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Abstract—In industrial environments, it is often difficult and
expensive to collect a good amount of data to adequately train
expert systems for regression purposes. Therefore the usage of
already available data, related to environments showing similar
characteristics, could represent an effective approach to find a
good balance between regression performance and the amount
of data to gather for training. In this paper, the authors
propose two alternative strategies for improving the regression
performance by using heterogeneous data, i.e. data coming from
diverse environments with respect to the one taken as reference
for testing. These strategies are based on a standard machine
learning algorithm, i.e. the Artificial Neural Network (ANN). The
employed data came from measurements in industrial plants for
energy production through the combustion of coal powder. The
powder is transported in air within ducts and its size is detected
by means of Acoustic Emissions (AE) produced by the impact of
powder on the inner surface of the duct. The estimation of powder
size distribution from AE signals is the task addressed in this
work. Computer simulations show how the proposed strategies
achieve a relevant improvement of regression performance with
respect to the standard approach, using ANN directly on the
dataset related to the reference plant.

I. INTRODUCTION

The particle size of the powder is an important parameter in
many industrial processes, as it is related to the physical and
chemical properties of materials. In most cases the powder
particles have irregular shapes and speed, and travel within
structures changing their characteristics over time. Generally,
it is not interesting to describe the size of single particle but the
size of an ensemble of particles. This means that cumulative
parameters, such as the Particle Size Distribution (PSD), are
usually employed on purpose. The PSD is a list of values,
usually expressed in terms of percentage, denoting the relative
amount, typically by mass, of particles present according to
size. This size typically lies within predefined ranges, sorted
in ascending or descending order.

In industrial plants, the evaluation of the PSD is usually
performed by collecting a sample of powder and analysing it
in laboratory. This method produces an accurate estimation of
the PSD for a given time instant, but it is time consuming and
impossible to use for continuous monitoring. In order to have
a continuous monitoring of powder size, it is necessary to use

a system that carries out the estimation in a non invasive way,
for the whole time period of interest.

The main challenge is to find a physical model able to
describe a very complex system, with unknown and uncon-
trolled variables, and then to select a set of physical quantities
related to the particles size. Acoustic Emission (AE) signals
produced by the impact of powder on a metallic surface have
been identified as meaningful quantities in order to obtain the
PSD. Leach et al. [1], [2] were the first to use AE signals
for particle sizing. They collected AE spectra in the range
50-200 kHz, from the impact among particles. By measuring
the beat frequencies from different resonance frequencies of
particles with varying diameters, is is possible to determine
their average diameter and the related size range. This method
gave satisfactory results just for regularly shaped particles, i.e.
spheres and cylinders. Unfortunately, it is impractical for most
industrial applications where fluxes of irregular shaped of par-
ticles are involved. However, the same authors demonstrated
that a particle impacting on a metallic surface generates an
AE signal containing the information about its size. Many
applications of this theoretical result have appeared in the
literature [3], [4], [5], confirming the suitability of acoustic
emissions for PSD measurement in engineering problems.

Moving from these premises, the authors [6] have recently
used diverse machine learning techniques to train models for
the estimation of PSD of powder by exploiting AE based
information. Training and test data from a single duct was used
and the results showed good performance for the employed
algorithms, i.e. ANN, Support Vectors Regression (SVR)
and Extreme Learning Machine (ELM). The training was
performed by using suitable supervised learning algorithms
and a single dataset related to a specific industrial plant.

Several tests conducted with this experimental setup showed
that the number of patterns used for training plays a crucial
role and the availability of further data can significantly boost
the regression performance. In order to augment the number
of training examples, diverse strategies can be considered. The
most immediate method involves collecting further samples of
powder in the target industrial plant, then measuring the PSD
in laboratory. However, this procedure can be time consuming
and cost effective. During the acquisition phase, the normal
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production cycle of the plant has to be interrupted to allow
labelling of the target data. A second possibility is represented
by the adoption of an active learning strategy; a technique
aimed at automatically labelling the unlabelled data gathered
during standard operational conditions. The active learning
paradigm has been used in many works [7], [8], [9] to face
regression problems in which unlabelled data are abundant
but labelled examples are difficult to obtain. Another way
followed by many Machine Learning researchers, with special
focus on the Neural Network area, consists of initializing the
network free parameters using suitable unsupervised learning
algorithms, thus not requiring target data and related labels.
This paradigm has encountered recent success within the Deep
Learning community. It has been investigated for different
neural architectures, such as Convolutional Neural Network
(CNN) [10], Deep Belief Networks (DBN) [11], Recurrent
Neural Networks (RNN) [12], [13], and the objective is always
the same: inserting some kind of a-priori knowledge into the
network by exploiting the available data in order to improve
the fine-tuning performance.

This paper proposes an alternative approach with respect
to the previous ones. The idea is to use data collected from
multiple sources in order to increase the amount of training
examples. This was recently investigated in the field of image
processing with CNN [14] and in a biological context with
Support Vectors Machine (SVM) [15]. In many industrial
applications, it happens that data related to different plants
present some important similarities. In our case study, we
have the same type of sensors and process for acquisition,
conditioning and processing of signals. Therefore the authors
want to explore supervised strategies able to exploit extended
availability of heterogeneous data, coming from the nature
of the industrial environment and application under study,
to improve the PSD estimation performance. Two distinct
supervised techniques are proposed to show how such idea can
be effectively implemented. They employ ANN as machine
learning tool and use the heterogeneous data coming from two
different plants to embed some form of a priori-knowledge into
the expert system to enhance the regression performance. In
particular, a first approach with supervised pre-training of the
ANN free parameters by means of data related to the plant not
addressed in testing, as preliminary step before the fine-tuning
phase, has been investigated. A second approach uses multiple
datasets from diverse plants for training ANN models, with the
aim to create general mesh-based models. The effectiveness of
the proposed techniques has been experimentally proven by
computer simulations, as detailed later in the paper.

This paper is organized as follows: Section II presents the
algorithms and the datasets used for computer simulations, the
methodology is presented in Section III, Section IV describes
the experiments performed and presents results obtained in the
diverse operating conditions addressed, finally, conclusions are
drawn in Section V.

II. ALGORITHM AND DATASETS

A. Artificial Neural Networks
Generally, a Neural Network (NN) [16] is composed of

neurons organized in layers, denoted as input, output, and
hidden layers.

At the beginning of the training process, the weights of the
neurons are initialized with initial weights and biases. In this
work, for initial values used both random numbers and pre-
trained values. During the training process, the initial weights
are updated with the Backpropagation algorithm [17], using
900 epochs. Different activation functions can be chosen for
the neurons: hyperbolic tangent, radial basis functions, and
unipolar and bipolar sigmoid. In the experiments, the unipolar
sigmoid has been used.

The standard structure selected for the test, using one input
layer, two hidden layers and one output layer. The number
of hidden layers nodes have been varied, from 50 to 100
for the first layer and from 30 to 80, in order to identify
the configuration that minimizes the estimation error. A wide
range of experimental tests with the available datasets have
shown that the regression performance typically decreases
when more than 100 neurons and 80 neurons are used in the
first and the second layer respectively. This showed the authors
to limit the number of network neurons to this range.

B. Datasets
The data used in this work are related to an industrial system

employed in plants for the production of energy, namely
POWdER [18]. This system continuously monitors the PSD
of coal powder conveyed in ducts from grinding mills up to
the boiler. Monitoring is done by using sensors installed on
the outer surface of the ducts, detecting the acoustic emissions
produced by the powder. The sensors are installed near a duct
curve because this point has the highest probability of particle
impact, generating the AE. The curve is the final part of a
feeding duct that carries the coal powder from the mill to the
burners. Figure 1 shows the structure of the plant: composed
of the mill that grinds the coal, the feeding ducts that carry the
coal powder, and the boiler with the burners where the coal
combustion occurs.

The signals are acquired with a sample rate of 2 MS/s for
100k samples, thus each measured signal has duration of 50
ms. From those signals 64 features that characterize the energy
of the acoustic emission signal are extracted. Each group of
features corresponds to a vector of 3 targets. They represent
the values of the PSD associated with the AE signal from
which the features are extracted. For this system, the PSD is
classified in three decreasing dimension sizes; corresponding
to 50 MESH, 100 MESH and 200 MESH. The outcomes are
the three numerical values, corresponding to the percentage of
coal particles in the single powder sample which dimensions
are lower than 300, 150 and 75 µm respectively. Therefore,
each dataset item is composed by 64 features and 3 targets,
and contains the information of a single AE acquisition.

Two distinct datasets related to two different industrial
plants are involved in this work. The two plants are identified



Fig. 1: Sketch of the power plant structure

(a) Plant A

(b) Plant B

Fig. 2: Different pipeline structure of two plants

as Plant A and Plant B. The plants differ in terms of pipeline
layout, type of coal employed, and structure of mills, which
use different grinding elements. The coal mass flow rates are
5 t/h and 4.5 t/h for the Plant A and the Plant B respectively.
Furthermore, the plant B has a 660 MWh boiler, double
compared to the 330 MWh of Plant A. In both plants five ducts
were monitored and all AE acquisitions were performed under

different working conditions of the plant. Another important
difference between these datasets regards which ducts were
monitored inside the plant: in Plant A the five monitored ducts
are connected with five different mills (Figure 2a), whereas
for Plant B the five ducts are connected with the same mill
(Figure 2b).

Moreover, for each duct, the set of data is divided into two
distinct sets, namely Primary and Secondary. They differ as
they were collected in distinct time periods and under diverse
plant operating conditions (different coal flow rates). The two
datasets can be used to evaluate the generalization capability
of the expert system for a certain duct. The number of data
in each Primary dataset is different for each duct and varies
from a minimum of 250 observations to a maximum of 330.
The number of examples in the Secondary dataset is fixed for
the two plants; 36 for plant A and 99 for plant B. It must be
noticed that this distinction does not necessarily correspond
to the standard Training/Test one. As detailed later on, in
some cases the Primary and Secondary sets correspond to the
Training and Test ones, but in others cases the Training and
Test sets are extracted solely from the Primary.

III. THE PROPOSED SUPERVISED TECHNIQUES FOR PSD
ESTIMATION

In this Section, the two proposed supervised techniques ex-
ploiting heterogeneous data for PSD estimation are described
in detail.

A. Pre-training

The method is based on a supervised pre-training of ANN
by using a dataset related to a distinct plant with respect to
the reference one considered for testing. In this way, the ANN
free weights are initialized according to the a-priori knowledge
learnt from data coming from the non-reference plant, and
then fine-tuned to optimize the PSD estimation performance
according to the characteristics of the reference plant. The
available datasets of plants A and B are used for pre-training
and fine-tuning, according to the following combinations:

• Pre-train Case 1: the pre-training phase is performed on
the union of Primary and Secondary dataset of Plant B
and Fine Tuning and Test on Primary dataset of Plant A;

• Pre-train Case 2: the pre-training phase is performed on
the union of Primary and Secondary dataset of Plant A
and Fine Tuning and Test on Primary dataset of Plant B.

The overall algorithm is depicted in Figure 3, where training
is indeed divided into two steps. First, the data for the pre-
training are organized into three datasets, each one containing
the data of all ducts referring to a specific mesh. Each
dataset is used as a training set to obtain three models for
each plant, identified as Model 50mesh, Model 100mesh and
Model 200mesh. After that, the weights and biases obtained
at the end of such training are used to initialize the network,
before the completion of the fine-tuning phase. All tests
have been performed by using Cross Validation (CV) with
6 not-overlapping folds. At each CV iteration, a different
combination of Training and Test sets is selected from one
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Fig. 3: Supervised Pre-training Approach

Primary dataset. The Validation set is extracted from the
selected Train set and used to identify the best number of
neurons for each network layer.

B. Multiple Training Sets (TS)

The ANN is also involved in this second method simply
based on the collection of both plant datasets in one single
training set. The related block scheme is depicted in Figure 4.
Three specific 50mesh, 100mesh and 200mesh models are
trained by using all data from Primary datasets of both plants
as training set. The three models created are then applied to
the Secondary datasets of individual ducts, used as test set.
It must be observed that, due to the nature of the plants and
related datasets, there is no correspondence among the ducts
of the two plants. This aspect motivated the choice to create
the three mesh-based models, with the aim of using them for
PSD estimation of any duct in any plant.

The dataset combinations are the following:
• Multiple TS Case 1: the model is trained on the union

of Primary datasets of Plant A and Primary datasets of
Plant B; then this model is applied on Secondary of Plant
A;

• Multiple TS Case 2: the model is trained on the union
of Primary datasets of Plant A and Primary datasets of
Plant B; then this model is applied on Secondary of Plant
B.

Different to the previous procedure, in this case the model
for the final regression is trained in one phase and not in two
phases as previous. This is due to the fact that the heteroge-
neous data are merged together so just a single training phase
is necessary for the PSD estimation.

IV. COMPUTER SIMULATION AND RESULTS

All simulations have been performed in Matlab 2013a R©
running on a Windows 7 R© OS. The performance evaluation
of techniques discussed in Section III is performed in terms
of Root Mean Square Error (RMSE) on the Testing set. For
each case study, the standard approach (ANN directly trained
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Fig. 4: The Multiple Training Sets Approach

and tested on a single duct and mesh dataset) and the proposed
supervised method are compared for each duct and each mesh.

However, different RMSE ranges are experienced for the
three meshes. This drove the authors to apply a normalization
procedure to the RMSE values in order to better compare the
regression performance of the three meshes, and likely provide
an overall performance index for each experimental case study.
According to this procedure, the RMSE performance of the
standard and the proposed supervised approach are put in
comparison for each duct and each mesh. The two RMSE
values are divided by the higher between the two. Finally,
due to the large number of duct/mesh combinations and
of experiments accomplished, the Normalized RMSE values
related to the five ducts of a plant are averaged, providing a
total of three indicators (one per mesh) for each experimental
case study. In Table I an example of normalization for the
ANN Pre-training Case 1, for the single Duct 1, is shown.

TABLE I: Normalization Example. Reported values are related
to the pre-trained ANN technique applied to Duct 1-Plant A
data.

50 MESH 100 MESH 200 MESH

RMSE without pre-
train

0.1144 1.3555 2.3616

Normalized RMSE 0.8338 1.0000 1.0000

RMSE with pre-
train

0.1372 1.2742 2.2329

Normalized RMSE 1.0000 0.9400 0.9455

The results obtained from these experiments will now be
discussed. First, the performance achieved with the standard
ANN-based approach and the proposed ANN pre-training
technique will be compared. In this case study, training and
testing are applied in CV and for each CV iteration, the test set
is represented by one CV-fold taken from the Primary dataset
of the reference plant. In Figure 5 the average Normalized



RMSE values for the three meshes are reported, with and
without pre-training. In this case, the pre-trained models out-
perform the models without pre-training for 50 mesh (0.9146
vs 0.9340) and 100 mesh (0.9305 vs 0.9368), only for 200
mesh the pre-training provides a mean error of 0.9456 that is
higher than the average Normalized RMSE of 0.9436 obtained
with the model without pre-training. Figure 6 shows the results
of Case 2. With this combination of datasets, the standard
ANN approach outperforms the new proposed approach for the
100 mesh, providing an average Normalize RMSE of 0.9789.
For the others meshes, the new approach returns the best
outcomes of 0.9174 for 50 mesh and 0.9610 for 200 mesh.
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Fig. 5: Pretrain Case 1
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Fig. 6: Pretrain Case 2

In the second set of experiments, the effectiveness of the
second proposed supervised method described in Section III

was tested. The models are trained by using all data contained
in the Primary datasets of two plants. This means having three
distinct models, one per mesh, which are finally tested against
the Secondary dataset of the reference plant for each duct. In
this case, the comparison is made with the standard approach
involving ANN as an alternative. Figure 7 and Figure 8 show
that the use of multiple training sets to train ANN models
provides a lower estimation error than the model trained on a
single training set.
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Fig. 7: Multiple TS Case 1
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Fig. 8: Multiple TS Case 2

In Table II all obtained results are summarized. A single
indicator is reported for each technique denoting the mean of
three average Normalized RMSE values associated with the
three meshes. In the first comparison, the standard approach
uses the ANN to model one single duct by means of a CV



TABLE II: Overall Mean Normalized RMSE for the two
plants taken as reference for testing and for all machine
learning techniques under study. Reported values are obtained
by averaging the Normalized RMSEs of the three meshes.

PLANT A PLANT B

ANN-D 0.9594 0.9768

ANN with Pretrain 0.9518 0.9537

ANN-M 0.9091 0.9779

ANN Multiple TS 0.7282 0.7938

procedure. In contrast, in the second approach, the ANN is
used to train Mesh-based models, by using the Secondary
datasets as Test sets. In the light of this difference, we named
the standard techniques in the first and second case study as
ANN-D and ANN-M, respectively. The best results between
the standard techniques and the proposed ones are reported
in bold for each plant. It can be immediately observed that
the new supervised approaches outperform the corresponding
standard ones in simulations related to Plant A and Plant B.

V. CONCLUSION

In this work, two alternative strategies to use heterogeneous
data for improving the performance of PSD estimation in
industrial plants are proposed. In the first one, an ANN-
based approach is used to implement a supervised pre-training
procedure in order to initialize the free network parameters;
using data from diverse environments with respect to the one
taken as reference for fine-tuning and testing. In the second
one, the use of multiple datasets from diverse plants for
training ANN parameters has been investigated. with the aim
to create general mesh-based models to test them on data of
any plant.

The obtained results show that the pre-trained ANN has
better performance then the ANN with random initialization
of network parameters, for both addressed case studies. Like
the previous one, also the second approach, by using a
single model trained on the datasets of both plants collected
together, provide enhanced performance if compared with
those obtained with the train on a training set of a single
duct. Concluding, the two proposed supervised strategies,
based on the employment of already available heterogeneous
data, deliver improved PSD estimation performance compared
to standard algorithms. Comparing the two techniques, the
Multiple Training Sets approach is more performing than the
Pre-training approach, because it provides better results for all
Test sets and a greater error reduction.

Future works will be targeted to the application of the
proposed strategies to other types of industrial plant, in which
the estimation of the powder size is used for monitoring
purposes. Moreover, different machine learning techniques
will be also employed in substitution of the ANN addressed in
this paper, including Deep Learning architectures and related
algorithms. Finally, unsupervised pre-training approaches and

active learning strategies will be implemented and evaluated
for the PSD estimation problem, and also combined with
the supervised ones here proposed, in relationship with the
characteristics and availability of suitable datasets.
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