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Abstract Formation drying and salt precipitation due to gas injection or production can have serious
consequences for upstream operations in terms of injectivity and productivity. Recently, evidence has been
found that the complexity of the pore space and microscopic capillary-driven solute transport plays a key
role in the relationship between permeability and porosity. In this study, we investigate drying and salt
precipitation due to supercritical CO2 injection in single-porosity and multiporosity systems under near
well-bore conditions. We image fluid saturation states and salt deposition by means of microcomputerized
tomography scanning during desaturation. We observe capillary-driven transport of brine and the
respective solutes on the pore scale. Solute transport between porosity classes determines the
distribution of the deposits in the pore space and the permeability porosity relationships—K(𝜙)—for
flow-through drying.

1. Introduction

Drying of porous media is an important subject in many natural and industrial processes. During drying,
water evaporates into a convective gas stream and the salts, originally dissolved in the brine, precipitate
after reaching the solubility limit. It is known that salt precipitation can cause damage in historic monu-
ments and buildings [see, e.g., Goudies and Viles, 1997; Shahidzadeh-Bonn et al., 2010; Flatt et al., 2014],
controls water loss from land surfaces [Chen, 1992; Scanlon et al., 1997; Nachshon et al., 2011], and can lead
to injectivity loss for gas production and injection operations like, e.g., for CO2 storage [Pruess and García,
2002; Fuller et al., 2006; Giorgis et al., 2007] as the present work refers to. All these topics have the funda-
mental solute transport mechanisms in common, which makes it worthwhile to discuss solute transport and
salt precipitation in porous media across disciplines. For the more general discussion, we refer to gas as the
drying agent and to CO2 in the more specific sections.

In contrast to most hydrogeological problems and oil and gas production scenarios, where flow is driven by
viscous forces, in the drying regime brine saturations (SW ) are generally low and the brine phase is bound
by capillary forces and hence largely immobile. In this regime, flow and solute transport is determined by
capillary- and osmotic-driven processes. Resulting capillary pressure gradients are responsible for macro-
scopic solute transport, which determines the macroscopic distribution of the final salt deposit, and hence
the porosity profile as a function of space, 𝜙(x) [Giorgis et al., 2007; Ott et al., 2011]. However, as we will dis-
cuss in this paper, the associated permeability reduction and hence the K(𝜙) relationship is of microscopic
origin and is determined by microscopic solute transport and eventually the exact microscopic distribution
of the precipitate in the pore space [Ott et al., 2011, 2013; Roels et al., 2014; Shokri, 2014].

Recently, it has been pointed out that heterogeneity in the microscopic texture plays a fundamental role
in controlling the water evaporation rate and the exact location of deposition (Lehmann and Or [2009];
Nachshon et al. [2011] in flow-over geometry and Ott et al. [2013] in flow-through geometry). For the
flow-over case with—ideally—vertically continuous and connected macroporous and microporous regions,
the microporosity acts like a wick [Nachshon et al., 2011]. Without being in capillary contact, both sub-
systems would act according to the behavior of monomodal pore systems (described by Coussot [2000]
and Chauvet et al. [2009]). If both subsystems are connected, i.e., aiming for capillary equilibrium, evapo-
ration from the microporous system is compensated for by capillary-induced flow from the macroporous
to the microporous system. Capillary-driven solute transport would as well be observed if the pore archi-
tecture were the same but the wettability of adjacent regions would be different. This issue has been
recently discussed in Shokri and Or [2013]. For essentially water-wet systems, capillary pressure contrast
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leads to an effectively higher “drying rate” of the macroporous system by flow [Lehmann and Or, 2009;
Nachshon et al., 2011]. As a consequence, salt precipitates preferentially in the fine-textured regions, i.e.,
the microporosity, while the coarse-textured regions sustain a high gas permeability [Nachshon et al.,
2011]. This is seemingly in contradiction to observations in flow-through geometry by Ott et al. [2013]
as discussed in the following.

Ott et al. [2013] found for different pore systems a qualitatively different response of permeability to salt pre-
cipitation due to CO2 injection. The effective permeability, Keff = krel(SW ) × K , increased during flow-through
drying for a simple (essentially monomodal) sandstone, which implies that the relative gas permeability sat-
uration function (krel(SW )) increases due to drying—a reduction in water saturation—more rapidly than the
decrease in absolute permeability (K = K(𝜙)) due to salt precipitation. This limits the effect of salt precip-
itation on injectivity. It was suggested that salt does not precipitate in the CO2 conducting channels and
therefore does not contribute to a reduction in Keff [Ott et al., 2011, 2013]. However, for carbonates with
a more complex pore architecture, Keff decreased by orders of magnitude under comparable conditions
[Ott et al., 2013]. This result is in contrast to the sandstone case and can only be explained by precipita-
tion of salt in the CO2 conducting pore volume, which requires an active brine transport mechanism from
smaller pores into the CO2 conducting macroporosity.

With this study, we present direct observations of solute transport and precipitation in the rock’s pore space
during drying processes. The objective is to understand the distinctly different impact of salt precipita-
tion on the injectivity in simple sandstone and in carbonates with a more complex pore architecture in
flow-through geometry. For the carbonate case, we observe the brine transport from macroporous to the
microporous regions suggested previously [Lehmann and Or, 2009; Nachshon et al., 2011] and in a later stage
a novel and seemingly counterintuitive reverse process, with brine flow into the larger pores. We explain
both in a model of capillary equilibration processes. The data are directly relevant for the risk assessment of
CO2 storage operations with respect to injectivity, but the observed transport mechanisms are of general
interest for other situations where salt precipitation occurs.

2. Microscale Experiments

We performed small-scale core flood experiments and used microcomputerized tomography (μCT) as an
analytical tool for in situ pore-scale imaging of fluid phases and salt deposits. The samples were small in
diameter (4 mm diameter and 20 mm length) in order to image at 2 μm voxel size and were mounted
in a core holder; the assembly is reported in Andrew et al. [2014]. The core holder was vertically placed
in a μCT scanner. CO2 was injected from top to bottom using two displacement pumps operating in a
constant pressure mode at the inlet and at constant retraction rate at the outlet.

The experiments were performed on Berea sandstone and Estaillades limestone. The two rock types are
comparable in permeability and porosity—𝜙 ≈0.22 versus 0.3 and K ≈500 versus 200 mD for Berea and
Estaillades—but represent a monomodal and a bimodal pore system, respectively. The rock characteristics
are represented in the MICP (Mercury Injection Capillary Pressure) data shown in Figure 1. The limestone
shows a characteristic step in the MICP corresponding to the invasion of the microporous volume, which is
reflected in the two-peak structure in the pore-throat-size distribution. In this paper we refer to macroporos-
ity as porosity that can be resolved by μCT scanning at the given resolution and to microporosity as porosity
that we cannot resolve but that is visible in the gray scale behavior. Both samples show also porosity with
pore sizes in between micro and macro, which we refer to as mesoporosity.

The rock samples were scanned in the dry state and subsequently saturated with KI-based brine by flood-
ing with about 100 PV (pore volumes) at T = 50◦C and ambient pressure. We subsequently pressurized the
fluid to 10 MPa and continued flooding for another few PV in order to remove dissolved air. We performed
a μCT scan to verify full brine saturation (SW = 1). Thereafter, supercritical (SC) CO2 was injected at a flow
rate of 0.12 mL/min (≈2 PV/min) representing realistic field rates near injection wells. We performed another
μCT scan after injection of 100 PV CO2. At this stage, there is typically no longer any viscous brine displace-
ment and the cumulative water loss by evaporation is still negligible due to the low solubility of water in
CO2. In the following, we refer to this state as after drainage. The scan after drainage is the second reference
point for data evaluation. From then on we continuously scanned the region of interest (≈2 mm diame-
ter and 2 mm length in the center of the sample) under flow conditions with a time resolution of about
45 min. Continuous scanning allows the detection of any change in the rock-fluid system. We define the
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Figure 1. (left) Mercury Injection Capillary Pressure (MICP, micrometrics) curves of Berea sandstone and Estaillades lime-
stone. (right) Pore-throat-size distributions of both rock types obtained from the MICP data. The blue and orange lines
indicate the voxel size and the estimated physical resolution of the μCT scans.

time at which the μCT-determined sample state does not change any more as the time at which the sample
is dry; the corresponding scan is used as third reference point for evaluation of the precipitated salt phase.
We refer to this state as after dry out.

Figure 2 shows representative μCT cross sections recorded during the experiment on Berea sandstone.
Figure 2a shows the typical rock structure in the dry state with macroporosity and mesoporous regions
associated with feldspar and clay minerals, while Figure 2b shows the same image after drainage. Non-
wetting CO2 invades the pore space with the lowest entry pressure—the macroporosity. Finally, Figure 2c
is an image after dry out about 10 h after drainage started. The locations of salt depositions are visible
as bright spots. Salt precipitates essentially in the mesoporous regions that contained water at the end
of drainage.

The data allow for two-phase segmentation of the volumes with the lowest X-ray attenuation (dark areas),
corresponding to the macropore space in Figure 2a and the CO2-saturated pore space in Figures 2b and 2c.
The volumes were filtered (nonlocal means filter, Avizo fire, VSG) to reduce the noise level and registered
(3-D image registration, Avizo fire, VSG) to account for small sample displacements during the experiment.
We segmented by interactive thresholding (Avizo fire, VSG) and calculated the differences between the seg-
mented macropore space and the segmented CO2-saturated volumes in Figures 2b and 2c to extract the
complementary brine and salt occupied macropore space after drainage and after dry out, respectively.
Figures 2d and 2e show the segmented fluid phase after drainage. In Figure 2e, we additionally plot the salt
phase in the macro pores after drying. It is evident that salt precipitated where the brine phase was after
drainage. This is further illustrated in the 3-D images in the lower part of Figure 2, where the initial CO2 per-
colation pathway and the total volume in which salt precipitated are shown. Both occupy complementary
regions of the pore space.

We performed the same experiment under the same conditions on Estaillades limestone. Figure 3a shows
μCT cross sections of the initially dry rock, the same cross section after brine saturation (SW =1) Figure 3b and
after drainage Figure 3c. Figures 3d and 3e were obtained during dry out after ≈24 h and after ≈7 d of CO2

flooding, corresponding to about 3,000 and 20,000 PV CO2.

Due to the high X-ray absorption coefficient of iodine, gray-scale changes are determined by salt migra-
tion only – i.e. solute transport – and other contributions can be neglected. In the following we speak of
depletion when the gray-scale value decreases and of enrichment when the gray-scale value increases,
corresponding to decreasing and increasing iodine concentration.

The early stage of the limestone (Estaillades) experiment shows similarities with the sandstone scenario:
nonwetting CO2 invades the macroporous regions. The remaining brine stays in the mesoporosity and in
the microporous grains, as evidenced by the inverted gray scale contrast between solid and microporous
grains compared to the dry scan. From Figures 3c and 3d we observe two trends: first, a salt depletion of the
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Figure 2. Microcomputerized tomography cross sections of Berea sandstone at different experimental stages: (a) in the
dry state, (b) after presaturation and subsequent CO2 drainage, and (c) after the experiment in the dry state. (d) The dry
scan superimposed with the segmented brine phase after drainage (blue). (e) The complementary CO2-occupied volume
(orange) and the salt (green) in the macropores at a later experimental stage. (f ) Segmented 3-D μCT volumes of the CO2
percolation pathway after drainage, (g) the final precipitate, and (h) the both phases combined.

mesoporous regions and secondly, a salt enrichment in the microporous grains. To visualize the locations of
depletion and enrichment, μCT images taken at different experimental times were subtracted. Before, con-
trast variation have been eliminated by linearly scaling the images, with the solid grains and the CO2 phase
occupied volumes as reference points on the gray scale. Figure 3f highlights the changes from Figures 3c to
3d; the orange/red color indicates depletion, while green/blue indicates enrichment of salt. There is obvious
solute transport from the macroporous to the microporous system.
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Figure 3. Microcomputerized tomography cross sections of Estaillades limestone at different experimental stages.
(a) Initially dry sample, (b) after brine saturation, (c) after drainage, (d) after 24 h, and (e) after 7 days of CO2 injection.
(f and g) Zoom-ins of Figures 3d and 3e with the superimposed positive (enrichment) and negative (depletion)
differences to the respective earlier time step. (c*) The 3-D CO2 distribution after drainage.

In a later stage of the experiment the trend is reversed. Between Figures 3d and 3e there is a weak deple-
tion of the microporous area which indicates reverse flow and which is shown in the same color coding
in Figure 3g. It should be noted that the differences in Figures 3f and 3g are thresholded to highlight the
locations of depletion and enrichment and not to quantify the concentrations. In the later stage there is a
clear indication of solute transport from the microporous to the macroporous subsystem, which is coun-
terintuitive and has not been observed before. Salt accumulates in the macropores potentially affecting
the CO2 transport.

3. Interpretation and Model

The data presented so far, together with a couple of simple arguments, allow the construction of a model
that supports the findings of earlier work [Ott et al., 2010, 2013]. We describe the model on basis of capillary
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Figure 4. (top) The pC(SW ) curve of a simple sandstone (derived from MICP
of Berea sandstone). (A) to (B) denote the pC (pC (A) and pC (B)) and satura-
tion change in the drying phase. (bottom) Constructed pC(SW ) curve of a
dual-porosity system. The blue and red curves show decomposition into
the macroporous and the microporous subsystem, respectively. (A) to (E)
refer to capillary pressure levels during desaturation—pC (A) to pC (E) in
the text.

equilibration as illustrated in Figure 4
and the diagrams in Figure 5, illus-
trating the flow and evaporation
processes in a time sequence. We
first discuss the monomodal sand-
stone case, which we describe with
a single capillary pressure-saturation
curve pC(SW).

During the injection process, vis-
cous brine displacement and water
evaporation have been found to be
dominant at different time scales.
While residual brine saturation (pC(A)
in Figure 4) is usually reached after
injection of a few PV, complete
dry-out (pC(B)) was reached after sev-
eral hundred PV of injected gas. There
is practically no viscous brine dis-
placement during the drying process
and precipitation, and the structure
of the residually trapped brine phase
is determined by capillary forces.
After reaching the solubility limit, salt
precipitates in the brine phase, and
hence in the volume occupied by
brine (Figure 5b). The brine-saturated
volume retracts during evaporation,
leaving the previously precipitated
salt behind. During drainage there
is no mechanism of brine transport
and hence of solute transport into the
gas-conducting volume. As a result,
the effective permeability (Keff,CO2 =
K × kr,CO2) can only increase over time,
irrespective of absolute permeability
reduction. Because of the separation
of time scales of viscous displacement
and evaporation, the maximum pore

volume that can be filled by precipitate is the volume corresponding to the residual brine saturation after
drainage, SW,res (illustrated in Figure 5b). We conclude that Ssalt,max = SW,res. In Berea sandstone SW,res is ≈0.2,
which corresponds to the maximum observed salt accumulation due to capillary-driven countercurrent flow
as reported in Ott et al. [2011].

These mechanisms hold as well for the more complex pore structure of carbonates. However, microporos-
ity leads to additional effects influencing the location at which salt finally precipitates, and eventually the
K(𝜙) relationship. While the monomodal sandstone case is described with a single pC curve, we decom-
pose the bimodal limestone in macroporous and microporous volumes with two individual pC curves, as
illustrated in Figure 4 (bottom). Both subsystems are assumed to be in contact with each other and are
in capillary equilibrium during desaturation. The equilibrium states are represented by horizontal lines in
Figure 4 and are denoted by (A) to (E), pC(A) to pC(E), respectively.

During primary drainage, gas invades only the macroporous system characterized by the lowest entry pres-
sure (at pC(A) in Figure 4) and the microporous volumes serve as brine reservoirs. If a microporous grain stays
in contact with both, the residual brine phase of the macropores (mesopores) and the gas phase (at pC(B)),
the volume of water that evaporates gets refilled by the brine phase of the macroporous (mesoporous)
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Figure 5. (a–e) Microscopic model of solute transport and salt precipitation for the sandstone case (top row) and the
carbonate case. The intergranular porosity refers to macroporosity and the intragranular porosity to microporosity. The
letters (A) to (E) refer to the respective capillary pressure levels in Figure 4.

system as illustrated in Figure 5c. Evaporation and refill lead to an effective increase of brine salinity in the
micropores. This is by analogy to the dual-porosity effect in soils with brine transport from the macroporous
to the microporous subsystem. Thus, it links to well-known physics but does not explain the earlier observa-
tion of Keff reduction, which would require solute transport in the opposite direction, from the microporous
regions to the gas-conducting channels. By further depletion of the macroporous (mesoporous) system, the
brine supply to the microporous grains is no longer sufficient to prevent drying, and gas invades the micro-
porous regions at pC(C), which is illustrated in Figure 5d. This is equivalent to overcoming the entry pressure
to the microporous system, but by water evaporation and not by viscous brine displacement. After exceed-
ing the capillary entry pressure of the micropores, the brine flow is reversed; a small saturation change in
the macropores ΔSW,macro (from pC(D) to pC(E); see Figure 4) will lead to a large saturation change ΔSW,micro

associated with a substantial brine flow from the micro to the macroporous system to reach capillary equi-
librium. A desaturation of the micropores by brine flow—and not by water vapor—leads to an effective
solute transport to the gas-flow channels (the macroporous system) where salt precipitates. This finally leads
to the very effective reduction of absolute and effective permeability (K and Keff) compared to the rather
mild impact observed in single modal sandstone.

OTT ET AL. ©2014. The Authors. 8375
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4. Summary and Outlook

We have presented a comparative study of flow-through drying in simple and complex, i.e., monomodal
and bimodal—pore space. Microcomputerized tomography scanning has been used to observe
capillary-driven solute transport and salt precipitation directly and in situ. During the drying process,
different transport regimes have been identified: (1) evaporation of a capillary-bound brine phase, (2) cap-
illary equilibration by brine flow from the macroporous to the microporous subsystem and—seemingly
counterintuitive—capillary equilibration by flow from the microporous to the macroporous subsystem and
hence into the gas-transporting channels. The latter mechanism has been identified to reduce the effective
permeability. We explained the findings by a simple model of capillary equilibration. The model qualitatively
describes observations in earlier studies which show that for complex pore architectures there is a risk for
injectivity loss during gas injection operations.

While the study explains the principal solute transport mechanisms, the observed time scales of drying
are not captured in the model. The time scales are likely to be controlled by the exact configuration of
the contact areas between the macroporous and microporous subsystems and the contact area with the
drying agent. Potential sealing effects at boundaries that prevent further solute transport are also not yet
understood and need further investigation.
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