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ABSTRACT

Visual SLAM algorithms exploit natural scene features to in-
fer the camera motion and build a map of a static environment.
In this paper, we relax the severe assumption of a static scene
to allow for the detection and deletion of dynamic points. A
new ”virtual correction” method is introduced which serves
to detect the dynamic points by checking the re-projection
error of the points before and after the virtual measurement
update. It can also recover the erroneously excluded useful
features, particularly the distant points which may be deleted
because of the change in its position after new measurement
observation. Deliberate camera oscillations are also used to
improve the VSLAM accuracy and the camera observability.
The simulation results showed the effectiveness of the virtual
correction in improving the consistency of the VSLAM and
the detection of dynamic points and in particular for difficult
scenarios.

Index Terms— Visual SLAM, Dynamic Points Detec-
tion, Camera Oscillation, Virtual Correction.

1. INTRODUCTION

Visual SLAM is the Simultaneous Localization And Map-
ping using visual information obtained from a single [5, 6]
or stereo camera [12,14]. The SLAM algorithms have gained
much popularity due to its importance for mobile robot ap-
plications into unstructured environment. Visual SLAM is
attractive because it uses available on-board cameras to com-
plete the SLAM objective. The SLAM objective is to local-
ize a robot moving into an unknown environment and have
the robot incrementally build a map of this environment. In
feature-based SLAM approach, the map is described by a set
of features (landmarks), where these landmarks are supposed
to be static. The assumption of static scene landmarks is not
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valid for all scene points, since the robot has to work in a
dynamic environment and select only static features [2].

In the literature, several approaches were proposed for
handling the dynamic feature problem. A method for includ-
ing information about camera pose from monocular visual
SLAM into 3D object tracker, had been used to exclude these
features from the SLAM computation in [21]. Stereo based
SLAMMOT was proposed to solve the observability problem
of monocular camera as well as to increase the accuracy of lo-
calization, mapping and tracking [12]. Bi cameras (using two
independent monocular cameras) were claimed to detect and
track the dynamic points through making observability anal-
ysis to check whether the problem is solvable from a mono
vision equipped moving platform. It was concluded that the
observer (camera) needs to perform more maneuvers than the
target [18]. Multiple independently moving cameras were
used to detect the dynamic points. The re-projection error
was used to differentiate static points from dynamic points. If
the point is uncertain, it will be checked using its appearance
in another camera [22].

The re-projection error, RE is the distance between the
measured point and the projection of the estimation of the
same point and it is represented by the Mahalanobis Distance,
MD. The RE was used to distinguish the dynamic point, DP
or the inconsistent point. If the RE for this feature is less
than a defined threshold, the point is classified as inlier and
used for the correction. If the feature’s RE is more than the
threshold, the point is classified as inconsistent and deleted
[20]. The RE method faces the problem of the static points,
that may change its positions whenever a new observation is
available, are misclassified and can not be recovered. The
idea of the misclassified features recovery was shown before
[16]. A combination of RANSAC plus extended Kalman filter
(EKF) that uses the prior probabilistic information from the
EKF in the RANSAC model hypothesize stage was used to
solve the data association problem. First, a partial state and
covariance update is done using only the reliable set of low-
innovation inliers of the RANSAC model. Second, the high-
innovation inliers are rescued and a second partial update is
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Fig. 1: VSLAM system architecture with the proposed Virtual Correction method.

performed with all the points classified as inliers [16].
To solve camera observability problem, we are using a

camera with superimposed oscillations, which was shown to
improve depth estimates of the features [9]. It is known that
during the human walk the head moves in a horizontal plane
from side to side [7,13]. Head motion is observed not only in
humans, but also for animals. Head movements generate reti-
nal displacement which can be used for distance estimation.
Praying mantis peer its head left and right to obtain depth per-
ception. Praying mantis uses a head-peering method during
the hunt for static prey from ambush, or when presented with
water or air gap barrier before leaping across the barrier [3].
pigeons bob its head forth and back to obtain depth percep-
tion, since the pigeon eyes in the head side so the motion is in
the lateral direction for pigeons [15]. Camera oscillation had
been used for edge detection, contrast detection and motion
analysis [10, 17].

In visual SLAM, the retinal image motion is always the
result of relative camera-feature motion. This creates an am-
biguity as to whether the robot (camera) is moving or the fea-
ture is moving or both are moving. This ambiguity is relaxed
by the basic static feature assumption in VSLAM algorithms.
In the real world, dynamic points violate this assumption.

RE is the main metric to judge if the feature is well clas-
sified by the VSLAM algorithm. Our core approach is that,
if we can check the points RE, then we can isolate a set of
points for which the RE is above a threshold and is believed
to include the dynamic points together with the static points
having irregular and out of model image motions.

The set of uncertain points are then checked through a
technique we call as ”virtual correction” for each point sepa-
rately. This isolation is useful since it can recover misclassi-
fied static points and can even make use of dynamic points if
they are changed again to static points. Therefore, this prob-
lem correlated to dynamic points and static points that were
misclassified as dynamic points. Such points are informative
for the SLAM system especially for distant points which are

good for robot orientation estimation [4].
The detection of dynamic points is difficult, especially us-

ing a monocular camera, because of the limited monocular
observability [12, 18]. Camera oscillations are superimposed
on the camera main motion (robot motion) to improve fea-
tures depth estimation [9]. Besides the improvement of the
depth estimation of the points, this biologically inspired idea
solves the monocular camera observability problem.

This paper is organized as follows: section 2 outlines the
basic probabilistic framework for visual SLAM algorithm.
Then, in section 3, the virtual correction method is presented.
The simulation experiments to verify the VC method effec-
tiveness are described in section 4. The discussion is intro-
duced in section 5, and conclusions are finally given in section
6.

2. VSLAM FRAMEWORK

Extended Kalman Filter based SLAM, EKF-SLAM is used
as the core probabilistic framework. VSLAM system archi-
tecture with the proposed Virtual Correction, VC method is
shown in Fig. 1. The EKF state vector contains robot and
landmarks states, which are modeled as a Gaussian variable
using the mean vector and the covariance matrix of the state
vector. This state vector is maintained using EKF through
a prediction/correction loop. In our case, the sensor state is
added to the state therefore the system can track the camera
motion including camera oscillation. Camera oscillation is
modeled as a sine wave in the lateral direction as follows:

Xs= A.sin(2πft) (1)

where A is the oscillation amplitude, f is the oscillation fre-
quency and t is the time.

The state vector can be described as follows:

x =
[
R S M

]T
=
[
R S L1 . . . Ln

]T
(2)



where R is the robot state, S is the sensor state and M is the
map landmarks state. The covariance matrix is defined as:

P =

 Prr Prs Prm

Psr Pss Psm

Pmr Pms Pmm

 (3)

The robot position represented by X-Y-Z position, and the
robot orientation represented by quaternion q construct the
robot state vector. The landmarks state vector represents all
the landmark positions. The Euclidean parameterization or
anchored homogeneous parameterization is used to represent
the landmarks based on the landmark linearity check [20].

R =
[
Xr Yr Zr qr1 qr2 qr3 qr4

]T
(4)

S =
[
Xs Ys Zs qs1 qs2 qs3 qs4

]T
(5)

The EKF prediction step:

x← f(x, u, n) (6)

P← FxPFx
T + FnNFn

T (7)

where u is the control vector, f() is the generic time update
functions, Fx , Fn are the Jacobian matrices and N is the
covariance matrix of the perturbation n.

The EKF correction step:

z= y − h(x) (8)

Z= HxPHx
T + W (9)

K= PHx
TZ−1 (10)

x← x+Kz (11)

P← P − KZKT (12)

where y is the noisy measurement, x is the full state, h() is the
observation function, Hx is Jacobian matrix, W is the covari-
ance matrix of the measurement noise and K is the Kalman
gain. Equations 8 and 9 are the innovation mean and covari-
ance matrix.

3. VIRTUAL CORRECTION

In visual SLAM, based on the basic static feature assumption,
the retinal image motion which is a result of relative camera-
feature motion is used through the RE method to detect the
dynamic points. The RE method has some shortcomings, that
RE method can isolate a set of susceptible points. This set

Fig. 2: Flowchart shows the steps of The VC method. The
red parts represent the VC added parts over the RE method

includes the dynamic points together with the static points
having irregular and out of model image motions. The dis-
tant point that may change its position after the measurement
update is an example of these irregular points.

The virtual correction method can circumvent the short-
comings of the RE method. First, the RE is checked for each
feature. If the RE is less than a defined threshold, the point
will be used in the formal correction. If it is more than the
threshold, the point will be isolated. After finishing all points
inspections, this set of isolated points will be used in the vir-
tual correction. Each point will be used to update the virtual
state and covariance. Then the RE will be computed again
and the condition will be checked. If the difference between
the two REs is more than the defined threshold, the point will
be classified as a dynamic point and deleted. If it is less, the
point will be recovered and reused in the formal correction.
The re-projection error is represented by the squared Maha-
lanobis distance. Figure 2 shows the flowchart for the VC
method.

According to the flowchart, first we compute the RE1 for
the checked point:

RE1= (y − ê)T Ŵ−1(y − ê) (13)

where y is the point measurement, ê is the projection of point
state after the prediction stage and Ŵ is the sum of the point
measurement covariance and the estimation covariance after
the prediction stage. Second, we compare RE1 against de-



fined threshold Th1:

RE1 =

{
FormalCorrection if RE1 <Th1
V irtualCorrection if RE1 >Th1

The static point whichRE1 is less than the threshold, will
be used in the formal correction directly, and the uncertain
point which RE1 is greater than the threshold, will be for-
warded to the virtual correction. This uncertain point will be
used to update a virtual copy of the state and the covariance.
The virtual update equations are the same as the equations
from 8 to 12. Third, the RE2 for the uncertain point will be
computed and compared against defined threshold Th2:

RE2= (y − e)TW−1(y − e) (14)

where y is the point measurement, e is the projection of point
state after the virtual correction stage and W is the sum of
the point measurement covariance and the estimation covari-
ance after the virtual correction stage. Fourth, the difference
between the two REs will be checked:

(RE1−RE2) =

{
RecoveredPt. if (RE1 −RE2)<Th2
DynamicP t. if (RE1 −RE2)>Th2

For points with (RE1 − RE2) less than the threshold, it
will be used in the formal correction, otherwise deleted. The
condition after the virtual correction will pass only the dy-
namic points. The first RE includes the point motion in addi-
tion to the other types of errors, in the opposite the second RE
which is computed after the virtual update with the measured
point will not include the point motion, therefore the differ-
ence between the REs will indicate to the point motion. In
this case, the static points that changed its positions due to the
new observations will not pass.

4. SIMULATION RESULTS

The simulations are made using the public EKF-SLAM tool-
box [19]. In the toolbox, the RE method is used for detecting
the dynamic or the inconsistent points. The VC method re-
sults will be compared with the toolbox RE method results.
In these experiments, we simulate a robot going through an
environment of landmarks in an area of 16 m x 16 m. This
environment contains 162 landmarks configured into two lay-
ers of landmarks. The same features configuration is used
throughout all our experiments to avoid the scene features
composition effect [1, 8]. The robot receives noisy control
inputs which are used in the prediction stage, and one noisy
image per control step. Table 1 summarizes the simulation
parameters for the sensor, the robot, the oscillation, and the
landmarks.

The experiments are made using Monte Carlo method.
We perform 25 runs using different random seed for the pro-
cess noise and the measurement noise. At each run, we use

Sensor

Image Size 640 x 480 pixel
Pixel error std. 1.0
Field of View 90o

Number of Frames 160 frame
Frame Rate 10 fps
Intrinsic Parameters [u0 vo au av]

[320 240 320 320]

Robot
Motion Increment 0.05 m
Motion Error [X Y θ]

[0.005 0.005 0.05]

Oscillation
Amplitude 0.05 m
Frequency 3 Hz
Sample Time 0.1 sec

Features

Number of Features 162 features
Features for Update 10 features
Dynamic Features 6 features
Features Initialization [first frame other]

[10 1 ]

Table 1: Simulation Parameters

the root mean square error (RMSE) of the localization param-
eters and use the Euclidean distance of errors in X and Y to
represent the position error. After all runs, the mean of all
parameters is used for evaluation.

4.1. Static Environment Testing

The objective of these experiments is to verify the ability
of the VC method in the recovery of the misclassified fea-
tures and the effect of the recovered features on the local-
ization errors. Experiments were made for different types of
robot motions: forward, curved, and lateral. Each experiment
was made once using the RE method and another using the
VC method for comparison. Each VC experiment was made
once using the steady camera and another using the oscillating
camera. The localization errors and the number of recovered
points were registered.

Table 2 shows the results of the static environment testing.
It can be observed that, the localization errors of all types of
motions for the VC method are lower than the RE case. An-
other observation is the ability of the VC method for recov-
ering the misclassified features in all experiments. The VC
method experiments using oscillating camera, show the same
number of the recovered features. On the other hand, the ex-
periments show that localization errors are less than steady
camera ones for all the motion types. Figure 3 shows the po-
sition and the orientation errors for forward robot motion. It
is shown that, the VC method experiments using steady cam-
era, show slightly better performance than the RE method. On
the other hand the VC method experiments using oscillating
camera, show clearly better performance than the RE method.



Robot Motion Error Types RE(steady
Camera)

Recovered
Features

VC(steady
Camera)

Recovered
Features

VC(Oscillating
Camera)

Recovered
Features

Forward Motion
Euclidean Error 5.7318 cm 0 5.6966 cm 17 4.2568 cm 16

Orientation Error 0.1272 deg 0.1208 deg 0.1169 deg

Curved Motion
Euclidean Error 4.8793 cm 0 4.8409 cm 16 2.7066 cm 17

Orientation Error 0.1203 deg 0.1159 deg 0.1130 deg

Lateral Motion
Euclidean Error 4.3247 cm 0 3.9828 cm 16 3.7290 cm 16

Orientation Error 0.2435 deg 0.2287 deg 0.2144 deg

Table 2: The Euclidean of position errors, the orientation error and the recovered features number for different motion types in
static environment. The RE method results are done using steady camera and the VC method results are done using steady and
oscillating cameras.

DP Motion Error Types RE(steady
Camera)

Dynamic
Points

VC(steady
Camera)

Dynamic
Points

VC(Oscillating
Camera)

Dynamic
Points

Lateral Motion
Euclidean Error 5.7167 cm 27 5.9133 cm 28 4.5283 cm 29

Orientation Error 0.1393 deg 0.1429 deg 0.1284 deg

Inverse Forward
Euclidean Error 5.8394 cm 0 5.7285 cm 0 9.3783 cm 24

Orientation Error 0.1222 deg 0.1236 deg 0.1353 deg

Table 3: The Euclidean of position errors, the orientation error and the number of DP. The RE method results are done using
steady camera and the VC method results are done using steady and oscillating cameras. The DP velocity = 1 m/s.

DP Motion Error Types RE(steady
Camera)

Dynamic
Points

VC(steady
Camera)

Dynamic
Points

VC(Oscillating
Camera)

Dynamic
Points

Lateral Motion
Euclidean Error 6.1239 cm 3 5.7186 cm 2 4.6172 cm 43

Orientation Error 0.1562 deg 0.1413 deg 0.3739 deg

Inverse Forward
Euclidean Error 6.1498 cm 0 5.4650 cm 0 12.5170 cm 18

Orientation Error 0.1170 deg 0.1120 deg 0.1251 deg

Table 4: The Euclidean of position errors, the orientation error and the number of DP. The RE method results are done using
steady camera and the VC method results are done using steady and oscillating cameras. The DP velocity = 0.5 m/s.

DP Motion Error Types RE(steady
Camera)

Dynamic
Points

VC(steady
Camera)

Dynamic
Points

VC(Oscillating
Camera)

Dynamic
Points

Lateral Motion
Euclidean Error 5.9099 cm 6 5.8257 cm 11 5.0702 cm 48

Orientation Error 0.1729 deg 0.1582 deg 0.5228 deg

Inverse Forward
Euclidean Error 5.6649 cm 0 5.6610 cm 0 15.1492 cm 9

Orientation Error 0.1308 deg 0.1190 deg 0.1195 deg

Table 5: The Euclidean of position errors, the orientation error and the number of DP. The RE method results are done using
steady camera and the VC method results are done using steady and oscillating cameras. The DP velocity = 0.25 m/s.
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Fig. 3: The position and the orientation error against the num-
ber of frames for forward robot motion in static environment
using RE method using steady camera and VC method using
steady and oscillating camera.
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Fig. 4: The position and the orientation error for forward
robot motion and lateral DP motion using RE method using
steady camera and VC method using steady and oscillating
camera. The DP velocity = 1 m/s

4.2. Dynamic Environment Testing

We hope to verify the capability of the VC method in the de-
tection of the dynamic points and if the oscillating camera
can extend the VC method dynamic point detection capabil-
ity. Experiments were made for the basic robot motion type,
the forward motion and with two cases of the dynamic points
linear motion, the lateral motion and the most difficult mo-
tion, the inverse forward motion. Experiments were made us-
ing three velocities for the dynamic points: 1 m/s, 0.5 m/s,
and 0.25 m/s. Figure 6 shows the motion of the robot and
the dynamic points in the two cases of dynamic points mo-
tion. The experiments were made using both the RE and the
VC methods. Each VC experiment was made one time using
the steady camera and another using the oscillating camera.
The localization errors and the number of detecting dynamic
points were registered.
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Fig. 5: The position and the orientation error for forward
robot motion and inverse froward DP motion using RE
method using steady camera and VC method using steady and
oscillating camera. The DP velocity = 1 m/s

Tables 3, 4, and 5 show the results using the RE method
and the VC method for different dynamic point velocities. In
case of lateral motion of the dynamic points, the steady cam-
era and the oscillating camera detected the dynamic points
successfully. Figure 4 shows the position and the orientation
errors for forward robot motion and lateral DP motion and
the DP velocity = 1 m/s. It is shown that, the RE and the VC
methods experiments using steady camera, show similar per-
formance. On the other hand the VC method experiments us-
ing oscillating camera, show better performance than the RE
method. In case of the low velocities lateral dynamic points
motion, the steady camera ability of detecting the dynamic
points is decreased for the two methods, especially, for the
velocity which equals the robot velocity. On the opposite, the
ability of detecting the dynamic points using oscillating cam-
era is increased significantly. In the difficult inverse forward
motion of the dynamic points, the steady camera could not
detect any dynamic point, but the oscillating camera still can
detect the dynamic points. For the low velocities inverse for-
ward DP motion, the oscillating camera still can detect the
dynamic point. These results show that the camera oscillation
extends the VC method dynamic point detection capability
even in the difficult situations. On the other hand the localiza-
tion errors increase. Figure 5 shows the position and the ori-
entation errors for forward robot motion and Inverse forward
DP motion and the DP velocity = 1 m/s. It is shown that, the
localization errors increased in the oscillating camera case.

5. DISCUSSION

In this paper, the VC method is investigated in static and dy-
namic environment and using fixed and oscillating camera.
VC fixes the shortcomings of the RE method in detection
the dynamic points and also allows recovering misclassified
points.



(a) (b)

Fig. 6: The dotted blue arrow represents the robot motion and
the solid red one represents the DP motion in case of (a) DP
lateral motion, (b) DP inverse forward motion

In static environment experiments, the VC showed less
localization errors than the RE. These errors decrease, es-
pecially the orientation, proves the more consistent VSLAM
system using VC method. The decrease of the orientation er-
ror increases the consistency of the system significantly [11].
The results also showed that the VC method has added, about
16 points recovered in each experiment. The oscillating cam-
era showed better accuracy than the fixed camera using the
VC method.

In dynamic environment experiments, the VC method suc-
ceeded to detect dynamic points. By solving the problem of
the observeability of the monocular camera, camera oscilla-
tions increase the VC method dynamic point detection abil-
ity significantly even in the difficult situation like the inverse
forward motion. The lateral camera oscillations added a new
physical clues for the camera to detect the dynamic points mo-
tion. The reason for the localization errors increase in case of
inverse forward motion is the misclasified recovered points,
especially, the first appearance of the dynamic points and the
distant dynamic points. This issue will be studied in detail in
our future research agenda.

Our results showed that the VC method can differentiate
between static and dynamic points from knowledge of the rel-
ative motion between the camera and the points. However, if
there is no relative motion, it will be difficult to identify dy-
namic features. It is very less probable that the feature will os-
cillate similar to the camera, and this is an advantage of cam-
era oscillation. In the future, we will verify the VC method
using real data sets and practical experiments.

6. CONCLUSIONS

In this paper, a new technique is introduced to detect dynamic
features and to recover the static misclassified features. Cam-
era imposed oscillations improve the observability and im-
prove depth estimates. The VC method is investigated using
fixed and oscillating camera. Following can be concluded for
VC:

• detect dynamic points efficiently when combined with
camera oscillation.

• recover misclassified features.
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