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Abstract—All complex motion patterns can be decomposed into 

several elements, including translation, expansion/contraction 

and rotational motion. In biological vision systems, scientists have 

found specific types of visual neurons have specific preferences to 

each of the three motion elements. There are computational 

models on translation and expansion/contraction perception, 

however, little has been done in the past to create computational 

models for rotation motion perception. To fill this gap, we 

proposed a neural network which utilizes a specific 

spatiotemporal arrangement of asymmetric lateral inhibited 

directional selective neural networks for rotational motion 

perception. The proposed neural network consists of two parts - 

presynaptic and postsynaptic parts. In the presynaptic part, there 

are a number of lateral inhibited directional selective neural 

networks to extract directional visual cues. In the postsynaptic 

part, similar to the arrangement of the directional columns in the 

cerebral cortex, these directional selective neurons are arranged 

in a cyclic order to perceive rotational motion cues. In the 

postsynaptic network, the delayed excitation from each 

directional selective neuron is multiplied by the gathered 

excitation from this neuron and its unilateral counterparts 

depending on which rotation, clockwise or counterclockwise, to 

perceive. Systematic experiments under various conditions and 

settings have been carried out and validated the robustness and 

reliability of the proposed neural network in detecting clockwise 

or counterclockwise rotational motion. This research is a critical 

step further towards dynamic visual information processing. 

 
Index Terms— Rotational Selective Neuron, Directional 

Columns, Asymmetric Lateral Inhibition, Directional Selective 

Neurons, Multiplication, Visual Motion Perception, 

Spatiotemporal Computation 
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I. INTRODUCTION 

OR most animals, visual perception plays the most 

important role for their survival. With efficient visual 

perception, animal actively perceives and captures useful visual 

information about its external environments, such as an object’s 

motion, shape, color and so on, and converges them to the 

higher cerebral cortex for decision making. Among these visual 

information perceptions, motion perception is particularly 

important for the survival of most animal species in critical 

moments, such as, to detect predators or to hunt for prey.  

In the real world, the diversity of motion patterns can be 

decomposed into three types of basic motion elements or 

patterns, including translation, expansion/contraction and 

rotational motion [1], [2]. These basic motion patterns play 

important roles in motion synthesis, for instance, a moving 

wheel contains translation and rotational motion. 

In biological vision systems, scientists have found specific 

types of visual neurons have specific preferences to each of the 

three motion elements. For example, Hubel and Wiesel 

discovered simple, complex and hyper-complex neuron types 

demonstrate orientation and velocity sensitivity characteristics 

[3]. In visual neurophysiological studies, three types of neurons 

have been found in the dorsal part of medial superior temporal 

(MSTd), ventral intraparietal area (VIP), anterior region of the 

superior temporal polysensory area (STPa) and area 7a in 

primates’ brain [4]–[18] – these neurons are translation, 

rotation and expansion/contraction neurons which respond 

preferentially to translation, rotation, or expansion/contraction 

motion patterns.  

For rotational selective neurons in biological vision systems, 

a number of studies have found its presence in the cerebral 

cortex of primate. For example, Leinonen reported neurons in 

Posterior Area 7 responding positively to rotational stimuli in 

the awake monkey [19]. Rizzolatti found similar neurons in the 

premotor cerebral cortex [20]. Sakata et al. found that 

rotation-sensitive neurons in the posterior parietal association 

cerebral cortex (area PG) of the alert monkey [5], [6]. Saito et al. 

found that some neurons in medial superior temporal (MST) 

area of the anesthetized monkey were sensitive to rotary 

movement [21]. Tanaka and Saito analyzed the functional 

properties of the rotational selective neurons with the direction, 

expansion/contraction neurons of MSTd in more detail, and 

proposed that a circular arrangement of movement directions in 

the wide-field stimuli was essential for the activation of rotation 
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neurons [8]. Duffy and Wurtz also found that some neurons in 

the MSTd are sensitive to circular motion of optic flow stimuli, 

and further discover that the MSTd neurons respond not only to 

translation, expansion/contraction, or rotation, but often to  two 

or all three of these motions [10], [11]. Rotation selective 

neurons have also been found in other animal species, such as 

human and birds. Cavanagh et al. found the human visual 

system contains the rotation detectors by demonstrating 

rotational motion aftereffects [22]–[26]. Koban and Nankoo 

found the pigeons are most sensitive to rotational motion in 

their research [27], [28]. All the above research suggests the 

existence of the rotational selective neurons in the biological 

visual pathways. However, the underlying mechanism of how a 

biological vision system perceives rotational motion remains 

unclear. There is few appropriate computational models focus 

on rotational motion perception in the past, let alone systematic 

investigation on the performance of such a rotational selective 

neural model. 

On the other hand, constructing a rotational selective neural 

network based on the updated information revealed in neuro- 

physiological studies may not only provide a building block for 

future artificial vision systems, but also help to further 

understand biological vision systems. 

In this paper, we propose a bio-plausible rotational motion 

perception visual neural network based on the latest discoveries 

in neurophysiological studies. It makes use of asymmetrical 

lateral inhibited presynaptic neural networks and 

spatiotemporal circular arrangements as postsynaptic structure 

to achieve rotational motion perception. The proposed neural 

network models, for clockwise and counter clockwise 

respectively, are validated with systematic tests under various 

conditions.  

The rest of the paper is organized as follows: in section II, 

related work will be reviewed; in section III, the proposed 

neural networks are described in detail; in section IV, 

experiments are carried out to test the performance of the new 

neural network system in different conditions. 

II. RELATED WORK 

In this section, we describe the related work from qualitative 

models in neurophysiology study, approaches with classical 

neural networks, quantitative models, to the studies link 

rotational to directional selective neurons.  

Up to now, motion perceptions of translation and 

expansion/contraction have been modeled and tested (e.g. 

[29]–[33]). But few quantitative rotational perception models 

have been proposed, alongside several classical neural 

networks models as detailed below. To our knowledge, there is 

no bio-plausible quantitative model for rotational motion 

perception in literature up to date. 

A. Qualitative models in neurophysiology study 

In the study of cerebral neurophysiology, Saito et al. 

proposed a neural network which makes use of partially 

overlapping compartments in an MST receptive field [21]. This 

model needs a special surround effect in middle temporal (MT) 

neurons to prevent many compartments from being activated 

simultaneously. In Duffy’s model, the local rotation and 

expansion of the velocity field is derived and summed up across 

space to get invariant responses [11]. This algorithm requires 

that MT neurons be selective to local rotation and 

expansion/contraction, which is generally not the case [7]. 

Orban et al. combined physiological recording and modeling 

techniques, proposed a computational model by using 

Gaussian-shaped tuning function [34]. However, the value of 

the standard deviation in the Gaussian-shaped tuning function 

affect the position invariance feature of this model; larger 

standard deviation value will make the model increasingly 

selective to the location of the center of rotation.  

B. Quantitative models for rotational motion perception 

In quantitative models, King et al. designed a neural network 

consists of multi-layered velocity sensitive sensory cells 

organized in a locally connected fashion [35], however the 

neural network cannot distinguish the direction of the rotational 

motion (a clockwise or a counterclockwise). Guo et al. 

proposed a model for the perception of rotational motion base 

on the Reichardt’s correlation motion detector array, the 

Kohonen’s self-organized feature map and the 

Schuster-wagner’s oscillating neural network [36], how these 

neural networks are trained and the performance of the network 

is not clear.  

The above two models demonstrated periodic responses to 

rotation motion with different structures – the functionality 

similar to our presynaptic part which can be excited in a 

sequential way to a rotational motion. Without postsynaptic 

part for specific rotational motion perception, the above two 

models are hard to compare with our model due to their 

incompleteness. 

C. Classical neural network approaches 

With different classical neural networks and learning rules, 

many other researchers have also proposed approaches to 

detect rotational motion, such as [37]–[42]. However, these 

classical neural networks need to learn from or train with a 

large number of rotational motion samples in order to work 

properly. Like other classical neural networks, their robustness 

and underlying biological origin are questionable. 

D. Research links directional to rotational selective neurons 

In the neurophysiological study of rotational motion 

perception, Sakata et al. reported the functional properties of 

rotation selective neurons in the posterior parietal association 

cerebral cortex of monkey [6], [8], [43], [44]. Sakata et al. 

found the fact that a pair of spots moving around the fixation 

point is as effective as a solid bar rotating in their experiment. 

This phenomenon suggests that the changing motion direction 

is more important than the changing object orientation. 

Therefore Sakata et al. made a point that the continuous change 

of motion direction in rotational motion is the only difference 

that distinguishes rotary from linear movement [6], [43], which 

is supported by Caplovitz and Tse’s study on retinotopic area 

V3A in human [45]. This suggests that a rotational perception 

model could be created if it can detect the continuous changes 

of the motion direction of an object. These instantaneous 
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motion directions of an object could be sensed by directional 

selective neurons. 

Neurophysiological studies have revealed that direction 

selective neurons widely exist in different animal species, 

including invertebrates and vertebrates, such as fly, beetle, 

locust, zebrafish, cat, rabbit [29], [46]–[55]. There are many 

ways to construct a directional selective neural network (DSNN) 

model[29], [31], [56]. In the recent years, one type of 

whole-field DSNNs based on asymmetric lateral inhibitory 

mechanism were modeled [57]–[60], and a large number of 

experiment results suggest that it is robust in object’s motion 

direction perception.  

E. The proposed bio-plausible quantitative model 

In this paper we propose a new quantitative model to 

perceive rotational motions mainly on the fronto-parallel plane. 

Based on the asymmetrically inhibited directional selective 

neuron models, the proposed hierarchical visual neural network 

has a mechanism of spatiotemporal coherence for rotational 

motion perception. In this visual neural network, different 

asymmetric lateral inhibitory mechanisms are used to perceive 

sixteen motion directions. Similar to the arrangement of 

directional columns in mammalian’s cerebral cortex (see [61]), 

the sixteen direction selective neurons are arranged in a specific 

order and forming a cyclic structure to perceive the continuous 

changes of motion directions. The excitation of each directional 

selective neuron is delayed with one time step, and then 

multiplied with the gathered excitation from the neuron and its 

unilateral counterparts depending on which rotary direction to 

perceive. Since the gathered excitation is from only one 

specific side, this rotational motion perception neural network 

(RMPNN) can respond to either counterclockwise (ccw) or 

clockwise (cw) rotational motion. 

III. THE ROTATION PERCEPTION VISION SYSTEM 

In the study of biological visual system, Morrone et al. 

provided psychophysical evidence for the existence of neural 

mechanisms in human vision, and revealed that rotational or 

radial motions perception includes two stages of visual 

processing: (i) motion-sensitive neurons in V1 respond best to 

local translation, and (ii) many neurons in MST have large 

receptive fields tuned to rotational or radial motion [62]. 

However, Morrone et al. only mentioned such two phrases from 

the psychophysics’ point of view and did not investigate how 

neural systems percept rotational motions.  

In this study, a RMPNN to perceive rotational motion should 

be based on their presynaptic and postsynaptic counter parts. 

The RMPNN includes two types of networks, one is 

ccwRMPNN, which responds to the ‘counter clock wise’ (ccw) 

rotational motion, and the other is cwRMPNN, which responds 

to the clockwise rotational motion. We chose ccwRMPNN as 

an example to present its structure and principle in this paper. 

The schematic illustration of a ccwRMPNN is given in Fig.1 

(a). 

 As shown in the Fig.1(a), the ccwRMPNN consists of two 

main parts: the first is presynaptic networks which are sixteen 

whole field DSNNs to perceive translation motion cues, and the 

second is postsynaptic network which focuses on the 

perception of rotational motion. Details of the two parts will be 

given in the following sub-sections. 

A. The presynaptic networks for motion direction perception 

The presynaptic networks of ccwRMPNN contains the 

whole field DSNNs, which are base on the previous works 

[57]–[60], and they can perceive different visual motion cues 

on the fronto-parallel plane in the field of view. According to 

the difference of lateral inhibition regions, the sixteen 

directional selective neurons in the DSNNs are divided into 

three types. For all of them, they have the similar structure 

except different inhibition regions. Therefore we choose three 

typical direction selective neurons in each type: the left 

neuron L , the upper left directional selective neuron LU and 

the right region of left directional selective neuron 
RL as 

examples to illustrate their information processing mechanism. 

 The left directional selective neuron ( L neuron) prefers the 

left direction moving edges on the fronto-parallel plane; its 

presynaptic neural network is illustrated in the upper part of Fig. 

1 (a). As shown in the figure, there are four layers and one 

neuron in the presynaptic network of L neuron: a P layer, a 

IE /

 

layer, an S layer and a L neuron. The function of each 

layer and the directional selective neuron L will be described in 

detail in the next part. 

1) P layer 

The first layer of the L neuron neural network is the 

photoreceptor P  cells. These cells are arranged in matrix form. 

In this layer, each photoreceptor cell collects the luminance 

fL of each pixel in the input image at frame f , and calculates 
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Fig. 1.  (a) Schematic illustration of ccwRMPNN. (b) Schematic illustration of 

the sixteen directional selective neurons’ arrangement in ccwRMPNN. 
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the change of luminance
fP between two sequentially adjacent 

frames of the video images. Then excitation of these 

photoreceptor cells as output results of this layer. The output of 

each cell in this layer is given by 

 

noiseff

if

n

i

if

yxLyxLabs

yxPpyxP
p

ξ−−+

=

−

−∑

)),(),((

),(),(

1

  (1) 

where, ),( yxP f
is the change of the luminance corresponds 

pixel ),( yx at frame f ; x and y are the pixel coordinates; 

)1,0(∈ip is the persistence coefficient, it is defined 

by 1)1( −+= i

i ep µ , ),( +∞−∞∈µ ;
pn represents the maximum 

time steps (or  number of image frames) the persistence of the 

luminance change can last; 
fL and 

1−fL are the luminance, 

subscript f denotes the current frame and 1−f denotes the 

previous frame; 
noiseξ is the threshold of signal noise.

 
2) I / E layer 

The output of the P cells is the input to the next separate two 

type’s cells in the IE / layers respectively. In these two layers, 

the first type of cells is excitatory cells, through which 

excitation is passed directly to their retinotopic counterpart in 

the third layer of the network, the S layer; the second type of 

cells is inhibition cells, which pass inhibition to their 

retinotopic counterpart’s neighboring cells in the S layer. In 

both of the IE / layers, cells are arranged in matrix forms. 

The excitation and the inhibition from a P cell pass to its 

counterpart in the E

 

layer and the I layer directly. The input 

excitation ),( yxE in an E cell and the input inhibition 

),( yxI  in an I cell have the same value as that in the 

corresponding P cell. 

3) S  layer 

Cells in the S layer receive excitation and inhibition from 

the IE / layers, and these cells are also arranged in a matrix 

form. The output excitation of an E cell is the same as its input 

excitation, and passes to its counterpart in the S layer directly. 

However, the output inhibition of an I cell is its input inhibition 

delay one time step (or image frame), and passes to its 

retinotopic counterpart’s left side neighboring cells (or passes 

to its counterpart’s all neighboring cells except left side, if L 

cell should prefer leftward movements only) in the S layer up 

to n  cells away. Therefore, the strengths of excitation and 

gathered inhibition to a cell in S  layer are 

),(),( yxPyxE ff =

                 

(2) 

∑
=

− +=
inhn

i

If

L

f iwyixPyxI
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where ),( yxE f
, ),( yxI L

f

 

are the excitation and the inhibition 

to the same cell in the S  layer at ),( yx respectively, 

superscript L  denotes the specific directional selective neuron 

which prefer the left direction motion; 
inhn

 

is the inhibition 

radius, i.e. the maximum number of cells in I layer that spread 

their inhibitions to the same cell in the S layer at ),( yx ; 

]5.5,0[)( ∈iw I
 is the local inhibition weight which controls 

the neighboring inhibition strength. Therefore, with an 

appropriate inhibition radius from the right side with one frame 

delay, the S  cells’ excitation caused by the left moving edges 

can be eliminated or weakened sharply in this layer.  

Then, the excitation strength of these cells gathered in a 

S cell is 

I

L

fff WyxIyxEyxS ),(),(),( −=

       

(4) 

where ),( yxS f
is the specific cell’s excitation in the S  layer 

at ),( yx ; 
IW

 

is the global inhibition weight which control the 

overall inhibition strength. 

In the S  layer, only those cells which excitation exceeds the 

threshold
rsT , their excitation will be transmitted to L Neuron. 

So, if the excitation of a cell is less than the threshold 
rsT , its 

excitation is set to zero, otherwise remains unchanged. 
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4) Left direction selective neuron: L neuron 

The input excitation of L neuron is summed by the 

excitation of all cells in the S  layer, 

∑∑
= =

=
c rn

x

n

y

f
L

f yxSabsSum
1 1

~

)),((

         

(6) 

where, L

fSum is the summed excitation of the L  neuron; 
cn

 
and 

rn are the total number of cells in a row and a column in the 

S

 

layer respectively.  

The summed excitation of the L

 

neuron is then processed as 

))1(1(2 1−
−

+−×= rc

L
f

n

Sum

L

f eV

          

(7) 

here 
rcn

 

is the total number of the cells in the S

 

layer. 

According to (6), L

fSum

 

is greater than or equal to zero, so

 
L neuron’s excitation ]0.1~0[∈L

fV . 

As the spatiotemporal processing mechanism described 

above, the stimuli generated by the object which moving to left 

will make L  neuron’s excitation be the maximum in the 

sixteen direction selective neurons. Other direction selective 

neurons, for example the right directional selective neuron ( R ), 

the up directional selective neuron ( U ) and the down 

directional selective neuron ( D ), share the same mechanism in 

forming their direction selective sensitiveness.  

5) The Other Types of Direction Selective Neurons 

Besides the above L , R , U and D direction selective 

neurons, two types of direction selective neurons which 

diagonal visual motion and neighborhood direction visual 

motion also are used in this paper. There are four neurons to 

perceive the diagonal visual motions: LU  (left-up), LD  

(left-down), RU  (right-up), RD  (right-down), and eight 

neurons to perceive the neighborhood direction visual motions: 

LL  (left side of L ), 
RL  (right side of L ), 

LD  (left side of D ), 

RD  (right side of D ),  
LR (left side of R), 

RR  (right side of R ), 

LU (left side of U ), 
RU  (right side of U ).  
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We take LU neuron and 
LL  neuron as examples to describe 

the two types’ direction perception principle. The differences 

between LU , 
LL  and L  are the regions of inhibition direction 

in S  layer. For LU  neuron, the inhibition from an I cell 

passes to its retinotopic counterpart’s ‘left-up’ side neighboring 

cells in the S  layer up to n  cells away with one image frame 

delay. The gathered strength of inhibition to a cell in this 

S layer is 

 

),(),(),(
,1

1 jiwjyixPyxI I

n

jij

f

LU

f

inh

++= ∑
==

−

   

(8) 

Similarly, for 
LL  neuron, the gathered strength of inhibition 

to a cell in the S layer is 

∑
>==

− −+=
inh

L

f

n

jiji

If

L
jiwjyixPyxI

,1,2

1 ),(),(),(

    

(9) 

For other diagonal and neighborhood direction selective 

neurons, the inhibition gathered by a cell in S  layer can be 

illustrated in the similar way.  

6) The arrangement of the sixteen direction selective neurons 

In the cerebral cortex of mammalian, neurons with a similar 

axis of motion preference exist in the form of directional 

columns, which may represent directions continuously from 0 

to 360 degree [61]. Similarly, the sixteen direction selective 

neurons in RMPNN’s presynaptic network are arranged in this 

specific order and forming a cyclic structure to perceive 

different motion direction (as indicated in Fig. 1 (b)). 

Consequently, at any given time, the whole presynaptic 

networks are able to perceive the changing motion directions of 

an object, and pass these motion cues to their postsynaptic 

network for further processing.  

To demonstrate the functionality of these presynaptic 

networks in detecting motion direction, one video sequence 

showing an up moving white cylinder on a carpeted office floor 

was processed by the sixteen DSNNs. As shown in Fig.2, the 

responded excitation from the directional selective neuron U , 

and other neurons close to U , are significantly greater than that 

from other direction selective neurons. This experiment 

reassured that the visual motion cues can be extracted by these 

DSNNs for further processing. 

B. The postsynaptic network for rotational motion perception 

The schematic illustration of ccwRMPNN’s postsynaptic 

networks is shown in the lower part of Fig. 1 (a). In RMPNN’s 

postsynaptic network, the excitation of each directional 

selective neuron is delayed with one time step and then 

multiplied with the gathered excitation from the neuron and its 

unilateral counterparts depending on which rotary direction to 

perceive (e.g., right side for ccwRMPNN, and left side for 

cwRMPNN). The postsynaptic networks consist of two layers 

and one specific rotational motion selective neuron: an 

excitation gathering operation layer, an excitation 

multiplication operation layer and a counterclockwise rotation 

selective (ccwRS) neuron.  

Expression 
fΓ  is the sixteen direction selective neurons’ 

excitations vector in ccwRMPNN’s presynaptic networks. 
TL

f
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where subscript f denotes time step (or video frame number); 

and RRL L
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f
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f VVVVVV ...,,,,, are the excitations of the 

sixteen direction selective neurons.  

Excitation of each directional selective neuron which spread 

into the postsynaptic network is determined by a spiking 

mechanism. When the excitation of a directional selective 

neuron i

fV  exceeds threshold 
eT , one internal spike occurs 

inside this neuron, 
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If there are msp spikes in mts time steps ( 
tssp mm ≤ ) inside 

the same directional selective neuron }),...,{( RLLqq ∈ , a 

non-rotation is perceived. Simultaneously, only excitation 

which exceeds or equal to threshold 
eT , their excitations will 

be transmitted to their retinotopic counterpart in the 

postsynaptic network. 
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Fig. 2. An example of direction selective neurons process video sequences with an up moving white cylinder on a carpeted office floor. (a) Sample images of the 

video sequence; the frame number is indicated under each image. (b) Excitation of the sixteen direction selective neurons.  
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array )(iV f
. 

Therefore, the output excitations vector of the sixteen 

direction selective neurons spread into the postsynaptic 

network is 
TL

f

D

f

D

f

LD
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ff
RRL VVVVVV )

~
...

~~~~~
(

~
=Γ

      

(14) 

For a stationary object, all elements in the vector 
fΓ

~ are zero. 

When the object is in motion, however, a few elements in 

fΓ
~ could be greater than zero. The function of each layer and the 

ccwRS neuron will be described below in detail. 

1) Excitations Gathering Operation Layer 

The first layer of the postsynaptic network is Excitation 

Gathering Operation layer, and it consists of sixteen identical 

cells a . Each a cell receives excitations from its ccw side 

neighboring direction selective neurons in the upper layer up to 

neighborm neurons away. Therefore, the strengths of excitation to 

an a  cell in this layer are 

)}(
~

{)(
,...,0

jiMAXiA f
mj

f
neighbor

+Γ=
=

         (15) 

where )(iA f
is the gathered excitation of an a cell, i  denotes 

the index of an a cell, and subscript f denotes the current 

frame; 
neighborm is the maximum number of directional selective 

neuron in the upper layer that spread excitation to an a cell in 

this layer; )(
~

jif +Γ is the thji )( + index direction selective 

neuron’s excitation in the upper layer. From the above, )(iA f
 

is equal to either zero or the gathered excitations from the 

thi)(  to the thmi neighbor )( + direction selective neurons in the 

current frame. 

2) Excitations Multiplication Operation Layer 

The postsynaptic network’s second layer is Excitations 

Multiplication Operation layer; it is composed of sixteen 

identical multiplication operator cells

 

m . These m cells 

receive the excitation from its retinotopic counterpart in the 

sixteen direction selective neurons with one frame delay, and 

then multiply this excitation with the other excitation 

transmitted by its retinotopic counterpart in the excitation 

gathering operation layer immediately. Therefore, the gathered 

excitations to a m cell in this layer is 
~

1 )()()( iViAiM fff −×=

           

(16) 

where )(iM f
 is the multiplication result of a m cell’s 

excitation, i  denotes the index of the sixteen m cells, 

subscript f denotes the current frame and 1−f denotes the 

previous frame. From the above, )(iM f

 

is great than or equal to 

zero. 

3) ccwRS Neuron 

Finally, sixteen m cells’ excitations are converged to ccwRS 

neuron. The strength of the converged excitations to the ccwRS 

neuron is 

1,...,
{ ( )}

f f
i n
MAX M iκ

=
=

             

(17) 

where 
fκ is the input excitation of ccwRS neuron, 

subscript f denotes the current frame; n is the number of the 

m cells.  

The output excitation of the ccwRS neuron is regulated by a 

spiking mechanism, i.e., when the input excitation 
fκ exceeds 

a threshold 
sT , an internal spike inside the ccwRS neuron is 

produced otherwise remain silent, 



 >

=
otherwise

Tif
S

sfRSNspike

f
,0

,1 κ

                

(18) 

If there are 
spn successive spikes occurring inside the ccwRS 

neuron, a ccw rotation motion is perceived, and the ccwRS 

neuron will produce its output excitation immediately. If 

)9.0( =≥ amamf γγκ , the output excitation 
ff κκ =~ , otherwise  

fκ~ is encouraged iteratively by the following equation till it is 

greater than or equal to 
amγ , 

1~ −
×= f

ff

κ
σκκ

               

(19) 

here σ is the excitation amplification factor. After being 

encouraged, the ]1~9.0[~ ∈fκ . Finally, the output excitation 

of the ccwRS neuron 
ccwRSF is 








≥

= ∑
otherwise

nsif
F

f

f

sp

RSNspike

ff
ccwRS

s

,0

,~κ

        

(20)

 

 

The threshold spn is 

)
)!(

)!(
)((

)2(

)1(

1

1

1

1

km

km
kmnn

s

f

s

f
f

ff

s

ftssp

s −

−

=

∑ −+=

          

(21) 
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Fig. 3. The only difference between cwRMPNN and ccwRMPNN is the 

opposite excitation transmission direction sequence of sixteen directional

selective neurons. (a) cwRMPNN. (b) ccwRMPNN. 

 

TABLE I 

PARAMETERS OF RMPNN 

Name Value Name Value 

ip  0 σ  0.5 

u  0 inhn  8~30 

Iw  5.5 neighborm  3 

IW  1.7 
spm  6 

rsT  12 tsm  6 

rcn  11200 
ts

n  8 

cn  140 sT  0 

rn  80   
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where }),...,{( RLLkk ∈ denotes the index of the directional 

selective neuron which produces a spike at frame 1f , 

))(0()( 111 −≤≤ sp

s

f

s

f
mkmkm  is the total number of continuous 

spikes occurring inside the directional selective neuron k up to 

frame 1f . The )(1 km
s

f
 can be summarized as 













≥−

≥

=

∑
−

=
−

otherwise

fifts

ffifkS

km s

m

i

s

Transpike

f

s

f

ts

,0

..

),(

)(

2

0

1

             

(22) 

here sf denotes the first time step (or image frame) of the 

current time period when continuous spikes are occurring 

inside the ccwRS neuron. 

C. The cw rotational motion perception neural network 

The structure of a cwRMPNN is the same as the above 

described structure of a ccwRMPNN, however the excitation 

gathering direction from these direction selective neurons is 

completely the opposite, as shown in Fig.3. In ccwRMPNN, 

when a ccw rotational motion occurs, the excitations of 

direction selective neurons are successively transmitted in 

accordance with the ccw direction, and the ccw rotational 

motion is perceived by ccwRMPNN. However, a ccwRMPNN 

will not respond to a cw rotational motion, unless its internal 

structure in gathering excitations are changed to an opposite 

way – i.e., to become a cwRMPNN (see Fig. 3). 

 

D. Parameters of the System 

In this study, all experiments are executed on a Microsoft 

Windows Server 2008 with CPU/2.66G and RAM/4G, source 

•

     

•

     

•

     

•

     

•

     

•

 
ccw                               cw                                   ccw                                    cw                                ccw                                  cw 

(a)                                (b)                                    (c)                                     (d)                                 (e)                                    (f) 

 

Fig. 4. Schematic illustrations of three types of objects’ rotational motion patterns. (a) A ccw rotating block. (b) A cw rotating block.  (c) A ccw rotating half-bar. (d) 

A cw rotating half-bar. (e) A ccw rotating bar. (f) A cw rotating bar. All video sequences are accessible at http://www.ciluk.org/temp/05_TestVideos.zip. 
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Fig. 5. Example frames from the simulated visual stimuli tests. Each video sequence is represented with four frames; the frame number is indicated under each 

image. (a) A ccw rotating 77 × pixels white block. (b) A cw rotating 77 × pixels white block. (c) A ccw rotating

 

303 ×  pixels white half-bar. (d) A cw rotating

 

303 ×  pixels white half-bar. (e) A ccw rotating 603 ×  pixels white bar.  (f) A cw rotating 603 ×  pixels white bar. (Detailed experiment settings and results see 

Table II.) 
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Fig. 6. Output curves of ccwRS neuron and cwRS neuron’s excitation. Each sub-graph uniquely corresponds to the experimental results of the same identifier video 

sequence in Fig. 5.  
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codes are written in C++. In the simulation, each real scene 

video sequences of rotational motion situation taken at 30 

frames per second, and the input frames to RMPNN are 

80140 × resolution grayscale images with 8-bit precision.  

Based on the previous experimental studies [63], [57]–[60] 

and the current trials, the parameters of RMPNN are given in 

Table I. In these experiments, the direction selective neurons be 

used are: left selective neuron L , right selective neuron R , up 

selective neuron U , down selective neuron D , left-up 

selective neuron LU , left-down selective neuron LD , right-up 

selective neuron RU , right-down selective neuron RD , left 

side of L  selective neuron
LL , right side of L selective neuron 

RL , left side of D  selective neuron 
LD , right side of D  

selective neuron 
RD , left side of R  selective neuron 

LR , right 

side of R  selective neuron 
RR , left side of U  selective 

neuron 
LU , right side of U  selective neuron 

RU . All the 

direction selective neurons used in each experiment are set in 

the same way except the inhibited directions. 

In a RMPNN, each pixel in an input frame image has one 

corresponding cell in the P layer. Each input frame image is 

80140 × pixels; hence there are 11200 cells in the P layer. It 

follows from this that there are 11200 E cells and 11200 

I cells all shared by its sixteen direction selective neurons; it 

TABLE II 

ROTATIONAL MOTION REGION PERCEPTIONS IN SIMULATED VISUAL STIMULI TESTS (EXPERIMENTS SEE FIG.5 AND 6) 

Video 
The 

total of 

frames 

Object 

type 

Practical 

ccw 

rotational 

motion  

region 

(frames) 

Practical 

cw 

rotational 

motion  

region 

(frames) 

Angular 

velocity 

RMPNN’s 

ccw 

rotational 

motion 

region 

(frames) 

RMPNN’s 

cw 

rotational 

motion 

region 

(frames) 

ccwRS 

neuron’s 

success rate 

(%) 

ccwRS 

neuron’s false 

alarm rate 

(%) 

cwRS 

neuron’s 

success rate 

(%) 

cwRS 

neuron’s false 

alarm rate 

(%) 

a 306 block 93-219 N/A 15.7 rad/s 102-219 N/A 100 N/A N/A 0 

b 306 block N/A 93-217 15.7 rad/s N/A 104-217 N/A 0 100 N/A 

c 304 half-bar 92-216 N/A 15.7 rad/s 101-216 N/A 100 N/A N/A 0 

d 304 half-bar N/A 93-217 15.7 rad/s N/A 101-217 N/A 0 100 N/A 

e 301 bar 93-213 N/A 15.7 rad/s 102-213 N/A 100 N/A N/A 0 

f 301 bar N/A 93-213 15.7 rad/s N/A 102-213 N/A 0 100 N/A 
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Fig. 7. Example frames from the real scene video tests. Each video sequence is represented with four frames; the frame number is indicated under each image. (a) A 

ccw rotating black block. (b) A cw rotating black block. (c) A ccw rotating black half-bar. (d) A cw rotating black half-bar. (e) A ccw rotating black bar. (f) A ccw 

rotating black bar. (Detailed experiment settings and results see Table III.) 
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Fig. 8. Output curves of ccwRS neuron and cwRS neuron’s excitation. Each sub-graph uniquely corresponds to the experimental results of the same identifier video 

sequence in Fig. 7.  
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has 179,200 S cells and 49 functional cells. So the total number 

of cells involved in RMPNN is 212,849. 

IV. EXPERIMENTAL STUDY 

In the study of the rotational motion selective neurons of 

primates’ cerebral cortex, it was found these neurons respond 

well to the rotational motion of a half-bar, or a bar, or a spot 

[5], [6], [8], [10], [11], [21], [43]. Hence we use several sets of 

video sequences, which are similar to those rotary objects in the 

above neurophysiological experiments, to test the performance 

of RMPNN. The schematics of different rotary objects are 

shown in Fig. 4. 

TABLE III 

ROTATIONAL MOTION REGION PERCEPTIONS IN REAL SCENE VIDEO TESTS (EXPERIMENTS SEE FIG.7 AND 8) 

Video 
The 

total of 

frames 

Object 

type 

Practical 

ccw 

rotational 

motion  

region 

(frames) 

Practical 

cw 

rotational 

motion  

region 

(frames) 

Angular 

velocity 

RMPNN’s 

ccw 

rotational 

motion 

region 

(frames) 

RMPNN’s 

cw 

rotational 

motion 

region 

(frames) 

ccwRS 

neuron’s 

success rate 

(%) 

ccwRS 

neuron’s false 

alarm rate 

(%) 

cwRS 

neuron’s 

success rate 

(%) 

cwRS 

neuron’s false 

alarm rate 

(%) 

a 561 block 167-507 N/A 
23.55~17.13 

rad/s 
177-507 N/A 100 N/A N/A 0 

b 610 block N/A 171-514 12.99 rad/s N/A 186-514 N/A 0 100 N/A 

c 561 half-bar 165-505 N/A 
23.55~17.13 

rad/s 
174-505 N/A 100 N/A N/A 0 

d 610 half-bar N/A 169-512 12.99 rad/s N/A 181-512 N/A 0 100 N/A 

e 596 bar 162-504 N/A 
23.55~18.84 

rad/s 
171-504 N/A 100 N/A N/A 0 

f 699 bar N/A 164-505 
16.38~15.7 

rad/s N/A 175-505 N/A 0 100 N/A 
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(a)                         (b) 

Fig. 9. Example frames from the varied inhibition radius tests. Each video sequence is represented with four frames; the frame number is indicated under each 

image. (a) A ccw rotating black half-bar. (b) A cw rotating black bar. 
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Fig. 10. Output curves of ccwRS neuron and cwRS neuron’s excitation. Each sub-graph uniquely corresponded to a specific inhibition radius value test results of a 

video sequence in Fig. 9 (a) or (b). (a) Half-bar: 
inhn =2 pixels. (b) Half-bar: 

inhn =4 pixels. (c) Half-bar: 
inhn =8 pixels. (d) Half-bar: 

inhn =16 pixels. (e) 

Half-bar: 
inhn =32 pixels. (f) Half-bar: 

inhn =64 pixels. (g) Bar: 
inhn =2 pixels. (h) Bar: 

inhn =4 pixels. (i) Bar: 
inhn =8 pixels. (j) Bar: 

inhn =16 pixels. (k) Bar: 

inhn =32 pixels. (l) Bar:
inhn = 64 pixels. Here 

inhn is the inhibition radius. 
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Fig. 11. CcwRS neuron’s perception success rates and cwRS neuron’s false 

alarm rates’ curves in the varied inhibition radius tests. (a) The perception 

success rates of the ccwRS neuron. (b) The perception false alarm rates of the 

cwRS neuron. 
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In order to test the effectiveness and the robustness of 

RMPNN, we will use three sets of video sequences in our 

experiments. The first set of video sequences are computer 

generated visual stimuli, which simulate the rotational motions 

of a block, a half-bar and a bar respectively (see Fig. 5). The 

second set of video sequences are recorded real scene video 

sequences about the rotational motions of a block, a half-bar 

and a bar on the fronto-parallel plane (see Fig. 7). The third set 

of video sequences are the boundary condition tests of  the real 

objects’ rotational motion scenes, each of them represents a 

special real scene (see Fig. 9, 12, 16, 19, 21 and 29). Two 

indicators were used as the main bases for evaluation in these 

tests to characterize the performance of RMPNN: the 

perception success rate of RS neuron and the false alarm rate of 

RS neuron. 

A. Simulated Visual Stimuli Tests 

In simulated visual stimuli tests, we use six groups of 

computer generated video sequences – each represents the 

simulated rotation motion of one of the three objects (e.g. Fig 5, 

a block, a half-bar, and a bar). The rotational objects are 

represented with 77 × pixels white block (306 frames), 

303 × pixels white half-bar (304 frames) and 603 × pixels 

white bar (301 frames) conducting ccw or cw rotation against 

black background ( 80140 × pixels) respectively. In all these 
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Fig. 12. Example frames from the position invariance and varied receptive field tests. Each video sequence is represented with four frames; the frame number is 

indicated under each image. (a) Half-bar: top-left area. (b) Half-bar: bottom-left area. (c) Half-bar: top-right area. (d) Half-bar: bottom-right area. (e) Bar: top-left

area. (f) Bar: bottom-left area. (g) Bar: top-right area. (h) Bar: bottom-right area. 
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Fig. 13. Output curves of ccwRS neuron and cwRS neuron’s excitation. Each sub-graph uniquely corresponds to the experimental results of the same identifier video 

sequence in Fig. 12.  
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Fig. 14. CcwRS neuron’s perception success rates and cwRS neuron’s false 

alarm rates’ histograms in the position invariance and varied receptive field 

tests. (a) The perception success rates of the ccwRS neuron. (b) The perception 

false alarm rates of the cwRS neuron. 
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Fig. 15. Schematic illustration of the sight axis deviation tests.  
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video sequences, the angular velocity of the object’s rotational 

motion is srad /7.15 (see Fig. 5). 

In video sequence shown in Fig. 5 (a), a white block initially 

remains stationary from frame 1 to frame 92; it then rotates at a 

constant angular velocity in ccw from frame 93 to frame 219; 

finally remains stationary from frame 220 to the end. In video 

sequence shown in Fig. 5 (b), a white block remains stationary 

from frame 1 to frame 92, and rotates at a constant angular 

velocity in ccw from frame 93 to frame 217; then remains 

stationary in the remaining video frames. Similarly video 

sequence in Fig. 5 (c) and (d) simulates the ccw and cw 

rotational motion of a white half-bar; video sequence in Fig. 5 

(e) and (f) simulate the ccw and cw rotational motion of a white 

bar respectively. The statistical results of these sequences are 

displayed in Table II. 
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Fig. 16. Example frames from the sight axis deviation tests. Each video sequence is represented with four frames; the frame number is indicated under each image. 
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θ =75 degrees. (l) Bar:

 

θ =85 degrees. 

Here θ is the sight axis deviation degree of the video camera. 
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Fig. 17. Output curves of ccwRS neuron and cwRS neuron’s excitation. Each sub-graph uniquely corresponds to the experimental result of the same identifier video 

sequence in Fig. 16. 
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Fig. 18. CcwRS neuron’s perception success rates and cwRS neuron’s false 

alarm rates curves in the sight axis deviations tests. (a) The perception success 

rates of the ccwRS neuron. (b) The perception false alarm rates of cwRS neuron.
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Fig. 6 shows the test outputs of the RMPNN against these 

simulated image sequences. Table II indicates that 

ccwRMPNN and cwRMPNN can correctly perceive the 

rotational motion for all simulated image sequences in these 

tests. From Fig. 6 and table II, we found that RMPNN worked 

very well for these simulated data sets. 

B. Real Scene Video Tests 

We continue to test the RMPNN with recorded video 

sequences from real or physical scenes – where the three 

objects, e.g., a black block, a black half-bar, and a black bar, 

were conducting ccw or cw rotational motion in a laboratory 

setting. Firstly, we recorded two video sequences in which a 

regular black bar (60 mm in length, 5 mm in width) rotates 

around its center in ccw and cw respectively; then, we recorded 

a black half-bar (30 mm in length, 5 mm in width) rotates 

around its one fixed end in ccw and cw respectively. The 

rotational motion sequences of a block were edited from that of 

whole half-bar sequences, using video editing software (After 

Effects CS4, Adobe®, USA). For each frame of the whole 

half-bar sequences, we erased almost the entire half-bar but 

leave its far end unchanged as the black block (see Fig. 7). 

In video sequence shown in Fig. 7 (a) (561 frames), a black 

block remains stationary from frame 1 to frame 166; after that it 

rotates at variable angular velocities (23.55~17.13 rad/s) in ccw 

                 
123                   136                    150                   166                      139                    150                    155                    161 

(a)                         (b) 

Fig. 19. Example frames of original video sequences from the varied intensity interference tests. Each original video sequence is represented with four frames; the 

frame number is indicated under each image. (a) A half-bar’s ccw rotational motion mixed with interference. (b) A bar’s ccw rotational motion mixed with 

interference. 
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Fig. 20. Output curves of ccwRS neuron and cwRS neuron’s excitation. (a) The experimental result of the video sequence in Fig. 19 (a), but the interference was 

fully erased (i.e. a half-bar’s ccw rotational motion without interference.). (b) The test result of the video sequence in Fig. 19 (a). (c) The test result of the video 

sequence in Fig. 19 (b), but the interference was fully erased (i.e. a bar’s ccw rotational motion without interference.). (b) The test result of the video sequence in Fig. 

19 (b).  
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Fig. 21. Example frames from the varied intensity interference tests. By erasing different part (upper, middle and lower) of a cable, different intensity and swing 

amplitude interferences in different regions were formed. The resolution of each original video sequence is 720P.The cable was partially erased and retained 

different height pixels in the three sections respectively, and forming eight types of interference of the different cable lengths: 0 pixels (the cable completely 

disappear, i.e. non-interference), 20 pixels, 40 pixels, 80 pixels, 160 pixels, 320 pixels, 640 pixels and 720 pixels (the full cable remains, see Fig. 19 (a), (b)). The 

length of interference (i.e. the retained cable length (pixels)) is indicated under each image. (a) Half-bar: interferences in the upper section. (b) Half-bar: 

interferences in the middle section. (c) Half-bar: interferences in the lower section. (d) Bar: interferences in the upper section. (e) Bar: interferences in the middle 

section. (f) Bar: interferences in the lower section. 
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Fig. 22. Output curves of ccwRS neuron and cwRS neuron’s excitation. Each sub-graph uniquely corresponds to the experimental results of a video sequence in Fig. 

22 (a). (a) Half-bar: 20 pixels swing cable interference. (b) Half-bar: 40 pixels swing cable interference. (c) Half-bar: 80 pixels swing cable interference. (d) Half-bar: 

160 pixels swing cable interference. (e) Half-bar: 320 pixels swing cable interference. (f) Half-bar: 640 pixels swing cable interference. 
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from frame 167 to frame 507; finally it remains stationary from 

frame 508 to the end. In video sequence Fig. 7 (b) (610 frames), 

a black block holds stationary from frame 1 to frame 170, and it 

rotates at an angular velocity (12.99 rad/s) in cw from frame 

171 to frame 514, then keeps stationary from frame 515 to 

frame 610. In video sequences of Fig. 7(c)~(d), the rotation 

pattern of a half-bar is the same as that of the block shown in 

Fig. 7(a) or Fig. 7 (b) respectively; In video sequences of Fig. 

7(e)~(f), the rotation pattern of a bar is similar to that of the 

block shown in Fig. 7(a) or Fig. 7 (b), except angular velocities: 

23.55~18.84 rad/s in Fig. 7(e), and 16.38~15.7 rad/s in Fig. 

7(f). The statistical results of these sequences are displayed in 

Table III. 

As illustrated in Fig. 8, we can clearly see that the proposed 

RMPNN works very well on these real scene video tests, 

although the rotation angular velocities of these objects are 

different. 

C. Boundary Condition Tests 

In the following tests, RMPNN will be challenged with 

several types of real scene video sequences under various 

conditions. 

1) Varied Inhibition Radius Tests 

In this sub-section, we examine the effect of inhibition radius 

on the performance of RMPNN. During our experiment, we 

found that the motion perception of RMPNN was influenced by 

different inhibition radius. Too small inhibition radius will 

cause the incorrect perception of motion cues; while too large 
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Fig. 23. Output curves of ccwRS neuron and cwRS neuron’s excitation. Each sub-graph uniquely corresponds to the experimental results of a video sequence in Fig. 

22 (b). (a) Half-bar: 20 pixels swing cable interference. (b) Half-bar: 40 pixels swing cable interference. (c) Half-bar: 80 pixels swing cable interference. (d) 

Half-bar: 160 pixels swing cable interference. (e) Half-bar: 320 pixels swing cable interference. (f) Half-bar: 640 pixels swing cable interference. 
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Fig. 24. Output curves of ccwRS neuron and cwRS neuron’s excitation. Each sub-graph uniquely corresponds to the experimental results of a video sequence in 

Fig. 22 (c). (a) Half-bar: 20 pixels swing cable interference. (b) Half-bar: 40 pixels swing cable interference. (c) Half-bar: 80 pixels swing cable interference. (d) 

Half-bar: 160 pixels swing cable interference. (e) Half-bar: 320 pixels swing cable interference. (f) Half-bar: 640 pixels swing cable interference. 
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Fig. 25. Output curves of ccwRS neuron and cwRS neuron’s excitation. Each sub-graph uniquely corresponds to the experimental results of a video sequence in 

Fig. 22 (d). (a) Bar: 20 pixels swing cable interference. (b) Bar: 40 pixels swing cable interference. (c) Bar: 80 pixels swing cable interference. (d) Bar: 160 pixels 

swing cable interference. (e) Bar: 320 pixels swing cable interference. (f) Bar: 640 pixels swing cable interference. 



Rotational Motion Perception                                                               TNNLS-2016-P-6494 
14 

inhibition radius will lead to superfluous computing during its 

visual information processing. To perceive effectively the 

motion cues, an appropriate inhibition radius value should be 

set in RMPNN. 

Two recorded real scene videos were employed in this type 

of tests. One is the ccw rotational motion of a half-bar, and the 

other is the ccw rotational motion of a bar (see Fig. 9). In video 

sequence shown in Fig. 9 (a) (478 frames), a half-bar rotates at 

an angular velocity (15.7 rad/s) in ccw from frame 1 to the end. 

In video sequence shown in Fig. 9 (b) (296 frames), a bar 

rotates at an angular velocity (20.93 rad/s) in ccw from the first 

frame to the last frame. During the tests, all parameters are 

fixed except the inhibition radius values in the RMPNN. We set 

six different inhibition radius values in each video test 

respectively: 2, 4, 8, 16, 32 and 64 pixels.  

 Fig. 10 shows the output excitation of the RMPNN in this set 

of tests. From Fig. 10 (a) ~ (f), we can see that with the 

inhibition radius increasing, when the inhibition radius value 

equal to or greater than 4 pixels, both the ccwRS neuron and the 

cwRS neuron can correctly perceive the rotational motion of a 

half-bar. From Fig. 10 (g) ~ (l), we can find that when the 

inhibition radius value is varied within 2 ~16 pixels (Fig. 10 (g) 

~ (j)), RMPNN cannot correctly perceive the rotational motion 

of a bar in ccw, and even appear some incorrect response as 

shown in Fig. 10 (i). With the growth of inhibition radius value, 

while the inhibition radius equaled to or greater than 32 pixels, 

both the ccwRS neuron and the cwRS neuron can correctly 

perceive the rotational motion of the bar. Subsequently we 

counted the perception success rate of the ccwRS neuron and 

the false alarm rate of the cwRS neuron in these different 

inhibition radius value tests, and plotted rate-inhibition radius 

curves, as shown in Fig. 11. From these results, we found that 

an appropriate inhibition radius affect the performance of the 

RMPNN in perceiving a rotational motion. 

2) Position Invariance and Varied Receptive Field Tests 

Position invariance is an important feature in the biological 

visual systems. Although an object in motion may appear at 

many different locations retinotopically, an animal can still 

perceive it correctly. This feature has been verified in 
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Fig. 26. Output curves of ccwRS neuron and cwRS neuron’s excitation. Each sub-graph uniquely corresponds to the experimental results of a video sequence in 

Fig. 22 (e). (a) Bar: 20 pixels swing cable interference. (b) Bar: 40 pixels swing cable interference. (c) Bar: 80 pixels swing cable interference. (d) Bar: 160 pixels 

swing cable interference. (e) Bar: 320 pixels swing cable interference. (f) Bar: 640 pixels swing cable interference. 
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Fig. 27. Output curves of ccwRS neuron and cwRS neuron’s excitation. Each sub-graph uniquely corresponds to the experimental results of a video sequence in 

Fig. 22 (f). (a) Bar: 20 pixels swing cable interference. (b) Bar: 40 pixels swing cable interference. (c) Bar: 80 pixels swing cable interference. (d) Bar: 160 pixels 

swing cable interference. (e) Bar: 320 pixels swing cable interference. (f) Bar: 640 pixels swing cable interference. 
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Fig. 28. CcwRS neuron’s perception success rates and cwRS neuron’s false 

alarm rates curves in the varied intensity interference tests. (a) The perception 

success rates of ccwRS neuron. (b) The perception false alarm rate of cwRS 

neuron. 

            
35                    40                     43                     46                    48             1                       3                      5                      8                      12  

(a)                                                                                                                                     (b) 

Fig. 29. Example frames from the non-rotational motion tests. Each video sequence is represented with five frames; the frame number is indicated under each image.  

(a) A ball is approaching to the video camera. (b) A ball is receding from the video camera. 
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neurophysiological experiments, e.g. Sakata et al. found that 

the receptive fields of RS neurons in the cerebral cortex of the 

monkey are quite large, and a shift of the center of rotation 

within the receptive field do not cause a large difference in 

response [43]. 

In order to test the response of RMPNN to the rotational 

motion in different regions of the field of view, a set of 

experiments were designed. We recorded the rotational motion 

of a half-bar and a bar in ccw at different regions of the field 

of view respectively: top-left, bottom-left, top-right and 

bottom-right (see Fig. 12). In these video sequences, the 

rotational motion patterns in ccw of the half-bar and the bar are 

similar to that of the previous simulated visual stimuli 

generated by a computer except for the difference of the 

rotation angular velocities (19.83~23.55 rad/s in this type of 

tests). In each video sequence, the object initially remains 

stationary several seconds, and then rotates in ccw for a few of 

seconds, finally stops rotating and remains stationary until the 

end of the video sequence. Then the RMPNN will be 

challenged by these video sequences. 

 Experimental results are shown in Fig. 13 and Fig. 14. The 

two charts show that RMPNN can correctly perceive the 

rotational motion of a half-bar and a bar, and regardless of their 

different position in the field of view. The results show that the 

proposed RMPNN is similar to the biological vision neural 

network - it also has the position invariance feature, which is 

compatible with the vector field hypothesis [11]. 

3) Sight Axis Deviation Tests 

In the above tests, the sight axis of video camera is 

perpendicular to the rotating plane of object, and RMPNN 

responded well to these rotational motions of objects. However, 

rotation motion may happen in different planes. To test the 

impact of the sight axis deviation on the performance of 

RMPNN, we will use video sequences with different camera 

sight axis deviated on the horizontal plane (Fig. 15). 

We progressively increased the horizontal deviation angle 

(on the X-Z horizontal plane, see Fig. 15) between the sight axis 

and the vertical line on the fronto-parallel plane. In the adjacent 

video sequences of these tests, the camera’s sight axis changed 

from the vertical line by 15 degrees each time until approached 

parallel lines of the fronto-parallel plane. As the sight axis 

deviation reached over 75 degrees, we continued to increase 10 

deg to make it at 85 degrees for the final video sequences. The 

schematic diagram of sight axis deviations tests is shown in Fig. 

15, and example frames of each video sequences are shown in 

Fig.16. 

The rotational motion patterns in ccw of a half-bar and a 

bar also are similar to that of the previous simulated visual 

stimuli generated by a computer except for the difference of the 

rotation angular velocities (13.46~23.55 rad/s in this type of 

tests). Fig. 17 and 18 show the experimental results in these 

tests. From these experimental results we can see that when the 

sight axis deviation angle is small up to 30 degrees, RMPNN 

can correctly perceive the rotational motion of a half-bar and a 

bar. This suggests that the RMPNN is robust to small 

perturbation in terms of rotational planes. However, with the 

sight axis deviation angle increasing heavily (60 deg in the 

video sequence shown in Fig. 16 (d), and 45 deg in the video 

sequence shown in Fig. 16 (i)), the perception success rate of 

the ccwRS neuron began to decline. When the sight axis is 

almost parallel to the fronto-parallel plane, the perception 

success rate of ccwRS neuron reduced to the minimum, and the 

false alarm rate of cwRS neuron reached to the maximum (see 

Fig. 18). 

4) Varied Intensity Interference Tests 

In order to test the interference influence on RMPNN, a set 

of video sequences about varied intensity interference scenes 

were created with a swing black headphone cable. We recorded 

two original video sequences with a half-bar and a bar 

rotating in ccw from the first frame to the end respectively. In 

the intermediate time section of each video sequence, a vertical 

black headphone cable is located on the left side of the rotating 

object, as interference in the field of view, simulating a 

pendulum swinging to affect the rotational motion perception 

of the RMPNN (see Fig. 19). In each of the two video 

sequences, the cable initially remains stationary for a few 
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Fig. 30. Output curves of ccwRS neuron and cwRS neuron’s excitation in the non-rotational motion tests. Each sub-graph uniquely corresponds to the experimental 

results of a video sequence in these tests. (a) The experimental results corresponding to the video sequences shown in Fig.2 (a). (b) The experimental results 

corresponding to the video sequences shown in Fig.29 (a). (c) The experimental results corresponding to the video sequences shown in Fig.29 (b). 
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Fig. 31. Varied object distances tests. (a) Example frames from the different object distances tests. Each video sequence is represented with one frame; the object 

distance is indicated under each image. (b) The perception success rates of ccwRS neuron and the false alarm rates of cwRS neuron’s curves in the varied object 
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seconds, and then swings around for several seconds before 

rests. We then use After Effects CS4 to erase the whole cable to 

obtain two non-interference rotational motion video sequences 

of a half-bar and a bar respectively. Similarly, we get different 

intensity and swing amplitude interferences in different regions 

by erasing different part (upper, middle and lower) of the cable, 

as shown in Fig. 21.  

 The resolution of each original video sequence is 720P. The 

cable was partially erased and retained different height pixels in 

the three sections respectively, and forming eight types of 

interference of the different cable lengths: 0 pixels (the cable 

completely disappear, i.e. non-interference), 20 pixels, 40 

pixels, 80 pixels, 160 pixels, 320 pixels, 640 pixels and 720 

pixels (the full cable remains), see Fig. 19 and 21. 

 In these video sequences, all rotational motion patterns of the 

half-bar and the bar are similar except for the different lengths 

of the cable interference. In the half-bar rotation video 

sequences, each video sequence has 478 frames. A half-bar 

rotates in ccw at an angular velocity (15.7 rad/s) throughout the 

whole video sequence. The cable keeps stationary state from 

frame 1 to frame 94; and then it simulates the pendulum 

swinging motion from frame 95 to frame 426; after that it stops 

swinging and holds still from frame 427 to frame 478. Similarly, 

each video sequence of a bar rotation has 296 frames. A bar 

rotates in ccw at an angular velocity (20.93 rad/s) throughout 

the whole video sequence. The cable keeps stationary state 

from frame 1 to frame 97; and then it simulates the pendulum 

swinging around motion from frame 98 to frame 209; after that 

it stops swinging and holds still from frame 210 to the last 

frame. 

The performance of the RMPNN against two test results, i.e. 

the 0 pixels interference (i.e. the cable completely disappear) 

and the 720 pixels interference (i.e. the full cable remains), are 

shown in Fig. 20. The other test results of the remaining various 

intensity interferences video sequences are shown in Fig. 22, 23, 

24, 25, 26 and 27 respectively. We also counted the perception 

success rates of the ccwRS neuron and the false alarm rates of 

the cwRS neuron in this type of experiments, and plotted the 

rate-interferent curves, as shown in Fig. 28. From these tests 

results, we can find that the proposed RMPNN is robust, as 

small intensity of interference did not affect its performance. 

However, its performance will decrease as the strength of the 

interference increases.  

5) Non-rotational Motion Tests 

 To see the selectiveness of the RMPNN, we will challenge it 

with three different types of non-rotational motion video 

sequences. One type is upward translation, the second one is 

expansion motion and the third is contraction motion. In Fig.2 

(a), a white cylinder is moving upward; In Fig. 29 (a), a ball is 

approaching to the camera; In Fig. 29 (b), a ball is receding 

from the camera.  

Tests’ results are shown in Fig. 30. As shown in these figures, 

RMPNN has no response to these non-rotational motions, 

showing excellent selectiveness of the proposed rotational 

selective neural network. 

D. Discussions 

In the above sections, the presented RMPNN has been tested 

using several types of rotational motion video sequences under 

various conditions. All of these experiments have demonstrated 

that the RMPNN has a reliable ability to perceive rotational 

motion. Experimental results showed that the properties of the 

RMPNN are coincide with the most of main functional 

properties of rotation selective neurons in monocular viewing 

condition [6], [43], [44], including rotational motion selective, 

rotation direction selective, response delay, position invariant, 

and no-preference for non-rotational basic motion (translation, 

expansion, and contraction).  

However, the proposed RMPNN will not respond to the 

rotational motion in the sagittal plane [43]. The RMPNN is a 

monocular visual system and it cannot deal with rotating object 

in sagittal plane. This is because, the projection of a rotating 

object, e.g. a bar in the sagittal plane, on to the field of view, 

will form a periodically expanding /contracting line in a 

monocular visual system. A binocular vision system with two 

RMPNN, for example, may still be able to recognize the 

rotating object, even if a bar may be in the sagittal plane to one 

of the RMPNN, given the distances between the two RMPNN 

is big enough to allow the other RMPNN having adequate angle 

to perceive the rotation (for example, Fig. 16~18). 

The proposed RMPNN contains only sixteen directional 

selective neurons. With this low spatial angular resolution 

(about 22.5 degrees each and 16 DSNNs to cover the full circle), 

it can only cope with rotational motion within a certain range of 

angular velocities. This means that the RMPNN can perceive 

rotational motion at appropriate rotation speeds effectively but 

may not respond well to those with too slowly or too fast 

angular velocities.  

Neurophysiological study showed that rotation selective 

neurons can be classified into three categories according to 

their responding behaviours to the size of rotational objects [43]. 

Sakata et. al. experiments showed that most of these types of 

rotation selective neurons’ responses increase with the increase 

of object size, though each type with different size preference 

[43]. We examined the influence of object size on the 

performance of the RMPNN by placing the object with varied 

distance before the camera. Five separate tests were conducted 

with distance at 30, 37, 49, 72, and 106cm respectively (see Fig. 

31 (a)). From these sampled video sequences, we can see a 

half-bar in the field of view is getting smaller and smaller as 

the object distance increasing. As shown in Fig. 31 (b), within a 

certain range, the changes of object distance (i.e., object size) 

stimulated similar performance pattern compare to Sakata et. al. 

(1994) to the RMPNN – the perception success rate increases 

with the increase of objects size (i.e., closer distance). As 

detailed in sections III and demonstrated with experiments 

(Fig.9~11), the inhibition radius predefined in a RMPNN can 

affect its preference to different object size. This suggests that a 

population of RMPNNs with different inhibition radius could 

exhibit variety of object size preferences for complex visual 

scenarios.  

In our experiments, the original data feed to the RMPNN are 

the frames extracted from video sequences. Hence, the video 



Rotational Motion Perception                                                               TNNLS-2016-P-6494 
17 

quality (e.g. video definition, data rate, frame rate and so on) 

has a significant influence on the performance of the RMPNN 

if in a real time application. The key of video technology is 

video encoding, which directly affects the level of video quality. 

We hope that in the future work, High Efficiency Video Coding 

(HEVC) can be introduced to the real time data acquisition loop 

of the visual information processing system, to effectively 

improve the efficiency of video encoding, to reduce the 

corresponding computational complexity [64]–[67] and to 

enhance the performance of the RMPNN. 

V. CONCLUSION 

In the above sections, we proposed a new rotational selective 

visual neural network, RMPNN, with a specialized 

spatiotemporal information processing mechanism based on 

asymmetrically inhibited directional selective neuron models.  

The directional selective neurons are arranged in a specific 

order similar to that of the directional columns in the cerebral 

cortex for perceiving the specific rotational motion cues. 

Systematic experiments demonstrated that the performance of 

the proposed RMPNN is robust against position invariance, 

sight axis deviation, certain range of rotation velocities, various 

interferences and objects size. These characters are in 

consistence with those features of rotation selective neurons 

revealed in neurophysiological studies [5], [6], [8], [10], [11], 

[21], [43]. The RMPNN has also demonstrated robust rotation 

selectiveness of the RMPNN when challenged with 

non-rotational principle motion patterns (e.g, translation, 

expansion, and contraction) in our experiments. As the first 

bio-plausible computational model for rotational motion 

perception, this research is a significant step towards deep 

understanding of dynamic visual information processing in 

both biological and artificial vision systems. 

 In the future, we may expand our investigation of the 

perception of rotational motion in 3D space with binocular 

RMPNN. The RMPNN may also combine with other types of 

neurons, to perceive complex motion patterns in real world.  
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