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A corresponding-states framework for the description of the Mie family of intermolecular
potentials
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(Received 13 November 2014; accepted 25 February 2015)

The Mie (λr, λa) intermolecular pair potential has been suggested as an alternative to the traditional Lennard–Jones (12–6)
potential for modelling real systems both via simulation and theory as its implementation leads to an accuracy and flexibility
in the determination of thermophysical properties that cannot be obtained when potentials of fixed range are considered. An
additional advantage of using variable-range potentials is noted in the development of coarse-grained models where, as the
superatoms become larger, the effective potentials are seen to become softer. However, the larger number of parameters that
characterise the Mie potential (λr, λa, σ , ε) can hinder a rational study of the particular effects that each individual parameter
have on the observed thermodynamic properties and phase equilibria, and higher degeneracy of models is observed. Here
a three-parameter corresponding states model is presented in which a cohesive third parameter α is proposed following a
perturbation expansion and assuming a mean-field limit. It is shown that in this approximation the free energy of any two Mie
systems sharing the same value of α will be the same. The parameter α is an explicit function of the repulsive and attractive
exponents and consequently dictates the form of the intermolecular pair potential. Molecular dynamics simulations of a
variety of Mie systems over a range of values of α are carried out and the solid–liquid, liquid–vapour and vapour–solid phase
boundaries for the systems considered are presented. Using the simulation data, we confirm that systems of the same α exhibit
conformal phase behaviour for the fluid-phase properties as well as for the solid–fluid boundary, although larger differences
are noted in the solid region; these can be related to the approximations in the definition of the parameter. Furthermore, it
is found that the temperature range over which the vapour–liquid envelope of a given Mie system is stable follows a linear
dependency with α when expressed as the ratio of the critical–point temperature to the triple–point temperature. The limit
where potentials of the Mie family will not present a stable fluid envelope is predicted in terms of the parameter α and
the result is found to be in excellent agreement with previous studies. This unique relation between the fluid range and the
cohesive parameter α is shown to be useful to limit the pairs of Mie exponents that can be used in coarse-grained potentials
to treat real systems in order to obtain temperature ranges of stability for the fluid envelope consistent with experiment.

Keywords: corresponding states; conformality; Mie potential; global phase behaviour

1. Introduction

The pairwise approximation that is adopted from the out-
set in many statistical mechanics-based approaches (be it
theory or simulation) results in the need for proposing an
effective intermolecular pair potential to describe the in-
teractions between model particles. In the simplest models,
spherically symmetric potentials are used and it is acknowl-
edged that a balance of repulsive and attractive forces is
needed to reproduce the thermodynamic properties (specif-
ically the phase behaviour) of most real systems. This idea
is very nicely described by Lennard– Jones [1] in his semi-
nal ‘Cohesion’ paper where he writes: ‘There are in nature,
as in politics, two opposing forces. One of these aims at
a peaceful consolidation and the other at a more active
and probably more spectacular disruptive process.’ Well-
known examples of spherically symmetrical potentials that
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incorporate intermolecular repulsion and attraction are the
square-well (SW), Sutherland [2,3], Yukawa [4], Morse [5],
Buckingham [6] and, of course, the Lennard–Jones (LJ) [7]
models.

The latter is the most widely used for describing
the interaction of simple non–polar molecules. It can be
expressed as

uLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

, (1)

where r is the centre–centre distance, σ is the distance at
which the potential is zero, hence providing a lengthscale,
and ε is the potential energy well minimum. Addressing the
need for repulsive and attractive interactions, a repulsive
term proportional to r−12 and an attractive one proportional
to r−6 are built in. While there are theoretical arguments

C© 2015 The Author(s). Published by Taylor & Francis. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/Licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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2 N.S. Ramrattan et al.

to support the value of 6 for the attractive exponent [8,9],
there is no fundamental basis for the choice in the repulsive
form, and there has been some debate regarding 12 as being
an appropriate choice for describing the properties of real
substances. Lennard– Jones himself suggested the use of a
repulsive exponent of 13 1/3 to model argon [7]. It makes
sense then to recognise the somewhat empirical nature of
the LJ potential and to use both exponents as adjustable
parameters. Such a generalisation had already been hinted
from different arguments by Mie in 1903 [10]. In modern
form, the expression of the Mie potential can be given as

uMie(r) = Cε

[(σ

r

)λr −
(σ

r

)λa

]
, (2)

where

C =
(

λr

λr − λa

)(
λr

λa

)λa/(λr−λa )

, (3)

and λr and λa are the repulsive and attractive exponents,
respectively. The Mie intermolecular pair potential is there-
fore characterised uniquely by four parameters: the energy
well-depth ε, the characteristic length σ and the exponents,
which dictate the overall potential form. The additional
degrees of freedom provided by treating λr and λa as vari-
ables afford the Mie potential a better performance in de-
scribing the phase behaviour of complex systems as com-
pared to the traditional LJ model. An early recognition
of this was the implementation of the Mie potential for
the development of coarse-grained force fields for use in
computer simulation calculations by Klein and co-workers
[11–13]. More recently, Potoff and Bernard-Brunel [14]
have developed transferable united-atom force fields based
on (λr,6) Mie potentials that can be used to compute the
equilibrium thermodynamic properties of the n-alkane and
n-perfluoroalkane homologous series. They observe that by
altering the repulsive range of the potential an accurate de-
scription of the vapour pressures of these systems can be
provided while maintaining accuracy in the calculated val-
ues of the saturated liquid densities; the use of a fixed-range
LJ potential does not allow a similarly accurate description
of both equilibrium properties. A more detailed review of
the history of these classical empirical potentials has been
given in the introduction of Lafitte et al. [15] and in [16].

The parameterisation of force fields for the description
of real systems via computer simulation can be a time-
consuming iterative process and often only a limited amount
of experimental data are used in model development and
validation. This is one of the reasons that has made the LJ
potential so extensively used in force-field development; it
only requires two parameters to be adjusted, while the ex-
tent to which it might not provide a consistently accurate
representation of a range of thermodynamic properties has
only been highlighted recently. In a case study based on

CO2, the advantages of using coarse–grained force fields
based on Mie potentials has been highlighted [17]. In the
latter work, a single spherical Mie site is used to repro-
duce a broad range of thermodynamic properties such as
isotherms, vapour pressure, vapour–liquid equilibrium as
well as surface tension, enthalpy of vapourisation, coef-
ficient of thermal expansion, isothermal compressibility,
speed of sound and the Joule-Thomson coefficient over the
entire fluid range using molecular simulations. The param-
eterisation of the potential in [17] was carried out taking
advantage of an accurate equation of state (EOS), the statis-
tical associating fluid theory for potentials of variable range
(SAFT-VR) that effectively reproduces the simulation data
based on the Mie potential [15,18]. In implementations
of molecular models via analytical equations of state, the
evaluation of thermodynamic properties is computation-
ally very cheap, so that the parameters most suited for the
representation of the experimental properties of a given
substance or mixture can be obtained using fast numerical
methods to minimise defined objective functions that mea-
sure the deviation between the calculated and experimen-
tal data. Thus, usually a large amount of experimental data
over wide thermodynamic conditions can be used to develop
and validate the potential model parameters associated with
equations of state, though accuracy of the equation of state
can be an issue. The increasing interest in the Mie potential
has prompted the development of molecular-based equa-
tions of state that implement this potential [15,18–20]. The
SAFT-VR Mie equation of state [15] yields an evaluation
of the fluid thermodynamic properties that is effectively as
accurate as the simulated data as shown in [15,17]. Maginn
and co-workers have used the same single-site force field
of carbon dioxide to carry out extensive calculations of the
thermodynamic and transport properties of carbon dioxide
over broad thermodynamic conditions as well as in mixtures
with methane, and to compare with other force fields [21–
23]. Overall, the model is seen to perform very well, espe-
cially considering its simplicity. The same SAFT-VR Mie-
based coarse-graining methodology has been used to treat
n-alkanes, a refrigerant (HFO-1234yf), perfluoromethane
(CF4) and sulfur hexafluoride (SF6) [24], and benzene and
n-decylbenzene in another work [25]. A review of this top-
down parameterisation method is given in [26].

The works of Klein and co-workers [11–13], Potoff and
Bernard-Brunel [14] and those from our group [17,24,25]
showcase the advantages of using a generalised Lennard–
Jonesium (Mie) potential of varying exponents λr and λa

in the development of force fields for the description of
fluid properties of real systems. As the exponents change,
however, it is important to consider also the impact that the
choice of potential can have on the global stability of the
vapour–liquid equilibrium region. In 1992, Girifalco [27]
proposed an effective pair potential to describe the interac-
tions of between furellene (C60) molecules at high temper-
ature that was based on a Mie potential of steeper repulsion
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Molecular Physics 3

and shorter range than the traditional LJ form. A year later,
Hagen et al. [28] mapped out using computer simulation
calculations the phase diagram corresponding to the Giri-
falco model. They performed Gibbs-ensemble Monte Carlo
[29] simulations for the fluid phases and free energy cal-
culations coupled with the Gibbs–Duhem integration tech-
nique [30] for the solid-fluid transitions observing only the
solid and vapour phases to be stable (i.e., the liquid–vapour
envelope of the Girifalco potential is metastable). Since
then, further works have recognised that the existence of a
stable vapour–liquid coexistence region is directly linked
to the range of attraction and repulsion of the pair poten-
tial [31–34]. Hagen and Frenkel [31] performed computer
simulation calculations of the hard-core Yukawa family of
potentials and showed that a faster decaying attractive tail
in the potential leads to a widening of the solid–fluid region
and to a metastable fluid envelope. In terms of the Mie fam-
ily, Hasegawa [32] and Hasegawa and Ohno [33] carried out
variation perturbation calculations as well as density func-
tional theory calculations of freezing, respectively, to study
the family of (λr = 2λa, λa) systems. The two approaches
produced similar results and confirmed the relation of the
stability of the vapour–liquid equilibrium region and the
degree of attraction between particles. Lekkerkerker and
co-workers have also shown that the vapour–liquid critical
temperature is lowered by increasing the repulsive interac-
tion of the potential [34] and have proposed a predictive
method of finding the critical point of any Mie potential by
the use of the second virial coefficient, which they show to
be insensitive to the value of the repulsive exponent at the
critical temperature [35]. Furthermore, Ahmed and Sadus
[36] have carried out MD simulations to study the effect
of the repulsive exponent on the solid–fluid coexistence
and the triple–point properties (estimated by extrapolation)
for the (12,6), (11,6), (10,6), (9,6), (8,6) and (7,6) Mie
model systems. These values were then used to determine
the triple–point data for the infinitely repulsive case (λr

→ ∞). One of the most recent studies on the stability of
the liquid phase with variation of inter–particle repulsion
is an experimental study by Larsen and Zukoski [37], who,
through the analysis of colloidal interactions, find that the
range of attraction also plays a critical role in determining
whether a system will possess a stable liquid phase, hence
confirming previous simulation studies. They propose the
use of a variable which is a ratio of the energies of the liquid
and solid phases, which can be used to determine the stabil-
ity of the liquid phase. Unfortunately, the Mie potential is
not explicitly studied in their work, but the analysis provides
sound experimental evidence to elucidate the mechanisms
through which a system will exhibit a metastable liquid
state, liquid-like or solid-like behaviour.

Perhaps motivated by the larger number of parameters
that characterise the Mie potential as compared to the tra-
ditional LJ, it has also been of interest for sometime to
rationalise the behaviour of the Mie family of systems in

terms of a corresponding-states (CS) approach. Okumura
and Yonezawa [38] carried out molecular dynamics (MD)
simulations in the isobaric– isothermal ensemble combined
with calculations using the test-particle methods to calcu-
late the fluid–phase boundaries of the (λr, 6) family over
a range λr= 7–32 and show that the vapour–liquid en-
velopes of the fluids tested collapse to a master curve when
reduced with respect to critical properties; although they
also note a linear dependence of the critical properties on
the range of attraction of the potential model. Later, Orea
et al. [39] studied the vapour–liquid equilibrium and inter-
facial properties of several other combinations of repulsive
and attractive exponents using canonical Monte Carlo sim-
ulations. They present the saturated vapour–liquid curve,
surface tension plots and pressure–density plots in terms of
calculated/simulated critical properties of the respective flu-
ids using Tr = T/Tc for the reduced temperature, Pr = P/Pc

for the reduced pressure, ρr = ρ/ρc for the reduced density,
and γr = γ

ρ
2/3
c Tc

for the reduced surface tension. They note

that the resulting curves roughly align to a single master
curve for each of the properties considered, suggesting that
irrespective of the choice of potential exponents (λr and λa),
the family of Mie fluids can be characterised by σ and ε

alone (as would correspond to a two-parameter CS model).
However, this result is somewhat surprising, as it is known,
for example, that the SW family of potentials (for which
the attractive range is also variable) is non-conformal [40].

In contrast to the works of Orea et al. [39] and Okumura
and Yonezawa [38], there have been other studies which
suggest that the Mie family of systems may not follow
a simple two-parameter CS model. Bulavin and Kulinskii
[41] and Kulinskii [42] follow a theoretical analysis (which
is confirmed by the simulation data of Vliegenthart et al.
[34]) to propose the use of a third parameter z dependent
on the critical temperature of a given Mie fluid for the scal-
ing of properties of the Mie family of potentials. Galliéro
et al. [20,43], have also found a dependence of the reduced
pressure for (λr,6) fluids ranging from λr=10–20 with the
repulsive exponent. They show how reduced pressure, Pr,
of a given Mie fluid differs from the reduced pressure of
the LJ model (used as a reference for comparison); this dif-
ference is noted to increase with the increasing density. In
a later study of the interfacial properties of the Mie fam-
ily of fluids, it is however shown that a unique scaling law
can be proposed that leads to an accurate estimation of the
interfacial tension of these systems [44].

These apparently contradicting CS studies and the re-
cent interest in the use of Mie potentials to describe real
systems prompt our current work. We examine the global
(solid–liquid–vapour) phase diagram of these systems and
propose a criterion for the characterisation of potentials
based on satisfying the experimental fluid range (defined as
the range of temperatures over which the gas–liquid enve-
lope is stable, limited by the solid–liquid–vapour triple point
temperature and the vapour–liquid critical temperature). We
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4 N.S. Ramrattan et al.

show that through the use of the integrated mean–field en-
ergy, the Mie family of potentials can be formulated, to an
approximation, as a three-parameter CS model. The model
presented is validated against MD simulations, which are
carried out to determine the global (solid–liquid–vapour)
phase behaviour of several Mie systems. The third parame-
ter presented relates the repulsive and attractive exponents
of the potential and can be related to the experimental fluid
range of a given substance. The methodology through which
we define the conformality of Mie systems and the deriva-
tion of the third parameter is presented in Section 2. In
Section 3, the computer simulation details are summarised
and results are provided in Section 4.

2. The corresponding-states principle and
conformality through the free energy

The CS principle is based on the underlying assumption
that there is a common functional form that can be used to
describe the thermodynamic properties of any fluid, regard-
less of the substance. It was first suggested theoretically by
van der Waals [45] who derived it from his well-known
EOS in the following form:

Pr = 8Tr

(3Vr − 1)
−

(
3

V 2
r

)
, (4)

where a reduced temperature Tr = T/Tc, volume Vr = V/Vc

and pressure Pr = P/Pc are defined in terms of their respec-
tive critical properties Tc, Pc and Vc. A key contribution
of the CS idea is that the experimentally known configura-
tional properties of a few substances can be used to predict
the values of the same properties for fluids which have not
been studied experimentally. It was by following these sug-
gestions that Kamerlingh-Onnes [46] first liquified helium.
The pioneering experimental studies of Guggenheim [47]
and Su [48] provided evidence that the properties of simple
fluids can be shown to follow a unique master curve when
reduced with respect to their critical properties. The work
of Guggenheim, in particular, is noteworthy as it was the
first experimental work to analyse thermophysical proper-
ties such as the vapour–liquid curve, second virial coeffi-
cient, Boyle point, vapour pressure, entropy of vapour, co-
efficients of thermal expansion, triple–point properties and
surface tension of liquid argon, krypton, xenon and neon
systematically. The thermodynamic properties studied for
these substances were found to follow the CS principle. Ni-
trogen, oxygen, carbon monoxide and methane were also
analysed [47] and were also found to conform to a unique
vapour–liquid curve. Guggenheim also noted that although
the fluid phases follow the CS principle, this was not true
for the solid phase.

It is important to note that the CS principle is not a
universal law but rather an experimental observation valid
within a range of conditions and for substances of similar

morphology and chemical nature. This is noted by con-
trasting the excellent agreement shown by the noble gases
when tested against the list of properties investigated by
Guggenheim, with that of more complex fluids and for a
number of other properties, the conformal behaviour is not
followed as precisely. For example, even simple almost-
spherical compounds such as CH4 do not follow quantita-
tively the reduced properties of the noble gases. Although
the CS principle was originally an empirical observation,
a statistical mechanics basis for the idea was provided by
Pitzer [49] in 1939. His work clarified the approximations
made and confirmed that the CS principle should be ex-
tendable to more complex systems [50]. The derivation of
the CS principle from statistical mechanics along with the
assumptions which are commonly applied can be found in a
review by Leland and Chapplear [51] and in [50] alongside
the original paper [49]. Although we do not study mixtures
in this work, we mention briefly at this point the interesting
works of Longuet-Higgins [52] in the development of the
theory of conformal solutions, which constitutes an exten-
sion of the principle of CS and the relation presented by
Pitzer [49], and the work of Brown [53] who specifically
considered mixtures of spherical particles interacting via
LJ potentials of general form (Mie potentials).

The key assumption of Pitzer is the existence of a uni-
versal function of a pairwise potential for two spherically
symmetric particles which can be non-dimensionalised in
terms of the model parameters characteristic for a given
substance. In two-parameter CS models, the underlying
assumption is that for most simple spherical fluids only
repulsive and dispersive forces are important; hence two
scales, one of energy and the other of distance, are deemed
sufficient to map the fluid behaviour. The molecular re-
quirements that must be satisfied for a system to obey the
CS principle in its simplest form are outlined in the original
paper [49]. The two independent scaling parameters (ε and
σ ) may then be employed to non-dimensionalise (reduce)
macroscopic properties. For example, dimensionless vari-
ables T∗ = kBT/ε, P∗ = Pσ 3/ε and ρ∗ = ρσ 3 are proposed
relating the intermolecular potential parameters ε and σ to
experimental properties. Using these variables the EOS can
be expressed in the form

P ∗ = f (T ∗, ρ∗). (5)

A direct application of this concept is the determination of
the molecular model parameters using the EOS to compare
experimental and calculated fluid properties for different
sets of parameters [50]. Note that the EOS does not need to
have an analytical form; computer simulation data can be
used equally. Moreover, note that if two (or more) systems
can be described by the same expression of the free energy
at given reduced temperature and density, they will also
have identical macroscopic thermodynamic properties and
in essence they will be conformal [49]. This concept has
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Molecular Physics 5

been previously applied to a range of fluids such as SW,
Yukawa, Sutherland and Mie systems [54].

We hence start with a plausible set of descriptors for the
free energy of simple fluids, namely the Barker–Henderson
(BH) [55,56] perturbation theory, carrying out a high-
temperature expansion of the Helmholtz free energy to first
order for the Mie pair potential. In the perturbation theory
of BH, the full pair potential is treated as the sum of a
reference system u0(r) and a perturbation term u1(r), i.e.,

uMie(r) = u0(r) + u1(r). (6)

In the case of a Mie potential as written in Equation (2),

u0(r) =
{
uMie(r) r ≤ σ

0 r > σ,
(7)

and

u1(r) =
{

0 r ≤ σ

uMie(r) r > σ.
(8)

Barker and Henderson [55,56] showed that it is then
possible to write the Helmholtz free energy A of the full sys-
tem as a high-temperature expansion of free energy terms.
Each of the residual terms is dependent on the correspond-
ing thermodynamic variables and pair potential parameters.
Thus,

a(T , ρ; σ, ε, λr , λa) = aid(T , ρ) + a0(T , ρ; σ, λr , λa)

+βa1(T , ρ; σ, ε, λr , λa)

+O(β2) + · · · , (9)

where a = A/(NkBT), aid corresponds to the ideal free en-
ergy, a0 to the free energy of the reference system and a1

to the first-order perturbation term, with β representing the
inverse of temperature β = 1/(kBT), kB is the Boltzmann
constant, N the number of particles and ρ = N/V the number
density. The second-order and higher-order terms of the ex-
pansion are neglected here. We follow from this expression
to show, to a level of approximation, that the family of Mie
potentials can be reduced to a three-parameter CS model.

We assume that although free energy of the reference
term is strictly a function of σ , λr and λa, the potential is
steep enough to be treated as repulsive potential function
of σ (and density) only,

a0(T , ρ; σ, λr , λa) ≈ aHS
0 (T , ρ; σ ), (10)

where aHS
0 refers to a purely repulsive hard-sphere system.

The impact of this approximation will be apparent later.
This free energy if needed, may be evaluated via an accurate
equation of state such as that of Carnahan and Starling
[57] for a fluid or the Hall equation for solids [58] or via
computer simulation. We also note here that a very accurate

evaluation of the Helmholtz free energy of a fluid mixture of
hard spheres can be obtained with the equation of state first
presented by Thomas Boublı́k [59], to whom this Special
Issue is dedicated.

The first–order perturbation term is given as [55,56]

a1(T , ρ; σ, ε, λr , λa) = 2πρ

∫ ∞

σ

g0(r)u1(r)r2dr, (11)

where g0(r) is the radial distribution function of the corre-
sponding reference system. If a mean–field approximation
is assumed, where g0(r) = 1, the first–order perturbation
term is then given as

aMF
1 = −2πρεσ 3C

[(
1

λa − 3

)
−

(
1

λr − 3

)]
, (12)

which allows to define a new parameter

α = C
[(

1

λa − 3

)
−

(
1

λr − 3

)]
(13)

that relates the repulsive and attractive exponents of the po-
tential, and to write the first–order mean-field perturbation
term as

aMF
1 (T , ρ; ε, σ, α) = −2πρεσ 3α. (14)

We note, of course, that a mean-field treatment of the solid
phase will be less accurate than in the fluid phases.

Examining the arguments above, it can be seen that at
a given temperature and density Mie systems of the same
ε, σ and α will have the same free energy; hence the same
properties and therefore will be conformal. The parameter
α depends solely on the repulsive and attractive exponents
of the pair potential and constitutes a dimensionless third
parameter that determines the free energy of the Mie fluid
under consideration. This derivation suggests that the Mie
potential is not conformal for any given pair of exponents
(λr, λa) but rather only for those that yield the same value
of α. This result also suggests that the Mie family cannot be
universally mapped to a unique master curve as an exclusive
function of ε and σ as suggested by Orea et al. [39] and
Okumura and Yonezawa [38]. In the following sections, we
carry out MD simulations to study Mie systems of varying
α to investigate this proposition.

3. Simulation details

MD simulations are performed to determine the phase
boundaries of a number of systems interacting via Mie
pair potentials selected in terms of the value of the pa-
rameter α presented above. The MD code DL_POLY (ver-
sion 2.20) [60] is used to perform all calculations, with the
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6 N.S. Ramrattan et al.

Nosé–Hoover thermostat implemented to ensure an aver-
age constant temperature throughout the timescale of each
simulation. The equations of motion are integrated using
the velocity Verlet algorithm using periodic boundary con-
ditions in the three directions. The system sizes are chosen
such that finite size effects are negligible and a cut–off
radius of 5σ is employed. No long–range corrections are
employed in any of the states considered. A longer cut-off
radius (7σ ) was investigated and did not result in any signif-
icant change of the calculated coexisting densities (within
the error of the simulations) even for the softest (longest
range) potential employed, hence validating the exclusion
of long-range corrections.

The vapour–liquid phase boundary was determined
carrying out canonical NVT simulations with N = 2400
particles in an orthorhombic box of relative dimensions
Lx = Ly = L and Lz ≥ 3L. An initial unstable configuration
inside the phase boundary is prepared at low temperature,
once phase separation is achieved, simulations of increasing
temperature are performed, each from the previous config-
uration. Each state point is run for 106 time steps (time
steps of δt = �t(ε/(mσ 2))1/2 = 0.02, where δ t is the time
step in seconds with the first 40% of the configurations
discarded to ensure equilibration. The liquid– vapour coex-
istence densities are obtained from the density profile taken
along the z–axis of the simulation box at each temperature.
The vapour pressure is obtained from the Pzz component
of the pressure tensor, normal to the interface, obtained via
the virial route. Values for the critical temperature T ∗

c and
density ρ∗

c are obtained by fitting to subcritical data, using
the simulation results for the liquid and vapour densities
and the relations [61]:

ρ∗
l = ρ∗

c + C2

∣∣∣∣1 − T ∗

T ∗
c

∣∣∣∣ + 1

2
B0

∣∣∣∣1 − T ∗

T ∗
c

∣∣∣∣
β

(15)

and

ρ∗
v = ρ∗

c + C2

∣∣∣∣1 − T ∗

T ∗
c

∣∣∣∣ − 1

2
B0

∣∣∣∣1 − T ∗

T ∗
c

∣∣∣∣
β

, (16)

where ρ∗
l and ρ∗

v are the liquid and vapour coexistence den-
sities at temperature T∗. The critical density and coefficients
B0 and C2 are constants to be determined, and β = 0.325 is
the universal critical exponent obtained from renormalisa-
tion group theory. The critical pressure P ∗

c is obtained by
extrapolation using the Clausius–Clapeyron equation.

The solid–fluid equilibrium boundary is particularly
difficult to obtain from computer simulation due to the
timescales involved and the high density of the phases.
Here we use a direct simulation method in which the two
phases are in contact in one simulation box. We refer to
our method as the ‘freeze’ method [62]. A number of sim-
ilar direct simulation methods for the solid–fluid boundary
have already been presented by other authors and have been

shown to be accurate [63–65]. It is worth mentioning also
the recent work of Nayhouse et al. [66] who have proposed
a new method for the determination of solid–liquid bound-
aries based on cell models. In our direct approach, the solid
and liquid phases are in contact in a 4 × 1 simulation
box. The method allows for an accurate determination of
solid–fluid coexistence properties by combining pure solid
and fluid phases at estimated conditions close to coexis-
tence, which reduces the time required for the solid phase
to melt and for the formation of a stable interface and phase
equilibrium to be established. In order to select an appropri-
ate initial state with the correct solid structure and overall
appropriate density (corresponding to a density inside the
phase boundaries), preliminary simulations are carried out
in the isobaric–isothermal ensemble at different temper-
atures along an isobar. A solid phase is prepared starting
from an fcc lattice at low temperature and is slowly heated at
constant pressure until melting is observed; constant stress
simulations are carried out to allow for deformations of the
box. A cooling isobar is also run, starting from a gas-like
configuration at high temperature which is cooled along the
isobar until a discontinuous change in density is observed.
A hysteresis region is usually observed, and a temperature
and total density inside the hysteresis region are then se-
lected.

The last stable solid configuration of the heating branch
is replicated four times along the z–direction of the simula-
tion box. Half of this system is ‘frozen’ (i.e., the particles
in one half of the box are at this point fixed in space). A
number of molecules in the other half of the box, which
are allowed to move in the usual way, are then removed
[67]. The number of molecules to be deleted is calculated
from the estimated total density inside the metastable re-
gion identified in the preliminary simulations locating the
hysteresis region. This configuration is run in the canonical
NVT ensemble, 106 time steps are usually enough to induce
melting in the region of lower density where the particles
have been deleted. The solid molecules are then ‘unfrozen’
and the complete system is run for another 5 × 106 time
steps, with 20% of these discarded for equilibration. The
density profile of a successful simulation presents two well-
defined plateaus corresponding to the densities of the two
coexisting phases. If the entire simulation either melts or
freezes, an iterative process is implemented to either reduce
or increase the number of molecules that are removed from
the replicated cells and the procedure repeated until coexis-
tence is obtained. The equilibrium pressure is obtained from
the normal component of the pressure tensor, and to
ensure the accuracy of the calculation, single-site NVT
simulations at the coexistence densities obtained from the
density profile are also carried out and the pressures are
checked. Once an accurate coexistence point is obtained,
the Gibbs–Duhem integration method [30] is implemented
to trace the solid–fluid boundaries at other pressures, al-
though we note that in cases in which the solid–fluid
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Molecular Physics 7

boundaries are very steep, it is found to be more com-
putationally efficient to heat/cool the known coexistence
point with the two phases in direct contact.

The solid–vapour equilibrium boundaries are deter-
mined assuming coexistence between a solid phase and
a gas, using constant stress NσT simulations [68] at zero
pressure over a period of 106 time steps with the first 40%
being discarded to ensure equilibration. For all simulations
performed, the error in the calculation is also determined.
For pure phase NPT or NσT simulations, the associated
error in the density is obtained from the fluctuation in the
size of the simulation cell. For pure phase NVT simulations,
the error in the pressure is obtained from the fluctuations
in the pressure tensor. For NVT phase coexistence simu-
lations, the error in the coexisting densities is calculated
as the maximum deviation from the averaged coexistence
value obtained from the density profile. These are found
to be of the order of 10−3 in all cases. The triple point
is estimated from the intercept of the liquid boundaries of
the vapour–liquid envelope and the solid–liquid boundary
using best-fit trendlines. A larger error that 10−3 can be
expected for these data.

4. Results

4.1. Validation of the use of α to determine
conformal Mie systems

We have discussed in Section 2 how a parameter α (Equa-
tion (13)) can be proposed such that systems of the Mie
family of pair potentials with the same α will exhibit
the same thermodynamic properties, and hence the same
phase behaviour. To validate this idea we calculate the
fluid-phase coexistence properties (saturation densities and
vapour pressure) of four Mie fluids which are characterised
by different exponents (λr,λa) but that correspond to two
values of α as calculated via Equation (13). The first sys-
tem considered (Model 1) is inspired by the coarse–grained
model of CO2 presented in [24], where a single-site Mie po-
tential of repulsive exponent λr = 26.00 and attractive ex-
ponent λa = 6.66 was shown to yield accurate single-phase
and coexistence properties over a wide range of thermo-
dynamic conditions, including thermodynamic states not
used in the parametrisation of the model. This model has
a value of α corresponding to α = 0.521. A second Mie
pair-potential model (Model 2) with the same value of α but
different exponents (λr = 14.65 and λa = 8.00) is selected
in order to compare the thermodynamic properties of the
two systems. In addition, the phase behaviour of these two
fluids is also compared to that of the LJ (12.00, 6.00) model
which has a corresponding α = 0.889 and a third model
system (Model 3) characterised by exponents (9.16,7.00)
which shares the same value of α = 0.889 as the LJ model.

In Figure 1(a), the vapour–liquid equilibrium bound-
aries for the four models are presented as temperature–
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(a)

Figure 1. Temperature-density fluid-phase coexistence data ob-
tained by molecular dynamics simulations for Mie potentials:
(23.00, 6.66), Model 1, with corresponding α = 0.521 (green
triangles); (14.65,8.00), Model 2, with the same corresponding
α = 0.521 (purple circles); Lennard-Jones (12.00,6.00) potential,
with corresponding α = 0.890 (blue diamonds); and (9.16, 7.00),
Model 3, with corresponding α = 0.890 (red asterisks). (a) The
temperature and density are reduced with respect to the corre-
sponding critical temperature and density; (b) standard dimen-
sionless units T∗ = kBT/ε and ρ∗ = ρσ 3 are used. The estimated
critical points are indicated with crosses of each respective colour.

density phase diagrams. In Figure 1(a), the properties are
scaled in terms of each of the corresponding critical tem-
peratures and densities (Tr=T ∗/T ∗

c and ρr = ρ∗/ρ∗
c ) (cf.

Table 1 for the calculated critical states). The fluid-phase
boundaries of the four systems in this representation over-
lap on one unique curve, in accordance with the findings of
Orea et al. [39] and Okumura and Yonezawa [38]. The na-
ture of the representation, however, masks some important
differences. If the fluid properties are represented in terms
of their natural dimensionless variables (Figure 1(b)), it is
evident that the LJ system and Model 3, both with cor-
responding α = 0.889, exhibit a very different phase be-
haviour to that of Models 1 and 2 (of α = 0.521), which
have a lower critical temperature in these units, and there-
fore, cannot be said to be conformal with Model 3 or the
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8 N.S. Ramrattan et al.

Table 1. Vapour-liquid critical properties of Mie intermolecular
potential models of repulsive exponent λr and attractive exponent
λa. Models of the same value of α (cf. Equation (13)) present
close-to-conformal critical properties. T ∗

c = kTc/ε is the critical
temperature, ρ∗

c = ρcσ
3 the critical density and P ∗

c = Pσ 3/ε the
critical pressure.

Model λr λa α T ∗
c ρ∗

c P ∗
c

1 23.00 6.66 0.521 0.864 0.346 0.087
2 14.65 8.00 0.521 0.862 0.338 0.080
LJ 12.00 6.00 0.890 1.312 0.312 0.119
3 9.16 7.00 0.890 1.306 0.312 0.118

LJ model. It is clear, however, that each of the pairs with
the same value of the parameter α displays conformal be-
haviour in the T∗ − ρ∗ space, as suggested by Equation
(12).

The vapour pressures of the four Mie model potentials
were also obtained and are shown in Figure 2. In Figure 2(a),
the properties are scaled with respect to the corresponding
critical temperature and pressure. It is interesting to note
that the vapour pressures of the four models, even when
reduced with the respective critical properties, do not map
onto a unique curve. Instead, two different curves result:
higher vapour pressures correspond to the two models with
α = 0.889 (the LJ system and Model 3); and lower vapour
pressures for Models 1 and 2 characterised by a lower value
of α = 0.521. The four curves are seen to converge at
the critical point given the choice of scaling in this repre-
sentation. In Figure 2(b), the vapour pressures of the four
systems are presented in P∗ and T∗ units and the confor-
mal behaviour of the LJ model and Model 3 on the one
hand, and that of Models 1 and 2 on the other, is clearly
appreciated. This result rationalises the findings of Galliéro
et al. [43] who suggested that the vapour pressures of the
family of Mie fluids would not follow the CS principle for
any arbitrary pairing of exponents; this is consistent with
our result in this work, where we demonstrate that only
pairs of (λr, λa) corresponding to the same α follow a CS
behaviour.

Having confirmed the usefulness of the parameter α

to characterise the family of Mie pair potentials, we con-
tinue to study now the global (solid, liquid, vapour) phase
behaviour of the family for a range of values of this param-
eter. In Figure 3, the vapour–liquid and solid–fluid phase
boundaries are presented, and from these the triple–point
temperature, critical–point temperature and the range of
temperatures over which the fluid envelope is stable (the
‘fluid range’) can be seen. In the figure, the phase bound-
aries of Models 1 and 2, which are conformal as shown in
the previous figures in terms of their fluid phase behaviour,
are compared to those of the LJ model. In considering the
solid phase now it can be seen, that the unique phase be-
haviour seen in Figure 1(a) does not follow for the solid
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Figure 2. Vapour-pressure data obtained by molecular dynamics
simulations for Mie potentials: (23.00, 6.66), Model 1, with cor-
responding α = 0.521 (green triangles); (14.65,8.00), Model 2,
with the same corresponding α = 0.521 (purple circles); Lennard-
Jones (12.00,6.00) potential, with corresponding α = 0.890 (blue
diamonds); and (9.16, 7.00), Model 3, with corresponding α =
0.890 (red asterisks). (a) The pressure and temperature are reduced
with respect to the corresponding critical states; (b) standard di-
mensionless units P∗ = Pσ 3/ε and T∗ = kBT/ε are used.

boundaries even in the representation in terms of the criti-
cal conditions. The triple–point temperatures T ∗

t of Models
1 and 2 are very close, and therefore, the fluid range T ∗

c /T ∗
t

of the two systems is also very similar; the small differ-
ences are likely to be caused by the approximations we have
made in the determination of the α parameter. In contrast,
the LJ model exhibits a distinctly lower triple temperature
and larger fluid range. In Figure 3(b), a similar result is
observed when the properties are expressed in units of ε

and σ : a much larger fluid envelope is evident for the LJ
model by comparison to those of Models 1 and 2. These
phase diagrams highlight the non-conformal nature of the
solid phase, as originally suggested by Guggenheim [47],
but also confirm the validity of our proposed parameter α

in rationalising the phase behaviour of the Mie family of
potentials, even including the solid–phase behaviour. The
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Figure 3. Temperature-density fluid-phase and solid–phase co-
existence data obtained by molecular dynamics simulations of two
conformal Mie potentials with corresponding α = 0.521: (23.00,
6.66), Model 1, (green triangles) and (14.65,8.00), Model 2, (pur-
ple circles). Coexistence data for the Lennard-Jones (12.00,6.00)
potential, with corresponding α = 0.890 (blue diamonds) are
shown for comparison. (a) The temperature and density are re-
duced with respect to the corresponding critical states; (b) stan-
dard dimensionless units T∗ = kBT/ε and ρ∗ = ρσ 3 are used.
The estimated critical points are indicated with crosses of each
respective colour.

expression for α presented here is defined strictly from the
integration of the average cohesive energy of the potential,
with the integration carried out from a value of σ (for which
the potential is zero) spanning into the attractive well of the
potential to infinite distance under a mean-field approxima-
tion. The particles in the solid phase explore the repulsive
(r < σ ) region of the potential, and as a result of this, details
of the repulsive part of the potential are especially impor-
tant in the calculation of properties of the solid phase. In
our derivation of Section 2, the reference repulsive system
was approximated to a hard-sphere system, dependent only
on the value of σ (and density) but not on the value of λr;
the impact of this approximation, together with the mean-
field assumption, can be seen here in the small differences

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30 40 50
r

(8.00,6.00)

(9.85,6.00)

(12.00,6.00)

(15.58,6.00)

(32.53,6.00)

(23,6.66)

(19.02,8.80)

(42.50,8.80)

Figure 4. Variation of α as a function of repulsive exponent λr

of the Mie potential. The purple curve corresponds to (λr, 8.80)
potentials, the blue curve to (λr, 7.50) potentials, the red curve to
(λr, 6.66) potentials and the green curve to (λr, 6.00) potentials.
The black crosses indicate the particular potentials chosen in this
work for the calculation of their phase boundaries via computer
simulation.

observed for the solid boundary properties of Models 1
and 2.

4.2. Phase behaviour trends of Mie family of pair
potentials

At this point, we select a number of Mie pair potentials of
varying range of attraction and which are characterised by
unique values of α, and calculate their phase coexistence
properties using MD simulations. The systems considered
span distinct ranges of the pair potentials from a soft, slow-
decaying, attractive tail to a very short-ranged attraction.
The parameter space considered is presented in Figure 4
with the systems selected highlighted. The softest potential
studied is a Mie (8.00,6.00) model (corresponding to α =
1.264) and the most repulsive potential considered is a Mie
(42.00,8.80) (corresponding to α = 0.280). In particular,

Table 2. Selected Mie pair potentials with exponents λr and λa

and their corresponding α (cf. Equation (13)) value. The critical-
point and triple–point temperatures obtained from the analysis of
molecular dynamics simulation are presented as well as their ratio
T ∗

c /T ∗
t which provides an indication of the stability range of the

vapour-liquid phase envelope.

λr λa α T ∗
c T ∗

t
T ∗
c

T ∗
t

8.00 6.00 1.264 1.743 0.706 2.469
9.85 6.00 1.038 1.456 0.680 2.141

12.00 6.00 0.890 1.312 0.694 1.890
15.58 6.00 0.750 1.113 0.675 1.649
32.53 6.00 0.538 0.869 0.635 1.369
23.00 6.66 0.521 0.864 0.636 1.358
19.02 8.80 0.398 0.735 0.600 1.225
42.50 8.80 0.280 0.585 0.572 1.023
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10 N.S. Ramrattan et al.

Table 3. Coexistence densities of the gas ρ∗
g , liquid ρ∗

l and
solid ρ∗

s phases calculated via computer simulation for the Mie
(8.00,6.00) potential at temperatures T∗. The type of phase equi-
librium is indicated in the last column along with the estimated (∗)
triple and critical points. The error is given in square parentheses
(e.g., 1.028[9] = 1.028 ± 0.009).

T∗ ρ∗
g ρ∗

l ρ∗
s Phases

0.450 ∼0 1.028[9] SVE
0.500 ∼0 1.020[1] SVE
0.550 ∼0 1.010[6] SVE
0.600 ∼0 1.000[7] SVE
0.650 ∼0 0.990[3] SVE
0.706 0.00016 0.892 0.978 Triple point∗

0.800 0.00074[3] 0.862[1] VLE
0.807 0.924[1] 0.987[9] SFE
0.850 0.0012[7] 0.846[4] VLE
0.900 0.0021[2] 0.830[3] VLE
0.950 0.0042[6] 0.815[1] VLE
1.050 0.007[1] 0.782[6] VLE
1.100 0.0107[9] 0.766[2] VLE
1.150 0.014[1] 0.748[6] VLE
1.200 0.017[7] 0.730[4] VLE
1.250 0.022[2] 0.711[9] VLE
1.300 0.027[9] 0.692[7] VLE
1.350 0.037[1] 0.671[9] VLE
1.400 0.046[5] 0.652[2] VLE
1.500 0.068[9] 0.601[6] VLE
1.600 0.115[9] 0.546[7] VLE
1.743 0.296 0.296 Critical point∗

seven systems are presented, and the specific values of the
exponents (λr, λa), the critical–point temperatures, triple–
point temperatures and fluid ranges are listed in Table 2
(the LJ potential is included for comparison). Using the
simulation methodology outlined earlier, the solid–, liquid–
and vapour-phase boundaries are calculated carrying out
MD simulations; the results are presented in Tables 3–7 for
a number of selected systems.

In Figure 5, the vapour–liquid, solid–liquid and solid–
vapour phase boundaries for each of the potentials are pre-
sented in temperature–density phase diagrams. A represen-
tation in T ∗/T ∗

c units results in an almost unique vapour-
liquid equilibrium (VLE) envelope of all potentials (with
small differences noted for the gas boundary). This type of
representation led Okumura and Yonezawa [38] and sub-
sequently others to suggest that the family of Mie poten-
tials was conformal for any arbitrary value of exponents.
When the solid–liquid boundary is also inspected, however,
marked differences in the phase behaviour of the systems
can be seen, as we noted already in Figure 3. The range of
temperatures between the triple point and critical point (the
fluid range, T ∗

c /T ∗
t ) varies significantly for the different

exponent pairs considered. A trend may be appreciated in
the figure suggesting that smaller values of the parameter α,
which corresponds to a reduced attractive integrated energy
of the potential, leads to a smaller range of temperatures
over which the fluid phase is stable. The trend leading to

Table 4. Coexistence densities of the gas ρ∗
g , liquid ρ∗

l and
solid ρ∗

s phases calculated via computer simulation for the Mie
(9.85,6.00) potential at temperatures T∗. Metastable points are
highlighted with parentheses and the type of equilibrium is in-
dicated in the last column along with the estimated (∗) triple
and critical points. The error is given in square parentheses (e.g.,
1.009[1] = 1.009 ± 0.001).

T∗ ρ∗
g ρ∗

l ρ∗
s Phases

0.450 ∼0 1.009[1] SVE
0.500 ∼0 0.999[1] SVE
0.550 ∼0 0.988[5] SVE
0.600 (0.00009[1]) (0.895) VLE
0.600 ∼0 0.977[1] SVE
0.650 (0.00044[9]) (0.873[5]) VLE
0.680 ∼0 0.869 0.967 Triple point∗

0.700 0.870[3] 0.969[6] SFE
0.700 0.0011[1] 0.856[8] VLE
0.800 0.0028[1] 0.820[6] VLE
0.800 0.897[1] 0.983[2] SFE
0.850 0.912[1] 0.994[1] SFE
0.900 0.0080[5] 0.780[9] VLE
0.900 0.923[9] 0.998[6] SFE
1.000 0.0154[3] 0.739[1] VLE
1.000 0.946[8] 1.016[3] SFE
1.100 0.0297[7] 0.692[9] VLE
1.200 0.050[9] 0.641[7] VLE
1.300 0.0844[8] 0.578[8] VLE
1.456 0.293 0.293 Critical point∗

Table 5. Coexistence densities of the gas ρ∗
g , liquid ρ∗

l and
solid ρ∗

s phases calculated via computer simulation for the Mie
(15.58,6.00) potential at temperatures T∗. Metastable points are
highlighted with parentheses and the type of equilibrium is in-
dicated in the last column along with the estimated (∗) triple
and critical points. The error is given in square parentheses (e.g.,
1.022[2] = 1.022 ± 0.002).

T∗ ρ∗
g ρ∗

l ρ∗
s Phases

0.450 ∼0 1.022[2] SVE
0.500 ∼0 1.011[2] SVE
0.550 ∼0 0.996[9] SVE
0.600 ∼0 0.985[7] SVE
0.650 ∼0 0.979[2] SVE
0.650 (0.00030[7]) (0.845[2]) VLE
0.675 ∼0 0.830 0.978 Triple point∗

0.700 0.0062[2] 0.817[4] VLE
0.700 0.838[4] 0.979[1] SFE
0.750 0.851[6] 0.980[1] SFE
0.800 0.865[1] 0.982[6] SFE
0.800 0.0014[7] 0.759[7] VLE
0.850 0.874[7] 0.984[9] SFE
0.900 0.886[1] 0.987[3] SFE
0.900 0.037[5] 0.693[6] VLE
1.000 0.084[6] 0.609[9] VLE
1.000 0.903[2] 0.996[2] SFE
1.050 0.148[5] 0.559[2] VLE
1.100 0.920[3] 0.998[2] SFE
1.113 0.324 0.324 Critical point∗
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Table 6. Coexistence densities of the gas ρ∗
g , liquid ρ∗

l and
solid ρ∗

s phases calculated via computer simulation for the Mie
(19.02,8.80) potential at temperatures T∗. Metastable points are
highlighted with parentheses and the type of equilibrium is in-
dicated in the last column along with the estimated (∗) triple
and critical points. The error is given in square parentheses (e.g.,
1.070[9] = 1.070 ± 0.009).

T∗ ρ∗
g ρ∗

l ρ∗
s Phases

0.350 ∼0 1.070[9] SVE
0.400 ∼0 1.060[7] SVE
0.450 ∼0 1.049[8] SVE
0.500 ∼0 1.037[2] SVE
0.522 (0.0114[8]) (0.864[4]) VLE
0.545 (0.0158[4]) (0.842[1]) VLE
0.550 ∼0 1.018[7] SVE
0.568 (0.0222[3]) (0.819[5]) VLE
0.600 0.030 0.779 1.008 Triple point∗

0.613 0.040[6] 0.764[1] VLE
0.635 0.055[7] 0.736[7] VLE
0.650 0.803[2] 1.004[4] SFE
0.658 0.077[3] 0.694[4] VLE
0.681 0.102[6] 0.646[7] VLE
0.700 0.827[1] 1.001[1] SFE
0.704 0.131[9] 0.579[4] VLE
0.735 0.359 0.359 Critical point∗

0.800 0.856[6] 1.005[7] SFE
0.900 0.875[9] 1.010[2] SFE
1.000 0.886[6] 1.017[1] SFE

Table 7. Coexistence densities of the gas ρ∗
g , liquid ρ∗

l and
solid ρ∗

s phases calculated via computer simulation for the Mie
(42.50,8.80) potential at temperatures T∗. Metastable points are
highlighted with parentheses and the type of equilibrium is in-
dicated in the last column along with the estimated (∗) triple
and critical points. The error is given in square parentheses (e.g.,
0.994[8] = 0.994 ± 0.008).

T∗ ρ∗
g ρ∗

l ρ∗
s Phases

0.450 ∼0 0.944[8] SVE
0.500 ∼0 0.931[6] SVE
0.500 (0.043[2]) (0.830[1]) VLE
0.510 (0.052) (0.821) VLE
0.520 (0.062) (0.791) VLE
0.530 (0.076) (0.774) VLE
0.540 (0.092) (0.741) VLE
0.545 (0.0158) (0.842) VLE
0.550 (0.113) (0.708) VLE
0.550 ∼0 0.921[5] SVE
0.560 (0.140) (0.675) VLE
0.563 (0.589[3]) (0.920[1]) SFE
0.572 0.190 0.602 0.919 Triple point∗

0.585 0.393 0.393 Critical point∗

0.600 0.649[7] 0.917[7] SFE
0.625 0.666[6] 0.915[4] SFE
0.650 0.687[7] 0.912[5] SFE
0.700 0.703[3] 0.906[6] SFE
0.750 0.716[5] 0.908[4] SFE
0.850 0.732[1] 0.909[4] SFE
0.950 0.745[9] 0.906[1] SFE
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

T
* /

T
* c

*/ *
c

Figure 5. Temperature-density coexistence data for the
vapour-liquid, solid-liquid and solid-gas phase boundaries ob-
tained by molecular dynamics simulations for Mie (λr, λa) po-
tentials: (8.00,6.00) (asterisks); (9.85,6.00) (crosses); (12.00,6.00)
(open diamonds); (15.58,6.00) (open circles); (32.53,6.00) (filled
triangles); (23.00,6.66) (filled diamonds); (19.02,8.80) (filled cir-
cles) and (42.50,8.80) (horizontal dashes). The temperature and
density are reduced with respect to the corresponding critical
states.

the disappearance of the VLE envelope is seen more clearly
in Figure 6, where the phase diagrams of six of the systems
are presented in the T∗–ρ∗ plane; a similar trend is presented
for the Mie (λr = 2λa ,λr ) family in [34]. In the case of the
softest potential considered (α = 1.264), with exponents
(8.00,6.00) and the larger attractive tail, a large fluid range
of T ∗

c /T ∗
t = 2.469 is found. Conversely, in the system with

a Mie pair potential of exponents (42.50,8.80) and corre-
sponding α = 0.280, the triple and critical temperatures
almost coincide (T ∗

c /T ∗
t = 1.023), and a vanishing fluid

envelope is observed. We note that an inter-relation exists
between the critical-point and triple–point temperatures,
and the gradual decrease in α which results in the shrinking
of the fluid range until it becomes entirely metastable with
respect to the solid phase for a potential of corresponding
α = 0.269 (44.20,9.00).

Indeed, an interesting trend emerges between the triple
and critical temperatures and α when represented against
each other (Figure 7(a)). A linear relation of positive slope
is seen in the values of the calculated critical temperature
with respect to α. The critical and triple temperatures of
the systems considered by Okumura and Yonesawa [38],
Orea et al. [39] and Ahmed and Sadus [36] are also included
for comparison. Using the data presented in Table 2, we find
that the relation for the critical temperature corresponds to

T ∗
c = 1.173α + 0.254. (17)

The triple-point temperature also increases with increasing
α, although with a much smaller gradient, following the
relation

T ∗
t = 0.131α + 0.557. (18)
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(d)

(f)
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(e)

α=0.890α=1.038

α=0.750 α=0.398

α=0.280 α=0.269

Figure 6. T∗–ρ∗ coexistence data for the vapour-liquid, solid-liquid and solid-gas phase boundaries obtained by molecular dynam-
ics simulations for Mie (λr, λa) potentials in order of decreasing α (cf. Table 2): (a) (9.85,6.00), (b) (12.00,6.00), (c) (15.58,6.00),
(d) (19.02,8.80), (e) (42.50,8.80) and (f) (44.20,9.00).

The intersection of these two lines provides the value of α

(and hence determines the set of pairs of Mie exponents) be-
low which the VLE region would be found to be metastable.
The range of temperatures between the two lines provides
a representation of the decrease in size of the stable VLE
region with a decreasing value of α. Clearly, the critical–
point temperature (T ∗

c ) appears to be more dramatically
influenced by a change in α which may be explained by
the fact that α quantifies the size of the attractive well of
the potential. This dependence of T ∗

c has previously been
reported by several authors [35,38,41]. Given the linear
trends observed for both the critical–point temperature and
the triple-point temperature, a direct linear relation in terms
of the conformal parameter α can be proposed for the extent
of the fluid range, as defined by T ∗

c /T ∗
t ; this is represented

in Figure 7(b). This is in our view a very useful result. In
effect, it suggests that for any value of α, and by associa-
tion any Mie pair potential chosen, the corresponding fluid
range can be directly determined with a linear relationship
which can be expressed by the following relation:

T ∗
c

T ∗
t

= 1.462α + 0.603, (19)

and is worth noting that the ratio of temperatures can be
equally written as a ratio of experimental temperatures,
since the parameter ε cancels in the expression above. Using
this equation, the Mie potential for which the fluid envelope
becomes metastable with respect to the solid can be easily
determined, since it corresponds to the case T ∗

c /T ∗
t =1 (α =

0.269). In Figure 6(f), the phase diagram of a Mie potential
with α = 0.269 and exponents (44.20,9.00) is presented.
The exponent pair chosen (44.20,9.00) is arbitrary and any
pair corresponding to the same value of α would give similar
results. As can be seen in the figure, no stable liquid region is
observed, as predicted. This result may be compared to the
potentials determined by Hasegawa [32] and Hasegawa and
Ohno [33] who also investigated the values of exponents
in the Mie pair potential that would lead to a metastable
fluid region. Hasegawa and Ohno[33] determined such a
potential using a density functional theory of freezing and
found the potential to be (24.00,12.00), which corresponds
to α = 0.254. When a variational perturbation theory is
used instead of the density functional theory, Hasegawa [32]
determined the potential for the metastability of the VLE
region to be (28.00,14.00) (α = 0.204). These points have
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Figure 7. (a) Critical temperature T ∗
c (diamonds) and triple tem-

perature T ∗
t (triangles) as a function of α for the systems consid-

ered (cf. Table 2). For comparison, the critical temperature data of
Orea et al. [39] are shown as red asterisks and those of Okumura
and Yonesawa [38] as black crosses. The triple–point tempera-
tures of Ahmed and Sadus [36] are shown as solid red circles. The
solid lines correspond to the linear relations in Equations (17) and
(18). (b) Fluid range T ∗

c /T ∗
t as a function of α (diamonds) for the

systems selected in this work. The temperature ratios indicated
with the asterisks are obtained using the critical temperatures of
Okumura and Yosenawa and the triple temperatures calculated by
Ahmed and Sadus. The solid line corresponds to the linear rela-
tion in Equation (19). The value of α at which the VLE region
becomes metastable as determined by Hasegawa [32] is indicated
with a filled (blue) circle and that of Hasegawa and Ohno [33]
with a purple asterisk.

been included in Figure 7(b) for comparison to the potential
determined in this work. Both are in effect in agreement
with our result, as they correspond to lower values of α to
the one we find with our proposed conformal parameter.
The agreement is reassuring, considering that the studies
used the (λr = 2λa, λa) classification with only potentials
with exponents of integer values being considered.

4.3. Application to coarse-grained potentials
for real systems

The use of the Mie potential to calculate the properties of
real systems requires the determination of four parameters,
σ , ε, λr and λa, which, on first inspection, appear indepen-
dent of each other. It was shown in Section 2, however, that
λr and λa can be related by Equation (13) to provide an
essentially identical free energy (within approximations).
In addition, in modelling real systems, if one is willing to
specify the fluid range Tc/Tt, by means of Equation (19), α

is determined and limits the choice of exponent pairs that
may be considered in order to obtain a range of stability for
the fluid envelope which is consistent with that of the real
system. If one of the exponents is specified, the other one
is then determined from these relations.

An example is provided in Figure 8 for three molecules
(carbon dioxide CO2, water H2O and buckminsterfullerene
C60) that have been modelled using coarse-grained spheri-
cal potentials [17,69] and for the LJ model for comparison.
The ratios of the critical-point and triple–point temperatures
with their corresponding values of the parameter α are indi-
cated. The fluid range of carbon dioxide (T exp

c = 304.25 K,
T

exp
t =216.55 K, Tc/Tt = 1.405) corresponds to α = 0.545.

In the figure, curves corresponding to potentials with val-
ues of the attractive Mie exponent λa = 6, 7, 8 and 10 for
varying λr (varying α) are indicated. It can be seen that the
corresponding fluid range ratio, or value of α, of CO2 inter-
sects the three curves that correspond to (λr, 6), (λr, 7) and
(λr, 8). Each of these pairs would lead to a coarse–grained
model potential for CO2 with a fluid range in agreement
to that of the experimental system. This suggests that the
thermodynamic properties of CO2 can be accurately de-
scribed using a spherical (31.00,6.00), or a (18.00,7.00) or

0.6

1.1

1.6

2.1

2.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40 50

T c
 / T

t

r

H2O

LJ

CO2

C60

Figure 8. Variation of α and corresponding fluid range (T ∗
c /T ∗

t )
with Mie fluids of fixed attractive exponents; (λr, 6.00) is repre-
sented by a solid black curve, (λr, 7.00) with a red curve, (λr, 8.00)
with a purple curve and (λr, 10.00) a blue curve. The dashed lines
indicate the experimental fluid range of H2O and CO2 , that of the
reference LJ potential, and that of the coarse–grained model for
C60. The shaded region represents exponent combinations where
λa > λr in which the potentials are unrealistic.
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14 N.S. Ramrattan et al.

(13.50,8.00) Mie pair potential with roughly equivalent ac-
curacy. Although the parameters may be obtained from least
square fitting of experimental data such as vapour pressure
and liquid densities [17], the parameter space is large and
the solution is not unique. Moreover, as the properties of the
solid are not usually considered in such parameter fits, the
resulting models often do not exhibit a fluid range in agree-
ment with that of the experimental system. The model in
[17] is characterised by the pair of exponents (23.00,6.66),
which leads to a corresponding α = 0.521, slightly lower
than that of the experimental system meaning that freezing
will occur at higher temperatures than expected if the value
of the parameter ε is determined seeking agreement with the
critical temperature. Being able to propose exponent pairs
a priori which are self–consistent will enable more robust
parameters to be obtained from this fitting procedure. Once
the exponent set is fixed, the critical temperature and a liquid
density [70] are sufficient to specify the values of ε and σ ,
respectively. For example, choosing the pair (18.00,7.00),
values of ε/kB = 376 K and σ = 3.82 Å provide a suitable
although, again, not unique set of parameters representing a
spherical coarse–grained model for CO2 with a fluid range
in closer agreement to that of experiment.

In the case of water, the phase behaviour and thermo-
dynamic properties are highly anomalous as a result of the
strong intermolecular interactions brought by the presence
of the network of hydrogen bonds that forms in the liquid
phase. Attempts to develop a coarse-grained model for this
molecule based on a spherical Mie potential to treat its ther-
modynamic properties, including its vapour pressure, lead
to a potential with a very large repulsive exponent when a
traditional fit to saturated properties is carried out [69]. The
resulting model is seen to present freezing at temperatures
well above the triple point of water, which, in effect, renders
it unsuitable for fluid-phase calculations. This is an example
where the traditional top-down coarse–graining technique
can struggle to give a satisfactory result. The premature
freeze may, however, be preempted by considering the al-
ternative approach proposed here, in which a value of the
constant α is first calculated using the experimental critical
and triple temperatures together with Equation (19), which
leads to α = 1.203. If one is to choose an attractive exponent
λa = 6.00, the corresponding repulsive exponent through
Equation (13) is λr = 8.40 [70]. A single-site coarse-grained
model of water is also presented in a separate work in this
Issue [69], and it is shown to provide an accurate model for
water, especially when a temperature dependence is incor-
porated in ε and σ .

The buckminsterfullerene C60 molecule provides an-
other interesting example. The functional form proposed
by Girifalco [27] provides a good representation of its ther-
modynamic properties based on a spherical potential of
depth ε/kB = 3218 K and σ = 9.59 Å, which is steeper
and shorter ranged that the LJ potential. Hagen et al. [28]
showed that this potential leads to a phase diagram where

the vapour– liquid envelope is metastable with respect to
a solid– fluid transition. A similar result was also found
by Cheng et al. [71], although these authors report a small
range of temperatures over which stable vapour– liquid tran-
sitions are obtained. The shape of the potential first reported
by Girifalco can also be adjusted to a Mie pair potential;
we find that a coarse–grained Mie potential characterised
by ε/kB = 3213.5 K, σ = 9.05 Å, λr = 42.50 and λa =
8.80 provides a good fit. In this work, we have used these
potential parameters to determine the phase diagram of
C60 via molecular simulation. The result was presented in
Figure 6(e); it is consistent with the previous calculations
of Hagen et al. and Cheng et al. in that we find a very small
stable VLE region with a corresponding (T ∗

c /T ∗
t = 1.04).

Examining again Figure 8 it is also apparent that there are
other combinations of exponents of the Mie family of po-
tentials that may be used to model the phase behaviour of
C60.

5. Conclusion

The solid-, liquid- and gas-phase boundaries of the Mie
family of intermolecular potentials have been studied by
MD simulations with the aim of obtaining a unified view of
this family of systems. By analysis of the Helmholtz free
energy using a Barker–Henderson perturbation expansion
up to first order and using a mean-field approximation, a
parameter α is proposed which characterises the free en-
ergy of a given Mie system. Mie potentials with the same
value of this parameter α are shown to display close-to-
conformal phase behaviour. Slight deviations between the
phase boundaries are noted and can be accounted for within
the approximations made in the derivation of α. This result
contradicts the reports of Orea et al. [39] and Okumura
and Yonezawa [38] who suggest that the Mie family will
follow a two–parameter conformal model for any pair of
exponents. It is, however, in agreement with the works of
Galliéro et al. [20], Bulavin and Kulinskii [41] and Kulin-
skii [42] who suggest that three parameters are needed to
characterise uniquely these systems. The use of the param-
eter α proposed here provides a rational framework for the
characterisation of the phase behaviour of this family of
potentials.

By characterising the potential through the α param-
eter, a host of Mie potentials of varying range of attrac-
tion has been studied. The choice of α has a strong influ-
ence on the critical point, which is in accordance with the
works of Lekkerkerker and co-workers [34,35], Okumura
and Yonezawa [38] and Bulavin and Kulinskii [41]. The
parameter is noted to have a less significant, although also
noticeable, influence on the triple–point temperature. There
is a linear relationship between α and the range of tempera-
tures in which a stable fluid envelope is observed (referred
to as the fluid range). We find that smaller values of α,
which correspond to an increase in the repulsive nature of
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the interaction, result in a decrease in the size of the stable
fluid range. This result is in agreement with the findings
of several other authors [32–34,41,42]. A relationship is
derived that can be used to propose the limit at which the
fluid envelope region becomes metastable with respect to
the solid–fluid phase boundary. The resulting potential in
this limit is found to be in good agreement with simulation
data and with the theoretical predictions of Hasegawa [32]
and Hasegawa and Ohno [33].

Furthermore, the relationship between α and the sta-
ble fluid range is especially relevant in the development
of coarse-grained models for real systems when a spheri-
cal Mie potential is used. We propose a method based on
knowledge of the experimental triple and critical tempera-
tures, which is used to determine the unique value of the
parameter α that leads to a fluid range of the model system
in agreement to that of the experimental system. This limits
the Mie exponents that can be used to treat the real system
and reduces the parameter space which is typically explored
in order to find reliable molecular models to mimic the be-
haviour of a given real system, including the appearance of
the solid phase.
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