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Abstract 

Abnormal metabolic phenotypes can be a powerful resource for drug and biomarker 

discoveries. In this thesis, a metabolomic approach was used to examine several 

aspects of tumour metabolism with potential clinical applications. In the first part, 

the metabolic consequences of PIK3CA mutation in MCF10A breast cells were 

assessed. PIK3CA mutation is oncogenic, and is important for disease progression in 

many breast tumours. Increased glutaminolysis, fatty acid synthesis, pyruvate entry 

into the TCA cycle, and decreased glycerophosphocholine (GPC) were identified to 

be the most prominent phenotypes following knock-in PIK3CA mutation in 

MCF10A cells. GPC has long been reported as a potential marker for disease 

progression; however, its functional role in cancer remains unclear. 

Glycerophosphodiester phosphodiesterase is responsible for the hydrolysis of GPC 

into choline and glycerol-3 phosphate (G3P), and EDI3 is a member of the 

glycerophosphodiester phosphodiesterase family associated with metastasis in 

endometrial cancer patients. Through metabolomic analysis of tumour cell models, 

EDI3 silencing was found to increase GPC levels and the GPC: phosphocholine 

ratio. Also, it was demonstrated that EDI3 had an impact on a broader spectrum of 

metabolic phenotypes, and effects on glycolysis and fatty acid synthesis were also 

observed. Finally, using 1H HR-MAS-NMR, changes in levels of choline 

phospholipid metabolites following Colony stimulating factor 1 receptor (CSF1R) 

inhibitor treatment were investigated in a mouse pancreatic tumour model. CSF1R is 

important for growth signalling of macrophages in tumours. Phosphocholine levels 

were found to be associated with disease progression and CSF1R inhibitor treatment. 

Collectively, these findings highlight a number of novel factors in choline 

phospholipid metabolism that may be important to tumourigenesis and the 

development of cancer biomarkers, including the role of glycerophosphodiester 

phosphodiesterase and macrophage-tumour interaction. 
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Chapter 1 Introduction 

1.1 Cancer 

Cancer is frequently described as a disease of abnormal and uncontrolled cellular 

proliferation, which leads to the formation of a tumour ‘mass’. If it is left untreated, 

the tumour may invade and destroy neighbouring healthy tissues. Primary tumours 

can also metastasise by spreading into other parts of the body through the lymphatic 

system, causing the loss of function of critical organs, widespread health 

complications, and often death. Cancer occurs in a spectrum of different organs and 

tissue types, and over two hundred disease subtypes have been identified. As cancer 

is the leading cause of mortality in economically developed countries (Jemal et al. 

2011), affecting about half of all men and one-third of all women in the US and UK, 

the impact of cancer is extensive. There are around 13 million new cases globally 

every year and cancer accounts for approximately 15 per cent of all human deaths. 

According to the 2014 WHO World Cancer Report, the financial burden of cancer 

has been estimated at over 1.16 trillion USD per year, which is equivalent to 1.5% of 

the global GDP. This makes cancer disease management one of the biggest 

challenges in society today.  

1.1.1 Cancer treatment and management 

Cancer can be treated with surgery, radiotherapy and chemical drugs. According to a 

2003 report from the Royal College of Radiologists, surgery, radiotherapy and 

chemotherapy contribute towards approximately 49%, 40% and 11% of the 

successful treatment outcomes respectively (Tobias 2010). The choice of treatment is 

very specific to both the tissue location and the staging of the tumours. Surgical 

removal of the tumour mass is in many cases a very effective method, but this is not 

always feasible. Radiotherapy is a treatment for cancer in which high-energy beams 

such as gamma rays are focused on the cancerous tissues. The resulting ionising 

radiation leads to controlled and targeted destruction of the tumour tissues. 

Radiotherapy has also proven to be very effective for controlling the symptoms of 

incurable cancers.  
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The third broad treatment modality in cancer involves the use of chemical drugs and 

biologics. Many classes of drugs are currently in use for cancer treatment, and these 

include conventional chemotherapy drugs such as platinum analogues and taxoids, 

which target cell division by preventing the synthesis and binding of DNA or the 

formation of mitotic spindle. However, as chemotherapy targets all rapidly dividing 

cells that include non-cancerous tissues, patients may suffer from significant side 

effects (Kelland 2007). Another popular class of chemical drugs is hormone therapy, 

which targets hormone responsive tumours. For example, Tamoxifen is frequently 

used in treating estrogen-receptor positive breast cancer. With many initially 

responsive patients developing resistance to drugs, formulating and managing 

treatment plans have also proven to be challenging (Hammond et al. 2010). More 

recently, therapeutic agents that target specific biomolecules by utilising natural 

substances of the living organisms have become gradually more popular and these 

are generally referred to as biologics. Monoclonal antibodies, cytokines, and 

vaccines are all examples of biological therapies (Sathish et al. 2013), and 

Trastuzumab (Herceptin) is a monoclonal antibody that has been demonstrated to be 

effective against HER2-positive breast cancer (Nelson and Gallagher 2014).  

There are many challenges to finding new effective treatments for cancer, and many 

pharmaceutical companies now focus their drug development efforts on targeting 

specific genetic mutations and deregulated proteins in patient populations. This has 

led to the development of drugs such as Imatinib and Gefitinib, which target tyrosine 

kinases; these first became available in the late 1990s. Many new drugs currently in 

development specifically target signalling deregulation in the GPCR, (Lappano and 

Maggiolini 2011), EGFR (Lurje and Lenz 2009), PI3K (Workman et al. 2010) and 

the WNT pathways (Anastas and Moon 2013). 

1.1.2 Diagnostic and therapeutic biomarkers  

Normally in clinics, the extent and the severity of the tumour are decided largely on 

the anatomical spread of the disease (Ludwig and Weinstein 2005). In many 

countries including the US and the UK, the staging of tumour is standardised using 

the TNM system, based on the size and depth of the tumour (T), lymph node spread 

(N) and the presence of metastases. Together with tumour grade and histological 
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subtype, the TNM system often forms the basis of formulating a treatment plan and 

estimating the patient’s prognosis. However, tumour biology is a lot more complex 

than can be captured through the TNM system alone, for example the fate and spread 

of the disease may also be influenced by lifestyle factors and genetic predisposition 

of the patient. Biomarkers may provide extra information when predicting survival 

and therapeutic outcomes. This is of particular importance because as molecular 

targeted therapeutics become more common, there will exist a greater need to 

effectively predict and assess the specific therapeutic responses of patients in the 

clinical setting. Finding effective biomarker is a major challenge (Sawyers 2008); the 

ideal biomarker must be sensitive, specific, cost-effective, fast and robust, while 

being able to demonstrate value beyond information already available. For example, 

EGFR in colon cancer and HER2/NEU (ERBB2) in breast cancer are both 

biomarkers approved for therapy selection in the US. Advances in genomics, 

proteomics and other assay method development may also in future aid biomarker 

discovery (Ludwig and Weinstein 2005).  

1.2 Metabolism and health 

Metabolism is the active chemical transformation of molecules within cells, and is a 

very broad discipline in biochemistry. Metabolism is essential for life to exist as we 

know it. It helps maintain normal physiology by regulating our nutritional 

requirements, and when we need to adapt to external changes or internal demands 

such as development, aging and reproduction, metabolism specifies both the 

chemical library and the defined molecular pathways for biotransformation. Many 

everyday biological events, from doing exercise or catching a fever to dealing with 

the stress and demand of pregnancy, are accompanied by metabolic changes. 

Metabolic substrates and products, more generally known as metabolites, can travel 

throughout the body at the molecular level, with our diet being an important 

contributor to the metabolite pool. Many tissue types have distinct metabolic 

functions and characteristics, and such division of labour is essential in enabling 

physiological functioning to be coordinated across the body. Furthermore, 

mechanisms of metabolic feedback are dynamic and complex as metabolism can 

interact with the signalling circuits of hormones, proteins as well as metabolites. 

Many diseases are directly related to deficiencies in metabolic regulation; the best-
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known example is diabetes, where blood glucose regulation is dysfunctional. Given 

this central role of metabolism in living systems, the use of metabolic phenotyping 

has the potential to help inform disease management and treatment.   

1.2.1 Metabolic pathways 

At the molecular level, metabolism can be characterised through a series of reactions 

that are catalysed by specific enzymes, each with very specific substrates and 

products. The products of one reaction often become the substrates of another, 

setting off a chain of reactions that are interdependent on one another. The sequences 

of enzymatic reactions are summarised using metabolic pathways, which can be 

regulated directly by substrate availability, allosteric regulation, enzyme 

phosphorylation, membrane permeability or transport. Also, substrates like ATP and 

other co-factors such as NAD+, FAD, and NADP+ are involved in numerous 

reactions; the relative metabolic pathway activities are likely to be dependent on their 

availabilities. The functions of different pathways are diverse: some are involved in 

ATP generation, while some are involved in the synthesis of nucleotides and 

membrane lipids for supporting growth. Glycolysis, the citric acid cycle and 

glutaminolysis are particularly important for energy metabolism, and fatty acid 

synthesis and phosphatidylcholine metabolism are important for lipid biosynthesis in 

rapidly proliferating cells. As these pathways are frequently deregulated in cancer, a 

brief description of each is given below (Mathews et al. 2000, Appleton 2013).  

Glycolysis 

Glucose is broken down into pyruvate through glycolysis in the cytoplasm. It can 

occur under aerobic or anaerobic conditions (Figure 1.1). The total potential ATP 

yield from glycolysis alone (2 ATP) is relatively low compared to the subsequent 

entry of pyruvate into the tricarboxylic acid cycle (TCA) and oxidative 

phosphorylation (total of 36 ATP). Normally, glucose transporters facilitate the 

import of glucose through the membrane. The end-product pyruvate could either be 

converted into lactate via lactate dehydrogenase activity; or it can enter the TCA 

cycle via pyruvate dehydrogenase or pyruvate carboxylase activities (Mathews et al. 

2000, Appleton 2013).  
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Figure 1.1 Schematic diagram of the glycolytic pathway  

The diagram above is redrawn from concepts and figures shown in (Mathews et al. 
2000, Appleton 2013). Metabolites and enzymes are respectively shown in black and 
red. 
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Tricarboxylic acid cycle (TCA) 

The tricarboxylic acid cycle (TCA) is an important pathway for generating ATP and 

other precursor molecules. The TCA cycle requires oxygen and is a cyclical 

sequence of oxidation reactions that occur in the mitochondrial matrix. Pyruvate is 

the major precursor to TCA cycle intermediates and can contribute towards the TCA 

cycle via two separate entry points. The main pathway into the cycle is through 

pyruvate dehydrogenase activity, where acetyl-CoA is produced and is then 

combined with oxaloacetate, forming citrate. Alternatively, pyruvate can also enter 

the TCA cycle through conversion into oxaloacetate via pyruvate carboxylase 

activity (Figure 1.2). Acetyl-CoA can be derived from the catabolism of 

carbohydrate, fatty acids or amino acids. 

 

Figure 1.2 Schematic diagram of the TCA cycle  

The above diagram is redrawn from concepts and figures shown in (Mathews et al. 
2000, Appleton 2013). Metabolites and enzymes are respectively shown in black and 
red. 
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Glutaminolysis 

Glutamine is the most abundant amino acid in the blood plasma. It can be converted 

to α-ketoglutarate and incorporated into the TCA cycle. Glutaminolysis is a major 

anaplerotic reaction in rapidly growing cells, supplying cells with high-energy 

substrates and other biosynthetic precursors. Glutaminolysis consists of two 

deamination steps: glutamine is first converted into glutamate through glutaminase 

(GLS), and then into α-ketoglutarate via glutamate dehydrogenase (Gao et al. 1999).  

Fatty acid synthesis 

Fatty acids are the basic building blocks of cellular lipids, which serve a variety of 

structural and signalling functions. The capacity to turnover lipids is especially 

important to meet the anabolic requirements of rapidly proliferating cells, such as 

tumour cells. De novo synthesis of fatty acid is a major pathway supplying additional 

precursor substrates for growth and acetyl-CoA, NADPH and H+ are essential for 

fatty acid synthesis. The lipogenic acetyl-CoA units are often derived from 

carbohydrates such as glucose (Mathews et al. 2000, Appleton 2013).  

De novo fatty acid synthesis requires a complex sequence of events and processes to 

occur in the cytoplasm: 

1) First, mitochondrial citrate is transported into the cytoplasm, where ATP 

citrate lyase catalyses the conversion of citrate into acetyl-CoA and 

oxaloacetate; 

2) Acetyl-CoA carboxylase converts acetyl-CoA into malonyl-CoA; 

3) Acetyl-CoA and malonyl-CoA separately bind to fatty acid synthase, and 

their CoA groups are then removed through transacylase activities; 

4) A saturated four-carbon chain is formed via condensation, reduction and 

dehydration;  

5) The chain is lengthened as additional malonyl-CoA units cycle through the 

same transacylation, condensation, reduction and dehydration processes; and 

when the chain is 16-carbon units long, the chain is cleaved off forming 

palmitate (C16:0). 
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Further elongation of fatty acid chain beyond 16 carbons is possible via elongase 

activity; while the synthesis of unsaturated fatty acid chain would require fatty acyl-

CoA desaturase. Dysregulation of fatty acid synthesis has long been associated with 

cancer. For example, upregulations of ATP citrate lyase (ACLY) (Berwick et al. 

2002), fatty acid synthase (FASN) (Pizer et al. 1996), long chain fatty acid elongase 

(ELOVL7) (Tamura et al. 2009), and stearoyl-CoA desaturase (SCD1) (Tamura et 

al. 2009) have all previously been reported to be important for tumour development. 

Choline and phosphatidylcholine metabolism 

Phosphatidylcholine (PtdCho) is an important class of phospholipids, which form 

part of the characteristic bilayer cell membrane structure of the cell membrane. It is 

typically the most abundant membrane phospholipid in mammalian cells. Thus, 

PtdCho plays a critical role in maintaining membrane structural integrity. PtdCho 

and PtdEtn (phosphatidylethanolamine) are normally synthesised de novo through 

the Kennedy pathway (Kennedy and Weiss 1956) (Figure 1.3).  Choline is a 

constituent part of the PtdCho molecule, therefore its uptake is important for the 

biosynthesis of PtdCho. Choline is an essential nutrient for normal physiology, and 

its deficiency in diet can lead to liver disease and neurological disorders (Zeisel et al. 

1991, Zeisel and da Costa 2009). Also, tumour cells exhibit a high level of choline 

uptake (Katz-Brull et al. 2002), with choline and PtdCho metabolism being vital to 

sustaining tumour cell proliferation (Glunde et al. 2011). Furthermore, hydrolysis of 

PtdCho mediates mitogenic signal transduction, as products of choline phospholipid 

metabolism such as diacylglycerol and arachidonic acid can also function as second 

messengers, with downstream signalling implications. The regulation of choline 

phospholipid metabolism can be affected by growth factors, cytokines, oncogenes or 

metabolite feedback (Glunde et al. 2011).  
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Figure 1.3 Schematic diagram of choline and phosphatidylcholine metabolism 

The above diagram is redrawn from a figure shown in (Glunde et al. 2011). Metabolites 
and enzymes are respectively shown in black and red. 
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1.3 Tumour metabolism  

Metabolic alteration is one of the fundamental hallmarks of cancer, and the links 

between metabolism and cancer are multifaceted (Dang 2012). For example, there is 

evidence that large mammals with low metabolic rates tend to have a lower 

incidence of cancer (Caulin and Maley 2011). Cancer risk is also known to be 

associated with environmental exposures such as smoking, carcinogens, and 

excessive caloric intake. The metabolic requirement for continuing cell growth and 

proliferation means that tumour cells have strong demands towards biomass 

accumulation and anabolism - the metabolic construction of smaller substrates into 

larger products. Tumour cells are required to increase the synthesis of all 

biomolecules, from membrane lipids, amino acids, structural proteins to DNA and 

RNA nucleotides, and this in turn also raises the demand for common metabolic co-

factors such as NADPH and ATP. Furthermore, tumour cells need to mitigate the 

impact of oxidative stress resulting from the build up of radical oxygen species in 

rapidly proliferating cells. To adjust to all these needs, the metabolic network must 

be rewired in tumour cells. For example, tumour cells heavily rely on glycolysis for 

ATP production under aerobic conditions, a phenomenon referred to as the Warburg 

effect (Warburg 1956). Glucose and glutamine are known to be the major anabolic 

substrates in supporting energy metabolism and biogenesis in tumour cells (Dang 

2012). Other metabolites can also play active roles in the development and the fate of 

tumour cells (Yang et al. 2013). Oxygen radicals can contribute to oncogenic 

mutations, while nutrient deprivation can feed back to regulate the cell cycle through 

nutrient sensing signalling modules such as mTOR or AMPK. In addition, the 

oncometabolite D-2-hydroxyglutarate which results from IDH1/IDH2 mutations can 

directly diminish hypoxia-inducible factor (HIF) responses. Metabolism and tumour 

development are intertwined at many levels, and there is renewed optimism that 

better understanding of tumour metabolism can lead to further innovations in cancer 

treatments. Recently, metabolomics has played a key role in advancing our 

understanding in tumour metabolism (Jain et al. 2012), and has contributed to 

therapeutic biomarker and drug discoveries in cancer (Dang et al. 2009). 
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1.3.1 Oncogenic signalling and metabolic regulation 

Metabolic reprogramming can occur as a result of genetic and signalling changes in 

tumours. One of the major signalling nodes where growth and metabolic signalling 

regulations are integrated is the PI3K/Akt/mTORC1 pathway. This pathway is 

normally stimulated by growth factors such as IGF-1, EGF, or PDGF, but in tumour 

cells this can be achieved through oncogenic or tumour suppressor mutations. In 

addition, mTORC1 is also stimulated by amino acid availability (Sancak et al. 2008, 

Zoncu et al. 2011).  A number of metabolic enzymes are also regulated in turn 

through this pathway: Akt stimulates hexokinase, glucose transporters and thus 

glycolysis; and mTORC1 regulates transcriptional factors PGC-1α and SREBP, 

which promote mitochondrial biogenesis and de novo lipogenesis respectively (Ward 

and Thompson 2012). Furthermore, reciprocal interactions have been found between 

choline kinase expression and PI3K/Akt signalling (de Molina et al. 2002, Yalcin et 

al. 2010, Glunde et al. 2011). Myc is another very important oncogenic master 

transcriptional factor, which is also involved in the regulation of lactate 

dehydrogenase A (LDHA) and glutaminase (GLS). In tumour cells, Myc has been 

shown to activate glycolysis and glutaminolysis (Wise et al. 2008).  

1.3.2 Exploiting metabolism to detect and treat tumours 

There are already imaging modalities used in clinics that exploit metabolic 

phenotypes unique to tumour cells for monitoring therapeutic responses and for 

diagnostic purposes. Positron emission tomography (PET) and magnetic resonance 

spectroscopy (MRS) are the best examples, providing clinicians with functional and 

biochemical information on the tumour (Spratlin et al. 2009). PET is the non-

invasive imaging of gamma rays from positron-emitting radioisotopes, with 

radiotracer labelled compounds that are preferentially taken up by the tumour body 

being administered to patients (Gambhir 2002). 18F is the most practical isotope for 

clinical use, and the use of fluorine 18-fluorodeoxyglucose (FDG) has been routinely 

applied in almost all types of cancers for diagnosis, staging, restaging, and assessing 

treatment responses. FDG is a glucose analogue, and it exploits the fact that tumour 

cells have a higher rate of glucose uptake (Zhu et al. 2011). Other radiotracer 

labelled compounds in development include amino acid analogues and choline, and 
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these may be particularly useful in organ sites where glucose and FDG uptake 

between tumour cells and non-cancerous tissues cannot be easily differentiated (Zhu 

et al. 2011). Magnetic resonance spectroscopy (MRS) is the other technique that has 

the capability of imaging metabolite concentration. Whilst both MRS and magnetic 

resonance imaging (MRI) data can be acquired inside the same scanner, MRS offers 

more detailed compositional information about the tumour (Bruhn et al. 1989). A 

large range of metabolites can be detected using MRS, and total choline, 

phosphocholine, glycerophosphocholine, lactate, citrate, have all been proposed as 

potential markers for disease progression and therapeutic response in preclinical 

studies (Glunde and Bhujwalla 2011). Nuclear magnetic resonance spectroscopy 

offers a potential opportunity for translational research, as insights obtained from ex 

vivo tissue analysis can be applied directly in vivo using instruments already 

available in clinics.  

Besides its diagnostic value, knowledge of tumour metabolism can also directly 

contribute in the drug discovery process. Several compounds currently in clinical 

development directly target metabolic enzymes and pathways. These include 

compounds that target phospholipid synthesis through choline kinase (e.g. CK37, 

TCD-717) (Clem et al. 2011), and lactate export through monocarboxylate 

transporter 1 (e.g. AZD3965 (Polanski et al. 2014) ). Other metabolic targets that 

have shown promise in preclinical studies include compounds against glucose 

transporter 1 (GLUT1) (Yun et al. 2009), glutaminase 1 (GLS1) (DeLaBarre et al. 

2011), and isocitrate dehydrogenase (IDH) (Tönjes et al. 2013). In addition, there is 

a resurgent interest in assessing the anticancer benefits of compounds that are already 

available as prescription drugs, such as statins, metformin and dichloroacetates. 

Statins are normally used to treat hypercholestrolaemia by targeting the mevalonate 

pathway, while metformin and dichloroacetates both target mitochondrial 

metabolism (Galluzzi et al. 2013). 
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1.4 Metabolomics 

Metabolomics is the measurement of multiple metabolites in biochemical samples, 

with the aim of providing a total description of the system metabolite make-up. The 

comprehensive description of metabolite composition is sometimes referred to as the 

‘metabolome’ (Oliver et al. 1998), and often contains valuable information about the 

metabolic processes that take place inside the bio-system. Applications of 

metabolomics often involve the comparison of the quantitative and dynamic response 

of the metabolome upon a specific biological stimulus (Nicholson et al. 1999). The 

examples of metabolomics applications are diverse, and can be found across the 

subfields in biological and biomedical sciences: from discovering the metabolic 

function of an unknown enzyme, assessing the toxicity of a drug treatment in cells, to 

differentiating ill and healthy conditions in patients (Fiehn 2002, Robertson 2005, 

Kell 2006, Griffiths 2007, Ward et al. 2007, Bundy et al. 2009).  

1.4.1 Analytical techniques  

Metabolomics is a platform for both understanding metabolic processes and 

metabolic biomarker discovery. The metabolome incorporates information arising 

from interactions with the bio-system environment and contains phenotypic 

observations that cannot be captured through genetics alone; thus it is 

complementary to both genome and proteome analysis. Metabolomics in its current 

form is made possible by the many advances in modern technology and the increase 

in computational power. In metabolomics, the analytes are molecules that are 

typically less than 1500Da, and the measurements rely on high-resolution analytical 

instruments to provide the metabolite coverage necessary. Mass spectrometry, 

chromatography, and NMR spectroscopy are the principal detection and separation 

technologies employed in metabolomics. In addition, the semi-automated analysis of 

high-content data and the use of multivariate statistics are routine and important for 

efficient information retrieval.  
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1.4.2 NMR spectroscopy and mass spectrometry 

While the aim of metabolomics is to provide a comprehensive description of all 

metabolites in the sample, in practice, each detection technique and separation 

method has its own advantages and limitations. The metabolite coverage and 

threshold of detection are instrument and method dependent; there may be over 4000 

metabolites in the human systems, however, only a subset of the metabolome can be 

captured in any single analysis. For example, NMR is relatively insensitive to 

metabolites of low concentration and often has lower metabolite coverage. In 

contrast, mass spectrometry based methods can often detect many more metabolite 

features, however, metabolites may need to be chemically modified and separated 

prior to detection. Thus, metabolites detected are pre-selected through column 

chemistry, and may decompose in the sample preparation stages. Samples analysed 

using mass spectrometry based methods are subjected to additional sample handling, 

which could introduce an extra layer of uncertainties and potential errors. Both the 

range and volume of metabolomics applications have grown in the past decade, as 

the technology continues to mature and expand. Many aspects of the technologies, 

from instrument upgrades, hyphenated platforms, chromatographic methods, 

statistical approaches to data analysis protocols are still in active development. 

(Holmes and Antti 2002, Zhang et al. 2012) 
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1.5 Overview of the thesis 

Cancer and metabolism are intertwined at both the molecular signalling and the 

system levels, and the relationships between the two are complex. Decades of 

research mean that we now associate many phenotypic changes of metabolism with 

tumour cells, such as glycolysis and glutaminolysis. However, there remain deficits 

in our understanding especially regarding the context in which they are best applied. 

Metabolomics provides dynamic metabolite coverage, and has been demonstrated to 

be a valuable platform for studying tumour metabolism. It has vast potential to 

bridge the gap between basic research and clinical applications, particularly through 

the use of positron emission tomography (PET) and magnetic resonance 

spectroscopy (MRS). One of the promising metabolic modules under investigation is 

the choline phospholipid metabolite phenotype (i.e. the relative abundance of 

choline, phosphocholine, and glycerophosphocholine). These aqueous metabolites 

are relatively abundant and could be detectable using MRS. Furthermore, choline-

PET has found numerous applications, particularly in the context of prostate cancer 

management (Husarik et al. 2008). In this thesis, I have utilised a range of 

metabolomics platforms to explore different aspects of choline metabolism in tumour 

development:  

PIK3CA is one of the most frequently found mutated genes in breast cancers 

(Koboldt et al. 2012), and it is an important activator of PI3K/Akt signalling. 

Previous reports have linked PI3K/Akt signalling in tumour cells to deregulated 

choline phospholipid metabolism (de Molina et al. 2002, Yalcin et al. 2010, Glunde 

et al. 2011). In Chapter 3 of the thesis, I report my findings on the metabolic changes 

associated with ‘knock-in’ PIK3CA mutation, using the non-tumorigenic MCF10A 

breast line as a model. An interesting feature I have observed in the PIK3CA-mutant 

cells was the possible reduction in glycerophosphocholine (GPC), which function in 

cancer remains unclear. In Chapter 4, I examine the metabolome-wide effect of 

interfering with the activity of a previously uncharacterised GPC-selective 

glycerophosphodiester phosphodiesterase. Finally in Chapter 5, I explore the 

potential values in using relative choline metabolite abundances as biomarkers for 

monitoring therapies targeting macrophage infiltration, using a murine pancreatic 

tumour model.  
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Chapter 2 Analytical methods and protocols 

2.1 NMR Spectroscopy 

2.1.1 Physical basis and concepts 

Spin is an intrinsic property of angular momentum associated with fundamental 

particles, and nuclear magnetic resonance (NMR) is a natural phenomenon whereby 

nuclei possessing spin absorb and emit energy in a magnetic field. Protons and 

neutrons have spin quantum number ½, and spin quantum number of nuclei are 

defined according to their proton and neutron compositions. Degeneracy is used in 

quantum mechanics to describe the degree of which a quantum state can correspond 

to multiple measureable energy levels, and a nuclear spin with spin quantum number 

I is considered (2I + 1) fold degenerate. Nuclear spin populations of spin quantum 

number I previously occupying the same well-defined energy state would fill a 

multiple number of energy states (2I + 1) under the influence of an external magnetic 

field (Figure 2.1). This is known as the nuclear Zeeman splitting, and NMR 

spectroscopy is used to probe and record the nuclear Zeeman subpopulation 

dynamics (Levitt 2008).  

 

Figure 2.1 The nuclear spin population of spin quantum number I = ½, such as 1H, can 
occupy two distinct energy levels when they interact with an external magnetic field.  

The energy gap (ΔE) shown in the diagram is proportional to the magnet field strength 
(B0) of the spectrometer, while the relative spin populations occupying the upper and 
lower energy levels are determined by the energy gap (ΔE) through the equation 
N−

N+
= e−

ΔE
kT, where k is the Boltzmann constant and T is the temperature measured in 

Kelvin. ΔE is typically small compared to kT at room temperature in conventional 
NMR spectrometers, resulting in the spin population predominantly occupying the 
lower energy level at thermal equilibrium. This diagram above is adapted and redrawn 
using figures and concepts shown in (Levitt 2008).     
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A nuclear spin with spin angular momentum possesses also an intrinsic magnetic 

moment, and Zeeman splitting is the direct result of the interaction between the 

magnetic moment of the nuclear spins and that from an external field. Thus, the 

energy gaps between the Zeeman subpopulations are directly proportional to the 

magnetic field strength and are associated with a well-defined electromagnetic wave 

frequency. This is referred to as the Larmor frequency, which is nuclei-specific as 

the magnitude of nuclear spin magnetic moment is likewise also distinctive between 

nuclei (Figure 2.1). Under the influence of a external magnetic field, the nuclear spin 

vector moves around the field axis at a fixed angle in a precessional motion with 

Larmor frequency, and the concepts of precession and macroscopic nuclei spin 

polarisation enable many aspects of the instrumentation, design and interpretation of 

NMR experiments to be understood using classical vector models.  
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Figure 2.2 Evolution of the bulk magnetisation vector through a 90-degree pulse in the 
rotating frame 

B0 is the external static magnetic field vector generated by the spectrometer magnet. A) 
The bulk magnetisation vector is aligned longitudinally along the magnetic field of the 
NMR spectrometer at thermal equilibrium. B) Application of the 90-degrees 
radiofrequency pulse directs the bulk magnetisation vector onto the transverse plane, 
resulting in no net magnetisation longitudinally along the magnetic field of the NMR 
spectrometer. C) As the applied pulse is switched off, the bulk magnetisation vector 
begins to return to its original equilibrium position through longitudinal and transverse 
relaxations. The bulk magnetisation vector contains both longitudinal and transverse 
vector components. D) When fully relaxed, the bulk magnetisation vector returns to its 
equilibrium position. The above diagram is adapted and redrawn using figures and 
concepts from (Levitt 2008).     

When a sample is placed inside a spectrometer, nuclear spins precess around the axis 

of the spectrometer magnetic field (B0) and this results in a net longitudinal 

magnetisation along B0 (Figure 2.2A). In NMR experiments, electromagnetic waves 

at the Larmor frequency are pulsed to excite the ground state population to redirect 

the spin magnetisation onto the transverse plane, thereby generating a net transverse 

vector component for the nuclear spins (Figure 2.2B). Once the applied pulse is 

switched off, the nuclear spins gradually return to the original thermal equilibrium 

configuration through relaxation processes (Figure 2.2C and Figure 2.2D). During 
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relaxation, whilst the transverse magnetisation diminishes individual spins would 

continue to precess at their well-defined resonance frequencies, producing an 

oscillating transverse magnetic field and a current signal in the detector coil (Figure 

2.3). This signal is recorded as the free induction decay (FID), and the FID signal in 

the time domain is then converted to the frequency domain through Fourier 

Transform, forming a conventional NMR spectrum (Figure 2.4). (Levitt 2008)   

 

Figure 2.3 Signal induction through the receiver coil. 

The diagram above illustrates the process of signal induction. As a result of relaxation 
processes and continuous nuclear spin precession, an oscillating magnetic field is 
generated in the transverse plane and thus signal is induced in the receiver coil. The 
above diagram is adapted and redrawn from a figure in (Levitt 2008). 

Electrons are diamagnetic, producing opposing magnetic moments to B0 and thus 

reducing the effective field strength sensed by the nuclei. On the NMR spectrum the 

frequency axis is referred to as the chemical shift as it indicates the degree of which 

the molecular-specific, functional group-specific nuclear resonances are shielded by 

molecular electrons. 1H, 13C and 31P NMR spectroscopy are all widely used for 

metabolic profiling. 
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Figure 2.4 The detector coil in the NMR probe records signals in the time domain, 
which are then converted into resonance peaks in the frequency/chemical shift domain 
through Fourier Transform. 

The diagram above is adapted and redrawn using figures and concepts from (Levitt 
2008).     

2.1.2 Carr-Purcell-Meiboom-Gill (CPMG) pulse experiment 

The one dimensional Carr-Purcell-Meiboom-Gill (CPMG) spin-echo pulse sequence 

is widely used in metabolomics studies (Figure 2.5). The main reason is because the 

CPMG pulse sequence can selectively suppress resonance signals from protein and 

lipid molecules, allowing resonances from small molecules to be better resolved. 

Resonance signals arising from heavy, slow tumbling molecules such as proteins 

typically have shorter transverse relaxation times (T2) compared to rapidly tumbling 

small molecules, and are selectively attenuated during the spin echo sequence 

(Figure 2.6). Also, the CMPG pulse sequence has the added benefit of eliminating 

the effect of line broadening due to molecular diffusion and longitudinal magnetic 

field inhomogeneity (Figure 2.7), as de-phasing resulting from longitudinal 

relaxation can be refocused through the application of a series of 180-degree pulses 

as part of the spin echo sequence (Carr and Purcell 1954, Meiboom 1958). 
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Figure 2.5 Schematic of the CPMG spin echo pulse sequence 

The CPMG pulse experiment consist of an initial 90° pulse, followed by successive 
180° pulses separated by a time period of 2τ. The total spin echo time is given by 2nτ, 
where n represents the number of 180° pulse in the sequence. Free induction decay 
(FID) is recorded at the end of the series of 180° pulses. 

 

Figure 2.6 A train of spin echoes attenuates signals from larger molecules such as 
proteins with short transverse relaxation times 

The diagram above shows the evolution of signal intensity (vertical axis) as a function 
of the total spin echo time, 2nτ (horizontal axis). 
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Figure 2.7 A schematic diagram illustrating how spin vectors are refocused through a 
single spin echo.  

1) The initial 90° pulse directs the bulk magnetisation vector onto the transverse (x-y) 
plane. 2) The magnetisation vector de-phases and ‘fans out’ due to inhomogeneous 
external field and molecular diffusion motion, leading to a reduction in the magnitude 
of the induced signal. Magnetic moment vectors with higher precessional frequencies 
(F, in green) ‘lead’ and magnetic moment vectors with lower precessional frequencies 
‘trail’ (S, in red). 3) Application of the 180° pulse at time τ flips the magnetic moment 
vectors along the transverse plane. 4) Magnetic moment vectors with higher 
precessional frequencies (F, in green) now ‘trail’ and magnetic moment vectors with 
lower precessional frequencies now ‘lead’ (S, in red). 5) At time 2τ, the magnetic 
moment vectors are realigned, and the bulk magnetisation is back in-phase and 
refocused and maximal signal induction is achieved. The diagram above is adapted and 
redrawn from concepts and figures shown in Carr and Purcell’s seminal paper (Carr and 
Purcell 1954).     

2.1.3 High-resolution magic angle spinning (HR-MAS) 

High-resolution magic angle spinning (HR-MAS) NMR is a technique that enables 

the metabolic phenotyping of intact cells and tissues. In HR-MAS samples are 

cylindrically rotated about an axis at 54.7° to the main magnetic field of the NMR 

spectrometer. Tissues samples are in semi-solid state, and display many quantum 

characteristics of solid materials that include reduced molecular mobility. 

Mathematically, interactions such as dipolar couplings and chemical shift anisotropy 

(CSA) have angular dependences of (3cos2 θ-1)/2. While these normally do not 

apply to samples in solution as nuclear spins distribute themselves isotropically 
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under free rotational motion, these are relevant in the case of solid/semi-solid 

samples. The additional local spin interactions in solids have the effect of leading to 

complicated and poorly resolved spectra with very broad linewidths. HR-MAS 

provides a practical solution to eliminating the dipolar coupling and CSA 

interactions. It adjusts the axis of the sample rotor in relation to the axis of the 

spectrometer field, so that the angular-dependent elements of the interactions in 

liquid crystals like tissue samples can be conveniently nullified during rotation 

(Lowe 1959). This occurs at 54.7°, the ‘magic angle’, since 3 cos2 (54.7°) -1 = 0. The 

sample rotor is inserted into a hinged, flexible stator block section of the MAS probe, 

allowing the sample rotor to be positioned and spun by a stream of nitrogen gas at 

the required magic angle to the spectrometer. The magic angle technique reduces the 

number of relaxation mechanisms involved, and the lengthier transverse relaxation 

timeframe in turn leads to sharper lineshapes on NMR spectra of solid/semi-solid 

samples (Beckonert et al. 2010).  
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2.2 GC-Mass Spectrometry 

GC-MS is a robust metabolomics platform with high sensitivity. Through 

derivatisation, analytes of interest are first chemically modified to render them 

volatile, and are then separated inside a capillary column in the gas phase at 

temperatures of around 300°C. Once the chemical species are eluted from the 

column, they enter the mass spectrometer. They are ionised typically through 

electron ionisation before traveling down to the detector e.g. quadrupole/time-of-

flight (TOF) and are detected according to their mass to charge ratios (m/z). (Dettmer 

et al. 2007) 

The m/z spectrum can be analysed under full scan mode or selected ion monitoring 

mode (SIM), and SIM methods are sometimes preferred to improve the threshold of 

detection and to increase signal to noise ratios. For metabolomics analysis typically 

only 1 µl of the sample is required for injection and an analysis of a single sample 

takes around 45 minutes to complete.  

2.2.1 Derivatisation  

Derivatisation enables the functional groups of the metabolites to be chemically 

modified. The main aims of derivatisation is to reduce polarity and to increase 

volatility and thermal stability of the compounds, and it is an important step in 

making the analysis as robust as possible. For example, alkylation, acylation and 

silylation target active hydrogen such as –COOH, -OH, -NH, and –SH groups and in 

silylation, active hydrogen groups are replaced by alkylsilyl groups such as 

trimethylsilyl. MSTFA (N-methyl-N-trimethylsilyl-trifluoroacetamide) and 

MTBSTFA (N-methyl-N-tert-butyl-dimethylsilyl-trifluoroacetamide) are both 

widely used silylation reagents (Figure 2.8), and tert-butyl-dimethylsilyl derivatives 

often produce characteristic [M-57]+ fragment ions, which can be useful for 

identifying unknown metabolites. In addition, carbonyl groups can be transformed 

into oximes using methoxyamine which help stabilises compounds such as ketoacids 

and sugars. Methoximation followed by silylation is typically used for the profiling 

of aqueous metabolites (Dettmer et al. 2007), and sodium methoxide and methanol 
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are used to catalyse and initiate transesterification reactions for the analysis of bound 

fatty acids (Figure 2.9) (Metcalfe and Wang 1981).    

 

Figure 2.8 Schematic of silylation reaction 

 

 

Figure 2.9 Schematic of bound fatty acid transesterification 
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2.2.2 Data Processing  

The resulting mass spectra contain information about the distribution of mass 

fragment ions detected for the duration of the chromatographic separation, and thus 

the full dataset are often large and can be difficult to inspect visually. To speed up 

the analysis many aspects of the data processing, from peak deconvolution, library 

matching, to signal integration are semi-automated. We have employed AMDIS 

(Automated Mass Spectral Deconvolution and Identification System) (Stein 1999) in 

conjunction with the NIST (National Institute of Standards and Technology) library 

and the published Fiehn library (Kind et al. 2009) for peak deconvolution and 

metabolite identification. We also use GAVIN (Behrends et al. 2011), a MATLAB 

graphic user interface, for selecting signal boundaries in the retention time domain 

for systematic integration across the full study dataset.  

2.2.3 13C Stable isotopes tracer of glucose and glutamine 

Stable isotope labelling of precursor metabolites has found numerous applications in 

the studies of cell culture tumour models. The distribution of the mass isotopomers 

can be readily inferred from the mass fragmentation pattern, and metabolites 

enriched with 13C tracer e.g. 13C6-glucose (Figure 2.10) and 13C5-glutamine (Figure 

2.11) can be detected using GC-MS. Following data acquisition, the raw data from 

the mass fragmentation pattern are corrected for elemental natural isotopic 

abundance using computational methods (Millard et al. 2012). The experimental data 

provide information about the carbon flow around key cellular metabolic pathways, 

including glycolysis, TCA cycle and glutaminolysis.  
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Figure 2.10 Schematic of 13C6 glucose labelling into TCA cycle intermediates 
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Figure 2.11 Schematic of 13C5 glutamine labels into TCA cycle intermediates via 
oxidative pathway 

2.2.4 Isotopomer Spectral Analysis  

Isotopomer Spectral Analysis (ISA) is a deconvolution method of the 13C tracer fatty 

acid mass isotopomer distribution data. The fraction of labelled acetyl-CoA (D), de 

novo biosynthesis rate of the fatty acid (G (t)), and elongation (E) are taken into 

account to simulate the mass isotopomer abundance (Kelleher and Masterson 1992), 
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Figure 2.12 Modelling of fatty acid metabolism using Isotopomer Spectral Analysis  

The diagram above illustrates the conceptual basis as well as the input and output 
parameters of the Isotopomer Spectral Analysis (ISA) model, using fatty acids cultured 
in the 13C6-glucose medium as an example. The ‘dots’ represent carbon atoms that are 
13C labelled, and the relative bar heights at the top of the diagram represent the 
distribution of 13C isotopomer population of acetyl-CoA as would be expected from the 
natural isotope abundance of carbon. ISA uses a deconvolution technique to deduce 
parameters D and G, and by matching simulated distributions of 13C labelled 
isotopomers to the experimental data. This diagram above is adapted from a figure in a 
publication by Kelleher et al. (Kelleher and Masterson 1992).     
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2.3 Principal component analysis (PCA) in metabolomics 

PCA has found numerous applications in system biology and in many other scientific 

disciplines (Price et al. 2006). PCA is one of the simplest forms of multivariate 

analysis. It requires no a priori knowledge of the biological samples and is a 

valuable method for visualising complex datasets in metabolomics. PCA reduces the 

dimensionality of the dataset while retaining important information about the 

variations and differences between biological samples. In metabolomics, it is often 

used to identify metabolite signal peaks that discriminate between samples in the 

dataset, and for clustering biological samples that are alike. (Wold et al. 1987) 

Within the context of metabolomics data analysis, data variables could be metabolite 

signal peaks from NMR or mass-spectrometry spectra, or it could be other 

information related to the biological samples such as age, BMI or timepoints. Each 

variable can be thought of as an independent data ‘axis’, and PCA constructs new 

orthogonal ‘axes’ using linear combinations of the original variables and matrix 

algebra (Figure 2.13). PCA exploits the covariance structure of the underlying data, 

and the orthogonal linear transformation is designed to emphasise the variance in the 

dataset. The resultant matrix consists of eigenvectors, which represent the 

transformed axes and the corresponding eigenvalues confer information about the 

amount of data variance explained. The first principal component is the most 

important, as it describes the greatest amount of variance and thus information in the 

dataset, and lesser information is contained in each of the subsequent principal 

components (Wold et al. 1987). Variables are represented on the loading plot, which 

specifies the degree to which they contribute towards a particular principal 

component; whereas biological samples are represented on the score plot, which 

specifies the degree by which the data profile of each sample can be explained 

through the corresponding transformed data axis. Various computational methods 

can be applied to perform the matrix transformation, and PCA can be carried out 

using functions already implemented in MATLAB or other specialised software. 
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Figure 2.13 Principal Component Analysis requires orthogonal transformation of the 
original data matrix into principal component score and loading vectors.  

The diagram is redrawn using concepts and figures from Wold’s publication (Wold et 
al. 1987). ⊗ represents matrix multiplication. 

 

  

Data Matrix  
(X) 

 

Principal 
Component 

model 
(TP’) 

 

Noise 
(E) 

= 
 

+ 
 

= 
 

= 
 

X +…  …+ 
 

E PC1 PC2 

+…  …+ 
 

E 

t1  

X 

p’1  p’2  

t2  

t1,t2… are score vectors 
p’1,p’2… are loading vectors 

⊗!! ⊗!!



 44 

2.4 Protocols  

2.4.1 Metabolite extraction 

In order to perform metabolomics analysis on metabolites from adherent cell 

cultures, cells were collected from the culture vessels (i.e. flasks/plates/dishes) by 

methanol quenching and cell scraping. Metabolomics experiments were conducted in 

6-well plates and after the cell media were collected initially, cells were washed 

either using phosphate saline buffer (for NMR analysis) or Ringer’s buffer (for GC-

MS analysis) before methanol was promptly added onto the sample wells. 

Approximately, 400,000 to 1,000,000 cells were harvested in methanol using cell 

scraper to make up a cell extract sample for analysis. 

For metabolite extraction, a dual-phase methanol/chloroform method was then used 

to separate out the aqueous metabolites, and the non-polar metabolites from the cell 

proteins. Metabolites were extracted from the dried down methanol-quenched cell 

pellet samples and the samples were kept on ice during the extraction. 300 µl of 

chloroform/methanol in a 2:1 ratio was added to the cell pellet and was mixed using 

vortex. Then 300 µl of HPLC/UPLC graded H2O was added to the samples, which 

was again mixed using vortex and centrifuged at 16000g for 5 min. The upper 

aqueous fraction and lower chloroform fraction were carefully separated, and were 

then transferred either into new eppendorfs for NMR samples, or silanized glass vials 

for GC-MS analysis. This extraction process (adding chloroform/methanol/water, 

mix and centrifuge, followed by separation of aqueous and chloroform fractions) was 

repeated for a second time, and the corresponding aqueous and organic fractions 

were pooled. 

2.4.2 Sample preparation of culture medium for 1H NMR analysis 

Culture medium samples were kept frozen in eppendorfs in -80°C freezers after 

sample harvesting, and samples were prepared into NMR tubes on the day of the 

spectroscopic analysis. After the samples were thawed, they were kept on ice. 550 µl 

of the medium sample was transferred into a new eppendorf, and 50 µl of internal 

standard DSA (4,4-Dimethyl-4-silapentane-1-ammonium trifluoroacetate) in D2O 
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(11.6mM) was added into the sample as a quantitation reference. The mixture was 

then pipetted into a standard 5mm NMR tube.  

DSA (4,4-Dimethyl-4-silapentane-1-ammonium trifluoroacetate) has been proposed 

as a universal internal standard for biofluids. (Alum et al. 2008). In biofluid of high 

protein content such like serum, DSA peak signals have been demonstrated to show 

consistent linewidth and chemical shift, unaffected by changing pH. It was shown to 

be a valid alternative to TSP (trimethylsilyl propionate). 

 

Figure 2.14 Chemical structure of DSA  

The structure is redrawn from a figure in (Alum et al. 2008) 
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400 µs and the total spin echo time of 64 ms. Spectra were recorded with 64 transient 

scans, following 16 dummy scans. A 3s relaxation delay was incorporated, and 

gradient shimming was used before all spectral acquisitions to improve magnetic 

field homogeneity across the detected sample volume. In some experiments, a 

BACS60 sample changer (Bruker BioSpin) was used to automate the analytical run. 

Data were imported and processed in MATLAB® (MathWorks) using scripts written 

in house by J.T. Pearce, H.C. Keun, T.M.D. Ebbels, and R. Cavill (Imperial College 

London, UK). 1H NMR spectra were automatically phased, baseline-corrected, and 

referenced to the internal standard resonance at 0 ppm. Spectral integration was 

performed in MATLAB® (MathWorks) after metabolite identification. Identifying 

metabolites from the signal peaks are made often through the use of databases at the 

Human Metabolome Database and at the Biological Magnetic Resonance Bank, or 

through published literature.  

2.4.5 Metabolite quantification from 1H NMR analysis of cell media 

Concentration estimates were based on metabolite resonance integrals referenced to 

internal standard DSA signal intensities. Peak signal integrals of internal standard 

DSA (located at 0 ppm) and other metabolite peaks of interest were obtained by 

estimating the area under the curve. Concentrations were estimated from integral 

ratios between DSA and the metabolite of interest, and by accounting for the 

molecular proton number of the individual resonances. A blank unused media sample 

was analysed alongside with the biological samples, to enable the uptake and release 

of metabolites to be calculated. Differences in transverse and longitudinal relaxation 

times between metabolites and the DSA could lead to bias in absolute qualification, 

thus we analysed calibrated samples containing selected metabolites (including 

glucose, lactate, glutamine) of known concentrations, and estimated measurement 

bias in absolute quantification in our experiments to be around ± 15%.   

2.4.6 Sample preparation of intracellular aqueous metabolites for GC-MS 

analysis 

The aqueous fractions of the intracellular cell extracts (~ 106 cells, approximately 1 

mg of dried weight) from methanol/ chloroform/ water dual phase extraction (see 
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2.4.1) were derivatised and analysed by GC-MS. Before the start of derivatisation, 10 

µl of 1.5mg/ml myristic acid-d27 was added to the dried aqueous fractions as an 

internal standard, and the samples were dried down using a vacuum concentrator 

(SpeedVacTM). Samples were first derivatised through methoxyamination, where 20 

µl of methoxyamine (20 mg/ml in anhydrous pyridine) was added to samples using a 

multipipette, and samples were mixed using vortex and spun in centrifuge. The 

samples were placed in a heater block for 90 min at 37°C. At the end of the period, 

samples were cooled and spun in a centrifuge again. Samples were then silylated by 

adding 80 µl of MTBSTFA (with 1% TBDMS) (Thermo). After mixing by vortex, 

and centrifugation, samples were placed in a heater block, and were incubated for a 

further 60 min at 70°C. At the end of the period, samples were cooled and spun in a 

centrifuge again. Finally 10 µl of 1mM 2-fluorobiphenyl (in anhydrous pyridine) was 

added to the samples as an injection standard, and the samples were then transferred 

to deactivated glass vial inserts. 

2.4.7 Sample preparation of non-polar metabolites for GC-MS analysis 

The free fatty acids were silylated with MSTFA, whereas the fatty acid esters present 

in the organic fraction were transesterified. First, 10 µl of 1.5mg/ml myristic acid-

d27 was added to the samples as an internal standard. Then, the samples were dried 

down using a vacuum concentrator before they were reconstituted in 333 µl of 

methanol/toluene solution (1:1 v/v ratio), and were treated with 167 µl of 0.5M 

sodium methoxide and incubated at room temperature for 1 hour. Reaction was 

halted by the addition of 500 µl of 1 M NaCl and 25 µl of concentrated HCl.  The 

fatty acids were then extracted using two volumes of hexane  (500 µl), and the 

combined organic layers were dried under N2. Samples were then reconstituted with 

40 µl acetonitrile, silylated by adding 40 µl of MSTFA (with 1% TMCS) (Thermo), 

and were incubated for 30 min at 37°C. At the end, 10 µl of 1mM injection standard 

2-fluorobiphenyl (in anhydrous pyridine) was added to the samples. Samples were 

then transferred to deactivated glass vial inserts ready for GC-MS analysis.  
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2.4.8 GC-MS instrument set up and data processing 

GC-MS analysis was performed on an Agilent 7890 GC system with a 30m DB-5MS 

capillary column. A 10m Duraguard column was connected to an Agilent 5975 MSD 

triple-axis detector operating under electron impact ionization (Agilent 

Technologies). Samples were injected with an Agilent 7693 autosampler injector into 

deactivated splitless using helium as the carrier gas. The analysis was performed 

based on the Fiehn method (Kind et al. 2009) and the data were acquired under 

selected ion monitoring (SIM) mode, with representative samples from each 

biological group also run under full scan mode. The identities of the GC-MS features 

were confirmed either through running standards or matching to the NIST library, 

aided by an in-house generated library using the AMDIS program for deconvolution 

(Stein 1999). Individual isotopomer peaks were integrated using in-house 

MATLAB® (MathWorks) scripts by Dr G.T. Tredwell (Imperial College London) 

based on the program GAVIN (Behrends et al. 2011). The mass isotopomer 

distribution vectors (MID) for each metabolite were normalised i.e. the sum of the 

metabolite isotopomer abundances equal to one. MATLAB® (MathWorks) scripts 

were written in-house by Dr G.T. Tredwell (Imperial College London) to 

automatically correct for naturally occurring elemental isotopes based on the method 

described by Millard et al. (Millard et al. 2012). 

2.4.9 Isotopomer Spectral Analysis (ISA)  

ISA was performed with MATLAB® scripts developed in-house by Dr G.T. 

Tredwell (Imperial College London). The computation provided estimates for two 

(D, G) or three (D, G, E) parameter ISA models based on minimising the differences 

between the acquired spectral mass isotopomer distribution data and the data 

simulated using method described in the method section (see 2.2.4). 

2.4.10 Statistical analysis 

Principal component analysis and one-way Anova were performed in MATLAB®. 

Student’s t-tests were computed either in MATLAB® or Microsoft Excel.  
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Chapter 3 Metabolomics response resulting from PIK3CA mutant 
knock-in transformation in MCF10A breast cells 

3.1 Abstract 

Somatic mutations in PIK3CA are frequently found in human breast tumours, making 

the gene an attractive molecular target for early detection and personalised therapy 

(Wu et al. 2005). PIK3CA mutations contribute towards disease progression, and 

also impact upon the cellular physiology and drug resistance of the tumours. The 

MCF10A line is an important and relevant cell model for studying oncogenic 

transformation in breast tissues, as it is non-tumourigenic and retains many normal 

breast epithelial characteristics (Dawson et al. 1996). While the activation of cell 

signalling induced by mutant PIK3CA are well characterised at the molecular level, 

less is known about how mutant PIK3CA reprograms metabolism to facilitate 

physiological adaptation in MCF10A cells. Using metabolomics and 13C stable 

isotope-labelled glucose and glutamine as tracers, we probed the phenotypic 

alterations of metabolism following a single copy knock-in of mutant PIK3CA 

(H1047R) in the non-transformed MCF10A cell line. We identified increased 

glutaminolysis, de novo fatty acid synthesis, pyruvate entry into the TCA cycle, and 

decreased glycerophosphocholine as the most prominent phenotypes following 

PIK3CA mutation. 
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3.2 Introduction 

PIK3CA encodes for the 110kDa p110α subunit of the class 1 phosphatidylinositol 3-

kinase (PI3K), a family of lipid kinases that are involved in regulating molecular 

growth and survival signalling. Along with TP53, PIK3CA is one of the two most 

frequently mutated genes in breast tumours, and a comprehensive study recently 

found that as much as 36% of all breast tumours harboured PIK3CA mutations 

(Koboldt et al. 2012). Some literature suggest PIK3CA mutation may have 

prognostic value in predicting survival outcome in breast cancer patients (Loi et al. 

2010) – partly because PIK3CA mutations tend to be associated with hormone 

receptor-positive tumours that are responsive to hormone therapies (Pang et al. 

2014). Somatic PIK3CA mutations are oncogenic and result in increased catalytic 

PI3K kinase activity. PI3K phosphorylates phosphatidylinositol 4,5-diphosphate 

(PIP2) and produces phosphatidylinositol 3,4,5-triphosphate (PIP3), a lipid second 

messenger that activates the PI3K-AKT signalling cascade (Vivanco and Sawyers 

2002). The PI3K-AKT signalling pathway is important in cancer cells, as it is 

associated with many hallmarks of cancer, such as the cell cycle, genomic instability, 

angiogenesis and inflammatory response (Engelman et al. 2006, Liu et al. 2009). 

Consequently, as part of the drive towards targeted therapies, a number of small 

chemical inhibitors were developed to target the signalling pathway activity at 

various nodes, and many are currently in clinical trials. However, early results from 

these clinical trials generally showed limited single agent activity in advanced 

tumours. This is partly because PI3K pathway inhibition can lead to the selection for 

compensatory pathways which restore survival and tumour growth (Fruman and 

Rommel 2014). More effective treatments are currently required to help target the 

PIK3CA-mutant patient populations - one strategy that has been suggested is to 

exploit tumour metabolic dependency (DeBerardinis et al. 2008, Dang 2012) by 

discriminating the metabolic regulation of the various oncogenic mutations. Akt 

signalling has been reported to stimulate glucose metabolism (Elstrom et al. 2004), 

and mutant PIK3CA has also been shown to increase growth dependence on glucose 

(Foster et al. 2012).  

MCF10A is a spontaneously immortalized non-tumorigenic mammary epithelial cell 

line derived from a 36-year old patient, and it displays many characteristics of 
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normal breast epithelium (Debnath et al. 2003). It is a valuable model for studying 

disease progression, epithelial-mesenchymal transition (Sarrio et al. 2008) and 

metabolism (Schafer et al. 2009) (Dawson et al. 1996, Ma et al. 2004, Fillmore and 

Kuperwasser 2008, Sarrio et al. 2008). By performing a series of metabolomics 

experiments in the non-transformed MCF10A mammary epithelial line, here we 

report the metabolic alterations resulting from a single copy knock-in of mutant 

PIK3CA (H1047R). We identified increased glutaminolysis, de novo fatty acid 

synthesis, pyruvate entry into the TCA cycle, and decreased glycerophosphocholine 

as the most prominent phenotypes following PIK3CA mutation. 
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3.3 Materials and Methods 

MCF10A and PIK3CA H1047R (+/-) mutant MCF10A cells were purchased from 

Horizon Discovery. I was solely responsible for cell culture, performing proliferation 

assays, generating the 13C-glucose and 13C-glutamine labelled cell samples for 

metabolomics analysis, and for performing the 1H NMR and GC-MS metabolomics 

analysis. 

3.3.1 Cell Culture  

MCF10A cells were cultured in DMEM/F12, supplemented with 5% horse serum, 

0.1ug/ml cholera toxin, 20ng/ml hEGF, 10ug/ml insulin, 0.5 ug/ml hydrocortisone, 

and 2mM L-glutamine. Cells were cultured as a monolayer at 37° C in a humidified 

atmosphere with 5% CO2 under normal oxygen conditions. The cells were passaged 

every 3-4 days, and were split 1:8 -1:12 at ~ 80% confluency. Only low passage cells 

were used for experiments. 

3.3.2 Proliferation assay 

The number of viable cells in individual wells of 96-well plates was determined 

using the colorimetric cell counting kit-8 (CCK8) following the manufacturer’s 

instructions (Sigma-Aldrich). The assay is based on the reduction of the WST-8 dye 

by cellular dehydrogenases to an orange formazan product that is soluble in tissue 

culture medium. The amount of the generated formazan is assumed to be directly 

proportional to the number of living cells. To assess the number of viable cells, 10 µl 

of the CCK8 reagent were added to wells in 96 well plates and incubated for 3 hours; 

the absorbance at 450 nM was then measured for each well and was subtracted from 

background.  

3.3.3 Assessing impact of growth factors in the culture media 

While MCF10A is spontaneously immortalized, growth factors such as EGF and 

insulin are normally used in routine cell culture to stimulate growth. However, both 

are critical modulators of multiple signalling pathways and hence it would be 
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desirable to observe their metabolic phenotypes with the additives removed. Thus, 

prior to the metabolic profiling, experiments on the impact of media change, from 

fully supplemented to without supplements, on growth phenotype in the wild type 

and mutant PIK3CA cells were assessed using a proliferation assay. Reduced growth 

factor availability did not affect the mutant PIK3CA cells. However, significant 

differences in growth were observed in the wild type cells by 48 hours (Figure 3.1). 

Hence, 24 hours was selected as the time period over which subsequent 

metabolomics experiments were conducted.  

 

Figure 3.1 Effect of withdrawing supplements of cell growth in MCF10A 

Effect of withdrawing supplements on MCF10A wild type and mutant PIK3CA cells 
over 48 hours (A) or 72 hours (B). Fully supplemented cells were provided with EGF, 
insulin, hydrocortisone and cholera toxin; growth was assessed using the CCK8 
proliferation assay. The bar graphs represent the mean ± SEM from four technical 
replicates. Two-tailed Student’s t tests were performed to evaluate the statistical 
significance of growth under the two conditions.  
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3.3.4 13C-glucose and 13C-glutamine labelling experiment 

On the day of seeding: after trypsinisation, MCF10A cells were resuspended in full 

media (DMEM/F12, supplemented with 5% horse serum, 0.1ug/ml cholera toxin, 20 

ng/ml hEGF, 10 ug/ml insulin, 0.5 ug/ml hydrocortisone, 2 mM L-glutamine) and 

120k cells were seeded per well on a six well plate and were allowed to adhere 

overnight. The medium was aspirated the next day (24 hours after seeding) and was 

replaced with experimental culture media, and incubated for 24 hours. The media 

used for the glucose-labelled experiment were as follow: glucose free, glutamine 

free, pyruvate free DMEM, supplemented with 10% dialysed-FBS (BioSera), and 

11.2 mM U-13C6-glucose and 2mM L-glutamine. The media used for the glutamine-

labelled experiment were as follow: glucose-free, glutamine-free, pyruvate-free 

DMEM, supplemented with 10% dialysed-FBS (BioSera), 11.2 mM glucose and 2 

mM 13C5-glutamine. Dialysed serum was used to filter out the serum small molecule 

metabolite background to ensure content consistency in the experiment. Three 

independent biological replicate experiments were performed with U-13C6 glucose, 

and four independent biological replicate experiments were performed with U-13C5 

glutamine. 

The samples were harvested after 24 hours. The media were collected and 

immediately placed on ice. The cell monolayer was washed with 500 µL of cold 

(4°C) Ringer’s buffer, which was aspirated before the addition of 750 µL of cold 

methanol (straight from a -20°C freezer and kept cold in ethanol bath). The 

methanol-quenched cells were then scraped from the surface of the well and the 

entire sample was transferred to a clean 2 ml eppendorf tube. To increase metabolite 

recovery, each well was washed with a further 750 µL of cold methanol and pooled 

with the first sample. The methanol-quenched samples were dried down in a rotary 

evaporator under reduced pressure. Representative wells from each cell line/ 

condition were used for cell counting at the beginning and at the end of the 

experiments; cell counting was done using a SceptorTM 2.0 Cell Counter (Millipore). 

For the extracellular media samples 1 ml of the culture media were transferred to 

fresh Eppendorf™ tubes, and were centrifuged (10 000 rpm, 5 min) to remove 
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potential cell debris. They were then stored at -80°C for subsequent analysis. Both 

dried down cell samples and media were stored in an -80°C freezer. 

 

Figure 3.2 Growth in wild type MCF10A and PIK3CA mutant MCF10A cells  

Cell counting data of the MCF10A wild type and mutant PIK3CA cells over the course 
of the 13C-glucose and 13C-glutamine labelling experiments. Cells were seeded 24 hours 
before they were replenished with 13C labelled tracer-containing media. The graphs 
represent the mean ± SEM from a total of 7 replicates. The difference in cell number at 
24 hours was not found to be statistically significant using two-tailed Student’s t test.   

0 

100 

200 

300 

400 

500 

600 

700 

At seeding 0 hour 24hour 

C
el

l c
ou

nt
 ( 

x1
,0

00
) parent 

PIK3CA mutant 



 56 

3.4 Results 

To investigate the metabolic alterations resulting from the single copy of knock-in 

mutant PIK3CA (H1047R) in MCF10A cells, stable isotope tracer and metabolomics 

experiments were performed on MCF10A PIK3CA H1047R (+/-) mutant cells, and 

results were compared to the isogenic parental line expressing wild type PIK3CA. 

Unlabelled glucose or glutamine was substituted with either uniformly 13C-labelled 

glucose or uniformly 13C-labelled glutamine, to enable discrimination of the fate of 

these two major nutrients. Also, careful consideration was given to the culture media 

composition used so the metabolite background at the start of the experiment could 

be controlled, while the effect of mutational status in the isogenic lines would not be 

masked by the addition of routine culture supplements (see 3.3.3). In addition, cell 

number at the beginning and at the end of the metabolomics experiment were 

measured, and no significant differences in growth between the wild type and 

PIK3CA mutant MCF10A cells were observed over the time-course of the 

experiment (Figure 3.2). 

3.4.1 Culture medium analysis: mutant PIK3CA modulated extracellular 

pyruvate and glutamate release in the MCF10A cells 

In culture, metabolite concentrations in the extracellular environment could trigger 

metabolic feedback (Argaud et al. 1997, Iyer et al. 2010) and regulate important 

functional phenotypes (Gao et al. 1999, Wu et al. 2012), and are thus valuable 

physiological indicators. We employed 1H NMR to analyse the spent culture media 

sample, which enabled us to examine the consumption and release profiles of key 

metabolites, including the uptake of glucose, glutamine and choline, and the 

production of pyruvate, lactate, and non-glucose carbon derived glutamate (Figure 

3.3). We noticed that extracellular pyruvate release was significantly decreased by 

~40% (p = 0.01) in the PIK3CA mutant cells compared to the parental wild type 

cells. Pyruvate was predominantly an intermediate metabolite of glucose 

metabolism, with over 90% of the methyl carbon of pyruvate found to be glucose-

derived in this cell model (Figure 3.3). However, despite a decrease in pyruvate 

release in the PIK3CA mutant cells, both glucose consumption and glucose-derived 

lactate release remained unaffected, suggesting that any alteration of the fate of 
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pyruvate was limited to either the fraction entering mitochondria or pyruvate 

converted to alanine. Furthermore, glutamate release and glutamine uptake were also 

affected in the PIK3CA mutant cells. Non-glucose-derived glutamate release, as 

assessed by the C4 glutamate proton resonance, doubled (p = 0.02) while glutamine 

uptake recorded an approximately 50% increase (pairwise t test p value < 0.05) in the 

PIK3CA mutant cells compared to the wild type parental line, signifying up-

regulation of glutamine utilisation and metabolism. Glutamine, once imported into 

the cells was converted to αKG via glutamate to replenish substrates in the TCA 

cycle, and glutaminolysis has been reported to support growth and survival in rapidly 

proliferating tumour cells (DeBerardinis et al. 2007). Overall, our data on 

extracellular pyruvate, glutamine and glutamate suggest that metabolic substrate 

entry into the TCA cycle might have been altered in the transformed PIK3CA mutant 

cells. In addition, we were also able to measure uptake of extracellular choline in the 

culture media, and we found no significant differences between the PIK3CA mutant 

and the wild type MCF10A parental cells. 

 
 

Figure 3.3 MCF10A metabolite consumption and release from culture medium  

Samples from U-13C6 glucose tracer experiment harvested after 24 hours were analysed 
by 1H NMR. Negative values indicate consumption and positive values indicate net 
efflux; detailed resonance assignments can be found in the supplementary section. Bar 
graphs represent mean ± SEM from three independent biological replicates. * denotes 
two-tailed t-test p values < 0.05; † denotes pairwise t-test p values < 0.05 
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3.4.2 Intracellular aqueous metabolites analysis: pyruvate entry into TCA 

cycle is altered in the PIK3CA transformed cells  

GC-MS profiling of the intracellular metabolites from the U-13C6 glucose and U-13C5 

glutamine labelled cultures enabled us to systematically compare the relative 

abundance of metabolites between the PIK3CA mutant and the non-transformed 

cells, to determine the 13C mass isotopomer distribution, and to apportion the overall 

molecular carbons derived from glucose and glutamine for each metabolite. When 

examining the relative abundance data, we found the relative quantities of glycolytic 

intermediates (dihydroxyacetone phosphate, PEP, 3PG) and TCA cycle intermediates 

(αKG, fumarate, malate, glutamate) to be consistently higher (pairwise t test p < 

0.05) in the mutant cell samples (Figure 3.4, Figure 3.5), possibly indicating that the 

metabolic demand for energy generation was higher in the PIK3CA-transformed 

cells. At the same time we found glutamine to be an important metabolic precursor to 

TCA cycle intermediates. While glucose and glutamine each contributed 

approximately equally to the citrate carbon skeleton (around 30% each), glutamine 

accounted for over 40% of the malate and fumarate carbons versus <30% from 

glucose (Figure 3.6, Figure 3.7). This demonstrates that glutamine was a more 

substantial carbon donor than glucose in maintaining TCA cycle activity in the 

MCF10A cells and that the carbon flow was predominantly in the oxidative direction 

of the TCA cycle. It is conceivable that the increased glutamine uptake and 

glutamate production, as revealed through the extracellular media data, were used to 

fuel higher TCA activities in the mutant PIK3CA MCF10A cells. Furthermore, by 

closely inspecting the mass isotopomer distributions of individual metabolites we 

detected sizeable and significant shifts in the means by which 13C glucose carbons 

were incorporated into citrate (Figure 3.8). In particular, the citrate M2 labelled from 

the U-13C6 glucose tracer increased by one third  (p <0.005), whereas citrate M3 

labeling decreased by one half (p < 0.05) in the PIK3CA mutant cells.  The synthesis 

of citrate is normally catalysed by citrate synthase, which utilises four-carbon 

oxaloacetate and two-carbon acetyl-CoA as substrates. Mitochondrial acetyl-CoA is 

predominately derived from pyruvate via pyruvate dehydrogenase activity whereas 

oxaloacetate can be formed by carboxylation of pyruvate or oxidation of malate.  

Importantly, pyruvate dehydrogenase contributes to citrate M2 labels (13C6 glucose 
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→ 13C3 pyruvate → 13C2 acetyl-CoA → 13C2 citrate) and pyruvate carboxylase 

contributes to citrate M3 labels (13C6 glucose → 13C3 pyruvate → 13C3 

oxaloacetate→13C3 citrate). The increase in M2 citrate labels accompanied by the 

decrease in M3 citrate labels indicated that pyruvate entry into citrate via pyruvate 

dehydrogenase occurred more rapidly in the PIK3CA mutant MCF10A cells.  
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Figure 3.4 PIK3CA mutation altered intracellular aqueous metabolite abundance in 
MCF10A cells  

Analysis was performed by GC-MS and data from both U-13C6 glucose and U-13C5 
glutamine tracer experiments are included. The raw integrals were normalised through 
median fold change normalisation (Dieterle et al. 2006). The bar graphs represent the 
mean ± SEM. Seven separate biological experiments are represented and the metabolite 
features are ranked according to the magnitude of difference between the mutant 
PIK3CA and the wild type parental line, with positive change representing an increase 
in the mutant compared to wild type cells. Multiple mass ion fragments may be detected 
for some metabolites; in those cases the m/z values of the distinct fragments are given 
e.g. lactate 261 (see Figure 3.5). Glycerophosphocholine+glycerol-3 phosphate 
(GPC+G3P) was eluted at two separate retention times; * pairwise t test p values < 
0.05; ** pairwise t test p values < 0.005. 

-100% -50% 0% 50% 100% 150% 

dihydroxyacetone phosphate 
malic acid 

2 ketoglutaric acid 
3 phosphoglyceric acid 

fumaric acid 
phosphoenolpyruvic acid 

glutamic acid 432 
glutamic acid 330 

lactic acid 261 
asparagine 

lactic acid 233 
histidine 

alanine 260 
aspartic acid 418 
aspartic acid 302 

isoleucine 
aspartic acid 390 

alanine 232 
citric acid 591 
citric acid 459 

glycine 246 
glycine 218 

cysteine 
serine 302 
serine 288 
serine 390 
threonine 
glutamine 

tyrosine 
pyroglutamic acid 

phenylalanine 
valine 

pyruvic acid 
methionine 

lysine 
glycerol 

G3P+GPC (a) 
G3P+GPC (b) 

Percentage change 

Effect of knockin mutant PIK3CA on metabolite abundance in MCF10A  

** 
** 
* 
* 
* 

* 
* 

* 
** 

* 

* 

* 

* 

* 



 61 

 
Figure 3.5 Assignment and quantification of GC-MS detected metabolite features  

The identities of the GC/MS features were confirmed either through running standards 
or matching to the NIST library. RI represents retention time indices. The data represent 
averages and SEM from seven biological replicate experiments and metabolites are 
ranked by the magnitudes of percentage changes. Pairwise Student’s t-tests and false 
discovery rate (Benjamini and Hochberg procedure) analysis were used to evaluate 
statistical significance. FDR values and t test p values of < 0.05 are highlighted in red. 

 

 
 

MS features m/z RI % change ± error T-test p value FDR
dihydroxyacetone phosphate 484 2006 104% 26% 0.002 0.04
malic acid 419 1753 45% 10% 0.001 0.04
2 ketoglutaric acid 346 1652 44% 9% 0.007 0.06
3 phosphoglyceric acid 585 2254 43% 12% 0.022 0.07
fumaric acid 287 1449 40% 8% 0.013 0.06
phosphoenolpyruvic acid 453 1867 33% 22% 0.179 0.26
glutamic acid 432 432 1912 27% 7% 0.019 0.07
glutamic acid 330 330 1912 27% 7% 0.008 0.06
lactic acid 261 261 1154 12% 8% 0.151 0.24
asparagine 417 1945 12% 6% 0.154 0.24
lactic acid 233 233 1154 9% 9% 0.545 0.56
histidine 440 2220 -1% 8% 0.265 0.33
alanine 260 260 1195 -4% 7% 0.613 0.61
aspartic acid 418 418 1793 -5% 9% 0.458 0.48
aspartic acid 302 302 1793 -5% 9% 0.452 0.48
isoleucine 302 1379 -5% 5% 0.194 0.28
aspartic acid 390 390 1793 -5% 9% 0.415 0.46
alanine 232 232 1195 -6% 7% 0.304 0.35
citric acid 591 591 2223 -8% 8% 0.289 0.34
citric acid 459 459 2223 -8% 7% 0.289 0.34
glycine 246 246 1223 -8% 6% 0.049 0.13
glycine 218 218 1223 -9% 6% 0.052 0.13
cysteine 406 1845 -10% 8% 0.137 0.23
serine 302 302 1628 -11% 5% 0.091 0.17
serine 288 288 1628 -11% 5% 0.081 0.15
serine 390 390 1628 -12% 5% 0.122 0.21
threonine 404 1659 -14% 4% 0.007 0.06
glutamine 431 2061 -14% 5% 0.067 0.15
tyrosine 466 2269 -14% 4% 0.025 0.08
pyroglutamic acid 300 1596 -15% 3% 0.003 0.04
phenylalanine 336 1732 -15% 4% 0.019 0.07
valine 288 1310 -17% 6% 0.015 0.06
pyruvic acid 174 941 -19% 8% 0.061 0.14
methionine 320 1610 -21% 5% 0.014 0.06
lysine 431 2019 -22% 6% 0.051 0.13
glycerol 377 1522 -28% 13% 0.080 0.15
G3P+GPC (a) 571 2160 -43% 11% 0.235 0.30
G3P+GPC (b) 571 2205 -43% 12% 0.223 0.30

GC/MS profile: Effect of PIK3CA knockin mutation on aqeuous metabolite abundance in MCF10A
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Figure 3.6 13C glucose carbon incorporation into aqueous metabolites 

Incorporation is calculated using the natural abundance-corrected mass isotopomer 
distribution (MID) data from the U-13C6 glucose tracer cultured samples. The bar graphs 
represent the mean ± SEM from three separate biological replicate experiments. * two-
tailed Student’s tttest p < 0.05. Multiple mass ion fragments may be detected for some 
metabolites; in those cases the m/z values of the distinct fragments are given e.g. lactate 
261 (see Figure 3.5). GPC+G3P was eluted at two separate retention times.  
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Figure 3.7 13C glutamine carbon incorporation into aqueous metabolites  

Incorporation is calculated using the natural abundance-corrected mass isotopomer 
distribution (MID) data from the U-13C5 glutamine tracer experiments. The bar graphs 
represent the mean ± SEM from four separate biological replicate experiments. * two-
tailed Student’s t-test p < 0.05; ** two-tailed Student’s t-test p < 0.005. Multiple mass 
ion fragments may be detected for some metabolites; in those cases the m/z values of 
the distinct fragments are given e.g. lactate 261 (see Figure 3.5). Glycerol-3 phosphate+ 
glycerophosphocholine (G3P+GPC) was eluted at two separate retention times.  
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Figure 3.8 Comparison of mass isotopomer distribution (MID) of citrate and 2-
ketoglutaric acid (αKG) from 13C glucose and glutamine tracers  

In the glutamine tracer data, the bar graphs represent the mean ± SEM from four 
separate biological replicate experiments. In the glucose tracer data, the bar graphs 
represent the mean ± SEM from three separate biological replicate experiments in the 
glucose tracer data. ** two-tailed Student’s t-test p < 0.005; * two-tailed Student’s t-test 
p < 0.05. 
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3.4.3 Analysis of lipid species: increased de novo lipid synthesis in the PIK3CA 

mutant MCF10A 

Intracellular lipid species were analysed by GC-MS using an extraction and 

derivatisation method that enabled both fatty acid esters and free fatty acids in the 

samples to be detected. The origins of the fatty acid methyl esters detected were not 

restricted to a specific class of lipid molecule, but they were instead fatty acid chain 

components from a broad range of lipid molecules that were transesterified in the 

extraction process. These transesterified fatty acids could come from membrane 

phospholipids such as phosphatidylcholine or signalling and functional lipids such as 

phosphatidic acid or diacylglycerol. Our analysis was more successful in quantifying 

fatty acid methyl esters, and we were able to examine the relative abundance of a 

number of lipid species (Figure 3.9). For example we found that both ratios of 

esterified linolenate to palmitate and esterified linolenate to oleate were significantly 

lower (pairwise t-test p < 0.05) in the PIK3CA mutant extracts. Whereas oleate and 

palmitate can be synthesised de novo, linolenate (C18:3) is an essential 

polyunsaturated fatty acid in mammalian cells and must be imported from the culture 

medium directly; our data indicated there was a possible shift in the PIK3CA mutant 

cells, away from relying on fatty acid uptake and towards de novo biosynthesis. 

Furthermore, the mass isotopomer data from U-13C6 glucose and U-13C5 glutamine 

both provided strong independent evidence that the rate of de novo biosynthesis of 

fatty acids was elevated in the PIK3CA mutant cells. In particular, we found 

increased incorporation of both glucose and glutamine derived two-carbon acetyl-

CoA units into methyl palmitate (Figure 3.10, Figure 3.11), the most abundant fatty 

acid chain in mammalian cells. By modelling the mass isotopomer distribution of 

methyl palmitate using Isotopomer Spectral Analysis (ISA), a technique that 

untangles the effect of changes in the acetyl CoA pool contribution from the 

biosynthetic rate (see section 2.2.4), it was established that the increases in 13C tracer 

label incorporation were results of higher rates of de novo biosynthesis in the 

PIK3CA mutant cells (Figure 3.12, Figure 3.20). According to the U-13C5 glutamine 

data methyl palmitate de novo biosynthesis was higher by around 50% (p < 0.05) in 

the PIK3CA mutant cells compared to the wild type MCF10A parental line. 

Additionally, the modelled data suggest that glucose-derived citrate was 
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preferentially used as substrate for forming lipogenic acetyl-CoA; roughly 60% of 

acetyl-CoA came from glucose as opposed to around 10% from glutamine (Figure 

3.12).  

 

 

Figure 3.9 Lipid metabolite ratios are altered in the PIK3CA mutant cells  

Analysis was performed by GC-MS and data from both U-13C6 glucose U-13C5 
glutamine tracer experiments were included. Both free fatty acids and fatty acid methyl 
esters were detected. Averages and S.E.M. from seven separate biological experiments 
are represented (apart from methyl stearate where S/N was low and data from only three 
independent biological replicates were included).  

 
 

 

Figure 3.10 U-13C6 glucose carbon incorporation into transesterified palmitate.  

The bar graphs represent the mean ± SEM from three separate biological experiments. 
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Figure 3.11 U-13C5 glutamine carbon incorporation into transesterified palmitate  

The bar graphs represent the mean ± SEM from four independent biological 
experiments. 

 

Figure 3.12 Modelled metabolic parameters from fatty acid Isotopomer Spectral 
Analysis (ISA)  

In the glutamine tracer data, the graphs represent the mean ± SEM from four 
independent biological replicate experiments and in the glucose tracer data the graphs 
represent the mean ± SEM data from three independent biological replicate 
experiments.  Two-tailed Student’s t-test was used to determine statistical significance, 
and * denotes p < 0.05. 
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3.4.4 Analysis of glycerophosphocholine 

During the analysis of the intracellular aqueous metabolites, we noted a substantial 

drop of around 40% (not reaching significance) in the relative abundance of 

[glycerol-3 phosphate (G3P) + glycerophosphocholine (GPC)] in the PIK3CA mutant 

cells, ranking it the most down-regulated metabolite feature in this study (Figure 

3.4). The mass fragment (m/z: 591) represents the primary ion fragment from the 

derivatisation of G3P and the ambiguity of the assignment is down to the fact that the 

choline moiety in GPC can spontaneously detach under high temperature leaving the 

remaining molecule to be derivatised as G3P. Hence, subsequent to the initial 

analysis, additional analysis of G3P and GPC standards was performed on the GC-

MS instrument under the same protocol to find additional mass fragments that 

discriminated between the two metabolites. We were able to identify a distinct GPC 

fragment peak (m/z: 325) and a putative structure for the fragment (Figure 3.13). 

Furthermore by referring back to the original sample data acquired under full scan 

mode, we found remarkable similarity in the patterns of U-13C6 glucose mass 

isotopomer distributions between GPC and the ambiguously assigned [G3P+GPC] 

ion fragments (Figure 3.14), suggesting that GPC contributed substantially to the 

[G3P+GPC (m/z: 591)] fragment signals in the dataset. Moreover, the U-13C6 

glucose mass isotopomer distribution data showed GPC M3 levels were lower in the 

PIK3CA mutant cells (p = 0.08, Figure 3.14), indicating that the turnover of GPC and 

its glucose-derived glycerol carbon backbone were possibly lower in the PIK3CA 

mutant MCF10A. In addition, the level of GPC was also quantified using 1H NMR, 

where samples were analysed in the aqueous phase rather than in the gaseous phase, 

and approximately 50% drop in both GPC: choline (p = 0.08) and GPC: PCho (p = 

0.13) ratios were observed (Figure 3.15, Figure 3.19).  
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Figure 3.13 GC-MS Assignment of glycerophosphocholine (GPC) fragment through 
standard runs 

Standards of GPC (green), G3P (black) were made up to 1mg/ml and, additionally a 
standard of 50:50 GPC:G3P mix (red) from the 1mg/ml stocks was also made up. 
Standards were run under identical protocols to the MCF10A cell samples. (A) The full 
GC-MS total ion chromatogram. (B) Enlarged version of the GC-MS total ion 
chromatogram. (C) Mass spectrum at RT 17.75mins from the GPC standard sample 
showing the dominant ion fragment (m/z 325) and its putative structure. 
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Figure 3.14 The glycerol carbon backbone of glycerophosphocholine is derived 
primarily from glucose, but not glutamine 

Alteration in glycerophosphocholine (GPC) glucose carbon mass isotopomer 
distribution could be responsible for the changes observed in the overall G3P+GPC 
pool. The bar graphs represent the mean ± SEM from three separate biological replicate 
experiments. † glycerophosphocholine m1 label (m/z: 326) signals were interfered by 
other background ion fragments.  

 

Figure 3.15 Analysis of intracellular choline, phosphocholine and 
glycerophosphocholine by 1H NMR  

The bar graphs represent the mean ± SEM from three separate biological replicate 
experiments. Details of resonance assignment can be found in section 3.6. 
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3.5 Discussion  

3.5.1 PIK3CA transformation and metabolic reprogramming in MCF10A 

In this study, the metabolic alterations induced by a single copy knock-in of mutant 

PIK3CA (H1047R) were evaluated in the MCF10A mammary epithelial cells. 

MCF10A is an immortalised, non-transformed cell line retaining many features of 

normal breast epithelium (Debnath et al. 2003), and is widely used to study the 

phenotypic changes of oncogenic transformations. The signalling pathway 

modulation resulting from the mutant knock-in PIK3CA (H1047R) in the MCF10A 

cells have previously been characterised, and it was reported that the three main 

recurrent somatic PIK3CA hotspot mutations (H1047R/E542K/E545K) all promote 

constitutive Akt and Erk activation in MCF10A, leading to growth factor 

independent growth (Isakoff et al. 2005, Gustin et al. 2009). We found that PIK3CA 

mutant transformation in MCF10A modulated cellular metabolism, including the 

metabolic fate of pyruvate. Cells with mutant PIK3CA exhibited reduced pyruvate 

efflux into the culture medium and increased pyruvate conversion into acetyl-CoA to 

fuel TCA biogenesis, suggesting that pyruvate dehydrogenase activity may be 

modulated as a result of the mutation. Insulin, a potent activator of PI3K/Akt 

pathway, is known to up-regulate pyruvate dehydrogenase activity (Coore et al. 

1971), however this may be mediated through MAPK signalling (Johnson and 

Denton 2003). Elevated pyruvate dehydrogenase flux resulting from down-regulation 

of pyruvate dehydrogenase kinase isoform-4 has also been reported in ErbB2-

overexpressing MCF10A cells (Grassian et al. 2011); ErbB2 expression also elevates 

PI3K and MAPK signalling. While PIK3CA transformation may up-regulate 

pyruvate dehydrogenase activity, this is down-regulated in the HRAS transfected 

MCF10A cells (Zheng et al. 2013), illustrating that different oncogenes can promote 

distinct pyruvate dehydrogenase modulations. It is likely that mutant PIK3CA 

modulates metabolic flux through enhanced kinase activity involving both PI3K/Akt 

and MAPK signalling.  
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Figure 3.16 Pyruvate dehydrogenase regulation and oncogenic transformation in 
MCF10A 

Moreover, we found evidence of increased glutamine uptake and glutamate 

production in the PIK3CA transformed cells. It has been reported that mutant 

PIK3CA enhances ATP generation in MCF10A cells (Schafer et al. 2009), and the 

additional energy supply could be met through increased mitochondrial oxidation 

and glutaminolysis, a process which is normally under the transcriptional control of 

c-myc (Wise et al. 2008). PTEN is a phosphatase which acts to reverse PI3K 

activity, and has been shown to repress c-myc and glutaminolysis in mice (Garcia-

Cao et al. 2012). Furthermore, we also showed that mutant PIK3CA stimulated de 

novo fatty acid biosynthesis in MCF10A cells. Proliferating transformed cells are 

often required to meet their higher biomass demand either by lipid scavenging, as has 

been reported in KRAS transformed cells (Kamphorst et al. 2013), or through 

increased de novo synthesis. Many metabolic genes involved in the de novo synthesis 

pathway are transcriptionally regulated by SREBP, a downstream target of the 

Akt/mTORC1 signalling (Porstmann et al. 2008). Also ATP citrate lyase has been 
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reported to be a direct phosphorylation target of Akt (Berwick et al. 2002) and is 

responsible for delivering lipogenic acetyl-CoA. It is likely that ATP citrate lyase 

and SREBP may be up-regulated to support de novo fatty acid biosynthesis in the 

event of a knock-in PIK3CA mutation. 

3.5.2 Regulation of glycerophosphocholine metabolism 

A decrease in the glycerophosphocholine to phosphocholine ratio has previously 

been reported to be associated with disease progression and immortalization in 

mammary epithelial cells (Aboagye and Bhujwalla 1999). Here we observed 

evidence of decrease in glycerophosphocholine (not reaching statistical significance) 

specifically following PIK3CA transformation, while other PI3K inhibitor studies 

using 1H NMR have also reported an alteration in the glycerophosphocholine and 

phosphocholine phenotype (Beloueche-Babari et al. 2006, Romanska et al. 2009, Al-

Saffar et al. 2010). Previous studies have mainly attributed phosphocholine levels to 

changes in choline kinase expression (Al-Saffar et al. 2010, Yalcin et al. 2010), 

which converts choline to phosphocholine. However, less is known about the 

regulation of glycerophosphocholine. Interestingly, in this study the apparent 

changes in glycerophosphocholine appeared to be independent of choline uptake 

capacity, and are unlikely to be accounted for by the differences in cell growth alone 

(Figure 3.2). The origin of changes in the glycerophosphocholine phenotype remains 

unclear, but it has been suggested that reduced glycerophosphocholine turnover 

following oncogenic transformation could be indicative of lower phosphatidylcholine 

degradation upon enhanced survival signalling (Dawson 1955, Zablocki et al. 1991).  

3.5.3 Limitations and Future work 

In this study, we described a series of metabolic alterations following a single copy 

knock-in PIK3CA (H1047R) mutation in MCF10A breast cells, which included de 

novo fatty acid synthesis, pyruvate entry into mitochondria, and the GPC metabolite 

level. Our data suggest that the PIK3CA (H1047R) mutation led to increased fatty 

acid synthesis in the MCF10A cells; future experiments could focus on the 

characterisation of lipids in this cell model by taking other lipogenic parameters into 
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account, such as by measuring lipid droplets and probing for changes in mobile lipid 

resonances using NMR spectroscopy.  

MCF10A is non-tumourigenic with different characteristics to breast tumour cell 

lines (Debnath et al. 2003). Different breast tumour cell lines have distinct mutation 

and signalling backgrounds that could interact with the effect of knock-in PIK3CA 

mutation (Cully et al. 2006). Thus, the effect of knock-in PIK3CA mutation on 

metabolite regulation is also likely to be context-dependent. Furthermore, knock-in 

PIK3CA mutation using additional cell lines might help elucidate the effect of 

genetic and signalling interactions on cellular metabolic behaviour. The use of 

PTEN-deleted cell models, and PI3K/AKT inhibitors and activators may also be 

beneficial to ascertain if PIK3CA mutation-induced metabolic alterations may be 

reversible at the signalling level.  

Also, knock-in PIK3CA mutation introduced wholesale changes in MCF10A cells, 

and its effect on metabolism could in principle be mediated via regulatory changes at 

the transcriptional, as well as at the kinase signalling level. Given previous studies 

using alternative PI3K signalling stimuli have also found alterations in pyruvate, 

fatty acid, and glutamine metabolism (Coore et al. 1971), consequences of kinase 

signalling modulation were likely to have played a key role in determining the 

metabolic outcome observed in our cell model. Molecular characterisation of 

signalling events would be important in future studies.  

One major challenge to the interpretation of the isotopomer distribution data 

presented is the small magnitude of changes observed. Future studies could 

incorporate metabolic modelling to explicitly confirm the changes in metabolic flux.   

3.5.4 Conclusion 

This study demonstrates that the key metabolic phenotypes associated with PIK3CA 

mutation in MCF10A cells include enhanced de novo fatty acid synthesis and 

increased pyruvate entry into mitochondrial citrate. Furthermore, evidence for 

PIK3CA-induced glycerophosphocholine down-regulation was also presented, 
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highlighting the potential of glycerophosphocholine as a physiological marker for 

tumourigenesis in this model.  
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3.6 Supplementary data 

 
Figure 3.17 Extracellular consumption and release profile 

The table above represents data from three independent biological replicate experiments 

 
Figure 3.18 1H NMR spectral resonance assignments for culture media samples and 
signal regions used for quantification 

 
Figure 3.19 1H NMR spectral resonance assignments for choline metabolites of cell 
extract samples and signal regions used for quantification  

 

 
Figure 3.20 Fatty acid ISA modelled parameters  

The table above represents data from three biological U-13C6 glucose culture replicates 
and four biological U-13C5 glutamine culture replicate experiments 

Flux
(fmol/cell/hr) Mean SEM Mean SEM two-tailed paired

alanine 13C 26 6 20 3 -25% 0.39 0.44
choline -1.7 0.3 -1.8 0.2 3% 0.89 0.76
glucose 13C -1072 159 -1152 120 7% 0.71 0.49
glutamate (C4) 12C 16 4 35 2 113% 0.02 0.08
glutamine -52 26 -80 22 54% 0.47 0.04
lactate 12C 109 25 80 14 -27% 0.37 0.16
lactate 13C 1443 184 1661 194 15% 0.46 0.27
pyruvate 12C 1.4 0.3 0.5 0.04 -61% 0.03 0.06
pyruvate 13C 25 1 15 1 -40% 0.01 0.08

t-test p value% change Parental WT PIK3CA mutant

Assignment ppm moiety Signal range (ppm) 

 
      

alanine 13C 1.36 13CH3CH(NH2) COOH 1.336 - 1.374 

choline 3.19 (CH3)3N(CH2)2OH 3.19 - 3.195 

glucose 13C 5.08 Carbon-1 α anomeric H  5.054 - 5.106 

glutamate (C4) 12C 2.34 HOOCCH(NH2)CH2CH2COOH  2.317 - 2.36  

glutamine 2.42 HOOCCH(NH2)CH2CH2COH2N   2.407 - 2.454 

lactate 12C 1.33 CH3CH(OH)COOH   1.319 - 1.332 

lactate 13C 1.42 13CH3CH(OH) 13COOH   1.4 - 1.445 

pyruvate 12C 2.36 CH3COCOOH  2.361 - 2.365 

pyruvate 13C 2.47 13CH3COCOOH   2.47 - 2.477 

!

Assignment ppm moiety Signal range (ppm) 

 
      

choline 3.21 (CH3)3N+(CH2)2OH 3.204 – 3.213 

phosphocholine 3.22 (CH3)3N+(CH2)2OPO(OH)2 3.213 – 3.23 

glycerophosphorylcholine 3.24 (CH3)3N+(CH2)2OPOO-OCH2CH(OH)CH2(OH) 3.23 – 3.241 

!

mean SEM mean SEM unpaired p value
U13C6 Glucose labeled culture 0.55 0.049 0.60 0.008 0.435
U13C5 Glutamine labeled culture 0.11 0.015 0.10 0.002 0.107
U13C6 Glucose labeled culture 0.26 0.055 0.36 0.009 0.152
U13C5 Glutamine labeled culture 0.20 0.060 0.31 0.034 0.046 *

Statistical significance PIK3CAmtMCF10A Parent

Labeled Acetyl CoA

De Novo Synthesis

methyl palmitate ISA parameters
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Chapter 4 Silencing choline-releasing EDI3 suppresses central 
carbon metabolism in tumour cells 

4.1 Abstract 

Endometrial carcinoma differential 3 (EDI3) is a glycerophosphodiester 

phosphodiesterase with high specificity for glycerophosphocholine (GPC); EDI3 

hydrolyses GPC and releases choline and glycerol-3 phosphate (G3P). Recently, 

EDI3 expression has been shown to be associated with metastasis in endometrial 

cancers, and to promote migration via Protein Kinase C-alpha (PKCα) signalling 

(Stewart et al. 2012). It has been suggested that the role of EDI3 in cancer could be 

mediated by metabolite regulation. Through the use of cell models transfected with 

EDI3 siRNA, we examined the impact of EDI3 knockdown on cellular metabolic 

profiles with 1H NMR spectroscopy and GC-MS. Elevated GPC and GPC:PCho 

ratios were observed in multiple tumour cell lines. In addition, we found decreased 

glycolysis and lipogenesis in MCF7 cells transfected with EDI3 siRNA.  
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4.2 Introduction 

Endometrial carcinoma differential 3 (EDI3), also named GDE5/GPCPD1, is a 

recently characterised member of the glycerophosphodiester phosphodiesterase 

(GDE) family of enzymes (Stewart et al. 2012). Seven mammalian GDEs have now 

been described in the literature, and many have been reported to be important for 

physiological development (Yanaka 2007). However, their functional roles and 

therapeutic values in cancer remain unclear. While most other GDEs are 

transmembrane proteins, EDI3 is localized in the cytoplasm (Zheng et al. 2000, Rao 

and Sockanathan 2005). Glycerophosphoinositol, glycerophosphoserine, 

glycerophosphoethanolamine, and glycerophosphocholine (GPC) are all potential 

substrates of GDEs (Corda et al. 2014). Mammalian glycerophosphodiesterases have 

high substrate specificities, and EDI3 preferably utilises GPC (Stewart et al. 2012).   

Using whole cell lysates from models overexpressing EDI3 or recombinant EDI3, 

Stewart et al. conclusively demonstrated that EDI3 catalyses the enzymatic cleavage 

of GPC into choline and glycerol-3 phosphate (G3P) (Stewart et al. 2012). 

In the same study, high EDI3 expression was shown to be positively associated with 

metastasis in endometrial tumours, and negatively associated with relapse-free 

survival in both endometrial and ovarian cancer patient populations (Stewart et al. 

2012).  Consistent with this observation, EDI3 silencing was also demonstrated to 

downregulate cell migration via Protein Kinase C-alpha (PKCα) signal transduction.  

Additionally, Lesjak et al. has recently shown that EDI3 regulates other important 

processes for metastasis including integrin expression, adhesion and cell spreading in 

breast and ovarian cell lines (Lesjak et al. 2014).  

Whilst the link between the metabolic function of EDI3 and metastasis is still 

unclear, Stewart et al. has shown that silencing EDI3 suppressed levels of 

lysophosphatidic acids and phosphatidic acids (Stewart et al. 2012). Both 

lysophosphatidic acids and phosphatidic acids can be synthesised directly from G3P, 

and they are precursor molecules to signalling lipid diacylglycerol - a known 

activator of PKC signalling (Nishizuka 1992). Enzymatic products of EDI3, choline 

(Fernandez-Murray and McMaster 2005) and glycerol-3 phosphate (Topanurak et al. 

2013) are central to tumour metabolism; hence we hypothesised that EDI3 activity 
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could exert a wider influence on cellular metabolism. This prompted us to investigate 

the impact of EDI3 silencing on the global metabolome using NMR and GC-MS 

profiling. 

First, using two breast cell lines and one endometrial cell line as models, we showed 

that increases in GPC level and GPC: PCho ratio were prominent 1H NMR 

detectable phenotypes associated with EDI3 silencing.  Interestingly, this was 

accompanied by consistent changes in the abundance of lactate, alanine and citrate. 

To understand the fate of glucose, we performed stable isotope tracer analysis using 

GC-MS and 13C6-glucose as substrates, where we characterised further changes in 

glycolytic metabolites and lipid phenotypes following EDI3 silencing in MCF7 cells.  
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4.3 Materials and methods 

Cell samples on which the metabolomics analyses were conducted were generated 

using RNA silencing by our collaborator, Dr. Rosemarie Marchan (Leibniz Research 

Centre, Dortmund) in the laboratory of Prof. Jan Hengstler (Leibniz Research Centre 

for Working Environment and Human Factors, Dortmund). I was solely responsible 

for performing the analytical part of the GC-MS experiments and data analysis, as 

well as the acquisition of the 1H NMR data, Dr. James Ellis, Gabriel Valbuena and 

Shyam Solanki (Imperial College London) and myself were all involved in the NMR 

sample preparation.  Part of these data (GPC/PC determinations) has been published 

in (Stewart et al. 2012). I am solely responsible for the analysis of the 1H NMR data 

presented here. 

4.3.1 Cell culture and maintenance 

MCF7, AN3-CA and MDA-MB-231 cells were purchased from the German 

Collection of Microorganisms and Cell Cultures. Their authenticities were confirmed 

by DNA fingerprinting. MCF7 was maintained in Dulbecco’s modified medium 

(DMEM) supplemented with 10% heat-inactivated fetal bovine serum (Pan-Biotech), 

1% sodium pyruvate (Sigma), 0.5% non-essential amino acids (Gibco), and 0.1% 

insulin (Sigma). The cells were passaged at 70-80% confluency. 

4.3.2 RNA silencing  

For EDI3 silencing, cells were transfected with Stealth RNAi siRNA specific for 

human EDI3 (Invitrogen). At the start of the experiment, half a million cells were 

suspended in 2.5 ml of medium before they were added to each well in a six-well 

plate containing 5 µl of Lipofectamine RNAiMAX (Invitrogen), 500 µl of Opti-

MEM, and 20nM siRNA oligos. Stealth RNAi siRNA negative controls (Invitrogen) 

were used to account for off-target effects of the RNAi. The two negative controls 

are two different RNAi siRNA with independent target sequences. Cells were 

incubated for 72hrs before they were used for metabolic profiling experiments, to 

ensure good knockdown efficiency at the RNA and at the protein level.  
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4.3.3 Metabolomics experiment 

For the stable isotope glucose labelling experiment, glucose-free, glutamine-free, 

pyruvate-free DMEM medium was used. This was then supplemented with 10% 

dialysed FBS, pen/strep, 2mM glutamine and 5.6mM 13C6-glucose. The experimental 

media were refreshed at ‘0hr’ and were incubated for 5 or 24 hours. Both media and 

cells were collected at the time of harvest; and approximately 1 million cells were 

harvested from each well on a 6-well plate. Four technical replicates were used in the 

experiment. A representative well from each condition was used for cell counting, 

and to confirm knockdown efficiency.  

For 1H NMR analysis, MCF7, MDA-MB-231, and AN3-CA cells were cultured in 

DMEM medium, supplemented with 10% dialysed FBS, pen/strep, 2mM glutamine 

and 5.6mM glucose. The cells were cultured on 6-well plates; the media were 

refreshed at ‘0hr’, and cells were harvested at 24 hours. Cells from multiple wells 

were pooled together to make up NMR samples each containing approximately 3 

million cells. 

Sample extraction, methods and protocols for 1H NMR and GC-MS analysis were 

described in section 2.4. 



 82 

4.4 Results  

4.4.1 1H NMR spectroscopy analysis of intracellular aqueous metabolite level 

following EDI3 silencing 

Three cancer cell lines transfected with EDI3 siRNA, MCF7 (breast), MDA-MB-231 

(breast), and AN3-CA (endometrial), were analysed with 1H NMR spectroscopy. 

Knockdown efficiencies in these cell models were determined to be > 50% (Stewart 

et al. 2012). After the raw NMR spectra were normalised using median fold change, 

we generated an overview of the differences between the two treatment groups 

(Figure 4.1, Figure 4.2). Intensity differences between the mean spectra measured for 

EDI3 control and EDI3 knockdown samples in each cell line were illustrated in 

Figure 4.1 and Figure 4.2, with each data point coloured according to the 

significance of the difference in the mean at that point. Figure 4.3 illustrates the same 

data as in Figure 4.1 but with the plots expanded to show the congested aliphatic 

region between 2-4 ppm more clearly.  Several consistent differences in metabolite 

signals were observed.  GPC levels, as expected, were elevated in all cell lines upon 

EDI3 silencing. Phosphocholine levels were typically reduced, while the levels of 

choline present were difficult to assess due to low abundance. In addition to changes 

in choline metabolism, levels of lactate, alanine, citrate and glycine were also 

consistently decreased in cells transfected with EDI3 siRNA. Next, we quantified 

metabolite resonances that were consistently different between the two treatment 

groups (Figure 4.3).  This analysis confirmed that in all three lines, cell samples 

transfected with EDI3 siRNA exhibited significantly higher GPC levels (p < 0.005), 

consistent with its proposed glycerophosphodiester phosphodiesterase function. In 

support of this finding, PCho levels were not found to be significantly different 

between the knockdown and control, while GPC/PCho ratios were found to be 

considerably higher (p < 0.005) when EDI3 expression was silenced (Figure 4.3). In 

addition, the trend towards decreased citrate, alanine, and lactate levels following 

EDI3 silencing reached significance in some models (Figure 4.3).  This supported the 

hypothesis that EDI3 has an impact across the wider metabolome.  Since all three 

metabolites are predominantly generated by metabolism of pyruvate downstream of 

glycolysis, we analysed the fate of stable isotope labelled 13C6-glucose in the MCF7 

cells.  
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Figure 4.1 EDI3 silencing modulates 1H NMR-detectable intracellular metabolome 

NMR difference spectra of MCF7, MDA-MB-231, and AN3-CA above demonstrate 
consistent changes in metabolite levels across a number of resonance peaks. The 
difference spectra were calculated by subtracting the intensities of mean siEDI3 sample 
spectra from the mean negative control sample spectra; and thus peak resonances 
elevated in EDI3 siRNA samples have positive magnitudes and peak resonances 
decreased lowered in EDI3 siRNA samples acquire negative magnitudes. The colour 
bars represent Student’s T-test p values and indicate statistical significance of the peak 
intensity differences at each data point on the chemical shift axis. The sample data of 
each biological group represent six replicates from two independent biological batches. 
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Figure 4.2 EDI3 silencing modulates 1H NMR-detectable intracellular metabolic profile 
in the 2.4 - 4.5 ppm resonance region 

NMR difference spectra (2.4ppm to 4.5ppm) of MCF7, MDA-MB-231, and AN3-CA 
above demonstrate consistent changes following EDI3 silencing across a number of 
resonance peaks, including in GPC, PCho, lactate, glycine, citrate and amino acids 
alpha–carbon proton signal resonances. Peak resonances elevated in EDI3 siRNA 
samples have positive magnitudes and peak resonances lowered in EDI3 siRNA 
samples acquire negative magnitudes. The colour bars represent Student’s t-test p 
values and indicate statistical significance of the intensity differences at each data point 
on the chemical shift axis. The sample data of each biological group represent six 
replicates from two independent biological batches. 
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Figure 4.3 1H NMR analysis of intracellular aqueous metabolite level following EDI3 
silencing 

A) Comparison of GPC and PCho 1H NMR resonance intensities between EDI3 siRNA 
(shown in red) and negative control samples (shown in black) in 3 cell lines. B) Relative 
changes in metabolite signals following EDI3 silencing. Metabolite resonances showing 
consistent changes across the 3 cell lines were quantified. Bar charts represent mean ± 
SEM of six replicates from two independent biological batches, and spectral data were 
normalised using median fold change. ** represents Student’s t-test p value  < 0.005 
and * represents Student’s t-test p value  < 0.05.   
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4.4.2 Analysis of the effect of EDI3 silencing in MCF7 cells cultured in 13C6-

glucose: metabolite uptake and release 

Stable glucose isotope tracer experiments were performed in MCF7 cells by 

substituting glucose in the media with uniformly labelled 13C6-glucose. Media and 

extracts of cells were analysed to determine the distribution of 13C carbon tracers in 

metabolites downstream of glucose metabolism. In this experiment, MCF7 cells were 

transfected with either siRNA targeting EDI3 or one of two independent negative 

control siRNAs with different scramble sequences. A knockdown efficiency greater 

than 90% was achieved in this experiment (Figure 4.16). The culture media were 

analysed using 1H NMR spectroscopy. Cellular uptake of glucose, glutamine, and 

choline, and net alanine, lactate and glutamate production were detected over the 24-

hour culture period (Figure 4.4). During the 24-hour period, 13C6-glucose 

consumption and 13C labelled lactate production by MCF7 cells transfected with 

EDI3 siRNA were both reduced by approximately half (p <1x10-5) compared to 

controls. This was surprising, given that no significant changes in growth were 

detected between the control and knockdown (Figure 4.15). Despite the big 

difference in absolute rates, no differences in the 13C lactate release to 13C glucose 

consumption ratio were observed (Figure 4.5). Other than glycolytic metabolites, an 

effect on glutamine utilisation upon EDI3 silencing was also seen. Although glucose 

uptake was diminished in EDI3 siRNA transfected cells, glutamine consumption 

broadly remained similar in the knockdown and in the controls. However, the molar 

ratio of glutamine to glucose consumption nearly doubled (p < 1x10-4) (Figure 4.5). 

Furthermore, elevated production (p < 0.05) of non-glucose derived glutamate (C-4, 

CH2 resonance) (Figure 4.4), and hence higher glutamate release to glutamine 

consumption ratio (p < 5x10-3)(Figure 4.5), were detected in the media of EDI3 

siRNA transfected cells. We also measured and compared the uptake of choline, and 

observed no changes following EDI3 silencing. This was interesting given that EDI3 

can modify the intracellular availability of choline (Figure 4.4). Collectively, these 

observations suggest that silencing EDI3 suppresses glycolysis and increases 

glutamate production in the MCF7 cells. 
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Figure 4.4 NMR measurement of medium metabolite consumption and release profile 
in MCF7 cells transfected with EDI3 siRNA  

MCF7 transfected with EDI3 siRNA was compared to MCF7 cells transfected with the 
two independent negative control scramble vector sequences (i.e. control-1, control-2). 
The bar graphs represent the mean ± SEM from four technical replicates and * 
represents comparisons with Student’s t-test p value  < 0.05 and ** represents 
comparisons with Student’s t-test p value  < 0.005. 

 

Figure 4.5 Key substrate medium consumption and release ratios  

The bar graphs above represent the mean ± SEM from four technical replicates and ** 
represents comparisons with Student’s t-test p value  < 0.005. 
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4.4.3 Analysis of the effect of EDI3 silencing in MCF7 cells cultured in 13C6-

glucose: changes in aqueous cell extracts 

The intracellular metabolites of MCF7 cells cultured with U-13C6 glucose were 

analysed using GC-MS; the relative abundance of metabolites and their 13C mass 

isotopomer distributions were both examined. Global analysis of the metabolite 

abundance profile indicated that the levels of glycolytic products and direct 

metabolites of pyruvate such as alanine and lactate were all (p < 0.005) significantly 

reduced in cells transfected with EDI3 siRNA (Figure 4.6). Alanine and pyruvate are 

inter-convertible via transamination reactions (Beuster et al. 2011). The levels of 

citrate and malate were also lowered (p < 0.005) after the transient silencing of EDI3. 

Overall, this set of results were in agreement with the NMR data previously 

described in section 4.4.1, where decreases of citrate, lactate and alanine were also 

found in the MCF7 cells using samples from independent biological replicate 

experiments (Figure 4.3). While silencing EDI3 appeared to suppress glycolysis, its 

effects on the TCA cycle were less apparent. Thus, to help understand if the flux 

through the TCA cycle might have been altered by EDI3 knockdown, the mass 

isotopomer distributions of metabolites in the TCA cycle were analysed. However, 

we found that EDI3 silencing did not significantly alter the contribution of 13C6 

glucose into the carbon skeleton of TCA cycle intermediates (Figure 4.7), and that 

the 13C mass isotopomer distribution of citrate and malate remained unchanged 

(Figure 4.8).  

Furthermore, a substantial increase (p < 1x10-5) in [glycerol-3 phosphate + 

glycerophosphocholine] ([G3P + GPC]) was observed in cells transfected with EDI3 

siRNA (Figure 4.6). As described in Chapter 3 section (3.4.4) the derivatisation 

method did not discriminate well between G3P and GPC. Through running standards 

we did however arrive at a GPC-specific ion fragment (m/z: 325, RT: 17.8min), and 

with the small subset of data acquired using the full scan mode, we confirmed that 

the increase in [G3P + GPC] in the EDI3 knockdown cells was likely due to changes 

in GPC (Figure 4.9). Additionally, the 13C mass isotopomer distribution data of GPC 

indicates that GPC accumulation in the EDI3 knockdown cells was due to the rise in 

the unlabelled isotopomer population (m0), consistent with the notion that most GPC 

is derived from the degradation of choline phospholipids, which typically have 
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slower turnover rate compared to metabolic substrates involved in glycolysis, the 

TCA cycle or the pentose phosphate pathway. 

  

Figure 4.6 EDI3 silencing modulates global intracellular metabolome  

MCF7 transfected with EDI3 siRNA was compared to MCF7 cells transfected with the 
two independent negative control scramble vector sequences (i.e. control-1, control-2). 
GC-MS integrals were normalized by median fold change. Metabolites in the data table 
were ranked by relative changes where a positive change represents an increase in 
siEDI3 compared to the control. The bar graphs represent the mean from four technical 
replicates and * represents metabolite comparisons with Student’s t-test p value  < 0.005 
against both control 1 and control 2. 
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Figure 4.7 Effect of EDI3 on glucose's carbon incorporation into intracellular 
metabolome in MCF7 after 24hr of glucose labelled culture 

The bar graphs represent the mean ± SD from four technical replicates and * represents 
metabolite comparisons with Student’s t-test p value  < 0.005 against both control 1 and 
control 2 
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Figure 4.8 Effect of EDI3 silencing on mass isotopomer distribution (MID) of 
intracellular metabolites  

(A) Non-glucose contribution into glycolytic metabolites upon EDI3 silencing was 
prominent. (B) No obvious changes in the MID were observed in the TCA cycle 
intermediates upon EDI3 silencing. Bar graphs represent the mean from four technical 
replicates. 

  

Figure 4.9 EDI3 silencing leads to an accumulation of the non-labelled GPC pool 

(A) In MCF7 cells, the proportion of labelled GPC mass fragments was reduced upon 
EDI3 silencing. Bar graphs represent the mean from four technical replicate. (B) The 
increase in the relative intensity of GPC mass fragment upon EDI3 silencing was 
largely accounted for by the rise in the non-labelled GPC pool. The bar graphs represent 
data analysed under the full scan mode from a single sample. 
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4.4.4 EDI3 silencing alters fatty acid profile in MCF7 cells 

The non-polar lipid-containing extracts from the 13C6-glucose culture experiment 

were also analysed using GC-MS; free fatty acids were derivatised through 

silylation, while fatty acid chains as parts of other structural or signalling lipids were 

transesterified during the extraction process. Through performing Isotopomer 

Spectral Analysis (ISA) on the fatty acid 13C mass isotopomer distribution data, we 

examined the effects of transient EDI3 knockdown on the glucose-labelled lipogenic 

acetyl-CoA pool, the synthetic rate of fatty acid de novo, and on fatty acid elongation 

in the MCF7 cells (Figure 4.10, Figure 4.11, Figure 4.12). After 24 hours of 13C6 

glucose culture, lowered de novo synthesis of transesterified myristate, palmitate, 

palmitoleate and stearate (all p < 0.005) were observed in cells transfected with EDI3 

siRNA (Figure 4.11), and the contribution of labelled glucose into the lipogenic 

acetyl-CoA pool was also found to be marginally decreased (Figure 4.12).  

Furthermore, analysis of the lipid intensity data also revealed that silencing EDI3 

might have affected the relative abundance of a subset of lipid species (Figure 4.13). 

In particular, transesterified palmitoleate detected at both 5 hours (p value < 0.05) 

and at 24 hours (p value < 0.01) were lowered by approximately one-fifth, and the 

ratio of transesterified palmitoleate to palmitate (p value < 0.005) also dropped by 

approximately the same amount in cells transfected with EDI3 siRNA (Figure 4.14). 

It was unclear whether this was due to lower desaturase activity, changes in 

palmitoleate recycling or extracellular uptake. However overall, our data suggest 

EDI3 silencing altered the profile of fatty acid chains in lipids. 
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Figure 4.10 The effect of EDI3 on 13C-glucose labelled mass isotopomer distribution of 
lipid metabolites  

The methyl palmitate MID is representative of the pattern observed in other lipid 
species. The bar graphs represent the mean ± SD from four technical replicates. * 
represents feautres with Student’s t-test p values < 0.001 against both control groups. 
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Figure 4.11 EDI3 silencing suppresses de novo fatty acid synthesis  

The rate of de novo fatty acid synthesis is a parameter derived using the 3-parameters 
ISA model, and is based on the raw mass isotopomer distribution data of the individual 
lipid species. Bar graphs represent the means ± SEM from four technical replicates and 
* represents lipid metabolite comparisons with Student’s t-test p value  <0.05 against 
both control 1 and control 2 
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Figure 4.12 Effect of EDI3 silencing on labelled lipogenic acetyl-CoA pool  

This is another parameter derived from the same 3-parameters ISA model. The bar 
graphs represent the means ± SEM from four technical replicates and * represents lipid 
metabolite comparisons with Student’s t-test p value < 0.05 against both control 1 and 
control 2. 
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Figure 4.13 EDI3 alters lipid metabolic profile  

The GC-MS integrals were median fold normalized, and the lipid metabolite species 
were ranked according to relative changes where a negative change represents a 
decrease in siEDI3 compared to the control. The bar graphs represent the mean from 
four technical replicates and * represents comparisons with Student t-test p value  < 
0.05 against both control 1 and control 2. 

 

Figure 4.14 EDI3 silencing lowers palmitoleate to palmitate (C16:1/C16:0) ratio  

The bar graphs represent the mean and SEM from four technical replicates; * represents 
comparisons with Student’s t-test p value  <0.05, and ** represents comparisons with 
Student’s t-test p value  < 0.005. 
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4.5 Discussion 

Using multiple cell models, the experiments presented in this chapter validated the 

role of EDI3 in regulating glycerophosphocholine (GPC) levels and GPC:PCho ratio, 

consistent with observations made when other glycerophosphodiester 

phosphodiesterases were targeted in breast tumour xenografts (Wijnen et al. 2014).  

However, this study has also revealed previously unknown interactions between 

central carbon metabolism and EDI3 function, namely that silencing EDI3 with 

siRNA suppresses glycolysis and fatty acid synthesis, elevates glutamate production, 

and reduces the relative abundance of transesterified palmitoleate compared to other 

fatty acids in the MCF7 cells.  

The links between EDI3 activity and regulation of metabolic pathways beyond GPC 

metabolism are unclear.  GPC is converted by EDI3 into choline and glycerol-3 

phosphate (G3P) (Stewart et al. 2012), hence downstream metabolic effects are 

likely directly related to levels of GPC, choline or G3P. Apart from being described 

as an osmolyte in the kidney (Burg 1996, Gallazzini et al. 2008), there are no 

obvious metabolic routes that rationalise accumulation of GPC with the effects that 

were observed. While we did not directly observe a decrease in choline or G3P, it is 

plausible that inhibition of GPC activity could contribute to a reduction in the supply 

of either of these metabolites.  Choline oxidation could potentially link choline 

availability to mitochondrial metabolism, and hence other metabolic pathways such 

as lipogenesis (Katz-Brull et al. 2002).  However, choline uptake did not increase 

upon EDI3 silencing (Figure 4.5), suggesting that choline availability was not likely 

an important factor. Glycerol-3 phosphate is a substrate for glycerol-3 phosphate 

dehydrogenase and glycerol-3 phosphate acyltransferase, respectively involved in 

glycerol-3 phosphate shuttle and lipid biosynthesis (Turyn et al. 2003). Glycerol-3 

phosphate acyltransferase is the rate limiting step in glycerolipid and 

glycerophospholipid biosynthesis (Wendel et al. 2009), and requires both glycerol-3 

phosphate and acyl-CoA as substrates. It has been shown that restriction in lipogenic 

glycerol-3 phosphate availability limits glycerol-3 phosphate acyltransferase activity, 

and could lead to a build up of acyl-CoA. Glycerol-3 phosphate acyltransferase-1 

(GPAT1) knockout mice have been shown to result in an almost two-fold increase of 

acyl-CoA in the liver, as well as lower hepatic triacylglycerol and diacylglycerol 
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levels (Hammond et al. 2005, Neschen et al. 2005). Acyl-CoA species can inhibit 

activity of hexokinases (Tippett and Neet 1982), (Thompson and Cooney 2000) and 

citrate synthase (Hsu and Powell 1975, Hansel and Powell 1984).  However direct 

confirmation of G3P depletion and acyl-CoA accumulation downstream of EDI3 

would be required to support this hypothesis.  

4.5.1 Limitations and Future work 

By demonstrating changes in GPC levels and the GPC/PCho ratios and presenting 

evidence for changes in alanine, lactate, and citrate levels across several cell models, 

we illustrated that silencing EDI3 has widespread implications on the cellular 

metabolome. However, we acknowledge that repeated measurements on extracellular 

culture media and lipid profile using additional cell model systems would be 

beneficial in allowing us to generalise our observations beyond MCF7 cells. 

Although MCF7 cells were used as a convenient model for transfection, little is 

known about the specific relevance of EDI3 to breast cancer, and it would be useful 

in future work to repeat these experiments in endometrial and ovarian cancer models 

where there is a clearer association to disease progression.   

Another limitation in this current study is that choline and glycerol-3 phosphate, the 

two major metabolites of interest, could not be quantified using the described 1H 

NMR/ GC-MS metabolomics method. An alternative MS based method inclusive of 

these two major analytes would enable changes in metabolic profiles to be better 

contextualised. Also, some discrepancies were observed e.g. between the enrichment 

of lactate in extracellular (NMR) and intracellular (GC-MS) pools (Figure 4.4 and 

Figure 4.8A), which could be due to mass detector saturation, specific interferences 

or low signal/noise for some analytes. A more sensitive assay would allow for a 

more accurate determination of fractional 13C enrichment. It would also be important 

in future work to use metabolic modelling to calculate the alterations in metabolic 

flux explicitly, since the differences in isotopomer distributions – although 

statistically significant – were often small in magnitude and therefore difficult to 

interpret biologically. 
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It is worth noting that the importance of EDI3 expression in relation to other 

glycerophosphodiester phosphodiesterase (GDE) isoforms remains poorly defined. It 

is plausible that enzymatic activities of other GDE isoforms may be influential in 

determining changes to the metabolic profile upon EDI3 silencing, and future 

experiments could be directed to address the extent to which changes in metabolic 

profiles may be associated with basal EDI3 and/or other GDE isoform expression 

levels. For example, GDE2, coded for by the GDPD5 gene, has also been reported to 

be important for GPC cleavage in breast tumours (Cao et al. 2012a). Stewart et. al 

reported that EDI3 knockdown did not affect GDE2 mRNA expression, however, it 

is not yet clear if GDE2 activities might compensate for the loss of EDI3 function at 

the substrate level. One approach could be to compare changes in metabolic profiles 

in a panel of cell lines with varying background of EDI3 and other GDE isoform 

expressions. This would allow us to at least partially address if EDI3 background 

expression/ other GDE isoform co-expression play a role in determining the 

metabolic outcome of EDI3 interference.  

4.5.2 Conclusion 

In conclusion, this study demonstrates that silencing glycerophosphodiester 

phosphodiesterase EDI3 increases GPC level and GPC/PCho ratio in tumour cells. 

Also, silencing EDI3 has broader effects on tumour metabolism, as exemplified by 

the decrease in glucose uptake and fatty acid synthesis in MCF7 cells.  
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4.6 Supplementary data 

 

Figure 4.15 Cell numbers in MCF7 cells transfected with EDI3 siRNA  

The figure above shows cell numbers from representative wells in the U-13C6 glucose 
labelled metabolomics experiment. These data were provided by our collaborator Dr. 
Rosemarie Marchan (Leibniz Research Centre, Dortmund)  

 

Figure 4.16 EDI3 siRNA knockdown efficiency in the U-13C6 glucose labelled culture 
metabolomics experiment in MCF7 cells. 

The EDI3 protein levels were normalised to β-actin levels and to the negative control. 
These data were provided by our collaborator, Dr. Rosemarie Marchan. 
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Figure 4.17 EDI3 knockdown on the relative lipid pools at the 5-hour timepoint  

The GC-MS integrals were normalized by median fold change. The lipid species in the 
data table were ranked according to the relative changes, where a negative change 
represents a decrease in siEDI3 compared to the control. The bar graphs represent the 
mean from four technical replicates and * represents feature comparisons with Student’s 
t-test p value  < 0.05 against both control 1 and control 2. 
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Figure 4.18 Effect of EDI3 on intracellular metabolome at the 5-hour timepoint 

MCF7 cells transfected with EDI3 siRNA were compared to MCF7 cells transfected 
with the two independent negative control scramble vector sequences (i.e. control-1, 
control-2). The GC-MS integrals were normalized by median fold change, and the 
metabolite features in the graph was ranked by the relative changes. A positive change 
represents an increase in siEDI3 compared to the control. Bar graphs represent the mean 
from four technical replicates and * represents feature comparisons with Student’s t-test 
p value  < 0.005 against both control 1 and control 2. 
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Figure 4.19 Fractional contribution of labelled glucose after 5 hours of U-13C6 glucose 
culture 

Bar graphs represent the mean ± SD from four technical replicates and * represents 
feature comparisons with Student’s t-test p value  < 0.005 against both control 1 and 
control 2 
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Figure 4.20 Fatty acid elongation in MCF7 

The elongation parameter is derived using a 3-parameter ISA model. The bar graphs 
above represent the means ± SEM from four technical replicates. 
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Figure 4.21 13C mass isotopomer distribution of transesterified palmitoleate after 24 
culture 

* represents feature comparisons with Student’s t-test p values < 0.001 when comparing 
siEDI3 against both control groups. 
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Chapter 5 Targeting CSF1R mediated macrophage infiltration 
modulates choline metabolism in a mouse model of pancreatic 
cancer 

5.1 Abstract 

Pancreatic Ductal Adenocarcinoma (PDAC) is highly lethal in humans, and is often 

only possible to be diagnosed at late stages. The discovery and development of 

effective therapeutic solutions are urgently required, and targeting CSF1R mediated 

macrophage infiltration has recently emerged as a means of inhibiting malignant 

progression. Metabolic parameters are amongst the most tractable, reliable and 

practical therapeutic biomarkers in clinic, yet to date, metabolomic responses to 

CSF1R therapy in PDAC remain unknown. Intact pancreatic tissues and blood 

plasma samples from Pdx-1-Cre, LSL-KRAS+/- (KP), Pdx1-Cre, LSL-KrasG12D/+ (KC) 

and LSL-KrasG12D/+ LSL-Trp53R172H/+ (KPC) mice, and KPC mice treated with a 

small molecular CSF1R inhibitor, AZD7507, or gemcitabine (a nucleoside analogue) 

were analysed by high-resolution 1H nuclear magnetic resonance spectroscopy 

(NMR). Progressive alterations in metabolic profile were observed in the wild type, 

Kras mutant, and Kras and p53 mutant (KPC) mouse tissue samples, which were 

then reversed with drug treatments. Increases in choline and decreases in 

phosphocholine levels were amongst the main phenotypic changes associated with 

disease progression. Also, we found that the increase in phosphocholine to taurine 

ratio was specific only to AZD7507, and not to gemcitabine treatment. Targeting 

CSF1R-mediated macrophage infiltration of the tumour microenvironment altered 

metabolite levels in tumours, in particular choline metabolites, in a manner that is 

distinct from using the conventional chemotherapeutic gemcitabine. The study 

implies a potential role for macrophage-tumour interactions in the regulation of 

choline metabolism, and highlights the potential of metabolomics for identifying 

pharmacodynamic biomarkers for monitoring anti-CSF1R therapy in human disease. 
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5.2 Introduction 

The incidence of pancreatic cancer is on the rise (Hezel et al. 2006), and it currently 

accounts for approximately 3% of all cancers in Europe and in the US. The prognosis 

is poor, with approximately 85% of cases developing distant metastasis; overall 

patients have a 5-year survival rate of < 5% (Hidalgo 2010). Thus, there is a strong 

impetus to identify new and better therapeutic regimes. In recent years, it has 

emerged that chronic immune responses play important roles in promoting tumour 

progression (Olefsky and Glass 2010, Strelko et al. 2011, Biswas and Mantovani 

2012, Papatriantafyllou 2012, Panni et al. 2013). In pancreatic cancer, targeting 

tumour infiltrating macrophages has been found to reduce the number of tumour-

initiating cells, relieve immunosuppression, and improve chemotherapeutic 

responses (Bayne et al. 2012, Mitchem et al. 2013). In particular, targeting 

macrophage colony stimulating factor 1 receptor (CSF1R/CSF-1R) has been shown 

to be effective in modulating signalling and polarization of immune cells in tumours 

(Hamilton 1997, Priceman et al. 2010, Pyonteck et al. 2013). AZD7507 is an ATP 

competitive small molecule tyrosine kinase inhibitor to CSF1R developed by 

AstraZeneca (Scott et al. 2013) while several other inhibitor candidates are also 

currently in development (Irvine et al. 2006, Manthey et al. 2009, Patel and Player 

2009, Scott et al. 2013).  

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic 

malignancy. Oncogenic mutations of KRAS (Collins et al. 2012) and loss of 

functional tumour suppressor p53 (Morton et al. 2010) are highly prevalent in 

PDAC, and are considered important in the progression to malignancy. KRAS is 

mutated in nearly all PDAC human specimens (Almoguera et al. 1988), while TP53 

is mutated in > 50% of PDAC (Rozenblum et al. 1997). Pdx1-Cre, LSL-KrasG12D/+, 

LSL-Trp53R172H/+(KPC) and Pdx1-Cre, LSL-KrasG12D/+ (KC) transgenic mice are 

widely used to study cell signalling and therapeutic responses in PDAC (Hingorani et 

al. 2003, Hingorani et al. 2005, Herreros-Villanueva et al. 2012). Whereas KC mice 

represent the pancreatic intraepithelial neoplasia (PanIN) disease spectrum, KPC 

animals develop PDAC with high penetrance.  
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Metabolic reprogramming has been reported to be important in PDAC (Tesiram et 

al. 2012, Ying et al. 2012, Son et al. 2013, Zhang et al. 2013), and thus 

understanding metabolic phenotypes in this model offers therapeutic as well as 

diagnostic opportunities. Here, we compare the HR-MAS NMR detectable metabolic 

consequences of CSF1R inhibition and gemcitabine treatment - the first-line 

chemotherapeutics in pancreatic cancer (Hidalgo 2010), in the transgenic Pdx1-Cre, 

LSL-KrasG12D/+, LSL-Trp53R172H/+ mouse model.  Our data suggest a previously 

unreported role for macrophage infiltration in determining the metabolic phenotype 

in PDAC. In particular, we observed effects on choline metabolism, a critical 

pathway for tumour cell proliferation as well as an important resource for clinical 

biomarker discovery. 



 109 

5.3 Materials and methods 

Genetically modified mice, treatment and harvesting  

• WT mice: LSL-KrasG12D/+, LSL-Trp53R172H/+ (commonly referred to as KP)  

• KrasG12D mice: Pdx1-Cre, LSL-KrasG12D/+ (commonly referred to as KC) 

• KrasG12D p53R172H mice: Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+ 

(commonly referred to as KPC) 

The protocols for generating the genetically modified heterozygous Kras mutant KC, 

and heterozygous Kras and heterozygous p53 mutant KPC mice have previously 

been described (Hingorani et al. 2003). The KP wild type mice were established as a 

control to the KPC mice, and did not express Cre. KP wild type mice were healthy 

animals that do not normally develop tumours. The LSL-KrasG12D/+, LSL-

Trp53R172H/+  (KPC) mice were dosed with 100 mg/kg of gemcitabine (Gemzar® by 

Eli Lilly and Co.) or/and 100 mg/kg of AZD7507.  The structure of AZD7507 has 

recently been described (Scott et al. 2013), and it has been found effective in 

inhibiting CSF1R activity at low dose (Figure 5.9). Tissues were harvested 5 days 

after treatment by flash freezing in liquid nitrogen. I was responsible for the 

acquisitions and the analysis of the 1H NMR data.  Mouse husbandry, treatments, 

sample harvesting and immunohistochemical staining were performed by our 

collaborator, Dr. Juliana Candido, who is based at the Barts Cancer Institute, 

London.  

NMR sample preparation, acquisitions and data processing for tissue analysis 

 

Tissue samples were kept on ice during the preparation process. 6 animals per 

biological group were analysed. An average of 15-20 mg of intact tissue was packed 

into a 4 mm/ 65 µl zirconia rotor insert. D2O/saline solution (containing 0.9g NaCl in 

100 ml D2O) was added to the insert to maintain near-physiological conditions, as 

well as to provide for lock signal and to avoid the formation of air bubbles. Spectra 

were acquired on a 14.1 Tesla Bruker Avance III spectrometer equipped with a HR-

MAS probe. Samples were spun at 5 kHz, and temperature was set at 300 degree 

Kelvin. Shimming was performed first using an automated Bruker gradient 
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shimming algorithm and signal lineshapes were then subsequently individually 

optimised on the methyl signal of alanine on a per sample basis. Samples were 

analysed using a Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence with a total 

spin echo time of 240 ms (loop number = 300, τ = 400 µs). 128 scans were 

accumulated for each experiment and the data were acquired with 64k data points. 

The relaxation delay was set at 2 seconds and a water presaturation pulse was applied 

to attenuate the water signal. The total acquisition time was around 15 minutes per 

sample, and the total experimental time including sample preparation, spectrometer 

setup and shimming was around 40 minutes per sample. Preliminary experimental 

data from series of CPMG experiments taken over a 1-hour period suggested that 

metabolite signals in the tissue samples were broadly stable during the analysis. The 

Bruker software package Topspin 2.2 and MATLAB® (MathWorks) were used to 

process the spectra, and the methyl signal of alanine was used for chemical shift 

calibration (1.48 ppm). The following spectral resonances were removed before 

spectral normalisation: 0.86-0.97 ppm (lipid), 1.26-1.44 ppm (lipid), 1.17-1.21 ppm 

(ethanol), 1.55-1.73 ppm, 2.01-2.14 ppm (lipid), 2.23-2.33 ppm (lipid), 3.36-

3.37ppm (methanol), 3.64-3.69 ppm (ethanol), 4.84-5.04 ppm (water), 5.22-5.42 

ppm (lipid). The area normalisation factors were back-projected on the full data 

spectra to aid data visualisation. The metabolite signal integrals were then extracted 

and integral data were normalised using median fold change to allow for comparison 

across the sample set.  

NMR sample preparation and data acquisitions for the analysis of mouse 

plasma 

 

Aliquots of 200 µl of plasma were diluted with 300 µl of isotonic saline (0.9g NaCl 

in 100 ml of 80%: 20% H2O: D2O solution) before they were pipetted into standard 5 

mm NMR tubes. High-resolution 1H NMR spectra were acquired using a 5mm 

broadband-inverse tube probehead using a 14.1T Bruker AVANCE 600 spectrometer 

(Bruker Biospin). Carr- Purcell-Meilboom-Gill (CPMG) spectra were acquired using 

a standard presat pulse sequence, with the fixed echo time (τ) set at 400 µs and a total 

spin echo time set at 64 ms. Spectra were recorded with 64 transient scans, following 

16 dummy scans. The relaxation delay was set at 3 seconds, and gradient shimming 
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was used before all spectral acquisitions to improve magnetic field homogeneity 

across the detected sample volume.  



 112 

5.4 Results 

5.4.1 Analysis of animal pancreatic tissues 

To assess the global impact on metabolic profiles, pancreatic tissues of 

KrasG12Dp53R172H (KPC) mice treated with gemcitabine and/or CSF1R inhibitor were 

analysed by 1H HR-MAS NMR, and their metabolic profiles were compared to those 

of the less aggressive KrasG12D (KC) and healthy WT mice. We were able to identify 

and integrate signals from the most abundant metabolites (Figure 5.3; representative 

spectra are illustrated in Figure 5.1), and the integral data were modelled using 

principal component analysis (first principal component R2: 0.35) to provide for an 

unsupervised (‘unbiased’) multivariate summary of the global NMR metabolic 

profiles of the animals. The variations in metabolic profile between the animals from 

the different genotype/treatment groups were illustrated in Figure 5.2A, and our data 

model suggests that the global metabolic profiles of individual animals appear to be 

different between the genotype (p < 0.05) and the treatment groups. Although 

substantial variations existed within animal groups, as illustrated by the spread of the 

principal component analysis (PCA) scores (Figure 5.2), we observed a progressive 

trend in the scores, from low values for the WT mice, to intermediate values for the 

KrasG12D mice, to high values for the KrasG12Dp53R172H mice. Thus, the changes in 

the metabolic profile coincided with the sequential activation of oncogenic Kras and 

mutant TP53, which are characteristics of PDAC disease progression. Furthermore, 

we observed that the model scores of the KrasG12Dp53R172H mice were reversed upon 

treatment with the CSF1R inhibitor (AZD7507). While mice treated with 

gemcitabine retained similar profile scores as the untreated KrasG12Dp53R172H 

animals, KrasG12Dp53R172H animals that were treated with CSF1R inhibitor 

(AZD7507), either as a single agent or in combination with gemcitabine were found 

to have attained scores that were more akin to the WT and KrasG12D mice (p < 0.05 

in mice treated with both gemcitabine and CSF1R inhibitor). The model loadings 

(Figure 5.2), which define the relative contributions of individual metabolites to the 

model scores, revealed that the overall variations in the HR-MAS-NMR-detectable 

metabolic profiles could mainly be attributed to changes in phosphocholine, 

glycerophosphocholine, taurine, lactate, choline and creatine levels. In our PCA data 

model, the presence of phosphocholine and glycerophosphocholine were associated 
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with low component scores, i.e. lower in the healthy WT mice, whereas high levels 

of taurine, lactate and choline were associated with high scores, i.e. higher in the 

KrasG12D p53R172H mice (Figure 5.2B).  Scores and loadings of 2nd and subsequent 

principal components were also examined, however, they do not contain additional 

clustering information. 

 

 

 

Figure 5.1 Representative high-resolution magic angle spinning proton magnetic 
resonance spectra of pancreatic tissues  

(A) Wild type healthy mice and (B) KrasG12D p53R172H (KPC) mice with PDAC 
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A) 

 

B) 

 

Figure 5.2 Principal component analysis of MAS-NMR spectra of pancreatic tissues 
from WT, KrasG12D (KC) mice, KrasG12Dp53R172H (KPC) mice, and KPC mice treated 
with gemcitabine and small molecule CSF1R inhibitor 

The WT mice were healthy animals and the KPC mice were models for PDAC. The 
metabolite integrals were mean-centred and UV-scaled prior to Principal Component 
Analysis (A) the score plot and (B) the loading plot of the first principal component (R2 
= 0.35). Each data point on the score plot represents a different animal, and 6 animals 
per group were analysed. PCho /GPCho (δ3.24) represents the integral sum of the two 
overlapping singlet resonance peaks from PCho and GPC; the PCho /GPCho (δ3.24) 
signal contributed significantly more towards the model loading compared to the PCho 
(δ4.19) and GPC (δ4.33) multiplet signals separately. This was likely because the PCho 
/GPCho (δ3.24) signals were more intense (higher signal to noise) compared to the two 
multiplet signals, leading to lower analytical variability and stronger 
correlation/covariance with other metabolite signal peaks.  
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Figure 5.3 Relative metabolite profile of WT, KrasG12D, KrasG12Dp53R172H mice (KPC) 
and KPC mice treated with gemcitabine and small molecule CSF1R inhibitor in 
pancreatic tissues  

The metabolites in the table are ranked according to the relative changes between the 
WT and the KrasG12D p53R172H mice. The WT were healthy mice and the KPC mice were 
models for PDAC. Significant differences were determined using one-way ANOVA 
and Student’s t-test statistics (n =6). Data were normalized to the median fold change 
from the median spectrum (Dieterle et al. 2006) based on the extracted integrals. * 
denotes one-way ANOVA p < 0.05 and Student’s t-test p value < 0.05, ** denotes one-
way ANOVA p < 0.05 and Student’s t-test p value < 0.005. 

Metabolite signal δ, ppm Kras G12D (KC) KrasG12D p53R172H (KPC) Gemcitabine  CSF1Ri Gemcitabine and CSF1Ri

choline 3.54 303% 532% ** -7% -24% -37%
choline 3.21 155% * 447% ** -19% -34% -59% **
AMP/ADP/ATP 4.53 271% * 293% ** 27% -12% -27%
choline 4.08 61% 252% ** -26% -32% -58% **
lactate 1.34 72% * 174% * 45% -13% -30%
tyrosine 6.90 75% 154% * -55% * -53% -46%
glucose 4.66 167% 151% -15% -27% 8%
Inosine/adenosine 6.11 -10% 151% -29% -42% -40%
glucose 5.24 188% 139% 31% 16% 87%
taurine 3.44 104% * 135% * 9% -15% -29%
uracil 7.54 114% 131% 62% -8% -24%
adenine 8.19 55% 55% -7% -11% -20%
glutamine 2.46 2% 40% -17% -30% -29%
uracil 5.81 -12% 35% 5% -1% 0%
glycine 3.57 28% 34% -18% -2% 7%
acetate 1.93 70% 22% 193% 146% 394%
valine 1.05 -1% 22% 1% -28% -18%
taurine 3.27 22% 19% 11% 1% -17%
lactate 4.13 -10% 19% 14% -12% -31%
tyrosine 7.19 -13% 17% -40% -34% -33%
Inosine/adenosine 8.36 -11% 5% -24% -12% 15%
lysine/leucine 1.73 -10% 5% 54% -40% 21%
alanine 1.49 2% -7% 38% -5% -8%
Ala/Glu/Gln 3.78 -11% -9% 28% 0% 1%
glutamate 2.36 -22% -31% 17% 19% 16%
phosphoethanolamine 3.99 -12% -39% 46% 21% 53%
fumarate 6.53 -37% -46% -5% 63% 9%
glycerophosphocholine 4.33 -24% -51% 40% 61% 78%
PCho/GPCho 3.24 -30% -57% * 6% 41% 45%
cytidine 7.82 -26% -57% * -49% 63% 124% **
uridine 5.91 -53% -62% -30% 40% 86% *
threonine 4.24 -44% -64% -37% 44% 53%
phosphocholine 4.19 -34% -67% ** -12% 85% 79%
creatine 3.94 -64% ** -73% ** 27% 46% 13%
creatine 3.04 -65% ** -75% ** 23% 52% 21%
cytidine 6.07 -48% -76% ** -10% 71% 121% *
uridine 5.95 -41% -77% ** -3% 104% 137% *
uridine 7.88 -59% * -79% ** -42% 64% 126% **

1H MAS NMR metabolic profile of pancreatic tumor tissues

 Profile of disease progression Effect of treatment on KrasG12D p53R172H (KPC) mice
(relative change to WT mice)  (relative change to KPC mice)
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Analysis of the individual metabolite integrals reinforced our findings that disease 

progression in the KrasG12D (KC) and KrasG12D p53R172H (KPC) mice was significantly 

associated with elevated choline, AMP/ADP/ATP, lactate, and taurine levels, and 

reduced levels of phosphocholine, creatine and the nucleosides uridine and cytidine 

(Figure 5.3). Significantly, effects associated with disease progression on choline, 

uridine and cytidine were reversed when KrasG12Dp53R172H (KPC) mice were treated 

with gemcitabine and CSF1R inhibitor (AZD7507) in combination, suggesting a 

subset of metabolites could potentially be used as biomarkers for evaluating 

treatment efficacy in PDAC.  

 

When the pattern and the direction of metabolite modulations were examined (Figure 

5.4), we noted remarkable similarities between levels of phosphocholine, uridine and 

cytidine, and also between choline, taurine, AMP/ADP/ATP and lactate, indicating 

that changes may be consequences to alterations to only a small handful of common 

systemic processes. Modulation in phosphocholine and nucleoside (uridine/cytidine) 

levels might imply changes in cellular replicative potentials, while differences in 

choline, taurine, lactate, and AMP/ADP/ATP levels may hint at changes in energy 

balance, nutrient transport and osmotic regulations.  

 

CSF1R expression is specific to macrophages, and CSF1R inhibitors specifically 

target macrophage populations in the tumour microenvironment. We observed 

contrasts in the metabolite profile between mice treated with the nucleoside analogue 

gemcitabine and those on AZD7507 treatment, with the latter appearing to be more 

effective in reversing the change in metabolite patterns associated with disease 

progression in the KrasG12Dp53R172H (KPC) mouse model (Figure 5.2, Figure 5.3, 

Figure 5.4). However, as individual animal variations were generally large within 

treatment groups, no single metabolite feature was found to be significant in 

demonstrating anti-CSF1R treatment responses. To enhance the statistical power of 

detection, signal-ratio between metabolites with contrasting pattern of variations in 

the dataset were instead considered (Figure 5.5). Taking signal-ratio measurements 

between highly abundant metabolites can sometimes be advantageous as it avoids 

errors from low S/N integrals. Phosphocholine ratios to lactate, taurine, and choline 

were calculated, with the phosphocholine: taurine ratio particularly valuable in 
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demonstrating treatment effects (Figure 5.5). The Phosphocholine: taurine ratio 

significantly decreased with disease progression (p < 0.005), which was then 

reversed when KrasG12D p53R172H (KPC) mice were treated with AZD7507 or in 

combination with gemcitabine (both p < 0.05). No changes in the phosphocholine: 

taurine ratio were seen with KPC mice on gemcitabine treatment, and responses 

between gemcitabine and CSF1R inhibitor treatments were significantly different (p 

< 0.05), indicating that CSF1R inhibitor (AZD7507) generated a distinct metabolic 

response to conventional chemotherapy in the KrasG12D p53R172H (KPC) mice.  

 

The contrasting pattern of response in choline and phosphocholine we observed was 

striking. Both choline and phosphocholine are precursor metabolites to 

phosphatidylcholine biosynthesis; choline kinase is responsible for the enzymatic 

conversion of choline to phosphocholine, and has been frequently implicated in 

cancer signalling (Glunde et al. 2011). Thus, through our collaborators at the Barts 

Cancer Institute (London), we further explored if choline kinase expression was 

modulated, and if so, how choline kinase expression might be related to the presence 

of macrophages in the mice pancreas using immunohistochemical staining. 

Preliminary results from immunohistochemical staining appeared to show that mice 

treated with CSF1R inhibitor expressed a higher level of choline kinase α, compared 

to mice treated with gemcitabine and untreated mice (Figure 5.6) however these data 

were not quantitative or sufficiently replicated. Also, the data indicate that choline 

kinase-α and the macrophage marker (F4/80) did not co-localise, suggesting that 

choline kinase α expression may be due to other cell types in the tumour (Figure 5.6).  

 

 

 
 
 



 118 

 

 

Figure 5.4 Cancer progression and treatments significantly altered abundance of a 
number of metabolite features in pancreatic tissues 

The abundance of metabolites is presented relative to the KrasG12D p53R172H (KPC) mice. 
The wild type (WT) mice were healthy animals. KrasG12Dp53R172H (KPC) mice, models 
for PDAC, were treated with gemcitabine (Gem), AZD7507 (CSF1Ri) or in 
combination (Gem + CSF1Ri). The bar graphs show the mean ± SEM of measurements 
from 6 animals. Significant differences were determined using one-way ANOVA and 
Student’s t-test statistics. * denotes one-way ANOVA p < 0.05 and Student’s t-test p < 
0.05, ** denotes one-way ANOVA p < 0.05 and Student’s t-test p < 0.005.  
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Figure 5.5 Phosphocholine (PCho) to taurine signal ratio in tissues is a potential 
therapeutic marker for anti-CSF1R treatment  

PCho: taurine, PCho: lactate and PCho: choline signal ratios were calculated. The wild 
type (WT) mice were healthy animals. KrasG12Dp53R172H (KPC) mice, models for 
PDAC, were treated with gemcitabine (Gem), AZD7507 (CSF1Ri) or in combination 
(Gem + CSF1Ri). The bar graphs show the mean ± SEM of measurements from 6 
different animals. Significant differences were determined using one-way ANOVA and 
Student’s t-test statistics. * denotes one-way ANOVA p < 0.05 and Student’s t-test p 
value < 0.05, ** denotes one-way ANOVA p < 0.05 and Student’s t-test p value <0.005. 
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Figure 5.6 Treatments induce changes in choline kinase-α expression and macrophage 
population responses in the KrasG12Dp53R172H (KPC) mice pancreas tissues 

Immunohistochemical staining of choline kinase-α and F4/80, a marker of macrophages 
in mice, were performed on representative pancreatic tissue samples. These data 
demonstrate that (i) AZD7507 (CSF1Ri) was more effective than gemcitabine (Gem) in 
reducing macrophage population; (ii) CSF1Ri appeared to have increased choline kinas-
α expressions in pancreatic tissues; (iii) choline kinas-α and macrophage marker did not 
co-localise and suggest that the presence of choline kinase-α expression is likely 
associated with other cell types in the tumour. These were data provided by our 
collaborator, Dr. Juliana Candido. 
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5.4.2 Analysis of animal blood plasma samples  

Animal blood plasma samples were analysed using 1H NMR spectroscopy in 

conventional 5mm tubes, metabolite resonances were annotated and quantified, and 

the metabolite levels between the genotype/treatment groups were compared (Figure 

5.7). Plasma glucose was observed to be different between the genotype models 

(Figure 5.8): glucose levels were found highest in the wild type (WT) mice, and 

lowest in the KrasG12D p53R172H (KPC) mice (Figure 5.8). Also glucose concentrations 

in the KrasG12D p53R172H (KPC) animals were elevated upon drug treatments (p < 0.05 

for CSF1R treatment and combinatorial treatment). The reasons behind the 

modulation in plasma glucose are unclear, however it is possible that the systemic 

behavioural and physiological changes the mice underwent as the disease progressed 

may play a role. Also, we found that KrasG12D mice had significantly higher level of 

lactate (p < 0.05) when compared to the wild type (WT) healthy mice, and two of the 

three KrasG12D p53R172H mice (KPC) had high levels of lipids (Figure 5.8). However, 

we did not observe significant differences in plasma metabolites that discriminate 

between mice treated with CSF1R inhibitor (AZD7507) and those on gemcitabine 

treatment. 

In addition, we noted that intensities of an unassigned doublet resonance (at 

7.82ppm), were statistically correlated to both citrate levels and to another 

unassigned multiplet resonance (at 7.37ppm). We found that these resonance signals 

were elevated (2-fold higher) in the KrasG12D mice compared to the WT healthy mice 

(p < 0.05) (Figure 5.8). While we are unclear of the origin of these signal resonances, 

it is possible that these might be artefacts of adding anticoagulant during sample 

collection (Barton et al. 2010).  
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Figure 5.7 Relative blood plasma profile of WT, KrasG12D, KrasG12D p53R172Hmice (KPC) 
and KPC mice treated with gemcitabine and small molecule CSF1R inhibitor 

Integrals were extracted from data acquired using CPMG pulse sequence experiments. 
Wild type mice (WT) were healthy animals. KrasG12Dp53R172H (KPC) mice, models for 
PDAC, were treated with gemcitabine (Gem), AZD7507 (CSF1Ri) or in combination 
(Gem + CSF1Ri). Metabolites are ranked according to the magnitudes of relative 
change between the WT and the KrasG12Dp53R172Hmice. Significance was determined 
using one-way ANOVA and Student’s t-test statistics (n =3). * denotes one-way 
ANOVA p < 0.05 and Student’s t-test p value < 0.05, ** denotes one-way ANOVA p < 
0.05 and Student’s t-test p value < 0.005. 

 

Metabolite signal δ, ppm Kras G12D (KC) KrasG12D p53R172H (KPC) Gemcitabine  CSF1Ri Gemcitabine and CSF1Ri

fatty acid (CH=CH-CH2-CH=CH)n 2.81 61% 381% -86% -83% -73%
fatty acid (CO-CH2-CH2) 1.59 11% 359% -92% -91% -87%
fatty acid (CH=CH) 5.32 -4% 332% -93% -82% -76%
fatty acid (-CO-CH2) 2.25 -8% 197% -80% -75% -74%
fatty acid (CH2)n 1.32 45% 169% -74% -57% -64%
creatine 3.95 -30% 130% -61% -46% -54%
glutamate 2.42 -63% 86% -19% -58% -67%
methionine + fatty acid (CH-CH=) 2.07 14% 81% -51% -42% -42%
glutamine 2.47 29% 58% -13% -38% -49%
alanine 1.49 71% 44% 3% 8% -29%
fatty acid (CH3) 0.87 11% 32% -32% 4% -4%
lactate 1.35 110% * 26% -6% 30% -31%
valine 1.09 -43% 23% -23% -7% -33%
isoleuine 1.06 36% 22% -7% 6% -16%
lactate 4.12 70% 17% -6% 24% -22%
glycerol 3.59 141% 15% -31% 99% 26%
pyruvate 2.39 31% 4% -25% 9% -8%
formate 8.47 -41% 1% -44% -10% -20%
histidine 7.07 19% -1% -20% 9% -20%
tyrosine 6.92 121% -8% -18% -53% -1%
branched chain amino acids 1.02 173% -21% 5% 106% -4%
glycerol 3.68 27% -30% 41% 83% 46%
acetate 1.94 34% -30% 101% -3% -51%
glucose 3.27 10% -33% 25% 4% -27%
glucose 3.77 -21% -36% 26% 31% 26%
theonine 1.21 -14% -37% 54% 37% 32%
glucose 3.43 -24% * -41% * 31% 46% 36%
glucose 3.56 -25% -42% 31% 39% 37%
glucose 3.92 -25% * -44% 39% 48% * 43%
phospholipids 3.23 -3% -46% 73% 136% 100%
glucose 3.48 -27% * -47% * 44% 50% * 48%
glucose 4.67 1% -48% 28% 22% 35%
glucose 5.25 -26% * -49% ** 54% 64% * 61% *
glucose 3.85 -30% * -50% * 39% 53% 49%
glucose 3.52 -37% -50% 42% 39% 51%
unassigned multiplet 7.37 192% -59% -82% -98% -93%
citrate 2.55 102% -62% -62% -27% -62%
unassigned doublet 7.82 324% * -62% -100% 10% -8%
citrate 2.68 110% -62% -48% -10% -54%
citrate 2.70 65% -69% 27% 47% 33%

1H NMR metabolic profile of blood plasma 

 Profile of disease progression Effect of treatment on KrasG12D p53R172H (KPC) mice
(relative change to WT mice)  (relative change to KPC mice)
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Figure 5.8 Genotype and disease progression significantly affected relative abundances 
of common blood plasma metabolites such as glucose, lactate and citrate detected 

The wild type (WT) mice were healthy animals. KrasG12Dp53R172H (KPC) mice, models 
for PDAC, were treated with gemcitabine (Gem), AZD7507 (CSF1Ri) or in 
combination (Gem + CSF1Ri). Averages from three different animals were represented 
and error bars represent SEM. Significant differences were determined using one-way 
ANOVA and Student’s t-test statistics (n =6). * denotes one-way ANOVA p < 0.05 and 
Student’s t-test p value < 0.05, ** denotes one-way ANOVA p < 0.05 and Student’s t-
test p  < 0.005.  
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5.5 Discussion  

5.5.1 Metabolic profiles of pancreatic cancer progression and treatment 

efficacy  

The transgenic Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+ (KPC) and Pdx1-Cre, 

LSL-KrasG12D/+ (KC) animal models have been widely used in pancreatic cancer 

studies, and our analysis of pancreatic tissue showed that metabolic profiles of the 

mouse models broadly mirrored the changes in tumour aggressiveness. A number of 

studies have already demonstrated the utility of metabolomics in identifying 

diagnostic markers of disease stage in a range of sample types, including blood 

serum/plasma, urine, bile and saliva (Di Gangi et al. 2014). However, studies with 

pancreatic tissue samples remain few. To our knowledge, there is only one other 

published metabolic profiling study examining progression phenotypes using 

transgenic animal models in pancreatic cancer, and it identified decreased 

palmitoleate in the Kras(G12V) induced PDAC rat model compared to the control 

(Yabushita et al. 2013). Another mouse xenograft model study reported that mice 

with pancreatic cancer had higher levels of choline, taurine, and lactate, and lower 

levels of phosphocholine compared to normal nude mouse pancreas (He et al. 2013). 

Furthermore, with a small sample set of cancerous and matched normal human 

pancreas, Kaur et. al found that levels of nicotinamide adenine dinucleotide and 

uridine were lower, while the level of taurine was higher in the cancerous tissues 

(Kaur et al. 2012). These reported findings were consistent with the phenotype we 

observed in the KrasG12D (KC) and KrasG12Dp53R172H (KPC) disease progression 

model, highlighting the translational relevance of these specific transgenic models. 

Our study demonstrates the potentials for assessing disease staging and therapeutic 

efficacy using metabolic information from the pancreatic tumours.  

5.5.2 Anti-CSF1R and gemcitabine treatments resulted in dissimilar responses  

Our results show that CSF1R inhibition and gemcitabine were capable of producing 

differential outcomes in reversing the choline phospholipid metabolite levels 

associated with pancreatic tumour progression in the (KPC) Pdx1-Cre, LSL-

KrasG12D/+, LSL-Trp53R172H/+ mouse model. For example, we showed that only anti-
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CSF1R treatment elevated phosphocholine levels in the pancreas, and this is 

supported by another recent study using an identical mouse model (KPC) showing 

that gemcitabine treatment also did not alter phosphocholine or 

glycerophosphocholine levels (Bapiro et al. 2014). This may reflect the fact that 

conventional chemotherapy and CSF1R inhibition treatments differ significantly in 

their mechanisms of action as well as the cell types they target. While gemcitabine 

disrupts DNA replication and thereby causes equivocal growth arrest (Hertel et al. 

1990), the CSF1R inhibitor blocks kinase signalling critical to proliferation, 

differentiation and survival in monocytes and macrophages (Imamura et al. 1990, 

Hamilton 1997). CSF1R is specific to tumour-associated macrophages (TAMs) and 

related myeloid cells; PDAC tumours have been shown not to express a significant 

level of CSF1R in vivo and in vitro (Mitchem et al. 2013). And while CSF1R 

inhibition blocks growth of TAMs, gemcitabine has been shown to increase 

macrophage infiltration into PDAC tumours (Mitchem et al. 2013). Furthermore, we 

also know that macrophage population in the pancreas, as measured by F4/80 

expression, rises with increasing tumourigenicity of the transgenic models 

(unpublished data from the laboratory of Prof. Hagemann). Hence, the change in 

metabolic phenotype we observed here could reflect variation in macrophage 

populations and their metabolic functions. Importantly, our results could imply that it 

would be possible to differentiate conventional chemotherapy and treatments 

targeting immune cells through their metabolic consequences, potentially enabling 

the monitoring of specific therapeutic regimes in patients.  

5.5.3 Choline phospholipid metabolites, tumour cells and macrophages  

One of the interesting findings concerns the directionality of changes in 

phosphocholine and choline levels, and the extent to which these may be translated 

to clinical and diagnostic settings in humans. Phosphocholine is a precursor to the 

most abundant membrane phospholipid phosphatidylcholine (Ridgway 2013), and its 

synthesis and turnover is critical for cellular proliferation and maintenance. While 

lower phosphocholine levels in cancerous tissues were observed in our model as well 

as several other animal models of pancreatic cancer, phosphocholine levels have 

been widely reported to be elevated in a range of cancers (Ackerstaff et al. 2003, 
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Glunde et al. 2011). Changes in phosphocholine have previously been attributed to 

increases in choline kinase-α and HIF1α activities (Iorio et al. 2005, Janardhan et al. 

2006, Glunde et al. 2008). However, this is far from universal, and decreases in 

phosphocholine levels has also been reported in the TRAMP prostate cancer mouse 

model (Teichert et al. 2008, Raina et al. 2009, Raina et al. 2013), where Teichert et 

al. found no differences in choline kinase expression between malignant and normal 

tissues. Furthermore, von Forstner et al. also found no significant changes in CHKA 

and CHKB gene expression in pancreatic tumours (von Forstner et al. 2008). It is 

possible that phosphocholine levels are influenced by other factors, such as acidosis 

(Galons et al. 1995), or it might not reflect PdtCho level (Raina et al. 2009, Raina et 

al. 2013). Also, CTP:Phosphocholine Cytidylyltransferase (CCT), a rate-limiting 

enzyme that converts phosphocholine to CDP-choline, could be induced by ras  to 

stimulate PdtCho synthesis in tumour cells (Arsenault et al. 2013) or free-

cholesterols in macrophages through post-translational regulation (Shiratori et al. 

1994). Increased CCT activity would also explain the decrease in phosphocholine 

level with cancer progression we observed. Moreover, according to a recent study in 

a swine chronic pancreatitis model, a decrease in phosphocholine could also be 

associated with immune response (Sun et al. 2014). Macrophages have distinctive 

metabolic characteristics (Biswas and Mantovani 2012), and actively regulate 

cholesterol and phospholipid metabolism (Tabas 2000, Spann et al. 2012). In 

addition, lysophosphatidylcholine (LysoPC) could also act as signalling molecules in 

the recruitment of primary macrophages and monocytes. As mentioned in the 

introduction (Section 5.2), apart from pancreatic cancer, targeting CSF1R-mediated 

tumour-infiltrating macrophages and myeloid cells has also shown promise in glioma 

(Pyonteck et al. 2013), leukaemia (Aikawa et al. 2010), prostate (Xu et al. 2013) and 

breast (DeNardo et al. 2011) cancers. Further mechanistic insights would help to 

untangle both tumour-macrophage metabolic signalling, and help determine the 

context and translational value of using choline- PET and MRS imaging probes in 

clinical biomarker studies, particularly in tumours where inflammatory response is 

important. 
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5.5.4 Limitations and Future work 

Our study implies a potential role for macrophage-tumour interactions in the 

regulation of choline phospholipid metabolites, however the mechanism by which 

anti-CSF1R treatment led to the changes in choline and phosphocholine levels is 

currently unclear. While anti-CSF1R treatment reduced macrophage populations in 

the tumour, it has been reported that CSF1R blockage can lead to enhanced anti-

tumour responses from myeloid cells and T-cells (Zhu et al. 2014). Dynamics of 

other immune cell types and tumour cells may be important to the regulation of 

choline phospholipid metabolites in tumour tissues. Further work could involve 

metabolic analysis of CSF1R inhibition using tumour, T-cell and macrophage cell 

culture models to ascertain which specific cell type may be responsible for change in 

regulation of choline kinase activity and choline phospholipid metabolites in the 

tumour microenvironment upon CSF1R inhibition.   

In the chapter, we mentioned that 1H NMR-detectable choline, phosphocholine, and 

glycerophosphocholine resonances could potentially be utilised to monitor tumour 

progression and anti-CSF1R treatment in clinics. However, it is worth noting that our 

analysis was performed with a MAS probe in a 14.1T spectrometer, whilst most MR 

spectrometers currently in clinical use typically operate at a lower magnetic field 

strength (1.5T or 3T), where choline, phosphocholine, and glycerophosphocholine 

resonances at 3.2 ppm are not readily resolved; they are instead reported together as 

‘total choline’ (Stanwell et al. 2005). In our study, anti-CSF1R treatment 

simultaneously led to higher phosphocholine and lower choline levels. Since 

phosphocholine resonance was on average 3 - 4 times more intense as that of 

choline, variations in phosphocholine level would dominate the overall choline, 

phosphocholine, and glycerophosphocholine resonance profile at 3.2 ppm, 

potentially leading to the loss of specific metabolic information. Further work could 

focus on understanding the variations in choline level in this tumour model, and the 

extent to which variations in choline might be related to choline uptake. Ideally, 

concentration data should be presented in molar quantity per unit mass (i.e. 

µmol/gram), however in the current work samples were analysed in the absence of 

an appropriate internal or external concentration reference, which could be applied in 

future studies (Wider and Dreier 2006). If alterations to choline metabolism are 
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confirmed then choline-PET imaging could also be used in addition to MR 

approaches to track choline uptake in vivo and monitor anti-CSF1R treatment 

efficacy.  

5.5.5 Conclusion 

In conclusion, this study demonstrates that disease progression in the Pdx1-Cre, LSL-

KrasG12D/+ LSL-Trp53R172H/+ (KPC) mice is associated with 1H NMR detectable 

choline phospholipid metabolites. Targeting macrophage infiltration in KPC tumours 

with CSF1R inhibitor altered phosphocholine levels, providing a potential 

pharmacodynamic marker in vivo.  
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5.6 Supplementary Data 

 

Figure 5.9 Effect of AZD7507 treatment on phosphorylation status of CSF1R in 
macrophage cells in culture. 

Western blot data showing phosphorylation of CSF1R (Tyr807 and Tyr697) were 
effectively inhibited by AZD7507 at low dose (8nM) in BMDM macrophage cells. Cell 
lysates were collected 30 minutes after treatment with either AZD7507 or the vehicle 
control. β -Actin was used as the loading control. These data were provided by our 
collaborator Dr Juliana Candido, and this figure is reproduced from Dr Juliana 
Candido’s PhD thesis with her permission.     

 

Figure 5.10 Effect of treatments on macrophage population in the KPC mice pancreas  

F4/80+CD11b+CD45+ are markers for macrophages, and percentages of tumour-
associated macrophage population were quantified by flow cytometry. Dots represent 
values from individual mice and lines represent averages of the biological groups. ** 
represents p value < 0.01 and * represents p value < 0.05 using Mann-Whitney tests in 
comparison with the untreated mice. These data were provided by our collaborator Dr 
Juliana Candido, and this figure is reproduced from Dr Juliana Candido’s PhD thesis 
with her permission. 
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Figure 5.11 Effect of treatments on PARP activity in KPC mice pancreatic tissues 

Western blot analysis of KPC mice pancreas protein lysates shows that PARP responses 
to treatments. Poly ADP ribose polymerase (PARP) is associated with DNA damage 
response and cell death. α- Tubulin was used as loading control. These data were 
provided by our collaborator Dr Juliana Candido, and this figure is reproduced from Dr 
Juliana Candido’s PhD thesis with her permission. 
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Chapter 6 Final Discussion 

Alteration in choline phospholipid metabolism is an important hallmark of tumour 

development. Biosynthesis of membrane phospholipids must be accelerated in 

tumour cells in order to meet the demand of rapid proliferation, thus rendering the 

choline phospholipid biosynthesis pathway an attractive target for drug and 

biomarker discovery (Glunde et al. 2011). Phosphatidylcholine (PtdCho) is a major 

membrane constituent in mammalian cells. PtdCho regulates diverse structural and 

signalling functions, for examples the abundance of PtdCho has been known to 

oscillate during the cell cycle (Jackowski 1994) and it is also involved in the  

regulation of Akt membrane binding (Koeberle et al. 2013). PtdCho is primarily 

synthesised from precursor molecules phosphocholine (PCho) and choline in 

mammalian cells (Kennedy and Weiss 1956). The characteristics of the choline 

phospholipid metabolite levels in breast tumour cells are relatively well documented. 

Studies in the past have indicated that a high PCho to glycerophosphocholine (GPC) 

ratio could reflect tumour aggressiveness (Aboagye and Bhujwalla 1999), and 

choline transporters are up-regulated in breast cancer (Eliyahu et al. 2007). It was 

shown that elevation of PCho levels could mainly be attributed to the regulation of 

choline kinase and PtdCho phospholipase C activities in tumour cells (Iorio et al. 

2010). Furthermore choline kinase could be activated by hypoxia-inducible factors 

(HIFs) or through Ras and PI3K signalling (de Molina et al. 2002), thus changes to 

PCho and choline phospholipid phenotype could be dynamically regulated by 

signalling events in cancer.  

By examining the effects on metabolism resulting from oncogenic PIK3CA mutation 

in the MCF10A breast epithelial cells, we provided evidence of reduction in GPC 

levels following oncogenic transformation. GPC is a product of phosphatidylcholine 

degradation (Dawson 1955) and reduction in GPC could potentially indicate 

enhanced survival signalling. It has been shown that apoptotic signalling can 

stimulate calcium-independent phospholipase A2, an enzyme which catalyses the 

first step of phosphatidylcholine degradation into GPC and fatty acids (Lauber et al. 

2003).  
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Interestingly, the role of GPC as a metabolic substrate in the context of tumour 

metabolism remains largely ignored. Glycerophosphodiester phosphodiesterases 

(GDE) are the only class of enzymes that metabolise GPC. GDE2 and GDE5/EDI3 

are both highly specific in breaking down GPC into choline and glycerol-3 phosphate 

(G3P) (Ridgway 2013). GDE1 knockout has been reported to affect metabolic 

profiles and serine levels in mice, highlighting the importance of GDE in 

maintaining metabolic homeostasis. Through analysis of tumour cells transfected 

with EDI3 siRNA, we report previously unknown consequences of EDI3 in 

modulating tumour metabolism. We found that silencing EDI3 elevates the level of 

intracellular GPC, while restricting glucose uptake, lipogenesis and the size of 

intracellular citrate pool. A recent MRS study has demonstrated that silencing GDE5 

results in GPC accumulation in a in vivo mouse xenograft model (Wijnen et al. 

2014); the role of EDI3 in regulating metabolism could be very relevant in the 

clinical settings. The effects of silencing EDI3 on glucose uptake, lipogenesis and 

intracellular citrate could be mediated by restriction on G3P and choline availability. 

It has been reported that long chain acyl-CoA could inhibit hexokinase and citrate 

synthase (Board et al. 1995). Moreover, G3P levels are found to be up-regulated in 

breast tumours (Brockmoeller et al. 2012), and it has been reported that increased 

glycerol-3 phosphate dehydrogenase activity could also be found in bladder cancer 

(Turyn et al. 2003), underlining the importance of G3P as metabolic substrates in 

cancer. It is also possible that metabolites downstream of G3P, such as 

lysophosphatidic acid (LPA), might influence metabolism via cellular signalling 

circuits. LPA has been reported to display growth-factor-like activities that directly 

influence G-protein signalling (Van Corven et al. 1989, Mills and Moolenaar 2003). 

Also regulation of glycerophosphodiester phosphodiesterases could have 

implications for upstream metabolic processes through GPC accumulation. GPC has 

been reported as an important osmotic regulator; GDPD5/GDE2 is rapidly inhibited 

by urea and NaCl (Gallazzini et al. 2008). GPC accumulation may affect the rate of 

hydrolysis of PtdCho through phospholipase A1 and phospholipase A2 activity. The 

constant turnover of PtdCho serves functional roles in maintaining cellular 

signalling, and in remodelling membrane lipids to provide for lipid diversity and 

membrane balance (Nishizuka 1992). It has been shown that lysophosphatidylcholine 

acyltransferase 1, an enzyme that facilitate the remodelling of PtdCho, is 
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overexpressed in human tumours (Mansilla et al. 2009). Glycerophosphodiester 

phosphodiesterases could be very important in cancer through directly altering G3P 

and choline availability, or through regulating other upstream and downstream 

metabolic activities. Glycerophosphodiester phosphodiesterases could thus be 

particularly important in conditions where supply of G3P is tight, and may be a 

potential therapeutic target. 

Furthermore the biomarker value of GPC for disease progression remains 

controversial. GPC is difficult to resolve using in vivo MRS at clinical field strength, 

and there is a lack of consistency in the literature in the interpretation of changes in 

GPC levels in tumours.  While GPC levels have been reported to be lower in ovarian 

and breast cancer cells (Glunde et al. 2004, Iorio et al. 2005), they have also been 

reported to be higher in human prostate, lung and breast tumours (Swanson et al. 

2008, Giskeodegard et al. 2010, Rocha et al. 2010, Cao et al. 2012b). Understanding 

the intricate balance between PLA1/PLA2 and glycerophosphodiester 

phosphodiesterases activities may be important (Ridgway 2013). Additionally, cell 

culture conditions do not mimic the tumour microenvironment, and this may be a 

significant source of discrepancy between the choline phospholipid phenotype 

observed in culture and in vivo. MRS has already shown potential in monitoring 

therapies targeting choline kinase (Al-Saffar et al. 2006), Ras (Ronen et al. 2001) 

and PI3K (Al-Saffar et al. 2010). In the final part of the thesis we demonstrated that 

anti-CSF1R inhibitor targeting macrophage infiltration alters the phosphocholine 

phenotype, implying that its therapeutic efficacies could also potentially be 

monitored in vivo. CSF1 is a specific growth factor for macrophages, and CSF1 has 

previously been shown to elevate CTP:phosphocholine cytidylytransferase (CCT) 

mRNA by four-fold in just 15 minutes (Tessner et al. 1991). In addition, 

macrophages may also have distinctive choline phospholipid metabolic regulation 

compared to tumour cells. Choline phospholipid metabolite profiles have the 

potential to be exploited for monitoring therapies targeting macrophage infiltration, 

and better mechanistic insights into how macrophage-tumour interactions impact 

upon the choline phospholipid phenotype could have profound translational 

applications. 
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6.1 General study limitations 

Our study approach focused heavily on analysis at the metabolite level using 

metabolomics platforms, which inherently came with its own set of challenges. 

Metabolite regulations and feedback are rapid and dynamic at the enzyme, metabolic 

substrate and compartmental levels, thus potentially limiting the size effect of 

metabolite accumulation or depletion. Depending on context, a small percentage 

change in metabolite flux or pool size may have knock-on consequences on multiple 

cellular processes. Also, changes in the 13C mass isotopomer distribution data are 

often small; inferring the biological significance through metabolite data alone is 

sometimes difficult. In future, a more integrated metabolic approach that includes 

probing for enzymatic regulation directly may help provide the added confidence to 

support our observations.  

Data from metabolomics experiments, including those presented here, are generally 

only semi-quantitative; concentration estimates are usually informative within the 

context of specific sample sets, but are generally not robust enough for the purpose 

of cross-study comparison. For example, absolute quantification using NMR 

spectroscopy typically requires longer recovery delay than the 2 or 3 seconds that 

were implemented in the studies presented here. To quantify metabolites using mass 

spectrometry based assays normally require a series of calibration samples to be 

analysed alongside the sample set, which is generally not practical unless metabolites 

of interest are pre-defined before the start of the analysis. In future, targeted and 

validated methods that focus on quantifying a subset of metabolites should be 

considered.  

6.2 Final conclusion 

Our metabolomic investigations into several tumour model systems all indicate 

choline phospholipid phenotype to be profoundly altered through disease 

transformation. Within the context of choline phospholipid metabolism, the 

therapeutic and diagnostic implications of previously unknown 

glycerophosphodiester phosphodiesterase functions and macrophage-tumour 

interactions were discussed. 
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