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ABSTRACT 
 

Ovarian cancer is the most lethal gynaecological malignancy, responsible for over 4,000 

deaths each year in the UK.  There is growing evidence that mRNA-binding proteins (RBPs) 

can be post-transcriptional drivers of cancer progression.  Here, I investigated the expression 

of the RBP LARP1 in ovarian malignancies and role of the protein in ovarian cancer cell 

biology. LARP1 is highly expressed at both an mRNA and protein level in ovarian cancers 

compared with benign tumours and normal ovarian tissue. I show that higher levels of 

LARP1 in tumour tissue are predictive of poor patient survival.   Consistent with this clinical 

finding, in xenograft studies knockdown of LARP1 expression causes a dramatic reduction in 

tumour growth.  In vitro, LARP1 knockdown is associated with increased apoptosis, and is 

sufficient to restore platinum sensitivity in chemotherapy-resistant cell lines.  Furthermore, 

LARP1 is required to maintain cancer stem cell marker-positive populations, and knockdown 

decreases tumour-initiating potential, as demonstrated by in vivo limiting dilution assays. 

Transcriptome deep-sequencing following LARP1 knockdown revealed altered expression of 

multiple genes linked to survival and evasion of apoptosis, including BCL2 and BIK.  

Transcripts of both genes are in complex with LARP1 protein, and LARP1 maintains the 

stability of BCL2 mRNA, whilst actively destabilising BIK transcripts.  This effect is 

mediated at the level of the 3’ untranslated region.  I therefore conclude that by differentially 

regulating mRNA stability, LARP1 is a key post-transcriptional driver of tumourigenicity and 

cell survival in ovarian cancer.  
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1 CHAPTER I – INTRODUCTION 
 

1.1  CHAPTER ONE ABSTRACT 

Ovarian cancers are twice as lethal as malignancies of the breast.  Improvements in survival 

have been hampered by the absence of an effective screening strategy to allow early 

detection, and the lack of treatments with activity against platinum chemotherapy-resistant 

disease.  Despite over two decades of clinical trials, few effective strategies have been 

identified to tackle chemoresistant malignancies, with response rates typically under 25%. 

There is therefore an urgent need for novel therapies to combat treatment-resistant disease, as 

well as accompanying biomarkers that can be used in diagnosis, treatment stratification and 

to track response. 

Cancer development, progression and chemoresistance are underpinned by genomic 

instability and alterations in gene expression. There is a growing appreciation that a 

significant proportion of this variation in expression is generated at the post-transcriptional 

level.  Following transcription initiation, mRNA is capped, spliced and polyadenlylated, 

before export from the nucleus.  Once in the cytoplasm, mRNA may be translated, stored for 

later use or degraded.  Transcripts exist in complex with mRNA-binding proteins (RBPs), as 

messenger ribonucleoprotein (mRNP) complexes. These RBPs regulate all aspects of RNA 

fate.  Increasingly, it has been demonstrated that RBPs can act as drivers of malignant 

progression through the post-transcriptional regulation of gene expression. 

The La-related proteins (LARPs) are a family of highly conserved RNA-binding proteins.  

They demonstrate diverse roles in post-transcriptional regulation, including determining RNA 

stability and translation.  There is increasing evidence linking family members to cancer. In 

particular, LARP1 has been described as a marker of poor prognosis in hepatocellular cancer 

and acts as a promoter of cell motility and proliferation.  The mechanism by which LARP1 

may drive malignant progression has not yet been established. 
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1.2  EPITHELIAL OVARIAN CANCER 

Each year, epithelial ovarian cancer (EOC) is responsible for over 140,000 deaths worldwide.  

It is the sixth most common cause of cancer mortality amongst women in developed 

countries, and the most lethal gynaecological malignancy [1].  The relative five-year survival 

in Europe, based on Eurocare-4 data [2], is just 37%, whilst more recent figures for England 

places it at 43% [3].  Although advances in surgical approaches and combination 

chemotherapeutics have improved survival figures steadily over the past four decades [4], 

ovarian cancer remains twice as deadly as breast cancer (Figure 1-1) [3].  To produce 

significant improvements in survival two major hurdles must be overcome [5].  Firstly, the 

majority of ovarian cancers are currently detected after the disease has spread beyond the 

pelvis, whereupon the probability of achieving a surgical cure is greatly reduced.  Secondly, 

although nearly all patients initially respond to combination chemotherapy, women with 

disease recurrence will inevitably develop treatment-resistant cancers [4].  Tackling these 

obstacles to improving ovarian cancer survival requires a detailed understanding of the 

pathogenesis of this complex disease. 

 

Figure 1-1. Five-year survival for breast and ovarian cancers in the UK. 

Trends in five-year survival over four decades, for breast and ovarian cancer.  Data obtained from 
cancerresearchuk.org. 
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1.2.1 OVARIAN TUMOUR CLASSIFICATION  

Epithelial ovarian cancer (EOC) accounts for approximately 90% of ovarian malignancies 

[6].  Epithelial tumours have traditionally been sub-classified according to morphological 

features into serous, clear cell, mucinous, endometrioid and transitional cell ovarian 

carcinomas (Figure 1-2).  Within each sub-classification tumours are characterised as benign, 

borderline or malignant.  Malignant tumours are also categorised as either high-, 

intermediate- or low-grade, according to the degree of nuclear atypia and mitotic activity.  

High-grade serous (HGS) cancers are by far the most common ovarian carcinomas, 

representing approximately 70% of all malignancies [7], and 95% of all serous cases in the 

Hammersmith series (Figure 1-3).  The figure below shows a breakdown of over 500 cases 

seen at Hammersmith Hospital. 

 

Figure 1-2 Summary of Hammersmith Hospital ovarian cancer database by histological subtype. 

A breakdown of 512 cases seen at the Hammersmith Hospital over a ten year period, according to 
histological subtype. MMMT = Mixed müllerian mesodermal tumour.  Hammersmith Hospital clinical 
data analysed by TGH. 
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Whilst all EOCs were once treated as a single disease, throughout the last century there has 

been an increasing appreciation that there are fundamental differences in the behaviours of 

the different histological ovarian subtypes and their responses to treatment. For example, 

patients with mucinous tumours, that represent 5%-10% of EOCs, have a poorer prognosis 

and are less likely to respond to chemotherapy treatment when compared to HGS cohorts [8, 

9].  In 2004, Robert Kurman and le-Ming Shih proposed that ovarian cancers could be 

grouped into two broad classes, Type I and Type II tumours, based on their behaviour, 

histology and emerging genomic data [10], a model they continue to refine [11] (summarised 

in Table 1-1).  Type I tumours include low-grade serous and low-grade endometrioid 

tumours, clear cell and mucinous carcinomas, whilst Type II tumours comprise high-grade 

serous and endometrioid carcinomas, carcinosarcomas and undifferentiated carcinomas. 

 

Figure 1-3.  Stratification of 512 ovarian cancer cases seen at the Hammersmith Hospital according to stage. 

Hammersmith Hospital clinical data analysed by TGH. 

 

Type I tumours typically present as unilateral disease, with large cystic ovarian masses, and 

are characterised by slow progression.  It has also been proposed that development of these 

tumours is due to the stepwise accumulation of mutations [11].  Type II tumours are 
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aggressive malignancies that usually present as disseminated disease, and show a high degree 

of genomic instability. 

Table 1-1. Classification of malignant ovarian epithelial tumours  

Adapted from Nik et al [11] with additional data from [12].  
 

	   Carcinoma	   Putative precursor Most frequent 
mutation(s) 

Chromosomal 
structural 
alteration 

Type	  I	  
tumours	  

Low-grade serous  Serous borderline 
tumour 
 

KRAS, BRAF,  
ERBB2 

Low 

Low-grade endometrioid  
 

Endometrioma CTNNB1, PIK3CA, 
PTEN, ARID1A 
 

Low 

Clear cell  Endometrioma PIK3CA, ARID1A  Low 
Mucinous  Mucinous borderline 

tumour 
 

KRAS Low 

Type II 
tumours 

High-grade serous  Fallopian tube 
epithelium 
	  

TP53, BRCA1/2, 
PTEN 

High 

High-grade endometrioid  
 

Unknown TP53 High 

Undifferentiated 
carcinoma 

Unknown Unknown Unknown 

  
Carcinosarcomas 

 
Unknown 

 
TP53 

 
Unknown 

 

1.2.2 DIAGNOSIS 

Ovarian cancers are classified by both tumour grade and stage.  Tumour grade details the 

degree of differentiation of the tumour judged by its microscopic appearance, including the 

number of mitotic figures and degree of nuclear atypia. Tumours are defined as being well 

(grade 1), intermediate (grade 2) or poorly (grade 3) differentiated.  In contrast, in ovarian 

cancer, tumour stage is a surgical definition of its spread around the body. There are four 

stages, stage I (early stage) being tumour confined to the ovary and stage IV (advanced) when 

it has spread outside the pelvis and is involving distant visceral organs (Table 1-2).  Patients 

whose tumours are detected early, with low-stage, low-volume disease, have a significantly 

better prognosis: in one patient population, women with Stage I tumours had a five-year 
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survival of 92.1%, whilst for those with Stage IV tumours, only 5.6% were alive at five years 

[13].  Unfortunately, the majority of women present with disease that is no longer localised to 

the ovary.  This is particularly true for serous ovarian carcinomas, the commonest EOC 

subtype: in the Hammersmith Cohort, 85% of patients had Stage III/IV disease at 

presentation (Figure 1-4), whilst figures for the Anglia Cancer Network show only 29% of all 

patients with EOC presented with Stage I disease [13]. 

Table 1-2. International federation of gynaecology and obstetrics (FIGO) staging of ovarian cancer. 

The staging of ovarian cancer according to the international federation of gynaecology and obstetrics 
(FIGO) criteria [14]. 

Stage Localisation 
I Tumour confined to one or both ovaries 
II Tumour involves one or both ovaries with pelvic extension below 

the pelvic brim or primary peritoneal cancer 
III Tumour involves one or both ovaries with peritoneal spread outside 

the pelvis and/or metastasis to retroperitoneal lymph nodes 
IV Distant metastasis, including pleural effusions, hepatic or splenic 

metastasis, or extra-abdominal organs. 
 

There is currently no national screening program for ovarian cancer, so diagnoses are made 

only when patients present with symptoms, or, rarely, when it is uncovered incidentally.  

Clinical diagnosis is complicated by the fact that the symptoms associated with ovarian 

cancer, such as abdominal distension and pelvic/abdominal pain, are often vague in nature 

and easily attributable to other benign causes [15].  Several charities have campaigned to 

raise awareness of the symptoms of the disease amongst the public and general practitioners 

(GP).  In 2011, the National Institute of Clinical Excellence (NICE) published guidelines to 

assist GPs in the prompt diagnosis and referral of patients with suspected EOC (CG122).  

Those with a history or examination findings suggestive of the disease undergo a transvaginal 

ultrasound scan and have a serum test for CA125.  CA125 is a glycoprotein encoded by 

MUC16, plasma levels of which are elevated in 90% of patients with advanced EOC, but 
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only 50% of those with Stage I malignancies [16].  If the serum CA125 is elevated and/or 

there are worrying features on the ultrasound scan, patients are referred to specialist centres 

for surgery and histological assessment. 

Figure 1-4 Hammersmith patient data (n=512) stratified by tumour stage at presentation 

Hammersmith Hospital clinical data analysed by TGH. 

 

Given the poor prognosis associated with late stage disease, improving early detection is a 

key clinical priority [5].  National cancer screening programmes can be highly effective, with 

cervical cancer screening estimated to have prevented over 80% of cancer deaths since its 

introduction [17].  Such an approach is not yet possible for ovarian cancer, due to the lack of 

a high-quality screening test.  Whilst a circulating tumour marker does exist for ovarian 

cancer in the form of the CA125 antigen, its use as a screening tool is limited by its low 

specificity and high false positive rate [18], with elevated levels in several benign conditions 

such as endometriosis [19].  In addition, a substantial proportion of patients with early stage 

disease do not have an elevated CA125, leading to false negatives [16].  Trials investigating 

multimodal screening strategies with regular transvaginal ultrasounds have shown mixed 

results [20, 21], and such strategies are expensive, labour-intensive and relatively invasive.  

Other circulating biomarkers have been investigated in ovarian cancer, though none are 
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currently approved for clinical use in diagnosis.  In one study, 96 serum biomarkers were 

evaluated, with four combined together (CA125, HE4, CEA, VCAM-1) shown to detect 

early-stage disease with 86% sensitivity and 98% specificity [22].  

In patients whose tumours express CA125, this plasma test is extremely useful in monitoring 

response to treatment, and in the follow-up of patients to detect disease recurrence or 

progression [16].   Serum human epididymis protein 4 (HE4), in combination with CA125, is 

also currently licensed by the US Food and Drug Administration (FDA) for use in disease 

monitoring [23]. 

1.2.3 TREATMENT  

First-line therapy for all patients with advanced EOC (stage IC-IV), or early stage disease 

with adverse features, involves primary debulking surgery and adjuvant chemotherapy with 

platinum-based agents (cisplatin/carboplatin), with or without a taxane [4, 24].  Whilst 70-

80% of patients initially respond to this combination therapy, the majority of patients will 

experience disease recurrence or progression within two years.  With each recurrence, 

cancers become increasingly chemoresistant [25, 26] and treatment resistance is the cause of 

90% of the mortality in patients with advanced cancers [24].  Clinically, the platinum status 

of patients is defined by the time interval between the completion of platinum-based 

chemotherapy treatment and disease relapse, with those with platinum-refractory disease 

progressing during treatment (Table 1-3). Currently, there is no way to prospectively predict 

the chemo-sensitivity of tumours, resulting in the potential over-treatment of some patients 

with sensitive disease, and under-treatment of others with highly resistant tumours.  A 

number of agents have been trialled in platinum-resistant disease, including single agent 

paclitaxel or gemcitabine, but response rates are rarely higher than 10-25% [24, 27, 28]. 
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Table 1-3. Clinical definitions of platinum status 

Definitions of platinum status as set out by the Gynaecologic Oncology Group [29]. 

Status Clinical features 
Platinum-sensitive Progression-free for >12 months following completion 

of treatment 
Partially platinum-sensitive Progression-free for 6-12 months following completion 

of treatment 
Platinum-resistant Progression-free for <6 months following completion of 

treatment  
Platinum-refractory 

 
Progression during platinum treatment 

 

1.2.3.1 Chemotherapy action 

Cytotoxic chemotherapies target rapidly dividing cells.  Taxanes and platinum-based agents 

have different mechanisms of action, but their anti-cancer effects, and to some extent their 

toxicities, are based on their ability to disrupt cell division and trigger cell death.  Taxanes, 

including paclitaxel and docetaxel, bind to the beta-actin component of microtubules and 

enhance polymerisation.  Microtubule remodelling is essential for many cell processes, 

including mitosis: by blocking this taxanes induce mitotic arrest and apoptosis [30].  Cisplatin 

and carboplatin are hydrolysed in the cytoplasm of cells to create an active molecule that 

forms adducts with DNA, RNA and protein. In the nucleus, cisplatin forms inter- and 

intrastrand adducts with DNA that can prevent transcription and replication [24, 31]. 

Platinum-DNA adducts may be repaired, primarily by nucleotide excision repair, or, if the 

damage is too severe, may trigger cell cycle arrest and cell death [32]. Overall, cisplatin 

appears to accumulate to a greater extent in RNA than DNA, and cisplatin treatment is 

associated with a reduction in translation [33, 34]. However, the relative contribution of 
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platinum-RNA adducts to cellular toxicity is not well characterised.  In addition, cytoplasmic 

cisplatin induces oxidative stress by binding to, and depleting, antioxidants such as 

glutathione [31].  The finding that enucleated cells still undergo apoptosis following cisplatin 

treatment demonstrates that DNA damage is not the only cause of toxicity [35]. 

1.2.3.2 Chemotherapy resistance 

Despite the different mechanisms of action, resistance to both cisplatin/carboplatin and 

taxanes can be generated through common pathways.  For example, cancer cells develop 

mechanisms to enhance drug removal, with overexpression of the MDR1 gene, encoding an 

ATP-driven efflux pump, associated with increased resistance to both drug classes [36-39].  

Similarly, enhanced pro-survival signalling can allow cells to evade apoptotic stimuli, with 

increased expression of the anti-apoptotic gene BCL2 associated with increased resistance to 

platinum-based agents [40, 41].   

Some mechanisms of resistance are also agent specific. Cisplatin-induced DNA damage can 

be reversed by nucleotide excision repair.  One of the key proteins in this process is excision 

repair cross-complementation group 1 (ERCC1), and patients with high expression exhibit a 

poor response to cisplatin treatment, whilst knockdown of ERCC1 in cell lines enhances 

platinum sensitivity [42, 43].  Similarly, as aquated cisplatin binds to glutathione, cells that 

exhibit increased glutathione expression are more resistant to oxidative stress and minimise 

the amount of free cisplatin that is available to bind DNA in the nucleus, making cells more 

platinum resistant [37]. 

Paclitaxel binds to specific residues on the beta-subunit of tubulin to enhance polymerisation. 

Studies of taxane-resistant cell lines have shown they have acquired mutations within the 

beta-tubulin gene that minimise the paclitaxel-induced polymerising effect [44, 45].  There 

are several different tubulin isotypes that differ in their sensitivity to paclitaxel [36], and in 
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studies of ovarian cancer patient samples, resistant tumours show a significant shift in their 

isotype expression [46]. 

1.2.4 CELL OF ORIGIN 

To understand, treat and ultimately prevent ovarian cancer it is critical to determine its point 

of origin.  EOC is unusual when compared to other common malignancies, in that the cell of 

origin has remained hotly debated for some time.  Recently, a combination of histological 

analysis and molecular biological studies has begun to address this fundamental question.  It 

was previously thought that the ovarian surface epithelium was the source of epithelial 

ovarian malignancies.  However, EOCs do not resemble the ovarian surface epithelium, and 

precursor lesions have not been found on the ovarian surface [14].  The normal epithelia that 

resemble the different EOC subtypes are found elsewhere in the female genital tract (Table 

1-4), and these sites have a different embryological origin to the ovaries, being derived from 

Müllerian tissue and not mesothelium.  This has led to the suggestion that ovarian 

malignancies may result from the neoplastic transformation of Müllerian epithelium-lined 

cortical invaginations and inclusion cysts [47].  

Accumulating evidence now points to the fallopian tube epithelium as the site of origin, at 

least for HGS ovarian cancers.  In patients with a genetic predisposition to ovarian cancer, 

dysplastic changes are seen in the fallopian tube epithelium but not the ovaries [48].  In 

addition, in 48-59% of HGS cases, potential precursor lesions are found in the fallopian 

tubes, called serous tubal intraepithelial carcinomas (STICs) [49, 50].  These STICs are also 

seen in over half of patients with primary peritoneal cancer, supporting a common origin 

[51].  Finally, it has recently been shown that the conditional knockout in fallopian tube 

secretory epithelial cells of genes frequently mutated in HGS cancer (BRCA2, TP53 and 

PTEN), leads to the development of STICs in mice.  Moreover these mice go on to develop 
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HGS cancers, with ovarian and peritoneal metastases, and these tumours have a genetic 

profile similar to human HGS malignancies [52]. 

Table 1-4.  Morphological features of the epithelial subtypes. 

Epithelial ovarian tumours have morphological features seen in extraovarian epithelial cells [10, 14].
  

Epithelial Ovarian Tumour Morphological features 

Serous Fallopian tube epithelium 

Endometrioid Uterine epithelium 

Mucinous Gastrointestinal epithelium 

Transitional Cell/Brenner Bladder epithelium 

Clear cell Endocervix 

 

1.2.5 THE MOLECULAR BASIS OF HIGH-GRADE SEROUS 

OVARIAN CANCER 

When Hanahan and Weinberg published their seminal paper on cancer hallmarks in 2000, 

they identified six characteristics that normal cells needed to acquire to become neoplastic, 

including evasion of apoptosis and limitless replication [53]. Reviewing the subject again 

over a decade later, they had added four new features to the list (see Table 1-5) [54]. Multiple 

genes and pathways are implicated in the acquisition of these hallmark characteristics, and 

the molecular basis of dysregulation varies substantially between different cancers, and even 

within subtypes of a single cancer.  With the advent of genomic analysis approaches, it has 

become clear that at a genetic level, as well as on a histological and clinical basis, the EOC 

subtypes are fundamentally different, and in particular HGS is distinct from low-grade serous 

ovarian cancers (summarised in Table 1-1).  The most striking genetic abnormality in HGS 

ovarian cancer is the near universal presence of TP53 mutations, present in >95% of cases 

[12, 55].  BRCA1/2 are also mutated in 22% of tumours, with other commonly mutated genes 
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including RB1 and CDK12, an RNA splicing factor.  HGS cancers are characterised by a high 

degree of genetic instability, with both focal copy number changes and alterations at the 

chromosome-arm level [12].  It has been suggested that, based on gene expression profiles, 

HGS tumours can be apportioned to four classes (immunoreactive, differentiated, 

proliferative and mesenchymal), though these do not differ significantly in terms of 

prognosis. Some changes in gene expression can be explained by altered methylation status 

of promoters. Pathway analysis of combined genomic, epigenomic and expression data, 

revealed frequent alterations in the FOXM1 transcription factor network (87%), RB1 

signalling (67%), homologous recombination pathways (50%), PI3K/RAS signalling (45%) 

and NOTCH signalling pathway (22%) [12]. 

Table 1-5. The hallmarks of cancer 

The core abilities required by cells to become malignant. Adapted from [54]. 
 

Cancer Hallmarks 

Evasion of cell death 
Genome instability and mutation 

Induction of angiogenesis 
Activation of invasion and metastasis 

Promotion of tumour-enhancing inflammation 
Limitless replication 

Immune evasion 
Evasion of growth suppressors 

Sustained proliferative signalling 
Alterations in cellular metabolism 

 

Genome-wide association studies have been conducted for EOC, and have identified 

susceptibility loci, but these so far account for only 4% of excess familial risk.  In contrast, 

germline BRCA1/2 mutations are thought to account for up to 40% of excess familial risk 

[56], and are seen in 8-17% of all EOC cases [12, 57].  Paradoxically, although patients with 

germline BRCA mutations have an increased frequency of extra-peritoneal disease, they have 



26 
 

a better prognosis than patients with sporadic cancers, probably due to increased sensitivity to 

platinum chemotherapy [57, 58]. 

1.2.6 OVARIAN CANCER STEM CELLS 

The dominant model of cancer development is that of clonal evolution, whereby non-

malignant cells acquire genetic alterations in a stochastic manner, leading to a heterogeneous 

tumour that is increasingly adapted for uncontrolled growth and metastasis.  Recently, an 

alternative theory has been suggested to underpin the development of some malignancies, 

that of cancer stem cells (CSCs).   In this model, there is a defined hierarchy of tumorigenic 

and non-tumorigenic cells.  Non-tumorigenic cells compose the bulk of the tumour and are 

derived from tumourigenic CSCs (Figure 1-5).   

 

Figure 1-5. Two models of cancer evolution 

Two models have been proposed for cancer evolution. In the clonal model, a precursor cell 
accumulates sufficient genetic aberrations to become malignant.  Due to genomic instability, multiple 
lineages are generated in a single tumour with different mutational spectra, and one may become 
dominant e.g. due to enhanced chemoresistance.  In the CSC model, a normal stem cell, responsible for 
regenerating healthy tissue becomes malignant due to mutational events.  This stem cell can divide to 
repopulate the CSC niche, or to produce a more differentiated and highly proliferative non-CSC cell, 
that forms the bulk of the tumour.  

 

These non-tumourigenic cells are not able to generate CSC populations and the tumour is 

therefore reliant on CSCs for tumour initiation and metastasis.  CSCs tend to proliferate less 
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rapidly, and are therefore potentially more resistant to the majority of chemotherapeutics, 

whose cytotoxic effects rely on rapid cell division [59].  This has profound implications for 

cancer treatment; though standard therapies may lead to tumour shrinkage by killing rapidly 

dividing non-tumourigenic cells, if such therapies leave CSC cells alive, relapse is inevitable 

(Figure 1-6). Although initial work on CSCs was conducted with acute myeloid leukaemias, 

it was subsequently shown that CSC-like cells could be isolated in solid malignancies, 

including ovarian cancers [60-63].   

 

Figure 1-6. Cancer stem cell model: implications for treatment 

If conventional cytotoxic chemotherapy only targets non-CSC cells, there will be tumour shrinkage but 
the cells capable of recapitulating the tumour will remain.  This results in a rapid relapse.  However, if 
both cell populations are targeted, for example by using a conventional cytotoxic together with a CSC-
targeting agent, complete eradication of the tumour becomes a possibility. 
 
 

Several flow cytometry markers have been shown to identify CSC-like ovarian populations, 

including aldehyde dehydrogenase activity and CD133 membrane expression [62, 64], and 

marker-positive cells exhibit more than 1000x the tumour-initiating potential when compared 

to non-CSC cells [60].  In addition, it seems that these ovarian CSCs are more chemoresistant 

[65]. Supporting the clinical significance of CSC-like cells in ovarian cancer, patients with a 

high CD133 or aldehyde dehydrogenase expression in their tumours have a significantly 
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worse prognosis [66, 67].  However, other studies have shown that CSC-like cells have a 

significant heterogeneity in marker expression, complicating their isolation and quantification 

[61].  Work in mice has shown that a population of stem cells clustered at the ovarian hilum 

give rise to the ovarian surface epithelium, and these cells have high aldehyde dehydrogenase 

expression.  Interestingly, deletion of TP53 and RB1 in these cells results in tumours that 

resemble human EOC [68], suggesting that at least some ovarian malignancies may arise 

from the accumulation of mutations in a non-malignant ovarian stem cell population. 

1.2.7 SUMMARY 

Epithelial ovarian cancer is a far more complex and diverse disease than was previously 

thought. Although significant strides have been made in the last decade to improve our 

understanding, it remains the most lethal gynaecological malignancy, with less than half of 

patients surviving beyond five years.  Treatment is complicated by the fact that nearly all 

patients present with extra-ovarian disease, and therefore a substantially reduced chance of 

achieving a surgical cure.  Whilst the majority of patients initially respond to platinum- and 

taxane-based therapies, resistance becomes increasingly common with each disease relapse, 

and few of the second-line strategies trialled to date have produced sizeable response rates.  

HGS tumours demonstrate a high degree of genetic instability, and are characterised by 

mutations affecting TP53 and multiple cancer-related pathways. In addition, there is 

significant intra-tumoural heterogeneity, with sub-populations of cells that exhibit enhanced 

tumour-forming ability and chemoresistance. New therapeutic targets are urgently needed if 

any improvements in outcomes are to be made.  To be effective, it is likely that such 

therapies will need to target multiple signalling pathways simultaneously, and demonstrate 

activity against both CSC and non-CSC populations. 
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1.3   MRNA-BINDING PROTEINS 

Ovarian cancer is a highly genetically diverse disease.  With the exception of TP53, there are 

few known common mutational events [12, 55]. Although mutations in BRCA1/2 have been 

shown play a significant role in the inherited predisposition to ovarian cancer, the combined 

efforts of several studies have so far identified loci that account for only 4% of the excess 

familial risk [56].  This indicates that mutations in multiple genes contribute to the risk of 

developing ovarian cancer, with significant heterogeneity seen between and even within 

patients [69].  This genetic diversity complicates both the study of ovarian cancer and the 

development of new therapies. 

Expression profiling has demonstrated that there are substantial differences in mRNA 

abundance between ovarian malignancies and non-cancer tissue, and even between different 

EOC subtypes [70].  There is a growing appreciation that such differences in expression are 

not all determined at the genetic, epigenetic or transcriptional level, but can be the result of 

post-transcriptional regulation [71]. Interest in the role of post-transcriptional regulation in 

cancer was re-ignited in 1993, with the discovery of the first microRNAs (miRNAs) [72, 73]. 

However, miRNAs represent only one aspect of post-transcriptional regulation, a term that 

describes all events from the capping of nascent transcripts in the nucleus, through to their 

eventual translation and/or decay in the cytoplasm. 

At the centre of post-transcriptional regulation, RNA binding proteins (RBPs) play a critical 

role in all aspects of RNA fate determination [74].  RBPs are increasingly being recognised 

as key drivers of cancer progression and chemoresistance in several cancers [75], including 

ovarian malignancies  [12, 76, 77]. 
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1.3.1 MRNA RIBONUCLEOPROTEINS (MRNPS) 

Since the establishment of the central dogma of molecular biology [78], mRNA has been 

understood to be the intermediary molecule in the transfer of information from the DNA 

template to protein synthesis. Far from being a simple linear transfer of information, it has 

become increasingly clear that a substantial proportion of the variations in gene expression 

are determined at the post-transcriptional level. Indeed, work in mouse fibroblasts 

demonstrated that the regulation of mRNA translation was a significantly greater determinant 

of gene expression than transcription [71], and there may be up to twice as many factors 

related to processing and regulating RNA than related to transcription [79].  That so much 

control is exerted at the level of RNA is perhaps not surprising, as it has been suggested that 

RNA-based life predates the use of DNA or proteins [80].  Although initially thought of as 

separate processes, it now seems that all stages of the mRNA lifespan are interconnected, 

with events at the earliest points in transcription and transcript birth determining the eventual 

fate of an mRNA in the cytoplasm [81]. As well as dramatic shifts in gene expression, there 

is evidence that ‘fine-tuning’ of gene expression can also be performed post-transcriptionally, 

for example through miRNA-mediated processes [82].  

Multiple proteins and non-coding RNAs (ncRNAs) are involved in co-ordinating post-

transcriptional regulation through the formation of complex and dynamic ribonucleoprotein 

particles (RNP) [83].  RNA-binding proteins (RBPs) assemble on mRNAs co-

transcriptionally and mRNPs are remodelled throughout the life of any given transcript to 

determine its fate (Figure 1-7) [84].  The complexity of this regulation is only now beginning 

to be understood with the use of next-generation sequencing and high sensitivity mass 

spectrometry.  
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Figure 1-7. Dynamic mRNP remodelling determines mRNA fate 

RNA-binding proteins assemble on nascent transcripts, and are required for capping, polyadenylation 
and splicing.  Packaged as an mRNP, transcripts are exported from the nucleus and, once in the 
cytoplasm, the RBP components of the mRNP may be re-modelled to determine transcript fate.  
mRNAs may be stored for later use, undergo translation or be degraded. Further mRNP remodelling 
allows transcripts to move between silencing and active translation. ncRNA = non-coding RNA. 

 

1.3.2 MRNA-BINDING PROTEINS 

RNA-binding proteins exist at the heart of post-transcriptional regulation, being required for 

all aspects of RNA processing and fate determination. However, relatively few RBPs have so 

far been studied in significant depth.  Those investigated to date reveal complex and 

multifunctional roles, with each RBP potentially in complex with hundreds or even thousands 

of different transcripts, and each transcript interacting with several different RNA-binding 

proteins at any given time [84].  There is accumulating evidence that RBPs can play a critical 

role in human pathological processes, including inflammation and cancer [74, 85].  
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The RNA-Binding Protein DataBase (RBPDB), published in 2012, listed 416 proteins with 

experimentally validated RNA-interacting properties [86]. In fact, recent work suggests that 

this is likely to be a significant underestimate, and many proteins with no identifiable 

conventional RNA-binding domain (RBD) remain to be experimentally determined [87].  In 

one study in mammalian cells, 860 proteins were identified as binding polyadenylated RNA, 

37% of which had no predicted or experimental evidence of RNA binding properties [87].  In 

release 64 of Ensembl, searching for the gene ontology term ‘RNA binding’ (GO:0003723) 

returned 967 annotated human protein-coding genes [88], but in the most recent release (77) 

this number had increased to 1,676. 

Accumulating evidence from RNA-RBP immunoprecipitation experiments supports a model 

whereby many RBPs interact with a large number of different transcripts, enriched for related 

functions [79, 89, 90].  The RBP-RNA interaction is mediated by RNA-binding domains 

(RBDs), such as the RNA-recognition motif (RRM), La motif (LAM) or KH domain. 

Diversity in RNA affinity is created by incorporating multiple RBDs in different 

arrangements in each RBP, either of the same class or by combining different domains [91]. 

 

1.3.3 THE MRNA JOURNEY 

To understand the role of RBPs in post-transcriptional regulation, it is necessary to 

understand the stages in the mRNA life cycle and their potential role in the modulation of 

gene expression.  This is an extremely complex topic, and some aspects of post-

transcriptional control are only just beginning to be understood.  Following the initial 

transcribing of DNA into pre-mRNA by RNA Polymerase II, regulation can occur at the level 

of pre-mRNA splicing and processing, RNA editing, nuclear export, localisation, translation 

and finally stability and decay. 
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1.3.3.1 mRNA ‘birth’ 

1.3.3.1.1  Transcription initiation and capping 

Eukaryotic transcription begins with the formation of the transcription pre-initiation complex 

(PIC) upstream of a gene.  The ability of the PIC to form depends on the accessibility of the 

gene promoter and also enhancer regions that regulate promoter activity.  DNA in the nucleus 

exists in a highly packaged form, chromatin, and by remodelling chromatin to ‘open’ or 

‘closed’ states, cells can alter the transcriptional activity of a specific region [92, 93].  

Assembly of the PIC is dependent on core promoter elements (CPE), such as the TATA box, 

recognised by CPE-binding proteins like TATA-binding protein (TBP). This interaction 

forms the basis for the sequential recruitment of general transcription factors and RNA 

polymerase II (Pol II), and the formation of the PIC.  After promoter melting and escape 

occurs, transcript elongation precedes until the termination site is reached.  Depending on the 

efficiency of reinitiation, multiple cycles of transcription can take place. [94-96]. 

The formation of the PIC does not guarantee successful transcription, as Pol II enters a 

paused state due to the negative regulatory effects of the DRB sensitivity-inducing factor 

(DSIF) and negative elongation factor (NELF) complexes.  This paused state can be exited 

and elongation promoted by phosphorylation of both components by cyclin-dependent kinase 

9 (CDK9), a protein in the positive transcription elongation factor-b (P-TEFb) complex [96, 

97].   

It is now clear that the processing of pre-mRNA to its mature form occurs co-

transcriptionally [97].  The C-terminal domain (CTD) of Pol II is critical to this coupling, 

recruiting different co-factors depending on the stage of transcription. The CTD is composed 

of multiple copies of a six amino acid (AA) repeat motif, YSPTSPS, with 52 repeats in 

mammals [98].  Phosphorylation of the 2nd, 5th and 7th serine residues delineates the different 
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stages of transcription.  The kinase activity of the cyclin dependent kinase 7 (CDK7), a 

component of the critical PIC general transcription factor TFIIH complex, is activated upon 

PIC formation; this then phosphorylates the Ser5 residues of the CTD and recruits mRNA 

capping enzymes (an RNA 5’-triphosphatase, a guanyltransferase and a guanine-7 

methyltransferase) [98, 99]. Using a 5’-5’ linkage, the 7-methylguanosine cap is attached to 

nascent transcripts of only 20–30 nucleotides [100].  This cap is required for efficient splicing 

[101], export and later for cap-dependent translation. The cap is then bound by the cap-

binding complex (CBC), composed of CBP20 and CBP80 [102]. 

1.3.3.1.2  Elongation and co-transcriptional splicing. 

In the human genome, genes are separated into protein coding sequences, exons, interspersed 

with non-translated regions, introns: there is an average of just under eight introns per 

gene. The majority of human exons are below 200nt, and are surrounded by larger introns, 

which have an average length of 3,400nt, with the largest recorded being over 300kbp [103, 

104]. Introns are removed prior to nuclear export by mRNA splicing.  By combining exons in 

different combinations or including different exons, alternative splicing allows a significant 

amount of genetic diversity to be created at a post-transcriptional level. Indeed, it appears that 

up to 94% of human genes have splice variants [105], with 140,000 novel transcripts 

generated from less than 22,000 genes [88]. Although splicing can take place post-

transcriptionally, either within chromatin or elsewhere in the nucleus [97], it was 

demonstrated in the late 1980’s using electron microscopy in Drosophila, that splicing could 

take place co-transcriptionally [106]. As RNA elongation progresses, the P-TEFb complex, 

composed of CDK9 and cyclin T1, phosphorylates Ser2 residues on the CTD, whilst Ser5 

residues are progressively dephosphorylated by several different phosphatases [107].  This 

change in the phosphorylation status of the CTD is key to the recruitment of splicing 

factors  [108]. Exons are defined by three major sequence elements: the 5′splice site (5’SS), 
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the branch point sequence (BPS), and the 3’ splice site (3’SS).  A polypyrimidine tract is also 

located between the BPS and 3’SS. The spliceosome, a large dynamic and multimeric 

complex composed of over 145 proteins [109] and small nuclear RNAs (snRNAs), recognises 

these sequence elements and assembles and remodels in a stepwise manner on the pre-mRNA 

[110]. The U1, U2, U4/U6 and U5 snRNPs are critical components of the major spliceosome, 

responsible for removing the vast majority of pre-mRNA introns. Each snRNP consists of 

multiple proteins associated with one or two snRNAs. Spliceosome assembly begins with U1 

binding to the 5’SS, targeted by base-pairing interactions between the U1 snRNA and the 

5’SS, an interaction stabilised by other proteins in the complex [111].  During assembly, the 

BPS is bound by the protein SF1, whilst the U2 auxiliary factor (U2AF) interacts with the 

polypyrimidine tract.  U2AF also binds to the 3’SS to yield the spliceosome early (E) 

complex [112]. Binding of U2 via the U2 snRNA marks the formation of the A complex. By 

further complex remodelling, the spliceosomal B complex is formed and this catalyses the 

removal of introns and the rejoining of exons [110, 111]. 

1.3.3.1.3  mRNA editing 

RNA editing is a process that modifies the primary RNA sequence of transcripts and can 

occur both co- and post-transcriptionally [113, 114]. The most common form of RNA editing 

in mammals is the deamination of adenosine to produce inosine, a reaction catalysed by the 

adenosine deaminases acting on RNA (ADAR) family of enzymes [115]. Because inosine 

pairs preferentially with cytidine, ‘I’ is read as ‘G’ during protein synthesis or during analysis 

in reverse transcription reactions. Supporting the importance of RNA editing, ADAR1-/- mice 

knockouts are embryonic lethal, with the gene apparently critical for promoting cell survival 

[114]. In high density sequencing of a single cell line, researchers in China found RNA 

editing to be more common than previously expected, with 16,905 edited sites in mRNA 

identified [116]. In a survey of 14 different human cell lines, 85% of mRNA edited variants 
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were A-to-G/I changes, with the vast majority located in introns and 3′ UTRs. Genes with A-

to-G/I edits were enriched in functions linked to cell division, viral defence, and translation 

[115]. The best-studied RNA editing sites are in coding sequences that alter the amino acid 

sequence, as in the case of glutamate and serotonin receptors [117], but RNA edits can also 

occur in microRNAs, altering their targeting [118], and result in alternative splicing due to 

the creation or deletion of splice sites [113]. 

1.3.3.1.4  Termination, cleavage and polyadenylation 

The progressive phosphorylation of Ser2 and dephosphorylation of Ser5 is required for 

transcription termination and 3’-end processing [119]. Most protein-coding eukaryotic 

mRNAs have, towards their 3’ end, a highly conserved poly(A) signal, AAUAAA, followed 

by a G/U-rich sequence, with the actual polyadenylation site occurring between these two 

motifs [120].  The process of termination requires several protein complexes, with the CTD 

acting as a scaffold for their recruitment, including cleavage and polyadenylation specificity 

factor (CPSF), cleavage stimulatory factor (CstF) and poly(A) polymerase [121].  The 

process of 3’-processing is extremely complex, with 85 proteins identified as part of the 

processing machinery [122]. Once Pol II transcribes the poly(A) signal, it pauses 

downstream, resulting in endoribonucleolytic cleavage of the pre-mRNA.  The upstream 

product is then polyadenylated, whilst the downstream sequence is degraded [96]. 

1.3.3.1.5  Nuclear export 

At the time of export from the nucleus, mRNAs are packaged in large mRNP complexes 

containing a range of proteins, including the cap-binding proteins CBP20 and CBP80, polyA-

binding protein (PABP) [123], heterogeneous nuclear ribonucleoproteins (hnRNPs) and 

splicing factors.  Nuclear export of these complexes through the nuclear envelope requires 

specialised embedded structures called nuclear pore complexes (NPCs) [84].  During 

transcription, the factors responsible for coupling transcription to export become bound to 
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nascent transcripts. The metazoan nuclear export factor 1 (NXF1/TAP) accounts for the 

export of the majority of mRNAs [124, 125], with the mRNA-protein interaction facilitated 

by additional RBPs, RNA export factor (REF) proteins [126].  These NXF proteins have the 

ability to shuttle between the nucleus and cytoplasm, and, by dimerising with NTF2-related 

protein 1 (NXT1/p15), function as a bridge to couple mRNPs to the NPC. Interaction with 

phenylalanine/glycine-nucleoporin (FG-Nup) components of the NPC results in mRNP 

translocation [84, 127]. Once through the envelope, mRNPs are remodelled by proteins 

including Dbp5 (or DDX19 in humans), an RNA helicase that interacts with the N-terminal 

domain of NUP214, resulting in the removal of export proteins [127, 128]. 

1.3.3.2 Cytoplasmic mRNA localisation 

It is increasingly apparent that the distribution of mRNAs within the cytoplasm is not a 

stochastic event.  Specific examples of targeted mRNA localisation have been known for 

nearly three decades [129].  For example, in Drosophila oocytes, the asymmetric distribution 

of bicoid, oskar, and nanos mRNAs in the oocyte are critical to early embryonic development 

[130]. Similarly, in mammalian cells, it was shown in 1997 that beta-actin transcripts are 

concentrated at the leading edge of migrating cells [131]. Evidence is accumulating that 

targeted mRNA localisation is not a rare event. In a study involving high-throughput, in situ 

hybridisations of more than 3,000 mRNAs in Drosophila embryos, over 70% localised to 

specific cellular regions [132].  In mammalian neurons, only a relatively small number of 

transcripts were originally thought to localise to dendrites and synapses, but high-throughput 

studies suggest that over 2,000 mRNAs may show dendritic enrichment [133].  

Transcripts can be transported as components of motile mRNP complexes, or RNA transport 

granules, coupled to the cytoskeleton with motor proteins [134].  In neurones, granules 

containing polyadenylated mRNA, the 60S ribosomal subunit and elongation factor 1α 
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(EF1α), can be visualised as moving at 0.1µm/sec [135].  RNA-binding proteins are the key 

determinants of transcript localisation, either by actively transporting mRNAs, trapping them 

in a specific region, or by altering mRNA stability in a location-specific manner [134].  This 

effect is typically defined by sequences present in the 3’UTR of transcripts [136].  For 

example, in Drosophila embryos, localisation of bicoid transcripts is due the interaction of 

the RBP Staufen with its 3’UTR, forming a complex that is trafficked in a microtubule-

dependent manner [137]. In contrast, hsp83 mRNA is selectively degraded throughout the 

cytoplasm in embryos, with the exception of the posterior pole, leading to a distinct 

distribution; an effect mediated by the interaction of the RBP Smaug with the 3’UTR [134].  

In mammalian cells, β-actin transcript localisation is dependent on a 54-nucleotide sequence 

predicted to form a stem-loop structure. This sequence is sufficient to localise transcripts, 

and, by treating cells with a blocking antisense oligonucleotide, β-actin mRNA localisation, 

cell polarity and movement can be disrupted [138]. 

1.3.3.3  mRNA translation initiation 

1.3.3.3.1  Cap-dependent translation initiation 

Initiation is the rate-limiting step in translation, and is followed by elongation, termination, 

and ribosome recycling [139].  The majority of mRNA translation in eukaryotes is cap-

dependent, requiring formation of the eIF4F initiation complex on the transcript cap.  eIF4F 

is composed of the cap-binding protein eIF4E, the RNA helicase eIF4A, and the scaffold 

protein eIF4G.  eIF4G possesses binding domains for the eIF4F components, but also binds 

to mRNA [140] and interacts with PABP, via its RRM2 domain [141].  Through 

simultaneous binding of cap-bound eIF4E and polyA-bound PABP at the 3’ end of 

transcripts, eIF4G can circularise the mRNA to be translated [142], forming a ‘closed loop’ 

structure (Figure 1-8).  eIF4G recruits the pre-assembled 43S pre-initiation complex 

(translational PIC) by interacting with the eIF3 complex.  The translational PIC is composed 
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of the eIF3 complex and the small (40S) ribosomal subunit, together with eIFs 1, 1A and 5 

and met-tRNAi anchored by GTP-bound eIF2 [139].   Following recruitment by eIF4G, the 

translational PIC scans the 5’UTR for complementary sequences to the anti-codon of Met-

tRNAi. Translation initiation occurs most efficiently for start codons located within a Kozak 

consensus sequence (GCCGCCA/GCCAUGG) [143].  Once the AUG codon is located, the 

PIC arrests and GTP-eIF2 is hydrolysed to GDP-eIF2, leading to PIC remodelling, and the 

recruitment of the large (60S) ribosomal subunit by eIF5B, to form the 80S initiation 

complex ready for elongation [139, 144].  

 

Figure 1-8. Cap-dependent translation. 

Assembly of the eIF4F complex on the transcript cap results in transcript circularisation, through 
interactions with PABP.  eIF4G also interacts with eIF3 to recruit the 40S ribosomal subunit as part of 
the pre-initiation complex (PIC). 
 

1.3.3.3.2  Cap-independent translation initiation 

The existence of a cap-independent mechanism of translation was discovered in 1988 from 

the study of uncapped poliovirus RNA, where ribosomes were found to bind a sequence 

within the 5’UTR to mediate translation [145].  This sequence was later termed the internal 

ribosome entry site (IRES).  IRES-mediated translation is not restricted to viruses, and so far 

at least 115 eukaryotic mRNAs have been shown to have functional IRES sequences [146], 

with some genes translated by both cap-dependent and cap-independent mechanisms [147].  
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When cap-dependent translation is inhibited, for example during hypoxia [148], IRES-

mediated translation provides an alternative route to allow gene expression.  The sequence 

composition of eukaryotic IRES sites is diverse and no universal structural motif has been 

defined [149].  IRES-mediated translation is controlled by a number of IRES trans-acting 

factors (ITAFs), RNA-binding proteins that may be required to modulate interactions with 

other canonical translation components [150].  Key genes involved in cancer-related 

processes, such as Myc and VEGFA, have IRES sites, and IRES-mediated translation appears 

to be utilised by cancer cells.  For example, whilst hypoxia inhibits cap-dependent translation 

in breast cancer cells, IRES-mediated translation of VEGFA is enhanced in an eIF4G- and 

4EBP1-dependent manner, promoting tumour angiogenesis and growth [151].  IRES-

mediated translation will be discussed again in the context of LARP3 in Section 1.4.1. 

1.3.3.3.3  Translational regulation of gene expression, including 5’TOP regulation 

Work in mouse fibroblasts has demonstrated that translational efficiency can vary between 

proteins by up to 100-fold.  Indeed translational regulation appears to be more significant 

than transcription in determining gene expression [71].  Cap-dependent translation can be 

regulated globally by altering the availability of critical initiation factors to participate in 

translation initiation.  One such rate-limiting step is the availability of eIF4E, which is 

targeted by the eIF4E-binding proteins (4E-BPs).  When hypophosphorylated, these proteins 

prevent eIF4E interaction with eIF4G, thereby inhibiting cap-dependent translation.  4E-BPs 

are phosphorylated downstream of mTOR pathway activation, a frequent event in malignant 

transformation [139, 152].  Using a similar mechanistic principal, during mitosis the tumour 

suppressor 14-3-3σ inhibits cap-dependent translation by binding and sequestering several 

initiation factors, including eIF4B [153]. 

Efficient translation initiation requires rapid 43S scanning of the 5’UTR [139].  Therefore the 

structure and sequence of the 5’UTR can regulate translation.  Indeed, studies have shown 
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that altering the GC content of the 5’UTR, or the position of hairpin structures relative to the 

5’ cap, can alter translational efficiency by more than 50-fold [154].  Motifs present in the 

UTR can be recognised by RBPs that can also block initiation.  One well-characterised 

example of this is the iron-responsive element (IRE) in the 5’UTR of ferritin, involved in iron 

homeostasis. This conserved stem-loop structure is recognised by IRE-binding protein 1 

(IRP1), which blocks the recruitment of the PIC by the cap complex [155]. 

Motifs present in the 5’UTR that are present in multiple different genes have the potential to 

activate or inhibit a program of gene expression from a single signal, regulated at the 

translational level.  This appears to be the case for transcripts that possess a 5’ UTR that starts 

as m7 GpppC followed by a polypyrimidine stretch, so-called 5′ terminal oligopyrimidine 

tract (5′ TOP) mRNAs [156, 157]. The majority of the 92 confirmed 5’TOPs so far identified 

encode ribosomal proteins and components of the translational machinery.  During cell cycle 

arrest or nutrient deprivation, translation of these mRNAs is inhibited. However, following 

nutrient re-introduction, or the stimulation of proliferation there is a global increase in 

5’TOP-mRNA translation [157].  The exact mechanism of this process is currently unknown, 

but occurs downstream of mTOR signalling, discovered following treatment of cells with the 

mTOR inhibitor rapamycin [158].  The TSC1-TSC2 proteins, tumour suppressor protein that 

act as upstream inhibitors of mTOR signalling, are important in the regulation of TOP 

translation.  Deletion of either of these proteins renders cells refractory to the TOP 

translation-inhibiting effects of serum starvation [159].  The Meyuhas group also reported 

that the mTOR-mediated stimulation of TOP mRNA translation was largely independent of 

Raptor and Rictor expression, indicating that neither the mTORC1 nor mTORC2 complexes 

were involved in TOP regulation, and a new mechanism of mTOR action remained to be 

identified [159].  The Sabatini lab have suggested that TOP repression is mediated by the 4E-

binding proteins (4EBP1 and 2) [160]; double knockout of the 4EBPs rendered TOP 
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translation resistant to mTOR/PI3K inhibition with Torin 1.  However, the Meyuhas group 

found reported that 4EBP-deficient cells are not resistant to the translational repression of 

TOPs during oxygen or serum starvation [159], calling into question the significance of this 

finding.  Other suggested regulators of TOPs downstream of mTOR include S6K phosphor-

activity, several LARP proteins, CNBP and TIA1 [161]. 5’TOP mRNA regulation will be 

discussed further in Section 1.4 in the context of LARP proteins. 

An additional mechanism of translational regulation is the presence of upstream open reading 

frames (uORFs) in the 5’UTR.  Almost half of all human mRNAs possess uORFs, which are 

particularly common in oncogenes [162].  The presence of a uORF can regulate both mRNA 

translation and stability.  In a global study of the effects of uORFs on translation, it was 

found that they can impair protein expression by up to 80% [163].  When ribosomes 

encounter a uORF there are three potential outcomes: they may translate the uORF and 

dissociate, translate the uORF and reinitiate further downstream or at a subsequent start 

codon, or stall on the uORF.  Stalling either triggers nonsense-mediated decay [164] or 

creates a blockage for further ribosome progression [162]. Surprisingly, uORFs can also 

promote translation in the context of cellular stress [165]. ATF4 is a stress response gene with 

two uORFs.  The second uORF overlaps the start codon of the ATF4 coding sequence.  

Normally, both uORFs are translated, preventing access to the ATF4 ‘AUG’.  However, 

during cell stress the increased time necessary for ribosomal reinitiation reduces the 

probability of reinitiation at the second uORF, increasing the likelihood that the true ATF4 

start codon is recognised [166]. 
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1.3.3.4  mRNA stability and decay 

 
1.3.3.4.1  mRNA decay  

There are two major pathways for mRNA decay; deadenylation-dependent, and 

deadenylation-independent. Deadenylation-dependent decay (summarised in Figure 1-9), 

where digestion of the 5’ poly(A) residues marks the first step, is responsible for the majority 

of mRNA degradation, [167]. Several deadenylases have been characterised, including 

poly(A)-specific ribonuclease (PARN) and the CCR4-NOT/Caf complex, composed of nine 

subunits, and representing the major deadenylase in eukaryotes [168].  Following 

deadenylation, transcripts are either decapped by the DCP1-DCP2 complex, allowing 5’→3’ 

degradation by the exoribonuclease XRN1, or the exosome, a 10-12 subunit complex, digests 

transcripts in a 3’→5’ direction [167].  This is then followed by decapping by DCPS [169].  

For 5’→3’ degradation, several accessory proteins are required, including the Lsm1-7 

complex [168]. 

 

Figure 1-9. Deadenylation-dependent mRNA decay. 

Following deadenylation, decay can proceed with decapping, following by 5’→3’ degradation, or 
directly through exosome-mediated 3’→5’ decay. 
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Many of the factors involved in mRNA degradation can be found in cytoplasmic mRNP 

granules called P-bodies, including Xrn1 and the CCR4-NOT complex.  Transcripts that enter 

P-bodies can exit and re-enter translation, indication that these foci are sites of mRNA fate 

determination, where transcripts can be sorted for translational repression and/or degradation 

[170].  In contrast, stress granules are foci that lack mRNA degradation components, but 

contain proteins necessary for translation initiation, and are thought to represent sites of 

storage for translationally-stalled transcripts [167].  It has been suggested that transcripts may 

continuously shuttle between polysomes, P-bodies and stress granules as part of the 

regulation of gene expression [170] (Figure 1-7). 

1.3.3.4.2  Regulating expression through mRNA stability 

Modulating messenger RNA stability is a powerful tool for cells to control gene expression, 

determining if a transcript can be translated, and whether repeated rounds of translation are 

possible.  Evidence suggests that there can be a huge dynamic range in mRNA half-lives.  In 

a study investigating global mRNA stability in Karenia brevis, estimated mRNA half-life 

ranged from 42 minutes to 6 days, with a median t1/2 of 33 hours [171].  In contrast, a study in 

murine embryonic stem cells found much shorter half-lives, with a median t1/2 of 7 hours.  In 

this study, transcripts with short half-lives were enriched for functions linked to cell cycle 

progression and evasion of apoptosis.  Conversely, the most stable transcripts were 

cytoskeletal and metabolic pathway components [172], indicating that genes whose 

unregulated expression could have the most deleterious consequences for a cell are more 

likely to be heavily regulated at the level of mRNA stability. Similar results have been found 

in work with mouse fibroblasts [71]. 

This substantial variation in mRNA stability requires cis-acting sequence motifs and trans-

acting RNA-binding proteins.  Stability-determining motifs seem most commonly to be found 

in the 3’UTR, though motifs in the 5’UTR and coding sequence can also regulate mRNA 
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stability [173].  Underlining the importance of the 3’UTR in the regulation of gene 

expression, it appears that proto-oncogenes can be activated through alternative splicing of 

their 3’UTR, generating shorter 3’UTRs lacking regulatory motifs [174].  

One of the best-characterised class of stability-regulating motifs are AU-rich elements 

(AREs), and they provide a useful case study to investigate the core concepts of mRNA 

stability regulation. AREs are composed of pentamer units of AUUUA, with or without 

additional A/U bases at either end, and are thought to be present in the 3’UTRs of up to 8% 

of human mRNAs [175].  Initially discovered in the 3’UTR of pro-inflammatory cytokines 

[176], stability-determining AREs have been identified in several oncogenic genes, including 

BCL2 and EGFR [177-179]. Underlying their importance, the deletion of the AU-rich region 

in TNF leads to the development of inflammatory disorders [180].  The effect of AREs on 

transcript stability is dependent on their recognition by specific RNA-binding proteins.  Two 

of the best characterised are HuR and ZFP36/TTP.  ZFP36, which possesses two zinc-finger 

domains that are critical to its mRNA-binding, acts to promote degradation of ARE-

containing transcripts [181].  Work in cell-free systems demonstrated that this is due to 

recruitment of the exosome, mediating 3’→5’ decay [182].  In contrast, HuR/ELAVL1 

promotes ARE transcript stability, and may compete with ZFP36 for binding to ARE sites 

[183].   

It is important to note that the possession of an ARE does not guarantee transcript instability.  

In a study of mRNA stability in a hepatocellular cancer cell line, less that 15% of transcripts 

with AREs had rapid decay rates [184].  It is likely that a combination of recognition motifs 

for RBPs and miRNAs, both in the 3’UTR and elsewhere, combine to determine the stability 

of a transcript.  Although several stability-regulating sequences have been identified, it is 

likely that many more remain to be discovered.  Indeed, a recent global assessment of mRNA 
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stability by Saeed Tavazoie’s group identified eight novel RNA motifs regulating stability 

[173].   

1.3.3.4.3  Transcriptional coupling of stability regulation 

There is increasing evidence to suggest that mRNA stability can be determined co-

transcriptionally.  A well-studied example of this is found in the Rpb4/7 proteins. The Rpb4 

and Rpb7 subunits of RNA polymerase II form a heterodimer that can bind RNA [185]. Rbp7 

is indispensible to Poll II function, whilst Rpb4 is only essential during certain stresses, such 

as starvation.  In human cells, Rpb4 and 7 are found in both the nucleus and cytoplasm [186], 

and during stress Rpb4 is essential for efficient mRNA transport [187].  As well as roles in 

transcription, Rbp4/7 appear to regulate RNA decay, with Rbp4 in particular promoting 

decay of translation factors, such as RPL25 [188, 189]. Rpb4/7 therefore appears to play a 

role throughout the entirety of the mRNA lifecycle [190].   

Stability of mRNA can also be determined at the level of the DNA promoter sequence.  

Researchers working with budding yeast identified SW15 and CLB2 as mRNAs whose 

stability decreased markedly during mitosis. They discovered that this decay was not due to 

sequences present in the 5’ and 3’ UTRs, but determined at the level of the promoter. They 

identified Ddf2 protein as being recruited co-transcriptionally to these transcripts and 

regulating cytoplasmic stability, potentially via a promoter-interacting transcription factor 

[191]. Similar findings were reported by a different group studying the stability of RPL30 

transcripts [192].  This suggests that promoter sequences may be able to determine the RBP 

components that assemble on nascent transcripts, and reinforces the model whereby 

transcripts exist in multi-protein mRNP complexes that can remain stable in the passage from 

nucleus to cytoplasm, where the various components determine mRNA fate.   

1.3.3.5  miRNA-mediated post-transcriptional regulation 
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First discovered in C. elegans in 1993 [72, 73], microRNAs (miRNAs) are an important 

mechanism of post-transcriptional regulation in mammalian cells.  The advent of small RNA 

sequencing has dramatically increased the rate of miRNA discovery [193].  The miRNA 

database miRbase had just 218 entries when it was created in 2002: the most recent release 

now records over 28,000 miRNA genes [194].  miRNAs themselves are ~22 nucleotide RNA 

molecules that act as repressors of gene expression by partial base-pairing to sequences in 

target transcripts, usually located within the target 3’UTR [195]. They function as part of 

miRNA-induced silencing complexes (miRISCs) containing argonaute protein (Ago1-4) and 

GW182/TNRC6A [196]. 

miRNAs are initially transcribed by Pol II as longer primary miRNAs (pri-miRNAs), and are 

capped and polyadenylated [197]. Pri-miRNAs are composed of a stem-loop structure, with 

terminal single-stranded RNA at the 5’ and 3’ ends.  The microprocessor complex, 

comprising the RNAses Dicer and Drosha/DGCR8, cleave this to release a ~65bp hairpin 

structure, a pre-miRNA.  Following nuclear export, the pre-mRNA loop structure is excised 

by Dicer to leave a ~22bp double-stranded RNA with two nucleotide 3’ protrusions. One of 

these two strands is recruited to the miRISC [198, 199]. 

A 6- to 8-nucleotide sequence at the 5’ end of miRNAs is most critical to determining their 

interaction with target transcripts, and represents a seed sequence, with each miRNA having 

the potential target multiple transcripts [200].  The miRISC associates with the target 

transcript on the basis of sequence complementarity and can induce both RNA degradation 

and translational repression.  The timing and relative contribution of each process has been an 

area of intense scientific interest.  Accumulating evidence now points to translational 

repression as the primary event, with miRISC association also capable of inducing target 

mRNA decapping and deadenylation [201].  The exact mechanism of translation repression 

remains controversial, but is thought to involve the activity of EIF4A2 [196, 202].  GW182 
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acts as a scaffold protein, interacting with Argonaute proteins and PABP, and recruiting the 

CCR4–NOT and PAN2–PAN3 complexes, which trigger deadenylation and 5’->3’ decay, 

with CCR4-NOT appearing to play the dominant role in mRNA deadenylationa and 

destabilisation [201].  CNOT1, a component of the CCR4-NOT complex, has recently been 

shown to interact with DDX6, a translational repressor and decapping activator, implicating 

the complex in both translation repression and destabilisation [203, 204]. 

It is predicted that more than 60% of human protein-coding genes are targeted by currently 

known microRNAs [205], with the true figure potentially much higher.  It is therefore not 

surprising that miRNAs have been implicated in human disease, and particularly in cancer 

development and progression, where they have been shown to behave as both tumour 

suppressors and oncogenes [206].  

1.3.4 RNA-BINDING PROTEINS IN CANCER  

Given the propensity of tumours to hijack normal cellular processes, it is perhaps not 

surprising that this protein class, with a diverse range of functions, have been increasingly 

implicated in cancer [207-209]. Indeed, their central role in the regulation of expression is 

making RBPs attractive targets for a new generation of anti-cancer drug development [210]. 

In all normal tissues studied, expression of RBPs is greater than that of non-RBPs, with the 

highest levels found in the ovaries, testis and lymph nodes [75].  Interestingly, these are 

tissues with high rates of cell division.  In a global analysis of nine cancers, RBPs as a protein 

class were found to be more highly expressed compared to other genes, such as miRNAs and 

transcription factors. Investigating expression in cancer and normal tissue, thirty RBPs were 

found to have significantly dysregulated expression across multiple cancer types, with all 

more highly expressed in malignancy.  These included RBM3 and FLNA, both previously 

implicated in cancer.  This suggests a net oncogenic role for RBPs [75]. 
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The first RBP to be implicated in cancer was eIF4E.  As discussed above (Section 1.3.3.3), 

eIF4E is an mRNA cap-binding protein that, as part of the eIF4F complex, plays a central 

role in cap-dependent translation [139].  In the early 1990s, expression of eIF4E was shown 

to be upregulated in transformed cells [211], whilst forced overexpression of was eIF4E was 

found to be capable of transforming non-malignant cells [212, 213].  The protein has 

subsequently been shown to be overexpressed in a range of malignancies, including prostate, 

breast and colon cancers [214].  eIF4E-overexpressing transgenic mice display increased 

rates of tumour development, including lung adenocarcinomas and angiosarcomas [215].   

Since the discovery of the oncogenic role of eIF4E, RBPs with functions throughout the RNA 

lifecycle have been identified as potential oncogenes.  Alternative splicing is an important 

mechanism of generating genetic diversity, and is tightly controlled during normal 

development.  Over 15,000 splice variants have been associated with cancer [216], and the 

novel isoforms generated can act as drivers of malignant progression. One example of this is 

CD44, where expression of a variant isoform promotes tumour metastasis [217]. The RBP 

Sam68 binds to the splice regulatory sequence in CD44 variant exon 5 and regulates its 

inclusion in response to phosphorylation by ERK.  Knockdown of Sam68 abolishes 

expression of the variant isoform [218].  Sam68 expression is upregulated in a number of 

cancers, including prostate cancer, where it has been shown to promote proliferation and 

chemoresistance [219].  Several other Sam68 splice targets have been identified, including 

cyclin D1 [220]. 

The stability of individual mRNAs is tightly controlled, with transcripts with potentially 

oncogenic roles within the cell tending to have dramatically shorter half-lives [71, 172].  

Altering mRNA stability provides cancer cells with the ability to silence tumour suppressors 

or activate proto-oncogenes at the post-transcriptional level. One well-characterised example 

is HuR/ELAV1, a stability-regulating RBP that is highly expressed in many malignancies, 
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including ovarian, prostate and colon cancers [74].  HuR binds AU-rich elements, and can 

have a dual role on RNA stability, stabilising oncogenic transcripts such as VEGF [221] 

whilst promoting decay of transcripts encoding the tumour suppressor p16INK4 [222]. 

RBPs can also activate specific translational programs, via recognition of 5’UTR motifs such 

as IRES sites or 5’TOP motifs, with significant implications for malignant potential.  This 

will be discussed in greater depth in the context of the LARP proteins in Section 1.4. 

1.3.5 SUMMARY 

Cancer is a disease characterised by altered gene expression. For the past four decades, the 

focus in cancer research has been on studying this altered expression at the level of 

transcription and genomic/epigenomic changes.  However, the significance of the substantial 

contribution of post-transcriptional regulation is now beginning to be appreciated in the 

context of this disease. 

Although conventionally represented as distinct processes, there is accumulating evidence 

that transcription and mRNA fate determination are tightly linked, to the extent that non-

transcribed DNA sequences appear to be able to determine the stability of the transcribed 

product.  Transcripts are assembled co-trancriptionally with RNA-binding proteins into 

messenger ribonucleoprotein complexes, and the RBP components determine the localisation 

and fate of the complexed mRNA. 

RBPs are involved at all stages of post-transcriptional regulation, sometimes acting as 

components of multiprotein complexes, such as the spliceosome.  Although over eight 

hundred experimentally validated RBPs have been identified, relatively few have been 

studied in significant depth.  However, the high expression of RBPs in both normal tissue and 

cancers underlines their functional significance.  The RBPs that have been intensively studied 
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to date have shown critical roles in malignant progression.  It is likely that further study of 

individual RBPs will lead to significant advances in our understanding of cancer development 

and present novel avenues to target malignant disease. 

 

1.4  THE LARP FAMILY 

The La-Related Protein (LARP) family are a highly conserved group of RNA-binding 

proteins [223, 224].  The first family member to be identified was SSB/La, now known as 

LARP3. All family members share a unique N-terminal or central RNA-binding domain, 

named the La motif (LAM), separated from an RNA recognition motif (RRM) by a short 

linker.  Human LARP3 and LARP7 also possess an additional RRM [225, 226]. In a key 

paper published in 2009, Jean-Marc Deragon and Cécile Bousquet-Antonelli analysed 

genomes from 83 eukaryotic species to arrive at a proposed evolutionary structure of the 

protein family [223], with seven distinct LARP genes in humans; LARPs 1/1a/3/4/4b/6/7 

(Figure 1-10). LAM-containing proteins are present in nearly all eukaryotes, but absent from 

Archaea, suggesting they originated shortly after the eukaryotic evolutionary radiation [223], 

1-2,000 million years ago [227].  In high-throughput experiments to derive the mRNA-bound 

proteome, all LARPs, with the exception of LARP6, have been identified [87, 228].  

Only in the last five years has the diversity and functional significance of this protein family 

begun to be uncovered.  It now appears clear that, despite sharing similar RNA-binding 

domains, these proteins have markedly different roles within the cell, participating in multiple 

aspects of post-transcriptional regulation.  There is accumulating evidence linking this protein 

family to human disease and, in particular, to cancer.   
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Figure 1-10. The human LARP family of proteins. 

A scaled diagram of human LARP proteins, indicating the key domains.  Numbers underneath indicate 
the first residue of the domain. 
 

1.4.1 LARP3/LA/SSB 

1.4.1.1 LARP3 functional roles 

Originally identified as a serological marker of autoimmune disease, particularly Sjögren’s 

syndrome [229, 230], LARP3/La/SSB has been studied in much greater depth than other 

members of the LARP family.  This small, highly abundant protein [231] plays a role in an 

expanding number of post-transcriptional processes.  Reinforcing its critical role in cell 

biology, LARP3 is essential in mice at a very early stage in development, where it is required 

for the formation of the inner cell mass [232].  The same is true in Drosophila, with LARP3 

knockouts surviving only to the late larval stage [233].  Whilst LARP3 can be deleted from 

yeast cells without inducing death, a feature that facilitates studies of its function in this 

system, it becomes lethal when combined with mutations disrupting the secondary structure 
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of essential tRNAs [234].  Conditional deletion of LARP3 in mice haematopoietic B cells 

results in a blockage in B cell development beyond an early pro-B stage, and the absence of 

mature B cells and serum IgG.  A similar approach with forebrain neurones showed mice 

developed normally up to 5 weeks, but then showed a progressive neuronal loss suggestive of 

impaired cell survival [235]. 

1.4.1.1.1 tRNA processing 

Early on, it was discovered that RNPs identified by anti-LARP3 antibodies contained RNA 

polymerase III products.  LARP3 was subsequently shown to bind with high affinity to 3’ 

uridylate residues, characteristic of the majority of nascent Pol III transcripts [236, 237].  

These UUU-3’OH tails are removed during processing and maturation, abolishing LARP3 

binding [226, 238].  LARP3 plays a role both in stabilising pre-tRNA transcripts by 3’ end 

protection (excellently reviewed by [238] and [226]), as well as having tRNA chaperone 

activity [239-241]. RNA chaperones are proteins that promote the correct folding of RNA, 

requiring the ability to dissociate and refold aberrantly folded RNA structures. Interestingly, 

this chaperone activity appears to be conserved in LARPs 4, 6 and 7 [241]. As well as a role 

in tRNA maturation, LARP3 also binds other Pol III transcripts, such as pre-5S rRNA, which 

share 3’-oligo(U) sequences [242], and stabilises small RNAs including the U3 snoRNA in 

yeast [243]. 

1.4.1.1.2 IRES-mediated translation 

Shortly after the discovery of poliovirus as the first IRES-containing RNA [145], a protein 

bound to the 5’UTR sequence was identified as LARP3.  LARP3 was subsequently found to 

promote poliovirus RNA translation [244, 245], marking it as the very first IRES trans-acting 

factor (ITAF). Poliovirus infection was also found to cause a relocalisation of LARP3 from 

the nucleus to the cytoplasm [244].  This is associated with C-terminal cleavage of LARP3 at 
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Gln358/Gly359, with the truncated N-terminal product promoting translation of viral RNA in 

the cytoplasm [246].   

Following the discovery of the poliovirus IRES, LARP3 was subsequently found to bind the 

5’UTR of Hepatitis C RNA and promote its translation in an IRES-dependent manner [247, 

248]. Several other viral targets have been subsequently identified [238, 249]. The translation 

of several cellular IRES-containing mRNAs, such as XIAP and BiP, were also found to be 

promoted by LARP3 [250-252]. 

1.4.1.1.3 5’TOP mRNA translation 

The role of LARP3 in the promotion of translation is not restricted to IRES-containing 

mRNAs.  In 1996, it was found that two proteins bound to the 5’TOP sequence of ribosomal 

mRNAs in Xenopus embryos represented LARP3, and a cleavage product of the full length 

protein [253].  The same group subsequently showed that the effect of binding was to 

promote translation [254].   Cytoplasmic LARP3 has also been shown to bind 5’TOP mRNAs 

in human cells, though the role in translation has not been characterised [255].  LARP3 may 

not always act to promote translation.  In an in vitro system, LARP3 was capable of 

repressing the translation of the 5’TOP EF1A, an effect abolished when the TOP sequence 

was mutated  [256]. 

1.4.1.1.4 Additional LARP3 functional roles 

Several additional roles for LARP3 in human cells have been suggested.  Human LARP3 has 

been shown to interact with telomerase RNA, with LARP3 overexpression associated with 

telomere shortening [257].  LARP3 has also been suggested to play a global role in 

microRNA maturation, by binding to the stem-loop structure of pre-mRNAs and stabilising 

them, a process requiring all RNA-binding domains [258].  LARP3 has been demonstrated to 

regulate gene expression in a novel manner through mRNA localisation.  The protein was 
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shown to bind the 3’UTR of peptidylglycine α-amidating monooxygenase (PAM) mRNAs, at 

the sequence UUAAAAUCACUAACA.  In a process dependent on the NRE, increased 

LARP3 expression led to sequestration of PAM mRNAs in the nucleus, and reduced PAM 

expression [259].   

As well as following poliovirus infection, translocation of LARP3 from the nucleus to the 

cytoplasm occurs during apoptosis, induced by either chemotherapy or UV irradiation [260, 

261].  Cleavage occurs at Asp374, potentially by activated caspase-3, with the N-terminal 

region lacking the nuclear localisation signal (NLS) found in the cytoplasm [261].  Following 

the induction of apoptosis in keratinocytes, LARP3 is also found in ‘apoptotic blebs’, 

structures at the surface of apoptosing cells [262], suggesting that following translocation 

from the nucleus to the cytoplasm, LARP3 may then be transported to the cell membrane.  

The functional significance of these movements has so far not been explained. 

 

1.4.1.2 LARP3 Structure 

LARP3 is currently the only LARP family member for which three-dimensional structural 

data is available.  The RRM1 motif of LARP3 has a classical structure, with a four-strand β-

sheet backed by two α-helices, though the arrangement of the terminal α-helix is atypical.  

The La motif itself possesses a variant winged-helix structure, with three helical insertions.  

These two domains, separated by a short linker, appear to function together to bind RNA 

[225, 263-265], with just two terminal uridylates sufficient for strong binding [265].  

Unusually, no contact is seen between the RRM1 β-sheet surface and RNA in crystal 

structures [264, 265], and this appears to represent a separate RNA-binding region, important 

for tRNA maturation and the RNA-chaperone function of LARP3 [239, 240].  
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Figure 1-11. LARP3 protein architecture. 

Schematic detailing the LARP3 protein structure.  Residue positions are marked in grey.  Key 
phosphorylation sites are marked with orange arrows.  Approximate amino acid positions for each 
protein region are given below the domain.  The NRE critical residues are given, though a region from 
residues 165 to 337 may be required [266]. A region of potential cleavage is marked by scissors (D374 
= apoptosis [261], Q358/G359 = poliovirus [246]) . LAM = La Motif, L = linker region, NRE = 
nuclear retention element, NLS = nuclear localisation signal. 

 

The C-terminus of the protein (residues 225-408) contains an atypical RRM, that does not 

regulate polyU binding, followed by a lengthy unstructured region [267].  This second RRM 

has been suggested to be important for other RNA interactions, such as that with HBV RNA 

[268].  The C-terminal region of LARP3 was found to exist as a monomer in solution [267], 

though previous groups have suggested it contains a dimerisation domain [269].  Other 

functions have also been localised to this C-terminal region.  Radiolabelled LARP3 injected 

into Xenopus oocytes translocates into the nucleus, and a nuclear localisation signal (NLS) at 

residues 383 to 400 was shown to be responsible. In addition, retention of LARP3 within the 

nucleus requires a nuclear retention signal or element (NRE), located within residues 165 to 

337, with amino acids 266-269 shown to be essential [266].  This nuclear retention element 

also appears to be critical for LARP3-mediated tRNA processing.  Mutant LARP3 lacking 

the element enters the nucleus to stabilise nascent tRNA, but these tRNA are no longer 5’- 

and 3’-processed and exported, and accumulate in the nucleus in complex with the mutant 
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protein [270].  The effects of the NRE are opposed by the RRM1, which appears to promote 

nuclear export [271].  

Phosphorylation of LARP3 also appears to be associated with localisation and function.  

Within the C-terminal domain is a short basic motif (SBM), which is important for RNA Pol 

III transcriptional activity [272, 273].  LARP3 protein phosphorylated just after this region, at 

serine 366, is found in the nucleoplasm bound to nascent tRNAs, whilst non-phosphorylated 

LARP3 is cytoplasmic and associated with 5’TOP mRNAs [255, 274].  This phosphorylation 

is accomplished in yeast by the protein kinase CK2, thereby inhibiting 5’TOP mRNA 

translation [274, 275]. 

 

Figure 1-12. Summary of LARP3 reported cellular functions. 

 

1.4.1.3 A role for LARP3 in cancer 

Accumulating evidence supports a role for LARP3 in cancer development and progression.  

Expression is upregulated in cervical cancer tissue and in oral squamous cell carcinomas 

compared to normal controls [252, 276], as well as in multiple cancer cell lines [277].  
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LARP3 knockdown reduces cell proliferation in HeLa cells, without inducing apoptosis 

[252], although the authors did not find a cell cycle shift that could explain this change in 

proliferation.  This effect is mediated by the binding of LARP3 to Cyclin D1 (CCND1) 

transcripts, where it promotes their translation in an IRES-dependent manner [252].  

Knockdown of LARP3 is also associated with reduced migration and invasion, an effect that 

may be mediated via the regulation of metalloproteinase expression [276].  LARP3 has also 

been linked to the epithelial-mesenchymal transition (EMT) in hepatocellular cancer, as the 

protein promotes translation of the IRES-containing transcripts of laminin B1, identified as a 

potential EMT driver [278].  

Akt pathway activation is a common event in cancer [279], and work in mouse glial cells has 

demonstrated that LARP3 is phosphorylated by Akt at T301 [280].  This phosphorylation 

stimulates translocation of LARP3 protein from the nucleus to the cytoplasm. Investigating 

LARP3-bound transcripts, and cross-referencing this with shifts in polysomal association, 

LARP3 was found to preferentially regulate the translation of over 200 transcripts, including 

key cancer-related genes such as VEGF, PDGFA, and BCL2L11 [280].   

As discussed above, following the induction of apoptosis with UV irradiation or 

chemotherapy treatment, LARP3 undergoes proteolytic cleavage. The N-terminal fragment 

localises to the cytoplasm where it binds mRNA [261], and can act to promote IRES-

mediated translation.  LARP3 promotes the IRES-mediated translation of X-linked inhibitor 

of apoptosis protein (XIAP), a regulator of programmed cell death that inhibits apoptosis in 

response to DNA damage [250].  This suggests LARP3 may play a role as a cytoplasmic 

apoptosis inhibitor, in response to pro-apoptotic stimuli.  LARP3 also enhances translation of 

Nrf2 [281], a transcription factor implicated in the evasion of apoptosis via BCL2 

upregulation [282]. An anti-LARP3 monoclonal antibody has been suggested as a potential 

mechanism for monitoring cell death in response to chemotherapy [283].   
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LARP3 protein has also been implicated in haematological malignancy.  The characteristic 

genetic abnormality in chronic myeloid leukaemia (CML) is a t(9:22) translocation, creating 

the BCR/ABL fusion oncogene [284].  This fusion protein upregulates LARP3 expression 

and, in turn, promotes the translation of MDM2.  MDM2, like BCR/ABL, is present at high 

levels in patients with CML, where it acts as a negative regulator of p53.  In this scenario 

therefore, it appears that LARP3 acts as the effector of a key oncogene [209].  Work in 

myeloproliferative neoplasms (MPN) has identified a similar role for LARP3. A gain of 

function mutation in JAK2 (V617F), which is extremely common in MPN, was found to 

result in increased p53 stabilisation, mediated by enhanced translation of MDM2 by LARP3 

[285].  Potential inhibitors of the LARP3-RNA interaction have recently been identified, and 

found to have biological activity in the inhibition of hepatitis B viral antigen production 

[286].  This suggests that it may be possible to generate anti-cancer therapies based around 

the disruption of the function of LARP3 in neoplastic cells. 

1.4.2 LARP7 

1.4.2.1 Structure and function 

LARP7 is the only LARP family member to contain a canonical RRM1 as found in LARP3 

protein, whilst the other LARP members contain RRM1-like domains [223].  LARP7 is also 

the only human LARP, apart from LARP3, to possess a second C-terminal RRM domain 

[226].  To date, only one RNA target has been confirmed for LARP7 in any given species, 

though the fact that it has been detected in mRNA pulldown experiments suggests other 

targets may exist in mammalian cells (Table 1-6) [87, 228].  Also known as PIP7S, human 

LARP7 binds the 7SK RNA. In Tetrahymena and Euplotes, both protist species that lack a 

7SK RNA, the LARP7 homologues p65 and p43 bind and stabilise telomerase RNA [287-

290].    
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Human 7SK RNA is an abundant small nuclear RNA (snRNA) synthesised by RNA pol III 

[291, 292]. The 7SK snRNA, as part of the 7SK snRNP (small nuclear ribonucleoprotein 

particle), which also includes methylphosphate capping enzyme (MePCE) and HEXIM1/2 

[293], acts as an inhibitor of the pro-transcriptional effects of the P-TEFb complex.  As 

discussed above (Section 1.3.3), P-TEFb is composed of CDK9 and cyclin T1, which 

promotes Pol II transcription elongation by phosphorylating DSIF, NELF and the CTD of Pol 

II [96, 97, 107].  The 7SK snRNP also plays a role in regulating alternative splicing [294].  

Three papers published in 2008 showed that LARP7 binds the majority of 7SK RNA in a 3′ -

UUU-OH-dependent manner, and is a key component of the 7SK snRNP [295-297].  This 

binding is associated with increased 7SK RNA stability and P-TEFb sequestration, with an 

associated drop in Pol II-mediated transcription [295, 296]. The inhibitory effect requires 

both the N- and C-terminal regions of LARP7 [296].  Residues 375-589 are critical for 

interaction with the P-TEFb component CDK9 [297].  LARP7 is also required as part of the 

7SK snRNPs role in alterative splicing [294].  Interestingly, LARP7 was shown to bind the 

5’TOP motif of S16 in vitro, an effect abolished by changing the first six nucleotides of the 

TOP sequence [297].  Whether this binding can be recapitulated in vivo, and its functional 

significance, has not yet been explored. 

Work in mouse embryonic stem cells (ESCs) has suggested that LARP7 knockdown may not 

always be associated with increased P-TEFb activity, possibly due to compensatory decreases 

in CDK9 protein expression.  Instead, LARP7 knockdown leads to a shift from a naïve to 

primed ESC state, associated with decreased Lin28 expression, due to alterations in Lin28 

mRNA stability, and not P-TEFb-mediated transcriptional inhibition [298].  As well as 

expression in mouse ESCs, LARP7 is expressed throughout mouse embryos [299], 

suggesting it may play a crucial role in development.  Interestingly, two independent studies 

of patients with an inherited disorders resulting in intellectual disabilities with microcephaly 
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or primordial dwarfism, identified frameshift mutations in LARP7 as the likely cause [299, 

300].  

1.4.2.2  A role for LARP7 in cancer 

LARP7 may play a key role in suppressing malignant transformation.  Knockdown of the 

gene in a benign mammary epithelial cell line, with an associated decreased in 7SK RNA 

abundance, led to the formation of three-dimensional colonies that were disorganised and 

showed irregular borders, comparable to those seen with malignant cells.  This was 

associated with disruptions in cell polarity and increased proliferation, and enhanced 

expression of oncogenes parathyroid hormone-like hormone (PTHLH) and transglutaminase 

2 (TGM-2).  These transformational effects were reversed by treating cells with 5,6-dichloro-

1-β-D-ribofuranosylbenzimidazole (DRB), an inhibitor of P-TEFb activity, confirming 

transformation is mediated in a P-TEFb-dependent manner [296].  In addition, analysis of 

LARP7 expression in breast cancer samples demonstrated low levels in invasive cancer 

samples compared to controls, with patients with the lowest expression having worse overall 

survival [301].  LARP7 knockdown in breast cancer cell lines promoted cell motility and 

enhanced invasion and cell metastasis in vivo.  This effect is mediated, at least in part, 

through the reversal of P-TEFb inhibition, which leads to transcriptional activation of genes 

associated with epithelial-to-mesenchymal transition [301]. 

A screen of microsatellite loci of patients with microsatellite-unstable gastric cancer 

identified a fameshift mutation at residue 330 of LARP7, due to microsatellite instability, in 

over 40% of cases: 7% of colorectal cancers with microsatellite instability also exhibited the 

same mutation [302].   LARP7 expression was subsequently shown to be significantly 

reduced in tissue from gastric cancers, compared to control tissue. In non-malignant gastric 

cells, LARP7 knockdown led to increased cell proliferation and enhanced migration, 
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associated with decreased abundance of 7SK RNA  [303].  LARP7 expression is also 

downregulated in tumours from patients with lymph node-metastatic cervical cancer, 

compared to those with localised disease [304], suggesting a potential role in metastasis. 

1.4.3 LARP 4 AND 4B 

The LARP4 subfamily is the least studied to date.  Two LARP4 genes are present in the 

human genome, LARP4 and LARP4b (previously LARP5) [223], which share 37% amino 

acid identity and 53% sequence similarity [226].  LARP4 proteins are absent from plants and 

yeasts, with a single copy in most invertebrates [223].  A gene duplication event is likely to 

have occurred early within the vertebrate lineage, with sequence divergence to form the two 

variants [224].  LARP4 and 4B show less La Motif conservation with LARP3 than LARP7, 

particularly in the side chains needed for 3’UUU-OH binding [226], suggesting they may 

interact with different RNA targets. In contrast to LARP3 and 7, LARP4 and 4b are 

predominantly cytoplasmic proteins.  Both also accumulate in stress granules following 

arsenite treatment [305, 306]. 

Both LARP4 and 4b possess a PAM2-like sequence in the N-terminal region, referred to as 

the PAM2w due to replacement of a conserved phenylalanine residue with tryptophan [306].  

PAM2 motifs are conserved 15 amino acid sequences involved in binding to polyA binding 

proteins (PABPs), at the PABPC domain, and are found in other PABP-interacting proteins 

such as eukaryotic translation termination factor 3 (eRF3) [307].  There are three cytoplasmic 

PABPs in humans, which play a critical role in mRNA translation and modulating mRNA 

stability [308, 309], with PABPC1 also able to shuttle between the nucleus and the cytoplasm 

[310]. PABPN1, the nuclear variant of PABP, is involved in the synthesis of the poly(A) tails 

of nascent transcripts, and also appears to regulate alternative cleavage and polyadenylation 

of mRNA [309, 311].  Both LARP4 and 4b interact with PABP via the PAM2-like motif 
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[305, 306], which appears highly conserved, an interaction enhanced by poly(A) RNA [306].  

The C-terminus of LARP4, in addition to the PAM2w region also appears to interact with 

PABP.   

LARP4 and 4b also bind RACK1 [305, 306], a scaffold protein that interacts with the 40S 

ribosomal subunit [312]: the C-terminus of LARP4b contains the interaction domain [305].  

Supporting a role in translation, LARP4 and 4b co-sediment with polyribosomes, and 

knockdown results in a 20-40% decrease in overall protein synthesis [305, 306].  In contrast 

to LARP4b, LARP4 has also been suggested to promote mRNA stability [306]. 

The N-terminal region of LARP4 binds RNA, with a greater affinity for poly(A) sequences 

than poly(U), and does not bind poly(C) or (G).  The sequence length appears significant, 

with 15 nucleotides required for strong poly(A) binding [306], in contrast to LARP3, where a 

10 nucleotide sequence with only two terminal uridylate residues was sufficient for high-

affinity binding [265].  A LARP4 RNA-IP with microarray analysis (RIP-CHIP) experiment 

identified ~2000 mRNAs in complex with the protein, though with no apparent enrichment 

for particular functional (GO) terms [306].   

Only one cancer-related study could be identified for the LARP4 family.  Here, knockdown 

of LARP4 in prostate cancer-derived PC3 cells produced elongated, bipolar cells with 

increased cell motility [313].  The patterns of expression and significance of both proteins in 

cancer cells remains to be determined. 

1.4.4 LARP6 

Although plants possess three LARP6 genes, humans have a single copy.  In addition to the 

LAM-RRM, the LARP6 family also possess a conserved C-terminal domain of unknown 

significance, named the La- and S1-associated (LSA) motif.  This is similar to a motif found 
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in CSP1 proteins, which also possesses an S1-like nucleic acid-binding domain [223].  Unlike 

LARP4 proteins, LARP6 has preserved the amino acid residues critical to UUU-3′OH 

recognition in LARP3 [226].  LARP6 also possesses a functional nuclear export sequence 

(NES) and nuclear localisation signal (NLS), and is found in both the nucleus and cytoplasm 

[314-316].  Highest expression of LARP6 is seen in the brain, with heart, skeletal and 

testicular tissue also showing strong expression [314]. 

The first paper describing LARP6 was published in 2007, where it was identified in a screen 

of genes expressed in intersegmental muscles (ISM) of the moth Manduca sexta during 

programmed cell death at the end of metamorphosis [314].  LARP6 appears to play a role in 

myogenesis [317, 318].  Work in murine C2C12 myoblast cells, which can differentiate into 

either multinucleated myotubes, satellite-like cells, or undergo apoptosis, demonstrated that 

LARP6 promoted myotubule differentiation. The apoptosis normally seen when C2C12 are 

induced to differentiate was enhanced by LARP6 overexpression [317].   The mechanism by 

which LARP6 mediates these effects has not yet been elucidated. 

Only one direct RNA target of LARP6 has so far been identified; the conserved stem-loop 

found in the 5’UTR of collagen alpha 1(I), alpha 1(II) and alpha 1(III) mRNAs.  This 

structure plays a role in regulating transcript translation, and is required for the proper 

assembly of the collagen triple helix [319].  LARP6 binds the stem-loop of all three 

transcripts, with both the LAM and RRM required.  Cai et al found that overexpression of 

LARP6 inhibited mRNA translation of all three transcripts, but LARP6 knockdown also 

produced the same effect [316].  They concluded that LARP6 at physiological levels 

promoted translation.  The effect of LARP6 on the promotion of collagen mRNA translation 

appears to involve the recruitment of RNA Helicase A, through interaction with the C-

terminal region of LARP6 [320].  LARP6 may also regulate mRNA stability, potentially by 
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mediating the interaction between vimentin filaments and collagen transcripts [321]. LARP6 

binding to the 5’UTR also seems necessary for determining transcript localisation [316].  

In a yeast 2-hybrid screen, LARP6 was found to interact with calcium/calmodulin-dependent 

serine protein kinase-C (CASK-C) [322].  This protein has been identified as a potential 

oncogene in gastric, colorectal and oesophageal cancer [323-325], relying on binding partners 

for its localisation [326].  The C-terminal region of LARP6 (residues 373-472) were 

sufficient to recapitulate binding [322]. 

1.4.4.1 A LARP6 role in cancer 

A review of a small breast cancer study revealed higher LARP6 expression in basal-like 

tumours compared to normal mammary epithelium [315].  Overexpression of LARP6 in 

MDA-MB-231 cells enhanced proliferation and invasion, associated with increased 

expression of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor 

(VEGF).  LARP6-overexpressing cells generated significantly larger tumours in vivo, 

compared to controls, with a significant increase in VEGF expression and tumour 

angiogenesis [315]. Work in Eahy926 cells, derived from the human umbilical vein 

endothelial cells (HUVECs), also supports a role for LARP6 in angiogenesis, where it has 

been shown to promote proliferation and apoptosis-evasion [327].  LARP6 also promotes 

VEGF expression in HUVECs following trauma [328], whilst it appears to undergo 

alternative splicing in hypoxic cells [329].  

1.4.5 LARP1 AND 1B 

In humans, there are two LARP1 proteins, LARP1 and LARP1b, whilst Arabidopsis and 

other plants have a third gene, LARP1c [223].   LARP1 and 1b, which share 59% sequence 

identity and 73% similarity, likely represent an ancient gene duplication event, as both are 

found in multiple lineages [226].  LARP1 proteins possess the LAM-RRM structure without 
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a second RRM and, in addition, the majority also have a C-terminal motif named the DM15 

region [330].  This motif is composed of one to four tandem repeats, and is found only in 

LARP1 proteins.  It is highly evolutionarily conserved, with 12 amino acids conserved in 

90%–100% of the species investigated in one study [223], and has been suggested to possess 

RNA-binding properties [330].  All studies to date have focused on the function of LARP1, 

and not LARP1b, and LARP1 therefore forms the primary focus of the following section. 

1.4.5.1 LARP1 mRNA binding 

Both LARP1 and LARP1b have been identified in high-throughput experiments as binding to 

mRNA [87, 228].  The amino acids in the LAM required by LARP3 for UUU-3'OH binding 

are conserved in LARP1 [226]. In RNA-sepharose pulldowns, C. elegans LARP1 was 

precipitated with both poly(U) and poly(G), but not by poly(A) or poly(C).  Full length 

LARP1 protein was required for maximal binding, but unlike LARP3, the C-terminal region, 

which contains the DM15, was still able to bind both polynucleotide sequences [330].  In 

contrast, human LARP1 has been reported to only bind poly(A) sequences [331].  Using an 

artificial construct containing an in vitro transcribed portion of the ACTB 3’UTR that was 5’-

capped and polyadenylated, Aoki et al pulled down associated proteins and characterised 

them with tandem mass spectrometry [331].  LARP1, 1B, 3, 4 and 4B were identified in this 

pulldown as 3’UTR-associated factors, but not LARP6 or 7.  However, only the binding of 

LARP1 and 1B, together with proteins such as PARN and PATL1, were abolished by the 

addition of an extra 35nt sequence, after the polyA60 tail.  Subsequent experiments 

demonstrated that binding was not dependent on the 5’cap, but was determined by polyA tail 

length, with a minimum of nine adenosine residues required. 3’UTR constructs ending with 

poly(C), (U) or (G) showed no binding, whilst swapping the last residue of the A9 sequence 

for a different nucleotide almost totally abolished LARP1 binding [331].  It is worth noting 

that all the RNA binding experiments detailed in this paper utilised an artificial construct 
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containing a portion of the ACTB 3’UTR.  However, in the same paper, the authors 

demonstrate that LARP1 binds ACTB mRNA.  In addition, I report in this thesis that ACTB 

mRNA expression increases on LARP1 knockdown (see Section 3.4.1), suggesting that 

LARP1 may directly regulate ACTB mRNA stability and translation, potentially by binding 

sequences in the 3’UTR.  The use of the ACTB 3’UTR in the experiments of Aoki  et al could 

therefore have influenced the outcome of these reported experiments [331]. 

1.4.5.2 mRNA stability 

As would be expected for a poly(A)-binding protein, Aoki et al reported LARP1 

immunoprecipitated all mRNAs tested, with minimal binding of ribosomal and histone 

RNAs.  LARP1 knockdown was associated with decreased abundance of 5’TOP mRNAs, 

such as RPS6 and RPL7, but not non-TOP transcripts, such as GAPDH.  This decrease was 

not associated with a change in pre-mRNA levels, and the authors concluded that this 

therefore represented a selective effect on 5’TOP mRNA stability [331].  The mechanism by 

which the 3’-associated protein was interacting with a 5’ motif was not established. 

Further evidence of a role in stability comes from a study of LARP1a in Arabidopsis.  Heat 

stress-induced global mRNA downregulation was impaired in LARP1a-/- cells: over 1,000 

transcripts that showed decreased abundance in heat-stressed wild-type plants did not alter in 

LARP1a-/- plants, an effect mediated at the level of RNA stability [332].  LARP1a was shown 

to with an N-terminal region of the 5’ exonuclease XRN4 in a heat stress-dependent, but 

RNA-independent, manner: knockdown of either LARP1a or XRN4 reduced mRNA decay of 

selected transcripts on heat stress, suggesting LARP1 may regulate transcript stability via 

XNR4 [332].  XRN1, the human homologue of XRN4, was not detected in a LARP1 

immunoprecipitation in human ovarian cancer cells [333], suggesting a different mechanism 

of action may have evolved for plant LARP1.  Knockout of LARP1c in Arabidopsis had no 
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effect on growth and development of plants, though heat-stress was not investigated.  In 

contrast, LARP1c overexpression was associated with premature leaf senescence, and 

increased expression of senescence-associated genes.  LARP1b overexpression produced a 

similar, though less pronounced effect whilst no effect was seen on LARP1a overexpression, 

suggesting functional divergence of the LARP1 family members in plants. 

Both human and Drosophila LARP1 interact with PABP [333-335], a protein that is known 

to promote mRNA stability [336, 337].  LARP1-PABP interaction has been reported to be 

resistant to RNAse A treatment [333].  However, as this enzyme only cleaves to the 3’ of 

pyrimidines, it is likely the poly(A) tail is largely undigested, and could still be bridging the 

interaction in these experiments.  Indeed, in the study of Aoki et al., RNAse I treatment 

abolished PABP binding, suggesting it is RNA-dependent.  This contrasts with the findings 

of Blagden et al, where Drosophila LARP1 interaction with PABP was maintained following 

digestion with RNAse A, I and V1 [334].  The C-terminal region of LARP1 appears critical 

for the interaction, with a deletion of the last 150 amino acids, including part of the DM15 

repeat, sufficient to abolish binding [335]. 

Recent work by Dr Manuela Mura in the Blagden lab has demonstrated that LARP1 is in 

complex with several thousand different mRNAs in HeLa cells, the LARP1-mRNA 

interactome.  LARP1-associated transcripts are enriched for cancer-related functions such as 

MAPK signalling, extracellular-matrix interactions, focal adhesion and regulation of the actin 

cytoskeleton (Mura M, Hopkins TG et al., in press).  She has shown that LARP1 can act to 

promote the stability of selected transcripts, including mTOR mRNA. 

Supporting a role in mRNA fate determination, LARP1 has been found in P bodies and stress 

granules in Arabidopsis cells [332]. In C. elegans, LARP1 also accumulates in P bodies, and 
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has been hypothesised to play a role in selectively promoting the mRNA decay of transcripts  

encoding MAPK pathway components [330] and fem-3 mRNA [338]. 

1.4.5.3 LARP1 in mRNA Translation 

As well as the 3’UTR, other groups have shown that LARP1 is associated with the 5’ mRNA 

cap [333, 335].  In a 5’ cap pulldown coupled with mass spectrometry in HEK293 cells, 

LARP1 was the only LARP family member identified [335].  LARP1 possesses multiple sites 

that are phosphorylated downstream of mTORC1 activation [339, 340], and LARP1 interacts 

with RAPTOR, a component of mTORC1, but not the mTORC2 component RICTOR [335].  

This suggests it may be a direct mTORC1 phospho-target.   LARP1 and PABP 5’cap-

association is dependent on mTORC1 activation [335].   

Ribosome profiling has shown that LARP1 cosediments with polysomes, as well as 

subpolysomal fractions [332, 333, 335].  This polysomal association appears dependent on 

mTOR pathway activation, as does that of PABP [335].  LARP1 mutants lacking the C-

terminal region required for PABP interaction can no longer associate with polysomes, 

suggesting PABP may be required to localise LARP1 to actively translated transcripts.  

Supporting a role in translation, transient knockdown of LARP1 in HeLa cells resulted in a 

15% decrease in total protein synthesis [333], whilst stable lentiviral knockdown in HEK293 

cells produced a 50% decrease [335].  This knockdown is also associated with a decrease in 

polysome assembly in human cells [333, 335], but not in plants [332].  LARP1 knockdown 

also leads to an increase in the hypophosphorylated form of 4E-BP1, which binds eIF4E and 

suppresses cap-mediated translation [333].  When comparing the translational inhibitory 

effects of LARP1 knockdown, Tcherkezian et al found a more pronounced effect on 5’TOP 

mRNAs, than non-TOP mRNAs [335]. LARP1 protein was also found to be more strongly 

associated with 5’TOP mRNAs than controls [335], though only five 5’TOP mRNAs and 10 
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non-TOPs were assessed in both experiments.  Total mRNA levels, and mRNA stability were 

not assessed.  Of note, this study utilised GAPDH and ACTB to normalise their data, both 

genes that I find show significantly altered mRNA abundance following LARP1 knockdown 

(see Section 3.4.1). 

1.4.5.4 LARP1 in development 

Work in Drosophila, C. elegans and mice strongly suggest that LARP1, like LARP3, plays a 

critical role during development. LARP1 was first identified as part of a random P-element 

insertion screen of chromosome 3 mutants in D. Melanogaster [341].  It is highly expressed 

in the fly testis, and LARP1 mutations induce male and female sterility, and are associated 

with abnormalities in male meiosis [334, 342]. C. elegans homozygous for LARP1 truncating 

mutations also display defective oogenesis, an effect that can be reversed by upregulating 

Ras-MAPK signalling [330]. 

Interestingly, in Drosophila, where LARP1 has also be shown to interact with PABP, PABP 

mutants producing a similar phenotype to LARP1 mutants, suggesting both proteins fulfil a 

similar role in development [334]. Transcription of Drosophila LARP1 is promoted by the 

development-associated transcription factor Ultrabithorax (Ubx), whilst Teashirt (Tsh) 

appears to suppress expression [343]. Work in mouse embryos showed LARP1 to be highly 

expressed in the spinal cord and dorsal root ganglia, developing limb buds, as well as in 

salivary glands and the developing lungs and gastrointestinal tract [343].  

LARP1b may also be important in development.  A study in mouse embryonic stem cells 

found LARP1b expression to be upregulated during forced differentiation [344]. Conversely, 

work in Drosophila embryos has identified high expression of LARP1 in neuroblasts, but not 

in more differentiated neuronal cells [334]. In mice, LARP1 binds mRNA in embryonic stem 
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cells, and expression drops during cell differentiation [345]. Both proteins may therefore be 

involved in regulating pluripotent states. 

1.4.5.5 LARP1 Splice variants 

Two isoforms of LARP1 are currently validated at a protein level in Uniprot (Uniprot.org), 

one of 1096 amino acids (aa), which is annotated as the dominant isoform, (1), and one of 

1019aa, (2).  The 1096aa variant is not recorded in Ensembl.  These two isoforms are 

generated by alternative splicing of the first exon, leading to differences at the N-terminus of 

the protein, with isoform (1) possessing a unique 145 amino acid sequence, whilst isoform (2) 

has a unique 68 residue sequence (see Section 3.3.5 for diagram).  In Western blots of 

LARP1 produced by different groups, different antibodies and even in different species, two 

protein bands are usually visible [331-335, 346], and both decrease on LARP1 knockdown 

[331, 333], suggesting these may represent the two isoforms.  Indeed, in a survey of breast 

cancer lines, researchers designed primers specific for isoform (1) and showed it to only be 

expressed at an RNA level in one cell line, MCF7 [346].  Western blotting confirmed the 

higher protein band, corresponding to the 1096aa isoform (1), was present in MCF7 cells, and 

absent from two other cell lines that lack isoform (1) mRNA (ZR-7S, HS578T). Isoform (1) 

was more likely to be expressed in non-triple negative breast cancers than in other breast 

cancer subtypes [346], suggesting the different isoforms may play different functional roles.   

Supporting the existence of multiple LARP1 isoforms, in C. elegans, three LARP1 splice 

variants have been identified of 5, 6.7 and 7.5kb in length.  The 5kb variant was abundant in 

adult females and embryos <2 hours old, whilst the 7kbp fragment was seen beyond this time 

point, and in adult males and females. The 6.7kbp fragment was found only in males and 

older embryos [343].  This tightly regulated distribution of isoform expression further 

reinforces the potential that different isoforms possess different functions. 
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1.4.5.6 Role in cancer 

Only one study has so far investigated LARP1 expression in depth in human malignancy.  

LARP1 was highly expressed in hepatocellular cancer (HCC)-derived cell lines, at a protein 

and mRNA level, when compared to a benign cell line [347].  In addition, higher LARP1 

protein levels were seen in HCCs compared to non-malignant adjacent liver tissue from the 

same patient.  Analysis of an independent mRNA expression array dataset of 268 HCC 

tumours confirmed these findings, with significantly increased LARP1 expression, compared 

to normal adjacent tissue.  In a study involving 272 patient samples, LARP1 was an 

independent predictor of reduced overall survival in multivariate models: patients with high 

LARP1 expression had a 25% increased risk of death at any time.  This survival association 

was greater than that seen for tumour size or number, indicating a highly clinically significant 

trend.  The ability of LARP1 protein levels to predict outcome outperformed the current gold-

standard circulating biomarker, alpha-foetal protein (AFP) [347].   

At the level of cell biology, LARP1 appears to play a role in promoting cell motility, 

interacting with cytoskeletal components and determining the organisation and distribution of 

actin.  In addition, LARP1 protein is concentrated at the leading edge of migrating cells, 

suggesting it may play a role in localising mRNA expression [333].  In human cells, LARP1 

knockdown inhibits proliferation, with variable effects on the cell cycle, and induces 

apoptosis in some cancer cell lines studied so far [333, 335].   

LARP1 has been identified as a downstream phospho-target of the oncogenic PI3K signalling 

cascade [348] and is also phosphorylated in response to DNA damage [349], the mechanism 

of action of many commonly used anti-cancer agents, such as cisplatin. Significantly, LARP1 

has also been independently identified in two separate studies as a downstream phospho-

target of mTORC1 signalling [339, 340], a pathway frequently activated in cancer, and 
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capable of promoting cancer cell invasion and metastasis [152].  The effects of LARP1 

phosphorylation have not yet been characterised but, like LARP3, may have a substantial 

impact on LARP1 localisation or function.  As well as Raptor, LARP1 has also been show to 

interact at a protein level with RRP1B, associated with modulating metastatic potential in 

cancers [350], and the oncogenic transcription factor and RNA-binding protein YB-1 [333, 

351].   

1.4.6 THE LARP FAMILY IN SUMMARY 

Despite their shared RNA-binding domains, it is clear that LARP proteins exhibit significant 

heterogeneity both in their RNA targets and their cellular functions (summarised in Table 1-

6).  Although the La motif is highly conserved, not all family members show conservation in 

the residues critical for LARP3 RNA-binding, suggesting the RNA affinity of this domain 

can be modified. There seem to be significant differences in the nucleotide binding-

preferences of LARP proteins, and in the minimum number of nucleotides required for 

binding.  The most striking structural differences between LARP proteins are found in the C-

terminal regions, which appear critical to the function of several family members and may 

form the basis of many differences in their functions.  All LARP proteins, apart from LARP6, 

have been identified in high-throughput experiments as binding mRNA [87, 228].  This is 

particularly surprising in the case of LARP7, as no mRNA targets have yet been identified, 

and indicates new functions may be uncovered.  LARP3 appears to shuttle between the 

nucleus and cytoplasm, with key roles in each, and LARP6 is also present in both 

compartments.  Whilst LARP7 is nuclear, LARPs 1 and 4 are predominantly cytoplasmic: 

although there is limited data to date, it is tempting to speculate that these three proteins may 

also shuttle in certain situations. 
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LARP1 stands out as the largest protein in the human LARP family, with a more central 

LAM-RRM structure than other family members (Figure 1-10).  The DM15 region, unique to 

LARP1 proteins, is striking in its degree of conservation, and may represent a novel RNA-

binding motif.  This suggests that LARP1 protein may functionally differ from other family 

members.  Like LARP3, LARP1 appears to have diverse functional roles, and is implicated in 

the regulation of both mRNA stability and translation.  The recent discovery that LARP1 

expression is upregulated in hepatocellular cancer, where it is a highly significant predictor of 

poor outcome, suggests a potential oncogenic function for the protein.  This is reinforced by 

the finding that LARP1 appears to play key roles during embryological development, and 

potentially in the maintenance of a pluripotent state.  Further work is needed to investigate 

the role of LARP1 within the cancer cell.   
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Table 1-6. A summary of the LARP family. 

A summary of LARP proteins, with details of human isoforms (UniProt.org) and chromosomal 
locations.  Predicted cellular localizations were provided by the online database COMPARTMENTS 
[352]. mRNA binding data in HEK293 cells was taken from the work of Baltz et al, and figures 
represent the log2 fold-change in protein levels between immunoprecipitations with and without 
mRNA-protein crosslinking. NS = non-significant.  LARP6 was not identified in either mRNA-binding 
studies.   

Protein Size in 
amino acids 
(isoforms) 

Genomic 
location 

Predominant 
protein 

localisation 

mRNA-
bound in 

HeLa 
cells [87] 

mRNA-bound 
in HEK293 

immuo-
precipitation 

(log2FC 
enrichment) 

[228] 

Known domains 
[226] [223] 

Nucleotide 
affinity 

LARP1 1096 (1019) 5q33.2 Predominantly 
cytoplasmic + 
Nuclear 

Yes 4.06 LAM-RRML5, 
DM15 

C. elegans 
PolyU> PolyG 
H. sapiens PolyA 
(>9nt) 

LARP1b 914 4q28.2 Nuclear and 
cytoplasmic 

Yes (NS) 4.15 LAM-RRML5, 
DM15 

Unknown 

LARP3 408 
 

2q31.1 Predominantly 
Nuclear  
(Cytoplasmic 
following 
stress) 

Yes 3.06 LAM-RRM1, 
RRM2 

3’ oligo(U)  
Cellular and viral 
IRES 
5’TOP mRNAs 

LARP4 724 (605, 
723, 730, 
653, 653, 
445) 

12q13.12 Cytoplasmic 
(annotated as 
cytoplasmic + 
nuclear) 

Yes 4.44 vPAM2, LAM-
RRML4 

H. sapiens 
PolyA>PolyU 
(>15nt) 

LARP4b 738 10p15.3 Cytoplasmic 
(annotated as 
cytoplasmic + 
nuclear) 

Yes 4.45 vPAM2, LAM-
RRML4 

Unknown 

LARP6 491 (93) 15q23 Cytoplasmic + 
Nuclear 

Not 
identified 

Not identified LAM-RRML3, 
LSA 

Collagen 5’UTR 
stem loop 

LARP7 582 (214, 
589) 

4q25 Nuclear 
(annotated as 
cytoplasmic + 
nuclear) 

Yes 2.06 LAM-RRM1, 
RRM2 

3’ oligo(U) 
S16 TOP motif 
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1.5  STUDY HYPOTHESIS 

Over the last two decades, significant progress has been made in determining the origins of 

ovarian cancer and in understanding the molecular basis of its development.  Unfortunately, 

we now know ovarian cancer to be a complex and genetically highly heterogeneous disease. 

Although our increased knowledge of the dysregulated pathways in EOC has led to trials of 

targeted agents, these have so far met with limited success [353].   

The central role of post-transcriptional regulation in the development of malignancy is an 

area of growing research interest.  It has been suggested that the majority of the regulation of 

gene expression is determined post-transcriptionally [71], which has important implications 

for our understanding of cancer development and neoplastic cell plasticity.  The journey from 

transcription of nascent mRNAs to their translation in the cytoplasm is a highly complex and 

tightly regulated process, some aspects of which we are only just beginning to clarify. At the 

heart of determining RNA fate are a large and diverse family of RNA-binding proteins 

(RBPs).  More highly expressed that other regulatory proteins [75], there may be over 1,500 

genes encoding proteins with RNA-binding properties.  To date, the functional role of 

relatively few RBPs has been studied in significant depth. 

La/LARP3 was one of the first RBPs to be characterised. Over forty years of research has 

revealed it to participate in an extensive array of functions, from promoting mRNA 

translation to ensuring correct tRNA folding.  We now recognise LARP3 as a member of a 

family of highly conserved proteins that share similar RNA-binding motifs.  LARPs play 

diverse roles within normal cells, but are increasingly being recognised as significant to 

cancer development and progression.  In particular, LARP1 appears to regulate both mRNA 

stability and translation, and, at the level of cell biology, promotes cell motility, survival and 

proliferation.  This suggests that LARP1 expression may be beneficial to the cancer cell.  
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Indeed, a recent study has revealed that high expression of LARP1 is seen in hepatocellular 

cancers, and that patients with the highest LARP1 levels in their tumours have a significantly 

worse prognosis [347], suggesting a key role in determining the aggressive nature of 

malignancies.   

I hypothesise that the central role of LARP1 within the normal cell suggests it may play a key 

role in malignant progression, and may therefore function as oncogene in several cancer 

types, including hepatocellular and ovarian cancer.  Ovarian cancer is disease in which the 

development of treatment resistance leads to unchecked progression and ultimately patient 

demise.  Targeted agents inhibiting specific oncogenic pathways have so far showed limited 

benefit in this disease.  LARP1 may potentially act at the post-transcriptional level to regulate 

the expression of genes implicated in multiple oncogenic pathways, controlling behaviours 

such as cell motility and survival.  If this is the case, it may have potential as a disease 

biomarker and potential therapeutic target. 

1.6  STUDY AIMS 

To date, no study has investigated LARP1 expression in other cancers, nor explored in-depth 

the mechanism by which LARP1 may promote cancer progression. The aims of this PhD 

project were therefore to; 

1. Investigate the link between LARP1 expression and cancer 

2. Ascertain if LARP1 protein is present in human plasma and determine if levels 

are linked to underlying malignant pathology 

3. Examine whether circulating or intra-tumoural LARP1 protein has potential as 

a biomarker in ovarian cancers 

4. Validate in vivo the role of LARP1 in cancer progression 

5. Determine the in vitro effects of LARP1 modulation on key neoplastic traits 

6. Identify LARP1-regulated target to explain the observed phenotype. 
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2 CHAPTER II – MATERIALS AND 

METHODS 
 

2.1  GENE EXPRESSION ARRAY DATA 

For the Oncomine summary analysis (www.oncomine.org), studies that demonstrated a fold 

change in LARP1 expression of ≥1.5 between cancer and non-cancer samples and a p-value ≤ 

0.05, were taken as statistically significant.  Expression data for LARP1 were obtained from 

Oncomine for 3 independent ovarian datasets (TCGA [12], Hendrix et al. [354], Bonome et 

al. [355]).  Fold change was calculated as median-centered intensity of each cancer sample 

divided by the mean of non-cancer samples.  Other data were obtained from the GEO 

repository (http://www.ncbi.nlm.nih.gov/geo/) as described in figure legends. Significance 

was calculated using the Student t-test.  Survival association was determined by Cox 

regression analysis using the survival package of R.  Progression-free survival data in ovarian 

cancer and overall survival data in breast cancer were obtained from kmplot.com [356-358].  

Array gene expression data for PROM1 in the NCI60 panel was obtained from the CellMiner 

online tool [359].  

2.2  IMMUNOHISTOCHEMISTRY 

A tissue microarray (TMA; OV801) containing normal ovarian tissue and ovarian cancer 

cores (n=40) was obtained from US Biomax (Rockville, MA), as were two cervical cancer 

tissue arrays (CR601 and CR481) that included the following specimens: normal cervix 

(n=12), cervical intraepithelial neoplasia (CIN; n=35) and invasive squamous cervical cancer 

(n=36). Other TMAs were developed in Imperial College as detailed below.  All 
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immunohistochemical staining was performed by the Imperial College Healthcare NHS Trust 

Pathology Core Facility. Briefly, paraffin was removed from slides, sections were rehydrated 

in graded alcohols and then heated in a microwave oven at 900W for 20 min. Slides were 

cooled at room temperature before adding the anti-LARP1 (SDIX, Newark, DE) or anti-Ki67 

antibody (Leica Biosystems, Milton Keynes, UK) and incubated overnight.  Secondary or 

biotinylated-secondary antibodies were applied and incubated for 1 hour at room temperature 

and processed with the Polymer-HRP Kit (BioGenex, Fremont, CA), Vectostain ACC Kit 

and Impact DAB (both Vector Laboratories Inc., Peterborough, UK). Tissues were 

counterstained with haematoxylin. Each patient sample was represented by one core.  This 

core was visualised in its entirety in a single field of view and intensity of staining was 

defined for each specimen (0-3, with 0 being stain negative and 3 being the most intense) and 

multiplied by the percentage of cancer cells stain-positive in that tissue core (to give a total 

score out of 300).  Scoring was performed by Consultant Histopathologists (Dr Justin Weir, 

Dr Francesco Mauri and Dr Mona El-Bahrawi), apart from that for OV801 which was scored 

by TGH. All images were captured by TGH using a Nikon Eclipse ME600.  All analysis was 

performed by TGH.  Xenograft samples were processed in the same manner as clinical 

TMAs. 

2.3  CELL CULTURE AND DRUG TREATMENT 

OVCAR8, HeLa, PEO1, PEO4, IGROV1 and OVCAR4 cells were kindly provided by the 

Ovarian Cancer Action Biobank, and were genotyped prior to use. SKOV3 and OVCAR3 

cells were obtained from ATCC. OVCAR3 cells were cultured in RPMI (Gibco) 

supplemented with 20% foetal calf serum (FCS) and 0.01 mg/ml bovine insulin (Sigma-

Aldrich, St. Louis, MO). All other lines were cultured in RPMI with 10% FCS, with the 

exception of HeLa cells, which were maintained in DMEM (Gibco). All media was 
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supplemented with L-glutamine (Life technologies, Paisley, UK) to a final concentration of 

2mM.  All lines were cultured at 37°C in 5% CO2.  For hypoxic challenge, cells were 

maintained in a nitrogen-supplemented atmosphere with 1% O2. For serum-starvation, cells 

were cultured in media containing 0.1% FCS and for glumatine-depleted conditions, media 

containing 10% FCS, but without additional L-glutamine was used.  For drug treatments, 

cells were exposed to cisplatin (Accord Healthcare, Middlesex, UK), gemcitabine (Hospira, 

Lemington Spa, UK) and paclitaxel (TEVA UK, Castelford, UK) at the stated concentrations. 

Salinomycin (Sigma-Aldrich) was resuspended in DMSO and added to culture medium. 

2.4  MTT VIABILITY AND ACTIVATED CASPASE 

APOPTOSIS ASSAYS 

For MTT labelling, 5-10 x 103 cells were cultured at 37°C in 96-well plates with 100µl of 

media and labelled with 20µl of MTT (Sigma-Aldrich) at 3 mg/ml for 1 hour.  The resulting 

precipitate was solubilised overnight with 10% SDS in 0.01M HCl. Absorbance at 570 nm 

was recorded on an OPTImax microplate reader (Molecular Devices, Wokingham, UK).  

MTT assays were performed at the timepoints specified in Figure legends.  Caspase 3/7 

activity was assessed using the CaspaseGlo-3/7 Assay (Promega, Southampton, UK).  Cells 

were cultured at 37°C in white opaque 96-well plates (Corning, Ewloe, UK).  CaspaseGlo 

reagent was added to each well and plates left at room temperature for 1 hour before reading 

on a LUMIstar Optima plate reader (BMG Labtech, Cambridge, UK).  Assays were 

performed at 24 hours, unless otherwise stated. 

2.5  CANCER CELL-CONDITIONED MEDIA 
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Ovarian cancer cells were seeded in 10cm dishes overnight.  The following day, cells were 

washed twice with PBS, then cultured for 24 hours in FCS-free media.  Serum-free media 

was used to avoid enriching for serum components, and because B. taurus LARP1 has a 96% 

sequence identity to the human protein (as determined by protein BLAST) and could produce 

false positives. Cell-conditioned media was collected and spun at 300g for 5 minutes to 

remove floating cells.  The supernatant was spun at 12,000rpm for 20 minutes at 4°C to 

remove cell debris.  Protein remaining in the supernatant was concentrated by ultrafiltration 

using Amicon Ultra-4 10kDa Centrifugal Filter Units (Merck Millipore, Darmstadt, 

Germany) as per manufacturer’s instructions.  Following addition of protease (Roche, 

Welwyn Garden City, UK) and phosphatase inhibitors (Merck Millipore), concentrated media 

was frozen at -80°C. Media was mixed with Laemmli buffer (Biorad) and analysed by 

Western blotting. The non-conditioned media control was treated in exactly the same way as 

cell-conditioned media, with the exception of the omission of cancer cells from the initial 

10cm plate incubation. 

2.6  PROTEIN EXTRACTION AND WESTERN 

BLOTTING 

Cells were washed and incubated with protein lysis buffer (1% NP-40, 10 mM Tris-HCl pH 

7.5, 150 mM NaCl, with protease and phosphatase inhibitors as before) for 10 minutes on ice. 

Lysates were cleared by centrifugation and protein was quantified using the microBCA 

protein assay kit (Thermo Scientific, Loughborough, UK). Protein samples were boiled with 

Laemmli buffer and separated by SDS-PAGE using the BioRad Mini Trans-Blot system. 

Proteins were transferred to nitrocellulose membranes. Blocking and primary antibody 

incubation was performed according to the manufacturers’ instructions (Table 2-1). 
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Appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies were obtained 

from Dako.  All washes were performed in Tris-buffered saline (TBS) supplemented with 1% 

TWEEN.  Blots were developed using the Imobilion HRP substrate (Millipore) and 

luminescence visualised with X-ray film. 

To separate total cellular protein into nuclear and cytoplasmic fractions, the NE-PER Nuclear 

and Cytoplasmic Extraction Kit was used according to the manufacturer’s instructions 

(Pierce, Rockford, IL). 

Table 2-1. Antibodies used in western blotting 

Antibody Species Supplier Dilution 

LARP1 Rabbit SDIX 1:5000 

LARP1 Mouse Abnova 1:1000 

HSP60 Rabbit Abcam 1:5000 

BCL2 Mouse Santa Cruz 1:200 

BIK Goat Santa Cruz 1:200 

Lamin A Mouse Abcam 1:1000 

 

2.7  PATIENT PLASMA 

Blood from healthy volunteers and patients was collected into lithium heparin vacutainers, 

transferred on ice and immediately spun at 2000g for 10 minutes at 4°C. Plasma was 

removed with pipettes and frozen at -80°C.  Additional healthy volunteer samples were 

obtained from Sera Laboratories (Haywards Heath, UK). 

2.8  LARP1 ELISA 

Nunc MaxiSorp 96-well plates (Thermo Scientific) were coated overnight at 4°C with anti-

LARP1 antibody (mouse; Abnova, Taipei, Taiwan) in carbonate/bicarbonate buffer (0.15 M 
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sodium carbonate, 0.35 M sodium bicarbonate, pH 9.6).  Plates were blocked with 5% casein 

solution (Pierce), then incubated with patient samples diluted 1:20 in AD3 assay diluent 

(Neuromics, Minneapolis, MN).  A standard curve was generated from serial dilutions of 

recombinant LARP1 protein (Abnova) in AD3 buffer. Plates were washed with PBS with 

0.5% TWEEN (PBST), then incubated with anti-LARP1 antibody (rabbit, SDIX) diluted 

1:1000 in PBST.  Following a further wash in PBST, plates were incubated with peroxidase-

conjugated goat anti-LARP1 secondary antibodies (Dako, Ely, UK) diluted in PBST.  After a 

final wash in PBST, plates were developed using Luminata Forte ELISA HRP substrate 

(EMD Millipore, Sand Diego, CA) and read using a LUMIstar Optima plate reader (BMG 

Labtech).  Spike-and-recovery experiments were conducted by introducing known quantities 

of recombinant protein to at least five healthy control plasma samples, with values compared 

to a PBS-spiked control.  Sample values were interpolated from the recombinant protein 

standard curve using a four-parameter logistic regression model, with GraphPad Prism 

(GraphPad Software). 

2.9  TRANSFECTION, TRANSDUCTION AND STABLE 

CLONE GENERATION 

2.9.1 PLASMID TRANSFECTION 

LARP1 overexpression constructs were generated by Dr. Normala Abd-Latip.  Briefly, 

LARP1 cDNA was obtained from the pOTB7-LARP1 vector (Life technology). PCR primers 

were designed for gene amplification with the addition of attB sites. The PCR product attB-

LARP1 was cloned into the Gateway Technology System expression plasmid pT-Rex-

DEST30 (Life Technology), generating a new construct, pTrex-LARP1.  The ‘empty’ vector 
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control carrying the LacZ gene was named pTrex-LacZ. Plasmids containing shGFP 

(TR30016) and shLARP1 (TF303581D) sequences were obtained from Origene.  The Flag-

BCL2 overexpression plasmid, together with a matched empty-vector control, were both 

sourced from Origene.  Cells were transfected with 0.4ug of plasmid DNA per 6 well, or a 

comparable quantity relative to plate/flask surface area, using Effectene (Qiagen, Manchester, 

UK), as per manufacturer’s instructions, and selected with 2µg/ml puromycin or 1000 µg/ml 

geneticin after 24 hours.  SKOV3-shLARP1 cells were created by plasmid transfection of 

SKOV3 cells with Origene shRNA constructs (as detailed above) in two T75 flasks. After the 

addition of puromycin selection, a minimum of two hundred clones were obtained from each 

flask, and these clones were pooled, expanded and frozen down for future use, with protein 

extracted to confirm knockdown.  Clones were not used for more than 8-10 passages and 

were maintained in selective media. 

2.9.2 LENTIVIRAL TRANSDUCTION 

Lentiviruses were produced using the Mission lentiviral system (Sigma-Aldrich).  HEK293T 

cells were co-transfected with a packaging vector, envelope vector and shRNA transfer 

vector using lipofectamine. Mission shRNA constructs were also obtained from Sigma-

Aldrich (Control [SHC0016] and shLARP1 [TRCN0000150984, TRCN0000152624, 

TRCN0000152891]).  Replication-incompetent viral particles were collected at 24 and 48 

hours by removing the culture medium, centrifuging at 300g to separate floating cells and 

then passing it through a 0.45µM filter, before freezing at -80°C.  To create lentiviral-

transduced lines, cells were incubated with virus and selected with 2µg/ml puromycin after 

24 hours.  

2.9.3 TRANSIENT KNOCKDOWN 
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For transient knockdown, sub-confluent cells were transfected using Dharmafect 1 (GE 

Dharmacon, Lafayette, CO) according to the manufacturer’s instructions, with control non-

targeting siRNA (GGUCCGGCUCCCCCAAAUG) or LARP1-targeting siRNA 

(GAAUGGAGAUGAGGAUUGC, AGACUCAAGCCAGACAUCA) synthesised by 

Eurofins (Hamburg, Germany), or BCL2-targeting siRNA (D-003307-02) obtained from GE 

Dharmacon. Transfection mixtures comprised siRNA diluted to a final concentration of 

100nm in OptiMEM (GIBCO). 

2.10 XENOGRAFT EXPERIMENTS 

All animal experiments were performed in accordance with the United Kingdom Home 

Office Guidance on the Operation of the Animal (Scientific Procedures) Act 1986 and within 

the published guidelines for the welfare and use of animals in cancer research [360]. Female 

NOD-SCID, SCID-Beige or NOD-SCID IL2R-gammanull (NSG) mice (aged 6–8 weeks; 

Charles River, Margate, UK) were used. HeLa (1 × 106) and SKOV3 cells (2 × 106, unless 

otherwise specified) were injected subcutaneously into the flanks of mice (at least 5 per 

cohort).   For limiting dilution experiments, cells were diluted 1:1 in phenol-free growth 

factor-reduced Matrigel (BD Biosciences, San Jose, CA) prior to implantation.  Tumour 

dimensions were measured using electronic callipers and tumour volumes calculated by the 

equation: volume = (π/6) × a × b × c, where a, b, and c represent three orthogonal axes of the 

tumour.   Tumours were classed as measureable when they reached ≥5mm in any axis.  

Experiments were terminated at 2 months, or before any mouse reached pre-set welfare 

limits. Tumours were collected and immediately fixed in 10% formalin for 48 hours before 

paraffin embedding and sectioning.    

2.11 CLONOGENIC ASSAYS 
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Single-cell suspensions were seeded in 10cm plates, with 1 - 5x 103 cells per plate, and 

incubated for 2 weeks.  Colonies formed were fixed in ice-cold methanol and stained with 

0.5% crystal violet. Plates were photographed using a GE ImageQuant LAS 4000 and 

colonies were counted with ImageJ.  

2.12 MIGRATION ASSAYS 

Cells were cultured to confluence in 6-well plates and serum-starved (0.1% FCS) overnight 

before a scratch was applied with a 200µl pipette tip. Sequential images were captured at the 

same locations within the plate at stated time points, acquired with a Nikon Eclipse TE-

2000U microscope.  Images were imported into ImageJ and the cell free area was drawn 

around by hand, and the pixel area calculated.  Cell-free area was calculated as a percentage 

of the zero timepoint.  At least three areas were imaged for each condition in each 

experiment, with an overall mean area change calculated per timepoint for each experimental 

condition.  Each experiment was repeated at least three times. 

2.13 NON-ADHERENT GROWTH ASSAYS 

Cells were seeded in ultra-low attachment 96-well plates (Corning) at a density of 2x102 

cells/well. Single-cell suspensions were incubated for 2.5 weeks. Spherosomes were counted 

and then dissociated with trypsin to a single-cell suspension that was confirmed visually. 

Cells were re-plated in 10cm dishes with full media and colonies formed after 2 weeks were 

fixed in ice-cold methanol and stained with 0.5% crystal violet. Plates were photographed 

using a GE ImageQuant LAS 4000 and colonies were counted using ImageJ.  

2.14 INVASION ASSAYS 
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BD BioCoat Matrigel Invasion Chambers (BD Bioscience) with 8 µM pores were thawed and 

incubated with serum-free medium according to the manufacturer’s instructions. Cells  

(10,000/well) were plated in serum-free medium in the upper insert of the trans-well system 

whilst the bottom well was filled with medium supplemented with 10% FCS. After 24 hours, 

non-invasive cells were removed from the upper surface of the membrane by scrubbing with 

a wet cotton swab. The invading cells in the lower surface of the membrane were fixed in ice-

cold methanol. The insert was removed, mounted on a glass slide with DAPI-containing 

mounting medium (ProLong Gold, Life Technologies). Images were acquired with a Leica 

500 confocal microscope and images processed with Leica LAS AF lite software. DAPI-

stained nuclei were counted with Image-J. 

2.15  FLOW CYTOMETRY 

For cell cycle analysis, cells were trypsinised and fixed in ice-cold 75% ethanol overnight, 

before RNA digestion (RNAse A, 100µg/ml), followed by propidium iodide staining to a 

final concentration of 25µg/ml (both Sigma-Aldrich). Samples were analysed on a 

FACSCalibur (BD Biosciences). Cell cycle distribution was determined using FlowJo 

software (FlowJo LLC).   For assessment of apoptosis, cells were resuspended in Annexin V-

binding buffer (BioLegend, San Diego, CA) and incubated for 10 minutes with Annexin V-

FITC antibody (IQ Products, Groningen, Netherlands).  Cells were then washed twice and, 

following addition of propidium iodide analysed as before.  Assessment of CD133 membrane 

positivity was performed using CD133/1-APC and IgG isotype-APC (both Miltenyi Biotech, 

Bisley, UK) and the Aldefluor assay was performed according to manufacturer’s instructions 

(Stemcell Technologies, Manchester, UK).   

2.16  RT-QPCR 
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Reverse transcription-quantitative polymerase chain reactions (RT-qPCR) were used to 

quantify relative RNA abundance.  Total RNA was extracted with the miRNeasy kit 

following the manufacturer’s instructions, with on-column DNAse digestion (both Qiagen).  

Extracted RNA was reverse-transcribed using MMLV Reverse Transcriptase (Promega) with 

random hexamer primers (Promega) according to the manufacturer’s instructions. All RT-

qPCR experiments were performed with exon-spanning TaqMan RNA expression assays 

(Table 2-2; Invitrogen) using Universal Master Mix II (Invitrogen) on a 7900HT analyser 

(Applied Biosystems, Paisley, UK). Treated samples were normalised to controls with the 

∆∆Ct formula using 18S rRNA as an endogenous control. 

Table 2-2. Primers used in RT-qPCR 

Gene Assay ID or primer sequence 

BCL2 Hs00608023_m1 

BIK Hs00154189_m1 

MAPK14 Hs01051152_m1 

18S Hs03003631_g1 

LARP1 Hs00391726_m1 

DAPK2 Hs00204888_m1 

TNF Hs00174128_m1 

ERBB3 Hs00176538_m1 

AKT3 Hs00987350_m1 

 

2.17  RNA-SEQUENCING AND DATA ANALYSIS 

Total RNA from three biological repeats was extracted from OVCAR8 cells as before 

(Section 2.16), following transient LARP1 knockdown. Polyadenylated RNA was enriched 

using the Dynabead mRNA-purification kit and fragmented using the Ambion fragmentation 

reagent (both Life Technologies). First-strand cDNA was generated with random hexamer-
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primed reverse transcription, with First Strand Master Mix and the SuperScript II Reverse 

Transcriptase kit (Life Technologies), with dUTP used during second-strand synthesis. The 

resulting cDNA was purified with Agencourt AMPure XP Beads (Beckman Coulter, High 

Wycombe, UK), then end-repaired and 3’adenylated and adaptors were ligated.  Products 

were separated by agarose gel electrophoresis, and fragments between 300 and 350bp were 

excised and eluted. Uracil-N-Glycosylase (UNG, Applied Biosystems) was used to degrade 

the second-strand cDNA, and products were amplified and re-purified.  Library quantification 

and quality control was performed using the Agilent 2100 Bio-analyzer (Craven Arms, UK) 

and the ABI StepOnePlus Real-Time PCR System (Life Technologies). 

Paired-end 100bp sequencing was performed using the Illumina Hiseq2000 platform and data 

was processed at the Beijing Genomics Institute, Shenzhen.  Following quality control, clean 

reads were aligned to Hg19 reference sequences using SOAPaligner/SOAP2 [361], allowing 

for up to 5 mismatches.  Gene expression was determined using the reads per kilobase per 

million reads (RPKM) method [362], and the ratio between siCONTROL and siLARP1 

samples calculated.  Functional enrichment analysis was conducted with Ingenuity Pathway 

Analysis (Qiagen), using a change in expression of ±25% and a false discovery rate threshold 

≤0.05 to select transcripts.  

2.18  RNA IMMUNOPRECIPITATION (RIP) 

Cells were collected by trypsinisation and re-suspended in RIP lysis buffer: 20mM Hepes pH 

7.4, 150mM KCl, 5mM MgCl2, 0.5% NP40, 400 U/ml RNase inhibitor (Promega), 1mM 

DTT, 400µM vanadyl ribonucleoside complexes (VRC; NEB), 1x protein and phosphatase 

inhibitor.  Lysates were stored at -80˚C overnight. RNA was immunoprecipitated with rabbit 

anti-LARP1 polyclonal antibody (SDIX) or rabbit IgG isotype control (Cell Signalling 

Technology, Hitchin, UK) following the method described by Keene et al [363]. Briefly, 
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Protein A-Sepharose beads were incubated with antibody overnight on a rotator at 4˚C.  

Beads were washed four times with NT2 buffer (50mM Tris-HCL, 150 mM NaCl, 1mM 

MgCl2, 0.05% NP-40), before resuspension in immunoprecipitation buffer (200U/ml RNase 

inhibitor, 400µM VRC, 1mM DTT, 30µM, 15mM EDTA in NT2 buffer) and the addition of 

RNP lysates, in a total volume of 1ml.  Samples were incubated for 4 hours on a rotator at 

4˚C, before washing 4 times with wash buffer (50mM Tris-HCL, 300mM NaCl, 5mM 

MgCl2, 0.5% NP-40, 1mM DTT). RNA was extracted with the miRNeasy kit (Qiagen) as 

before (Section 2.16).  To generate cDNA, immunoprecipitated RNA was reverse transcribed 

using the SensiScript RT Kit (Qiagen) following the manufacturer’s instructions.  RT-qPCR 

was performed as described earlier (Section 2.16). The fold enrichment for each target was 

measured by comparing the Ct values of LARP1 immunoprecipitated fraction to the IgG 

Isotype fraction and normalised with the ∆Ct formula.  

2.19  LUCIFERASE 3’UTR REPORTER ASSAYS 

The 3’UTR sequences for BCL2 and BIK were obtained from the UCSC Genome Browser 

[364]. The 203bp BCL2-ARE region sequence was as described by Ishimaru et al [178].  

These DNA sequences were cloned into 3’UTR renilla luciferase reporter constructs 

(SwitchGear Genomics, Menlo Park, CA), and cells were co-transfected with a firefly 

luciferase control plasmid using effectene as before (Section 2.9). Renilla and firefly 

luciferase activity were anlaysed using the Dual-luciferase reporter assay system (Promega) 

in triplicate in 96-well plates with luminescence recorded using the LUMOstar Optima plate 

reader (BMG Labtech). Renilla luminescence was normalised to firefly activity, and control 

and LARP1 knockdown samples compared.  For luciferase mRNA analysis, total RNA 

extraction, with on-column DNAase-digestion, cDNA production and RT-qPCR were 
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performed as described above (Section 2.16).  Custom renilla and firefly luciferase mRNA 

TaqMan assays were obtained from Invitrogen Life Technologies (Table 2-3). 

 

 

 

 

Table 2-3. Taqman primer sequences 

Gene Primer and probe sequence 

Renilla luciferase F – GCTGAACCTCCCCAAGAAGATC 

R – TGCTCGTAGGAGTAGTGAAAAGC  

Probe - CTGGTGCCCACACTAT 

Firefly luciferase F – GCGCAGCTTGCAAGACTATAAG 

R – TTGTCGATGAGAGTGCTCTTAGC 

Probe - CAAGCGCCCCAGTCGT  

 

2.20  IMMUNOFLUORESCENCE (IF) STAINING 

AND CONFOCAL IMAGING  

SKOV3 cells were cultured on glass coverslips for 24 hours.  Cytoplasmic mRNP granule 

formation was triggered by treatment with 500µM sodium arsenite (Sigma-Aldrich) for one 

hour.  Cells were washed before being incubated with chilled PHEM fixative (4% PFA, 

60mM PIPEs, 25mM HEPES, 10mM EGTA, 4mM MgCl2) for 10 minutes. Fixative was 

removed and cells were washed and blocked in PBSTB buffer (1% BSA, 0.1% TritonX-100) 

for 1 hour.  Primary antibody solution (Table 2-4) was applied and incubated overnight at 
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4˚C. After washing, Alexa Fluor-conjugated secondary antibodies (Life Technologies) were 

applied and incubated at room temperature for 1 hour. When staining for actin, Phalloidin-

Alexa Fluor 546 was added at this stage (1:500). Cells were washed and mounted with 

ProLong Gold mounting medium with DAPI (Life Technologies). Immunofluorescence 

staining was analysed using a Leica 500 confocal microscope and images were processed 

with Leica LAS AF lite software.   

 

Table 2-4. Antibodies used in immunofluorescence 

Antibody Species Supplier Dilution 

LARP1 Rabbit SDIX 1:100 

PABP Mouse Abcam 1:100 

DCP1A Mouse Abnova 1:100 

Anti-rabbit Alexa Fluor 488 Goat Life Technology 1:500 

Anti-mouse Alexa Fluor 546 Goat Life Technology 1:500 

 

2.21  BCL2 PROMOTER ACTIVITY ASSAY 

A BCL2 promoter construct containing P1 and P2 elements (ATG to −3934) upstream of 

firefly luciferase [365] was obtained from Addgene (plasmid LB332).  Transient LARP1 

knockdown was performed as before.  Effectene was used to introduce the BCL2 promoter 

construct together with a renilla luciferase control for data normalisation.  Twenty-four hours 

after transfection, total RNA was collected and relative levels of firefly and renilla luciferase 

mRNA were determined by RT-qPCR as described above (Section 2.16). 

2.22  SILAC MASS SPECTROMETRY 
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Protein labelling was accomplished by incubating cells in SILAC medium, composed of 

RPMI with either unlabelled arginine and lysine (R0K0, light), 13C-labelled arginine and 2D-

labelled lysine amino acids (R6K4, medium) or 13C- and 15N-labelled lysine (R10K8, heavy), 

supplemented with 10kDa-dialysed calf serum.  Cells were cultured in labelling media for at 

least 5-6 divisions.  Transient LARP1 knockdown was performed with two independent 

siRNAs and protein lysates were collected and quantified as described previously. Equal 

amounts of protein from each condition were combined and resuspended in loading buffer 

before boiling.   

SILAC mass spectrometry and analysis were carried out by Dundee Cell Products.  Briefly, 

the combined protein lysate was separated on an SDS-PAGE gel.  The lane was excised and 

divided into slices.  Each slice underwent overnight trypsin digestion. The resulting peptides 

were extracted, lyophilised and resuspended in 1% formic acid.  Peptides were separated 

using an Ultimate 3000 RSLC nanoflow system (Thermo Scientific) and analysed on a linear 

ion trap Orbitrap hybrid mass spectrometer (LTQ-Orbitrap Velos, Thermo Scientific), with 

data acquired using the Xcalibur software.  Analysis was performed using MaxQuant [366] 

and Andromeda search engine software [367]. 

Genes that displayed a fold-change in expression of ≥1.5 in both LARP1-targeting siRNA 

were taken as biologically significant. 

2.23  STATISTICAL ANALYSIS 

Statistical analyses were performed using GraphPad Prism software (GraphPad Software 

Inc.), unless otherwise stated. Cox regression analysis was carried out using the ‘survival’ 

package of R. Statistical tests appropriate to the experiment were chosen as indicated in 
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figure legends (Student t test, Chi-Squared, Log-Rank).  p≤0.05 was taken to be statistically 

significant. 

2.24  STUDY APPROVAL 

Tissue samples were provided collaborators or by the Imperial College Healthcare NHS Trust 

Tissue Bank, supported by the National Institute for Health Research (NIHR) Biomedical 

Research Centre based at Imperial College Healthcare NHS Trust and Imperial College 

London.  Informed consent from patients was obtained prior to sampling.  Study approval 

was obtained from the local Research Ethics Committee (R06004/GYN2060). 

3 CHAPTER III – RESULTS 

 

3.1  CHAPTER THREE ABSTRACT 

LARP1 has previously been identified as a prognostic biomarker in hepatocellular cancer, 

and is phosphorylated downstream of key cancer-related signalling pathways, and in response 

to DNA damage.  I investigated the expression of LARP family members, and found LARP1 

to be highly expressed in solid malignancies, including ovarian cancer.  Detailed analysis of 

LARP1 expression revealed LARP1 expression to adversely correlate with outcomes in 

ovarian, breast and non-small cell lung cancers.  LARP1 protein is released into cancer cell-

conditioned media, and the protein is detectable in the human circulation.  Higher levels are 

seen in patients with underlying ovarian malignancy. 
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LARP1 is required for clonogenicity in vitro, tumorigenicity in vivo and is necessary to 

maintain CD133+ stem cell-like populations. Loss of LARP1 induces apoptosis and decreased 

viability, and is sufficient to restore platinum sensitivity in resistant cell lines. 

Using RNA-sequencing, I identify BCL2 and BIK expression as being LARP1 dependent. 

LARP1 is a component of BCL2- and BIK-containing messenger ribonucleoprotein (mRNP) 

complexes and requires sequences within the 3’-untranslated region to stabilize BCL2 

mRNA, and destabilise BIK.  LARP1 promotes cancer cell survival in a BCL2-dependent 

manner. 

 

3.2  LARP1 EXPRESSION IN CANCER 

3.2.1 A GLOBAL EVALUATION OF THE LARP FAMILY IN 

CANCER 

To evaluate general trends in the expression of LARP family members in cancer, summary 

data from 167 studies comparing expression in cancer and non-cancer tissue were obtained 

using the Oncomine portal of publicly available expression array studies (Figure 3-1).  As 

expected LARP3, previously identified as an oncogene, was predominantly overexpressed in 

multiple cancer types. Similarly, the potential tumour suppressor LARP7 was downregulated 

in studies of breast and colorectal cancers.  LARP1 expression was almost exclusively 

upregulated in solid malignancies and was overexpressed in nearly a third of studies in 

ovarian cancer, with no ovarian study returning the opposite trend.  The opposite trend was 

seen for LARP1 expression in malignancies of the central nervous system (CNS), suggesting 

a potential inhibitory role in malignant progression.  LARP6 expression was also 
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downregulated in CNS tumours, and has previously been shown to be highly expressed in 

neurones [317].  

 

 

Figure 3-1. A summary of fold-change in expression of cancer compared to non-cancer samples for LARP 
family members  

Using the Oncomine portal (www.oncomine.org), all datasets comparing gene expression in cancer and 
non-cancer tissue were analysed for significant differences for each LARP family member.  A heat-
map is presented representing the percentage of all available studies with a significant (p<0.05, 
FC>1.5) difference in LARP1 expression. 
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To evaluate LARP1 expression in more depth, I performed a systematic search for large 

studies investigating gene expression in cancer and non-cancer tissue, representing several 

different cancer types (Appendix I).  Where possible, studies were restricted to those utilising 

the same analysis platform, and data from the same array probe were used (Figure 3-2).  

There was a highly significant increase in LARP1 expression in all solid malignancies 

surveyed, including breast, colorectal, hepatic and ovarian carcinomas, with the exception of 

two separate studies involving glioblastoma samples. 

 

Figure 3-2. Fold change in expression of LARP1 between cancer and non-cancer tissue across multiple 
cancer types. 

In 2013, the Oncomine database was interrogated in a systematic for studies comparing mRNA 
expression of LARP1 in cancer and non-cancer samples.  Studies where the total number of samples 
were <50, or that included haematological, paediatric or connective tissue-derived malignancies were 
excluded.  Where possible, only studies utilising the same array platform were used, in which case the 
same probe was taken for analysis. These studies were then analysed to find the fold-change in 
expression LARP1 in cancer cases, comparing to non-cancer control tissue, with significance 
calculated using the Student t-test.  For a full breakdown of the data used for this systematic search see 
Appendix I. Whiskers represent 10th-90th percentiles. ***P < 0.001, **P < 0.01, *P < 0.05.  
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3.2.2 LARP1 IS HIGHLY EXPRESSED IN OVARIAN AND 

CERVICAL CANCERS 

To further study LARP1 expression in ovarian malignancies, I analysed mRNA expression 

from three independent, publically available datasets, comparing LARP1 mRNA expression 

in serous EOC, the most common epithelial subtype [4], to non-malignant ovarian tissue.  

Combined, these represent 735 patient samples [12, 354, 355].  LARP1 mRNA levels were 

upregulated in malignant samples in all three studies (Figure 3-3A).  Similar trends were 

observed when LARP1 mRNA expression in serous EOC was compared to that of the normal 

ovarian surface [368] and fallopian tube epithelium [369] (P = 0.0072 and 0.022 respectively; 

Figure 3-3B, C), the latter having been identified as a potential site of origin for invasive 

disease [370]. Using the cBIO Genomics Portal [371], I found very low mutation rates for 

LARP1 in the TCGA ovarian dataset, with only 0.9% (3/316) of patients displaying changes.  

Evaluating copy number, there were gene deletions in 0.9% of cases, whilst 3.8% of patients 

had gene duplications.   

To determine if LARP1 expression was also altered at the protein level, I performed 

immunohistochemical analysis (IHC) of a formalin-fixed, paraffin-embedded (FFPE) tissue 

microarray (TMA).  Again, I found there was significantly higher expression of LARP1 

protein in ovarian cancer samples compared to normal ovarian tissue (P < 0.001; Figure 

3-3C).  Similar results were obtained comparing serous ovarian cancers to benign ovarian 

tumours (leiomyoma, teratoma and cystadenofibroma; P = 0.021; Figure 3-3E), and benign 

and malignant mucinous ovarian tumours, rare subtypes of ovarian pathology (P = 0.033; 

Figure 3-3F).   
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Figure 3-3. LARP1 is highly expressed in ovarian malignancies. 

(A) LARP1 mRNA fold change in serous ovarian cancers compared to control tissue in 3 independent 
datasets (TCGA [12], Hendrix et al. [354], Bonome et al. [355]).  

(B) Relative LARP1 mRNA abundance in ovarian surface epithelium (OSE, n=12) and microdissected 
serous papillary ovarian cancer (SPOC, n=12). Dataset GSE14407, Bowen et al. [368]. 
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(C) Relative LARP1 mRNA abundance in fallopian tube epithelium (OSE, n=12) and high-grade 
serous ovarian cancer (HGOC, n=13). Dataset GSE10971, Tone et al. [369]. 

(D) Representative TMA cores of normal ovarian tissue and ovarian cancer samples, stained with anti-
LARP1 antibody (scale bar 250µm) and immunohistochemical scoring in unmatched adjacent 
normal ovarian tissue and ovarian cancers.  Scoring by TGH, staining by Pathology Core Facility.  

(E) LARP1 score determined by IHC analysis in benign ovarian tumours and serous ovarian cancers. 
Analysis by TGH. 

(F) LARP1 score in mucinous ovarian tumours determined by IHC analysis, together with 
representative images (10x magnification). Image capture and analysis TGH. Student t-test. Error 
bars indicate SEM.  

 

I also evaluated LARP1 expression in cervical cancer.  Searching Oncomine for expression 

data comparing cancer and non-cancer samples revealed a single study [304], with 

significantly higher LARP1 mRNA levels in squamous cell carcinoma (SCC) of the cervix 

compared to normal cervical tissue (Figure 3-4A).  Analysis of a second dataset revealed 

increasing LARP1 expression with more advanced stages of invasive cancer [372] (Figure 

3-4B).  In support of this finding, analysing LARP1 protein levels in cervical tissue array, we 

found increased levels of LARP1 in CIN versus normal epithelium and SCC versus CIN 

(<0.0001), confirming that levels of cytoplasmic LARP1 significantly correlated with 

progression of cervical cancer (Figure 3-4C).   
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Figure 3-4. LARP1 is highly expressed in cervical malignancies. 

(A) Relative LARP1 mRNA abundance in cervical cancer and normal cervical tissue (n=45).  Data 
extracted from reference [304]. 

(B) Relative LARP1 mRNA abundance in cervical cancer samples (n=76) stratified according to 
tumour stage. Data extracted from reference [372]. 

(C) LARP1 cytoplasmic scores for CIN compared to normal samples and invasive SCC compared to 
CIN samples, together with representative LARP1 immunostaining (scale bar 200µM). Image 
capture and analysis TGH. ***P < 0.001, **P < 0.01, *P < 0.05. Student t-test. 

 

3.2.3 LARP1 IS A POTENTIAL PROGNOSTIC MARKER IN 

OVARIAN CANCER 

Cox regression analysis of overall survival, using matched mRNA expression and patient 

outcome data obtained from The Cancer Genome Atlas (TCGA) project [12], revealed that 
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patients with the highest LARP1 expression had significantly worse outcomes, with a 29% 

increased risk of death at any time (Figure 3-5A, n=566, Cox regression HR 1.29, 95% CI 

1.01-1.65, P = 0.042). I then assessed the effect of LARP1 expression on progression-free 

survival in ovarian cancer.  In an analysis of 1,171 patient samples using the kmplot portal 

[357], patients with low LARP1 expression had significantly better progression-free survival 

than those with high LARP1 expression (HR 1.31, 95% CI 1.10-1.54, P = 0.0018; Figure 

3-5B). At protein level, analysing by IHC a TMA comprising 67 cancer cases, we showed 

that only LARP1 expression and cancer stage were independent predictors of poor overall 

survival (LARP1 HR = 1.13, 95% CI 1.01-1.27, P = 0.036; Table 3-1).  These data 

demonstrate that LARP1 is highly expressed in ovarian malignancies when compared to non-

cancer tissue, and that elevated levels predict poor outcome. 

 

Figure 3-5. LARP1 expression predicts poor outcome in ovarian, breast and non-small cell lung cancers. 
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(A) Overall survival in the TCGA gene expression dataset [12], for patients stratified according to 
LARP1 expression (n=566). 

(B) Kaplan-Meier analysis of progression-free survival in ovarian cancer patients, separated by 
LARP1 expression (n=1,171).  Data from kmplot.com [357]. 

(C) Kaplan-Meier analysis of overall survival in breast cancer patients, separated by LARP1 
expression (n=1,115).  Data from kmplot.com [356]. 

(D) Kaplan-Meier analysis of overall survival in non-small cell lung cancer patients, stratified 
according to LARP1 expression (n=1,115).  Data from kmplot.com [358]. 

 

Interestingly, this trend in outcomes was not limited to ovarian cancer; by analysing overall 

survival in 1,115 breast cancer patients [356], I found that high LARP1 expression was also 

predictive of poor outcome (HR = 1.53, p<0.001, 95% CI 1.2-1.96; Figure 3-5C).  A similar 

result was obtained for a pooled analysis of 1,405 non-small cell lung cancer patients [358] 

(Figure 3-5D).  These results support the trend observed for increased LARP1 expression in 

breast and lung cancers found in my review of Oncomine data (Figure 3-1, Figure 3-2), and 

suggest LARP1 may function as an oncogene in multiple cancer types. 

Table 3-1. LARP1 protein expression in ovarian cancers is an independent predictor of poor outcome. 

Uni- and multivariate Cox regression analysis of associations between clinical variables and LARP1 
protein levels in tumours determined by IHC analysis, and overall survival, for 67 ovarian cancer cases. 
Staining and scoring performed by department of pathology.  Analysis by TGH, staining and scoring 
performed by collaborators. ***P < 0.001, **P < 0.01, *P < 0.05. 

Univariate 
 

     
Variable HR HR 95% CI p-value 

 Histology 1.97 0.8862-4.398 0.096 
 Stage 2.51 1.517-4.162 <0.001 *** 

Grade 1.73 1.124-2.653 0.013 * 
Age 1.02 0.9911-1.043 0.201 

 Residual 

Disease 10.88 1.405-84.210 0.022 * 
LARP1 Score 1.15 1.006 -1.310 0.041 * 
     Multivariate 

 
     

Variable HR HR 95% CI p-value 
 LARP1 Score 1.13 1.008-1.274 0.036 * 

Age 1.02 0.9882-1.047 0.247 
 Grade 1.19 0.6395-2.23 0.578 
 Stage 2.70 1.4695-4.962 0.001 ** 
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Histology 0.63 0.2311-1.732 0.373 
  

3.2.4 LARP1 PROTEIN IS RELEASED BY OVARIAN 

CANCER CELLS IN CULTURE 

Having demonstrated increased expression of LARP1 protein in ovarian malignancies, we 

hypothesised that patients with underlying tumours may have detectable LARP1 protein 

levels in their circulating plasma since RBPs such as Argonaute2 have previously been 

identified in human plasma [373].  To determine whether LARP1 could be detected 

extracellularly, I cultured ovarian cancer cells and collected the cell-conditioned media (CM) 

after 24 hours.  Cells were maintained in serum-free conditions to avoid potential false 

positives from serum components.  There was no difference in cell viability or levels of 

apoptosis at this early time point, when compared to the same cells in full media (Figure 

3-6A,B).  After removing floating cells and cell debris, the remaining protein was 

concentrated by ultrafiltration and analysed by western blotting for LARP1 protein.  I 

obtained a single LARP1 protein band of approximately 125kDa in cell-conditioned media, 

which may represent a degraded or post-translationally modified form of the protein (Figure 

3-6C).  No LARP1 band was detected in non-conditioned media control, nor did I observe a 

band for the abundant cytoplasmic protein HSP60 under either condition.  This suggests that 

LARP1 protein may be detected in conditioned media, and that its presence does not 

represent non-specific release of intracellular contents.  Interestingly, I found that the 

apparent LARP1 band, whilst being detected with a polyclonal anti-LARP1 antibody raised 

in rabbits using an N-terminal protein fragment as an immunogen, was not detected by a 

polyclonal anti-LARP1 antibody raised in mice using the full length protein (data not shown).  

This suggested that, although raised against the full-length protein, the mouse anti-LARP1 
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polyclonal antibody lacked clones targeting the same N-terminal sequence used as the 

immunogen for the rabbit antibody. Two additional anti-LARP1 antibodies were explored, 

but were found to perform poorly in both the western blotting and ELISA settings.  

 

Recent work by Dr M. Mura using media conditioned by pooled SKOV3 clones with stable 

knockdown of LARP1, demonstrates that this band decreases, relative to media conditioned 

by shControl-expressing cells.  This supports my supposition that the detected band is indeed 

a form of LARP1 protein. 

 

Figure 3-6. LARP1 protein is detectable in ovarian cancer cell-conditioned media. 

(A) Cell viability determined by the MTT assay in OVCAR8 cells cultured in 10% FCS or serum-free 
conditions. 

(B) Apoptosis, as determined by activated Caspase-3/7, in OVCAR8 cells cultured in 10% FCS or 
serum-free conditions for 24 hours.  

(C) Western blot analysis of OVCAR8- or SKOV3-conditioned media concentrated by ultrafiltration 
and analysed using the N-terminal anti-LARP1 rabbit antibody. Representative images from three 
repeats. Students t-test.  Error bars indicate SEM. 
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3.2.5 A LARP1 ELISA CAN ACCURATELY QUANTIFY 

PROTEIN IN HUMAN PLASMA 

In order to quantify the levels of LARP1 protein in patient plasma, I developed a LARP1 

sandwich enzyme-linked immunosorbent assay (ELISA).  The assay utilised a sandwich 

format, with two antibodies against LARP1 raised in different species and against different 

epitopes.  The optimised assay could accurately measure LARP1 protein concentration to 

<5pg/ml (Figure 3-7A,B).  To confirm the suitability of the ELISA for use with human 

plasma samples, I performed spike-and-recovery experiments, demonstrating that human 

plasma did not interfere with the ability to detect LARP1 protein (Figure 3-7C).  OVCAR8- 

and SKOV3-conditioned media was found to be negative for LARP1 protein when analysed 

on the ELISA. This result was expected, as western blotting had demonstrated that the 

capture antibody used in the ELISA did not detect the putative LARP1 protein band seen in 

conditioned media. 

 

Figure 3-7. A LARP1 ELISA can accurately detect free LARP1 protein. 

(A) A schematic of the LARP1 sandwich enzyme-linked immunosorbent assay (ELISA) detecting 
LARP1 protein in solution. 

(B) The LARP1 ELISA standard curve, generated by serial dilutions of the recombinant LARP1 
protein and quantified on the LARP1 ELISA. 

(C) Spike and recovery experiments were performed using plasma from 5 separate healthy controls, 
and 4 separate spike concentrations of recombinant protein.  A known quantity of recombinant 
protein was ‘spiked’ into healthy donor plasma and these samples, together with unadulterated 
plasma, were analysed using the LARP1 ELISA.  The concentration of LARP1 detected by the 
ELISA in the sample spike (minus any positivity from the un-spiked plasma) was expressed as a 
percentage of the actual protein added, with the aim of achieving 100% recovery. 
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3.2.6 PLASMA LARP1 PROTEIN LEVELS ARE HIGHER IN 

PATIENTS WITH UNDERLYING OVARIAN MALIGNANCY 

To evaluate LARP1 protein levels in clinical samples, I obtained plasma samples from 

healthy female volunteers and women with underlying ovarian malignancies, prior to surgical 

or chemotherapeutic intervention.  I found low or undetectable levels of LARP1 protein in 

the majority of healthy women, but significantly higher levels in women with underlying 

ovarian malignancy (Figure 3-8A).  Although plasma LARP1 values from both control and 

patient cohorts overlapped, I found, by plotting a receiver operating characteristic (ROC) 

curve, that the area under the curve (AUC) was significantly greater than 0.5 (AUC 0.76, 

95% CI 0.65-0.87, p<0.001; Figure 3-8B), and for circulating plasma levels above 290.3 

pg/ml, the test had a 50% sensitivity and a specificity of 90%.  I obtained matched plasma 

from a subset of the cancer cohort after they had undergone surgery, but prior to commencing 

chemotherapy.  For patients with detectable plasma LARP1 pre-surgery, there was a 

significant drop in circulating protein following removal of their primary tumour (Figure 

3-8C).  This indicates that levels of circulating protein may reflect underlying tumour burden. 
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Figure 3-8.  Circulating LARP1 protein levels are elevated in women with underlying ovarian malignancy. 

(A) Plasma LARP1 concentration in healthy female controls and patients with primary ovarian 
malignancies sampled prior to surgery. 

(B) The ROC-curve of data from Figure 3-8A, showing area under the curve.  Analysed using 
GraphPad Prism. 

(C) Plasma LARP1 concentration for 19 patients with underlying ovarian malignancy sampled before 
and after primary surgery. Students t-test.  Error bars indicate SEM. 
 

3.2.7 PLASMA LARP1 PROTEIN HAS PROGNOSTIC VALUE 

Having demonstrated that intratumoural LARP1 expression correlated with prognosis, I next 

evaluated whether the same was true of circulating protein.  Plasma obtained from a small 

cohort of patients attending an ovarian cancer follow-up clinic was analysed, with survival 

data extending over two years.  I first compared the association of plasma CA-125 levels with 

prognosis.  As expected, using a threshold of 100U/l, which has previously been reported as a 

predictor of prognosis following primary treatment [374], there was a significant survival 

association (log-rank p = 0.019; Figure 3-9A). Next, stratifying patients into those with 

detectable and undetectable levels of circulating LARP1 protein, the survival association was 

more significant (log-rank p = 0.012; Figure 3-9B). Despite similar survival trends, there was 

no significant correlation between CA-125 plasma levels and circulating LARP1 protein 

treating them either as continuous or categorical variables (Figure 3-9C,D), suggesting the 

two tests may identify different high-risk populations. 
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Figure 3-9. Plasma LARP1 levels predict adverse outcomes. 

(A) Kaplan-Meier plot of overall survival in a post-surgical ovarian cancer cohort (n = 32) stratified 
according to CA-125 plasma levels. 

(B) Kaplan-Meier plot of overall survival in a post-surgical ovarian cancer cohort (n = 32) stratified 
according to CA-125 plasma levels. 

(C) Plasma LARP1 and plasma CA-125 levels for each patient (n=32) with the degree of correlation 
analysed with the Pearson test. 

(D) A contingency table of the same data showing the association of plasma CA-125 and circulating 
LARP1, analysed with the Chi-squared test. 
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3.2.8 SUMMARY 

In conclusion, in this first results section I have demonstrated that LARP1 expression is 

elevated in a range of solid malignancies.  Specifically, at both the mRNA and protein level, 

LARP1 has an oncogenic pattern of expression in ovarian and cervical tumours (Section 

3.2.2).  LARP1 expression is a predictor of poor outcome in ovarian, breast and lung cancers, 

suggesting a key role in malignant progression (Section 3.2.3).   

In addition, LARP1 protein is released by ovarian cancer cells in culture and is detectable in 

human circulating plasma (Section 3.2.5).  Levels of plasma LARP1 are higher in patients 

with underlying malignancy than health female controls, and appear to reflect underlying 

tumour burden (Section 3.2.6). In a small patient cohort, plasma LARP1 correlates with 

outcome independently of circulating CA-125 levels (Section 3.2.7) suggesting potential as a 

circulating prognostic biomarker. 
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3.3  LARP1 IN CANCER CELL BIOLOGY 

3.3.1 LARP1 IS REQUIRED FOR TUMOUR DEVELOPMENT 

AND PROGRESSION 

To determine whether LARP1 was required for tumour development, I induced stable 

knockdown of LARP1 (shLARP1) in SKOV3 cells (Figure 3-10A, inset) and implanted these 

cells into severe combined immunodeficiency (SCID)-beige mice. SKOV3 cells are an EOC-

derived line that have been used extensively as an ovarian cancer model in vivo.  Cells were 

transfected and selected for en masse, and pooled clones representing >200 individual clones 

were used for all experiments. Control cells (shGFP) developed measureable tumours with 

shorter latency (median, 22 days) compared to shLARP1 cells (median 36, p = 0.022, Figure 

3-10B).  Control xenografts also reached significantly larger tumour size (Figure 3-10A,C). 

To ascertain whether these differences in tumour size and latency were due to decreased 

proliferation in shLARP1 cells, Ki67 positivity was analysed with IHC staining of fixed 

tumours.  Surprisingly, there was no significant difference in nuclear positivity of Ki67 

between tumours from each cohort (Figure 3-10D,E), suggesting proliferation was not the 

dominant factor in the differential tumour growth.   
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Figure 3-10. LARP1 is required for ovarian tumourigensis. 

(A) SKOV3 control (shGFP) and LARP1 knockdown (shLARP1) cells were injected subcutaneously 
in SCID-beige mice and tumour volume monitored over time (inset, western blot of LARP1 
knockdown in implanted cells. Representative images from three repeats). 

(B) Kaplan-Meier curves of tumour-free survival. Log-rank test. 
(C) Final tumour weights at sacrifice, with representative dissected tumours displayed below. 
(D) Ki67 percentage nuclear positivity of fixed and embedded xenograft tumours analysed by 

immunohistochemistry.  Scoring by Dr Justin Weir, analysis TGH. 
(E) Representative examples of xenograft tumours stained with anti-Ki67 antibody (scale bar 100µm). 

Image capture and analysis TGH, staining Pathology Core Facility, scoring by Dr Justin Weir.  
***P < 0.001, **P < 0.01, *P < 0.05. Student t-test. Minimum of three experimental repeats. Error 
bars indicate SEM. 

 

I further explored the role of LARP1 in tumour formation in a different cancer model, using 

cervical cancer-derived HeLa cells.  I created a LARP1-overexpressing line in HeLa cells 

(pTrex-LARP1), with an empty vector control as a comparator (pTrex-LacZ; Figure 3-11A). 
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Two million cells were injected subcutaneously into the flanks of non-obese diabetic–severe 

combined immunodeficiency (NOD-SCID) mice (n=12 tumours per cohort).  The experiment 

was terminated when any mouse reached pre-set welfare limits. LARP1 overexpression 

resulted in significantly more rapid tumour growth, with a mean final tumour volume of 

162.8mm3, compared to 51.0mm3 in the control group (Figure 3-11B,C).  We subjected 

xenograft tumours from NOD-SCID mice to further histological examination.  As before, 

there was no significant difference in Ki67 nuclear positivity (Figure 3-11D). 

 

Figure 3-11.  LARP1 promotes tumourigensis. 

(A) Western blot of LARP1 overexpression in HeLa cells (courtesy of Dr M Mura, representative 
image from three repeats). 

(B) HeLa cells were injected subcutaneously in NOD-SCID mice and tumour volume was monitored 
over time. 

(C) Representative xenografted mice (Scale bar 1cm). 
(D) Ki67-stained xenograft tumours (Scale bar, 200µm). 
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3.3.1.1 LARP1 promotes clonogenicity and anchorage-independent 

growth 

As tumour growth differences appeared to be independent of proliferation, I hypothesised 

that LARP1 inhibition may be affecting the tumour initiating potential of cancer cells.  To 

model this in vitro, I carried out clonogenic assays following knockdown of LARP1.  I found 

a significant decrease in colonies formed from SKOV3 and OVCAR8 ovarian cancer cells, 

and HeLa cells (Figure 3-12). To investigate the effect of LARP1 on cell survival in 

anchorage-independent conditions, I cultured LARP1 over-expressing HeLa cells in ultra-low 

attachment plates.  Under these conditions, single cells form floating colonies termed 

spherosomes.  LARP1 overexpression significantly increased the total number of 

spherosomes formed and,  when spherosomes were dissociated into a single-cell suspension 

and re-plated under adherent conditions, the number of viable colonies (Figure 3-13A,B). 

Conversely, knockdown of LARP1 in OVCAR8 cells led to significantly reduced colony-

formation in soft agar assays (Figure 3-13C). 

These results indicate that LARP1 is required for clonogenicity and tumour development in 

ovarian and cervical cancer cells. 
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Figure 3-12. LARP1 is required for clonogenicity. 

Clonogenic assays were performed in three cell lines following transient LARP1 knockdown. Briefly, 
transient knockdown was performed in 6-well plates.  Cells were counted and re-seeded in 10cm plates 
and cultured for 10-14 days until visible colonies were seen, whereupon plates were stained with 
crystal violet.  Representative 10cm plates are shown (scale bar 2cm) together with representative 
western blots of LARP1 knockdown in each cell line (at least three repeats performed). ***P < 0.001, 
**P < 0.01, *P < 0.05. Student t-test. Minimum of three experimental repeats. Error bars indicate SEM. 
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Figure 3-13. LARP1 promotes anchorage-independent growth. 

(A) Number of Hela spherosomes formed 2 weeks after pTrex-LARP1 and pTrex-LacZ single cell 
suspensions were plated in ultra-low attachment plates. Representative images of spherosomes 
formed below (Scale bars, 200µM).  Representative HeLa LARP1 overexpression western blot of 
at least three repeats shown (courtesy of Dr M. Mura) 

(B) Number of HeLa colonies generated by dissociated spherosomes re-plated in adherent conditions. 
Scale bars 2cm.  

(C) Ovarian OVCAR8 cells with stable LARP1 knockdown were plated in soft agar, and colonies 
formed counted. Representative images and quantification of experimental repeats. A 
representative western blot of LARP1 lentiviral knockdown of at least three repeats. ***P < 0.001, 
**P < 0.01, *P < 0.05. Student t-test. Minimum of three experimental repeats. Error bars indicate 
SEM. 
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3.3.1.2 LARP1 regulates tumour-initiating capabilities 

To further investigate whether LARP1 knockdown affected the tumour initiating potential of 

ovarian cancer cells in vivo, I performed a limiting dilution assay, injecting decreasing 

numbers of SKOV3 cells with stable non-targeting or LARP1-targeting (shLARP1) short-

hairpin expression, generated using lentiviral transduction (shControl and shLARP1 

respectively).  Cells were combined with Matrigel and introduced subcutaneously into NOD-

SCID IL2R-gammanull (NSG) mice.  To prevent bias due to host-to-host variation, control 

and LARP1 knockdown cells were injected into the left and right flank, respectively, of each 

mouse (Figure 3-14A,B). When one million cells were injected, all mice developed bilateral 

tumours, though the median latency was considerably greater for tumours with LARP1 

knockdown compared to controls (19 vs 11 days, respectively; P = 0.011; Figure 3-14C).  At 

the lower dose of 105 cells per injection, measureable tumours were not detected in 2/6 

LARP1 knockdown injection sites.  Tumour latency was more pronounced, with a median 

time to tumour development of 22 days in control cells, and 42 days in cells with LARP1-

silencing (P < 0.001; Figure 3-14C).  At 8 weeks following implantation of 104 cells, 2/6 

tumours had developed in the control cohort, with no tumours found at sites of shLARP1 cell 

implantation.  No tumours were detected when 103 shControl or shLARP1 cells were injected 

in either dose cohort (Figure 3-14B). As before (Figure 3-10), there was a striking difference 

in tumour volumes between control and LARP1-knockdown tumours (Figure 3-14D). 

These data indicate that LARP1 silencing decreases the tumour-initiating capability of 

ovarian cancer cells. 
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Figure 3-14. LARP1 promotes tumour initiation. 

(A) Western blot of LARP1 knockdown in SKOV3 stable cell lines using lentiviral transduction 
(representative image from at least 3 repeats), with schematic of cell injection protocol and 
representative tumours (scale bar 1cm).  

(B) Limiting dilution assay results from SKOV3 cells injected subcutaneously into NSG mice.   
(C) Kaplan-Meier curves of tumour-free survival for mice receiving 1x106 cells (n=5) and 1x105 cells 

(n=6). Log-rank test. 
(D) Final tumour volumes for mice receiving 1x106 cells and 1x105 cells, respectively. ***P < 0.001, 

**P < 0.01, *P < 0.05. Student t-test. Error bars indicate SEM. 
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3.3.2 LARP1 PROMOTES CANCER CELL SURVIVAL AND 

CHEMORESISTANCE 

I hypothesised that, as differences in tumour development in vivo were not due to changes in 

cell proliferation, the observed effect on tumourigenicity of LARP1 knockdown may be due 

to altered cell survival.  Indeed, transient LARP1 knockdown decreased cell viability (Figure 

3-15A) and increased apoptosis, as indicated by increased caspase 3/7 activation, Annexin V-

positivity and cleaved PARP on western blotting (Figure 3-15B-E).  There was no associated 

change in cell cycle distribution (Figure 3-15F,G).   

Laboratory culture conditions provide cells with a permissive environment for optimal 

growth, whilst implantation into host animals presents potential apoptotic triggers, such as 

decreased oxygen and nutrient availability.  To model these environmental stresses, I exposed 

cells to 1% oxygen, serum starvation and L-glutamine depletion.  In all cases, decreased 

LARP1 expression led to increased apoptosis in response to the stressor (Figure 3-16A-C).  

The fold increase in apoptosis for LARP1 knockdown cells compared to controls under 

hypoxia was less than that seen under optimum conditions (Figure 3-15B).  This could be due 

to the much higher levels of apoptosis in both control and LARP1 knockdown cells under 

hypoxic conditions, with this powerful apoptotic trigger partially obscuring the effect of 

LARP1 knockdown. 
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Figure 3-15.  LARP1 knockdown in induces apoptosis without affecting cell cycle distribution. 

(A) Cell viability following transient LARP1 knockdown determined by MTT assays.  
(B) Levels of cleaved Caspase 3/7 determined by the CaspaseGlo assay in OVCAR8 and SKOV3 cells 

48 hours after completion of transient LARP1 knockdown. 
(C) Representative histogram plot of Annexin V-positive cells determined by flow cytometry in cells 

transfected with LARP1-targeting siRNA 
(D) Percentage of Annexin V-positive cells at 24 hours following transient LARP1 knockdown in 

OVCAR8 and SKOV3 cells. 
(E) Western blot analysis of cleaved PARP in OVCAR3 cells stably transduced with lentiviral 

shLARP1 constructs. 
(F) Histogram plots of fixed and propidium iodide-stained OVCAR8 cells analysed by flow 

cytometry, following LARP1 knockdown. 
(G) A summary of cell cycle distribution in two ovarian cancer cell lines following LARP1 

knockdown. There was no statistical difference between control and LARP1 knockdown samples. 
Data represents at least three experimental repeats.  Error bars indicate SEM. ***P < 0.001, **P < 
0.01, *P < 0.05. 

 



121 
 

 

Figure 3-16.  LARP1 knockdown increases apoptosis in response to environmental stressors. 

(A) Apoptosis determined by the CaspaseGlo assay in response to hypoxia in OVCAR8 and SKOV3 
cells following LARP1 knockdown.  Cells were transferred to a hypoxic environment and transient 
LARP1 knockdown was performed at T=0 and T=24hrs, with apoptosis recorded at each 
timepoint. 

(B) Apoptosis in SKOV3 cells following LARP1 knockdown and exposure to FCS-reduced (0.1%) 
conditions.  Following LARP1 knockdown, cells were transferred to serum-reduced conditions and 
apoptosis was recorded at each time point (data normalised to apoptosis immediately after 
completion of LARP1 knockdown). 

(C) Apoptosis in SKOV3 cells following LARP1 knockdown and exposure to L-glutamine-depleted 
conditions.  Following LARP1 knockdown, cells were transferred to L-glutamine-depleted 
conditions and apoptosis was recorded at each time point. P < 0.001, **P < 0.01, *P < 0.05. 
Student t-test. Minimum of three experimental repeats. Error bars indicate SEM. 

 

Having observed that LARP1 knockdown caused apoptosis, I hypothesised that high LARP1 

levels may correlate with chemotherapy resistance, explaining its association with adverse 

survival in patients with ovarian cancer (Section 3.2.3). Ovarian cancer-derived SKOV3 and 

OVCAR8 cells are both resistant to platinum-based therapies [375].   To evaluate if LARP1 

knockdown could partially restore platinum sensitivity, I transfected cells with LARP1-
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targeting siRNA and then exposed cells to 25µM cis-diamine diplatinum (cisplatin/CDDP), a 

concentration chosen to induce significant apoptosis following 24 hours of treatment.  

LARP1 knockdown alone had minimal effects on cell morphology.  Similarly, as expected, 

CDDP treatment had minimal effect on control cells at 24 hours.  However, when LARP1 

knockdown was combined with CDDP treatment, there was a marked change in microscopic 

appearance, with cells rounding and detaching (Figure 3-17A). This was associated with up 

to a 4-fold increase in apoptosis (Figure 3-17B, C) with a significant drop in viability (Figure 

3-17D).   
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Figure 3-17.  LARP1 is required for platinum resistance. 

(A) Schematic of cell transfection and cisplatin (CDDP) treatment with representative OVCAR8 cell 
images in each condition (Scale bar 200µm) 

(B) Percentage of Annexin V-positive cells following transient LARP1 knockdown and treatment for 
24 hours with 25µM cisplatin in platinum-resistant SKOV3 and OVCAR8 cells. 

(C) Representative dual-colour flow cytometry plots of Annexin V-FITC- and PI-stained SKOV3 and 
OVCAR8 cells transfected with LARP1-targeting siRNA and treated with with 25µM cisplatin. 

(D) Normalised cell viability determined by MTT-based assay in SKOV3 and OVCAR8 cells 
following LARP1 knockdown and treatment with 25µM cisplatin. ***P < 0.001, **P < 0.01, *P < 
0.05. Student t-test. Minimum of three experimental repeats. Error bars indicate SEM. 
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I repeated this experimental format with two other chemotherapeutics commonly used to treat 

EOC: paclitaxel and gemcitabine [24].  Treatment with both agents in the presence of LARP1 

knockdown also led to increased apoptosis and decreased viability compared to drug 

treatment alone (Figure 3-18A,B).   To further evaluate the platinum effect, I obtained 

matched cell lines from the same patient before and after the development of platinum 

resistance (PEO1 and PEO4, respectively).  Resistant PEO4 cells have a platinum IC50 five 

times that of their sensitive counterpart [376].  Higher LARP1 mRNA expression was seen in 

the platinum-resistant cell line (Figure 3-18C), while knockdown of LARP1 in both lines 

resulted in increased apoptosis on exposure to cisplatin (Figure 3-18D).  

These results demonstrate that LARP1 acts as an anti-apoptotic protein, and promotes ovarian 

cancer cell survival in response to apoptotic triggers, including chemotherapy exposure. 
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Figure 3-18. LARP1 promotes chemotherapy resistance. 

(A) Apoptosis measured by cleaved caspase-3/7 in SKOV3 cells following 24 hours exposure to 
paclitaxel (1µM) or gemcitabine (2µM). 

(B) Cell viability determined by MTT assay in SKOV3 cells following exposure to paclitaxel (1µM) 
or gemcitabine (2µM). 

(C) Relative LARP1 mRNA expression in PEO1 and PEO4 cells determined by RT-qPCR  
(D) Percentage of Annexin V-positive platinum-sensitive PEO1 cells following transient LARP1 

knockdown and treatment with 10µM cisplatin, and platinum-resistant PEO4 cells following 
transient LARP1 knockdown and treatment with 25µM cisplatin. ***P < 0.001, **P < 0.01, *P < 
0.05. Student t-test. Minimum of three experimental repeats. Error bars represent SEM. 
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3.3.3 LARP1 MAINTAINS CANCER STEM CELL-LIKE 

POPULATIONS 

 

Enhanced tumourigenicity and clonogenicity are features often ascribed to cell populations 

with cancer stem cell (CSC)-like properties.  Increased chemotherapy resistance has also 

been cited as a key CSC characteristic with clinical implications [55, 59, 377]. As LARP1 

appears to regulate these traits, I hypothesised that it may be important in maintaining CSC-

like cells.  One of the best characterised markers of CSC-like populations is CD133.  This is a 

transmembrane glycoprotein, encoded by the PROM1 gene, originally identified as a stem 

marker in haematopoietic precursors [378] and proposed as a CSC marker in a range of solid 

malignancies, including glioblastoma and EOC [66, 379-382].  

Table 3-2.  CD133 membrane positivity in ovarian cancer cell lines. 

Experimentally-derived CD133-positive population frequency in ovarian cancer cell lines compared 
with published CD133 relative mRNA abundance as determined by expression array analysis of the 
NCI60 cell panel [359, 383]. 

Cell line Mean CD133+ population 
on flow cytometry 

NCI60 relative expression 
(probe intensity – dataset 

minimum) 

SKOV3 <0.1% 0 

OVCAR8 <0.1% 0 

OVCAR3 5.9% 4.56 

IGROV1 4.6% 4.71 

 

I used the NCI60 panel expression array dataset [359, 383] to identify cell lines with a 

PROM1/CD133 mRNA expression.  There was strong correlation between published mRNA 

levels, and CD133 membrane positivity as measured by flow cytometry (Table 3-2). 
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OVCAR3 and IGROV1 cell lines had small populations of CD133+ cells.  Knockdown of 

LARP1 in these lines, and in cervical cancer-derived HeLa cells, resulted in a significant 

decrease in CD133+ cell populations (Figure 3-19A,B). 

No single marker has been shown to fully describe intra-tumoural heterogeneity. I assessed 

the effect of LARP1 knockdown on aldehyde dehydrogenase (ALDH) activity, another 

commonly used CSC marker that has been associated with stem-like properties in ovarian 

cancer cells [384-386], using the Aldefluor assay.  Again, I saw a similar trend, with LARP1 

knockdown resulting in a decrease in ALDH activity (Figure 3-19C,D). Having demonstrated 

that LARP1 targets CSC-like cells I wished to compare its effect with a positive control, 

known to selectively kill CSC-like populations.  Salinomycin was identified in a high-

throughput compound screen as targeting CD44high/22low stem cell-like populations in breast 

cancer lines [387].  It has since been shown to have potential anti-CSC activity in other 

tumour types [388, 389].  As expected, salinomycin reduced CD133+ populations in 

OVCAR3 cells, with the highest dose producing an effect equivalent to LARP1 knockdown 

(Figure 3-19E).  High expression of several key embryonic stem cell-related transcription 

factors have been associated with enhanced CSC-like traits, including SOX2, OCT4 and 

NANOG [390, 391].   Following LARP1 knockdown, I found reduction in expression of all 

three genes, with the most pronounced effect on NANOG (Figure 3-19F).  

These results show that LARP1 promotes several characteristics associated with CSC-like 

cells, namely clonogenicity, tumourigencitiy, chemotherapy resistance, expression of stem 

cell-associated genes and maintenance of CSC marker-positive populations.  
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Figure 3-19. LARP1 maintains cancer stem cell (CSC)-like populations. 

(A) Representative histogram plot of CD133-positive OVCAR3 cells determined by flow cytometry (a line with 
<10% CD133-positivity) following LARP1 knockdown.  

(B) Mean CD133-positive populations determined by flow cytometry following LARP1 knockdown in OVCAR3, 
IGROV1 and HeLa cells, shown with western blots of LARP1 knockdown. 

(C) Representative flow cytometry plots of ALDEFLUOR-positive OVCAR3 cells following LARP1 
knockdown. Cells treated with diethylaminobenzaldehyde (DEAB), which inhibits aldehyde dehydrogenase 
activity, are used as a negative control for gating. 

(D) Percentage of ALDEFLUOR-positive OVCAR3 cells following LARP1 knockdown. 
(E)  Percentage of CD133-positive OVCAR3 cells following treatment with the anti-CSC agent salinomycin. 
(F)  Relative mRNA expression of key stem cell-associated transcription factors following LARP1 knockdown 

(ΔΔCt, normalised to 18S RNA). ***P < 0.001, **P < 0.01, *P < 0.05. Student t-test. Minimum of three 
experimental repeats. Error bars indicate SEM. 
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3.3.4 LARP1 PROMOTES CANCER CELL MOTILITY 

A defining characteristic of malignant neoplasms is the ability to invade into surrounding 

tissue, requiring both cell motility and the ability to degrade the extracellular matrix.  Having 

demonstrated a role in tumour progression, I wished to establish whether enhanced invasive 

abilities may be a component.  Previous work in the lab had demonstrated that LARP1 

knockdown in HeLa cells inhibited cell migration [333]. To further invesitgate this, I 

performed wound healing assays in ovarian cancer-derived SKOV3 cells following transient 

LARP1 knockdown. As expected, decreased LARP1 expression signifciantly inhibited cell 

motility (Figure 3-20A).  Coversely, when LARP1 was overexpressed, cell motility was 

enhanced (Figure 3-20B,C).  Similar results were obtained in HeLa cells overexpressing 

LARP1 (Figure 3-20D). 

Transwell matrigel invasion assays with SKOV3 cells demonstrated that LARP1 knockdown 

resulted in a significant decreases in the number of invasive cells (Figure 3-20E).    Using 

HeLa cells, LARP1 knockdown led to an 85% reduction in cell invasion (Figure 3-20F). 

These results indicate a fundamental role for LARP1 in cancer cell invasion. 
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Figure 3-20.  LARP1 promotes migration and invasion. 

(A) Wound healing assays in SKOV3 cells following transient LARP1 knockdown.  The graph shows 
quantification of the unhealed area at given time points.  Wound array was quantified using  
ImageJ, by calculating the cell free area at each time point (see Materials and Methods for full 
details).  Representative 10x images are shown to the right. 
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(B) Wound healing assays in SKOV3 cells stably overexpressing LARP1 (pTrex-LARP1) vs control 
(pTrex-LacZ).   

(C) Western blot of LARP1 overexpression in SKOV3 cells (representative image of at least three 
repeats). 

(D) Wound healing assays in HeLa cells stably overexpressing LARP1 (pTrex-LARP1) vs control 
(pTrex-LacZ).  Representative images (200µm scale bar), and scratch area quantification. 

(E) Matrigel-coated transwell invasion assays with SKOV3 cells following LARP1 knockdown. 
Graphs are counts of the number of invasive cells. Representative images of DAPI-stained 
invasive cells are shown. 

(F) Matrigel-coated transwell invasion assays with HeLa cells following LARP1 knockdown. 
Representative images of DAPI-stained invasive cells are shown. ***P < 0.001, **P < 0.01, *P < 
0.05. Student t-test. Minimum of three experimental repeats. Error bars represent SEM. 

 

 

3.3.5 LARP1 LOCALISATION 

LARP1 is predominantly cytoplasmic, in contrast to La/LARP3 which is mainly found in the 

nucleus [226].  I next investigated whether LARP1 localisation altered following drug 

treatment, as several RBPs have been shown to move between the nucleus and cytoplasm in 

response to cellular stressors [392].   To do this, I first performed immunofluorescent staining 

of two platinum-resistant ovarian cancer cell lines (PEO4/SKOV3), with and without CDDP 

treatment, and analysed the stained cells with confocal microscopy.  As expected, LARP1 

protein was almost completely restricted to the cytoplasm in resting cells.  However, 

following 24 hours exposure to CDDP, a marked increase in nuclear LARP1 protein was seen 

in many cels (Figure 3-21A). Total levels of LARP1 protein do not alter following CDDP 

treatment when assessed by western blotting (data not shown).  To attempt to quantify 

differences in nuclear LARP1 levels, I collected nuclear protein fractions from SKOV3 cells 

following platinum treatment.  I found nuclear LARP1 protein levels increased substantially 

following cisplatin treatment (Figure 3-21B).  There were several bands found on LARP1 

immunoblotting of nuclear fractions.  Whilst these may represent products of protein 

processing/degradation, at least two splice variants of LARP1 are known to exist (Figure 

3-21C). Although no post-translational modifications are known for LARP1, LARP3 protein 
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undergoes C-terminal cleavage for nuclear localisation [246], and may represent a conserved 

feature of the protein family.  Further experiments are necessary to identify what these 

additional band represent, and the mechanism and signficance of the nuclear enrichment of 

LARP1 protein. 

 

Figure 3-21.  LARP1 protein levels in the nucleus increase on cisplatin exposure. 

(A) Immunofluoresence confocal microscopy of LARP1 (green) and actin (red) with DAPI 
counterstaining (blue) in untreated PEO4 and SKOV3 cells, or following 24 hours exposure to 
25µM CDDP.  Images represented representative fields of view from three experimental repeats.  
Quantification was not done using this experimental approach, but through fractionation and 
western blotting (see below).  

(B) Western blotting of nuclear and cytoplasmic (cytop.) protein fractions from SKOV3 cells 
following 24 hours exposure to CDDP. Representative image of at least three repeats.  
Unfortunately, cisplatin treatment appears to alter the nuclear localisation of Histone H3, giving 
the appearance of incomplete fractionation from CDDP-treated samples.  There was not time to 
repeat this experiment with a more suitable nuclear loading control. 

(C) A schematic of the two known splice variants of LARP1 protein, showing the alternative sequence 
at the N terminus. Predicted sizes are 131 and 122 kDa, for the larger and smaller isoforms, 
respectively. 
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3.3.6 SUMMARY 

In this sub-chapter, I investigated, at the level of cancer cell biology how elevated levels of 

LARP1 protein could lead to adverse outcomes in patients.  I found that knockdown of 

LARP1 inhibited tumour development and growth, whilst overexpression promoted tumour 

development (Section 3.3.1).  In both cases, this difference was independent of effects on cell 

proliferation.  I showed that LARP1 was required to maintain clonogenic and anchorage-

independent growth potential in vitro, and that LARP1 is required for tumourigenicity in 

vivo.  Tumour initiating ability is a critical feature of cancer stem cell (CSC)-like cells.  I 

found that LARP1 knockdown also led to decreased a) abundance of CSC-marker positive 

cell populations, and b) expression of stem cell-related transcription factors (Section 3.3.3). 

A key determinant of outcome in ovarian cancer is the response to platinum-based 

chemotherapy, with patients who develop resistance early having a very poor prognosis.  I 

hypothesised that the decreased tumourigenicity seen in vivo, and the trend towards poor 

survival with high LARP1 expression in the clinical data, could be explained by a role for 

LARP1 in modulating cancer cell survival.  Indeed, knockdown of LARP1 induced apoptosis 

and decreased viability, without altering proliferation.  This effect was enhanced when 

cellular stresses such as serum-depletion and hypoxia were applied.  Moreover, linking 

directly to the trends in the clinical data, I found that LARP1 depletion sensitised cells to 

chemotherapy, in line with its apparent anti-apoptotic role (Section 3.3.2).  As CSC-like cells 

have also been shown to have enhanced chemoresistance, this suggested these phenotypic 

effects were linked. 
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3.4  IDENTIFYING LARP1 TARGETS 

3.4.1 TRANSCRIPTOMIC ANALYSIS ON LARP1 

KNOCKDOWN 

To understand the molecular basis for the observed effects on tumourigenicity and cell 

survival when altering LARP1 expression, mRNA-sequencing following LARP1 knockdown 

was performed.  Data from three biological repeats were combined.  In controls cells, LARP1 

was in the top 7% most abundant mRNAs, with transcript abundance comparable to 

translational components such as EIF4A3 and RPL36A (Figure 3-22A). Knockdown of 

LARP1 with siRNA achieved a 79% decrease in mRNA levels, with no significant change in 

other LARP family members (Figure 3-22B).   Following LARP1 knockdown, there were an 

equal number of mRNAs that displayed increased and decreased abundance (Figure 3-22C).  

Ingenuity disease enrichment analysis revealed that transcripts with altered levels on LARP1 

knockdown were significantly enriched for functions linked to cancer (Figure 3-22D).  

Molecular and cellular function analysis revealed a significant enrichment for genes 

associated with cell proliferation and cell death and survival (Figure 3-22E).   
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Figure 3-22. Transient knockdown of LARP1 alters the cancer cell transcriptome. 

 
(A) Normalised transcript reads (RPKM) of LARP family members in the RNA-seq analysis of control 

samples. 
(B) Percentage change in mRNA expression of LARP1 family members following LARP1 

knockdown. 
(C) Frequency distribution of Log-2 fold change in mRNA expression in OVCAR8 cells following 

transient LARP1 knockdown (LARP1 knockdown relative to control).  
(D) Disease enrichment with Ingenuity Pathway Analysis (IPA) of genes differentially expressed 

following LARP1 knockdown (-log[BH-corrected p-value] shown, red dashed line indicates p = 
0.05). 

(E) Molecular function ontology enrichment with Ingenuity Pathway Analysis (IPA) of genes 
differentially expressed following LARP1 knockdown (-log[BH-corrected p-value] shown, red 
dashed line indicates p = 0.05). 
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3.4.1.1 RNA-sequencing compared to the HeLa LARP1 mRNA 

interactome 

In order to identify transcripts potentially directly regulated by LARP1 at the level of mRNA 

stability, I cross-referenced my OVCAR8 RNA-seq data with data from a LARP1 RNA-

immunoprecipitation and expression array analysis (RIP-Chip) experiment, performed by Dr 

Manuela Mura, which identified mRNAs in complex with LARP1 protein (data in press).  I 

found that genes that showed altered expression following LARP1 knockdown were more 

likely to be represented in the LARP1 mRNA interactome (hypergeometric probability 

distribution, p=0.042), suggesting LARP1 interaction with mRNAs may play an important 

role in determining their abundance (Figure 3-23A).  Of the 758 genes represented in both 

datasets, 49% showed decreased transcript abundance on LARP1 knockdown, whilst 51% 

showed increased abundance: LARP1 may therefore be capable of both stabilising and 

destabilising transcripts. Functional enrichment analysis of genes present in both datasets 

revealed that cell death and survival was the most significant biological trait (Figure 3-23A).  

Following LARP1 knockdown, there were reduced mRNA levels of anti-apoptotic genes 

such as BCL2, ERBB3 and AKT3 and increased expression of apoptosis-associated genes, 

including BIK , TNF and DAPK2.  To validate the RNA-seq findings, we repeated LARP1 

knockdown with two independent siRNAs and analysed changes in expression of these six 

genes with RT-qPCR (some experimental repeats performed by Dr M.Mura).  Our results 

confirmed the RNA-seq data (Figure 3-23B).   It should also be noted that LARP1 knockdown 

alters expression of genes frequently chosen as ‘housekeepers’, for normalisation in RNA and 

protein analysis, with significantly increased levels of ACTB, and decreased abundance of 

TUBB and GAPDH.  Expression of HSPD1, encoding HSP60 protein used as loading 

controls in all westerns, did not alter on LARP1 knockdown. 
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Figure 3-23. Combined analysis of RNA-seq and RIP-Chip data. 

(A) Overlap between differentially expressed genes on LARP1 knockdown (RNA-seq) and mRNAs in 
complex with LARP1 protein in HeLa cells (LARP1 interactome) was significant (hypergeometric 
probability p = 0.042).  Molecular function ontology analysis of genes present in both datasets 
revealed a highly significant enrichment of genes linked to cell death and survival. 

(B) RT-qPCR analysis of percentage change in mRNA levels of putative LARP1 targets following 
LARP1 knockdown (ΔΔCt, normalised to 18S RNA) . ***P < 0.001, **P < 0.01, *P < 0.05. 
Student t-test. Minimum of three experimental repeats. Error bars represent SEM. 
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3.4.2 LARP1 REGULATES THE STABILITY OF BIK AND 

BCL2 TRANSCRIPTS 

The association between LARP1 expression and B-cell lymphoma 2 (BCL2) mRNA transcript 

abundance was of particular  interest given my findings that LARP1 promotes cell survival 

and cancer stem cell-related traits.  BCL2 is a key oncogenic anti-apoptotic protein that 

promotes embryonic stem cell survival [393].  Notably, BCL2 inhibition has also been shown 

to increase platinum sensitivity in ovarian cancer cells [394], and BCL2 inhibitors target 

leukaemia stem cell-like populations [395]. BIK transcripts, encoding a pro-apoptotic target 

of BCL2, exhibited the opposite trend in mRNA abundance to BIK following LARP1 

knockdown and provided a useful comparison for further study.  To confirm that LARP1 

interacted with BCL2 and BIK transcripts in ovarian cancer cells, we performed RNA-

immunoprecipitation in two ovarian cancer cell lines (Figure 3-24A).  Both BCL2 and BIK 

transcripts were highly enriched in anti-LARP1 immunoprecipitates when compared to the 

28S control (Figure 3-24B), confirming they each associated with LARP1 in mRNP 

complexes. 
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Figure 3-24. LARP1 is present in BIK- and BCL2-containing mRNP complexes 

(A) Schematic of LARP1 RNA-immunoprecipitation (RIP) with representative Western blot of 
LARP1 protein following LARP1-immunoprecipiation in OVCAR8 cells (IP and western 
performed by Dr M Mura, representative image of at least three repeats shown). 

(B) Fold enrichment of transcripts in LARP1 and isotoype control RNA-immunoprecipitation analysed 
by RT-qPCR (ΔCt.).  28S ribosomal RNA was included as a negative control. RIP and most RT-
qPCR by Dr M.Mura, other repeats and data analysis by TGH. Student t-test. Minimum of three 
experimental repeats. Error bars represent SEM  

 

As LARP1 has been identified as an mRNA-stability regulator [331, 332], I wished to 

establish whether the observed changes in transcript abundance of BIK and BCL2, following 

LARP1 knockdown, were due  to an effect on transcript stability. To assess this, I carried out 

transient knockdown of LARP1, then treated cells with actinomycin D to halt transcription. 

Subsequent changes in mRNA levels were therefore due to alterations in the stability of 

existing transcripts.  Whilst control cells showed no change following actinomycin D 

treatment, cells treated with LARP1-targeting siRNA began to round and detach from 6 hours 

onwards (Figure 3-25A), with significantly increased levels of apoptosis when compared to 

control actinomycin D-treated cells (Figure 3-25B).  This reinforces the importance of 

LARP1 in the post-transcriptional regulation of cell survival.  Due to the cell death observed, 

I assessed transcript abundance at 6 hours. I observed a significant decrease in BCL2 

transcript levels in LARP1 knockdown cells when compared to controls, demonstrating that 
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LARP1 is required for BCL2 transcript stability.  The opposite trend was observed for BIK, 

with LARP1 knockdown associated with increased mRNA stability (Figure 3-25C). In 

contrast, there was no significant change in the transcript stability of MAPK14 (Figure 

3-25C), chosen as a negative control as it did not display altered mRNA abundance on 

LARP1 knockdown in our RNA-seq dataset and was not present in the HeLa LARP1-mRNA 

interactome.  I confirmed by western blotting that LARP1 knockdown also led to altered 

protein expression of both BCL2 and BIK (Figure 3-25D). 

 

Figure 3-25. lARP1 regulates BCL2 and BIK mRNA stability. 

(A) (Representative cell images following LARP1 knockdown and 8 hours exposure to actinomycin D 
(Scale bar 200µm).   

(B) Following transient knockdown of LARP1, OVCAR8 cells were treated with actinomycin D to 
halt transcription and apoptosis (as determined by cleaved Caspase 3/7) was monitored using the 
CaspaseGlo assay. **P < 0.01, *P < 0.05. 

(C) Stability of BCL2 and BIK mRNA following treatment with actinomycin D for 6 hours.  Relative 
abundance was determined by RT-qPCR (ΔΔCt).  MAPK14 was chosen as a negative control as its 
mRNA abundance did not alter on LARP1 knockdown in the RAN-seq dataset. Student t-test. 
Minimum of three experimental repeats. Error bars indicate SEM. 

(D) Western blotting of BIK and BCL2 protein levels following LARP1 knockdown. Representative 
image of three repeats. 
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3.4.3 LARP1 REQUIRES SEQUENCES IN THE 3’UTR TO 

REGULATE TRANSCRIPT STABILITY 

The 3’-untranslated region (3’UTR) of mRNAs are known to contain a variety of regulatory 

elements that can determine transcript stability [396].  I hypothesised that the effect of 

LARP1 on BCL2 and BIK transcript stability may be dependent on sequences present in their 

3’UTRs.  BIK transcripts have a 407bp 3’UTR which has not been extensively studied.  In 

contrast, BCL2 has a 3’UTR that is 5.2kbp long.  A number of publications have investigated 

the role of elements within the 3’UTR in regulating BCL2 mRNA stability. A 203bp 3’UTR 

sequence proximal to the stop codon containing multiple AU-rich elements (AREs), termed 

the BCL2-ARE, has been shown to be a key regulator of BCL2 transcript stability [178].  I 

designed plasmids containing either fragments or the entire UTR sequences of both genes 

downstream of a renilla luciferase reporter (Figure 3-26A).   
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Figure 3-26. LARP1 regulates mRNA stability at the level of the 3'UTR. 

(A) Schematics outlining construction of 3’-untranslated region (3’UTR) reporter constructs for BIK 
and BCL2, where relevant UTR sequences were cloned into a reporter vector, downstream of the 
renilla luciferase.  Both were compared relative to a control vector (Control) which used the 
identical plasmid backbone and renilla luciferase sequence, but without the addition of a 
downstream 3’UTR sequence. 

(B) OVCAR8 and SKOV3 cells were co-transfected with Renilla luciferase 3’UTR constructs and a 
Firefly luciferase control vector for normalisation.  Renilla luciferase activity following LARP1 
knockdown was determined for each 3’UTR construct cells.  Data was normalised to Firefly 
luciferase activity.  See Appendix III for raw values and examples of data processing. 

(C) OVCAR8 cells were co-transfected with Renilla luciferase 3’UTR constructs and a control Firefly 
luciferase control vector and Renilla luciferase mRNA abundance following LARP1 knockdown 
was determined using RT-qPCR.  Data was normalised to Firefly luciferase mRNA abundance. 
***P < 0.001, **P < 0.01, *P < 0.05. Student t-test. Minimum of three experimental repeats. Error 
bars indicate SEM.  

 

LARP1 knockdown resulted in a significant increase in luciferase activity in the BIK 3’UTR 

construct when compared to the empty vector control, confirming that LARP1 destabilises 

BIK mRNA, with the effect dependent on elements in the short 3’UTR (Figure 3-26B).  I 

designed two equal-sized overlapping constructs, spanning the length of the BCL2 3’UTR  
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(constructs BCL2-UTR-A and BCL2-UTR-B). Addition of either BCL2 3’UTR sequences (A 

or B) resulted in a significant decrease in luciferase signal, with a greater effect on stability 

seen for the stop codon-proximal 3’UTR construct (BCL2-UTR-A).  As the BCL2 ARE lies 

within this region, I designed a third construct containing only this 203bp 3’UTR region 

(BCL2-ARE).  Following LARP1 knockdown, there was no significant change in luciferase 

activity in this construct compared to the control plasmid (Figure 3-26B), indicating that the 

LARP1-mediated stability effect is dependent on additional sequences outside this well-

characterised region.  To confirm that changes in luciferase activity were due to alterations in 

mRNA stability, as opposed to effects on translation, I repeated the experiment and extracted 

total RNA. RT-qPCR was performed using firefly and renilla luciferase-specific primers 

following DNAse digestion.  A similar trend was observed at the mRNA level, as seen from 

luciferase enzyme activity (Figure 3-26C), confirming the changes observed in reporter gene 

activity were due to effects on mRNA stability.  These results indicate that the presence of 

LARP1 in mRNP can differentially regulate mRNA stability in a 3’UTR-dependent manner.  

LARP1 has previously been reported to be present in stress granules, sites of mRNA storage, 

and P-bodies, foci of RNA degradation [330, 332].  As LARP1 appeared to be capable of 

both positively and negatively regulating transcript stability, we were interested to see if 

LARP1 was localised to these key sites of RNA fate determination in ovarian cancer cells.  

After inducing the aggregation of mRNP granules with sodium arsenite treatment , we found 

LARP1 to be present in both P-bodies and stress granules (Figure 9F; experiment and images 

both Dr M. Mura).  Thus, LARP1 both differentially regulates transcript stability and is 

present at sites of mRNA fate determination.   
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Figure 3-27.  LARP1 is present in stress granules and P-bodies. 

Confocal immunofluorescence microscopy of SKOV3 cells treated with sodium arsenite to trigger 
aggregation of mRNP bodies.  Cells were stained for LARP1 protein (green) and either the P-body 
marker DCP1a or stress granule marker PABP (both red). Scale bar 10µm (top) and 25µm (bottom). 
Experiment and images both courtesy of Dr M.Mura. 
 
 

3.4.4 LARP1 EXERTS A PRO-SURVIVAL EFFECT VIA 

POST-TRANSCRIPTIONAL PROMOTION OF BCL2 

EXPRESSION 

To determine whether LARP1 could be regulating the expression of BCL2 and BIK in 

ovarian cancers, we evaluated trends in LARP1, BCL2 and BIK transcript abundance in the 

TCGA ovarian RNA-seq dataset (tcga-data.nci.nih.gov).  As expected, LARP1 and BCL2 

mRNA levels showed a significant positive correlation, while LARP1 and BCL2 were 

negatively correlatated (Figure 3-28A,B).   
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Figure 3-28. LARP1 correlates with BCL2 and BIK expression in ovarian cancer. 

(A) Correlation of mRNA expression (dataset normalised reads per kilobase of transcript per million 
mapped reads [RPKM]) in ovarian tumours (n=412) betweeen LARP1 and BCL2 or BIK (Pearson  
R).  Data from TCGA Ovarian RNAseq cohort (tcga-data.nci.nih.gov). 

(B) Comparison of upper and lower quartiles of LARP1 expression (dataset normalised RPKM, n=103 
in each), by BCL2 or BIK expression (Wilcoxon test). Data as before.  Analysis courtesy of 
Hoanan Lu. 

 

As stated above, BCL2 is an important promoter of chemotherapy resistance and appears to 

be required for CSC survival [394, 395]. I found LARP1 knockdown reliably led to reduced 

BCL2 expression using two independent siRNAs in different cell lines (Figure 3-29A).  To 

determine if the changes in BCL2 expression on LARP1 knockdown were sufficient to 
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explain the observed LARP1 phenotype, I used BCL2-targeting siRNA to reduce expression 

(Figure 3-29B).  As expected, decreased expression of BCL2 resulted in increased apoptosis 

in response to platinum treatment (Figure 3-29C), and also reductions in CD133+ populations 

(Figure 3-29D).  Having confirmed BCL2 knockdown recapitulated the LARP1 phenotype, I 

next assessed the ability of BCL2 overexpression to rescue the effects of LARP1 depletion.  

Indeed, following knockdown of LARP1 and treatment with cisplatin, transfection with a 

FLAG-tagged BCL2 overexpression construct resulted in a significant decrease in apoptosis 

when compared to control plasmid-transfected cells (Figure 3-29E).  Finally, to confirm that 

the changes observed in BCL2 transcript levels on LARP1 knockdown were independent of 

indirect transcriptional effects, I investigated the effect of LARP1 knockdown on BCL2 

promoter activity. Following LARP1 knockdown, there was no change in BCL2 promoter 

activity (Figure 3-29F), confirming that the observed changes in BCL2 transcript abundance 

and protein expression on LARP1 knockdown (Figure 3-29A, Figure 3-23) are due to 

alterations in mRNA stability alone.  
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Figure 3-29.  LARP1 promotes survival by regulating BCL2 expression. 

(A) Western blot analysis of BCL2 protein levels following LARP1 knockdown. Representative image 
of three repeats. 

(B) Western blot analysis of BCL2 protein levels following BCL2 knockdown in OVCAR8 cells. 
Representative image of three repeats. 

(C) Percentage of Annexin V-positive OVCAR8 cells, determined by flow cytometry, following 
transient BCL2 knockdown, with and without co-treatment with cisplatin (25µM). 

(D) Percentage of CD133+ OVCAR3 cells, determined by flow cytometry, following transient 
knockdown of BCL2. 

(E) Percentage of Annexin V-positive OVCAR8 cells, determined by flow cytometry, following 
LARP1 knockdown and treatment with cisplatin (25µM), with co-transfection of a control or 
BCL2-overexpression construct.  

(F) BCL2 promoter activity following LARP1 knockdown (firefly luciferase mRNA normalised to 
Renilla luciferase mRNA control). Minimum of three experimental repeats. Student t-test.  Error 
bars indicate SEM. 

 

These data indicate that LARP1 is required for BCL2 mRNA stability and protein expression, 

without which cells demonstrate increased apoptosis and decreased chemotherapy resistance. 

Together with my in vitro and in vivo data, this suggests a model whereby LARP1 
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differentially regulates the mRNA stability of pro- and anti-apoptotic transcripts in malignant 

ovarian tumours to promote survival (Figure 3-30). 

 

Figure 3-30. A summary of LARP1 action in the ovarian cancer cell. 

 

3.4.5  SILAC MASS SPECTROMETRY IDENTIFIES 

POTENTIAL LARP1 TARGETS 

LARP1 has previously been reported to play a role in regulating the translation of transcripts, 

as well as stability [335]. Transcripts regulated at a translational, and not stability, level by 

LARP1 would not be detected using my RNA sequencing-based approach described above 

(Section 3.4.1).  To identify LARP1 translational targets, I performed stable isotope labelling 

by amino acids in cell culture (SILAC) mass spectrometric analysis [397], following LARP1 

knockdown.  Cells were cultured in media supplemented with either unlabelled arginine and 

lysine, or two different combinations of these amino acids containing heavy stable isotopes of 

carbon (13C) and nitrogen (15N).  Protein from siControl-treated cells, and cells treated with 

two independent LARP1-targeting siRNA, cultured in the three differentially-labelled media, 
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were combined in equal quantities.  When digested, identical peptides from the different 

conditions were distinguished by their difference in mass, with the ratio between peak 

intensities reflecting the relative abundance of the peptide in the different experimental 

conditions (Figure 3-31A,B).  Analysis of SILAC data confirmed >70% knockdown of 

LARP1 protein with both siRNAs.  Proteins which showed a fold change between control 

and LARP1 knockdown in both siRNA of ≥1.5 used were taken as significant. 

 

Figure 3-31. SILAC mass spectrometry following LARP1 knockdown. 

(A) Schematic of the SILAC labelling process and a representation of the expected peptide traces on 
mass spectrometry.  OVCAR8 cells were cultured in amino acid heavy isotope-labelled media for 
at least 6 cell divisions.  Cells were then replated and LARP1 knockdown was performed.  Lysates 
were collected and protein content quantified using a modified Bradford assay.  Equal amounts of 
protein from each condition were combined, trypsin digested and analysed by mass spectrometry. 
Unlabelled arginine and lysine (R0K0, light), 13C labelled arginine and 2D labelled lysine amino 
acids (R6K4, medium) and 13C and 15N labelled lysine (R10K8, heavy). 

(B) Western blotting and densitometry for LARP1 of transient transfection samples sent for mass 
spectrometry analysis. 
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In total, nine proteins met this criteria, with two decreasing on LARP1 knockdown (DCD, 

TBRG4) and seven increasing (SDC4, ABCF3,PLEC, SLC38A2, GSR, ZNF217, MLL3; 

Table 3-3).  Neither of the two LARP1-promoted proteins, DCD and TBRG4 were 

represented in the HeLa LARP-mRNA interactome (Section 3.4.1), derived using a RIP-Chip 

approach.  Surprisingly DCD was not annotated in my RNA-seq dataset, suggesting its 

expression may have been below the threshold of detection.  In support of this hypothesis, an 

analysis of the TCGA Ovarian RNA-seq data (tcga-data.nci.nih.gov) revealed only 12% of 

patients had detectable DCD expression.  TBRG4 did not vary at an RNA-level on LARP1 

knockdown, suggesting it may be regulated at a translational level.  Although not identified in 

the HeLa LARP1-interactome, this may represent an ovarian-specific LARP1-mRNA 

interaction, and further experiments are necessary to confirm the change at a protein level and 

determine if the effect is direct. 

  



151 
 

Table 3-3. SILAC mass spectrometry identifies potential LARP1 targets. 

The fold-change in protein levels between siLARP1- and siControl-treated samples was calculated and 
all genes with ≥1.5 fold change in expression in the same direction in both siRNA were taken as 
significant.  This list was then cross-referenced against the HeLa LARP1 interactome and the RNA-seq 
dataset following LARP1 knockdown. Mean, siLARP1 (1) and siLARP1 (2) represent percentage 
change (siLARP1/siControl) in protein abundance as determined by SILAC mass spectrometry. RNA-
seq = fold change in mRNA transcript abundance (siLARP1/siControl). RIP=LARP1 RNA 
immunoprecipitation fold-change (LARP1 vs input) in HeLa cells. 
 

Symbol Name 

SILAC percentage change RNA-seq 

RIP 
Mean siLARP1 

(1) 
siLARP1 

(2) 
Fold 

Change 
P-value 
(FDR) 

dcd dermcidin 14% 10% 18% 
Not 

annotated NA 
Not 

enriched 

TBRG4 

transforming 
growth factor 
beta regulator 

4 27% 26% 29% 1.02 0.95 
Not 

enriched 

	   	   	   	   	   	   	   	  

	   	   	   	   	   	   	   	  

Symbol Name 

SILAC percentage change RNA-seq 

RIP 
Mean siLARP1 

(1) 
siLARP1 

(2) 
Fold 

Change 
P-value 
(FDR) 

Sdc4 syndecan 4 258% 202% 313% 
1.88 <0.001 2.07 

ABCF3 

ATP-binding 
cassette, sub-
family F 
(GCN20), 
member 3 229% 212% 246% 

1.87 <0.001 Not 
enriched 

LOC65246
0 

Similar to 
PLEC (Plectin 
1) 179% 170% 189% 

1.06 0.83 3.12 

slc38a2 

solute carrier 
family 38, 
member 2 165% 172% 159% 

1.56 <0.001 Not 
enriched 

gsr 
glutathione 
reductase 165% 158% 172% 

1.97 <0.001 Not 
enriched 

ZNF217 
zinc finger 
protein 217 163% 163% 162% 

2.18 <0.001 Not 
enriched 

MLL3 

myeloid/lymph
oid or mixed-
lineage 
leukemia 3 158% 150% 166% 

1.25 0.11 3.06 
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Of the genes apparently suppressed by LARP1, only two did not alter at an RNA level, 

MLL3 and Plectin 1 (PLEC), and both were present in the HeLa LARP1 interactome.  

LOC652460 is a peptide sequence that has now been withdrawn from RefSeq, but shares 

99% identity and 98% coverage with Plectin 1, and likely represents a post-transcriptionally 

modified variant.  Interestingly, high Plectin 1 expression appears protective in ovarian 

cancer (Figure 3-32).  If Plectin 1 is indeed inhibited by LARP1 at a translational level, this 

suggests the oncogenic effects of LARP1 may be mediated, at least in part, by suppressing 

Plectin 1 expression.  Glutathione reductase (GSR), which increased at a protein and RNA 

level following LARP1 knockdown, but was not found in the HeLa interactome, also appears 

to promote survival in ovarian cancer patients (Figure 3-32). 

These data represent exciting preliminary work.  However, changes in protein and RNA 

levels need to be confirmed by western blotting and qPCR, respectively.  Additionally, 

ribosome profiling is required to confirm a translational effect and RNA-

immunoprecipitations are needed to prove a physical interaction between LARP1 and the 

putative target transcripts. 
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Figure 3-32. Association between potential LARP1 targets and overall survival in ovarian cancer. 

Kaplan-Meier analysis of overall survival in ovarian cancer patients, separated by PLEC and GSR 
expression (n=1,648).  Data from kmplot.com [357]. 
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3.4.6 SUMMARY 

In the previous results sections, I demonstrated that high LARP1 expression is a poor 

prognostic factor in ovarian cancer and that, at the level of cell biology, LARP1 promotes 

tumourigenicity, cell survival and chemotherapy resistance. In Section 3.4, I used high-

throughput strategies to identify potential LARP1-regulated targets that could explain these 

findings.  Transcripts with altered abundance on LARP1 knockdown were identified by 

mRNA-sequencing (Section 3.4.1).  By cross-referencing this data with the published 

LARP1-mRNA interactome in HeLa cells, I revealed an enrichment for transcripts with 

functions linked to cell death and survival.  Specifically, I showed that LARP1 knockdown 

results in increased BIK expression and decreased BCL2 expression.  LARP1 is present in 

mRNPs containing these transcripts, and regulates their expression at the level of mRNA 

stability (Section 3.4.2).  I confirmed that this stability-regulating effect was determined at 

the level of the 3’UTR sequence.  In the case of BCL2, a previously characterised AU-rich 

motif-containing region of the 3’UTR was not sufficient by itself to reproduce the LARP1 

stability effect, suggesting novel interactions elsewhere in the 3’UTR (Section 3.4.3).  BCL2 

knockdown is capable of recapitulating the phenotype seen on LARP1 depletion, namely 

increased basal apoptosis, decreased chemoresistance, and reduction in CSC-like populations.  

Overexpression of BCL2 partially rescues the pro-apoptotic phenotype of LARP1 

knockdown, demonstrating that LARP1 promotes cell survival, at least in part, by post-

transcriptionally promoting BCL2 expression (Section 3.4.4).  Analysis of over 400 ovarian 

tumour samples reveals that LARP1 expression significantly positively correlates with BCL2 

mRNA levels, and is negatively correlated with BIK transcript abundance, reinforcing the 

clinical importance of my findings. 
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Finally, I have demonstrated that SILAC mass spectrometry is a useful tool to identify 

potential LARP1 targets regulated at the level of translation (Section 3.4.5), and further work 

is necessary to explore their significance.  The figure below summarises my thesis findings. 

 

 

Figure 3-33. Figure summarising the findings of this thesis in relation to LARP1. 
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4 CHAPTER IV - DISCUSSION 
 

4.1  DISCUSSION  

4.1.1 LARP1 IS A POTENTIAL CANCER BIOMARKER. 

Here, I report for the first time that LARP1 expression is upregulated in ovarian 

malignancies, with higher intratumoural levels associated with poorer prognosis.  In addition, 

levels of LARP1 protein correlate with malignant progression in cervical cancer and predict 

prognosis in breast and lung cancers.  In a global analysis of publicly available gene 

expression data, LARP1 expression was elevated across several tumour types, including 

hepatocellular cancer. LARP1 may therefore be an important driver of malignant progression 

in several different cancers. The fact that LARP1 has previously been identified as a predictor 

of poor prognosis in hepatocellular cancer [347], suggests that the results of the global 

analysis are likely to be clinically meaningful.  

Whilst LARP1 intratumoural protein levels may have potential as a cancer biomarker [347], a 

less invasive disease marker is often clinically preferred. The RBP Argonaute2 has been 

found in cancer cell-conditioned media and in the human circulation [373, 398], suggesting 

RBPs may be released into the blood.  Circulating autoantibodies to the LARP family 

member LARP3 are detectable in autoimmune conditions such as Sjogren’s syndrome [399].  

However, no data currently exists on whether LARP3 itself is present in the circulation, and 

no circulating RBP has yet been reported to be associated with underlying disease.  I 

established that LARP1 protein was released by ovarian cancer cells in culture. The finding 

that increased circulating LARP1 protein was detectable in patients with underlying ovarian 
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malignancy is, to my knowledge, the first example of an RBP acting as a potential circulating 

disease biomarker.  In all ovarian cancer patients, levels of circulating LARP1 protein fell 

following primary tumour excision, suggesting that plasma LARP1 levels reflect either 

protein release by the tumour itself, or the wider physiological effects of an underlying 

malignancy.  

4.1.2 LARP1 REGULATES CELL SURVIVAL. 

As yet, the role of LARP1 in ovarian cancer cell biology has not been characterised. In this 

study, transient knockdown of LARP1 in ovarian cancer cell lines increased apoptosis and 

decreased cell viability, without altering cell cycle distribution. I also observed a dramatic 

resensitising of platinum-resistant cells to cisplatin chemotherapy.  LARP1 was required for 

tumour initiation and progression in a proliferation-independent manner, with cell stresses 

such as hypoxia and nutrient deprivation shown to increase apoptosis when combined with 

LARP1 knockdown.  Tcherkezian et al also reported that LARP1 knockdown increased 

apoptosis up to four-fold in lung cancer-derived A549 cells, though the same trend was not 

seen in endometrial cancer-derived HEC1B or HEK293 embryonic kidney fibroblast cells 

[335]. These findings suggest there may be cancer-specific differences in the phenotype 

observed on LARP1 expression modulation.  Although the same group reported differences 

in cell cycle distribution with LARP1 knockdown, no significant differences were previously 

seen in Drosophila embryonic cells [334], supporting my findings. 

Mouse models of ovarian malignancy have suggested that transformed stem cells may be the 

origin of at least some types of EOC [68]. Multiple studies have demonstrated that flow 

cytometry markers, such as CD133 membrane expression and aldehyde dehydrogenase 

activity, can identify sub-populations of ovarian cancer cells that demonstrate cancer stem 

cell-like characteristics; these include enhanced tumour initiating capabilities and increased 
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chemoresistance [385, 386, 391].  No consensus on the flow cytometry marker profile of such 

CSC-like cells in EOC has yet been established.  However, ovarian cancer cells cultured in 

stem-enriching conditions to produce spherosomes, display increased CD133 positivity, and 

these CD133+ populations demonstrate enhanced expression of stem cell-associated genes 

[381, 382]. In addition, CD133 has been identified as an adverse prognostic factor in EOC 

[66]. I show here that as well as a role in tumourigenicity, LARP1 is required to maintain 

CD133+ and Aldefluorbright
 putative CSC-like populations. I found LARP1 knockdown also 

leads to reduced expression of stem cell-related transcription factors. Interestingly, in a paper 

investigating global differences in gene expression between CD133+ and CD133- daughter 

populations derived from CD133+ cells from a patient with progressive glioblastoma 

multiforme, LARP1 was found to be one of the most strongly downregulated genes in non-

CSC-like CD133- daughter populations [400]. LARP1 has also previously been shown to bind 

mRNA in embryonic stem cells, and expression of LARP1 decreases during cell 

differentiation [345]. This suggests LARP1 may be an important component in the 

maintenance of stem cell-like traits.  

4.1.3 LARP1 PROMOTES CELL SURVIVAL BY ENHANCING 

BCL2 EXPRESSION. 

I demonstrate that BCL2 expression is dependent on LARP1 protein, with a 50% decrease in 

BCL2 mRNA abundance on LARP1 knockdown due to altered mRNA stability alone.  BCL2 

is a well-characterised anti-apoptotic protein that prevents the activation of BH3-only 

proteins, such as BIK, which trigger apoptosis via mitochondrial outer membrane 

permeabilisation [401]. BCL2 is a key promoter of cancer cell survival [402], a negative 

prognostic factor in ovarian cancer [41, 403] and has been reported to promote platinum 

resistance [394]. Supporting a key role in the pro-apoptotic effects of LARP1 knockdown, I 
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show that reduced BCL2 expression induces apoptosis and enhances chemosensitivity.  

Overexpression of BCL2 partially rescues the pro-apoptotic effects of LARP1 knockdown, 

demonstrating that LARP1 promotes survival in a BCL2-dependent manner.  On LARP1 

knockdown, I also observe increased mRNA levels of pro-apoptotic genes, such as TNF, 

DAPK2 and the direct LARP1 target BIK, and reduced expression of anti-apoptotic genes, 

such as ERBB3 and AKT3. Given these changes, the apoptosis observed following LARP1 

knockdown is likely to be due to alterations in expression of multiple LARP1 targets, as well 

as indirect effects on non-targeted genes.  

Expression of BCL2 is elevated in CSC-like populations [404], whilst targeted BCL2 

inhibitors selectively kill leukaemic stem cell populations [395].  In addition, overexpression 

of BCL2 enhances the survival of human embryonic stem cells [393, 395].  In an ovarian 

cancer context, I show that knockdown of BCL2 is sufficient to reduce CSC-like populations, 

indicating that LARP1 promotes survival of CSC-like populations, at least in part, by 

maintaining BCL2 expression.   

4.1.4 LARP1 HAS A DUAL EFFECT ON MRNA STABILITY. 

LARP1 has been suggested to promote the stability of 5’-terminal oligopyrimidine (5’TOP) 

mRNAs in human cells [331] and, during heat stress in Arabidopsis cells, appears to have a 

role in the net destabilisation of transcripts [332].  LARP4b [306] and LARP7 [296] have also 

been identified as RNA stability regulators, supporting a conserved function within the LARP 

family.  I demonstrate here that, under the same conditions, LARP1 can differentially 

regulate transcript fate, stabilising transcripts of the anti-apoptotic gene BCL2, whilst 

destabilising pro-apoptotic BIK mRNAs.  Although representing opposing effects on RNA 

stability, the net consequence is the evasion of apoptosis. Work by Dr Mura has demonstrated 

that LARP1 is found in both P-bodies and stress granules, sites of RNA degradation and 
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storage, respectively, supporting a dual role in RNA fate determination.  Like LARP1, the 

RBP HuR has previously been shown to have a dual effect on mRNA stability, stabilising 

oncogenic transcripts such as VEGF [221] whilst destabilising transcripts encoding the 

tumour suppressor p16INK4 [222].  Also like LARP1, HuR has also been associated with 

chemotherapy resistance [405].  This supports a critical role of RBPs in cancer progression. 

4.1.5 THE 3’UTR DETERMINES LARP1 ACTION. 

Post-transcriptional regulation of expression is co-ordinated by elements within the 5’UTR of 

transcripts that can affect translation efficiency, and 3’UTR cis-acting features that determine 

message stability [396].  As LARP1 interacts with polyA-binding protein (PABP) [333], it 

seems likely that LARP1 is localised to the 3’-end of mRNAs.  Indeed, LARP1 has been 

previously been identified as part of a 3’UTR-associated mRNP complex [331].  I show that 

sequences in the 3’UTR of LARP1 targets are sufficient to recapitulate the stability-

regulating function of LARP1.  Whether LARP1 interacts directly with 3’UTR sequences, or 

indirectly via additional co-factors, remains to be determined. One of the best characterised 

3’UTR stability-determining features are AU-rich elements (AREs), recognised by RBPs that 

induce degradation, whilst proteins that compete for this interaction can promote stability 

[396].  As BCL2 has a well-characterised ARE-rich region (BCL2-ARE) that determines its 

mRNA stability [178], I hypothesised that LARP1 may require these sequences to induce an 

effect on stability.  However, I found that sequences in both halves of the 3’UTR can regulate 

BCL2 mRNA stability: the BCL2-ARE alone produces no stability effect.  The fact that 

LARP1 possesses up to three RNA-binding domains (LAM, RRM1, DM15) [223, 330], and 

in addition may act in conjunction with several other RBPs, may mean that a single mRNA 

interaction motif is unlikely. However, it is clear that the 3’UTR is highly specific in 

determining the LARP1 stability effect.  We previously identified the proteins 
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SYNCRIP/HNRNPQ, a factor that can destabilise mRNA [406, 407] and nucleolin (NCL), a 

protein that can promote transcript stability [178], to be enriched in LARP1-pulldowns in 

ovarian cancer cells [333].  Significantly, in the same 3’UTR pulldown experiment in which 

LARP1 was identified, both these proteins were also highly enriched, despite being 

conducted in a benign cell line [331].  LARP7 also binds both these proteins [295]. This 

suggests a model in which LARP1 functions as a critical component of a stability-regulating 

mRNP complex that is associated with the 3’UTR of transcripts. By regulating the 

components of this complex, LARP1 may be able to differentially regulate stability (Figure 

4-1). 

 

 

Figure 4-1. A possible model for the role of LARP1 in modulating transcript stability. 

LARP1 has previously been shown to bind PABP and 3’UTR-associated RBPs with a role in stability 
regulation, and has been identified in 3’UTR pulldowns, supporting its localisation at the 3’UTR.  In 
addition, my work has demonstrated that 3’UTR sequences determine whether LARP1 promotes or 
inhibits mRNA stability.  Whether LARP1 binds directly to sequences in the 3’UTR remains to be 
determined.  The differential effect on stability could be due to the recruitment or stabilisation of 
different RBPs on the 3’UTR.  For example, in the case of BCL2, LARP1 could act as a scaffold to 
enhance the binding of nucleolin to the 3’UTR, blocking the recognition of ARE sites by RBPs that 
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promote destabilisation.  In contrast, in the BIK 3’UTR, LARP1 could promote the recruitment of 
destabilising factors. 

4.2   FURTHER WORK 

4.2.1 DETERMINING DIRECT INTERACTIONS 

To arrive at a complete description of the action of LARP1 in the cancer cell, it is necessary 

to determine if the protein is interacting directly with its mRNA stability targets.  The RNA-

immunoprecipitations carried out in this study, although conducted in high stringency 

conditions, do not provide a definitive answer to this question.  The short 3’UTR of BIK is 

more amenable to experimental study, and I am currently in the process of investigating the 

possibility of a direct interaction.  To do this, I will perform biotinylated RNA pulldowns 

with magnetic beads, incubating the beads with either whole cell lysates or recombinant 

LARP1 protein.  If recombinant LARP1 protein is pulled down this will indicate a direct 

interaction and will be confirmed using electrophoretic mobility shift assays (EMSAs).  If 

LARP1 protein is only isolated following incubation of beads with whole cell lysates, I will 

perform mass spectrometric analysis of the precipitates, to identify the proteins associated 

with the BIK 3’UTR that could be involved in recruiting LARP1.   

The size of the BCL2 3’UTR complicates the assessment of a direct LARP1-RNA interaction, 

and a smaller target sequence is needed for further experiments.  I found that the stop codon-

proximal half of the 3’UTR (0-2,640bp) cloned into a luciferase reporter construct produced a 

stronger destabilising effect on LARP1 knockdown, so I have chosen to focus on this region.  

I have designed a series of 10 overlapping constructs to screen the 3’UTR for a region 

producing a maximal destabilising effect, using luciferase reporter assays as before (Figure 

4-2).  The region(s) identified will be cloned into a T7 promoter vector, and investigated for 

direct interactions as above. 
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Figure 4-2. Schematic of luciferase reporter constructs covering the first 2,640bp of the BCL2 3'UTR. 

 

4.2.2 ESTABLISHING AN RNA TARGET MOTIF AND 

GLOBAL REGULOME 

As discussed above, key questions remain unanswered about the interaction of LARP1 with 

mRNA. Although we have identified mRNAs in complex with LARP1 in HeLa cells, we do 

not know to what extent these interactions are conserved across cell lines and cancer types, 

nor do we know the sites of interaction with transcripts, or the RNA motifs recognised.  In 

addition, whilst the RIP-Chip experimental design employed to derive the HeLa LARP1 

interactome may enrich for more functionally meaningful LARP1-RNA interactions [408], it 

cannot exclude the possibility that these interactions occur indirectly through an intermediary. 

All these questions could potentially be answered by performing a LARP1 RNA-crosslinking 

immunoprecipitation (CLIP) experiment coupled with RNA-sequencing, such as the PAR-

CLIP, HITS-CLIP or iCLIP approaches, revealing direct RNA targets, as well as where on 

the transcript LARP1 binds and the bound sequence [409-411].  In previous studies, 
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researchers have used CLIP data to attempt to derive a consensus RNA recognition sequence 

for a given RBP.  However, with up to three RNA-binding domains (LAM, RRM DM15) 

[223, 330], LARP1 may bind more than one recognition motif. CLIP data could be supported 

by in vitro nucleotide affinity studies.  Nykamp et al, working in C. elegans, found LARP1 

has a high affinity for PolyG and, to lesser extent, PolyU [330].  In contrast, a different 

experimental approach by Aoki et al suggests that in human HEK293 cells, polyA is the only 

nucleotide recognised by LARP1 [331]. Incubating recombinant LARP1 with polyA,C,G and 

U sequences, or putative recognition motifs, and deriving affinities in shift assays, will allow 

validation of the CLIP-derived motifs.   

As CLIP data will provide information on the site of LARP1 binding within target transcripts, 

it will be interesting to see whether there is a 3’UTR bias, and whether the interaction site can 

predict the effect on stability.  For example, stop codon-proximal binding in the 3’UTR may 

correlate with stabilisation whilst distal binding may promote destabilisation.  Alternatively, 

the RNA motif bound may produce different effects on stability.   

Further inferences can be made from the CLIP data by cross-referencing it with global 

assessments of RNA stability on LARP1 knockdown, for example using the 5'-bromo-uridine 

(BrU) immunoprecipitation chase-deep sequencing analysis (BRIC-seq) strategy developed 

by the Akimitsu lab [412].  In addition, given LARP1 has been shown to play a role in 

mRNA translation [335], it would be useful to perform a global assessment of shifts in 

polysomal-associated transcripts following LARP1 knockdown, by sequencing ribosome-

protected RNA fragments [413].  Overlaying these three sets of data (information on LARP1-

bound mRNAs and RNAs with altered stability or translation following LARP1 depletion), 

will provide a very powerful step towards understanding the mechanism of LARP1 action.   
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As discussed in Section 1.3.3.5, microRNAs regulate mRNA stability and translation by 

binding to the 3’UTR, being part of the RISC. LARP3 has recently been shown to promote 

miRNA maturation by stabilising precursors [258].  LARP1 could therefore be regulating 

RNA stability by affecting the ability of miRNAs to target gene UTRs, either by affecting 

precursor processing, regulating miRNA access to the 3’UTR, or indirectly regulating 

miRNA transcription.  This could be investigated by performing small RNA-sequencing 

following LARP1 knockdown; a LARP1-RNA CLIP experiment would also identify if 

LARP1 binds miRNAs directly. 

4.2.3 DEVELOPING THE CLINICAL POTENTIAL OF 

LARP1  

Many papers identifying potential intratumoural biomarkers are published every year, but few 

of these prove suitable for clinical use. Indeed, a systematic review of the literature conducted 

in 2007 found 1261 candidate protein biomarkers, of which only 9 had reached the stage of 

FDA approval [414].  Few markers stand up to repeated scrutiny in new patient cohorts.  To 

address this, we have just completed an IHC analysis of a new tissue microarray dataset 

comprising 283 ovarian cancer patients, that represents a very high quality clinical cohort 

collected as part of the SCOTROC4 trial.  This microarray has been stained, scored by two 

specialists and analysed completely independently from ourselves, in line with 

recommendations published by the Biomarker Task Force at the NCI [415].  This has 

revealed that LARP1 is a highly significant predictor of poor progression-free survival, with 

elevated intratumoural LARP1 associated with a 50% increased risk of progression at any 

time point.  As one of a panel of prognostic or diagnostic markers, LARP1 may therefore 

prove useful as a tissue biomarker, and further large patient studies are warranted. 
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Whilst the patient numbers involved in our intratumoural LARP1 studies are now quite large, 

the work on LARP1 as a circulating biomarker is at a more preliminary stage.  Although our 

pilot study of LARP1 in the diagnostic setting, using 30 controls and 42 pre-operative patient 

samples, has proved very promising, there is nonetheless an overlap in plasma LARP1 levels 

between the two cohorts, creating the potential for false positives or negatives.  

Autoantibodies to LARP3 are found in several autoimmune conditions, including Sjögren’s 

syndrome [416], although there is no evidence as yet to suggest that LARP3 protein itself is 

present in the circulation.  Whilst LARP1 appears to behave very differently to LARP3 in 

many respects, it will be important to exclude a link to inflammatory processes, which could 

be a confounding factor.  Considerably larger cohorts will be needed to assess clinical 

potential, and we have already obtained through collaborations over 900 patient samples for 

further assessment.  These also include post-operative samples collected during 

chemotherapy treatment, to further assess the potential of LARP1 as a prognostic plasma 

biomarker.  Alongside further work with clinical samples, it will be necessary to clarify the 

mechanism of LARP1 protein release from cancer cells, and what factors influence this 

export.  In addition, it will be necessary to assess, using filtration and ultracentrifugation 

strategies, whether the LARP1 protein detected in conditioned media and plasma represents 

free protein, or is contained within vesicles and/or exosomes.  Work with Ago2 and miRNAs 

in conditioned media and plasma suggest both exist primarily as free RNP complexes [373, 

398] and Ago2 appears to also have a role in stabilising these extracellular miRNAs [398, 

417].  It will be interesting to determine whether extracellular LARP1 is also bound to RNA, 

and what effect this binding has on RNA fate.  

My work in vivo demonstrates that reducing LARP1 expression in ovarian cancer cells can 

inhibit tumour initiation and development, whilst in the in vitro setting it causes cell death 

and enhances chemotherapy sensitivity.  Using conditional knockdown of LARP1 tumours in 
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vivo, the lab is in the process of confirming the clinical significance of this 

chemosensitisation effect. These traits would be highly desirable in a targeted therapy for 

cancer.  However, the majority of targeted therapies to date involve blocking the activity of 

protein kinases by competing with ATP for the binding domain [418]. It may be possible to 

block the interaction of the RNA-binding domain(s) with the target RNA.  Indeed, a group in 

China modelled the LARP3 RNA-binding pocket in silico and used this to select small 

molecule inhibitors with the ability to block LARP3-mediated promotion of Hepatitis B 

replication [286].  This type of approach requires very detailed knowledge of both LARP1 

structure and its RNA targets, which remain to be established.  It may be possible to directly 

decrease LARP1 expression in tumours, through strategies such as therapeutic siRNA in vivo 

delivery [419].  The fact that LARP1 is detectable in the circulation would provide a 

powerful tool in drug development.  It would give a minimally invasive method to predict 

patients that could potentially respond to this treatment, as well as provide a readout of the 

success of inhibition after drug administration. Whilst it may be possible to target siRNA 

delivery to cancer cells [420], it is likely that non-cancer cells will still be affected.  At 

present, we do not know how critical LARP1 is to non-malignant cells. Tcherkezian et al. 

reported that LARP1 knockdown did not cause apoptosis in HEK293 embryonic kidney 

fibroblast cells [335], though with the same cell line I found a significant increase in 

apoptosis (data not shown), the same trend as that seen in cancer cells.  Further in vitro work 

on non-malignant cell lines is required before progressing to testing in model organisms. To 

establish the importance of LARP1 in normal growth and development, it would be useful to 

explore the phenotype of LARP1 knockout mice.  LARP3 is essential to early embryogenesis 

[232] and, since LARP1 expression is high in embryonic stem cells and drops during 

differentiation [345], we may find a critical role for LARP1 in embryogenesis as well; 

conditional knockouts may therefore be necessary. 
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4.3  CONCLUSIONS 

There is increasing evidence linking the LARP protein family to cancer. La/LARP3 promotes 

malignant progression by regulating translation [252, 276] whilst the predominantly nuclear 

LARP7 stabilises 7SK snRNA and acts as a tumour suppressor by inhibiting transcription 

[301].  Thus, though LARP family members have conserved RNA-binding structural motifs, 

their roles in post-transcriptional regulation and the cellular consequences of these effects 

have diverged significantly.  

I show here that LARP1, one of the most abundant transcripts in ovarian cancer cells, has a 

critical role in promoting chemoresistance and tumourigenicity.  By differentially regulating 

the stability of pro- and anti-apoptotic transcripts, LARP1 acts as a post-transcriptional 

promoter of apoptosis evasion.  It is therefore a potential future therapeutic target for the 

treatment of chemotherapy-resistant ovarian cancer. The fact that it has been shown possible 

to potentially inhibit the interaction of LARP3 with an RNA target [286] suggests that the 

LARP1-BCL2 interaction may also be druggable. 

The finding that, like hepatocellular cancer [347], LARP1 expression in ovarian malignancies 

predicts adverse outcomes suggests it may have potential as an intratumoural biomarker.   In 

addition, given that LARP1 is detectable in human plasma, and levels reflect underlying 

tumour burden, this presents the possibility of utilising plasma LARP1 protein levels as a 

non-invasive disease marker.  This will also be of considerable utility in the potential 

development of upstream inhibitors of LARP1 expression. 

Although significant progress has been made during this thesis in understanding the role of 

LARP1 in the ovarian cancer cell, important questions remain unanswered.  We have yet to 

confirm that the interaction of LARP1 with the 3’UTR of target mRNAs is direct.  If it is, we 
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will need to pinpoint the LARP1 mRNA recognition sequence, and to determine whether 

additional trans-acting factors are required to modulate LARP1-dependent mRNA stability 

regulation.  Answering these questions will bring us significantly closer to developing 

therapeutic inhibitors of LARP1 function. 

An increasing number of RBPs have been shown to act as oncogenes across nearly all 

malignancies through the post-transcriptional regulation of gene expression.  This thesis 

demonstrates that post-transcriptional regulation plays a significant role in ovarian cancer 

progression and that, as an mRNA stability regulator with oncogenic effects, LARP1 may 

have potential as a disease biomarker and therapeutic target. 
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1 APPENDICES 

 

1.1  APPENDIX I – SYSTEMATIC REVIEW OF 

LARP1 EXPRESSION IN CANCER 

 

Using the search criteria specified below, Oncomine (www.oncomine.org) was searched for 

studies comparing LARP1 expression in cancer and non-cancer tissue. 
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ONCOMINE	  SEARCH	  CRITERIA/THRESHOLDS

Cancer
Adult	  
Carcinomas

Dataset	  Size

151+	  (minimum	  
40	  per	  cancer	  
subtype)

Analysis
Cancer	  vs	  
Normal

Data	  Type mRNA

Platform
Affymetrix	  U133	  
(where	  possible)

Fold	  change >1.1	  or	  <0.9
P	  value less	  that	  0.01

Oncomine	  Database	  
Name	  (Data	  Source) Platform

Cancer	  Type	  
Investigated Controls Cases Probe

Fold	  
Chang
e P-‐Value

1

Bonome	  Ovarian	  
(Cancer	  Res	  
2008/07/01) Affymetrix	  U133

Ovarian	  
Carcinoma 10 185 212193_s_at 1.98 <	  0.0001

2

Haferlach	  Leukaemia	  (J	  
Clin	  Oncol	  
2010/05/20)

Affymetrix	  U133	  plus	  
2.0 EXCLUDED

3

Roessler	  Liver	  2	  
(Cancer	  Res	  
2010/12/15) Affymetrix	  U133

Hepatocellular	  
Carcinoma 220 225 212193_s_at 1.84 <	  0.0001

4

Hou	  Lung	  (PLoS	  One	  
2010/04/22)

Affymetrix	  U133	  plus	  
2.0

Lung	  
Adenocarcinom
a 65 45 212193_s_at 1.40 0.0002

5
TCGA	  Ovarian	  (TCGA	  
2011/03/24) Affymetrix	  U133

Ovarian	  Serous	  
Carcinoma 8 509 212193_s_at 1.70 0.0017

6

Agnelli	  Myeloma	  
(Genes	  Chrom	  Cancer	  
2009/07/01) Affymetrix	  U133 EXCLUDED

7
Sun	  Brain	  (Cancer	  Cell	  
2006/04/01)

Affymetrix	  U133	  plus	  
2.0 Glioblastoma 23 81 212193_s_at 0.56 <	  0.0001

8
TCGA	  Brain	  (TCGA	  
2012/03/01) Affymetrix	  U133 Glioblastoma 10 515 212193_s_at 0.83 0.0037

9

Coustan-‐Smith	  
Leukaemia	  (Lancet	  
Oncol	  2009/10/02) Affymetrix	  U133 EXCLUDED

10
Valk	  Leukaemia	  (N	  Engl	  
J	  Med	  2004/04/15) Affymetrix	  U133 EXCLUDED

11

Sanchez-‐Carbayo	  
Bladder	  2	  (J	  Clin	  Oncol	  
2006/02/10) Affymetrix	  U133

Infiltrating	  
Bladder	  
Uroepithelial	  
Cancer 48 81 212193_s_at 1.50 <	  0.0001

12

Barretina	  Sarcoma	  
(Nat	  Genet	  
2010/07/04) Affymetrix	  U133 EXCLUDED

13
TCGA	  Colorectal	  (TCGA	  
2011/09/08)

Agilent	  244K	  
Microarray	  
(AMDID019760)

Colon/Caecal	  
Adenocarcinom
a 22 123 A_24_P7212 1.82 <	  0.0001

14
Curtis	  Breast	  (Nature	  
2012/06/21) IlluminaHT

Invasive	  Ductal	  
Breast	  Cancer 144 1556

ILMN_16815
90 1.18 <	  0.0001

NON-‐AFFYMETRIX	  STUDIES	  (largest	  studies	  added	  to	  include	  common	  cancers	  otherwise	  not	  represented)
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1.2  APPENDIX II – CHANGES IN MRNA 

ABUNDANCE FOLLOWING LARP1 

KNOCKDOWN. 

Following LARP1 knockdown, mRNA sequencing was performed to a 35Gbp depth.  The 

ratio change in mRNA abundance between siLARP1-treated cells and control cells was 

calculated using the RPKM method.  The top 50 most upregulated and downregulated  genes 

are presented below. 

Top	  50	  most	  upregulated	  genes	  following	  LARP1	  knockdown	  

	   	   	   	  

Rank	   Symbol	   RATIO	  
(siLARP1/siControl)	  

FDR	  (False-‐discovery	  rate	  
corrected	  p-‐value)	  

1	   FAM167B	   10.76321664	   5.14E-‐03	  

2	   COL5A3	   9.083512367	   1.81E-‐02	  

3	   NPY2R	   8.208613432	   9.05E-‐03	  

4	   LGI4	   7.715238872	   2.08E-‐02	  

5	   COL15A1	   7.283694409	   3.50E-‐04	  

6	   ATOH8	   5.744118793	   1.18E-‐04	  

7	   LOC100270804	   5.309321106	   2.65E-‐02	  

8	   TNNT2	   4.926271115	   3.66E-‐02	  

9	   TESC	   4.910900426	   1.09E-‐02	  

10	   BTC	   4.564401237	   3.27E-‐02	  

11	   HHLA2	   4.50159881	   1.35E-‐07	  

12	   PPPDE1	   4.439301175	   3.14E-‐56	  

13	   THBS4	   4.358276542	   3.53E-‐07	  

14	   SUSD2	   4.348501937	   3.53E-‐02	  

15	   NXPH3	   4.256337412	   1.46E-‐09	  

16	   FGF13	   4.060830153	   4.24E-‐05	  

17	   YPEL1	   4.007838119	   3.54E-‐13	  

18	   ISM1	   3.713630659	   6.76E-‐09	  

19	   F2RL1	   3.688509443	   1.59E-‐04	  

20	   IRS4	   3.667739602	   1.00E-‐02	  

21	   TMEFF2	   3.579925731	   5.80E-‐03	  

22	   DAPK2	   3.573588719	   2.25E-‐03	  
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23	   TMEM64	   3.532437095	   5.06E-‐06	  

24	   CALHM2	   3.528483036	   4.35E-‐07	  

25	   WIF1	   3.516303256	   9.76E-‐03	  

26	   STC1	   3.480241305	   6.78E-‐06	  

27	   KLHL4	   3.473040184	   3.59E-‐03	  

28	   KCNT1	   3.44573744	   3.94E-‐02	  

29	   CRISPLD2	   3.425299673	   7.98E-‐05	  

30	   DENND1C	   3.256160782	   1.21E-‐03	  

31	   C1orf38	   3.245543804	   5.63E-‐06	  

32	   FOXF2	   3.235893741	   2.69E-‐06	  

33	   STAC2	   3.221803261	   1.36E-‐05	  

34	   RCOR2	   3.165673593	   1.68E-‐10	  

35	   C9orf170	   3.131846575	   4.59E-‐02	  

36	   TMEM150C	   3.103489976	   1.75E-‐06	  

37	   ZMYM6NB	   3.094376226	   1.69E-‐09	  

38	   CLIP3	   3.037756279	   3.03E-‐08	  

39	   IL2RB	   2.904075488	   6.75E-‐05	  

40	   CORO1A	   2.871391551	   3.37E-‐02	  

41	   RUNX2	   2.822265376	   2.48E-‐02	  

42	   LRRC2	   2.818792673	   5.88E-‐04	  

43	   PANX2	   2.739400173	   1.39E-‐04	  

44	   KIF5C	   2.673154375	   2.47E-‐23	  

45	   SIGIRR	   2.663312736	   4.20E-‐02	  

46	   FBXO2	   2.633999887	   1.89E-‐02	  

47	   TMEM45A	   2.609776229	   5.51E-‐07	  

48	   ALPK3	   2.589775632	   5.74E-‐03	  

49	   PTPRA	   2.555785399	   2.39E-‐04	  

50	   LRRC7	   2.552562068	   3.58E-‐02	  

	   	   	   	  Top	  50	  most	  downregulated	  genes	  following	  LARP1	  knockdown	  

	   	   	   	  

Rank	   Symbol	   RATIO	  
(siLARP1/siControl)	  

FDR	  (False-‐discovery	  rate	  
corrected	  p-‐value)	  

1	   FLJ42393	   0.042542733	   3.84E-‐02	  

2	   C3AR1	   0.106867308	   4.86E-‐02	  

3	   SCARNA9L	   0.135332271	   1.11E-‐05	  

4	   PDCD1LG2	   0.136407086	   1.05E-‐02	  

5	   S1PR1	   0.157007047	   9.35E-‐136	  

6	   KRTAP2-‐1	   0.184470415	   1.29E-‐19	  

7	   HEBP2	   0.188532256	   8.05E-‐66	  

8	   PKI55	   0.196298783	   1.19E-‐51	  

9	   LOC730755	   0.198886458	   6.09E-‐55	  

10	   LARP1	   0.210771962	   1.78E-‐112	  

11	   IGFBP3	   0.221314705	   1.12E-‐17	  
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12	   OXNAD1	   0.232277516	   5.82E-‐49	  

13	   B3GNT5	   0.2329099	   8.92E-‐09	  

14	   GNMT	   0.238011796	   2.66E-‐02	  

15	   LUM	   0.238510402	   1.40E-‐07	  

16	   LOC644242	   0.247863952	   3.36E-‐02	  

17	   SLC26A2	   0.253267538	   1.32E-‐58	  

18	   LRFN5	   0.255301564	   5.12E-‐04	  

19	   MDGA2	   0.258154169	   2.21E-‐02	  

20	   NCRNA00324	   0.268021972	   1.89E-‐02	  

21	   ETV4	   0.268185058	   2.56E-‐08	  

22	   AK4	   0.276307614	   2.44E-‐04	  

23	   SLC35B1	   0.283881398	   7.04E-‐54	  

24	   ULBP2	   0.291455886	   4.90E-‐21	  

25	   IFI44L	   0.292113415	   7.31E-‐03	  

26	   ITPK1	   0.292171416	   4.74E-‐03	  

27	   ZNF542	   0.292350633	   3.89E-‐09	  

28	   GBP1	   0.292583124	   1.02E-‐28	  

29	   CCDC3	   0.292856281	   1.65E-‐09	  

30	   VCL	   0.29325466	   3.97E-‐34	  

31	   VMA21	   0.300852251	   2.56E-‐50	  

32	   PAK3	   0.30578632	   1.68E-‐10	  

33	   TTLL11	   0.311776341	   4.07E-‐08	  

34	   PTCHD1	   0.313498802	   3.83E-‐04	  

35	   ZNHIT3	   0.313566042	   1.76E-‐30	  

36	   EPCAM	   0.315879903	   1.40E-‐22	  

37	   SCD5	   0.316781535	   7.45E-‐34	  

38	   IL17RD	   0.319062818	   1.96E-‐18	  

39	   LOX	   0.319915695	   3.12E-‐10	  

40	   LYRM1	   0.322561521	   1.07E-‐04	  

41	   GXYLT1	   0.326735525	   4.59E-‐02	  

42	   LOXL2	   0.327276132	   2.69E-‐56	  

43	   RNF43	   0.327974721	   2.08E-‐03	  

44	   FNIP2	   0.329307381	   1.35E-‐14	  

45	   BIRC3	   0.331363902	   4.74E-‐04	  

46	   ACER2	   0.333643407	   2.02E-‐06	  

47	   DDA1	   0.335336684	   9.34E-‐46	  

48	   EIF4EBP2	   0.335545949	   3.17E-‐47	  

49	   CCNG1	   0.336000105	   1.36E-‐08	  

50	   DDX11L2	   0.340558606	   4.34E-‐02	  

 



197 
 

1.3  APPENDIX III – 3’UTR LUCIFERASE 

REPORTER ASSAY DATA PROCESSING. 

Overleaf is an example of the data processing steps (1 to 5) for the 3’UTR luciferase reporter 

assay experiments.  The example chosen is one experimental repeat in SKOV3 cells, 

transfected with renilla luciferase 3’UTR reporter constructs, or a control vector without 

additional 3’UTR sequences, and co-transfected with a firefly luciferase reporter vector for 

data normalisation.  Data in steps 1 and 2 represent the raw luciferase values from the same 

wells of each condition, analysed twice, once for renilla and once for firefly luciferase 

activity. 
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