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Abstract

This thesis proposes novel optimisations for high performance runtime reconfigurable designs.

For a reconfigurable design, the proposed approach investigates idle resources introduced by

static design approaches, and exploits runtime reconfiguration to eliminate the inefficient re-

sources. The approach covers the circuit level, the function level, and the system level. At

the circuit level, a method is proposed for tuning reconfigurable designs with two analytical

models: a resource model for computational and memory resources and memory bandwidth,

and a performance model for estimating execution time. This method is applied to tuning

implementations of finite-difference algorithms, optimising arithmetic operators and memory

bandwidth based on algorithmic parameters, and eliminating idle resources by runtime recon-

figuration. At the function level, a method is proposed to automatically identify and exploit

runtime reconfiguration opportunities while optimising resource utilisation. The method is

based on Reconfiguration Data Flow Graph, a new hierarchical graph structure enabling run-

time reconfigurable designs to be synthesised in three steps: function analysis, configuration

organisation, and runtime solution generation. At the system level, a method is proposed for

optimising reconfigurable designs by dynamically adapting the designs to available runtime re-

sources in a reconfigurable system. This method includes two steps: compile-time optimisation

and runtime scaling, which enable efficient workload distribution, asynchronous communication

scheduling, and domain-specific optimisations. It can be used in developing effective servers for

high performance applications.
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Glossary

We summarise the key concepts and commonly used terminologies in this thesis as follows.

• 3-D: Three-Dimensional.

• ALU: Arithmetic Logic Unit.

• ASIC: Application-Specific Integrated Circuit.

• BRAM: Block Random-Access Memory.

• CB: Connection Block.

• CLB: Configurable Logic Block.

• CMOS: Complementary Metal–Oxide–Semiconductor.

• CPU: Central Processing Unit.

• DDR3: Double Data Rate 3 (a DRAM interface specification).

• DRAM: Dynamic Random-Access Memory.

• DSP: Digital Signal Processing.

• DFG: Data-Flow Graph.

• DPGA: Dynamically Programmable Gate Array.

• FIR: Finite Impulse Response.

• FPGA: Field Programmable Gate Array.

• FR: Full Reconfiguration. The whole configuration file of an FPGA is updated during

runtime reconfiguration.

• FF: Flip-Flop.

• FIFO: First In, First Out.

• GPP: General-Purpose Processor.
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• GPU: Graphics Processing Unit.

• HLS: High-Level Synthesis.

• ICAP: Internal Configuration Access Port.

• INLP: Integer Non-Linear Programming.

• I/O: Input/Output.

• JTAG: Joint Test Action Group (interfaces for testing and configuration).

• LUT: Look-Up Table.

• MIMD: Multiple Instruction, Multiple Data streams.

• OP: Option Pricing. OP refers to a type of benchmark applications, including OP, Bond

OP and Barrier OP.

• PDE: Partial Differential Equation.

• PR: Partial Reconfiguration. Only part of a configuration file of an FPGA is updated

during runtime reconfiguration.

• PF: Particle Filtering. PF is a benchmark application.

• RDFG: Reconfiguration Data Flow Graph.

• RNG: Random Number Generator.

• RTM: Reverse Time Migration. RTM is a benchmark application.

• SB: Switch Block.

• SIMD: Single instruction, Multiple Data streams.

• SDR: Software Define Radio.

• SoC: System-on-Chip.

• SRAM: Static Random-Access Memory.

• SSE: Streaming SIMD Extensions.
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General

• Reconfigurable design: a (or a group of) customised hardware design(s) for an applica-

tion, mapped into reconfigurable devices. A reconfigurable design is capable of executing

a complete application, while a hardware design may only support a part of an application.

• Hardware efficiency: the effectiveness of a hardware design. A resource unit is considered

utilised if it contributes to the generation of computation results. In the optimal case,

all available resources of a design are instructed / configured to work actively at each

clock cycle, which leads to the theoretical peak performance of the design. The hardware

efficiency is calculated as the ratio between measured throughput THmes and theoretical

peak throughput THthe. As a resource unit can refer to different resource types with

different resource granularities, the inefficient use of resources is defined at different levels

of granularities.

- redundant logic gates (circuit level): the idle logic units in an arithmetic operator

during runtime. This happens when some of input bits are fixed during computa-

tion, therefore some logic branches of the logic operator are never activated during

runtime.

- idle functions (function level): the function modules that are idle during runtime.

A function module is idle when its dependent data are not available. This hap-

pens when the data are being computed in other modules, or the on-chip / off-chip

communication channels cannot satisfy the communication bandwidth requirements.

- runtime available nodes (system level): the computing nodes that are not available

when an application is launched, but become available before the application is

finished. This happens in reconfigurable systems with multiple computing nodes,

where applications are launched from time to time. When not properly used, the

runtime available nodes remain idle in the system.

• Runtime reconfiguration operations: operations to update the configuration of a recon-

figuration design, i.e., the configuration file stored in on-chip SRAM arrays.

- for partial reconfiguration, the operations include stalling the reconfigured modules,

updating the partial configuration file, and starting the new module.
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- for full reconfiguration, besides the configuration update and execution control, off-

chip memory data need to be preserved. The off-chip data are managed by on-chip

memory controllers, which are not functional during reconfiguration. Therefore, for

full reconfiguration, additional operations are needed to preserve the off-chip memory

data during runtime reconfiguration.

• Runtime reconfiguration overhead: time to finish runtime reconfiguration operations.

• Runtime scenario: a period of runtime when application requirements or hardware re-

source status stay the same.

• Configuration / configuration file: the synthesised configuration file for a hardware design

customised for a specific runtime scenario. A configuration file can be downloaded into

FPGAs to define the implemented operations.

• Static design: a reconfigurable design that handles all the runtime scenarios in a single

configuration file. The implemented circuits remain static during runtime. No reconfigu-

ration takes place during runtime.

• Dynamic design: a reconfigurable design that handles each runtime scenario with a cus-

tomised design. Each design is synthesised as a configuration file, and a dynamic design

uses runtime reconfiguration to switch between different configuration files.

• well-behaved data-path: a hardware implementation of an algorithm that that generates

one set of output data for each input data set, with input data fed into the data-path

one set per clock cycle (the concept of well-behaved data-paths is discussed in detail in

Section 2.2.3).

• Idle resource unit: a circuit necessary to support a given application which can become

inactive during runtime.

• Parallelism: the number of replicated well-behaved data-paths in a hardware design.
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Circuit-Level

• General operators: arithmetic operators that can process any input data.

• Constant operators: arithmetic operators that can only be used when some input values

are constant over time.

• Algorithm instance: an instance of an algorithm, with initial algorithm parameters.

• Algorithm design space: for an algorithm instance, the range of algorithm parameters

where these parameters (and thus constant coefficients) can vary without compromising

algorithm mathematical correctness.

• Constant coefficient set: a point in an algorithm design space that specifies constant

values used in constant operators.

• Runtime scenario: a period of time when the used constant coefficient set stays the same.

Function-Level

• Segment: it contains a group of application functions that can be executed concurrently,

without any idle application function.

• Configuration: it contains a group of segments that are optimised together to achieve the

maximum parallelism, which are synthesised as a configuration file.

• Partition: it contains a combination of configurations and is capable of accomplishing

the application functionality. Each application partition is a valid way of executing the

application, i.e., a complete reconfigurable design.

• Runtime scenario: a period of time the active functions in an application stay the same.

System-Level
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• Resource availability: whether a computing node is free to accommodate the target re-

configurable design.

• Runtime scenario: a period of time when the computing node availability of a reconfig-

urable system stays the same.
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Chapter 1

Introduction

The ever-increasing demand for high-performance computing solutions has exceeded the clock

frequency scaling of General-Purpose Processors (GPPs) for about a decade by now [Sut05].

GPPs, such as Central Processing Units (CPUs) and Graphics Processing Units (GPUs), control

data movements and arithmetic operations by instructions. Computer applications are mapped

into such processors as compiled instructions, to reuse the processing units of the processors

as much as possible. Each instruction typically goes through fetch, decode, read, execute, and

write stages to complete its operation, which can limit the efficiency of program execution.

As an example, consider a 2-D convolution problem in Algorithm 1, Figure 1.1(a) shows the

compiled instructions for this algorithm. Traditionally, the users of GPPs, from small-scale

embedded application developers to large-scale datacentre operators, relied on performance im-

provement in GPPs. Take Intel CPUs between 1970 and 2010 as an example. While transistor

count over this period follows Moore’s Law, clock frequency and performance per clock cycle

have been stagnant since 2004 mainly due to power density and heat dissipation issues [Sut05].

On the other hand, based on a report from International Data Corporation (IDC) [IDC], the vol-

ume of data in the world doubles every two years. With data size increasing, high-performance

applications become more and more time-consuming. For Reverse-Time Migration (RTM),

an application with 3-D stencil computational kernel (similar to the 2-D convolution in Algo-

rithm 1), simulating a wave propagation process within a 25 km2 area with 5000 m depth for

1
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Algorithm 1 Example algorithm to demonstrate hardware efficiency for different architectures.
Input: Input arrays x with data size ds*ds.
Output: Output array y
1: for i = 1 → ds-1 do
2: for j = 1 → ds-1 do
3: y[i][j] = (x[i][j+1] + x[i][j-1]) * 3.21 + (x[i+1][j] + x[i-1][j]) * 4.23;
4: end for
5: tmp = y; y = x; x = tmp;
6: end for

a period of 0.4 s requires 63.4 tera floating-point operations, which would consume 1.4 hours

to execute on an Intel Xeon X5650 CPU with 6 cores running in parallel. As simulation time

and data size (e.g. larger simulated area, higher simulation granularity) increase, the execution

time would be even longer. This situation calls for new architectures and techniques that can

meet the continuous increase in demand for high-performance computing.
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Figure 1.1: Implementation of Algorithm 1 in (a) General-Purpose Processors (GPPs),
(b) ASICs, and (c) reconfigurable architectures. GPPs decompose a computing program into
general instructions. ASICs and reconfigurable architectures construct customised data-paths.

Application operations in Application-Specific Integrated Circuit (ASIC) designs are often im-

plemented as customised hardware. Typically, ASIC designs use pipelined data-paths to execute

communication and computation operations, with communication and computation operations

respectively implemented as hard wires and dedicated operators. Figure 1.1(b) shows an ex-

ample ASIC design for Algorithm 1. A customised memory architecture shifts in one datum

each clock cycle, and connects the data to be used in current clock cycle into a data-path. The

memory architecture provides enough on-chip memory bandwidth to keep the data-path active

throughout runtime, achieves maximum data reuse ratio as data shifted out of on-chip memory
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are no longer needed in the future, and has no cache miss as new data are streamed into the

memory cycle by cycle. The arithmetic operators in the data-path are pipelined. In each clock

cycle, this ASIC design streams input data from data memory, and generates one output data

set. The necessity for instruction fetch and decode is eliminated. However, such ASIC designs

sacrifice generality since the customised hardware, once fabricated, cannot be reused by other

applications. Given the rapidly evolving computing applications and the substantial ASIC de-

velopment cost, fabricating an ASIC chip for a specific application only makes economic sense

if it can be sold for a large volume.

Field-Programmable Gate Arrays (FPGAs) balance the requirements for high-performance cus-

tomised designs and the necessity to adapt to application evolvement. FPGAs use configuration

memory to store post-fabrication circuit configurations. By updating the stored configuration

data, the implemented circuits can be reconfigured in accordance to application specifications.

The ability to implement customised circuits for various applications without going through

chip fabrication process drives the use of FPGAs as hardware accelerators, which offload the

computationally intensive functions in applications. Figure 1.1(c) shows a common FPGA de-

sign for Algorithm 1. Compared with software implementations, FPGA designs often achieve

higher efficiency as customised data-paths are implemented. However, in order to support

circuit reconfigurability, FPGAs suffer from overhead in area and delay since additional con-

figuration memory and reconfigurable routing / logic fabric need to be accommodated on-chip.

[KR07] compared two circuits synthesised from the same design, with one mapped to an FPGA,

and the other one synthesised as an ASIC, in the same 90-nm CMOS technology. Compared

with ASIC designs without the overhead to support reconfigurability, implementing hardware

designs in FPGAs on average increases design area by 18 times, and reduces clock frequency

by 3 times. The gap can be even bigger if ASIC designs are manually optimised rather than

automatically synthesised. In average, FPGA designs use 15 times to 25 times larger area, and

run at 3 times to 10 times slower clock frequencies.
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1.1 Motivation

The example in Figure 1.1 shows the optimal scenario for a customised hardware design:

• a relatively long data-path with operators deeply pipelined;

• an optimal memory architecture provides required data each clock cycle with maximum

data reuse ratio and no cache miss;

• vectorisable design as data-paths can be replicated and the customised memory archi-

tecture can be modified to process multiple data per clock cycle (for the example in

Figure 1.1, P data-paths can be replicated, and at clock cycle 1, y[1, ..., N ] will be calcu-

lated instead of just y[1]);

• large data volume for the same computational kernel to be applied iteratively.

This requires linear data access pattern and simple control-flow operations. However, in prac-

tice, a large portion of applications does not meet these requirements. With complex control

operations (e.g. if-else operations) and dynamic data access operations (e.g. dynamic pointers,

array indices that depend on runtime variables), these applications often perform better on

GPPs such as CPUs and GPUs.

In order to take a wide range of applications into consideration, we evaluate architectures

in term of their hardware efficiency and generality. For a design mapped into a hardware

architecture, we define its hardware efficiency as the ratio between its measured throughput

and its theoretical peak throughput. We calculate the theoretical peak throughput by assuming

all the used processing units are active through runtime. For example, the theoretical peak

throughput of a CPU design is calculated assuming all the Arithmetic Logic Units (ALUs) used

in this design (typically all the ALUs in a CPU) are actively processing data cycle by cycle.

For a reconfigurable design, the used processing units refer to its consumed logic units (LUTs,

DSPs, and FFs). Limited by the routing capacity of an FPGA, a reconfigurable design often

uses less than 100% of the logic units in an FPGA [DeH99].
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Algorithm 2 Example algorithm to demonstrate hardware efficiency for different architectures.
Input: Input arrays x, y with data size ds*ds.
Output: Output array z
1: for i = 1 → ds-1 do
2: for j = 1 → ds-1 do
3: y[i][j] = (x[i][j+1] + x[i][j-1]) * 3.21 + (x[i+1][j] + x[i-1][j]) * 4.23;
4: end for
5: tmp = y; y = x; x = tmp;
6: end for
7: for i = 1 → ds-1 do
8: for j = 1 → ds-1 do
9: z[i][j] = (y[i][j+2] + y[i][j-2]) * 1.21 + (y[i+2][j] + y[i-2][j]) * 2.21;
10: end for
11: tmp = z; z = y; y = tmp;
12: end for

For applications that meet the requirements listed above, customised hardware architectures

can achieve the theoretical peak throughput of these applications. For the example reconfig-

urable design in Figure 1.1(c), at each clock cycle, first, one input datum is streamed from

off-chip memory. Second, all data stored in on-chip memory architecture are shifted right by

one position. Third, the data that appear at the output ports of the on-chip memory architec-

ture steam into the connected data-path operators. Finally, the data-path generates one result,

based on data streamed into the data-path in previous cycles. After an initial overhead to fill the

on-chip memory architecture, each implemented operator executes one arithmetic operations

per clock cycle, i.e., the hardware efficiency of this architecture reaches 100%. Experimen-

tal results show that for practical high-performance applications, customised architectures for

seismic imaging [NCJ+13a], financial modelling [TL08a], and matrix processing [DRM14] can

approximate optimal hardware efficiency (higher than 90%). For a RTM application, an opti-

mised 6-thread CPU design running on Intel Xeon X5650 achieved 13.3 GFLOPS [NCJ+13a].

Since the peak throughput of Intel Xeon X5650 is 63.984 GFLOPS [Int], the CPU hardware

efficiency for RTM is 21%. An Nvidia Tesla C2070 GPU achieved 83.4 GFLOPS for the same

application. However, compared with its peak throughput of 1.03 TFLOPS [Nvi], the hardware

efficiency is even lower.

While customised hardware architectures achieve higher hardware efficiency for certain appli-

cations, GPPs show higher generality for a wide range of applications (i.e. a wide range of

applications can be supported without sacrificing performance). Algorithm 2 contains two con-
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volution modules. Since the second module depends on the output from the last iteration of

the first module, these two modules cannot run in parallel. Figure 1.2 shows the software and

hardware implementations for Algorithm 2. For GPPs, the two modules are compiled as two

instruction loops (.L4 and .L8 in Figure 1.2). The two instruction loops are executed one by

one, to share computational resources in GPPs (such as ALUs in CPUs). When data size for

each module (ds in Algorithm 2) is large enough, the impacts on hardware efficiency is neg-

ligible. For the previous RTM example, the same hardware efficiency (21%) can be achieved

if two stencil modules need to be supported and data size is large enough. For the hardware

designs, either ASIC or reconfigurable, one additional hardware module is implemented to cover

possible runtime operations. In Figure 1.2(b) and (c), two hardware modules are implemented,

one for each convolution module. Output data from the two modules are multiplexed based on

cycle counters, and thus only one of the modules is active at each clock cycle. In this thesis, we

define idle resource units as circuits necessary to support a given application which can become

inactive during runtime. In this example, while the hardware efficiency of the software designs

is still 21%, the hardware efficiency of the ASIC design and the reconfigurable design reduces

to 50%, i.e., at each clock cycle, only 5 out of 10 arithmetic operators are active. As computing

problem complexity (e.g. the number of branches in an if-else expression, or the number of

modules that are not active at the same time) increases, the number of idle resource units

increases, and the advantages of customised hardware architectures rapidly disappear.
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Runtime reconfiguration is a technique to update the configuration of a reconfigurable design,

which provides FPGA designs another dimension to improve design efficiency and generality.

Conventional reconfiguration designs keep configuration data static during runtime, and there-

fore the implemented circuits remain the same once initialised. With runtime reconfiguration,

a reconfigurable resource unit can accommodate different operations by updating the config-

uration information. For the reconfigurable design in Figure 1.2(c), instead of implementing

two data-paths, we can develop two designs, with each design handling one if branch. At each

time, one of the two designs is active, and only the active design is configured into FPGAs.

This brings two benefits: (1) improved efficiency as there is no need to statically implement all

possible operations, and (2) improved generality as more operations can be efficiently supported.

Theoretically, runtime reconfiguration can significantly improve the hardware efficiency of a

reconfigurable design, since configuration memories can dynamically update their content to

keep all implemented circuits active during runtime. In practice, the use of runtime recon-

figuration is limited by the overhead to switch between configurations. In addition, existing

scenarios to apply runtime reconfiguration tend to be application specific. In this thesis, we aim

to systematically identify general optimisation opportunities to to apply runtime reconfigura-

tion, to integrate runtime reconfiguration support into reconfigurable designs, and eventually

to exploit runtime reconfiguration to improve design performance. We divide the optimisation

opportunities into three levels: circuit level, application level, and system level.

At the circuit level, runtime reconfiguration is used to support customised operators with-

out sacrificing operator generality. Hardware designers develop general arithmetic operators,

such as multipliers, adders, and ALUs, to handle arithmetic operations with variable input

values. For the 32-bit unsigned multiplier shown in Figure 1.3, when some input bits are

fixed (constant) during runtime, the corresponding logic gates in the multiplier become redun-

dant. As an example, if all bits of b are ’1’, a · b = a, and the multiplier can be implemented

as wire connections with a. Therefore, the logic gates of this multiplier become redundant.

This introduces a dilemma for hardware designers: on the one hand, implementing customised

operators reduces design area, on the other hand, even ASIC designs cannot afford only sup-

porting specific constants for an application. Runtime reconfiguration resolves this issue as
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.....

a[0]

a[31]

.....b[31] b[0]

active when a=111..111

active when b=111...111
a x b = a

a x b = b

idle in both runtime scenarios

an unsigned multiplier a x b 

Figure 1.3: An example of idle resources at the circuit level. For a general multiplier with input
a and b, there are idle resources if parts of a or b are constant. In the extreme case, if all bits
of b are ’1’, the output is equal to a, the multiplier reduces to wire connections to a[0] ∼ a[31].
Similarly, if all bits of a are ’1’, the operations can be implemented as wire connections to
b[0] ∼ b[31]. In both cases, all logic gates in the multiplier become redundant (outputs are
directly to inputs).

deeply customised operators can be used for specific constants, and the implemented cus-

tomised operators can be reconfigured during runtime to support different constants. Previous

work [BS08, BJLW11, JBLT12a] has studied the use of runtime reconfiguration for arithmetic

operators with constant input values. However, the constant operators can be further opti-

mised. As demonstrated in Figure 1.3, the amount of redundant (idle) resources depends on

constant value. A small variation in the constant value can lead to a significant reduction in

resource usage. Some implemented circuits, while contributing to results, might not be needed

by the target algorithm, i.e., removing the circuits will not compromise the algorithm qual-

ity. Therefore, constant coefficients in an application can be tuned to further reduce operator

resource usage.

At the application level, runtime reconfiguration enables a reconfigurable design to only im-

plement function modules that are active at the current runtime scenario. The reconfigurable

design for an application often contains multiple function modules. During runtime, the func-

tion modules become idle from time to time, bounded by data dependencies or bandwidth

constraints. These idle functions reduce hardware efficiency. Figure 1.4 shows an example ap-

plication with four functions. The four functions are executed step by step in different runtime

scenarios. For a conventional FPGA design, all the four functions are mapped into a single con-
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Figure 1.4: An example of idle resources at the function level. The example application contains
four functions. For a static design, as the implemented functions cannot be changed during
runtime, all of the functions must be implemented in the same configuration.

figuration file, and are activated based on runtime conditions. When all four functions cannot

be activated concurrently all the time, this design approach introduces idle function modules.

Previous work that partitions reconfigurable designs is motivated by the fact that for some ap-

plications, not all application functions can fit into one FPGA. In this case, even when an FPGA

can accommodate the whole application, the idle resources lead to inefficient use of FPGA re-

sources. With runtime reconfiguration, the idle functions can be dynamically reconfigured into

active functions.

B

C

D
E

FG

A

Figure 1.5: An example of idle resources at the system level. When an application is launched
into a reconfigurable system, FPGA nodes A, B and D are available. During the execution of
the application, node C, E, G and F become available. For a conventional FPGA application,
the resources that become available during its execution time cannot be effectively utilised,
leading to idle FPGA nodes.

At the system level, runtime reconfiguration adapts a reconfigurable design to the resource

availability variations in a multi-FPGA system. Typically, a reconfigurable system contains

multiple FPGAs, and is shared by various applications. Computing nodes in reconfigurable
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systems are provisioned and released by applications from time to time. At compile time,

application developers are not aware of the amount of resources available to the developed

designs at runtime. Figure 1.5 shows an example reconfigurable system with seven FPGAs.

Three of the seven FPGAs are available when a reconfigurable design is launched in the system,

and the other four FPGAs become available during the execution of the design. We name each

FPGA as a computing node. With conventional design approaches, hardware developers can

assume that a reconfigurable design only uses one computing node so it can start as soon as

launched, or the developers can limit the design to use all the seven computing nodes. In the

latter case, the design needs to wait until all the seven computing nodes are available during

runtime, and will stay idle when some computing nodes are used by other applications. In

both cases, idle resources occur in the system. With runtime reconfiguration, a reconfigurable

design can dynamically reconfigure computing nodes in a system, to adapt to node availability

variations.

1.2 Contributions

Given the runtime reconfiguration opportunities at the three design levels, we invent new design

optimisation techniques and design flows for runtime reconfigurable designs. We introduce the

basic design model and tool flow in Section 1.3, and elaborate the detailed design approaches

in the following chapters. The summarised results in Chapter 6 show that in terms of overall

throughput, the optimised runtime reconfigurable designs for Bond Option Pricing, Barrier

Option Pricing, Particle Filtering, and Reverse Time Migration applications achieve up to 26

times improvements compared with the corresponding static designs, and orders of magnitudes

improvements compared with software implementations. We refer to the conventional recon-

figurable designs without runtime reconfiguration as static designs. The contributions of this

thesis include:

Eliminating idle logic gates in arithmetic operators. (Chapter 3)

At the circuit level, we propose a design approach to (1) explore algorithm design spaces to
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find constant coefficient sets that are preferable to hardware implementations, (2) implement

customised operators for the selected constant coefficients, and (3) integrate the customised

operators into reconfigurable designs. The proposed approach uses runtime reconfiguration

to switch between different customised operators when different constant coefficients need to

be supported. We evaluate the efficiency of the proposed approach with two finite-difference

applications. Experimental results show that compared with previous constant operators, the

resource usage of the applications is further reduced by 50%. The deeply optimised arithmetic

operators, when integrated into reconfigurable designs, lead to up to 7.8 times speedup over

the corresponding static designs.

Eliminating idle functions in high-performance applications. (Chapter 4)

At the application level, we propose a partitioning approach for applications with idle functions.

Reconfiguration Data Flow Graph (RDFG), a hierarchical graph structure, is defined. We

develop design models, search algorithms and design rules to group functions active at the

same time into the same configuration, based on the analysed idle cycles of each function. The

grouped functions are optimised to fully exploit the resources previously used by idle functions.

Applications in finance, control and seismic imaging are developed with the proposed approach.

The runtime reconfigurable designs approximate the optimal hardware efficiency by eliminating

idle functions, and are 1.31 to 2.19 times faster than optimised static designs. FPGA designs

developed with the proposed approach are up to 26.7 times faster than optimised CPU reference

designs and 1.55 times faster than optimised GPU designs.

Eliminating idle computing devices in reconfigurable systems. (Chapter 5)

At the system level, we propose an approach that optimises reconfigurable designs by construct-

ing scalable designs. The scalable designs can adapt to the available runtime resources in a

reconfigurable system. The proposed approach has two stages: compile-time optimisation and

runtime scaling, and can be used in developing effective servers for high-performance compu-

tation. Two benchmark applications, Bond Option Pricing and Reverse Time Migration, are

developed with the proposed approach. Experimental results show that dynamic designs can

dynamically scale over computing nodes that become available during their execution. When

statically optimised, the dynamic designs are 1.4 to 11.2 times faster and 1.8 to 17 times more
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power efficient than reference CPU, GPU, MaxGenFD, Blue Gene/Q and Cray XK6 designs;

when dynamically scaled, the hardware efficiency of the dynamic designs reaches 91%, which

is 1.8 to 2.3 times higher than their static counterparts.

1.3 Overview

One of the holy grails in reconfigurable computing is runtime reconfiguration. While conven-

tional design approaches optimise reconfigurable designs in space (i.e., exploiting reconfigurable

fabrics in reconfigurable devices), runtime reconfiguration enables hardware designers to opti-

mise reconfigurable designs in runtime. Instead of targeting general computing problems, recon-

figurable designs are often customised for a specific application. This provides reconfigurable

designs more optimisation opportunities since fewer problem scenarios need to be supported.

However, even for a specific application, a reconfigurable design still needs to cover all runtime

scenarios in this application. When a device is runtime reconfigurable, we can implement a

hardware design optimised for each runtime scenario. This provides runtime reconfigurable

designs more optimisation scope compared with static designs. We refer the reader to the

Glossary which defines the terms used in this thesis.

Both industry and research communities seek application domains that exploit the benefits

of runtime reconfiguration [HBB04, SFG06, KT11, BS08, BSPM09]. There are two obsta-

cles in this research direction: (1) the developed runtime reconfiguration approaches are often

application-specific, and cannot be applicable to other application domains, and (2) even for

a specific application, the effectiveness of dynamic designs depends on application parameters

(such as data size), and therefore dynamically reconfiguring designs reduces design performance

in certain cases. In this thesis, we take a different direction in exploring the use of runtime

reconfiguration. We start from investigating the static designs to identify the inefficient design

units that can be improved by runtime reconfiguration. Once inefficient design units are found,

new design approaches are proposed to replace the inefficient design units with design units

customised for specific runtime scenarios. Finally, runtime overhead and benefits are modelled
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and evaluated to ensure the reconfigurable design with minimal execution time for a given ap-

plication is executed. The executed design can be a static or a dynamic design, depending on

evaluation results.

In this section, we present below an overview of this thesis, in four aspects:

• hardware efficiency to define the activeness of consumed resources in a reconfigurable

design, and to indicate whether a reconfigurable design contains idle resource units.

• idle resource units to indicate the inefficient design units in a static design, divided into

three design levels (circuit level, application level, and system level).

• design models to optimise idle resource units into efficient designs, with runtime benefits

and overhead evaluated.

• a design flow to demonstrate how a reconfigurable design can exploit runtime reconfigu-

ration step by step to improve design performance.

1.3.1 Hardware Efficiency

In a runtime scenario, a well-behaved data-path achieves the peak performance by keeping all

implemented operators working in pipeline, generating one result set per clock cycle. An optimal

reconfigurable design refers to the case where in each runtime scenario, all available resources are

fully utilised to implement well-behaved data-paths. In practice, limited by conventional design

approaches, hardware designers need to compromise hardware efficiency for design generality.

Therefore, the measured performance of the developed design is often much lower than the

peak performance. We define hardware efficiency E as the ratio between the measured design

throughput THmes and the theoretical peak throughput THthe of a reconfigurable design, and

define throughput TH as the ratio between the number of processed arithmetic operations Nari
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and the overall execution time T .

THmes =
Nari

Tmes
THthe =

Nari

Tthe
(1.1)

E =
THmes

THthe
(1.2)

=
Tthe

Tmes
(1.3)

E = 1 indicates that the peak performance for a given application is achieved.

The execution time of an optimal reconfigurable design with R successive runtime scenarios

can be calculated by accumulating the execution time in each runtime scenario,

Tthe =
R
∑

rf=1

dsrf
Ndp,rf · fdp

(1.4)

where rf is the runtime scenario index, dsrf is the number of output data sets in runtime

scenario rf , Ndp,rf is the number of well-behaved data-paths, and fdp is the operating frequency

of the data-paths. In this case, there are R runtime scenarios.

In practice, the performance of a reconfigurable design is reduced by various limitations, such

as: (1) inefficient data-paths due to design approaches, such as unresolved data dependencies

and unsatisfied communication bandwidth requirements, and (2) reduced design efficiency in

certain runtime scenarios due to idle resource units. Therefore, we express Tmes as follows.

Tmes = Udes ·
R
∑

rf=1

dsrf · Uidle

Ndp,rf · fdp
(1.5)

where Udes accounts for the design-related inefficiency, and Uidle accounts for the reduced per-

formance due to the idle resource units. The design-related inefficiency Udes affects the design

performance in all runtime scenarios, while the idle-resource inefficiency Uidle is specific to

certain runtime scenarios. The objective of this thesis is to reduce the gap between THthe

and THmes by (1) developing well-behaved data-paths for a given application and (2) further

optimising the reconfigurable design for each runtime scenario with the support of runtime

reconfiguration.
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1.3.2 Idle Resource Units

Idle resource units limit the performance of reconfigurable designs, and can be viewed as the

opportunities to apply runtime reconfiguration. We define idle resource units as circuits nec-

essary to support a given application which can become inactive during runtime. At different

design levels, idle resource units refer to different resource types, and need to be optimised with

different design approaches.

• circuit level: an idle resource unit refers to a logic gate in an arithmetic operator. When

some input values are constant over time, parts of the logic gates become redundant. The

proposed design approach removes the redundant logic gates in the runtime scenarios,

thus reducing the resource usage of a data-path.

• application level: an idle resource unit refers to an application function in a reconfig-

urable design. For static designs, hardware designs need to map all application functions

into reconfigurable devices, to ensure an application can be properly supported. Parts of

the functions may only need to be executed in certain runtime scenarios, and therefore

become idle in the other scenarios. The proposed approach replaces these idle functions

with active functions. Therefore the active functions obtain more resources to exploit.

• system level: an idle resource unit refers to an available FPGA that is not utilised

by a reconfigurable design. In a reconfigurable system with multiple FPGAs, FPGAs

that are not available at the beginning of design execution can become available during

certain runtime scenarios, after being realised by other reconfigurable designs. If each

reconfigurable design only uses the FPGAs that are available when it is launched into a

reconfigurable system, the overall system efficiency is reduced. The proposed approach

dynamically reconfigures designs running in reconfigurable systems, to exploit the FPGAs

that become available during runtime.
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1.3.3 Design Models

With idle resources detected at various design levels, design models are developed to optimise

reconfigurable designs under each runtime scenario. We divide the design models into three

categories: design parameters, system resource constraints, and runtime benefits and overhead.

We present the basic design models as follows, and elaborate the details at each design level.

Design parameters refer to the resource usage and execution time of a dynamic design for a run-

time scenario rf . Resource usage includes on-chip logic resource usage l(C,P ), on-chip memory

resource usage m(C,P ), and off-chip communication resource usage c(C,P ), where C indicates

application characteristics, such as the number of arithmetic operations and communication

patterns, and P indicates the number of replicated data-paths in a configuration. Resource

constraints express the amount of available resources in a reconfigurable device / system. With

the support of resource constraints, the design models ensure replicated data-paths are well-

behaved under the current runtime scenario, i.e., Uidle = 1. Therefore, the execution time T

can be calculated as the ratio between output data size ds and processing capacity P · fdp. To

approximate the peak performance, the model objective is to minimise the execution time of

all configurations in a reconfigurable design. For each design configuration, the model can be

expressed as:

minimise:
dsrf

Prf · fdp,rf
(1.6)

subject to:

l(Crf , Prf ) ≤ Al (1.7)

m(Crf , Prf ) ≤ Am (1.8)

c(Crf , Prf ) ≤ Ac (1.9)

where Al, Am and Ac respectively represent the available logic, memory and communication

resources in a reconfigurable system.

Runtime reconfiguration is a double-edged sword: it enables reconfigurable designs to be fur-
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ther customised for specific runtime scenarios, however, dynamically switching between different

hardware designs will inevitably introduce overhead. Runtime benefits RTbne refer to the re-

duction in the overall execution time T by dynamically updating FPGA configurations, and

can be expressed as:

RTbne =
R
∑

rf=1

dsrf
P · fdp

−
R
∑

rf=1

(
dsrf

P ′
rf · f ′

dp

+Orf ) (1.10)

where
∑R

rf=1
dsrf
P ·fdp

indicates the execution time of a static design, and
∑R

rf=1(
dsrf

P ′

rf ·f
′

dp
+ Orf )

indicates the execution time of a dynamic design. The design parameters of static and dynamic

designs can be collected after design optimisation. Orf is the reconfiguration time for switching

from configuration rf to configuration rf + 1. The reconfiguration time includes the time to

update circuit configuration information, and the time to preserve application context data

(intermediate results).
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Figure 1.6: Overall design flow.
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1.3.4 Design Flow

The objective of this thesis is to eliminate Udes and Uidle by optimising reconfigurable design

in compile time and by dynamically reconfiguring the optimised designs. This mainly includes

three steps:

• identifying the runtime reconfiguration opportunities in a reconfigurable design, i.e., find-

ing the idle resource units in a reconfigurable design;

• modelling the impact of these runtime reconfiguration opportunities in a reconfigurable

design, and optimising the design under the new optimisation opportunities;

• implementing the optimised design in FPGAs, and adapting the reconfigurable design

during runtime.

Our approach starts with descriptions in the C language of an application, generates HLS-

compatible hardware descriptions, and links host programs and synthesised configuration files

as an executable. Figure 1.6 shows the tool flow. The front-end of the tool translates the C

descriptions into high-level hardware descriptions, using a hierarchical Data-Flow Graph (DFG)

as the intermediate representation of an application. In the back-end of the tool, the hierarchical

DFG goes through three design levels, to exploit runtime reconfiguration opportunities step by

step. We use a System Resource Abstraction (SRA) file to describe system-specific information

such as available resources, inter-FPGA connections, and operator resource usage. Eventually,

the back-end updates optimised design parameters after exploiting runtime reconfiguration,

and the front-end uses the optimised design parameters to generate hardware descriptions.

The design flow generates a customised hardware design for each runtime scenario, with each

design synthesised as a runtime configuration. We link the runtime configurations for an appli-

cation as an executable. During runtime, the executable downloads the configuration that

suits the current runtime scenario the most into available FPGAs, and adapts the imple-

mented design when runtime scenarios vary. In this thesis, we build the tool with the ROSE

infrastructure [Qui00]. The compiler front-end translates the computational kernels in the
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C program into hardware descriptions, and the back-end implements the proposed optimisa-

tion approaches at the circuit, function and system levels. The tool can be downloaded from

http://www.doc.ic.ac.uk/~nx210/tools/irue.zip.
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Chapter 2

Background and Related Work

2.1 Introduction

This chapter presents the background information of this thesis. We divide the following

parts of this chapter into five sections. Section 2.2 introduces the concepts of reconfigurable

computing, data-flow programming, and runtime reconfiguration. In Section 2.3, the related

work in runtime reconfiguration is introduced. We categorise the related work as: (1) scenarios

previously proposed to utilise runtime reconfiguration, and (2) tools and approaches developed

to apply runtime reconfiguration. Section 2.4 summarises the novel aspects in this thesis,

compared with the related work, and Section 2.5 concludes this chapter.

2.2 Background

The concept of reconfigurable computing can be traced back to 1963, when a restructurable

computer system was proposed to build special-purpose computers for given computational

problems [EBTB63]. The term reconfigurable computing refers to the use of programmable

hardware to construct customised circuits for a specific computational problem, and the term

programmable hardware indicates that the information defining the customised circuits can be

updated after chip fabrication to adapt the implemented circuits to problem requirements.

22
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Modern reconfigurable devices, such as FPGAs, were initially proposed for circuit verification

and rapid prototyping [CH02]. It was soon noticed that with large logic gate capacity, deeply

pipelined circuits and flexible programmability, FPGAs can achieve better performance for

signal processing applications [Her97], compared with software implementations. Nowadays,

hardware accelerators based on FPGAs have achieved orders of magnitude improvements in

absolute performance and energy efficiency for applications such as financial modelling [TL08a],

DNA sequencing [ATLJ13], seismic imaging [NJL+12a] and scientific computing [ZP05]. In this

section, we present the background information for reconfigurable computing, with the use of

runtime reconfiguration emphasised.

2.2.1 FPGA architecture

Reconfigurable devices, such as FPGAs, map hardware descriptions into underlying reconfig-

urable fabric. The basic operations in an application can be divided as data movement and

data processing. Correspondingly, the basic components of an FPGA include I/O blocks, logic

blocks and interconnect network, as shown in Figure 2.1. The I/O blocks of an FPGA connect

on-chip resources to external devices, with communication infrastructures such as PCI-Express

controllers and DDR3 memory controllers implemented on-chip to control data streams con-

nected with the I/O blocks. The programmable logic blocks allow users to define logic and

arithmetic operations for implementation on FPGAs, and the programmable interconnect net-

work allows users to define the connections between the implemented operations. To improve

performance, commonly used design blocks such as memory blocks and DSP operators are

hardened in modern FPGAs.

Typically, the basic reconfigurable units in an FPGA include configuration memory, routing

resources and logic resources [BRM02], as shown in Figure 2.2. Most of FPGAs store configu-

ration information in Static Random-Access Memory (SRAM) cells. A 6-transistor SRAM cell

uses two WL transistors to control the read and write operations, and store 1-bit configuration

information in its internal inverters (see Figure 2.2(a)). FPGA designs use pass transistors and

routing multiplexers to define connections between logic blocks, as shown in Figure 2.2(b). A
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logic block

I/O blocks

interconnect network

Figure 2.1: A generic FPGA architecture.

pass transistor connects its input and output nodes when its coupled SRAM cell is configured

as ‘1’. A routing multiplexer connects one node to multiple possible input nodes, with the

implemented connection defined by the coupled SRAM bits. Look-Up Tables (LUTs) accom-

modate logic operations in an FPGA design. A LUT is implemented as a multiplexer with fixed

input values, with the selection signals of this multiplexer used as logic input. For the 3-input

LUT in Figure 2.2(c), a 8-input multiplexer is used, and the 8 input wires are connected to

pre-configured SRAM bits. The input signals for the 3-input LUT work as variable inputs of

a truth table, and each combination of the variable inputs selects a specific SRAM bit to the

LUT output. When the SRAM values of a LUT are updated, its implemented truth table (logic

operation) is reconfigured.

A Configurable Logic Block (CLB) consists of LUTs, Flip-Flops (FFs), configuration SRAM

cells, I/O ports, and a switch matrix. A CLB contains multiple LUTs (two 4-input LUTs in

the CLB in Figure 2.3), and each LUT is paired with an FF to buffer its output. As shown

in Figure 2.3, the switch matrix in a CLB defines the connections between CLB I/Os and the
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input input

SRAM cell

outputinput
WL WLoutput

(a) (c)(b)

Figure 2.2: Basic units in a typical FPGA: (a) an SRAM bit, (b) a pass transistor and a routing
multiplexer, and (c) a 3-input LUT.

LUT input pins. The routing multiplexers in the switch matrix are configured with SRAM

cells, to determine the implemented connections inside a CLB.

in1

in0

LUTs

SRAM cells

SRAM cells

Reg

RegSRAM

SRAM

switch matrix

....

out0,out1 out0
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Figure 2.3: A Configurable Logic Block (CLB) of an FPGA.

The routing infrastructure of an FPGA includes Connection Blocks (CBs) and Switch Blocks

(SBs). As shown in Figure 2.4, a CB defines the connections between a CLB and its surround-

ing wires, and an SB defines the connections between the routing wires in its neighbouring

routing channels. A reconfigurable connection can be implemented by either pass transistors

or multiplexers. As shown in Figure 2.4, inside a CB, multiple wires in a routing channel are

multiplexed into a CLB input. The multiplexer selection inputs are connected to SRAM cells.

Inside a SB, a routing wire is connected with wires in neighbouring routing channels via pass

transistors. Each pass transistor is coupled with an SRAM cell. The connection is enabled

when ’1’ is written into the SRAM cell.

During the synthesis procedure of a reconfigurable (FPGA) design, hardware descriptions for a

reconfigurable design are compiled into a netlist of basic gates. The netlist is then mapped into

LUTs. For an FPGA logic block that contains multiple LUTs, the mapped LUTs are clustered
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connection
block
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routing units

switch 
block

SRAM SRAM

Figure 2.4: The routing infrastructure of an FPGA.

and partitioned into smaller LUT groups, with each LUT group mapped into a CLB. A netlist

of logic blocks is formed. Finally, logic blocks and interconnections in the logic block netlist are

placed into the available resources of an FPGA, and routed through the interconnect network

shown in Figure 2.4. A generated configuration file for the synthesis procedure determines the

SRAM values for switch matrices, LUTs, CBs, and SBs. For conventional design approaches,

the FPGA configuration data for an application remain the same once initialised.

2.2.2 Runtime Reconfiguration

The configuration infrastructure of an FPGA consists of a configuration memory system, con-

figuration interfaces, and configuration storage. Figure 2.5 shows the split view of an FPGA.

The logic plane contains the reconfigurable elements that construct customised designs, and the

configuration plane contains a configuration memory system and configuration interfaces. The

configuration memory system organises the SRAM cells for logic elements and interconnect net-

work to keep them addressable, and configuration interfaces download compiled configuration

files into the memory system.

The basic unit of a configuration memory is an SRAM cell. In a reconfigurable device, its SRAM
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Figure 2.5: A split-level view of an FPGA.

cells are organised in columns, as shown in Figure 2.5. A configuration frame is the smallest ad-

dressable configuration unit. A configuration column consists of multiple configuration frames.

In the latest Xilinx 7 series FPGAs [Xila], a configuration column contains up to 64 frame, and

each frame has 3032 SRAM bits. To update SRAM values, a configuration memory system

first specifies a column, and then selects a frame within the column. Configuration frames are

downloaded into the SRAM arrays via configuration interfaces. The configuration interfaces

shown in Figure 2.5 include Joint Test Action Group (JTAG) and other general interfaces.

Full Reconfiguration

Full Reconfiguration (FR) refers to swapping the whole configuration file for an FPGA, and

therefore is compatible with conventional design approaches. To fully reconfigure an FPGA,

the configuration circuits shown in Figure 2.5 are first initialised. The initialised circuits take

configuration options such as configuration file size, and incrementally download configuration

frames into the SRAM arrays. After a configuration file is downloaded and verified, the config-

uration circuits generate a done signals, and switch the FPGA from initialisation mode to user

mode.

To support FR, multiple configuration files need to be prepared during the development process

of a reconfigurable design. As shown in Figure 2.6(a), the prepared configuration files are stored

in hard disks. During runtime, the prepared configurations are downloaded into FPGAs the
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same way FPGAs are initialised, and therefore FR does not need additional design steps or

architecture support. As a consequence, FR introduces comparatively large configuration time.
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Figure 2.6: Runtime reconfiguration approaches: (a) full reconfiguration, (b) partial reconfigu-
ration, and (c) multi-context reconfiguration.

Partial Reconfiguration

In order to reduce the reconfiguration time, Partial Reconfiguration (PR) is proposed to only

update the configurations for a fraction of an FPGA, which is named as a PR region. For mul-

tiple configurations to be reconfigured during run time, a partial reconfiguration design flow

extracts the differences between the configurations [Xilb]. The common parts of the configura-

tions are used as a base configuration, with the different parts mapped as partial configuration

files. During runtime, partial configuration files are updated into corresponding SRAM cells

via Internal Configuration Access Port (ICAP) [Xilc], or by means of dedicated modes.

Partially reconfiguring circuits requires defining PR regions in FPGAs. As shown in Fig-

ure 2.6(b), multiple PR modules are mapped into the same PR region. This leads to three

limitations in a PR design: (1) the area of a PR region is determined by the upper area bound

of the mapped PR designs, which leads to area overhead when the mapped PR designs have

different resource usage; (2) the logic and routing resources in a PR region are exclusive to

the mapped PR designs. This increases the placement and routing complexity for other de-

sign modules, and reduces the achievable operating clock frequency; (3) hardware programmers

need to do manual floorplanning to specify the PR regions. This limits the productivity for

PR designs. Moreover, although partially reconfiguring FPGAs reduces reconfiguration time

compared with full reconfiguration, the reconfiguration time for PR designs is still unacceptable

for designs that need frequent reconfiguration (e.g. every clock cycle). Given the smallest ad-

dressable configuration size (3232 bits) and maximum reconfiguration throughput (400 MB/s)

in the latest devices [Xila, Xilc], the minimum reconfiguration time is 1.01 µs (151 clock cycles
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for the 150 MHz operating frequency). If the operations in a reconfigurable design need to be

reconfigured every clock cycle, between two consecutive reconfiguration operations, it takes 151

cycles to reconfigure circuits, and takes 1 cycle to process data. The hardware efficiency in this

example drops to almost 0.

Multi-context Reconfiguration

To further reduce reconfiguration time, Dynamically Programmable Gate Array (DPGA) [DeH96]

and time-multiplexed FPGAs [TCJW97] are proposed. In these architectures, configuration

memories for reconfigurable logic are replicated to store multiple configurations on-chip. As

shown in Figure 2.6(c), a reconfigurable unit is coupled with multiple configuration memory

sets, with each set storing one possible runtime configuration. Therefore, design configurations

can be updated within a cycle. During compile time, application operations are decomposed

into multiple operations sets, with operations in the same set executed at the same time. Each

operation set is synthesised as a configuration file, which is stored in one of the replicated

configuration memories before execution. The stored configuration data are selected during

runtime, to configure different circuits from time to time.

The use of multi-context reconfiguration technique is limited by its compatibility and area

overhead. Since application operations are divided into frequently reconfigured operation sets,

most of the previous design techniques and tools cannot be applied to multi-context designs.

New development and synthesis tools need to be developed. More importantly, replicating

configuration memories on-chip introduces large area overhead, given the fact that configuration

memories are already extensively used in conventional FPGAs. The additional memory area is

fixed once FPGAs are fabricated. Static designs are implemented with the same area overhead,

although only one of the replicated configuration memories is required.

Comparison of Runtime Reconfiguration Techniques

We compare the three reconfiguration approaches in Table 2.1, in terms of compatibility with

existing techniques, reconfiguration time, and area overhead.

• Fully reconfigured designs have no area overhead as each configuration file corresponds to a
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Table 2.1: Comparison of reconfiguration techniques.
configuration approach compatibility reconfiguration time area overhead 1

full high high (0.8 s 2) none
partial medium medium (50 ms ∼ 1.01 µs 3) medium
multi-context low low (1 clock cycle) high

1 area overhead refers to the increase in the area usage of a reconfigurable design.
2 measured on a design consuming 71% of a Virtex-6 SX475T FPGA.
3 1.01 µs calculated with peak reconfiguration throughput and minimum configuration
frame size, and 50 ms measured for configuring a clock region of a Virtex-6 SX475T FPGA.

separated hardware design, which is developed and synthesised independently. However,

swapping the whole configuration file during runtime introduces large reconfiguration

time. For a large scale FPGA Virtex-6 SX475T, a full reconfiguration operation takes

around 0.8 second to finish.

• For PR regions, only updating the configurations for PR modules reduces reconfigura-

tion time (50 ms if a clock region is to be reconfigured, and 1.01 µ if a frame is to be

reconfigured). However, a PR design contains PR modules and static design modules in

the same hardware design. As discussed earlier in this section, this leads to compromised

compatibility and increased area overhead.

• Multi-context designs push reconfiguration time into 1 clock cycle by storing possible con-

figuration files on-chip. As a consequence, new design approaches need to be developed,

and the replicated configuration memories introduce large area overhead. In this thesis,

we focus on FR techniques to keep the proposed approaches applicable to existing tools

and systems. The use of PR and multi-context techniques are discussed in Chapter 6.

2.2.3 Data-Flow Programming Model

Programming Model

Traditionally, computer programs are modelled as a series of instructions executed in a specific

order. Following the von Neumann (control-flow) programming model [vN93], a hardware

architecture only executes instructions when its program counter reaches these instructions.
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In contrast, computer programs that follow the data-flow programming model execute (or

fire [AC86]) program instructions when the input data of an instruction become available.

Compared to a control-flow program, a data-flow program can execute multiple instructions at

the same time, possibly out of order. Figure 2.7 demonstrates the execution flow for a simple

program in its control-flow and data-flow equivalents. The control-flow program takes three

cycles to finish, assuming each operation takes one clock cycle. For the data-flow program, the

input data for both the adder and the divider are ready at the first cycle, and therefore the two

operations are executed in parallel, finishing the program in two clock cycles. It is clear that

a data-flow program can better exploit the instruction-level parallelism than its control-flow

counterpart. In addition, if the same instructions are executed repetitively over multiple data

sets (e.g. a for loop), the processing of the second data set can start before the first data set

is finished. In Figure 2.7(c), the adder and the divider start processing the second input data

set at the second clock cycle, before the fist output data set is generated. This is known as

pipelined data-flow [GP89], and a data-flow program that generates one set of output data for

each input data set is said to be well-behaved [DM74].

(a) (b)

cycle1

cycle2

cycle3

cycle4

(e)(c) (d)

Figure 2.7: An example data-flow graph with three arithmetic nodes, following the (a) control-
flow model, (b) data flow model and (c) pipelined data-flow model. (d) A vectorised hardware
architecture that processes multiple data concurrently. (e) A hardware implementation of a
well-behaved data-path, which generates one set of output data per clock cycle.

Vector Computer Architecture

In addition to instruction-level parallelism exploited by data-flow programming models, Single

instruction, Multiple Data streams (SIMD) and Multiple Instruction, Multiple Data streams
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(MIMD) architectures were proposed [Fly72] to exploit data-level parallelism, as shown in

Figure 2.7(d). Instruction set extensions — such as MMX [PWW97] and Streaming SIMD Ex-

tensions (SSE) [SB01] from Intel — provide SIMD parallelism to execute the same instruction

on multiple data concurrently. Recently, vector processing architectures [YSR08, NFMM13]

have been proposed as soft processors implemented in FPGAs, to accelerate computationally

intensive applications. With the massive data-level parallelism in graphics applications, Graph-

ics Processing Units (GPUs) contain a large number of streaming cores (e.g., Tesla C2070 from

Nvidia contains 448 streaming cores) to provide high application throughput. As more and

more applications, such as matrix processing and deep learning algorithms, expose data-level

parallelism, it is becoming increasingly common to use General Purpose Graphics Processing

Units (GPGPUs) as hardware accelerators. Compared with CPU designs, large improvements

in performance and power efficiency have been shown for matrix processing [YPS11] and seismic

imaging [PF10a]. While well suited for applications with heavy data-level parallelism, vector

architectures achieve relatively low performance for flow-control-heavy tasks. As an example,

for parallel threads in GPUs that apply the same instruction on different data, computational

efficiency reduces each time the instructions hit branch operations: even if there is only one

thread that enters a certain branch, the remaining threads need to wait for this one thread to

finish its branch to continue.

Data-Flow Hardware Architecture

While effective in theory, the data-flow programming model is difficult to implement in practice

mainly because two assumptions: (1) the model assumes unlimited data storage between two

graph nodes (unlimited First In, First Out (FIFO) queues), and (2) the model assumes un-

limited hardware resources to executed any number of instructions in parallel. Static [DM74]

and dynamic [AN87] data-flow architectures are proposed to execute instructions out of or-

der. However, due to limited hardware resources and complex data dependencies, the proposed

architectures sacrifice design performance to ensure architecture generality.

Reconfigurable devices provide another direction to implement data-flow programming mod-

els. Instead of building general-purpose architectures that execute instructions out of order,
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customised data-paths are developed application-by-application, and are mapped into reconfig-

urable fabrics. Figure 2.7(e) presents a customised data-path for the example program. Each

node in the program data-flow graph is implemented as a customised arithmetic unit, and arcs

between the nodes are implemented as wire connections and FIFOs. Instruction-level paral-

lelism is exploited since all nodes that are fireable at the same time are executed in parallel,

with the readiness of input data handled by FIFOs. As an example, if we assume an addition

and an division respectively take 1 and 3 cycles, a FIFO with 2-data depth is inserted between

the adder output and the multiplier input to ensure input data are ready at the same time. In

addition, by streaming input data cycle by cycle, pipelined data-flow is supported, i.e., the data-

path starts processing the second input data sets before the first data set is finished, generating

one output set per clock cycle per data-path (well-behaved). There are two levels of parallelism

in the customised data-paths. A well-behaved data-path fully exploits the instruction-level par-

allelism within a program: all implemented arithmetic nodes are busy during runtime. For

the example program in Figure 2.7(a), at each clock cycle, all three arithmetic operators are

processing data in parallel. On top of the instruction-level parallelism, multiple data-paths can

be implemented in an FPGA, generating multiple output sets per clock cycle.

2.3 Related Work

2.3.1 Runtime Reconfigurable Applications

In the last decade, both industry and research communities have been seeking applications

that can benefit from runtime reconfiguration. Recent progress enables runtime reconfigurable

designs to be applied to the field of networking, control, Software Defined Radio (SDR), signal

processing, and data management.

Runtime reconfiguration opportunities for networking applications stem from complex runtime

conditions. An I/O crossbar is a commonly used switching module in networking applications.

All to all connections are provided between the inputs and the outputs of a crossbar, with the
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active connections defined by runtime data values. In [Y+03], routing multiplexers are used

to compose a crossbar. When runtime conditions change, a new partial configuration file is

downloaded into the configuration memory for the routing multiplexers, to update the crossbar

connections. Compared with static designs that map the whole crossbar into reconfigurable

elements, the runtime reconfigurable design achieves higher flexibility. For coarse-grained mod-

ules, networking modules with various functionality are dynamically configured into FPGAs to

share the silicon area [LNTT01a].

In the fields of control, SDR, and data management, runtime reconfiguration is introduced

to map various design modules into the same reconfigurable region. The control functions of

automotive applications can be mapped into partially reconfigurable regions [HBB04]. Using

an ICAP interface with 66 Mbyte/s, a control function can be reconfigured within 2 ms. In an

SDR platform implemented in a Xilinx Spartan3-200 FPGA [SFG06], both 802.11 and Zigbee

receivers reside in the same FPGA to support different communication protocols. It is proposed

that runtime reconfiguration can be used to map the two receivers into the same reconfigurable

region. For large-scale data sorting, a reconfigurable design [KT11] divides its sorting and

merging parses into two configurations, and uses full reconfiguration to switch between the two

design phases.

For signal processing applications, besides using runtime reconfiguration to swap possible mod-

ules [BSPM09], runtime reconfigurable designs can exploit the constant coefficients within signal

processing components. In [BS08], tunable LUTs are proposed to generate customised LUT-

based operators for arithmetic operations with slowly varying coefficients. The arithmetic op-

erators are implemented as parametrisable designs. In a parametrisable design, a basic static

design is placed and routed in FPGAs, and variations in coefficients are supported by changing

LUT configurations. Compared with static designs that implement the arithmetic operations as

general operators, the design based on tunable LUTs is 2.3 times smaller for an Finite Impulse

Response (FIR) filter implementation.

Although many applications have exploited runtime reconfiguration, the improvements in sys-

tem performance are limited by reconfiguration overhead and design generality. The recon-
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figuration overhead refers to reductions in design performance, such as the reduction in clock

frequency due to floorplanning constraints, and the increase in execution time due to reconfig-

uration operations. Design generality indicates the range of applications to which the proposed

approaches can be applied. For the previous applications, the techniques to apply runtime re-

configuration are often application-specific. In this thesis, we focus on general design approaches

to exploit runtime reconfiguration techniques, with the reconfiguration overhead properly han-

dled.

2.3.2 Optimisation Opportunities to Apply Runtime Reconfigura-

tion

Runtime reconfigurable designs can be categorised into optimisation opportunities where spe-

cific runtime reconfiguration techniques can be applied. We summarise three existing optimi-

sation opportunities that runtime reconfiguration can be beneficial.

Reconfigurable module opportunities refer to the use of runtime reconfiguration to swap design

modules during runtime. Partial reconfiguration is typically used in this case. For a recon-

figurable module, the candidate functions are compiled into partial configuration files. One

of the configuration files is initialised into the reconfigurable module before execution. Dur-

ing runtime, the remaining files are reloaded into the module based on runtime conditions.

Therefore, the same reconfigurable area can be reused to provide various functionality during

run time. However, partially reconfigurable modules suffer the limitations discussed in Sec-

tion 2.2.2, which include reduced clock frequency, area overhead in PR regions, and reduced

productivity. For real-world applications, reconfigurable modules are developed to support

multiple communication or control protocols in the same design, with the candidate protocols

multiplexed during runtime. Previous designs with reconfigurable modules include a packet

processing platform with various processing modules [LNTT01b], an SDR design with multiple

waveform modules, and automotive and robotic designs with different control modules.

Design tuning opportunities refer to the use of runtime reconfiguration in semi-dynamic ap-
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plications, where design properties are occasionally updated. Constant coefficients in FIR

filters [BS08] and option pricing [BJLW11, JBLT12a] are utilised to construct constant-specific

operators. When coefficients are updated during execution, variations in customised operators

are updated with runtime reconfiguration. The customised operators consume fewer resources

and operate at higher frequency, compared with general-purpose operators. Resource usage for

FIR filters and finite-difference computational kernels is reduced respectively by 36% and 22%.

Runtime reconfiguration is required when a target application would not fit into available re-

sources all at once. The application is partitioned into subprograms, which are sequentially

reconfigured into the available resources. In temporal partitioning [PB99], target applications

are partitioned into multiple configurations. The configurations are swapped in and out of

reconfigurable fabrics in a specific sequence to implement the application functionality. Ap-

plication tasks are represented using Data Flow Graphs (DFGs), and partitioned under re-

source constraints. The problem is formulated as an Integer Non-linear Programming (INLP)

model [KV98] to minimise communication operations between partitioned segments. Spatial

partitioning is covered in [HLH+98] to support multiple devices. The temporal and spatial par-

titioning approaches are applicable to applications which cannot be accommodated by available

resources. As Moore’s Law continues, logic capacity in recent FPGAs has increased to a level

where lots of applications can be accommodated without being dynamically reconfigured. Area

constraints in the temporal and spatial partitioning methods will still be satisfied even when

all operations are partitioned into the same configuration. However, as discussed later in this

thesis, even when there are sufficient resources to implement an application, grouping all appli-

cation functions into the same configuration does not necessarily provide the optimal solution.

2.3.3 Design Approaches for Runtime Reconfiguration

Previous design approaches and tools improve the performance of runtime reconfigurable sys-

tems in terms of reconfiguration time and execution time. Reconfiguration time refers to the

time consumed to download a new configuration file, either partial or full, into the target FPGA.

Therefore, the reconfiguration time depends on the size of the downloaded configuration file and
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the throughput of the used reconfiguration interface. For FR designs, the reconfiguration time

also includes the time to preserve application context data when on-chip memory controllers are

reconfigured. The performance of a runtime reconfigurable design is severely limited by the re-

configuration time. As shown in Figure 2.5, configuration SRAM cells are organised in columns,

where each column contains multiple configuration frames. In [HK12], the partial configuration

file for a crossbar is compressed by only updating specific frames in a configuration column.

Moreover, the proposed approach in [HK12] improves configuration throughput by placing re-

configurable blocks into the least number of columns. The reconfiguration flow in [FBS13] only

updates the differences in routing configurations. A 2 times reductions in reconfiguration time

is achieved. A different direction to reduce the reconfiguration time is to reduce the number

of reconfiguration operations. A partition approach is proposed in [HMZB12], where functions

activated at different time intervals are combined into the same reconfigurable module. Under

the same resource constraints, grouping functions activated at different time intervals reduces

the number of reconfiguration operations, thus reducing the overall reconfiguration time. The

proposed approach saves up to 70% of the overall reconfiguration time.

The execution time of a runtime reconfigurable design is determined by its reconfiguration time,

as well as whether the optimal configuration is generated and selected. Various scheduling

approaches have been proposed to schedule the prepared configurations during runtime. The

SCORE project [CDW01] abstracts reconfigurable programmes as fixed-size compute pages,

which are swapped into reconfigurable resources during runtime. Page schedulers are developed

to make reconfiguration decisions that minimise execution time or data buffers. In multi-

thread system, multiple reconfiguration candidates exist at each reconfiguration interval. A

knapsack-based scheduler is proposed in [FC05] to select the configurations (design kernels)

with maximum speedup. The scheduler is further improved in [FC08] by adaptively adjusting

reconfiguration intervals, which reduces the overall scheduling overhead by 85%.
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2.3.4 Tools for Runtime Reconfiguration

Development tools and runtime support for runtime reconfiguration aim to reduce the effort

for designing and managing runtime reconfigurable designs. If reconfigurable designs can be

developed and executed in conventional design environment, reconfigurable devices can be

used in mainstream systems. The work to support such integration can be divided into three

categories: operating system support, design automation, and runtime scheduling.

Operating system support relies on operating systems to instantiate and reconfigure design mod-

ules. Egret [WB04] is proposed as a modular platform based on uCLinux. Egret maps System-

on-Chip (SoC) modules onto reconfigurable devices with runtime reconfiguration, through ICAP

via standard UNIX commands. The Linux system presents devices as files under the /dev di-

rectory. Therefore it is easy to send configuration files (bitstreams) to reconfigurable devices

connected to the operating system, by using commands to write to /dev files. From an oper-

ating system perspective, the configuration files can be stored in local storage, generated by

other programs (configuration file compression, runtime configuration modification) or stored

in remote devices (configuration server). BORPH [SB08] is an extended Linux operating sys-

tem that manages and executes hardware designs as normal UNIX processes, which gain access

to Operating System (OS) services. Various OS extensions such as Virtual Hardware Operat-

ing System [Bre96], ReConfigME [WKW02], ReconOS [SWP04], and Hthreads [PAA+06] have

been proposed for reconfigurable systems.

Design automation tools provide Graphical User Interfaces (GUIs) or automatic support for

users to develop runtime reconfigurable designs with improved productivity. Xilinx PlanA-

head [Xild] integrates partial reconfiguration support with additional design steps to define

runtime reconfigurable modules and runtime reconfigurable regions. GoAhead [KTB+12] pro-

vides a GUI and command script interface for floorplanning and macro placement of runtime

reconfigurable regions. In order to further reduce the design effort to place and floorplan

runtime reconfigurable regions, automatic placement and floorplanning approaches have been

proposed [HLM+13].
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Runtime scheduling tools aim to select suitable reconfigurable designs during runtime, and

to reduce reconfiguration overhead. [FC05] evaluates three scheduling algorithms to allocate

portions of the reconfigurable hardware at runtime, in order to select the configuration with

maximum speedup. On the other hand, reconfiguration time can be reduced with various

scheduling approaches. [BBD05] exploits configuration prefetching to reduce reconfiguration

overhead. Since configuration information is downloaded into reconfigurable devices column by

column, similarities in configurations for used LUTs [HK12] and routing [FBS13] are explored

to reduce the number of columns of reconfigurable devices that need to be reconfigured, i.e.,

reduce the size of configuration files.

2.4 Comparison to the Related Work

This thesis aims at providing a systematic approach to exploit runtime reconfiguration to

improve the performance of reconfigurable designs, in terms of throughput and power efficiency.

Compared with previous work, this thesis introduces new optimisation opportunities, proposes

new design techniques, and benefits various application domains.

2.4.1 Optimisation Opportunities

The new optimisation opportunities are motivated by idle resource units in reconfigurable hard-

ware designs. The idle resource units refer to reconfigurable units that do not always contribute

to valid result generation during runtime. At different levels of a reconfigurable design, the idle

resource units are introduced by different design limitations, which are categorised into different

optimisation opportunities to apply runtime reconfiguration.

At the circuit level, arithmetic operations with constant inputs are mapped as general arithmetic

operators, to cope with various constant inputs. A general arithmetic operator is developed to

handle all input value combinations. In the case that one of operator inputs is constant during

runtime, parts of the arithmetic logic gates become redundant (idle). Previous work [BJLW11]
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focuses on how to generate constant operators for specific constant operations. We identify

new optimisation opportunities to tune algorithms such that the tuned algorithm makes use of

constant coefficients that are preferable to hardware implementations.

At the function level, application functions become idle during runtime, due to data dependen-

cies and resource constraints. Instead of partitioning applications when the target applications

do not fit into FPGAs, the function-level approach extracts functions active at the same time,

groups the functions into a configuration, and replicates the grouped functions to utilise the

resources previously consumed by idle functions. There are new optimisation opportunities for

generating runtime reconfigurable designs that design functions are only implemented when

they are active.

At the system level, an FPGA device is considered as a computing node. During runtime, the

computing nodes in a reconfigurable system are shared by various applications, and the avail-

ability of a computing node depends on indeterministic user behaviours. When executed in such

complex runtime scenarios, static designs lead to idle computing nodes. The use of runtime

reconfiguration enables dynamic designs to use additional computing nodes that are initially

unavailable to the dynamic design but become available during design execution. The optimi-

sation opportunities at the system level enable dynamically reconfiguring hardware designs to

adapt to resource availability variations.

2.4.2 Design Objective and Design Optimisation Techniques

Runtime reconfiguration improves the performance of reconfigurable designs as it creates wider

design space to explore. Associated with the new optimisation opportunities, new design spaces

are created at the three design levels. Throughout this thesis, the design objective is to minimise

the execution time of reconfigurable designs by eliminating idle resource units at each design

level.

At the circuit level, in each runtime scenario, the resource usage of a reconfigurable design

depends on the value of constant coefficients. In order to further customise the constant arith-
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metic operators, we propose design approaches to build an algorithm design space where each

constant set in the design space is mathematically equivalent, i.e. each constant coefficient set

can be implemented as customised operators that generate correct results for the algorithm.

We develop design models to capture the constant coefficient set that leads to minimal resource

usage. Compared with previous work, the design optimisation process further reduces resource

usage of the constant operations.

At the function level, an application function becomes idle when its input data has not been

generated, or the input data do not arrive in time due to bandwidth constraints. In previous

partitioning work, the design approaches group functions into a configuration as long as there

are enough resources in an FPGA. We develop an application analysis approach to identify

application functions that can work at the same time, and introduce a development flow to

generate runtime reconfigurable designs with maximum design throughput.

At the system level, the proposed approach aims at exploiting the FPGA nodes that become

available during runtime. For a conventional multi-FPGA design, the design configuration

cannot be changed during execution. The number of used FPGAs is fixed at compile time. For

a dynamic design, the design challenges include how to ensure correct functionality and how to

improve performance, when new FPGA nodes are reconfigured into the current application. We

propose a two-step design approach at the system level. (1) Compile-time optimisation involves

customising a reconfigurable design for heterogeneous FPGAs in a reconfigurable system, and

(2) a runtime scaling process schedules reconfiguration and communication operations, when a

runtime reconfigurable design scales over new FPGA nodes.

2.4.3 Application Domains

Focusing on idle resources at each design level, the design approaches invented in this thesis

are not application-specific. A reconfigurable design can benefit from runtime reconfiguration

as long as there are idle resources in the design. At each design level, we evaluate the proposed

approaches with various applications from one or multiple application domains. At the circuit

level, the proposed approaches are applicable to applications with tunable constant coefficients.
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Finite-difference applications are supported, and two benchmark applications from financial

pricing and seismic imaging are evaluated. At the function level, the proposed approach can

be applied as long as there are idle functions during runtime. Applications from the fields of

control, finance and geophysics are evaluated. The system-level approach is applicable to all

multi-FPGA designs, when they are implemented in a reconfigurable system with unknown

resource availability. To demonstrate the generality of the system-level approach, applications

with no communication operations and with intensive communication operations are evaluated.

The previous work for the related application domains is introduced and compared in the

following chapters.

2.4.4 Novel Aspects Compared with Related Work

To summarise, while runtime reconfiguration techniques show the potential to improve the

performance of reconfigurable designs, current techniques have two major limitations as follows.

1 Existing work involving runtime reconfiguration is often driven by application require-

ments. For example, for applications such as FIR filtering [BS08], SDR [HBB04], sort-

ing [KT11], the proposed designs approaches are specific to the target applications, and

are therefore difficult to be generalised for a wider range of applications.

2 Current runtime reconfiguration techniques often do not lead to direct performance im-

provements for the target applications. Dynamically reconfiguring design modules bring

more flexible integration of designs modules [WB04] and more functionality supported

by an application [BSPM09]. However, there is a large design space to explore for

runtime reconfigurable designs. The lack of proper design models leads to inefficient

designs (i.e. configuration files). The design efficiency achieved by various scheduling ap-

proaches [FC05, FC08, HMZB12] is often limited. For example, in [HMZB12], grouping

functions active at different time reduce the number of required reconfiguration opera-

tions. However, instantiating idle functions in configurations reduces the configuration

performance (i.e. longer execution time). As application data size increases, the increase
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in configuration execution time will outweigh the reduction in reconfiguration time. The

runtime solution proposed in [HMZB12] then becomes inefficient.

This work aims to propose general design models, approaches, and tools that can be applicable

to as many applications as possible that can benefit from runtime reconfiguration, and to bridge

the performance gap between ASIC and reconfigurable designs. Compared with the state of

the art in runtime reconfiguration, the novel aspects of this work include:

1 Rather than focusing on application-specific requirements, we generalise the opportunities

in applications to remove idle resource units in reconfigurable designs. Based on this idea,

the opportunities to apply runtime reconfiguration can be divided into three categories:

at circuit level, where an idle resource unit refers to a redundant logic gate; at function

level, where an idle resource unit refers to a inactive function module; and at system level,

where an idle resource unit refers to an unused reconfigurable device.

2 Starting from the idle resource units, the design models and design approaches aim at

exploiting the additional resources from eliminating the idle resource units to improve

application performance. We extract the general properties of reconfigurable designs and

runtime reconfiguration operations and capture them in our performance models and de-

sign models, and extend the model to exploit domain-specific optimisation opportunities.

This enables the proposed approaches to explore the large design space of a reconfigurable

design, after idle resource units are eliminated by runtime reconfiguration.

3 At each design level, various applications from different application domains are evalu-

ated to verify the generality of the proposed approaches. Automatic designs tools are

developed, with tool front-end compiling high-level descriptions into hardware designs,

and tool back-end integrating the design approaches proposed in this thesis (the circuit-

level approach is currently not integrated due to language incompatibility: the generated

arithmetic operators are described in VHDL, while current tool front-end only takes Max-

Compiler Java descriptions [Tec]).
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2.5 Summary

This chapter introduces the background information for runtime reconfiguration, and discusses

the related work in the field of runtime reconfiguration. We compare our work with the related

work, and summarise the novel aspects of this thesis.



Chapter 3

Circuit-Level Optimisation for

Runtime Reconfigurable Designs

3.1 Introduction

This chapter discusses the use of runtime reconfiguration at the circuit level. We define constant

operators as the arithmetic operators with some of their input bits being constant during certain

periods of runtime (runtime scenarios). For the runtime scenarios with constant operators,

customised operators are developed, and dynamically reconfigured when the constant operators

are no longer needed. This has been studied by various researchers [BJLW11, JBLT12b, BS08].

In this chapter, we take the circuit-level optimisation one step further. For the same algorithm,

there are many constant coefficients which can satisfy the algorithm requirements. In other

words, while having different values, these constant coefficients are mathematically equivalent

from the algorithm perspective. Therefore, even for a deeply optimised arithmetic operator,

there can still be redundant logic gates since certain bits in the coefficients may have negligible

contributions to the algorithm output. We study the impacts of runtime reconfiguration for

this case.

Outline. Section 3.2 provides an overview of the circuit-level optimisation approach. Sec-

tion 3.3 defines the idle resource units at the circuit level, and builds the design space for

45
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constant operators. Section 3.4 presents the optimisation techniques for constant operators,

and Section 3.5 proposes the design models to integrate the optimised constant operators into

reconfigurable designs. A runtime evaluator is developed in Section 3.6 to ensure the design

configuration with minimum execution time is executed. Section 3.7 introduces two benchmark

applications, and Section 3.8 evaluates the efficiency of the proposed approach with the bench-

mark applications. Section 3.10 discusses the limitations and the potential improvements for

the current work, and Section 3.11 concludes this chapter.

3.2 Approach Overview

This section demonstrates the basic idea of this chapter with a motivating example, presents the

overall design flow of the proposed method, and briefly introduces finite-difference algorithms

and corresponding hardware implementations,

3.2.1 Motivating Example

In a data-path following the data-flow programming model, as discussed in Section 2.2.3, arith-

metic operations are implemented as independent operators that work concurrently. A constant

operator can be mapped into FPGAs as a general operator or as a customised operator. A

general operator refers to an arithmetic operator, such as an adder, with all input bits being

runtime variables. Figure 3.1(a) shows a general multiplier with two 32-bit unsigned inputs. A

customised operator refers to an operator without redundant logic gates introduced by constant

inputs. A customised operator can be implemented as a static operator or a dynamic operator.

For a static operator, padded ’0’s in the constant input, along with the coupled logic gates,

are removed from the general operator, as shown in Figure 3.1(b). Since the padded ’0’s do

not contribute to computational results, the static operator has the same precision as a general

operator. For a dynamic operator, as shown in Figure 3.1(c), logic gates are reorganised for a

specific constant value to minimise operator resource usage. The same computational precision

is preserved for the specific constant value.
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Figure 3.1: Hardware implementations for a constant operator. (a) A multiplier with constant
coefficient is implemented as a general adder matrix. (b) A static operator following general
multiplier design covers the upper bound of constant coefficient width to ensure that the op-
eration does not need to be reconfigured during runtime. In this example constant coefficients
0.75 and 0.76 are respectively represented with 2 and 9 bits, therefore we use a 9-bit*32-bit
multiplier, assuming the other input is 32-bit. (c) A dynamic operator is deeply optimised for a
target constant, therefore a operator must be reconfigured to support a different constant. (d)
The execution process of a static operator and a dynamic operator during runtime. To switch
between two scenarios with two different constant coefficients, the static operator only needs to
update the coefficient stored in registers, while the dynamic operator needs to be reconfigured.

The resource usage of customised operators depends on constant values. In this example, we

show a multiplier a constant coefficient 0.75. As shown in Figure 3.1(b), 0.75 is represented

with 2 bits in fixed-point format. The following 30 ’0’ bits are redundant as any input data

multiplied with them will generate the same result. For the static operator, the redundant

logic gates connected to the 30 bits are removed. For a dynamic operator, 0.75 · f can be

implemented as 0.5 · f + 0.25 · f , where 0.5 · f and 0.25 · f are implemented as a 2-bit right

shifter and a 1-bit right shifter, respectively. Therefore, it takes the dynamic operator two

shifter and one adder to implement the same operation. While a dynamic operator consumes
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less resources, the customised operators require runtime reconfiguration to support different

constant coefficients.

When constant coefficients change during runtime, the execution process for a static operator

and a dynamic operator is illustrated in Figure 3.1(d). A static operator handles all coefficients

with the same circuits, while a dynamic operator implements the customised circuits in each

runtime scenario. As an example, we assume the constant coefficient in Figure 3.1(d) changes

from 0.75 to 0.76 in the second runtime scenario, where 0.76 are represented with a 9-bit datum

in fixed-point format. In order to support the coefficients during runtime, the static operator

implements a 32 · 9 multiplier, with register values updated from 0.75 to 0.76 in the second

runtime scenario. The implemented dynamic operator is customised for 0.75 in the first runtime

scenario, and adapts to 0.76 in the second runtime scenario. Runtime reconfiguration operation

is introduced before the second runtime scenario. While consuming less resources, a dynamic

operator suffers runtime reconfiguration overhead to achieve the same design generality as a

static operator.

Since the resource usage of constant operators depends on constant values, we can tune an

algorithm to use hardware-preferable constant coefficients to reduce design resource usage. In

this example, if in the second runtime scenario, 0.76 and 0.75 are mathematically equivalent for

the target algorithm, a 32·2 multiplier can be used for the static operator, and the resource usage

of the dynamic operator in the second runtime scenario can be reduced. For a reconfigurable

design with various constant operators and multiple coefficients sets during runtime, this tuning

process can significantly improve design performance. In this chapter, we define algorithm

instances, algorithm design spaces and constant coefficient sets as follows.

• Algorithm instance: an instance of an algorithm, with initial algorithm parameters.

• Algorithm design space: for an algorithm instance, the range of algorithm parameters

where these parameters (and thus constant coefficients) can vary without compromising

algorithm mathematical correctness.

• Constant coefficient set: a point in an algorithm design space that specifies constant
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values used in constant operators.

These three terms are hierarchical: an algorithm can contain multiple algorithm instance, each

algorithm instance has a design space, and a design space contains various constant coefficient

sets. As an example, an algorithm can be executed over different data sets, and parameter

values vary with data sets. An algorithm instance refers to an algorithm with a specific data

set (i.e. initial parameter values). We implement a reconfigurable design for each algorithm

instance. During runtime, we map the reconfigurable designs into FPGAs, and dynamically

reconfigure designs when supported data sets (i.e. algorithm parameters) change.

Challenges remain for how to combine circuit optimisation, runtime reconfiguration, and algo-

rithm tuning. First, we need to build algorithm design space where constant coefficients can

be tuned without compromising mathematical correctness of the target algorithm. Second, we

need to model the mapping process from constant coefficients to customised operators, so that

each point in the algorithm design space can be evaluated in terms of operator resource usage.

Third, our design model needs to integrate the customised operators such that the optimisa-

tion process can be aware of the reduced operator resource usage and the introduced runtime

reconfiguration operations.

3.2.2 Design Flow

The proposed approach includes front-end code generation (see Figure 3.2(a)) and back-end

design optimisation (see Figure 3.2(b)). The front-end tool first builds high-level descriptions

for the original algorithm. Tuned design details, such as data width and constant values, are fed

into the descriptions. We use FloPoco libraries for fixed point arithmetic [dDP11] to generate

VHDL code based on the descriptions. The generated designs are synthesised with vendor tools

into hardware executables.

In the back-end, the design space of each algorithm instance is created, where each point in

the design space corresponds to a valid constant coefficient set. A circuit model is developed

for static and dynamic operators to capture the design properties of the algorithm points



50 Chapter 3. Circuit-Level Optimisation for Runtime Reconfigurable Designs

constant coefficients

tuned general designs 

tuned designs

tuned design parameters

(a) (b)

algorithm design space

design models

tuned constant designs 

runtime evaluator

high−level design descriptions

VHDL code generation

ISE synthesis tool−chain

syntheised results

algorithm instance
target algorithm 

Figure 3.2: Design flow of the (a) design generation and (b) design optimisation.

in the design space. The tuning process explores the design space, and selects the constant

coefficient set that will lead to minimal resource usage. These constant coefficients are used to

build customised constant operators. A design model is built on top of the constant operators

to optimise the runtime reconfigurable designs. In each runtime scenario, a tuned algorithm

instance is generated. The optimised designs for various runtime scenarios are fed into code

generation and synthesis tools to generate FPGA configuration files. During runtime, when a

specific coefficient set needs to be used by the algorithm, the corresponding configuration file

is downloaded into FPGAs.

Eventually, an evaluator is introduced to estimate design execution time based on design de-

tails, runtime parameters, and runtime reconfiguration operations. The evaluator selects the

reconfigurable design (either static or dynamic) with minimal execution time, to avoid the case

where using runtime reconfigurable designs reduces design performance.

Our current circuit-level approach uses FloPoco libraries [dDP11] to generate VHDL code for

data-paths with customised constant operators. Given a target algorithm, a description of

algorithm data-path is developed by designers using FloPoco libraries, in C++. For the back-

end tool, designers specify the algorithm parameter range that is acceptable for all algorithm
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constant operators (e.g., given a finite-difference algorithm that is discussed in the following

section, designers specify the range of step size in time and space dimensions). Starting from

the specified parameter ranges, the back-end design models explore the design space of the

constant operators, to select the algorithm parameters (i.e. constant coefficient values) that

lead to minimum design resource usage. The selected constant coefficient values are written to

an intermediate file, which is read by the algorithm description as program input. The algorithm

description is then executed to generate data-paths with customised constant operators, with

constant coefficients specified by the intermediate file. The generated data-paths (in VHDL) are

then integrated into reconfigurable designs, and are synthesised into configuration files. When

multiple algorithm instances need to be generated for different runtime scenarios, a script goes

through the design flow multiple times to generate an optimised design (i.e. configuration file)

for each runtime scenario.

3.2.3 Finite-Difference Algorithms

Algorithms that can benefit from the tuning process need to meet two criteria: (1) the algorithm

involves constant operators, and (2) the constant coefficients depends on algorithm parameters.

In this chapter, we use finite-difference algorithms to study the effectiveness of the proposed

approach. Other algorithm domains that potentially can benefit from the proposed approach

include signal filtering [BS08] and neural network training [CSL12].

The finite difference numerical method approximates solutions to differential equations. Deriva-

tives are expressed with a finite difference between consecutive points in target dimensions.

There are three main finite-difference methods in common use: implicit, explicit and Crank-

Nicolson, corresponding to three different ways of expressing derivatives with neighbouring

points. The proposed approach aims to construct a design space to optimise finite-difference

algorithms, and is applicable to all three finite-difference methods.

To capture dynamic properties within target systems, a Partial Differential Equation (PDE)
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can be formulated as follows,

A
∂2f

∂t2
= B

∂2f

∂s2
+ C

∂f

∂s
(3.1)

where A, B and C are PDE parameters. Two finite-difference applications, option pricing

and Reverse-Time Migration (RTM) are used as benchmark applications in this chapter. A

financial option is a contract which allows its owner to sell assets at specific price in the future.

Pricing options usually involves solving Black Scholes PDEs [Hul05], where ft,s denotes the

option price for asset with price s at time t. A, B and C are determined by risk-free interest

rate and volatility of the underlying assets. RTM is a seismic imaging technique that generates

terrain images based on Earth’s response to injected waves. Wave propagation is modelled with

isotropic acoustic wave equation [AP+11], where ft,s is the injected wave at position s at time t.

A, B and C are calculated with the sound speed and pressure in target terrains. Algorithm and

application details for benchmark applications are presented in Section 3.7. While PDE variable

t is in one dimension for all PDEs, variable s, known as stencil in finite-difference algorithms,

can span multiple dimensions, as shown in Figure 3.3.(a). For option pricing, the number of

dimensions in s is determined by how many assets are involved in the pricing process. For

RTM, as the detected terrains are usually in 3-D, s covers three dimensions. By replacing the

derivatives with finite difference expressions, Eq.3.1 can be mapped into discrete computational

grids to solve the corresponding PDE. Eq.3.2 is expanded with one-dimension stencil in space.

For applications with higher dimensions, dimension variable s is replaced with (x, y, z...).

ft+1,s = α · ft,s+1 + β · ft,s + γ · ft,s−1 + λ · ft−1,s (3.2)

α = 2− 2B∆t2

A∆s2
− 2C∆t2

A∆s
β =

B∆t2

A∆s2
− C∆t2

2A∆s
γ =

B∆t2

A∆s2
− 3C∆t2

2A∆s
λ = −1 (3.3)

ft+1,s indicates system status at the t + 1 point in time dimension and the s point in space

dimension, as shown in Figure 3.3(b). The corresponding hardware implementation is shown

in Figure 3.3(c). If required input data ft,s+1, ft,s, ft,s−1 and ft−1,s are available, the hardware

module generates one result per clock cycle. The system status is propagated forward in the

time dimension, with the step size ∆t.
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Figure 3.3: (a) Finite-difference stencil in 1-D, 2-D and 3-D space. (b) 1-D finite-difference
computation for Eq.3.2 in time (t) and space (s) dimensions. (c) Hardware architecture for
Eq.3.2.

3.3 Runtime Reconfiguration Opportunities at a Circuit

Level

3.3.1 Idle Resource Units

At the circuit level, idle resource units refer to the logic gates in an arithmetic operator that

are no longer required in a runtime scenario, which can be divided into two categories. First,

for an arithmetic operator with constant coefficient, the logic gates coupled with the constant

coefficients become redundant (i.e., idle resource units), as demonstrated in Figure 3.1(c).

Second, for a tunable algorithm, there are various points in an algorithm design space, where

all points are valid for the algorithm, and each point corresponds to a constant coefficient set.

Therefore, there will be one point in the design space that consumes the minimal resources.

We define the additional resources beyond the minimal resource usage as idle resource units,

since results with same numerical accuracy are generated with additional logic gates.

We illustrate the tunable design space and idle resource units in Figure 3.4. We assume the three

coefficients — 1.749511719, 1.750876563, and 1.751953125 — produce results that are within the

acceptable error bound. Therefore for an algorithm that uses the relevant constant coefficient,

all the above three coefficients will meet the required numerical accuracy. In this example, the

coefficients are represented in a 10-bit fixed-point format. For static operators, the fewer bits

that can be used to represent the coefficients, the fewer resources will be used. As shown in

Figure 3.4, the second coefficient can be represented with three bits, since the remaining bits
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Figure 3.4: Customised operators and idle resource units for three coefficients that all produce
results within error bound.

are all ’0’. As a consequence, the implemented static operator achieves the minimum resource

usage. The redundant logic gates for the other two static operators thus refer to the remaining

7 rows, which are labelled as idle resources. For dynamic operators, the resource usage depends

on the non-zero bits in constant coefficients. As shown in Figure 3.4, the 3-bit coefficient leads

to the operator with minimum resource usage. Similarly, the additional logic gates in the other

two operators are labelled as idle resources. This example demonstrates two important aspects

that drive algorithm design space building: (1) the resource usage of customised operators

significantly depends on coefficient values, and (2) even a deeply customised operator can have

idle resources, as the underlying coefficient can be undesirable for hardware implementation.

3.3.2 Constructing the Algorithm Design Space

An algorithm design space refers to the range of algorithm parameters where algorithm constant

coefficients can vary without compromising mathematical correctness. For a tunable application

domain, in order to construct an algorithm design space, we need to first find the algorithm

parameters that define the coefficient values, and then explore the valid parameter range to

collect valid coefficient sets.

For finite-difference algorithms, a valid design space refers to the range of step size that ensures
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both computation accuracy and PDE stability. Computation accuracy is specified by users, and

is expressed as the number of bits B involved in computation. Increasing B results in a larger

design space, since the number of constant coefficient sets increases with B. The specified

accuracy is ensured during algorithm tuning. The stability condition of PDEs requires the

local error in finite-difference algorithms to be reduced in subsequent computations. The local

error is defined as the difference between the actual value a(t,s) in a PED and the discretised

value f(t,s) in the corresponding finite-difference algorithm. Based on Von Neumann stability

analysis [CvN50], the stability condition for a finite-difference equation can be expressed as

follows. The |g| is bounded to be less than 0.5 instead of 1 to ensure fast convergence.

ϵ(t,s) = a(t,s) − f(t,s) (3.4)

ϵ(t+1,s) = g · ϵ(t,s) |g| ≤ 0.5 (3.5)

ϵ(t+1,s+1) = ec(t+∆t)eikm(s+∆s) km =
πm

L
m ∈ (1, 2, ...

L

∆s
) (3.6)

Among the stable finite-difference algorithms, users specify one initial parameter set (∆t,∆s),

based on available computational resources and stability requirements. A small perturbation

ζ is added into the specified step size, to provide a tunable design space which satisfies both

stability conditions and user requirements, as shown in Eq. 3.7. Within the derived valid design

space, finite-difference algorithms can be tuned with design models for both static and dynamic

operators. The design spaces of option pricing and RTM for the derived ζ is shown in Figure 3.5

and 3.6, where step size ∆t and ∆s vary from (0.975∆t, 0.975∆s) to (1.025∆t, 1.025∆s). For

the same finite-difference algorithm, the resource usage is almost doubled from the optimal case

to the worst case. In other words, if a given finite-difference algorithm can be properly tuned,

resource usage of its hardware implementations can be halved.

∆t = (1 + ζ)∆t ∆s = (1 + ζ)∆s |ζ| ≤ 0.025 (3.7)
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Figure 3.5: Design space of option pricing for different computational grids (dt, ds)
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Figure 3.6: Design space of RTM for different computational grids (dt, ds)

3.4 Arithmetic Operator Optimisation

Arithmetic operator optimisation process refers to exploring possible coefficients in an algorithm

design space to minimise the hardware resource usage. In order to properly select the operator

to use, the optimisation tool needs to be aware of the corresponding resource usage for each

point in the design space. Previous work [JBLT12b] used synthesised results to evaluate the
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tuned designs, which is time-consuming and not sustainable for large-scale designs. We develop

circuit design models for both static and dynamic operators to rapidly evaluate the coefficients

in an algorithm design space.

3.4.1 Optimising Static Operator

For static operators, we develop a design model to compress the data width for constant

coefficients. As shown in Figure 3.4, while constant α with value 1.749511, 1.75097 and

1.75195 can all be mapped into proper computation grids, the constant 1.750976 outperforms

other neighbouring constant coefficients in terms of resource usage, as it can be represented

with fewer bits without precision reduction. Either for arithmetic operators based on DSP

blocks [dDP09, BdDPT10] or for arithmetic operators mapped into LUTs [TW04], reducing

input data width directly reduces resource usage.

For each point in a valid design space, the generated constant coefficients are represented with

two’s complement Twos. The design model traverses from the least significant bit to the most

significant bit of Twos, until the first ”1” bit is found. The number of data bits between the

most significant bit and the first ”1” bit is updated as the data width Wci of the explored

constant, where ci indicates the constant. The data width is propagated through connected

operators in an algorithm instance, under the following rules.

∀c = a± b Wc = max(Wa,Wb) ∀c = a · b Wc = Wa +Wb (3.8)

For adders and subtracters, the output data width is the same as the maximum input data

width, while for multipliers, the output data width is the sum of the two input data width.

Adders and subtracters are directly mapped into LUTs, with each LUT accommodating a

1-bit adder/subtracter. The carrier bits are fed forward along with output bits. Therefore,

the resource usage is the same as the output data width of mapped adders/subtracters. For

multipliers, an adder matrix is used to accumulate the multiplication results. The resource
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Algorithm 3 Design model for dynamic operators.
Input: Constant coefficients expressed with CSD coding csd.
Output: Resource consumption Rdyn

1: for i = 0 → B do
2: if csdi == ”+” or csdi == ”-” then
3: Ncsd += 1
4: end if
5: end for
6: while Ncsd/2 do
7: op = Ncsd / 2
8: mod= Ncsd % 2
9: B++
10: Rdyn += B · op
11: Ncsd = op + mod
12: end while

usage Rsta for a multiplier can be estimated with:

∀c = a · b Rsta =
Wb
∑

i=Wa

i Wa ≤ Wb i ∈ (Wa,Wa + 1,Wa + 2...,Wb) (3.9)

3.4.2 Optimising Dynamic Operator

In this work, dynamic operators are implemented based on the Canonical-Signed-Digit (CSD)

coding [Rei60]. Constant coefficients can be converted into CSD, to construct a multiplier with

addition, subtraction and shifting operations. Since a dynamic operators is customised for a

specific constant, dynamic operators can only be implemented with fine-grained logic units

(LUTs and FFs) of FPGAs. Figure 3.7 shows the steps to convert a floating point datum

to CSD. First, a floating point datum is converted to its fixed-point equivalent. We merge

the significant bits of floating point data, the hidden 1 in floating point data and the sign bit

together. The fixed-point representation is labelled as α0. Second, α0 is left shifted by 1 bit

to form α1. Carrier bits c are calculated based on the original data and shifted data, as shown

in Eq.3.10. Third, sign s and magnitude m of CSD data are calculated, based on original

data, shifted data and carrier bits. Finally, the CSD bits csd are calculated with sign s and
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magnitude m as follows.

ci+1 = α0i · α1i + ci · α0i + ci · α1i c0 = 0 (3.10)

si = α1i (3.11)

mi = α0i · ci + α0i · ci = α0i ⊕ ci (3.12)

csdi =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

+ : mi = 1 si = 1

− : mi = 1 si = 0

0 : mi = 0

(3.13)
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Figure 3.7: A dynamic operator implementation with CSD coding.

A design model is developed to estimate the resource usage by simulating the building process

for dynamic operators. As shown in Algorithm 3, the number of non-zero bits Ncsd indicates

the number of partial results that need to be summed. The accumulation process of partial

results is divided into several stages. As one adder/subtracter can process two partial results,

Ncsd/2 adders/subtracters are required for the first stage, generating Ncsd/2 partial results for

the second stage (line 7). If Ncsd is not an even number, the remainders of the first stage

Ncsd%2 are added into the following stage (line 8). Ncsd is updated for the second stage, as

Ncsd/2 + Ncsd%2. Additional stages are introduced until the final result is generated, i.e.,

Ncsd/2 = 0 (line 6). Correspondingly, the resource usage for a stage can be estimated with

the number of adders / subtracters in that stage. For example, the resource usage for the first

stage is (Ncsd/2) · (B + 1) (line 10), where B + 1 covers the width of the adders/subtracters,
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Table 3.1: Variables and parameters in the circuit-level design model.
variables parameters

indices

o operator type s on-chip resources

sta/dyn static or dynamic operator bw memory bandwidth

a array indices d data-path indices

c clock cycle bit data bit-width

fix fixed or floating point D dimension index
design model

P design parallelism A available resources
Ls logic resource usage BW available bandwidth
Ms memory resource usage Nari,o number of operator o
Mbw memory bandwidth usage Rs,o resource usage of an operator o in type s
Narr number of arrays mema,d on-chip data of array a in data-path d

domain-specific aspects
dmds impacts on data size nD dimension i size
dmMs impacts on memory usage wD finite-difference order in dimension i
sk spatial blocking ratio tk temporal blocking ratio

performance model
T overall execution time Nr number of reconfiguration units
RTbne runtime benefits RU configuration unit size
Orf reconfiguration time Rdp data-path size
φ (re)configuration throughput θ data transfer throughput

γ configuration file size per reconfiguration unit

and the additional 1 bit is used to prevent overflow.

3.5 Runtime Reconfigurable Design Optimisation

Once the customised operators are selected, the next step is to use them in a reconfigurable

design. Using the customised operators reduces the resource usage of a well-behaved data-path

(discussed in Chapter 2.2.3), and thus increases the number of replicated data-paths under the

same resource constrains. Given a tunable algorithm with customised operators, we develop a

design model to ensure the generated reconfigurable design can fully exploit available resources.
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3.5.1 Design Model

The design model captures reconfigurable design properties in three aspects: computational

resource usage, memory resource usage, and off-chip memory bandwidth usage. Table 3.1 lists

the design parameters used in this model. At the circuit level, the System Resource Abstraction

(SRA) file contains the available resources for an FPGA, along with the prepared resource usage

of arithmetic operators. Bounded by the available resources in SRA, the objective of the model

is to maximise design throughput. The resource usage refers to the number of used on-chip

FPGA resources (LUTs, FFs, DSPs and BRAMs), and the required off-chip memory bandwidth

to ensure all implemented data-paths can work in parallel.

In a DFG extracted from high-level descriptions, the nodes are implemented as a pipelined

data-path, as shown in Figure 3.8(a). With the arithmetic operator resource usage information

stored in RSA, the resources consumed by P replicated data-paths can be estimated as:

Ls = P ·
∑

o∈⊙

Nari,o ·Rs,o ·Bs,o,bit,fix ⊙ = {+,−, ∗,÷, sta, dyn} s ∈ {LUT, FF,DSP}

(3.14)

where Ls accounts for logic resource usage, Nari,o indicates the number of operators for arith-

metic operation type o (an operator o can be an adder, a subtracter, a multiplier, a divider, a

static multiplier, or a dynamic multiplier), Rs,o indicates the number of on-chip logic resource s

consumed by one arithmetic operator o, and Bs,o,bit,fix accounts for the impacts of bit-bit data

presentation fix. fix = 0 indicates floating-point data, while fix = 1 indicates fixed-point

data are used. Given enough input data, the P data-paths can generate P results per clock

cycle. The resource type s includes LUT , FF and DSP . Therefore, the resource usage of

LUT , FF , and DSP is estimated with Eq.3.14 by specifying proper Rs,o.

In the extracted DFG, the edges represent the communication operations in an algorithm.

The edges between arithmetic operators are implemented as wire connections, while the edges

connected to sink nodes or source nodes are labelled as data access edges. Our design model

explores on-chip data reuse by grouping the data access edges. As shown in Figure 3.8(b), when
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Figure 3.8: An example computational kernel described in C, when implemented with (a) a
single data-path and (b) two replicated data-paths.

multiple data-paths are replicated on-chip, the data access edges overlap with each other. As

an example, both data-paths in Figure 3.8(b) access a[1] and a[2] at cycle 1. We group the data

access edges for an array as mema, where mema,max and mema,min respectively indicate the

maximum and the minimum offset values in mema. For the example in Figure 3.8, mema,max =

1 and mema,min = −1. The mem is implemented as an on-chip memory architecture to buffer

the accessed data. In this example, buffering the accessed data a reduces the number of accessed

data in each cycle from 6 to 4. The on-chip memory resource usage can be estimated as the

number of memory blocks consumed by the grouped mem,

Ms =
Narr
∑

a=1

P
∑

d=1

(mema,d,max −mema,d,min + 1) · bit (3.15)

where Narr indicates the number of arrays in the design, d indicates a replicated data-path,

and bit indicates the number of bits for each data.

With data accesses shared on-chip, the off-chip bandwidth requirements can be calculated as
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the new data in mem, compared with the mem in the previous clock cycle.

Mbw =
Narr
∑

a=1

P
∑

d=1

(mema,d,c+1 ∪mema,d,c −mema,d,c) · bit (3.16)

where c is the clock cycle, and mema,d,c+1 ∪ mema,d,c − mema,d,c indicates the new data in

cycle c + 1. For the example in Figure 3.8(b), (mema,d,c+1 ∪ mema,d,c= (a[0] ∼ a[5]), and

mema,d,c=a[0] ∼ a[3]. Therefore, two data items are loaded from off-chip memory per clock

cycle.

An optimisation model is developed to determine the number of replicated data-paths P (paral-

lelism) to achieve minimum execution time for each configuration, i.e., the ratio between overall

data size ds and computational capacity P · fdp.

minimise:
ds · dmds

P · fdp
(3.17)

subject to:

LLUT/FF/DSP · P · dmLUT/FF/DSP + ILUT/FF/DSP ≤ ALUT/FF/DSP (3.18)

Ms · dmMS + IMS ≤ AMS (3.19)

Mbw · dmBW ≤ BW (3.20)

In this model, we use the available on-chip resources and off-chip memory bandwidth in SRA as

constraints, and divide the circuit properties into general aspects and domain-specific aspects.

The resource constraints contain the available LUTs (ALT ), FFs (AFF ), BRAMs (AMS) and

DSPS (ADP ) on-chip, and the off-chip memory bandwidth BW . In correspondence, we use

ILUT/FF/DSP/MS to indicate the infrastructure resource usage for LUTs, FFs, DSPs and BRAMs.

In SRA, the infrastructures refer to communication infrastructures such as memory controllers

and PCIe controllers. In general, the data-path resource usage grows linearly with P , and the

memory usage is analysed by Eq.3.15 and Eq.3.16. In practice, domain-specific optimisation

techniques can be applied to further customise the implemented circuits, and the domain-

specific aspects are labelled as dm in the optimisation model.
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3.5.2 Domain-Specific Aspects

Domain-specific aspects for finite-difference applications include spatial blocking and temporal

blocking. Figure 3.9(a) presents an example finite-difference architecture, where a data-path is

connected to an on-chip memory architecture. Three-dimensional (3D) data are used in this

example, and three slices of data in the slowest dimensions are buffered. As demonstrated in

Figure 3.9(b), when four data-paths are replicated, the memory usage stays the same, and the

bandwidth requirements increase linearly. As dimension size nx and ny increase, the memory

usage can easily exceed on-chip memory capacity for large-scale finite-difference algorithms.

Moreover, in order to support well-behaved data-paths, the off-chip memory channels need

to accommodate the parallel data accesses from the replicated data-paths. To address these

issues, spatial blocking reorganises computation order to reduce on-chip memory usage, and

temporal blocking supports processing multiple time steps on the same memory pass to save

bandwidth.
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Figure 3.9: Data access patterns, memory architectures and data-paths in streaming architec-
tures for a finite-difference algorithm with (a) a single data-path (P = 1) and (b) four replicated
data-paths (P = 4). 3-D data structures are used.

Halo data in finite-difference algorithms refer to the data that are involved in computation,

but are not updated during runtime. Algorithm 4 shows the computational kernel of a first-

order finite-difference problem. The computation of one data point requires its neighbouring

data x ± 1, y ± 1 and z ± 1. Therefore the outside data layer of the 3D data, as shown in

Figure 3.10(a), is not updated during runtime. After temporal and spatial blocking, additional

halo layers are introduced. The halo data in one block are kernel data in another data block,

and therefore are updated by saving all the data block results in one shared off-chip memory

(see Figure 3.10(b)).
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Algorithm 4 A first-order finite-difference algorithm with three dimensions x, y and z.
1: for t = 0 ← nt-1 do
2: for z = 0 ← nx-1 do
3: for y = 0 ← ny-1 do
4: for x = 0 ← nz-1 do
5: p(t,x,y,z) =dvv *(
6: c0 * p(t,x,y,z) +
7: c11* (p(t,x-1,y,z) + p(t,x+1,y,z)))
8: c21* (p(t,x,y-1,z) + p(t,x,y+1,z)))
9: c31* (p(t,x,y,z-1) + p(t,x,y,z+1)))

10: d0 * p(t,x,y,z) + d1 * p(t-1,x,y,z-1) + f(t,x,y,z);
11: end for
12: end for
13: end for
14: end for

Spatial blocking reduces memory resource usage. While the number of buffered data slices

is algorithm-specific, the slice size depends on the size of the corresponding dimensions (nx

and ny in Figure 3.9 and Figure 3.10(a)). When the number of dimensions increases, memory

resource usage can easily exceed resource constraints. Blocking dimensions in memory slices

regroups streaming patterns in the blocked dimensions, which effectively reduces the slice size

and memory resource usage. As an example, in Figure 3.10(b), halving nx and ny reduces

memory usage to 1/4, and one more layer of halo data are introduced for each of the four

data blocks. In a dimension D with nD kernel data (as shown in Figure 3.10(a)) and blocking

ratio skD, the size of blocked dimension can be expressed as nD

skD
+ 2 · wD. Since halo data are

distributed to each data block, spatial blocking increases the overall data size compared with

unblocked designs.

Spatial blocking affects the overall data size ds and on-chip memory resource usage Ms. For

a finite-difference application with ND dimensions, the domain-specific parameter for data size

can be expressed as:

dmds =
ND−1
∏

D=1

nD + 2 · wD · skD
nD

(3.21)

where 2 ·wD ·skD indicates the additional halo data size in dimension i, and nD is the unblocked

dimension size. Since the blocked dimension size drops from nD to nD

skD
+ 2 · wD, the reduction
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in memory usage can be expressed as:

dmMS =
ND−1
∏

D=1

nD

skD
+ 2 · wD

nD
(3.22)

where
∏ND−1

D=1
nD

skD
+ 2 · wD estimates the size of one buffered data slice after spatial blocking.
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Figure 3.10: Data cube to process in finite-difference applications for (a) original data, (b) after
spatial blocking, and (c) after spatial and temporal blocking.

Temporal blocking is applied to reduce memory bandwidth requirements. For a given memory

bandwidth, there will be a point where the memory system cannot afford to load and to write P

data units per clock cycle. As shown in Figure 3.10(c), when memory channels are saturated,

output data of the current time step can be stored as intermediate data accessed as input

data for the next step, accomplishing multiple time steps in one memory pass. The memory

architecture is replicated to accommodate the intermediate data, and the attached data-paths

are also replicated to process the intermediate data in parallel. Meanwhile, for the spatially

blocked data, accomplishing one more time step on-chip introduces one more layer of halo

data for data blocks, to ensure the halo data of intermediate results can be properly updated

without synchronising with neighbouring blocks (see Figure 3.10(c)). Therefore, the size of

blocked dimension D with spatial blocking ratio skD and temporal blocking factor tk can be

expressed as nD

skD
+ 2 · wD · tk, where tk layers of halo data are represented as 2 · wD · tk. The
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size of one data slice after spatial and temporal blocking is:

sl =
D−1
∏

i=1

(

nD

skD
+ 2 · wD · tk

)

(3.23)

Temporal blocking affects the consumed memory bandwidth Mbw, the overall parallelism P ,

the overall data size ds, and therefore the memory resource usage Ms. As the temporal block-

ing ratio tk increases, more data-paths are replicated without loading and writing data from

off-chip memory, as the data are directly transferred into following data-paths, as shown in

Figure 3.10(c). In Eq.3.16, the data accesses of par data-paths are combined to calculate

bandwidth requirement Mbw. After temporal blocking, only 1
tk data-paths consume the off-chip

bandwidth. To cooperate the impact of temporal blocking, we use par to indicate the number

of initial data-paths. Therefore, the domain-specific parameter in Eq.3.20 dmBW is 1, and the

overall parallelism in Eq.3.18 is expressed as par · tk. Similar to spatial blocking, temporal

blocking brings overhead as the overall data to process is increased. After spatial blocking and

temporal blocking, dmds and dmMS can be expressed as

dmBW = 1 (3.24)

P = par · tk (3.25)

dmds =
ND−1
∏

D=1

nD + 2 · wD · skD · tk
nD

(3.26)

dmMS =

(

ND−1
∏

D=1

nD
nD

skD
+ 2 · wD · tk

)

· tk (3.27)

where 2·wD ·sk·tk indicates the additional data for a blocked data dimension, and the multiplied

parameter ·tk in Eq.3.27 indicates tk on-chip memory architectures are implemented.

3.6 Runtime Evaluation

We use a runtime evaluator to schedule the optimised static and dynamic designs, and to ensure

high performance during runtime. We develop a performance model to estimate execution time
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T with runtime data size ds.

T =
R
∑

rf=1

dsrf · dmds

parrf · tkrf · fdp,rf
+Orf (3.28)

where fdp is the operating frequency, par · tk indicates the design parallelism, ds ·dmds indicates

the overall data to process, and Orf is the reconfiguration time to switch from configuration

rf to configuration rf + 1. At the circuit level, each algorithm instance has its configuration

file, and therefore various configuration files need to be switched to support finite-difference

applications with different parameters, i.e., different constant coefficient sets. Another approach

to support various algorithms is to implement reconfigurable design with static operators, which

ensures all constant coefficient sets to be accommodated into the same operator set. Two

execution strategies thus can be applied: (1) implementing dynamic operators supported with

runtime reconfiguration, or (2) implementing optimised static operators to support all runtime

scenarios with one configuration. Given a reconfigurable designs with R different constant sets

to support, the execution time and reconfiguration time is accumulated. While the dynamic

designs achieve higher parallelism, the static designs do not suffer reconfiguration overhead.

The performance of these designs are evaluated, and the runtime evaluator selects the design

with minimum overall execution time to execute.

Reconfiguration overhead includes configuration time and the time to preserve application

context data. The configuration time can be calculated as the ratio between configuration file

size and the configuration interface throughput θ, and the data transfer time can be estimated

based on data size and data interface throughput φ.

Orf =
Nr · γ
θ

+
2 · dsrf · dmds

φ
(3.29)

Nr =
I +Rdp · P

RU
(3.30)

where Nr is the number of reconfiguration units used, and γ accounts for the configuration

file size for each consumed resource unit. For FR designs, a reconfiguration unit refers a full

configuration file, while a reconfiguration unit in PR designs can refer to a clock region or a
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configuration frame. PR designs do not need to transfer intermediate results, since memory

controllers are still alive during reconfiguration. RU indicates the resource usage for one re-

configuration unit, Rdp accounts the resource usage for one data-path, and P is the number of

implemented data-paths. We use FR designs in the current circuit-level approach, as (1) recon-

figuring all replicated data-paths takes a long time for both FR and PR designs, the reduction

in reconfiguration time is small, and (2) the performance of PR designs is often limited by their

reduced clock frequencies. We discuss the use of PR designs in Chapter 6.

The runtime benefits RTbne determines which design to execute. During runtime, an application

executes its static design if RTbne < 0, while RTbne > 0 means the dynamic design provides

better performance. We estimate the runtime benefits as follows,

RTbne = Tst − Tdy (3.31)

=

∑R
rf=1 ds · dmds

par · tk · fdp
− (

R
∑

rf=1

dsrf · dmds

parrf · tkrf · fdp,rf
+Orf ) (3.32)

where Tst refers to the overall execution time for static designs, and Tdy refers to the overall

execution time for runtime reconfigurable designs. The dynamic and the static designs possess

different data-path resource usage Rdp, which leads to different par, tk, dmds and Orf for each

configuration.

3.7 Benchmark Applications

3.7.1 Option Pricing

An option is a financial instrument which provides its owner the right to buy or to sell an

asset at a fixed price in the future. A call option allows owners to buy asset, while a put

option allows owners to sell asset. Options are popular in the financial industry and pricing

options usually involves solving PDEs, especially the Black Scholes PDE [Hul05]. The Black

Scholes PDE with one variable (asset) following geometric Brownian motion is described as
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Eq.3.33, where f(t,s) denotes the price of the option, s denotes the value of the underlying asset,

t denotes a particular time, τ is the risk-free interest rate, σ is the volatility of the underlying

asset. Using explicit finite-difference expressions to replace the derivatives, the asset value f(t,s)

can be calculated as in Eq.3.34, where α, β and γ are the constants determined by σ, τ and

computational grid step size.

∂f(t,s)
∂t

+ τs
∂f(t,s)
∂s

+
1

2
σ2∂

2f(t,s)
∂s2

= τf(t,s) (3.33)

f(t,s) = αf(t−1,s+1) + βf(t−1,s) + γf(t−1,s−1) (3.34)

3.7.2 Reverse Time Migration

Reverse Time Migration (RTM) is an advanced seismic imaging technique to detect terrain

images of geological structures, based on the Earth’s response to injected acoustic waves. The

wave propagation within the tested media is simulated forward, and calculated backward,

forming a closed loop to correct the terrain image. The propagation of injected waves is

modelled with the isotropic acoustic wave equation:

d2p(t,s)
dt2

+ dvv(s)
2▽2 p(t,s) = f(t,s) (3.35)

where dvv(s) is the sound speed at terrain point s, p(t,s) is the pressure value, and f(t,s) is the

input wave. Three dimensions are covered in the finite-difference space, i.e., s = (x, y, z). The

propagation in space is replaced with fifth-order finite-difference expressions, and first-order

approximation is used for propagation in time. With derivatives replaced with finite-difference

expressions, the dynamic model can be mapped into computational grids as follows.

p(t,s) = dvv(x,y,z)(
z
∑

i=x

5
∑

j=1

cij · (p(t,si−j) + p(t,si+j)) + c · p(t,s)) + p(t,s) − 2 · p(t−1,s) (3.36)

where p(t,si−j) refers to p(t,x−j,y,z) when i = x. cij, and cij and c are constant coefficients tuned

in the proposed approach.
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3.8 Results

The effectiveness of the proposed approach is evaluated in three aspects: model accuracy,

resource usage of optimised designs and runtime performance. We collect the resource usage

of static and dynamic designs from Xilinx ISE 13.3 post-synthesis results. A reconfigurable

design can map its arithmetic operators into either LUTs or DSP blocks. If DSP blocks are

used, the resource reductions due to the proposed approach is limited by resource granularity,

since the minimal input width for Xilinx DSP blocks is 18-bit. As an example, while LUT

usage reduces linearly as operator data width decreases, both an 8-bit multiplier and an 18-bit

multiplier consume a DSP block. In addition, since previous work use LUT usage to evaluate

the approach efficiency, we map arithmetic operators into LUTs to provide fair comparison. We

set the precision requirement B in the experiments to be 24 bits, based on previous experiment

results for precision optimisation [NJL+12b].

Current designs target at a Xilinx Virtex-6 SX475T FPGA hosted by a MAX3424A card from

Maxeler Technologies, with memory bandwidth of 38.4 GB/s. Our current circuit-level ap-

proach uses FloPoco libraries [dDP11] to generate VHDL codes for data-paths with customised

constant operators. The current system (MAX3424A card from Maxeler Technologies) we use

to test designs only captures designs with MaxCompiler, which is not compatible with VHDL

codes. Therefore, we simulate the runtime performance of optimised designs in two steps. (1)

We develop the benchmark applications with MaxCompiler, and measure their runtime perfor-

mance. (2) We calculate the designs parallelism P by comparing the original resource usage and

the resource usage after optimisation, and estimate the runtime performance based on Eq.3.28.

Results from previous work for optimising constant operators in finite-difference algorithms and

accelerating finite-difference algorithms are compared with results for the proposed approach.

3.8.1 Model Accuracy

The proposed approach uses design models to capture optimal designs without synthesising each

possible coefficient sets in algorithm design space. Therefore, proper design space exploration
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at the circuit level calls for high model accuracy. We define the model accuracy as the ratio

between estimated resource usage and measured post-synthesis resource usage.

In order to test the generality of the tuning process, we randomly generate 100 algorithm

instances for each benchmark application in this experiment, and each algorithm instance has

randomly initialised parameters. Bounded by the stability requirements in Eq.3.6, the proposed

approach construct a design space for each algorithm instance. In an algorithm design space,

the operator optimisation process approach evaluates resource usage of points in the design

space, and picks the point (constant coefficient set) with minimal resource usage. We refer the

reader to the Glossary and Section 3.2.1 which define the terms algorithm instances, algorithm

design space and constant coefficient set. The estimated and the synthesised resource usage are

shown in Figure 3.11 and 3.12. In the worst case, the model accuracy for the dynamic designs

of the option pricing application is around 80%, as there are only three constant operators

involved in the designs (as shown in Eq.3.34). The small resource usage amplifies the error

ratios. In the other three cases, the model accuracy is around 90%. More importantly, despite

the difference between estimated values and actual resource usage, the design models capture

the general trend of design properties, as shown in Figure 3.11 and 3.12. With the high-

level design models, design space in finite-difference algorithms can be explored promptly and

properly.

3.8.2 Resource Usage

We compare the resource usage of application data-paths before and after optimisation in

Figure 3.13 and Figure 3.14, with resource usage expressed with the number of consumed

LUTs. We define improvement ratio as the reduction in resource usage after optimisation,

for both static and dynamic designs. An original static design refers to a data-path using

general operators with full input bit-width, and an original dynamic design refers to a data-

path customised for the initial constant coefficients. For the original static designs, 3042 LUTs

are consumed for the option pricing application, and 15964 LUTs are consumed for the RTM.

For the 100 algorithm instances, the resource usage of original dynamic designs depends on the
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Figure 3.11: Model accuracy of optimised static and dynamic designs for Option Pricing (OP).
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Figure 3.12: Model accuracy of optimised static and dynamic designs for RTM.

initial algorithm parameters. As shown in Figure 3.13 and 3.14, for both static and dynamic

designs, the improvement ratio is around 50%. In other words, the circuit-level design approach

halves the resource usage of both static and dynamic designs. Compared with the original static

designs, the optimised dynamic designs reduce resource usage by up to 6.1 times.

In previous work to optimise finite-difference applications, [BJLW11] applied fixed-point repre-

sentation for constant operators, and reduced the resource usage for option pricing from 13759
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Figure 3.13: Resource reduction of optimised static and dynamic designs for OP.
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Figure 3.14: Resource reduction of optimised static and dynamic designs RTM.

LUTs for implementations using double-precision operators to 2977 LUTs. The constant co-

efficients were tuned in [JBLT12b], guided by moment-matching algorithms and synthesised

results, the resource usage was further reduced to 710 LUTs. In our work, by selecting con-

stant coefficients preferable to hardware implementations, the resource usage for option pricing

is further reduced to 501 LUTs. More importantly, the proposed method enables evaluation

of design spaces without going through time-consuming synthesis procedures, which makes it
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applicable to large-scale designs such as RTM.

3.8.3 Runtime Performance

The runtime performance of the optimised designs is evaluated in two scenarios: (1) the pure

throughput when only one algorithm instance is required during runtime, and (2) the overall

throughput when an application needs to support multiple algorithm instances, and therefore

the dynamic designs use runtime reconfigurations to switch between different algorithm in-

stances. For a single implementation, the runtime performance of original designs is measured

from target MAX3424A card. In current implementations, 1000 time steps are propagated for

each application, and dimension size is set to be 1024. The runtime performance of optimised

static designs and dynamic designs is simulated based on results measured from the target

card, as generated VHDL codes are not computable with the compiler of available system (as

discussed at the beginning of this section). Both execution time and reconfiguration overhead

are included in the runtime performance. The compilation time of static and dynamic designs,

on the other hand, does not contribute to the runtime performance, since the tuning and com-

pilation processes are finished before execution. Meanwhile, the increased compilation time for

dynamic designs can be reduced by synthesising various algorithm instances in parallel. As

an example, the synthesis process for a single RTM kernel takes 21 s to finish, and synthesis-

ing 100 dynamic instances in parallel on a 12-core Dell PowerEdge R610 machine takes less

than 5 minutes. Since the I/O interfaces of data-paths for original, static and dynamic designs

are identical to each other, resources consumed by communication infrastructures RI (PCI-E

drivers and memory controllers) are assumed to be the same.

We summarise the implementation results for OP and RTM in Table 3.2. Each application

contains three hardware implementations: original, static and dynamic, and the resource con-

strains A, infrastructure resource I and data-paths resource usage Rdp for each implementation

are listed. In addition, the available off-chip memory bandwidth in this reconfigurable sys-

tem is 38.4 GB/s. For the option pricing application, one datum is read from and written

into off-chip memory per cycle per data-path (Mbw = par · bit). For the RTM, this number
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Table 3.2: FPGA implementation results.
OP RTM

original static dynamic original static dynamic
fdp (MHz) 100 100 100 100 100 100
I (LUTs) 29926 29926 29926 34665 34655 34655
A (LUTs) 238080 238080 238080 238080 238080 238080
Rdp (LUTs) 3042 2098 501 15964 10926 2702
pd 48 48 48 12 12 12
sd 1 2 8 1 1 6
output data per second (109) 4.8 9.6 38.4 1.13 1.13 3.5

increases to 4 (Mbw = 4par · bit). Our design model optimise design parallelism par · tk for

each implementation. The temporal blocking ratio tk is determined by available resources and

data-path resource usage. tk of optimised dynamic option pricing is increased to 8, and tk

of optimised dynamic RTM is increased to 6. Table 3.2 presents design throughput in terms

of the number of output data items generated per second. For the dynamic design of option

pricing, the temporal blocking ratio is 8, with 48 data-paths replicated in each temporal block.

At each clock cycle, the dynamic option pricing design generates 384 results. Due to the large

number of arithmetic operations in a data-path (i.e. increased data-path resource usage), up

to 72 data-paths are implemented for RTM. Moreover, since RTM use three-dimension data

structures, increasing temporal blocking ratio increases the overall data size to process, as indi-

cated in Eq.3.26. Therefore, bounded by dmds, the dynamic RTM design in average generates

29.7 results per clock cycle. Based on the experiment results, the dynamic designs achieve up

to 8 times improvement in pure throughput, compared with the original static designs.

In previous work on accelerating RTM, one Blue Gene/Q processes 54 M results per second,[LM13],

an optimised CUDA design running on an NVIDIA Tesla C2070 GPU achieves 1.07 G results

per second [PF10a, NCJ+13b], and the highest performance number for RTM is 1.62 G results

per second on a Virtex-6 SX475T FPGA [NCJ+13b]. Note that both the Tesla C2070 GPU and

the Virtex-6 SX475T FPGA are based on 40-nm silicon technology, but the algorithms running

on them may not be the same. Without sacrificing any computational precision, the RTM de-

sign optimised with the proposed approach is expected to achieve 2.97 G, which is 1.828 times

faster than the best published results. It is worth mentioning that Rknl of implemented original
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designs are placed & routed results, while the Rknl of optimised static and dynamic designs

is measured from post-synthesis results, which means the actual resource usage of optimised

designs can be further reduced.

The overall performance of dynamic designs depends on the pure throughput of each config-

uration, as well as the reconfiguration overhead. Figure 3.15 presents the runtime evaluation

results, as problem data size increases. The execution time of static designs increases linearly

with data size, since tk is limited to 1 for static designs, and reconfiguration overhead is 0

(see Figure 3.15(a)). For dynamic designs, when data size is small, reconfiguration overhead

dominates overall design execution time. When data size is large enough, i.e. beyond 227

for one-dimension option pricing and 512 for three-dimension RTM, dynamic designs start to

outperform their static counterparts. Figure 3.15(b) shows the runtime evaluator Tst/Tdy re-

sults. Based on the evaluation results, large speedup can be achieved for using static designs

for finite-difference applications with small data size. On the other hand, the dynamic designs

improve performance of large-scale applications by 7.8 and 3.01 times for option pricing and

RTM, respectively. The fluctuations in Tst/Tdy are due to the spatial and temporal blocking

overhead in data size dmds.
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Figure 3.15: (a) Execution time of static and dynamic designs. (b) Run-time evaluation results.
For RTM designs, when not all data can be stored on-chip, the design models introduce spatial
blocking to split data into smaller blocks. This brings overhead as additional data need to be
processed for the blocking. In the current experiments, the data size is 222.
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3.9 Related work

3.9.1 Accelerating Finite-Difference Applications

Driven by the high-performance requirements of finite-difference algorithms, various researchers

have worked on accelerating the computation process. One straightforward solution is to dis-

tribute workloads into parallel CPU cores. However, data dependencies between distributed

workloads, i.e., boundary conditions in finite-difference algorithms, limits the scalability of the

parallelised CPU designs. Optimised communication patterns between CPU cores were pro-

posed for Blue Gene/P [PLL+12] and Blue Gene/Q [LM13], achieving 2.99 TFLOPS for Reverse

Time Migration (RTM) with a Blue Gene/P rack with 1024 4-core CPUs.

GPUs are widely used to accelerate finite-difference algorithms, as the high on-chip hardware

concurrency and memory bandwidth can satisfy the high-performance requirements of finite-

difference algorithms. An NVIDIA Tesla C2070 GPU has 448 CUDA cores running at 1.15 GHz,

which provides 1.03 TFLOPS peak performance. The challenges for GPU designs are how to

efficiently load data from global memory, and how to share loaded among parallel cores. Blocked

data access patterns were proposed [Mic09, PF10a] to share accessed data among threads in the

same Streaming Multiprocessor (SM). The blocking technique reduces data access redundancy

to support high parallelism in GPUs. On the NVIDIA Tesla C2070, optimised GPU designs

achieve up to 100.7 GFLOPS for financial pricing and 84.3 GFLOPS for seismic imaging.

FPGAs provide a platform to implement customised memory architectures and data-paths

can be implemented. A customised memory architecture which supports two compute units

is proposed in [AP+11]. Interconnected soft-processors are mapped into FPGAs to process

application workloads in parallel [S+11]. The scalability of the proposed architecture is limited

by processed data size: it only works when the accessed data in one cycle are small enough

to fit into on-chip memory. A scalable memory architecture was proposed in [FC11a] to sup-

port on-chip data access from pipelined data-paths, and an analytical model was proposed

in [NJL+12c] to automatically optimise the hardware design. To reduce the resource usage

of data-paths, arithmetic operations in finite-difference algorithms are represented with fixed-
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point format in [BJLW11]. Constant coefficients in the algorithms are used in [JBLT12b] to

generate operators customised for specific constant.

Compared with previous work, as discussed in Section 3.8, the simulated performance of op-

timised finite-difference applications is expected to be up to 1.8 times better than the best

published results, including customised designs running in Blue Gene/Q [LM13], NVIDIA

C2070 [PF10a, NCJ+13b] and Virtex-6 SX475T FPGA [NCJ+13b].

3.9.2 Circuit-Level Runtime Reconfiguration

Previous work on circuit-level runtime reconfiguration focuses on constant operators and recon-

figuration overhead modelling. In [BAS09, BJLW11, JBLT12b], constant operators are mapped

into reconfigurable devices for applications with constant operators, and the constant opera-

tors are reconfigured when supported constant values change during runtime. The relationship

between reconfiguration overhead and execution time is analysed in [EAGEG09], and a recon-

figuration overhead model is built in [DML12]. Compared with previous work, we propose a

systematic design flow to explore algorithm design space, integrate optimised operators into

reconfigurable designs, and to dynamically evaluate runtime performance. Compared with pre-

vious work [BJLW11, JBLT12b], the operator resource usage in this work is 1.17 to 2 times

smaller. With a performance model that combines optimised design parameters, the proposed

evaluator is capable of estimating reconfiguration overhead and execution time during runtime,

to execute the reconfigurable design with minimised overall execution time.

3.10 Limitations and Future Work

The proposed circuit-level approach exploits the redundant logic resources in arithmetic oper-

ators by customising constant operators as well as tuning algorithm parameters. Results show

that customised dynamic designs for Option Pricing and Reverse Time Migration achieve up to

6.1 times reduction in resource usage and 7.8 times improvements in overall design throughput.
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The current approach is limited by the fact that the supported applications must have tunable

algorithm parameters.

While the constant operator design approach is applicable to all applications with constant

operations, the tuning process requires the algorithm constant values can be tuned by varying

the algorithm parameters. This leads to two requirements for the supported algorithms. First,

the constant values are determined by algorithm parameters. Second, the algorithm parameters

have a design space where the parameters can be changed without affecting the algorithm

functionality. Besides finite-difference algorithms, various approaches in numerical analysis —

such as the Runge-Kutta methods — and signal filtering have tunable parameters. Therefore,

the future work will focus on extending our approach to cover other algorithms. The design flow

and designs models have been generalised such that algorithm-specific techniques are covered in

the domain-specific aspects. In order to extend the current approach, the design space of other

algorithms needs to be built to reflect the relationship between algorithm tunable parameters

and constant operator properties, and more domain-specific aspects need to be extracted.

3.11 Summary

This chapter explores the runtime reconfiguration opportunities at the circuit level. Arithmetic

operators are developed to handle all possible input combinations, which is an overkill for con-

stant operations. Developing customised constant operators will significantly reduce resource

usage. However, the constant operators are not supported in either GPPs or ASICs, since even

ASIC designs cannot afford only supporting an application using a specific constant set. The use

of runtime reconfiguration enables reconfigurable devices to apply the constant operators with-

out losing design generality, by dynamically switching between implemented operators during

runtime. Moreover, the constant operators can be further customised by exploring the design

space of target algorithms, and selecting the optimal constant set for each design configuration.

Experiment results show this approach provides large improvements in design performance

compared with conventional reconfigurable designs.



Chapter 4

Function-Level Optimisation for

Runtime Reconfigurable Designs

4.1 Introduction

An application often contains more than one function. Inter-function dependencies constrain

the execution order of application functions. In order to support an application with multiple

functions, a reconfigurable design needs to implement all functions as hardware modules, and

activate the hardware modules when the dependent data are ready. More often than not, the

dependent data of application functions cannot be ready at the same time, which introduces

idle resource units at the function level. In this chapter, idle resource units refer to application

functions that become idle during runtime.

Resource sharing and allocation for multicore and manycore processors are usually achieved

through thread management at runtime [CGH09]. Such runtime thread management is general

purpose, but does not support reorganisation and customisation of computational resources

to meet application-specific requirements. Reconfigurable computing supports design customi-

sation at compile time and at runtime. However, such customisation often restricts resource

sharing at the function level, since a static design customised to support one function often

cannot support a different function.

81
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At the function level, we use runtime reconfiguration to separate functions that are active at

different runtime scenarios into various design configurations. For each configuration, as the

idle function units are removed, the active functions gain more resources to further improve

configuration performance. The major challenges to achieve this design objective include (1)

identifying idle application functions, (2) grouping these idle functions based on function idle

time and optimising the generated configurations, and (3) linking the optimised configurations

as a valid reconfigurable design. The function-level approach addresses these challenges in three

steps: function analysis, configuration organisation and partition generation.

Outline. Section 4.2 provides an overview of the function-level approach. Section 4.3, 4.4,

and 4.5 respectively present the details of the function analysis, configuration organisation and

partition generation design steps. These steps are based on Reconfiguration Data Flow Graph

(RDFG), a hierarchical graph structure for analysing and optimising designs. Novel algorithms

such as As Timely As Possible (ATAP) assignment method and ending-edge search are proposed

to support these design steps. Section 4.6 presents the evaluation approach at the function

level to dynamically select the partitions with maximum performance. Section 4.7 discusses

the benchmark applications used in this chapter, and Section 4.8 shows the experiment results.

Finally, Section 4.9 compares the related work, Section 4.10 discusses the approach limitations,

and Section 4.11 summarises this chapter.

4.2 Approach Overview

In order to address the design challenges for exploring runtime reconfiguration at the function

level, Reconfiguration Data Flow Graph (RDFG), a new hierarchical design representation,

is proposed. We represent application functions as graph nodes, capture I/O operations of

connected functions with graph edges, and store algorithm-level details in each function-level

graph nodes. In this section, we show the basic idea of this chapter with a motivating example,

and then present the design flow of the proposed approach. Finally, we introduce an example

application, which is used in the following sections to explain the proposed algorithms.
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4.2.1 Motivating Example

In a static design, all functions are mapped into reconfigurable fabrics and the mapped func-

tions are replicated as much as possible to optimise concurrency. However, limited by data

dependency and mapping strategies, some computational resources can be left idle from time

to time. This situation is shown in Figure 4.1(b): there are four function units, each imple-

menting respectively the function A, B, C and D in the dataflow graph in Figure 1(a). Given

that each function takes n cycles, the entire computation would take 4n cycles. It is assumed

that the application RDFG indicates each function consumes 1 resource unit, and computation

within functions starts once the last output datum of the leading functions becomes available.

For t=0..4n-1, several function units would become idle. How could runtime reconfiguration be

used to reduce the number of cycles required for this computation?

One possibility involves reconfiguration of the idle function units to perform useful work. Let

us assume that there is sufficient data independence in each function to enable linear speedup

with additional function units: for k function units, the function takes n/k cycles to complete.

So for k=1, it takes n cycles to complete the function as described before, and if k=n, it could

potentially only take one cycle, although in practice, k is likely to be smaller than n.

With this assumption, Figure 1(c) shows a design which speeds up computing the functions A

and B in the second level of the data flow graph in Figure 1(a) by reconfiguring the two idle

function units C and D to A and B. This increase in parallelism means that these functions

can be completed in n/2 cycles, during t=n..3n/2-1. For the functions in the third level of the

data flow graph, B and C are reconfigured as A and D, finishing computation in A and D in

n/2 cycles, during t=3n/2..2n-1. Then the same can be done in computing the last function

C in the dataflow graph: this time all four function units are configured to compute C so that

it can be completed in n/4 cycles, during t=2n..9n/4-1. The total number of cycles is thus

9n/4, reduced from the 4n cycles for the static design in Figure 1(b). The speedup stems from

reconfiguring the resource occupied by the idle functions to generate multiple replications of

the active functions, leading to increased parallelism.
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Figure 4.1: Motivating example. The idle function nodes during run time are shaded. (a)
Application data flow graph with 4 functions (A, B, C and D), and 8 function instances. Each
function has n data items to process. (b) Static implementation, showing which function units
are inactive (with dotted boundaries) during t=0 to 4n cycles. The same configuration is
executed, consuming n cycles for each frame. (c) Dynamic implementation. An executed con-
figuration only contains functions active in a particular frame. Execution time for a time frame
depend on configuration parallelism. As an example, in the second time frame, configuration
parallelism is 2 (2 copies of function A and B are implemented), reducing the execution time
to n

2 .

One can observe that in the reconfigurable design above, limited by the reconfiguration granu-

larity, function unit D is inactive from t=0..n-1. If target platforms support finer reconfiguration

granularity, the one resource unit can be evenly split between A, B and C; this increase in par-

allelism would reduce the number of cycles of the first frame from n to 3n/4, so that the total

number of cycles for computing the dataflow graph in Figure 1(a) would become 2n.

Of course, the scenario for the motivating example is not realistic; many real-world issues, such

as the time required in reconfiguring the function units, are not considered. In the following, we

introduce an approach that supports the performance improvement illustrated by this example,

while taking into account practical issues in reconfigurable design.

4.2.2 Design Flow

The design flow of the proposed approach is demonstrated in Figure 4.2. The approach starts

from an application represented with a hierarchical data-flow graph:

A = (G,EG) G = (V,E) (4.1)
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where A indicates a function-level graph, and G indicates an algorithm-level graph. G and EG

respectively represent application functions and function I/O operations. Within a function

node G, V indicates the arithmetic operations of this function, and E indicates the intercon-

nections between the arithmetic operations.

In order to group and optimise application functions into runtime reconfigurable designs step

by step, we build a hierarchy in this work. From bottom to top, a function-level RDFG is

divided into segments, configurations, and partitions.

Segments: Function nodes that can be executed without stalling are combined into a segment

S = (G1, G2...). Segments are the basic elements that respect data dependency and expose

speedup potential of applications.

Configurations: A configuration C = (S1, S2...) contains one or multiple segments. A config-

uration can be synthesised and executed in hardware.

Partitions: A valid partition P = (C1, C2...) is a combination of configurations that is capa-

ble of properly accomplishing the application functionality. The generated partitions for an

application are compiled with a host program. In this work, we consider a valid partition as a

runtime reconfigurable design.

The proposed approach starts from an application represented as an RDFG, following the

design flow in Figure 4.2. The approach contains three compile-time steps and one runtime

step. The compile-time steps generate various reconfigurable designs for the target applications.

Each reconfigurable design is associated with a specific runtime reconfiguration strategy. The

runtime step evaluates the generated reconfigurable designs, to select the design with maximum

throughput.

The first step, function analysis, estimates function properties and groups function nodes into

segments based on function idle cycles. The second step, configuration organisation, com-

bines segments into configurations, which are optimised to achieve maximum parallelism under

available resources. The third step, partition generation, schedules and links the optimised con-

figurations as valid partitions. Basic hardware modules are developed for application functions.

We feed the design parameters of the generated partitions (the amount of parallelism, configu-
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Figure 4.2: Design flow of the proposed approach.

ration organisation, etc.) into the hardware modules. The design parameters of the hardware

modules are updated correspondingly. The updated hardware descriptions go through vendor

tool chains to generate configuration files, which are compiled with the host program. The

fourth step, runtime evaluation, uses a runtime performance model to predict the overall exe-

cution time of generated partitions. During run time, the host program selects the partitions

with the minimum execution time to download into FPGAs, based on the predicted results.

In current approach, the compiler front-end handles RDFG graph extraction and hardware de-

scription generation, and the back-end automates function analysis, configuration organisation

and partition generation. The host program, on the other hand, is manually developed.

4.2.3 Example Application

Throughout this chapter, we use an example application to demonstrate how an application

RDFG is processed step by step to generate reconfigurable designs. Figure 4.3(a) shows the

function-level graph of the example application, along with the algorithm-level graph of function



4.2. Approach Overview 87

Add

Add
Add

Add Add Add

+[  1] +[  2] +[  3] +[  4]

C

A BG0

G4

G8G8

C

A BG0

G4

D

B G1

G2

C

A BG0

G4

G8

D

C

A BG0

G4

G8G8
C

A BG0

G4

D

C

C

A BG0

G4

D

B G1

G2D

B G1

G2

C

D

D

D

G0 G1

G2

G3

G5 G6

G7

G8

c1 c2 c3
Mult

c4
MultMultMult

Add

y

x

B G1

G2

A B

B G1

G0

G4

G8

FPGA

host program (CPU)

partition 0 partition 1

A BG0

G4

G8

B G1

G2

configure

data
configure

data

configure

tim
e

configuration 4

configuration 5

configuration 6

G2

configuration 0 configuration 4
B G1

G2

A

C

C

B

B

A B

G4

E

(a) starting point (b) function analysis (c) configuration organisation

(d) partition generation (e) run−time evaluation

EE

E

EE

E

E

Figure 4.3: An example for the proposed design flow. The example RDFG is shown in (a).
Output graphs for function analysis, configuration organisation and partition generation are
shown in (b), (c) and (d) respectively. (e) shows the execution of generated partitions (partition
0 is selected in this example). The duplicated segments are removed from the segments, as
shown in (b), which is explained in Section 4.4.

node G0. The processing steps of the example RDFG are summarized as follows. Table 4.1

lists parameters and notations used in these steps.

Function analysis takes the algorithm-level graph of a function node, and estimates resource

consumption and idle cycles for the function. Based on analysed idle cycles, we group the

functions active at the same time into the same segment. Algorithm details of function node

G0 are shown in Algorithm 5, where x and y are respectively input and output data arrays, and

cj are multiplication coefficients. As shown in Figure 4.3(a), arithmetic operators are mapped

as arithmetic nodes, and indices of accessed data are mapped to offset edges. Functions in the

same segments can be executed at the same time without stalling, as shown in Figure 4.3(b)

with node G5 merged with G0 for A, G6 merged with G3 for B, and G7 merged with G4 for C.

Configuration organisation refers to the combination of function segments and the opti-

misation of the associated functions. As shown in Figure 4.3(c), a configuration can contain
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Algorithm 5 Algorithm detail for function G0.
1: function G0(float* x, float* y){
2: for i ∈ (4,n-4) do
3: float a1 = x[i-1] + x[i+1];
4: float a2 = x[i-2] + x[i+2];
5: float a3 = x[i-3] + x[i+3];
6: float a4 = x[i-4] + x[i+4];
7: y[i] = a1 * c1 + a2 * c2 + a3 * c3 + a4 * c4;
8: end for
9: }

only one segment, such as configuration 0, or it can include multiple segments, such as

configuration 4. configuration 0may achieve higher design parallelism than configuration 4,

as it requires less hardware resources. On the other hand, the first configuration needs to be

reconfigured to execute G2, which introduces additional reconfiguration overhead compared

with configuration 4. The objective of configuration organisation is to generate all possible

segment combinations, and optimise each of the generated configurations to achieve maximum

parallelism.

Partition generation refers to linking optimised configurations as a complete reconfigurable

design. As demonstrated in Figure 4.3(d), if configuration 4 is included in the current par-

tition, to ensure the partition can be executed during run time, the next configuration must

include a segment with functions A, B and C. Given this constraint and available configura-

tions, either configuration 5 or configuration 6 can be combined into current partition.

A searching algorithm is required to select proper configurations to finish the remaining tasks.

To reduce the search space, invalid and inefficient configuration combinations are eliminated.

Runtime evaluation refers to the selection of generated partitions during run time. The

execution time of a partition depends on configuration properties, reconfiguration time, and

runtime data size. While configuration properties and reconfiguration time are known once a

partition is generated, data size of the target application remains unknown in compile time. As

shown in Figure 4.3(e), partition 0 achieves higher parallelism since functions in the first and

the second time frames are divided into two configurations. As a consequence, more reconfigu-

ration operations are introduced to switch between the configurations. In the current approach,

to preserve the data stored in FPGA off-chip memories, the memory data are first transferred

back into host memories before a reconfiguration operation. After FPGAs are reconfigured, the
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stored data are transferred back into FPGA memories, as shown in Figure 4.3(e). For a given

data size, if the reduction in execution time outweighs the increase in reconfiguration time,

then partition 0 is selected. A performance model is built to dynamically evaluate design

performance when the data size is available. The partition with the minimum execution time

is selected and executed.

Table 4.1: Variables and parameters in the function-level approach.
function analysis

Gi function node i
S<i,j> function segment at the ALAP level i and the ATAP level j
Ls logic resource usage Ms memory resource usage
Nari,o number of operator type o in a function Rs,o resource type s consumed for a operator o
memmax maximum offset value in a function memmin minimum offset value in a function
Nid,int number of function internal idle cycle Nid,ext number of function external idle cycles
bit memory bits for one datum Narr number of data arrays in a function

configuration organisation

C<i,j> a configuration that contains j − i+ 1 segments, starting from segment i, ending with segment j
P parallelism (number of data-paths) A available resources
I infrastructure resource usage BW available bandwidth
Nin number of input edges of a configurations Nout number of output edges of a configuration
Mbw bandwidth requirement of a configuration

domain-specific aspects

Monte-Carlo simulations
Rs,rng resource usage of a RNG in type s
stencil computations
sk spatial blocking ratio tk temporal blocking ratio
dmds impacts on data size dmMs impacts on memory usage

partition generation

Pi partition i
runtime evaluation

Ti execution time for segment Si / partition Pi Oj time to reconfigure configuration j
ds data size φ throughput of data transfer interface
γ configuration file size for 1% chip usage θ throughput of reconfiguration interface

4.3 Function Analysis

In order to separate functions active at different time intervals, and to duplicate function when

there are available resources, we analyse the algorithm details inside a function node to estimate

the amount of idle cycles and resource usage. After extracting function details, we schedule

function nodes based on (a) interactions between them, as well as (b) function internal idle

cycles. A segment S contains function nodes scheduled in the same time frame.
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4.3.1 Function Property Extraction

The properties of a function include its resource consumption, its associated data access pat-

terns, and its number of idle cycles. The algorithm-level graph within a function node Gi

provides implementation details for the specific function. Fully pipelined data-paths and on-

chip memory architectures are constructed to support full resource utilisation of consumed

resources, i.e., as long as Gi is active, one data-path for Gi generates one result per clock cycle.

Arithmetic operations within a function are implemented as a pipelined data-path. Within a

function node, the resources consumed by arithmetic operations can be estimated as:

Ls = P ·
∑

o∈⊙

Nari,o ·Rs,o ·Bs,bit,fix ⊙ = {+,−, ∗,÷, sta, dyn} s ∈ {LUT, FF,DSP} (4.2)

where Ls stands for the logic resource usage, Rs,o indicates the resource usage of arithmetic

operators, including constant operators, and Bs,bit,fix accounts the impacts of different data

widths. Ls is estimated the same way in the circuit-level model. The resource type s includes

LUT , FF and DSP . In other words, the resource usage of LUT , FF and DSP can be

estimated with equation 4.2 by specifying proper Rs,o.

A function is active once its arithmetic operators start processing data. The number of idle

cycles before a function becoming active depends on the number of cycles it takes to get the first

input data (i.e., external idle cycle Nid,ext), and the number of cycles it takes to start processing,

once the first input data are available (i.e., internal idle cycle Nid,int). As an example, for

function node G0, as shown in Algorithm 5, processing of y[i] requires x[i − 4] ∼ x[i + 4]. If

we assume input data item x[0] in function G0 is available at cycle n, and the function streams

one data item each cycle, the arithmetic operations in the function thus start at cycle n+ 9.

Inside a function node, we analyse memory usage and internal idle cycles based on data offset

values. The on-chip memory resources are used to buffer input data, when not all accessed

data are available. In Algorithm 5, to calculate y[i], data items before x[i + 4] need to be

buffered before x[i+4] arrives. The offset edges in Figure 4.3(a) are thus mapped into memory

buffers, with the relative position between the maximum and the minimum offsets indicating
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the buffer size. For a function node Gi, its input nodes are traversed and the offset values are

combined into Gi.mem. In mem, memmax and memmin respectively indicate the maximum and

the minimum offset values. As an example, there are 8 offset edges for Algorithm 5, as shown

in Figure 4.3(a). We thus group the offset edges into mem of G0 as [−4, 4], where memmax = 4

and memmin = −4. A memory architecture buffering 9 consecutive data is generated. The

buffered data to calculate y[4] are shown in Figure 4.4(a). In the next cycle, x[9] is streamed

into the memory architecture to update buffered data. A data-path connected to the memory

architecture can run without stalling. On-chip memory resource used by a function node can

be calculated with the relative position as follows. bit is the number of bits of one datum, and

the resource usage of all accessed arrays in a function Narr is accumulated.

Ms =
Narr
∑

a=1

(mema,max −mema,min + 1) · bit (4.3)
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Figure 4.4: Data buffering for offset edges in Algorithm 5, to calculate (a) y[4] and (b) y[5].

Nid,int indicates the number of cycles that arithmetic operators in a function have to wait after

the first input datum is available. This normally happens when the arithmetic operations in

a function depend on more than one datum. For the example in Figure 4.4, the computation

depends on 9 data, and cannot start when x[0] is available. The number of cycles a function

needs to wait depends on the distance between the required data, i.e., the distance between
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memmin and memmax. Since memmin and memmax can be either positive or negative, Nid,int can

be expressed as:

Nid,int = max

(

mema,max +
|mema,min|−mema,min

2
+ 1

)

∀a ∈ {1...Narr} (4.4)

When memmin is less than 0, such as -4 in Algorithm 5, the minimum offset edge points at the

first input datum. Nid,int is the number of cycles to buffer data inmem, i.e., memmax−memmin+

1. When memmin is above 0, for example, if we add 100 to all data indices in Algorithm 5, the

minimum offset edge (96) points to the 96th data after the first input datum. In other words,

the computation in this function starts until the 96th cycles. The memmin is added into Nid,int

to take the initial delay into account. Nid,int therefore is expressed as memmax + 1. The idle

cycles introduced by each array a is compared, and the idle cycle of a function is defined as the

maximum of the idle cycles.

4.3.2 Segment Generation

A segment Si includes function nodes that are active at the same time. We use external idle

cycles and internal idle cycles to classify application functions: functions with the same Nid,ext

and Nid,int are grouped into the same segment, indicating these functions can be activated at the

same time. Nid,ext of a function depends on the execution status of its predecessor functions,

which can only be properly estimated once complete reconfigurable designs (partitions) are

generated. In this stage, the design objective is to differentiate functions active at different

time intervals. As-Late-As-Possible (ALAP) levels are assigned based on function-level edges

EG. Functions that depend on the same input data would have the same external idle cycles,

i.e., the same ALAP levels. Within the same ALAP level, internal idle cycle count Nid,int is used

to further separate functions with different offset values. As an example, if another function

node Gx starts its computation once x[0] is available, Gx and G0 are active at different cycles

while they share the same Nid,ext. To demonstrate the segment generation process, we use the

RDFG in Figure 4.5 as an example. Nid,int = N for functions A and B, and Nid,int = M for
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Algorithm 6 As Timely As Possible Assignment. The algorithm merges functions that start
at the same time into one segment.
input: G, function nodes assigned with ALAP levels
output: S, generated segments

for Gi ∈ G do
Gi.atap ← Gi.Nid,int

for Gj ∈ Gi.outputs do
if Gj.alap = Gi.alap + 1 then
if !Gj.Nid,int then
Gj.alap ← Gj.alap - 1
Gj.atap ← Gi.atap

end if
end if

end for
S<Gi.alap,Gi.atap>.add(Gi)

end for

function D. Arithmetic operations in function C are:

∀i ∈ (0, n) z[i] = x[i] ∗ y[i] (4.5)

where computation starts as soon as input data are ready, i.e., Nid,int = 0.

In order to simplify context saving and recovery operations, we assign ALAP levels [GDWL92]

to function nodes. Various scheduling algorithms have been proposed to ensure correct execu-

tion of nodes in a graph [PB99, HLH+98]. As full-reconfiguration is used in the present method,

the communication between consecutive configurations in a reconfigurable design is not affected

by reconfiguration: output data of the current configuration are transferred from local mem-

ories into host memories before reconfiguration takes place, and from host memories to local

memories after reconfiguration, as shown in Figure 4.3(e). For the example in Figure 4.5(a), if

scheduled As-Soon-As-Possible, function node G0 will be executed once the application starts.

The output data of G0, on the other hand, are only used when G4 is executed. Complex

memory control is required to store and transfer the output data of G0 properly. By assigning

ALAP levels, we ensure only output data of the previous configuration need to be transferred,

as shown in Figure 4.5(b).

Inside an ALAP level, function nodes with different Nid,int are further separated into different

levels, named As-Timely-As-Possible (ATAP) levels. The ATAP level of a function node is
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Figure 4.5: (a) RDFG of the example application. (b) RDFG after assigning the initial ALAP
and ATAP levels. (c) Generated segments based on assigned ALAP and ATAP levels.

assigned with respect to its Nid,int (line 2 of Algorithm 6). After assigning the ATAP levels,

there are three scenarios to consider. (1) Inside the same ALAP level, function nodes with the

same ATAP levels can run in parallel at the same time. Therefore these nodes are assigned

to the same segment. (2) A function node with Nid,int = 0 indicates its arithmetic operations

can start as soon as input data from previous ALAP level are ready (line 5). Implemented in

hardware, such a function node can be pipelined with functions in its previous ALAP levels.

As shown in Figure 4.5(b), G4 is dependent on G0 and G3. In hardware, G4 is implemented as

a multiplier, with its offset edges mapped as on-chip wires. The multiplier can be merged into

the data-paths of G0 and G3. Therefore, G4 can be executed at the same time as G0 and G3.

In the scheduling algorithm, ALAP level of G4 is reduced by 1, and its ATAP level is assigned

as N , indicating it starts once G0 and G3 start (line 6∼7). (3) Function nodes with different

ALAP levels or ATAP levels are assigned to different segments (line 11), since these functions

will be active in different time intervals.

4.4 Configuration Organisation

After function-level RDFG is divided into segments, operations at the configuration level include

distributing segments into different configurations and optimising each configuration to fully

utilise available resources. A configuration is expressed as C<i,j>, where i indicate the starting
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Algorithm 7 Configuration generation. The algorithm enumerates all legal sequences of seg-
ments over the sets of compressed segments.
Input: compressed segments S=(S0, S1...)
Output: all valid configurations C=(C0, C1...)

1: for i = 0 → S.size do
2: Cbuf ← ∅
3: for j = i → S.size do
4: Cbuf .add(Sj)
5: C<i,j> ← Cbuf

6: end for
7: end for

segment, and j implies the ending segment. Therefore, C<i,j> contains j − i+ 1 segments.

4.4.1 Configuration Generation

Ideally, every segment can be considered as a configuration, and design inefficiency can be elim-

inated by dynamically reconfiguring segments. For the generated segments in Figure 4.6(a), the

5 segments can be mapped into 6 separated configurations, which are configured and executed

as scheduled. Theoretically, optimal performance is achieved as no idle cycle is introduced.

In practice, such a configuration generation scheme introduces two problems. First, there are

configurations with the same function nodes. As shown in Figure 4.6(a), S<2,N> and S<3,N>

share the same functions. One configuration is capable of accomplishing the functions of the

two segments. Separating them into two configurations introduces reconfiguration overhead.

Second, large reconfiguration overhead makes this scheme impractical. In this approach, we

use full reconfiguration to switch between different configurations; the reconfiguration overhead

includes the time to configure the FPGA and the time to preserve computational context. If we

generate one configuration for each segment, we introduce frequent reconfigurations. When the

number of eliminated idle cycles is less than the reconfiguration overhead, overall performance

is reduced. In order to generate reconfigurable designs with the minimum overall execution

time (including the execution time and the reconfiguration time of configurations), we generate

all valid configurations from segments. During run time, the configurations are selected based

on data size and reconfiguration overhead.

Design rules for configuration are introduced to reduce complexity for generating valid config-
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urations. Combining segments into configurations is a combinatorial problem where all subsets

of of segments (S1, S2, S3...) are generated. However, the number of combinations can easily

become too large to process when the graph size increases. We introduce two design rules, to

remove redundant and invalid segment combinations.

Rule 1: Consecutive segments with the same functions are defined as duplicated segments. The

duplicated segments are removed to leave just one such segment. In hardware, the duplicated

segments can be executed with the same hardware modules. Distributing these segments into

different configurations cannot provide better runtime performance. For example, as shown in

Figure 4.6(a), S<2,N> and S<3,N> share the same functions, and can be assigned to different

configurations. If we assign S<1,N>, S<2,N> and S<3,N> to the same configuration, when the

configuration is executing the functions in S<2,N>, only S<2,N> in this configuration is active.

The hardware modules (A, B, C) in S<3,N> remain idle since these modules depend on the out-

put of S<2,N>, although these two segments share the same hardware functions. By removing

the duplicated segments, we eliminate such inefficient configurations. Moreover, we reduce the

search space to generate configurations. For large-scale applications, the same functions can

be iteratively called thousands of times. The removal of duplicated segments can significantly

reduce the complexity of generating configurations.

Rule 2: As function segments are arranged according to data dependency levels, only config-

urations with consecutive segments are considered as valid. In Figure 4.6(b), a configuration

that contains S0 and S3 is considered as an invalid configuration. If such configuration is down-

loaded into an FPGA, either S0 or S3 would stall: when S0 is executed, S3 remains idle as it

needs output data from S2; when S3 is executed, the function in S0 has been accomplished.

For a configuration with consecutive segments, it respect data dependencies between involved

segments.

While Rule 1 reduces the number of segments, Rule 2 defines which segments can be combined

into one configuration. Algorithm 7 (line 1 to 3) searches segments in a consecutive manner,

from source nodes to segments assigned the maximum levels, and each valid combination is

stored as a configuration (line 4 and 5). As shown in Figure 4.6(c), configuration C<0,0>

indicates that a configuration starts from segment 0, and contains 1 segment. Similarly, C<0,3>
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contains all 4 segments, starting from segment 0. After generating all configurations that start

from the first segment, the algorithm restarts the process from the second segment (line 1).
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Figure 4.6: (a) Segments generated from function analysis. (b) Compressed segments based
on Rule 1. (c) Generated configurations that start from the first segment S0, following the
combination order defined by Rule 2.

4.4.2 Configuration Optimisation

With functions active at different time intervals distributed into different configurations, hard-

ware resources occupied by the idle functions are freed. The freed resources are utilised by

optimising each configuration. Required resources are first extracted from the segments in a

configuration, and relevant functions are replicated to fully utilise available resources.

The required resources include hardware resources and bandwidth requirements. As all arith-

metic operators in data-paths run concurrently, consumed resources cannot be shared. There-

fore, in a configuration, resource consumed on data-paths can be directly accumulated as fol-

lows, where C is the target configuration, S and G are respectively all segments and function

nodes included in C, and NG,o is the number of operations of type o in function node G, the

LUT resource usage Ls is given by:

Ls = P ·
∑

S∈C

∑

G∈S

∑

o∈⊙

(Nari,o ·Rs,o ·Bs,o,bit,fix) ⊙ = {+,−, ∗,÷, sta, dyn} s ∈ {LUT, FF,DSP}

(4.6)

On-chip memories, on the other hand, can be shared by replicated functions. As an example,
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for the function node G0 in Figure 4.3, if two data-paths are implemented, memi∪memi+1 only

increases from [1,9] to [1,10]. Instead of doubling the memory resource usage, implementing

one more data-path only requires one more datum to be buffered. Figure 4.7 demonstrates

the additional memory usage, when the arithmetic operators are duplicated. For a function

with parallelism P , its memory space can be updated as the union of buffered data mem =
⋃P

i=1 memi. Besides additional memory storage resources, more memory I/O ports are required

to run the duplicated arithmetic operators in parallel. We use memedge to indicate the number

of edges in a segment, and Nport to indicate the number of I/O ports for a BRAM. Therefore

the memory resource usage for a segment is determined by the maximum value of I/O bounded

BRAM usage (P·memedge+P
Nport

) and storage bounded BRAM usage ((memmax−memmin +1) ·RM).

The memory resource usage for a configuration C can then be accumulated as:

Ms =
∑

S∈C

∑

G∈S

max(
P ·memedge + P

Nport
,
Narr
∑

a=1

P
∑

d=1

(mema,d,max −mema,d,min + 1) · bit) (4.7)

Besides resources consumed by data-paths and memory architectures, communication infras-

tructures consume resources for connecting on-chip memory architectures to off-chip data ports.

The consumed LUTs, FFS, DSPs and BRAMs are respectively labelled as ILUT , IFF , IDSP and

IMs, and considered as constant parameters for each configuration.
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Figure 4.7: Data buffering for offset edges in Algorithm 5, to calculate two results per cycle
(y[5] and y[6]).

The bandwidth requirement Mbw depends on the number of input/output edges of a configura-
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tion. The number of input edges Nin and output edges Nout of a configuration can be updated

by searching all edges in the configuration. As only edges not connected to internal function

nodes would involve memory access, an input edge is considered as an input edge of a config-

uration if its input node is not included in the configuration. Similarly, if an output edge is

pointing at function nodes outside its configuration, it is included in the configuration output

edges. Mbw can then be expressed as:

Mbw = P · (Nin +Nout) · fdp · dw (4.8)

where fdp is the data-path operating frequency, and dw is the width of represented data.

After collecting configuration properties, a similar optimisation model as the circuit-level model

is applied to maximum the design parallelism. Since functions active at different time are

separated into different configurations, the optimisation model reuse the resources previously

consumed by idle functions to replicate more active functions.

minimise:
ds · dmds

P · fdp
(4.9)

subject to:

LLUT/FF/DSP · par · dmLUT/FF/DSP + ILUT/FF/DSP ≤ ALUT/FF/DSP (4.10)

Ms · dmMs + IMs ≤ AMS (4.11)

Mbw · dmBW ≤ BW (4.12)

where Ls is the configuration logic resource usage, Ms is the memory resource usage, Mbw is

the bandwidth requirements, and I is the constant resource usage for communication infras-

tructures. Bounded by the available resources A, the optimisation objective is to achieve the

maximum throughput for each configuration. To preserve generality of this approach, the opti-

misation problem is simplified. Application-specific optimisation techniques can be applied to

further improve configuration performance.
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4.4.3 Domain-Specific Aspects

In general, the function-level approach is applicable to applications with idle functions. The

more complex applications are (more function nodes, complex inter-function dependencies),

the more design space the approach gains. In the this chapter, we explore two application

domains: Monte-Carlo simulations and stencil computations. The finite-difference applications

in Chapter 3 can be considered as one type of stencil computations.

Monte-Carlo Simulations

Monte-Carlo simulations are a class of algorithms based on randomisation. Given an unknown

probabilistic data characteristics, the same simulation is ran many times with random variables

to capture the result data distribution. The computation depends on parallel random trials to

statically coverage the results. Monte-Carlo simulations are widely used in scientific and finan-

cial modelling, and are often computationally expensive to implement. To produce accurate

simulation results, thousands to millions of simulation runs need to be executed, where each

simulation run goes through the same arithmetic operations with different random variable

values. Monte-Carlo simulations are inherently parallel since there are no data dependencies

between the simulation runs. The computationally intensive operations of the Monte-Carlo

application involve generating random numbers and executing parallel simulation paths.

Random Number Generators (RNGs) play an important role in Monte-Carlo simulations as

running the simulations in parallel requires a large number of random data at each clock

cycle. In Monte-Carlo simulations, the data-paths and memory architectures are mapped into

FPGAs with the general design models. The RNGs are labelled with pragmas in the high-level

descriptions, and are represented as a special node in the intermediate DFGs. In this work, we

use the piecewise fixed-point linear generation method [TL06], and directly map the RNG nodes

into hardware. The edges between RNG nodes and following arithmetic nodes are implemented

as wire connections. In addition, since the RNG only needs to be initialised at the beginning of

computations, and does not require input data during runtime, the RNG nodes are not involved

in estimating the off-chip memory bandwidth requirements Mbw. We collect the resource usage



4.4. Configuration Organisation 101

of RNGs from synthesised results, and consider the resource usage as constant when estimating

data-paths resource usage Ls.

Stencil Computation

Stencil computation refers to a class of iterative operations to update array data with a fixed

pattern, named as a stencil. Stencil computations are commonly used in simulating dynamic

systems, such as fluid dynamics and heat diffusion, as well as in solving Partial Differential

Equations (PDEs). Algorithm 8 shows an example application with 3-D stencil. The 3-D

data structure is shown in Figure 4.8(a). Since neighbouring data are required to support the

calculation, boundary data are not updated during computation, named as halo data. The

simulated time dimension is discretised into nt time steps. In time step t, the constructed

stencil sweeps over kernel data to propagate f(s, t) in time dimension, and the system status

in t+ 1 is simulated based on the results in time steps t and t− 1.

Algorithm 8 An example of a stencil code.
1: for t ∈ 0 → nt do
2: for z ∈ 1 → nz − 1 do
3: for y ∈ 1 → ny − 1 do
4: for x ∈ 1 → nx− 1 do
5: f[t+1][z][y][x] = (f[t][z][y][x−1] + f[t][z][y][x+1]) * α
6: + (f[t][z][y−1][x] + f[t][z][y+1][x]) * β
7: + (f[t][z−1][y][x] + f[t][z+1][y][x]) * γ
8: - f[t−1][z][y][x];
9: end for

10: end for
11: end for
12: end for

For stencil computations, similar to the finite-difference algorithms in Section 3.5.2, we support

temporal and spatial blocking. Figure 4.8 demonstrates the impacts of the blocking techniques.

As shown in Figure 4.8(b), for a 3-D stencil application, blocking the lowest two dimensions (x

and y) in half reduces data distance between neighbouring data at the highest dimension (z) by

75%, which allow four parallel cores to process data blocks with improved data locality. When

performance of parallelised designs is bounded by memory bandwidth, temporal blocking is used

to propagate multiple time steps with one memory pass. As shown in Figure 4.8(c), propagating

stencil data for time steps t and t+1 can be accomplished by either executing the unblocked
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designs twice, or buffering the intermediate results on-chip to eliminate the redundant memory

access operations. The domain-specific aspects can be summarised as follows

P = par · tk (4.13)

dmMS =
ND−1
∏

D=1

nD
nD

skD
+ 2 · wD · tk (4.14)

dmds =
ND
∏

D=1

nD + 2 · wD · skD · tk
nD

(4.15)

where P indicate the overall parallelism, dmMS accounts for the reduction in memory usage,

and dmds accounts for the increase in the overall data. After spatial and temporal blocking,

2 ·wD additional data (one layer of halo data) are introduced in dimension D when the spatial

blocking ratio sk increases by one, and as the temporal blocking ratio tk increases by one, one

layer of halo data are introduced in all dimensions, and par more data-paths are implemented.
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kernel data
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Figure 4.8: Data organisation of (a) an original 3-D stencil problem, (b) after spatial blocking,
and (c) after spatial and temporal blocking.

4.5 Partition Generation

A valid partition consists of a combination of configurations that respects data dependencies

and does not have redundant functions. Optimised configurations are combined into a partition

as a complete reconfigurable design. During run time, an FPGA is dynamically configured

following a specific order determined at compile time. As shown in Figure 4.9, partition Pn

contains configurations C<0,2> and C<3,3>. The search algorithm finds C<0,2> first and then
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combines C<3,3> into Pn. During run time, a host program downloads configurations based on

the order of combination. The host program first configures C<0,2> into the available FPGAs.

When C<0,2> finishes its function operations, the host program then reconfigures FPGAs with

C<3,3> to finish the remaining functions.

Similar to the configuration generation process, random combinations will generate invalid

designs. Several rules for partition generation are applied to construct the search space.

Rule 3: Data dependencies between configurations are implied by the combined segments.

Configurations must be included into partitions in a way that ensures segments with lower

data dependency level finish first. For configurations generated from segments in Figure 4.9(a),

combining configuration C<0,2> as the first configuration in Pn indicates C<0,2> will be executed

first. As function node G1 (segment 0) will be instantiated first in the target application, C<0,2>

needs to contain segment 0 to ensure correct execution. In other words, configurations starting

from segment 0 (C<0,0> ∼ C<0,3>) need to be combined into a partition first. This requires the

search process to start from configurations including segments with the lowest level.

Rule 4: As a complete reconfigurable design, the generated partitions must be capable of

accomplishing the target applications. To finish the example application in Figure 4.3(a), all

A, B, C, D and E functions must be contained in a partition. As function nodes are grouped

as segments, this requires that a partition contains all function segments. As an example, if all

configurations in a partition do not include S3, the partition cannot finish the application in

Figure 4.9(a). This requires all compressed segments must be included in a valid partition.

Rule 5: To ensure hardware efficiency, configurations with overlapped segments cannot be

combined into the same partition. Otherwise, the same functions will be implemented multiple

times, introducing redundant hardware.

∀(Ci, Cj) ∈ Pi Ci ∩ Cj = ∅

For the application in Figure 4.9(b), if Pn contains C<0,2> and C<2,3>, S2 is included in both

configurations. When S2 is executed, only one of the configurations is downloaded into FPGAs.

The S2 in the other configuration is never activated, introducing hardware inefficiency.
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Figure 4.9: (a) Compressed segments from configuration organisation. (b) Generated configu-
rations in a configuration map. The example search operation starts from C<0,2>, and looks for
the remaining configurations. (c) A valid partition P6 with configurations C<0,2> and C<3,3>.
(d) All valid partitions for the example application.

We search valid partitions recursively, as shown in Algorithm 9. The starting point of each

search operation is defined in the main function. The present partition and the starting point

for the next search operation are passed into the search function Find_Partition (line 10

and 21 in Algorithm 9). If the search function finds a valid partition, it returns the partition.

Otherwise the search function recursively calls another search function. The rules listed above

define the initial starting point in the main function, the starting point for the next search

operation, and the ending point for a partition search.

Rule 3 defines the initial starting point of the search operations. We organise the generated

configurations in a configuration map, as shown in Figure 4.9(b), where the y axis indicates

the starting segment of the configuration (i in C<i,j>), and the x axis indicates the number

of segments in this configuration (j in C<i,j>). The search process begins from the starting

point with configurations in the first row in Figure 4.9(b). This is ensured by the first line of

Algorithm 9. In this example, we pick C<0,2> as the first configuration. It contains 3 segments

(S0, S1, S2).

Rule 5 defines the starting point for the next search operation. Given the current configuration

C<0,2> contains segments (S0, S1, S2), the next configuration should start from S3 to prevent

overlapping with segments in existing configurations. Therefore, the next search operation finds

configurations in the fourth column of the configuration graph (line 10). Since the starting point

of the next search operation depends on the ending segment of the last configuration in the

current partition Pbuf , we name the algorithm as ending-segment search algorithm.
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Algorithm 9 Ending-Segment Search Algorithm. The algorithm searches all valid combina-
tions of configurations that are capable of accomplishing application functionality.
1: Find Partition(Pbuf , start) {
2: num segments : number of compressed segments in S.
3: i ← start
4: for j = i→ (num segments-1) do
5: Pbuf .add(C<i,j>)
6: if j == (num segments -1) then
7: Partitions.add(Pbuf )
8: return
9: else

10: Find Partition(Pbuf , j+1)
11: end if
12: Pbuf .pop(C<i,j>)
13: end for
14: return
15: }
16:

17: main() {
18: Pbuf ← ∅;
19: Partitions ← ∅;
20: start ← 0;
21: Find Partition(Pbuf , start);}

Rule 4 defines the ending point of the search operation. As a valid partition contains all

segments, once the search algorithm finds out that all segments are included in the current

partition, it returns the current partition. After a configuration is found, the search algo-

rithm checks whether all segments have been included, by comparing the number of segments

num segment with the ending segment of the last configuration in Pbuf (line 6). In this ex-

ample, the search algorithm finds C<3,3> in the fourth column of the configuration map. j = 3

indicates that all segments have been included in current partition. Current search operation

is terminated, and the partition is saved as a valid partition (line 7∼8).

4.6 Runtime Evaluation

The performance of the generated partitions depends on the application characteristics, design

properties and data size. Application characteristics and design properties are available during

compile time, and thus their impacts on partition performance can be analysed before execu-

tion. The data size of application functions, on the other hand, can either be hard-coded as
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Algorithm 10 Partition Scheduling Algorithm. The algorithm estimates the execution time
of generated partitions.
Variables: vi: nodes, pi: partitions, Cur: current configuration
Functions: Conf(vi, pi): find configuration ci in partition pi that vi ∈ ci

1: for pi ∈ Partitions do
2: for vi ∈ Source Nodes do
3: Cur ← Conf(vi, pi)
4: while vi.NextNode ̸= ∅ do
5: if vi /∈ Cur then
6: Cur ← Conf(vi, pi)
7: pi.T += Cur.Cre + Cur.Cm

8: end if
9: pi.T += Cur.Ct

10: vi ← vi.NextNode
11: end while
12: end for
13: end for

static constants or be dynamically specified during execution. If data sizes are implemented

as compile-time coefficients, performance of each partition can be determined during compile

time, and the optimal partition with maximum performance can be selected before execution.

However, such a static approach is only applicable to applications with deterministic data sizes.

A runtime performance model is introduced in the proposed approach. The execution time and

the reconfiguration overhead of partitions are estimated based on data sizes, with constant

coefficients indicating application characteristics and design properties.

The constant coefficients for the performance model can be extracted by traversing the uncom-

pressed segments with the generated partitions, as shown in Algorithm 10 (line 4-11). For each

segment, the current partition is searched to find a configuration with all segment functions in-

cluded (line 3 in Algorithm 10). The configuration is named as the current configuration. Since

functions in a segment can be executed in parallel, the execution time for a segment Si can be

expressed with segment data size dsi, configuration parallelism P and data-path frequency fdp.

Ti =
dsi

P · fdp
(4.16)

Design parallelism P and operating frequency fdp are statically configured in each configuration,

and are updated when reconfiguration occurs.
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A reconfiguration operation is triggered during the graph traversal when a function of the

next segment is not included in the current configuration (line 5-7 in Algorithm 10). The

current configuration is updated and the reconfiguration overhead O is accumulated. Similar to

the reconfiguration overhead model at the circuit level, the reconfiguration overhead includes

the time consumed for configuration file downloading and context switching. We estimate

chip configuration time as the ratio between configuration file size and configuration interface

throughput, and estimate context switching time as the ratio between transferred context data

size 2 · ds · dmds and data transfer throughput φ. dmds is the domain-specific aspect. While

the configuration file size at the circuit level is mainly determined by LUT usage, the function-

level configuration file size depends on the resource usage of all on-chip resource types. The

reconfiguration overhead O can thus be expressed as:

Oj =
γ ·max(

P ·Ls+IL

AL
,
P ·Fs+IF

AF
, P ·Ds+LD

AD
, Ms+IM

AM
)

θ
+

2 · ds · dmds

φ
(4.17)

where Oj indicates the reconfiguration overhead when the current configuration is switched to

configuration Cj, and γ is the configuration file size for 1% chip usage. We estimate the chip us-

age with the maximum resource usage in all resource types: max(
P ·Ls+IL

AL
,
P ·Fs+IF

AF
, P ·Ds+LD

AD
, Ms+IM

AM
).

Theoretically, accumulating the configuration file size for each resource type can provide better

estimation. In practice, routing configuration data occupy a large portion of a configuration file

file. As FPGA vendors do not provide routing infrastructure details, the routing configuration

data size cannot be estimated. In our approach, we use the average chip usage coefficients γ and

the maximum resource usage to estimate configuration file size. The additional data transfer

time is given by 2 · ds/φ.

The overall execution time of a partition Pk can be estimated by accumulating the execution

time for each segment and the reconfiguration overhead for each reconfiguration operation.

For an application with N uncompressed segments and a partition with R reconfiguration

operations, the overall execution time can be expressed as:

Tk =
N
∑

i=1

dsi · dmds

Pi · fdp
+

R
∑

j=1

Oj (4.18)
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where
∑N

i=1
dsi·dmds

Pi·fdp
is design execution time for N segments, and

∑R
j=1 Oj indicates reconfigu-

ration overhead. For an application, valid partitions include dynamic designs as well as static

designs where all functions are grouped into a single configuration file. Therefore, Tk includes

static design execution time Tst and dynamic design execution time Tdy. Given a data set, the

overall execution time of all valid partitions are compared, and the partition with the minimum

overall execution time Tk is executed.

4.7 Benchmark Applications

4.7.1 Barrier Option Pricing

A vanilla option is a financial instrument which provides the owner the right but not the obli-

gation to buy or sell an asset at a fixed strike price K in the future. Similarly, a multi-variable

option is an option with more than one underlying assets. The Multi-variable Barrier option

is an exotic type of Multi-variable Option which changes its value if the underlyings reach the

predetermined barrier. The rules for the change of value can be simple, for example, an up-and-

out barrier option becomes worthless if the underlying asset price moves up across the barrier

level. More complex rules can be applied for a Multi-variable Barrier option, Equation 4.19

shows the payoff function of a three-variable Barrier put option, where vi is the payoff of the

option at ith time step; vEU
i is the price of a three-asset European option; lbi and ubi are the

lower and upper barrier level at time step i; S1, S2 and S3 are the underlying asset prices at

time step i. In this case the payoff function contains mutually exclusive operations depending

on the underlying asset price and the upper and lower barrier, it is therefore possible to apply

our method to this problem.

vi =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

vEU
i , if lbi < S3 < ubi

max
(

0, K − 3
√
S1S2S3

)

, if lbi ≥ S3

max
(

0, K −
√
S1S2+S3

2

)

if ubi ≤ S3

(4.19)
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The explicit finite difference (EFD) method is efficient to evaluate the payoff of financial deriva-

tives with up to three underlyings, since it can be applied easily for various types of PDEs and

the method is scalable for parallel execution. In this chapter we use EFD to solve the Black

Scholes PDE [Hul05] with three underlyings and apply the payoff function as shown in Equa-

tion 4.19 to evaluate the payoff the the barrier option. As a result, a nineteen point convolution

is shown in Equation 4.20, where j, k and l are indices for underlyings S1, S2 and S3; α is a

corresponding coefficient for a particular v.

vEU
i,j,k,l = α1vi+1,j,k,l + α2vi+1,j+1,k,l + ...+ α19vi+1,j,k−1,l−1 (4.20)

For financial derivatives with more than three underlyings, the explicit finite difference method

is usually considered to be both memory and computationally intensive; and Monte Carlo

methods are more favourable. The application RDFG is presented in Figure 4.10(a), with

function A and B indicating the payoff functions before and after reaching the barrier.
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Figure 4.10: Function-level RDFG of (a) BOP, (b) PF and (c) RTM.

4.7.2 Particle Filtering

Particle filter (PF) is a methodology to deal with dynamic system having nonlinear and non-

Gaussian properties. PF estimates the state of a system by a sampled-based approximation of

the state probability density function. PF has been applied to real-time applications including

object tracking [HLP11], robot localisation [M+02], speech recognition [VADG02]. Within the
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real-time constraint, the PF undergoes three key steps: particle generation, weight updating

and resampling. The first two steps is data-independent and can be implemented concurrently

by multiple processing elements in the FPGA. However, the resampling step involve communi-

cation of data among processing elements and it can only start after the first two steps finish.

Therefore, the resampling step is stalled and kept idle. Indicated by the ATAP levels, the

stalled functions can be grouped and optimised into different configurations to improve the

system efficiency. The grouping strategies depends on the delay between ATAP levels, as well

as function characteristics. As shown in Figure 4.10(b), particle generation, weight updating,

re-sampling and grouping are represented as function node A, B, C and D, respectively.

4.7.3 Reverse Time Migration

Reverse Time Migration (RTM) is an advanced seismic imaging technique to detect terrain

images of geological structures, based on the Earth’s response to injected acoustic waves. The

wave propagation within the tested media is simulated forward, and calculated backward,

forming a closed loop to correct the velocity model, i.e. the terrain image. The propagation of

injected waves is modelled with the isotropic acoustic wave equation [AP+11]:

d2p(r, t)

dt2
+ dvv(r)2▽2 p(r, t) = f(r, t) (4.21)

The propagation involves stencil computation, as the partial differential equation is approxi-

mated with the Taylor expansion. A fifth-order approximation is implemented in our exper-

iment. As demonstrated in Figure 4.10(c), injected waves are first propagated from injected

nodes into the detected terrain, labelled as function A. Once the propagation reaches the

bottom, a reversed propagation and a backward propagation are instantiated simultaneously,

represented as function nodes A and B. The propagated data are convolved in function C to

generate the terrain image.
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4.8 Results

Benchmark applications are developed with the proposed design flow. The hardware designs are

produced by the Maxeler MaxCompiler version 2012.1, implemented on Xilinx Virtex-6 SX475T

FPGAs, each hosted by one of the four MAX3424A systems in an MPC-C500 computing node

from Maxeler Technologies. CPU designs are compiled with Intel Compiler (ICC) with -O3 flag

opened, linked against OpenMP libraries, and executed on a Dell PowerEdge R610 machine,

with 24 Intel(R) Xeon(R) X5660 cores running at 2.67GHz. An NVIDIA Tesla C2070 card with

448 CUDA cores is used for GPU designs. GPU implementations are optimised with relevant

techniques such as access blocking and data coalescing [PF10a].

4.8.1 Design Flow Output

The RDFGs of benchmark applications are fed into the proposed design flow. Function nodes

are assigned ALAP and ATAP levels. Nodes A, B and C for PF (Figure 4.10(b)) are combined

into the same segment, as ATAP levels of B and C are 0. Similarly, function C of RTM

(Figure 4.10(c)) is moved into the segment containing function nodes A and B. The number

of generated segments are listed in Table 4.2, where G, S, C and P stand for the number of

function nodes, segments, configurations and partitions generated in the proposed approach.

After the ATAP assignment, the number of segments is reduced from 1501 to 501 for PF,

and from 3000 to 2000 for RTM. Before generating configurations, the duplicated segments

including same functions are eliminatd, leaving 2 segments for each application. Limited by

Rules 1 and 2, three configurations are generated by Algorithm 7. For two segments, there will

only be consecutive segments, i.e., so there will not be inefficient configurations. If the number

of segments goes beyond two, for example four, instead of generating all 16 configurations,

Algorithm 7 would only generate the 9 valid configurations.

The generated configurations are put into the configuration map shown in Figure 4.9(b). Fol-

lowing Rules 3, 4 and 5, the Ending-Segment Search Algorithm generates 2 valid partitions for

each application. As listed in Table 4.2, one partition is the static design, where all functions
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Table 4.2: Output results of proposed design flow.
application G S C P static dynamic0 dynamic1
BOP 2000 2000 3 2 AB A B
PF 1501 501 3 2 ABCD ABC D
RTM 4000 2000 3 2 ABC A ABC

are included in one configuration, labelled as static. The other partition refers to the design

using runtime reconfiguration to eliminate idle functions, with the first and second configura-

tions respectively labelled as dynamic0 and dynamic1. With extracted function properties and

reduced search space thanks to the design rules, valid and efficient reconfigurable designs are

generated, from large-scale application graphs.

Measured and estimated resource usage are shown in Figure 4.11. We show resource usage of

the static designs as a static design contains all application functions. As shown in Figure 4.11,

the estimated resource consumption is within 90% of the measured value, which enables the

configuration organisation step to properly duplicate the relevant functions. The differ-

ences between the measured and the estimated resource usage come from the neglected design

parameters. One of the neglected design parameters is on-chip memory bandwidth. The cur-

rent model estimates memory resource usage by accumulating memory bits consumed to store

on-chip data. However, memory resource usage also depends on on-chip I/O operations. In

Figure 4.4, as there are 8 data buffer elements that read from neighbouring elements and write

to data-paths, 8 memory dual-port memory blocks are consumed. For large-scale applications,

such as the three benchmark applications, millions of memory bits are used. The optimised

designs are bounded by memory capacity instead of memory bandwidth. The model errors due

to the neglected parameters are thus small.

4.8.2 Performance of Generated Partitions

The generated reconfigurable designs are evaluated in terms of execution time and resource

utilisation ratio. The performance of the reconfigurable designs is measured for the MPC-C500

node. The resource utilisation ratio is calculated as the ratio between theoretical execution

time and measured execution time. The theoretical execution time is calculated assuming
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Figure 4.11: Measured and estimated resource usage of static designs for BOP, PF and RTM.

every implemented data-path generates one result per clock cycle. For dynamic designs, the

communication between consecutive configurations is through memory transfers: output data

of current configuration are transferred back into host memories before reconfiguring FPGAs,

and back after the reconfiguration. The reconfiguration overhead Or includes all configuration

time and data transfer time.

Table 4.3: Performance of generated reconfigurable designs.
app design P T (s) Or(s) utilisation speedup

BOP
static 24 111.84 0.79 0.496 1x
dynamic0 48 27.94

1.53 0.97 1.95x
dynamic1 48 28.2

PF
static 4 20.9 1.1 0.346 1x
dynamic0 10 7.41

2.2 0.76 2.19x
dynamic1 5 0.39

RTM
static 6 111.85 1.22 0.73 1x
dynamic0 12 27.96

2.38 0.962 1.31x
dynamic1 6 55.93

For the static BOP, the mutually exclusive functions determine that only half of the resources

can be used to generate useful results. The parallelism P is limited by available on-chip re-

sources. As listed in Table 4.3, the idle functions in static BOP reduce its utilisation ratio to

only 0.496. By distributing function A and B into two hardware configurations, P is doubled

for both configurations, increasing the resource utilisation ratio to 0.97 and achieving 1.95 times

speedup compared with the static design. The left 0.03 inefficiency is introduced by the re-

configuration overhead. For PF, the grouping function D is stalled while particles are updated



114 Chapter 4. Function-Level Optimisation for Runtime Reconfigurable Designs

by function A, B and C. During the grouping stage, function A, B and C are idle. Resources

occupied by idle functions are reconfigured to support active functions. The optimised dynamic

design for PF runs 2.19 times faster than its static counterpart. For RTM, the static design is

bounded by available hardware resources and memory bandwidth. As shown in Figure 4.10,

both function A and B require off-chip data. The memory channels connected to function

B are idle when only function A is processing data. The generated dynamic design releases

the idle resources and the idle memory channels, increasing the design parallelism of the first

configuration to 12. The resource utilisation ratio reaches 0.96, and a 1.31 times speedup is

achieved for the dynamic design.
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Figure 4.12: Evaluation results from the performance model, for the benchmark application
Barrier Option Pricing (BOP), Particle Filter (PF) and Reverse Time Migration (RTM). For
various data sizes, the overall execution time for the static and dynamic partitions are compared,
and the partition with the minimum execution time is selected.

4.8.3 Runtime Evaluation

Results presented in Section 4.8.2 are for initial data sizes of the benchmark applications. The

performance model provides runtime evaluation for the generated partitions, when data size

varies. For the three benchmarks, two partitions are generated for each application. Con-

stant coefficients are extracted from the partitions by traversing the application graphs. For

static partitions with only one configuration, there is no reconfiguration overhead. For dynamic
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Figure 4.13: Measured and estimated execution time of BOP, PF and RTM. The model accu-
racy is higher than 95%. Sta indicates the static partitions, and Dyn indicates the dynamic
partitions.

partitions, the parallelism in each configuration is increased, while reconfiguration overhead is

introduced to eliminate the idle functions in each configuration. The parallelism for configura-

tion in the static and dynamic partitions is presented in Table 4.3. All configurations operate

at 100 MHz, and the throughput of PCI-e channels is 1 GB/s. Functions in the same bench-

mark application process the same data set. Evaluation results from the performance model

are presented in Figure 4.12.

Evaluated data size varies from 100 to 109 data items for each application function. Recon-

figuration overhead dominates the execution time when data size is small, while the impact

of eliminating idle functions becomes obvious as data size increases. When there are more

than 105 data items to process, the dynamic PF and RTM partitions outperform their static

counterparts. The dynamic BOP partition runs faster than the static partition when the ap-

plication data size is beyond 2 · 106. During run time, the performance model provides rapid

estimation of execution time of various partitions, by updating the data size variable ds in

Eq. 4.18. Figure 4.13 compares the measured execution time and the predicted execution time

of the benchmark applications. The measured results align with the estimated values. The

accuracy of the runtime performance model is more than 95%. Since the performance model

estimates execution time as the ratio between data size and peak performance (with no coeffi-

cients tuned for the measured results), this indicates that the benchmark designs achieve 95%
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of their theoretical peak performance.

4.8.4 Performance Comparison

The performance of the optimised partitions is compared with CPU and GPU implementations.

This verifies whether the method can provide high performance of optimised hardware while

achieving high resource utilisation, and evaluates the efficiency of the proposed method in a

single-chip environment. To provide a fair comparison, the throughput and efficiency results

include reconfiguration overhead Or and static power consumption.

The performance of the benchmark applications on various platforms are shown in Table 4.4.

CPU implementations are used as reference designs, generating 2.18 to 13.29 GFLOPS through-

put. With high parallelism in processing units and local memory systems, GPU designs achieve

4 to 18 times speed-up. Based on results from NVIDIA Visual Profiler (NVPP), GPU perfor-

mance is limited by memory operations to load data from global memory into local memory.

The efficiency is limited between 29.5% to 34.3%, i.e., 3 to 4 loading operations are required

to load one block of data into local memory. The inefficiency is introduced by the generality

of the GPU architectures. With runtime reconfiguration introduced, available resources can be

customised for each configuration, based on function properties extracted from the hierarchical

graphs. The dynamic designs achieve up to 130.7 GFLOPS throughput, run up to 1.55 times

faster, and are 2.9 to 4 times more power efficient than the optimised GPU designs. It is worth

mentioning that the performance of static designs is lower than or at the same level as the GPU

performance. Although the general architecture of CPUs and GPUs introduces inefficiency for

operations such as data access, the generality of such architectures enables the same comput-

ing units utilised by various application functions, which compensates the comparatively low

performance for each function. The proposed approach enables resource sharing in the time

dimension, with high performance for each application function.
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4.9 Related Work

Previously, previous work for function-level runtime reconfiguration includes design approaches

to partition applications and to schedule runtime configurations. (1) When available resources

cannot accommodate all functions at the same time, application functions are partitioned into

multiple subprograms. These subprograms are sequentially reconfigured into an FPGA to en-

sure subprogram can fit into the FPGA. In these partitioning approaches, DFGs are used to

represent function nodes [PB99], and an Integer Non-linear Programming (INLP) model is in-

troduced to formulate the partitioning problem [KV98]. (2) Runtime reconfiguration scheduling

approaches select the time points to download configurations into reconfigurable devices, to re-

duce reconfiguration overhead and to increase execution time. In [FC05], a knapsack-based

scheduler is proposed to select the configurations (design kernels) with maximum speedup, un-

der fixed reconfiguration intervals. This scheduling approach is further improved by adaptively

adjusting the reconfiguration intervals [FC08], which reduces the overall scheduling overhead by

85%. In the SCORE project [CDW01], a page scheduler is developed to decide which compute

page (runtime reconfiguration) is executed, to minimise overall execution time.

In this chapter, we propose a design approach to handle idle resource units at the function level.

This approach automatically detects idle functions with high-level analysis, and eliminates these

idle functions with runtime reconfiguration. Instead of partitioning application functions to fit

partitioned functions into available resources, we group functions active at the same time to

gain more resources to replicate active functions. The proposed approach can benefit applica-

tions with idle functions, as long as such applications can be accelerated by parallelising the

execution of the application tasks. The design objective is to achieve the maximum application

performance on the target reconfigurable platform, bounded by available resources. Compared

with previous scheduling algorithms, the runtime evaluator in this work use a performance

model to be aware of improved performance of the optimised reconfiguration designs, as well

as the introduced reconfiguration overhead. Experiments show that a large speedup can be

achieved on existing reconfigurable platforms, for real-life applications.
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4.10 Limitations and Future Work

The efficiency of the proposed approach is limited by reconfiguration overhead. Rather than

aiming for the optimal case that any idle functions are eliminated by dynamically configuring

the applications functions, the current approach uses a evaluator to estimate the benefits and

overhead gained from applying runtime reconfiguration, and only applies runtime reconfigura-

tion when the overall execution time can be reduced. In other words, for scenarios that function

units become idle at high frequency, for example, application functions stay idle every two out

of ten clock cycles, the idle function modules will not be reconfigured. For large-scale appli-

cations, the reconfiguration overhead is negligible and high design efficiency can be achieved.

However, for small-scale applications that need frequent reconfiguration, the overall execution

time of a runtime reconfigurable design is dominated by runtime reconfiguration time, which

leads to low design efficiency.

In the future, reconfiguration techniques with reduced reconfiguration overhead will be ex-

plored, to generate reconfigurable designs (partitions) with improved reconfiguration granular-

ity. Reconfiguration overhead is a common issue for the proposed design approaches at all the

three design levels. We discuss the impacts of the reconfiguration overhead and possible future

improvements in more detail in Chapter 6.

4.11 Summary

A function-level design approach is proposed in this chapter. By introducing reconfiguration

into the design method, computational resources not contributing to outputs all the time are

automatically identified and utilised to further improve system performance. Runtime recon-

figuration enables effective exploitation of computational resources which would otherwise stay

idle, and we show that opportunities for such exploitation can be automatically identified and

optimised. Three applications — barrier option pricing, particle filter, and reverse time migra-

tion — are used in evaluating the proposed approach. The runtime solutions approximate their

theoretical peak performance by eliminating idle functions, and are 1.31 to 2.19 times faster
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than optimised static designs. FPGA designs developed with the proposed approach are up

to 43.8 times faster than optimised CPU reference designs, and up to 1.55 times faster than

optimised GPU designs.



Chapter 5

System-Level Optimisation for

Runtime Reconfigurable Designs

5.1 Introduction

A reconfigurable system consists of various FPGAs. In this work, we assume each FPGA can

only be used by one application at the same time1. Therefore once used by one application,

an FPGA remains unavailable until the application finishes. As applications are launched by

system users from time to time, FPGA availability remains indeterministic during runtime.

Lack of sufficient runtime information during design time, hardware designs need to make

assumptions about runtime FPGA availability. When the assumed runtime scenarios do not

match the actual resource status, idle FPGAs are introduced. At the system level, an idle

resource unit refers to an FPGA that is available during the execution of a reconfigurable

design, while not being used by the application.

In order to match a reconfigurable design to the indeterministic resource availability, we intro-

duce runtime reconfiguration at the system level to dynamically coordinate FPGAs that become

1While there have been work that tried to map multiple applications into one FPGA at the same
time [CSZ+14], this technology cannot be directly applicable to existing reconfigurable designs, with one of
the major limitations being the necessity to do floorplanning manually. In the future when the device-sharing
technique is mature enough, the system-level approach can still benefit reconfigurable designs, with improved
reconfiguration granularity.

121
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available during runtime. Theoretically, the optimal system efficiency can be achieved as there

will be no idle FPGAs in a reconfigurable system: whenever an FPGA is freed by an applica-

tion, one another application running in the system will use this FPGA for its computational

tasks.

Outline. In this chapter, we propose a design approach that enables the users of reconfigurable

systems to develop dynamic designs at a high-level, with design tools and models handling the

low-level details automatically. Section 5.2 provides an overview of the approach. Section 5.3

and 5.4 respectively present the compile-time and runtime techniques applied to support dy-

namic designs at the system level. The design objective is to fully exploit all available FPGAs

during runtime, with minimised reconfiguration overhead. Section 5.5 presents the two bench-

mark applications used in this chapter. To evaluate the generality of the proposed approach, we

choose two applications with diverse communication patters. Finally, Section 5.6 presents the

experiment results, Section 5.7 compares the related work, Section 5.8 discusses the limitations

of the approach, and Section 5.9 summarises this chapter.

5.2 Approach Overview

5.2.1 Reconfigurable System

The last few years have given rise to large computer infrastructures, such as systems and data-

centres, which provide ample compute resources. In contrast to the increase in the requirements

for high-performance datacentre services, the rate of performance increase in datacentres has

slowed down significantly, mainly due to power limitation [Sut05]. Fabricating Application-

Specific Integrated Circuit (ASICs) for datacentre services is overkill for this problem, due

to the rapid evolution of datacentre services and the large cost for fabricating an ASIC. FP-

GAs provide a platform to develop reconfigurable designs in hardware. A reconfigurable de-

sign is captured in hardware languages, synthesised by vendor tool chains, and downloaded

into FPGAs to execute. The reconfigurablility of FPGAs balances the requirements for high-
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performance customised designs and the necessity to adapt to data service evolvement. In a

reconfigurable system proposed by Microsoft [P+14], the Bing web search engine is improved

by 95% in throughput and reduced by 29% in latency.

Applications are launched into a system from time to time, and sharing resources in such

environment adds complexity in the development process: applications must not only efficiently

exploit a given set of compute resources, but also adapt dynamically to available resources at

run time. When we assume a reconfigurable system with FPGA nodes in different generations

occupied and released by various computational tasks, for a given design, throughput can be

potentially increased if more FPGAs are available to perform the design computation. We

illustrate the basic idea of this chapter with a motivating example.

5.2.2 Motivating Example

The effectiveness of current static design methods is limited by unpredictable runtime condi-

tions. Due to non-deterministic starting time of applications, node availability and the amount

of computational resources in available nodes are unknown during compile time. In this ex-

ample, FPGA nodes A, B, C and D are released by other applications at time 0, 2, 3 and 4,

respectively; node A, B and D possess 1 resource unit and process 1 data unit per second, while

node C can process two data per second; application with 8 data to process is launched into

the system. Linear scalability is assumed for executed tasks, i.e., execution time is halved if

the number of utilised resource units increases from 1 to 2.

Two static designs are illustrated in Figure 5.1. The OneNode Design will make use of only

one node, so would take 8 seconds to complete. The FourNode Design will take all 4 nodes

when all of them become available at time 4, and would take 2 seconds to complete. Only half

of the computational capacity in node C is utilised, as the FourNode Design pre-defines that

one resource unit is used in each runtime node. The Dynamic Design, in contrast, can start at

time 0 when node A becomes available; then at time 2, after node A processes two data, node

B becomes available too, so both nodes process another two data in the next second. At time

3 node A, B and C are available, completing the processing of the 4 remaining data.
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Figure 5.1: Execution of various designs for a computational task with 8 data items to process,
when node A, B, C, and D are released. Performance of three designs for the same applications
is presented.

A dynamic design, as discussed in the motivating example, can fully exploit available resources

in a reconfigurable system. Developing such a dynamic design requires designers (1) to cus-

tomise the design for various FPGA devices in the system (in this example, the same FPGAs

are used in node A, B and D, while node C contains a different FPGA), (2) to manage the

customised designs to adapt to runtime resource availability variations, and (3) to schedule

the computation and communication operations of the adapted designs to ensure linear per-

formance scalability, when more FPGA nodes are involved. In correspondence to the three

challenges, the proposed approach includes three design steps: compile-time optimisation and

runtime scaling. The compile-time optimisation handles the first challenge, and the runtime

scaling handles the latter two challenges.

5.2.3 Design Flow

The proposed approach starts from a C program developed by users, then compiles the com-

putation kernels into optimised hardware descriptions, and generates a reconfigurable design

that adapts to available resources at runtime. As shown in Figure 5.2, this approach includes

two steps: compile-time optimisation and runtime scaling. Table 5.1 summarises the design

parameters used at the system level.

The compile-time optimisation is automated with a compiler built with the ROSE infrastruc-
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Figure 5.2: An overview of the System-level approach.

ture [Qui00]. The compiler front-end translates the computational kernels in a C program

into hardware descriptions, with Data-Flow Graphs (DFGs) extracted as intermediate repre-

sentations. In a DFG, the graph nodes represent arithmetic operations, and the graph edges

represent data access operations. The compiler back-end optimises the translated hardware

descriptions to fully exploit available resources in FPGA nodes. The back-end is underpinned

by a design model and a System Resource Abstraction (SRA). The design model estimates the

resource usage of the generated hardware design, by analysing the extracted DFGs. The SRA

stores the system node properties, which include available resources, design parameters, and

inter-node connections. When a reconfigurable system contains FPGA nodes with different

properties, the compiler back-end generates multiple hardware designs with different optimi-

sation parameters. We use vendor tools to synthesise the optimised designs into configuration

files. Besides the computational kernels, the C program also contains a runtime reconfiguration

manager, which is compiled and linked to the configuration files.

The runtime scaling refers to the reconfiguration of a hardware design, when new system nodes

become available during the execution time of this hardware design. The runtime reconfigura-

tion manager, as shown in Figure 5.2, consists of a system monitor, a performance evaluator,

a communication scheduler and a design adaptor. The system monitor reports the currently

available FPGA nodes in the system. Once new nodes are detected, the performance evaluator
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Table 5.1: Variables and parameters in the system-level approach.
variables parameters

optimisation model

P design parallelism A available resources
I infrastructure resources BW available bandwidth

communication model

Dev number of FPGAs Tarr arrival time of dependent data in node D
Tdel,cmp scheduled computation delay time Tdel,dat scheduled data access delay time
C network bandwidth margin

domain-specific aspects

stencil computation

fro front halo data end end halo data
nD dimension D size wD stencil size in dimension D

performance model

RTbne runtime benefits Dev number of FPGAs
Orf reconfiguration overhead P design parallelism
θ data transfer throughput φ (re)configuration throughput
γ configuration file size per resource unit R design resource usage

estimates whether scaling the current design can improve design performance. The communi-

cation scheduler supports asynchronous communication operations to minimise communication

time. If the performance evaluator determines to scale the design over the new nodes, the

communication operations are rescheduled to ensure correct computation results. Finally, the

reconfiguration adaptor redistributes workload, downloads corresponding configuration files into

the new nodes, updates the rescheduled communication parameters, and resumes the compu-

tation.

5.3 Compile-Time Optimisation

The compile-time optimisation, like the optimisation model used at the circuit and the function

level, aims to exploit all available resources in an FPGA computing node to achieve maximum

throughput. The optimised configurations generated at the function level integrates customised

operators and eliminates idle functions. Therefore, the generated configurations are capable of

fully exploiting the available resources in an FPGA node. One additional issue at the system

level is the heterogeneous FPGA nodes in a reconfigurable system: a reconfigurable system often

contains FPGAs from different generations and different vendors, and the available resources

in these FPGAs vary from one to another.

At the system level, we handle this issue with a System Resource Abstraction (SRA) file. An
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SRA file stores the information for each FPGA under separated tags, as shown in Figure 5.2.

For the optimisation model parameters in Table 5.1, the available resources A and BW , the

infrastructure resource usage I, and the design parameters Rs,o and Bs,o,bit,fix are updated

based on FPGA node specifications (Rs,o and Bs,o,bit,fix are discussed in Section 3.5). During

compile time, the optimisation model goes through all FPGA nodes in a system, updates the

model parameters based on the stored information in the SRA file, and generates the optimised

configurations. The optimisation model of an FPGA node i therefore can be expressed as

follows.

FPGA node i

minimise:
ds · dmds

Pi · fdp
(5.1)

subject to:

LLUT/FF/DSP,i · par · dmLUT/FF/DSP + ILUT/FF/DSP,i ≤ ALUT/FF/DSP,i (5.2)

Ms,i · dmMs + IMs ≤ AMs,i (5.3)

Mbw · dmBW ≤ BWi (5.4)

The current system-level approach covers two application domains: Monte-Carlo simulations

and stencil computations. The optimisation techniques have been discussed at the function

level, and the same domain-specific parameters are integrated into the optimisation model.

After generating the optimised configurations for system FPGAs, the computational capacity

Pi · fdp of each FPGA is collected for runtime scaling.

5.4 Runtime Scaling

The runtime scaling process aims at utilising FPGAs that turn to be available during the exe-

cution time of a reconfigurable design. Algorithm 11 shows the runtime scaling processing of a

dynamic design, Figure 5.2 presents the main components used in runtime scaling. The scaling

process includes three steps. First, a system monitor reports the variations in resource avail-
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ability (line 2), and a performance evaluator estimates performance improvements when new

FPGA nodes become available (line 3∼4). If the reduction in overall execution time outweighs

the scaling overhead, the scaling algorithm stalls computation, and triggers the following steps

(line 5). Second, during the scaling process, we use an asynchronous communication model

to minimise communication overhead, and reschedule the communication parameters in the

model to ensure correct functionality (line 6). Finally, a design adaptor reconfigures the new

node, redistribute application workload, resumes computation, and goes back to the monitoring

step (line 7). The algorithm is executed iteratively to adapt to the dynamic design to runtime

resource variations.

Algorithm 11 Runtime scaling algorithm of the system-level approach.
1: while design execution not finished do
2: if system monitor: detects an available node n then
3: performance evaluator: calculate data distribution based on Eq.5.5.
4: performance evaluator: calculate runtime benefits RTbne based on Eq.5.6
5: if RTben > 0 then
6: communication scheduler: schedule asynchronous communication operations based

on Algorithm 13.
7: design adaptor: reconfigure the node n into current dynamic design.
8: end if
9: end if

10: end while

5.4.1 Performance Evaluation

Workload Distribution

Workload distribution balances the execution time of involved FPGAs, so that all FPGAs in a

reconfigurable design finish their task at the same time. At the system level, various design con-

figurations are used in a single reconfigurable design to coordinate the heterogeneous FPGAs.

The processing capacity of an FPGA depends on the customised parallelism of implemented

configurations, which is determined by the compile-time optimisation process. Given a recon-

figurable design using Dev configurations (i.e. Dev FPGAs) at the same time, the workload for
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configuration (device) i can be expressed as:

wli =
ds · dmds
∑Dev

j=1 Pj

· Pi (5.5)

where for FPGA i, wli indicates the assigned workload, Pi indicates its computational capacity,

and ds · dmds accounts for the overall workload.

Performance Model

While capturing more computational resources to process the workload in parallel, scaling a

dynamic design also involves context switching and device reconfiguration, which introduce

reconfiguration overhead. We develop a performance model to determine whether a dynamic

design should scale onto new FPGA nodes that become available during runtime. The perfor-

mance improvements for exploiting available FPGAs depend on the increment in computational

capacity and the amount of remaining workload. As an example, if an FPGA becomes available

right after a dynamic design is launched, a large speedup can be achieved. On the other hand, if

an FPGA is available when a dynamic design is about to finish, the performance improvement

introduced by the new FPGA is negligible.

Runtime benefits refer to the reduction in execution time for the remaining application tasks,

when a dynamic design expands over more FPGAs. The application tasks often involve pro-

cessing workload data iteratively, and therefore is expressed as wl · it, where it is the remaining

iterations. After scaling a dynamic design over new FPGAs, the number of iterations to process

it stays the same, while the distributed workload wl for each FPGA reduces, based on Eq.5.5.

Runtime benefits RTbne can be expressed as:

RTbne =
it · (wl[i,cur] − wl[i,nex])

Pi · fdp
−Orf (5.6)

where wl[i,cur] and wl[i,nex] indicate the distributed workload before and after runtime scaling.

The difference between wl[i,cur] and wl[i,nex] represents reduced workload in FPGA i due to in-

creased computational capacity. Since the workload is distributed based on processing capacity

Pi · fdp, the reduction in execution is the same for all involved FPGAs.



130 Chapter 5. System-Level Optimisation for Runtime Reconfigurable Designs

The reconfiguration overhead refers to time consumed to reconfigure FPGAs and to switch

context. The context switching refers to redistributing intermediate results in current dynamic

design into FPGAs in the scaled dynamic design. The intermediate results of current FPGAs

are loaded from off-chip memories back to host memories; corresponding configuration files are

configured into new FPGAs; and the intermediate results are redistributed into FPGAs in the

expanded dynamic design, to ensure application contexts are preserved in involved FPGAs.

The reconfiguration overhead can be expressed as:

Orf = max(
R · γ
θ

,
wl[i,cur]

φ
) +

wl[i,nex]
φ

(5.7)

where
wl[i,cur]

φ and
wl[i,nex]

φ respectively indicate the time to load and redistribute memory data,

through PCI-e channels with bandwidth φ. The reconfiguration time can be estimated with

configuration file size and throughput of reconfiguration interface θ. The configuration file

size is calculated with resource usage R and configuration file size per resource unit γ. Since

memory controllers and streaming architectures are configured into the same FPGA in current

designs, context data can only be written into new FPGAs nodes when runtime reconfiguration

is finished. The loading of context data, on the other hand, is executed in parallel with re-

configuration operations. Therefore, the Orf only includes the upper bound of reconfiguration

time and data loading time.

5.4.2 Asynchronous Communication Scheduling

We divide the data dependencies in a design into two categories: intra-iteration dependen-

cies and inter-iteration dependencies. As shown in Figure 5.3(a), intra-iteration dependencies

indicate the computation in an iteration depends on input data in the same iteration, while

inter-iteration dependencies indicate the computation in an iteration depends on the results

from previous iterations. The communication model in this work covers both intra-iteration

and inter-iteration data dependencies.
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Algorithm 12 An example algorithm.
1: for it = 0 ← nt-1 do
2: for i = 0 ← 199 do
3: c(i) = (a[i-1] + a[i] + a[i+1]) * b[i];
4: end for
5: c = a;
6: end for

a[0~200]
iteration 1

iteration 0 iteration 1

iteration 0 iteration 1

A

B

a[99]

iteration 0
a[0~200]

a[0~99] a[100]
(a)

a[100~199]

a[99]
(b) (c)

(d)

A

B

A

B

inter−node 
intra−node

Figure 5.3: (a) Intra-iteration and intra-iteration data dependencies, for the example in Algo-
rithm 12. The same example is used in Figure 3.8, Chapter 3. (b) We use workload distribution
to resolve intra-iteration dependencies. For the (c) inter-iteration data dependencies after work-
load distribution, (d) we schedule communication operations to resolve this issue.

Intra-Iteration Dependency

The intra-iteration dependencies need to be protected when design workload is distributed

across multiple FPGA nodes. As an example, in Algorithm 12 (see Figure 5.3(a)), the compu-

tation of c[i] depends on a[i−1], a[i] and a[i+1]. Based on the design model at the circuit and

the function level, mema,max = 1, and mema,min = −1. The communication model distributes

workload based on the computational capacity of each involved FPGA node (P ), to ensure

the computation of all involved nodes finishes at the same time. In addition, for applications

with intra-iteration dependencies, mema,max − mema,min additional data are assigned, when

one more FPGA node is involved in a dynamic design. As an example, for a dynamic design
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with FPGA nodes A and B where PA = PB, the 200 elements in array a are evenly split

between A (a[0] ∼ a[99]) and B (a[100] ∼ a[199]), as shown in Figure 5.3(b). Since the com-

putation of c[99] requires a[100], a[100] (99+memmax) is assigned to node A. Similarly, a[99]

(100+memmin) is assigned to node B. By keeping all the dependent data local, the involved

nodes in a reconfigurable design can run in parallel in a single iteration.

Inter-Iteration Dependency

While distributing additional dependent data to local nodes solves the intra-iteration depen-

dencies, the dependent data (a[100] in node A and a[99] in node B) need to be updated before

they are used in the next iteration. However, these data cannot be updated locally. Our

communication model protects the inter-iteration dependencies by transferring dependent data

during runtime. As shown in Figure 5.3(c), the dependent data are updated in a remote node,

and transferred into the local node that uses the dependent data. For the same dependent data,

we name the data copy in the remote node as remote data, and name the local data copy as

local data. As an example, for a[99], the local data refers to the a[99] in node B, and the

remote data refers to the a[99] in node A.

To minimise the communication time, the communication model supports asynchronous com-

munication operations so that the communication operations of an application overlap with

its computation operations. Dependent data are updated in current iteration, and used in the

next iteration. We use timing constraints to ensure the remote data can arrive in time: the

remote data must arrive after the usage of the local data in the current iteration, which

otherwise will overwrite the data to be used; in addition, the remote data must arrive before

the usage of the local data in the next iteration. As an example, as shown in Figure 5.3(c),

the remote data in node B are updated at the beginning of iteration 0, and used in the end

of iteration 1. If transferred into node A once updated, the remote data in node B overwrite

the local data in node A, before the local data are used in iteration 0. This violates the

earliest timing constraint. We express the timing constraint for an FPGA node m as follows.

dloc,m
Pm

+ Tdel,cmp,m < Tarr,m <
dloc,m + dsm

Pm
+ Tdel,cmp,m (5.8)
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where Tarr,m is the arrival time of local data into node m, dloc,m indicates the position of

the local data (dloc = 0 in node B), dsm is the distributed workload size, and Tdel,m is the

scheduled delay in node m. dloc,m
Pm

indicates the data usage time in the current iteration (the

earliest arrival time), and dloc,m+dsm
Pm

indicates the data usage time in the next iteration (the

latest arrival time).

In correspondence to the timing constraints, the arrival time of dependent data from node n

to node m can be expressed as:

Tarr,m =
drem
Pn

+
dsdep ·M
bwn,m

+ Tdel,cmp,n + Tdel,dat,m (5.9)

where drem indicates the position of the remote data, dsdep indicates the dependent data size,

bwn,m indicates the communication bandwidth between node n and m, and M is a margin

factor for the communication operations.

In order to meet the timing constraints, we develop a communication scheduler to tune the

scheduled communication delay (Tdel,cmp) and data update delay (Tdel,dat). In an FPGA node,

the communication delay Tdel,cmp refers to an initial delay before the first iteration starts, and the

data update delay Tdel,dat refers to the delay in the update of local data, when remote data

are ready. Tdel,cmp and Tdel,dat have three impacts on communication operations. (1) Inserting

Tdel,cmp delays the computation operations in local nodes, and thus adds an extension in local

timing constraints (see Eq.5.8). (2) Inserting Tdel,dat delays the update time (i.e. arrival time)

of remote data (see Eq.5.9). (3) When the local data in node m comes from node n, inserting

Tdel,cmp in remote node n delays the arrival time of remote data in node m (see Eq.5.9).

The communication scheduler updates data access delay Tdel,dat and computation delay Tdel,com

to satisfy the timing constraints. There are two cases for timing constraint violations. (1) If

dependent data arrive too early, a data access delay Tdel,dat is inserted to postpone the update

time of the dependent data in local memory. (2) If dependent data arrive too late, the depen-

dent data cannot be scheduled to arrive earlier. Instead, starting time of the communication

operations is delayed to postpone the latest timing constraints.
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Our communication scheduler, as shown in Algorithm 13, goes through workload distribution

and timing constraint check to ensure correct functionality when a dynamic design scales over

new FPGA nodes. Since the computation delay in one node impacts the arrival times in

its neighbouring nodes, we check the latest timing constraints first to update Tdel,com. After

updating the computation delay, we check the earliest timing constraints to schedule the data

access delay Tdel,dat. The scheduling algorithm traverses all FPGA nodes until there is no

timing constraint violation. For the unscheduled communication operations in Figure 5.3(c), the

remote data in node B are transmitted once updated, breaking the earliest timing constraint

in node A. After communication scheduling, an initial delay is added to ensure the remote data

in node B arrives after the usage of the local data in node A in iteration 0. Typically, high

performance applications have thousands to millions of iterations, the inserted initial delay has

negligible effect on design performance.

Algorithm 13 Communication scheduling algorithm for a runtime reconfigurable design at
the system level.
input: the number of FPGAs in detected FPGA path: Dev

output: scheduled computation delay Tdel,com and data access delay Tdel,dat for each
FPGA.

1: for i ∈ 0 → Dev do {workload distribution}
2: wl[i] = workload distribution()
3: Tarr,i = unscheduled arrive()
4: end for
5: for i ∈ 0 → Dev do {schedule for the latest timing constratins}
6: if latest arrive() < Tarr,i then
7: Tdel,com,i = max(Tarr,i− latest arrive()
8: Tarr,i+1+ = Tdel,com,i

9: end if
10: end for
11: for i ∈ 0 → Dev do {schedule for the earliest timing constratins}
12: if earliest arrive() > Tarr,i then
13: Tdel,dat,i = max(earliest arrive() - Tarr,i)
14: end if
15: end for

5.4.3 Domain-Specific Aspects

Monte-Carlo Simulation

In a Monte-Carlo simulation path, the computation operations depend on the input data gen-

erated by a RNG. Inside the DFGs for Monte-Calro applications, the design model considers
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RNGs as internal graph nodes, and the output edges from RNGs are implemented as on-

chip wire connections. There are neither intra-iteration nor inter-iteration dependencies for

Monte-Carlo simulations. Therefore, an FPGA can be directly used without concerning the

communication constraints. No overlapped data distribution or asynchronous communication

operation scheduling is required, since all dependent data are generated locally. In addition,

the overall data size for a Monte-Carlo application remains the same during runtime, regardless

of the number of involved FPGAs and the applied optimisation techniques. To dynamically

reconfigurable a Monte-Carlo design at the system level, the runtime scaling process adapts

workload distribution as more and more FPGAs are involved, following Eq.5.5.

Stencil Computation

Known to be communication intensive, stencil computation has complex intra-iteration and

inter-iteration data dependencies. The data exchange between two neighbouring FPGAs is

illustrated in Figure 5.4(a). The domain-specific aspects include workload distribution, timing

constraints, and data arrival time.

Similar to the general communication model, the intra-iteration dependencies can be protected

with workload distribution. Within a stencil iteration, the computation of a datum requires its

neighbouring data, with the number of required neighbouring data determined by stencil size

wi. In order to protect the data dependencies, the halo data between two neighbouring FPGA

nodes are distributed to both the FPGAs, as shown in Figure 5.4(b). In terms of the overall

data size, besides spatial blocking and temporal blocking, two additional layers of halo data

are introduced once one more FPGA is involved. Given a stencil problem with stencil size wi,

spatial blocking ratio sk, temporal blocking ratio tk, and Dev FPGA involved, the distributed

data for FPGA i can be expressed as:

wli =
ds · dmds
∑Dev

j=1 Pj

· Pi + 2 · wN · sli (5.10)

sli =
ND−1
∏

D=1

(
ni

ski
+ 2 · wi · tk) (5.11)

where wN indicates the stencil size at the slowest dimension (e.g. the z dimension in Fig-



136 Chapter 5. System-Level Optimisation for Runtime Reconfigurable Designs

ure 5.4(a)), sli indicates the size of one data slice at the slowest dimension after spatial and

temporal blocking, and ni is the unblocked dimension i size.

After workload distribution, the inter-iteration dependencies are protected by exchanging de-

pendent between neighbouring FPGAs. As shown in Figure 5.4(b), each data block wli con-

tains two dependent data regions, with the local copies named as the front local data

and the end local data. Similarly, the data copies in remote FPGAs are named as the

front remote data and the end remote data. In the unscheduled design in Figure 5.4(b),

the end remote data arrive too early and overwrite the local data before they are used, ren-

dering all following computation incorrect. Based on the general timing constraints presented

in Eq.5.8, the timing constraints for these two dependent data regions in FPGA node m can

be expressed as:

⎧

⎪

⎨

⎪

⎩

0 + Tdel,cmp,m < Tarr,m,fro < wli
Pm

+ Tdel,cmp,m

wli−sli·wN

Pm
+ Tdel,cmp,m < Tarr,m,end < 2·wli−sli·wN

Pm
+ Tdel,cmp,m

(5.12)

where wli
Pm

indicate the execution time of an iteration in node m, 0 and wli−sli ·wN respectively

indicate the front local data position and the end local data position (dloc,m in Eq.5.8),

Tdel,cmp,m is the scheduled computation delay in node m, and the front and end data are labelled

with fro and end.

Given the separated timing constraints, the arrival times of dependent data are estimated based

on the computational capacity P of the FPGA nodes, the dependent data position, and the

scheduled computation delay in the remote node.

⎧

⎪

⎨

⎪

⎩

Tarr,m,fro =
wln−wN ·sli

Pn
+ wN ·sli·M

bwn,m
+ Tdel,cmp,n + Tdel,dat,m

Tarr,m,end =
2·wN ·sli

Pn
+ wN ·sli·M

bwn,m
+ Tdel,cmp,n + Tdel,dat,m

(5.13)

where the remote data positions drem in Eq.5.9 are replaced as drem,fro = wln − wN · sli and

drem,end = 2 · wN · sli, the dependent data size dsdep = wN · sli.

The communication scheduling process follows Algorithm 13. Within an FPGA node, the
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Figure 5.4: (a) Decomposed data for three FPGAs, and the corresponding communication and
computation operations in time dimension if (b) unscheduled and (c) scheduled. Each grid in
the figure represents one data slice. Data dependency, valid times and scheduled delays are
labelled in figure.

two dependent data regions share the same computation delay Tdel,cmp, while the data access

delay Tdel,dat can be scheduled separately. The scheduling algorithm traverses all involved

FPGA nodes until all the timing constraints are met. For the example in Figure 5.4(a), before

scheduling, (1) the front remote data in FPGA0 and FPGA1 are on the edge of the latest

timing constraints, and will arrive too late if the communication throughput is not as high

as computation throughput. In addition, (2) the end local data in FPGA0 and FPGA1 are

updated too early, violating the earliest timing constraints (see Figure 5.4(b)). In this example,

we assume the communication throughput between neighbouring FPGAs is one third of the

computational capacity, and wN = 1. After scheduling, (1) the scheduling algorithm first adds

the computation time of two data slices Tdel,cmp = 2sli
Pi

, to ensure the front remote data in

FPGA0 and FPGA1 will not arrive too late. In addition, (2) a Tdel,dat =
2sli
Pi

data access delay

is inserted to the update time of the end local data in FPGA0 and FPGA1, to meet the

earliest timing constraints.
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5.5 Benchmarks

5.5.1 Bond Option Pricing

Monte Carlo simulations are widely used in the finance industry to model interest rate to price

fixed income products. In the past two decades, the field has evolved from modelling a single

instantaneous interest rate [HbL29] to modelling the dynamics of an entire forward rate curve

[HJM05]. A forward rate curve is modelled as:

µ(t, T ) = σ(t, T )

∫ T

t

σ(t, u)du (5.14)

df(t, T ) = σ(t, T )

∫ T

t

σ(t, u)dudt+ σ(t, T )TdW (t) (5.15)

where f(t, T ) is the forward rate at time T started from time t; σ(t, T )T is the forward volatility

column vector; W (t) is a random variable under standard normal distribution. For each Monte

Carlo path, a random W (t) is used to construct a forward rate curve. The generated forward

curves are used to value fixed income financial products, as shown in Algorithm 14.

A bond option is a financial instrument which provides the owner of the option with the right

to buy or sell a bond at a fixed price K in the future. A call option allows owners to buy asset,

while a put option allows owners to sell asset. Based on the valued price in Algorithm 14, the

payoff of the bond option at time T v(t, T ) can be expressed as:

v(t, T ) = max(exp(−
∫ T

t

f(t, u)du)−K, 0) (5.16)

5.5.2 Reverse Time Migration

Reverse Time Migration (RTM) is an advanced seismic imaging technique to detect terrain

images of geological structures, based on the Earth’s response to injected acoustic waves. The

wave propagation within the tested media is simulated forward, and calculated backward,
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Algorithm 14 A single Monte-Carlo path of bond option pricing.
Input: f(0,T)=initial forward curve, σ volatility model
Output: f(t,T)= forward surface

1: for t = 0 ← tmax do
2: for T ′ = 0 ← T ′

max do
3: Calculate drift: obtain γ(t, T ) and get µ(t− δt, t+ T ′) with Eq.5.14
4: Update forward Surface: obtain f(t, t+ T ′) using Eq.5.15
5: Price derivative: use f(t, t+ T ′) to price the target derivative d
6: end for
7: Price derivative: use results d to price the target derivative
8: end for

forming a closed loop to correct the velocity model, i.e. the terrain image. The propagation of

injected waves is modelled with the isotropic acoustic wave equation [AP+11]:

d2p(r, t)

dt2
+ dvv(r)2▽2 p(r, t) = f(r, t) (5.17)

The propagation involves stencil computation, as the partial differential equation is approxi-

mated with the Taylor expansion. A fifth-order approximation is implemented in our experi-

ment.

5.6 Results

Starting from simple design descriptions, the proposed approach generates runtime scalable de-

signs for reconfigurable systems. We evaluate the developed designs in three aspects: resource

exploitation, design scalability and runtime adaptivity, which respectively reflect the efficiency

of compile-time optimisation, the communication model, and the runtime scaling process pro-

posed in this chapter. Hardware designs are described with MaxCompiler version 2012.1,

implemented on Xilinx Virtex-6 SX475T FPGAs, each hosted by one of the four MAX3424A

systems in an MPC-C500 computing node from Maxeler Technologies. The clock frequency is

100 MHz.
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5.6.1 Resource exploitation

We evaluate the resource exploitation in terms of resource usage and achieved design through-

put. Resource usage and design throughput of the optimised designs are presented in Figure 5.5

and Figure 5.6. The resource usage is normalised against available resources, and the resource

usage when design parallelism is 0 indicates the resources consumed by communication infras-

tructures (I).

The Bond Option Pricing (BOP), driven by Monte-Carlo (MC) paths, is inherently parallel. As

shown in Figure 5.5, the performance and the resource usage increase linearly with the number

of replicated data-paths. Bounded by LUT usage, 26 MC data-paths are replicated, achieving

52.7 GFLOPS throughput.

For the RTM design, before off-chip memory channels are saturated by par = 16, the replicated

data-paths generate one results per data-path per clock, with design throughput and data-path

resource usage scaled linearly. Temporal blocking ratio tk is increased to 2 when the memory

bottleneck is hit. One more on-chip memory with 16 attached data-paths are replicated, dou-

bling the performance as well as resource usage. Design variables par, tk, skx and sky of the

optimised design are respectively configured as 16, 2, 6 and 5. The optimised design consumes

270816 LUTs, 323134 FFs, 952 DSPs and 989 BRAMs, with the optimisation model estimat-

ing the design to consume 255936 LUTs, 357120 FFs, 806 DSPs and 947 BRAMs. For both

applications, the optimisation model can capture variations in resource usage wth more than

90% accuracy, and the design is optimised to fully utilise on-chip and off-chip resources.

Design performance is listed in Table 5.2. Reference single-device designs include parallelised

CPU designs executed on a 4-core Intel i7-870 CPU, customised GPU designs running on

an NVIDIA Tesla C2070, a GPU design optimised by NVIDIA [Mic09] and customised for

NVIDIA Tesla C2070, and a FPGA design developed with MaxGenFD [PBD+13]. Unlike the

optimisation for BOP, the optimisation techniques for RTM come with overhead. The actual

performance of the optimised RTM is reduced from 156.8 GFLOPS to 130.67 GFLOPS, due to

the additional data introduced by spatial and temporal blocking. The performance of CPU and
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GPU designs is limited by their fixed data-presentation formats and general-purpose memory

system. For the RTM design, runtime profiling shows that the optimised GPU design can only

achieve 35% memory efficiency, i.e., loading one new data needs 3 clock cycles. Performance of

MaxGenFD design is limited by the memory bandwidth due to lack of temporal blocking in its

optimisation configurations. The optimised designs are up to 1.4 to 11.2 times faster and 1.7

to 17 times more power efficient than the reference designs.
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Figure 5.5: Design throughput and resource usage of the BOP design. The design model
increases design parallelism to 26 until no more data-paths can be accommodated. Customised
RNGs are implemented to provided input data to the replicated data-paths.

5.6.2 Design scalability

Design scalability when a reconfigurable design uses multiple FPGAs reflects effectiveness of

the asynchronous communication model. For a reconfigurable system based on the MPC-

C500 computing node, point-to-point communication channels with 3.2GB/s bandwidth are

provided to support inter-FPGA data exchange, while inter-node data in FPGAs are exchanged

through 1GB/s PCI-e channels to CPUs, and then moved through 1GB Ethernet channels to

the target node. Therefore, the available communication bandwidth in a dynamic design is

1GB/s (bw=1GB/s).
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Figure 5.6: Design throughput and resource usage of the RTM design. The optimisation in-
creases design parallelism to 16 until the bandwidth bottleneck is hit, and increase the temporal
blocking ratio to utilise left resources.

For the BOP design, no communication operations are involved, and therefore linear scalability

is achieved when multiple FPGAs are used. For RTM designs, in the asynchronous commu-

nication model, the computation delay Tdel,com in involved FPGAs is scheduled to be 10 data

slices to reduce the bandwidth requirement to 0.4 GB/s, with margin factor M = 2. Data

access delay Tdel,dat is scheduled to ensure local halo data are consumed before being over-

written. Limited by available FPGAs in current platform, our current design scales up to 4

FPGAs. Based on computation throughput of utilised FPGAs and available bandwidth, per-

formance of the dynamic design when more FPGAs are involved is simulated. Table 5.2 lists

the simulated and measured results for multi-FPGA designs. Previous large-scale designs on

Blue Gene/P [PLL+12], Blue Gene/Q [LM13] and Cray XK6 [RMNM+12]. are also introduced

to provide comparison. As shown in Table 5.2, the measured results scale in accordance with

simulated results, and overall design throughput reaches 0.49 TFLOPS when 32 FPGAs are

involved, outperforming the reference designs by 2 to 88 times. Besides throughput, power

consumption in large-scale systems determines the maintenance cost such as cooling infrastruc-

tures and electricity bill, and plays an important role in large-scale designs. Power efficiency

numbers are not provided in previous work [PLL+12, LM13, RMNM+12]. If we make a con-

servative consumption that the Tesla X2090 GPUs in Cray XK6 consumes the same power as
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Tesla C2070 design in Table 5.2, the dynamic design is 5.2 times more efficient than the stencil

design running on Cray XK6, with all infrastructure power consumption included.
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Figure 5.7: Evaluation and prediction of the runtime performance model during one of the test
case, at the application iteration (time step) dimension. The resource status is measured from
target system. ‘ava’ stands for available, and ‘busy’ indicates the FPGA node is currently not
available. The accurate predication of runtime benefits and overhead enables a dynamic design
to scale when additional nodes become available (such as at iteration 148, 152, and 212).

5.6.3 Runtime adaptivity

We evaluate the runtime adaptivity of the developed designs in terms of design performance

and device-level hardware efficiency, when the developed dynamic design is mapped into the

reconfigurable system. Since an RTM design has more complex runtime overhead and commu-

nication operations, we use the RTM design to demonstrate how a dynamic design scales during

runtime. For the available 4 FPGAs, static designs with 1, 2, 3 and 4 device-level parallelism

are developed and executed to provide comparison. Runtime status during 10 separated time

periods is measured and used as 10 test cases in this experiment. Figure 5.7 and 5.8 demon-

strate the performance evaluation process during runtime. The runtime performance model

predicts the execution time for remaining tasks for current design as well as the scaled design.

When new nodes become available, the difference between the two predictions indicates the

runtime benefits. FPGA node A is available when the application is launched, and node B, C

and D are released by other computational tasks at 150, 142 and 209 iterations, respectively.
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Figure 5.8: Predicted and measured execution time for each 10 iterations, in the runtime
scenario in Figure 5.7

Although node C becomes available earlier than node B, the dynamic design first expands when

B is released, due to a lack of communication channels between node A and node C. If node B

and C are included in the dynamic design, execution time for the following tasks is reduced by

357.4 s, with 0.71 s runtime overhead introduced. As the benefit outweighs the overhead, node

B and node C are reconfigured to cooperate with the existing node A. The runtime scaling pro-

cess (see Algorithm 11 on page 128) redistributes context data into the new nodes, and updates

design variables with Algorithm 13 (on page 134) to ensure linear scalability and correct func-

tionality when the dynamic design scales. Similarly, the node D is included dynamically when

it becomes available. As shown in Figure 5.8, the measured performance aligns with predicted

execution time for remaining tasks, showing high accuracy of the performance model. More-

over, as the performance use a general approach to estimate performance with data size and

peak throughput, the high model accuracy indicates optimised designs approximate their peak

performance. Device-level parallelism for static design using 1 FPGA is limited to 1, while the

static designs using more FPGAs need to wait for release nodes to start. The dynamic design

finishes 490 time steps in 297 seconds, outperforming the static designs by 1.67 to 2.72 times.

Hardware efficiency is calculated with measured performance and the theoretical performance

upper bound, where the theoretical performance refers to the overall performance if FPGAs
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Figure 5.9: Performance of dynamic design and static design with 1, 2, 3, 4 FPGAs, at the
time dimension.

are used in the design once released by another application. The measured performance and

resource utilisation for the 10 test cases are shown in Figure 5.10. We apply the first 5 cases to

the BOP designs, and test the RTM designs with the remaining runtime cases. The averaged

hardware efficiency for the dynamic design is 0.91. The gap between the achieved hardware

efficiency and the optimal efficiency level 1 is introduced by the reconfiguration overhead and

communication infrastructure. As shown in the test case in Figure 5.9, node C remain idle

until the dynamic design expands into node B, as there is no communication channels between

node A and node C. Resource utilisation for static designs is limited between 0.4 to 0.49. In

other words, limited by mismatch between compile-time exceptions and runtime environment,

half of resources in the system remains idle. Due to the high resource utilisation of the dynamic

design, averaged system performance is 1.82 to 2.28 times faster than the static designs.

5.7 Related Work

At the system level, previous work on Monte-Carlo simulations and stencil computations fo-

cused on hardware acceleration and the development framework. Common techniques to ac-

celerate high-performance accelerations include precision optimisation, and architecture cus-
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Figure 5.10: Design performance and hardware efficiency for the 10 test cases.

tomisation. For Monte-Carlo simulations, customised RNGs [TL08b] and precision optimisa-

tion techniques [CTJ+12] have been proposed to reduce the resource usage of Monte-Carlo

data-paths. For stencil applications, customised communication patterns in CPU-based sys-

tems [PLL+12, LM13], data reuse and communication scheduling techniques for GPU-based

systems [Mic09, PF10b, RMNM+12], and customised memory architectures [FC11b] and data-

paths [S+11] for FPGA-based systems have been proposed. These design techniques, efficient

as they are, require high-level expertise and manual optimisation.

Development frameworks for Monte-Carlo simulations and stencil computations enable non-

expert developers to utilise the various computing resources. These frameworks often handle

code generation and design parameter tuning to improve productivity. A multi-level customi-

sation framework [JDT+12] for financial Monte-Carlo simulations supports various applica-

tions by allowing users to tune reconfigurable design parameters at different levels. Paral-

lel GPU codes are generated in [HPS12] to optimise stencil applications based on proper-

ties of GPU architectures. Spatial blocking is optimised to balance workload among parallel

threads [KBB+07], and auto-tuners are built to search for the optimal blocking strategies for

various resources [DMV+08] and data structures [KCO+10]. Temporal blocking is supported

with a blocking algorithm [NSC+10], and the design space is searched with various searching
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algorithm to minimise execution time for CPU and GPU designs. The auto-tuners, which are

widely used for general-purpose processors such as CPUs and GPUs, require a long execution

time to traverse their search space. Runtime construction and adaptation of designs requires

rapid update in design configurations, therefore the auto-tuning process is not suitable. Max-

GenFD provides a design interface for users to specify design parallelisation and spatial blocking

ratios during compile time. Such a semi-automatic approach requires going through the time-

consuming synthesis tool chain multiple times to optimise designs, and design parallelism in

utilised FPGAs is statically configured.

Compared with previous work, the work in this chapter handles a new optimisation opportu-

nity: additional computing resources become available during the execution of a reconfigurable

design, and will remain idle if static designs are used. We introduce runtime reconfiguration at

the system level to adapt reconfigurable designs to such resource availability variations. An au-

tomatic design approach is proposed to handle the system-level design issues with compile-time

optimisation and runtime scaling. Optimisation techniques, either general or domain-specific,

are integrated in design models and communication models to ensure the generated runtime

reconfigurable designs can achieve high performance.

5.8 Limitations and Future work

The limitations of the current design approach mainly come from its single-task considerations:

a runtime reconfigurable design tends to occupy all available resource during its execution, which

may not be the optimal solution if maximum overall performance of multiple tasks is targeted;

idle nodes due to lack of communication channels to existing runtime reconfigurable design can

be occupied by other computational tasks, which can further increase resource utilisation. In

the future, dynamic design methods at multi-task and multi-user layers will be built on top of

current system-level approach, to exploit more complex runtime scenarios.
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5.9 Summary

For large-scale reconfigurable systems, the effectiveness of conventional static design methods

that pre-define communication patterns and hardware configurations is limited by unpredictable

runtime conditions. This work is inspired by the experience that a design using multiple FPGAs

normally needs to wait for released devices to execute, even in a small-scale reconfigurable

system. As a system scales and the number of launched computational tasks increases, we

believe this will become a bottleneck in large-scale designs that not only limits the overall

design execution time but also the hardware efficiency of the underlying infrastructure.

In this chapter, we propose a novel approach that statically optimises target applications for var-

ious FPGA nodes, and dynamically constructs executable design when resource status varies.

Experimental results show that high throughput and significant resource utilisation can be

achieved with dynamic designs, which can dynamically scale into nodes that become avail-

able during their execution. When statically optimised and initialised, the dynamic design is

1.4 to 11.2 times faster and 1.8 to 17 times more power efficient than reference CPU, GPU,

MaxGenFD, Blue Gene/P, Blue Gene/Q and Cray XK6 designs; when dynamically scaled, the

hardware efficiency of the dynamic design reaches 91%, which is 1.8 to 2.3 times higher than

their static counterparts.

Theoretically, the system-level approach can benefits any applications that (1) can improve

design performance by using more computational resources, and (2) are launched into a system

that resource availability varies during runtime, such as matrix processing, N-body simulation,

and K-means clustering [NTL11]. In order to deeply exploit available resources for these appli-

cations, more domain-specific aspects need to be developed. As an example, N-body simulation

requires N-to-N communication patterns, and therefore needs customised specifications in the

communication models of the system-level approach.
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Conclusion

6.1 The Challenge

As discussed in the introduction (Section 1.1), compared with general architectures such as

CPUs, customised architectures developed for a specific application can better exploit instruction-

level parallelism. Moreover, due to the overhead to support reconfigurability, there is a per-

formance gap between designs mapped into reconfigurable fabric and designs implemented as

ASICs (assuming the same design techniques and technology are used). In practice, the effi-

ciency of computing architectures is reduced by three limitations.

1 Due to limited hardware resources, the computational efficiency reduces as the problem

size increases. The problem size can be related to the number of instructions (instruc-

tion cache miss), the processed data size (data cache miss), or the computation kernel

complexity (large instruction delay).

2 In order to cover a wide range of computational scenarios, computer architectures often

compromise hardware efficiency. As an example, compared with ASIC designs that only

need to cover one application, GPPs often achieve lower performance given the same

technology and resources as multiple applications need to be supported.

151
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3 Since there is often little runtime information during application development, applica-

tion developers compromise computational efficiency to handle possible runtime scenarios

(with operations such as branches).

The first limitation can often be resolved by optimisation techniques, such as loop tiling, tem-

poral blocking, and design parallelisation. For the latter two issues, despite the optimisation

techniques applied, the more scenarios an architecture needs to support, the lower hardware

efficiency can be achieved. The proposed runtime reconfiguration approaches enable a reconfig-

urable design to only support one runtime scenario of a computational scenario at each time,

and eliminate the idle resource units that were introduced to ensure design generality.

We summarise the throughput results collected in this thesis in Figure 6.1, where the throughput

of optimised software implementations are used as reference. For each benchmark application,

there are four different implementations.

• Optimised CPU designs, even parallelised to use multiple cores and optimised with vendor

compilers, achieve relatively low design throughput, mainly due to the high generality of

CPUs. We use the CPU design throughput as a reference performance of an application

(i.e. performance improvement ratio is 1).

• Static reconfigurable designs improve design throughput as the implemented hardware is

customised for a specific application. The static design throughput shows the performance

level before applying the proposed runtime reconfiguration approaches.

• ASICs achieve higher performance compared with static reconfigurable designs. The

reconfigurability of FPGAs leads to increased design area and reduced clock frequency for

the same problem. Limited by the large design efforts to develop ASICs, we use averaged

performance gap reported in previous work [KR07] to estimate ASIC performance.

• Dynamic reconfigurable designs are optimised at the three design levels with the proposed

approaches. For each application, we show the performance improvements gained at the

three design levels step by step.
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While the design throughput of CPU designs and reconfigurable designs in Figure 6.1 is mea-

sured from design experiments, we estimate ASICs performance based on the experiment results

in [KR07], which show ASICs on average consume 18 times less area and run at 3 times higher

clock frequency, compared with reconfigurable designs. We make three assumptions to esti-

mate ASIC design performance: (1) all applications have the same performance gap between

ASIC designs and reconfigurable designs; (2) the measured results based on a 90-nm tech-

nology [KR07] are still valid for 40-nm technology; and (3) application throughput increases

linearly with parallelism P , i.e., the 18 times reduction in area leads to a 18 times increase in

throughput. Therefore, as shown in Figure 6.1, the ASIC designs are 54 times faster than the

conventional reconfigurable (static) designs. In practice, the first and the second assumptions

are difficult to fulfil, and there will be fluctuation in the performance gap, which varies from

one application to another. In addition, not all applications have linear throughput scalability.

As an example, for stencil applications, replicating more data-paths with temporal blocking

introduces additional data to process. The third assumption therefore overestimates the per-

formance of ASIC designs. However, the performance variations due to the unmet assumptions

are often minor [KR07]. The estimated ASIC performance in Figure 6.1 works as an indication

for the ASIC design performance level.

6.2 Performance Improvements and Technology Gap

6.2.1 Performance Improvements for Eliminating Idle Resource Units

In this thesis, we focus on the reduced hardware efficiency due to supporting various runtime

scenarios, and improve application performance by dynamically reconfiguring the optimised de-

signs as runtime scenarios vary. We consider the idle resource units in a reconfigurable design

as runtime reconfiguration opportunities. The idle resource units are divided into three lev-

els. (1) At the circuit level, algorithm parameters are tuned to generate customised arithmetic

operators. When the constant input change during runtime from time to time, the optimised

arithmetic operators are dynamically reconfigured to achieve the same operator generality.
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Figure 6.1: Overall design performance improvements after optimisation techniques at the three
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used at the function level are considered as the same function, as the option pricing is one
function in the barrier option pricing application.

(2) At the function level, application functions are separated into different configurations, such

that only active functions are kept on-chip. Since idle functions are replaced with active re-

source units, the processing capacity in runtime scenarios is increased. (3) At the system level,

reconfigurable designs dynamically adapts to resource availability variations. FPGAs that are

busy when a design is launched can become available during the execution of the design. By

dynamically scaling reconfigurable designs into FPGAs that become available during runtime,

reconfigurable designs can efficiently utilise system resources that otherwise would remain idle.

After eliminating idle resource units with runtime reconfiguration, the performance improve-

ments at the three levels are presented in Figure 6.1. The circuit-level technique is applicable to

finite-difference algorithms, and the function-level and the system-level optimisation techniques

cover both stencil computation and Monte-Carlo simulations. The performance improvements

at the circuit level, the function level and the system level are respectively up to 5.9, 2.19

and 2.28 times. Among the benchmark applications, both Barrier Option Pricing (BOP, the
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single function kernel is named Option Pricing at the circuit level) and Reverse Time Mi-

gration (RTM) benefit from all the optimisation techniques. After optimisation, the runtime

reconfigurable designs achieve up to 26.1 times speedup.

Given the estimated performance of ASICs, the dynamic designs proposed in this thesis almost

halve the performance gap between reconfigurable designs and ASICs (26.1 out of 54). The

remaining 2 times performance gap is mainly due to clock frequency. In [KR07], ASICs on

average operate at 3 times higher clock frequency compared with reconfigurable designs, while

the dynamic and the static designs in this thesis operate at the same clock frequency (100 MHz).

In terms of reconfiguration overhead, as shown in the runtime evaluation results at each design

level, the dynamic designs achieve maximum performance for large-scale applications with

relatively long execution time. For such large-scale applications, the impacts of reconfiguration

overhead are small. As an example, if we assume no reconfiguration time is required at the

system level, the achieved hardware efficiency can be increased from 0.91 to up to 1, in others

word, removing reconfiguration overhead only increases design performance by up to 1.09 times.

6.2.2 Partial Reconfiguration: the Good and the Reality

While runtime reconfiguration overhead has a small impact on the performance of large-scale

applications, applying the proposed approach to small-scale applications calls for fine-grained

reconfiguration operations (i.e. small reconfiguration time). As an example, if an application

needs to be reconfigured every second, the large reconfiguration time of FR designs (typically 0.8

s) will dominate the overall execution time. Partial Reconfiguration (PR) is often considered as

an effective way to reduce reconfiguration time. Compared to full reconfiguration, the fact that

only a part of an FPGA is updated reduces reconfiguration time and keeps the infrastructure

modules such as memory controller active during reconfiguration. In our experiment, partially

reconfiguring a clock region in a Virtex-6 SX475T FPGA takes 50 ms instead of 0.8 s. In

practice, there are mainly two limitations for the use of partial reconfiguration.

1 Reconfiguration time. The reconfiguration time of PR designs depends on partial config-
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uration file size. Therefore, when a large portion of FPGA needs to be updated, partially

reconfiguring a reconfigurable design still takes a long time. For example, at the circuit

and the function level, it is often the case that more than 50% of FPGA resources need

to be reconfigured, and therefore a partial reconfiguration operation takes around 0.4 s,

which is still too long if we reconfigure designs every second. At the system level, as

available FPGAs are previously used by a different application, the whole configuration

file needs to be updated, and thus applying partial reconfiguration does not reduce recon-

figuration time. In addition, when a very small part of FPGA needs to be updated, the

partial reconfiguration time is bounded by its reconfiguration granularity, and therefore

has a minimum level (often a few hundreds cycles).

2 Design clock frequency. Supporting PR modules in a reconfigurable design reduces de-

sign clock frequency, especially when communication infrastructures such as memory con-

trollers need to be placed and routed on-chip. In a reconfigurable design, memory con-

trollers need to be placed close to I/O pin columns in FPGAs, and need to be scattered

across the whole FPGA chip to achieve the optimal clock frequency. For the RTM applica-

tion, labelling function nodes B and C in Figure 4.10(c) as PR modules reduces the clock

frequency from 100 MHz to 60 MHz, which outweighs the reduction in reconfiguration

time.

We evaluate the potential of PR designs in Figure 6.2, where the x-axis is reconfiguration

frequency frec, the y-axis is clock frequency reduction fred, and the z-axis shows the hardware

efficiency. fred indicates the reduction in clock frequency after applying runtime reconfiguration

techniques. (1) For FR designs, there is no reduction in clock frequency, since each optimised

reconfigurable design goes through the standard synthesis flow. The measured reconfiguration

time is 0.8 s, with another 1-2 s memory transfer time. We take the upper bound and assume the

reconfiguration time to be 2.8 s. (2) For PR designs, the clock frequency is inevitably reduced.

Since the reduction in clock frequency is application-specific, we show 10 cases in the y-axis

with their clock frequencies reduced from 100% to 10% (fred = 1 ∼ 0.1). For reconfiguration

time, we make an optimistic assumption that all PR circuits can be grouped in one clock region.
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Figure 6.2: Hardware efficiency for runtime reconfigurable designs with FR and PR, when
reconfiguration frequency frec and clock frequency reduction fred increase. FR designs have no
impacts on clock frequency.

Therefore the reconfiguration time is 0.05 s. The reconfiguration frequency frec indicates how

frequent reconfiguration operations happen during runtime, and can be calculated as the reverse

of the average execution time Texe between two consecutive reconfiguration operations.

frec =
1

Texe
(6.1)

For the large-scale problems studied in this thesis, the execution time Texe is at the scale of 60

s or more. In the x-axis, we reduce the execution time from 60 s to 1 clock cycle (10 ns for a

100 MHz clock frequency).

The hardware efficiency E, as defined in Eq.1.1, is the ratio between the achieved performance

and the theoretical peak performance. As described in Eq.1.4 and 1.5, we calculate the op-

timal performance assuming all implemented data-paths are well behaved and no overhead

is involved. In order to compare the performance of FR designs and PR designs, we esti-

mate the overall execution time Tmes by accumulating the average execution time Texe between
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consecutive reconfiguration operations and reconfiguration overhead:

Tmes =
Texe

fred
+ Trf Tthe = Texe (6.2)

E =
Tthe

Tmes
(6.3)

where fred accounts for the reduction in clock clock frequency, and Trf is the reconfiguration

time. fred = 1 for FR designs, and fred < 1 for PR designs. The theoretical execution

time Tthe is calculated with full clock frequency and no reconfiguration overhead. We assume

the implemented designs have been customised to achieve peak performance for each runtime

scenarios (Tthe = Texe).

For applications with low-frequency reconfiguration operations, FR designs approximate the

optimal efficiency 1, while the efficiency of PR designs is determined by the reduction in clock

frequency fred, since reconfiguration time is negligible in this case. As shown in Figure 6.2,

for reconfiguration frequency lower than 0.05 (average execution time higher than 20 s), the

efficiency of FR designs is more than 90%. When the reconfiguration frequency is beyond 1000,

the reconfiguration overhead start to dominate the execution of both FR and PR designs, which

reduces the efficiency to a very low level.

For PR designs to outperform FR designs, the reconfiguration frequency needs to be between

1 and 100, and the clock frequency ratio needs to be higher than 80%. In practice, such

medium-frequency reconfiguration operations are rare. Texe is at minutes to hours levels for

large-scale applications, while for fine-grained reconfiguration operations hardware circuits need

to be updated cycle by cycle. In addition, the clock frequency target is hard to meet for PR

designs. To summarise, while requiring lots of design effort to develop, PR designs provide lim-

ited improvements in runtime reconfigurable designs, especially for designs that need memory

controllers.
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6.2.3 Limitations in Runtime Reconfiguration Techniques

By eliminating idle resource units at various design levels, runtime reconfigurable designs ap-

proximate the performance of ASIC designs for applications with low-frequency reconfiguration

operations. However, as shown in Figure 6.2, the design efficiency significantly reduces as the

reconfiguration frequency increases. Both FR designs and PR designs cannot support the ap-

plications with high reconfiguration frequencies. Therefore, limited by the current technologies,

the proposed approaches cannot be applied to applications in the gap area, i.e., applications

with high reconfiguration frequencies.

The motivation for high-frequency reconfiguration operations comes from idle resource units

in computational intensive kernels, which need to be updated iteration by iteration. As an

example, for a nested loop, there are conditional operations or dynamic pointers in the fastest

loop. Therefore, multiple operations can be executed and data access can point at different

positions during runtime, depending on runtime variables. As these operations are in the

fastest loop, when implemented in hardware, these operations need to be modified up to cycle

by cycle. Applying runtime reconfiguration can reduce design area as only the circuits active

at current cycle are implemented. Moreover, these dynamic operators — if / case operations

and dynamic pointers — are common in high performance applications. Thus supporting high-

frequency runtime reconfiguration operations would enable reconfigurable designs to efficiently

accommodate applications previously considered not preferable to hardware implementations.

In order to apply runtime reconfiguration techniques to applications with high-frequency recon-

figuration operations, The main challenge is to reduce the reconfiguration time to nano-second

level. Given the smallest addressable configuration size (1 configuration frame with 3232 bits)

and maximum reconfiguration throughput (400 MB/s) in the latest devices [Xila, Xilc], the

minimum reconfiguration time is 1.01 µs. When implemented circuits need to be updated cycle

by cycle, reconfiguration techniques with such reconfiguration time is far from being useful.

Multi-context FPGAs [DeH96, TCJW97] push the reconfiguration time into the nano-second

level. However, storing multiple configuration files on-chip increase chip area. We use the

area model in [BRM02] to estimate silicon area based on the drive strength of implemented
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transistors. For a typical multi-context FPGA with 8 replicated configuration memories, the

overall chip area is increased by 4.4 times, which limits the benefits gains from applying runtime

reconfiguration techniques. This challenge is currently unresolved.

Another barrier to using runtime reconfiguration is the productivity issue. As presented in

Chapter 3, 4, 5, to exploit the runtime reconfiguration opportunities in a reconfigurable de-

sign, hardware designers need to be aware of runtime reconfiguration from low-level operator

customisation to high-level system management, which would be overwhelming even for expe-

rienced hardware designers. In order to address this issue, all the approaches proposed in this

work are automated, and can be integrated into high-level development tools. We have devel-

oped an initial prototype (available at http://www.doc.ic.ac.uk/~nx210/tools/irue.zip)

for an automatic development tool, which starts from descriptions in the C language, goes into

the tool back-end to integrate the function-level and the system-level approaches, and generates

hardware descriptions supported by the reconfigurable systems provided by Maxeler Technolo-

gies. The circuit-level approach is currently not included, as the VHDL programs generated by

FloPoco are not supported by the synthesis tool from Maxeler Technologies. The current tool,

while capable of demonstrating the feasibility of the proposed design approaches, has three

limitations:

• Supported high-level languages: the current tool supports a subset of C language. Op-

erations such as dynamic pointers and data structures are not supported, due to the low

efficiency of the mapped hardware operators.

• Hardware language generality: the current source-to-source translation ends with a spe-

cific high-level language (MaxCompiler). Since there are features not supported by the

language, such as customised operators at the circuit level, design approaches make use

of these unsupported features cannot be integrated into the current tool.

• Design verification: the current tool lacks a systematic approach to verify the generated

runtime reconfigurable design.
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6.3 Future Work

6.3.1 Approach Extension

The current approaches can be extended by supporting more application domains, exploring

more runtime scenarios and enhancing the current tool flow. We investigate two application

domains in this thesis: stencil computation and Monte-Carlo simulations. However, the appli-

cations that can benefit from the approach are not limited to these two application domains.

The potential applications should meet at least two criteria: (1) reconfiguration frequency need

to be relatively low, there should be at least 20 s between two reconfiguration operations, and

(2) there are idle resource units in the target problem, the idle resource units could be customis-

able arithmetic operators, idle function modules, or FPGAs with indeterministic availability.

For the circuit-level approach to be applicable, the target application should contain parameters

that could affect the constant coefficients used in arithmetic operations.

The runtime scenarios in current reconfigurable systems are relatively straightforward: each

FPGA accommodates one configuration, and a runtime reconfigurable design tries to utilise

all the FPGAs that are available to it. In the future, the potential of more complex scenarios

can be studied. Multiple configurations can share the same FPGA to better utilise different

on-chip resources. For example, an application using 90% of DSPs and 10% BRAMs can

be combined with an application using 10% of DSPs and 90% of BRAMs, to use left over

resources. When an FPGA in a reconfigurable system becomes available, the FPGA node

can be assigned to the reconfigurable design with the maximum performance improvement,

to achieve the global optimum for system performance. These extensions can be built on top

of the existing approaches, to further improve the flexibility and the performance of runtime

reconfigurable designs.

In correspondence to the limitations in the current tool, future work to complete the tool chain

includes:

• Investigating the possibilities of supporting a wider range of C operations with runtime
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reconfiguration. As discussed in Section 6.2.3, most of the unsupported operations are

operations that would introduce a large amount of idle resource units (i.e., significantly

reduce hardware efficiency), and applying runtime reconfiguration to these operations

calls for reducing reconfiguration time to nano-second level;

• Using a more general hardware language as the target language for the source-to-source

translation, for example VHDL or Verilog, and therefore supporting all the existing fea-

tures of reconfigurable designs;

• Developing verification approaches for runtime reconfigurable designs, and implementing

the verification approaches as additional tool modules.

6.3.2 Technique Enhancement

As discussed in Section 6.2.2, the use of partial reconfiguration is limited by the impacts on

clock frequency and the minimal reconfiguration time. Possible enhancements to the partial

reconfiguration techniques include hardening frequency-sensitive modules and using coarse-

grained function units.

Frequency sensitive modules, such as on-chip memory controllers, refer to the hardware modules

that are sensitive to available place and route resources in an FPGA. The clock frequency of

these modules can be heavily affected by having PR regions in an FPGA. This issue can be

resolved by integrating frequency sensitive modules in FPGAs as hard cores Therefore these

frequency sensitive modules such as memory controllers can be directed mapped into FPGAs

without placing and routing, with a fixed clock frequency.

Coarse-Grained Reconfigurable Architectures (CGRAs) often consist of an array of coarse-

grained reconfigurable units interconnected by dedicated communication networks on-chip [MD96,

W+07, B+07]. The coarse-grained reconfigurable units lead to fine-grained reconfiguration op-

erations. As an example, to configure such a unit to become an adder, a subtracter, and a

multiplier, it only takes 2 configuration bits to switch between different configurations. This
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leads to smaller configuration frames and less configuration time with the same reconfiguration

throughput.

6.3.3 New Reconfiguration Techniques

Despite the possible enhancements discussed before, the fundamental barrier that leads to

the technology gap between FPGAs and optimal reconfigurable architectures, in the field of

high-frequency runtime reconfiguration, is still unresolved. The reconfiguration time increases

linearly with configuration size, and the reconfiguration throughput is bounded by the number

of I/O pins dedicated to transferring configuration files. As discussed in Section 6.2.3, if recon-

figurable designs can be reconfigured cycle by cycle, a much wider range of applications can

be accelerated with reconfigurable architectures. However, reconfiguring circuits cycle by cycle

requires updating at least thousands to millions of configuration bits within a clock cycle, which

calls for a configuration throughput at least 100 times faster than the latest technology. In order

to bridge the current technology gap, fundamentally new reconfiguration techniques need to be

developed. Based on our experience in applying runtime reconfiguration to high-performance

applications, such techniques need to meet three requirements:

• To be able to update configuration information at the nano-second level, ideally, within

one clock cycle.

• To have overhead as small as possible when integrated with the relevant reconfigurable

architectures.

• To be compatible with existing synthesis tools and hardware languages, and to be trans-

parent to applications without idle resource units.

To address these requirements, a new memory architecture that supports single-cycle reconfig-

uration has been proposed, which is designed to support applications with dynamic data access

with low overhead [NLW15]. While the details of this architecture is beyond the scope of this
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thesis, we believe that it is a step towards the development of novel reconfigurable devices that

address applications which have proved difficult for the current generation of FPGAs.
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