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Abstract  

On the Burnside ring of a finite p.2.TzE 

The material contained herein is based on work by A. Dress, 

notably his paper "A Characterisation of Solvable Groups" 

(Math Z. 110, 1969, pages 213-217). 

Chapter 1, the introduction, contains a summary of the above 

paper, together with a detailed statement of other unpublished 

results of Dress's which are relevant to this dissertation. Also 

contained are definitions of my on which will be used in later 

chapters. 

My own work falls into two distinct sections. The first 

section concerns the embedding of the Burnside ring, _,-.1.(G), of 

a finite group G into a direct product of copies of the integers, 

and is covered in Chapters 2 and 3. The second section concerns 

the graph of prime ideals of n_(G), and is covered in Chapters 4 

and 5. 

Chapter 2 We have the homomorphism 	:_f"?.(G) ---> 2; for each 

U G defined on the transitives of (G) by 	u(S) = I SU  I for 

f S a transitive G–set, where SU 
 L = s GS : us = s, all u EU); Dress 

shows that c;
U 
 = – 0V  if and only if U (---/V and that ---n 

tbu  : 	( —} I Z is an embedding, where 	is a 

complete set of representatives of the n conjugacy classes of sub-

groups of G. 
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We define yu  e 111.Z to be such that yu  has zero component in 

V ts; G unless V U, and component 1 if V U; we denote the least 

positive integer a such that ayu Q 12-(G) by X U  G ' and the product 

■ G u  yu  by xu. The main results of Chapter 2 can be stated: 

Theorem (a) If G is a finite group, whose maximal normal subgroups 

have index p1,p2,...,ps, then V;ri  = p1
p2...ps  

■ U (b) If U -4 G, then 	= (11,G(U):U)A ' 

Chapter 3 We apply the results of Chapter 2 to a consideration of 

\ 	ti the regular G—set, G/e; we have G/e = xG, and A = 1G1. Our 

results are: 

Theorem If G has odd order, and U G, with \ G = GI, then the 

following conditions are equivalent: 

(1) G has no other subgroup of the same order as U. 

G 
to xG (2) There is an automorphism of Si(G) sending 

■ G 	t Theorem If G has even order, and U -4.= 	A G with u  ,-, ICI, then the 

following conditions are equivalent. (U necessarily has square—free 

order) 

(1) G has no other subgroup of order p for any odd prime n 

dividing IUI, and there is no subgroup of G of order 4 

which does not contain the Sylow 2—subgroup of U. 

There is an automorphism of ..c-(G) sending xu  to xe. 

Chanters 4 and 5  Further definitions are necessary to introduce 

our results: firstly, 6 	for p zero or prime is the kernel of U,p 

the map SI(G)---.* 	Zp  (see Dress's paper). If U, V G, then 

a chain c from U to V is a sequence U =
n =V such that 

0,P1 = TU.,1,p1 ' 153 11 	11 	1...96  U 	= 	Un,pn U1,p 	17 2 D'-2 	n-1 n
,-n 

(2)  
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The width 11(c) of .the above chain is the number of steps, n; 

the diameter, d(c),is p1p2...pn. If a(U,V) is the set of chains 

from U to V, we define W(UiV) = in (1*) cE C(U,V)); 

d(U,V) = h.c.f. (d(c) : c E C(7,V)). 

Finally, we define W(G), the width  of G, and d(G), the diameter 

of G, as follows: 

leT(G) = max (W(U,V) 	U, 	G) 

d(G) = 1.c.m. (d(U,V) : U, v G) 

The results of Chapters 4 and 5 include the following: 

Theorem  If the prime divisors of the order of the group G are 

p1,p2,...,pr  then the following conditions are equivalent: 

(1) G is nilpotent 

(2) w(G) = r 

(3) d(G) = 101P2...Pr. 

Theorem  If G is a finite soluble group of order divisible by exactly 

r'distinct primes, then if W(G) = r + n, then G has at most n non—

normal Sylow subgroups. 

Theorem  If d(G) = pl
a, 

 p2a ., ..pr
a,

then 

W(G) al a2 + 	+ 	+ ar. 
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Chapter 1 

Introduction 

The basis for the work embodied in this dissertation is the 

paper "A Characterisation of Soluble Groups",TJ, by A. Dress, 

concerning the relationship between a finite group, and its 

Burnside ring. Further relevant material is contained in a 

lecture course by Dress and Kuchler at Bielefeld University in 

1970, and since this is not generally available, its relevant 

results are summarised in this Introduction. Also the introduction 

includes a brief summary of the definitions and results of Dress's 

paper, .527, and various definitions to facilitate the development 

of my own results. 

1.1 The Burnside Ring 51(G) of a finite group G 

In the following results and definitions, G is a finite group. 

A finite set S is said to be a G-set if G acts as a (left) 

permutation group on S, i.e. we have a map G x S -4 S: (go) 	gs: 

such that (g1g2)s = g1(g2s), and es = s„ for g1, g2 	G, 

s 	8, e the identity element of G. If S1,S2  are G-sets, then 

f: S1  --> S2  is a G-map if, for all g 	G, s € Si, f(gs) = gf(s). 

Given two G-sets M, N, the disjoint union M U N, and the 

Cartesian product M X N, are also G-sets in a natural way; and 

with this addition and multiplication, the isomorphism classes of 

G-sets (under G-maps) form a commutative half-ring -04:(G). Its 



associated ring is the Burnside ring, _CL(G), of G. 

The transitive G-sets can be shown easily to be the set 

(G/U: U ‘G), where G/U is the set of left cosets of U in G; 

also G/U c2.4. G/V if and only if U is conjugate to V. Finally, 

the distinct (i.e. non-isomorphic) G-sets G/U, for U 	G, 

form a basis for 11-(G) as a free Z-module. 

1.2 The Prime Ideals of I-2-(G)  

For each U < G, we define the map 	Z by 

(t) +(S) = (SU! , for S a G-set, where SIT  = (s C S: us = s, 

all u C  U); we have 	= (4 if and only if U is conjugate 

to VI, and 14 extends to a homomorphism Ou: -C1-(G)— Z. 

For p zero or prime, and U 1 G, we define 	 = utp   

(2: SI(G): 4?,.0.(x) = 0 mod p). The 'eu,p  are prime ideals (since 

.A-1_.(G)/-eutp 	Z or Z ) and Dress shows, either by considering 

a minimal transitive G-set not belonging to a prime ideal, or by 

using a theorem of Cohen-Seidenburg, that these are the only prime 

ideals. 

It follows that V 	is maximal, ulo  minimal, for p -74 0 Tipp 

( -fU,p ;,0); and 	U90 = 
17.90  if and only if U is con- 

jugate to V. 

The conditions under which 6U9p 	
V,p, are more 

complicated, and require a further definition. 

For U 	G, we define Kp(U) to be the minimal normal sub- 

group of U such that Uftp(U) is a p-group, i.e. Kp(U) = 

r‘(P:V <3 U, U/V is a p--group). Kp(U) is a characteristic sub- 

group of U; andUlp = 	if and only if Kp(U) is conjugate 

to p(V). 

S. 



In his paper, [j7, Dress considers the graph of prime 

ideals of .4-2_(G), and defines two minimal prime ideals Y U0 

0 to be connected if there is a chain U = Uo, U1, 	Un_1, 

U
n 

= V of subgroups of G, and non-zero primes p0,p1, ". 
Pn-1 

such that W UilPi 	
Ui4-1 9

pi , for i = 0 to n-1, i.e. we have 

the diagram 

0 LL,0 	6311-■,° 	YLL-1. 

Dress's result in his paper f■ is that the following 

conditions are equivalent: 

(1) G is a soluble group 

(2) The graph of prime ideals of. (G) is connected (i.e. any 2 

minimal prime ideals are connected) 

(3) _,2(G) has no non-trivial idempotents. 

1.3 The Transitive G-sets; Induction and Restriction 

In defining the Burnside ring ..n....(G) of a finite group G, 

the transitive G-sets C/ti, where U runs through the conjugacy 

classes of subgroups of GI play an important role, being a basis 

for _O__(G) over the integers, Z. 

Chapter 3 considers the problem of characterising this 

basis; given that a ring is the Burnside ring of a finite group, 

can we determine its transitive basis? The regular G-set, 

is determined (up to automorphism of -0-(0, but the problem of 

characterising the other transitives has not been solved. 



The following results and definitions contained in Dress's 

unpublished work are used in Chapters 2 and 3. 

Definition 1 Suppose the finite group G has n distinct con- 

jugacy classes of subgroups. We define G: 	Z by 

e= wi5u„ where 	is as defined in 1.2, and U runs through 

the conjugacy classes of subgroups of G. 

C) can be shown to be an-embedding of ---c)-(G) in tS, Z; we 

now identify -11_(G) with its image under e 

--n 
Lemma 1 	[Gitti  Z Cl/(G). 

Proof Define yu  = (0,0, 	, 1, 	0), i.e. the component 

of 	corresponding to V \<” G is zero unless V N  U, in which case 

the component is 1. It is sufficient to show that IGlyue-CL(G) 

for each subgroup U of G. We use induction on 111. 

For }II' = 1, that is U = e, we have 
	

(G/e) = 0 U = e 

IG1 U = e 

So i Gl ye  G. 

So suppose U = e, and that for V C G with \-71.< \-4 

\G1 Yv  E --a(G) . Consider Gm; cL v(G/u) = —0 	v II  

tliG(U):U1 	V = U 

aV 	V KU VI U. 

So G/U=1\TG(U):Uly.„ 	aVYV. 
u  

Hence G.Iyu  = OGI/ING(U):UOG/U 	>  (am/ NG(U):110i01Y V*  1VI <WTI v 

10. 
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It can be shown that 413.(G/U) divides ebH(G/V), so ING(U):Ui 

divides ay. Hence IGIyu6-0-(G),.and the result follows by 

induction. 

Definition 2 We denote the least positive integer a such that 

a yu(Eja(G) by 	, and the product \.1G1.  yu  by 4. The superscript 

G is omitted if U = G; we write xG  and 	G. 

We call xu, for U 	G, a  Quasi -idempotent of !2(G). 

Definition 3 (a) Suppose H,G are groups, and 	 :H--->G is a 

homomorphism. Let N be a G-set; we define an H-operation on N 

by hon = (h).n, for all h 6 H, n E N. Under this operation, 

  

we obtain an H-set, which we denote by (N)H. In the case where 

H is a subgroup of G, and 	G is the inclusion homo- 

morphism, (the case with which we are concerned) (N)
H is termed 

the restriction of N to H. 

(b) Suppose H,G are groups, and C  :II --> G is a 

homomorphism. Letil be an H-set; we define by (11,(g,m))----> 

(g 	h-1)thm), an H-operation on G X M. We denote by G Y. HM 

the set of equivalence classes of G 7.Munder this action by H, 

that is (h,(g,m)) 	(g,m); and finally we define G to act on 

G 'A. HM by g1(g,m) = (g1g,m). Under this action, G X H11 becomes 

a G-set, the induced G-setdenoted by (M)G. 

Lemma 2 Let q):H----1)-G be a group homomorphism, Mi  and M2  

H-sets, and N a G-set. Then 

(a) G x H(Mi  + M2) = G ?<HMI  G 
Jot 2 
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(b) 	GKE( (N)H X 	= N 	(G )4,.}/M) 

(a) llomH  (M.,(N)H) = HomG (04)G,N) where M is an A-set. 

Definition 4  With 4?, H and G as above, we define additive 

homomorphisms 2 ( (=1), -"CT( 	) from -1--)-(G) to _A-2_ (11), and 

from --C1---(H) to _a(G) respectively, by --C>-( 	 (N)H, 

for N a G-set, and 7J-  ( ): 	< TIM, for M an H-set. 

Finally, for U-sz: G, is U---4G the inclusion, x 

y e_a.(u), we define (x)u  = ,:a_(i)(x), and (7)G  = 7_7(i)(y). 

Lemma 3  For U ;" 0, (1u)G  = GAT, where 1u  is the U-set with 1 

element. 

. Corollary  For U 	G, x 61-L(0, ((x)u)0  = G/U.x. 

Proof ((x)u)G  = (1U 17  (x»G  = (1U  )G  .x = G/U x • 

Lemma 4  Let N be a V-set, where V U < G. Then 

G x (U XVI) = G vN. 

Corollary 1  If 	G, and N = 17/V is a transitive 17-set, then 
.G kNj = G/v, a transitive G-set. 

Proof (N)G  = ((1v)U)G  = (1v)G  = GiV. 

Corollary 2  For U G, 	_n_(U) ---3_a(G) is 

injective if and only if for every V1, V2  with V1 	V2  in 0, 

then V1 	V2 in U. 
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G Corollary 3  For U a, (xu)G  = bxu, where b E Z+. 

Proof Look at (4)u. For 	clearly 

v((4)u) = 	= 

0 

t GN Hence kxu)u  = axu, a C Z.  Induce up to G: 

V = U 

v T  u 

a(xu)G  = «x;»G  = G/U.4 (Lemma 3, Corollary) 

N = 

N 	i Since (xu)G  is in -11(G), a must divide \NG(D):U, by the 
N 	G definition of xu. Hence (xu)G  = bxu, where b = (1/a)ING(U):Ul. 

\ uG Chapter 2 involves an analysis of 	and " for U 	G. 

\ G We prove that A can be calculated exactly in terms of the structure 

of U, and the index of U in its normaliser (Propositions 2.5 and 

2.6). 

Chapter 3 applies this analysis to a consideration of the 

regular G-set, G/e. This uses the fact that G/e = xe, and we 

prove that G/e is unique up to automorphism of -NG). 

1.4 The Width, and the Diameter of G  

Further results can be obtained by considering the number 

of steps required to connect the graph of prime ideals of ---1-2-(G); 

and by considering which primes occur in a chain. To facilitate 

this, we introduce some notation and definitions. 
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Notation Suppose U,V are subgroups of G, and 	= V,p 

for some non—zero prime p. Then K (U) K (V), so VO and 

131 differ only by a power of p. 

We write U y  V 	if ITO 

p 
U 21 V if \IT < IV 

p 
U 
	

if the relative orders of U,V are not 

known. 

Definition 5 Suppose IT,V..<" G. A chain c from U to V (which 

may not exist if G is not soluble) is a sequence U = U0, U1, .... 

p 4011  = V such that 

P1 	P2 	Pn tr = uo  ---> ul 	U2  -H>  	> Un = V 

where the pi's are primes (not necessarily distinct), and pi  = 1 

if Ui  _1 ^JU. 

The width, IT(o), of the above chain c„ is the number of 

steps, n; the diameter, d(o), of the above chain c, is 

P1P2 

 

p . 

 

Definition 6 Let C(U,V) be the set of chains from U to V, for 

U,V..; G. We define 

W(U,V) = min(w(c): c G C(U,7)) 

d(U,V) = h.c.f.(d(c): c E C(U,V)). 

Definition 7  Define W(G), the width of G, and d(G), the diameter 

of G, as follows: 

W(G) = max (w(U,V):U,V ( G), 

d(G) = 1.c.m.(d(U,V):U,V < G). 
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Chapter 4 deals with some results concerning the width of 

G. Its main result, Proposition 4.8, is that if the order of 

G has r distinct prime divisors, and W(G) = r + n, then G has 

at most n non—normal Sylow subgroups. 

Chapter 5 deals firstly with results concerning the 

diameter of G; Proposition 5.3 shows how d(G) may be determined 

from a consideration of normal series of subgroups of G. 

Chapter 5 concludes with Proposition 5.4 relating d(G) and 11(G): 
a, 	ar  if d(G) = pi  .... pr 	then W(G) 	al  + a2  + 	 + ar. 
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Chapter 2  

The embedding of -n-(G) in a direct product of copies of the integers  

In this chapter, we consider the map e , defined in 
Definition 1, Chapter 1, embeddinar_n_(G) in 	Z, where n is 

the number of distinct conjugacy classes of subgroups of G. In 

particular, we analyse the values of A (see Definition 2, 

Chapter 1) for U a subgroup of G. This analysis begins with the 

case where G is a p-group, and uses the Mobius function g(U,G) 

of G2 introduced by P. Hall (see 2U). 
g(H,G) is defined as follows: g(G,G) = 1 

= 0 for H < G. 

Lemma 2.1  

(a) i(H,G) = 0 unless H is an intersection of maximal subgroups 

of G. 

(b) If G is an elementary abelian p-group, and IG/H1 = pa, then 

g(H,G) = (-1)apa(a-1)/2. 

Proof (a) is standard; for (b), see P. Hall /J. 

Proposition 2.2  

If G is a p-group, then )■G.  = p. 

Proof By (a) of the above Lemma, g(H,G) = 0 unless F(G)ti, H, 

where F(G) is the Prattini subgroup of G. G/F(G) is elementary • 

abelian since G is a p-groun, so if F(G) 	H, then H <3 G; and 

Pala-1)/2.  if IG/HI = pa, then by (b) of the above Lemmat ia(G,H) = (_1)  



Then for U C. G, 4).G(y) = 
0 	UK 5-4. G 

>SG1 
	UK = G 

17. 

• Now pli(H,G) = .(-1)apa(a--1)/2 + 1 , and for a C Z+,. we 

have a(a-1)/2 + 1 a. Hence pa  divides pp.(H,G); that is, 

I G/H1 divides pp.(H,G). So suppose pp(H,G) = 	G/H ; clearly 

this holds for any H G, with kg  = 0 unless F(G) .< H. 

Now put x = V  G kVG/V; 
 then (i 	= Er6voiGiv i kv = p  U.g'‹G (V/G)  

U = G 

U G 

Hence xG  divides x, so 	divides p. But if 	= 1, then 

xG is an idempotent, which is impossible since C. is soluble (see 

1.2). Hence x = xG, and 	= p. 

Proposition 2.3  

Suppose that K <1G; let 01  be the quotient group 

Suppose that in -0._(G1), x01=<G -V- VATK/K. Define y in II (G) V 
by: 

y = 	avG/1TK. 

Proof We prove that (1 (G/vii.) = (Durcpc  (GA K) = 4.13(G/VK). 

For: ITKVK = gfiX 	 UK(sK)VIC = (gK)VK 

   UK/K(gK)Vk/K = (gK)11K/K, 

and also: UKgVK = gVd < 	 010g  VK c=am Ug 	VK (since K 	G) 

UgITK = gVK. 

Hence ( .0.(y) = ()uK(Y) = 4110(7-G1 ) 
0 	UK = G 

Xch UK G 
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Corollary 1 If K -(G) / G, there exists y in -11(G) such that 

CIPG(y) = p, and .1)u(y) = 0 if UKp(G) / G. 

Proof Put K = K (G) in the above Proposition. G/K (G) 

is a p-group, and so XG1  = p, by Proposition 2.2. 

Proposition 2.4  

If G is nilpotent of order pintp2  

G = P1P2 77'7 -Pr' 

 

prnr  , then 

 

Proof By Proposition 2.3, Corollary 1, there exists, for 

i = 1 to r, yi in -CL(G) such that dbu(yi) = pi  if US = 
Pi 

and 0 otherwise, where S is the (normal) Sylow pi- omplement 
Pi 

of G. 

So put z = y1 y2 	 yr. Then 4u(z) / 0 implies that 

US = G for i = 1 
Pi 

pi-subgroups of G. 

(G(z) P1P2 "6' 

to r, and hence that U contains all the Sylow 

But this is only possible for U = G. Clearly, 

pr, hence z = p1p2 	pr 	avaft. 

We now show that z is not divisible. 

G has a normal subgroup U, say, of index p1; we have: 

0 =4)(z) = pip2 	pr  + au  eli(G/U) = p1p2 	pr  a. p1. 

Hence au  =-p2 	 pm.'  so p1  does not divide z. Similarly, we 

can show that z is not divisible by p2, 	pr; so z is not 

divisible, hence z = xG, and 	= p1 p2 .... pr. 



19. 

Proposition 2.5  

Suppose G is a group of order pinIp2n .... pl;ar , and that 

K (G) G for i = 1 to s, and K (G) = G for i = s+1 to r 
Pi 	 Pi 
where s < r. Then i\G  = p1p2 	 Ps• 

; ) G  X  i=1 to -r- pi(  Proof Put K 	K is a normal (characteristic) 

subgroup of G. Suppose ,G/K4 = p1bip2b1. 	psbs;  G/K is nil- 

potent, and by hypothesis, bi  0, for i = 1 to s. 

Hence, by Propositions 2.3 and 2.4, we can find z in SL(G) 

such that {10U(z) = 	= p1p2 	ps  if UK = G9  and 0 otherwise. 

We now show the existence of an element y in_CL(G) which satisfies 

4)G(y) = 1, and Ou(y) = 0 if UK = G, U G; and then we show that 

xG = zy. 

Let I be the ideal of i(G) generated by the xl̀aris for K 	U, 

and U G; consider the quotient ring-0.-(G)/I. Its minimal prime 

ideals are -62G 0 	V /I, and 	OBI, for K ,4t V. Hence rG 0  /I is ,, 
isolated in the spectrum of prime ideals of-1-1(G)/I; hence, since 

(G)/I is commutative with a 1, there is an idempotent in 

• .v  

QV C2 Hence there is an element y of --(G) such that yEK 

mod I, and y2  = y mod I. If K 	V, then I ‘If;,(:), so 

ye K 	 e n 	
0
. Since I = ( 	au4 : 	U < aU  Z), we have - v v , 

<G xU y2 
 
= Y 	K ,O 	and. therefore (1),u(y)2  = lU(y2) aU 

So if U = G, or if K. U, bu(Y)2  =(11u(Y), and since 

U(y) is integral, this implies that Ou(y) = 0 or 1. But 

• 7-  = 4y  y) 	V<G 	
Gy 

artf‘xV" 
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eV,0, so 4=u(y) = 0 for K=. U; a fortiori, 

(i)u(y) = 0 if UK = G, U / G. Finally, 4)G(y) = 1, since 

y 4 
0 	U = G 

Now, +U(zy) = 4U(z) +u(y) = 

We now know
G 

exactly in terms of the group structure of 

G
'  

G; we now consider 	for U G. By considering the induced 
U 

element (xu)
G 

of r1(G) and the restricted element (xu)u  of SI(U), 

it is easy to see that U 
	

I ING(U) :UI 	The next 

proposition shows that \.1.  = ING(U):UI )\u; the results of 1.3 

on induction and restriction are assumed. 

Proposition 2.6  

Suppose G is a group, and U a subgroup of G. Then 

\ G 	 G 
A u  = ING(U):UI 	and (xu)

G 
 = xu. 

Proof By Lemma 4, Corollary 3, of Chapter 1, we know that 

(xu)
G 
= b 4, so we need to show that b = 1. By Proposition 2.5, 

we know xu  precisely: xu  = p
1
p2...ps 	av U/V, where the 

summation is taken over a set of representatives of the conjugacy 

classes of subgroups of U, and the pi's are precisely the primes such 

that KPi (U) U. Hence by Lemma 4, Corollary 1, of Chapter 

(xu)G =  
p ...p G/U 	G/V V. 

1-2 	V U 

P1P2."Ps U G  

and by an argument similar to that used in Proposition 2.4, 

n. divides \G,  for i = 1 to s. Hence xG  = zy, and 

G  = p
1
p2...ps. 
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However, the total coefficient of G/V is not necessarily av, 

since there may be subgroups of U conjugate to V in G, but 

not conjugate in U (that is, T.3(i) is not necessarily injective, 

see Lemma 4, Corollary 2, Chapter 1). The term in G/U in (xu) 

is certainly p1 p2...p5  G/U; so to prove that b = 1, it is 

sufficient to show that p1  does not divide (x)G. 

Consider the coefficient av  in xu  of U/V for V a maximal 

subgroup of U. Since (Pu(U/V) = 0, we have xu.U/V = 0. This 

gives the equation p/p2...ps 	(Eu(V):Viav  = 0. 

So if V is normal inU of index pi  (where 1 i < s by 

hypothesis), then av  = -p1 p2...P5/pi; whilst otherwise 

av  = -p1p2...ps  (since V is then self-normalising). 

Hence p1  divides av  for maximal V unless V is normal in U 

of index p1. The number c of maximal normal subgroups of U of 

index p1  is ecual to the number of maximal subgroups of U/K (U), 1 	 Pi 
a nilpotent -01-group; by standard theory, c = 1 mod p1. Therefore, 

u/v. 	 ,iv 
xu = PiP2—Ps P2P3"--D  s 	i ' - 	- V -74 Vi V 	' 

V 7-4 U 

where V1,V2'...,Vc are the normal subgroups of U of index p1. 

Hence 

(x y= - D1D2."-s G/U — D 
r 

-  	 at,7 G/ -T 	7 	av  G/V , 

where the first sum is taken over a set of representatives of the 

conjugacy classes of V1 ,V2,...,V0, a, T  = the number of Vi's 

conjugate to H, and the second sum is over the remaining subgroups 

V of U, where V U. 
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Hence 11  aw = c = .1 mod p1 , so at least one aw  is 

not divisible by p1; so pi  does not divide (xu)G. 

Therefore (xu)G 	, and )\ T  = ING(U):U1 Tyr. ..n 1' '2' 's 

= 	NG(U):'0' j III. 

Corollary 1  

For U‘V‘G, (X;)G  = 4, and u  \N (U):N (U)G\V  G 	V 	IJ • 

N 	/ Proof (xu)V  = xV 	k II  , 	xu G 	((xu) ) 

• Also, X V  = IN (U):11.1>■ 	G  - N 	and the U V 	 ' U-  G 	U 9  

result follows since NG 	> (U) > NV  (U). 

Corollary 2  

For D.;4.!G,(xIGI')v  = w< v  au4 , where au  =ING(M):Nv(W)1 

if W is conjugate to U in G (and W appears only once for each 

conjugacy class in V), au  = 0 otherwise. 

Proof ForITOr, 	 u((4)v) = ,J,1(4) 

>,,G  if W =U 

0 otherwise 

So(4)v  = :E1)%914.  , where the 	are a complete U 

set of representatives of the conjugacy classes in V of those 

conjugates in G of U which are contained in V, 

= :EIN
GI  (W.):NVi  (W)1TV  -M1 
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Corollary 3 	• 

= IG1 if and only if U is an abelian normal subgroup 

of square—free order. 

Proof U  = )11G(U):111>tU  ; • 'U divides lUI , and by 

Proposition 6, iNIT  = lUI if and only if U is abelian of square—

free order. If U is not normal in G, then ING(U):Ui< \G/U1, so 

the result follows clearly. 
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Chapter 3  

A characterisation of the regular G-set  

In this chapter, we investigate the possibility of distinguishing  

the regular G-set, G/e, where e is the identity element of the group 

G, from the other elements of -CL(G). Now 40.(G/e) = 0, for U -4 e, 

U4;." G, and 4 e(G/e) = 1G1;  hence G/e = xGe., and 	= tat. So we only 

need to consider elements of the same type, that is, elements of the 

form xff with 4 = IGI, where IT< G. Prom Proposition 2.6, Corollary 

\ G 3, A = IG1 if and only if U is a normal Abelian subgroup of square-

free order. 

The cases for G of even and odd order require separate treatment. 

In the odd case, xG can be distinguished from xG, (where >1/4G = 	) if 

G has another subgroup of the same order as U (Proposition 3.3);  in 

any case, the regular G--set is unique up to automorphism of 1/(G) 

(Proposition 3.5). The even case is slightly more complicated 

(Proposition 3.6), but G/e is again unique up to automorphism of.171(G) 

(Proposition 3.7). 

Proposition 3.1  

If p divides (4 4), V U, then U 	u rIV<3V, and 

either lupirvvi .= I V/17n vl = p, or U V, IU/V1 = p (or V 

I VAT I = p) where suitable conjugates of U and V are chosen. 

Proof Suppose that U V (without loss of generality) 

4 = p1...p3G/U 	ZaTIG/11. 

has no term in G/U, so p = p1, say. 
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Now xU = pl...psG/U p2.. .ps 	auG/W --2-laxG/K 

= p. 

As before, for some W1 1U, 	= p1, awl5L  0 mod p1, 

so there must be a non-zero term in G/Wi  in xv. 

Therefore V> W1'  choosing suitable conjugates. So either /  

V = W
1 
 or V U. If q-U, then, by a similar argument, there 

exists Wi 4 V such that I v/U'l = p1 , and WI*: U. 

Thus U f  V .>,; 	and U ( V) WI; so W.1  = WI, and U r V = W1. 

Corollary 1 p divides (x + 	if and only if 1'0 = p. 

Proof If 1U1 = p, then 4 = ,G/u - Gle 

= pG/U xGe.  

The converse follows from the proposition. 

By the above corollary, the number of subgroups U for which 

p divides (xu xtGa) is precisely the number of conjugacy classes 

of subgroups of G
` 

 of order p; we attempt to distinguish between 

G xe  and xv, where A v  = 1Gi, by considering the number of conjugacy 
G classes of subgroups U such that p divides (.xvG  xu). The next 

proposition is stated in greater generality than is necessary for 

our immediate needs, but will be useful later. 

Proposition 3.2  

If G = UP, where IP) = p, P is normal in G, and (1111,p) = 1, 

then x0  = pzE  xuG  if U-40 

H  - xe if U-h G 

where H = G/P, and zH  is defined from xu, by 

zH  = 	avvvp, where xH  =ZaviI/V. 



Proof By Proposition 2.3, 41)-(zH) = 
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0 VP G 

a H VP = G 

 

   

So if U is normal in G, then 

-4) P 	!II = P(XH -)̀ II)= 0  

4)G(1377:1 ". 4) = P\H = 

- 	= 0 otherwise. 

Hence ma = pza - x. 

If U is not normal in G, then ■(1j = 	so 

GN 
(13(-11 xU) = - 0 and the result follows. 

Proposition 3.3  

Let G have odd order, and U be a, subgroup of G with 

)■ G = .G.; then if G has another subgroup of the same order as 

U, xp. can be distinguished from xe. 

Proof By Proposition 2.6, Corollary 3, 1U1 = pi...ps, 

say, where the pi's are distinct primes, U <AG, and U is abelian. 

Suppose there is another subgroup V, say, of order 

pi...ps. Then without loss of generality, there are 2 subgroups 

of order pi, say Pi, P1', where Pi U (P1 <10, P1' z. V. 

G 	G IGG 	lx_ 1 4- me. 4 	I, and p1 	X, P1 -pi Clearly, xp r 	1  
1 

. We show that p1 141 mw only if w = Kp (U). 
1 

Suppose U = P1 X P2x...- ><Ps, where IPii = pi, and Pi41 G. 

4 	. p1 mu mw Implies either (a) W t;*. P2...Ps = 11, say, and 

either 	= p1 , or W = DI, or (b) 	U, iW/U1 = Pi, 

by Proposition 3.1. 
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(a) Suppose IW/MI = p1. Now, P2  -1 W, and if W= P'M, 

wheretP'\ = p , then by Proposition 3.2, putting N = PiP
3
...1 

xViT 

 

G_ 
P2zW/P2  xti  if N-1W, 

G 
N/P2 	if 17'6 W  

Hence xu  + xw  = 132111/P2 	P2 "1011/P 	(4 	P ..P ) 
G G 

1 3. 	s 

zWP2 

The two brackets above are disjoint, since all the 

transitives in the first bracket are of the form G/U'P2, whilst those 

in the second are of the form G/U,  for U,  P2, 

1/ G 
So p1  IkAptp 

3. 
 ..p

s 
 Xp 

1 
 p 
3. 

 ..p  ). Continue inductively, 
s 

to arrive at p1  14, + 	— G/P' + p1G/P1  2G/e 1 "V 	P1 	, D 1 	2G/e. 
1 

Since p1  / 2, this is a contradiction. 

So = only. 

(b) IW/U1 = pl, 1.1-441T 

= \viCT/U + 	awiG/I.P, and p1  divides i\w  since 

Kp(N) = 11, so the coefficient of G/U in 	is Xipi, which is 

not divisible by p1. So p1  does not divide xu  + xwG  . 

Hence p1  divides x19.1. + x. only if W = M. So xII cannot  be 

confused with xe. 

The case for G of even order is slightly different, and is 

more readily considered after further work on the case where G has 

odd order. 
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We now show that for G of odd order, and if G has exactly 

one subgroup of order pl...pe, which is (normal) and Abelian 

(so that 	= IG1), then there is an automorphism of ...51(G) 

which sends xe  to xu. It is sufficient to show that there is an 

automorphism e of-CL(G) acting on the set (4: II‘G) as 

follows: 

If II = P1  X P2 X ...)(Pe, then191:xe 	>xp  , x„, 	- xv, 

mg. 	>x,,vr  for (IVI, pi) = 1. i  

For then e1e2... es  sends xe  to xu. 

Proposition 3.A 
(a) Let S be the set of quasi-idempotents xiGj  in_CL(G) (as 

defined in Definition 2, Chapter 1), and P the subring of B con-

sisting of integral combinations of elements of S. Then 

r 	tc.1 _CL(G). 

(b) Let c) be a permutation of S; then 0 extends to an 

G 	)■.0  =I. automorphism of of rif and only if xu  E) = 	implies  

(c) Let E? be an automorphism of 11, then 6) extends to an 

automorphism of -11(G) if and only if for all a Ejl  , any factor 

of ICI dividing a in Jr-L(G) divides a e in ...a(G). 

Proof (a) is immediate from the fact that )4 divides 'GI 

for each TJ' G. 

(b) e is obviously additive, and bijective (since 1-1 

is additively a free abelian group on its generators), and the 

condition implies that it is multiplicative. 
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(c) If e is, an automorphism of --0-(G), then 

(1G1 a.) GI  = 1G1 (a d ) for a -G- -0-(G). Hence, if el  is an 

extension of G , -G)  must satisfy a d .161 ((IG-1 a)e). 

Proposition 3.5  
Suppose p is a prime, and P' is the only subgroup of G. 

of order p; let e be the product of the transpositions 
G
"  	 ) where OM ,p) = 1 on S, the set of quasi—idempotents tit 

of -/)-(G). Then (3 extends to an automorphism of _n_0). 

‘ Proof (a) We prove that if (1 Ui ,p) = 1, G 	G ,, and  

hence that e extends to an automorphism of r , by Proposition 

3.4 (b). First, we note that by Shur's theorem, if V 	P',  

and p2 +1V1, then V has a p—complement. 

Clearly '..1G(UP1 )-?-- NG(U).PT; suppose x e NG(uPt). Then 

(UPOI  = UPI, and so Ux  is another complement, of P' in UP'; 

hence, by a theorem of Zassenhaus, r U for y UP', and so 

xy-1 e =TG(U) that is, x NG(U) .P . So NG(UP' ) = ITG.(U).P . Now 

if U ji UP', than X up, = X..„ and y NG(UP' ) :UP' I = N4001, 

G — 
_ and so \ U 	' 	Whilst if U UP', X 	= p >N U' and. UP 	 UP' 

NG(IT) 	= p 1NG(UP :ITP , so again XGu  = >\ Gup , (Proposition 2.6). 

(b) Let m be a factor of 1G-1 dividing y= str4 

in.n-(G); we need. to show (Proposition 3.4(c)) that ml ye. 

We split the sum as follows: 

+ > + > 	lx p, 	(1) — 21 
P 11U

1  
1 	

u u 	p -1-  1U1 u u 	p 	±.)

u 
 



30. 

(c) Now, using the notation of Proposition 3.2, 

G 	
—(zuplipf)G — xII 	if U 16 UP' 

xUP' = 
_(Pzupl/pe)G — 	if U -4 UP' 

We simplify this notation by writing zu for (zuplip,)G 

ivp , where xu = 	Sy U!. Then the last sum in (1) 

splits thus: 

auP1 zU P 57 	zu aUP' IruP' = 
p,k U-13 UP' 

P f IUI 
11-4 
P 

r, 
DP' 

2' mg 
P-r Jul 

So if we put bu = au — nvel, we have: 

57 (aUmU "DP1xUP') _ 
	

P 	 agPtzU 	buxu 
G  

tUt 	U1 UP' 	U4UP' 

Rewriting (1), we obtain: 

Y = 
<c- G 75;  auxu + 	 a UP z U + p :ELU gyp, ' 17-4UP' al3P'zU p` lUt UmU 	(2) 

(d) If P' lk V, then the coefficient of GAT in the 

second and third sums in (2) is zero. The same holds in the first 

sum; for if pliUll and M is maximal in U with P'1- M, then MP' = U, 

would imply that N contains a subgroup of order p distinct from P'. 

Hence P' is a subgroup of the rrattini group of U. 

I 
Hence mly implies m L bu4 

p t lUl 

(e) Now if pt 1U1, zu = Mu 	G + Xup, 	I U -1--+ 1TP 

	

G 	, 

 
PzU = 	

G if U -4 UP'  

Hence B fixes the z 's, and hence the terms in the first 3 

sums of (2), so 

y — Ye = 	bu(4 41,1). 
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Hence we can assume that in (1), the only non-zero sum is 

axIGJ, and we now have to show that for any factor m of 
P 	IU1 
IG1, m I 	auX implies m 	aux6,. We may obviously 

p4IUI 	p4 MI 
take m to be a prime power; suppose m = qs, where q is prithe, 

s an integer. 

To do this, we split the sum into further smaller summands. 

(f) Consider [1/(4 	= (x/n : xcia(G,), ne Z, 
(n,q) = 1) 

This is a ring with 1 and has minJmal prime ideals eU,01 

and maximal prime ideals 	u,c,  only. Hence its graph of prime 

ideals splits into components of the form (T 	: K (U) = K) for U,0 q 

the different subgroups K of G with K (E) = K. 

Hence there is an idempotent e in [n(4 J. such that 

(- 
E K 	

14 AT 0 for a given K G with Kg(K) = K. So by taking a 	
q
(u) r 

a suitable integral multiple n of e, with (n,q) = 1 we obtRin  

z E Si(G) such that 

o 	K (U) r  K 

K (U) = X 

((lUi 	=1 a4). This becomes We now consider z. 

n L arrx, and since (n,q) = 1, m 	a-U Ka(U)=K 	 K
q
(U)=K 

(g) We observe that if 

K-ta ICP ,  if and only if 	UP'. So 

using (f), that m u2iup, au$ 

K = K (U), with p 

now, ml 	a.6xu. 
P 

and in 2  atxu. 
TOP' 

IKI,then 

implies, 
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(h) Now notice that if m Ia G  
- 	°V 

P-1-  
I 	timU V< G  

ivi 

say, then mi  	
aer V G 

p tvi 
But <2,au4p, = p "Ea',  + 	auzu  - 	n14 , and m divides 

U4COP' 

each partial sum, and hence the left-hand side. This concludes 

the proof. 

Proposition 3.6 

Suppose G has even order, and suppose U is a subgroup of G 

with 	= ICI; then if there are 2 subgroups of G of order p 

for any odd prime p dividing the order of U, or if there is a 

subgroup of G of order 4 which does not contain the Sylow 2-subgroup 

of U, then 24 can be distinguished from xG. 

Proof (a) The first part, for p 2, follows as in 

Proposition 3.3. So assume U = P'01...Okr, where tlail = 2, 

04,1.1 = qi  -74 2, for i = 1 to r, and Qi...Qr  is the unique subgroup 

of G of order qi...qr. By Proposition 3.5, there is an automorphism 

of !a(G) which maps xe to x
G 	mapping x, to ,..P,

0.  
p,0 
1  .

0  . 
(11.'4r 	. lc 

Hence, without loss of generality, we may assume that U = P'. 

(b) Now suppose that G has a subgroup W of order 4. 

If W is cyclic, then 4 = 2% - 5v, say, where (VI = 2, and so 
4%  4 G 	G7 4ig = 2  xvir  + xv  + xG  . If W is not cyclic, then 	= 2CAT 1.7.4e1 /VI 

where IVii= 2, ai  = 0, 1, 2 or 3, for i =3 1 to 3, and 
3 

, 	G 	G ai = 3. In this case, 4 G  hi= 	+ 	a. x, + xe. So in each v i=1 	 i=1 	i  

case, 4 	+ 	_L v x, + xG  , and 2 1 x_ + x
e, for suitable i 	e 	vi  

integral ai. 
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(c) We now show that if 4 2x1G1  + 	 b 	+ "i  

and 2 I xic.+ 	, with 4.  4 , then H 	and ill = 4. 
G 4  

Suppose 2 4+ 4 ; by Proposition 3.1, U n v.<1 u, 

U r\ V -<1 V, and either U n V = e, and Iv! = 2, or V = e, or 

V > U with 	= 2. But if u r  v = u„ then xv  G 2G4. 	a_G4  
Kctj 

• since U <1 G; so 2 ,f xv + 4 	n Hence U V = e; and 2 4 + 4 G 

if and only if V = e or 1V1 = 2. 

So our condition becomes 4 I 2xCH; + 2. x7G 4-  xU 
G, where 

Vi = e, or IVil = 2. 

Now if Hi U, the only contribution to % in (1) is 2 from 4; 

so H > U. If 	4, then there is a term 2a 0k in (1) from 

xm  where K is a maximal subgroup of W, and ax  is odd, and no other 

term in (1) contributes to 5ic; hence HI = 4. 

(d) Hence 4' 2x.Gg  + 	b. x.E*  4. 	, and 2 I 	+ 4 , 

/ xU 	

v. 

, only if H II, and iHi = 4, whereas the same equations 
1  G with xu. replaced by xGe.  can be solved for any subgroup H of order 4. 

Hence if G has a subgroup W' U, 	= 4, then 41  can be dis- 

tinguished from xe 

Proposition 3.7  

If Pt is a normal subgroup of G of order 2, and every subgroup 

of G of order 4 contains 1", then there is an automorphism of 1/(G) 

which maps xe  onto xpo. 

Proof The method is similar to that of Proposition 3.5. 

We show that the product to of the transpositions (x 	xupl), 

where (01),2) = 1, on S, the set of quasi—idempotents of -0-(G), 

can be extended to an automorphism of G. 

( 1 ) 
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(a) uG \ G t  if 2 01, as in 3.5. 

(b) Let m be a factor of ‘G1 dividing y = 	au4 in _ft(G); 

we need. to show that m divides y d . We split the sum as 

follows: 

y = 11U 
	

+ 	M a_x2 + 	
0.

auptxgrpt  + 	a-x2 	(1) 
2 O u- u 	24'1 	1U1 " 4 	1 
Ufl" 

(c) The sums in (1) are no longer disjoint; for if U = VP, say, 

where \PI = 4, (IV1,2) = 1, then 4 may have a non-zero term in G/V. 
However, as in Proposition 3.4 (f), we can assume that m = 

where q is a prime, and by multiplying by suitable elements of S/0), 

we can deduce that qs uxu, for each 	G with K (K) = K. 
K (U)=K 

(d) Suppose q # 2. Then clearly, if U,V are subgroups appearing 

in different sums in (1), K(10) A Kg(V), and hence qs  divides each 

sum in (1). 

Now xup, = 2zu  -mu  , for (1U1, 2) = 1. 

So qs 	aCIPIxIIP G  implies that qs  12autx/G7  (since zu  and 

xg are disjoint); and qs  I axiG3: implies that qs lfauzu  , and 

hence qs 
 12 'Alt 

yG 	2 ao4 + 	 aut 	aupt4 + 
411trl 	2 1 101 	2-f fUl 

and clearly qs divides each sum, and hence divides y 

(e) q = 2. We have 

2 I 	= 	anx,G  

K2(U)=K  

This is only affected by o if 2 i lid . So we may suppose that 

2 i pq 

(2) 

G 

201 
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Y1  

We split the sum (2) as follows: 

=aK4 aKIP14P' 	814 
K2(U)=K -U-U  

(3) 

Yle= agP1 INIP4 	agr 
So Y1  - Yie = (amp - ag)(4, 4). 

Now x p, - xi = 2(zi  - xi), so it suffices to show that 

2s-1  tau, - ag. We do this by considering the coefficient 

in (3) of G/K, and GAIAPi  where 'Pi' = 2, Pi  / P'. 

(f) If 8 I IUI, then G/7 has a non-zero coefficient in 4 only 

if V > P'; for the Frattini subgroup of U contains P'. 

Hence xu can only contribute to G/K, or G/10i, if IU/KI = 2, 

or U/K = Z/2 x Z/2; if UPC; Z/4, then again, the Frattini 

subgroup of U contains P'. 

(g) Let 111,...,Us  be representatives of the conjugacy classes 

of the subgroups of G such that K4Q Uit  Ui/K "I Z/2 x Z/2; let 

RP', Vil...,Vt  represent the subgroups such that K.4 Vi, Vi/K = 2. 

Clearly, for such a Vi, ViP,  = Uj  (up to conjugacy), for some j, 

and V is contained in exactly one U .  

n+1 sa

U contains KP', and 2 other subgroups of index 2, which may, 

or may not, be conjugate. So suppose U1,...,Un  are those Ui's 

containing a single Vj; let U1  V1, U2  V2,...,Un.?? V. Then 

y, U111+2  V321.2  , Vt4.2  etc. 
+1 Vn+1 Vt+1 

In 4
1
, the coefficient of G/Vi  is - )■ 	G/V1, and the 

coefficient of G/K is + 1/2 \ U G/K. Hence the coefficient of -1 

G/Vi  in (3) is (- )ulaul  + Vv1ar1)G/V1, so 2s1\v1ar1 



s 
y1e3  
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The coefficient in (3) of 0'1144  is 

(- 1/2
+ 	

ali  ) G/V, and so 

	

U31+1 alln+1 	V11+1 n+1 	
Ia+1 

 

281 \1787 
	

v  1/2 

	

\un+1 all 	
. Similarly, 

n+1 n+1 	n+1  

281 > V 	87 	- 1/2 X  II 	813 t+1 t+1 - 	n+1 n+1 , and hence 

• 281 	v  
+1 n a7+1 + X Vto 8%.1 - )1‘1T23+1 8%4.1 • n+1  

(h) Now the coefficient of GA in (3) is 

- 1/2 \ Kp, ars, + 	at, - .S.1/2 \v  
" i avi  

J 

1/2 \ 	auj .
II 

The sums can be reordered into 
t-n 

1/2 ( \
ui
au  - \

vi
a
vi
'  ) +

=1 
1/2 ( \u  au 	\ v 	

as 
i=1 	 n+i n+i 	n+i n+i 	t+i t+i 

28-1  divides each sum, and since 	= 2\AK, and (\K,2) = 1, 

28-1 aK  - aKp,. By (e), this is sufficient to show that 2 

Hence 281 	, and our result follows. 

Note 

In his paper 2517, H. Kramer restricts most of his results to 

the case where G is an abelian p-group. Be considers the auto-

morphism group of 10), Aut </(G); if G is an abelian p-group, 

then Aut L(G)‘. Aut.C1(G), where L(G) is the subgroup lettice of 

G. 

He proves in this special case that \u°  = p !GM, using our 

notation (4.1 in his paper; this is a special case of Propositions 

2.2 and 2.6), and uses this to show that if (Ci.A.ut fl(G), then if 
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P211111, 11' maps G/U onto G/V, where 1171 = !VI. He then shows that 

an automorphism of S1(G) which fixes G/e induces an automorphism 

of L(G). His result is then as follows: 

Let G be an abelian p-group. Then: if G is cyclic, 

Aut 11(G)1:11  Z/2. If G is not cyclic and p / 2, then 

Aut Sl(G) = Aut L(G). Suppose p = 2; let P be the Frattini 

subgroup of G. If t G : Fle, or fa Fl= 4 and 

G = Z/2m x Z/2n, with m, r0.2., then Aut J1(G) = Aut L(G). 

If G is elementary abelian of order 4, then Aut Si(G) = s4, 

Aut L(G) = S3. If G is Z/2x Z/2, n > 2, then 

Aut SI(G) = Z/2 x Z/2 N:0, and Aut L(G) = Z/2 X Z/2. 

The above conditions for Aut L(G) # Aut _a(G) i.e. for 

the existence of an automorphism of S1(G) which does not fix 

G/e, are clearly special cases of Propositions 3.4, 3.5, 3.6 

and 3.7. 
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Chapter 4 

Some results on the width of a finite group 

We recall the definition of the width W(G) of G defined 

in Definitions 5 to 7, Chapter 1: 

A chain c from U to V, where U,V G, is a sequence 

U = U0, U...,Un = V such that 

p1 	P2 	Pn = 	U --> 	.0. --4 u = 

	

0 	1 	2 " 

where the pi 's are primes (not necessarily distinct), and pi  = 1 

if UiM1  N Ui.  

The width, W(c), of the above chain c is the number of steps, 

n; if C(U,V) is the set of chains from U to V, we define W(U,V) = 

min (W(c): c E c(u,v)). 
Finally the width, W(G), of G is defined by: 

W(G) = max (W(U,V) U,V‘ G). 

We find that W(G) depends closely on the order of G, and in 

particular on the number of distinct primes dividing 'GI. Firstly, 

an immediate corollary of Dress's paper 1:17 is that W(G) is 

finite if and only if G is soluble, and in this case we can obtain 

an upper bound on W(G) in terms of (GI: 

Proposition 4.1 

If G is soluble, and has order pin ..pr , then 

W(G) -44 2(n1 	n2 4-...441r) 	1. 

Proof G is soluble, so G has a series 

	

G= A 	k t* 	1=- A = e 0 '1 
A 

such that 74_1 is a p -group, for i = 1,...s; we may assume the 
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A. 
series is of minimal length, so 7Ai_1 is non-trivial, for 

i = 1,...s. So we have the clmin 

G 	Al  \; A2 at  . . 
	As = e 

The length of this chain is at most ill  + n2  1-...+nr. 

If U 74 G, we have the chain 

II U n A1  U r) A2 	. 	r) As  = e, 

which has length at most (n1 + n2  +...+nr) - 1. 

Hence any two (distinct) subgroups of G can be connected 

	

via e by a chain of length at most 2 (n1  4. n2 	- 1; 

hence our result follows. 

EXamole (see Appendix) G is the non-abelian group of order 6. 

P.a.  

i.e. K.2(G) = P3, the Sylow 3-subgroup, K.3(P3) = e, etc. 

Clearly W(G) = 3, so our bound is attained in this case. 

After the next set of results, we can improve this bound 

under certain conditions. Lemmas 4.2 and 4.3 are used repeatedly 

in the following chapter. 
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Lemma 4.2 

Suppose P is a Sylow p-subgroup of G, and we have a chain 

P —4 2 	G, where q. 	p 	= 1,...,n. 

	

1 AlA  	 P. 

Then P is normal in G. 

Proof p does not occur in the chain, so if IPI = pr, then 

= ?Mi. Hence we may choose Ai  (by taking a suitable 

conjugate) such that Ai  > P. 

We show by induction on i that P-4 Ai. 
ql 

Firstly, P---> Al  implies that P = X 	N (A1)43 A1. 

So P- Al  since P 
c 

Assume that P-4 A. 1 	Ai+1 A. 	implies that 

Kqi+1(A)  K94.0(Ai+1). 

s IA1+1I = Q. IX 	(A0 	, so P X 

	

-1+1 	 (Al) . Similarly, 
qi+1 	 91+1 

P-4 Xgill 	1 (A. ), so P.4 X 
i+1 

 (A. ) ..<1 A.1 +1.  Hence, by the Frattini 1+1   

argument, P-4 Ai+1. It follows that P -d G. 

Lemma 4.3  

Suppose p occurs only once in a chain between P and G. Then 

the p-step is redundant. 
c1,1 	(I/3 

Proof We have P 	Di 	172-4.... -4 Di 	UiXr . ! . 	G, 

say; ID11 = 1Ui4.11 since p occurs only once. 

U3. . -+ 1 U.+1 implies that Xp1  (D.)",  Kp(111+1). By taking suitable 

conjugates, we may assume that Xp(U4) = Kp(Di.,4) = v, say. 

ti 11 = i+1 = psm, where IP1 = ps. 
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Consider NG(V)/V . U1/V and Ui+1/  V are Sylow p-subgroups 

ofthisquotientphemeareconjugate-S0111 1  = ( 	)g, for 

some g in liG(V); thus the p-step may be omitted. 

Proposition 4.4 

If G is a finite group of order divisible by r distinct 

primes, then G is nilpotent if and only if W(G) = r. 

Proof (a) Suppose G is nilpotent. 

Let U,V be subgroups of G. U,V are nilpotent, so, if 

p1'" ''pr are the r distinct prime divisors of IGA, then 

	

= 111  x TJaK 	Ur, V = V1  x V2x 	x VT, 

whereTh1  is a pi  -b oup (possibly consisting of the identity 

elementonly)andVisap.-rgoup, for i = 1 to r. 

Put A =VxV ...xV. x Ux ...xU 

	

Ai 1 2 	1-1 	r 

Kp (Ai) = Vix V2 	x V; -1 	Ur 
ri  

= X (A. ). . 1+1 Pi  

Hence A. 	A. 1+1' 

	

P,. 	pz 	 P-r 
SO we have U = Al --a A2 --a... --> Ai Ai+1 	Ar+1 = V, 

i.e., U can be connected to V in r steps. U,V are arbitrary sub-

groups of G, so W(G).‘r. 

Clearly, we need r steps to connect e to G; so W(G) = r. 

(b) Suppose G is not nilpotent. 

Then at least one Sylow subgroup is not normal in G. Suppose P 

is a non-normal Sylow p-subgroup of G. Consider a chain connecting.  

P to G. By Lemma 4.2,p must occur at least once in any such chain, 

and by Lemma 4.3, p must occur at least twice. 
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'Every other prime must occur at least once, so at least 

r+1 steps are necessary. 

Hence W(G) is at least (r+1).. 

This completes the proof. 

Corollary 

If G is soluble, and iGi = 	, then 

11(G) 2(m —{1  /2r+1) r1-1  "" 1 where [ 	denotes the integer (  

part, and m = n1  + n2 +...+nr. 

Proof As in Proposition 4.1, we have a normal series of 

minimal length G > Al  1>- 	1.1=-A.s  = e, such that 

Iki/Ai+11  = P(i)at:' 

If a =1 for each it  then G is supersoluble. In this case, 

the derived group G' of G is nilpotent, and we have the chain 
Pr .0 

G 	"NJC-"; N a 

since G/G' and G' are nilpotent. So G can be connected to e in 

at most 2r steps. 

Hence, if in our chain 

G 	= e, 

there are 2r+1 consecutive steps 	such that 

'Ai/Aim! = p(i), for i = k, k+1,...,k+2r+1, then Ak/A. 	is K+2r+1 

supersoluble, and hence Ak  can be connected to Ak+21,+1  in 2r steps. 

Thus within every 2r+1 steps, some prime must occur squared, 

so G can be connected to e in at most n1  •t- n2 +..+nr — [m/(2r+1)J 

steps, where m = n1  + n2  +...+nr. 
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For U G t  U can be connected to e in at most 

m - 1 - [(m-1)/(2r4-1)] steps. 

Therefore W(G):.- m 411/(2r+1)1 	m-1 - Rm-1)/(2r4-1)] 

2 (m - 1-(m-1)/(214-1)1 ) - 1 

Proposition 4.5  

If G has order pre, where p,(1, are distinct primes, then 

G has Fitting length n if and only if W(G) is 2n-1 or 2n. 

Proof (a) Let G have Fitting length n. 

We have the chain 

G = N0  N1 	-1Nn = et  

defined by Ni  = n(1,3 vi_ItNi_1 /14 is nilpotent), i=1,..7n. 
The ITi  ts are characteristic subgroups of G. 

Define 	to Yi  to be subgroups of G such that Xi/Ni, Yi/Ni  

are respectively the Sylow p and a-subgroups of N_-1/Ni, for 

i= 1,...n. 

We have two chains from G to e: 
p 	ct, 	p 

G \N X1 \; Ni N X2  N N2  \44..e, 	et  

G‘,̀  Y1 	N1 	Y2 	N2 	••• 	e. 

These can be combined to give two further chains: 
P p 

G 	X1  'al N1  \I  Y2  'yt  N2  \,4 	- 

3  
G `1..A Yi  •••,

3 	
X2 	iT2\ 	e, 

p 	cr, 	A which give G 	X1' Y2 	X3  Ns, Yic,a 	e 

G 	.'"N X2 	Y3 	X4 	"N.t e. 

Both the chains (x),(y) have length at most n+1, and at 

least n. Both chains cannot have length n2  otherwise we would 

(x)  

(y)  



havelc../ ==e,sinceLAY.=1T..We have two cases; firstly, 

one of (x),(y) has length n, the other length n+1, and secondly, 

both have length n+1. 

Suppose one of (x),(y) has length n, and w.l.o.g. that its 

last term is a q-group i.e. we have the chains 

G A \i 	= Q11" 	(-) Y  ‘41 e 

	

1 	n-2 	1 	' 

G ti B1 	B 	= (V P1  ' 	01  ' 	e, 	(Y) 

	

1 	n-2 	n-1 	1  

where 	Q1 , P1 	PI. 

Consider NG(Pi); Q1P1 4 G, so P1 -4 P, the Sylow p-subgroup 

of G. Hence Na(P1) = PQ2, where Q.2  is a o- ;coup. 

How P1  P1W-d 0, so by the Prattini argument, 

NG(P/).P/ Q1  = G, so Q2Q' = Q, the Sylow q-subgroup of C. (since 

G). 

"row consider connecting K = NG(Pi) to e; we have two chains, 

(X') of length n-1 and (Y') of length n, as follows: 

ct- 	P 
K K 	IC n Ai'N 	K n Q 11)1 	P1 	e 	(x.') 

K-Kr-C13 P:11 e i 	PA L e 

(since P141 KJIQ'Pl , and Pi a  Kr‘0411). (X') and (Y') are not 

necessarily the characteristic chains from K to e whose terms have 

minimal order. However, since any chain from K to e can be made into 

a chain from G to e by multiplying each term by the normal subgroup 

	

(7Q' = 	,7e can see that (X') (Y') have minimal length, and P1 and 

PI are the last terms in the 2 minimal characteristic chains from K to 

e. Hence P1  is normal in the first (n-1) terms of any chain from K 

starting with the same prime as (X'), whereas P' is normal in the 1 

n terms of any chain from K starting with the same prime as 

Now suppose we can connect K to G in 2n-2 steps, i.e. we have a 

chi in 
B --4 . . 	G 

'—n-2 	• 

(x) 

i •  
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Suppose the first step involves the same prime as the first 

step in (X'). There is an even number of steps, so the last 

step corresponds to the first step in (Y). 

So A 1>P1, and also A i--,- 	Hence P1- P1Q4 and since 

P4 P , P 1  -* P ' QI  ' . This contradicts (Y) , since 1  

Kci(Exi-1)  = Bn-1.  

If the first step involves the same prime as the first step 

in (Y'), then the last step corresponds to the first step in (X). 

Then 11 z;..- Pi B 10"-  q so Pit a Plql , hence 11.4 11014 (since 

Q1 Q') and this contradicts (Y) again. 

Thus we cannot connect K to G in less than 2n-1 steps i.e. 

W(G)?, 2n-1. 

If both (x),(y) have n+1 steps, then obviously we can find 

in a similar manner a subgroup K' which cannot be connected to G 

in less than 2n-1 steps. 

Finally, we show that W(G) 2n. 

For we have the chains (x),(y) of length at most n+1; relabel (x), 

(y) to obtain 

GN Z1 	Zn  e 	(x) 

G's Z4 \ 	Nsi 	e 	(y) , and ( 1 Zn!  , 	) = 1. 

Suppose U,V are subgroups of G. The subgroups U n Zn , V ri Zn' 

are subgroups of Zn  X Zn' , so (U n Zn)x (71 n Zn') is a subgroup. 

Therefore we have the chain 

UNUn Z.1\ ...\. U r Z n 	ClIT 	(V n Znt) 

.=-> V n 7,n1 	v z 	v. -1 	1 

This has width 2n. 

Hence W(G) = 2n or 2n-1. 

(b) The converse is immediate. 



Proposition 4.6  

If G has order pros, where p,q are distinct primes, and G 

has 7itting length n, then W(G) = 2n if and only if the shortest 

chain from G to e has n+1 steps. 

Proof (a) Suppose that G cannot be connected to e in less 

than n4.1 steps. 

s in Proposition 4.5, we have two minimal chains of length ni-1: 

G'`i Al 	A 	= PIO "•si 	e 
 n-1 	1 

	

P 	cp. 

G 	B1 	":b1 Bn-1 = P1 Q' "Nc 	e, 

where Pi?: P', Qi 	(21. 

Consider connecting N
G
(P

1
) to NG (Q

1'  ). suppose this can be 

done in 2n-1 steps. We have two chains: 

(1) 17c(pi) NG(rOrkyw 	NG(POn 	rf0,2
qr 
 rf 

(2) Na(ri)N YG(rOn Bl 	NG(p1 )(1 Bi c 	Pi 	e, 

where (1) has n+1 steps, and (2) has n steps. As in Proposition 4.5, 

these chains have minimal length, given that one must start with a 

r-sten, one with a q-step, and P' and Pi  are the last terms in the 2 

minimal characteristic chains (otherwise by multiplying each term by 

( , we would form chains from G to e contradictinf; the minimality of 

the al;ove chains). 
P 

(it) ITG(r1)\ 17G(Q,i)n 	NGNOn 	•••\ 	e' 
. (2') 	G(Q1 ) n Bi \L 	NG(QOABi P20," \\.1 0„1 	e, 

where (1 1) has n steps, and (2') has ni-1 steps, and P7 	P
1
. 

Llithout loss of generality, we have the chain 

r (p 	A 	
1, 

B 	--4NG(Q1) 
n-1 

74..ence I', 	P
1' 
3 	(II, and A 	0,1  since A --) B. 
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So P1 P1Q'. This contradicts the minimality of (y) above 

Hence NG(011) to NG(Pi) takes at least 2n steps. 

(b) If W(G) = 2n, then G has Fitting length n, by 

Proposition 4.5. 

If G can be connected to e in n steps, suppose the minimal 

chain is 
,P 

G A/ 	... An_i  = 	e, 

Suppose II,V are subgroups of G. We have the chains 

II y U t'%A1 u OP' 

v '4V r) A.1 1 1 	e‘ pi , 

and both have n-1 steps. 

Also U (1 P' 	V n PI. 

So W(G) = 2n-1, a contradiction. 

Hence G cannot be connected to a in less than n+1 steps. 

We now consider the general finite soluble group G of 

orderpin1 p2 -...prnr,say,wherethep.'s are distinct primes. 

Pt  will denote the Sylow pi-subgroup of order pini, for i = 1,2,...,r. 

If Pi  is not normal in G, then the chain from Pi to G 

involves pi  at least twice, by Propositions 4.2 and 4.3; if the 

non-normal Sylow subgroups of G are exactly P1,P2,...,Ps, say, 

then for each pi, i = 1,2,...,s, there is a chain which involves 

pi  twice (at least). It seems plausible to suppose that there 

might be a chain which involves each prime pi pp,...ps  twice (at 

least), making W(G) at least (2s + (r-s)) i.e. at least s+r. 

This is indeed the case; the proof is inductive on the order 

of G. First we prove: 
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Proposition 4.7  

Suppose P is a normal Sylow p-subgroup of G, and W(G) = m. 

Then W(G/P); m - 1. 

Proof Certainly W(G/P)-- m. 

Suppose U/P, V/P are subgroups of G/P, where Uj?.... P. 

G is soluble, so U = PM, where N is the p-complement of U. 

Consider connecting M to V; this can be done in m steps, and p 

must occur at least once, since pliVi, 141/41. 

Further, if A-E4 B, then AP is. conjugate to BP in G (A, B 

subgroups of G). 

So if our chain is 
p 

A 	—*A 1 

then the chain 

--> V 

U = NP > A1P 	----> P 	= i+1 

has at most (m-1) irredundant steps, since AiP,,, Ai.1.1P. 

Thus 14(G/P) m-1. 

Note With the above conditions, W(G/P) is not necessarily m-1. 

For example, if G is the non-abelian group of order 6, then 

W(G) = 3, .but w(G/P) = 1, where P is the normal Sylow 3-subgroup 

of G. 
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Proposition 4.8  

Suppose G is a finite soluble group, of order p1n'p2
n
'...prn(-; 

if W(G) = r+n, then G has at most n non-normal Sylow subgroups. 

Proof If n'.;.t.r, the result is trivial. 

So suppose n.4 r, and that G is a counter-example of minimal 

order to our Proposition. 

W(G) = r-Fn, G has at least (n+1) non-normal Sylow subgroups; 

and if U is a non-trivial normal subgroup of G, then 

W(G/U) r+n, and hence G/U has at most n non-normal Sylow 

subgroups. 

Let the normal Sylow subgroups of G be P1 ,...,Pt, where t > 0; 

and suppose there are non-trivial normal pi-subgroups for 

i = 1,2,...,s, and no others. s 	1, since G is soluble, and 

s> t. 

If there is a non-trivial normal pi-subgroup, there is a unique 

nmaimeasuch(simlet if171 andX2 arenormal pi--subgroups, so is 

"X'9')• D-'-lotethisuniquemaximalpi-subgroup by P!, for 

i = 1,2,...,s (where Pi = Pi  for i = 1,...,t). 

By Proposition 4.7, w(G/r1) < (r-1)+n, so G/P1  has at most n 

non-normal Sylow subgroups (G is a counter-example of minimal 

order, so Gil) satisfies our Proposition), hence VI  4 G, for 

some non-normal Sylow subgroup Qi  of G. 

If s > t, G/111.1  satisfies our Proposition: W(G/P1, 1 )‘ n + x 

and G/P.41  has r distinct Sylow subgroups (since P.41  / ;41), and 

is a non-trivial quotient of G. Hence G/Ptdr1  has at most n non-normal 

Sylow subgroups, so 0.1"+1 	G, for some non- 	o  q normal Sylow subgroup . 

of G. 
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• Let 0,1,(12,...,Qa  be a set of representatives of the 

.conju,gacy classes of the non-normal Sylow subgroups of G 

which satisfy gill -4 G, for some PI, j = 	Since 

Q1-b G, Q1Pi G implies Q.111-41 G, if i 1  j; so a ?, s. 

a 

Now consider N = 	N (0.). 
i=1 G 

Suppose Q. ,...,Q. are the Q's which satisfy Qi114 G. 
g/1 	'Ic 

Then, by the Frattini argument, Q.  Q. ...Q. is nilpotent, 
Ji J9 	Jk 

and since Q. ...Q. Pt-a G, N (Q. ...Q. ) = P ...P. PP. ...P , 
1 	k J  G 31 	31c 	1 	0-1 PIP. 	r J 

say, where PIP! = P.
J 
 (by the 'ratting argument). 

J J  
a 

Hence N = (1 NG  (0 ) = P* ..P*P 	..Pr/ where . 	s  1=1 

PtP!i  = Pit 	-74. = 1,...,s, and Pt e, for i = t+1,...,s (since 

P' 	Pit  i = t+1,...,$).  

Now suppose P17 Xv venere Xi  is a non-trivial, normal pi-subgroup 

of G. By the minimality of G, G/Xi  has at most n non-normal 

Sylow subgroups, so 0,Xi-4 G for some non-normal Sylow subgroup Q 

of G. But X.< P!3.,  so QP! --a G, and hence, by the definition of 

P* Q<I(P-14*,sog"10.X...<1 0.. This implies (1-‹ G, a contradiction. J./  

So Pt contains no normal subgroups, so neither does N. 1 

We now connect1 	- = P* 	.P*Ps+1.  ..Pr  to G; we show that s  

each prime pt+1,...p,,, must occur twice, and obtain a contradiction 

to the choice of G. 

Suppose the chain is 
oc, 

N = P*ti- ..P*? 	..P 	A ---1> A2 	-4- G. 	(1) 1 1* s 	r 1 

,p2,...,pt  must each occur at least once. Suppose 01131 4 G; 
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(11  is one of lat ,1 ,...43r. If  (11  = 1)j  for j > s, then Qi-a N1, 

so q1  occurs twice (where Q1  is the Sylow q1—subgroups); if 

Ql  = Pi  for some j = t+1,...,s, then form the chain 

'‘ 	 c4•K 
N P! --> A P 	A P 	A Pt 	G 	(2) 10 	la 	2 a 	k-1 

Q1(Pi) is normal in N1P31  so qi  must occur twice in (2), 

and hence twice in (1). 

So qi  occurs twice, for i = 1,2,...,a. 

The remaining primes are those pi  such that i > t, and 

pi -r4qr j=1,...,a.Sumposep.is such, with i > s and that 

it doesn't occur in (1) (since P 	pi must occur twice if it 

occurs in a non—trivial step). 

Then K 	(G) is normal in GI, and contains Pi, since 

pi  does not occur, and is contained in Ni. But NI  contains no 

non—trivial normal subgroups, so this is impossible. So Di  must 

occur twice. 

The remaining pi's are those such that t+1 < i s, pi  rig qi„ 

j = 1,...,a. So suppose pi  is such, and it occurs only once (it 

must occur once, since PI 71 Pi). Form the chain 

/T1P' 	A1  1"—a... 	Ak-1  P! 	G. 	(3) 

EachtermintlAschainincludes l so the pi—step is 

	

Pi 	-1 

trivial. Remove it, to form the chairt 

A, 	 ik, N111-1-4 B1 	B2 	G.-2 

Hence K 	(G).‘ N
1 i  P '  and is normal in G; 

suppose K= K 	= Xt+1."Xi-1PiXi+1."Xr.  

From (3), it follows that K, c,„ 	= e, since N1  contains 

no normal subgroups of G; so e can be connected to G by a chain 

which involves pi  only once. Hence we must have a subgroup Z of G 

such that (IZi,pi) = 1, Z4 G, and 7,Pi'3  G. Z e, since Pi  4:t G. 
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So Z n  K ZP•• n K <I G. Z r.‘ IC is normal in G, and is 

also a subgroup of N1; hence Z r\ K = e. But this implies 

Pi  G, since F. = ZP1  C  K; a contradiction. 

So every prime 	occurs (at least) twice; hence 

the number of steps in (1) is at least t + 2(r—t). 

Hence t + 	n+r, i.e. r — t n. 

Thus the number of non—normal Sylow subgroups of G is at 

most n; this finally contradicts the choice of G and proves our 

result. 

Proposition 4.9  

Suppose G has order pin'p2111...p.:'. Then W(G) = r + 1 

if and only if G has exactly one non—normal Sylow subgroup. 

Proof (a) Suppose w(G) = r I. 

By Proposition 4.8, G has at most one non—normal Sylow 

subgroup, and by Proposition 4.4, if G has no non—normal Sylow 

subgroups (i.e. G is nilpotent), then w(G) = r. 

So G has exactly one non—normal Sylow subgroup. 

(b) Suppose G has exactly one non—normal Sylow subgroup. 

Let this non—normal Sylow subgroup be P1, say, the Sylow p1— 

subgroup. P21P3,...,Pr-4  G, so P2P3...Pr  is normal in G, and 

nilpotent. 

So for U,V G, we have U "*Ni K Pi(U)  ,<P2P3...Pr, and 

similarly K 	P
2 
P
3 	Kp (U) can be connected to K (V) Pi 	1 	P2 

in (r-1) steps by the nilpotency of P2P3...Pr  (Proposition 4.4),  so 

U can be connected. to V in (r+1) steps. 

Hence w(G) = r + 1. 
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Examples  

(1) G = 34 (see appendix for details) 

1P1 = 8,1Q1 = 3. P is self-normalising, 1NG(Q)1= 6, K.3(G) = G, 

andiK2(G)1 = 12. We have the chains 
2 3 

G K2(G) N.si P' N e, 1 	= 4, 

1 	2 	3 	a 
G N G 	K2(G) N 1" N e. 

The graph is: 

NG(Q) to G takes 5 steps, and W(G) = 5. 

(2) G = (x,y,z,a,b), where P = (x,y,z) is elementary abelian of 

order 8, and Q = (a,b), elementary abelian of order 9, and the 

relations are xa = y, ya = z, za = x, bx = by  = bz = b2. 

NG(P) = (P,a), NG(Q) = (Q,xyz), 

K3(G) = (P,b), K2(G) = (Q,xy,yz), 

so K2(G) n K3  (G) = Pi x Q', where P' = (xy,yz), Q' = (b). 

Hence G has Fitting length 2. 

We now show that G is 4-step connected. 

If U.4; G, and. U has a normal Sylow p-subgroup, where 

p = 2 or 3, then U can be connected to V in 4 steps for any 
• „ 3  subgroup V of G; for V 	K2(1/) P*, where P* is a 2-subgroup, 

3 	a 
and V "-sa K3(v) ,  Q*, Q* is a 3-subgroup. 

If 1U1 = 2,3,4,8,6,12, or 18, then D.  has a normal Sylow 

subgroup. 
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The other possibilities are LU1 = 36, or 24. 

If lUI = 36, then U. Q, so possibilities are U = (a,b,xyz), 

or (a,b,xy,yz): both have a normal Sylow subgroup. 

If ITO = 24, then U P. The only possibilities are (P,a), 

(P,b): again, both have a normal Sylow subgroup. 

Hence G is 4-step connected. (NG(P) to NG(Q) takes 4 steps) 

We now consider the case where W(G) = r+2, where as usual G 

. 
p2 	r has order p1

n' 	-...p n1-- we already know the condition for 

r = 2, so we assume r 3. 

In this case, as one might expect, G has exactly 2 non-normal 

Sylow subgroups; but this is not a sufficient condition, as can 

be seen from the case r = 2. 

Proposition 4.10 

If G has order p1
n,p2

n2...pr
n, 
 ' where r?... 3, then w(G) = r + 2 

if and only if G has exactly 2 non normal Sylow subgroups, P
1  and P2 P1  

say, and either G has Pitting length 2, or one of the Sylow 	and 

p2-complements is normal in G. 

Proof (a) Suppose W(G) = r + 2. 

By Proposition 4.8, G has at most 2 non-normal Sylow subgroups, 

and by Proposition 4.9, G has exactly 2 non-normal Sylow subgroups. 

Let these be P1,  P2, say; so P3,..., Pr  are normal in G. 

Suppose neither the 	nor the p2-Sylow.complement is normal in G. 

We use induction on r, and reduce to the case r = 3. 

By Proposition 4.7, Tor(G/P) r 1, and hence G/Pr satisfies 

the Proposition. So, if K (G) = 	= 11...,r 
Pi 

then P'Pr'  P'Pr  -4 G- for G/Pr  must have Fitting length 2, since 1 	2  

' P'l  P2 / e. 
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If Pr..1 <i G, then similarly P'IP 1 2 r-1 	G, 'P 	<1  G so :P' 1' t 4 G, 

and our result follows. 

We are left with the case r = 3; P1,P216  G, P
3
--1 G

, 
and 

w(G) = 5, with P1P3, P2P343  G. 

Firstly, W(G/P3) : 4, by Proposition 4.7,and by Proposition 4.9, 

w(G/P
3 
 ) = 4, since G/P3 has no normal Sylow subgroups.  

So by Proposition 4.6, PIP3, p2P34 G, with the above 

notation. We must show ' 2 P'I  P'‹ G (by supposition/ 1  PI,  2 P'  r e). 

Suppose G has no normal pl– or p2–subgroups. Consider the 

chain 

9,1 	zS. 3 	9.5 
P1P2 	A 	A2 	G. 

PIP2 contains no normal subgroups, so K 	(G) = e. 
ql".15 

Hence p1  and p2  must occur twice, so p3  can occur only once. By 

our assumption about the normal subgroups of G, p3  must occur in 

the first 2 steps; so PI 4 PIP3  (4G), and this is a contradiction. 

So G has a normal p1–subgroup, X1  say, so by induction on the 

order of G, either PIX1 , P2X1<1 GI  or X1P2P34  G. Both these give 

P .4 G. 1 

So now suppose G has no normal p2–subgroups. 

We have PIP2P3.4 G, so NG(P2) = PTP2P3 , where PTPI = P1. 

Consider the chain 

P4P2 	A1  —p' A2 	G. 	(I) 
1  

D2  must occur twice. Suppose p1  occurs only once; then the 
• 

	

chain Pi ..PT P2  = P1P2 WI  PlAi -> G 	has a trivial 

p1–step, and so can be shortened to 
d%3 	Q(  

B1P2 	BI 	B2 	G, 

where p1  does not appear. Hence Xd,... * (G) = P1 .4  X,..; X2 L e, 

since P1 4  G, and X2  P. But P2P3-4.1  G, so X2-4  G, a contradiction. 
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So p1  occurs twice in (1), and hence p3  only occurs once. 

If PT contains X1, a non-trivial normal p1-subgroup, then 

by induction either 7.11-1 G, which gives P2 <i G, or X1P2P3-1 G, 

i.e. Xi  > P4. This gives PT = Pi; but P2P3  41G, so P2  41 P2P1. 

Hence P*P2  does not contain any normal subgroups of G, so  

(G) = e. P1 41 P1P3, P2 -4.1 P2P3, so p3  cannot occur in the 
1- "1"15 
last 2 steps, or in the first 2 steps in (1). PIILL P2P3, so 

1 A2, P2 T A3. So qi  = q5 = 	q2  = q4  = p2. But then 

Pt1 	A l ' so P2 	P2  Pt- 1' hence P2  P2  P1, contrary to our 

assumption. 

Hence G has a normal p2-subgroup X2, say, and by induction, 

P -41 G, as proved above for Pi. 

So P'P'P3  is nilpotent and normal in G; so G has Fitting 1 2  

length 2. This completes the proof. 

(b) The converse. 

P3,P4,...Pr  are normal in G; if P1P3...Pr, the Sylow p2- 

complement is normal in G, then for U,V G, we have K 	(0, 
plp2 

P
CO contained in P3...Pr, which is nilpotent and hence 

1P2 
= r-2. Hence U can be connected to V in (r+2) steps. 

If, on the other hand, G has Fitting length 2, then PI, 11 4 G, 

so we have the chain 
Pt 

U U n P'P 	 PIP"' ...P --> 	P'PT 1 2. 	r 	1 2-3 	r 	1 	3. 	r 

... 	lin Pi  Pg3...Pr  17 V, 

using the ailpotency of PIT3...Pr. This can be shortened to 

(r+2) steps. 

So in both cases W(G) = r 2. 
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Chapter 

The diameter of a finite group  

The number of times a given prime must occur in a chain between 

2 subgroups of G is not determined in general by the number of 

times it occurs in a path of minimal width, since there may not be 

a unique minimal path. For example, if G has order prqs, and 

W(G) = 4, then by the results of Chapter 4, G has fitting length 

2, and no normal Sylow subgroups. Hence there is no chain from G 

to e with 2 steps, but 2 chains of length 3, one involving p once 

and q twice, the other involving a once and p twice. 

Recall the definition of d(G), the diameter of G, defined in 

Definitions 5 to 7, Chapter 1: 

A chain c from TT to V, where U,V < G., is a sequence 

U = U0' U1, 	 , n= V such that 

p1 
U = U 	 U1  --- 

-2 4D 0 	0 
13 

 

 

Un  = V, 

 

where the pi's are prime (not necessarily distinct), and pi  = 1 

if U. 	,---i U.. 1-1 	i 

The diameter, d(c), of the above chain c is defined by 

d(c) = p1p2 	pn; if C(U,V) is the set of chains from U to V, 

for U,V 	G, we define c(U,V) = h.c.f.(d(c): c E  C(U,V)). 

Finally, the diameter, d(G), of G is defined by: 

d(G) = 1.c.m.(d(D,V): U,V < G). 
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Proposition 5.1  

Suppose G is a soluble group.. Then: 

(a) p divides the order of G if and only if p divides d(G). 

(b) G has a normal Sylow p—subgroup if and only if p2  does not 

divide d(G). 

(c) G is nilpotent if and only if d(G) is square—free, 

Proof 

(a) Any chain from G to e (G is soluble, so there is a 

chain from G to e) involves every prime divisor of the order of 

G; so if G has order p1n,p2nzn„ then p1p2 	pr  

divides d(G). 

The converse is trivial. 

(b) Suppose P is a normal Sylow p—subgroup of G. 

If U < G, then un P -coU, and there is a normal chain 
$i 

U = A0  )v Al  N A2 	S  As = u n P, 

where each A. is normal in U, and the o.'s are distinct from p. 

Similarly, we have a chain 

V n P = B 	B1 	B 0 	1 	B2 

Combining these two chains with the p—step U n  P 	V n P, 

we obtain a path from U to V which involves p exactly once. 

Hence d(U,V) = pm, where (p,m) = 1; and since this holds 

for all 	G, d(G) = pm', where (p,m') = 1. 

Bt = V. (qi 	P)  
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Conversely, if the Sylow p-subgroup P is not normal in G, 

then by Propositions 4.2 and 4,3, p must occur twice in arty 

path from P to G; so p2  divides d(P,G), and hence divides d(G). 

(c) This follows from (b): d(G) is square-free if and 

only.if every Sylow subgroup of G is normal, i.e. if and only 

if G is nilpotent. 

Proposition 5.2  

If G has Fitting length f, then d(G) divides (p1p2 	pr) f. 

Proof 

We have the chain 

G = N0 	N
1 

	N2 t>- 	 V›- N. = el  where Ni/Ni+1  is 

nilpotent for i = 0,1, ..., f. 

(a) Suppose f is even. We have the chain: 

,, 1)1 	\I P1  \Pr 	 N1 G ....fi r  N2  

N3 	.... 	Nf -1 
	 (i) 

So if U is a subgroup of G, by intersecting U with the 

above chain, we obtain 

TT 	1 UnNf-1 ' 
	 (2) 

in which p1  occurs at most f/2 times (combining adjacent p1  

steps). 

For V a subgroup of G, 	Nf...1 , and V n Nr....1  are sub- 

groups of 	which is nilpotent; hence we have the chain 



er 
U n 1 f-1 	---4.170Nf 	9 

	

( ) 

in which each prime occurs at most once. 

Hence combining the chains (2) and (3), and the chain 

IrrIN
f-1 	P7 V, 

obtained by intersecting (1) with V (and reversing the order), 

we obtain a chain from U to V involving p1  at most f times 

(since the last step of (2) and the first of (3) combine). 

(b) Suppose f is odd. 

We have the chain 

,p, 	P, 	 Pi 	Pr 	Pr 	PI 	el 	Pc 
G --=I ... 	 ; Ni  .-.' ... ''.1 /42  \-4 ... 	Nf...2 . 	...\-:, i+f f..i . 

p1  occurs (f-1)/2 times in this, so for U,V . G, we can obtain 

the oh in: 
PrPr 	 f't 	Pr- 	Pr 	(r•

II .\( ... 
, 

U 11N i...1  	-- ... 	->V(‘ Nf-171  ... / V, 

in which p1  occurs 2(f-1)/2 + 1 times i.e. f times. 

So in both cases, d(G) divides (p1p2  ... pr)f. 

Remark In the example given at the beginning of this chanter, 

i.e. G has order p S 
 , 4-step connected, (and hence no normal 

Sylow subgroups, Fitting length 2) d(G,e) = pq (so if d(U,V) = 
p1  m, 	p in.', there is not in general achain of length (m1  + 

+ mr) between U and V). However, from the above results, d(G) = 

p2q
2
; alternatively, this can be shown using the fact that a chain 

from P*T(- to G must involve both p and q twice, where NG(P) = PQ*, 

and NG(Q) = P*Q (see Proposition 4.6). 

Neither is it true in general that d(G) = p 	ar  1a '... pr  

	

implies thatW(G) = al  + a2  + 	+ ar, but it is possible to 

derive some relationships between d(G) and W(G). To further this 

end, we introduce another definition: 

6o. 
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Definition  Suppose p is a prime dividing the order of G. For 

a subgroup U of G, define 

K t(U) = n(V4U : (IU/V1,p) = 1). 

The following lemma shows the motivation for this 

definition: 

Lemma 5.3  

For G soluble, K 1(U) is the (unique up to conjugacy) minimal 

subgroup of G to which U can be connected by a chain not involving 

P. 

Proof Suppose 

qi 	(Ix 	ql 	qs V —4 A ---->A2 > s = U, 

is a chain from V to U not involving p. 

Then 
Kq1q2**-qs 

 (U) .4* V (picking as usual a suitable 
conjugate of V if necessary) 

But X
q1q2 	qs (U) 

	IC.1),(U), so V 	Kpl(U). 
4e*  

Finally, U can certainly be connected to X i(U), by a chain 

not involving p, for U/X 1(U) is a soluble group of order prime 

to p. 
This completes the proof. 

Lemma 5.4  

If 

G-->... 	 —=D A2 ---> B2 

A -7> Am  y m 	e, 

th isachainfromGtoe,where.Bi is the i occurrence of 

Pf for i = 1,2, ..., M t  and p occurs exactly m times, then 

111;;Kpl(G), A2;■„Kpippl(G) = Kpt(Kp(Kpl(G))), and so on. 



• So if the chain 
0 rk 

(*) G 	Kp  (G) 	Kpp  (G) 	Kp, pp  (G) 

e, 

involves p exactly n times, then any chain from G to e must 

involve p at least n times. 

Proof The proof is obvious. 

Proposition 5.5  

If the least number of times p1  occurs in a chain from G to 

e is n, then if the last term in the chain (*) above (for p=p1) 
2n-1 

is a p1-group, then d(G) = p1 	m , where (m,p1) = 1; whilst if 
2n 

the last term is not a p1--group, d(G) = p1 	where (10, p1)=1. 

Proof Suppose (6) for p1  is 
Pt  

G ai ... 	(G) =Al 	Y1 	• 	X.n  J  yn 	.... 	e, 
. 

wherethel
th  occurrence of P1  isfrom.to Y., for i=1,2,..., n. 

Case 1 Yn = e. 

Suppose XII  = P;, say, and look at the (n-1)th  occurrence of 

P1, i.e. Xn  11 Yn-1. Put Yn...1  = Ppn, say, where Plc) Zn = e. 

Zn 4  G implies K 	11-1) = Zn, which gives PI = e, a 
P1  

contradiction. So Zn4i G, and hence, by .the Frattini argument, 

Na(Zn) = PTP2  ... Pr, where P'T 4 P1, and PIP; = P1. 

Connect NG(Zn) to G; suppose this can be done by a chain 

involving p1  only (2n-2) times,i.e. 

1-1 	9's 	PF  
P1P2 	Pr    —>4  A —> B z  --=>    	 G, 

n-2 	n-1 

,th where A ----->B is the (n-1) occurrence of p1. 

62. 
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char 	clear 
• Firstly, A 	Kqs...qi (NG  (Zn  )) 	Zn; otherwise; by •  

forming the product of each term in the chain 
r- 

110(Zn) 	Kqesicil  (NG(Z11)) 

by PI, we would obtain a contradiction to Lemma 5.4. 

Zn  B. 

.But also by Lemma 5.4, B > Ppn, and hence Zn-1P' G, n 1 

which implies Zn-i G, a contradiction. 

So p12n-1 divides d(G). 

Finally, if II,V‘ G, then we have chains 

N 	\t II nP4,  
V 	 . 	v n 

each involving p1  (n-1) times, formed by intersecting 1:1,,T with 
rk 

	

(*). Connecting these via the p1-step U C\
1 	Pi, we 

obtain a chain involving p1  (2n-1) times. 

Hence d(G) = p12n-1m1, where (p1,m1) = 1. 

Case 2 Yn  e. 

Yr, 	G; suppose 	= P'Y . K 	= Xn, so P4 G. 1 n 	pi  

Hence, by the Frattini argument, VG(Pi) = PlYg, say, where 

= P 	P n n 	2 	r' 

Connect NG(11) to G, and suppose p1  only occurs (2n-1) 

times. 

We have 

NG  (PI) 

where A -H,›B is the nth occurrence of p1. 

	

clear 	char 
As in Case 1, A ›-qs..qi  OJG 1 (PO) C>- Pi,'so Pi 41A. 

Hence 
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Moreover, B > Xn  = Yn  Pt so A > Y. . Hence 

P
1  
t <a P4Yn  , which gives Y = e, a contradiction. 

So p1  occurs at least 2n times. 

Finally, for U,7 	G, we can connect each to e in chains 

involving p1  n times (at most); joining these chains gives 

the required one from U to V. 

Hence d(G) = p2.171m, where (p1,m) = 1. 

Corollary 1, 

If G has order p1n1 p2nI, and w(G) = m, then d(G) = 

where a=b=m/2 if m is even, and a=(m-1)/2, b=(m+1)/2 if m is 

odd, (or a=(m+1)/2, b=(m-1)/2). 

Proof By Propositions 4.5 and 4.6, if W(G) = 2n then 

there are two minimal chains of length (n+1) from G to e. 

If (n+1) is odd, then the chain (*) of Lemma 5.4 for P=P1 

contains p1 n/2 times, and the last term is a p2-group. So by 

the above Proposition, d(G) = pinp2n, since the situation is 

symmetric in p1  and p2. 

If (n+1) is even, then (*) for p1  contains p1  (n+1)/2 times, 

and ends with a p1-group. Hence the p1-factor of d(G) is 

2(n+1)/2 -1 = pin.. So d(G) = pinp,n, again by symmetry. 
P1 

If W(G) = 2n+1, then the two minimal chains from G to e 

have lengths (n+1) and (n+2); these minimal chains are the 

chains (*) for p1  and p2. Suppose the shorter chain is (*) for 

P1* 

If n is odd, p1  occurs (n+1)/2 times in (*) (for p1) and 

+1-1.  the last term is a pi-group; so the p1-factor is pin 	The 
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chain (*) for p2  involves p2  (n+1)/2 times, and ends in a 

1 	n+ p1-group, so the p2-factor is p2 n+  . Hence d(G) = p1n  p2 1  . 

If n is even, p1  occurs n/2 times in (*) for p1, and 

the last step is a p2-step; whilst p2  occurs (n+2)/2 times 

n n+ 
in (*) for p2, the last step being a p2-step. So d(G) = p1  p2

1  . 

This completes the result. 

Corollary 2  

If U G, then d(U) divides d(G) and if U is normal in G, 

then d(G/U) divides d(G). 

Proof If the chain (*) for G for p is 

G\t 	 (G) 	K (G) \I 	/ e, 
PI 	PP' 

then by forming the intersection of this chain with U, we obtain 

a chain from U to e (of subgroups of DI  choosing suitable conjug-

ates in (*) to ensure that each term is a subgroup of the preceding 

one). By Lemma 5.4, the (*) chain for U for p is "contained" in 

this; so, by the above Proposition, the p-factor of d(U) divides 

the p-factor of d(G). 

If U is normal in G, by forming the product of each term of 

(*) with U, and taking the quotient by U, we obtain a chain from 

G/U to e. This again is "contained" in the chain (*) for G/U and 

p, so again d(G/U) divides d(G). 

Remark If w(G) = m then certainly1W(G/u)<< m for any normal 

subgroup U of G; but for U a subgroup of G, withId(U) = n it 

seems difficult to say anything useful about the relation between 

m and n, although it seems likely that n 	m. This is because we 
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have not found a natural way of determining m for an arbitrary 

finite group, unlike d(G), which follows as above from a 

consideration of the chains (*), for the primes dividing the 

order of G. It may well be that two subgroups of G can be 

chosen in a natural way so that the shortest chain between them 

has m steps, but this also seems difficult. 

We can say, however, that m 	n, if G is either nilpotent, 

has exactly one non-normal Sylow subgroup, or satisfies the 

conditions of Proposition 4.10. For U also satisfies the same 

conditions (or stronger conditions). 

The difficulty, of course, is that two subgroups of U, 

whilst being conjugate in G, may no longer be conjugate in U, 

and so chains of subgroups of G, although consisting of subgroups 

of U, may no longer be chains when considered as subgroups of U. 

Proposition 5.6  

If d(G) = pla'... prar, then W(G) .> (a1 	.... 	a,). 

Proof Suppose G is a counter-example of minimal order. 

Suppose the normal p-subgroups of G are pi-subgroups, for 

i = 1,2, ..., t (t 	1). 

If Xi  is a minimal normal p1-subgroup, then if d(G/X1)= 

p1alp2a2 	pray, then by the minimality of G, W(G/Xi) . a1+ ....far, 

solq(G) 	a1  + 	ar. This is a contradiction, so 

d(G/X1) 	d(G). 

The only (*)-chain (see Lemma 5.4) which can be shorter in 

G/X1  than in G is the p1  chain; and this can only be shorter if 

the last term is contained in X1. So X1  is the unique minimal 
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normal PT-subgroup, and is the last term of the (*)-chain for 

G and pi. 

Let 1 i = 1,2, ..., t, be the unique minimal p-subgroups 

of G. 

Suppose the (*) chain for p1  and G is: 

K ,(G) ts_■ 	T"Z 	• • • i X 11 N-  1 • \-1-1 e. 
131 

Z1 e-.11 G,Zi n xi  = e; NG(Z1) = XIT2 	Pr, where X1X1  = P1. 

Connect No(Z1) to G; by the proof to Proposition 5.5, p1 

occurs at least a1 times. 

Define Zi and X! in a similar way for i = 1, 	t. 

Form  ni
t 
 NG(zi) = xTx1 	xtPt+i ... Pr  = Z say; any chain 

from Z to G involves D. at least ai times, for i = 1,2, ..., t, -1 

since by forming the product of each term with X .. X. .X. 
1 ... 1- 1+1".  

Xt ( <1 G), we obtain a chain from NG  (Z.) to G. 

Suppose pr  occurs (ar-1) times (ar  is even, otherwise there 

would be a normal pr-subgroup, by Proposition 5.5); suppose 

ar = 2b, and the chain is 

la"r 
Z = XT ... "to 	Pr--2̀ 	A -.))73 

rr  
where A 	is the bth occurrence of o • -r 

Suppose the (*)-chain for pr  from G to e is 

ft \ 
CO,V 	:YPeZ -\) Zr 	Y e, 	(1) 

where Zrr  C1 Pe = e, and pr occurs b times. 

Suppose the (*) chain for pr  from Z to e is 

Z 	PeY 	Yr 	e, r r 

where Yrn PI = e, and pr occurs b times. The chain must be of 
this form, otherwise, by forming the product of each term with 

Y 	 Xt, we would get a chain from G to X1 	Xt  contra- 

dicting (1). 
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' Hence Pir rZ  .4.B, and P'Y 41, A. r 

We now show that Yr = e; Yr is a characteristic subgroup 

of A, and hence of B. Also Yr  .1‹: Zr‘ B, so Yr  is characteristic 

in Zr, which is normal in G. Hence Yr G. A normal subgroup 

of G must contain a minimal normal p-subgroup; but Z 	Xi, 

i = 1, ..., t: hence Y, = e. 

But now Pt 1 A, and Zr ■ <: A, so P' < PrZr, which is not so. 

Hence pr  must occur at least ar  times, and similarly for 

= 	r-1. 

So pi  must occur at least ai  times for i=1, 	r, so 

W(G) 	al  4. 	 + a,. 
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Appendix 

We give here further details of examples mentioned in 

Chapter 4, and also an example to show that .f1(G) .f/(G') 

does not imply that G = Gt. 

(1) The symmetric group on 3 elements  

The conjugacy classes of subgroups of S3  are DO = s3, 

= a Sylow 2-subgroup, U2  = the Sylow 3-subgroup, and 

U 3  = e. Put Ti  = y,.. 

Multiplication Table  

T T1  .L.1  

T0 T 	1 

T1 

0 

 T1 T1 + T
3 T

3 

T2 T2  T3 T
3 

T3  m3 3T
3  

6T3  

Graph, 

3 

   

3 

 

2 

 

U o 	, 

Quasi-idempotents 	If we 

U2 	U3  

put x.= 	, 	= 	, then: x2 	X 	\.1% ui  

+ T3  ; 	a o = 2 xo  = 2 	T2  - 2Ti  

x1 = 2T1 - T3 ; \1 = 2  

x2 = 3T2 -- T
3 

; \2 -6 

x
3  

= T
3  7 3 = 6 
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Automorphisms The permutation of (xi  : i = 0,1,2,3) defined 

by multiplying the transpositions (x0x1), (x2x3) gives the 

automorphism T3 	3 T2  - T3, T2-L--=, T2, T1 ---> 1 - T1  + T2, and 

To fixed. 

It is easy to see that this is the only possible non-

identity automorphism of .a(G) (for the above is the only 

possible image for T3, and T3  fixed implies x2  and hence T2  fixed, 

and it follows easily that T1  must be fixed). 

(2) The symmetric group on 4 elements 

There are 11 conjugacy classes of subgroups of S4, as 

follows: 

U0 , order 24 : U0  = S4 

U1  order 12 :
1 
= A
4
.1 S

4 
U2 , order 6 : <(12),(123)> self-normalising 

U
3 , 

order 8 : Sylow 2-subgroup, self normalising 

U4  , order 4 : <;(12)(34),(13)(24)>4 S4  

U
5 , order 4 : 612),(30> ,s1U

3  

U6  , order 4 : <(1234)>-,8 U3  

U7  , order 3 : 023):>-:;) U2  

U8  , order 2 : <(12)> a  U5  

U9  , order 2 : <(12)(34)> -4  U3  
U10, order 1 : U10  = e 
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Nultiplication Table  

T
2 T3 

T 
6  T

7 	
T 	T

9 
T10 

Ti 
 T1  T

7 
T
4 

2T
4 

T
9 

T
9 

2T
7 	

T10 	2T
9 

2T10 

T2 
T2+T8 T8 T10 2T8 T10 T7+T10 2T8 	10 2T10 4T10 

T
3 

T3+T4 3T4  T5+T9  T6+T9  T/0 	T8+T10 	3T9 
3T10 

T
4 

6T
4 

 3T9 
 

3T 3T
9 

3T10 	6T 2T
10 	9 

6T
10 

T
5 

2T +T 5 	10 T +T 
9 	10 2T 	2T +2T 	2T +2T 10 	8 	10 	9 	10 6T 10 

T
6 2T641210 2T6 	3T10 	2T9+2T10 6T10 

T
7 

2T7+T10 	4T10 	4T10 8T
10 

T 2T8+T10 	6T10 12T10 

T
9 

4T9+4T10  12T10  

T
1  241110  

quasi-idempotents 

x
0 
 = 2 - T

1 
 - 2T

2 
 - 2T- + T

4 
 + T

7 
 + 2T8 T

10' 	0 -- 2 

"1 
= 6T

1 
 - 2T

4 
- 6T

7 
+

10 
; 	- 1- 12 - 

x
2  = 2T2  - T7  - 2T8  + T10 	\2 = 2 

x5 = 2T3  - (T4  + T5  + T6) + T9; )■3  = 2 

x4  = 2T4  - 3T9  + T10;
4 
= 12 

x5  = 2T5  - 2T8  - T9  + T10; 	)%
5 
 = 4 

'6 = 2T6 T9; 6 = 4 

xl = 3T7 T10; 	 . 6 

8 = 2T8 T10' 	• 8 = 4 

x9  = 2T9 - T10; ).9  = 8 

x10 = T10; 	 = 24 
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(3) We define G(p) as follows: 

G(p-) = (a,b,c : aP=bP=cq-e, ab=ba, cao
-1=ar cbc-1=br/-1 ), 

where p, q are prime with p - 1 = nq, r 1, rq  s-- 1 mod p, 

and 	0, 1 mod q. 

The conjugacy classes of subgroups of G are as follows: 

U0  = G; U1  = (a, b> .41 G, U2  = <a,c> U3 = <b,c 

= <0'43 G, U5 = <-11;;> <4 G, U6  9j 	ab u>, for j = 1,...,n, tr4 	5 —  
and o•  is chosen such that ab are the generators of a set of 

representatives of the n conjugacy classes of subgroups of <a,b> 

different from 	4(a'>. 

Multiplication Table 

and <;13;> U7  = <;c>U8 = e. 

T0  
T1  T2  

T3
T
3  T4 

 T
5  T69j   

T1  qT1  T
4 

T
5 

qT
4 • 

qT
5 

qT6,i  T8 	qT8  

T2 T2+nT4 T7 pT
4 T8 TS T7-i-nT8 	pT8 

T
3  

T3+nT5  T8 pT
5 

T8  T
7
+nT8 
	

pT8  

T
4 
T
5  
T6  

pqT
4 qT8 

pqT5  

qT8  

qT8  

pr6ti  

pT8 	pqT8  

pT8 	pqT8  

pT8 	pqT8  
4.(q-1)T8 

T
7  

T
7
+n(p+1)T8  p2T8  

T8  P212718 

and T6,i  . T6ti  = qT8  for i j. 

Clearly JCD(G(r)) = SI(G(t2)); but G(1.0 Q'G(p.') if and 

only if ty = 1 mod q. This example was given by Rottldnder in the 

paper "Nachweis der Etistenz nicht-isomorphic Gruppen von gleicher 

Situation der Untergruppen" Math. Z. 28 (1928); see Suzuki, "The 

Structure of a Group and its Subgroup Lattice", p.57. 
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