# On the Bumside Ring of a Findte Group 

by

Donald Macleod Micolson

Department of Mathematics,
Imperial College of Science and Technology.

## Abstract

## On the Burnside ring of a finite group

The material contained herein is based on work by A. Dress, notably his paper "A Characterisation of Solvable Groups" (Nath Z. 110, 1969, pages 213-217).

Chapter 1, the introduction, contains a. summary of the above paper, together with a detailed statement of other unpublished results of Dress's which are relevant to this dissertation. Also contained are definitions of my own which will be used in later chapters.

My own work falls into two distinct sections. The first section concerns the embedding of the Burnside ring, $\sim(G)$, of a finite group $G$ into a direot product of copies of the integers, and is covered in Chapters 2 and 3. The second section concems the graph of prime ideals of $\Omega(G)$, and is covered in Chapters 4 and 5.

Chapter 2 We have the homomorphism $\phi_{U}: \Omega(G) \longrightarrow a$ for each $U \leqslant G$ defined on the transitives of $\sim(G)$ by $\phi_{U}(S)=\left|S^{J}\right|$, for $S$ a transitive $G-s e t$, where $S^{U}=(s \in S: u s=s$, all u $\in U$ ); Dress shows that $\phi_{U}=\phi_{V}$ if and only if $U \sim V$ and that $\theta=\prod_{U \in G} \phi_{U}: \Omega(G) \longrightarrow \prod_{1} Z$ is an embedding, where $Y$ is a complete set of representatives of the $n$ conjugacy classes of subgroups of $G$.

We define $y_{U} \in \prod_{i}^{n} z$ to be such that $y_{U}$ has zero component in $V ふ G$ unless $V \sim U$, and component 1 if $V \sim U$; we denote the least positive integer a such that $a y_{U} \in \Omega(G)$ by $\lambda{\underset{U}{G}}_{G}$, and the product $\lambda_{U}^{G} y_{V}$ by $X_{U}^{G}$. The main results of Chapter 2 can be stated:

Theorem (a) If G is a finite group, whose maximal normal subgroups have index $p_{1}, p_{2}, \ldots, p_{s}$, then $\lambda_{G}^{G}=p_{1} p_{2} \ldots p_{s}$
(b) If $U \leqslant G$, then $\lambda_{U}^{G}=\left(N_{G}(U): U\right) \lambda_{U}^{U}$.

Chapter 3 We apply the results of Chapter 2 to a consideration of the regular $G-s e t, G / e$; we have $G / e=x_{e}^{G}$, and $\lambda_{e}^{G}=|G|$. our results are:

Theorem If $G$ has odd order, and $U \leqslant G$, with $\lambda_{U}^{G}=|G|$, then the following conditions are equivalent:
(1) G has no other subgroup of the same order as U.
(2) There is an automorphism of $\Omega(G)$ sending $x_{U}^{G}$ to $x_{e}^{G}$. Theorem If $G$ has even order, and $U \leqslant G$ with $\lambda_{U}^{G}=|G|$, then the following conditions are equivalent. (U necessarily has square-free order)
(1) G has no other subgroup of order $p$ for any odd prime $p$ dividing $|U|$, and there is no subgroup of $G$ of order 4 which does not contain the Sylow 2-subgroup of $U$.
(2) There is an automorphjism of $\Omega(G) \operatorname{sending} x_{U}^{G}$ to $x_{e}^{G}$.

Chapters 4 and 5 Further definitions are necessary to introduce our results: firstly, $\oint_{U}, p$ for $p$ zero or prime is the kernel of the map $\Omega(G) \xrightarrow{\phi_{u}} Z \rightarrow Z_{p}$ (see Dress's paper). If $U, V \leqslant G$, then a chain $c$ from $T$ to $V$ is a sequence $U=U_{0}, U_{1}, \ldots, U_{n}=V$ such that $\gamma \gamma_{U_{0}, p_{1}}=\rho_{U_{1}, p_{1}}, \gamma_{U_{1}, p_{2}}=\gamma_{U_{2}, p_{2}}, \ldots, \rho_{U_{n-1}, p_{n}}=\gamma_{U_{n}, p_{n}}$.

The width $W(c)$ of the above chain is the number of steps, $n$; the diameter, $d(c)$, is $p_{1} p_{2} \ldots p_{n}$. If $C(U, V)$ is the set of chains from $U$ to $V$, we define $V(U, V)=\min (W(C): c \in C(U, V))$; $d(U, V)=h . c . f .(d(c): c \in C(U, V))$.

Finally, we define $W(G)$, the width of $G$, and $d(G)$, the diameter of $G$, as follows:

$$
\begin{aligned}
& W(G)=\max (W(U, V): U, V \leqslant G) \\
& d(G)=I \cdot c \cdot m \cdot(d(U, V): U, V \leqslant G)
\end{aligned}
$$

The results of Chapters 4 and 5 include the following:

Theorem If the prime divisors of the order of the group $G$ are $p_{1}, p_{2}, \ldots, p_{r}$, then the following conditions are equivalent:
(1) G is nilpotent
(2) $V(G)=r$
(3) $\alpha(G)=p_{1} p_{2} \cdots p_{r}$.

Theorem If $G$ is a finite soluble group of order divisible by exactly $r$ distinct primes, then if $W(G)=r+n$, then $G$ has at most $n$ nonnormal Sylow subgroups.

Theorem If $d(G)=p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}} \cdots p_{r}{ }^{a_{r}}$, then

$$
W(G) \geqslant a_{1}+a_{2}+\ldots+a_{r}
$$

## Acknowledgements

I would like to thank Dr. O. Pretzel for his encouragement, advice and patience, and also Dr. B. Baumslag for help in the early stages of my research. I am also grateful to the S.R.C. for their financial support.

## Contents

Page
Chapter 1 Introduction ..... 7
1.1 The Burnside ring $\cap(G)$ of a finite group ..... 7
1.2 The prime ideals of $\Omega(G)$ ..... 8
1.3 The transitive G-seis; induction and restriction ..... 9
1.4 The width and diameter of $G$ ..... 13
Chapter 2 The embedding of $\Omega(G)$ in a direct product of copies of the integers ..... 16
Chapter 3 A characterisation of the regular G-set ..... 24
Chapter 4 Some results on the width of a finite group ..... 38
Chapter 5 The diameter of a finite group ..... 57
Appendix ..... 69
References ..... 73

## Chapter 1

## Introduction

The basis for the work embodied in this dissertation is the paper "A Characterisation of Soluble Groups", [1], by A. Dress, concerning the relationship between a finite group, and its Bumside ring. Further relevant, material is contained in a lecture course by Dress and Ktchler at Bielefeld University in 1970, and since this is not generally available, its relevant results are summarised in this Introduction. Also the introduction includes a brief summary of the definitions and results of Dress's paper, [1], and various definitions to facilitate the development of my own results.

### 1.1 The Burnside Ring $\Omega(G)$ of a finite group $G$

In the following results and definitions, $G$ is a finite group.

A finite set $S$ is said to be a C-set if $G$ acts as a (left) permutation group on $S$, i.e. we have a map $G \times S \rightarrow S:(g, s) \longrightarrow g s:$
such that $\left(g_{1} g_{2}\right) s=s_{1}\left(g_{2} s\right)$, and es $=s$, for $g_{1}, g_{2} \in G$, $s \in S$, a the identity element of $G$. If $S_{1}, S_{2}$ are G-sets, then $f: S_{1} \rightarrow S_{2}$ is a $G-m a p$ if, for all $g \in G, s \in S_{1}, f(g s)=g f(s)$.

Given two G-sets M, N, the disjoint union M $\cup N$, and the Cartesian product $M \times N$, are also $G$-sets in a natural way; and with this addition and multiplication, the isomorphism classes of G-sets (under G-maps) form a commutative half-ring $\Omega^{+}(\mathrm{G})$. Its
associated ring is the Burnside ring, $\Omega(G)$, of $G$.

The transitive G-sets can be shown easily to be the set (G/U: $U \leqslant G$ ), where $G / \mathbb{U}$ is the set of left cosets of $U$ in $G$; also $G / J \cong G / T$ if and only if $U$ is conjugate to $V$. Finally, the distinct (i.e. non-isomorphic) G-sets $G / \sigma$, for $U \leqslant G$, form a basis for $\Omega(G)$ as a free $Z$ module.

### 1.2 The Prime Ideals of $\Omega(G)$

For each $U \leqslant G$, we define the map $\dot{U}_{U}^{+}: \Omega^{+}(G) \longrightarrow Z$ by $\oint_{U}^{+}(S)=\left|s^{\Pi}\right|$, for $S$ a G-set, where $S^{J}=(s \in S:$ us $=s$, all $u \in J$ ); we have $\phi_{J}^{+}=\phi_{V}^{+}$if and only if $U$ is conjugate to $V$, and $\phi_{\mathrm{U}}^{+}$extends to a homomorphism $\phi_{\mathrm{D}}: \Omega(\mathrm{G}) \longrightarrow \mathrm{Z}$.

For $p$ zero or prime, and $U \leqslant G$, we define $\mathcal{S}_{U, p}=$ $\left(x \in \Omega(G): \phi_{U}(x)=0 \bmod p\right)$. The ${ }^{0}{ }_{U, p}$ are prime ideals (since $\Omega(G) / P_{\mathrm{J}, \mathrm{p}} \cong \mathrm{Z}$ or $Z_{p}$ ) and Dress shows, either by considering a minimal transitive G-set not belonging to a prime ideal, or by using a theorem of Cohen-Seidenburg, that these are the only prime ideals.

It follows that $\gamma_{U, p}$ is maximal, $\gamma_{U, 0}$ minimal, for $p \frac{1}{T} 0$ $\left(T_{\mathrm{U}, \mathrm{p}} \supseteq \mathcal{P}_{\mathrm{U}, 0}\right) ;$ and $\mathcal{O}_{\mathrm{U}, 0}=\hat{U}_{\nabla, 0}$ if and only if U is conjugate to $V$.

The conditions under which $\oint_{\mathrm{U}, \mathrm{p}}=\chi_{\mathrm{V}, \mathrm{p}}$, are more complicated, and require a further definition.

For $U \leqslant G$, we define $K_{p}(J)$ to be the minimal normal subgroup of $U$ such that $U / K_{p}(U)$ is a p-group, i.e. $K_{p}(U)=$ $\cap\left(V: V \triangleleft U, U / V\right.$ is a p-group). $K_{p}(U)$ is a characteristic subgroup of U ; and $\mathcal{V}_{\mathrm{J}, \mathrm{p}}={ }_{V}{ }_{\mathrm{V}, \mathrm{p}}$ if and only if $\mathrm{K}_{\mathrm{p}}(\mathrm{U})$ is conjugate to $K_{p}(V)$.

In his paper, [1], Dress considers the graph of prime ideals of $\Omega(G)$, and defines two minimal prime ideals $\rangle_{U, 0}$, $\Gamma_{V, 0}$ to be connected if there is a chain $\delta=\sigma_{0}, \sigma_{1}, \ldots, \nabla_{n-1}$, $J_{n}=V$ of subgroups of $G$, and non-zero primes $p_{0}, p_{1}, \ldots, p_{n-1}$ such that $\gamma_{\sigma_{i}, p_{i}}=\gamma_{\sigma_{i+1}, p_{i}}$, for $i=0$ to $n-1$, i.e. we have the diagram


Dress's result in his paper $[1]$ is that the following conditions axe equivalent:
(1) G is a soluble group
(2) The graph of prime ideals of $\Omega(G)$ is connected (i.e. any 2 minimal prime ideals are connected)
(3) $\Omega$ (G) has no non-trivial idempotents.

### 1.3 The Transitive G-sets; Induction and Restriction

In defining the Bumside ring $\Omega(G)$ of a finite group $G$, the transitive G-sets $G / \sigma$, where $J$ runs through the conjugacy classes of subgroups of $G$, play an important role, being a basis for $\Omega(G)$ over the integers, $Z$.

Chapter 3 considers the problem of characterising this basis; given that a ring is the Burnside ring of a Sinite group, can we determine its transitive básis? The regular G-set, $G / e$, is determined (up to automorphism of $\Omega(G)$ ), but the problem of characterising the other transitives has not been solved.

The following results and definitions contained in Dress's unpublished work are used in Chapters 2 and 3.

Definition 1 Suppose the finite group $G$ has $n$ distinct conjugacy classes of subgroups. We define $\theta: \Omega(G) \rightarrow \prod_{1}^{n} \mathrm{z}$ by $\theta=\prod_{U \leqslant G} \phi_{U}$, where $Q_{T}$ is as defined in 1.2 , and 0 muns through the conjugacy classes of subgroups of $G$.
$\theta$ can be shown to be an embedding of $\Omega(G)$ in $\prod_{1}^{n} Z$; we now identify $\Omega(G)$ with its image under $\theta$.

Lemma $1 \quad \mid G \Pi_{1}^{n} Z \subseteq \Omega(G)$.

Proof Define $y_{V}=(0,0, \ldots, 1, \ldots, 0)$, i.e. the component of $y_{U}$ corresponding to $V \leqslant G$ is zero unless $V \rightarrow 0$, in which case the component is 1 . It is sufficient to show that $|G| \mathcal{J}_{U} \in \Omega(G)$ for each subgroup $U$ of $G$. We use induotion on $\mid \mathbb{J |}$.

For $|U|=1$, that is $U=e$, we have $\dot{G}_{J}(G / e)=\left[\begin{array}{ll}0 & U \neq e \\ |G| & U=e\end{array}\right.$

So $|G| \Psi_{e} \in \Omega(G)$.

So suppose $J \underset{i}{f}$ e, and that for $V \leqslant G$ with $|\nabla|<|0|$, $|G| y_{V} \in \Omega(G)$. consider $G / T ; \varphi_{V}(G / U)=\left[\begin{array}{ll}0 & V \underset{\sim}{c} U \\ \left|N_{G}(U): U\right| & V=U \\ a_{V} & V \leq U, V \frac{1}{T} U .\end{array}\right.$ so $G / U=\left|N_{G}(\nabla): U\right| Y_{U}+\frac{\sum}{\left.|V|\langle | \sigma\right|^{2} V_{V}{ }^{*}}$

Hence $\left.\right|_{G}\left|y_{U}=\left(|G| /\left|N_{G}(U): U\right|\right) G / U-\sum_{|V|<|U|}\left(a_{V} /\left|N_{G}(U): U\right|\right)\right| G \mid y_{V}$.

It can be shown that $\phi_{U}(G / \sigma)$ divides $\oint_{J}(G / \nabla)$, so $\left|N_{G}(J): \sigma\right|$ divides a, Hence $|G| y_{V} \in \Omega(G)$, and the result follows by induction.

Definition 2 We denote the least positive integer a such that a $y_{U} \in \mathcal{Z}(G)$ by $\lambda_{U}^{G}$, and the product $\lambda_{U}^{G} y_{U}$ by $x_{U}^{G}$. The superscript $G$ is omitted if $U=G$; we write $x_{G}$ and $\lambda_{G}$.

$$
\text { We call } x_{U}^{G} \text {, for } U \leqslant G \text {, a quasi-idempotent of } \Omega(G) \text {. }
$$

Definition 3 (a) Suppose $H, G$ are groups, and $\phi: H \rightarrow G$ is a homomorphism. Let $N$ be a G-set; we define an H-operation on $N$ by hon $=\phi(h) \cdot n$, for all $h \in H, n \in N$. Under this operation, we obtain an H-set, which we denote by (N) H . In the case where $H$ is a subgroup of $G$, and $\phi: H \rightarrow G$ is the inclusion homomorphism, (the case with which we are concerned) (N) H $_{\text {H }}$ is termed the restriction of iN to ㅍ,
(b) Suppose H,G are groups, and $\phi: H \longrightarrow G$ is a homomorphism. Let M be an $\mathrm{H}-3 e t$; we define by $\quad(\mathrm{h},(\mathrm{g}, \mathrm{m})) \longrightarrow$ ( $g \phi\left(h^{-1}\right), h m$ ), an H-operation on $G \times M$. We denote by $G \times{ }_{H^{M}}$ the set of equivalence classes of $G \times M$ under this astion by $H$, that is $(h,(g, m)) \sim(g, m) ;$ and finally we define $G$ to act on $G X_{H} M$ by $g_{1}(\overline{g, m})=\left(\overline{g_{1} g, m}\right)$. Under this action, $G \times{ }_{H} M$ becomes a G-set, the induced $C-s e t$, denoted by $(M)^{G}$.

Lemma 2 Let $\phi: H \longrightarrow G$ be a group homomorphism, $M_{1}$ and $M_{2}$ H-sets, and N a G-set. Then
(a) $G X_{H}\left(M_{1}+M_{2}\right)=G X_{H} M_{1}+G X_{H} M_{2}$
(b) $\left.G X_{H}(\mathbb{N})_{H} \times M\right)=N \times\left(G \times{ }_{H} M\right)$
(c) $\operatorname{Hom}_{\mathrm{H}}\left(\mathbb{M},(\mathbb{N})_{H}\right)=\operatorname{Hom}_{G}\left((M)^{G}, \mathbb{N}\right)$ where $M$ is an H -set.

Definition 4 with $\phi, H$ and $G$ as above, we define additive homomorphisms $\Omega(\phi), V(\phi)$ from $\Omega(G)$ to $\Omega(H)$, and from $\Omega(H)$ to $\Omega(G)$ respectively, by $\Omega(\phi): N \longrightarrow(N){ }_{H}$, for $N$ a $G-$ set, and $च(\phi): M \longrightarrow G{ }_{H} M$, for $M$ an $E-s e t$.

Finally, for $\mathbb{J} \leqslant G$, $i: ~ U \longrightarrow G$ the inclusion, $x \in \Omega(G)$, $y \in \Omega(0)$, we define $(x)_{0}=\Omega(i)(x)$, and $(y)^{G}=乙-(i)(y)$.

Lemma 3 For $U \leqslant G,\left(1_{0}\right)^{G}=G / \mathbb{G}$, where $T_{U}$ is the $\sigma$-set with 1 element.

Gorollary For $U \leqslant G, x \in \Omega(G),\left((x)_{\sigma}\right)^{G}=G / 0 . x$.
Proof $\left((x)_{\square}\right)^{G}=\left(1_{\sigma}(x)_{\sigma}\right)^{G}=\left(1_{U}\right)^{G} \cdot x=G / J \cdot x$.

Lemma 4 Let $N$ be a $V$-set, where $V \leqslant V \leqslant G$. Then

$$
G X_{0}\left(\sigma \times V^{\mathbb{N}}\right)=G X_{V^{N}} .
$$

Gorollary 1 If $\mathrm{D} \leqslant \mathrm{G}$, and $\mathbb{N}=\mathrm{J} / \mathrm{V}$ is a transitive U -set, then $(\mathbb{N})^{G}=G / V$, a transitive G-set.

Proof

$$
(N)^{G}=\left(\left(1_{V}\right)^{\mathbb{V}}\right)^{G}=\left(1_{V}\right)^{G}=G / V .
$$

Corollary 2 For $\mathbb{V} \leqslant \mathrm{G}, \mathrm{V}(\mathrm{i}): \Omega(\mathrm{D}) \longrightarrow \Omega(\mathrm{G})$ is injective if and only if for every $\nabla_{1}, \nabla_{2}$ with $\nabla_{1} \sim \nabla_{2}$ in $G$, then $\nabla_{1} \sim \nabla_{2}$ in $\sigma_{.}$

Corollary 3 For $\mathrm{U} \leqslant \mathrm{G},\left(\mathrm{x}_{\mathrm{U}}\right)^{\mathrm{G}}=\mathrm{bx} \mathrm{U}_{\mathrm{G}}^{\mathrm{G}}$, where $\mathrm{b} \in \mathrm{z}^{+}$.
Proof Look at $\left(x_{0}^{G}\right)_{\square}$. For $V \leqslant 0$, clearly

$$
\phi_{\nabla}\left(\left(x_{U}^{G}\right)_{V}\right)=\phi_{\nabla}\left(x_{U}^{G}\right)=\left[\begin{array}{ll}
\lambda_{U}^{G} & \nabla=U \\
0 & \nabla \neq U
\end{array}\right.
$$

Hence $\left(x_{U}^{G}\right)_{U}=a Z_{U}, a \in Z^{+}$. Induce up to $G:$

$$
\begin{aligned}
a\left(x_{U}\right)^{G}=\left(\left(x_{U}^{G}\right)_{T}\right)^{G} & =G / J \cdot x_{\mathrm{U}}^{\mathrm{G}} \quad \text { (Lemma 3, Corollary) } \\
& =\left|N_{G}(\mathrm{U}): U\right| x_{U}^{G} .
\end{aligned}
$$

Since $\left(x_{U}\right)^{G}$ is in $\Omega(G)$, a must divide $\left|N_{G}(U): U\right|$, by the definition of $x_{U}^{G}$. Hence $\left(x_{U}\right)^{G}=b x_{U}^{G}$, where $b=(1 / a)\left|\mathbb{N}_{G}(U): U\right|$.

Chapter 2 involves an analysis of $x_{U}^{G}$ and $\lambda_{U}^{G}$ for $0 \leqslant G$. We prove that $\lambda_{U}^{G}$ can be calculated exactly in terms of the structure of $U$, and the index of $U$ in its normaliser (Propositions 2.5 and 2.6).

Chapter 3 applies this analysis to a consideration of the regular $G-s e t, G / e$. This uses the fact that $G / e=X_{e}^{G}$, and we prove that $G / e$ is unique up to automorphism of $\Omega(G)$.
1.4 The Width, and the Diameter of G

Further results can be obtained by considering the number of steps required to connect the graph of prime ideals of $\Omega(\mathrm{G})$; and by considering which primes occur in a chain. To facilitate this, we introduce some notation and definitions.

Notation Suppose $U, V$ are subgroups of $G$, and $X_{V_{, p}, p}=O_{V, p}$ for some non-zero prime $p$. Then $K_{p}(U) \sim K_{p}(V)$, so $|U|$ and $|\nabla|$ differ only by a power of $p$.

$$
\begin{aligned}
& \text { We write } u \cdot \stackrel{p}{\searrow} V \text { if }|\sigma| \geqslant|V|, \\
& \quad U \stackrel{p}{\lambda} V \text { if }|\sigma| \leqslant|V| \\
& \quad U \xrightarrow{p} V \quad \text { if the relative oxders of } U, V \text { are not }
\end{aligned}
$$

known.

Definition 5 Suppose $\mathbb{\sigma}, \vec{V} \leqslant G$. A chain c from O to $\nabla$ (which may not exist if $G$ is not soluble) is a sequence $U=U_{0}, U_{1}, \ldots$ $\ldots, \mathrm{v}_{\mathrm{n}}=\nabla$ such that

$$
\mathrm{U}=\mathrm{U}_{0} \xrightarrow{\mathrm{p}_{1}} \mathrm{U}_{1} \xrightarrow{\mathrm{p}_{2}} \mathrm{U}_{2} \rightarrow \ldots \xrightarrow{\mathrm{p}_{\mathrm{n}}} \mathrm{U}_{\mathrm{n}}=\mathrm{V},
$$

where the $p_{i}$ 's are primes (not necessarily distinct), and $p_{i}=1$ if $\mathrm{U}_{\mathrm{i}-1} \leadsto \mathrm{U}_{\mathrm{i}}$ 。

The width, $V(c)$, of the above chain $c$, is the number of steps, $n$; the diameter, $d(c)$, of the above chain $c$, is $p_{1} p_{2}, \ldots \ldots p_{n}$.

Definition 6 Let $C(J, V)$ be the set of chains from $U$ to $V$, for U, $V \leqslant G$. We define

$$
\begin{aligned}
& W(U, V)=\min (W(c): c \in C(U, V)) \\
& d(U, V)=h . c \cdot f .(d(c): c \in C(U, V)) .
\end{aligned}
$$

Definition 7 Define $W(G)$, the width of $G$, and $d(G)$, the diameter of $G$, as follows:

$$
\begin{aligned}
& W(G)=\max (W(U, V): U, V \leqslant G), \\
& d(G)=1 \cdot c \cdot m \cdot(d(U, V): U, V \leqslant G) .
\end{aligned}
$$

Chapter 4 deals with sone results concerning the width of G. Its main result, Proposition 4.8 , is that if the order of $G$ has $r$ distinct prime divisors, and $W(G)=r+n$, then $G$ has at most $n$ non-normal Sylow subgroups.

Chapter 5 deals firstly with results concerning the diameter of G; Proposition 5.3 shows how $d(G)$ may be determined from a consideration of normal series of subgroups of $G$. Chapter 5 concludes with Proposition 5.4 relating $d(G)$ and $V(G)$ : if $d(G)=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$, then $W(G) \geqslant a_{1}+a_{2}+\ldots \ldots+a_{r}$.

## Chapter 2

The embedding of $\Omega$ (G) in a direct product of copies of the integers

In this chapter, we consider the map $\theta$, defined in Definition 1, Chapter 1, embedding $\Omega$ ( $G$ ) in $\Pi_{1}^{n} z$, where $n$ is the mumber of distinct conjugacy classes of subgroups of G. In particular, we analyse the values of $\lambda_{U}^{G}$ (see Definition 2 , Chapter 1) for $U$ a subgroup of $G$. This analysis begins with the case where $G$ is a p-group, and uses the Mobius function $\mu(0, G)$ of $G$, introduced by P. Hall (see $[2]$ ).
$\mu(H, G)$ is defined as follows: $\mu(G, G)=1$ and
$\sum_{H \leqslant K} \mu(K, G)=0$ for $H<G$.

Lemma 2.1
(a) $\mu(H, G)=0$ unless $H$ is an intersection of maximal subgroups of $G$.
(b) If $G$ is an elementary abelian $p$-group, and $|G / H|=p^{a}$, then $\mu(H, G)=(-1)^{a} p^{a(a-1) / 2}$.

Proof (a) is standard; for (b), see P. Hall [2].

## Proposition 2.2

If $G$ is a p-group, then $\lambda_{G}=p$.

Proof By (a) of the above Lemma, $\mu(H, G)=0$ unless $F(G) \leqslant H$, where $F(G)$ is the Frattini subgroup of $G . G / F(G)$ is elementary abelian since $G$ is a p-group, so if $F(G) \leqslant E$, then $H \triangleleft G$; and if $|G / H|=p^{a}$, then by (b) of the above Lema, $\beta(G, H)=(-1)^{a} a(a-1) / 2$.

Now $\operatorname{pp}(H, G)=(-1)^{a_{p} a(a-1) / 2+1}$, and for a $\in Z^{+}$; we have $a(a-1) / 2+1 \geqslant a$. Hence $p^{a}$ divides $p \mu(H, G)$; that is, $|G / H|$ divides $p p(H, G)$. So suppose $p p(H, G)=k_{H}|G / H| ; ~ c l e a r l y$ this holds for any $H \leqslant G$, with $k_{H}=0$ unless $F(G) \leqslant H$.

Now put $x=\sum_{V \leqslant G}{k_{V} G / V ; \text { then } \phi_{V}(x)=\sum_{U \leqslant V \leqslant G}|G / V| k_{V}=\sum_{U \leqslant V \leqslant G} \mu(V, G)}$

$$
=\left[\begin{array}{ll}
p & U=G \\
0 & U \neq G
\end{array}\right.
$$

Hence $x_{G}$ divides $x$, so $\lambda_{G}$ divides $p$. But if $\lambda_{G}=1$, then $x_{G}$ is an idempotent, which is impossible since $G$ is soluble (see 1.2). Hence $x=x_{G}$, and $\lambda_{G}=p$.

## Proposition 2.3

Suppose that $K \triangleleft G$; let $G_{1}$ be the quotient group $G / T$. Suppose that in $\Omega\left(G_{1}\right), x_{G_{q}}=\sum_{V \leqslant G} a_{V} G_{1} / V K / K$. Define $y$ in $\Omega(G)$ by:

$$
y=\sum_{V \leqslant G} a v G / V K .
$$

Then for $U \leqslant G, \phi_{J}(J)=\left[\begin{array}{ll}0 & \text { UK }:=G \\ \lambda_{G_{1}} & \text { UK }=G\end{array}\right.$
Proof We prove that $\phi_{U K}(G / V K)=\phi_{U K / K}(G / K / V K / K)=\phi_{U}(G / V K)$.
For: $\quad \mathrm{UKgVK}=\mathrm{g} 7 \mathrm{KK} \Longleftrightarrow \mathrm{UK}(\mathrm{gK}) \mathrm{VK}=(\mathrm{gX}) \mathrm{VK}$
$\Longleftrightarrow U K / K(g K) \pi K / K=(g K) T K / K$,
and also: $\quad$ UKgVK $=g W K(U K)^{G} \leqslant V K \Longleftrightarrow J^{\text {S }} \leqslant V K$ (since $K \Delta G$ )

$$
\Leftrightarrow U_{g} V K=g V K .
$$

Hence $\phi_{J}(y)=\phi_{U K}(y)=\phi_{U K / K}\left(x_{G_{1}}\right)=\left[\begin{array}{ll}0 & U K=G \\ \lambda_{G_{1}} & U K \neq G\end{array}\right.$

Corollary 1 If $K_{p}(G) \neq G$, there exists $y$ in $\Omega(G)$ such that $\phi_{G}(y)=p$, and $\phi_{U}(y)=0$ if $U K_{p}(G) \neq G$.

Proof Put $Z=K_{p}(G)$ in the above Proposition. $G / K_{p}(G)$ is a p-group, and so $\lambda_{\mathrm{E}_{1}}=\mathrm{p}$, by Proposition 2.2.

## Proposition 2.4

If $G$ is nilpotent of order $p_{1}{ }^{n_{t}} p_{2}{ }^{n_{2}} \ldots \ldots p_{r}^{n_{r}}$, then $\lambda_{G}=p_{1} p_{2} \ldots \cdots p_{F^{\prime}}$.

Proof By Proposition 2.3, Corollary 1, there exists, for $i=1$ to $r, y_{i}$ in $\Omega(G)$ such that $\Phi_{J}\left(y_{i}\right)=p_{i}$ if $\quad S_{p_{i}}=G$, and 0 otherwise, where $S_{p_{i}}$ is the (normal) Sylow $p_{i}$-complement of $G$.

So put $z=y_{1} y_{2} \ldots y_{r}$. Then $\phi_{D}(z) \neq 0$ implies that US $p_{i}=G$ for $i=1$ to $I$, and hence that $U$ contains ail the sylow $p_{i}$-subgroups of $G$. But this is only possible for $U=G$. Clearly, $\phi_{G}(z)=p_{1} p_{2} \ldots p_{r}$, hence $z=p_{1} p_{2} \cdots p_{r}+\sum_{V} \sum_{V} G / V$. We now show that $z$ is not divisible.
$G$ has a normal subgroup 0 , say, of index $p_{1}$; we have:
$0=\phi_{U}(z)=p_{1} p_{2} \cdots p_{r}+a_{U} \phi_{D}(G / J)=p_{1} p_{2} \cdots p_{r}+a_{U} p_{1}$. Hence $a_{U}=-p_{2} \ldots \ldots p_{r}$, so $p_{1}$ does not divide $z$. Similarly, we can show that $z$ is not divisible by $p_{2}, \ldots . ., p_{r} ;$ so $z$ is not divisible, hence $z=x_{G}$, and $\lambda_{G}=p_{1} p_{2} \cdots p_{r}$.

## Proposition 2.5

Suppose $G$ is a group of order $p_{1}{ }^{n_{1}} p_{2}{ }^{n_{2}} \ldots p_{r}{ }^{n_{r}}$, and that $K_{p_{i}}(G) \neq G$ for $i=1$ to $s$, and $K_{p_{i}}(G)=G$ for $i=s+1$ to $r$ where $s \leqslant r$. Then $\lambda_{G}=p_{1} p_{2} \cdots \cdots p_{s}$.

Proof Put $K=\prod_{i=1}$ to $r{ }_{p_{i}}$ (G); $K$ is a normal (characteristic) subgroup of G. Suppose $|G / K|=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{s}^{b_{s}} ; G / K$ is nilpotent, and by hypothesis, $b_{i} \neq 0$, for $i=1$ to s .

Fence, by Propositions 2.3 and 2.4, we can find $z$ in $\Omega(G)$ such that $\phi_{\mathrm{V}}(z)=\lambda_{\mathrm{G} / \mathrm{K}}=p_{1} p_{2} \ldots p_{S}$ if $\mathrm{UK}=G$, and 0 otherwise. We now show the existence of an element $y$ in $\Omega(G)$ which satisfies $\phi_{G}(y)=1$, and $\phi_{U}(y)=0$ if $U K=G, U \neq G ;$ and then we show that $x_{G}=z y$.

Let $I$ be the ideal of $\Omega(G)$ generated by the $x_{U}^{G}$ 's for $K \leqslant U$, and $0 \frac{1}{F} G$; consider the quotient ring $\Omega(G) / I$. Its minimal prime ideals are $\mathcal{P}_{G, 0} / I$, and $\mathcal{P}_{V, 0} / I$, for $K \$ V$. Hence $\mathcal{P}_{G, 0} / I$ is isolated in the spectrum of prime ideals of $\Omega(G) / I$; hence, since $\Omega(G) / I$ is commutative with a 1 , there is an idempotent in $\bigcap_{V} X_{V, O} /$.

Hence there is an element y of $\Omega(G)$ such that $y \in \bigcap_{V} \bigcap_{V, 0}$ $\bmod I$, and $y^{2}=y \bmod I$. If $K \$ V$, then $I \leqslant P_{V, 0}$, so $y \in \bigcap_{V} \not \gamma_{V, 0^{\circ}}$ since $I=\left(\Sigma a_{U} \tilde{U}^{G}: K \leqslant J<G, a_{U} \in Z\right)$, we have $y^{2}=y+\sum_{K \leqslant ण<G} q_{U} u^{G}$, and therefore $\phi_{U}(y)^{2}=\phi_{U}\left(y^{2}\right)$

$$
=\phi_{V}(v)+\sum_{K \leqslant V<G} a_{V} \phi_{V}\left(x_{V}^{G}\right) .
$$

So if $U=G$, or in $K \neq \pi, \phi_{J}(y)^{2}=\phi_{U}(y)$, and since $\phi_{\mathrm{U}}(\mathrm{y})$ is integral, this implies that $\phi_{\mathrm{J}}(\mathrm{y})=0$ or $1 . \mathrm{But}$
$y \in \bigcap_{\mathrm{K}} \&_{\mathrm{V}} \gamma_{\mathrm{V}, 0}$, so $\phi_{\mathrm{U}}(\mathrm{y})=0$ for $\mathrm{K} \neq \mathrm{t}$; a fortiori, $\phi_{U}(y)=0$ if $U K=G, U \neq G$. Finally, $\phi_{G}(y)=1$, since $\mathrm{y} \notin \mathrm{I}$ 。

$$
\text { Now, } \phi_{U}(z y)=\phi_{U}(z) \phi_{U}(y)=\left[\begin{array}{ll}
0 & U=G \\
p_{1} p_{2} \cdots p_{s} & U \neq G
\end{array}\right.
$$

and by an argument similar to that used in Proposition 2.4, $p_{i}$ divides $\lambda_{G}$ for $i=1$ to $s$. Hence $x_{G}=z y$, and $\lambda_{G}=p_{1} p_{2} \ldots p_{s}$.

We now know $\lambda_{G}$ exactly in terms of the group structure of $G$; we now consider $\lambda_{\mathrm{U}}^{G}$, for $\mathrm{J} \quad G$. By considering the induced element $\left(x_{0}\right)^{G}$ of $\Omega(G)$ and the restricted element $\left(x_{V}^{G}\right)_{U}$ of $\Omega(J)$, it is easy to see that $\left.\lambda_{U}\left|\lambda_{U}^{G}\right|\right|_{N_{G}}(U): U \mid \lambda_{U}$. The next proposition shows that $\lambda_{U}^{G}=\left|N_{G}(J): U\right| \lambda_{U}$; the results of 1.j on induction and restriction are assumed.

## Proposition 2.5

Suppose $G$ is a group, and $U$ a subgroup of $G$. Then

$$
\lambda_{U}^{G}=\left|N_{G}(U): U\right| \lambda_{U} \text {, and }\left(x_{U}\right)^{G}=x_{U}^{G} .
$$

Proof By Lemma 4, Corollary 3, of Chapter 1, we know that $\left(x_{U}\right)^{G}=b x_{U}^{G}$, so we need to show that $b=1$. By Proposition 2.5, we low $x_{\mathrm{U}}$ precisely: $x_{\mathrm{U}}=p_{1} p_{2} \cdots p_{\mathrm{s}}+\sum_{\mathrm{V} \neq \mathrm{U}} a_{\mathrm{V}} \mathrm{U} / \mathrm{V}$, where the summation is taken over a set of representatives of the conjugacy classes of subgroups of $U$, and the $p_{i}$ 's are precisely the primes such that $K_{p_{i}}(J) \neq U$. Hence by I emma 4, Corollary 1, of Chapter 1 ,

$$
\left(x_{U}\right)^{G}=p_{1} p_{2} \cdots p_{s} G / \sigma+\sum_{V}^{T}{ }_{U} a_{V} G / V .
$$

Fowever, the total coefficient of $G / V$ is not necessarily $a_{V}$, since there may be subgroups of J conjugate to V in G , but not conjugate in $U$ (that is, $V(i)$ is not necessarily injective, see Lemma 4, Corollery 2, Chapter 1). The term in $G / U$ in $\left(x_{U}\right)^{G}$ is certainly $p_{1} p_{2} \ldots p_{s} G / U$; so to prove that $b=1$, it is sufficient to show that $p_{1}$ does not divide $\left(x_{U}\right)^{G}$.

Consider the coefficient $a_{V}$ in $X_{U}$ of $U / V$ for $V$ a maximal subgroup of $U$. Since $f_{J}(J / V)=0$, we have $x_{U} \cdot U / V=0$. This gives the equation $p_{1} p_{2} \cdots p_{s}+\left|N_{T J}(V): V\right|_{V}=0$.

So if $V$ is nommal in $U$ of index $p_{i}$ (where $1 \leqslant i \leqslant s$ by hypothesis), then $a_{V}=-p_{1} p_{2} \ldots \underline{p}_{s} / p_{i}$; whilst otherwise $a_{V}=-p_{1} p_{2} \ldots p_{s}$ (since $V$ is then self-normalising).

Hence $p_{1}$ divides $a_{V}$ for maximal $V$ unless $V$ is normal in $U$ of index $p_{1}$. The number $c$ of maximal normal subsroups of $J$ of index $p_{1}$ is equal to the number of maximal subgroups of $U / K_{p_{1}}(U)$, a nilpotent $y_{1}$-group; by standard theory, $c=1 \bmod p_{1}$. Therefore, $x_{U}=p_{1} p_{2} \ldots p_{s}-p_{2} p_{3} \ldots p_{s} \sum_{i}^{c} d / V_{i}+\sum_{V \frac{1}{V_{1} V_{i}}} a_{V} U / V$, where $\bar{y}_{1}, V_{2}, \ldots, V_{c}$ are the normal subgroups of $d$ of index $p_{1}$. Hence

$$
\left(x_{V}\right)^{G}=p_{1} p_{2} \ldots p_{S} G / U-p_{2} p_{3} \ldots p_{c} \sum_{V} a_{V} G / T+\sum_{V} a_{V} G / T,
$$

where the first surn is taken over a set of representatives of the comjugacy classes of $V_{1}, V_{2}, \ldots, V_{c}, a_{V}=$ the number of $V_{i}$ 's conjugate to $W$, and the second sum is over the remaining subgroups V of U , where $\mathrm{V} \neq \mathrm{J}$.

Hence $\sum_{W} a_{W}=c=1 \bmod p_{1}$, so at least one $a_{W}$ is not divisible by $p_{1}$; so $p_{1}$ does not divide $\left(x_{U}\right)^{G}$.

Therefore $\left(x_{U}\right)^{G}=x_{U}^{G}$, and $\lambda_{U}^{G}=\left|N_{G}(J): U\right| p_{1} p_{2} \cdots p_{s}$

$$
=\left|N_{G}(\overline{0}): U\right| \lambda_{W}
$$

## Corollary 1

For $U \leqslant V \leqslant G,\left(X_{U}^{V}\right)^{G}=X_{U}^{G}$, and $\lambda_{U}^{G}=\left|N_{G}(U): N_{V}(U)\right| \lambda_{U}^{V}$.

Proof $\left(x_{0}\right)^{V}=x_{U}^{V},\left(x_{U}^{\nabla}\right)^{G}=\left(\left(x_{U}\right)^{V}\right)^{G}$
$=\left(x_{0}\right)^{G}$
$=X_{D}^{G}$.
Also, $\lambda_{U}^{V}=\left|N_{V}(\mathbb{O}): U\right| \lambda_{U}, \lambda_{U}^{G}=\left|N_{G}(U): U\right| \lambda_{U}$, and the result follows since $\mathbb{N}_{\mathrm{G}}\left(\mathbb{}\left(\mathbb{)} \geqslant \mathbb{N}_{\mathrm{V}}(\mathrm{J})\right.\right.$.

## Corollary 2

For $U \leqslant V \leqslant G,\left(x_{V}^{G}\right)_{V}=\sum_{W \leqslant \nabla} a_{V} X_{W}^{V}$, where $a_{W}=\left|\mathbb{D}_{G}(W): N_{V}(W)\right|$ if $W$ is conjugate to $U$ in $G$ (and $W$ appears only once for each conjugacy class in $V$ ), $\partial_{W}=0$ otherwise.

Proof For $W \leqslant V, \quad \phi_{V}\left(\left(X_{V}^{G}\right)_{V}\right)=\beta_{W}\left(x_{U}^{G}\right)$

$$
=\left[\begin{array}{ll}
\lambda_{U}^{G} & \text { if } W=U \\
0 & \text { otherwise }
\end{array}\right.
$$

So $\left(X_{V}^{G}\right)_{V}=\sum_{i} \lambda_{U}^{G} / \lambda_{W_{i}}^{V} X_{W_{i}}^{V}$, where the $W_{i}$ are a complete set of representatives of the conjugacy classes in $V$ of those conjugates in $G$ of $J$ which are contained in $V$,

$$
=\sum_{i}\left|\mathbb{N}_{G}\left(W_{i}\right): \mathbb{N}_{V}\left(W_{i}\right)\right| x_{W_{i}}^{\nabla}
$$

## Corollary 3

$\lambda_{U}^{G}=|G|$ if and only if $U$ is an abelian normal subgroup of square-free order.
proof $\lambda_{U}^{G}=\left|N_{G}(\mathbb{U}): U\right| \lambda_{U} ; \lambda_{U}$ divides $|U|$, and by Proposition 6, $\lambda_{U}=|\sigma|$ if and only if $U$ is abelian of squarefree order. If $J$ is not normal in $G$, then $\left|N_{G}(J): J\right|<|G / J|$, so the result follows clearly.

## Chapter 3

## A characterisation of the regular G-set

In this chapter, we investigate the possibility of distinguishing the regular $G-s e t, G / e$, where $e$ is the identity element of the group $G$, from the other elements of $\Omega(G)$. Now $\phi_{0}(G / e)=0$, for $0 \frac{1}{\tau} e$, $U \leqslant G$, and $\phi_{e}(G / e)=|G| ;$ hence $G / e=x_{e}^{G}$, and $\lambda_{e}^{G}=|G|$. So we only need to consider elements of the same type, that is, elements of the form $\chi_{U}^{G}$ with $\lambda_{U}^{G}=|G|$, where $U \leqslant G$. From Proposition 2.6, Corollary 3, $\lambda_{\mathrm{U}}^{\mathrm{G}}=|G|$ if and only if U is a normal Abelian subgroup of squarefree order.

The cases for $G$ of even and odd order require separate treatment. In the odd case, $X_{e}^{G}$ can be distinguished from $x_{0}^{G}$ (where $\lambda_{U}^{G}=|G|$ ) if G has another subgroup of the same order as 0 (Proposition 3.3); in any case, the regular Gmset is unique up to antomorphism of $\Omega(G)$ (Proposition 3.5). The even case is alightly more complicated (Proposition 3.6), buit $G / e$ is again unique up to automorphism of $\Omega(G)$ (Proposition 3.7).

## Proposition 3.1

If $p$ divides $\left(x_{V}^{G}+x_{V}^{G}\right), V \neq 0$, then $U \cap V<T, \quad \cap \cap V \triangleleft V$, and either $|\sigma / \sigma \cap \nabla|=|\nabla / U \cap \nabla|=p$, or $U \geqslant \nabla,|\sigma / \nabla|=p$ (or $V \geqslant \sigma$, $|V / J|=p$ ) where suitable conjugates of $U$ and $V$ are chosen.

Proof Suppose that $U \not \forall V$ (without loss of generality)

$$
\begin{aligned}
& x_{U}^{G}=p_{1} \ldots p_{s} G / D-\sum a_{T H} G / W . \\
& x_{V}^{G} \text { has no term in } G / U, \text { so } p=p_{1} \text {, say. }
\end{aligned}
$$

Now $x_{U}^{G}=p_{1} \ldots p_{s} G / U-p_{2} \ldots p_{s} \sum_{W \Delta U} a_{W} G / W-\sum_{a_{K} G / K}$

$$
|\mathrm{U} / \mathrm{v}|=\mathrm{p} .
$$

As before, for some $W_{1} \Delta \pi,\left|\sigma / W_{1}\right|=p_{1}$, and $\neq 0 \bmod p_{1}$, so there must be a non-zero term in $G / W_{1}$ in $X_{V}^{G}$.

Therefore $V \geqslant W_{1}$, choosing suitable conjugates. So either $V=W_{1}$, or $\nabla \not \subset$. If $V \nless \mathrm{~J}$, then, by a similar argument, there exists $W^{\prime} \triangle V$ such that $\left|V / W^{\prime}\right|=p_{1}$, and $W^{2} \leqslant \sigma$.

Thus $U \cap V \geqslant W_{1}$, and $U \cap V \geqslant W^{\prime} ;$ so $W_{1}=W^{\prime}$, and $U \cap V=W_{1}$.

Corollary 1 p dividea $\left(x_{U}^{G}+x_{Q}^{G}\right)$ if and only if $|U|=p$.
Proof If $|\sigma|=p$, then $x_{D}^{G}=p G / \sigma-G / e$

$$
=p G / \sigma-x_{e}^{G}
$$

The converse follows from the proposition.

By the above corollary, the numer of subgroups 0 for which $p$ divides $\left(x_{U}^{G}+x_{e}^{G}\right)$ is precisely the number of conjugacy classes of subgroups of $G$ of order $p$; we attempt to distinguish between $x_{e}^{G}$ and $x_{V}^{G}$, where $\lambda_{V}^{G}=|G|$, by considering the number of conjugacy classes of subgroups 0 such that $p$ divides $\left(x_{V}^{G}+x_{U}^{G}\right)$. The next proposition is stated in greater generality than is necessary for our immediate needs, but will be useful later.

Proposition 3.2
If $G=U P$, where $|P|=p, P$ is normal in $G$, and $(|O|, p)=1$,

$$
\text { then } x_{G}=\left[\begin{array}{ll}
p z_{H}-x_{U}^{G} & \text { if } U \& G \\
z_{H}-x_{U}^{G} & \text { if } U \not A G
\end{array}\right.
$$

where $H=G / P$, and $z_{H}$ is defined from $X_{H}$, by

$$
z_{H}=\sum a_{V} G / V P, \text { where } z_{H}=\sum a_{V} H / T .
$$

Proof By Proposition 2.3, $\phi_{V}\left(z_{H}\right)=\left[\begin{array}{ll}0 & V P \neq G \\ \lambda_{H} & V P=G\end{array}\right.$
So if $U$ is normal in $G$, then

$$
\begin{aligned}
& \dot{\phi}_{U}\left(p z_{H}-x_{U}^{G}\right)=p \lambda_{H}-\lambda_{U}^{G}=p\left(\lambda_{H}-\lambda_{U}\right)=0 \\
& \phi_{G}\left(p z_{H}-x_{U}^{G}\right)=p \lambda_{H}=\lambda_{G} \\
& \dot{\phi}_{V}\left(p z_{H}-x_{U}^{G}\right)=0 \text { othervise. }
\end{aligned}
$$

Hence $x_{G}=p z_{H}-x_{0}{ }^{G}$
If $U$ is not normal in $G$, then $\lambda_{U}^{G}=\lambda_{U}$, so
$\phi_{J}\left(z_{H}-x_{U}^{G}\right)=0$, and the result follows.

## Proposition 3.3

Let $G$ have odd order, and $U$ be $a$ subgroup of $G$ with
 U, $X_{U}^{G}$ can be distinguished from $x_{0}^{G}$

Proof By Proposition 2.6, Corollary 3, $|\vec{U}|=p_{1} \ldots p_{s}$, say, where the $p_{i}$ 's are distinct primes, $U<l G$, and $U$ is abelian.

Suppose there is another subgroup $V$, say, of order $p_{1} \ldots p_{s}$. Then without loss of generality, there are 2 subgroups of order $P_{1}$, say $P_{1}, P_{1}^{\prime}$, where $P_{1} \leqslant U\left(P_{1} \triangleleft G\right), P_{1} \leqslant \nabla$.

Clearly, $x_{P_{1}}^{G} \neq x_{P_{1}}^{G}$ : , and $p_{1}\left|x_{P_{1}}^{G}+x_{e}^{G}, p_{1}\right| x_{P_{1}}^{G}+x_{e}^{G}$.
We show that $p_{1} \mid X_{U}^{G}+{ }_{T}^{G}$ only in $W=K_{P_{1}}$ (U).
Suppose $U=P_{1} \times P_{2} \times \ldots \times P_{g}$, where $\left|P_{i}\right|=P_{i}$, and $P_{i} \triangleleft G$.
$p_{1} \mid X_{D}^{G}+x_{W}^{G}$ implies either ( $a$ ) $W \triangleright P_{2} \ldots P_{S}=M$, say, and either $|W / W|=p_{1}$, or $W=M$, or $(b) W \geqslant \sigma,|W / O|=p_{1}$, by Proposition 3.1.
(a) Suppose $|W / \mathrm{M}|=\mathrm{p}_{1}$. Now, $\mathrm{P}_{2}-\checkmark \mathrm{W}$, and if $\mathrm{W}=\mathrm{PM}$, where $|\mathrm{P}| \mid=\mathrm{p}$, then by Proposition 3.2, putting $\mathrm{N}=\mathrm{P}^{\mathrm{P}} \mathrm{P}_{3} \ldots \mathrm{P}_{\mathrm{s}}$

$$
x_{W}^{G}=\left[\begin{array}{ll}
p_{2} z_{W / P_{2}}-x_{N}^{G} & \text { if } N \Delta W, \\
z_{W / P}-x_{\mathbb{N}}^{G} & \text { if } N \notin W
\end{array}\right.
$$

Hence $x_{U}^{G}+x_{W}^{G}=\left(\left[\begin{array}{r}p_{2} z_{W / P_{2}} \\ z_{W / P_{2}}\end{array}\right]+p_{2} z_{U / P_{2}}\right)-\left(x_{N}^{G}+x_{\left.P_{1} P_{3} \ldots P_{s}\right)}\right)$
The two brackets above are disjoint, since all the transitives in the first bracket are of the form $G / V^{\prime} P_{2}$, whilst those in the second are of the form $G / \sigma^{\prime}$ for $U^{2} \neq P_{2}$.

So $p_{1} \mid\left(X_{P P_{3}}^{G} \ldots P_{s}+x_{P_{1} P_{3} \ldots P_{s}}^{G}\right)$. Continue inductively, to arrive at $p_{1} \mid x_{P}^{G}+x_{P_{1}}^{G}=p_{1} G / P^{\prime} \div p_{1} G / P_{1}-2 G / e$.

Since $p_{1} \frac{f}{f} 2$, this is a contradiction.
So $\mathrm{H}=\mathrm{M}$ only.
(b) $|\mathrm{W} / \mathrm{T}|=p_{1}, \mathrm{U} \triangle \mathrm{W}$

$$
x_{W}^{G}=\lambda_{W} / W+\sum_{W} G / W^{\prime}, \text { and } p_{1} \text { divides } \lambda_{W} \text { since }
$$

$K_{p}(W)=M$, so the coefficient of $G / J$ in $X_{W}^{G}$ is $\lambda_{W} / p_{1}$, which is not divisible by $p_{1}$. So $p_{\eta}$ does not divide $x_{0}^{G}+x_{W}^{G}$.

Hence $p_{1}$ divides $x_{U}^{G}+x_{W}^{G}$ only if $W=M$. So $x_{V}^{G}$ cannot be confused with $x_{e}^{G}$.

The case for $G$ of even order is slightly different, and is more readily considered after further work on the case where $G$ has odd order.

We now show that for $G$ of odd order, and if $G$ has exactly one subgroup of order $p_{1} \ldots p_{s}$, which is (normal) and Abelian (so that $\lambda_{U}^{G}=|G|$ ), then there ia an automorphism of $\Omega(G)$ which sends $x_{e}^{G}$ to $x_{J}^{G}$. It is sufficient to show that there is an automorphism $\theta_{i}$ of $\Omega(G)$ acting on the set ( $x_{V}^{G}: U \leqslant G$ ) as follows':

If $U=P_{1} \times P_{2} \times \ldots \times P_{s}$, then $\theta_{i}: x \longrightarrow x_{P_{i}}, x_{V P_{i}}>x_{V}$,
$x_{V} \rightarrow x_{V P_{i}}$ for $\left(|V|, p_{i}\right)=1$.
For then $\theta_{1} \theta_{2} \ldots \theta_{s}$ sends $x_{e}^{G}$ to $x_{0}^{G}$.

## Proposition 3.4

(a) Let $S$ be the set of quasi-idempotents $x_{U}^{G}$ in $\Omega(G)$ (as defined in Definition 2, Chapter 1), and $\Gamma$ the subring of $B$ consisting of integral combinations of elements of S . Then
$\Gamma \geq|G| \Omega(G)$.
(b) Let $\Theta$ be a permatation of $s$; then $\theta$ extends to an automorphism of $\Gamma$ if and only if $x_{U}^{G} \Theta=x_{V}^{G}$ implies $\lambda_{U}^{G}=\lambda_{V}^{G}$.
(c) Let $\theta$ be an automorphism of $\Gamma$, then $\theta$ extends to an automorphism of $\Omega(G)$ if and only if for all a $\in \Gamma$, any faotor of $|G|$ dividing a in $\Omega(G)$ divides a $\Theta$ in $\Omega(G)$.

Proof (a) is immediate from the fact that $\lambda_{U}^{G}$ divides $|G|$ for each $U \leqslant G$.
(b) $\Theta$ is obviously additive, and bijective (since $\Gamma$
is additively a free abelian group on its generators), and the condition implies that it is multiplicative.
(c) If $\Theta^{\prime}$ is an automorphism of $\Omega$ (G), then $(|G| a) \theta^{\prime}=|G|\left(a \Theta^{\prime}\right)$ for $a \in \Omega(G)$. Hence, if $\Theta^{\prime}$ is an extension of $\theta, \theta^{\prime}$ must satisfy a $\theta^{\prime}=1 / G \mid((|G| a) \theta)$.

## Proposition 3.5

Suppose $p$ is a prime, and $P^{\prime}$ is the only subgroup of $G$ of order $p$; let $\theta$ be the product of the transpositions $\left(X_{U}^{G}, x_{U P}^{G}\right)$, where $(|U|, p)=1$ on $s$, the set of quasi-idempotents of $\Omega(G)$. Then $\theta$ extends to an eutomorphism of $\Omega(G)$.

Proof (a) We prove that in $(i U l, p)=1, \lambda_{U}^{G}=\lambda_{U P}^{G}$, and hence that $\theta$ extends to an automorphism of $\Gamma$, by Proposition 3.4 (b). First, we note that by Schuris theorem, if $V \geqslant P^{\prime}$, and $p^{2}-|V|$, then $V$ has a p-complement.

Cleariy $\mathbb{N}_{G}\left(U^{\prime}{ }^{\prime}\right) \geqslant \mathbb{N}_{G}\left(U^{\prime}\right) . P^{\prime} ;$ suppose $x \in \mathbb{N}_{G}\left(U P^{\prime}\right)$. Then $\left(U P^{\prime}\right)^{x}=U P^{\prime}$, and so $U^{x}$ is another complement of $P^{\prime}$ in $U P^{\prime}$; hence, by a theorem of Zassenhaus, $U^{r}=U^{y}$ for $y \in U P^{\prime}$, and so $x y^{-1} \in \mathbb{N}_{G}(U)$, that is, $x \in \mathbb{N}_{G}(U) . P^{\prime} \cdot$ So $\mathbb{N}_{G}\left(U P^{v}\right)=\mathbb{N}_{G}(U) \cdot P^{\prime} \cdot$ Now if $U \not \subset U P^{\prime}$, then $\lambda_{U P^{\prime}}=\lambda_{U_{U}}$, and $\left|N_{G_{G}}\left(U P^{\prime}\right): \mathbb{T P}^{\prime}\right|=\left|N_{G}(U): U\right|$, and so $\lambda_{\mathrm{U}}^{\mathrm{G}}=\lambda_{\mathrm{UP},}^{G}$. Whilst if $\mathrm{U} \triangleleft \mathrm{UP}, \quad \lambda_{\mathrm{UP}}:=p \lambda_{\mathrm{U}}$, and $\left|N_{G}(\sigma): U\right|=p \lim _{G}\left(U P^{*}\right): U P^{1} \mid$, so again $\lambda_{U}^{G}=\lambda_{O P}^{G}$ (Proposition 2.6).
(b) Let $m$ be a factor of $|G|$ dividing $y=\sum a a_{U}^{G}$ in $\Omega(G)$; we need to show (Proposition 3.4(c)) that $m \mid y \theta$.

We split the sum as follows:

$$
\begin{equation*}
y=\sum_{p^{2}| | 0 \mid} a_{U V_{U} x^{G}}+\sum_{p+|U|} a_{v}^{a_{U} x_{U}^{G}}+\sum_{p+|U|} a_{U p} x^{X_{U P}} \tag{1}
\end{equation*}
$$

(c) Now, using the notation of Proposition 3.2,

$$
x_{U P}^{G}=\left[\begin{array}{ll}
\left(z_{U P^{\prime} / P^{\prime}}\right)^{G}-x_{U}^{G} & \text { if } U \not \dot{\not} U P^{\prime} \\
\left(p z z_{U P^{\prime} / P^{\prime}}\right)^{G}-x_{U}^{G} & \text { if } U \approx U P^{\prime}
\end{array}\right.
$$

We simplify this notation by writing $z_{U}$ for $\left(z_{U P}{ }^{1 / P}\right)^{)^{G}}=$ $\sum S_{V} G_{V P}$, where $x_{U}=\sum S_{V} H / V_{V}$. Then the last sum in (1) splits thus:

So if we put $b_{U}=a_{U}-a_{U P}$, we have:

Rewriting (1), we obtain:

(d) If $P^{\prime} \neq V$, then the coefficient of $G / V$ in the
second and third sums $\operatorname{In}(2)$ is zero. The same holds in the first sum; for if $p^{2}| | 0 \mid$, and $M$ is maximal in $U$ with $P^{\prime} \frac{1}{F} M$, then $M P^{\prime}=\sigma$, would imply that $M$ contains a subgroup of order $p$ distinct from $P^{\prime}$. Hence $P^{\prime}$ is a subgroup of the Frattini group of $U$. Hence $m \mid y$ implies $m|p||0|{ }_{p} b_{0} x_{0}^{G}$
(e) Now if $p \neq 10, z_{U}=x_{U}^{G}+x_{U P}^{G}$, in $U$ \& $U P$

$$
p z_{U}=x_{U}^{G}+x_{U P}^{G}, \quad \text { if } U\left\langle U P^{\prime}\right.
$$

Hence $\theta$ fixes the $z_{U}{ }^{\prime}$ s, and hence the terms in the first 3
sums of (2), so

$$
y-y \theta=\sum b_{U}\left(x_{U}^{G}-x_{U P}^{G}\right) .
$$

Hence we can assume that in (1), the only nonzero sum is
$\sum_{p+|U|} a^{a^{G}}$, and we now have to show that for any factor $m$ of
 take $m$ to be a prime power; suppose $m=q^{s}$, where $q$ is prime, $s$ an integer.

To do this, we split the sum into further smaller summand.

$$
\begin{array}{r}
\text { (f) Consider }[\Omega(G)]_{q^{\prime}}=(x / n: x \in \Omega(G), n \in z, \\
(n, q)=1)
\end{array}
$$

This is a ring with 1 and has minimal prime ideals $\beta_{0,0}^{\prime}$, say, and maximal prime ideals $\gamma_{U, q}^{\prime}$ only. Hence its graph of prime ideals splits into components of the form ( $P_{0,0}^{i}: K_{q}(\sigma)=K$ ) for the different subgroups $K$ of $G$ with $K_{q}(K)=K$.

Hence there is an idempotent $e$ in $[\Omega(G)]_{q^{\prime}}$ such that $e \epsilon_{K_{q}}\left(\bigcap_{\mathcal{F}} \neq P^{\prime} J^{\prime}, 0\right.$ for a given $K \leqslant G$ with $K_{q}(K)=K$. So by taking a suitable integral multiple $n$ of $e$, with $(n, q)=1$ we obtain $z \in \Omega(G)$ such that

$$
\phi_{\sigma}(z)=\left[\begin{array}{ll}
0 & K_{q}(v) \neq \mathbb{Z} \\
n & K_{q}(v)=K
\end{array}\right.
$$

We now consider z. $\left((\mid \bar{U}, \mathrm{p})=1 \mathrm{a}_{\mathrm{U}}^{\mathrm{K}}\right)$. This becomes

(g) We observe that if $K=K_{q}(\sigma)$, with $p \nmid|K|$, then


(h) Now notice that if $m \mid \sum_{p \nmid|U|} a_{U} X_{V}^{G}=\sum_{V \leqslant G} c_{V}^{G} V$, $p \nmid|V|$


each partial sum, and hence the left-hand side. This concludes the proof.

## Proposition 3.6

Suppose $G$ has even order, and suppose $U$ is a subgroup of $G$ with $\lambda_{U}^{G}=|G|$; then if there are 2 subgroups of $G$ of order $p$ for any odd prime $p$ dividing the order of $U$, or if there is a subgroup of $G$ of order 4 which does not contain the Sylow 2-subgroup of $U$, then $x_{U}^{G}$ can be distinguished from $x_{e}^{G}$.

Proof (a) The first part, for $p \frac{1}{r} 2$, follows as in Proposition 3.3. So assume $U=P^{*} Q_{1} \ldots Q_{1}$, where $\left|P^{\prime}\right|=2$, $\left|Q_{i}\right|=q_{i} \quad$ 首 2 , for $i=1$ to 2 , and $Q_{1} \ldots Q_{r}$ is the unique subgroup of $G$ of order $q_{1} \ldots q_{r}$. By Proposition 3.5, there is an automorphism of $\Omega(G)$ which maps $x_{e}^{G}$ to $x_{Q_{1}}^{G} \ldots Q_{r}$, mapping $x_{P}^{G}$ to $x_{P^{\prime} Q_{1} \ldots Q_{r}}^{G}$. Hence, without loss of generality, we may assume that $U=P^{\prime}$.
(b) Nor suppose that $G$ has $a$ subgroup if of order 4.

If $W$ is cyclic, then $x_{W}^{G}=2 / \frac{G}{N}-G$, say, where $|V|=2$, and so $4 / W=2 x_{W}^{G}+x_{V}^{G}+x_{e}^{G}$. If $W$ is not cyclic, then $x_{W}^{G}=2 \sigma_{W}-\sum_{i=1}^{3} a_{i} G_{i}+G / e$, where $\left|v_{i}\right|=2, a_{i}=0,1,2$ or 3 , for $i=1$ to 3 , and $\sum_{i=1}^{3} a_{i}=3$. In this case, $4{ }^{G} f_{N}=2 x_{V}^{G}+\sum_{i=1}^{3} a_{i} x_{V_{i}}^{G}+x_{e}^{G}$. So in each case, $4 \mid 2 x_{W}^{G}+\sum a_{i} x_{V_{i}}^{G}+x_{e}^{G}$, and $2 \mid x_{V_{i}}^{G}+x_{e}^{G}$, for suitable integral $a_{i}$
(c) We. now show that if $4 \mid 2 X_{H}^{G}+\sum b_{i} X_{K_{i}}^{G}+x_{0}^{G}$, and $2 \mid x_{K_{i}}^{G}+x_{U}^{G}$, with $x_{K_{i}}^{G} \frac{1}{F} x_{U}^{G}$, then $H \geqslant 0$, and $|H|=4$.

Suppose $2 \mid x_{V}^{G}+x_{U}^{G}$; by Proposition 3.1, U $\cap V \triangleleft U$, $U \cap V \triangleleft \nabla$, and either $U \cap V=e$, and $|V|=2$, or $V=e$, or
 since $U \triangleleft G$; so 2 f $x_{V}^{G}+x_{U}^{G}$. Hence $U \cap V=e$; and $2 \mid x_{V}^{G}+x_{V}^{G}$ if and only if $\mathrm{V}=\mathrm{e}$ or $|\mathrm{V}|=2$.

So our condition becomes $4 \mid 2 x_{H}^{G}+\sum b_{i} x_{V_{i}}^{G}+x_{U}^{G}$, where $\nabla_{i}=e$, or $\left|\nabla_{i}\right|=2$.

Now if $H \neq J$, the only contribution to $\frac{G}{f}$ in (1) is 2 from $X_{V}^{G}$; so $H \geqslant U$. If $|H|>4$, then there is a term $2 a_{K} G /$ in (1) from $x_{H}^{G}$, where $K$ is a maximal subgroup of $W$, and $a_{K}$ is odd, and no other term in (1) contributes to $\mathrm{G} / \mathrm{x}$; hence $|\mathrm{H}|=4$.
(d) Hence $4 \mid 2 x_{H}^{G}+\sum b_{i} x_{V_{i}}^{G} \div x_{V}^{G}$, and $2 \mid x_{V_{i}}^{G}+x_{0}^{G}$, ${\underset{V}{V}}_{G}^{f} x_{U}^{G}$, only in $H \geqslant U$, and $|H|=4$, whereas the same equations with $x_{U}^{G}$ replaced by $x_{e}^{G}$ can be solved for any subzroup $H$ of order 4 .

Hence if $G$ has a subgroup $W \neq \sigma,|W|=4$, then $X_{U}^{G}$ can be diatinguished from $x_{e}^{G}$.

## Pxoposition 3.7

If $P^{\prime}$ is a normal subgroup of $G$ of order 2 , and every subgroup of $G$ of order 4 contains $P^{\prime}$, then there is an antomorphism of $\Omega(G)$ which maps $X_{e}^{G}$ onto $X_{P}^{G}$,

Proof The method is similar to that of Proposition 3.5. We show that the product $\theta$ of the transpositions ( $x_{U}^{G}, x_{0 p}^{G}$ ), where $(|J|, 2)=1$, on $S$, the set of quasi-idempotents of $\Omega(G)$, can be extended to an automorohism of $G$.
(a) $\lambda_{U}^{G}=\lambda{ }_{U P}^{G}$, if $2 \nmid|O|$, as in 3.5.
(b) Let $m$ be a factor of $|G|$ dividing $y=\sum a_{0} x_{0}^{G}$ in $\Omega(G)$; we need to show that $m$ divides $y \theta$. We split the sum as follows:
(c) The sums in (1) are no longer disjoint; for if $\mathrm{V}=\mathrm{VP}$, say, where $|P|=4,(|\nabla|, 2)=1$, then $x_{0}^{G}$ may have a non-zero term in $G / V$.

However, as in Proposition 3.4 ( f ), we can assume that $m=q^{s}$, where $q$ is a prime, and by multiplying by suitable elements of $\Omega(G)$,

(d) Suppose $q \neq 2$. Then clearly, if $\sigma, V$ are subgroups appearing in different sums in ( 1 ), $\mathrm{K}_{\mathrm{q}}(\mathbb{0}) \neq \mathrm{K}_{\mathrm{q}}(\mathrm{V})$, and hence $\mathrm{q}^{\mathbf{s}}$ divides each sum in (1).

Now $x_{U P}^{G}=2 z_{J}-x_{D}^{G}$, for $(|\nabla|, 2)=1$.
So $q^{s}\left|\sum a_{0 P}\right|^{G_{U P}^{G}}$, implies that $q^{s} \mid \sum a_{U P} x_{0}^{G} \quad$ (since $z_{0}$ and $x_{U}^{G}$ are disjoint); and $q^{s} \mid \sum_{a_{0} u_{0}^{G}}$ implies that $q^{s} \mid \sum a_{V} Z_{U}$, and hence $q^{s} \mid \sum \sum_{a_{0} x_{0 P}^{G}}$,
and clearly $q^{3}$ divides each sum, and hence divides $y$.
(e) $q=2$. We have

$$
\begin{equation*}
2^{s} \mid y_{1}=\sum_{x_{2}(\pi)=\mathbb{a}} a_{0} \tilde{U}_{0}^{G} \tag{2}
\end{equation*}
$$

This is only affected by $\theta$ if $2 \nmid|x|$. So we may suppose that 2 f $|\mathrm{K}|$.

We split the sum (2) as follows:

$y_{1} \theta=a_{K} x_{K P}^{G}+a_{K P} r_{K}^{G}+\sum a_{U} X_{U}^{G} ;$
So $y_{1}-y_{1} \theta=\left(a_{K P},-a_{K}\right)\left(x_{K P}^{G},-x_{K}^{G}\right)$.
Now $x_{K P}^{G},-x_{K}^{G}=2\left(z_{K}-x_{K}^{G}\right)$, so it suffices to show that $\left.2^{s-1}\right|_{a_{K P}}$ - $a_{K}$. We do this by considering the coefficient in (3) of $G / K$, and $G / K P_{i}$, where $\left|P_{i}\right|=2, P_{i} \neq P^{\prime}$.
(f) If $8\left||ण|\right.$, then $G / V$ has a non-zero coefficient in $x_{0}^{G}$ only if $V \geqslant P^{\prime}$; for the Frattini subgroup of $U$ contains $P^{\prime}$.

Hence $X_{U}^{G}$ can only contribute to $G / K$, or $G / K P_{i}$, if $|J / K|=2$, or $\mathrm{J} / \mathrm{K} \cong \mathrm{z} / 2 \times \mathrm{z} / 2$; if $\mathrm{J} / \mathrm{K} \cong \mathrm{Z} / 4$, then again, the Frattini subgroup of $U$ contains $P^{\prime}$.
(g) Let $\sigma_{1}, \ldots, \sigma_{s}$ be representatives of the conjugacy classes of the subgroups of $G$ such that $K \triangleleft J_{i}, \sigma_{i} / K \cong z / 2 \times 2 / 2$; let $K P^{\prime}, V_{1}, \ldots, \nabla_{t}$ represent the subgroups such that $K<\nabla_{i}, V_{i} / K=2$. Clearly, for such a $\nabla_{i}, \nabla_{i} P^{\prime}=\sigma_{j}$ (up to conjugacy), for some $j$, and $\nabla_{i}$ is contained in exactly one $\sigma_{j}$.
$\mathrm{J}_{i}$ contains $K P^{\prime}$, and 2 other subgroups of index 2, which may, or may not, be conjugate. So suppose $\sigma_{1}, \ldots, \sigma_{n}$ are those $\sigma_{i}$ 's containing a single $\nabla_{j} ;$ let $\sigma_{1} \geqslant \nabla_{1}, \sigma_{2} \geqslant \nabla_{2}, \ldots, J_{n} \geqslant V_{n}$. Then $\nabla_{n+1} \geqslant \nabla_{n+1}, \nabla_{t+1}$, say, $J_{n+2} \geqslant \nabla_{n+2}, \nabla_{t+2}$ etc.

In $x_{U_{1}}^{G}$, the coefficient of $G / V_{1}$ is $-\lambda_{D_{1}} G / \nabla_{1}$, and the coefficient of $G / K$ is $+1 / 2 \lambda_{J_{1}} G / K$. Hence the coefficient of


The coefficient in (3) of $G / V_{n+1}$ is

$$
\left(-1 / 2 \lambda_{\nabla_{n+1}}{ }^{Q_{V_{n+1}}}+\lambda_{\nabla_{n+1}} a_{V_{n+1}}\right) G / \nabla_{n+1} \text {, and so }
$$

$2^{B} \mid \lambda_{\nabla_{n+1}} a_{V_{n+1}}-1 / 2 \lambda_{ण_{n+1}} a_{0_{n+1}}$. Similarly,
$\left.2^{s}\right|^{\lambda} \nabla_{t+1}{ }^{a} \nabla_{t+1}-1 / 2 \lambda \nabla_{n+1}{ }^{a} D_{n+1}$, and hence
$2^{s}{ }^{\lambda} \nabla_{n+1}{ }^{a} \nabla_{n+1}+{ }^{\lambda} \nabla_{t+1}{ }^{a} \nabla_{t+1}-\lambda_{\nabla_{n+1}} a_{D_{n+1}}$.
(h) Now the coefficient of $G / K$ in (3) is
$-1 / 2 \lambda_{E P} a_{K P^{\prime}}+\lambda_{K} a_{K}-\sum_{i} 1 / 2 \lambda_{V_{i}} a_{V_{i}}+\sum_{j} 1 / 2 \lambda_{U_{j}} a_{U_{j}}$.
The sums can be reordered into
$\sum_{i=1}^{n} 1 / 2\left(\lambda_{D_{i}} a_{D_{i}}-\lambda_{V_{i}}{ }^{2} \nabla_{i}\right)+\sum_{i=1}^{t-n} 1 / 2\left(\lambda_{D_{n+i}}{ }^{2} V_{n+i}-\lambda_{V_{n+i}}{ }^{2} V_{n+i}-\lambda_{V_{t+i}}{ }^{a} V_{t+i}\right.$
$2^{s-1}$ divides each sum, and since $\lambda_{K P^{\prime}}=2 \lambda_{K}$, and $\left(\lambda_{K}, 2\right)=1$, $2^{s-1} \mid a_{K}-a_{K P} \cdot \cdot B y(e)$, this is sufficient to show that $2^{s} \mid y_{1} \theta$. Hence $2^{\mathbf{s}} \mid$ y $\theta$, and our result follows.

Note
In his paper [3], H. Kramer restricts most of his results to the case where $G$ is an abelian p-group. He considers the automorphism group of $\Omega(G)$, tut $\Omega(G)$; if $G$ is an abelian p-group, then fut $L(G) \leqslant$ ant $\Omega(G)$, where $L(G)$ is the subgroup lattice of G.

He proves in this special case that $\lambda_{U}^{G}=p|G / \sigma|$, using our notation (4.1 in his paper; this is a special case of Propositions 2.2 and 2.6), and uses this to show that if $\& \in \operatorname{Aut} \Omega(G)$, then if
$p^{2}| | U \mid, \phi$ maps $G / J$ onto $G / V$, where $|\bar{J}|=|\nabla|$. He then shows that an automorphism of $\Omega(G)$ which fixes $G / e$ induces an automorphism of $L(G)$. His result is then as follows:

Let $G$ be an abelian p-group. Then: if $G$ is cyclic, Aut $\Omega(G) \cong Z / 2$. If $G$ is not cyclic and $p \neq 2$, then Aut $\Omega(G)=$ Aut $L(G)$. Suppose $p=2$; let $F$ be the Frattini subgroup of $G$. If $|G: F| \geqslant 8$, or $|G: F|=4$ and $G=z / 2^{m} \times z / 2^{n}$, with $m, n \geqslant 2$, then aut $\Omega(G)=$ Aut $L(G)$. If $G$ is elementary abelian of order 4 , then Aut $\Omega(G)=S_{4}$, Aut $L(G)=S_{3}$. If $G$ is $Z / 2^{n} \times Z / 2, n \geqslant 2$, then Aut $\Omega(G)=Z / 2 \times z / 2 \times z / 2$, and aut $L(G)=Z / 2 \times z / 2$.

The above conditions for aut $L(G) \neq$ aut $\Omega(G)$ i.e. for the existence of an automorphism of $\Omega(G)$ which does not fix G/e, are clearly speoial cases of Propositions 3.4, 3.5, 3.6 and 3.7.

## Chapter 4

## Some results on the width of a finite group

We recall the definition of the width $W(G)$ of $G$ defined in Definitions 5 to 7, Chapter 1:

A chain $c$ from $U$ to $V$, where $U, V \leqslant G$, is a sequence $\mathrm{U}=\mathrm{J}_{0}, \mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}=V$ such that

$$
\bar{U}=\mathrm{U}_{0} \xrightarrow{\mathrm{p}_{1}}{U_{1}}^{\mathrm{p}_{2}} \mathrm{U}_{2} \rightarrow \ldots \xrightarrow{\mathrm{p}_{n}} \mathrm{U}_{\mathrm{n}}=\nabla,
$$

where the $p_{i}$ 's are primes (not necessarily distinct), and $p_{i}=1$ if $\sigma_{i-i} \sim \sigma_{i}$.

The width, $W(c)$, of the above chain $c$ is the number of steps, $n$; if $C(\bar{U}, V)$ is the set of chains from $U$ to $V$, we define $W(U, V)=$ $\min (W(0): c \in C(U, V))$.

Finally the width, $W(G)$, of $G$ is defined by:

$$
W(G)=\max (W(\pi, V): U, V \leqslant G) .
$$

We find that $W(G)$ depends closely on the order of $G$, and in particular on the number of distinct primes dividing |G|, Firstly, an immediate corollary of Dress's paper $[1]$ is that $W(G)$ is finite if and only if $G$ is soluble, and in this case we can obtain an upper bound on $W(G)$ in terms of lal:

## Proposition 4.1

If $G$ is soluble, and has order $p_{1}{ }^{n_{1}} \cdots p_{r}{ }^{n_{r}}$, then $W(G) \leqslant 2\left(n_{1}+n_{2}+\ldots+n_{r}\right)-1$.

Proof $G$ is soluble, so $G$ has a series
$G=A_{0} \triangleright A_{1} \triangleright \ldots \triangleright A_{s}=e$
such that $A_{1} A_{i-1}$ is a p-Broup, for $i=1, \ldots s ;$ we may assume the
series is of minimal length, so $A_{i_{i-1}}$ is non-trivial, for $i=1, \ldots s$. So we have the chain
$G \searrow A_{1} \searrow A_{2} \nLeftarrow \cdots \searrow A_{s}=e$

The length of this chain is at most $n_{1}+n_{2}+\ldots+n_{r^{\prime}}$
If $U \neq \mathrm{C}$, we have the chain
$\square \searrow U \cap A_{1} \downarrow U \cap A_{2} \cdots \forall V \cap A_{s}=e$,
which has leagth at most $\left(n_{1}+n_{2}+\ldots+n_{r}\right)-1$.
Hence any two (distinct) subgroups of $G$ can be connected via $e$ by a chain of length at most $2\left(n_{1}+n_{2}+\ldots+n_{r}\right)-1$; hence our result follows.

Exampie (see Appendix) $G$ is the nonmabelian group of order 6. Its graph is:

i.e. $K_{2}(G)=P_{3}$, the Sylow 3-subgroup, $\pi_{3}\left(P_{3}\right)=$ e, etc.
clearly $W(G)=3$, so our bound is attained in this case.
After the next set of results, we can improve this bound under certain conditions. Lemnas 4.2 and 4.3 are used repeatedly in the following chapter.

## Lemma 4.2

Suppose $P$ is a Sylow p-subgroup of $G$, and we have a chain

$$
P \xrightarrow{q_{1}} A_{1} \xrightarrow{q_{2}} A_{2} \rightarrow \ldots \xrightarrow{q_{1}} G \text {, where } q_{i} \neq p, i=1, \ldots, n
$$

Then $P$ is normal in $c$.
Proof $p$ does not occur in the chain, so if $|P|=p^{x}$, then $\left|A_{i}\right|=p^{r} m_{i}$. Hence we may choose $A_{i}$ (by taking a suitable conjugate) such that $A_{i} \geqslant P$.

We show by induction on $i$ that $P \triangleleft A_{i}$.
Firstly, $P \xrightarrow{q_{1}} A_{1}$ implies that $P=E_{q_{1}}(P) \sim X_{Q_{1}}\left(A_{1}\right) \Delta A_{1}$.
So $P \triangleleft A_{1}$ since $P \leqslant A_{1}$.
Assume that $P \Delta A_{i} \cdot A_{i} \xrightarrow{q_{i+1}} A_{i+1}$ implies tinat
$K_{q_{i+1}}\left(A_{i}\right) \sim X_{q_{i+1}}\left(A_{i+1}\right)$.
$\left|A_{i+1}\right|=q_{i+1}^{s}\left|K_{q_{i+1}}\left(A_{i}\right)\right|$, so PA $K_{q_{i+1}}\left(A_{i}\right)$. similarly,
$P \triangleleft K_{q_{i+1}}\left(A_{i+1}\right)$, so $P \Delta K_{q_{i+1}}\left(A_{i+1}\right) \triangleleft A_{i+1}$. Hence, by the Pattini argument, $P \triangleleft A_{i+1}$. It follows that $P \Delta \mathrm{G}$.

## Lemma 4.2

Suppose $p$ occurs only oncs in a chain between $P$ and $G$. Then the $p$-step is redundant.
$\xrightarrow{\text { Proof }}$ We have $P \xrightarrow{q_{1}} \sigma_{1} \xrightarrow{q_{2}}{\sigma_{2}}_{q_{3}}^{\ldots} \rightarrow \mathrm{U}_{i} \xrightarrow{p}{\sigma_{i+1}}^{\rightarrow} \ldots \rightarrow G$, say; $\left|U_{i}\right|=\left|U_{i+1}\right|$ since $p$ occurs only once.
$U_{i} \xrightarrow{P} U_{i+1}$ implies that $K_{p}\left(U_{i}\right) \sim K_{p}\left(U_{i+1}\right) . \quad$ By taking suitable conjugates, we may assume that $K_{p}\left(J_{i}\right)=K_{p}\left(U_{i+1}\right)=V$, say.

$$
\left|U_{i}\right|=\left|ण_{i+1}\right|=p^{s} m, \text { where }|P|=p^{s}
$$

Consider $N_{G}(V) / V \cdot U_{i} / T$ and $U_{i+1} / V$ are Sylow p-subgroups of this quotient, hence are conjugate. So $J_{i}=\left(U_{i+1}\right)^{\text {f }}$, for some $g$ in $N_{G}(V)$; thus the p-step may be omitted.

## Proposition 4.4

If $G$ is a finite group of order divisible by $r$ distinct primes, then $G$ is nilpotent if and only if $W(G)=x$.

Proof (a) Suppose $G$ is nilpotent.
Let $U, V$ be subgroups of $G$. $\mathrm{J}, \mathrm{V}$ are nilpotent, so, if $p_{1}, \ldots, p_{r}$ are the $r$ distinct prime divisors of $|G|$, then

$$
U=U_{1} \times U_{2} \times \ldots \times U_{r}, \quad V=\nabla_{1} \times V_{2} \times \ldots \times \nabla_{r}
$$

where $U_{i}$ is a $p_{i}$-group (possibly consisting of the identity element only) and $V_{i}$ is a $p_{i}$-group, for $i=1$ to $r$.

Put $A_{i}=\nabla_{1} \times V_{2} \times \ldots \times V_{i-i} \times V_{i} \times \ldots \times V_{r}$.
$K_{p_{i}}\left(A_{i}\right)=V_{1} \times V_{2} \times \ldots \times V_{i-1} \times V_{i+1} \times \ldots \times \bar{v}_{r}$

$$
=K_{p_{i}}\left(A_{i+1}\right)
$$

Hence $A_{i} \xrightarrow{P_{i}} A_{i+1}$.
So we have $U=A_{1} \xrightarrow{P_{1}} A_{2} \xrightarrow{P_{2}} \cdots \xrightarrow{P_{i-1}} A_{i} \xrightarrow{P_{i}} A_{i+1} \xrightarrow{P_{i+1}} \cdots \xrightarrow{P_{r}} A_{r+1}=V$, i.e., $U$ can be connected to $V$ in $r$ steps. $U, V$ are arbitrary subEroups of $G$, so $\hat{W}(G) \leqslant I$.

Clearly, we need $r$ steps to connect e to $G$; so $W(G)=r$.
(b) Suppose G is not nilpotent.

Then at least one Sylow subgroup is not nomal in G. Suppose P is a non-normal Sylow p-subgroup of $G$. Consider a chain connecting $P$ to $G$. By Lemma $4.2, p$ must occur at least once in any such chain, and by Lemma 4.3, p must occur at least twice.

Every other prime must occur at least once, so at least r+1 steps are necessary.

Hence $W(G)$ is at least $(r+1)$.
This completes the proof.

## Corollary

If $G$ is soluble, and $|G|=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$, then $W(G) \leqslant 2(m-[(m-1) /(2 r+1)])-1$ where [] denotes the integer part, and $m=n_{1}+n_{2}+\ldots+n_{r}$.

Proof As in Proposition 4.1, we have a normal series of minimal lensth $G D A_{1} \triangleright \ldots D A_{s}=e$, such that $\left|A_{i} / A_{i+1}\right|=p(i)^{a_{i}}$.

If $a_{i}=1$ for each $i$, then $G$ is supersoluble. In this case, the derived group $G$ ' of $G$ is nilpotent, and we have the chain
 since $G / G^{\prime}$ and $G^{\prime}$ are nilpotent. So $G$ can be connected to e in at most 2 r steps.

Hence, if in our chain

$$
G \searrow A_{1} \searrow \ldots \searrow A_{s}=e,
$$

there are $2 x+1$ consecutive steps $A_{i}>A_{i+1}$, such that $\left|A_{i} / A_{i+1}\right|=p(i)$, for $i=k, k+1, \ldots, k+2 n+1$, then $A_{k} / A_{k+2 r+1}$ is supersoluble, and hence $A_{k}$ can be connected to $A_{k+2 r+1}$ in $2 r$ steps.

Thus within every $2 r+1$ steps, some prime must occur squared, so $G$ can be comnected to $e$ in at most $n_{1}+n_{2}+\ldots+n_{r}-[m /(2 r+1)]$ steps, where $m=n_{1}+n_{2}+\ldots+n_{r}$.

m-1- $[(m-1) /(2 x+1)]$ steps.
Therefore $W(G) \leqslant m-[m /(2 x+1)]+m-1-[(m-1) /(2 r+1)]$

$$
\leqslant 2(m-[(m-1) /(2 r+1)])-1
$$

## Proposition 4.5

If $G$ has order $p^{r} q$, where $p, q$ are distinct primes, then $G$ has Fitting length $n$ if and only if $W(G)$ is $2 n-1$ or $2 n$,

Proof (a) Let $G$ have Pitting length n.
We have the chain

$$
G=N_{0}>N_{1} \triangleright \ldots \triangleright H_{n}=0,
$$

defined by $\bar{N}_{i}=\bigcap\left(M \triangleleft \mathbb{N}_{i-1}{ }^{0} \mathrm{~N}_{\mathrm{i}-1} / \mathrm{M}\right.$ is nilpotent $), i=1, \ldots, n$. The $N_{i}$ 's are characteristic subgroups of $G$.

Define $X_{i}, Y_{i}$ to be subgroups of $G$ such that $X_{i} / N_{i}, Y_{i} / N_{i}$ are respectively the Sylow $p$ and $q$-subgroups of $\mathrm{N}_{\mathrm{i}-\mathrm{i}} / \mathrm{N}_{i}$, for $i=1, \ldots n$.

We have two chains from $G$ to e:

$$
\begin{aligned}
& G \searrow X_{1} \perp_{i}^{p} N_{1} \searrow_{i}^{q} x_{2} P^{p} N_{2} \quad q \ldots \quad \Delta e, \\
& G \stackrel{P}{D} Y_{1} \mathcal{q}_{1} \mathbb{N}_{1} P_{Y_{2}} \Psi_{N_{2}} \xrightarrow[P]{P} \ldots \searrow \text { e. }
\end{aligned}
$$

These can be combined to give two further chains:

$$
\begin{align*}
& G \stackrel{p}{\triangleleft} Y_{1} \stackrel{q}{S} N_{1} \Delta_{1} x_{2} \perp N_{2} \stackrel{p}{q} \ldots \searrow e \text {, } \tag{x}
\end{align*}
$$



Both the chains ( $x$ ), ( $\bar{y}$ ) have length at most $n+1$, and at least $n$. Both chains cannot have length $n$, otherwise we would
have $X_{i-1}=e$, since $X_{i} \cap Y_{i}=N_{i}$. We have two cases; firstly, one of $(x),(y)$ has length $n$, the other length $n+1$, and secondly, both have length $n+1$.

Suppose one of $(x),(y)$ has length $n$, and w.I.O.. . that its last term is a q-group i.e. we have the chains

$$
\begin{align*}
& G \searrow A_{1}>\ldots \Delta_{A_{n-2}}^{q}=Q_{1} P_{1} \stackrel{p}{\Delta} \quad 0_{1} \Delta^{q} \text { e }  \tag{x}\\
& G \forall B_{1} \forall \ldots \forall B_{n-2} \not q_{n-1}=Q_{1}^{P} 1_{1}^{p} i_{1} Q_{1}^{q} e, \tag{Y}
\end{align*}
$$

where $Q^{\prime} \geqslant Q_{1}, P_{1} \geqslant P_{1}$.
Consiaer $N_{G}\left(P_{1}\right) ; \quad Q^{\prime} P_{1} \triangleleft G$, so $P_{1} \triangleleft P$, the Sylow p-subgroup of $G$. Hence $N_{G}\left(P_{1}\right)=P Q_{2}$, where $Q_{2}$ is a q-sroup.

Fow $P_{1} \leqslant P_{1} Q^{\prime} \Delta G$, so by the Frattini argunent, $V_{G}\left(F_{1}\right) \cdot P_{1} Q^{\prime}=G$, so $Q_{2} Q^{\prime}=Q$, the Sylow $q$-subgroup of $G$ (since Q」G).

How consider connecting $K=N_{G}\left(P_{1}\right)$ to e; we have two chains, ( $\mathrm{X}^{\prime}$ ) of length $\mathrm{n}-1$ and ( $\mathrm{Y}^{\prime}$ ) of length $n$, as follows:
$K \searrow K \cap A_{1} \searrow \ldots \Delta K \cap A_{i} \searrow \ldots \stackrel{p}{X} K \cap Q^{\prime} P_{1} \stackrel{q}{>} P_{1} \stackrel{p}{>i} e$
$K>K \cap B_{1} \ngtr \ldots \forall K \cap B_{i} \searrow \ldots A_{i}^{q}{ }^{p} e$
(since $P_{1} \triangleleft K \cap Q^{\prime} P_{1}$, and $P_{1}^{\prime} \triangleleft K \cap Q_{1}^{\prime} P_{1}^{\prime}$ ). ( $X^{\prime}$ ) and ( $Y^{\prime}$ ) are not necessaxily the characteristic chains from $K$ to e whose terms have minimal order. However, since any chain from $K$ to $e$ can be made into a cisan from $G$ to $e$ by multiplying each tem by the nomal subgroup g' $\left(O^{\prime}=3\right.$ ), we can see that ( $X^{\prime}$ ), (Y') have minimal lencth, and $P_{1}$ and If are the last terms in the 2 minimal characteristic chains from K to e. Hence $P_{1}$ is normal in the first ( $n-1$ ) temas of any chain from $K$ atantine with the same prime as ( $\mathrm{X}^{\prime}$ ), whereas $\mathrm{F}_{1}^{\prime}$ is normal in the rimst : terms of any chain from $K$ starting with the same prime as ( $\because$ ).

Now suppose we can connect $K$ to $G$ in $2 n-2$ stens, i.e. we have a chain

$$
\underset{n-2 \rightarrow A \rightarrow B \rightarrow G}{ } \rightarrow
$$

Suppose the first step involves the same prime as the first step in ( $\mathrm{X}^{1}$ ). There is an even number of steps, so the last step corresponds to the first step in (Y).

So $A>P_{1}$, and also $A>Q_{1}$. Hence $P_{1} \subset P_{1} Q_{1}^{\prime}$, and since $P_{1} \leqslant P_{1}, P_{1}^{\prime} \triangleleft P_{1}^{\prime} Q_{1}^{\prime}$. This contradicts ( $Y$ ), since $K_{q}\left(B_{n-1}\right)=B_{n-1}$

If the first step involves the same prime as the first step in ( $Y^{\prime}$ ), then the last step corresponds to the first step in ( $X$ ).

Then $B \triangleright P_{1}^{\prime}, B D Q^{i}$, so $P_{1}^{\prime} \triangleleft P_{1}^{\prime} Q^{\prime}$, hence $P_{1}^{\prime} \triangleleft P_{1}^{\prime} Q_{1}^{\prime}$ (since $Q_{f}^{\prime} \leqslant Q^{\prime}$ ) and this contradicts (Y) again.

Thus we cannot connect $K$ to $G$ in less than $2 n-1$ steps i.e. $W(G) \geqslant 2 n-1$.

If both $(x),(y)$ have $n+i$ steps, then obviously we can find in a similar manner a subgroup $K$ which cannot be connected to $G$ in less than 2n-1 steps.

Finally, we show that $W(G) \leqslant 2 n$.
For we have the chains $(x),(y)$ of length at most $n+1$; relabel $(x)$, (y) to obtain

$$
\begin{align*}
& G \searrow Z_{1} \searrow Z_{2} \searrow \cdots \searrow Z_{n} \searrow \text { e } \quad(x)  \tag{x}\\
& G \searrow Z_{1}^{\prime} \searrow Z_{2}^{\prime} \searrow \ldots \searrow Z_{n}^{\prime} \searrow e
\end{align*} \quad(y), \text { and }\left(\left|Z_{n}\right|,\left|Z_{n}^{\prime}\right|\right)=1 .
$$

Suppose $U, V$ are subgroups of $G$. The subgroups $\mathbb{T} \cap Z_{n}, V \cap Z_{n}^{\prime}$ are subgroups of $Z_{n} \times Z_{n}^{\prime}$, so $\left(U \cap Z_{n}\right) \times\left(T \cap Z_{n}^{i}\right)$ is a subgroup. Therefore we have the chain

$$
\begin{aligned}
& U \backslash U \cap Z_{1} \searrow \ldots D \cup Z_{n-1} \rightarrow\left(U \cap Z_{n}\right) \times\left(V \cap Z_{n}^{\prime}\right)
\end{aligned}
$$

This has width 2n.
Hence $W(G)=2 n$ or $2 n-1$.
(b) The converse is imnediate.

## Proposition 4.6

If $G$ has order $p^{r} q^{s}$, where $p, q$ are distinct primes, and $G$ has riting length $n$, then $V(G)=2 n$ if and only if the shortest chain from $G$ to e has $n+1$ steps.

Proof (a) Suppose that $G$ cannot be connected to $e$ in less than $n+1$ steps.

As in Froposition 4.5, we have two minimal chains of length $\mathrm{n}+1$ :

$$
\begin{aligned}
& G>A_{1} \searrow \ldots \searrow A_{n-1}=P^{\prime} Q_{1} \searrow p^{\prime} \searrow \text { e } \\
& G \searrow B_{1} \searrow \ldots \searrow B_{n-1}=P_{1} Q^{\prime} \searrow e^{\prime} \searrow e^{q} \quad
\end{aligned}
$$

where $P_{1} \geqslant P^{\prime}, Q_{1} \geqslant Q^{\prime}$.
Consider connecting $N_{G}\left(P_{1}\right)$ to $N_{G}\left(Q_{1}\right)$; suppose this can be done in $2 \mathrm{n}-1$ steps. We have two chains:
 (2) $氵_{G}\left(P_{1}\right) \searrow N_{G}\left(P_{1}\right) \cap B_{1} \searrow \ldots \searrow N_{G}\left(P_{1}\right) \cap B_{i} \searrow \ldots D^{2} P_{1} \stackrel{P}{\perp} e$, where (1) has $n+1$ steps, and (2) has $n$ steps. As in Proposition 4.5, these chains have minimal length, given that one must start with a w-step, one with a $q$-step, and $P^{\prime}$ and $P_{1}$ are the last terns in the ? mininal characteristic chains (otherwise by multiplying each tema by Q', we would form chains from $G$ to $e$ contradictine the minimality of tine above chains).
(11) $\left.N_{G}\left(Q_{1}\right) \ngtr N_{G}\left(Q_{1}\right) \cap A_{1} \searrow \ldots N_{G}\left(Q_{1}\right) \cap A_{i} \geqslant \ldots\right\rangle_{1}^{p} Q_{1} \downarrow_{i}^{q} e$, (21) $N_{G}\left(Q_{1}\right) \nless N_{G}\left(Q_{1}\right) \cap B_{1} \searrow \ldots \searrow N_{G}\left(Q_{1}\right) \cap 3_{i} \searrow \ldots \searrow P_{2} Q^{\prime} D_{1}^{p} Q^{\prime} \forall^{q} e$, were (1') has $n$ steps, and (2') has $n+1$ steps, and $P_{2} \leqslant P_{1}$.
without loss of generality, we have the chain

Hence $A_{1} \triangleright P_{1}, B \triangleright Q^{\prime}$, and $A \geqslant Q^{\prime}$ since $A \xrightarrow{P} B$.

So $P_{1} \Delta P_{1} Q^{\prime}$. This contradicts the minimality of ( $y$ ) above
Hence $N_{G}\left(Q_{1}\right)$ to $N_{G}\left(P_{1}\right)$ takes at least $2 n$ steps.
(b) If $W(G)=2 n$, then $G$ has Fitting length $n$, by Proposition 4.5.

If $G$ can be connected to $e$ in $n$ steps, suppose the minimal chain is

$$
G \searrow A_{1} \downarrow \ldots \searrow_{A_{n-1}}=P \cdot \sum_{e}^{p}
$$

Suppose $\mathbb{U}, \mathrm{V}$ are subgroups of $G$. We have the chains

$$
\begin{aligned}
& \nabla \forall ण \cap A_{1} \downarrow \ldots \forall \sigma \cap P^{\prime} \\
& \nabla \forall \nabla \cap A_{1} \downarrow \ldots \forall V \cap P^{\prime}
\end{aligned}
$$

and both have $n-1$ steps.
Also $U \cap P^{\prime} \xrightarrow{P} \nabla \cap P^{\prime}$.
So $W(G)=2 n-1$, a contradiction.
Hence $G$ cannot be connected to $e$ in less than $n+1$ steps.

We now consider the general finite soluble group $G$ of order $p_{1}{ }^{n_{1}} p_{2}{ }^{n_{2}} \ldots p_{r}^{n_{r}}$, say, where the $p_{i}{ }^{\prime}$ s are distinct primes. $P_{i}$ will denote the Sylow $p_{i}$-subgroup of order $p_{i}{ }^{n_{i}}$, for $i=1,2, \ldots, r$.

If $P_{i}$ is not normal in $G$, then the chain from $P_{i}$ to $G$ involves $p_{i}$ at least twice, by Propositions 4.2 and 4.3; if the non-normal Sylow subgroups of $G$ are exactly $P_{1}, P_{2}, \ldots, P_{s}$, say, then for each $p_{i}, i=1,2, \ldots, s$, there is a chain which involves $p_{i}$ twice (at least). It seems plausible to suppose that there Hight be a chain which involves each prime $p_{1}, p_{2}, \ldots p_{s}$ twice (at least), making $W(G)$ at least ( $2 \mathrm{~s}+(\mathrm{r}-\mathrm{s})$ ) i.e. at least $\mathrm{s}+\mathrm{r}$.

This is indeed the case; the proof is inductive on the order of G. First we prove:

## Proposition 4.7

Suppose $P$ is a normal Sylow $p$-subgroup of $G$, and $W(G)=m$. Then $W(G / P) \leqslant m-1$.

Proof Certainly $W(G / P) \leqslant m$.
Suppose $\sigma / P, V / P$ are subgroups of $G / P$, where $V, V \geqslant P$.
$G$ is soluble, so $U=P M$, where $M$ is the $p$-complement of $U$. Consider connecting $M$ to $V$; this cen be done in m steps, and $p$ must occur at least once, since $p||\nabla|$, $p \nmid| \mathrm{Mi} \mid$.

Further, if $A \xrightarrow{P} B$, then $A P$ is cenjugate to $B P$ in $G(A, B$ subgroups of G).

So if our chain is

$$
\mathrm{H} \rightarrow A_{1} \rightarrow \ldots \rightarrow A_{i} \xrightarrow{P} A_{i+1} \rightarrow \ldots \rightarrow V
$$

then the chain

$$
U=N P \rightarrow A_{1} P \rightarrow \ldots \rightarrow A_{i} P \xrightarrow{P} A_{i+1} P \rightarrow \ldots \rightarrow V P=V,
$$

has at most (m-1) irredundant steps, since $A_{i} P \sim A_{i+1} P$.
Thus $W(G / P) \leqslant m-1$.

Note with the adove conditions, $W(G / P)$ is not necessarily $m-1$. For example, if $G$ is the non-abelian group of order 6 , then $W(G)=3$, but $W(G / P)=1$, where $P$ is the normal sylow 3 -subgroup of $G$.

## Proposition 4.8

Suppose $G$ is a finite soluble froup, of order $p_{1}{ }^{n_{1}} p_{2}{ }^{n_{2}} \ldots p_{r}{ }^{n} r_{;}$ if $V(G)=r+n$, then $G$ has at most non-nomal sylow subgroups.

Proof If $n \geqslant r$, the result is trivial.
So suppose $n<I$, and that $G$ is a counter-example of minimal order to our Proposition.
$W(G)=r+n, G$ hes at least $(n+1)$ non-nomal Sylow subgroups;
and if $U$ is a non-trivial normal suogroup of $G$, then $W(G / U) \leqslant r \div n$, and hence $G / T$ hes at most $n$ non-normel Sylow subgroups.

Let the normal Sylow subgroups of $G$ be $P_{1}, \ldots, P_{t}$, where $t \geqslant 0$; and suppose there are non-trivial normal $p_{i}-$ subgroups for $i=1,2, \ldots, s$, and no others. $s \geqslant 1$, since $G$ is soluble, and $s \geqslant t$.

If there is a non-trivial nomai $p_{i}-s u b g r o u p$, there is a unique maximal such (sinoe, if $X_{1}$ and $X_{2}$ are normal $p_{i}-s u b g r o u{ }_{2}$, so is $X_{1} X_{2}$ ). Denote this unique maximal $p_{i}-$ substoup by $P_{i}$, for $i=1,2, \ldots, s$ (where $P_{i}=P_{i}$ for $i=1, \ldots, t$ ).

By Proposition 4.7, $W\left(G / P_{1}\right) \leqslant(x-1)+n$, so $G / P_{1}$ has at most $n$ non-normal Sylow subgroups ( $G$ is a counter-example of minimal order, so $C / P_{1}$ satisfies our Proposition), hence $Q_{i} P_{1} \triangleleft G$, for some non-normal Sylow subgroup $Q_{i}$ of $G$

If $s>t, G / P_{t+1}^{i}$ satisiies our Proposition: $U\left(G / P_{t+1}\right) \leqslant n+r$ and $G / P_{t+1}^{1}$ has $r$ distinct Syidow subgroups (since $P_{t+1}^{\prime} \frac{1}{F} P_{t+1}$ ), and is a non-trivial quotient of $G_{\text {. Hence }} G / E_{t}{ }_{+1}$ has at most non-nomel Sylow subsroups, so ${ }_{j} P_{t+1}<G$, for some ron-normal sylow subsroup $Q_{j}$ of $G$.

Let $Q_{1}, Q_{2}, \ldots, Q_{a}$ be a set of representatives of the conjugacy classes of the non-normal Sylow subgroups of $G$ which satisfy $Q_{i} P!\Delta G$, for some $P_{j}^{2}, j=1,2, \ldots$, s. Since $Q_{1} \neq G, Q_{1} P!\Delta G$ implies $Q_{1} P{ }_{j}^{\prime} j^{j} G$, if $i \frac{1}{f} j ;$ so $a \geqslant s$.

Now consider $N=\bigcap_{i=1}^{a} N_{G}\left(Q_{i}\right)$.
Suppose $Q_{j_{1}}, \ldots, Q_{j_{k}}$ are the $Q^{\prime}$ s which satisfy $Q_{i} P{ }_{j} \triangleleft G$. Then, by the Frattini argument, $Q_{j_{2}} Q_{j_{2}} \cdots Q_{j_{k}}$ is nilpotent, and since $Q_{j_{1}} \ldots Q_{j_{k}} P{ }_{j}^{\prime} \Delta G, \mathbb{I}_{G}\left(Q_{j_{1}} \cdots Q_{j_{k}}\right)=P_{1} \ldots P_{j-1} P_{j}^{* P} P_{j+1} \ldots P_{r}$, say, where $P_{j}^{*} P_{j}^{\prime}=P_{j}$ (by the Pratini argument).

$P_{\dot{i}}^{\sim} P_{i}^{\prime}=P_{i}, i=1, \ldots, s$, and $P_{i} \neq e$, for $i=t+1, \ldots, s$ (since $\left.P_{i} \neq P_{i} ; i=t+1, \ldots, s\right)$.

Now suppose $P_{i}^{*} \geqslant X_{i}$, where $X_{i}$ is a non-trivial normal $p_{i}$-suegroup of $G$. By the minimality of $G, G / X_{i}$ has at most $n$ non-nomal Sylow subgroups, so $Q X_{i} \triangle G$ for some non-normal Sylow subgroup $Q$ of $G$. But $X_{i} \leqslant P_{i}^{\prime}$, so $Q P_{i}^{\prime} \leadsto G$, and hence, by the definition of $P_{i}^{*}, Q \Delta Q P_{i}^{*}$, so $Q \Delta Q X_{i} \Delta G$. This implies $Q \Delta G$, a contradiction.

So $P_{i}^{*}$ contains no normal subgroups, so neither does $N$.
We now commect $N_{1}=P_{t+1}^{*} \ldots P_{s}^{*} P_{S+1} \ldots P_{r}$ to $G$; we show that each prime $p_{t+1}, \ldots p_{n}$ must occur trice, and obtain a contradiction to the choice of $G$.

Suppose the chain is

$$
\begin{equation*}
N_{1}=P_{t+1}^{*} \ldots P_{s}^{* P_{s+1}} \ldots P_{x} \xrightarrow{\alpha_{1}} A_{1} \xrightarrow{\alpha_{2}} A_{2} \xrightarrow{\alpha_{3}} \ldots \xrightarrow{\alpha_{k}} G . \tag{1}
\end{equation*}
$$

$$
p_{1}, p_{2}, \ldots, p_{t} \text { must each occur at least once. Suppose } Q_{1} P i \Delta G ;
$$

$Q_{1}$ is one of $P_{t+1}, \ldots, P_{r}$. If $Q_{1}=P_{j}$ for $j>s$, then $Q_{1} \triangleleft N_{1}$, so $q_{1}$ occurs twice (where $Q_{1}$ is the Sylow $q_{1}$-subgroups); if $Q_{1}=P_{j}$ for some $j=t+1, \ldots, s$, then form the chain
$N_{1} P!\xrightarrow{\alpha_{1}} A_{1} P_{j}^{\prime} \xrightarrow{\alpha_{2}} A_{2} P{ }_{j} \xrightarrow{\alpha_{3}} \ldots \rightarrow A_{k-1} P_{j}^{\prime} \xrightarrow{\alpha_{k}} G$
$Q_{1}\left(=P_{j}\right)$ is normal in $N_{1} P_{j}^{1}$, so $q_{1}$ must occur twice in (2), and hence twice in (1).

So $q_{i}$ occurs twice, for $i=1,2, \ldots$, a.
The remaining primes are those $p_{i}$ such that $i>t$, and $p_{i} f q_{j}, j=1, \ldots$, a. Suppose $p_{i}$ is such, with $i>s$ and that it doesn't occur in (1) (since $p_{i} \leqslant i N_{1}, p_{i}$ must occur twice if it occurs in a non-trivial step).

Then $X_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(G)$ is normal in $G$, and contains $P_{i}$, since $p_{i}$ does not occur, and is contained in $N_{1}$. But $N_{1}$ contains no non-trivial normai subgroups, so this is impossible. So $p_{i}$ must occur twice.

The remaining $p_{i}^{\prime \prime s}$ are those such that $t+1 \leqslant i \leqslant s, p_{i} \frac{1}{f} q_{j}$, $j=1, \ldots$, a. So suppose $p_{i}$ is such, and it occurs only once (it must occur once, since $P_{i} \frac{1}{f} p_{i}$ ). Form the chain

$$
\begin{equation*}
H_{1} P_{i} \xrightarrow{\alpha_{1}} A_{1} P_{i} \xrightarrow{\alpha_{2}} \ldots \rightarrow A_{k-1} P_{i} \xrightarrow{\alpha_{k}} G . \tag{3}
\end{equation*}
$$

Each term in this chain includes $P_{i}$, so the $p_{i}$-step is trivial. Remove it, to form the chain
$N_{1} P_{i} \xrightarrow{\beta_{1}} B_{1} \xrightarrow{\beta_{2}} B_{2} \rightarrow \cdots \rightarrow B_{k-2} \xrightarrow{\beta_{k-i}} G$.
Hence $K \rho_{1} \beta_{2} \cdots \beta_{k}(G) \leqslant N_{1} P_{i}^{\prime}$, and is normal in $G$;
suppose $K=K_{\beta, \beta_{2} \ldots \beta_{K}}(G)=X_{t+1} \ldots X_{i-1} P_{i} X_{i+1} \ldots X_{r}$.
From (3), it follows that $K_{\alpha_{1} x_{2} \ldots \alpha_{k}}(G)=e$, since $N_{1}$ contains no normal subgroups of $G$; so $e$ can be connected to $G$ by a chain which involves $p_{i}$ only once. Hence we must have a subgroup $Z$ of $G$ such that $\left(|Z|, p_{i}\right)=1, Z \triangleleft G$, and $Z P_{i} \triangleleft G . Z \neq e$, since $P_{i} \notin G$.

So $Z \cap K \triangleleft Z_{i} \cap K<G$. $Z \cap K$ is normal in $G$, and is also a subgroup of $N_{1}$; hence $Z \cap K=e$. But this implies $P_{i} \triangleleft G$, since $P_{i}=Z P_{i} \cap K ;$ a coniradiction.

So every prime $p_{t+1}, \ldots ; p_{r}$ occurs (at least) twice; hence the number of steps in (1) is at least $t+2(r-t)$.

Hence $t+2(r-t) \leqslant n+r$, i.e. $r-t \leq n$.
Thus the number of non-normal Sylow subgroups of $G$ is at most $n$; this finally contradicts the choice of $G$ and proves our result.

## Proposition $4 * 9$

Suppose $G$ has order $p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{n}^{n_{r}} . \quad$ Then $W(G)=m+1$ if and only if $G$ has exactly one non-normal Sylow subgroup.

Proof (a) Suppose $W(G)=r+i$
By Proposition 4.8, G has at most one non-normal Sylon subgroup, and by Proposition 4.4, if $G$ has no non-nomal Sylow subgroups (i.e. $G$ is nilpotent), then $W(G)=r$.

So G has exactly one non-normal Sylow subgroup.
(b) Suppose $G$ has exactly one non-normal Sylow subgroup.

Let this non-normal Sylow subgroup be $P_{1}$, say, the $S y l o w p_{1}-$ subgroup. $P_{2}, P_{3}, \ldots, P_{r} G^{4}$, so $P_{2} P_{3} \ldots P_{r}$ is normal in $G$, and nilpotent.

So for $U_{5} V \leqslant G$, we have $U \sum_{p_{1}}(\pi) \leqslant P_{2} P_{3} \ldots P_{r}$, and similarly $K_{p_{1}}(V) \stackrel{P_{1}}{ } P_{2} P_{3} \ldots P_{r^{\prime}} \quad K_{p_{1}}(V)$ can be connected to $K_{p_{2}}(V)$ in ( $I-1$ ) steps by the nilpotency of $P_{2} P_{3} \ldots P_{2}$ (Proposition 4.4), so $U$ can be connected to $V$ in $(x+1)$ steps.

Hence $W(G)=r+1$.

## Examples

(1) $G=S_{4}$ (see appendix for details)
$|P|=8,|Q|=3 . \quad P$ is self-normalising, $\left|N_{G}(Q)\right|=6, K_{3}(G)=G$, and $\left|K_{2}(G)\right|=12$. We have the chains
$G \stackrel{2}{1}^{2} K_{2}(G) \stackrel{3}{2}^{\prime} P^{\prime} \searrow^{2}$ e, $|P|=4$,

The graph is:

$N_{G}(Q)$ to $G$ takes 5 steps, and $W(G)=5$.
(2) $G=(x, y, z, a, b)$, where $P=(x, y, z)$ is elementary abelian of order 8 , and $Q=(a, b)$, elementary abelian of order 9, and the relations are $x^{a}=y, y^{a}=z, z^{a}=x, b^{x}=b^{y}=b^{z}=b^{2}$.
$N_{G}(P)=(P, a), N_{G}(Q)=(Q, z y z)$,
$K_{3}(G)=(P, b), K_{2}(G)=(Q, x y, y z)$,
so $K_{2}(G) \cap K_{3}(G)=P^{\prime} \times Q^{\prime}$, where $P^{\prime}=\left(X y, Z_{z}\right), Q^{\prime}=(b)$.
Hence $G$ has Fitting length 2.
We now show that $G$ is 4 -step comnected.
If $U \leqslant G$, and $U$ has a normal Sylow p-subgroup, where
$p=2$ or 3 , then $\mathbb{Z}$ can be connected to $V$ in 4 steps for any subgroup $V$ of $G$; for $V \sum_{\sum_{2}} K_{2}(V)^{3} P *$, where $P *$ is a 2-subgroup, and $V{ }^{3} \mathrm{~K}_{3}(V)^{2} Q^{*}, Q^{*}$ is a 3 -subgroup.

If $|J|=2,3,4,8,6,12$, or 18 , then $J$ has a normal sylow subgroup.

The other possibilities are $|0|=36$, or 24 .
If $|J|=36$, then $U \geqslant Q$, so possibilities are $J=(a, b, x y z)$, or ( $a, b, x y, y z$ ): both have a normal Sylow subgroup.

If $|J|=24$, then $U \geqslant P$. The only possibilities are $(P, a)$, $(P, b)$ : again, both have a normal Sylow subgroup.

Hence $G$ is 4-step connected, $\left(N_{G}(P)\right.$ to $I_{G}(Q)$ takes 4 steps)
We now consider the case where $W(G)=r+2$, where as usual $G$ has order $p_{1}^{n_{1}} p_{2}^{n_{1}} \ldots p_{r}^{n_{r}}$; we already know the condition for $r=2$, so we assume $x \geqslant 3$.

In this case, as one might expect, $G$ has exactly 2 non-normal Syloy subgroups; but this is not a sufficieni condition, as can be seen from the case $r=2$.

## Proposition 4.10

If $G$ has order $p_{1}{ }^{n_{i}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$, where $x \geqslant 3$, then $W(G)=x+2$ if and only if $G$ has exactly 2 non-normal $S y l o w$ subgroups, $P_{1}$ and $P_{2}$ say, and either $G$ has Fitting length 2 , or one of the Sylow $p_{1}-$ and $p_{2}$-complements is normal in G.

Proof (a) Suppose $W(G)=r+2$.
By Proposition 4.8, G has at most 2 non-nomal Sylow subgroups, and by Proposition 4.9, G has exactly 2 non-nomal Sylor subgroups.

Let these be $P_{1}, P_{2}$, say; so $P_{3}, \ldots, P_{r}$ are normal in $G$. Suppose neither the $p_{1}$ - nor the $p_{2}$-Sylow complement is normal in $G$.

We use induction on $r$, and reduce to the case $r=3$.
By Proposition $4.7, W\left(G / P_{x}\right) \leqslant r+1$, and hence $G / P_{r}$ satisfies the Proposition. So, if $K_{p_{i}}(G)=P_{1} \ldots P_{i-1} P_{i}^{\prime} P_{i+1} \ldots P_{r}, i=1, \ldots, r$ then $P_{1}^{\prime} P_{r}, P_{2}^{\prime} P_{r} G G$ for $G / P_{r}$ must have Fitting lengin 2, since $P_{1}^{\prime}, P_{2}^{\prime} \neq$ e。

If $P_{r-1} \triangleleft G$, then similarly $P_{1}^{\prime} P_{r-1}, P_{2}^{\prime} P_{r-1} \triangleleft G$, so $P_{1}^{\prime}, P_{2}^{\prime} \triangleleft G$, and our result follows.

We are left with the case $r=3 ; P_{1}, P_{2} \not \subset G, P_{3} \& G$, and $W(G)=5$, with $P_{1} P_{3}, P_{2} P_{3} \& G$.

Firstiy, $W\left(G / P_{3}\right) \leqslant 4$, by Proposition 4.7 , and by Proposition 4.9, $w\left(G / P_{3}\right)=4$, since $G / P_{3}$ has no nomal Sylow subgroups.

So by Proposition 4.6, $P_{1} P_{3}, P_{2}^{\prime P} P_{3}<G$, with the above notation. We must show $P_{1}^{\prime}, P_{2}^{\prime} \triangleleft G$ (by supposition, $P_{1}^{\prime}, P_{2}^{\prime} \neq e$ ).

Suppose $G$ has no normal $p_{1}-$ or $p_{2}$-subgroups. Consider the chain

$$
\begin{gathered}
P_{1} P_{2} \xrightarrow{q_{1}} A_{1} \xrightarrow{q_{2}} A_{2} \xrightarrow{q_{3}} \ldots \xrightarrow{q_{5}} G . \\
P_{1} p_{2} \text { contains no normal subgroups, so } K_{q_{1} \ldots q_{5}}(G)=e .
\end{gathered}
$$

Hence $p_{1}$ and $p_{2}$ must occur twice, so $p_{3}$ can occur only once. By our assumption about the normal subsroups of $G, p_{3}$ must occur in the first 2 steps; so $P_{1} \Delta P_{1}^{\prime} P_{3}(\triangle G)$, and this is a contradiction. So $G$ has a normal $p_{1}$-subgroup, $X_{1}$ say, so by induction on the order of $G$, either $P X_{1}, P_{2}^{\prime X_{1}} \triangleleft G$, or $X_{1} P_{2} P_{3} 4 G$. Both these give $P_{j} \triangleleft G$.

So now suppose $G$ has no normal $p_{2}$-subgroups.
We have $P_{1} P_{2} P_{3} 4 G$, so $N_{G}\left(P_{2}\right)=P_{1} P_{2} P_{3}$, where $P_{1} P_{1}=P_{1}$ 。 Consider the chain

$$
\begin{equation*}
P_{1} P_{2} \xrightarrow{q} A_{1} \xrightarrow{q_{2}} A_{2} \xrightarrow{q_{3}} \ldots \xrightarrow{q_{5}^{5}} G . \tag{1}
\end{equation*}
$$

$p_{2}$ must occur twice. Suppose $p_{1}$ occurs only once; then the chain $P_{1}^{\prime} \cdot P_{1} P_{2}=P_{1} P_{2} \xrightarrow{q_{1}} P_{1}^{\prime} A_{1} \xrightarrow{q_{2}} \ldots \xrightarrow{q_{5}} G \quad$ has a trivial $p_{1}$-step, and so can be shortened to

$$
P_{1} P_{2} \xrightarrow{\alpha_{1}} B_{1} \xrightarrow{\alpha_{2}} B_{2} \xrightarrow{\alpha_{2}} B_{3} \xrightarrow{\alpha_{4}} G,
$$

Where $p_{1}$ does not appear. Hence $K_{\alpha_{1} \ldots \alpha_{i}}(G)=P_{1} X_{2} ; X_{2} \neq e$, since $P_{1} \nleftarrow G$, and $X_{2} \leq P_{2}^{\circ}$. But $P_{2}^{!} P_{3}<G$, so $X_{2} \triangleleft G$, a contradiction.

So $p_{1}$ occurs twice in (1), and hence $p_{3}$ only occurs once.
If $P_{1}$ contains $X_{1}$, a non-trivial normal $p_{1}$-subgroup, then by induction either $X_{1} P_{2}^{\prime} \triangleleft G$, which gives $P_{2}^{\prime}<G$, or $X_{1} P_{2} P_{3} \triangleleft G$, i.e. $X_{1} \geqslant P_{1}$. This gives $P_{1}^{*}=P_{1} ;$ but $P_{2} P_{3} \not \& G$, so $P_{2} \not \& P_{2} P_{1}$. Hence ${ }^{P}{ }_{1}{ }^{1}{ }_{2}$ does not contain any normal subgroups of $G$, so $K_{q_{1} \ldots . q_{5}}(G)=$ e. $P_{1} \& P_{1} P_{3}, P_{2} f P_{2} P_{3}$, so $P_{3}$ cannot occur in the last 2 steps, or in the first 2 steps in (1) . $P_{2}^{\prime} \frac{1}{f} P_{2}^{1} P_{3}$, so $P_{2}^{\prime} \frac{k}{\leftarrow} A_{2}, P_{2}^{\prime} \frac{1}{6} A_{3}$. So $q_{1}=q_{5}=p_{1}, q_{2}=q_{4}=p_{2}$. But then $P_{1} \leqslant A_{1}$, so $P_{2} \triangleleft P_{2} P_{1}^{\prime}$; hence $P_{2} \& P_{2} P_{1}$, contrary to our assumption.

Hence $G$ has a normal $P_{2}$-subgroup $X_{2}$, say, and by induction, $P_{2}^{\prime} \triangle G$, as proved above for $P_{1}$.

So $P_{1} P_{2}^{P} P_{3}$ is nilpotent and normal in $G$; so $G$ has Fitting length 2. This completes the proor.
(b) The converse.
$P_{3}, P_{4}, \ldots P_{r}$ are normal in $G$; if $P_{1} P_{3} \ldots P_{r}$, the Sylow $p_{2}-$ complement is normal in $G$, then for $U, V \leqslant G$, we have $K_{p_{1} p_{2}}(J)$, $K_{p_{1} p_{2}}(V)$ contained in $P_{3} \ldots P_{r}$, which is nilpotent and hence $W\left(P_{3} \ldots P_{r}\right)=r-2$. Hence $\pi$ can be connected to $V$ in $(r+2)$ steps.

If, on the other hand, $G$ has Fitting length 2, then $P_{f}^{\prime}, P_{2}^{\prime} \Delta G$, so we have the chain

$$
\begin{aligned}
& U \stackrel{P_{1}}{\Delta} U \cap P_{1} P_{2} \ldots P_{r} \stackrel{P_{2}}{\sim} \sigma \cap P_{1} P_{2}^{\prime} P_{3} \ldots P_{r} \xrightarrow{P_{2}} \ldots \xrightarrow{P_{1}} \nabla \cap P_{1} P_{2}^{P} P_{3} \ldots P_{r} \\
& \ldots \mathrm{P}_{\boldsymbol{\prime}} \mathrm{VV} \cap \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots \mathrm{P}_{\mathrm{r}}^{\mathrm{P}_{2}} \mathrm{P}_{\mathrm{V}} \mathrm{~V},
\end{aligned}
$$

using the nilpotency of $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots \mathrm{P}_{\mathrm{r}}$. This can be shortened to ( $r+2$ ) steps.

So in both cases $W(G)=r+2$ 。

## Chapter 5

## The dianeter of a finite groun

The number of times a given prime must occur in a chain between 2 subgroups of $G$ is not determined in general by the number of times it occurs in a path of minimal width, since there may not be a unique minimal path. For example, if $G$ has order $p^{r} q^{s}$, and $W(G)=4$, then by the results of Chapter 4 , $G$ has fitting length 2, and no normal Sylow subgroups. Hence there is no chain from $G$ to e with 2 steps, but 2 chains of lengih 3 , one involving $p$ once and $q$ twice, the other involving $q$ onee and $p$ twice.

Recall the definition of $Z(G)$, the diameter of $G$, defined in Definitions 5 to 7, Chapter 1:

A chain c from $U$ to $V$, where $U, V \leqslant G$, is a sequence $U=U_{0}, U_{1}, \ldots . ., U_{n}=V$ such that

$$
\mathrm{U}_{0}=\mathrm{U}_{0} \xrightarrow{\mathrm{p}_{1}} \mathrm{U}_{1} \xrightarrow{\mathrm{p}_{2}} \mathrm{U}_{2} \rightarrow \ldots \xrightarrow{\mathrm{p}_{n}} U_{\mathrm{n}}=V
$$

where the $p_{i}$ 's are prime (not necessarily distinct), and $p_{i}=1$ if $U_{i-1} \sim U_{i}$.

The diametes, $d(c)$, of the above chain $c$ is defined by $d(c)=p_{1} p_{2} \ldots p_{n} ;$ if $O(U, V)$ is the set of chains from $U$ to $V$, for $U, V \leqslant G$, we define $c(U, V)=$ h.c.f. $(d(c): c \in c(J, \nabla))$.

Finally, the diameter, $d(G)$, of $G$ is defined by:

$$
d(G)=1, c \cdot m \cdot(d(\nabla, \nabla): U, \nabla \leqslant G)
$$

## Proposition 5.1

Suppose G is a soluble group. Then:
(a) $p$ divides the order of $G$ if and only if $p$ divides $d(G)$.
(b) G has a normal Sylow p-subgroup if and only if $p^{2}$ does not divide $d(G)$.
(c) $G$ is nilpotent if and only if $d(G)$ is square-free,

## Proof

(a) Any chain from $G$ to e ( $G$ is soluble, so there is a chain from $G$ to $e$ ) involves every prime divisor of the order of $G$; so if $G$ has order $p_{1}{ }^{n_{1}} p_{2}^{n_{2}} \cdots p_{r^{n}}^{n_{r}}$, then $p_{1} p_{2} \ldots p_{r}$ divides $d(G)$.

The converse is trivial.
(b) Suppose $P$ is a normal sylow p-suiggroup of $G$. If $U \leqslant G$, then $U \cap P \triangleleft U$, and there is a normal chain

$$
\pi=A_{0} V_{1}^{q_{i}} A_{1} A_{2}^{q_{2}} A_{1}^{q_{3}} \ldots \ldots \mathbb{V}_{s}^{q_{s}}=U \cap P
$$

where each $A_{i}$ is normal in $\pi$, and the $q_{i}$ 's are distinct from $p$. Similarly, we have a chain


Combining these two chains with the prstep $U \cap P \xrightarrow{P} V \cap P$, we obtain a path from $U$ to $V$ which involves $p$ exantly once.

Hence $d(U, V)=p m$, where $(p, m)=1$; and since this holds for all $J, V \leqslant G, d(G)=p m^{\prime}$, where $\left(p, m^{\prime}\right)=1$.

Conversely, if the Sylow p-subgroup $P$ is not normal in $G$, then by Propositions 4.2 and 4.3, p must occur twice in any path from $P$ to $G$; so $p^{2}$ divides $d(P, G)$, and hence divides $d(G)$.
(c) This follows from (b): $\bar{d}(G)$ is square-free if and only if every Sylow subgroup of $G$ is normal, i.e. if and only if $G$ is nilpotent.

## Proposition 5.2

If $G$ has Fitting length $f$, then $d(G)$ divides $\left(p_{1} p_{2} \ldots p_{r}\right)^{f}$.

Proof
We have the chain

$$
G=N_{0} \triangleright N_{1} \triangleright N_{2} \triangleright \ldots \ldots N_{f}=e \text {, where } N_{i} / N_{i+1} \text { is }
$$

nilpotent for $i=0,1, \ldots, f$.
(a) Suppose $f$ is even. We have the chain:
$G V_{r}^{p_{r}} v_{x-1}^{p_{1}} \ldots V^{p_{1}} N_{1} \forall^{p_{1}} \quad \ldots V^{p_{r}} \quad \mathbb{N}_{2} V_{r}^{p_{r}} \ldots$

$$
\begin{equation*}
v_{1} N_{3}^{p_{1}} \ldots V^{p_{1}} N_{f-1} \tag{1}
\end{equation*}
$$

So if $U$ is a subgroup of $G$, by intersecting $U$ with the above chain, we obtain

$$
\begin{equation*}
U \searrow \ldots . \forall^{p_{1}} 0 \cap N_{f-1} \tag{2}
\end{equation*}
$$

in which $p_{1}$ occurs at most $f / 2$ times (combining adjacent $p_{1}$ steps).

For $V$ a subgroup of $G, U \cap N_{\hat{f-1}}$, and $V \cap N_{f-1}$ are subgroups of $N_{f-1}$, which is nilpotent; hence we have the chain

$$
\begin{equation*}
\mathrm{J} \cap \mathrm{~N}_{\mathrm{f}-1} \xrightarrow{P_{1}} A_{1} \xrightarrow{P_{2}} \ldots \stackrel{P_{r}}{\longrightarrow} \nabla \cap N_{\mathrm{f}-1}, \tag{3}
\end{equation*}
$$

in which each prime occurs at most once.
Hence combjning the chains (2) and (3), and the chain $\mathrm{V} \cap \mathrm{N}_{\mathrm{f}-1}{ }^{P_{1}} \quad \ldots .{ }^{P_{r y}} \mathrm{~V}$,
obtained by intersecting (1) with $V$ (and reversing the order), we obtain a chain from $U$ to $V$ involving $p_{1}$ at most $f$ times (since the last step of (2) and the first of (3) combine).
(b) Suppose $f$ is odd.

We have the chain

$p_{1}$ occurs ( $f-1$ )/2 times in this, so for $U, V \leqslant G$, we can obtain the chain:
 in which $p_{1}$ occurs $2(f-1) / 2+1$ times i.e. $f$ times. So in both cases, $d(G)$ divides $\left(p_{1} p_{2} \ldots p_{I}\right)^{f}$.

Remark In the example given at the beginning of this chanter, i.e. G has order $p^{x} q^{s}$, 4-step connected, (and hence no normal Sylow subgroups, Fitting length 2) $d(G, e)=p q$ (so if $d(J, V)=$ $p_{1}{ }^{m_{1}} \ldots p_{r}{ }^{m} r$, there is not in general a chain of length $\left(m_{1}+\ldots\right.$ $+m_{r}$ ) between $U$ and $V$ ). However, from the above results, $d(G)=$ $p^{2} q^{2}$; alternatively, this can be shown using the fact that a chain from $P * Q^{*}$ to $G$ must involve both $p$ and $q$ twice, where $N_{G}(P)=P Q^{*}$, and $N_{G}(Q)=P * Q$ (see Froposition 4.6).

Neither is it true in general that $d(G)=p_{1}{ }^{a_{1}} \ldots p_{r}{ }^{a_{r}}$ implies that $W(G)=a_{1}+a_{2}+\ldots .+a_{r}$, but it is possible to derive some relationships between $\alpha(G)$ and $W(G)$. To further this end, we introduce another definition:

Definition Suppose $p$ is a prime dividing the order of $G$. For a subgroup $U$ of $G$, define

$$
K_{p^{\prime}}(U)=\bigcap(V<U:(|\sigma / V|, p)=1)
$$

The following lemma shows the motivation for this

## definition:

## Lemma 5.3

For $G$ soluble, $K_{p^{\prime}}(D)$ is the (unique up to conjugacy) minimal subgroup of $G$ to which $U$ can be connected by a chain not involving p.

Proof Suppose

$$
v \xrightarrow{q_{1}} A_{1} \xrightarrow{q_{2}} A_{2} \xrightarrow{q_{3}} \ldots \stackrel{q}{5}^{q_{s}}=0
$$

is a chain from $V$ to $U$ not involving $p$.
Then $K_{q_{1} q_{2} \ldots q_{g}}(D) \propto V$ (picking as usual a suitable
conjugate of $V$ if necessary)
But $K_{q_{1} q_{2} \ldots q_{S}}(U) \geqslant K_{p^{\prime}}(U)$, so $V \geqslant X_{p}(U)$.
Finally, U can certainly be connected to $K_{p}(J)$, by a chain
 to $p$.

This completes the proof.

Lemma 5.4
If

$$
\begin{aligned}
G \rightarrow \ldots \rightarrow A_{1} & \xrightarrow{P} B_{1} \rightarrow \ldots \rightarrow A_{2} \xrightarrow{P} B_{2} \rightarrow \ldots \\
& \rightarrow A_{m} \xrightarrow{P} B_{m} \rightarrow \ldots \rightarrow
\end{aligned}
$$

is a chain from $G$ to $e$, where $A_{i} \xrightarrow{P} B_{i}$ is the $i^{\text {th }}$ occurrence of $p$, for $i=1,2, \ldots, m$, and $p$ occurs exactly $m$ times, then

$$
A_{1} \geqslant K_{p}(G), A_{2} \geqslant K_{p^{\prime} p p^{\prime}}(G)=K_{p^{\prime}}\left(K_{p}\left(K_{p}(G)\right)\right), \text { and so on. }
$$

So if the chain
 .... $\downarrow$ e,
involves $p$ exactly $n$ times, then any chain from $G$ to e must involve $p$ at least $n$ times.

Proof The proof is obvious.

## Proposition 5.5

If the least number of times $p_{1}$ occurs in a chain from $G$ to $e$ is $n$, then if the last term in the chain (*) above (for $p=p_{1}$ ) is a $p_{1}$-group, then $d(G)=p_{1}^{2 n-1} m$, where $\left(m, p_{1}\right)=1$; whilst if the last term is not a $p_{1}$ group, $\alpha(G)=p_{1}^{2 n} m^{\prime}$, where $\left(m^{\prime}, p_{1}\right)=1$. Proof Suppose (*) for $p_{1}$ is

where the $i^{\text {th }}$ occurrence of $P_{1}$ is from $X_{i}$ to $Y_{i}$, for $i=1,2, \ldots, n$.

Case $1 \quad Y_{n}=e$.
Suppose $X_{n}=P_{1}$, say, and look at the $(n-1)^{\text {th }}$ occurrence of $p_{1}$, ie. $X_{n-1} \bigvee_{P_{n-1}}$. Put $Y_{n-1}=P_{1}^{1} Z_{n}$, say, where $P_{1}^{1} \cap Z_{n}=$ e.

$$
Z_{n} \triangleleft G \text { implies } K_{p_{1}}\left(Y_{n-1}\right)=Z_{n} \text {, which gives } P_{1}^{\prime}=e, a
$$

contradiction. So $Z_{n} \nmid G$, and hence, by the Frattini argument,

$$
N_{G}\left(Z_{n}\right)=P_{1}^{*} P_{2} \ldots P_{r} \text {, where } P_{1}^{*} \frac{1}{T} P_{1} \text {, and } P_{1}^{*} P_{1}^{i}=P_{1}
$$

Connect $N_{G}\left(Z_{n}\right)$ to $G$; suppose this can be done by a chain involving $p_{1}$ only (2n-2) times,i.e.

$$
\mathrm{P}_{1}^{*} \mathrm{P}_{2} \ldots \mathrm{P}_{\mathrm{r}} \xrightarrow{\stackrel{q 1}{\longrightarrow} \ldots \ldots \xrightarrow{q_{s}} \mathrm{~A}} \stackrel{\mathrm{P}_{1}}{\longrightarrow} \mathrm{~B} \underset{\mathrm{n}-1}{\longrightarrow} \mathrm{~A} \cdot \mathrm{H}
$$

where $A \xrightarrow{P_{1}} B$ is the $(n-1)^{\text {th }}$ occurrence of $p_{1}$.

Firstly, $A \stackrel{\text { char }}{\triangleright} K_{q_{s}} \ldots q_{1}\left(N_{G}\left(Z_{n}\right)\right) \stackrel{\text { char }}{\triangleright} Z_{n}$; otherwise, by forming the product of each term in the chain

$$
N_{G}\left(z_{n}\right) \vee \sum_{1} \ldots \ldots k_{q_{S} \ldots q_{1}}\left(N_{G}\left(z_{n}\right)\right)
$$

by $P_{1}^{\prime}$, we would obtain a contradiction to Lemma 5.4. Hence $Z_{n} \triangleleft B$.

- But also by Lemma $5.4, B \geqslant P_{i}^{\prime} Z_{n}$, and hence $Z_{n} \triangleleft Z_{n} P\{G$, which implies $Z_{n} \triangle G$, a contradiction.

So $p_{1}{ }^{2 n-1}$ divides $d(G)$.
Finally, if $U, V \leqslant G$, then we have chains
U $\forall \ldots . . \downarrow \cup \cap P_{1}$,
$\nabla \vee \ldots . V_{V} \cap P_{1}$,
each involving $p_{1}(n-1)$ times, formed by intersecting $U, V$ with (*). Connecting these via the $p_{1}$-step $U \cap P_{1} \xrightarrow{\rho_{1}} V \cap P_{1}^{\prime}$, we obtain a chain involving $p_{1}(2 n-1)$ times.

$$
\text { Hence } d(G)=p_{1}^{2 n-1} m_{1} \text {, where }\left(p_{1}, m_{1}\right)=1
$$

Case $2 Y_{n} \neq \mathrm{e}$.
$Y_{n}<G ;$ suppose $X_{n}=P_{1}^{\prime} Y_{n} \cdot K_{p_{1}^{\prime}}\left(X_{n}\right)=X_{n}$, so $P_{1} \nmid G$.
Hence, by the Frattini argument, $N_{G}\left(P_{1}^{\prime}\right)=P_{1} Y_{n}$, say, where

$$
\begin{aligned}
& Y_{n} Y_{n}^{*}=P_{2} \cdots P_{r} \cdot \\
& \quad \text { Connect } N_{G}\left(P_{1}^{\prime}\right) \text { to } G, \text { and suppose } p_{1} \text { only occurs }(2 n-1)
\end{aligned}
$$

times.
We have

$$
\mathrm{N}_{\mathrm{G}}\left(\mathrm{P}_{1}^{\prime}\right) \rightarrow \ldots \rightarrow \mathrm{A} \xrightarrow{\mathrm{~F}_{1}} \mathrm{~B} \rightarrow \ldots . \rightarrow \mathrm{G},
$$

where $A \xrightarrow{P_{i}} B$ is the $n^{\text {th }}$ char
As in Case 1, $A \stackrel{\text { char }}{\triangleright} K_{q_{s}} \ldots q_{1}\left(N_{G}\left(P_{1}\right)\right) \stackrel{\text { char }}{\triangleright} P_{1}^{\prime}$, so $P_{1} \triangleleft A$.

Moreover, $B \geqslant X_{n}=Y_{n} P_{1}^{\prime}$, so $A \geqslant X_{n}$. Hence $P_{1}^{\prime} \triangleleft P_{1}^{\prime} Y_{n}$, which gives $Y_{n}=e$, a contradiction.

So $p_{1}$ occurs at least $2 n$ times.
Finally, for $U, \nabla \leqslant G$, we can connect each to $e$ in chains involving $p_{1} n$ times (at most); joining these chains gives the required one from $d$ to $V$.

Hence $d(G)=p_{1}^{2 n_{m}}$, where $\left(p_{1}, m\right)=1$.

## Corollary 1

If $G$ has order $p_{1}{ }^{n_{1}} p_{2}^{n_{2}}$, and $W(G)=m$, then $d(G)=p_{1}^{a} p_{2}^{b}$, where $a=b=m / 2$ if $m$ is even, and $a=(m-1) / 2, b=(m+1) / 2$ if $m$ is odd, (or $a=(m+1) / 2, b=(m-1) / 2)$.

Proof By Propositions 4.5 and 4.6 , if $W(G)=2 n$ then there are two minimal chains of length ( $n+1$ ) from $G$ to e.

If ( $n+1$ ) is odd, then the chain (*) of Lemma 5.4 for $p=p_{1}$ contains $p_{1} n / 2$ times, and the last term is a $p_{2}-g r o u p . ~ S o ~ b y ~$ the above Proposition, $d(G)=p_{1}{ }^{n} p_{2}{ }^{n}$, since the situation is symmetric in $p_{1}$ and $p_{2}$.

If ( $n+1$ ) is even, then (*) for $p_{1}$ contains $p_{1}(n+1) / 2$ times, and ends with a $p_{1}$-group. Hence the $p_{1}$-factor of $d(G)$ is $p_{1}^{2(n+1) / 2-1}=p_{1}^{n}$. So $d(G)=p_{1}^{n} p_{2}^{n}$, again by symmetry.

If $W(G)=2 n+1$, then the two minimal chains from $G$ to $e$ have lengths $(n+1)$ and $(n+2)$; these minimal chains are the chains (*) for $p_{1}$ and $\underline{p}_{2}$. Suppose the shorter chain is (*) for $p_{1}$.

If $n$ is odd, $p_{1}$ occurs ( $n+1$ )/2 times in (*) (for $p_{1}$ ) and the last term is a $p_{1}$ group; so the $p_{1}$-factor is $p_{1}{ }^{n+1-1}$. The
chain (*) for $p_{2}$ inrolves $p_{2}(n+1) / 2$ times, and ends in a $p_{1}$-group, so the $p_{2}$-factor is $p_{2}^{n+1}$. Hence $d(G)=p_{1}^{n} p_{2}^{n+1}$. If $n$ is even, $p_{1}$ occurs $n / 2$ times in (*) for $p_{1}$, and the last step is a $p_{2}$-step; whilst $p_{2}$ occurs ( $n+2$ )/2 times in (*) for $p_{2}$, the last step being a $p_{2}-$ step. So $d(G)=p_{1}^{n} p_{2}^{n+1}$. This completes the result.

## Cozollary 2

If $U \leqslant G$, then $d(U)$ divides $d(G)$ and if $U$ is normal in $G$, then $d(G / J)$ divides $d(G)$.

Proof If the chain (*) for $G$ for $p$ is
then by forming the intersection of this chain with $J$, we obtain a chain from $U$ to $e$ (of subgroups of $U$, choosing suitable conjugates in (*) to ensure that each term is a subgroup of the preceding one). By Lemma 5.4, the (*) chain for 0 for $p$ is "contained" in this; so, by the above Proposition, the p-factor of $d(0)$ divides the p-factor of $a(G)$.

If $U$ is normal in $G$, by forming the product of each term of (*) with $U$, and taking the quotient by $U$, we obtain a chain from $G / J$ to e. This again is "contained" in the chain (*) for $G / J$ and $p$, so again $d(G / \overline{)}$ divides $d(G)$.

Remark If $W(G)=m$ then certainly $W(G / \sigma) \leqslant m$ for any normal subgroup $U$ of $G$; but for $U$ a gubgroup of $G$, Hith $V(\mathbb{U})=n$ it seems difficult to say anything useful about the relation between $m$ and $n$, although it seems likely that $n \leqslant m$. This is because we
have not found a natural way of determining $m$ for an arbitraxy finite group, unlike $d(G)$, which follows as above from a consideration of the chains (*), for the primes dividiag the order of $G$. It may well be that two subgroups of $G$ can be chosen in a natural way so that the shortest chain between them has m steps, but this also seems difficult.

We can say, however, that $m \geqslant n$, if $G$ is either nilpotent, has exactly one non-normal Sylow subgroup, or satisfies the conditions of Proposition 4.10. For $\mathbb{U}$ also satisfies the same conditions (or stronger conditions).

The difficulty, of course, is that two subgroups of 0, whilst being conjugate in $G$, may no longer be conjugate in 0 , and so chains of subgroups of $G$, altnough consisting of subgroups of 0 , may no longer be chains when considered as subgroups of 0 .

## Proposition 5.6

If $d(G)=p_{1}{ }^{a_{1}} \ldots p_{x}{ }^{a_{r}}$, then $W(G) \geqslant\left(a_{1}+\ldots+a_{r}\right)$.
Proof Suppose $G$ is a counter-example of minimal order.
Suppose the normal p-subgroups of $G$ are $p_{i}$-subgroups, for $i=1,2, \ldots, t(t \geqslant 1)$.

If $X_{1}$ is a minimal normal $p_{1}$-subgroup, then if $d\left(G / K_{1}\right)=$ $p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}} \ldots p_{r}^{a_{r}}$, then by the minimality of $G, V\left(G / X_{1}\right) \geqslant a_{1}+\ldots+a_{r}$, so $W(G) \geqslant a_{1}+\ldots+a_{x}$. This is a contradiction, so $d\left(G / X_{1}\right)<d(G)$.

The only (*)-chain (see Lema 5.4) which can be shorter in $G / X_{1}$ than in $G$ is the $p_{1}$ chain; and this can only be shorter if the last term is contained in $X_{1}$. So $X_{1}$ is the unique minimal
normal $p_{1}$-subgroup, and is the last term of the (*)-chain for $G$ and $p_{1}$.

Let $X_{i}, i=1,2, \ldots, t$, be the unique minimal $p$-subgroups of $G$.

Suppose the (*) chain for $p_{1}$ and $G$ is:
$G \Downarrow_{0} \ldots \downarrow_{p_{1}^{\prime}}(G) \Downarrow_{1}^{P_{1}} \ldots \searrow_{1} Z_{1} \Downarrow_{1}^{P_{1}} x_{1} z_{1} \quad \ldots . \searrow_{1} x_{1}^{P_{1}} \quad$ e.
$Z_{1} \nleftarrow G, Z_{1} \cap X_{1}=e ; N_{G}\left(Z_{1}\right)=X_{1}^{*} P_{2} \ldots P_{r}$, where $X_{1}^{*} X_{1}=P_{1}$ 。 Connect $\mathrm{N}_{\mathrm{G}}\left(\mathrm{Z}_{1}\right)$ to G ; by the proon to Proposition 5.5, $\mathrm{p}_{1}$ occurs at least $a_{1}$ times.

Define $z_{i}$ and $X_{i}^{*}$ in a similar way for $i=1, \ldots, t$.
Form $n_{t}^{1-} N_{G}\left(Z_{i}\right)=X_{1}^{*} X_{2}^{*} \ldots X_{t}{ }_{t} P_{t+1} \ldots P_{r}=Z$ say; any chain from $Z$ to $G$ involves $p_{i}$ at least $a_{i}$ times, for $i=1,2, \ldots, t$, since by forming the product of each term with $X_{1} \ldots X_{i-1} \cdot X_{i+1} \ldots$ $X_{t}\left(\langle G)\right.$, we obtain a chain from $N_{G}\left(Z_{i}\right)$ to $G$.

Suppose $p_{r}$ occurs ( $a_{r}-1$ ) times ( $a_{r}$ is even, otherwise there would be a normal $p_{r}$-subgroup, by Proposition 5.5); suppose $a_{r}=2 b$, and the chain is

$$
Z=X_{i}^{\cdots} \ldots X_{t}^{*} P_{t+1} \ldots P_{r} \rightarrow \ldots \rightarrow A \xrightarrow{P_{r}} B \rightarrow \ldots \rightarrow G,
$$

where $A \xrightarrow{f_{r}} B$ is the $b^{\text {th }}$ occurrence of $p_{r}$.
Suppose the (*)-chain for $p_{r}$ from $G$ to $e$ is

$$
\begin{equation*}
G \searrow \ldots \searrow P_{r}^{\prime} z_{r} \forall_{r}^{P_{r}} z_{r} \searrow \ldots \Downarrow e \tag{1}
\end{equation*}
$$

where $Z_{r} \cap P_{r}^{\prime}=e$, and $P_{r}$ occurs $b$ times.
Suppose the ( $*$ ) chain for $p_{x}$ from $Z$ to $e$ is

$$
z \Downarrow \ldots \forall_{P_{r} Y_{r}} \delta_{P_{r}}^{Y_{r}} \downarrow \ldots \ldots \Downarrow e,
$$

where $Y_{r} \cap P_{r}^{\prime}=e$, and $p_{r}$ occurs $b$ times. The chain mast be of this form, otherwise, by forming the product of each term with $X_{1} \ldots X_{t}$, we would get a chain from $G$ to $X_{1} \ldots X_{t}$ contradicting (1).

Hence $P_{r}^{\prime \prime} Z_{r} \Delta B$, and $P_{r}^{\prime} Y_{r} \triangleleft \Delta$.
We now show that $Y_{r}=e ; Y_{r}$ is a characteristic subgroup of $A$, and hence of $B$. Also $Y_{I} \leqslant Z_{I} \leqslant B$, so $Y_{I}$ is characteristic in $Z_{r}$, which is normal in $G$. Hence $Y_{r} \triangleleft G$. A normal subgroup of $G$ mast contain a minimal normal p-subgroup; but $Z \geqslant X_{i}$, $i=1, \ldots, t$ hence $Y_{r}=e$.

But now $P_{I}^{\prime}<1$, and $Z_{r} \leqslant A$, so $P_{r}^{\prime}\left\langle P_{r}^{\prime} Z_{r}\right.$, which is not so.
Hence $p_{r}$ must occur at least $3_{5}$ times, and similarly for $i=t+1, \ldots, r-1$.

So $p_{i}$ must occur at least $a_{i}$ times for $i=1, \ldots, x$, so $W(G) \geqslant a_{1}+\ldots .+a_{n}$.

## Appendix

We give here further details of examples mentioned in Chapter 4 , and also an example to show that $\Omega(G) \cong \Omega$ (G') does not imply that $G \cong G^{\prime}$.
(1) The symmetric group on 3 elements

The conjugacy classes of subgroups of $S_{3}$ are $J_{0}=S_{3}$,
$\mathrm{U}_{1}=$ a Sylow 2-subgroup, $\mathrm{U}_{2}=$ the Sylow 3-subgroup, and
$\mathrm{U}_{3}=\mathrm{e} . \quad \operatorname{Put} \mathrm{T}_{\mathrm{i}}=\mathrm{S}_{\mathrm{Z}_{\mathrm{O}_{\mathrm{i}}}}$.
Multiplication Table

|  | $T_{0}$ | $T_{1}$ | $T_{2}$ | $T_{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| $T_{0}$ | $T_{0}$ | $T_{1}$ | $T_{2}$ | $T_{3}$ |
| $T_{1}$ | $T_{1}$ | $T_{1}+T_{3}$ | $T_{3}$ | $3 T_{3}$ |
| $T_{2}$ | $T_{2}$ | $T_{3}$ | $2 T_{2}$ | $2 T_{3}$ |
| $T_{3}$ | $T_{3}$ | $3 T_{3}$ | $2 T_{3}$ | $\delta T_{3}$ |

## Graph



Quasi-idempotents If we put $x_{i}=x_{0_{i}}^{G}, \lambda \lambda_{i}=\lambda{\underset{U_{i}}{G} \text {, then: }}_{\text {Q }}$

$$
\begin{array}{ll}
x_{0}=2-T_{2}-2 T_{1}+T_{3} ; \lambda_{0}=2 \\
x_{1}=2 T_{1}-T_{3} & ; \lambda_{1}=2 \\
x_{2}=3 T_{2}-T_{3} & ; \lambda_{2}=6 \\
x_{3}=T_{3} & ; \lambda_{3}=6
\end{array}
$$

Automorphisms The permutation of ( $\left.x_{i}: i=0,1,2,3\right)$ defined by multiplying the transpositions $\left(x_{0} x_{1}\right),\left(x_{2} x_{3}\right)$ gives the automorphism $T_{3} \rightarrow 3 T_{2}-T_{3}, T_{2} \rightarrow T_{2}, T_{1} \rightarrow 1-T_{1}+T_{2}$, and $T_{0}$ fixed.

It is easy to see that this is the only possible nonidentity automorphism of $\Omega(G)$ (for the above is the only possible image for $\mathrm{T}_{3}$, and $\mathrm{T}_{3}$ fixed implies $\mathrm{X}_{2}$ and hence $\mathrm{T}_{2}$ fixed, and it follows easily that $T_{1}$ must be fixed).
(2) The symmetric group on 4 elements

There are 11 conjugacy classes of subgroups of $S_{4}$, as follows:

$$
\begin{aligned}
& U_{0}, \text { order } 24: U_{0}=S_{4} \\
& U_{1}, \text { order } 12: U_{1}=A_{4} \Delta S_{4} \\
& U_{2}, \text { order } 6:\langle(12),(123)\rangle \text { self-normalising } \\
& U_{3}, \text { order } 8: \text { Sylow 2-subgroup, self-normalising } \\
& U_{4}, \text { order } 4:\langle(12)(34),(13)(24)\rangle \Delta S_{4} \\
& U_{5}, \text { order } 4:\langle(12),(34)\rangle \Delta U_{3} \\
& U_{6}, \text { order } 4:\langle(1234)\rangle \triangleleft U_{3} \\
& U_{7}, \text { order } 3:\langle(123)\rangle\left\langle U_{2}\right. \\
& U_{8}, \text { order } 2:\langle(12)\rangle \Delta U_{5} \\
& U_{9}, \text { order } 2:\langle(12)(34)\rangle 4 U_{3} \\
& U_{10}, \text { order } 1: U_{10}=e
\end{aligned}
$$



Multiplication Table

| $\mathrm{T}_{0}$ | T | $\mathrm{T}_{2}$ | $\mathrm{T}_{3}$ | $\mathrm{T}_{4}$ | $\mathrm{T}_{5}$ | $\mathrm{T}_{6}$ | $\mathrm{T}_{7}$ | ${ }^{\text {T }} 8$ | T9 | $\mathrm{T}_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{1}$ | 2 T |  | $\mathrm{T}_{4}$ |  | $\mathrm{T}_{9}$ | T9 | $2 \mathrm{~T}_{7}$ | $\mathrm{T}_{10}$ | $2 \mathrm{~T}_{9}$ | ${ }^{2 \mathrm{~T}_{10}}$ |
| $\mathrm{T}_{2}$ |  | $\mathrm{T}_{2}+\mathrm{TP}_{8}$ | $T_{8}$ | ${ }^{10}$ | $2 \mathrm{~T}_{8}$ | $\mathrm{T}_{10}$ | $\mathrm{T}_{7}+\mathrm{T}_{10}$ | $2 \mathrm{~S}_{8}+\mathrm{T}_{10}$ | ${ }^{2}{ }_{10}$ | $4 \mathrm{~T}_{10}$ |
| $\mathrm{T}_{3}$ |  |  | $3+{ }^{+1}$ | $3 \mathrm{~T}_{4}$ | $\mathrm{T}_{5}+\mathrm{T}_{9}$ | $\mathrm{T}_{6}+\mathrm{T}_{9}$ | $\mathrm{T}_{10}$ | $\mathrm{T}_{8}+\mathrm{T}_{10}$ | $3 \mathrm{~T}_{9}$ | $3 \mathrm{~T}_{10}$ |
| $\mathrm{T}_{4}$ |  |  |  | $6 \mathrm{~T}_{4}$ | 3 T 9 | $3 \mathrm{~T}_{9}$ | ${ }^{2 T}{ }_{10}$ | $3 \mathrm{~T}_{10}$ | $6 \mathrm{~T}_{9}$ | $6_{10}$ |
| $\mathrm{T}_{5}$ |  |  |  |  | $2 \mathrm{~T}_{5}+\mathrm{S}_{10}$ | $\mathrm{T}_{9}+\mathrm{T}_{10}$ | ${ }^{2 \mathrm{~T}_{10}}$ | $2 \mathrm{~m}_{8}+2 \mathrm{~m}_{10}$ | $2 \mathrm{~T}_{9}+2 \mathrm{~T}_{10}$ | ${ }^{6} \mathrm{~T}_{10}$ |
| \$6 |  |  |  |  |  | $2 \mathrm{~T}_{6}+\mathrm{T}_{10}$ | $2 \mathrm{~T}_{5}$ | $3 \mathrm{~T}_{10}$ | $2 \mathrm{~T}_{9}+2 \mathrm{~T}_{10}$ | ${ }^{6} \mathrm{~T}_{10}$ |
| $\mathrm{T}_{7}$ |  |  |  |  |  |  | $2 \mathrm{~T}_{7}+\mathrm{T}_{10}$ | $4 \mathrm{~T}_{10}$ | $4{ }^{10} 10$ | ${ }^{8 \mathrm{~m}_{10}}$ |
| $\mathrm{T}_{8}$ |  |  |  |  |  |  |  | $2 \mathrm{~T}_{8}+\mathrm{T}_{10}$ | $6^{10}$ | $12 \mathrm{~T}_{10}$ |
| $\mathrm{T}_{9}$ |  |  |  |  |  |  |  |  | $4 \mathrm{~T}_{9}+4 \mathrm{~T}_{10}$ | $12{ }_{10}$ |
| $\mathrm{T}_{10}$ |  |  |  |  |  |  |  |  |  | ${ }^{245} 10$ |

Quasi-idempotents

$$
\begin{array}{ll}
x_{0}=2-T_{1}-2 T_{2}-2 T_{3}+T_{4}+T_{7}+2 T_{8}-T_{10} ; & \lambda_{0}=2 \\
x_{1}=6 T_{1}-2 T_{4}-6 T_{7}+T_{10} ; & \lambda_{1}=12 \\
x_{2}=2 T_{2}-T_{7}-2 T_{8}+T_{10} ; & \lambda_{2}=2 \\
x_{3}=2 T_{3}-\left(T_{4}+T_{5}+T_{6}\right)+T_{9} ; & \lambda_{3}=2 \\
x_{4}=2 T_{4}-3 T_{9}+T_{10} ; & \lambda_{4}=12 \\
x_{5}=2 T_{5}-2 T_{8}-T_{9}+T_{10} ; & \lambda_{5}=4 \\
x_{6}=2 T_{6}-T_{9} ; & \lambda_{6}=4 \\
x_{7}=3 T_{7}-T_{10} ; & \lambda_{7}=6 \\
x_{8}=2 T_{8}-T_{10} ; & \lambda_{8}=4 \\
x_{9}=2 T_{9}-T_{10} ; & \lambda_{9}=8 \\
x_{10}=T_{10} ; & \lambda_{10}=24
\end{array}
$$

(3). We define $G(\mu)$ as follows:
$G(\mu)=\left(a, b, c: a^{p}=b^{p}=c^{q}=a, a b=b a, c a c^{-1}=a^{r}, c b c^{-1}=b^{I^{\mu}}\right)$, where $p, q$ are prime with $p-1=n q, r \neq 1, r^{q} \equiv 1 \bmod p$, and $\mu \neq 0,1$ mod $q$.

The conjugacy classes of subgroups of $G$ are as follows:
$\mathrm{U}_{0}=\mathrm{G} ; \mathrm{U}_{1}=\langle\mathrm{a}, \mathrm{b}\rangle\left\langle\mathrm{G}, \mathrm{U}_{2}=\langle\mathrm{a}, \mathrm{c}\rangle, \mathrm{U}_{3}=\langle\mathrm{b}, \mathrm{c}\rangle\right.$,
$U_{4}=\langle a\rangle\left\langle G, U_{5}=\langle b\rangle\left\langle G, U_{6, j}=\left\langle a b^{\alpha}\right\rangle\right.\right.$, for $j=1, \ldots, n$, and $\alpha_{j}$ is chosen such that $a b^{\alpha_{j}}$ are the generators of a set of representatives of the $n$ conjugacy classes of subgroups of $\langle a, b\rangle$ different from $\langle a\rangle$ and $\langle b\rangle, \mathrm{J}_{7}=\langle\mathrm{c}\rangle, \mathrm{U}_{8}=e$.

Multiplication Table

only if $\mu \mu^{\prime}=1 \bmod q$. This example was given by Rottlunder in the paper "Nachweis der Existent nicht-isomorphic Gruppen vo gleicher Situation der Untergruppen" Math. Z. 28 (1928); see Suzuki, "The Structure of a Group and its Subgroup Lattice", p. 57.

## References

1. A. Dress, A characterisation of solvable groups, Math. Z. 110 (1959), 213-217.
2. P. Hall, The Eulerian functions of a group, quarterly Journal of Maths. 7, 1936.
3. H. Kramer, ther die Automorphismengruppe des Burnsideringes endlicher abelscher Gruppen, J. Alg. 30, No. 1-3, 1974, 279-293.
