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Abstract

Purpose: Several studies have established, using various measurement modalities,
that progression from diabetes to diabetic retinopathy is associated with changes in
haemodynamics or measurable vascular geometry. In this study we take vessel mea-
surements from standard fundus images, and estimate haemodynamic parameters
(which are not directly observable) using a simple haemodynamic model. We show
that there are statistically significant changes in some estimated haemodynamic pa-
rameters associated with the development of DR.

Methods: A longitudinal study of twenty-four subjects was conducted. For each sub-
ject four fundus images were used, taken annually during the three years before the
appearance of DR and in the first year of DR. A venous and arterial vascular bifurca-
tion, each of which consisted of a parent vessel and two child branches was extracted,
and at the branching nodes a zero dimensional model estimated the fluid dynamic
conditionsin terms of volumetric blood flow, blood flow velocity, nodal pressure, wall
shear stress and Reynolds number. These features were statisticlly analyzed using lin-
ear mixed models.

Results: A number of parameters, primarily venous, showed significant change with
the development of DR, including early change two years before the onset of DR. A
large proportion of overall variance is accounted for by individual patient differences,
making progressive study essential.

Conclusion: This is the first paper to demonstrate that haemodynamic feature esti-
mates extracted from standard fundus images are sensitive to progression from di-
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abetes to DR. In our future work, we aim to test whether the variations in haemo-
dynamic conditions are predictive of progression prior to the appearance of retinal
lesions.

Keywords: Retinal microcirculation, Diabetic Retinopathy, Retinal trees, Retinal vas-
cular geometry, Retinal biomarkers

1. Introduction

Diabetic retinopathy (DR) is characterized by lesions and vascular abnormalities,
which include but are not limited to microaneurysms, haemorrhages, cotton wool
spots, exudates (bright spots), venous beading, intraretinal microvascular abnormal-
ities, neovascularization, loop and fibrous proliferation (Donnelly et al.!, Leontidis et
al.2). The World Health Organization (WHO) suggests that between 1980 and 2014,
the prevalence of diabetes increased from 4.7% to 8.5%. In 2012, 1.5 million deaths
were directly associated with diabetes and another 2.2 million deaths were linked to
high blood glucose levels (WHO3). The early diagnosis of DR would allow clinicians
to suggest patient-specific treatment plans for patients affected by diabetes, and
ensure an efficient monitoring of the disease.

1.1 Retinal vascular geometry and haemodynamics

Haemodynamic factors such as perfusion pressure, vascular resistance, and blood
viscosity together with the vascular geometry determine the distribution of blood
flow to the retina (Harris et al.”?), although the mechanisms linking haemodynamic
alterations to systemic or ocular diseases are not completely understood yet (Caprioli
etal.l”, Weinreb et al.'®). Technologies such as Retinal Vessel Analyzer (Vilser et al.’®),
Doppler-based techniques (Nicolela et al.™*, Wang et al.’®), and Retinal Function Imag-
ing (Izhaky et al.’®) allow non-invasive study of the retinal haemodynamics.

Several studies have (separately) investigated the effects of diabetes on the reti-
nal vascular geometry and haemodynamics. Burgansky et al.* studied the effect of
DR on the arterial blood flow velocity, which was found to be slower in patients with
DR. Grunwald et al.® recruited a group of patients, which have been affected by dia-
betes for less than 4 years, and age-matched them with normal subjects. The total
measured blood flow rate in the diabetic patients was significantly higher compared
to the normal subjects. Leontidis et al.5" observed significant changes in fractal di-
mension and arterial and venular widths. Kifley et al.® observed a relationship be-
tween the increase of DR’s severity and the widening of retinal venular width. The
Wisconsin epidemiological study showed that a correlation between the widening of
retinal venulae and the progression of retinopathy exists (Klein et al.?). Yang et al.'
observed only wider venular caliber in the presence of diabetic retinopathy.
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1.2 Novelty of this study

In this paper we introduce a O-D model for the estimation of haemodynamic param-
eters from standard fundus images, and evaluate whether alteration of these esti-
mated parameters is associated with the progression from diabetes to DR. This is
potentially a more informative route to the detection of vascular disease than direct
correlation from geometry measurements to disease, since the hypothesised cause of
changesinvessel geometry is reaction to haemodynamic factors. Takinginto account
that the vascular geometry may be influenced by multiple factors including age, du-
ration of diabetes, lifestyle, gender and phenotypic variation, the progression of the
disease was investigated over a four-year period culminating in first diagnosis of DR,
by analyzing fundus images from a cohort of twenty-four patients. The main contri-
bution of this study is to establish that there are significant associations between the
estimated haemodynamic features and the progression of the disease; to the best of
the authors’ knowledge, this has never been attempted before.

2. Methods & Results

A longitudinal study of twenty-four patients was conducted. Ninety-six fundus pho-
tographs (FP) (1700x1700 pixels) were selected from the diabetic screening service
of Pilgrim Hospital in Boston, UK. For each patient, four photographs were captured
annually during the three years before DR and in the first year of DR.

2.1 Retinal blood flow mechanics

Blood vessels were segmented out by using the Ribbon of Twins (RoT) method (Al-
Diri et al.”®). The RoT technique is an active contour method that uses morphologi-
cal filters to identify the centerline of a vessel, and exhibits excellent performance in
extracting edges. In each selected fundus image, one arterial and one venous bifur-
cation (see Fig. 1a) were reconstructed using a semi-supervised tool (Caliva et al.2);
a bifurcation consists of three vessel segments, the parent and its two children. For
each patient the same venous and arterial bifurcations were selected throughout the
four-year period, making analysis of changes meaningful.

2.2 0-D vascular model

A zero-dimensional model was designed to simulate the fluid dynamics within the
network. As the diameter of the vessels was below 200um, the haemodynamics
would be in the microcirculation regime (Wong et al.?', Pournaras et al."), where
Fahraeus and Fahraeus-Lindqvist effects, and plasma skimming, are crucial in deter-
mining the distribution of the hematocrit and the blood flow velocity profile (Pries
et al.?>2%), However, for simplicity our model treats the blood as a Newtonian fluid
(Aletti et al.>*) The flow of blood was modelled as 0-D, and thus the mean blood flow
velocity was used. The blood flow was assumed to follow Hagen-Poiseuille’s law
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Fig. 1. Left: An arterial (red) and venous (blue) tree. Bifurcations are colored yellow. The green
dashes represent the connection between the segments in which a blood vessel is split by the
segmentation algorithm. Right: A lumped electric circuit. Nodes are denoted by the numbers
1,2, 3 and 4; nodal voltages by v;, withi = 1,...,4; currents by iy, withk = 1, ..., 3; conduc-
tances by G, with k = 1, ..., 3. The blue arrows represent the current flow direction.

(H-P). H-P flow describes the relationship between the pressure drop (AP) and the
blood flow through a tube (AP = R; - Q);), under the assumptions of a stiff, straight
and uniform tube; a Newtonian fluid; a circular cross section; a laminar, steady (i.e.
not pulsatile) flow with null velocity at the wall (no slip condition). R; = 87%; is the

resistance that the blood encounters when flowing in the i *" tube of radius r; and

length L;, with © = 0.04P the blood viscosity; G; = S’Lfi is the conductance of the
vessel. The retinal network was studied with an electrical lumped elements model.
The conservation of mass was assumed at the branching nodes. Hence, the inflow
of blood at the inlet matched the outflow from the bifurcation. Similar to Kirchhoff’s
conservation law of electric current at each node, for the ;" branching point, the

relationship Zk:%dhd? Qj,1r = 0 holds, where p, d;, d refers to the parent branch
and the two child branches of the bifurcation respectively (Causin et al.?%). By com-
bining H-P’s law and the segment’s conductance term, an explicit equation for () was
obtained (AQ;r = Gjx - AP;;) in which the subscripts j and k refers to the node of
the circuit (e.g. see Fig. 1b). For the circuit in Fig. 1b, the pressure value at each node
was computed by applying the conservation law, and solving the system of linear
equations Qi = AP;, G 1. Fig. 1b shows an example of a circuit, which represents
a tree displayed in Fig. 1a. In this circuit, by applying Kirchhoff’s law at each node of
the system, Eq. 1 was obtained and by its solution the pressure values at each node
of the circuit could be then computed.

G1 —(Gl + Gy + Gg) Gs 0 Py _ 0 (_l)
0 0 1 0 P3 Pout3
0 0 0 1 P6 Poutﬁ
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2.2.1 Boundary conditions (BCs)

The fluid dynamic conditions in the arterial and venular trees, which included one
bifurcation, were computed. Two experiments were carried out. In the first, BCs were
set up in terms of pressure, in the second in terms of blood flow.

Pressure boundary conditions At the inlet (parent of the bifurcation), a pressure
value of 40 mmHg was specified. This choice reflects the hydrostatic and frictional
pressure losses from the aorta to the Central Retinal Artery (CRA). At the outlet (chil-
dren of the bifurcation), a pressure slightly higher than 15 mmHg, which is equivalent
to the intraocular pressure (IOP) in normal condition, was enforced to prevent vessels
collapse.

Flow boundary conditions At the inlet, Q was computed as Q;(r;) = 7r?v;. For
the arterial trees, the enforced Q was computed based on a mean velocity blood flow
(v = 6.4cm/s), measured in the CRA by Fuchsjager et al.%® by using Color Doppler
Imaging, and a CRA’s diameter of 166 um suggested by Pemp et al.?’. In the venous
trees, the literature reports values of blood flow velocity and diameter in which the
central retinal vein (CRV) can vary (Kaiser et al.?®, Pemp et al.?”). The mean velocity
blood flow used in this work was & = 3.6¢m/s, and CRV’s diameter D = 210um.
At the outlet, the blood flow was enforced by assuming that at the bifurcation point
the blood flow velocity is constant. Therefore, with regard to the equation which ex-
presses the relationship between vessel’s caliber, blood flow rate and blood flow ve-
locity, in each of the branches (i.e. parent and children), Q deEends only on the ves-
sels’ caliber squared and was computed as Q; = Qi - %

r
k€Outlet k

2.3 Hemodynamic parameter estimates

The nodal pressure (P) was estimated by solving the system in Eq. 1. In each ves-

sel, four parameters were estimated. The flow rate (Q) was computed by solving

Poiseuille’s law equation. The wall shear stress (WSS) was computed in each i —*"
32uQ

vessel as WSS; = =t The blood flow velocity (v) was computed in each ves-

sel, by rearranging and §olving the equation, which expressed the relationship be-
tween 7;, Q and r. The Reynolds number (Re) was computed as Re = vD

#ﬂ, where
p = 1.060g/mL was the dynamic viscosity of the blood.

2.4 Statistical analysis

The statistical analysis relates the five estimated haemodynamic features, both ve-
nous and arterial, to the year of measurement (i.e. progression towards disease),
while accounting for individual differences between patients. The analysis was per-
formed using linear mixed effects models (LMM) (Bates?®), in which fixed and random



6 F. Caliva et al.

effects combine linearly with an error term to determine a response variable. LMMs
are similar to the Analysis of Variance (ANOVA) test, but they are considerably more
generalized, supporting post-hoc analysis and utilizing additional evaluation metrics,
as can be seen in the model comparison part that follows (Krueger et al.3°). The LMM
captures individual differences by estimating a different random intercept for each
subject.

A “full” LMM was constructed for each feature, with the feature as the response
variable, the year of measurement as the (independent) variable of fixed effects and
the subject identity as the (independent) variable of random effects. A second, “re-
stricted” model was also constructed for each feature, with the subject identity as the
sole independent (random effects) variable.

The models were used to investigate the relationship of the year of measurement
to the features as follows. First, the full models were fitted using restricted maximum
likelihood (REML) and the Welch-Satterthwaite estimation of p-values based on de-
grees of freedom (Satterthwaite3?) calculated. Second, both the full and restricted
models were fitted using Maximum Likelihood (ML), p-values calculated from the like-
lihood ratio between the predictions of the two models, and the Akaike information
criteria (AICs) calculated for both models. The restricted models were used to calcu-
late the intra-class correlation (ICC), which describes the proportion of the total vari-
ance that can be explained by the individual patient identity. Post-hoc comparisons
were made to investigate the relationship between the year of measurement and the
statistically significant features; a Tukey-test was used to identify which year group
means differed (Tukey33). The analyses were carried out in a balanced design. Table 1
lists the results for all the estimated parameters with significant results (p < 0.05).
The lower AIC values for the “full” models indicate superior performance to the “re-
stricted” models, showing that the year of measurement is related to the reported
features; the two p-values are alternative methods that indicate the statistical sig-
nificance of this relationship. All five venous parameters show significant results,
with stronger effects in the child vessels, and wall shear stress and velocity partic-
ularly affected. In the arteries, effects are seen only in the volumetric blood flow and
Reynold’s number parameters in the child vessels. The ICC values show that, particu-
larly in the venous analysis, there is a high level of individual patient variation, so that
the strategy of including the patient identity as a random effects factor in the context
of a longitudional study was crucial to the success of the model.

Table 2 presents the post-hoc analysis of the features, listing the year to year
comparisons where a significant difference was detected, with associated p-values.
For the venous features with the strongest effects (e.g. WSS, v and Re in the first child
vessel) there is a consistent pattern that the most significant effects are between
year 3 and the other years: year 2, year 0 (DR onset) and year 1in that order. The
dip in significance in year one suggests there may be a complex development of the
haemodynamics features. Given the difference in methods and modalities a direct
comparison could not be made with other studies, although we note that elsewhere
(e.g. Bursell et al.>*, Grunwald et al.3>, Feke et al.3%) contradictory findings on blood



Hemodynamics in the retinal vasculature 7

Table 1. The haemodynamic features showing statistically significant relationship to year of
measurement. Lower AIC values for “full” models indicate that the measurement year is signif-
icant; the two alternative p-value estimates confirm the significance of this difference. The ICC
illustrates the proportion of variance accounted for by other differences between individual

patients.

Features AIC® p-(s)? p-(LR)¢ ICC

Veins_WSS_Parent 550.7/554.3 | 0.02 0.02 0.942
Veins_WSS_Child1 472.2/484.8| <0.000 <0.000 0.917
Veins_WSS_Child2 490.7/501.2 | 0.001 <0.000 0.901
Veins_Q_Child1 201.4/204.1 | 0.05 0.034 0.955
Veins_Q_Child2 201.4/204 0.04 0.033 0.915
Veins_v_Parent 335.5/339.2 | 0.024 0.02 0.833
Veins_v_Child1 231.9/247.2 | <0.000 <0.000 0.896
Veins_v_Child2 247.5/256.1 | 0.003 0.002 0.915
Veins_Re_Parent 693.4/696.8| 0.027 0.024 0.922
Veins_Re_Child1 593.9/610.4 | <0.000 <0.000 0.892
Veins_Re_Child2 608.3/611 0.04 0.034 0.944
Veins_Pressure 444.3/448.2| 0.02 0.017 0.833
Arteries_Q_Child1 106.2/111.5 | 0.012 0.01 0.398
Arteries_Q_Child2 105.1/110.4 | 0.011 0.009 0.399
Arteries_Re_Child2 800.1/804.5| 0.017 0.015 0.622

aFull/restricted.P-value (Satterthwaite approximation). <P-value (likelihood ratio).

flow rates in normal and diabetic patients have been reported. The significant differ-
ence in year 3 to year 2 is particularly interesting, as it is suggestive of the potential
for early detection of the onset of DR. In the arterial network, the smaller number of
significant features are most consistently affected between year 3 and year 1.

3. Conclusions and future perspectives

In this paper, a number of retinal haemodynamic parameters (nodal pressure, volu-
metric blood flow, wall shear stress, blood flow velocity and Reynolds number) were
estimated using a 0-D model, using measurements extracted from selected vessel bi-
furcations on fundus images. The estimated parameters were analyzed over a pe-
riod of three years of progression from diabetes to DR, within a group of twenty-four
subjects. The results indicate that there are significant alterations to haemodynamic
parameter estimates associated with detectable changes to vessel geometry, particu-
larly in the venular network. These are particularly pronounced between the earliest
year studied (three years before DR onset) and subsequent years.

In future work, we will utilize a larger data set to verify these findings, include a
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Table 2. Post-hoc analysis of the haemodynamic features, showing significant year to year dif-
ferences. Differences from year 3 to other years predominate.

Features Significant Hypotheses P-values
Veins_WSS_Parent Year3-Year2 0.015
Veins_WSS_Child1 Year3-Year2 0.002
Year3-Yearl 0.019
Year3-DR <0.000
Veins_WSS_Child2 Year3-Year2 <0.000
Year3-Yearl 0.009
Year3-DR 0.003
Veins_Q_Child1 Year3-Year2 0.049
Year2-DR 0.048
Veins_Q_Child2 Year3-Year2 0.049
Year3-DR 0.049
Veins_v_Parent Year3-Year2 0.015
Veins_v_Child1 Year3-Year2 0.001
Year3-Yearl 0.008
Year3-DR 0.001
Veins_v_Child2 Year3-Year2 0.02
Year3-Yearl 0.005
Year3-DR 0.002
Veins_Re_Parent Year3-Year2 0.018
Veins_Re_Child1 Year3-Year2 <0.000
Year3-Yearl 0.009
Year3-DR <0.000
Veins_Re_Child2 Year3-DR 0.017
Veins_Pressure Year2-Yearl 0.013
Year3-DR 0.024
Arteries_Q_Child1 Year3-Yearl 0.006
Arteries_Q_Child2 Year3-Yearl 0.006
Arteries_Re_Child2 Year3-Year2 0.035
Year3-Yearl 0.024

control sample to allow a full retrospective study, further investigate the evolution
of the haemodynamic features during disease progression, and extend the analysis
to full vascular trees that include multiple bifurcations. We will also validate the 0-D
model predictions on functional images that include direct measurement of haemo-
dynamic features in addition to the standard fundus appearance. Finally, we will de-
velop diagnostic models to predict DR onset from estimated haemodynamic features.
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