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Abstract

Sensing is to date one of the most successful applications of surface plasmons thanks

to the exceptional field amplification and sensitivity of these modes in metallic nanos-

tructures. Here we introduce a promising detection scheme based on the propagation

of strongly confined anti-bonding plasmons supported by graphene sandwiches. In-

stead of measuring changes in the refractive index or enhancing a restricted number

of molecular absorption lines, the proposed device can recover an extended portion

of the infrared spectrum of a molecule. Moreover, the extreme compression of light

in graphene means that a diluted 2 nm-thick analyte can cause up to 3 dB intensity

changes. The broadband capability and sensitivity also imply that one can easily iden-

tify different chemicals in a mixture and extract their respective concentration. We

conclude by presenting a simple experimental set-up based on this mechanism for in-

frared spectroscopy which could become a cheap Fourier transform infrared accessory

and an alternative to crystal-based attenuated total reflection spectroscopy.
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Sensing has always been an important driving force and is still subjected to an intense re-

search in the nanophotonic community. This stems in large part from the understanding

of the role of localized plasmons in the gigantic signal amplification observed in surface-

enhanced spectroscopy (SES)1 such as SERS2 (for Raman scattering) and SEIRA3 (for

infrared absorption). Subsequent commercial applications in the mid-nineties of pregnancy

tests based on metal colloids4 finished to establish plasmonics has a cheap and powerful

detection technique. The interest in surface plasmons, these collective oscillations of the

conduction electrons in conductors, lies in the intense hot spots that can be found in their

vicinity as well as the sensitivity of these modes to their surrounding environment. This led

on one hand to SES where molecules near metallic nanostructures exhibit increased vibra-

tional fingerprints.5–8 On another hand, the plasmonic modes in chemically prepared metallic

colloids,9–11 or more advanced and flexible geometries obtained by top-down fabrication tech-

niques,12,13 will experience drastic spectral shifts upon molecular adsorption. Both methods

have proved robust and commercially viable, however they suffer from some limitations. For

example in SEIRA, the resonances in metal nanoparticles are much narrower than the whole

spectrum of molecules and so only a few vibrational modes will be amplified.6–8,14,15 In index

sensing, the whole specificity is provided by the chemical preparation of the metal surface,

which can be long and tedious, and anything which can bind will produce a signal.

In order to circumvent both issues, we propose here to use the broadband field ampli-

fication provided by propagating surface plasmons in the infrared. This gives access to an

extended part of a molecular spectrum allowing its clear identification in a read out fashion.

To further improve the sensitivity we additionally rely on plasmonic excitations in doped

graphene.

Graphene has emerged as an exciting platform for condensed matter physics,16 and its

optical17,18 and electrical19 properties are fascinating, as it exhibits for instance room tem-
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perature quantum Hall effect and quantized transparency.20,21 As much as pristine graphene

which is attractive because of its Dirac cone dispersion and gaplessness,22 doped graphene

allows a strict control over the interband and intraband transitions which can take place.23,24

This tunability is foreseen as one of the key advantage of graphene over metals for applica-

tions in nanophotonics.25 However, there is more to graphene plasmonics than the appealing

operational range covering the near-infrared to the THz regime.26–28 The most impressive of

which is probably the extreme compression of these surface waves with lateral confinement

extending only a few nanometres away from the graphene sheet.29–33 Furthermore, the trans-

parency of graphene gives rise to particular hybridized modes in coupled sheets.34 This is

even more striking in paired ribbons where the contribution from the edges can result in un-

expected field profiles.35,36 The unmatched localization of light in graphene nanostructures

also implies a much improved sensitivity to the direct environment than for metal-based

plasmonics.

Principle of broadband sensing

In our previous work, we investigated thoroughly the strongly confined plasmon modes which

are supported by graphene ribbon sandwiches.36 In particular, we showed that for small

enough gaps, such geometry can sustain an anti-bonding waveguide mode in which the lo-

calized field lies within 2 nm from the external surface, see Figure 1a for an example. Here we

prove that this mode is well adapted for a promising sensing scheme based on propagating

surface plasmons polaritons (SPPs). Unlike existing plasmonic detection techniques which

rely on spectral shifts caused by changes in the environment refractive index,37,38 the pro-

posed method rely on the broadband localization capability of propagating SPPs. The basic

principle is to measure the intensity of the SPPs after propagation through a thin layer of

the analyte compared with that of a clear channel. Since molecules exhibit strong absorption

lines in the infrared, the propagation losses will be greater at those frequencies. Therefore

the spectral intensity profile of the SPPs at the exit of the analyte will directly map its

3



absorption spectrum. This reminds of the more classical way of measuring the absorbance

of samples. One would pass light through a given thickness of the material and extract

from the reduced intensity at the output the amount of absorption light suffered. The main

difference lies in the volume of analyte required. Indeed, since SPPs are compressed both in

the lateral and propagation directions, the volume of the analyte for a similar signal to that

obtained with free space light is drastically reduced. Alternatively, one can realise that the

infrared absorption of a molecule is proportional to the intensity of the field. One of the main

appeal of SPPs being the gigantic local field enhancement, the absorption cross-section of

an analyte bathed by SPPs is increased by a few orders of magnitude. While typical SEIRA

is also based on the field enhancement provided by metallic nanostructures, the associated

localized plasmons in those are relatively narrowband spectrally speaking. As a result, only

a few absorption peaks mostly located on the redside of the plasmonic resonance are gener-

ally observed. On the reverse, SPPs are intrinsically broadband, existing at all frequencies

below their electrostatic asymptote at ωspp = ωp/
√

2 where ωp is the plasma frequency (or at

ωspp = 1.667µ/~ for doped graphene where µ = EF is the chemical potential or Fermi level

and ~ Planck’s constant). Therefore one can benefit from their enhancement capability over

a large portion of the electromagnetic spectrum as long as they can be excited. This last step

can prove difficult to achieve as SPPs usually exhibit a strong dispersion with energy. In the

situation where the frequency window of interest is at sufficiently small energies compared

to ωspp and not too close to the cut-off frequency in the case of guided modes, the disper-

sion is sufficiently flat to allow an efficient coupling over a broad range. Last, let us stress

that although the proposed sensing scheme could be performed with SPPs on metal surfaces

alike, the large compression of SPPs in graphene allows to probe a much smaller volume of

analyte. With the presented geometry, a 10% concentrated 2 nm-thin analyte layer leads to

a 3 dB signal after only a 10 µm-long SPP propagation.
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Results and discussion

Guided plasmon modes in graphene sandwiches

The doping of graphene induces the presence of free carriers which can be stimulated col-

lectively to form surface plasmon polaritons similarly to those supported by metals. Those

excitations propagate along the plane of the graphene sheet and are confined in the perpen-

dicular direction hence their appellation as surface waves.39 When the sheet is patterned

into ribbons, the finite width leads to an additional confinement in the lateral direction giv-

ing rise to guided modes such as the ones found in dielectric waveguides. As the order of

the waveguide mode increases, the ratio between the lateral and longitudinal components

of the wavevector increases until it reaches the condition equivalent to that of total reflec-

tion at which point the modes cease to be bounded. Thanks to its vanishing thickness and

linear dispersion, ribbons made out of graphene exhibit a particular mode spectrum which

was investigated in detail by Nikitin and co-workers.29 Although sheets which are vertically

spaced produce the expected symmetric and anti-symmetric combinations of the surface

plasmons34 known as short and long-range modes within the plasmonic community,40 the

transparency of graphene and the extremely confined modes propagating along the edges41,42

complicate and enrich markedly the hybridization process. Christensen et al. studied thor-

oughly those modes focusing on narrow ribbons where the contribution from the edges was

greatest and derived a useful scaling law in order to predict their spectral behaviour in paired

ribbons.35 We further considered wide graphene ribbon sandwiches where we showed that

waveguided modes were forming bonding and antibonding supermodes along with hybridized

edge modes.36 While the bonding waveguide modes in which the field is concentrated within

the gap region were proposed as appealing building blocks for nanocircuitry, the antibonding

waveguide modes were seen as a potential plateform for sensing thanks to the field confine-

ment taking place right at the surface of the sandwich. We will now prove that the latter

is indeed attractive for molecular detection and moreover particularly well adapted for the
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proposed broadband sensing scheme.

Drawing on our previous results, we consider doped graphene with a chemical potential

µ = EF = 0.5 eV and a charge carrier scattering rate Γ = 0.1 meV. The two graphene

ribbons are separated by a 2 nm-thick dielectric spacer with n = 1.5 and toped with a 2 nm-

thick analyte layer, see Figure 1b. Furthermore, following the designing guidelines provided

in Reference,36 the ribbons width is set to 600 nm in order for the sandwich to support

anti-bonding waveguide modes, the field profile of which is shown in Figure 1a. The top

Figure 1: a) Field distribution of the first order antibonding waveguided plasmon mode in
the proposed graphene sandwich at ν = 33 THz with nsub = 3.4. b) Cross-section of the
geometry investigated consisting of two vertically spaced graphene ribbons 600 nm wide on
a n = 1.5 or 3.4 index substrate and covered by a 2 nm-thin analyte layer with index close to
1.5, the spacer is also 2 nm thin with n = 1.5. c) Field distribution of the same mode than
a) at ν = 32.4 THz where phase matching leads to the stimulation of a high-order bonding
waveguided plasmon mode with lateral wavevector kx.

layer has an index of 1.5 for the reference channel calculation and a 10% diluted complex

index ñ ∼ 1.5 extracted from the absorption spectrum of phenol in the case of the analyte,

see the Methods section for full details. We focus our investigation here to the frequency

range 31-40 THz (1033-1333 cm−1 or 9.7-7.5 µm) corresponding to a region of the infrared

where most molecules exhibit fingerprint-like absorption peaks. The guided plasmon modes

are calculated by finite-element method (FEM), see the Methods section, and are defined

on one side by their propagation constant (or wavevector) β which defines the amount of

compression of the light and on the other side by their propagation length L which quantifies

their propagation loss. The plasmon modes have a wavelength λp = λ0/β and an evanescent

decay away from the graphene δ ∼ 1/2β. Their propagation length is defined as a 1/e ∼ 37%
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decrease in intensity.

Figure 2 presents the normalized wavevectors (to the incident light wavevector k0, full

lines) and propagation constants (to the plasmon wavelengths λp, dashed lines) of the first

order anti-bonding waveguided plasmon modes in the case of a n = 1.5 (in blue) and 3.4 (red

line) substrate without the analyte. The propagation length is also shown in absolute values

in Figure 4. Apart from the very distinct dispersions of the two substrates cases, which

Figure 2: Normalized propagation constant β/k0 (full lines) and normalized propagation
length L/λp (dashed lines) of the first order antibonding mode in the geometry presented in
Figure 1b. The blue line is for nsub = 1.5 and the red curve is for nsub = 3.4.

is caused by a shift of the cut-off frequency of the mode due to the substrate index, let us

highlight the existence of peculiar dips which appear in the propagation length curves even in

the absence of an absorber. As we will see in the following, these modes bear no influence on

the functioning of the device and are normalized out in the final results. They are caused by

phase matching between the anti-bonding wageguide mode and high orders bonding modes

which are propagating within the gap, as shown in Figure 1c. Those are strictly confined

to the gap region and in consequence do not sense the molecule. This is why their effect

cancels out when normalizing by the reference channel. These dips are regularly spaced at

frequencies where the propagation constant of one of the bonding modes match the one of

the antibonding plasmon.36
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Robustness of the modes

To further investigate the feasibility of such scheme, we have considered the case of a low

and high index substrates as illustrated in the previous figure. The results prove that a

symmetric environment is not necessary for the modes to exist, more, a substrate with a

higher index leads to a reduced plasmon wavelength and therefore an increased sensitivity

of the device, as we will see. With the parameters chosen here, it can be concluded that

the high index substrate is also more appropriate because it leads to a smaller dispersion

improving the coupling efficiency from free-space light.

Next, we analyse variations in the index of the top layer and background index in the

range 1-2 and conclude that the modes are extremely robust. Figure 3 reports the normalized

propagation constant (full lines) and propagation length (now normalized to the free space

wavelength λ0, dashed lines) for the substrate with n = 3.4 and let the 2 nm-thick spacer

index fixed at n = 1.5. For the sake of clarity we show here the variations only at the

first (31 THz, in blue) and last frequency (40 THz, in red) investigated. We span on one

hand the index of the 2 nm-thick top layer keeping the background to n = 1, see Figure 3a,

and on the other hand the index of the background with nlayer = nmol = 1.5, see Figure

3b. While we change the index of the whole background, due to the small extent of the

plasmon field away from the graphene, this is similar to a change of the flow cell index.

There are two main conclusions from Figure 3. First of all, the effect of both index changes

on the modes is very moderate and purely monotonic. This implies that the modes are

extremely robust to inhomogeneities and to any asymmetry in the indices of the spacer

and top layers. More importantly, since the effect is merely a flat renormalization of the

propagation characteristics, the reference channel indices do not need to be identical to

those of the sample channel as long as their frequency dispersion is similar.
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Figure 3: Normalized propagation constants (full lines) and propagation lengths (dashed
lines) of the antibonding waveguided plasmon mode depending on the index of the sur-
rounding at 31 (blue) and 40 THz (red). a) Effect of the index of the 2 nm-thin analyte layer
with a fixed index background nbg = 1. b) Effect of the index of the background (or flow
cell, as discussed in the running text) while keeping nmol = 1.5.

Effect of the analyte on the propagation

We have shown that the device can work properly even in the case where the reference and

sample channels indices were to be different and that it was rather robust to inhomogeneities.

We now consider the effect of the analyte on the propagation of the antibonding waveguide

mode in order to assess its performance. Details of the model used to describe the analyte

layer are given in the Methods section. Figure 4 shows the propagation distance in absolute

values after which the plasmons intensity is 1/e for the low (n = 1.5, in blue) and high

(n = 3.4, in red) index substrates with (dashed lines) and without (full lines) the analyte

layer. As one can see, due to an increased compression of the mode due to the higher

index, the plasmons supported by the n = 3.4 substrate propagate less. However, since

there is respectively more optical cycles per unit length, these modes are more sensitive as

is apparent in Figure 5. Note again the dips caused by the phase matching between the first

anti-bonding waveguide mode and high order bonding waveguide modes. We observe that

the effect of the molecule is negligible on the propagation constants (not shown) as can be

expected from its very small variation of refractive index. However, this is not the case for the
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propagation losses which are drastically different in presence of the molecule. Moreover, one

can already guess that the difference between the reference and sample channels is directly

related to the absorption spectrum of the molecule. The intensity of the surface plasmon
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Figure 4: Propagation length in absolute values of the same modes presented in Figure 2.
Blue lines are for nsub = 1.5 and red curves are for nsub = 3.4. Full lines are for a molecule-free
reference channel and dashed curves for the case of the sample channel.

along the propagation direction is I = I0 exp(−x/L) where x is the distance. Therefore

at a fixed position one is able to compare the intensity of the plasmon through a reference

channel and through the analyte. The obtained normalized signal Imol/Iref is presented in

Figure 5 for both substrate cases (n = 1.5 in full lines and n = 3.4 in dashed lines) at three

different position 1 (green), 5 (red) and 10 µm (blue) from the input. The left axis is given

in dB = 10 × log(Imol/Iref ). Let us remind here that the considered analyte consists in a

2 nm-thin 10% diluted molecular species. Nevertheless, a 10 µm-long sample can produce a

gigantic 3 dB (50%) drop in intensity with the proposed geometry. Due to this exceptional

sensitivity we predict that even partially formed monolayers could be easily detected with

a device based on this principle. Furthermore, the broadband signal corresponds exactly to

the infrared absorption spectrum of the molecule, shown in the inset of Figure 5, and allows

in consequence a clear chemical analysis. In the case of a mixture, thanks to the extended

frequency range one can access, it is also possible to identify the different chemicals present

and extract their respective concentrations.
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Figure 5: Intensity changes caused by the presence of the analyte in dB (10× log(Imol/Iref ),
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(dashed lines) substrate case. The measured intensity drop is for an input-output distance
of 1 (green), 5 (red) and 10µm (blue). The inset shows the absorption coefficient in log scale
of the analyte in the same frequency region as the main axis.
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Potential implementation as an FTIR accessory

Based on these promising results we propose next a device making use of the broadband

principle we just introduced and the extraordinary sensitivity of anti-bonding waveguide

modes in graphene sandwiches. The most simple experimental set-up would rely on a Fourier-

Transform InfraRed (FTIR) spectrometer which is a very common tool nowadays to perform

chemical analysis in the infrared. This apparatus would provide for the broadband source

and the detection means. The device would then simply be an accessory to place under the

microscope and would consist of one or two built-in channels, see Figure 6. In the former

case a reference signal should first be acquired. Similarly to the geometry shown in Figure

1b, the substrate would be covered by a graphene sheet and patterned by lithography into

a ribbon. The width of the latter should be tuned to support guided plasmon modes within

the desired frequency range according to the doping of the graphene following the guidelines

of Reference.36 It would be followed by the deposition of a spacer for instance by spin-coating

and a second patterned ribbon. The whole could then by covered with a flow cell in order to

be reusable. A reference solution would first be circulated followed by that of the solution to

be tested. Thanks to the relatively small wavevectors (compared to usual SPPs in graphene)

of the modes considered here and their rather moderate dispersion away from their respective

cut-off frequency, their excitation from free-space light can easily be achieved through grating

coupling.43,44 For the lowest index substrate (n = 1.5), the grating period should be of the

order of Λ = λ0k0/β ∼ 10 µm/20 = 500 nm and not smaller than 100 nm in any case. The

grating allows to couple light to the confined surface waves thanks to the extra momentum it

provides. At the output, a second grating is placed which scatters the plasmons back to free-

space and are collected by the detector. For increased coupling, one could also make use of

trapezoidal gratings in which the varying width broadens considerably the optical response45

or cascaded gratings.46 Alternatively, the phase-matching at the input and output can be

provided by small scatters such as metallic nanoparticles with sizes a ∼ 1/β which are easily

achieved through standard lithography. We foresee that a device based on this broadband
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Figure 6: Design of a device based on the ultra sensitive broadband capability of the proposed
graphene sandwich structure. It consists in a reference and single channel where a flow cell
is placed on top of the sandwich in order to circulate liquid samples. The coupling of the
free-space light to the plasmon modes is enabled by gratings with period which can be as
large as 500 nm for a low index substrate or via the broad plasmonic response of metallic
nanoparticles.
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sensing capability could serve as cheap alternative to Attenuated Total Reflection (ATR)

schemes which rely on expensive high-quality semiconducting crystals.

Conclusion

In conclusion, we have demonstrated a promising method to measure the infrared absorption

of chemicals based on propagating surface plasmon modes. Above all, it differs from classical

plasmonic sensing because of its broadband character which allows to extract an extended

portion of a molecular absorption spectrum. This is in strong contrast with index sensing,

where one measure the induced spectral shift of a plasmonic or cavity mode due to chemical

adsorption, or SEIRA in which only a few vibrational lines of a molecule are amplified. Al-

though the proposed broadband sensing scheme can make use of any confined surface modes,

we further show that particular waveguided modes in graphene sandwiches can lead to an

unprecedented sensitivity. Indeed our calculations suggest that the anti-bonding waveguide

mode in a 2 nm-spaced sandwich of two graphene ribbons exhibit an extremely intense field

localization directly at its external face. By covering this structure with a 2 nm-thick diluted

molecular species, the infrared absorption spectrum of the chemical can be recovered with

up to 3 dB signal. This exceptional sensitivity coupled with the broadband capability also

means that one can identify all the chemical species in presence and their respective concen-

tration in a mixture. These encouraging results lead us to propose a simple device based on

this sensing principle which could be conceived as an accessory for FTIR microscopes and

an alternative to ATR-crystal spectroscopy.

Methods

The simulation results presented here were obtained from the FEM package COMSOL Mul-

tiphysics. The model considers an infinitely long structure in the propagation direction and

calculate the waveguided modes that are supported. Graphene is approximated by an effec-
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tive permittivity ε = 1 + iσ/ε0ωt where ε0 is the permittivity of vacuum, ω = 2πc/λ0 the

angular frequency of light and t = 1 nm the selected thickness of the graphene ribbons.47

σ is the surface conductivity of graphene as obtained from the local random phase approx-

imation of the Kubo formula47 at room temperature and with a Fermi level EF = 0.5 eV

and charge carrier scattering rate Γ = 0.1 meV. The triangular mesh was set to t/2 in the

volume surrounding the nanostructure which together with the graphene effective thickness

was sufficient for fully converged solutions as attested by convergence tests at smaller mesh

sizes and thicknesses and as can be expected for such a deeply sub-wavelength scale.

The 2 nm-thick top layer is chosen to be either purely dielectric with n = 1.5 in which case

it is considered sample-free or with a complex index ñ which is given by the molecule absorp-

tion. We choose here a phenol molecule, the transmittance spectrum of which we obtained

from the National Institute of Standards and Technology (NIST) (http://webbook.nist.

gov/cgi/cbook.cgi?ID=C108952&Units=SI&Type=IR-SPEC&Index=1#IR-SPEC). From Beer-

Lambert’s relation T = exp(−αx), where x is the path length of light within the solution,

the absorption coefficient α can be extracted, and is plotted as inset in Figure 5. Kramers-

Kronig’s relations allow then to calculate the corresponding refractive index thanks to causal-

ity requirements. The complex index of the molecule finally reads

ñ(ω) = 1.5 +
c

π
P
∫ ∞
0

α(ω′)

ω′2 − ω2
dω′ + i

α(ω)c

2ω
(1)

where P indicates the principal part of the undefined integral and c is the speed of light in

vacuum. The layer defined in this fashion is a good approximation of a monolayer with a

phenol-like vibrational spectrum. To stress the sensitivity of our sensor we only use a phenol

concentrated to 10% in the presented results, i.e. nmol = 1.5 + 0.1ñ.
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Graphene sandwiches can support broadband extremely confined surface
plasmons which can detect highly diluted molecules with unprecedented
sensitivity enabling an extended absorption spectrum to be measured.
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