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Abstract: The small size of plasmonic nanostructures compared to the
wavelength of light is one of their most distinct and defining characteristics.
It results in the strong compression of an incident wave to intense hot spots
which have been used most remarkably for molecular sensing and nanoscale
lasers. But another important direction for research is to use this ability to
design miniaturized interconnects and modulators between fast, loss-less
photonic components. In this situation one is looking for the smallest
optical nanostructure possible while trying to mitigate losses. Here we show
that despite their high absorption, conductors are still the best materials
to reach the sub-wavelength regime for optical antennae when compared
to polar crystals and high-index dielectrics, two classes of material which
have shown a lot of potential recently for nanophotonic applications. It is
demonstrated through both Mie theory and numerical calculations that the
smallest possible, efficient, radiating antenna has a length L > λres/20 in
all cases (this length is typically L = λres/2 in microwave engineering),
including the redshifting mechanism induced by a background or substrate
refractive index, the effect of material loss and that of shape. In addition,
we show that although the assembly of individual particles can further
increase the miniaturization factor, it strongly increases the size-mismatch
in detriment of the overall efficiency, thus making this method unfit for
radiating antennae. By identifying the relevant dimensionless properties
for conductors, polar materials and high index dielectrics, we present an
unified understanding of the behaviour of sub-wavelength nanostructures
which are at the heart of current nanophotonic research and cast the upper
achievable limits for optical antennae crucial to the development of real-life
implementation.
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1. Introduction

Plasmonics is a relatively new and striving field of research of which one important goal is that
of merging photonic technology to electronic components [1]. This is traditionally achieved
by using the field confinement capability of nanostructured metal where the coupling between
the charge density fluctuations of the conduction electrons and electromagnetic waves results
in bound modes called surface plasmon polaritons [2]. These extremely appealing excitations
combine the properties of both photons and electric currents and are therefore foreseen as the
most promising entities to achieve the aforementioned merging [3]. This has led to the concept
of “optical” antennae which represents a scaling of the radio-frequency antennae down to sub-
micrometer sizes in order to react to the wavelength of visible light [4, 5].

There is a strong deviation from microwave antenna theory as the driving frequency is in-
creased caused by the so-called skin effect, which is an increased complex character of the con-
ductivity of a metal [6]. This allows for an additional miniaturization which cannot take place in
a near-perfect conductor and is the source of some of the most striking plasmonic applications,
such as emitters engineering [7], surface-enhanced spectroscopy and molecular sensing [8, 9]
or photothermal therapy [10], where optical antennae serve as an interface between the wave-
length of light and the size of molecules. However, as the size-mismatch increases between the
wavelength and the antenna size, the efficiency of the latter decreases in proportion; it results
in smaller components but at the cost of additional dissipation. In the present article, we will
explore the trade-off regime across a wide range of frequencies, looking for the smallest pos-
sible antenna with a workable efficiency which we define by dominating radiating properties
compared to the absorption.

In recent years, researchers have identified alternative avenues to metals as a way to achieve
light confinement. For instance, similarly to noble metals, semiconductors exhibit plasmonic
properties which can be tuned across a wide spectral range, from the near-infrared down to the
terahertz regime, simply by varying their carrier concentration [11, 12]. This is also the case
for the promising 2D material graphene, where the atomic thickness can produce an unprece-
dented compression of the field [13–15]. But polaritons, these surface modes binding light



to interfaces, can arise in polar crystals alike thanks to the stimulation of charged transverse
optical phonons [16, 17]. Finally, the use of high refractive index dielectrics can give rise to
gigantic sub-wavelength hot spots [18–21]. Because the compression of light in these systems
originates from different physical mechanisms, we can expect different figures of merit for the
miniaturization of antennae and therefore we will explore those in detail in the following.

We will start by using Mie theory, investigating the first order resonance supported by small
spheres made out of these materials. This will allow to analyze in detail the effect of the material
properties as well as the achievable radiation efficiency and miniaturization of these systems.
Next, we will consider the case of elongated particle through finite-difference time domain
(FDTD) calculations and making use of the effective wavelength theory developed by Novotny
[22]. Last, we will study the influence of the background refractive index and the redshift caused
by the assembling of particles.

2. Materials under investigation

We choose to investigate here the performance of three categories of materials in which the
compression of free-space light is achieved through completely different physical effects in
order to cover as vast a ground as possible. First of all, we consider the modes supported by
high-index dielectrics (HID) which have experienced recently a surge in popularity within the
nanophotonic community [23–29]. This stems in large part because of their extremely small
losses in the visible range making them attractive alternative to the predominant noble metals
[30]. However, as we will see, as the wavelength of radiation increases dissipation in dielectrics
can become relatively high although it is typically accompanied by large rise in the dielectric
constant as well. The lowest order mode of a spherical dielectric particle is named the magnetic
dipole (MD) and can be found at the wavelength λres = nD, where n is the index of the dielectric
and D its diameter. This means that HID resonators can never beat the diffraction limit, however
extremely high index can allow deeply sub-wavelength elements. Note that for low aspect ratio
particles the electric dipole can even be located at higher frequency than the corresponding
magnetic dipole [31]. More generally, the following relation describes the complex index ñ of
HID

ñ2 = ε = ε
′(1+ i tanδ ) with tanδ = ε

′′/ε
′ (1)

where the dielectric constant ε ′ and the loss tangent tanδ are used in a similar fashion for high-k
ceramics in microelectronics.

By far the most widely used materials for nanophotonics, conductors have risen as a pow-
erful ingredients for sub-diffraction applications [2]. This originates from the stimulation of
surface plasmons below the plasma frequency ω2

p = Nq2
e/ε0m∗, with N the charge carrier con-

centration, qe and m∗ the charge of the electron and effective mass of the charge carrier, and
ε0 the permittivity of free-space, which cause a formidable confinement of the incident light.
The behaviour of conductors is well reproduced by a Drude model in the absence of interband
transitions

ñ2 = ε = ε∞−
ω2

p

ω2 + iΓω
(2)

with ε∞ the permittivity due to the ion background and Γ = 2π/τ the charge carrier scattering
rate (τ being the scattering time). While the performance of conductors decrease fast away from
ℜ{ε}=−2, i.e. above 600 nm for noble metals, the possibility to tune the carrier concentration
N in semiconductors allow to span a large range of frequency from the near-infrared down to
the terahertz regime.

Last, another class of emerging materials is that of polar crystals in which photons can couple
to surface phonons rather than surface plasmons thanks to the charge carried by their transverse



lattice oscillations [32]. These are foreseen as promising components for plasmonic-like capa-
bilities within the terahertz to mid-infrared ranges in which the optical phonons can be stim-
ulated. They suffer from reduced absorption compared to conductors because of the absence
of Joule heating, leading to scattering time two orders of magnitude longer; it is therefore im-
portant to realize that those materials exceed the performance of noble metals only when their
operating frequency is more than a hundredth that of the visible range. A Drude-Lorentz model
is used to describe their dielectric function

ñ2 = ε = ε∞ +
ε∞(ω

2
LO−ω2

TO)

ω2
TO−ω2− iΓω

with
ω2

LO

ω2
TO

=
εst

ε∞

∼ 1.44 (3)

with ωLO and ωTO the longitudinal and transverse optical phonon frequencies. We see that the
permittivity is only negative, i.e. with a plasmonic-like behaviour, in between these two phonon
modes which consists in the most severe limitation of polar crystals. Indeed, that frequency
range is fixed for each material and rather reduced, as attested by the Lyddane-Sachs-Teller
(LST) relationship ω2

LO/ω2
TO = εst/ε∞ [33]. Although it can be as high as 9 for very ionic

materials such as fluorides, bromides or chlorides, it is way below 2 for most practical cases
like silicon carbide or boron nitride. Given the strong absorption band at the TO frequency, we
can already see that any redshifting mechanism will be detrimental to this category of material
and it is therefore most useful for deeply sub-wavelength resonators.

3. Results and discussion

The total amount of light interacting with a particle is termed the extinction cross-section and
is given by Cext = Cabs +Csca, with Cabs and Csca the absorption and scattering contributions.
One also refers to the optical efficiencies Qi = Ci/A which quantify the relative capture area
of a particle relative to its physical cross-section A [7]. While it is well-known that in very
small size “plasmonic” nanoparticles, most of the captured light is absorbed, we will focus here
on antenna applications. This implies that the radiative contribution Csca should dominate the
optical process, i.e. that the radiative efficiency η = Csca/Cext ≥ 50%, which puts a limit on
the miniaturization. We note however that small particles remain crucial for schemes such as
molecular sensing or photothermal therapy.

3.1. Spherical particles

We consider first the case of spherical particles as it allows us to make use of Mie theory [34].
As we will see, this analytical framework provides us with a good general understanding of the
effect of losses, size and the behaviour of the dielectric function. We will turn to the case of
elongated particles, namely rods, in the subsequent subsection.

Fig. 1a reports the lowest energy resonance wavelength of dielectric spheres with radius
R = 10 µm and permittivity given by equation 1 with the real and imaginary part varying along
the horizontal and vertical axis respectively. More precisely, the colormap represents the dimen-
sionless quantity λres/2R which defines the miniaturization factor. These results are therefore
scalable across the whole electromagnetic spectrum as long as the value of the complex permit-
tivity is similar. Furthermore, the benchmark value for this factor is λres/L = 2 corresponding
to the resonance condition of the conventional half-wave dipole antenna used in microwave
engineering. We note that the most common dielectrics and semiconductors have a dielectric
constant hardly in excess of 10 giving rise to confinement at resonance smaller than 10. Simi-
larly, although λres/D > 50 is theoretically possible for ε ′ > 3000 no such natural material is
available to the best of our knowledge. However, very high indices are accessible in the mi-
crowave regime close to polar resonances in ferroelectrics or the Reststrahlen band in polar
crystals [35, 36]. As stated earlier, we are interested in those resonances for which η ≥ 50%,
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Fig. 1. a) Resonance wavelength λres of the first order mode for a dielectric sphere of radius
R = D/2 = 10 µm as a function of its permittivity given by equation 1 with the dielectric
constant and loss tangent varying logarithmically along the horizontal and vertical axis
respectively, b) resonance wavelength of the lowest energy mode for which η ≥ 50% and
c) η ≥ 90% for the same dielectric sphere.

a condition which modifies considerably the picture as shown in Fig. 1b. Note that this corre-
sponds to a ratio Qscat/Qabs ∼ 1. One can see that the best miniaturization is achieved at low
losses, for the magnetic dipole mode, and is maximum at λres/D∼ 16. At this maximum value,
the extinction efficiency Qext can be as high as 80. A more efficient system with η ≥ 90%
(Qscat/Qabs ∼ 10) is also shown in Fig. 1c which reduces even further the achievable miniatur-
ization, to about λres/D∼ 7 (Qext ∼ 50). For lower tolerances on loss, such as η ≥ 99%, there
is close to no acceptable tanδ for the parameter space probed and one is limited by the quality
of materials. This condition brings also the miniaturization closer to the microwave limit of
λres/D ∼ 2 so that there is little gain compared to using the sophisticated designs which have
been developed for perfect electric conductor (PEC) at low frequencies. This conclusion also
stands for conductors and polar materials but there the range of acceptable parameters is much
more extended or non-existent making them quite robust or unsuitable, respectively.

Next we study the potential of conductors according to equation 2 with ε∞ = 1 and ωp =
2π · 1200 THz (λp = 0.25 µm) varying the size of the particle, see Fig. 2a. One can see that
the maximum confinement is much more limited than for HID, nonetheless the global result
when imposing η ≥ 50% and 90%, see Fig. 2b and c, is very comparable at about λres/D∼ 16
for D = 0.12λp with Qext ∼ 80 and λres/D ∼ 7 for D = 0.26λp with Qext ∼ 40 respectively.
When ε∞ is increased to 10, the resonances are markedly redshifted, although this improves the
miniaturization factor for the first resonance, the increased size mismatch with the wavelength
of light translates into a reduced Qsca, see Fig. 7. This leads to λres/D, Qext and λp/D being
halved compared to the free-electron case (ε∞ = 1) for η ≥ 50% and 90%.

Last, let us look at a polar crystal with ε∞ = 1, ωTO = 2π · 10 THz and ωLO = 2π · 12 THz
(λLO = 25 µm), see equation 3. Thanks to the strong dispersion towards the TO phonon, light
compression is an order of magnitude stronger than for conductors with a 10 times larger parti-
cle, see Fig. 3a. The trade-off for a dominating scattering contribution is comparable to that of
a conductor though, at about D = 0.12λLO and 0.27λLO for η ≥ 50% and 90%. Unfortunately,
the narrow spectral region for which ℜ{ε} < 0 together with the absorption line of the TO
mode reduce dramatically λres/D to 8 and 3.5 and Qext to 25 and 8 respectively. Because of
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Fig. 2. a) Resonance wavelength λres of the first order mode for a conducting sphere with
a permittivity given by equation 2 with ε∞ = 1 and ωp = 2π · 1200THz (λp = 0.25 µm)
in function of its diameter D and scattering rate Γ, b) resonance wavelength of the lowest
energy mode for which η ≥ 50% and c) η ≥ 90% for the same conducting sphere.

the restricted permittivity range available in a polar crystals, the effect of ε∞ or the backgroud
index is rather limited.
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Fig. 3. Resonance wavelength λres of the first order mode for a polar sphere with a
permittivity given by equation 3 with ε∞ = 1, ωLO = 2π · 12THz (λp = 25 µm) and
ωTO = 2π ·10THz in function of its diameter D and scattering rate Γ, b) resonance wave-
length of the lowest energy mode for which η ≥ 50% and c) η ≥ 90% for the same polar
sphere.

3.2. High aspect ratio particles

We now turn to elongated rods as this is, after an increase in size, the most typical way of
redshifting further the optical response of scatterers [7]. In the following calculations, the po-
larization is always directed along the largest dimension of the particles, which we refer to as
length.
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Fig. 4a plots the extinction efficiency of a sphere with D = 1600 µm in the high gigahertz
range made out of barium titanate (BaTiO3, ε = 2000+ 500i [36]) as calculated by FDTD.
One can clearly see that as the aspect ratio of the particle is increased from the sphere (black
curve) to thin bars with cross-sections 800× 800 (blue), 400× 400 (red) and 200× 200 µm2

(green), the lowest energy resonance narrows down and strengthens, however, its spectral posi-
tion blueshifts, rather than redshifts, if anything. This is because the resonance wavelength of a
dielectric cavity is mostly defined by the index of the material and its size. More, we note that
the relative radiation efficiency Qsca/Qabs does not improve with a change of the particle shape
for that lowest energy mode, see Fig. 4b.

The picture can become somewhat complicated if one studies materials with a negative per-
mittivity such as conductors and polar dielectrics, because they support localized modes which
are highly dependent on the shape of the particle [7]. Nonetheless, if we consider rods with a
circular cross-section, it is possible to make use of Novotny’s approach [22] which was recently
extended to absorbing materials by Demetriadou and Hess [37] where we use the z4 solution
which is the only one to bear physical sense. This effective wavelength theory consists in a
scaling of the microwave half-wave antenna formula λ0 = 2L by determining the velocity fac-
tor k0/γ which satisfies λe f f = 2L where λe f f = λ0k0/γ−4R with k0 = 2π/λ0 the wavevector
of light in free space and R the radius of the rod. In that framework, one is looking for the high-
est possible λ0/λe f f ratio which translates into a strong miniaturization factor. Fig. 5a reports
the expected confinement for conducting rods with the same permittivity considered before for
different radii R = 5−200 nm. Because of the skin depth effect, thinner wires allow a stronger
compression of the light as is well-known from plasmonics [22]. More specifically, a conduct-
ing rod with R = 5 nm leads to a miniaturization λ0/L = 8 (i.e. λ0/λe f f = 4). One can therefore
conclude that rods can not achieve as high a scaling as that offered by the small spheres pre-
sented in Fig. 2. Note that the asymptotes at small wavelengths arises from the breakdown of
the assumption of wires R << L.



Fig. 5. a) Effective wavelength scaling λ0/λe f f for a conducting nanorod with a permittiv-
ity given by equation 2 with ε∞ = 1, ωp = 2π ·1200THz (λp = 0.25 µm) and Γ = ωp/500
in function of its radius R in a background with index a) nbg = 1 and b) nbg = 2. Note the
asymptotes towards short wavelengths which originate from the breakdown of the assump-
tion of a nanorod, i.e. D << L.

3.3. Effect of a background index

To terminate this overview on the miniaturization capabilities of radiating antennae, we inves-
tigate the effect of the background index and the redshift accompanying the coupling between
multiple elements for the case of conductors. Dielectric resonances are dependent on the in-
dex contrast, as such an increase in the background index or the presence of a substrate will
only lead to a reduced wavelength compression [38]. Furthermore, as we showed earlier, the
resonance wavelength in these systems is given by the total length, therefore the resonance of
assemblies can only be at equal or higher energy than that of the spheres discussed before.
On the other hand, polar materials are hampered by the strong TO absorption line and hence
redshifting mechanisms are either detrimental or of little effect.

Back to conductors, we see that an increase in the background index redshifts most strongly
the resonance of the smallest particles as expected, see Fig. 8a, resulting in up to a factor ∼ nbg
increase for those. As the particle size increases, the effect weakens and almost disappear for
the largest spheres. The presence of a substrate rather than a homogeneous background would
have an even more limited effect. When one imposes the condition η ≥ 50% and 90%, the
miniaturization is not improved by the background index nor is it much undermined, see Fig.
8b and c. The optimum size is simply shifted to D = 0.25λp and 0.6λp while Qext ∼ 60 and 25,
respectively. This stems from the exponentially decaying dependence on the background index
as the size of the particle increases.

In the case of the conducting rods, see Fig. 5b, the shift is largest for the thinnest particles,
again as expected, with a shift also comparable to ∼ nbg for R = 5 nm. As a side note, let us
highlight the interesting fact that a conductor with increased loss (larger Γ) exhibits a stronger
plasmonic behaviour leading to an improved wavelength compression, see Fig. 9. However,
one should pay attention to the radiation efficiency η in that case, as it is not considered in
our simple effective wavelength analysis. This can be fully taken into account by the model
developed by Dorfmüller et al. [39, 40] to which we direct the interested reader but is beyond
the scope of the present article.



3.4. On the assembly of particles

It has been shown recently by Li and co-workers [41] that an alternative route to the minia-
turization of antenna can be achieved by placing small elements in conductive contact to each
others, see Fig. 10 for an example. This can give rise to an additional 200% wavelength scaling
under optimal circumstances and up to 300% if one uses core-shell instead of plain particles.
The individual particles are also more sensitive to the background index than the equivalent
rod enabling strong redshifting mechanisms, as shown in Fig. 10. However, this method poses
two important problems. The first and most obvious issue is that the fabrication and assembly of
touching spheres is long and tedious. The second aspect is more treacherous and is related to the
radiation efficiency η . To illustrate this issue, we calculated by FDTD the cross-sections of five
touching spheres and a rod of equal diameter and equivalent total length (L = 5×D) made out
of a conductor with a permittivity close to that of indium antimonide (m∗ = 0.014 ·me, ε∞ = 16,
N = 1016 cm−3 and Γ = ωp/10) [42], see Fig. 6a. Note that the polarization is aligned along
the bars and particle chains. As one can see, although the extinction efficiency is smaller for the
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Fig. 6. a) Extinction efficiencies Qext of 5 touching InSb spherical particles with D = 60
(blue dashed) and D = 100 µm (red dashed) compared with InSb antennae with respec-
tive length L = 5×D and square cross-section of D×D (full lines). b) Relative radiation
efficiency Qscat/Qabs for the same structures than in a).

sphere assembly, its first resonance is located at lower energy that that of the equivalent rod.
But more importantly, because of the greater size mismatch between the individual spheres and
free-space light than between the latter and the rod, the relative scattering contribution is much
smaller than the absorption for the assembly, see Fig. 6b. Furthermore, by considering a size
of the individual nanoparticles which leads to Qsca/Qabs ∼ 1 (D = 100 µm) or Qsca/Qabs < 1
(D= 60 µm), we conclude that the assembling cannot improve nor modify notably the radiation
efficiency. Indeed, we see that in both cases Qsca/Qabs is largely unaffected by the assembling
compared with the single sphere. At the opposite, the rods are much more efficient with a strong
scattering contribution. This means that as long as radiating antennae are concerned, the method
of assembly is not favourable.

4. Conclusion

In this contribution, we identify the dimensionless physical quantities which allow us to de-
scribe and compare optical antennae made out of three categories of materials: polar crystals,



high index dielectrics and conductors. Although the physical principles at the origin of their
strong optical properties differ, comparable behaviour are observed for all three cases. This is
particularly true when one considers antennae for which the radiative contribution dominates.
Furthermore, we show that in this situation the ratio between the wavelength of light and the
antenna size is below 20 in all cases (it is 2 in the microwave regime) including all possible
redshifting mechanisms such as that of shape, background index or coupling (assembly). Strik-
ingly, and contrary to expectations, we see that conductors are still the best optical materials for
the fabrication of radiative miniaturized antennae when all factors are taken into account. These
conclusions bring an interesting perspective on the current trends in state-of-the-art nanopho-
tonics and provides us with the upper achievable limits in antenna miniaturization.

Appendix A

In this appendix, we present additional figures showing the variation of the miniaturization fac-
tor caused by an increase of the high frequency permittivity ε∞ (Fig. 7) or the background index
(Fig. 8) for conducting spheres or the losses (Fig. 9) for conducting wires. We also reproduce
in Fig. 10 and expand on the results of Li and co-workers [41] highlighting the additional shifts
induced by replacing a gold bar (full lines) by an assembly of five touching spheres (dashed
lines) with equivalent total length and light polarised along it. These two systems are placed in
air (black curves), on glass (blue curves) and in glass (red curves). Note furthermore, that this
figure considers periodic arrays from which only the transmittance is extracted thus overlook-
ing changes in the ratio between radiative and absorbing contributions which are discussed in
detail in Fig. 6 for a similar system.
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Fig. 7. a) Resonance wavelength λres of the first order mode for a conducting sphere with
a permittivity given by equation 2 with ε∞ = 10 and ωp = 2π · 1200THz (λp = 0.25 µm)
in function of its diameter D and scattering rate Γ, b) resonance wavelength of the lowest
energy mode for which η ≥ 50% and c) η ≥ 90% for the same conducting sphere.
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Fig. 8. a) Resonance wavelength λres of the first order mode for a conducting sphere with a
permittivity given by equation 2 with ε∞ = 1 and ωp = 2π ·1200THz (λp = 0.25 µm) in a
background index nbg = 2 in function of its diameter D and scattering rate Γ, b) resonance
wavelength of the lowest energy mode for which η ≥ 50% and c) η ≥ 90% for the same
conducting sphere.

Fig. 9. a) Effective wavelength scaling λ0/λe f f for a conducting nanorod with a permittiv-
ity given by equation 2 with ε∞ = 1, ωp = 2π · 1200THz (λp = 0.25 µm) and Γ = ωp/3
in function of its radius R in a background with index a) nbg = 1 and b) nbg = 2. Note the
asymptotes towards short wavelengths which originate from the breakdown of the assump-
tion of a nanorod, i.e. D << L.
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Fig. 10. Extinction of a periodic array (Λx = Λy = 600 nm) of 5 touching Au spheres
(dashed lines) with D = 60 nm in air (black), on glass (blue) and in glass (red) compared
with their respective equivalent Au rods (full lines) with L = 5×D and square cross-section
D×D.
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