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ABSTRACT

A consensus is emerging from studies of continental rifts and rifted 
margins worldwide that significant extension can be accommodated 
by magma intrusion prior to the development of a new ocean basin. 
However, the influence of loading from magma intrusion, lava extru-
sion, and sedimentation on plate flexure and resultant subsidence 
of the basin is not well understood. We address this issue by using 
three-dimensional flexural models constrained by geological and 
geophysical data from the Main Ethiopian Rift and the Afar Depres-
sion in East Africa. Model results show that axial mafic intrusions in 
the crust are able to cause significant downward flexure of the open-
ing rift and that the amount of subsidence increases with decreasing 
plate strength accompanying progressive plate thinning and heating 
during continental breakup. This process contributes to the tilting of 
basaltic flows toward the magma injection axis, forming the typical 
wedge-shaped seaward-dipping reflector sequences on either side of 
the eventual rupture site as the new ocean basin forms.

INTRODUCTION

During continental rifting the extending continental lithosphere is pro-
gressively modified by magmatic processes and mechanical deformation 
until it breaks and gives rise to new oceanic lithosphere bordered by young 
rifted continental margins. Although Earth materials are weak in exten-
sion, cratonic lithosphere retains significant strength during rifting, as evi-
denced in rift flank uplift and flexural isostasy studies of active rifts (e.g., 
Weissel and Karner, 1989; Ebinger et al., 1989). Progressive extension and 
plate thinning cause decompression melting of the asthenosphere at pro-
gressively shallower depths, leading to an increase in magma production 
through time (e.g., White and McKenzie, 1989; Buck, 2006), primarily 
focused in axial volcanic segments that mark the new plate boundary (e.g., 
Barberi and Varet, 1977; Ebinger and Casey, 2001; Wright et al., 2006). 
The sustained emplacement of the new magma into a narrow zone of the 
lithosphere and eruption at the surface modify the plate density profile, 
causing significant internal and surface loading. These loads promote 
plate flexure along the long narrow, intrusion zones, and change the state 
of stress within the plate (Beutel et al., 2010). Despite the importance of 

magmatism during late-stage rifting and continental breakup, the influence 
of loading from magma intrusion, lava extrusion, and sedimentation on 
plate flexure and resultant subsidence of the basin is not well understood. 
In this paper we describe flexural models that quantify the effect of axial 
intrusion and surface volcanism on basin subsidence within volcanic rifts, 
and demonstrate the increasing role of magmatic loading with progressive 
plate thinning and weakening. Extensional stresses induced by the plate 
bending beneath the volcanic load may facilitate the rise of magma from 
the mantle. These models are parameterized from seismic imaging, gravity 
surveys, and studies of plate strength (elastic thickness of the lithosphere) 
of the Main Ethiopian Rift (MER) and the Afar Depression in East Africa 
(Fig. 1), which represent unique modern-day analogs for processes occur-
ring during continental breakup. The East African Rift zone is one of the 
few locations on Earth where the rift inception to rupture progression can 
be analyzed (e.g., Hayward and Ebinger, 1996; Bastow and Keir, 2011).

TECTONIC SETTING

The MER and Afar Depression formed as a result of the divergence of 
the Nubian, Somalian, and Arabian plates (Fig. 1) above an anomalously 
hot (e.g., Rooney et al., 2012; Ferguson et al., 2013), slow-seismic-waves-
peed mantle (Montelli et al., 2004; Benoit et al., 2006; Bastow et al., 2005, 
2008). Three plates interact within the Afar Depression, which comprises 
the subaerial Red Sea and Aden rifts and the northern termination of the 
MER. Whereas the MER opening is constrained to ~6 mm/yr, ~N100°E-
directed motion between Nubia and Somalia (e.g., Bilham et al., 1999), 
both the Red Sea and Gulf of Aden systems show time-averaged extension 
rates of ~15–20 mm/yr related to the ~N35°E-oriented Africa-Arabia rift-
ing (Fig. 1; e.g., Vigny et al., 2006; ArRajehi et al., 2010). These rates are 
augmented by discrete, large-volume dike intrusion events that accommo-
date decades to centuries of plate opening (e.g., Wright et al., 2012; Gran-
din et al., 2011). Geological, geodetic, and seismological measurements of 
active strain and magma intrusion across the Afro-Arabian rift zone show 
that south of ~16°N the rift bifurcates into two branches (the main Red Sea 
and the subaerial Red Sea rift in Afar), with an along-strike partitioning 
of extension. North of ~16°N, extension is within the main Red Sea Rift, 
whereas south of 16°N, extension is accommodated progressively on land 
within the Afar Depression (McClusky et al., 2010).
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Geological and geophysical data show that the MER-Afar system 
opened by faulting and magmatism, with along-rift variations in style of 
extension interpreted as the expression of different stages in an evolution-
ary rift sequence (e.g., Hayward and Ebinger, 1996; Keir et al., 2013). 
The crustal thickness decreases from >35 km beneath the southern-cen-
tral MER to <15 km in northern Afar (e.g., Makris and Ginzburg, 1987; 
Dugda et al., 2005; Stuart et al., 2006; Hammond et al., 2011), concomi-
tant with a decrease in elastic thickness of the lithosphere from >15 km 
in the southern-central MER to ~5 km in northern Afar (Fig. 1; Hayward 
and Ebinger, 1996; Pérez-Gussinyé et al., 2009). The seismogenic layer 
thicknesses show a similar decrease from ~15 km in the MER (Keir et al., 
2006) to ~5–7 km in northern Afar (Ayele et al., 2007; Nobile et al., 2012). 
Coincident with crustal thinning, geophysical and geological data indi-
cate a northward increase in the volume of mafic magmatic intrusions and 
extrusive volcanism, which is also associated with a reduction in the eleva-
tion of the rift floor from ~1700 m above sea level in the southern-central 
MER to below sea level in the Danakil Depression of northern Afar (e.g., 
Bastow and Keir, 2011; Keir et al., 2013). Whereas in the southern-central 
MER extension is mostly accommodated through tectonic faulting at rift 
margins, in the northern MER and Afar strain migrated in the past 3–7 m.y. 
from Oligocene and Miocene border faults to ~15-km-wide, 60-km-long 
axial zones of localized faulting and magmatism, where magma intrusion 
plays a larger role than faulting in strain accommodation (e.g., Ebinger 
and Casey, 2001; Wolfenden et al., 2005; Ebinger et al., 2013). Geophysi-
cal data suggest that as much as 50% of the crust beneath the axial zones 
of localized faulting and magma intrusion is new igneous material. Crustal 
tomography reveals the presence of anomalously fast, elongate bodies in 

the middle to lower crust extending along the rift axis as shallow as ~10 
km (Fig. 2; Keranen et al., 2004; Daly et al., 2008). These 20-km-wide 
and 50-km-long bodies are interpreted to represent cooled mafic intru-
sions (Keranen et al., 2004; Daly et al., 2008) containing at least 40% 
gabbro (Cornwell et al., 2006). The lateral variations in crustal properties 
and the presence of magmatic underplating make it difficult to unambigu-
ously image the Moho across the rift. In this study we assume that the 
entire width of the rift extended by ~50%, and that the narrow magmatic 
segments approach 100% extension, primarily through the intrusion of 
new igneous crust through a process analogous to slow-spreading mid-
ocean ridges (e.g., Iceland). The vertical and horizontal dimensions and 
density contrast of the large gabbroic bodies intruded into the crust during 
late-stage rifting have been interpreted to influence the vertical motions, 
state of stress, and architecture of the continental lithosphere (Keir et al., 
2006; Beutel et al., 2010).

The data have been interpreted to indicate an along-axis variation in rift 
evolution, from embryonic rifting in the southern MER to incipient oce-
anic spreading in northern Afar (e.g., Hayward and Ebinger, 1996; Pagli et 
al., 2012), where Pleistocene–Holocene narrow axial basalt ranges (e.g., 
Erta Ale) are interpreted to be subaerial equivalents of oceanic spread-
ing centers (e.g., Barberi and Varet, 1977). In the Danakil Depression of 
northern Afar, basalt flows from the axial ranges typically flow away into 
the lower lying, evaporite-rich basin (e.g., Pagli et al., 2012; Field et al., 
2012), creating a thick (to ~5 km) basin stratigraphy of thinly interbedded 
basalts and evaporites (Talbot, 2008), a geology typical of the seaward-
dipping reflector sequences observed at volcanic rifted margins (e.g., 
Planke and Eldholm, 1994; White et al., 2008). Tilting of basaltic flows 
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toward the rift axis has been observed in other areas of Afar (e.g., Tendaho 
Graben and Manda Hararo Rift, Acocella et al., 2008; southeastern Afar 
margin in Djibouti, Le Gall et al., 2011), with structural features display-
ing striking similarities with those of coastal flexures creating seaward-
dipping reflector sequences at volcanic rifted margins (Le Gall et al., 
2011). Our study therefore provides important constraints on the initiation 
of seaward-dipping reflector sequences at magmatic margins.

FLEXURAL MODELS OF MAGMATIC LOADING

Model Setup

For the analysis of the vertical deflection due to a surface or subsurface 
load on an elastic plate overlying an inviscid substratum we have used the 
numerical model by Li et al. (2004). The model is based on a high-order 
discretization with multigrid technique to solve the differential equation 
governing plate deflection, which is given by:

	 ( )( ) ( ) ( )= − ρ − ρ +D w∇ x y gw x y q x y, , ,m fill
4 ,	 (1)

where D is the flexural rigidity of an elastic plate, w(x,y) is the vertical 
deflection of the plate, r

m
 is the density of mantle, r

fill
 is the density of 

the material occupying the space created by the flexural subsidence, and 
q(x,y) is the net force per unit area exerted by the sum of applied loads: 

q(x,y) = r
load

gh
load

(x,y), where r
load

 and h
load

 are the density and thickness 
of the applied loads, respectively, and g is gravitational acceleration. The 
flexural rigidity D defines the resistance to bending of a continuous elas-
tic plate:
	 ( )=

− υ
D

ET

12 1
e
3

2
,	 (2)

where E is Young’s modulus, ν is Poisson’s ratio, and T
e
 is the effective 

elastic thickness of the plate; T
e
 represents the cumulative strength of a 

multilayered lithosphere to loading over the 104–105 yr time scales of isos-
tasy. The model simulates reversible and instantaneous (purely elastic) 
deformation once the load is applied.

Although both the Afar Depression and the northern MER are highly 
faulted, the spatial dimensions of the magma intrusion zones and the 
geological characteristics of rifting justify the use of a thin, continuous 
plate model. Current deformation is largely accommodated at the rift axis, 
where the thinned lithosphere is strongly modified by the extensive magma 
intrusion and extension occurs through a combination of magmatic intru-
sion and faulting. The zones of active deformation show small offset faults 
that may have formed above dike intrusions (Rowland et al., 2007), and 
there is no structural or stratigraphic information for large offset normal 
faults within the narrow magmatic segments (e.g., Wolfenden et al., 2005; 
Rowland et al., 2007). The time and length scales of active and time-aver-
aged deformation indicate that localized dike intrusion is more important 
in accommodating crustal strain over the past ~1 m.y. (e.g., Ebinger and 
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Figure 2. (A) Horizontal slice at 10 km depth of the three-dimen-
sional seismic velocity model of Keranen et al. (2004) highlight-
ing the occurrence of high P-wave velocity bodies below the rift 
axis interpreted as solidified magmatic intrusions. Magmatic 
segments are shown by black dotted lines. (B) Rift-perpendicu-
lar cross-sections. The vertical arrow in section A–A’ indicates 
the high-velocity body. The proposed subsurface continuation 
of faults is marked with dashed lines. The thick black lines 
mark 6.0 km/s, with minor contours at 0.2 km/s intervals. 
Depth of slice shown in panel A is marked by horizontal dotted 
line. (C) Density model (values in kg/m3) from high-precision 
gravity data across the Main Ethiopian Rift (from Cornwell et 
al., 2006). Where density values are labeled in green and blue, 
the green values correspond to the calculated Bouguer anom-
aly and the blue values correspond to the calculated Bouguer 
anomaly with regional trend subtracted.
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Casey, 2001; Wolfenden et al., 2005; Nobile et al., 2012; Ebinger et al., 
2013). The border faults, both in Afar and the (northern) MER, are rela-
tively inactive on the basis of seismic and field evidence, so that the faults 
are effectively locked at rift margins (e.g., Keir et al., 2006).

The three-dimensional (3D) model represents a plate with 250 × 250 
cells, with a mesh size of 5 × 5 km2; the load is applied on top of the 
continuous elastic plate (see Fig. 3). No initial topography of the bending 
plate (e.g., differences in elevation between the rift floor and the surround-
ing plateaus) was included in the models; this topography would simply 
be superimposed on the predicted plate bending. The following modeling 
results thus show the deformation as a result of the igneous load. A similar 
approach was used by Beutel et al. (2010) who studied deflection of two 
en echelon, rift segment–scale magma bodies (see discussion following).

The models are constrained by geophysical data of the tectonically 
active rift valleys of the MER zone. The values of T

e
 were varied between 

4 km and 15 km, according to the northward reduction in T
e
 constrained 

by the gravity and topography coherence studies of Ebinger and Hayward 
(1996) (Fig. 1). Values of Young’s modulus (70 GPa) and Poisson’s ratio 
(0.30) were taken from Beutel et al. (2010). For the typical dimensions 
and densities of the axial intrusion we used constraints from controlled 
and passive source seismic tomography, models of magnetotelluric data, 
and 2D and 3D models of gravity data (Keranen et al., 2004; Tiberi et al., 
2005; Cornwell et al., 2006; Whaler and Hautot, 2006; Daly et al., 2008) 
across axial magmatic segments in Ethiopia (Fig. 2). We used rectangular 
intrusions with 20 km width, 20–40 km length, and 10–16 km thickness, 
and a density contrast between the crust and the mafic intrusion of 210 
kg/m3 (Fig. 2C; Cornwell et al., 2006). The influence of the additional 
load imposed by synrift sedimentation was also considered: we used a 
density of 2380 kg/m3 for the sedimentary rocks (Cornwell et al., 2006), 
which were considered to completely fill the depression resulting from 
the intrusion-related flexure. In addition, in some models we considered 
the external load imposed by the presence of volcanic edifices, whose 
dimensions were based on volcanoes from the northern MER (such as 

Boseti: basal diameter 20 km, height 750 m, and volcanic rock density 
2700–2900 kg/m3).

RESULTS

We explored the deflection of the lithosphere induced by internal and 
external loading with varying plate thickness and size of magma intrusion 
both with and without synrift sedimentation (Figs. 4 and 5). The calcula-
tions show that the elastic plate bends in an ~100–150-km-wide region 
around the mafic intrusion zone with the amplitude of plate bending at 
a maximum above the center of the intrusions (Figs. 4A and 5). At the 
margins of the subsiding region, minor uplift (a few meters maximum) is 
observed, giving rise to a small forebulge as shown in Figure 5. The mag-
nitude of the bending is primarily dependent on T

e
 (i.e., flexural thickness), 

the presence of synrift sediments, and the dimensions (i.e., volume) of the 
intrusions (Figs. 4B–4D).

The main control is exerted by variations in T
e
, the decrease of which 

induces a prominent, nonlinear increase in plate bending: from ~200 m at 
T

e
 of 15 km, to ~400 m at T

e
 of 10 km, and to ~1000 m at T

e
 of 5 km (Fig. 

4B). At all values of T
e
, additional loading from synrift sediments approxi-

mately doubles the amount of subsidence (Fig. 4B). Increasing the length 
(Fig. 4C) or the thickness (Fig. 4D) of the intrusion also increases the sub-
sidence. Our calculations demonstrate that the load of a volcanic edifice 
increases the amplitude of the plate bending, but its contribution beyond 
that created by the internal load is limited (typically <10%–20%), with 
the effect more pronounced at lower T

e
 and when the size of the magma 

intrusion is smaller (i.e., decreasing the internal load; Figs. 4B–4D). In 
addition, the presence of a volcanic edifice has a more limited influence 
on plate bending than that of the sedimentary infill, despite volcanic rocks 
having a higher density (2700 kg/m3) than sediments (2380 kg/m3), a 
result related to larger volume of the subsiding region filled by sedimen-
tary rocks than that of the volcanic edifice. Comparison of plate bending in 
the case illustrated here of a single mafic intrusion with the case of two en 
echelon bodies (Beutel et al., 2010) shows no significant variation in sub-
sidence, with differences never exceeding ~50 m (Fig. 6). Additional tests 
made with variations in density and height of the surface volcano suggest 
no significant influence of these parameters on plate bending.

The relation between the maximum subsidence w
0
 and T

e
 is highly non-

linear and can be fit by a power function in the form w
0 
=

 
A T

e
–B, where 

A and B are parameters varying in the range 2.8–8.7 × 103 and 1.1–1.5, 
respectively, as a function of the variable load (presence of volcano, sedi-
ment infill, and length and thickness of the intrusion). This relation is of 
the same form as the dependence in the case of a line load (w

0 
= q

0
α3/8D; 

i.e., w
0 
~ A T

e
–B, where q

0
, α, and D are load, flexural parameter, and flex-

ural rigidity, respectively, and B = 3/4; e.g., Turcotte and Schubert, 2002).

DISCUSSION AND IMPLICATIONS FOR THE 
DEVELOPMENT OF SEAWARD-DIPPING REFLECTORS

Data from continental rifts and rifted margins worldwide indicate that 
significant extension can be accommodated by magma intrusion prior to 
the development of a new ocean basin (e.g., Ebinger and Casey, 2001; 
Thybo and Nielsen, 2009; Bastow and Keir, 2011). The emplacement of 
large volumes of magma into the lithosphere (and eruption at the surface) 
modifies its density profile and transfers heat to the plate, affecting the pat-
terns of long-term subsidence predicted by theoretical models of stretching 
and thinning of the continental lithosphere (e.g., Buck, 2004; Daniels et 
al., 2014). In particular, intrusion of large magma volumes in the litho-
sphere, as observed in the MER, may cause significant internal and surface 
loading resulting in plate flexure and rift subsidence (Beutel et al., 2010).
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Despite some inherent limitations (e.g., constant flexural rigidity and 
T

e
 throughout the model domain, simplified shape of the intrusions), our 

simple flexural models have allowed quantification of this process, signifi-
cantly extending the previous state of stress studies by Beutel et al. (2010). 
Although not included in our continuous plate models of intruded loads 
and surface (volcano) loads, analytical and numerical models provide 
insights into the role of in-plane tensional stresses on the shapes of the 
plate deflection beneath the volcanic loads (e.g., ten Brink, 1991; Ebinger 
and Hayward, 1996). Assuming a tensional stress of 2 × 1012 Nm–1 (e.g., 
Kusznir et al., 1991) applied to an 800-m-high line load on a plate with T

e
 

of 10 km would reduce the maximum subsidence by ~12% and broaden 
the depression by ~25%. Our results, therefore, are probably overesti-
mates of the maximum subsidence.

The results show a nonlinear increase in amount of subsidence when T
e
 

decreases, with the implication that as the plate weakens during progres-
sive thinning and heating during rifting, loading-induced subsidence will 

become an increasingly important mechanism driving rift evolution. In the 
MER, where T

e
 is typically >8–10 km, the effect of the large mafic intru-

sions imaged by geophysical data is relatively small (Beutel et al., 2010). 
However, thickening of the youngest sediments above the axial intrusions 
is suggested by the geometry of the low-velocity upper crustal layers 
imaged in seismic tomography by Keranen et al. (2004; see Fig. 2B): the 
uppermost units thicken dramatically directly above the intrusions, in con-
trast to deeper units that have a more uniform thickness across the rift. In 
addition, bending of the rift floor is visible in topographic profiles across 
magmatic segments, such as along a profile from the Asela-Langano 
boundary fault system into the Aluto-Gedemsa magmatic segment (Pizzi 
et al., 2006). Although the overall riftward bending may result from initial 
(Miocene) phases of basin downwarping (e.g., Zanettin and Justin-Visen-
tin, 1975; Kazmin et al., 1980), the architecture of recent (Pliocene–Pleis-
tocene) rift-related sediments (e.g., riftward tilting of Pleistocene–Holo-
cene alluvial fans) at the eastern (Asela-Langano) margin (see Agostini 
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2700 kg/m3. In C and D, all values are calculated with sediment infill.
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et al., 2011) points toward a recent tilting likely induced by axial magma 
intrusion (see also Pizzi et al., 2006; Fig. 7A).

An overall bending of the rift toward axial zones of intensive dike intru-
sion and magmatic construction has been observed in the southern Red 
Sea rift (Fig. 7B; Wolfenden et al., 2005), as well as in other regions of 
central-southern Afar (e.g., Tendaho Graben and Manda Hararo Rift, Aco-
cella et al., 2008; southeastern Afar margin in Djibouti, Le Gall et al., 
2011), creating an axis-dipping wedge of primarily basaltic flows analo-
gous to seaward-dipping reflector sequences imaged on volcanic margins 
worldwide (e.g., Eldholm et al., 1989; Planke and Eldholm, 1994). Intru-
sion-induced subsidence is expected to increase in northern Afar, where T

e
 

decreases significantly to ~5 km in the Danakil Depression (Ebinger and 
Hayward, 1996). In this area, the basin floor reaches below sea level and 
is dominated by young evaporite-rich basins bisected by the basalt-rich 
Pleistocene–Holocene Erta Ale volcanic range. Here, an active axial intru-
sion shallower than ~10 km depth is modeled by InSAR (interferometric 
synthetic aperture radar) data (e.g., Amelung et al., 2000; Pagli et al., 2012; 
Nobile et al., 2012). Limited borehole data suggest that the basin is filled 
by 3 km or more of interbedded Pliocene–Holocene evaporites and basalt 
flows (Hutchinson and Engels, 1972), suggesting that rapid subsidence of 

the region toward and below sea level accelerated during the past 5 m.y. 
Our models suggest that as much as 1 km of this subsidence (i.e., ~33%) 
is likely to be caused by the intrusion-related loading and plate flexure, 
which also accounts for the thickness of the basin fill. The remainder is 
caused by the response of the lithosphere to faulting and lithospheric thin-
ning, as well as localized subsidence above dikes as an elastic response 
directly above the mode-one opening at depth.

Loading of the lithosphere has been shown to create flexural stresses 
capable of controlling processes such as magma ascent and emplacement 
during extension and the spacing of volcanoes in rift settings; the load 
imposed by volcanic edifices has been considered the major parameter 
contributing to these flexural stresses (ten Brink, 1991). Our results, how-
ever, suggest that the contribution to subsidence by the load of a volcanic 
edifice is relatively small compared to the intrusion-induced subsidence. 
Our analysis indicates that volumetrically large crustal intrusions, rather 
than volcanoes, may have a strong control on rift morphology over time. 
The base of the bent plate will be in extension, facilitating the rise of 
magma, and serving to maintain the along-axis magma intrusion zones.

SU
BS

ID
EN

C
E 

(m
)

EFFECTIVE ELASTIC THICKNESS (km)

850

950

1050

1000

900

800

750
5 6

500
500

600

600

700

700

distance (km)

di
st

an
ce

 (k
m

)

2
in

tru
s

1
in

tru
s

Internal load
Internal+external loads

Internal load
Internal+external loads

-50

-150

-250

-350

-450

-550

-650

m

-750

Figure 6. (Top) Two-dimensional view of plate bending related to the 
presence of two en echelon intrusions (modified from Beutel et al., 
2010). (Bottom) Plot of maximum subsidence versus elastic thick-
ness T

e
 for a single or two intrusions (intrus) and variable loading 

(internal load only or internal + external loads). Values are calcu-
lated with sediment infill. Dimensions of intrusions: length 40 km, 
width 20 km, thickness 16 km.

S
ub

si
de

nc
e 

(m
)

S
ub

si
de

nc
e 

(m
)

Distance
(km)

-1400

-1200

-1000

-800

-600

-400

-200

0

200

450350 550 650

Te=6 km
Te=4 km

Te=8 km
Te=10 km

50

-50

-100

0
450350 400

Te=6 km
Te=4 km

Te=8 km
Te=10 km

Te=4 km

Figure 5. (Top) Profile showing plate deflection perpendicular to the 
long axis of the intrusion for different elastic thickness T

e
 (values 

calculated with internal + external loads and sediment infill; dimen-
sions of intrusions: length 40 km, width 20 km, thickness 16 km). 
(Bottom) Close-up of the model with T

e
 = 4 km showing a minor 

uplift giving rise to a forebulge at the margin of the subsiding region 
(maximum uplift is ~5 m).



Magma-induced axial subsidence during final-stage rifting

	 Geosphere, June 2015	 7

Corti_1076    1st pages  /  page 7 of 9

Figure 8 summarizes the general consequences of flexure caused by 
internal loads. After the initial phases of tectonic rifting, which may create 
asymmetric basins with depocenters in correspondence to the main bound-
ary faults, strain migrates to axial zones of localized faulting and magma 
intrusion, where significant subsidence is initiated when large volumes of 
magma intrude the lithosphere and accommodate extension. Intrusion-
related subsidence becomes an increasingly important mechanism driving 
increasing rift subsidence as the plate weakens during progressive rifting 
leading to the formation of new columns of hot weak lithosphere at nascent 
mid-ocean ridges. In the final stages of breakup, when thinning of the heav-
ily intruded, weakened plate induces a pulse of decompression melting 
and a significant increase in extrusive magmatism (see also Nielsen and 
Hopper, 2004; Bastow and Keir, 2011), the axial intrusion-induced subsid-
ence serves to progressively reorient the basalt sequences and interbed-
ded sediments to dip toward the future breakup boundary. Consequently, 
subsidence caused by high-density crust at zones of intrusion is a factor 
in the reorientation of originally subhorizontal flows to form the seaward-
dipping reflector sequences at the newly formed magmatic rifted margins 
as the rift breaks the continent and the rifted margins continue to subside 
below sea level while the heat transferred to the plate during rifting gradu-
ally dissipates (e.g., Wolfenden et al., 2005; Beutel et al., 2010; Bastow and 
Keir, 2011; Keir et al., 2013). Thus, this process may represent a contribut-
ing factor to the development of the seaward-dipping reflector sequences, 
which are normally interpreted as either resulting from progressive ocean-
ward flexuring of the lavas due to differential loading by the newly erupted 
flows (isostatic models; e.g., Palmason, 1980; Mutter et al., 1982; Mutter, 
1985; Eldholm, 1991) or tectonic features associated with fault develop-
ment (e.g., fault-related flexures controlled by major continentward-dip-
ping normal faults; e.g., Nielsen, 1975; Tard et al., 1991; Barton and White, 
1997; Geoffroy et al., 1998; Geoffroy, 2005; Quirk et al., 2014).
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ers, giving rise to a dominantly seaward-
dipping pattern of reflectors, as observed on 
magma-dominated rifted margins (modified 
from Keir et al., 2006; Beutel et al., 2010).
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