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Abstract The medial layer of the arterial wall
may play an important role in the regulation of
water and solute transport across the wall. In par-
ticular, a high medial resistance to transport could
cause accumulation of lipid carrying molecules in
the inner wall. In this study, the water transport
properties of medial tissue were characterised in a
numerical model utilising experimentally obtained
data for the medial microstructure and the rela-
tive permeability of di↵erent constituents. For the
model, a new solver for flow in porous materials,
based on a high-order splitting scheme, was im-
plemented in the spectral/hp element library nek-

tar++ and validated. The data were obtained by
immersing excised aortic bifurcations in a solution
of fluorescent protein tracer and subsequently imag-
ing them with a confocal microscope. Cuboidal re-
gions of interest were selected in which the mi-
crostructure and relative permeability of di↵erent
structures were transformed to a computational
mesh. Impermeable objects were treated fictitiously
in the numerical scheme. On this cube, a pressure
drop was applied in the three coordinate directions
and the principal components of the permeability
tensor were determined. The reconstructed images
demonstrated the arrangement of elastic lamellae
and interspersed smooth muscle cells in rat aor-
tic media; the distribution and alignment of the
smooth muscle cells varied spatially within the ex-
tracellular matrix. The numerical simulations high-
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lighted that the heterogeneity of the medial struc-
ture is important in determining local water trans-
port properties of the tissue, resulting in regional
and directional variation of the permeability ten-
sor. A major factor in this variation is the align-
ment and density of smooth muscle cells in the me-
dia, particularly adjacent to the adventitial layer.

1 Introduction

Atherosclerosis is the leading cause of morbidity
and mortality in the developed world. The dis-
ease is characterised by a build up of lipid, in-
flammatory cells and fibrous proteins in the in-
tima and inner media of the arterial wall. The
precise mechanisms involved in the development of
the disease, especially in its early stages, are still
disputed, but the uptake of lipid-carrying plasma
macromolecules is thought to play a key role (Nielsen,
1996, Weinberg, 2004, Tarbell, 2003, 2010); hence,
studies of the rate of entry and transport within
the wall of macromolecules could increase our un-
derstanding of the disease. Water transport, the
subject of this paper, is important because much
macromolecule transport is convective (A.Tedgui
and Lever, 1985) (The Peclet number for LDL based
on mean smooth muscle cell radius is 4.6 (Huang
and Tarbell, 1997, Tada and Tarbell, 2004)).

Transport of water within the media is of inter-
est as macromolecules may accumulate in the in-
tima not because they enter the wall more rapidly
but because, once they have entered the intima,
they leave more slowly across the media and into
the adventitia (see Tarbell (2003) and references
therein). The medial layer consists of smooth mus-
cle cells (SMCs), water, glycosaminoglycans and
structural molecules - principally collagen and elastin
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(Parker and Winlove, 1988). These components are
distributed in the media in a repeating architec-
ture including aligned elastic lamellae (Clark and
Glagov, 1985). Water and dissolved solutes cross-
ing the media do not have equal access to all these
compartments; they are excluded by cells and par-
tially excluded, to di↵ering extents, by the other
components. This restriction may inhibit transport
across the layer, leading to accumulation of macro-
molecules in the inner wall. Transport properties of
the medial layer are also important in understand-
ing the transport of drugs from stents (Vairo et al.,
2010, Denny et al., 2012, Cutri et al., 2013, Bozsak
et al., 2014).

Transport of water and LDL in the arterial wall
has received considerable attention both in stud-
ies utilising simple 2D & 3D models of the me-
dia (Wang and Tarbell, 1995, Huang and Tarbell,
1997, Tada and Tarbell, 2000, 2002, Dabagh et al.,
2009a) as well as in models of the whole arterial
wall (Prosi et al., 2005, Ai and Vafai, 2006, Sun
et al., 2009, Dabagh et al., 2009b). In the former
studies, the medial layer was treated as an array of
circles representing SMCs, embedded in the ground
substance (GS). In the latter studies, the media
was treated as a homogenous layer in which the
properties were measures of e↵ective permeability
obtained from the former studies or studies derived
from these works. One drawback of these meth-
ods is that the geometry is either completely or
partially homogenous; another is that the influ-
ence of the elastic lamellae is ignored. Hence re-
liable information about medial transport details
remain elusive. This issue has previously been high-
lighted by Khakpour and Vafai (2008). Experimen-
tally, local transport properties are extremely di�-
cult if not impossible to obtain; however, the prop-
erties on which they depend and which are re-
quired for better models can be reliably assessed.
Ultimately, with the development of an advanced
model, driven by experimental data that include
the cellular make up of the medial layer, it will
be possible to determine potential sites of protein
accumulation in the di↵erent wall layers and the
e↵ects of changing wall properties (e.g. SMC tone)
on such accumulation.

The present study aims to characterise water
transport in the medial layer and to determine how
the medial structure hinders such transport. This
is achieved through a number of steps. Firstly, a
solver for Brinkman’s equation is developed and
validated against known benchmark solutions. Sec-
ondly, the solver is used to model transport in
porous media using previously developed solutions

for the arterial media. Finally, a novel strategy,
combining experimental data and numerical mod-
elling, is introduced and used to determine the per-
meability of the arterial media.

2 Unsteady Brinkman’s equation

Flow in porous materials that include regions void
of fluid, such as the arterial media, can be de-
scribed by Brinkman’s equation,

@u

@t
= �rp+ ⌫r2

u� ⌫
¯

̄

u+ f , in ⌦B ⇥ [0, T ] (1)

r · u = 0. in ⌦B ⇥ [0, T ] (2)

where u is the velocity, p the pressure, ⌫ the ef-
fective viscosity, ¯̄ the Darcian permeability tensor
and f a forcing term. Unlike Darcy’s law, Brinkman’s
equation can characterise the flow around solid ob-
stacles embedded in a porous material (Khaled and
Vafai, 2003). In particular, the additional term ⌫r2

u

accounts for the formation of boundary layers in
the vicinity of solid obstacles. The equation has
been widely used for modelling transport in the
medial layer.

2.1 Smooth muscle cell volume fraction

As noted above, the medial layer of the arterial
wall consists of cells, water, glycosaminoglycans
and structural proteins. These together define a
porous medium in which water is excluded from
some areas. For example, mobile water is completely
excluded from SMCs. The SMC volume fraction of
the medial layer, �, is defined by

� =
V
SMC

V
media

(3)

where V
SMC

is the volume of SMCs and V
media

is
the volume of the whole medial region of interest.

2.2 E↵ective permeability

E↵ective permeability refers to the permeability of
a hypothetical homogeneous region of tissue that
exhibits the same fluid-mechanical properties as
the heterogeneous structure, given the same hy-
draulic gradient. In the present context, heteroge-
neous refers to a porous structural medium with
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solid obstacles dispersed in it, whilst the homoge-
nous representation is a single medium (i.e. one
with no solid obstacles) having the e↵ective prop-
erties of the original structure. Figure 1 illustrates
this concept. The heterogeneous structure consists
of a fluid (porous) domain and a solid domain,
⌦B = ⌦B

f

[⌦B

s

. The boundary of the solid domain

@⌦B

s

(red in Figure 1) denotes the interface be-
tween solid and fluid domain, while the boundary
of the fluid domain @⌦B

f

(blue in Figure 1) denotes
the fluid boundaries. The dashed black square is
the region over which the e↵ective permeability is
calculated. This approach is referred to as oversam-
pling (Hou andWu, 1997) and takes away the influ-
ence of boundary conditions. It is suitable for the
present application since the boundary layer thick-
ness is O(

p
) (Huang and Tarbell, 1997). This also

means that the size of the dashed black region can
be close to the size of the domain.

Fig. 1: E↵ective permeability of a block of porous
material.

The dashed black region can be extracted from
the domain and its e↵ective permeability tensor
can be calculated. In this homogenised region the
flow is governed by Darcy’s equation, given by:

hui = 1

⌫
¯

̄

e↵

hrpi in ⌦D (4)

in which hui donates the volume average ve-
locity and ¯

̄

e↵

the permeability tensor, which is
symmetric (e.g. 

r✓

= 
✓r

); it is given by,
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To calculate the full tensor, 3 numerical experi-
ments must be performed in three coordinate di-
rections (r, z and ✓ represent the axes of a right-

handed cylindrical coordinate system). In these ex-
periments a pressure drop is applied to the domain
and the resulting mean velocity field and pressure
gradient are extracted. This leads to the following
matrix equation when the permeability tensor is
assumed to be symmetric:

F · k = hui (6)

where k =

2
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3

7777775
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in which the subscripts (r,z,✓) denote the compo-
nents and superscripts (1,2,3) the applied pressure
drop in the radial, axial and circumferential direc-
tions, respectively. The over-determined system is
then solved using a least squares approach, in the
present case QR-factorisation, to determine the six
independent permeabilities. The o↵-diagonal terms
represent the permeability in directions lateral to
the applied pressure drop. The permeability tensor
can always be expressed as a diagonal tensor, since
it is symmetric and positive definite; the tensor is
given by,

¯

̄

e↵

=

2

4
�
1

0 0
0 �

2

0
0 0 �

3

3

5 (7)

in which �
1

, �
2

and �
3

are the eigenvalues that
represent the principal permeabilities. To describe
the tensor fully, equation 7 comes with three eigen-
vectors v1,v2 and v3 which are the principal di-
rections along which transport occurs.
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2.3 Spectral/hp element method

Spatially, equation (4) is solved on a domain that
is discretised using the open-source spectral/hp el-
ement library nektar++ (www.nektar.info). As
with the finite element method, the domain is tes-
sellated into N

el

non-overlapping elements; how-
ever, the expansion within each element is high or-
der. Every local physical element can be expressed
via an isoparametric coordinated mapping to a stan-
dard reference element in which operations such as
integration and di↵erentiation are performed. The
spectral/hp approach (Karniadakis and Sherwin,
2005) defined over the entire domain can be repre-
sented by

u�(x) =
N

dofX

n=1

û
n

�
n

(x) =
N

elX

e=1

dim(V

�

)X

n=1

ûe

n

�e

n

(x) (8)

where N
dof

is the number of degrees of freedom,
û
n

are the global expansion coe�cients, �
n

(x) the
polynomials defined in a space V � of order P, and
ûe

n

is the nth local expansion coe�cient within the
element e. The expansion uses modified Jacobi poly-
nomials in which the interior degrees of freedom
are multiplied by linear factors so they are zero on
the boundary. This results in natural boundary-
interior decomposition, allowing greater numerical
e�ciency.

2.4 High-order splitting scheme

To solve equation (1), a high-order splitting scheme
(operator splitting) is utilised. The scheme is an
adaptation of the sti✏y-stable velocity-correction
projection scheme originally developed for solving
the incompressible Navier-Stokes equations (Kar-
niadakis et al., 1991). In this method, the velocity
and pressure matrices are decoupled. The Darcy
term ( ⌫¯̄u) in equation (1) is implemented both im-
plicitly and explicitly into the splitting scheme as
follows:

Explicit step

The first step calculates an intermediate velocity
field by:

ũ�
P

J

i

�1

q=0

↵

q

�

0

u

n�q

�t
= ⌫¯̄

�1

J

e

�1X

q=0

�
q

�
0

u

n�q + fn+1

(9)

where the first term on the right hand side repre-
sents explicit treatment of the linear Darcy term,
the second term represents external forcing, the
second J is the integration order and ↵

q

, �
0

and
�
q

are the sti✏y stable time integration coe�cients
(Karniadakis and Sherwin, 2005).The values of 
may vary at each quadrature point in the domain.

Pressure step

The intermediate velocity field is used to solve a
pressure Poisson equation to obtain the pressure
at the new time level (n+ 1):

�pn+1 =
⇣ �

0

�t

⌘
r · ũ (10)

with the consistent boundary condition:

@p
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q

u

n�q

i
· n (11)

where the term (⌫¯̄�1

P
J�1

q=0

�
q

u

n�q) is only ac-
tivated when an implicit treatment of the Darcy
term is enabled.

Viscous step

From the solution of the pressure, a second inter-
mediate velocity field is calculated:

˜̃
u = ũ�

⇣�t

�
0

⌘
rpn+1 (12)

This is used as a forcing term in a Helmholtz prob-
lem to obtain the velocity field at the new time
level (n+1)

⇣
�� diag(¯̄)

⌫
� �

0

�t⌫

⌘
u

n+1 = �
⇣ �

0

�t⌫

⌘
˜̃
u (13)

where the term (diag(
¯̄)

⌫

) is only enabled if an im-
plicit treatment of the Darcy term is enabled.

Time discretisation using the splitting scheme
leads to three elliptic equations and one pressure
Poisson equation, which need to be solved at every
time step. Using the spectral/hp element discreti-
sation with a Galerkin approximation, the result-
ing matrix equation is typically poorly conditioned
due to the strong coupling between the di↵erent
boundary degrees of freedom. For this reason the
solver makes use of sub-structuring and low energy
preconditioning in order to accelerate the rate of
convergence (see Sherwin and Casarin (2001) and
Karniadakis and Sherwin (2005) for more details).
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A number of benchmark problems to validate the
solver implementation are given in Appendix A.1.
The solver also has the ability to include convec-
tion, which is important in some applications.

3 Spatially varying permeability

For many applications, including transport in the
arterial wall, the domain consists of regions of vary-
ing permeability, and also impermeable regions. In
regions of varying permeability the variability is
naturally handled by the Darcy term ( ⌫¯̄u) in equa-
tion (1), in which di↵erent  values are assigned at
each of the quadrature points. For the imperme-
able regions the Darcy term must be altered to
make the region nearly impermeable as discussed
in the following section.

3.1 Fictitious solid obstacles

To model the portions of the domain that are im-
permeable it is possible to lower the permeability
i.e drive the velocity towards zero. This can be done
by adding a penalisation parameter " to the Darcy
term in equation (1), which alters the permeability
in di↵erent regions, i.e.

⌫�1

"
u (14)

As the value of " tends to zero, the velocity also
tends to zero and the region becomes nearly im-
permeable (small ). Similar ideas have previously
been used in non-boundary fitted mesh methods
for the incompressible Navier-Stokes equations (Khadra
et al., 2000), porous media (Hwang and Advani,
2010) and solid mechanics (Düster et al., 2008). A
full discussion of various fictitious domain methods
for spectral/hp element methods is given by Vos
et al. (2008). Other methods have been described in
the literature - see for example Liu et al. (2000) and
Hansbo and Hansbo (2002). The parameter " can
be distributed at the quadrature points throughout
the domain by the assignment of values depending
on whether the region is solid or fluid, as follows:

" = "
fluid

= 1

" = "
solid

! 0

Additionally, this parameter can be smoothed across
interfaces, which often helps when capturing steep
transitions from a fluid to a solid region. In solid

regions, care must be taken in choosing the value

of ". In particular, a very low value will lead to a
matrix that is ill conditioned (see Schillinger et al.
(2012) for a similar methodology in elastodynam-
ics); hence, there is a practical limit on the value of
" (although low-energy-basis preconditioning gives
excellent performance even for low "). The value
is also limited by the time-stepping restriction due
to the explicit part of the splitting scheme. In the
present context, a value of " = 0.01 captures the
obstacle su�ciently.

With the present approach, the boundary be-
tween solid and fluid is only weakly imposed. A
number of approaches have been proposed, such
as distributed Lagrange multipliers (Dong et al.,
2004), which enforce the boundary between the
solid and the fluid exactly. However, for more com-
plicated geometries (see section 3.2) this would re-
quire identification of the solid regions, which es-
sentially amounts to segmentation of the geome-
try; hence, this could be simulated using a bound-
ary fitted approach. An alternative would be using
variable polynomial order at the locations of high
image intensity gradient to capture these interfaces
in greater detail. In the following it will be demon-
strated that this level of complexity is not required
when assessing mean permeability properties. Fur-
ther information regarding the merits of the spec-
tral/hp element method for the fictitious approach
used in the present study are given in appendix
A.2.

3.1.1 Method validation

To demonstrate the e↵ectiveness of the method-
ology, flow around a square object was simulated
and compared with the corresponding simulation
for a meshed obstacle. The geometry is shown in
Figure 2 with velocity and pressure overlaid. The
domain under consideration had a side of length
l = 1 and a square object in the centre had a side
of length l = 0.25. For the fictitious approach, the
parameter " was distributed over the domain as
"
fluid

= 1 and "
solid

= 0.01. The permeability of
the surrounding fluid was  = 1⇥ 10�4m2 and the
viscosity ⌫ = 1. A pressure drop of 1000 Pa was
applied between the inlet (left) and outlet (right),
whilst the no slip condition was used on the up-
per and lower surfaces. For the reference method
the object was meshed exactly. The geometry was
discretised using 225 quadrilateral elements with a
polynomial order p = 5. Elements in the vicinity
of the square were locally refined. For the fictitious
case the geometry was discretised using 1600 el-
ements with a polynomial order p = 3. Figure 2
demonstrates the resulting velocity and pressure
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(a) Comparison of velocity contours. (b) Comparison of pressure contours.

Fig. 2: Comparison of (a) velocity and (b) pressure for di↵erent numerical approaches: Meshed geometry
(left) and fictitious (right).

fields for the two methods. In the solid region the
fictitious approach leads to a velocity field that re-
duces to a near zero value and the pressure un-
dergoes a linear drop in the streamwise direction.
Outside the solid region, the two fields are in good
agreement with only small deviations between the
methods.

For biological porous media the permeability
levels tend to be very low,O(10�18m2). This means
that the boundary layer is confined to a very thin
layer adjacent to the solid boundary (O(

p
)). Cap-

turing such a thin boundary layer typically requires
high levels of mesh refinement, otherwise non-physical
oscillations pollute the solution. This is particu-
larly evident in the solid regions, where small neg-
ative values can occur. However, in the present con-
text average properties are of interest; hence only
a certain level of accuracy is required.

As a second demonstration, a comparison of ef-
fective permeability was performed for flow around
a central circular object, which is representative of
a SMC and relevant to previous studies of trans-
port in biological porous media (Wang and Tar-
bell, 1995, Huang and Tarbell, 1997, Dabagh et al.,
2009a). The domain under consideration had a side
of length l = 1 and a circular object in the centre
which accounted for 20% of the volume, � = 0.2
(see Figure 3). For the reference method, the ge-
ometry was discretised using 180 quadrilateral el-
ements with a polynomial order p = 7. Elements
in the vicinity of the circle were curved and locally
refined. For the fictitious case, the geometry was
discretised using 1600 elements with a polynomial
order p = 5. To understand the influence of dif-
ferent permeability values, and therefore boundary
layer thicknesses, the comparison of methodologies
considered two di↵erent  values,  = 1 ⇥ 10�5

and  = 1⇥ 10�8 m2, with ⌫ = 1 m2/s and ⇢ = 1.

For the simulation a pressure drop of 1000 Pa was
applied between the inlet (left) and outlet (right),
whilst periodic boundary conditions were used on
the upper and lower surfaces.

It is evident from Figure 3 that the results of
the two di↵erent approaches are qualitatively simi-
lar. In the fictitious approach there are some oscil-
lations in the vicinity of the solid object. However
Table 1 shows that the permeability obtained us-
ing the two methods di↵ers by less than 1%. This
demonstrates that the fictitious methodology is ef-
fective in determining mean properties of the flow,
which is the main aim of the present study. The
di↵erence between the methodologies can be fur-
ther reduced by either h refinement or increasing
p.

Table 1: E↵ective permeability obtained by two
numerical methods for an array of circles with a
volume fraction of 20%. Permeability and e↵ective
permeability values are in m2.

Permeability Darcy E↵ective E↵ective

(m2) Number permeability, permeability,

(k/l2) Meshed Fictitious

1⇥ 10�5 3.93⇥ 10�5 6.59⇥ 10�6 6.66⇥ 10�6

1⇥ 10�8 3.93⇥ 10�8 6.66⇥ 10�9 6.68⇥ 10�9

To counter the oscillations present for low 

values, it is possible to apply a smoothing func-
tion to the interface; the abruptness of the change
is reduced. A hyperbolic tangent smoothing func-
tion was applied across the interface of the solid
and fluid, in which a parameter (�) controlled the
thickness of the interface. The e↵ective permeabil-
ity for two values of � is shown in Table 2. For the
lower value, the e↵ective permeability is accurate
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(a) Comparison for  = 1⇥ 10�5

m

2. (b) Comparison for  = 1⇥ 10�8

m

2.

Fig. 3: Comparision of velocity for di↵erent di↵erent numerical approaches and permeabilities. Meshed
geometry (left) and fictitious (right).

compared to the 6.66⇥10�9 obtained using the ex-
act method (Table 1). However, as � is increased
the influence of the smoothing, or more specifically
the change in the geometry (the circle is e↵ectively
larger), leads to a bigger error. This error could be
reduced if the size of the object were decreased. In
this study, the fictitious approach without smooth-
ing is preferred as this means the object size is ex-
actly known.

Table 2: E↵ective permeability of an array of cir-
cles with a volume fraction of 20% and di↵erent
interface smoothing parameters for the fictitious
approach. Permeability and e↵ective permeability
values are in m2.

Permeability Darcy E↵ective E↵ective

(m2) Number permeability permeability

(/l2) � = 0.01 � = 0.04

1⇥ 10�8 3.93⇥ 10�8 6.64⇥ 10�9 6.51⇥ 10�9

To make the example more physiological, pa-
rameters from previous studies of the medial layer
were considered (Wang and Tarbell, 1995, Huang
and Tarbell, 1997, Tada and Tarbell, 2000, Dabagh
et al., 2009a): SMC volume fraction, �, of 0.2 and
0.4,  = 1.43⇥ 10�18m2/s (Darcy number: 1.55⇥
10�7). For this case the semi-analytical e↵ective
permeability (

e↵

) is given by Wang and Tarbell
(1995) as


e↵

= 
1 + �� 0.305828�4

1� �� 0.305828�4

. (15)

For the numerical simulation, both the meshed
and fictitious methods were used. A pressure of 50
mmHg was applied to one side of the domain and

zero pressure to the other. The properties of the in-
terstitial fluid were that of water: kinematic viscos-
ity, µ = 7.2 ⇥ 10�4m2/s, density ⇢ = 998.2kg/m3

(Huang and Tarbell, 1997). From Table 3 it is evi-
dent that the permeability calculated with the fic-
titious approach is very accurate for both volume
fractions (within 0.66% of the exactly meshed ge-
ometry) and hence we conclude the method is suit-
able for determining permeability under physiolog-
ical conditions.

Table 3: Comparison of e↵ective permeability cal-
culated using equation (15), calculated from the
meshed circle or using the fictitious approach. The
e↵ective permeabilities are ⇥10�19 m2.

Volume Semi- E↵ective E↵ective

fraction analytical permeability, permeability,

Meshed Fictitious

20% 9.53 9.52 9.52

40% 6.08 6.06 6.10

3.2 Permeability of rat arterial media

In this section, a novel strategy for determining the
influence of medial anisotropy on hydraulic perme-
ability is presented. It is based on equilibrating the
wall with a fluorescent albumin tracer and then
imaging the tracer distribution within the media.
The labelled Bovine serum albumin (BSA, 67 kD)
di↵uses from the external solution into the wall.
It is restricted to the extracellular water space.
Clearly, some compartments of this space will be
too small for albumin to penetrate, but their small
size also means they will have a high resistance
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to flow, and therefore disproportionately little in-
volvement in transmural water flux. For example,
the water inside collagen fibrils is not significantly
involved in water transport through interstitium
and albumin will also be excluded from this space,
which has a hydrodynamic radius of only 0.6 nm
(ref to: Levick (1987)). Even if a fixable fluores-
cent tracer with the same size as water existed, its
distribution would not be a useful indicator of the
spaces involved in water transport

Fluorescent protein tracer preparation

The fluorescent dye rhodamine was conjugated to
BSA as previously described (Warboys et al., 2010,
Nairn and Fothergill, 1986). Briefly, sulforhodamine
B acid chloride (Sigma 86186) in anhydrous ace-
tone was added to 2%(w/v) fatty acid free BSA
(Sigma, A4612) in carbonate bu↵er (0.33M, pH9)
at 4�C with a dye:protein weight ratio of 1:20. Un-
bound dye was removed by gel filtration (Sephadex
G-25). The conjugate fraction was dialised against
0.1X Tyrodes salt solution (TSS; 0.8g/l NaCl, 20mg/l
KCl, 20mg/l CaCl

2

, 10mg/l MgCl
2

, 5mg/l NaH
2

PO
4

,
5mg/l Na

2

HPO
4

, pH6.5), snap frozen drop-wise in
liquid nitrogen, lyophilised and stored at -20�C.
Immediately prior to use, the conjugate was re-
constituted in distilled water and 1X TSS to ob-
tain a final rhodamine albumin concentration of
10mg/ml in 1X TSS. It was supplemented with
1g/l glucose, 30mg/ml unlabelled BSA, 100U/ml
penicillin, 100µg/ml streptomycin, 2.5µg/ml am-
photericin and 50µg/ml gentamycin. Any remain-
ing free dye was removed by stirring with charcoal,
followed by centrifugation (3000g, 2x15min) and
filtration (0.2µm) to remove the charcoal.

Animal procedures

Male Sprague-Dawley rats (300-350g) were given
1000U heparin ip 10 minutes before sacrifice by
overdose of pentobarbitone. Their aortic bifurca-
tions were excised, cleaned of surrounding fatty
tissue, and incubated for 6h at 37�C, 5% CO

2

in
the tracer solution. After incubation, the bifurca-
tion was placed in fresh TSS and the lumen was
flushed with 10ml TSS to remove any remaining
tracer solution. The rhodamine albumin in the tis-
sue was fixed by perfusing the lumen with 10ml
15% neutral-bu↵ered formaldehyde (NBF) followed
by immersion in 15% NBF for 24h. The same tracer
and fixation protocol have been used in our in vivo

experiments (Clarke et al., 2012), which gave val-
ues of arterial mass transfer coe�cients (c. 10�8

cm/s) in good agreement with those previously
found by many unrelated techniques.

Epoxy embedding

Samples were dehydrated through an ethanol series
(10 min in 50%, 70%, 90%, 95%; 3x 10 min 100%;
2h in 100%) and over night in 100% propylene ox-
ide (PO). Infiltration in epoxy resin (TAAB; 44%
Embed 812, 35% dodecenylsuccinic anhydride, 18%
methyl nadic anhydride, 3% benzyldimethylamine)
was performed gradually: 1:1 epoxy/PO, 12h; 2:1
epoxy/PO, 12h; 100% epoxy, 24h. Curing was car-
ried out in fresh 100% epoxy at 65�C for 48h. Sam-
ples were cut in the plane of all three vessels and
the cut face was polished with wet/dry polishing
papers (2000, 4000, 6000 grit) using water as a lu-
bricant.

Imaging

Samples were imaged on an inverted laser scanning
confocal microscope (Leica, TCS SP5) with a ⇥40,
1.25 NA oil immersion lens. Excitation and emis-
sion wavelengths were 458/495-555nm and 575/585-
620nm for autofluorescence and rhodamine fluo-
rescence respectively. Voxel size was: x=261.2nm;
y=261.2nm; z=167.8nm (radial, axial and circum-
ferential directions, respectively). Recorded fluo-
rescence intensities were normalised in each z-slice
to achieve saturation of 0.4% of the pixels. This
corrected for intensity attenuation with depth.

Equilibrium distribution

We determined whether the concentration of the
tracer in tissue had reached an equilibrium in these
experiments by comparing intensity profiles through
the wall after di↵erent durations of incubation: 3h,
6h and 24h. The results demonstrated that 6h was
su�cient (data not shown).

Intensity extraction to quadrature points

To extract the confocal data to the quadrature
points of the spectral/hp expansion, thus provid-
ing both a geometric representation and the rela-
tive permeability of di↵erent tissue components in
the media, the following steps were performed:

– Beginning with a simple computational mesh,
a spectral/hp expansion (see Figure 4) was cre-
ated and the polynomial expansion coe�cients
were transformed to the physical values at the
quadrature points. This allowed information to
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(a) Computational domain
with inset showing quadra-
ture points overlaid.

(b) Example image stack on which
tracer intensity is sampled. White
box represents example location
where intensity is sampled.

(c) Example computational do-
main with normalised intensity
image data at the quadrature
points

Fig. 4: Sequence of steps to transfer image data to the quadrature points.

be accessed and written to the quadrature points
of the domain (see Figure 4(a)).

– Using the open-source library VTK (http://
www.vtk.org), the confocal image stack was
imported and mapped onto the same space as
the quadrature points (see Figure 4(b)). The
intensity values from the image were sampled
at each quadrature point of the expansion and
an intensity (normalised by maximum image in-
tensity) was assigned to each quadrature point.
The final normalised intensity distribution ex-
tracted onto the computational mesh is illus-
trated in Figure 4(c).

– The physical values were then forward trans-
formed from the values at the quadrature points
to the coe�cients. This allowed the expansion
to be read onto any points distribution when
solving the transport equations. In particular,
increased quadrature orders could be utilised to
capture steep transport gradients.

Images of tracer intensity were captured using a
high-power oil immersion lens and small voxel di-
mensions; the model therefore captures inhomo-
geneities and anisotropies in transport properties
of the extracellular space with sub-micron resolu-
tion.

Medial structure

Eight medial blocks were extracted from the con-
focal data, four being located in the inner media
( 1 - 4 in Figure 6) and four in the outer media

( 5 - 8 in Figure 6). One block of each type was

obtained from each axial position; thus 1 and

5 represent the inner and outer medial blocks,

respectively, at one axial location, and so on. In
Figure 6, three distinct components are evident:
blue areas which represent the borders of SMCs,
from which tracer was excluded; yellow/red areas
which are the elastic lamellae; and the green ar-
eas in between which represent a matrix of elastin,
collagen and glycosaminoglycans. The most notice-
able di↵erence between the inner and outer media
is in the proportion of lamellae; mean volume frac-
tions of lamellae are 0.24 and 0.29, respectively.
The SMC volume fractions remain relatively con-
sistent through all these regions.

To determine the accuracy of this method, three
di↵erent levels of h refinement (reducing the char-
acteristic local mesh size) were utilised, h = 0.1,
0.05 and 0.025, which, with polynomial order p =
3, correspond to 125000, 1⇥ 106 and 8⇥ 106 sam-
pling points. This polynomial order was found to
be a good balance between computational e�ciency
and solution accuracy for capturing the thin ve-
locity boundary layer in simulations than a larger
characteristic mesh size or higher polynomial or-
der; hence, it was used in all subsequent simula-
tions. At the smallest h a higher polynomial order
did improve the solution (reduced oscillations), but
p = 3 was considered su�ciently refined.

The accuracy of the confocal data reconstruc-
tion was assessed by comparing it with the inten-
sity distribution of the confocal image data. To do
this, a line through the centre of the confocal data
(x = 0.5, y = 0.5 and 0  z  1) was plotted
against the extracted quadrature point data at the
same location. Figure 5 demonstrates that below
h = 0.05 (solid black line and crosses) the confocal
data (grey line) is captured to a reasonable degree.

From the normalised intensity values (I
q

), which
are distributed at the quadrature points, it is possi-
ble to assign permeability values for di↵erent struc-
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Fig. 6: Medial blocks (26.1⇥ 26.1µm) with SMCs removed at four di↵erent axial locations corresponding

to the inner media ( 1 , 2 , 3 and 4 ) and the outer media ( 5 , 6 , 7 and 8 ).

Fig. 5: Comparison of intensity values at the
quadrature points with the confocal intensity val-
ues. Radial line extracted from the centre of each
data set for di↵erent levels of h-refinement and
zoomed to a central region to show di↵erences. L
= 26.1µm

tures of the medial layer. In the present study, SMC
content was determined by thresholding the confo-
cal images at the intensity value that corresponded
to the border of the cells (I

smc

). The elastic lamel-
lae were identified next, again by thresholding the

confocal images but this time at the intensity value
that corresponded to the border of the lamellae
(I

lam

). Using this method the SMC volume frac-
tion in the GS was consistently around 40%. The
permeability of the GS for rabbit medial tissue is
in the range 1.3� 1.43⇥ 10�18m2 (Dabagh et al.,
2009a, Huang and Tarbell, 1997); hence, although
the permeability in the GS is spatially varying, the
mean value in the region above I

smc

but below I
lam

should be in this range. The permeability at each
quadrature (

q

) point in the block was assigned
relative to this mean using the following formula:


q

=
1.32⇥ 10�18

I
m

I
q

m2 (16)

Thus di↵erent geometries were given the same
mean permeabilities despite having di↵erent val-
ues of mean GS intensity (I

m

). The permeability
of regions with intensity above I

lam

was also as-
signed using equation 16, thus setting the lamellar
permeability relative to the mean GS permeability.
Permeability in the SMCs (I

q

< I
smc

) was reduced
by a factor of 100, as discussed above.
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Table 4: Principal tensor components for medial
block 7 for di↵erent levels of h and p refinement.

h 0.1 0.05 0.025 0.025

p 3 3 3 5

�

1

9.97 10.33 10.60 10.64

�

2

8.25 8.48 8.71 8.74

�

3

4.72 5.19 5.51 5.64

Convergence

The accuracy of the fictitious approach at high
Darcy number (i.e. low permeability) was assessed

by performing simulations for medial block 7 in
Figure 6 with variable mesh density (h =0.1, 0.05
and 0.025) and polynomial order (p = 3, 5). The
block was subject to a pressure drop of 26.1 mmHg
in each of the coordinate directions which, given
the thickness of the rat arterial wall, corresponded
to a transmural pressure drop of 100mmHg. Zero
flow conditions were specified on the upper, lower
and side surfaces of the cube (Durlofsky, 2005). Ta-
ble 4 illustrates the principal permeability compo-
nents for four di↵erent cases. The largest h value
shows poor accuracy; this is primarily attributed
to the less accurate confocal data reconstruction
(see Figure 5). The much smaller change between
h = 0.025, p = 3 and h = 0.025, p = 5 suggests that
the former resolution is su�ciently refined and can
be considered converged both geometrically and
fluid mechanically.

4 Results

Figure 7 demonstrates the velocity and pressure
distribution in a representative block of medial tis-
sue. In each case a pressure drop of 26.1 mmHg
was applied to the tissue in the main coordinate
directions and the resulting velocity field was ex-
tracted. From this velocity and pressure field the
permeability of the structure was determined using
equation 6.

Table 5 shows the porosities and the princi-
pal permeability components for each medial block
in Figure 6 (locations 1 - 8 ). If the full per-
meability tensor is calculated for the above cases,
the o↵-diagonal directions are an order of mag-
nitude smaller and mainly comprise some lateral
transport caused by variations in SMC density and
alignment. In all blocks the permeability was low-
est in the radial direction (�

1

) and highest in the

circumferential direction (�
3

)1. Additionally, the
radial permeability component appears to be lower
in the inner media (compared to the corresponding

location in the outer media) for cases 1 - 3 . At

location 4 this trend is reversed (see section 5 for
details)

Table 6 details the principal permeability com-
ponents for block 7 for three di↵erent SMC vol-
ume fractions; each column of the table represents
the permeability in one principal direction for dif-
ferent SMC volume fractions. In all cases the trans-
port was most favoured in the circumferential di-
rection (along SMCs), with a drop in the axial and
radial directions. The permeability of the media re-
duced as the SMC volume fraction increased, which
is to be expected as transport channels between the
SMCs will be narrower.

Table 6: Principal tensor components calculated
for a 26.1 µm ⇥ 26.1 µm block of outer me-
dia (location 7 in Figure 6 ) for varying SMC
volume fraction. Components represent the per-
meability in the principal coordinate directions.
Mean principal vectors for the three eigenvalues:
v1 = [0.01, 0.13, 0.99], v2 = [�0.17, 0.98,�0.13]
and v3 = [0.99, 0.17,�0.03]. The tensor entries are
⇥10�19 m2. ⇤Actual SMC volume fraction of re-
gion.

SMC volume fraction �

1

�

2

�

3

0.2 13.19 11.70 9.65
0.3 11.93 10.14 7.57

0.404⇤ 10.60 8.71 5.51

The e↵ective permeability of media devoid of
elastic lamellae is another area of interest. For this
reason, a block of tissue (6.5 µm ⇥ 26.1 µm ⇥
26.1 µm) was extracted from the region between
the two elastic lamellae (The radial thickness was

centred around location A in Figure 6). The prin-
cipal e↵ective permeability components of this tis-
sue block were then calculated for the three di↵er-
ent SMC volume fractions (same values as given
in table 6)2. Table 7 details the principal perme-
ability components obtained from this analysis for
the three di↵erent SMC volume fractions. Simi-
lar trends were observed to those for the whole
block (Table 6); however principal transport direc-

1 The principal components can be interpreted as the
coordinate direction as the eigenvectors where essen-
tially aligned in these directions.
2 The values obtained with this method have been val-

idated against a larger block of muscular artery to de-
termine that the region is su�ciently large
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(a) Velocity in the r (radial) direc-
tion.

(b) Velocity in the z (axial) direc-
tion.

(c) Velocity in the ✓ (circumferen-
tial) direction.

(d) Pressure in the r (radial) direc-
tion.

(e) Pressure in the z (axial) direc-
tion.

(f) Pressure in the ✓ (circumferen-
tial) direction.

Fig. 7: Velocity and pressure distributions in medial block 7 . In each case the flow direction is indicated
by the direction from highest to lowest pressure.

Table 5: Volume fractions and principal tensor components for the eight medial block locations shown in
Figure 6.

Location 1 2 3 4 5 6 7 8

SMC volume fraction 0.408 0.41 0.408 0.434 0.396 0.402 0.404 0.403

whole volume fraction 0.30 0.303 0.293 0.292 0.30 0.308 0.303 0.3

�

1

10.86 12.07 10.62 10.77 11.69 10.94 10.60 13.95

�

2

9.29 10.56 9.30 9.02 10.18 9.32 8.71 9.78

�

3

4.12 3.44 3.95 4.92 4.61 5.14 5.51 4.01

tions for �
2

and �
3

changed for the largest SMC
volume fraction. For a SMC volume fraction of
0.2 and 0.3 the principal directions were identi-
cal: v1 = [0.05,�0.13, 0.99], v2 = [�0.88, 0.46, 0.1]
and v3 = [0.47, 0.88, 0.09], while for a SMC vol-
ume fraction of 0.4 the principal directions were:
v1 = [0.06,�0.13, 0.99], v2 = [�0.63, 0.76, 0.14]
and v3 = [0.77, 0.63, 0.04]. The change for the lat-
ter two eigenvectors was due to the reduction in
space between SMCs providing a higher resistance

to transport; hence diverting flow in other direc-
tions.

Figure 8 shows two planes cut at locations A

and B in Figure 6 to demonstrate the alignment
of SMCs within the GS. Between these two inter-
lamellar regions there is a change in the orientation
of the SMCs from �10� to the circumferential di-
rection to +45� to the circumferential direction.

Since the alignment of SMCs changed in the
outer media (as shown in Figure 8), an additional
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Table 7: Principal tensor components for a block
of GS (6.1 µm⇥ 26.1 µm⇥ 26.1 µm), with SMCs,

extracted around location A in Figure 6). The

tensor entries are ⇥10�19 m2.

SMC volume fraction �

1

�

2

�

3

0.2 11.42 9.14 8.32
0.3 10.17 7.24 6.53

0.404⇤ 8.83 5.51 5.08

Fig. 8: Slices through the GS for location A (left)

and location B (right). Locations A and B
are indicated in Figure 6.

medial block (4 µm⇥ 25.6 µm⇥ 26.6 µm) was ex-

tracted around location B in Figure 6 to under-
stand the influence of cell orientation. The thick-
ness of the block (4 µm) was deemed suitable as

tests in location A , which is the thickest layer of
SMCs, showed that thickness variations had lim-
ited influence on the tensor entries. The full per-
meability tensor was calculated for this block and
the sub-block of GS previously described for Table
7. Table 8 shows the results; circled values rep-
resent the entries a↵ected by circumferential cell

orientation. For the GS block around location A ,
the cell orientation promotes transport in the neg-
ative z direction for a pressure drop in the ✓ di-
rection (see Figure 8). This results in a negative
tensor entry (

z✓

). The sign of the transport is
due to the right-handed coordinate system. For

the GS block around location B , the cell ori-
entation promotes transport in the positive z di-
rection for a pressure drop in the ✓ direction and
vice versa (see Figure 8). This results in a pos-
itive tensor entry (

✓z

). The lower magnitude of
the values in the second tensor is due to a much
higher SMC volume fraction in the GS around lo-

cation B . If this tensor is diagonalised, the eigen-

values for the tensor at location A are 5.08, 5.51
and 8.83 with respective principal directions v1 =
[0.77, 0.63, 0.04],v2 = [�0.63, 0.76, 0.14] and v3 =

[0.06,�0.13, 0.99], and for location B are 2.69,

3.09 and 5.78 with respective principal directions
v1 = [0.25, 0.82,�0.51],v2 = [0.97,�0.18, 0.18] and
v3 = [�0.05, 0.54, 0.84]. To put this orientation in

perspective, for location A the maximum eigen-
value is orientated at �7.5� to the circumferen-
tial direction, whilst at location B the maximum
eigenvalue is orientated at +32.7� to the circum-
ferential direction.

Table 8: E↵ective permeability tensor for two
blocks of GS extracted from medial block 7 . The
first block is 6.1 µm⇥26.1 µm⇥26.1 µm extracted

around location A in Figure 6. The second block
is 4 µm⇥26.1 µm⇥26.1 µm) extracted around lo-

cation B in Figure 6. The alignment of SMCs is
at approximately �10� and +45� to the circumfer-
ential direction for the two locations, respectively.
The tensor entries are ⇥10�19 m2. The circled en-
tries demonstrate the change in direction due to
SMC alignment.

Location ¯̄


eff

A

2

6664

5.27 �0.24 0.17

�0.24 5.40 -0.45

0.17 �0.45 8.77

3

7775

B

2

664

3.07 �0.16 �0.07

�0.53 3.60 1.39

�0.07 1.39 4.88

3

775

5 Discussion

The arterial media plays an important role in the
regulation of whole wall transport properties (Caro
et al., 1980, Lever and Jay, 1990, Lever et al.,
1996, Tarbell, 2003) and in particular may con-
tribute to the intimal trapping of macromolecules.
Direct measurement of medial permeability, and
other regions of the arterial wall for that matter,
is di�cult, if not impossible; hence, modelling this
layer can provide valuable information. In previous
models, the medial structure has been treated as
either an array of circles (Wang and Tarbell, 1995,
Huang and Tarbell, 1997, Tada and Tarbell, 2000,
2002, Dabagh et al., 2009a) or as a homogenous
medium with an e↵ective permeability typically
derived from the former approaches (Prosi et al.,
2005, Ai and Vafai, 2006, Sun et al., 2009, Dabagh
et al., 2009b). The array of circles, although useful,
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assumes that the media contains a regular arrange-
ment of SMCs and neglects the influence of the
elastic lamellae. The appropriateness of this model
for real arteries is unknown (Wang and Tarbell,
1995). The present study introduces an alternative
approach for calculating the permeability of the
medial tissue. Firstly, the geometry, modelled by
the fictitious approach, is realistic, being extracted
directly from confocal image data (see section 3.2).
Secondly, the relative permeability of the di↵erent
structures is based on the intensity values from the
confocal images (see section 3.2). Finally, the real-
istic structure can easily be extracted due to the
fictitious approach.

The extracted tissue structures (Figure 6) con-
firm that in this elastic artery the lamellae consti-
tute a large proportion of the volume, with SMCs
interspersed. The density of these lamellae are higher
at the inner media (locations: 1 - 4 ) and re-

duce in the outer media ((locations: 5 - 8 ) )
Interestingly, the alignment of SMCs di↵ers be-
tween di↵erent layers of the media. In the inner
media the alignment is approximately in the cir-
cumferential direction, whilst in the outer media
there is notable variation. Figure 8 illustrates the

directional change for two di↵erent sections ( A

and B in Figure 6) of the outer media. SMCs
located between the two elastic lamellae (location

A ) are aligned at approximately �10� to the cir-
cumferential direction, whilst the cells located at

location B are rotated by approximately +45�.
The alignment over the outer media tends to al-
ternate slightly between layers; for example, on
the left hand side of medial block 7 the SMCs
are aligned at +15� to the circumferential direc-
tion. Di↵erent cell orientation in di↵erent layers
has previously been reported by Clark and Glagov
(1985). The SMC density in the GS also shows
large variations. This is due to a number of fac-
tors. Firstly, the SMCs are not of constant diam-
eter but are spindle shaped; hence regions exist of
low SMC volume fraction where one cell finishes
and another cell begins. Secondly, there appears to
be some level of clustering of the SMCs leading to
regions of high and low SMC volume fraction. This

is evident at location B in Figure 8(b) and again
was noted by Clark and Glagov (1985), who used
the term ‘fasicles’ to describe the clusters.

The permeability results (Table 5) suggest some
level of heterogeneity in the arterial wall which is
dependent on the region of interest. Consistently
through all eight representative medial blocks the
permeability is lower radially than in the other two

coordinate directions. The mean relative perme-
ability of the eight medial blocks is 1 : 2.13 : 2.57,
for the radial, axial and circumferential directions,
respectively. If sub-blocks of GS with SMCs with-
out lamellae are considered, the ratios of the eigen-
values, are 1 : 1.15 : 1.843. The reduced anisotropy
demonstrates that in the representative blocks (lo-

cations: 1 - 8 ) the axial and circumferential
permeability is dominated by transport in the lamel-
lae. These observations suggest a mechanism for
water to disperse in the non-radial direction, par-
ticularly the circumferential direction, as it is trans-
ported across the medial layer since the transport
in this direction is slightly favoured.

The equivalent isotropic permeability of the me-
dia can be expressed by the geometric mean, which
gives a measure of the central tendencies:


mean

= 3

p
�
1

�
2

�
3

(17)

With the present permeabilities the geometric mean
of the eight blocks (Table 5) is 7.86 ⇥ 10�19 m2.
This number is di�cult to compare to literature
values as it also includes the influence of the lamel-
lae; these were assumed to be more permeable than
the GS. This assumption comes from the experi-
ments: rhodamine fluorescence was highest in the
elastic lamellae. It contradicts the widely accepted
view that the lamellae are impermeable (Parker
and Winlove, 1988). However, previous studies by
Katora and Hollis (1975) and Goriely et al. (2007)
have demonstrated high permeability of the lamel-
lae to fluorescent albumin tracer and presumably,
therefore, to water as well. If the widely accepted
view is in fact correct our methods would still be
applicable; the relative permeabilities (and hence
the detailed results) would be qualitatively similar
but would di↵er in detail. Previous models of the
media have reported the permeability of the GS to
be around 6.09⇥10�19 m2 (see for example Dabagh
et al. (2009b)). For an approximately equivalent
SMC volume fraction the principal values for mid-
dle blocks of GS without lamellae in locations 5 -

8 are: 4.35⇥10�19 m2, 5.02⇥10�19 m2 and 8.0⇥
10�19 m2. If the geometric mean of these perme-
abilities is considered, the equivalent isotropic per-
meability of this region would be 5.59⇥10�19 m2,
which is close to the literature value. However this
value must be interpreted with some caution as the

3 These values are obtained for four outer medial
blocks( 5 - 8 ) of SMCs between the lamellae. The
size of the blocks varied so they only contained GS and
SMCs. As opposed to the whole medial block the princi-
pal directions did not align with the coordinate direction
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permeability appears to be location specific (see lo-

cation B in Table 8).

Considering the division of the media into in-
ner (locations 1 - 4 ) and outer layers (locations

5 - 8 ), we observed di↵erences in permeability
between these regions. The mean permeabilities of
the inner and outer media were 7.57 ⇥ 10�19 m2

and 8.14⇥ 10�19 m2, respectively. The di↵erence
was primarily due to a change in the radial perme-
ability. Although the mean permeability was gener-
ally lower in the inner layer, the trend was reversed
for blocks 4 and 8 . This can be attributed to a
number of factors. The inner medial block (location

4 ) had a high volume fraction of lamellae (0.335),
which in turn led to an elevated radial permeabil-
ity. Additionally, the arrangement of lamellae re-
sulted in a low resistance pathway to transport ra-
dially. The outer medial block (location 8 ) had
low permeability due to a large cluster of SMCs
on its left side (visible in Figure 6). This excep-
tion highlights the variation that can occur in the
arterial wall.

Due to the alignment of SMCs at location B
in Figure 8, the permeability tensor (bottom ten-
sor of Table 8) showed larger o↵-diagonal transport

than the equivalent tensor at location A (top ten-
sor of Table 8), indicating that the principal trans-
port directions were di↵erent. Additionally the sign
of the transport direction changed since the SMCs
in the region of interest run from the lower right
hand side to the upper left hand side (when looking
in the radial direction towards the lumen i.e. the
negative r direction). This directionality is respon-
sible for the change in sign of the circled tensor
entries in Table 8 and highlights the complicated
transport pathways that exist in the medial layer.
Diagonalisation of the tensors in Table 8 demon-
strates that the SMC alignment leads to di↵erent
principal transport directions; maximum eigenval-
ues were aligned at �7.5� and +32.7� to the cir-

cumferential direction for locations A and B ,
respectively. However there are some similarities,
considering this is a single location, in the level
of anisotropy; both regions have a single dominant
direction for transport.

The density of smooth muscle cells varied in
the medial GS (as evident in Figure 6 and location

B in Figure 8). This results in variable porosity
(for example for the blocks extracted around lo-

cation A and B the SMC volume fraction was
0.4 and 0.54, respectively); hence, the permeability
also varies. Variations in permeability were also ob-
served along a single layer of GS for medial blocks

( 5 - 8 ). This is due to local changes in density
and alignment of SMCs. Overall, these variations
demonstrate that the GS is heterogeneous and has
regions that both impede and promote the trans-
port of water in di↵erent directions. This is a pos-
sible mechanism for local accumulation of macro-
molecules.

6 Limitations

The present study has a number of limitations.
Firstly, the samples came from one part of the rat
aorta. This needs to be extended to other regions of
the vessel in order to understand how local struc-
tural di↵erences (e.g. at inner versus outer walls of
bifurcations) influence local transport properties.
Secondly, the samples came from an elastic artery.
To obtain a wider description of transport in arte-
rial tissue, samples should also be taken from mus-
cular arteries. Finally, considering other species would
provide insight into whether wall transport is species
dependent or independent, and hence would indi-
cate the applicability of the present findings to the
human aorta.

7 Conclusion

A new modelling methodology for determining the
permeability of the medial layer of the arterial wall
has been presented. Unlike previous approaches, it
uses a realistic representation of the structure, ob-
tained from confocal images of the aortic wall, and
also allowed the identification of water permeable
spaces as well as the relative permeability of wall
structures. A fictitious domain approach was used
to model the structure, using a newly-developed
porous media solver in the spectral/hp element li-
brary nektar++. The fictitious domain approach
was validated by comparison with a basic model
of the media, widely used in previous studies. The
realistic medial structure a↵ected transport prop-
erties; in particular, factors that led to anisotropic
transport, characterised in terms of permeability,
include: variation in SMC density; di↵erent align-
ments of SMCs; and the elastic lamellae. Overall,
the results suggest that transport in the media is
spatially varying.

In the future, a wider variety of tissue sam-
ples needs to be considered. For example, it will
be interesting to determine whether there are dif-
ferent medial permeability properties at di↵erent
locations within the aortic bifurcation. Finally, the
implications for macromolecule transport require
investigation.
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A Appendix

A.1 Validation of solver

In the following a number of benchmarks are presented
to validate the solver implementation.

2D forcing

Fig. 9: Results and convergence for the 2D analyt-
ical benchmark.

The first benchmark considers the analytical solu-
tion given by Masud (2007). For this solution the do-
main is a 2D square ([0, 1] ⇥ [0, 1]) discretised with 5
quadrilateral elements in each direction. The analytical
result for this problem is given by

u(x, y) = x

2(x� 1)2y(y � 1)(2y � 1),

v(x, y) = �u(y, x),

p = (0.5� x)(0.5� y).

if the domain is subject to a forcing term (f), which is
a rearrangement of equation 1. Figure 9 demonstrates
the convergence behaviour for p = 1, 2, 3; only these 3
were considered, as the L

2

error was extremely small for
p � 4. The L

2

error is defined by

L

2

error =

Z
(ue(x)� u

n(x))2dx

�
1

2

(18)

where u

e(x) is the analytical value and u

n(x) the nu-
merical value.

(a) Convergence behaviour, 2D

(b) Convergence behaviour, 3D

Fig. 10: Convergence for the channel benchmark.

Porous channel

Yang et al. (2002) presented a 2D solution of water flow
through a channel filled with a polymer gel. The analyti-
cal solution to this problem for the velocity and pressure
field is given by

w(x, y, z) = 1�
e

1�xp
K + e

xp
K

1 + e

1p
K

,

p =
⌫



(1� z).

This problem demonstrates a particularly challeng-
ing feature of biological porous media: very fine bound-
ary layers that exist close to solid objects. To capture
such steep boundary layers typically requires very fine
meshes. For the numerical solution, a 2D square ([0, 1]⇥
[0, 1]) was discretised with 96 quadrilateral elements (base
element size h = 0.15) and refined in the vicinity of
the wall (o↵-wall spacing h = 0.0125). The convergence
behaviour of the numerical solution is demonstrated in
Figure 10(a). This highlights a unique advantage of high-
order methods, in which small boundary layers can be
captured via p refinement; however, as the value of 

is lowered the base level mesh size within the boundary
layer must be reduced. Equivalent solutions were solved
in 3D and with mixed element types i.e tetrahedral ele-
ments in the bulk and prismatic elements in the vicinity
of the wall. They demonstrate similar convergence be-
haviour: convergence for hexahedral based 3D geometry
is shown in Figure 10(b).



Determining permeability properties of the arterial media 17

A.2 h versus p refinement

Fig. 11: Contours of velocity around a circular ob-
ject obtained using the fictitious approach and dif-
ferent levels of h and p refinement. Only half the
geometry is shown so that oscillations are more ev-
ident.

As a demonstration of the how h and p refinement
influences the solution, a square domain with a length
l = 1 and a circular object in the centre accounting for
20% of its volume, � = 0.2, was simulated. This geome-
try was chosen as it allowed lower levels of h refinement
to be used while demonstrating the advantage of either h
or p refinement. Figure 11 shows contours of velocity for
di↵erent levels of h and p refinement. For the equivalent
number of degrees of freedom (DOF) the solution shows
fewer oscillations at high p rather than high h (compare
h = 0.0125, p = 1 versus h = 0.05, p = 4, top and mid-
dle images in 11). As the polynomial order is increased
the solution becomes non-oscillatory (bottom image in
Figure 11); a greater number of linear DOF (14522) is
required to achieve the same accuracy.

To investigate the di↵erence in the solution for the
equivalent number of global DOF in more detail, the ve-
locity was extracted along the black line shown in the in-
set of Figure 12. This line was chosen as it passes through
the high velocity region, which is the most di�cult part
of the solution to capture as a result of the sharp bound-
ary layer that forms around the circular object. Figure
12 shows that the solution for the equivalent linear case
exhibits more oscillations than the solution with a lower
level of h refinement and higher p.

Fig. 12: Comparison of velocity plotted along a line
in the high velocity region (see inset) using dif-
ferent combinations of h and p refinement having
equivalent degrees of freedom.
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