 – 1
32 3.40 – 100,000 19.75 1
64 4.41 – 10,000 44.5 1

128 5.82 – 10,000 108 1
256 7.85 – 10,000 259 1
512 10.73 – 10,000 675 1

1,024 14.93 – 7,486 1900 1
2,048 20.95 0.03 1,010 5200 4.1
4,096 29.39 0.05 841 13700 4.1
8,192 41.58 0.1 253 38000 4.1

16,384 58.69 0.2 724 106500 10
32,768 84.09 0.2 407 297000 10
65,536 116.55 1.0 249 770000 10

obtain accurate values of Wsat, the problem in determin-
ing β is not computational overhead per se. Rather, the
difficulty lies in precisely delineating the limits of the
growth region [14] over which W ∼ tβ .
The growth times tg and the corresponding βL are

compiled in Table II. The most striking trend in these
data is the slow approach to the asymptotic value β = 1

3

[11], which is even more pronounced than that in Fig. 1.
Lattice sizes in excess of 218 are needed to obtain βL to
within 1% of the exact value. These observations can be
quantified by fitting the data to the scaling form [14]

βL = β +
A

Lλ
. (6)

The data in Table II yield (Fig. 2) A = −0.530± 0.128,
λ = 0.324± 0.043, and

β = 0.336± 0.004 (7)

for L = 210–217. The data for the largest lattices were
excluded from this fitting because of insufficient accuracy,
but the best fit still lies within their error bars.
In measuring tg, we have expanded the criteria sug-

gested by Reis [14] by using floating “beginning” and
“end” points for each lattice size and imposing a maxi-
mum time. Figure 3 shows a log-log plot of tg against
L with a linear fit of the data points from L = 216 to
L = 220. Only when the slope of this line, which we
call the “growth-time exponent” γ, reaches unity can
we say that the systems have reached the asymptotic
regime. The power-law growth regime is bounded by
(i) the (largely L-independent) transient regime, during
which the system first follows random deposition, be-
fore the BD rules determine the growth characteristics,
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TABLE II: The growth exponent βL and the associated error
for lattice sizes L = 2n, with n = 5, . . . , 20 obtained from
KMC simulations with the indicated number of realizations.
The corresponding growth time tg over which each βL is cal-
culated, and its error, are also shown.

L βL Error Realizations tg (ML) Error

32 0.176 0.01 1,000,000 2 1
64 0.20 0.02 1,000,000 4 5

128 0.224 0.006 1,000,000 10 5
256 0.254 0.002 1,000,000 20 5
512 0.270 0.002 1,000,000 80 10

1,024 0.280 0.002 100,000 284 10
2,048 0.2907 0.001 100,000 700 10
4,096 0.302 0.001 100,000 1,400 100
8,192 0.308 0.001 54,000 4,200 500

16,384 0.312 0.002 810 7,936 1,000
32,768 0.317 0.002 407 23,000 7,000
65,536 0.322 0.0005 800 61,000 4,000

131,072 0.325 0.002 105 130,000 10,000
262,144 0.323 0.01 9 260,000 50,000
524,288 0.334 0.005 2 520,000 100,000

1,048,576 0.332 0.005 2 1,040,000 200,000

and (ii) the approach to the saturation regime, which
is strongly L-dependent and corresponds to a deviation
from power-law behaviour of the surface width. For small
system sizes, the transient and saturation regimes are
sufficiently close together that the growth exponent de-
viates significantly from the asymptotic BD value (inset
to Fig. 3). But, as L increases, the time between the
transient and saturation regimes increases and eventu-
ally become sufficiently separated to enable true BD be-
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FIG. 2: (Color online) Effective growth exponents βL plotted
against Lλ for the data in Table II with optimized parameters
in the scaling form (6). System sizes L = 210–217 (red points)
were used in the fit, with smaller lattices (blue points) hav-
ing growth regions that are too short to give reliable results.
System sizes L = 218 and L = 220 (red circles) were excluded
from the fit because of insufficient accuracy. The data point
corresponding to L = 219 has been omitted for clarity.
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FIG. 3: (Color online) Log-log plot of tg against L for the
data in Table II. The slope γ = 1.02 ± 0.01 of a linear fit to
the data points from L = 216–220 (red dots) approaches unity,
indicating the onset of the asymptotic regime. Inset: Log-log
plot ofW against t for L = 1024, showing the transient regime
and approach to saturation (blue dots) bounding the growth
regime (red dots and gray shading). The slope of the linear
fit within the growth regime is βL = 0.280 ± 0.002.

haviour to develop. It is for these values of L that we
observe the slope of unity in Fig. 3.
The scaling relation (1) implies that plots of W/Lα

against t/Lz for different system sizes “collapse” onto
the universal scaling function f . Our estimate of z = α/β
from the values of α in (5) and β in (6) is z = 1.485±0.03
[41]. The KPZ value of z = 3

2
lies within the uncertainty

of this estimate. Figure 4 shows the data collapse for L =
214, 215, 216. The values of α for these sizes are well into
the asymptotic regime (Fig. 1) and the corresponding
values of β are within ∼0.01 of the asymptotic value of
β = 1

3
(Table II). We have used our best estimates of

α = 0.499 and β = 0.336 in this plot, but there are few
discernible differences if the exact values are used instead.
The high quality of this data collapse, which is indica-
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FIG. 4: (Color online) Data collapse for the roughness for
sizes L = 16, 384, L = 32, 768, and L = 65, 536 with α = 0.499
and z = 1.485 determined directly from our simulations. The
data points for each lattice size were taken at times t = 2k.
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tive both of the accuracy of our data and the fact that
these systems lie within the asymptotic scaling regime,
invites a comparison with the scaling function of the KPZ
model [43]. However, the disparity in the roughness of
the surfaces produced by the two models means that the
scaling functions are different. This does not preclude
the 1D BD model and KPZ equations from belonging to
the same universality class, but casts further doubt [28]
on the KPZ equation as the continuum expression of BD.
To summarize, we have used massive KMC simulations

of BD onto 1D surfaces to demonstrate the slow approach
of this system to the asymptotic scaling regime. The ex-
ponents α and β were shown to converge to the exact
values obtained from the KPZ equation, with systems of
up to 220 sites required for a clear indication of conver-
gence. We have used only a single random generator,
the Mersenne Twister MT19937, so our results shed no
light on the reason for the slow convergence. However,
given the long period of this random number generator

and its other statistical and operational properties, this
is likely an intrinsic property of BD. Future work on 1+1-
dimensional BD will focus on more detailed comparisons
between our simulations and numerical solutions of the
KPZ equation [42, 43].
We conclude with a few remarks about the implica-

tions of our results for simulations of BD in higher dimen-
sions. Preliminary simulations on two-dimensional sub-
strates suggest that the slow convergence toward asymp-
totic scaling persists for higher dimensional substrates,
but we have not yet determined the rate of convergence.
In this regard, a plot such as Fig. 3 is vital for indicating
if a particular system size exhibits statistical characteris-
tics of the asymptotic scaling regime. This will be taken
up in a future publication.
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[23] M. Lässig, Phys. Rev. Lett. 80, 2366 (1998).
[24] C. Castellano, M. Marsili, and L. Pietronero, Phys. Rev.

Lett. 80, 3527 (1998).
[25] E. Marinari, A. Pagnani, and G. Parisi, J. Phys. A: Math.

Gen. 33, 8181 (2000).
[26] F. Colaiori and M. A. Moore, Phys. Rev. Lett. 86, 3946

(2001).
[27] F. D. A. Aarão Reis, Phys. Rev. E 69, 021610 (2004).
[28] E. Katzav and M. Schwartz, Phys. Rev. E 70, 061608

(2004).
[29] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, Phys.

Rev. Lett. 69, 3382 (1992).
[30] M. Matsumoto and Y. Kurita, ACM Trans. Model. Com-

put. Simul. 2, 179 (1992).
[31] M. Matsumoto and T. Nishimura, ACM Trans. Model.

Comput. Simul. 8, 3 (1998).
[32] P. L’Ecuyer and R. Simard, ACM Trans. Math. Softw.

33, art. 22 (August 2007).
[33] Social computing is not a new concept. “Volunteer com-

puting” started in the mid-1990s [36] and, by the end of
that decade, expanded into the now well-known @home
projects in which many thousands of personal computers
work together on a single task [37]. STSN is a combina-
tion of volunteer and grid computing.

[34] http://www.iasbs.ac.ir/els/farnudi.
[35] B. Farnudi, Scaling and Universality in Deposi-

tion Models of Growth, PhD thesis, (University of
London, 2010, unpublished). Available online at:
http://www.imperial.ac.uk/research/cmth/research/

theses/.
[36] D. Anderson, ACM Queue 3(6), 18 (2005).
[37] Berkeley Open Infrastructure for Network Computing:

http://boinc.berkeley.edu.
[38] F. D. A. Aarão Reis, Physica A 316, 250 (2002).
[39] F. D. A. Aarão Reis, private communication.
[40] V. G. Miranda and F. D. A.Aarão Reis, Phys. Rev. E.

77, 031134 (2008).
[41] In fact, we may be able to calculate z from the stationary

structure factor, independently of α and β, as described
in Ref. [42] for the KPZ equation.

[42] E. Katzav and M. Schwartz, Phys. Rev. E 69, 052603
(2004).

[43] K. Ma and C. B. Yang, Mod. Phys. Lett. B 20, 697
(2006).


