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A Bio-inspired Embedded Vision System for
Autonomous Micro-robots: the LGMD Case
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Abstract—In this paper, we present a new bio-inspired vision
system embedded for micro-robots. The vision system takes in-
spiration from locusts in detecting fast approaching objects. Neu-
rophysiological research suggested that locusts use a wide-field
visual neuron called lobula giant movement detector (LGMD)
to respond to imminent collisions. In this work, we present
the implementation of the selected neuron model by a low-cost
ARM processor as part of a composite vision module. As the
first embedded LGMD vision module fits to a micro-robot, the
developed system performs all image acquisition and processing
independently. The vision module is placed on top of a micro-
robot to initiate obstacle avoidance behaviour autonomously. Both
simulation and real-world experiments were carried out to test
the reliability and robustness of the vision system. The results
of the experiments with different scenarios demonstrated the
potential of the bio-inspired vision system as a low-cost embedded
module for autonomous robots.

Index Terms—Bio-inspired, LGMD, Collision avoidance,
Embedded system, Autonomous robot, Low-cost.

I. INTRODUCTION

THE ability to avoid a collision is an important issue
for the autonomous mobile robots. There are different

sensory systems which are used for collision avoidance such as
ultrasonic [1], infra-red [2], [3] , laser [4], radar [5] and vision
system [6]. However, it is still not an easy task for mobile
robots to run autonomously in complex environments without
human intervention. Amongst these modalities, vision often
provide rich cues to interpret the real world as demonstrated
in many animal species. In building artificial vision systems,
one of the greatest challenges is to understand and deal with
the dynamic scenes [7] with complex background, moving
objects and/or rapidly changing ambient light. Fast and reliable
methods to address these problems are needed.

Nature demonstrates variety of the successful visual
methods in collision avoidance [8]. For example, in locusts,
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the ability to detect approaching objects is important to avoid
collision in dense swarm or escape from predators [9]. It has
been identified that there is a wide-field visual neuron in the
lobula layer of the locust nervous system called the Lobula
Giant Movement Detector (LGMD) [10] which plays a critical
role for the ability of collision detection and avoidance. As the
results of millions years of evolution, the vision-based colli-
sion avoidance systems in animals, such as LGMD, are both
reliable and efficient in coping with dynamic environments
[11]–[13]. Therefore, it can be a feasible approach if we take
inspiration from nature and apply it on autonomous mobile
robots.

The LGMD neuron in locust has an unique character
responding selectively to looming objects [14]. It generates
high frequency spikes to an object approaches in a direct
collision course rapidly [15]. LGMD is tightly tuned to
respond to objects approaching in a direct collision course
[16], however it produces little or no response to receding
objects [15], [17]. Compared to the vision processing systems
in large mammals like humans, LGMD uses relatively smaller
number of neurons and simpler structures to perform collision
detection function. All these characteristics make LGMD an
ideal model for developing a specialised, fast and low-cost
vision system for autonomous collision avoidance [18]–[20] .

As an early work on LGMD modelling, a functional neural
network based on the LGMD’s input circuitry was developed
by Rind and Bramwell [21]. This neural network showed the
same selectivity as the LGMD neuron for approaching objects
and responded best to the objects approaching on collision
rather than near-miss trajectories. This neural network has
also been used to mediate collision avoidance in a real-world
environment by incorporating it into the control structure of a
miniature robot [18], [22].

In the previous LGMD based collision avoidance researches
[18]–[20], robots only serve for the image acquisition and the
motion control due to limited computing power and hardware
resources on board. The major LGMD processing tasks were
completed by the models written with PC-based software such
as MATLAB (Mathworks, USA). Collision avoidance was
conducted upon receiving the computation results transferred
from the host PC via cables or wireless signals [19], [23]. The
whole system is cumbersome and complicated to autonomous
miniature multi-robot systems such as swarm robotics scenar-
ios [24]. Therefore, a much more compacted implementation
of a LGMD model in one miniaturized module for autonomous
collision detection is badly needed. The reduction in size will
not only make it easy to integrate into micro-robots, but will
also lead to low-cost and low power consumption.
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In this research, we aim to push the realization and appli-
cation of bio-inspired visual systems, LGMD in this case, one
step further, by integrating the collision detection and avoid-
ance model and all functionalities to one compact board as a
“plug and play” module to micro-robots. In order to achieve
this, the LGMD model was rewritten to fit to an embedded
vision module featuring by an ARM® micro-controller chip
which serves as the main processor and also acquires video
sequence from a tiny CMOS camera. This vision module
enables a low-cost micro-robot, Colias [25], to demonstrate au-
tonomous collision detection and avoidance behaviour, which
was tested in various experiments with different environmental
configurations.

The rest of this paper is organised as follows. In section
II, we give an overview of related work. In section III, we
talk about the robot’s system design. Section IV describes the
proposed LGMD model, which also explains its realization
on an embedded processor. The experiments and results are
illustrated in Section V. Following that, in Section VI, we
further discuss about the proposed system and future research
directions.

II. RELATED WORK

A. Traditional Vision Based Collision Detection Methods

Vision-based collision detection is widely used in robotics
[26], [27]. For example, Suman et al. [28] proposed a mono-
cular obstacle detection and avoidance method for unmanned
aerial vehicle (UAV). They used mathematical model to esti-
mate the relative distance from the UAV’s camera to an
obstacle by detecting the feature points in the UAV’s field
of view, which is not an on-board system.

Yaghmaie et al. [29] proposed a novel method for robots to
navigate in dynamic environments called Escaping Algorithm
which is based on force field method which belongs to the
family of Simultaneous Localization And Mapping (SLAM).
In their algorithm, the movement of dynamic obstacles is
predicted by Kalman filter for collision detection combined
with potential field approach. The method was tested on
simulations then implemented by a mobile robot platform,
however, the computing task was done on a PC with Intel® i5
processor.

Traditional visual based collision detection methods need to
process massive volume of images in real time or need a real-
world model created in advance, which is either difficult to be
completed on-board for a micro-robot with limited resources
or hardly able to cope with dynamic environments.

B. Bio-inspired collision detection methods

There are also several bio-inspired collision avoidance and
navigation methods, most of which are based on elementary
motion detector (EMD), for example Zhang et al. [30], Badia
et al. [31] and Franceschini et al. [32]. However, in many
cases, EMD based methods could be difficult to apply due to
its inherent character - the performance is strictly restricted
within certain visual speeds.

LGMD based methods, on the other hand, can cope with
most of the upcoming collisions, regardless of the visual speed.

Blanchard et at. [18] was the first to bring LGMD based
neuron networks into robots for real-time collision detection
and tested it with Khepera I robots. Badia et al. [23] proposed
one form of LGMD based collision detection model and tested
it on a high-speed robot “Strider” with a wireless camera
to capture and transmit images to PC for processing. Silva
et al. [33] proposed another modified LGMD model which
combined two previous works from [19] and [34] for more
robust collision detection, which focused more on modelling
instead of embedded system development.

There has been effort on implementing bio-inspired method
in VLSI chips like FPGA, for example, Meng et al. [34] added
additional cell to detect the movement in depth, Harrison [35]
proposed an Analog IC for visual collision detection based on
EMD, and Okuno and Yagi [36] implemented mixed analog-
digital integrated circuits with FPGA. However, these attempts
are not suitable for micro and mini robots, either because of
the large size or the high power consumption of the FPGA
circuits.

III. ROBOT SYSTEM FORMULATION

The micro-robot system realisation contains mainly two
parts: Colias [25] swarm robotic platform and the developed
vision processing module. Fig.1(a) shows the Colias robot
platform.

A. Robot Platform

We have chosen Colias as our testing platform for the
following reasons. First, it is a light weight robot that reacts to
motion commands fast. Second, Colias is one of the smallest
and cheapest micro-robots in the field, so that multiple robots
could be put in one small arena to test both the individual and
collective behaviours.

Colias employs a circular platform with a diameter of
4 cm with two independent boards: the upper board and
the lower board. The upper board is developed for inter-
robot communication and swarm robotic scenarios [37]. In
the current work, we removed the upper board and only the
lower board of Colias was deployed. Fig. 1(b) shows the basic
architecture of Colias robot. The marked block is the lower
board of Colias which is used as the micro-robot platform.

Fig. 1. (a) Colias robot platform and (b) basic architecture of Colias. The
bottom board, which is marked within a red rectangle in (b), is deployed in
this study.
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The Colias platform provides motion, basic short-range
proximity sensors and power management. It uses an ATMEL
AVR 8-bit micro-controller with 8 MHz internal clock source.
Two micro DC motors employing direct gears and two wheels
with diameter of 2.2 cm actuate Colias with a maximum speed
of 35 cm/s. However, in this design, we limited the speed of
forward motion to 20 cm/s.

Motors are controlled individually using a pulse-width mod-
ulation (PWM) technique [38]. Each motor is driven separately
by a H-bridge DC motor driver, and consumes power between
120 mW and 550 mW depending on the load. Colias uses
three IR proximity sensors to avoid collisions with obstacles
and other robots within less than 10 mm.

In Colias, the lower board is responsible for managing
the power consumption as well as recharging process. Power
consumption of the robot under normal conditions (in a basic
arena with only walls) and short-range communication (low-
power IR emitters) is about 2000 mW. However, it can be
reduced to approximately 750 mW when IR emitters are
turned on occasionally. A 3.7 V, 600 mAh (extendible up to
1200 mAh) lithium-polymer battery is used as the main power
source, which gives an autonomy of approximately 2 hours for
the robot.

B. Bio-inspired Vision Module

The vision module consists of two main parts: i) a compact
camera module and ii) the main microprocessor. The schematic
architecture of the vision module is illustrated in Fig.2. The
power consumption of each part in the system are listed in
TABLE.I.

1) Camera: A low voltage CMOS image sensor OV7670
module is utilised for it is a low-cost camera with a compact
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Fig. 2. Hardware architecture of the extension vision module.
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Fig. 3. The developed micro-robot with the vision module. The vision module
(green) is placed on top of the robot platform Colias (red).

package size of 8×4 mm³ with 24-pin flexible flat fable (FFC)
connector. The power supply is 3.3 V with active power
consumption of 60 mW. The camera is capable of operating
up to 30 frames per seconds (fps) in VGA mode with output
support for RGB565, RGB888 and YUV422. The horizontal
viewing angle is approximately 70°. All these features make
the camera suitable for a miniature size mobile robot. As a
trade-off for image quality and memory space, we choose a
resolution of 72×99 pixel at 30 fps, with output format of 8-bit
YUV422.

The digital interfaces used for configuration and data trans-
mission include three groups which are a serial camera control
bus (SCCB) with two wires for camera configuration, four
clock/timing signals and an 8-bit parallel port for image data
transferring.

2) Embedded Microprocessor: An ARM® Cortex™-M4F
core micro-controller is deployed as the main processor for
serving the image processing and monitoring all the modules
including the camera, Colias platform and other sensors. The
32-bit Micro Control Unit (MCU) STM32F407 clocked at 168
MHz provides the necessary computational power to have a
real-time image processing. The total SRAM capacity is 192
KByte.

The images captured by the camera are transmitted through
the digital camera interface (DCMI) which is an embedded
camera interface. It is connected to the camera module with
CMOS sensors through an 8-bit parallel interface to receive
image data. The camera interface sustains a data transfer rate
up to 54 Mbyte/s at 54 MHz, paced by several synchronizing
signals. Images received by DCMI are transmitted into SRAM
through a direct memory access (DMA) channel. Fig.2 shows
the proposed architecture of the hardware.

IV. PROPOSED COLLISION DETECTION METHOD
In this section, the proposed LGMD-based collision

detection model, and the implementation of the model on the
embedded micro-controller are described in detail.

A. LGMD Based Neural Model

The LGMD algorithm used in this work is based on the
previous model proposed by Yue and Rind [19], as shown in
Fig.4.

In order to reduce the computational complexity to fit the
embedded processor, some simplification and approximation
need to be applied in the algorithm, which will be described
in the following sections.

The model is composed of five groups of cells, which are P-
cells (photoreceptor), I-cells (inhibitory), E-cells (excitatory),

TABLE I
THE POWER CONSUMPTION CHARACTERISTICS

Description typical max unit
Processor standby 18.5
Processor active 111 148
Camera standby 20 mW
Camera active 166.5 185

Robot platform processor and sensors 29.6 111
DC Motor x2 74 222
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S-cells (summing) and G-cells (grouping) and also two in-
dividual cells, namely, the feed-forward inhibitory (FFI) and
LGMD.

The first layer of the neuron is composed by the P cells,
which are arranged in a matrix. They are formed by the change
of luminance in adjacent frames captured by the camera. In
[19], the P layer was defined by:

Pf (x, y) = Lf (x, y)− Lf−1(x, y)

+

np∑
i

piPf−i(x, y) (1)

pi = (1 + eµi)−1 (2)

where np defines the maximum number of frames (or time
steps) the persistence of the luminance change can last, the
persistence coefficient pi ∈ (0, 1) . Pf (x, y) is the change of
luminance of each pixel at frame f, Lf (x, y) and Lf−1(x, y)
are the luminance in current and the previous frames.

In this paper, P layer is defined simply by:

Pf (x, y) = Lf (x, y)− Lf−1(x, y) (3)

Comparing to the original algorithm (1), the visual per-
sistence part which occupies a lot of computation power is
removed.

The output of P cells serve as the inputs to two separate
cell types in the next layer. One is the excitatory cells,
through which excitation is passed directly to the retinotopic
counterpart of the cell in the third layer.

Ef (x, y) = Pf (x, y) (4)

The second type of the cells are lateral inhibition cells
which pass inhibition after one image frame delay to their
retinotopical counterpart’s neighbouring cells in the E layer.
This layer is treated as a convolution operation:

[I]f = [P ]f ⊗ [w]I (5)

where ⊗ stands for the convolution operation. It could also be
written as:

If (x, y) =
∑
i

∑
j

Pf−1(x+ i)(y + j)wI(i, j) (6)

 

P layer

I layer

E layer

S layer

G layer

FFI

LGMD

Fig. 4. A schematic of the LGMD based neural network for collision
detection. The input of the P cells is the luminance change. Lateral inhibition
is indicated with dotted lines and has one frame delay. Excitation is indicated
with black lines which has no delay. The FFI cell has one frame delay.

where [w]I is the convolution mask that representing the local
inhibiting weight spreading from the centre cell of P layer to
neighbouring cells in S layer, given by:

[w]I =

0.125 0.25 0.125
0.25 0 0.25
0.125 0.25 0.125

 (7)

The excitation of E cells and the inhibition of I cells
are combined in the S layer by a subtraction. Usually the
subtraction is given by:

sf (x, y) = Ef (x, y)− If (x, y) ∗WI (8)

where WI is the inhibiting coefficient. However, the subtrac-
tion should be taken care of when the excitation and inhibition
value of a pixel have opposite signs. In this case, (8) could lead
to a false positive pixel in the S layer instead of the expected
inhibition. We added a judgement to prevent this effect:

sf (x, y) = Ef (x, y)− If (x, y) ∗WI (9)

Sf (x, y) =

{
0 ifEf (x, y) ∗ If (x, y) ≤ 0

sf (x, y) otherwise
(10)

The G layer is introduced to the model in order to reduce
noise from the background. When reaches the G layer from S
layer, the expanded edges which are represented by clustered
excitations are enhanced to extract colliding objects against
complex backgrounds. This mechanism is implemented with
a passing coefficient for each cell, which is defined by a
convolution operation in the S layer. The passing coefficient
Ce is determined by the surrounding pixels, given by:

[Ce]f = [S]f ⊗ [w]e (11)

where we represents the influence of its neighbours and this
operation can be simplified as a convolution mask:

[we] =
1

9

1 1 1
1 1 1
1 1 1

 (12)

The excitation correspond to each cell Gf (x, y) then be-
comes:

Gf (x, y) = Sf (x, y)Cef (x, y)ω
−1 (13)

where ω is a scale and computed at every frame:

ω = 0.01 + max
∣∣[Ce]f · C−1

w

∣∣ (14)

in which Cw is a constant, and max |[Ce]f | is the largest
absolute value of Ce.

The G layer is followed by a threshold set to filter decayed
excitations:

G̃f (x, y) =

{
Gf (x, y) if Gf (x, y)Cde ≥ Tde
0 otherwise

(15)

where Cde is the decay coefficient which Cde ∈ (0, 1) , Tde
is the decay threshold. This grouping process can not only
enhance the edges, but also filter out background detail caused
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excitations. The membrane potential of the LGMD cell Kf at
frame f is calculated:

Kf =
∑
x

∑
y

∣∣∣G̃f (x, y)∣∣∣ (16)

Then Kf is transformed through a normalizer. In previous
LGMD models, the normaliser function is given as a sigmoid
function of:

κf = (1 + e−Kfn
−1
cell)−1 (17)

where ncell is the counting of pixels in the frame.
However, since Kf values are always positive, only the

right part of the function (17) was used in the model, and
the meaningless small inputs are not inhibited. Considering of
inhibit small inputs, a similar normalising function is adopted
instead, given by:

κf =
tanh(

√
Kf − ncellC1)

ncellC2
(18)

where C1 and C2 are constants to shape the normalizing
function, limiting the excitation κf varies within [0, 1]. This
function reduces noise for small Kf inputs and have adjustable
sensitivity. A comparison test between these two normalizing
functions are shown in Fig.5. The test is based on videos taken
by real robots in the experiment setups described in Section
V.

If the normalised value κf exceeds the threshold, then a
spike is produced

Sspikef =

{
1 if κf ≥ Ts
0 otherwise

(19)

    

 

 

frame 1 frame 12 frame 23 frame 33 

Fig. 5. Comparison of two types of normalizing functions in the model.
The testing video is a robot captured video in a complex environment. The
proposed method showed a better separation of small signals and big signals.
The previous method reached the full scale at frame 33-35.

An impending collision is confirmed after nsp (in our tests,
four) successive spikes generated

CLGMD
f =


1 if

f∑
f−nts

Sspikef ≥ nsp

0 otherwise

. (20)

Normally, the robot’s obstacle avoidance behaviour is de-
pended on the value of CLGMD

f . However, it is not surprised
during turning, the neuron network may produce spikes and
even false collision alerts because of the sudden change in the
visual scene. The feed forward inhibition and lateral inhibition
work together to cope with such whole field movement.

The FFI cell is proportional to the summation of excitations
in all cells with one frame delay.

Ff =
∑
x

∑
y

(|Pf−1(x, y)|)n−1
cell (21)

A spike of FFI cell is produced as soon as Ff exceeds its
threshold TFFI .

CFFIf =

{
1 if Ff ≥ TFFI
0 otherwise

(22)

In our case, the FFI output as well as the LGMD output
both contribute to the decision of motion made by the robot.

The initial values for each parameters are listed in
TABLE.II.

B. Realization of LGMD Model on Embedded System

As described in the previous sections, the LGMD-based
collision detection system only involves the low level image
processing such as excitation transferring and neighbouring
operation. Traditional image processing methods containing
computationally expensive methods are not used, such as
object recognition or scene analysis. As a result, the model
is ideal to be used by the embedded platforms. However, it
is still not an easy task to optimise the memory consumption
and timing for real-time application.

TABLE II
INITIAL PARAMETERS OF LGMD BASED NETWORK

Name Value Description Name Value Description

WI 0.4
Inhibition coef-
ficient of inhi-
bition layer

Cw 4
Grouping
decaying
strength

Cde 0.5 Grouping layer
threshould TFFI 80 Threshould of

FFI output

Tde 15 Grouping coef-
ficient Ts 100

Spiking
threshould
for LGMD

ncell 7128 Number of
cells nsp 4 LGMD spike

number count

C1 10 Constant for
nomalization C2 11 Constant for

nomalizatio



IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. –, NO. –, 2016 6

Origin 
Frames in

YUV format
42.7 KByte

P Layers 

14.2 Kbyte

LGMD Struct
29 KByte

P1  72x99x8bit

P2   72x99x8bit
L1 

72x99x16 bit

L2 
72x99x16 bit

L3 
72x99x16 bit

I Layer

S Layer

G Layer

Parametres and results 

Fig. 6. Memory allocation of the micro-controller for images and LGMD
structures.
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Fig. 7. Timing diagram for LGMD model processing. DMA transfer starts
every 3 V SYNC signals from the camera and last for 3 whole frames to
capture the full image. LGMD model processing is triggered by each V SYNC
signal.

1) Memory Management: Fig.6 shows the memory allo-
cation of LGMD model and related image buffers. For each
individual LGMD process, at least two differential images
(P layer) are required, and each P layer is calculated by
two continuous frames. Accordingly, three image buffers are
allocated to store the original frames from the camera. In this
case, transferring of images and LGMD model processing
can be performed simultaneously. In an individual LGMD
structure, the I layer and the S layer are formed by 8-bit cells,
the G layer is formed by 16-bit cells. In addition, the system is
able to support multiple LGMD models with different region
of interests (ROIs) due to the sharing of the public P layers.
The total usage of SRAM is up to 100 KB in this application.

2) Timing and Triggering Setup: The processing inside the
micro-controller is paced by a specific external pulse generated
by the camera called Vertical Synchronization(VSYNC),
which is active low when a new frame begins. The DMA
sequence which used for automatically import images from
camera to the SRAM is triggered every three VSYNC pulses.
Thus three consecutive images are imported continuously
with a single triggering. Meanwhile, the LGMD processing
is triggered in each frame. In this way, the LGMD processing
will always get fresh frames at any time instead of waiting for
them.

As a real-time system, the total LGMD processing time
must be limited within 33 ms, which is the duration of a
single frame. To achieve this goal, all the calculations are

Pt-1 

Pt   

Image 
Transferring

Lt-1

Lt

It

St

FFIt

Gt

Ceft

Pt+1 

Pt   Image 
Transferring

Lt+1

Lt

It+1

St+1

FFIt+1

LGMDt+1

Pt+1 

Pt+2  

Image 
Transferring

Lt+1 It+2

St+2

FFIt+2

Lt+2

 Process at time t

 Process at time t+1

 Process at time t+2

LGMDt

Motiont

S1 S2 S3 S4

Motiont+1

Ceft+1

Gt+1

Motiont+2

Ceft+2

Gt+2

LGMDt+2
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Fig. 9. The illustration of dealing the image boundaries in different layers.

  
(a) (b) (c) 

 

Fig. 10. Different layers of LGMD processing in an off-line test. (a) shows
the original image, which is a hand waving a bottle in front of the camera;
(b) shows the output of P layer. The background detail is inhibited, whereas
the hand with the bottle stands out; (c) shows the output of G layer.

divided into four states: S1 to S4. S1 mainly calculates the
P layer based on the raw frame data. Then in S2, we can
get S layer following by the I layer. After that, in S3, the
grouping method is applied on the S layer. The LGMD cell
and the following motion commands are worked out in S4.
The FFI cell is computed in S2 separately by P layer of the
former frame. In our tests, the LGMD processing took around
16 ms, guaranteed the possibility of real-time processing, as
revealed in Fig.7. Fig.8 illustrates how the image transferring
and processing are managed at different frames and the layer
dependence.

3) Image Boundary Issues: There are two convolution
operations for layers in the LGMD model, which are the
computation of I layer and the grouping coefficient Ce. There
is always an issue with convolutions at edge pixels due to
the mismatch between the image and mask shapes. Normally
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there are two approaches to deal with this problem: i) copy
from adjacent valid pixels and ii) ignore the edge pixel. We
choose to abandon the edge pixels for time optimisation. As
a result, the size of I and S layers are limited at 70×97 pixels,
2 pixels less in both width and height than the P layer. The G
layer is even smaller, given by 68×95 pixels. Fig.9 shows the
structure of the layer size. The example of different layers in
the LGMD process are illustrated in Fig.10.

V. EXPERIMENTS AND RESULTS

Several experiments are performed to test the sensitivity
and robustness of the system. The first phase is LGMD
processing test which mainly focused on the performance of
the algorithm. The second phase is to investigate of the system
that combined with motion controlling methods.

A. Experiments with Video Simulated Moving Object

Experiments with simulated moving object are the first
phase of the experiments with a visual stimuli repeated for
several times.

The video sequence used in the following experiments were
generated by MATLAB in advance. The simulated object is
a rectangle, which changes its width and height periodically,
given as:{

Widtht = λW (−cos(πf · t)) +Width0

Heightt = λH(−cos(πf · t)) +Height0
(23)

where f stands for a constant that is related to the frame rate.
Frame rates of 60 fps is used in the experiments. Value λW and
λH are the scale factors for the object’s dimensions. Details
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Fig. 11. Results of experiments with simulated moving object. (a) Size of
the virtual moving object changes against time. The two triangles shows the
time when peak LGMD outputs were generated. (b) Typical LGMD and FFI
outputs sequence in the experiments with specified parameters. (c) and (d) The
peak LGMD outputs in each experiments with different Inhibition coefficient.
The blue solid results are peaks when object expanding, the brown dashed
marks the peak values when objects shrinking. In (c), the moving object
was bright (brightness 80%) in front of a dark background (brightness 10%).
However in (d), the object is dark (brightness 20%) and the background is
bright (brightness 70%).

of the video sequence are described in Fig.11 (a). The video
sequences were displayed on a LCD screen with a resolution
of 1024×768 pixels (38 cm×31 cm). The experiments are
accomplished in real time. The motion controlling function
is disabled in this phase of experiments.

Video sequences were generated with different background
and object contrasts. In every sequence, both background and
the simulated object have a certain brightness ranging from
0% (totally dark) to 100% (full bright).

We investigated the relationship between the LGMD output
and the inhibiting coefficient WI in the LGMD model. The WI

ranged from 0 to 1. The results depicted in Fig.11 reveals that
the LGMD output is strongly related to WI value. In addition,
the direction selective ability of the model can be observed in
the results. The peak output of LGMD model in the expanding
phase is greater than which in the receding phase when the
background is brighter than the object, and it is smaller when
the background is darker than the object.

B. Preliminary Functioning Tests

In order to confirm whether the embedded LGMD model is
able to deal with collision situation in real world applications,
several experiments for basic and typical collision situations
are designed.

Three types of collision situations are considered which are:
i) objects moving towards the robot on a collision trajectory,
ii) objects approaching the robot with a slight angle off the
collision course, called the “near miss” objects and iii) robot
moving towards a wall.

1) Approaching Object: One of the challenges that a real
locust has to deal with is the approaching predator in front.
Hence, the LGMD neuron network of our robot should demon-
strate similar characteristics as that of a real locust does when
facing similar challenges.

A rolling tennis ball towards the robot acted as the predator
in the tests. The tennis ball (diameter 66 mm) has fury green
surface with white strips, which provide identifiable texture
details needed for the robot. The rolling speed of the tennis
ball is controlled. It rolls down along a tilted wooden plank
with a adjustable inclination angle of θ degree, as illustrated in
Fig.12. A guide track, which sits diagonally to the tilted plank,
allows the ball roll down along a certain trajectory starting
from a rest status. Since the inclination θ is small, the speed
of rolling ball is considered as constant determined by θ. The

 

Robot

Fig. 12. Testing table for LGMD processing. In approaching object tests, the
robot (A) is placed on the table surface, fixed in the trajectory of the tennis
ball in the first experiment; and different distances away from the trajectory
in the “near miss” object tests. (b) experiment setup. The vision module is at
the upright corner of the photo, marked with a box.
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Fig. 13. Average records for each set in experiment with approaching object and near miss object. Both LGMD and FFI outputs are shown. The x axis
represents time in seconds, y axis is for neuron network output. Records are aligned at when the outputs exceed LGMD threshold, which are set time zero.
(a) records of approaching object experiments with different speed; (b) records of passing object experiments with different offset from the robot.

robot is protected by a plastic frame in order to prevent it from
being knocked down by the ball.

In each test, the robot is fixed on the table, facing the rolling
ball and the outputs of both LGMD and FFI are recorded.
Several set of experiments were carried out with different θ
giving different terminal approaching speed respectively.

The results of these experiments are shown in Fig.13(a). We
observed that the model has been functioning appropriately in
every set of experiments - alerts have been triggered by the
approaching ball at different speeds.

2) Near Miss Object: The next experiment is designed for
testing the behaviour of the LGMD model when object brushes
by. In this case, the generated hazardous level depends on how
close the robot can be from the near miss object.

Based on the first testing environment, we adjust the place-
ment of robot aside from the trajectory with adjustable offset
S. As in the previous tests, the running trajectory and speed
settings of the tennis ball are kept the same.

Experiments with five different offsets S are conducted
one by one respectively. For each offsets S, 15 repeated
experiments have been done to capture the outputs of the
LGMD and the FFI. Results are shown in Fig.13(b).

From the records we can find out that the LGMD output in
each test increases as the ball approaches the robot, indicating
the increasing risk of collision. However, soon after the ball
moves out of sight, the LGMD output drops immediately. The
FFI output also accumulates when the outputs of LGMD is
increasing.

3) Distance to Collision: The performance of the obstacle
avoidance behaviour varied under different moving speeds. It
is important to estimate the distance between the robot and the
obstacle when the LGMD model generates turning command
while approaches a certain obstacle. This distance is often
called the distance to collision.

To simplify the testing conditions, the robot is allowed
to run towards a textured wall. Robot starts running 50 cm
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Fig. 14. Results in diagram of the tests of distance to collision vs speed of the
robot. For each group of data, the central mark is the median, blue square is
formed by the first and third quartiles. Outliers are represented by red pluses.

away from the wall until the turning commands triggered.
Experiments are with nine different speeds ranging from
1.5 cm/s to 17 cm/s. The results are shown in Fig.14.

The results show that the distances to collision increase as
the robot moves faster. When speed is between 5 cm/s and
14 cm/s, the robot performed consistently. When the robot
moves at a high speed (e.g., 17 cm/s), more fake alarms are
generated, due to the shaky movement and blurred images.

C. Real World Tests

In the previous phase of the experiments, we showed the
ability of embedded LGMD model that can detect looming
stimuli, while the obstacles and scenes remained unchanged
in these tests.

However, in any real world applications, the vision system,
working with other components of the robot such as motor
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control system, should cope with complex scenarios without
compromise in collision detection. Thus we designed several
experiments to test the robustness of the integrated vision
system. Before doing these experiments, we introduced some
motor commands to setup basic robot behaviours.

1) Motor Commands Description: In the real world tests,
LGMD algorithm works together with motor commands,
which are described below.

There are three types of motor control commands which are
‘F’ for going forward, ‘L’ or ‘R’ for turn left or right and ‘S’
for stop. The decision is triggered by both LGMD and FFI
outputs.

As shown in the Table.III, if the output of LGMD and
FFI both stay 0 – means the environment is safe for robot
to go forward, the command ‘F’ will be given to the motor
control unit. When a collision is going to happen, the LGMD
cell is triggered while the FFI remains silent, the ‘L’ or ‘R’
will be given to the motor control unit allowing the robot
turns immediately to avoid collision. During turning phase, FFI
would be triggered due to whole-frame movement, a command
‘S’ is sent out to stop the robot immediately once the current
executing command finished.

The turning speed ω is a constant so the turning angel θturn
can be determined simply by the action duration, given by

θturn = Tturn ∗ ω (24)
Tturn = (6 + rand(4)) · Tp (25)

ω ≈ 2π rad/s (26)

where Tp is the duration of a frame, which is around 33 ms,
rand(4) is a random number generator that generates random
number ranging [0, 4]. Therefore, the time period of turning
is around 200 ms to 400 ms and the turning angle is ranging
from 70°to 140°.

It must be noted that, since LGMD cell cannot tell where
the object exactly is, the turning direction have to be chosen
randomly. To imitate a real animal behaviours and avoid swing

TABLE III
CONTROL COMMANDS DEFINITION

Neuron Status
Decision Command word

CLGMD
f CFFI

f

0 0 Go forward ‘F’
1 0 Turn left or right ‘L’ or ‘R’

X(any value) 1 Stop ‘S’

 

Fig. 15. The setup of the arena for the experiment surrounded by poles.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 16. Sample frames taken by the robot on the trajectory approaching
the paper poles during the experiment. Distances from the robot are 60 cm
(a), 50 cm (b), 40 cm (c), 30 cm (d), 20 cm (e), 10 cm (f) and 5 cm (g)
respectively.

from side to side, the robot is set to have a preference of
turning right (80%) than turning left (20%).

2) Experiments of Robot Surrounded by Textured Poles:
In the first real world test, the robot is challenged in an
arena surrounded by several paper poles. The paper poles
are curled by A4 sized paper, which textured with black and
white squares, as shown in Fig.15. The surrounded area has a
diameter of approximately 70 cm.

As mentioned earlier, the LGMD based collision detection
system can deal with complex situations. The background used
in the experiments are kept as it is without control. The robot
moved at the speed of about 10 cm/s in the arena and it turns
when imminent collision is detected.

The experiment lasted for 5 minutes. Sample results are
shown in Fig.17, which shows series of the LGMD and
FFI outputs during the test. Four imminent collisions were
detected during the experiment at about 10s, 17s, 23s and
30s respectively. There are 4 peaks as shown in the Fig.17,
indicating 4 collisions detected and 4 turns executed during
this period of time. Sample images taken from the robot’s
camera in the test are shown in Fig.16.

3) Trapped Robot in “Paper Forest”: We would like to
investigate the collision avoiding performance in a more
challenging environment with abundant of objects. Therefore,
we built a new testing arena which is called the “paper forest”,
as shown in Fig.18.
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Fig. 17. Part of the normalised outputs of both LGMD and FFI during the
experiment. The x axis represents the time in seconds and y axis is for the
normalised outputs within [0, 1]. The upper blue trace shows the LGMD
output; the FFI output is in black. During the time period, four successful
turning was executed at around 10 s, 17 s, 23 s and 30 s.
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The “paper forest” is a square arena with size of 95
cm by 115 cm, surrounded by walls of 40 cm height. The
walls are decorated by textured papers. Up to 30 cylinder
shaped obstacles with 4 cm diameter and 8 cm height are
placed randomly inside the arena. These cylinders are made
of polystyrene, weighting 7 grams each. They are not glued
onto the floor, which makes them be easily pushed away by
the robot if collision detection fails.

The robot is allowed to run autonomously inside the area.
The embedded LGMD model is expected to detect the upcom-
ing collisions and trigger the avoidance action as described
above.

Two additional IR bump sensors provided by the Colias are
enabled in the experiments. Both IR sensors are placed at the
front part of the robot, facing 30° to the left and right with
limited detection range of 10±2 mm. They are set to detect
whether a head-on collision happens, by a blinking LED.

As a supplemental detecting method, the IR bumpers are not
expected to be triggered frequently, as they were configured
with short range (10 mm). Since the turning action(duration
and speed) is different from which triggered by the LGMD
model, it is easy to tell whether a collision detection is
successful from recorded videos of experiments.

Several experiments are performed with different speeds and
obstacle densities. Each experiment lasted for 10 minutes. The
tested speeds range from 8.5 cm/s to 20.3 cm/s. The density of
obstacles are considered as “sparse” if there were 7 obstacles
inside the arena, “medium” if 18 obstacles inside and “dense”
if 29 obstacles.

Inside the arena, the robot turns to left or right if an obstacle
or wall on a collision course at a certain distance is detected.
The IR bump sensors may be triggered if an obstacle is hit
by the robot, which is treated a failure. In some cases, the
obstacle is bumped by the wheel or the rear of the robot due
to the limited field of view, which is not counted as a failure.

The trajectory of the robot and the position of obstacles
during the tests are tracked and analysed by a real time
tracking system [39] which has been developed for multiple

 

Fig. 18. The test arena and an image showing the wall, the obstacle and the
robot.

robot localisation with sub-pixel precision. The ring patterns
are placed on top of the robot and all the obstacles. The videos
used for tracking are recorded by a Panasonic HD camera
with resolution of 1280×720 at 60 fps. The camera is mounted
above the experimental arena. In the experiments, the system
tracks all of the objects simultaneously with accuracy of about
3 mm.

The robot trajectories are overlaid, as shown in Fig.19,
and position distributions in each experiments are shown in
Fig.20(a). Results proved that the robot has the ability to
achieve continuous movements in different circumstances. The
average success rate is above 95%, as given in Fig.20(b). The
distribution of number of detections versus the distances to the
obstacle at the time of turning action roughly correspond to
normal distribution, as illustrated in Fig.20(c). These results
suggested that the robot with embedded collision avoidance
system can deal with dynamic and complex environments.

4) Dynamic Experiments with Two Robot: The ability of
tolerating dynamic objects is proved by a series of experiments
with two robots. In the experiments, two robots with the
same configuration are initially placed 60 cm away facing to
each other. The experiment setup and results are illustrated
in Fig.21. The results prove that the robots are able to detect
moving obstacles soon enough and trigger reasonable avoiding
movements.

VI. FURTHER DISCUSSIONS

In this work, we presented an embedded vision module with
LGMD based collision detection fitted on a micro-robot. The
system demonstrated its reliability for collision detection and
avoidance under challenges of dynamic scenarios. Comparing
to previous robotics experiments featured with LGMD like
collision detection such as Blanchard et al. [22] using Khepera
mobile robot, Santer et al. [40] with Khepera mobile robot,
Yue et al. [19] on Khepera II, A.C Silva et al. [33] with
DRK8000 mobile robot and Badia et al. [31] on flying robots
as well as on “Strider” [23], the most significant difference
is that in this research the robot performed all the collision
detection and avoidance autonomously within the on-board
chips, no host PC is involved. With all the computation
completed within the on-board system, the robot could be used
in various situations for different purposes, such as swarm
robotics research.

Being able to see and react to the complex visual world
is one of the fundamental ability for many animal species
which brings in numerous inspirations. In robotics, there have
been different visual based navigation and guidance modules
proposed [41]–[43]. Nowadays, as the image sensors and
micro-controllers are becoming cheaper and more reliable,
embedded vision modules are getting popular in intelligent
device applications [28], [44]–[46] to enhance their navigation
performance.

However, LGMD in locust is only one of hundreds of strong
visual neurons in the lobula layer each may involve in specific
visual tasks. There are other numerous neural networks in
insects’ brain engaged to extract the abundant visual cues
simultaneously. The interaction of those neurons are still under
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Fig. 19. The sample of trajectories of the robot in each experiment in the “forest”. The green lines represent the trajectories of the robot. The initial place
of the obstacles are shown as red circles.

investigation. Directional selective neurons [14], [17], [47],
[48] which may be used to detect translating objects has been
modelled and tested in [49] and [50], while [51] showed
the combination of LGMD and DSNs. We hope that further
implementations with several different neuron structures could
lead robots respond to the dynamic world better.

The vision module proposed in this study can acquire and
process images independently, it could fit to other robotic
platforms or motion patterns easily with slight modification.
For example, with the merging of reflex mechanism or central
pattern generator(CPG), the module could be applied to crawl-
ing or walking robots [52], [53]. With the compacted size and
limited power consumption, it is possible to integrate multiple
vision modules into one robotic platform, for example, two
modules to form a binocular robot vision system. High level
algorithms such as sensor fusion could also be applied to
improve the accuracy of collision detection.

VII. CONCLUSION

Reliable, low-cost, compact and low power consumption
visual collision detection and avoidance system has been in
the wishing list for mini or micro-robots for a long time yet
in supply. In the above chapters, the presented realization of

LGMD model on one compact board with ARM chip showed
a step closer to satisfy these demands. As demonstrated via
various experiments, the vision module is reliable in different
environment settings for collision detection which allows
the micro-robot to perform avoidance behaviours pertinently
and timely. Since all the image acquisition and processing
functionalities are completed on one compact board, the vision
system can be easily integrated to the micro-robot and other
similar mini-robotics systems as well. For future work, the
vision module can be extended by integrating other bio-
inspired neuron models for complex visual tasks, and for
multiple robotics applications.
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