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Piecewise Aggregate Approximation (PAA) provides a powerful yet computationally e±cient
tool for dimensionality reduction and Feature Extraction (FE) on large datasets compared to
previously reported and well-used FE techniques, such as Principal Component Analysis (PCA).
Nevertheless, performance can degrade as a result of either regional information insu±ciency or
over-segmentation, and because of this, additional relatively complex modi¯cations have subse-
quently been reported, for instance, Adaptive Piecewise Constant Approximation (APCA). To
recover some of the simplicity of the original PAA, whilst addressing the known problems, a
distance-based Hierarchical Clustering (HC) technique is now proposed to adjust PAA segment
frame sizes to focus segment density on information rich data regions. The e±cacy of the resulting
hybrid HC-PAA methodology is demonstrated using two application case studies on non-time-
series data viz. fault detection on industrial gas turbines and ultrasonic biometric face identi¯-
cation. Pattern recognition results show that the extracted features from the hybrid HC-PAA
provide additional bene¯ts with regard to both cluster separation and classi¯cation performance,
compared to traditional PAA and the APCA alternative. The method is therefore demonstrated
to provide a robust readily implemented algorithm for rapid FE and identi¯cation for datasets.

Keywords: Piecewise aggregate approximation; hierarchical clustering; rundown vibration
signature; high resolution range pro¯le.

1. Introduction

Among well-known signal processing techniques dimensionality reduction is recog-

nized as an important and is often used as a pre-processing step for more advanced
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analytical and numerical processing.1 Such techniques are often subdivided into two

main classes, viz. Feature Extraction (FE) and Feature Selection (FS).2 FS is a

process by which important feature subsets are separated from vast amounts of data,

through wrappers, ¯lters or embedded methods based on some correlation or mutual

information criteria.3 Whilst FS selects important features or ¯lter out redundant

features from the original data sets, FE is more transformative, identifying a subset

of new features by keeping as much important information as possible, normally by

distance measures and similarity searches within the original data-series.4 Because of

their selective nature, such techniques are regularly considered as underpinning

methods in wider application ¯elds of fault/anomaly detection, pattern recognition

and classi¯cation systems.5,6

Many linear FE techniques have been reported and successfully applied. The most

established being Principal Component Analysis (PCA),7 which accomplishes FE by

searching for a subset of orthogonal linear combinations of the original data with the

greatest variances, i.e., the principal components.8 PCA is considered a second-order

method based on minimizing mean-square error and is useful for identifying and

keeping dominant features contained in the original data, at the expense of often not

providing a meaningful physical interpretation.9

Independent Component Analysis (ICA) has been developed recently for FE, and

has been successfully applied for blind source separation.10 It is a higher-order

method that searches linear projections to maximize particular independence criteria

that are not necessarily orthogonal but as statistically independent as possible.11 It

is claimed that ICA is able to extract more meaningful features than PCA from non-

Gaussian data.9

Projection Pursuit (PP) techniques are an alternative set of linear FE methods

that incorporate higher-order information.12 PP seeks to identify projections that

optimize a de¯ned projection index that represents, in an explicit or implicit form,

useful information contained within data series.13 It is useful particularly for data

sets that are non-Gaussian, but is much more computationally intensive than PCA.

More complex nonlinear FE methods are often based on extensions of the existing

linear FE techniques, and include nonlinear PCA and nonlinear ICA, etc.,14 each of

which has been demonstrated to provide useful properties for a number of applica-

tion sectors.15

These techniques generally require much greater computation e®ort than linear

algorithms, and this is often considered as the limiting factor for use with large

datasets.9 Indeed, it is the computational load and implementation complexity that

often precludes the use of even linear PCA, ICA and PP techniques in many ap-

plication ¯elds, and has resulted in the use of more fundamental methods for FE.

In terms of simplicity, low computational cost and ease of implementation, an

alternative therefore, termed Piecewise Aggregate Approximation (PAA)16,17 is a

dimensionality reduction technique which was originally designed for large time-series

datasets, and has been widely adopted for use in medical, ¯nancial, engineering, and

speech/image processing systems due to its low computation overhead.18–20 In Ref. 21,
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the authors compare PAA to other dimensionality reduction techniques, including

Singular Value Decomposition (SVD), Discrete Fourier Transform (DFT) and Dis-

crete Wavelet Transform (DWT), and have demonstrated its superiority both theo-

retically and empirically, in terms of providing much faster computational times and

being suitable for arbitrary-length queries. For instance, the computational time

overhead for PCA/SVD is OðNM2Þ, where N is the number of samples, and M is the

dimension, which shows that if dimensions are su±ciently high, then the computa-

tional time can be very costly. Alternatively, for PAA the computational overhead is

related to OðnMÞ, where n is the number of the equal-sized frames, and therefore

provides substantial computational bene¯t compared to alternative techniques.

Nevertheless, whilst the traditional practice of using equally distributed segments

(for PAA) facilitates rapid implementation, it can lead to insu±cient ¯delity in some

regions of interest, whilst providing over-segmentation in regions considered less

information rich, thereby often reducing relative performance compared to the

alternatives. Several methods have therefore been proposed to modify the segment

frame sizes to enhance the quality performance, such as Adaptive Piecewise Con-

stant Approximation (APCA) based on Haar DWTs22 and other more generic

optimization methods,23 albeit at the expense of degrading the classical bene¯ts of

PAA due to the required additional computational overhead.

Here then, the hybrid use of PAA and Hierarchical Clustering (HC)24 is proposed.

HC has been extensively used in data analysis and signal processing due to its

simplicity and visual interpretation of the hierarchy structure,25–27 and is considered

here as a means of optimizing PAA segment frame sizes according to sequence-

sample similarity. HC is used to de¯ne optimal PAA frame size according to hier-

archical distance measures, but at the same time not to compromise the original

PAA's simplicity for further implementations. The main advantage of hybrid HC-

PAA is the simplicity of both algorithms and therefore the ease of implementations.

To provide a seed for further discussion, the proposed methodology is depicted

pictorially in Fig. 1. Speci¯cally, HC is used to cluster the data series according to

similarity, and PAA is applied to the clustered data series for data dimensionality

reduction and FE. To validate the performance of the extracted features, both

Fig. 1. Outline concept.
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k-means and a Self-Organizing Map Neural Network (SOMNN) are also used as

alternatives for clustering case, and a Feed-Forward Neural Network (FFNN) is

applied as an alternative for the classi¯cation problem.

In summary, clustering and classi¯cation techniques are therefore applied to the

features extracted by PAA, APCA and hybrid HC-PAA in order to show the bene¯ts

of the proposed hybrid HC-PAA solution compared to APCA and traditional

PAA. From the results of the experimental trials it is shown that hybrid HC-PAA

provides better FE performance than traditional PAA and the more recent APCA.

2. Methodology

2.1. Traditional PAA

PAA (alternatively termed segmented means17) subdivides a sequence x (a 1�N

vector) into n equal sized segments, gi (i ¼ 1:n), and uses the mean of each segment

as an extracted feature to provide the resultant sequence y (a 1�n vector):

y ¼ ½meanðg1Þ; . . . ;meanðgnÞ�: ð1Þ
Each segment is therefore comprised of ðN=nÞ data points of x.21 An example signal

possessing a half bell shape, shown in Fig. 2, outlines the process, and highlights

the underlying issues with the traditional method ��� it has 1000 samples that are

Fig. 2. Example signal and its PAA segmentation and representation (S ¼ Segment).
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separated into 10 equally spaced segments and which are represented by the mean of

the data within each segment (traditional PAA).

It can be seen that, from 700 to 1000 samples, which is considered an information

rich region, PAA segments are too coarse to capture the important features, whilst

from 1 to 700 (a region less information rich), adjacent PAA segments provide

relatively little added detail, and could be reasonably combined to provide further

dimensionality reduction. It is a computationally e±cient method of addressing this

issue that is considered here, through use of HC.

2.2. Hierarchical clustering

HC provides a convenient visual hierarchy/clustering of datasets according to their

similarity. The underlying concept of agglomerative HC is to assemble a set of

objects into a hierarchical tree, where similar objects join in lower branches, which

are further joined based on object \similarity". Objects with the smallest \distance"

are joined by a branch of the tree (i.e., a cluster). Further clusters are then formed

from merged subclusters, and the hierarchical process iterates until only one cluster

remains.28 The resulting cluster tree is classically depicted as a dendrogram. The

resulting hierarchical tree can then be dissected according to either the linkage-

distance or cluster number, and in so doing provide cluster classi¯cation or novelty

detection.29

Here, to keep computational overhead low, the Euclidean distance is used as a

measure of similarity:

dðx;yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðxi � yiÞ2
vuut ; ð2Þ

where x and y are two 1�N vectors, i.e., the signals ðx1;x2; . . . ;xNÞ and

ðy1; y2; . . . ; yNÞ. A cluster is formed when the data from two measurements has the

minimum Euclidean distance. The ¯rst iteration provides the lowest ranking cluster.

The procedure is subsequently iterated, including previously constructed clusters, to

link higher ranking clusters. Again to limit computational overhead, an average

linkage measure is used to calculate the mean distance between all pairs of objects in

clusters m and n:

Dðm;nÞ ¼ 1

NmNn

XNm

j¼1

XNn

k¼1

dðxmj;ynkÞ: ð3Þ

where j ¼ 1; 2; . . . ;Nm and k ¼ 1; 2; . . . ;Nn. dðxmj;ynkÞ is the distance between two

objects in the two clusters. Nm is the number of objects in cluster m, and Nn is the

number of objects in cluster n.

For the example shown in Fig. 2, HC is applied to the 1000 time samples, and the

samples are clustered according to their similarities. The resulting dendrogram is
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shown in Fig. 3(a). The linkage distance threshold (shown in red) enters from above

to capture the highest 10 clusters in the dendrogram. Now, PAA is applied to the

resulting 10 unequal segments, with the frame sizes being dictated by the size of the

respective dendrogram branches. Again, the mean of each segment is used to

Table 1. Samples included in the original PAA and the hybrid HC-PAA segments (S ¼ Segment).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Original PAA 1–100 101–200 201–300 301–400 401–500 501–600 601–700 701–800 801–900 901–1000
HC-PAA 1–705 706–743 744–779 780–817 818–843 844–868 869–901 902–926 927–956 957–1000

(a)

(b)

Fig. 3. (a) HC tree and 10 subclusters; (b) hybrid HC-PAA segments shown with the original example

signal (S ¼ Segment).
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represent the underlying \feature" of each segment according to (1). The resulting

hybrid HC-PAA output, along with the original, is shown in Fig. 3(b). It is now

evident that through application of the hybrid approach the regions that are infor-

mation rich have a higher density of segments. For completeness, the segment

regions of the original PAA representation and that of the proposed hybrid approach

are given in Table 1, where the nonlinear mapping of segment length is clearly

evident.

2.3. Clustering and classi¯cation

Once the segments have been determined, the underlying features can be clustered in

order to provide identi¯cation or detect \novelty" (and hence the emergence of

faults, for instance). In this case, for simplicity, k-means clustering30 is used, using

Euclidean distance to determine centroids. Since the k-means is known to be sensi-

tive to the initial conditions, 20 executions are initiated and the optimized solution is

used to reduce the impact of any anomalous results. For comparison purposes the

\separation measure" is taken as the distance between cluster centers ��� a higher

separation index therefore indicates improved cluster performance (with increased

con¯dence that misclassi¯cation has not occurred).

To provide a more generic performance comparison for the proposed HC-PAA,

Arti¯cial Neural Networks (ANNs) are also considered in the example trials

that follow. Speci¯cally, a SOMNN is applied for clustering31 with a \measure of

separation" being used as a metric to compare relative performance; and a two-layer

FFNN is used for classi¯cation,32 where, with target classes, the Mean Squared

Errors (MSEs) are calculated as a measure of performance. In this case then, higher

cluster separation measures indicate improved cluster performance, and lower MSE

values indicate improved classi¯cation performance.

3. Methodology

Performance of the proposed hybrid HC-PAA technique is demonstrated through

application in experimental trials, ¯rstly, as a means of detecting emerging faults on

a sub-15MW industrial gas turbine based on rundown vibration sig-natures, and also

as a biometric identi¯cation system based on face recognition using ultrasonic echo

signals. Both case studies are pattern recognition problems, while the former one is

for fault detection through clustering methods, and the latter one is a classi¯cation

problem for feature/face recognition.

3.1. Fault detection on industrial gas turbines

Vibration signatures taken during the rundown periods of industrial gas turbines

are considered as information-rich for determining the health of the underlying

units. During a typical rundown, the unit will normally pass through at least one
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(a)

(b)

Fig. 4. (a) 3D plot and (b) 2D contour of the vibration signatures.
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rotor critical frequency. The objective is to group rundown signatures in order to

identify those that show \novel" characteristics, and thereby act as an early

warning of emerging fault conditions. Given the volume of data and the need to

perform real-time similarity searches, the proposed hybrid HC-PAA approach is

(a)

(b)

Fig. 5. (a) HC tree and 10 subclusters; (b) hybrid HC-PAA segments applied to the contour map of the
vibration signatures (S ¼ Segment).

Table 2. Segment regions from traditional PAA, APCA and the proposed hybrid HC-PAA approach
(S ¼ Segments).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Original
PAA

1001–1500 1501–2000 2001–2500 2501–3000 3001–3500 3501–4000 4001–4500 4501–5000 5001–5500 5501–6000

APCA 1001–1318 1319–1815 1816–2118 2119–2386 2387–2678 2679–3035 3036–3407 3408–3922 3923–4693 4694–6000

HC-PAA 1001–1725 1726–2045 2046–2265 2266–2585 2586–2757 2758–2985 2986–3133 3134–3602 3603–3936 3937–6000
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used for the detection of emerging faults. As an exemplar, a series of 54 rundown

characteristics from a sub-15MW gas turbine are considered that include 52

\normal" rundowns and 2 rundowns that were subsequently considered to be

\abnormal" and therefore indicative of an emerging fault; speci¯cally datasets 39

and 43 shown in Fig. 4 (to provide a consistent reference datum between the run-

down series, only vibration data between speeds of 6000 rpm and 1000 rpm are

considered). Notably, novelty is not associated with rundowns that simply con-

taining the highest resonant vibration peak, for instance, but are more associated

with the relative features of the overall individual signature and how it compares

with the collective (see Fig. 4(b) which shows a 2D contour plot of the collective

vibration signatures).

Each of the 54 rundown datasets contains 5000 samples (rpm). A HC of the 5000

data samples (of rotor speed) is shown in Fig. 5(a), where the largest 10 clusters are

selected according to a threshold of the HC distance measure. Each of the clusters is

referred back to the original dataset, so that 10 segments for the 5000 speed samples

can be found according to the HC dendrogram threshold, as shown in Fig. 5(b). It is

seen from Fig. 5(b) that the regions of particular interest do have the highest density

of segments, as required.

For comparison purposes, the segmentation resulting from traditional use of

PAA/APCA (PAA modi¯ed using Haar DWTs9) and the proposed hybrid HC-PAA

approach are shown in Table 2 along with the resulting vibration contour segments

in Figs. 6(a)–6(c), respectively. A traditional k-means clustering is now applied to

the extracted segmented features for classi¯cation, and hence novelty detection. The

resulting clusters from the results of PAA, APCA and the hybrid HC-PAA are

shown in Figs. 7(a)–7(c) respectively, with the set numbers included in the clusters

and the cluster separation measure given in Table 3.

From Table 3, it can be seen that, whilst in all cases the faulted sets are clustered

correctly, the hybrid HC-PAA provides a higher separation index compared to

traditional PAA, with slight improvements also being evident compared to

APCA. Notably, APCA and the hybrid HC-PAA required comparable computation

times.

A SOMNN is considered a competitive learning ANN, using unsupervised

learning to produce a discretized representation (typically in two dimensions) of an

input space.31 Here, SOMNN training is performed using the extracted features from

the traditional PAA, APCA and hybrid HC-PAA results, using 10 elements and 54

samples in the network. The SOMNN is trained with the output space depicted as

2� 2 hexagonal grids, using the MATLAB Neural Network Toolbox.33 The 54

samples of the 10D data are projected onto the four neurons (clusters) that form a

map in a 2D topologically (see the 2� 2 hexagonal grids shown in Fig. 8, i.e., four

elements/clusters). Through training, the reference vector of each neuron moves

closer to the cluster center according to the samples that are clustered in the neuron,

and the neighboring neurons also act to move closer to one another, eventually

forming the ¯nal SOM after iteration. Sample hits, i.e., how many samples (out of the
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(a)

(b)

Fig. 6. (a) Traditional PAA representation, (b) APCA representation and (c) hybrid HC-PAA repre-

sentation of the rundown vibration signatures (S ¼ Segment).
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54 samples) are clustered into each neuron, are shown in Figs. 8(a)–8(c) for extracted

features using each of the three methods. For instance, for the top left node in

Fig. 8(a), 12 samples from the original input data are clustered into the neuron. The

set numbers, the clusters and the resulting cluster separation measures are given in

Table 4.

From Table 4 it is evident that whilst the extracted features using both APCA

and hybrid HC-PAA have correctly identi¯ed the faults, hybrid HC-PAA provides

the higher separation index, and hence best performance attributes.

3.2. Ultrasonic human face identi¯cation

An approach for biometric human face identi¯cation based on ultrasonic sensing has

previously been reported in Ref. 34 that detects the geometric structure of human

faces without being a®ected by the illumination characteristics of the surrounding

environment. Multiple ultrasonic sensors (16 channels arranged in a 4� 4 trans-

mitter-receiver combination) are used for data collection, as shown in Fig. 9(a).34 For

this study, data relating to T0-R0 is considered, i.e., transmitter T0 emits one cycle

of a Continuous Transmitted Frequency Modulated (CTFM) signal to the target

face, and the receiver R0 detects the re°ected echo. High Resolution Range Pro¯les

(c)

Fig. 6. (Continued)
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(a)

(b)

Fig. 7. Clustering results and extracted rundown features using (a) traditional PAA, (b) APCA and

(c) hybrid HC-PAA.
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(HRRPs) are obtained from the echo signals, where the normalized energy of dif-

ferent frequency components is calculated using the Fourier transform. A typical

HRRP is shown in Fig. 9(b), where the y-axis is the normalized energy at each

frequency, and the x-axis is the object (face) distance, which is linearly mapped from

the frequency domain. The HRRP result shows the variation of the normalized

(c)

Fig. 7. (Continued)

Table 3. Clustering results of extracted features using traditional PAA, APCA and hybrid HC-PAA
approach.

PAA APCA Hybrid HC-PAA

Cluster 1 1, 6, 7, 9, 15, 16, 18, 19, 20, 23,

24, 26, 28, 29, 30, 32,

34, 35, 36, 37

1, 3, 6, 7, 9, 15, 17, 18, 20, 26,

31, 32, 35, 36, 37, 38,

40, 41, 2, 44, 45, 46, 47,

48, 49, 50, 51, 52, 54

1, 3, 6, 7, 9, 15, 16, 17, 18,

19, 20, 26, 31, 32, 35, 36,

37, 38, 40, 41, 42, 44, 45,

47, 48, 49, 50, 51, 52, 54

Cluster 2 2, 4, 5, 8, 10, 11, 12, 13, 14,

21, 22, 25, 27, 33

2, 4, 5, 8, 10, 11, 12, 21,

22, 25, 28, 33

2, 4, 5, 8, 10, 11, 12, 21, 22,

25, 28, 33, 46

Cluster 3 3, 17, 31, 38, 40, 41, 42, 44,

45, 46, 47, 48, 49,

50, 51, 52, 53, 54

13, 14, 16, 19, 23, 24, 27,

29, 30, 34, 53

13, 14, 23, 24, 27, 29, 30, 34, 53

Cluster 4 39, 43 39, 43 39, 43

Cluster

Separation

index (mean)

167.5 181.7 182.0
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energy with respect to object distance, where the peaks and troughs show the dis-

tribution of the scattering e®ect from the target face. For instance, the ¯rst peak in

Fig. 9(b) represents the nose, and the highest peak represents the forehead (since the

forehead has a wide re°ection area, and hence provides higher energy). In this way,

the geometrical features of the face can be represented by the HRRPs.

(a)

(b)

Fig. 8. SOMNN neuron sample hits from 54 run-down samples of extracted features using (a) traditional

PAA, (b) APCA and (c) hybrid HC-PAA.
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Here then, three faces are considered, and 30 HRRPs for each of the three faces are

collected; respectively, sets 1–30, 31–60 and 61–90. Each HRRP (90 in total) has 540

sample points (which are the distance measures after pre-processing the raw data) as

shown in Fig. 10. The HRRPs are approximated using a nominal selection of 10

segments using (a) traditional PAA with equally spaced sample regions, (b) APCA

and (c) the proposed hybrid HC-PAA approach. A nominal cluster number of 3 is

used since there are known to be three objects (faces).

(c)

Fig. 8. (Continued)

Table 4. SOMNN clustering results of extracted features using traditional PAA, APCA and hybrid
HC-PAA approach.

PAA APCA Hybrid HC-PAA

Cluster 1 1, 6, 7, 9, 15, 16, 18, 19,

20, 26, 28, 36, 41,

46, 51, 52, 54

1, 3, 6, 7, 9, 15, 16, 17, 18, 19, 20,

26, 28, 31, 32, 35, 36, 37, 38,

40, 41, 42, 44, 45, 47, 48,

49, 50, 51, 52, 53, 54

1, 3, 6, 7, 9, 15, 16, 17,

18, 19, 20, 26, 28, 31, 32, 35,

36, 37, 38, 40, 41, 42, 44, 45,

47, 48, 49, 50, 51, 52, 54

Cluster 2 2, 4, 5, 8, 10, 11, 12,

13, 14, 21, 22, 25, 27, 33

2, 4, 5, 8, 10, 11, 12, 21,

22, 25, 33, 46

2, 4, 5, 8, 10, 11, 12, 21,

22, 25, 33, 46

Cluster 3 3, 17, 38, 39, 40, 42, 43, 44,

45, 49, 50

13, 14, 23, 24, 27, 29, 30, 34 13, 14, 23, 24, 27, 29, 30, 34, 53

Cluster 4 23, 24, 29, 30, 31, 32, 34, 35,

37, 47, 48, 53

39, 43 39, 43

Cluster

Separation

(mean)

Wrongly clustered 181.5 181.8
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The HC results of the 540 data samples are shown in Fig. 11(a). Notably in this

case, S1 is closely associated with S10 as a subcluster. Since S1 and S10 need to be

separated for FE purpose, in this case, the largest nine clusters are selected according

the threshold of the HC distance measure, and S1 is further separated as an individual

segment. In practice, this is simply accomplished using a basic \loop structure" in the

HC-PAA algorithm, such that if a particular cluster involves multiple sample series,

the cluster number (in this case, the original 10 clusters) from original HC results is

decremented (in this case to 9, and S1 is clustered out separately).

Referencing each of the clusters back to the original measurements, the 10 seg-

ments for each of the 540 point datasets can be found, as shown in Fig. 11(b). It is

evident that the highest density of the segments lay around the energy-rich char-

acteristics, which S10 contains the majority of the low energy characteristic. The

segmented regions resulting from traditional PAA, APCA and the hybrid HC-PAA

are given in Table 5 for completeness.

The resulting representations from (traditional) PAA, APCA and hybrid HC-

PAA applied to the HRRPs (from each of the three faces) are shown in Fig. 12(a)–12

(c), respectively. It can be seen that signi¯cant di®erences in the results are evident.

To provide a performance comparison, k-means clustering of the extracted features

from each method is shown in Fig. 13(a)–13(c) respectively, and the HRRPs included

in the clusters and the cluster separation measures are given in Table 6.

In this case, the clustering results for traditional PAA could not identify the three

classes correctly, whilst APCA and the hybrid HC-PAA both correctly identi¯ed the

three faces. Notably, again, the computation time of APCA and HC-PAA is com-

parable, however, HC-PAA gave signi¯cantly higher cluster separation and is

therefore considered to provide a more robust solution.

(a) (b)

Fig. 9. Data collection for biometric ID: (a) arrangement of ultrasonic sensors; (b) example HRRP.34
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(a)

(b)

Fig. 10. HRRP representation of the three objects (faces): (a) 3D plot and (b) 2D contours.
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Since the three classes are known in this case, the application can be considered as

a classi¯cation problem. To provide a more comprehensive performance evaluation, a

two-layer FFNN is applied to the extracted features from the traditional PAA,

APCA and hybrid HC-PAA results. FFNN can be trained for classi¯cations

(a)

(b)

Fig. 11. (a) HC dendrogram with 10 subclusters; (b) contour of hybrid HC-PAA segmentation of

HRRPs.

Table 5. Distance samples included in the original PAA, APCA and the hybrid HC-PAA segments
(S ¼ Segment).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Original
PAA

1–54 55–108 109–162 163–216 217–270 271–324 325–378 379–432 433–486 487–540

APCA 1–55 56–75 76–93 94–108 109–129 130–149 150–170 171–229 230–422 423–540
HC-PAA 1–52 53–63 64–90 91–96 97–112 113–119 120–135 136–157 158–173 174–540
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(a)

(b)

Fig. 12. Segment contours resulting from (a) traditional PAA; (b) APCA; (c) hybrid HC-PAA repre-

sentation of the HRRPs (S ¼ Segment).
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(c)

Fig. 12. (Continued)

(a)

Fig. 13. Clustering results for extracted features for ultrasonic face identi¯cation using (a) traditional

PAA, (b) APCA and (c) hybrid HC-PAA.
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(b)

(c)

Fig. 13. (Continued)

November 15, 2016 4:33:51pm WSPC/157-IJCIA 1650019 ISSN: 1469-0268Page Proof

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Y. Zhang et al.

1650019-22



according to target classes, and classi¯cation performance is monitored through use

of MSEs. Again, MATLAB Neural Network Toolbox33 is employed.

Since performance can be a®ected by the initial conditions, 20 executions are

initiated and the average MSE (performance) is used, with the results shown in

Table 7 for (traditional) PAA, APCA and hybrid HC-PAA. From the results it is

clear that the extracted features using hybrid HC-PAA provide lower MSEs, again

indicating improved classi¯cation performance.

4. Conclusion

The paper has presented a basic method to improve the performance of traditional

PAA by modifying segment frame sizes through the application of HC. Using the

resulting hybrid HC-PAA as a FE methodology, pattern recognition is subsequently

accomplished using k-means and ANNs. Two experimental trials have been used to

demonstrate the e±cacy of the technique, including industrial gas turbine fault

detection based on rundown vibration signatures and a biometric face identi¯cation

based on HRRPs from ultrasonic echo signals. Results show that the proposed hybrid

HC-PAA provides the improved PAA FE performance by both increasing the

classi¯cation performance and increasing the cluster separation distances in order to

reduce the chance of misclassi¯cation. HC-PAA is also shown to provide improved

performance compared to APCA (an improved and commonly used method) by

demonstrating greater cluster separation measures and classi¯cation performance for

the two case studies. Through additional performance comparisons with other well-

known techniques, the proposed methodology has been shown to provide a compu-

tationally e±cient and robust method of FE/novelty detection on large datasets for a

diverse spectrum of applications. It should be noted that, whilst the proposed HC-

PAA has been developed for FE, the underlying principles are much more widely

applicable to other FS, data reduction and the rapid identi¯cation of information

rich portions of large data series.

Table 6. Clustering results for the traditional PAA, APCA and the hybrid HC-

PAA extracted features for ultrasonic face identi¯cation.

Original PAA APCA Hybrid HC-PAA

Cluster 1 1, 2, 3, 5, 6, 7, 8, 9, 10 1–30 1–30

Cluster 2 31–60 31–60 31–60

Cluster 3 4, 11–30, 61–90 61–90 61–90
Cluster separation (mean) Wrong clusters 806.6 966.7

Table 7. FFNN classi¯cation performances for the traditional PAA, APCA and the hybrid
HC-PAA extracted features for ultrasonic face identi¯cation.

Original PAA APCA Hybrid HC-PAA

Classi¯cation performance (average) 3.278� 10�7 2.428� 10�7 1.011� 10�7
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Abbreviations

ANN ��� Arti¯cial Neural Network

APCA ��� Adaptive Piecewise Constant Approximation

CTFM ��� Continuous Transmitted Frequency Modulated

DFT ��� Discrete Fourier Transform

DWT ��� Discrete Wavelet Transform

FE ��� Feature Extraction

FFNN ��� Feed-Forward Neural Network

FS ��� Feature Selection

HC ��� Hierarchical Clustering

HRRP ��� High Resolution Range Pro¯le

ICA ��� Independent Component Analysis

MSE ��� Mean Squared Error

PAA ��� Piecewise Aggregate Approximation

PCA ��� Principal Component Analysis

PP ��� Projection Pursuit

SOMNN ��� Self-Organizing Map Neural Network

SVD ��� Singular Value Decomposition
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