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Abstract

The thesis describes work carried out at Imperial College of Science
and Technology on the development of an interactive genmeral computer
aided draughting/design system, based on a minicomputer with a digitising
table, storage tube and plotting table connected on-line.

The system consists of modular progra.ms providing facilities for
data input, display, filing and plotting. It is designed not only to
produce drawings but also to act as a base for application programs in ‘.
~ the fields of eng:z.neer.l.ng and design. | , o

In particular, a structural analys:.s system 'Stasys! has been developed'.
to enable the construction of an idealised model. of bu.lldings and structures,‘ |
which can be represented by spaceframe ( line ) a.nd rectangular plate
finite elements, and for which the model can be constructed from plans of the
different floors.or levels of the bullding or structure.

The data thus generated, may either‘be output to magnetic tape to form
input data far analysis programs on a 'mainframe! computer, or the stiffness
matrix that describes the force-displacement properties of the structure
may be assembled and solved on the minicomputer. Where this is possible
large time savings result. The size cf the problem that can be solved is

limited only by the quantity of backing store available.
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NOTATION

Displacement

External force

Stiffness coefficient

Superscript A refers to element A
Matrix

Vector

' Subscript L refers to localkdoordinate-system

Subécript G refers to global coordinate syStem

Stress matrix
Strain
Stress

Cross sectional area

» Youhgs modules

Poissont's ratio



CHAPTER ONE
INTRODUGTION -

1.1 Computers in Design.

In the modern world there are many factors which are causing increasing
complexity in the design of man made objects: the need to conserve raw
materials by minimising the quantity of required material in a design,
which éan only be achieved by improved analysis and optimisation; the
advent of new technoldgies demanding higher precision; the growth in size
of projects in order to maximise economies of scale.

There are also mressures for designs to be carried ou£ more quickly.

It follows that any device which enables man to design more efficiently is
of great value. | _.-
The enormous potential of computers far use,in an organisational
capacity has . already been demonstrated and exploited in all major industrial

concerns. They are to be found contrdlling accounts, inventory and
production schedules. However, the use of cohputers'in design, other

than as calculating machines, has not yet been recognised to the same
extent. This is because in the organisational role, the média of
information passed between man and machine is alphanumeric - characters
and numbers. JDevices enabling this type of data transfer were easily
developed from existing technology in the typewriter industry. In the
design process the information media is graphic, most commonly engineering
drawings, and only recently have graphic terminals become widely available.

Horeover, the design process is difficult to cost and the economic
‘advantages ( or disadvantages ) of making expensive computers available
to the design office will probably never be fully estimated. It has been
mathematical problems that have driven the designer to use the computer,

often in order to use techniques of analysis that were not humanly possible.



Some of these analysis programs require extremely large amounts of
data and now the designer would like to find some way in which to reduce
the burden of data preparation. The computer with-recently devéloPed
peripherals is able to‘aid the designer in fhat function, and also in
other areas such as information retrieval and draughting.

The price of computers continues to drop dramatically, even in a
period of inflation, and at the same time their reliability, flexibility
and scope increase. It therefare seems likely that the use of computers
in design will become ever more prevalent.

Although computer hardware is observed to be falling in price, the
same is certainly not truve of software. The increase in softwara cost
is almost certain to continue for some time at a high rate. This is not
only because it is actualiy costing more to produce but also because‘in
the past the true cost of software development has been hidden from the
user by the supplier lumping it together with the cost of the hardware.

How that this price has been appreciated, software has started to be
separately priced.

These factars have meant that the true price of software is higher
than generally realised and because of this, it is important that the
software written to drive the graphic terminals in the design office be
capable of supporting a wide range of tasks.. It becomes necessary t§
definethe role thaf the computer system should fill and then decide what
type of system is best able to fulfill that role.

It is possible to identify five major and time consuming areas
iﬁ the desigh process:-

(a) Retrieval and extﬁaction of information

(b) 4nalysis of a design and assessment of its technical performance

(¢c) Implementation and communication of design changes



(d) Production of drawings
(e) Estimating the cost of a design and the quantities of materials
it requires _
From these, we deduce that the computer system in the design officé ought,
to support the following activities:-

(a) The maintenance éf a data base which may be accessed by

engineers working in different fields on the same project.

(b) The addifion to, or editing of, the data base in a graphic mode.

(c) Providing access to and supporting a wide range of application

programs. |

(d) The productioﬁ of working drawings.

(e) The support of programs for.scheduling and accouﬂting.

The maintenance of a data base implies the existence of mass
storage within the computer system. The storage medium should provide
fast-access to any part of the current project data base for editing,
addition and extraction of information.

' The system must possess graphic input and output devices and
sufficient computing power to carry out analysis programs. Above all,
the system must respond quickly to any requesf made by the user, and,
design is a task that involves careful thought and decision on the
part of the designer, it should not be so expensive that he is over

concerned with getting finished as quickly as poésible.



1,2 Finite Element Analysis

It was stated in section 1.1 that designers have sﬁarted to use
computers to carry out techniques of analysis that Wefe not humanly
possible. The finite element method is one such example.

Finite element téchniques have become increasingly important in the
last ten years for carrying out stress analysis on many types of
structure. Most of the early work was carried out in the alircraft industry
where more accurate methods of analysis were required far the increasingiy
complex airframes being developed. It was particularly fdrtunate that
at this time digital computers were avaiiable within the industry.
Interest soon spread to other fields of engineering, and in mechanical and
civil engineering,.deve10pement and use of the method continues at an
accelerating rate. |

The finite element method has drastically cut the time required for
accurate analysis and has given rise to a tremendous increase in scope to
the designer of complex structures. ’

The technique is a éeneralisation of standard étructural analysis
procedures. It permits their extension so that displacements and stresses
can be calculated in two and three dimensional structures by the same.
techniques used for ordinary frame structures.

The basic concept is that every Structure' may be considered to be an
assemblage of individual structural components or elements intefconnected
at a‘finite number of points. It is the finite character of the structural
connectivity which makes possible solution by simultaneous algebraic
equations and which distinguishes a structural system from a problem
in continuum mechanics.

It must be realised that the approximation involved in the use of

the method is essentially physical. The assemblage of elements is
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substituted for the continuum. There need be no mathematical
approximatiéﬁ in the solution of the substitute system. This is an
important difference between finite element and finite difference
methods. The structural idealisation is obtained by dividing the
original continuum into segments of appropriate sizes and shapes,
all the material‘properties being retained in the individual elements.
The-éapacity for treating arbitrary material properties and boundary
_conditions is one of the princi?al attributes of the finite element
method. |

At present by far the longest steps in the analysis proceSS are the
input and output of data, the actual c.p.u.¥* time needed is unlikely
to exceed ten miﬁutes even on very complex problems. |

By contrast, dividing the structure into elements and translating
the graphic finite element data, which is normally presented in the
form of drawing, into numerical data may %ake several days. The division
of the structure is eritical and should be carried out by the engineer
as the approximation is likely to be the most important source of error
in the analysis.

Clearly, a graphic based computer system would ease this situation.

“Central Processing Unit.
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1.3 Alternative Computer Systens.

In section 1.1, it was proposed that the coﬁputer in design should.-
be capable of supporting several activities and must therefore have
sepcific éttributes. In this section, a brief survey of available
computer systems and commercially produced peripherals is given and the
extent to which they are able to support thése activities and possess
the relevant éttributes is discussed.

A single computer system is built from many components which may
roughly be divided into four categories:- |

(a) Storage devices

(b) Central processors

(¢) Input/output devices _ -

(d) Operating systems
The way in which the se components are linked together defines the system
architecture. |
(a) Storage devices.

1) Core storage or main memory.

a computer program consists of a large number of individual instructions
which are executed one by one to operate on data. An individual instruction
may require only a few microseconds to complete its.function, and this
operation time must include the time needed to transfer the instruction
from memory to the processor and to interpret and execute the instruction,
including éxtracting the required data from memory and storing the result.
Thus, it can be seen that the memory must allow for the storage of a
large number of instructions and data; which must be available as required,
at high speed.

Access to any word is by direct gddress (ie. each word location has
a numbered address). Access times are typically 900nanoseconds, or in the

case cf semi-conductor memory, can be as low as 3COnanoseconds.
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Because of the high price of this type of store, it is not economic to
consider storing all data and programs in such a medium. The main
memory is uééd to hold current data and instructions, and other data
and program segments are Calied in from backing store as required.

Typical cost per byte is.10 pence, but this is still falling.

2) Disk storage.

A typical magnétic disk store consists of a number of rotating disks
each coaved upon both curfaces with a magnetizable material. Information
is written to, or read from, the disk by a seriés of arms, one for each .
disk surface. Each arm contains one, or several read/writé heads, and the
arms can be positioned above certain areas of the corresponding disks .
according to instructions received from the central procesgor. In the

"case of fixéd head disks, a series of reading heéds cover the whole radius
of the disk so that no movement of the heads is necessary.

Typical cost per byte for a moving head disk would be .25 pence, while
the cost for a fixed.head disk per byte would be roughly four times this.
In general, moving head disks are constructed so that the disks can
be changed. In this way, data on a disk packvcan be permanently saved.

Access time canbe measuwred in tens of milliseconds.

3) lMagnetic drum storage.

Similar to the magnetic disk but with a drum. Performance and price
aré similar to those of a fixed head disk. Both disks and drums are
sultable in direct access applications and are a compromise to obtain, at
ah economic price, certian of the gqualities exhibited by magnetic core
memories.

h) Magnetic tape storage.

Magnetic tape is a seriai store; data is recorded as individual

characters along a length of tape and processing can only be achieved
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by sorting records into a sequence so that each tan beAexamined in turn.
It is ﬁéinly used for the storage of complete sets of data or

jobs that can be serially read onto disk or druﬁ, or into main memory.
A typical tape can hold eight megabytes of information. When in

operation, the cost of storage per byte is approximately .065 pence.

This includes the cost of the tape transport and controller. When used

for offline storage the cost is only .000L pence per byte, much |

cheaper than storing information in normal writing on paper.

(b) Central processors.

The central processor is the nerve centre of any digital computer
system, since it coordinates and controls the activities of all the other
units and performs all the arithmetic and logical processes applied
to the data. Certain arithmetic operations such as multiplication can
elther be programmed or carried out by hardware. To carry out 0perati§ns by
hardware is much quicker than doing the equivalent operation by software
but is much more expensivé. There is a trade-off between the power
énd speed of the processoréand the cost. Different types of application
require more or less c.p.u.* effort. Graphic design reqﬁires relatively
little computation while amalysis will require much more.

Processors used to be the most expensive part of a computer system
but this is no longer so and the price of processors conﬁinues to drop.

Naked mini-computers may now be purchased for only £1,000.

(¢) Input/output devices.
1) Card input
A very commonly used method for feeding programs and data into a

computer. They provide a convenient way of storing programs and have

“Central Processing Unit.
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the advantage of the data being visible. However, to produce data cards
in any number is tedious, and there are liable to_be numerous data
errors. This will result in more than one run of a Pr§gram being
necessary, in order to eliminate the errars. Iarge stacks of éards are
cumbersome, liable to disorder and wasteful of office space.

2) Paper-tape input/output.

The use of paper-tape is becoming rare because like cards there
are physical handling problems for large programs and large quantities
of data. It is often used for transferring data or programs between
machines and.also has the advantage of data being visible.-

3) Teletype.

This is a two way communication device that is connected directly
with tﬁe computer. .The operator.may enter data directly igto the system
by typing on the keyboard and the computer may reply by causing a message
to be printed directly at the inquiry terminal. One of the factors here
is that if the operafor makes a mistake-in keving the inquiry or data
the error may be detécted by the computer and a request far its connection
immediately issued. Typical cost £800.

i) Visual display unit.

This is similar in operation and use to the teletype but-instead
of information being typed ontd paper, it is displayed on a screen. This.
has the advantage of being much faéter and this is particularly useful
in program development, where the operator often wishes to view a section
of program, or information retrieval. The disadvantage is that no hard
copy is prodﬁced for the later reference. The V.D.U.” is cheaper to rﬁn

since it requires no paper. Typical cost £800.

*Visual Display Unit.



5) Iine printer.
The line printef is'cépable of producing printed output at high
speed ranging from 300 to 2,000 lines of 160 characters each per minute.

Fast line printers are found to consume enormous quantities of paper.

16

They can be programmed to print on preprinted stationery and are valuable

for producing schedules, invoice and statements. Typical cost is
from £1,000. upwards.

6) Refresh graphic display.

It is both an input and an output device.  The refresh C,R.T.*
when‘used with a light pen provides the operator with a means of
directly inputting graphic data. It usually iﬁcludes a keyboard.-

Most graphic input/output devices are more expensive to run than
those dealing only with alphanumerics. A refresh C;R.T; is expensive
because it requires a display processor to drive it. The whole picturs
must also be stored in core which ties up part of the supporting computer
systems capability. There is also a limit on the amount of information
that can be displayed before the picture starts flickering. Cost’of the
typical terminal inclﬁdiné display prbcessar and minicomputer is £6,000.

7) Storage tube.

This is often operated in conjunction with a cursor, which enables the

operator to specify position on the screen, and a keyboard. all that is
written to the face of the screen is stored until the whole screen face
is erased. There is thefefore no limit to the complexity of the picture
which can be displayed and does not have to be held in main memory.
However,‘selective erasure is impossible and the display is best

visible in subdued light.

*Cathode Ray Tube.
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A hard copy device is available which simply puts an imagé of the
scresn onto spsclal paper.- ‘_

Typical cost £,000, for tube, keyboard and.cursor; £2,000. for
the hard copy unit. '

8) Digitiser.

The device enables the cartesian coordinates of a point in a plane
to be transmitted to the computer. It cSnsists of a table and a pencii
with sensiﬁg apparatus that monitors the position of the pencii on the table.

One considerable advantage of thié device is that it can be the
sane siée as standard working drawings. These can be stuck to-the
table and the operator may work from them. The device is accurate to
within .1mm. Typical cost £7,000. | ’

9) Data tablet.

This is similar to the digitiser but generally smaller, of lower
accuracy and cheaper. See figure 1.1.

10) Plotter.

A variety of plotting devices exist. There are two distinct types:
Drum plotters and flat-bed plotters. In drum plotter, the paper
is drawn ;round a drum. The drum revolves to give movement in the
x~coordinate while a pen unit mounted on a gantfy lying along the drum
provides y-movement.

In a flat-bed plotter, the paper remains still while the gantry moves.

Another plotting device is microfilm plotter. A phqtograph is taken
of a high resolution C.R.T. display. This'is many times faster than
vnormal plotting devices but also more expensive. They are however, well
worth it if the work load is sufficient.

(d) Operating systems.

An operating system may be defined as those procedures which control



Figure 1.1 Small data tablet and storage tube
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thé resources within a camputer system. Operating systems generally
become ﬁore éomplex as the size of the installation increases. . The
operating system will determine in what processing mode the computer
is to be used. Common modes are:-

1) Batch processing mode.

In this mode, jobs are prepared and then input as a single unit,
usually in the form of punched cards, to the computef, At some later time,
the job isvprocessed and the results'output. The time between input and
output is termed 'turn around time! axd may rangs from 10 minutes to
one or more weeks.  Average time is a few hours; There is no intéraction
be tween the ﬁscr and machihe, indeed, the user may never even see the
machine. v ' - ' o -

Bateh processing mode is certainly unsuitablg for the editing or
interrogation of a data base and far graphic design.

2) Remote terminal processing.

A multi-access systcm'is one that allowg a number of remote terminals
- to have interactive access to the central computcr resource. The remote
terminals may range from teletypes‘to complete satellite systems. It
appears to each user that he has the total computer resources to himself.
By time sharing it iS-pOSSiblﬂ to give a response time of a few seconds
to each terminal because human intervention is comparatively such a
slow process.

The operator of the remote terminal is able to conduct his werk
in conversational mode.

This type of operation is clearly suitable for the design application.
Because of the large qgantities of data that are gencrated in the design

process, the terminal must have sufficient data handling capabilities.
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One way to achieve fhis-is to use a minicomputer'syStem as the terminal
device. This also allows fhe user to perfbrm data pfepafationAtasks
such as editing and debugging program modules without having to pay
for 'connect'! and processing time which ﬁould result if thi s was done
by the central camputer.

Such a terminal is called intelligent.

3) On-line processing.

In on-line processing, the operator is permanently connected to the
coﬁputer resource. It is mainly used when a high degree of interaction
is required. It is clearly capable of supporting the design fask but
is too expensive to be considered where the central computer is to be
capable of handling large analysis prégrams.

The best alternative appears to be a remote intelligent terminal
connected to a powerful central computef.

Th;.computing power of the minicomputer has increased enormously
over five yéars, so that they are now capable of handling most of the
processing required by the five'activities defined in section 1.1.

If such a proposition is true, it is possible to largely dispense
with the control computer and to.use the intelligent terminal in a
'stand alone! situation.

Minicomputers first came into operation in 1962 and since their
introduction, their succeés has been remarkable.’ Equally remarkable
has been their increase in power.

The trend towards instélling minicomputers is a move ‘in the opposite
direction to large integrated program systems, maintained by central
organisations and accessible from terminals. Because of their increase

in power, the definition of a minicomputer is becoming obscure, but it is
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generally accepted that it is a iype of machine that can be offered in

a viable conﬁiguration with a core in the rangs éf perhaps € to 32Kilowords.
Some machines of this type can be extended to a core size of 128Kilowerds

or more, and they can be eguipped wiih a wide range of peripheral devices
such as disk and magnetic tape storage, visuwal display units, plotters and
high speed printers as described, so that in their.most sophisticated

configurations they can compare with some 'large' cemputers.
g ¥ P

Their significance ié that, in their smaller configurations, they
provide the opportunity for small firms to have their independent in-
house computer. This is particularly important for firms that are
interested in systems with interactive input and output through graphic
display units, because the delays and costs involved in conducting inter-
active graphicsAremoteLy from the cqnputcr are prohibitive in most
commercial applications. Thus mincomputers are essential to firms
involved in graphics, but'othcrﬁise, they should not be installed unless
a thorough study has demonstrated that it would not be cheaper to have
a terminal linksd to a remote central computer. In this ceomparison, it
should be remembered that a minicomputer in-house necessitates sufiicient
staff who can program for it, and who understand its operating system.
| This leads directLy to an increasing tendency to study the economics
of the entire design and construction process verj carefully to decide which
areas are likely to yield the best financial return on the cost of applying
compﬁteré to them. One aim of this project is to test the capability of
a minicomputer iﬁ solving quite large and complex problems. It is necésséry
to egtablish which typ=z of programs can be successfullyAand economically

run on a minicomputer.
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CHAPTER 2

A General Computer Aided Draughting System

2.1 Aims of the system.

There was a desire to provide a computer aided design system which
would be useful in many fields. The area in which all fields came
most nearly together was in graphics'and draughting, and ip was
- therefore thpught that a general draughting system would provide the

best base far any computer éided design system in a particular application.

The system should érovide: a means of graphic data input and output
including the production of drawings, an operating or user action control
system and an interface far applications programs, which could be used
for design work in Civil, Mechanical and Electrical engineering.
Applications in mind were:-

Data preparation for structural analysis
Building design

Mechanical engineering component design
Printed circuit layout design

‘The software should comprise an executive and a set of program
modules, each module to perform ore or mbre functions. In this way
users would select which modules they required for their particular
application, and, a library of modules could be gradually built up
continﬁally adding to the power of the system‘ without causing old versions
to become incompatible. |

Cnce developed and tested, systém modules should only be updated

"by system programmers, épplication programmers should not be allowed

to modify the system modules to their own ends.



In particular modification of the data structure;whiéh would make
existing data incompatible should be avoided at all costs. The reason
for these restrictions was to ensure that persons working on different
problems but on the same project would be abie to utilise the same
database. Thus data initially generated by an architect doing building
design could subsequently be used by the structural engineer tovgenerate

data for analysis programs and to produce detailed reinforcement drawings.

Lastly, theldata stfucture shoﬁld be as simple as possible to allcﬁ
easy interaction with analysis programs. This was COnsidefedvmore important
than trying to obtain the last bit of speed out of the'éystem by the
use of COmpléx data structwes as it was not anticipated t@gt speed of

Opération would be a limiting factor.
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2.2 ngdmare.

Previous development'had been carried out at Imperial College
using a PDP 8/E* minicomputer, with 8K 12 bit words of core storage
and dual Dectape providing 500K of slow backing storagé; connected

on-line to a D-MAC digitiser and Tectronix 611 storage screen.

The main factar limiting.the use of this system was its slowness
of operation and difficulties in programming. All programs were written
in assembly language for the sake of efficiency, and because the level
of Fortran that the system could support was too low to be substantially
useful. Since Dectapes were the only form of backing store, and these
have an access timé of several seconds, the system had to be-éore resident .

This made expansion of the system extremely difficult.

The system on.which the work by the author was carried out was based
around a PDP 11/L45 which had considerably more power (see Fig. 2.1).J
The main components of the system which was largely supplied by C.E.C.**
are now described.

a) Processor.
PDP 11/45 with floating point hardware fdr increased performance.
The perférmance of the PDP 11/45 is compared with that of the PDP 8/E

and CDC 64,00 in figure 2.2.
b) Storage.
1) Main memory is 16Kilowords of 1l6bits each, this is expandible

up to 1l2LKilowords.

*Manufactured by Digital Equipment Corporation.

*Computer Equipment Company.






Operation PDP 8/1 FDP 11/L45 CDC 6400

12 bits 16 bits 60 bits
Memory cycle time 1.5 9 .5
Add 3.0 3 1.0
Multiply (fixed point) 360. 3.3 1.0
Divide (fixed point) ~ L60. 7.0 1.0
Floating multiply - L.55 - 6.55 1.4
6'55 - 1 1 095
Floating divide - 4.55 - 9.95 1.4
6055 haad 18035

¥ double precision - 6l bits.

Figurs 2.2 Comparison of instrumtion execution times. ( micro seconds ).

92
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2) Fast backing stofe'is provided by a 1.2 million word moving head
disk utilising removable disk cartridges so that each user is able to
maintéin security over his own data and programs by removing his disk

after use.

~ 3) Bulk storage was added in the form of a Magnetic tape unit*
in August 1974. This was required not only for storage purposes but
~ also to provide a medium for data transfer between the system and

other computer complexes.

c) Inpu£ and output devices.

1) An LA 30 DECwriter was used as the system console. This pfints
characters quietly at iS characters per second but can be.qp-graded to
30 characters per second.

2) A high speed paper tape reader and punch capable of reading
characters per second and punching characters per second.

3) Serial line printer’ ™ with a maximum speed of 180 characters
per second. This is almost essential for the listing of results and is
extremely useful for obtaining listings of programs during developement,
as this is a slow process using the DECwriter.

L) D-MAC digitising/piotting table. The table has a Working.
area of 1.5 by 1.0 metres and consists of two flat surfaces; one above
the other. The upper surface, made of toughened glass and upon which
the opsarator may lay drawings and sketches, is used for digitising, the
lower surface is used as a flatbed plotter. Betweeﬁ the two layers a
gantry is driven by a servo-motor in the x-direction, and mounted on the'
gantry is a carriage which is also driven by a servo-motor in the y-diredtion.'
By a combination of gantry and carriage movement, it is pdssible to position

the carriage anywhere within the table surfaces.

. *Manufactured by Kennedy & Company.

**Logabax LX180.
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The carriage contains a sensing-coil and movement of the carriage
and gantry is detected by Moire fringe shaft encoders, driven by steel
wires attached to the gantry and carriage. A.free pencil (Fig. 2.3)
containing a coil, through which is passed a ljOOHz signal, is
held by the operator or above the digitising surface. The sensing
coils in the carriage dstect x and y positional errors between the carriage
and the free pencil, and amplified signals are sent to the servo-motors
to drive the carriage towards the free péncil. The movement of the
carriage is monitored by the encoders and the outputs are fed to digital

counters in the CAMAC interface.

When any one of the eight buttons on the free pencil is pressed
the computer reads the current x and y coordinates of the table and

records which button was pressed.

In the plotting mode the servo-motors are driven by signais from
the computer. A pen unit mounted on the carriage is also under compﬁter
control, and raises and lowers the pen.

The digitising serves as the main input device for the system.

5) Tectronix 611 storage tube driven by S.E.N.* vector and character
generators mounted in the CAMAC crate provides visual displéy. This has
three intensity levels and by correct setting it is possible to arraﬁge
that the lowest level be non storing. This is used to display a
tracking cross or cursor continually monitoring the position of the
digitiser without storing it on the screen.

6) A flat bed plotter with working area 1square metre developed
at Imperial College is also connected on line to the system (Fig.2.4).
‘This was driven by D.C. printed circuit motors via a stereo powsr

amplifier providing a great deal more power than was available in the

<4

"S.E.N. Electroniqus Limited.



29

Cross hairs.

— " light

Numbers refer to function buttons.

Finure 2.3 The digitising pencil



The flat bed plotter

Figure 2.4



digitiser/plotter. The gantry and carriage were also designed to be
as light and rigid as possible. Special rubBer wheels were used to
reduce noise'andvproved so effective that the whole plotter is
virtually inaudible. The average plotting speed is lO-inches per
second and is as much limited by the flow of ink from the pens used

as by the drive mechanism.

d) CAMAC interface.

The digitiser/plotter, storage tube display, line prinﬁér and D.C.
piotter are all interfaced to the PDP 11/45 through a CAMA&2 interface.

CAMAC provides a common standard interface (the CAMAC dataway) into
which hardware handling modules can be plugged. An interfacing module,
the CAMAC dataway controller, links CAMAC to the computer. This dataway
controller must be designed for the computer being used but the hardware
handling modules are all independent. These modﬁles and the controller,
in the form of printed circuit boards, are plugged into a CAMAC crate,
which rormally has space for 24 boards. |

The following moduies are present in the system:-

a) To interface digitising table.

1) Interrupt request register (EXCO 7013)

- Handles the operation of the eight function buttons on -
the pencil. .

2) Dual incremental encoder module (S.E.N. 2019)
- Monitors the carriage and gantry positions.

3) Digitising table interface (D-MAC CS101).

| - Turns pencil light on and off.

- Raises and lowers pen unit on the carriage.

~-Switches between plot and digitise mode.
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b) b) To interface Tectronix 611 storage tube.

c)

d)

1) Storage display driver (S.E.N. SDD 2015)
- Controls operation of the tube.
2) Vector generator (S.E.N. VG 2028)
- Provides ability to display linear ﬁectors with a miniﬂnmi
number of instructions; Vectors may be any length and in
- any direction. |
3) Character generator (S.E.N. CG 2018)
- Generates ASCII characters at any position on the écreen
with a choice of two character sizes.
L) Display driver (S.E.N. DD 2012) .
- Accepts X/Y increment/decrement signals from the vector

generator to display vectors on the screen.

To interface line printer (7065).
1) Peripheral Driver (7065)

- General purpose output module.
To interface the D.C. flat-bed plotter.

1) Digitising table interface  ( DMAC CS101 )
-~ Raises and lowers pen unit.
2) Dual error module
- Monitors the difference between where the table should be

and where it is.
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The hardware is shown schematically in figure 2.5.

It should be noted that CAMAC was intended for use in situations
where very many peripherals were to be interfaced to the §Omputer. The
controller which interfaces CAMAC to the computer is capablé of controlling
up to eight crates, each with twenty-four moduleé. In this application
only a few peripherals need be interfaced and it is now possible to
obtain interfaces from D.E.C. and other suppliers, which plug directly
into the PDP 11/45, for all the peripherals mentioned. This has becore

cheaper and mare efficient than using CAMAC.
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Figure 2;5 Schematic diagram of the system hardware
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2.3 Software. >

2.3.1 Intrcduction

The General Computer Aided Draughting System ( GCADS)Aoperates

under the standard FDP 11 Disk Operating System, known as DOS3 which is
supplied by D.E.C.. This occupies the lowest 3.5Kilowords of core
depending on the number of device handlers currently in use. Although
GCADS dées not use all the facilities available under DGS they are all
retained because to remove them would take significant programming effort
and might place severe restrictions on the operations of future applications
programs.

The remaining core area, 12.5Kilowords, is divided into a resident
and overlay area.

The resident area contains a small executive, some very commonly
used subroutines and common areas. B

411 system and user programs are loaded into the overlay area frbm
the moving head disk unit. A map of core usage is shown in figure 2.6.

The method of calling overlays provided by DOS was not considered
to be of sufficient speed. To overcome this a special high speed overlay
system was written. The operation of this is described in the next section.

The majority of system programs are written in Fortran IV.
Subroutines only have been written in PAL 11 assembly language and only
where either, the program‘éffectively interfaces to hardware and assembly
language must be used, or where not to do so would result in grossly
inefficient operation in terms of execution time and required core storage.

The user controls the system from the digitiser. The digitising
area is divided into two: the drawing area and the menu area (see Fig.
2.7). The menu is a 10 x 30 matrix of 20mm squares occupying the

leftmost 200mm of the table. When a point on the table is digitised,



DOS System area - approx 3.3 Kilowords

 —

 GCADS Resident common _approx 1 Kiloword . __

_GCADS Resident main _ _approx .13. Kilowords

GCADS Resident subroutines approx 1.5 Kilowords
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30776
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Overlay common
Overlay main
Overlay subroutines

Figure 2.6 Core utilisation !
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the UOM determines from the coordinates of the point Whéther it is within
the menu areda. If so, it is interpreted as a command by the compgter.

In this way the user can issue 'menu commands' without having
to continually turn to the system console.

The software comprises a set of modules and utilities some of

which are subroutines and some overlays. These are described in section
 2+3.3. The UOM forms the nerve centre of the system and has responsibility
for responding to menu commands and calling the corregt module or utility.

The main functions that the system supports are:

The input of straight line data ( line mode ).

- The input of special symbols including text, circles, dimensions and
arcs ( symbol mode ).

-~ The sectioning of data info levels.

- The filing of data.

- The use of data files as sub-pictures or macros.

- The editing of all types of data.

- The plotting of all data.
During the input of data, several aids are available to the user:

Windowing- a specified arca of the table is magnified to fill the

display screen.

Control 90- the coordinates are constrained to be at an angle,which is
a multiple of 90 degrees, to the last point digitised.
Control 15- the coordinates are constrained to be at an angle, which is

a multiple of 15 degrees, to the last point digitised.
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Drive mode - Instead of coordinates being calculated from the pOSitionbof
the free pencil on the digitiser, the user is able to
increment the coordinates in, ones tens-hundredths or thousands
of millimetres, in x or y.

Find - The user is able to set the value of the coordinates to

those of previously entered.

The programs for the modules and point utilities are described in

section 2.3.3 and their operation in section 2.lL.
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2.3.2 Program communication and arrangement

Each time an overlay is called and loaded into core the previous
contents of the overlay area are destroyed. In order to communicate

between overlays three methods are employed:

1) The storing of information in the resident Common areas.
2) The storing of information in a disk file which is later accessed
by another overlay.

3) The storing of information on the overlay execution stack.

The Common areas in the resident area of core are set out and
their function explained in Appendix A~1. They contain; a set of system
parameters, some space for applications programs parameters, 256 words of
buffer space for the system and 512 words of buffer space for the application
programs. 4 real variable occupies two words;

Two subroutines STORCM(N) and RESTCM(N) are used to store and
retrieve the Common user buffer area to and from a contiguous random access
file CADMAC.RAO on the disk unit. The érgument N defines the block number
in the file at which the writing and reading is to start. These sub~
routines enable the user to conveniently store and retrieve data between
overlays. The system itself by saving the common user buffer area before
use and retrieving it afterwards is able to utilise the Common user buffer
area without affecting applications programs.

Several of the éystem overlays perform utility functions such as
filing and display. The applications programs may wish io call such a
utility virtually as a subroutine. In order to fécilitate this an overlay
execution stack has been created to work in conjunction with the high speed

overlay system mentioned in section 2.3.1.. This is now described in detail.
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The load module of each overlay is assigned an overlay number
and is written into a contiguous random access f&le CADMAC.OVL on tﬁe
moving head disk unit. At the front of CADMAC.OVL is a directory containing
each overlay name, number, start record and length that has been written
into CADMAC.OVL. When GCADS is run the directory, excluding the overlay
names, is read into the resident core area.

Overlays are called into core by a statement CALL OVLINK (N)

where N is determined by:

N = (Overlay Number - 1 ) x 25

Overlays may also be called by a stateﬁent CALL STACK (N, ARG) where N

ié determined as before and ARG is used to carry information to the overlay
defined by N. Both N and ARG are placed on the overlay execution stack
which oéerates on a Iast In First Out principle. A statement CALL OVRETN
causes the overlay defined by the value of N at thé top of the stack to be
called into core and the variable ISUB in common area SUBOV (see Appendix
A-1 ) is set to the value of ARG.

ARG can be used either to transfer an item of data to the overlay
called, or where the called overlay performs more than one funétion or
contains more than one entry point, to define which function is required.

By testing the value of ISUB as the first executable stafement of
an overlay an individual segment can be selected for execution.

If the calling overlay stacks itself before stacking another overlay
then control will be returned to it after the called overla& has been
execubed. This process is illustrated in figure 28. Therefore overlay
segments may be called in a similar manner to subroutines but with two

important differences:
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- Figure 2.8 Example of overlay 'stacking’.
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1) The arguments to the overlay segment called must be transferred
by one of the methods previously outlined for communication between
overlayé{

2) All variables in the calling overlay that are required after

such a c¢call must be saved either in resident Common or on the disk unit.

Since each disk access will require on average 90 miliiseconds it is
preferable to store data fer transfer or which is to be saved in resident
Common. The resident Common Storage locations thus have a high value -
placed upon them -and are‘onlyAused where essential. It happens that
some parameters may only be used within a particular string of overlays
and other parameters are only used within a different string of overlays,
in such a case the same Common loacations will be used for the two sets
of parameters. 1i.e. The system can be split info-subsystems and the role
of some of the variables in resident Common may change between subsystems.
The overlay execution stack may be cleared by a statement CALL GCIRSTK
If a statement CALL CVRETN is executed and the overlay execution stackbis
clear then the regident exécutive'will call a special overlay, the User
Operations Monitor. ( UOM ) , which forms the heart of the system ( see

figure 2,9).
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" 2.3¢3 System modules

a) Setup

On first entry to the system the resident executive calls the setup

module. This is used to initialise system parameters. Any of these can

later-be reset by menu command.

These parameters are:

1) Table origin

- the point from which all table coordinates

will be measured.

2) Input (Drawing) origin-the point from which all data coordinates

3) Skew
L) Input scale
5) Output scale

6) Alphanumeric size

7) Grid factor

will be measured.
~ defines the angle between the drawing and
table axes.

- data is plotted at a scale given by
Input scale divided by output scale.
- defines the size of text that would be plotted
if an output scale of unity was used.

- coordinates are rounded to the nearest .

multiple of the grid factor.

The setup module also initialises the flag that indicates the

~ sub-picture processor status ( see sub-picture handler ), and initialises

the random access work files ( see file handler:)).

b) User Operations Monitor.

After the setup module the UOM is automatically called. This is

the real centre of the gystem and contains the:badkgraund: loop, drive

mode, the interrupt handler, the menu:: command handler, the level_handler‘



L6

and symbol handler.

1) Background loop
When running GCADS the program that is most often under execution
is the background loop. It performs the following:
-~ Reads the table coordinates.
- Converts them to real drawing coordinates.
- Rounds coordinates if a grid factoris set.

- Applies CONTROL”™ and TRAILING origin adjustments.

Displays the current input level number and any messages set iﬁ the

" Common MESAGE area.

Displéys the cartesian and polar coordinates of the pencil relative to
the last point digitised ( TRATLING ORIGIN MODE ) or to the drawing

origin ( ABSOLUTE ORIGIN MODE ).

Displays a tracking cross or cursor representing the current position

of the digitising pencil.

Looks for a pencil button interrupt.
Application programs may display up to five, nineteen character messages
in the background loop by setting them in the last 25 variables in Common

area MESAGE. The first 27 variables are reserved for system messages.

2) Interrupt handler.
AWhen the—Opérator presses ore of the eight pencil buttons it
'is detected by the bacground loop and control passes.to the interrupt
handler. Buttons 2,5,6,7 are serviced by the UOHM.
If button 1 is pressed, control is passed to the menu handler if
the ihterrupt occurred in the menu area. If not and the gystem is in line

mode ( see symbol handler ) it is serviced by the UOM. If the system is not
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in line mode, a CALL OVREIN is executed and the next stacked overlay will
~ be called. This will be a symbol overlay.’ |

Button 3 transfers control to the sub picture processor.

ﬁutton li transfers control to the 'window' overlay.

Button 8 is used to switch in and out of 'drive mode'.

WhenAinvdrive mode only, the drive mode patch ( Fig. 2.10 ) is recognised
by the background 1oop; A

| 3) Drive Mode.

In drive mode, the cursor is driven from the last point digitised
in discrete intervals either in cartesian or polar coordinatés. A 90mm
square area of the digitising table at the bottom left corner of the table -
ié used to control both the moverent and position of the cﬁrsbr and the

value of the drawing coordinates. This enables accurate put of exact

dimensions.
;) Menu handler.

The menu is divided into four sections (Figs. 2.11-2.1L ).

Comﬁands - 100 squares
Levels - 60 squares
Files - 100 sguares

Symbols - L0 squares
The Command area of the menu is arbitrarily divided into two sections:
System Command area and user Command area.
The software makeé no distinction between the sy&tem and user
commands.
The menu square number is used to calculate which number overlay

'should be called. In order that the position of particular command sgquares
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may be re-arranged at will without having to change many programs, a
mapping system is used. This is shown schematically in figure 2.15.
When a level, file or symbol square is digitised, the appropriate

handler is brought into operation.

5) Ievel handler.

levels are used to section data. Data may be input under
160 different levels, although only 60 different levels can be directly
set from the menu.

Ievel markers are entered into the data stream by menu cormand.
All data between a level marker 'n' and the next level marker is said
to be on level n.

The level handler contains a 160 bit arraﬁ - one bit corresponding
to each level. If the bit cofresponding to a particular level is set,
then the data on that level is said to be active. If the bit corresponding
to a particﬁlar level is not set, then the data on that level is said to
be passive. Passive data is invisible to the user ( ie. it will
not be displayed or edited, but it will be filed).

Data levels can be declared active or passive by menu command
( see seétiOn 2.5).

6) Symbol handler.

Symbols are used to describe graphic data items when geometry
can convehiently be defined by only, a few points, and dimenéional data
(eg.’circles, ellipses, rectangles). . They are program generated and are
used because:-

a) The item is best described mathematically and its dimensions may

be required to be variable, e.g. circle.
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"b) To digitise the item each time it was required would be tedious.

and to use a'macro would produce an excessive amount of data.

c) The item is used so often that writing a special program to generate

it is justified, e.g. rectangle.

When the user digitises the first point of the symbol, the UOHM,
recognising that symbol mode is set, jumps to a statement CALL OVREETN.
Since the first segment of the relative symbol overléy is at the
top of the overlay execution stack, it is called intb core. This stores
the point in common/symbol/ (see appendix A-1), stacks the next segment

of symbol overlay and then returns control to the UOM.

This process is repéated wttil the last point of the symbol is
collected, at which time the segmentrof the overlay that‘displays the
complete symbol is called. Finally, control is handed back to the UOM.

At any time during the comstruction or entry of symbol points,

the operator may return control to the UOM and re-enter 'line mode!.
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¢) File handler.

For reasons of"speed-the only type of file that the.systeh directly'
uses are random access files on the moving head disk unit. There are
-two ways in which these are used: as working files or as mass storage
files; A total of sixteen files may be defired and if two disk units
are available the files ﬁay be arbitrarily spread between them.

The files that the system is5-to-useake listed in the FILE.DAT which
is crgated on disk unit ZEr0. ‘This is read by the SETUP module which .
then looks up all the files listed to check their validity and length.
Each file is referred to by number in the programs, the number of a file
being determined by its position in the list in FILE.DAT.

Data is written to a working file by a statement:

CALL RAWRIT (IFN, IREC, ARR, IW)
and read by a statement:

CALL RAREAD (IFN, IREC, ARR, NW)

- where:
| IFN ~ is the fandom access file number.

JREC ~ is the record number tovbe written to or read.

ARR - is the array in core fram which data is to be read or written. .

NW =~ 1s the number of words for transfer.

Each file is divided into 256 ﬁord recards, if the.number of variables
for transfer is not specified then 256 words ( 128 single precision real
or integer variables) will be transferred by default.

A mass storage random access file may contain many distinct sets of -
data each pointed to by an index at the front of the file. This index
is initialised by a special ovérlay called by menu command. The ﬁumber

of entries in the index is specified at the time of initialisation.
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The file handler allows data transfer between work files and mass
storage files. GCADS uses only one random access file for maés storage,and
two working files. . CADMAC.MS1 is used to hold a set of 128 storage
files. CADMAC.RA1 is used to hold all data as it is input and is known
as the 'workspace', CADMAC.RA2 is used by the macro processor.

Four operations are carried out by the GCADS file handler:-

-~ Transfer of data from a working file to a transfer file.

Addition of data to a working file from a storage file

~ The display of a file

Deletion of a file
Thres vafiables in residgnt common are used to transfer argumentsrto the
file handler:- .
- IONDIR (Common FILHND) defines which opration is to be
performed.

~ MNUM (Common MENU) defines the mass storage file number.

~ ISUB (Common SUBQV) defiﬁes the random access file to be used.

IONDIR is set by digitising one of four menu commands and MNUM by pointing
to one of hundred file squares on the menu. Thus each file square

represents a mass storage file.

The file handler is a powerful tool for use by applications

programs.



d) Display & Plotting Module.
This hodﬁle displays on the storage screen or plots on the_
flat bed plotter data in the workspace. If any symbols are preéent
'inlthe data, then the symbol overlay display Seghents are called.
This can considerably reduce the spsed of the display; The scale of
display is determined by parametérs set by the 'windowing! module.
e) Window module.
Window parameters define ﬁhe area of tbs digitising table which is
to be displayed or plotted.
f) Macro Processing Module.
Any of 100 storage files represented by the file squares on
the menu can be manipulated by the macro processor and added to
the workspace or another storage file. Data that have been added to
the workspace in this way are referred to as macros. IMacros may be
rotated, mirrored, and scaled and start and end points may be selected.
The transformation that the macro processor will apply to a filé is
defined by a set of status flags in common area MACRO. These define:
a) The angle through which the macro will be rotated.
b) Whether a start point will be selected. When the macro is added
to the workspace the start point will be positioned at the trailing
origin. The other poinﬁs in the macro will be translated accordingly.
~¢) Vhether and end point will be selected. When the macro is added to
the workspace the trailing origin will be set to the position of
the erd point.
d) Whether the macro should be scaled.
Only data on levels thatvare active will be processed by tﬁe macro
process. Data on passive ievels is discarded.

Macros enable easy production of similar parts without having to



digitise each part separately. By creating a library of the commonly
used componehts in the 100 storage files the production of working

drawings may be considerably speeded.

g) IZditars.
There are three editars: the point editor, the line editor
and macro/symbol editor. Each is a separate overlay called by menu

cormand. Their operation is described in section 2.lL.

h) Peripherals Input/ Output Module.

Allows the input or output of data to or from the workspace, from

or to any data set. The data set can be on disk, paper tape or magnetic

tape. A permanent record of the workspace can be achieved.
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2.3.4 Data Storage

Much research has been done on the efficiency and speed of in-core
data structures and list processing,}f’5 However in‘GCADS the data is stored,
both on disk and in-core. The designer of an in-core data structure is
concerned to minimise the number of memory references and the number of memory
locations required to solve a particular problem. A memory reference takes
approximately one microsecond, by comparison, a disk reference may take on
. average seventy millisesconds - seventy thousand microseconds. Clearly with-
a disk as the main storage medium the data structure must primarily be planned
to minimise the number of disk references.  Furthermore, disk storage is
much cheaper than core storage and therefore less emphasis is plaéed on
trying to minimise the amount of storage space required byfthe problem and
more emphasis on maximising the speed of operation.

It is evident that the larger the quantity of core available for data
storage, in future referred to as buffer space, the smaller will be the number
of disk references required to process a given quantity of data, and the
faster will be solution. On the other hand any core used for storing data
can not beiused for storing program instructions. A compromise is necessary.

Different objectives can be achieved by varying different factors. The

following objectives are listed in order of importance:

1) Maximise speed.
- Minimise disk accesses.
~ Maximise buffer space.
- Allow the storage of redundant data to reduce operations.
2) Reduce storage cost
~ Minimisé core storage capacity
- Store minimum data.
- 3) Enable easy expansion and uéer interface.

~ Keep it simple.
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An obvious conflict exists over the amount of core space that should be
allocated for storing data.

The efficiency of a particular type of data stfﬁcture depend%von the
quantity df data which must be handled, just as the method chosen for the
manufacture of a component depends on the number of components to be prod-
uced. - It is difficult to quantify just how much data a computer aided
draughting system will be required to handle. Assuming that a typical
drawing consisis of 2000 lines meeting at 700 points.

Two basic storage alternatives present themselves:

1) A list of points defining a series of continuous straight lines with
a marker to indicates a break in the series. : R

2) Separate lists of point coordinates and coordinate connections.

These fwo structufes are illustrated in figure 2.16 and comparéd in figure
2.17. It can be seen that although the single list requires more storage
space it can be displayed much faster than a system using one list of
coordinate connections and another of the coordinates.

A single list structure has therefore been adopted in GCADS. In order
to make fortran programming and user interface even easier an in£eger
marker is associated with each pair of coordinates in the list. Point

coordinates are stored as single precision real variables in units of
tenths of a millimetre.

The integer marker is referred to as an I code and a list of the I codes
used by the system is given in figure 2.18. The chosen buffer size is
128 variables (256 words) for easy disk handling. The 128 variable data
block is divided into a LO integer variable array, two 4O real variable arrays
and 8 free real variables. Since the two LO real variable arrays most comm-
only hold X and Y coordinate data thé three 1,0 variablé arrays are referred

to as I, X and Y.
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>

Iist structure

X Y A

100. 100.

300. 100.

300. 200.

200. 200.

200.  400.

100.  4L400.

100. 200.

100. 100.

nmarker

100. 200.

200. 200. Coordinate Coordinates
connections X Y
1 2 100. 100.
2 3 300. 100.
3 4 300. 200.
L & 200. 200.
5 6 200,  Loo.
6 T 100. L00.
7 1 100, 200.
7 L

Figure 2.16 Two approaches to data storage
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HOENMONO

nEHLLhEOOR =HoHU

HEeHWLHE DO

*One display unit is approximately 70 milliseconds.

Iist Connections & -
coordinates

Best Worst Best Worst
Coordinate | ,q 1,000 700 700
pairs
Markers &
pointers Q_ 1998 1,000 L4000
Total - '
locations | 4002 19998 5400 5400
1 buffer
100 locs. L1 100
2 buffers «
50 1003. 108 )4080
Tbtai#:
display. L5 110 113.5 4,085.5
.1 buffer
1,00 locs. 1 25
2 buffers
200 locs. 27 L4020
Total ,
display 15 35 32.5 L025.5
unitSo : .

Time to process each location is taken as .00l display unit.

Figure 2.17 Comparison of two types of storage structure.
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The possible contents of the I, X and Y triplets are shown in figure 2.19.

One method of reducing the volume of data is to store repeaﬁed
sequences only once. Repeated sequences of data, referred to as.macros in the
following discﬁssion, could be stored in a separate list and referenced by
a special I code in the data list accompanied by parameters defining the
scale, rotation énd translation at which they should be displayed. The use
of such a system has disadvantages, namely:

1) Editing the c&itents of a macro after it has been posifioned on a
drawing becomes difficult.

2) The display routine has to transform the macro data and this woula
increase display time. |

3) Searching for a point within a macf§ requires that tke same transformatio
be carried out to calculate the position of the points within it thus
increasing the time required to find a point.

The macros are therefore stored in their full form in the data list in
GCADS. In some applications where the macros are clearly defined and will
not require editing it may be useful for the applicétion programer to
develop such a system.

Macros can contain any type 6f data and macros and.symbols may be
nestediin the sams manner.that DO loops may be nested in Fortran. This fact
is exploited by the macro editor (section 2.4.6).

A typical piece of data is given and explained in figure 2.20.

It was found that when large quantities of data needed to be displayed, the
display time ran into many seconds, pgrticularly when many symbols were
included in the data. This was found to be most irritating to the user -
when the data was windowed and only part of it needed to be displayed on the
‘screen. Since all the data had to be processed to discover whether it

would be on or off the screen there were periods when nothing appeared to be



11
13
1

15

16
17
18
19
20

21

22

Significance

End of data

Start of line

Point on line

Start of new data level

Null data ( produced by deleting data )
As 1 ( produced by line editor )
Start of a symbol

P01nt used to define the symbol

Data defining bounding rectangle of synbol
Lagt data of symbol

Start of mécro

End of macro

Non coordinate data

Pausé. Display is suspended until a peneil
button interrupt is detected.

Start of new line type

Start of new pen

Figure 2.18 Icodes used by GCADS
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Icode Xcode Yecode

1 X coordirmate Y coordinate

2 X coordinate Y coordinate

7 ' Level number -

9 - -

11 X coordinate Y coordinate

13 Symbol number | -

14 X coordinate B Y coordinate

15 X coordinate Y coordinate

16 Non coordinate data Non coordinate data
17 Macro ( File ) number -

18 - -

19 Non coordinate data Non coordinate data
20 - : -

21 Line type 1-4 -

22 Pen number -

Figure 2.19 Contents of X and Y-codes in GCADS
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Sef default level 60
Set level 1

Set solid line type
Set pen number 1

Start of macro created from file 1

Set level 2

Start of circle symbol number 3

Centre point of circle

Point on circumference of circle

Lower left cormer of bounding rectangle
Top right corner of bounding rectangle
End of circle symbol

Start of second circle symbol

End of second circle symbol

End of data

Icode ZXcode Ycode
7 60.  O.
7 1, " 0.
21 1. 0.
22 1. 0.
17 1. 0.
1 100.  100.
2 600. 100.
2 600.  200.
2 100, 200,
2 100.  100.
18 0. 0.
2. 0.
13 3. 0.
1, s0. 150
i 100. 150.
15 50. 150.
100.  200.
16 0. o
13 3. 0.
14 650. 150,
14 600. 150.
15 600. 100.
15 700.  200.
16 0. 0.
0. 0. 0.
T

0

- Figure 2.20 Example of GCADS data
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happening. To improve this situation four of t?e eight free variables in
each data block have bezen used to store a bounding rectangle of the data
within the data block. Each symbol also contains a'bounding reciangle.
The display overlay checks the bounding rectangle of each block and if

the rectangle does not overlap the‘display area the block of data is not
processed. Similarly, if the bounding rectangle of a symbol is not in the
display area the symbol processing overlay is not called.

The introductiﬁn of bounding rectangles has considerably speeded display
but requirad considerable programming effort. Symbolibounding rectangles
not only have to be calculated at thé time 6f input but also have to be revised
after editing. The bounding rectangle of each data block isvrecalculated
Fevery time the data in the workspace is transferred to a sémi‘permanent mass
storage file.

This gxperience has sustained the belief that maintaining a simpledata
structure is most important, particularly where application programs must
be able to use the same database. However speed of operation must be main-
tained in an interactive system if operation is not to become tedious and
the introduaction of bounding rectangles has proved” worthwhile. It shoﬁld
be mentioned that data added without bounding rectangles will be displayed
so that they can be ignored by the applications programmer who does not want

- the added complication;
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2.1, Operation of GCADS.
2.L.1. Setup. | \ _ A .
GCADS operates under DOS VOO83 To run the GCADS system the user must
be logged in under User Identification Code ( UIC ) 2,2. The system
is loaded by typing RU GCADS. The resident executive is ioaded into core
and immediately calls the flrpt SET UP overlay. |
On starting the system, the message 'ZERO TABLE' is dlsnlayed on
the screen. The user must respond by digitising the lower left hand
.corner of the menu. vThe point digitised defines the absolute table
origin - the p01nt from which the pencil position will be measured - and
if it is not at the lower left corner of the menu, menu commands will
not be correctly interpreted. _ .
- After the table is zeroced, the following message is displayed:
1) USE ALL DEFAULT VALUES. |
SKEW -~ HORIZONTAL
TNPUT ORIGIN - B.R. MENU
GRID FACTOR - O.
INPUT SCGALE - 1.
OUTPUT SCALE ~ 1.
ALPHAN SIZE - 3mm.

2) SET ALL PARAMETERS.

This gives the user the option to uée the default values of the working
parameters by pressing button 1; or to set thém individually by pressing
mtton 2.

If tﬁe user chooses to set all the parameters, then the following

sequence 1is entered:

1) Message SET INPUT ORIGIN . _ (Screen)
Action Digitise a point below énd to the left of all the

input data. If the data is on a drawing the point should



be marked for future reference.

Message ERROR - INPUT ORIGIN ON MENU B ..(Scréen)
This will only be displayed when the point digitised as
the input origin is over the henu area. The error ressage
is displayed for a fixed period and will then revert

to SET INPUT ORIGIN.

Message DIGITISE HORIZONTAL LINE FOR SKEW CONTROL
FIRST POINT ~(Screen)
Action Digitise left hand end of a line parallelﬁtb the X-axis
| of the data.. .
Message DIGITISE SECOND SKEW CONTROL POINT : (Screen)
Action Digitise right end of skew gontrol line.. .

The data x-axis will be defined as the line passing through
the input origin and paralell to the liné defined by the

two skew control points. All data will be transformed
.accordingly. The skew points should be clearly marked

on the drawing to be digitised. If at one time a quantity
of data is taken from a.drawing ard subsequently more data
is required, the two sets of data will be exactly compatible,
regardless of the position of the drawing on the ﬁable, so
long as the same input origin, skew control points, and iﬁput
scale are used.

Message * ILLEGAL SKEW | (Screen)

' Only displayed when the left hand skew point is to the

right of the right hand skew point. After a fixed time

the message reverts to DIGITISE SKEW CONTROL POINTS -

SKEW ORIGIN.



3) Message

Action

ki) Message

Action

5) Message

Action

- 6) Message

Action

~mm=,~~ GRID FACTOR (M) ) - (DECwriter)

- A11 drawing coordinates are rounded to the nearest

multiple of the grid factor.

Type the grid factor reqﬁired in the format shown.
The grid factor is measured in millimetres.

~—e—.~~ INPUT SCALE (DECwriter)
Type the scale of the data to be input.

~-==,== OUTPUT SCALE - (DECwriter)
The output scale defines the Size at which-data will
be output. An output scale of unity means that data
will be plotted at the same scale as that at which it
was input. -

The input scale divided by the output scale gives the -
scale at which data will be plotted.

Type the scale at which data is to be output.

~mm=,~= ATUPHANUMERIC SIZE (IMM) (DECwriter)
The size at which text would be plotted if the output
scale is. set to unity.

Type the required text size in millimetres.

After accepting the default values or on completion of the above

sequence the User Operations Monitor is called into core. Phén the

digitising pencil is over the drawing area a tracking cursor is displayed

on the screen, a message stating the current input level is

observed at the top right corner of the screen and at the lower right

half of the screen the cartesian and polar coordinates of the pencil

relative to a trailing origin are displayed; In the absence of any

other messages, the user is free to use any of the menu commands or to.

start digitising data.
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The SET'UP overlays will have set some default values without

consulting the user. These may be changed by the menu commands

listed below:

1) 90910CK

15° LOCK

2) TRAILING
- ORIGIN

ABSOLUTE
ORIGIN

3) LINE
TYPE

l;) PN

5) SET
INPUT
LEVEL

In CONTROL MODE linesvare constrained to be at

angles which are a multiple of 90° or 150 to the

x-axis depending.on whether 90° LOCK or 15° LOCK

has been selected. 90° LOCK‘is set by default.

Thé cartesian and polar coordinates displayed on the
'screen may be relative'to the last point digitised
(trailing origin), or relative to the drawiﬁg input
origin (absolute origin)f Trailing origin mode is

set by default. o

There are four line types available and these are set
by four menu commands. The type of line that each
menu command will set is displayed in each menu'command
square. A solid line is set by default.

Four pen numbers ray be set from four menu commﬁnds.
These pen numbers correspond to thé four pen units

on the flat bed plotter and enable different line thickness
or colours to be used during plotting.

Pen unit 1 is set by default.

The level at which data is being added to a drawing

is defired by digitising the SET INPUT LEVEL command
followed by a level menu square. It is usually
essential for the user to maintain a discipline over
the input levels of various types of data. It is therefore
wise to use this command after a CLEAR W6RKSPACE which

sets the input level to the default level 60.



2.4.2 ‘Data Imput.

Data input takes place either in line mode or in one of the symbol

modes. The cufrent input mode is displayed in the top right corner

of the séreen where most system rmessages are to be found. If no mode
is specified then the system is in line mode. When in an - input

.mode and whilst the pencil is over the drawing area of the tablé ( not
over the menu area ) a tracking croés is displayed on the screen and
the cartesian and polar éoordinates of the pencil. The user is ablev
to issue any of the menu commands while in an input mode.'

In line mode all digitised points are connected by lines. A
point is normally digitised by pressing button 1 on the pencil a line.
is dra@ between the last point digitised ( the trailing origin )
and the current point. The new point becomes the new trailing 6rigin
and when in trailing origin mode the cartesian coordinates will be set
to zero at the new point.

In order to break the series of lines produced by digitising
several points using button 1, a button 2 should be pressed. After
a button 2 nd line will be drawn betwéen the current trailing origin.
and the next point digitised. Thus button 2 is used to 'break' a line.
If a button 2 was the last button pressed then a message 'LINE BROKEN'
will be displayed in the top right corner of the screen.

A symbol mode is entered by digitising the appfopriate symbol
mode menu square. A message will indicate which mode is in use and
a further message will inform the operator of the significance of the
next point to bé digitised (eg. the centre of a circle or the start |
point of a text string ete.).

To aid the data input and construction several utilities are

available and can be called by pressing a pencil button:

7k
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1) Windowing.

Upon first entry to User Operations Monitor the screen represents the
whole drawing area of the digitising table. Siﬁce the screen is only
one tweifth the size éf the table, the data is displayed.at a much smaller
scale than that at which it is input. Thus dgtails are not .
‘clearly visible. To overcome this problem, the user can select an area
of the table which he wishes to view at a larger scale. The procedure
iss |

a) Press button L.

A message 'LEFT HAND WINDOW POINT' is di»spllayed.

b) Digitise the bottom left hand corner of an imaginary square that
will cover the desired area-of the table ( Button 1 5.

A message 'RIGHT HAND WINDOW POINT' is displayed.

c) HMove the pencil from left to right across the table towards the
bottom right corner of the imaginary rectangle. As this is done a
rectangle is displayed on the screen, when this is seen to enclose
the required area, digitise the right hand window peint. The data
within the rectangle will be diéplayed on the full area of the
screen.

The menu command ‘RESET WINDOW' is used to return to the situation

where the screen represents the whole drawing area of the digitising table.

2) Angular Control.
In control mode lires are conétrained to be at angles which are a
multiple of 90° or 150 to the x-axis depending on whether 90° LOCK or
- 15° LOCK was the last'LOCK' menu command selected. Control is switched

\ . '
on and off by successive presses of button 6. When control mode is set



a message is displayed wiﬁh the other system messages in the top'right
corner of the screen, either 'CONTROL 90 MODE' or 'CONTROL 15 MODE!'.
3) Finding.
| The 'Find'! facilities of button 7 makes it possible to join

new data with existing daté and to poéition the trailing origin
accurately at a known position.

Pressing button 7 causes the following hessages to be displayed
on the screen:

Button 1 Searches for a point.

Button 2 Puts cursor on a line

Button 3 Finds intersection of two lines.

If the user wishes to join a line to an éxisting point or to find
a point for placing a macro, etc. then the cursor is moved close to the
point and button 1 pressed. If there is no point within a S5mm square
centred on the pencil position, the message 'NO NEAR POINT' is displayed
on the screen for a short time.

if it is wished to find a position on an existing line, then the
cursor is moved to the required position and button 2 pressed. This may
be done in or out of 'CONTROL MODE! as desired. Finding a position on
a line with the 'LINZ BROKEN! messagé on the screen‘causes the point
on the line found to be perpendicular from the point digitised. However,
finding a position on a line while drawing a line causes the point to be
- found to be the intersection of the two lines. |

The third button enﬁbles the user to find the intersection of the
two lines when there is no previously defired point at that intersection.

The following summarises the main uses of 'Find' facility:
a) To ensure that data joins up cofrectly.
b) By using a break line before finding, to position the trailing

origin at a known point in order to:-



1) Use it as a starting point when entering drive mode.
2) Measure distances.

3) Use the position as an origin for a macro.

L) Drive lMode.

Drive mode allows the user to specify the location of points with
precision. In this mode the coordinates are driven 1in millimetre
increments from the trailing origin by positioning the pencil over the
tdrive patch! on the menu and pressing button 1.

Drive mode is sﬁitched into and out of by successive_presses of
button 8. On entry to drive mode, the user selects X-Y ( cartesian )
or R-THETA ( polar ) drive mode by pressing button 1 or 2. When in drive
»mode, a message 'DRIVE MODE! is displayed in the top left corner of the
screen, and the cursor jumps to the posiﬁion of the trailing origir.

It is no longer related to the position of the pencil on the table.

The drive mode patch, positioned in the bottom left cormer of the
table,'is a 9 by 9 matrix of 10mm squares. When the pencil is positioned
over the central square points may be entered by -the use of buttons 1 and
2. If the pencil is pesitioned over any other square, thé coordinates will
be incremented by an amount determined by the position of the square
relative to the central square, every time button 1 is pressed.

In this.way, when in cartesian drive mode, the x ard y coordinates
can be incremented in cnes, tens} hundreds and thousands of millimetres,
and when in polar drive mode the radius is again incremented in ones, tens,
hundreds and thousands of millimetres while the angle may be ircremented
in ones, fives, fifteens and nineties of degrees.
| Of the two reméining buttons, whose sue has not yet been described,
button 3 is usedvto hand cqntrol to the macro processor and.button S has

a floating assignment. Because it takes much longer to move the pencil
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t0 a menu command square than to press a button it was decided to

give the user the faéilitonf choosing which menu command he would

most like to be able to call merely by pressing button 5. Button 5

is set up so that it is equivalent to the command 'LINE MODE'. Thus when
the user wishes to return.from a symbol mode to line mode, he needs

only press button 5;

To assign button 5 to another menu command, position the pencil
over the required menu command and press button 5. Button 5 is now
equivalent to‘this.menu command .

The last facility, an important factor for the Operatof, is the
division of data into different leveis. The operator can selgct one
of sixty different levels under which to input data, by diéitising
the 'SET.INPUT IEVEL! menu command followed by a level menu square.

The operator is able to specify the levels to be active or dormant.:
Data under an active level will be displayed and processed by the system.
In general, only filing operations will be carried out on data under |
dormant levels. Thus by storing data under different leveis ard by

declaring them active a dormant, the operator is able to:

a) Reduce dgisplay and processing time.
b) Reduce editing time.
¢) Obtain clear views of different categories of data. ( il.e. may

distinguish between water pipes and électrical cables ).

To make the best use of this facility, it is advised that the usér
sit down and think about the best way to split his particular data into
levelé. Much time can be saved by classifying data under different
ievels befbre starting a job.

A message in the top right corner of the screen will tell the operator
which level number is the current input level. After a 'CLEAR WORKSPACE!

command, the input level will be set to level 60. It is important to
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remember to reset it.
An additional input mode is Ybackground mod;'. In this mode it is
a calling program that is in control. To the user it appears similar to -
line input'mode, he is able to window, armd change the position of the -
‘trailing origin by pressing button 1, finding ( button 7 ) uo# driving.
It is used when the calling program wants the user to define a point
( e.g. the macro editof calls it to request the user to define the
point to which he would like a macro to be moved).
When the user has set the trailing origip'to-the required position,
he indicates his satisfaction‘by pressing button 5.
In this mode there may be instructive meséages, but elways the
message: :
B5 ENTERS POINT
will be displayed.

This mode is also useful in applications programming and is discussed

further in Chapter 3.



2.4.3 Filing and display.

All data entéred iﬁ one of the inpﬁt modes descriﬁed injsection
2.4.2 is automatically buffered into a random access file called
the 'workspace!.

On entry to the system the workspace is empty. Data left in the
workspace at the time a run is terminated will be loét. The operator
is able to clear the workspace by giving the 'CLEAR WORKSPACE' command.
The menu command 'ERASE SCREEN! clears the screen of any information
which has previously been stored on if and the workspace-is di splayed
by digitising the !DISPLAY WORKSPACE! command.

The data in the workspace may be stored under diffgrent levels.
To display all levels of data the user should digitise the menu comménd.
'DISPLAY ALL LEVELS!, To display only selected levels of data, the usér
should digitise the command 'DISPLAY NO LEVELS' foilowed by the level
squares of the levels that the usef wishes to be displayed.

The data contained in the workspace may be filed in any of 100

semi~permanent mass storage files. These are represented by the 100 file

menu squares. There are four menu commands associated with these files:
After digitising one of these menu commands, the user additionally digi~
tises a file squére to indicate which file is to be operated oﬁ' The
four cormands are:

1) WORKSPACE The file pointed to is deleted and replaced by the

F%gE . contents of the workspace. A4 méssage 'CONTINUE! is
displayed in the top left corner of the screen after
execution is complete.

2) ggLE The contents of the file pointed to are ADDED to the

WORKSPACE contents of the workspace. The workspace is then
displayed. If the file is emply, a message 'FILE EMPTY!'

is displayed in the top left corner of the screen.

8o
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3) DISPLAY The contents of the file pointed to are displayed in a

FILE
brief form. ( Symbols are not displayed).
l}) DELETE The contents of the file pointed to are deleted.
FILE

~ The user is able to create a permanent record of data by transferring

it from the workspace to any assigned device or file. The procedure is:

a) Digitise menu command 'OUTPUT TO ASSIGNED DEVICE', a message will
be displajed on the screen: |

B1 OUTFUT

B2 INPUT
where Bl and B2 refer to the buttons 1 and 2.. After one df these is
selected, a message 'A003 nnnnnn ' will be written on the keyboard.
This is issued by DOS because it does not know which device is to be
used in the data transfer. The user must now assign the required deﬁice
or file as logical device 3. The method for doing this is described in
the 'DOS MONITOR HANDBOOK! reference 3. |

After the daﬁa transfer is complete, control is returned to the

User Operations Monitor.



2.4y Macros.

Any of the 100 semi-permanent mass storage files may be manipulated
and added to the workspace. This enables similar items, components or-
sections of data to be created in the workspace only once, filed and v
subsequently reproduced with very little effort. Groups of data which
have been entered into the workspace in this way are called 'macros'.

As with levels, it is advisable for the user to study his problem
and to decide in advance which éomponents shall be used as macros.

The operations which can be performed on a semi-permanent mass

storage file by the macro processor are:

1) Translation
2) Rotation
3) Scaling

L) Mirroring or handing

It is also possible to define the start and end point of a macro. Hhen
the macro is added to the workspace, the start point will be placed

in the position defined by the trailing origin and the tréiling origin
will be set to the coordinate value of the énd point of the macro. A set
of status flags define which operations the macro processor will perform

when it is called into action. These are set by the following menu cormands:

1) ROTATION Sets the clockwise angle through which the
0°, 90°, 1809, 270°
macro will be rotated as either O°, 90°,_180°,

or 270°.

2) TYPE ROTATION If the angle required is not any of 00, 90°,
180°, 270° then the 'TYPE ROTATION' cormand is

used and the angle is typed in on the DECwriter.
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3) MIRROR The macro will be mirrored about a line
through its start point and parallel to the

y~axis.

;) SELECT SCALE When the macro is processed, the user will be asked'
to type in the scale required on the DECwriter.
5) SELECT START The user will be asked to define the start/end

SELECT EMND .
of the macro at the time it is processed.

The 'SET SCALE!', 'SELECT START', 'SELECT END' and 'MIRROR!. menu commands
act as switches. Thé first time the command is digitised the rélevant
status flag is set, the next it is unset, and so on. If the 'SELECT START!
flag is not Set the start point of a mécro will be set to the value of the
first data point in the macro. Similarly, if the 'SEIECT END' point

flag is not set, the end point of a macro will also be set to the value of
the first data point in the macro.

The meru command !'DISPLAY ACTIVE PROCESSES' causes a display on thé
sereen which indicates which status flags'are set and therefore which
operations will be performed when the macro processor is next used;

The display shows a flag representing a macro. The flag appears rotated‘
and mirrored according to the condition .of the status flags. DMessages
show what the user will have to set at the time a macio is processed:
SELECT START
| SELECT ©£MD
SET SCALE

A macro is called by digitising the menu command 'USE FILE AS MACRO?

followed by the appropriate file square. If the 'SET SCALE' flag is set

a message 1s displayed requesting the operator to type the required scale

on the DECuriter. If either the 'SELECT START! or 'SELECT END' flags are
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set the macro is scaled to a convenient size and displayed on the screen
with the following message:

B7 SELECT START (or EHD) POTHT

B8 CONTINUE
The user 'finds!' the start or end point of the macro. If the user is
unable to find the correct point, he may use button 8 to allow the
processor to continue and the macro will be processed using the first
data point in the macro as the start ( or end) point.

When processing is complete, the macro is displayed on the screen in
- the orientation and position that it would be placed if it were to be
directly added to the workspace. However, the user has the option of
either'accepting the macro as it is, or of repositioning i£, or of storing'
the processed macro in a semi pefmanent mass storage file. At this stage

the system appears to be in line input mode but a message is displayed:
B5 TO ENTER POINT

In this mode the user is able to use the find, drive and window facilities
of line input mode but no point is entered until button 5 is pfessed when
the macro will be added to the workspace with its start point at the current
trailing origin. If a button one is given over a file square, then the
macro is filed. If a point is entered over the drawing area, the macro is
added to the workspace and displayed. The system reverts to input mode.

The last macro that was processed may be called by pressing button 3
whilst in an input mode. The systenm will enter the state Just described
except that there is no option to file the macro.

The most efficient way to use macros is to ensure: that the first

data.point in the file to be used as a2 macro is the point required as
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: the'starﬁ point; the trailing origin is at the point at which the macro

is to start; that the correct rotation angle is set; that no other status
flags are set. Then give the command USE FILE AS MACRO-. The macro

will be processed ard displayed on the screen in the desired position.
Press button 5 to enter the current value of the trailing origin, the macro

will be added to the workspace and displayed.

If an end point is selected, the user may add a chain of macros
to the workspace by pressing buttons 3 and 5 repeatedly. The macros will

be added start point to endpoint, start point to end point, etc.



2.4.5 ZEditors.

There are three editors: point editor, line editor and the

macro and symbol editor.

1) Point Editor.

The point editor is used to move points on a drawing. The editor is

~ entered by the menu command 'POINT EDITCR!.

The 0pefator has the following button options:

Button 1

Button 2

Button 4

Button §

Button 8

Define point

Define point to be joined to a line
To window

Application function

To exit -

Button 1 is used to define the point to be moved. The point is located

by pubtting the cursor near it and pressing button 1. When the point

has been defined the operator has the following options:-'

Button 1
Button L
Button 5
Button 6
Button 7

Button 8

Locate point

To window
Application function
COUTROL switch

To FIND a point

To exit

The new position of the moved point is defined either by digitising it

using button 1 or by FINDing another point.' The‘latter method is used to

. move one point to coincide with another.

If the point to be moved is defined using button 2 the operator is asked

to defire a line to which the point is to be moved. This he deoes by FINDing

the two ends of the line. The point is moved to the line in such a way that

the distance moved is a minimum (i.e. at right angles to the line).
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2) Line Editor.

The line editar called by the menu command 'LINE EDITOR' is used to
delete straight lines. On entry to the program the message:

PRESS ANY BUTTON WHEN NEAR LINE TO BE DELETED
is displayed. VWhen this i1s done the program seafches for a line near the
point at'which a button was pressed. When a line is found which is within
- the tolerance set in the program, it is continually disélayed with the
messages: |

B1 EXIT
B2 ADVANCE SEARCH
B3 DELETE LIVE

If the line displayed is the line required, the user-deletes it by
pressing button 3. He may then exit ( button 1 ) or look for a new line.
This is done either by moving the pencil so that the cursor becomes closer
to the desired line or if this fails by pressing button 2.

It is important far the user to understand that having found a line
the editor only searches for other lines within the buffer which contains
the found line until a button 2 is pressed when it will read through the
file until another lire is found. The program is arranged in this way in
the interesis of speed for it often happens that where several lines are to be
deleted, they are all contained within the same buffer. By moving tﬁe
position of the pencil around these lines will very quickly be found.once
the one of the series has been located.

On exit from the program the next screen is erased and the workspace

redisplayed.

3) Macro Editor.
The macro and symbol editar is called by the menu cormmand !MACRO EDITOR!.
It allows rotation; translation or deletion of any macro, nest of macros or

symbol.
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The méqro editor is called by the menu command 'MACRO EDITOR' and on

entry a series of messages are displayed:

B1 DEFINE POINT

Bl WINDOW

B8 EXIT
When the program is displaying these messages, it is said to be in state 1.
The operator defines a point within a macro or a real data point within
a symbol. ( because a symbol is program generated some of the points displayed
on the screen may not actually exist ) by placing the pencil near the pbint |
ahd-pressing button_1. When the éoint is found the program moves to what
will be referred to as state 2. If the point found is within a macro
a box is continually displayed around the macro, if within a symbol the
symbol is displayed only once and the following messages are displayed:

B1 ADVANCE SEARCH
B2 INCREASE MACRO
B3 DELETE
Bl SELECT ROTATION
B5 REDISPLAY SYMBOL
B6 MOVE AND ROTATE
B7 MOVE
BG RESTART
It may happen that more than one macro or symbol contain the same
point, in this case the first macro or symbol encountered in the workspace
is diéplayed. If this is not the one required, the operator may select
the next one by pressing button 1.
Where a macro is made from other macros and symbols, the macro or
symbol displayed may form only part of the macro that the operator wishes to

edit. This is because macros can be nested in a manner similar to DO loops

in Fortran and the smallest loop containing the found point is displayed.
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The operator can request the contents of the next outer loop
to be displayed by pressing button 2 and the next 1bOp out again by
anothef button 2. If no outer loop is found ( i.e. there is no
cbntaining macro ) the program returns to state 1. If button 3 is
ressed the di splayed macro or symbol is deleted and the program returns
to state 1.

If the operator wishes to rotate the found macro or symbol button L i

enables him to set up the rotaition angle. The following messages are

displayeds
Bl TYPE ANGLE
B2 0°
B3 90°
BL 180°
Bs 270°

The se buftons defire the rotation angle. If button 1 is pressed the
operator must enter the angle via tﬁe DECwriter. After the angle has
been set the program retwns to state 2.

If the operator forgets Which symbol was found, he may redisplay it by
>pqessing button 5.

When a button 6 or 7 is pressed, the program calls the background
mode and the user must entef the position to which the macro or symbol is
to be moved. During this move, the point fqund within the macro ié used as
the locating point. If a button 6 was used to initiate the move the macro
or symbol will be rotated through the angle set by the use.of button L.

The box or symbel is reaisplayed in the new position and the progranm
returns to state 2.

A button 8 returns the program to state 1.
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2.5 Assessment of GCaDS

GCADS has proved itself té be a useful tool for the production of
drawings of many t&pes from simple flow charté and diagrams to full General
Arrangementgg‘ However, it has shown its greatest potential as a vehicle
for applications programg.

It has been used as a base for prograﬁs in: building design;
structural analysis; the layout, scheduling and costing of modular store

fittings; and for producing animated film sequences.

Irievitably there are criticisms of the present system:

.1)' The system suffers somewhat as a result of growth. It 1s almost
impossible to plan every_detaii of something rédically rew., During the
implementation of any such plan design changes are made as unforseen snags
appear, or, new ideas are concleved and the system is stretched to embody
them.  Thus some parts of the programs have become less than elegant and a
certain amount of restructuring, particularly a careful lock at the comnon

areas would tidy the software.

2) The system is too hardware dependent. In an industry in which
such rapid progress 1s being.made in harware development, software that
depends on particular hardware is a very perishable cormodity. In gereral
where GCADS scftware interacts directly with harware the interacticn is
confined to a few subroutines. Hewever the system is centred round the
digitiser as the main means of data input. A large amount of the software
reflects this and it weuld take sigrnificant effort in.reprogramming to |
replace the digitiser/storage tube combination with a different device.

It would be pléasing if the system were able to accept data from a varilety
of devices such as teletypes, cathode ray tubes with light pens, digitisers

or storage tube terminals.

Different applications can best utilise different input/output devices.
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The digitising table/storage tube combination is excellent for +taking data
Irom existing drawings and sketches. Editing the same data might be more
easily achieved using a CRT graphics terminal. Thus in a2 time sharing
s&stem with several man/machine interaction stations the devices used in
each station might range from a simpie keyboard or alphanumeric display to
a graphic CRT terminal of digitiser and storage tube combination.

‘This would allow better use of the equipment and reduce the average cest

of each terminal.

The.coétleffectiveness of the draughting syétem depends very much on
the type of drawing to be produced.> Where the drawings ﬁontain many common
features a library of components can be established. In such a cése the
time savings.and cost savings can be very considerable.

Where the drawings have only a few similar components the.use of a
draughting system may only be justified if the acquired data is not only
used for producing drawings but also other purposes.eg. analysis, schedules,
costs etc..

It is cértain that the policy of»maintaining>é simple énd;open data
base in oraar to allow the addition of applications packages was correct.

It is also true that a:sérigs.of system concepts have been developed which
a;e‘independent of all the harware used and wﬁich may certainly be employed
on future hardware. _

GCADS not only adequately fulfills the role for which it was designed
but the role itself is extremely important for the development of applications

programs in Computer Aided Design.
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CHAPTER THREE

Using GCADS for Application Programs

When GCADS was written, specific sockets were left free far use by
applications programs. The facilities available to the applicati.on
programmer are:- | |

-~ Overlaying system and ovérlay calling by menu command.

; Buffer and parameter space iﬁ the resident common area.

- Ability to obtain data from input devices and to file and display

data by 'stecking' GCADS uﬁility overlays andby calling utility

‘ subroutines. |

1) Overlaying system

a) Using the overley builder.

The overlay builder OVAL can handle up to 128 overlays. Each overlay
may.be up to ten kilowords in length aﬁd is referred to by number within
the programs. GCADS occupies most of the lowest 30 overlay numbers. The -
overlays are built by OVAL into a random access file CADMAC.COVL on UIC 2,2
on the moving head disk unit. In the following dialogue messages printed
by the computer are underlined.

The ovez;lay buildexr is run by typing the comand:f

RU OVAL
the. computer responds with:-

OVERLAY BUILDER VOO1
*

the user may. tkn build overlays into the random access file using a command

of the form:-
% OVERLAYN/OV:N,OVERLAYM/OV:M,+.a..
where OVERLAYN and OVERLAYM are the load modules for overlay numbers N and

M.
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‘The user may obtain a listing of the current overlays and overlay numbers

contained in CADMAC.OVL by the command:

#DV:/LI
where DV: is the device on which the listing is to be produced. To zero

CADMAC.OVL the

*/2E

command is used. |
Overlays are program called from CADMAC.OVL by subroutine calls to

subroutine OVLINK and STACK as described in section 2.3.2.

b) Adding a user menu command.

The call for a user overlay may eithér be initiated from within another
user overla& or by a menu command.

Clearly a users program must use at least one menu command to call the
first user overlay. Menu cormand squares one through forty are reserved
for user coﬁmands. The way in which menu command squares are mapped is
. described in section 2.3.3. The steps that a user programmer must perform

t0°link an overlay to a menu command square are as follows:

1) Iink the éverlay main prOgraﬁ with its subroutines to a bottom limit
of 30776. | | | |

2) Select an overlay number OVNUM.

3) Select a free user command menu square:and note its position in the
menu MNUM. .

L) In the byte map in subroutine MENSEL select an unused iocétion and
edit in the value of (OVNUM - 1). Note the position of the chosen
. location MAPNUM within the byte map.

5)_The byte map in subroutine MENMAP represents the first 80 menu command
squares. In the location MNUM in the map edit in the value MAPNUM.

6) Iink GCADS overlay DIGOV which contains the menu handler with the
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new versions of MENSEL and MENMAP and the GCADS library of subroutines to
a bottom.limit of 30776.
7) Run the overlay builder OVAL and build DIGOV as overlay L and the

user overlay as overlay OVNUM.

c) Adding a symbol

It is convenient at this stage to describe the linking of symbols to
menu symbol squares. It will be recalled that a symbol is a graphic item
whose display is program generated.  There aré two segments of program -
concerned with each symbol: the first is to colleét. and store the data
points which define the dimensions and location of the symbol - the symbol
.ex_ltry segment; the second to generate and display the symbol upon request
- the sjmbol display segment. These segments of program need nb‘b be within
the same overlay, 1n fact the speed of display is greatly impro‘ved if |
commonly used symbol display segments are added to the GCADS display overlay
DISALL - overlay number 6.

The process of linking a symbol entry segment to a symbol menu square
is very similar to that of linking a user menu command except that

subroutines MENSEL and MENMAP are replaced by subroutines SYMiO and SYMAP.

1) Link the overlay main program containing the symbol entry segment with
its subroutines to a bottom limit of 30776.

2) Let the overlay number be OVNUM and the segment number I;e SEGNUM.

3) Select a free symbol menu square SQNUM

L) In the word map in SIMGO select an unused location N and edit in the
value of (OVNUM - 1)*25. In the Nth * 1 location in the byte map in SYMGO
gdi‘b in the value of SEGRUM.
© 5) In the byte map in SYMAP in location SQNUM edit in the value of N.

6) Relink DIGOV with the new versions of SYMGO-and SIMAP as before.

"7) Run the overlay builder to build DIGOV as overlay L and the overlay
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containing the symbol entry segment as overlay number OVRUM.

A symbol display segment is called by a call to subroutine DISSYIM(N),
which contains word and byte maps similar to those in SYMGO, These must

be updated as follows 3

1) OVNUM is the overlay number containing the symbol display segment in
segment n@er SEGNUM. ‘ |
2) In the Nth position in the word map in DISSYM edit in the value |
(OVNUM~1)%25 and in the Nth * 1 position in the byte map edit in the value
‘of SEGNUM.
3) Relink and build all overlays that call DISSIM. This will certainly -

include the display overlay DISALL and the macro editor MACROL.

2) Buffer and parameter space in the resident common area.
There are three common areas reserved for user overlays:
COMMON/GENRL/ SYS(2),USERP(8)

‘COMMON/MESAGE/ SYSTEM(27),USERM(5,5)
COMMON/USER/ USERB1(128),USERB2(128)

wh‘ere
USERP is to alléw the user to store parameters particular to his problem.
USERM is dispiayed aé five lines of messages by the system when it is
in an input mode. Four characters may be stored in each variable, the last
character in a message must be a zero. Therefore 5 lines of 19 characters
are available. These are used to let user overlays receive- data through
the system data input facilities and yet allow the user program to send
messages or instructions to the operator during data input.
USERB1 and USERB2 are intended to be used as buffer space and each
corresponds to one physical disk rgcord‘in length. = USERB1 and USERB2 can

be saved and restored to and from the disk unit by calling STORCM(N) and
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RESTCM(N) where N is the disk record number in random access file CADMAC.RAO
af which thé data transfer will commence.

In practice it has been found that there is a lack of parameter space
free for the user. In this case the user programmer may choose to use some

of the locations in USERM for storing parameters rather than messages.

3) Obtaining data points by 'stacking! 'background mode'.

It frequently happens that an application program requires coordinate
data from the digitising table. The application programuer can obtain the
data aﬁd allow the operator use of the draughting and construction aids
usually available in an input mode by stackihg BACKOV the backgrbund overlay.

BACKOV stores the messages:

- BS ENTERS POINT
B3 ELT

in common area MESAGE. and-calls the background loop. The operator is able
to find, drive window etc. but the position of the trailing origin'will
" not be returned to the application overlay until the operator presses button S.
If button 3 is‘pressed BACKOV sets MNUM in common area MENU to -1 and
returns control to the application overlay.
The current position of the trailing origin i.e. the last.point entered
by the operator is returned in.XT énd YT in common area PARAM.

The advantages gained from using BACKOV are:

~ The operator is always presented with a similar set of draughting
aids and button functions.

- The application prograﬁmer is saved' from a 1ot :of programming.

-~ Unnecessary duplication of programs is avoided and the application

programmer is able to pack much more useful work into each overlay.
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CHAPTER  FOUR

STASYS - STructural Analysis SYStem

L.1 Introduction

Methods of structural analyéis can be divided into two groups ( see
figure );,1 ) analytical methods and numerical methods. The limitations
imposed by analytical methcds is well known; Only in the simplest of cases
are closed-form solutions feasible.  Approximate sqlutions can be found for
some Simple structures, but in general for complex structures analyticai
.methods cannot be used with any degree of accuracy and one has to resort to -
- numerical methods. The numerical methods of structural analysis can be

divided into two groups:

1) Numerical soiutions of differential equations for displacements or

stresses.

2) Matrix methods based on discrete-element idealisation.

In the first type the equations of elasticity are solved for a
particular structural configuration either by finite difference or by direct
numerical integration. In this approach the analysis is based on a
mathematical approximation of differential equations. Practical limitations
restrict the applicatidn of these methods to simple structures.. Also
solutions cannot be found for general structural coﬁfigurations.

In the second method the structure is first idealised into an assembly
of discrete structural elements with assumed form of displacement or stress
distributions, and the complete solution is then obtained by combjining these
individual approximate Stress or displacement distributions.in a manner
which satisfies the force-equilibrium and displacement‘compatibility at the

junctions of these elements. Methods based on this approach are suitable
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for the anzlysis of complex structures. These methods involve an appreciable
quantity of linear algebra and the use of matrix algebra is convenient.

The formulation of the analysis in matrix algebra is ideally suited for the
solution on the digital computer}

The finite element method of aﬁalysis has been widely adopted in many
fields of engineering. The object under analysis is represented by an
assemblage of components or elements interconnected at a finite number of
points. It is the finite character of the structural connectivity which
makes possible solutién by simultaneous equaﬁions. The approximation
involyed in the use of the method is essentially physical. There need be
no mathematical approximation in the solution.of the substitute system.

It is reasonable to suppose that the larger the number of elements used
to represent the original structure,bthé more.accurate the representation
and hence the analysis will be. This has been the experience in practice
and most structures have to be représentéd by a considerable number of
~ elements.

Data defining the position of each nodal point, the m;terial properties
of- each element, tha element intercomections and loading and.constraint
conditions must be generated. It is the effort required in generating
and validating this data as well aé the.computing cést which must be balanced
against the probable gains obtained by cérrying out the analysis.

In the aero industry minimum weight design is absolutely crucial and
yet rigorous safety standards have to be maintained. It is also an industry
bwhere the same design may be used for a considerzble number of production
units. The cost of analysis is therefore spread over a considerable number

of units. For these reasons a great deal of the develcpement of the finite
element method was carried out in the aircraft and aerospace industry.

However the comprehensive finite element analysis packages such_as
NASTRAN thathhave emerged are extremely large. They can only be run on

large computers and are expensive to use.
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In the building industry for aesthetic reasons and because site
conditions may demand it,aa particular building design may only be used
hoﬁce. Optimum weight design is only important in so far as it may save in
material costs. Thus it is relatively important to keep the total cost of
the building design process as low as possible. Design cost may be as much
as one tenth construction cost. With the présent high cost of finite
element ahalysis it is not generally considered to be justified unless
particﬁlar factofs are involveds: |

- The design is radically new and its behaviour unknown.

- Exceptional and varied loading conditions are anticipated.

- The design'is to be used for a number of‘buildings*so the cost of

analysis will be spread and the bernefits multiplied.

There_alserxists the problem that codes of practice may rot allow
full exploitation of the knowledge gained from fhe analysis.

Computing costs are falling and have fallen over the last years, to the
extent that data preparation may cost more than the actual computer analysis.
It is in the area of data preparation that this project is aimed.

The desire is not only t§ greatly reduce the data preparation cost for
finite element anzlysis of buildings but also to determine the extent to
Which the analysis might be carried out on minicomputers that a Civil
Engineéring Consultancy would be ablerto'purchase.

If such a system could be produced the tool of finite element analysis
would be placed in the hands of every enginéer for use on many of the
problems that were not previously analysed aCCurateiy because to do so
would have been too expensive and time consuming.

The system was initially to contain oﬁly line and rectangulér plate

elements because much modern building can be idealised by the use of



101

these alone. A further constraint that the elements should lie in a
vertical or horizontal plane was also added to facilitate data input.

The system makes use of, and relies on, the fact that buildings can
be considered as a series of layers and that data will frequently be
'available on géneral érrangement drawings at different levels in the buildig.
building.

There are four stages in the analysis process:

1) Data input
2) .Data collation and data analysis
3) Structural analysis

L) Outpuﬁ of results

The user créates graphic data files of each floor of the building
describing the structural elements and loading and boundary conditions.

When the user is satisfied that the graphic representation is accurate
the data analysis programs are initiated. If these issue no error or
-diagnostic messages then the user proceeds to solution end subsequently
to the'output of results. |

It is important to realise that because there are data collation and
analysis programs between ﬁhe graphic'daté which is inﬁut by the user and
the data that the structural anélyéis programs operaie on, the user has’
a great deal of freedom. He may not only use all the utilities and
facilities provided by GCADS but may also set up the graphic model of the

structure in any order.
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L.2 Finite elerent theory

An elastic structure or confinuum may be represented by many discrete
components or elements.interconnected at a finite number of nodal points
situated on the element boundarieé%;? The displacements of these nodal |
peints will be the basic unknown paraméters of the problen.

A set of furctions is chosen to define uniguely the state of displace-
ment within each finite element in ternms of its nodal displacements. Thus
the displacement functions defune uniquely the state of strain within an
element in terms of the nedal displacements. These strains, together with
any initial strains and the constitutive properties of the material define
the state'of stress throughout the element. o

‘A system of forces concentrated at the nodes and equilibrating the
boundary stresses and any distributed loads is determine&, resulting in a

stiffness relationship of the form:
o A A A
Wt - e B g

where: {F}A represents the nodal forces on element 4,
fK]A is the eleﬁent'stiffness matrix,
quit represents the nodal displacements of element A
lF}g represents the nodai forces required to balance any
distributed loads acting on the eiement
and {F}?O re?resents the nodal forces required to balance any initial
strains such as may be caused by temperature change, if the nodes are not
subject to any displacement.
It is not always easy to ensure that the chosen displacement functions
will satisfy the reguirement of displacement continuity between adjacent
elements; Thus, the compatibility condition on such lines may be vioclated.

By concentrafing equvalent forces at the nodes, equilibrium conditions are -
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satisfied in the overall sense only. Iocal violation of equilibrium conds
itions within each element will usually cccur.

The cheice of element shape and of the form of the displacement
functiens will determihe the accuracy of the finite element model,

It is alsé possible ‘te define the stresses or internal reactions
at any sbecified point or points of the element in terms of the nodal

‘displacements:
A _ AgaA A, A
(0" = [S]7{" + {0} + {03,

where: [S]A is the element stress matrix

and {CUA' répresents the nodal stresses for element A,
The last two terms are the stresses due to the distribuﬁed element leads
and initial stresses when no nodal displacement occurs.

In STASYS it is assumed that there will be no initial strains and
temperature effects are not included. ILine and rectabgular elements are
used although it is hoped that other elements will be added to the system
iater. In any case each nodal point in the structure is allowed six degrees
of.freedom.

The stiffness matrix for the line element can be derived directly
from the differentialvequétions for beam displacements in engineering

beam theory.
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L.2.1 Derivation of stiffness matrix for line element.

The derivation is for a slender sbraight bar of uniform cross section
capable of resisting axial forces, bending and twisting moments.
The forces acting on the element are EH to F12 and the corresponding

displacements U1 to U12.

1) Axial forces F, and F

7
F, = —(%%) EA governing differential equation.

hence F1x = ~JEA * C1 -and assuming that the left hand end of the element

has displacement U1Awhile U7 =0 at x*= 1 thens C1 = F1l and:
¥ . _ EA. also F, = -F, from equilibrium.
1'-']'_"'-,U1 1 7
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'2) Twisting moments Fh and Fio

Differential equation for twist O on the element:

ds

E)J, =. ‘GJ ’a-'-x-
hence th = ~GJe * C1 Iet 8=0 at x=1
then C1 = Fhl Also e = Uh at x=0
o F, = g—‘IU and F, = -F from equilibri
5 )J» 1 )J» 10 )4 m equl 1Uum.
3) Shearing forces F, and Fg
| o : F
( 1 A
’ 0 1 .

The lateral deflection w on the beam subjedted to shearing forces and

associated moments is assumed to be due only to bending strains.

d2w |
EI = =5 = Fx - Fg - (3.1)
Cdx
F o F6x2
= aroe— + '
. BT 7 T Ohx TG0 - G2
dw _ - o =
= 0 at x = 0 and x=1, and w=0 at x =1
Fx0 Fx° 1OF
hence El w = 2 - S 2
2 6 2 12
F21 ,
where F6 =5 2lso from equilibrium:
| 1’s,
Now at x =0, w = U2 and from 3.2 U2 = T5RT
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= IR 3 |
therefore F, (12LIZ/1 ) U, seeeeees 32’2
F, = (65T /1%) U, eeen
6 Z 2 * L LR 2 LI 1§ 6,2
F. = (12EI /1°) U ceeeeee K
3 7 2 ‘ © 78,2

= (g 2
o (6LIZ/1 ) U2 ceeevens k12’2

Similarly if the other end of the beam is displaced:

kg8 = 2,2
and kyp g = kg o

L) Bending moments F¢ and F,,

To obtain the stiffness coefficients associated with the rotations

Ué and U,, the beam is subjected to bending moments and shear forces.

12

"Deflections can be 6btained from equation 3.2. The constants C1 and

02 must be revaluated for the new boundary conditions:

U6 =0 at x=0,x=1 and

Then the equation becomes: BI U, = gg © - 13x) + §é(1x - x2)

and F2 = éfé
; L1

The remaining forces can be determined from equilibrium'and together with

~the boundary conditions:

.g’—'lr. ) =
ax U6 at x=0
, EIz
tOgiV63 F6 =}4T~'U6 404 0900 6,6
R, = (68 /1%) U, vevees kg
3 o 6 sees e 8,6
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F12 = (2EIZ/1) U6 * 8049000 k12,6

and by gymmetry k12,12 = k6,6

5) Shearing forces F3 and F9'
These are exactly similar to the shear forces F2 and F8 except that
the bending moments F5 and F11'associated with F3 and F9 are in an opposite

sense to Fé and F12 assoclated with Fé and F8.

Hence: k3,3 = -k2,2
kg 3 = kg o
k9,3 = “Kg,2
k11,3 T K12,
k9,9 = ¥,8
k11,9 T K12,8

Obviously it is Iy that is used in these expressions not Iz'

6) Bending moments F5 and F,,

The same applies as for the shear forces and:

ke 5 7 K 6
k9.5 = Kg,6
k11,5 T K26,

If all the stiffness cocfficients are collected and put into matrix

form then the complete stiffness matrix for the line element is formed

as shown in figure .2,
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Iine element stiffness matrix

Figure h2
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Lk.2.2 Formulation of rectangular plate element stiffness matrix.

" In the small deflection theory of thin plates the transversé ( normal )
deflections 'w! are uncoupled from the in-plane deflections u and v.
Consequently the stiffness matrices for the in-plane and transverse
deflections are also uncoupled and they can be calculated independently.

Consider a typical element A.

\

In order to derive the stiffness matrix for the transverse deflection
w three degrees of freedom have to be considered at each point. Two
rotations about perpendicular axes x and y within the plane of the plate

and the lateral deflection w. We denote these displacements:

u:e =_(')_V_&T_
- i xi O¥.
a
Ji i

W oW,

i i

We refer to the displacements of the element as:

{U}‘A =1 u
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. ©imilarly at every nodal point forces Fi may be assumed to exist.

Each consists of three components:

T T s | {3t - Fy
My F,
in Fk

o

The primary interest is usually in the internally distributed moménts
of the elements. The solution of the problem hinges on determining the
element stiffness matrix [K]A and the matrix relatiizg the internal moments
to the element displacements [S] A |

The lateral deflection w may be represented by a polynomial in x and y .
Since three degrees of freedom exist at each of the four nodes, twelve
undetermined consta.nf.s may be used.

A suitable expression is:
2 2 2 2
= + + + + + + + + A +
w A1 _Azx ABy Ath Asxy A6y A7x3 Asx Tt Ay

Amy} ¥ AHXBV * Am’qg

from which we obtain:

= A = + + + A L+ + 2 4 3 2
Bx - A3 ASX 2A 6y ABX 2A9xy 3A1 O:’ 3A1 ] X 3A1 XY

= A = + + + 2 4 + 24 2. 4 3
Gy - A2 2Ahx Asy 3A7x 2A8xy A9y BAH:{ vy ALY

Substituting as follows:

Xi=0 yi=0 )3( B
= a . =0
XJ yJ T
x, =0 Y. = b b A
k k l
X, T a ¥. = b -
L 1 '<~—-~ a - —~

we have: {U}A = [C]{A} - X
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The curvature and twist at ary point in the plate can now be determined

in terms of the twelve constants.

2 ' |
X = |- < sy = s1re1 vt
& |
J
8
From the theory of plates .

2 2
M = -D ( 2! W 4 E} W )
e . .

1
)

=)

L
RN
+
ELRN

~

M
J

B
2
11201 - Y°)

3

where D

hence we havet

' {u} = (D] X

’ 3

p] =B V o
. [ 12( 1 -)/2)

1 0
0 0 %—(1—)}j
and
2
v

& 2Ah + 6A7x * 24y * 6Aﬂxy )

2
- ’ .
-—é—— = -( 2A6 + 2A9X + 6A10Y * 6A1 zxy )

2
W . _ 2 2
g‘xEy Ag * 2igx * 24y * 3Ay% * 34,5

[B] is showm in figure L.3.
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During any displacement the external work done must be gqual to the
interna; work.

Ifua displacement is such that it is unity in the direction of a
selected external force and zero in the direction of all other forces, the
internal work will bé the same as tﬁe value of this selected force.

Writing éuA as eqﬁal to I the identity matrix then the external work

may be represented in matrix form as:’
: = A\Tp gA _ A _ A
W = ( Su™) {F} I14{F} {F}

To each of these displacementis corresponds an egual internal work

done by the moments:

Wi = ff( 9% )T {i}dxay

where

§% - Ira1” ( 8¢ty = L

Substituting for d% end M and equating internal and external work

results in:

gt = [ e tonea te1” (o hanay

[ { " mmecha fot - - wtet

from

% = [Bl[c] {u*
and

w = ( [BIc)) okt
we have ‘

It

u = stomd

The matrix [FﬂA is given in figure 4.6 together with the terms which

make up the in-plane stiffnesses. ;



Rectangular plate element in-plane forces

Consider a typical element A.

"
_Tl K
b A
—i.|<¥ . a ;|J x
—p

Two degrees of freedom have to be considered at each point. These

are in-plane deflections along the axes x and y and are denoted as:

u
X

uy

We refer to the displacements of the element as:

Yy

a
0
=
"
£

Betrsceenene

8

Similarly at every nodal point forces Fi may be assumed to exist.

Each consists of two components:

F o= |F, and  {F}* = |F;
R, F,

P

Fy

3

14 -

We assume that the edge displacement function is linear and a suitable

function is:
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]

-

+ + Cog +
v C1p Czpq C.a Ch

3

= + + +
uy CSP Cépq C7q C8
where

p = x/a and q =y/b
As in the case of plate bending the eight arbitrary constants can be

determinéd from the known displacements in the x and y directions at the

fbﬁr cornéré of tﬁe rectangle. Hence we can obtain:
= - - + — 1 + + -
w= (1-p) U=a)y; * (1-p)dus * pauy * p(i-a)u,
= - - T - + + -
wo= (1-p)(1-a)w, * (1-plaw, * paug * p(1-q)ug

Examination of these two equations shows that the distribution of the
w, and uy displacements along any edge is linear and that it depends only
on the element displacements of the two corner points defining the part-
icular edge. Thus the assumed form of displacement distribution ensure s
that the compatibility of displacements on the boundaries of adjacent

elements are satisfied.

Noting that:

I
“xx a dp
ou,_ 1 du

%

We find thet the total strain-displacement relationship for the element

becomes:
e = "ﬂ_ﬂl 0 -9 0 q 0 .1:_‘1 0 2
ploe a a a a 1
o -(-p) 1-p ) ) :
oy 0 5 0 o © b 0 b :
e | |70m) -0za) 1» -@ q -2 la} |,
"Xy b a b a b a b a 8




E .

(T=v2)

-{1-9)
a

a

-v(1-p) -q v(i- a4 ae) 1-q
b a b a b a
-(1-p) -vg 1-p vg o v{1-q)
b a b a

b a

-(-v)(1-p)
2b

Stress

(1=v)(1=q) (1=v)(1=p) -Gms G (g ~(1=x)p
a )

2a. 2b 2a . 2b

matrix SA for rectangular plate element under in-plane forces

Figure L.l
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LB + 2(1-v)B_T

%(15f.v)

2B - é(1-§)B“1

2(1-3v)

-2 - (1-v)B™
—%(1 +v)

-L4B + (1-v)B-1

-%(1—3v)

=1

LB~ + 2(1-v)B .

-%(1 -3v)

—hB-1 + (1-v)B -%(1 + v)

-%(1 + y)
25~ - (1-v)B %(1—3v).
£(1-3v)

287"~ 2(1-v)B %(1 * ¥)

Figure L.5

LB + 2(1-v)B'1

AB + (1-v)E” 2(1-3v)

2B - (1-v)B" %(1 +y)

-1 : :
LB~ *+ 2(1-v)B SYMMETRIGC

LB + 2(1-v)13'1
25~ - 2(1-v)B 201 + v) 1B~ + 2(1-v)B
2B - 2(1-v)B" 2(1-3v) LB * 2(1-v)B”

2571 (1-v)B %(T—BV)

B+ (1-v)B -%ﬂ + v) LB+ 2(1-v)B

Stiffness matrix for rectangular plate element. - in-plane stiffnesses.

BRVAR]



The following three pages give

for the rectangular plate element.

' T
K - Kh
;
X2,1 X2,2
The order of displacements is:
-1'- ‘xi , 7 - uXJ
2 -u_. - 8-
yi ¥J
3 - Ly 9 - uZj
L - ex1 10 - ~
-8 11 -0,
5 i ¥J
6 -9 12 - 9,
I %]

Multiplier for in-plane termss
E.t
12(1-v2)
Maltiplier for bending terms:

Bt
12(1-v2)a.b

the complete stiffness matrix

The matrix is partitiocned:

i3 - LIS
1 - L
_15 = Yk
16 - ka
17 =~ ka
18 - sz

where t is the thickness of the element.

Figure U4.6
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Stiffness matrix for rectangular plate element.
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N+ 0 4430~ .),T{
g + 80
) o + H14 ~ 4y)
o o =067+ K+ 40 | (464 + A — nle? SIMMETRIGC
] o Q28 + 41 + 49)]a ~vab B+ AL = et - ‘ '
) o o o o
—43 4+ {1 — 9 11 — 35} o a’ o 43 +’2(| - pp-t
- - 3r) 280 =21~ 0B o o- o T P 4 421 =
=226 — py J g
o Ca Sl s+ ant . 43 4 gt
o B N | ] R R T 5 o MRS
o ] [=87* + 31 + 4015 (18" — A0 ~ W) [ ° < 02870 + 101+ 46| (4877 + AQ1 ~ )0
o Q +(28" + (1 ~ »))a 0 (18 = 40 = ' o [} =028+ 40 + ‘sl')fa vab B + A0 — ))a?
o] [ ) ’ T
) o o ° o o o )
1 2 3 L 5 7 8 9 10 n

- Figure L.6a
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L.2.3 Matrix transformetion of coordinates.

The stiffness matrix for each element is definsd in terms of a set
of local axes. The structure is defined in terms of a set of global
axes. Before the individual element stiffness matrices can be added.  .:
together to form the stiffness matrix which describes the complete structure
they must Be transformed to the global coordinate systen.

If [T] is defired as the matrix which transforms a vector from local

to global coordinates thens

{7l = [TITF}, ang {u}, = [71{ug
and from:

iy, - [K]é{U}G and substituting we have,

[T]{E}L = [K]é[TJ{U}L and §ig??':the transformation matrix is orthogonal,

{F}L = [T]TCK]G[T]{U}L and since also fF}L = [K]%{U3L

fl

then (1% = [ kIA

[

-

and l'KJé

it

(oKl el

In geﬁeral.there will be a separate transformation matrix.for each
element in the structure. [T] is of bloék diagonal form and each diagonal
block isb a 3 # 3 submatrix [R].
| In STAS?S line elements are used to represent beams and colurms

whilst rectangular plate elements are used to represent slaebs and shear
walls. As mentioned in the introduction cbnstraints are placed on the
orientation of these components within the structure. The components are
shown in their general orientation in figure Lh.7. The rotations that must

be performed are now described:

1) ‘Wall element
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a) Rotate about global Z to line up local x and global X.

b) Rotate about global X through 90°.

1 0 0 ¢os sin O} =ycos sin O
0 0 1 -sin cos O 0 0 1

0 -1 0 0 (O 1 sin =-cos O

2) Colum element
é) Rotate about global Z so that the orientation point lines up with
global X. .

b) Rotate about global Y through 90°.

0 o -1 cos sin 0% = {0 0 1
0 1 0 -s5in cos 0 }-sin cos 0
-1 0 0 0 .0 1 -cos =sin O

3) Beam and slab elements

a) Rotate about global Z to line local x with global X.

cos sin 0

sin cos 0

whére tcos! snd !'sin! stand for the sine and cosine of the apﬁroPriate
angle.
After the element stiffness matrices have been transformed to global
coordinates they can be directly added to form the global stiffness matrix.
The aséembly process is shown in figure L4.8. The result is always a

symmetric banded matrix.
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L.2.; Solution of equations

The solution of the matrix equation:

Mg = Mg Mg

formé the heart of the aralysis process. The aim is to solve for U G
the nodal displacements of the structure.. For a large analysis problem
there will be thousands of equations and even for‘small problems there are
likely to'be hundreds of equations. The fact that [K]G is symmetric and
banded: reduces the number of coefficients that must be stored but the storage
problem, especially on a minicomputer, remains acute.
For a tightly banded system of equations Gaussian eiimination is a
fast and accurate method of solution.‘ The core storage of a minicomputer
is not capable of containing the stiffness matrix, and it is nécessary to
store the matrix on.a fast random access peripheral storage device.
Several methods for performing the solution with only part of the matrix

K G in core at any one moment have been devised, but, usually for a given
core capacity the size of problem that can be solved is still limited by

the bandwidth éf the system of equations.  The solution usea in STASYS is‘
based on an equation solver written by Cantin? and developed for usé on

PDP 11 min:f.computers‘ by Grindley o |

- The Gaussian elimination method has been described in many texts , and

usually operates on matrices or systems of equétions in which the coefficients
are single terms. However in the method presented by Cantin the mairix
is divided into blocks of n by n and the Gaussian elimination is carried out
on the blocks. Gaussian elimination requires the reciprocal of the diagonal
terms of the matrix to produce multipliers. When operating with blocks
of the matrix as terms, the inverse of the diagonal blocks of‘the matrix

is uéed. The method only requireé three blocks of the matrix and three

equivalent load vectors to be in core at any one time snd thus the size of
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problem thét can be solﬁed is only limited by the quantity of backing

store that is available. Because of the relatively slow speed of disk
accesses the solution becomes faster as the number of blocks reeded to store
the matrix is réduced. Ihe size of the n by n blocks is therefore chosen
fo be as large as possible given a fixed amount of core sforage.

The solution is carried out in double precision, that is each variable
is represented by eight bytes ( four FDP 11 words). The disk is physically
divided into 256 word records ( 6l double precision variables ) and it is
only possible to start a random access read or write at the beginning of
each record.

I]ﬂG is partitioned into n by n blocks and it is convenient and
efficient if n is a multiple of the number of degrees of freedom at each
hode, in this case six, and if n2 is a multiple of the number of variables
per disgk recofd, in thisrcase sixty;four. Thus the lowest convenient |
value for n in STASYS is twenty-four. If this value were adopted each
block of the matrix would occupy exactly nine disk records. Unfortunately
it was discovered that the 16 kilowords of core available was not sufficient.
STASYS therefore uses a bloék size of gighteen by eighteen which reguires
Tive and one sixteenth disk records. Six records-are used for each block;
fifteen sixteenths of the sixth aisk block.is wasted.

'Figure L.9 shows how the matrix is divided into blocks, the smaller
squares representing the six by six éubmatrices at each node and the heavier
squares representing the eighteen by eighteen blocks in which the matrix‘
is stored. |

STASYS runs on a PDP 11/L5 with a single RKOS disk pack which has a
capacify of 1.2 millionAwofds. If the whole disk unit is used for storing
[K]G then a problem with 1500 degrees of freedom; a half Band width.of 190
and 10 load vectors can.be solved. In practice.fhe 1.2 million word disk

is also used for storing program and other data, and only half the disk is
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available for storage of the stiffness matrix.  However the price of disk
sterage per byte has already dropped by a factor of four since the present
equipment was purchased. New minicomputer systems will therefore have

larger disk storage capacities and it méy becore solution time rather than

storage space that becomes the practical limiting factor.
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" L.2.5 Inclusion of boundary conditions

In general it is possible to medify terms in the overali stiffness
matrix and load veétors_in order to allow for spedified displacements. The
simplest method of doing this is to multiply the diagonal term'iﬁ the
stiffness matrix cbrresponding to the specified displacement by a large
number, and to replace the load terms by the new diagonal ferm times the
specified displacement. In the special case where the specified
displacement is zéro the load term will also become zero and it is this case
that is allowed for in STASYS.

However as we have seen the method of sclution involves partitioning
the matrix into blocks and>the diagonal blocks must be inverted. The
effect of having terms of excessively large value on the diagonal within
a block is to cause ill conditioning during the block invertion.

Zinciewicz suggests an approach in which a zero is written in every
term of fhe roy and columm corresponding to the fixed degree of freedon
and the diagonél term is replaced by unity. This also causes ill condiﬁioning
because the diagonal term is nowvekcessively small compared with the others.

There is however no need to replace the diagonal term by unity since
if the terms in its row and célumn are all zero its value can have no effect
on the solution. In fact if the diagonal term is left alone and in the
genieral case the load terms are replaced by the diagonal term times the
specified displacement the desired result can be achieved without causing

any 11l conditioning.
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h.3 Data_input

Data input in STASYS falls into seven categories:

Element ncdal point coordinates

- Elément-dimensions

~ Element material sét nunber

-~ Sets of material preoperties

-~ Floor heights

- Nodal constraints

~ Loads

The data inpﬁt prbgrams are interactive and use many of the facilities
of the draughting system described in chapter two.

In the design of STASYS effort has been made to keep the system
flexible; The operator is able to choose the order in which he wishes to
prepare data. Similar parts of a structure may be quickly reproduced by
using the 'sub-picture' processor and the three editors of the draughting
system. Forty of the semi-permaneﬁt mass storage files are reserved for
the users own requirements and sixty for storing the graphical representation
.of each layer or floor of the structure.

‘ Data can either be taken fraom existing General Arrangement drawings,
floor by floor, or the designer may create a model from sketches of a
bropOSSd building. Whichever the starting point, the mode of Operétion
is as follows: | |

a) A grid is digitised ér constructed which is common to all floors of
‘the structure. This is normal building design practice and provides a
useful framework for positioning elements and other data. It is not
essential for the analysis. | |

b) The positions éf the line and rectangular elements which represent
columns,‘walls, beams and slabs on the current floor are digitised. The

points are enﬁered in 'background! mode described in section 2.h.2 and
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and discussed in chapter three.
The elements are entered into the 'workspace! as 'symbols! and may
be edited and manipulated by the macro editor. Initially they are set
to have zero dimensions, and the symbol display programs display them
using values calculated from their coordinate values and default dimensions
stored in data statements within thevprograms.

c) Dimensions are assigned to the elements. Dimensions which are defired
by the coordinate positions of the nodal points may be omitted. ‘The user
is able to set up six sets of dimensioné corresponding to buttons one to
six on the pencil. ZEach set consists of the local x, local y and local z
dimensions as set out in figures L4.10 to 13. By 'Ninding' an element
and pressing a button the operator enters the dimensions into the element
sjmbol in the workspace. It is found that since many elements -have the
same dimensions it is possible to enter the dimensions of all the elements
without too much resetting of the dimensional sets. The same philosophy
is used during ithe entry of loads.

'd) Material properties are assigned to each element. One set of material
pppperties is defined to be allocated by default, i.e. the properties of
this set are used in the analysis if no other set of properties is assigned
to an element. In order to minimise the work of assigning materlal sets
the default propertles are chosen to be those which apply to the largest
number of elements.  Other material sets are entered via the keyboard as
and whern required during the a551gnment process. Once a set of material
properties has been entered in this way it remains available for use until
deleted or overwritten by the user. Up to forty-two sets are allowed.

e) Boundary conditions areAinput; The tuser selects' the iype.of restraint

required as follows:

- Button .12 - zero displacement in global X -

Button 2 - zmero displacement in global Y
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Button -~ zero displacement in global Z

3
Button L - zero rotation about giobal X axis
Button 5 =~ zero rotation abouf global Y axis
Button 6 - zero rétation about global Z axis

Button 7 =~ zero displacement in all degrees of freedom.

He is then able to select the nodal points to which the constraint épplies
using backgrouﬁd'mode.i

More than one set of boundary conditions can be stored. This is
achieved by storing the sets under different 'levels'. Ten levels are
reserved for boundary condition data.

The boundary conditions are displayed schematically as shown in figure h.1

£) loads are input.  Three types of load can be input:

- Point loads |

~ Uniformly distributed line loads

~ Uniformly distributed area 1oads_
© Moments are applied-as fwo point loéds producing the required moment. In
practice there afe no external moments applied .to building structures.

Tﬁe loads may be applied by eniering the positions of the loaded
points,'lines or areas in 'backgroundi mode. When defining an area load
a‘?ectangle is digitised. Any slaEs within the rectangle will have the
.load imposed on them. As with ﬁhe input of element dimensions six load
vectors can be set up and sélected from the pencil buttons. For a boint
load the value of a; vector is interpreted in kilo-newtons, for a line
load in kilo-newtons per metre and for an are load in kilo—neﬁtons per square
metre. Thé loads are displayed schematically as shown in figure [ ).

As with boundary conditions loads can be stored under different levels.
In the analysis up to four combinétions of different load sets may be

included. The way in which the levels and semi-permanent mass storage

files are allocated in STASYS is showm in figure L. 15.
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g) When a complete model of a floor has been built in the workspace,
it is filed under the appropriate floor file. A typical view of a flcor
© is given in figure L .16.
Atvthis stage it'is convenient to enter the level of the floor in ﬁhe
floor directory. The height of each floor is entered in metres above
some datum.pointf A 1ist of floors and floor heights is disﬁlayed on the

screen by request.

After the graphic data for every floor of the structure has been -
produced and filed the data is analysed and reformed for the analysis

process. To avoid confusion the processing of the data into a suitable

fornm is called data collation rsther than data analysis.
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Li.ls  Data collation

Data collation can be divided into five stages:

Sort nodal points, create file of points

Sort boundary oonditions, create file of constraints for each floor.

Analyse loads, create file of nodal loads

Data output if analysis on mainframe

Element and load assembly if analysis on minicomputer

During the‘first three processes the graphic data for each floor is
analysed and packed into three random access files. The filing is carried
out by file haﬁdlers like the one described in chapter two.  The fourth
probess, data output; is only performed if the solution 6f the - équations
is to be carried out on a differen£ compuber or if a hard copy of the problem
data is required. If the solution is to be performed on tle ﬁinicomputer
then the element stiffness matrices and load vectors are formed and_aésembled.

The last two processes use the data set up by the first three.

A brief summary of what each stage involves is given:

1) Sort nodal points.

Data for the floor under consideration is transferred by the Operatér
to the workspace. Points defining the ends of line elements and the
corners of rectangular platé elemeﬁts are stripped out and stbred in a
temporary workfile. If two points_are within 100mm of each other they are
considered as the same point.

The points are ordered by a simple bubble sort. The operator indicates
whether should be ordered primarily acceording to their X or Y coordinate
values. Points heving a primary coordinate value difference of less than
‘the 'grid factor'® are ordered according to the value of their secondary:

coordinates.
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The ordered points are displayed on the screen with their neodal numbers
so that the user can visually check the result. Finally the points are

filed in CADMAC.RA3 by the file handler.

2) Sort boundary conditions.
The user seleéts'which levels of boﬁndary conditions he wishes to use
for the analysis. Points are stripped from the boundary condition symbols
in the workspace along with the nodal constraint(s). |

Each constraint is given a value according to the algorithm:
Value = 2(n-1)

Where h is the number of the constrained degree of freedom as defined by
" the number of thé pencil buttons during the boundary cendition input.

| .Where more than one constraint occurs at the same point the values
are added. The total value is stored with the point coordinates. It is
" a simple matter to decode the total values during load assembly.
The points with constrazint values are filed in CADMAC.RAS by the

relevant file handler.

é) Analyse loads.
" Data analysis of point loads is simple, for uniformly distributed

line énd area loads a search has to be carried out to determine which beam'.
and slab components of the structure bear the load. Ioads are then apport-
ioned to the ncdes of these beams and slabs. If it is found that more than
25% of the applied load has not been distributed a diagnostic is printed.
This does not necessarily mean that the program is in error bgcause it may
be that an area load has been applied over an area that has voids in it.

Any nodes with external loads acting on them are filed in CADIAC.RAS..

Loads due to the self weight of the structural elements are calculated

and assembled during the formation and asserbly of the element stiffness
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matrices.

L) Data outpuf.
The following data is output to é specified device, usually the line
printer or magnetic tape unit.
~ Nodal coordinates
- Element connections and material numbers
- Sets of material properties
-~ Nodal cceastraints

- Loads

5) Assembly of element stiffness matrices and load vectors.
This stage includes tle formation, transférmation and assembly
of thé stiffness matrices for each element, as well as the formation
and assembly of the loading déta.

The outline of the process involved can best be conveyed by a flow
diagram figure h.17;

Because of the way boundary cenditiens have been included, it is
necessary to zero the loads where a degree of freedom has been removed.
This is carried out after the assembly is complete. It should be noted
that the relevant rovs énd columns of stiffness coefficients aré zeroed
in the element stiffness matrices before they are assembled. This saves
having to do a lot of reading and writing to the disk to put them in afterl
the matrix has been assembled and is stored on disk.

There is little techhical difficulty involved in the assembly process,
but it .is a lengthy process. The time fer assembly of each line element
is approximately 1.5 secends, and for each rectangular plate element 2
seconds. A twenty floor building represented by thirty elements per floor
" therefore takes approximately twenty minutes to assembie.

-Asscmbiy proéeeds floor by floor through the étructure and each floor

plan is displayed prior to assembly enabling prcgress. to be monitored.
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Lh.5 Solution

The method used for_solutioh has been described in section 4.2.h.
Condition numbers are calculated during the inversion of the'diagonal
blocks of the assembled stiffness matrix. Thesg are listed on the keyboard
or line printer as each block is inverted. The calculated displacements
are written back to the disk unit over the original locad vectors.

Times for solution are plotted in figure 4.18.

A Time minutes

. | Lo
. | +/

20 + e

10 -

01. 5 ‘ L) L S e

0 25 50 75 100 Nodal points

. Figure 4.18 Time for solution against nodal points. Each of the three
sets of equations has a band width of 12 nodal points. Six degrees of

freedom at each nodal point.

It can be seen from figuré h.iB that the time required for édlution
rises linearly as the number of nodal points in the problem increases, so
long as the band width of the problems remains the same. In general the
band width of problems increases as £heir size .and figure }4.18 is therefore

optimistic. ~
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L.6 Output of results

Three methods are used to communicate the result to the engineer:-

a) Iist of global displacementé.
| b) Three dimensional display of displaced structure.

c) Stresses of selected elements.

A list of global displacements far each node may be output to
any device.
The user is able toiget a much more immediate and clear view of the
deformations of the structure by displaying them in three dimensions.
Instead of a full schematic view of all the elements making up the
sfructure, a view of lines joining the nodal boints is displayed for two
feasons:-
1) An adequate hidden line removal package for use on a minicomputer
has not yet been developed.
2) In the absence of ﬂ), a full view of the structure is generally too

complex far the human eye to appreciate.

A set of lines joining nodal points to their neighbours is generated
'to represent the structure. These can be displayed before and after
solution. When displayed éfter solution, the operator is asked to specify
a factor by}which zl] displacements shall be multiplied in order to make
them visible. If necessary, the original structure may be displayed as
well as the displaced structuré, in order to provide a frame of reference.

The three dimensional viewing package allows the operator to set the

following paremetersi-

Spherical or flat projection plane.
Centre of view in cartesian coordinates.

‘_Viéwpoint in ﬁolar coordinates.
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Distance of the prpjection plane from the viewpoint.

Position of the projection on the display screen.

Figure L.19 shows a view of a simple framé in its original and
displaced states. |

The third option allows the user té select a particular element in the
structure and obtain a print out of the stresses in that element.

| The operator calls the appropriate floor file to the workspace. | He

'is then able to 'find' the required element(s) and request a list of the
stresseé. | |

If a rectangular element is selected, the stresses due to in-plane
forces and bending moments are calculated separately for the centfe and |
each corner of the element.

For line elements,létresses are‘calculated at each end ana the centre

of the element.
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L.7 An illustrated exsmple of the use of STASYS

This section is intended to drew together all that has gone before
and to give the reader a better feel of the physical reality of operating
STASYS. It therefofe coﬁtains only a flow chart outlinihg the sequence
of operations { figure 4.20 ) and a series of photographs of the display -
screen during the analysis process.

The example is anveigﬁt floor building with a ceniral core represented
by recﬂangular plate elements and columns spaced round the perimeter of
the building connected to the core by beams. The building is represented

by.a total of 200 elements joined at 96 nodes.
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L.6 Assessment df STASYS

In successfully carrying through a finite element analysis there
are three main points at which errors could occur or be generated due to

programming:

Errors in data interpretation and manipulation
Incorrect stating of the element stiffness matrices

Inaccuracy in solving the set of simultanéous equationg

Eliminating errors in data interpretation is achieved by displaying
the data and allowing tﬁe operator to visually check it. Eliminating
errors during the data collation stage has been achieved by listing the
data at many stages of the process and manually checking that it is in the
correct format and right magnitude,‘for a wide variety of data‘sets.

To establish the validity of the code which generates the element

stiffness matrices two different approaches have been adopted:

1) A1l the terms of the element stiffness matrix have been hand
caléulated for é particular element and compared with the terms produced
b& the code.

2) Simple stfuctures far which analytical SOIutions can be easiiy
obtained have been idealised by finite elements. The results obtained
by solving the pfoblems on the caﬁputer for a variety of load cases
compare to the analytical solutions to an accuracy of at least two significant
figures and usually more. |

For example in simple elastic theory the end deflection 'w! of a
cantilever of length 'L! due to a point load at a distence 'X' from the

fixed end is given by:

= Ezzn+ E&E( L-X) : 4 . $v/
W T 3EL T 2EI /

. ""‘T—\\\
i
|
|
r
|
|
Y _
R——
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" The cantilever may be represented either by a series of plate or line
elements. In both cases the computer analysis has produced equivalent

results although the stiffness matrices involved have been different. -

Accuracy of the methoa of solution is more difficult to establish.
The Gaussian elimination procedure used in STASIS does not perform partial
pivoting. Some texts written on the general solutidn.of simultaneous
equations suggest that such a procedure is necessag§312However, it is not-
reasonable to consider the equations which represent a physical structurev
as being completely general sibce they possess specific attributes. They
.are always symmetric and baﬁded. Furthermore, the diagonal terms of the
Imatrix of equations are always simllar to or greater in magnitude than
thé other terms in ﬁhe mtrix. Liveslé% states that a working precision
of at least ten significant digits far all computer operations‘avoids any
serious trouble due to ill-conditioning when using the finite element method
of analysis on practical structures. In STASYS the assembly and éolution
of the matrix of equations is carried out in double precision on the PDP 11/LO
i.e., floating point values have a range of from .14 x 10'38 to_1.7 x 1038

with a significance of sixteen decimal digits.

AlthOugh the time taken to.pérfarm the solution is considerable, it is
still muéh quicker and more convenient to perform the solution on the |
minicomputer. The illustrated example in section 4.7 was set up, solved
and phoﬁographed in a single two hour session. The time for solution was
twenty-three minutes. By conventional means the préparation of the data
cards alone would have taken us long. If one adds the time required for
a typical 'twrn round! on a batch system and further remembers that there is
a strong likelyhood of data errars in the first run, one can appreciate

the convenience of. STASYS.
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CHAPTER  FIVs

Conelusions and future development

A graphics capabiliﬁy hés'been developed on a minicomﬁutef systen.

By providing data input; display and handling facilities GCADS allows the
operator to create,modify, store and plot many types of drawings and helps
to eliminate most of the repetitious and tedious tasks involved in the
production of drawings by conventional means. To increase the efficienc&
of production of particular types 6f drawing further mﬁduleé may be added |
to GCADS.

The se graphic and data handling facilities may be used and built upon
to provide graphic aid in a wide variety of applications. Because the
applications programs use the saﬁe graphic database it is possible, where
these applications programs represent a series of stages in the design of the
same project, to spread the cost of data input for those items of data that
are common.,

In particular programs haﬁe been added to enable fast generation of
data for the finite element analysis of structures which can be conveniently
viewed as a series of layers or floors. The set.of equations which
describes the stiffness of the strucﬁure under investigation may be assembled
and solved on the same minicomputer. | |

The work has clearly demonstrated that a minicomputer system has the
power to set up and solve problems of a complex nature. Because the system
is one order of magnitude cheaper than typical commercial systems it is
economic to use it to solve these problems although the actual time.required
for solution is much longer.

The low cost enables companies ﬁhat were not previously able to purchase
their own cbmpuber facility to do so. The low‘runniﬁg cost allows
engineers anaidesigners to use powerful computer and graphic aids in solving

their everyday problems.
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In the field of structural analysis there are a huge number of programs
already written to deal with a wide range of problems. At present, they
are underutilised because of date preparation difficuities, or because in
order to use.ﬁhem it is necessary to wade through a vast manual, 6r because
the computing facilities available are not convenient.  Undoubtably, tbe'
transfer of these programs onte a system such as GCADS would do much to
encourage their use and development.

The maximum size of problem that can be solved on a minicamputer

- system depends on two factors. The first is the length of time that one
considers is reasonable or economic and the second is the qﬁéntity.of
backing store in the system. In STASYS the time that a particular problem
takes to solve.depends on the amount of main memory available and the
speed of data transfer between main memory and the backing stofage device.

Cheaper memory, and, faster and larger disk units for the same price, can
now be purchased.

If at the same time, proper advantage is taken of the technique of
substructuring the size of problem that could be sclved on a minicomputer
‘would be mény, at least ten, times larger than is presently possible.

In the technique of substructuring, the structure is partitioned,
usually along physical bbundaries, into smeller units - substructures. If
tﬂe stiffness properties of each substructure are determined, thé substructure
can be treated as complex_étructural elements, and the matrix displacement
method of structural énalysis can be formulated for the partitioned
structure. Once the displacements on substructure bourdaries have been
found, each substructure can then be analysed separately under known
substructure-boundary displacements. The two advantages of substructuring
are:-

a) The size of matrix that has to be handlea-and solved at any onevtime

is greatly reduced.
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b)_ If the structure is carefully partitioned, groups of the sub~
structures will be the same. In this case, a reduction in data storage and
generation is pcssible and the stiffnesé properties of the substructures
need only be derived for ome of each group;

Although substructuring involves the solution of a larger number of
sets of equations, the sets are sméller,'and becauvse bf this fact and also
the economies mentioned in b), the actual time for solution of a problem
ﬁould be reduced. In such a case, substructuring would have an additional
advantage over the analysis of structures as single entities, even where
this is possible. |

Using these ideas it is possible to work towards a firm proposal
for a new or upgraded minicomputer system. This would be able to carry
out dreughting operations and really useful sized stress analyses. As
an extra bonus a COBCL compiier has just been announced by DEC which will
allow commercial administrative tasks to be run on the same sys@em.

It is not possible to_justify_furtherAexpenditure if only_one person
has access to the system at a time. A time‘sharing system, either RSX 11D |
or.RSX 11H, must be used. The RSX 11D operating system requires 20K words
of memory, plus an additionél kiloword for each extra peripheral. Postulating
that a four terminal system would keep one processor.constantly busy, and
2llowing a 10K core segment for each terminsl, 6LK words of memory would
be the memory required. The COBOL compiler whiéh requires at least 48K to
run effectively would be run with the system dedicated to it.

For the stress analysis programs the more core a&ailable the fester
solutions can be obtained, and again dedicated running would be preferable
for large jobs but not essential for development.  Using the substructuring
‘technique a maximum of six blocks of matrix need be in core at once. With
6Lk words a matrix»block size of 48 could be sustained. Moving from a block

size of 8 to 18 produced an increase in speed of 2.5 times. = Moving from a

block size of 18 to L8 is expected to result in a similar gain.
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A hypothetical structure which is idealised using 1000 nodes and
which can be divided into 10 substructures of 5 different types would
require the invertion of 6 different sets of 600 equations. The expected
solution time would be 72 hinutes fdr all sets using the present disk units.

The temporary backing storage required can be calculated as being -
approximately 3.6 megawords. At least a further 1 megaword would be needed
for program and other data storage. The mihimuﬁ requirement 1is therefore'
4.6 megawords.

To make best use of the draughting facility a-libréry of standard
items would be created. In time this would expand to séveral megawords but
could be secticned and archived on magnetic tape. |

For.design and analysis appliéations a data bése containing information
on properties of materials, tables of désign parameters, data oﬁ previous
jobs completed and data on the programs available for use would be built.
The main part of this would need to be on disk fof inﬁerrogation.

There are two disk systems that can be considered, éach consists of
a controller capable of handling up to eight transﬁarts. The smaller
of these offers 5 megawords/transport, the larger 20 megawords/transport.
The cost of the controller and the first disk transport for the smaller system
is approximately #5000 and far the larger £8000. Subsequent transports
ﬁoﬁld cost about £3000 and £4,000 respectively. For a comereial
environment the larger sjstem ié.deemed necessary but for a university
the smaller system would be satisfactory for at least two years.

| The composition of the four terminals depends on the work load and the
type of Wérk. A digitising table is the best device for extracting data
from existing drawings, and one digitiser is essential. Editing of data
can be performed more easily by using a data pad/storage screen combingtion
or a refresh,ﬁube and light pen.
| If a large amount of program development is likely then two of the

terminals would only have to be Visual Display Units with keyboards.
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If the smaller disk system wés chosen with two transports, the cost of

upgrading the Imperial College system to the outlined specification

would be abou: £20,000. The cost per terminal would then be £15,000.
Assuming depreciation over a four year period the cost per year for

each terminal is similar to the cost of employing a single member of staff.
There can be little doubt that once the softﬁare for these systems has

been fully developed they will create large savings in the time required to

design and schedule projects and large savings in the overall design cost.
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GCADS use of Common areas

" a) COMMON/ BUFFER/
(0)
xB(LO)

YB(LO)

'b)  COMMON/FILHND/

IONDIR

NR]
NRZ, NR3, NRL

IDP

IPEN,
XT,YT

XTR,YTR

c) COMMON/GENRL/

GEN(10)

d) COMMON/MACRO/
MAC(9)
XFLAG (L), YFLAG (4)

COST,SINT

e) COMMYON/MENU/

MNUM

. Buffer far workspace data

Used to indicate which filing operation is to be

executed:
1 Workspace to file 2 File to workspace
3 Display file L, Use file as macro

Points to the next disk record of the workspace

Used as record pointers for other random access files
Points to the next I,X,Y triplet in the workspace
buffer to be processed.

Indicates line broken (1) or unbroken ( 2 ).
Trailing origin

Current position of the digitising pencil.

 Reserved for application program parameters

Macro processor status flags
Flag to displey condition of the macro status flags.

Angle of rotation to be applied to macros.

Last menu sgquare number used



MIYPE

NC

NCORD

NCON

£) COMMON/MESSAGE/

ANSIZ
LEVEL

1255 (5, 5)

MESS(5,5)

- g). COMMON/PARAY/

. FIPX,FIPY
CANG ,SANG
FISCL
GR
XWNDO,YWNDO

OPSCL
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Indicates which ﬁehu section

1 Commands » 2 Levels

3 Files 4 Symbols

Indicates control mode

1 Control 15° 2  Control 90°

3 No control

1 Coordinates displayed indicate position from
trailing origin.

0 Coordinates displayed indicate distance from
absolute origin.

Indicates which control mode was sélected from the

" Control 90°

menu? 1 Control 15° 2

Alphanumeric text display size
Current input level

Five messages to be displayed by the background loop

~used by the‘system

Five messages to be used by the application programs

Abgolute origih of x,y coordinates
Cosine and sin of input skew angle
Input scale

Grid factor

Window origin

Output scale



h) COMMON/PLOTER/ -

TPLPAR(L)

ICPEN(S)

ICLINE(S)

i) COMMON/SUBOV/

ISUB

j) COMMON/SYMBOL/

ISFLAG

- NSIM
JOKE

ECP,YCP
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Plotting control parameters for speed,acceleration
and accuracy
Information on'pen unit status

Data on line type

Points to overlay segment

_O Line mode

1 Symbol moje, new symbol not allowed

2 Symbol mode, new symbol may be.selecﬁed
Symbol mode number

Symbol point counter

Pogition of pencil

XSYM(15),YSY#M(15) Storage for symbol points.

k) COMMON/USER/

BUFt (128),BUF2(128) Buffer space for use by application programs.
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Appendix A-2

GCADS OVERLAYS

OVERLAY 1 SETUPQ

FUNCTIION: Sets up table origin,data input origin, and skew control.
Called either by menu command or on first entry to the gystem.

Exits to digitising and control mode or to SEIUPZ 3.

OVERLAYS CALLED

SETUP2 3

SUBROUTINES CALLED

Camac: Curcon Erscn
Filsrt Getint ' © Ovlink
Cvretn Plmsg | ©Plots
PmsgO Setflg Stord:

OVERLAY 2 SETSYM

FUNCTION : S&ts up messages for symbols - to be displayed in background m
. mode. Called by a symbol overlay exits to a symbol Qverlé.y. -
OVERLAYS CALLED '

N None

SUBROUTINES CALLED

Ovretn . Setmes



OVERLAY 3

17

SETUP2

FUNCTION:

Sets input and output scales, and grid factor.'Called from

"SETUPO 1 or from ménul.cemmand, exits to digitising and control

mode .

OVERLAYS CALLED

None

SUBROUTINES CALLED

Ovretn

Ovlink
QVERLAY L DIGOV
FUNCTION: Digitising and control mode. Controls data inpuﬁ and

services all menu commands. The centre of the system.
Initially entered from SETUP2 3. It regains control by

default.

OVERLAYS CALLED

A1l overlays called by menu command.

SUBROUTINES CALLED

. Backgd
Erscn
Mensel
Plotsa

Stord

Camac Clrlev
Levset . Menmap
Ovretn Ovlink
Setlev Stack

Symap Symgo



OVERIAY §

ERROV

FUNCTION:

Issues error messages on the DECwriter. Called By-many

overlays. Normally exits to digitising and control mode.

OVERLAYS CALLED

None

SUBROUTINES CALLED

172

Ovretn
QVERLAY 6 DISALL
. FUNCTION: Displays the workspace and other work files in the same

format. Calls the symbol display segments. Called by

menu command or by other overlays.

'OVERLAYS CALLED
* Any symbol overlay.

SUBROUTINES CALLED

Camac
Deol”
Dslab
levist
Ovretn
Rawrit

Stack

C#t_ Dbeam”
Discrs* ' Dissym
Dwall% Ersen
Plmsg fmsgo
FPlotsc Raread
Restem ~ Screen

Stor? Seorem
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OVERLAY 7 QVFIL

FUNCTION: - Writes or reads contents of a workfile to or from the
semi-permanent files ( CADMAC.MS1 ). Also displays files
in abbreviated form. i.e. only lines displayed no symbols.
Called by menu command. Exits to digitising and control

mode.

OVERLAYS CALLED

MACROZ 1 6

SUBROUTINES CALLED

Camac Closms Deltms
Levist : Openms Ovlink
Ovretn | Plmsg 4 Plot
PmsgO Raread Rawrit
Stack - Stord Readms
Scréen ' Writms

OVERLAY 8 GRWNDO

FUNCTION: Sets window parameters. Called by menu command.

OVERLAYS CALLED

None

SUBROUTINES CALLED
Curcon Getint Plmsg

Pmsgo ' Ovretn



OVERLAT 9 EDITOV

FUNCTION : Iine editor.

OVERLAYS CALLED
DISALL 6

SUBROUTINES CALLED
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Balled by menu command. Exits to DISALL.

Camac Curcen Getint
Ovlink Plmsg qutw1
Pmsg0 Raread Rawrit
Screen Sdist Windrw
OVERLAY 10 PEROP
FUNCTION: Peripheral input/output. Allows data to<bé transfefred to

end frem the workspace from and to any device. Called by

menu command.

OVERLAYS CALLED -

None

SUBROUTINES CALLED
Asgn
Ovretn
Raread

Stord

Exits to digitising and control mode.

Erscn
Plmsg

Rawrit

Getint
Pmng'

Stack
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OVERLAY 11 FINDOV

FUNCTION: - Finds a point in the workspace. Called from DIGOV.or from
a symbol overlay. Returns to calling overlay.
OVERLAYS CALLED

None

SUBROUTINES CALLED

Camac Findy - Ovretn
Plotse Stack - ' Stord
Symg0

OVERLAY 12  DEBUG

FUNCTION: | Writes out conteﬁts of random access files_in a choice

of formats. Used for debugging. Called by menu command.

OVERLAYS CALLED

" None

SUBROUTINES CALLED

Raread ~ Ovretn



OVERLAY 13 BACKOV
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FUNCTION: Overlay to return data ‘points to epplication overlays. Also

used by the Macro processor MACRO3 and the macro editor

MACROL .

OVERLAYS CALLED

GRWNDO 8

SUBROUTINES CALLED

Backgd . Find Qvretn
Stack - “Storem Restcm
OVERLAY 15 MOVPT
FUNCTION: Point editor. Allows points in the workspace to be moved.

Called by menu command. Exits to DISALL.

OVERLAYS CALLED
DISALL 6

SUBRQUTINES CALLED

Backgd Curcon
Getint Ovlink
Plotwl PmsgO

Rawrit Stack

Find
Plmsg

Raread



OVERLAY 16  MACRO?

177

FUNCTION: First of two macro processing overlays. Reads data from

'specii‘ied mass storage to workfile CADMAC.RA2 rejecting

data on passive levels. Also gets scale from user if

appropriate macro status flag is set. Called by menu command.

Exits to MACRO3 17.
OVERLAYS CALLED
DISALL 6

MACRO3 17

SUBROUTINES CALLED

Cvretn

Levtst _ Openms
Plmsg Pmsg0 Rawrit
Readms Stack Storem
OVERLAY 17 MACRO3
'FUNCTION: Rotates, scales and translates the data stored in workfile

2 by MACRO2. Allows the user to place the macro in the

workspace. - Called by menu cormand and by pencil button 3.

Exits to digitising and control mode.

OVERLAYS CALLED
BACKOV 13

DISALL 6

SUBROUTINES CALLED
Ersen ) Getint

Plmsg - Pmsg0

" Rarit Re stem

Ovretn
Raread .

Stack
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QVERLIAY 18 CONDIG

FUNCTION: Allows the user to digitise a series of points merely by
moving the pencil. Points either entered at time intervals
or according to the distance moved. Called by menu command.

Exits to digitising and control mode.

OVERLAYS CALLED

“None

SUBROUTINES CALLED
Curcon ‘ Getint - Ovretn

Plmsg ' PmsgO : - Xback

OVERLAY 19  PAPFIT

FUNCTION:  Fits data in workspace to particular paper size for plotting.

OVERLAYS CALLED

DISALL 6

SUBROUTINES CALIED
Erscn. Levtst Qvretn

Raread . Rawrit Stack



OVERLAY 20 MACRO

FUNCTION: Sets macro processor status flags. Called by several

menu commands. - Exits to digitising and control mode.

OVERLAYS CALLED

None

SUBROUTINES CALLED

~Ersen Camac Getint
Ovretn Plmsg ' Pmsg0
Plotwl Setflg

OVERLAY 21 SYMO02

FUNCTION: Handles the following symbols: Arcs,circles,fillets

rectangles.

OVERLAYS CALLED -

DIGOV L4

SUBROUTINES CALI.ED
Boxsym Circle Disarc
Midarce : Ovretn Plotsc

Stack Setmes Stord

179



OVERLAY 22 SYMOO3

FUNCTION: Dimensioning symbol.

OVERLAYS CALLED

DIGOV L4

SUBROUTINES CALLED

180

. Tstext -

Boxsym Dimen Ovretn
Stack Setmes Stord
OVERLAY 23  SYMOOL
FUNCTION: Text or alphanumeric symbol overlay.
OVERLAYS CALLED
DIGOV 4
SUBROUTINES CALLED
Boxsym Qvretn Stack
Setmes ' Symbl Stord



OVERLAY 2 TIDYOV

FUNCTION:
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Sorts garbage out when data is transferred from

workspace to semi permanent mass storage file. Called

from OVFIL.

OVERLAYS CALLED

None

SUBROUTINES CALLED

Ovretn A Raread

Stord.

Rawrit

FUNCTION:

OVERLAY 29 MACROL

and delete nests of macros or symbols.

menu command.

OFERLAYS CALLED
 BACKOV 13 |

MACRO 20

All symbol overlays
GRWNDC 8

SUBROUTINES CALLED

Curcon Disbox
Getint Finds
Plmsg Pmsg0
Bawriy o * Resten

-Storcm

Maero and symbol editor.

Operator can rotate, translate

Called by

Dissym
Ovretn
Raread

Stack
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Appendix A-3

FORTRAN subroutines in the GCADS library

Subroittines :
"~ Length Name called : Function

1,63  BACKGD CAMAC Main background loop.
CAMRTB
CORDIS
DISPCS
DSKEW
GRID
GETINT
PLMSG -
PMSGO
SCREEN
TFLOOR
TLEV
MENAN

1072 BOXSYM STORD Calculates bounding rectangies for symbols
' and stares them.

63l © CIRCLE PLOTSC Draws arcs and circles.

316 CDISP  CAMAC Displays coordinates on the coordinate
DIOT display unit.
MASK

L60  CORDIS CDISP Displays coordinates on screen.
PLACE '
PMSGO

233 CAMRTB CAMAC Read the table coordinates. |
- DROT

142 CRPLOT PILOTSC Generates the vectors that mske up éharacters.
Sends them to the display. .

195 CURCON CAMRIB Displays the cursor on the screen.
CORDIS -
~ DISPGCS
DSKEW
SCREEN



Subroutines
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Length Name calted Funetion
219 -CLOSMS IREAD Closes mass storage file.
RAREAD
RAWRIT
WORTRAN
59 DSKEW - Deskews x,y coordinates.
943 DIMEN  NUMBER Automatically dimensions between two points.
PLOTSC
175 - DISBOX CAMAC Displays box round macro on the screen.
PLOTWI '
SCREEN
168 DISPCS CURSND Displays a cross hair on the screen.
DSPNST »
DSPSTR
338 DISARC CIRCLE Displays arcs.
95 DELTMS BITCLIR Deletes a mass storage file.
IREAD
IWRIT
57 ERSCN - Erases the screen.
129 FILSRT INITF Reads and inits :random access files
SETFIL on the disk unit, which are to be used by GCADS.
506 FIND LEVIST Finds a point in the workspace.
RAREAD Called from MOVIP.
RAWRIT
- PLMSG

PMSGO
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Subroutines
Length Name called Function
127 FINDS CURCON Finds a point in the workspace and
DISPCS , returns its position within the workspace.
LEVIST Called by MACROFOR.
PLMSG
PiSGO
RAREAD
SCREEN
as
565  FINDY ;FIND As FIND but checks bounding rectangles.
. Called from FINDOV.
89 FLENTH - Function to calculate the length of a line.
164 GRID - Rounds coordinates to a multiple of
the grid factor.
164 GETINT CAMAC _ Looks for pencil button interrupt.
’ cvr
MASK
529 LOOKMS CLOSHS Searches mass storage file for free space.
- RAREAD
RAWRIT
SUBHS

463 MACMES  GURGON

GETINT Displays messages for macro editcer.
PLMSG
PMSGO

203 MENAN - Determines menu -section ard menu square

number of a point.
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Subroutines
Length Name Called Function
301 MIDARC - Calculates spare point in an arc.
h77 NU'MBER_ SIML Displays number on the screen.
320  OPENMS RAREAD Opens a mass storage file.
SUBMS
L6 PLOTSC PILOT To call plot and screen.
SCREEN
L6 PIOTWS PLOTW1 As PLOTSC but screen only PLOT.
- SCREEN
16l PLOTS  CAMAC Initialises display system.
PLOTWI :
1073  PLOTW1 CAMAC Plots on the screen.
CAMRTB
PLOTD
WINDRW
165 READMS PLMSG Reads data from mass storage file.
PMSGO
RAREAD
SUBMS
87 SETFIG =~ Sets up flag to indicate macro processor status.
131  SYMBL CHAR ' Displays symbols on the screen, or for
101 SDIST - Calculates distance from midpoint of line to

another point.
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Length Name called
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Function

183 SELECT GETINT
FIND
CURCON
PIMSG
PMSGO

Enables selection of start axd erd points
in macros. Called from MACRO3.

227 SETMES -

Sets symbols messages.

264 STORD RAWRIT

Stores I1,X,Y triplet in workspace.
Calculates bounding rectangles.

65 SCREEN = =

Converts coordinates to screen size.

249 STORY PACK
RAWRIT

Stores data in format for kingmatic plot
. in random access file 7. '

1130 SPLINE -

Calculates coefficients of cubic spline
for curve fitting.

320 WRITMS  LOOKMS
RAWRIT
SUBMS

Writes to mass storage file.

439 WINDWB -

Scissoring routine.

L1 WINDOW @ -

As sbove but fa plotter.

251 XBACK CAMAC
CURCON
GETINT
PLOTSC
STORD

Background loop for continuous digitising.
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Assembly lLanguage Subroutines in the GCADS Iibrary

a Subroutines
Leggth*mame» Called | Fu.nctioln
14 ASGN - Requests that device be assigned

as logical device 3.

226 CAMAC - : CAMAC interface handler.
734 CHAR - Defines and generates characters.
212 CURSHND - Displays cgrsor.
2L CcvT - - . Vit conversion routine for GETINT.
14 DEPAC.K» - | | Opposite of PACK.
2u3_ DISSYM - | Stacks display overlay segment, for symbols.
go- - DROT - Bit conversion routine for CORDIS.
20  DILOT - Bit conversion routine for CAMRTB.
112 DSPMDE - Entry points DSPNST and DSPSTR to set screen

into non-store and store mode.

N ,
Length in Octal bytes.



188

Subroutines
Length Name called Function

226 LEVEL  LEVCLR

LEVSET
LEVTST Handles level operations.
SETLEV ’
CLRLEV
12 MASK - Routine to do a logicai mask.
164 MENMAP - Allows menu commands squares to be
re-located.
200 MENSEL =~ Selects overlays after menﬁ cormand.
1536 OVLAY OVLINK
. OVINIT
OVRETN Overlay handler.
STACK ~
CIRSTK
14 PACK - Packs second integer into second word
of first integer.
166  PLACE PLMSG - Actually displays coordinates on screen.
152- PIMSG READY Plots messages on the screen.
15, PMSGO READY Sets position and size at which messages toi
‘ be plotted on screen.
TTh PLOTD - Subroutine to drive flat bed plotter.
704 RACSES  RASET High speed randon access file handler.
: . RALOCK
RAREAD

RAWRIT
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Subroutines
Length Name called Fanction
1110 READFR - Free format input routine.
120 RICCK - Looks up length of mass storage file.
104 STRCON  RESTCM Stores and re-stores common user
RAREAD area to random access file zero.
RANRIT
316 SUBMS BITTEST
BITCLR R
BITSET ,
IREAD Subroutines for mass storage handler.
WORTREN
ZERO
26 SYMAP - Symbol mapping routine.
261 SYMiO  CIRSTK
STACK Directs control to symbol segments.
OVRETN
136 TANGLE - -
56 TLEV - Converts integer number to ASCII.
76 TSTEXT - Sorts text strings.
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STASYS use of Common areas

a) COMMON/GENRL/
DUMME (6)
IFLN
IBASE

IELEM

Not used
Floor number
Number of nodal points up to current floor

Number of current element

b) COMMDN/MESAGE/A

DUMMY (32)
MM
NN
NTRKC
NS
NDF
IELT
WPN
LDC
LDNUM
HT
XOFF
YOFF
ZOFF
X0
YO
OVER

upP

PP

NP

Used for GCADS messages

Number of blocks per row ofrstiffness matrix‘

Number of blocks per column of stiffness matrix

Number of column vectorsiper row of stiffness matrix

Size of matrix blocks

Number of degrees of freedom at each node

Current element type

Self weight at each node of the current element
Nﬁmber of load cases in solution

Current load case number

Next floor level minus current floor level

Three dimensionai centre of view
Origin of picture plane

Three dimensional viewpoint in polar coordinates

Distance of picture plane from viewpoint

Type of projection plane 1