
THE APPLICATION OF COMPUTER AIDED DESIGN

IN

STRUCTURAL ENGINEERING ANALYSIS

by

Peter TAles McClintock, B.Sc. (F.ng.), A.C.G.I

November 1974

A thesis submitted for the degree of Doctor of
Philosophy of the University of London and for
the. Diploma of Imperial College.

Mechanical Engineering Department,
Imperial College,
London, S.W.7.

2

Abstract

The thesis describes work carried out at Imperial College of Science

and Technology on the development of an interactive general computer

aided draughting/design system, based on a minicomputer with a digitising

table, storage tube and plotting table connected on-line.

The system consists of modular programs providing facilities for

data input, display, filing and plotting. It is designed not only to

produce drawings but also to act as a base for application programs in

the fields of engineering and design.

In particular, a structural analysis system 'Stave has been developed

to enable the construction of an idealised model of buildings and structures,

which can be represented by spaceframe (line) and rectangular plate

finite elements, and for which the model can be constructed from plans of the

different floors or levels of the building or structure.

The data thus generated, may either be output to magnetic tape to form

input data for analysis programs on a 'mainframe' computer, or the stiffness

matrix that describes the force-displacement properties of the structure

may be assembled and solved on the minicomputer. Where this is possible

large time savings result. The size of the problem that can be solved is

limited only by the quantity of backing store available.

3

ACKNOWLEDGEMENTS

The author is indepted to Scott alson

Kirkpatrick & Partners for sponsorship throughout

this project, to Dr. C.B. Besant who supervised the

work at Imperial College, and to all colleagues who

offered both advice and criticism.

Thanks are due particularly to Mir. C.Y. Hsiung

for his guidance through the finite element theory,

and last, but not least, to my wife who typed the

thesis.

LIST OF CONTENTS PAGE

TITLE

ABSTRACT 	 2

ACKNOWLEDGEMENTS 	 3
LIST OF CONTENTS

NOTATION

CHAPTER 1 - 	INTRODUCTION

6

7

1.1 Computers in design 7

1.2 Finite element analysis 10

1.3 Alternative computer systems 12

CHAPTER 2 - 	A general computer aided draughting system (GCADS). 22

2.1 Aims of the system 22

2.2 Hardware 24

2.3 Software 35

2.3.1 	Introduction 35

2.3.2 	Program communication and arrangement 40

2.3.3 	System modules 45

2.3.4 	Data storage 61

2.4 Operation of GCADS 70

2.4:1 Set-up 70

2.4.2 Data input 74

2.4.3 Filing and display 80

2.4.4 Macros 82

2.4.5 Editors 86

2.5 Assessment of GCADS 90

CHAPTER 3 - 	Using GCADS for application programs 92

5

CHAPTER 4 - STASYS - StruCtural analysis system 	97

4.1 Introduction 	 97

4.2 Finite element theory 	 102

4.2.1 Derivation of stiffness matrix far line elemelit 	104

4.2.2 Formulation of rectangular plate element stiffness matrix109

4.2.3 Matrix transformation of coordinates 	122

4.2.4 Solution of equations 	 126

4.2.5 Inclusion of boundary conditions 	130

4.1 Data input 	 131

4.4 Data collation 	 142

4.5 Solution 	 146

4.6 Output of results 	 147

4.7 An illustrated example of the use of STASYS 	150

4.8 Assessment of STASIS 	 158

CHAPTER 5 - Conclusions and future development
	

160

REFERENCES
	

165

APPENDICES
	

167

Ae-1 Common variables of draughting system
	167

A-2 Overlay routines of draughting system
	170

A-3 Library routines of draughting system
	182

B-1 Common variables of STASIS
	 190

B-2 Overlay routines of STASIS
	

191

B-3 Library routines of STASIS
	

207

C 	Use of random access files by STASIS & GOADS
	

212

NOTATION

u 	Displacement

F 	External force

k 	Stiffness coefficient

k
A Superscript A refers to element A

[I 	Matrix

fI 	Vector

[1(11 	Subscript L refers to local coordinate system

A
G

Subscript G refers to global coordinate system

S 	Stress matrix

e 	Strain

Stress

A 	Cross sectional area

E 	Youngs modules

17,V 	Poisson's ratio

7

CHAPTER ONE

INTRODUCTION

1.1 Computers in Design.

In the modern world there are many factors which are causing increasing

complexity in the design of man made objects: the need to conserve raw

materials by minimising the quantity of required material in a design,

which can only be achieved by improved analysis and optimisation; the

advent of new technologies demanding higher precision; the growth in size

of projects in order to maximise economies of scale.

There are also pressures for designs to be carried out more quickly.

It follows that any device which enables man to design more efficiently is

of great value.

The enormous potential of computers for use4n an organisational

capacity has.already been demonstrated and exploited in all major industrial

concerns. They are to be found controlling accounts, inventory and

production schedules. However, the use of computers in design, other

than as calculating machines, has not yet been recognised to the same

extent. This is because in the organisational role, the media of

information passed between man and machine is alphanumeric - characters

and numbers. Devices enabling this type of data transfer were easily

developed from existing technology in the typewriter industry. In the

design process the information media is graphic, most commonly engineering

drawings, and only recently have graphic terminals become widely available.

Moreover, the design process is difficult to cost and the economic

advantages (or disadvantages) of making expensive computers available

to the design office will probably never be fully estimated. It has been

mathematical problems that have driven the designer to use the computer,

often in order to use techniques of analysis that were not humanly possible.

8

Some of these analysis programs require extremely large amounts of

data and now the designer would like to find some way in which to reduce

the burden of data preparation. The computer with recently developed

peripherals is able to aid the designer in that function, and also in

other areas such as information retrieval and draughting.

The price of computers continues to drop dramatically, even in a

period of inflation, and at the same time their reliability, flexibility

and scope increase. It therefore seems likely that the use of computers

in design will become ever more prevalent.

Although computer hardware is observed to be falling in price, the

same is certainly not true of software. The increase in software cost

is almost certain to continue for some time at a high rate. This is not

only because it is actually costing more to produce but also because in

the past the true cost of software development has been hidden from the

user by the supplier lumping it together with the cost of the hardware.

Now that this price has been appreciated, software has started to be

separately priced.

These factors have meant that the true price of software is higher

than generally realised and because of this, it is important that the

software written to drive the graphic terminals in the design office be

capable of supporting a wile range of tasks.. It becomes necessary to

definethe role that the computer system should fill and then decide what

type of system is best able to fulfill that role.

It is possible to identify five major and time consuming areas

in the design process:-

(a) Retrieval and extraction of information

(b) Analysis of a design and assessment of its technical performance

(c) Implementation and communication of design changes

9

(d) Production of drawings

(e) Estimating the cost of a design and the quantities of materials

it requires

From these, we deduce that the computer system in the design office ought

to support the following activities:-

(a) The maintenance of a data base which may be accessed by

engineers working in different fields on the same project.

(b) The addition to, or editing of, the data base in a graphic mode.

(c) Providing access to and supporting a wide range of application

programs.

(d) The production of working drawings.

(e) The support of programs for scheduling and accounting.

The maintenance of a data base implies the existence of mass

storage within the computer system. The storage medium should provide

fast-access to any part of the current project data base for editing,

addition and extraction of information.

The system must possess graphic input and output devices and

sufficient computing power to carry out analysis programs. Above all,

the system must respond quickly to any request made by the user, and,

design is a task that involves careful thought and decision on the

part of the designer, it should not be so expensive that he is over

concerned with getting finished as quickly as possible.

1.2 Finite Element Analysis

It was stated in section 1.1 that designers have started to use

computers to carry out techniques of analysis that were not humanly

possible. The finite element method is one such example.

Finite element techniques have become increasingly important in the

last ten years for carrying out stress analysis on many types of

structure. Most of the early work was carried out in the aircraft industry

where more accurate methods of analysis were required for the increasingly

complex airframes being developed. It was particularly fortunate that

at this time digital computers were available within the industry.

Interest soon spread to other fields of engineering, and in mechanical and

civil engineering developement and use of the method continues at an

accelerating rate.

The finite element method has drastically cut the time required for

accurate analysis and has given rise to a tremendous increase in scope to

the designer of complex structures.

The technique is a generalisation of standard structural analysis

procedures. It permits their extension so that displacements and stresses

can be calculated in two and three dimensional structures by the same

techniques used for ordinary frame structures.

The basic concept is that every structure may be considered to be an

assemblage of individual structural components or elements interconnected

at a finite number of points. It is the finite character of the structural

connectivity which makes possible solution by simultaneous algebraic

equations and which distinguishes a structural system from a problem

in continuum mechanics.

It must be realised that the approximation involved in the use of

the method is essentially physical. The assemblage of elements is

11

substituted for the continuum. There need be no mathematical

approximation in the solution of the substitute system. This is an

important difference between finite element and finite difference

methods. The structural idealisation is obtained by dividing the

original continuum into segments of appropriate sizes and shapes,

all the material properties being retained in the individual elements.

The capacity for treating arbitrary material properties and boundary

conditions is one of the principal attributes of the finite element

method.

At present by far the longest steps in the analysis process are the

input and output of data, the actual c.p.u.* time needed is unlikely

to exceed ten minutes even on very complex problems.

By contrast, dividing the structure into elements and translating

the graphic finite element data, which is normally presented in the

form of drawing, into numerical data may take several days. The division

of the structure is critical and should be carried out by the engineer

as the approximation is likely to be the most important source of error

in the analysis.

Clearly, a graphic based computer system would ease this situation.

*
Central Processing Unit.

12

1.3 Alternative Computer Systems.

In section 1.1, it was proposed that the computer in design should

be capable of supporting several activities and must therefore have

sepcific attributes. In this section, a brief survey of available

computer systems and commercially produced peripherals is given and the

extent to which they are able to support these activities and possess

the relevant attributes is discussed.

A single computer system is built from many components which may

roughly be divided into four categories:-

(a) Storage devices

(b) Central processors

(c) Input/output devices

(d) Operating systems

The way in which these components are linked together defines the system

architecture.

(a) Storage devices.

1) Core storage or main memory.

computer program consists of a large number of individual instructions

which are executed one by one to operate on data. An individual instruction

may require only a few microseconds to complete its function, and this

operation tine must include the time needed to transfer the instruction

from memory to the processor and to interpret and execute the instruction,

including extracting the required data from memory and storing the result.

Thus, it can be seen that the memory must allow for the storage of a

large number of instructions and data, which must be available as required,

at high speed.

Access to any word is by direct address (ie. each word location has

a numbered address). Access times are typically 900nanoseconds„ or in the

case of semi-conductor memory, can be as low as 300nanoseconds.

13

Because of the high price of this type of store, it is not economic to

consider storing all data and programs in such a medium. The main

memory is used to hold current data and instructions, and other data

and program segments are called in from backing store as required.

Typical cost per byte is 10 pence, but this is still falling.

2) Disk storage.

A typical magnetic disk store consists of a number of rotating disks

each coated upon both curfaces with a magnetizable material. Information

is written to, or read from, the disk by a series of arms, one for each

disk surface. Each arm contains one, or several read/write heads, and the

arms can be positioned above certain areas of the corresponding disks

according to instructions received from the central processor. In the

case of fixed head disks, a series of reading heads cover the whole radius

of the disk so that no movement of the heads is necessary.

Typical cost per byte for a moving head disk would be .25 pence, while

the cost for a fixed head disk per byte would be roughly four times this.

In general, moving head disks are constructed so that the disks can

be changed. In this way, data on a disk pack can be permanently saved.

Access time canbe measured in tens of milliseconds.

3) Magnetic drum storage.

Similar to the magnetic disk but with a drum. Performance and price

are similar to those of a fixed head disk. Both disks and drums are

suitable in direct access applications and are a compromise to obtain, at

an economic price, tertian of the qualities exhibited by magnetic core

memories.

4) Magnetic tape storage.

Magnetic tape is a serial store; data is recorded as individual

characters along a length of tape and processing can only be achieved

by sorting records into a sequence so that each can be examined in turn.

It is mainly used for the storage of complete sets of data or

jobs that can be serially read onto disk or drum, or into main memory.

A typical tape can hold eight megabytes of information. When in

operation, the cost of storage per byte is approximately .065 pence.

This includes the cost of the tape transport and controller. When used

for offline storage the cost is only .0001 pence per byte, much

cheaper than storing information in normal writing on paper.

(b) Central processors.

The central processor is the nerve centre of any digital computer

system, since it coordinates and controls the activities of all the other

units and performs all the arithmetic and logical processes applied

to the data. Certain arithmetic operations such as multiplication can

either be programmed or carried out by hardware. To carry out operations by

hardware is much quicker than doing the equivalent operation by software

- but is much more expensive. There is a trade-off between the power

and speed of the processorland the cost. Different types of application

require more or less c.p.u.* effort. Graphic design requires relatively

little computation while analysis will require much more.

Processors used to be the most expensive part of a computer system

but this is no longer so and the price of processors continues to drop.

Naked mini-computers may now be purchased for only £1,000.

(c) Input/output devices.

1) Card input

A very commonly used method for feeding programs and data into a

computer. They provide a convenient way of storing programs and have

114.

Central Processing Unit.

the advantage of the data being visible. However, to produce data cards

in any number is tedious, and there are liable to be numerous data

errors. ThiS will result in more than one run of a program being

necessary, in order to eliminate the errors. Large stacks of cards are

cumbersome, liable to disorder and wasteful of office space.

2) Paper-tape input/output.

The use of paper-tape is becoming rare because like cards there

are physical handling problems for large programs and large quantities

of data. It is often used for transferring data or programs between

machines and also has the advantage of data being visible.'

3) Teletype.

This is a two way communication device that is connected directly

with the computer. The operator may enter data directly into the system

by typing on the keyboard and the computer may reply by causing a message

to be printed directly at the inquiry terminal. One of the factors here

is that if the operator makes a mistake in keying the inquiry or data

the error may be detected by the computer and a request for its connection

immediately issued. Typical cost £800.

L) Visual display unit.

This is similar in operation and use to the teletype but instead

of information being typed onto paper, it is displayed on a screen. This

has the advantage of being much faster and this is particularly useful

in program development, where the operator often wishes to view a section

of program, or information retrieval. The disadvantage is that no hard

copy is produced for the later reference. The V.D.U.' is cheaper to run

since it requires no paper. Typical cost £800.

"Visual Display Unit.

16

5) Line printer.

The line printer is capable of producing printed output at high

speed ranging from 300 to 2,000 lines of 160 characters each per minute.

Fast line printers are found to consume enormous quantities of paper.

They can be programmed to print on preprinted stationery and are valuable

for producing schedules, invoice and statements. Typical cost is

from £1,000. upwards.

6) Refresh graphic display.

It is both an input and an output device. • The refresh C.R.T.*

when used with a light pen provides the operator with a means of

directly inputting graphic data. It usually includes a keyboard.

Most graphic input/output devices are more expensive to run than

those dealing only with alphanumerics. A refresh C.R.T. is expensive

because it requires a display processor to drive it. The whole picture

must also be stored in core which ties up part of the supporting computer

systems capability. There is also a limit on the amount of information

that can be displayed before the picture starts flickering. Cost of the

typical terminal including display processor and minicomputer is £6,000.

7) Storage tube.

This is often operated. in conjunction with a cursor, which enables the

operator to specify position on the screen, and a keyboard. All that is

written to the face of the screen is stored until the whole screen face

is erased. There is therefore no limit to the complexity of the picture

which can be displayed and does not have to be held in main memory.

However, selective erasure is impossible and the display is best

visible in subdued light.

"Cathode Ray Tube.

17

A hard copy device is available which simply puts an image of the

screen onto special paper.

Typical cost £4,000. for tube, keyboard and cursor; £2,000. for

the hard copy unit.

8) Digitiser.

The device enables the cartesian coordinates of a point in a plane

to be transmitted to the computer. It consists of a table and a pencil

with sensing apparatus that monitors the position of the pencil on the table.

One considerable advantage of this device is that it can be the

same size as standard working drawings. These can be stuck to the

table and the operator may work from them. The device is accurate to

within .1mm. Typical cost £7,000.

9) Data tablet.

This is similar to the digitiser but generally smaller, of lower

accuracy and cheaper. 	See figure 1.1.

10) Plotter.

A variety of plotting devices exist. There are two distinct types:

Drum plotters and flat-bed plotters. In drum plotter, the paper

is drawn _round a drum. The drum revolves to give movement in the

x-coordinate while a pen unit mounted on a gantry lying along the drum

provides y-movement.

In a flat-bed plotter, the per remains still while the gantry moves.

Another plotting device is microfilm plotter. A photograph is taken

of a high resolution C.R.T. display. This is many times faster than

normal plotting devices but also more expensive. They are however, well

worth it if the work load is sufficient.

(d) Operating systems.

An operating system may be defined as those procedures which control

Figure 1.1 Small data tablet and storage tube

19

the resources within a•computer system. Operating systems generally

become more complex as the size of the installation increases. The

operating system will determine in what processing mode the computer

is to be used. Common modes are:-

1) Batch processing mode.

In this mode, jobs are prepared and then input as a single unit,

usually in the form of punched cards, to the computer. At some later time,

the job is processed and the results output. The time between input and

output is termed 'turn around time' and may range from 10 minutes to

one or more weeks. Average time is a few hours. There is no interaction

between the user and machine, indeed, the user may never even see the

machine.

Batch processing mode is certainly unsuitable for the editing or

interrogation of a data base and far graphic design.

2) Remote terminal processing.

A multi-access system is one that allows a number of remote terminals

to have interactive access to the central computer resource. The remote

terminals may range from teletypes to complete satellite systems. It

appears to each user that he has the total computer resources to himself.

By time sharing it is possible to give a response tine of a few seconds

to each terminal because human intervention is comparatively such a

slow process.

The operator of the remote terminal is able to conduct his work

in conversational mode.

This type of operation is clearly suitable for the design application.

Because of the large quantities of data that are generated in the design

process, the terminal must have sufficient data handling capabilities.

20

One way to achieve this is to use a minicomputer system as the terminal

device. This also allows the user to perform data preparation tasks

such as editing and debugging program modules without having to pay

for 'connect' and processing time which would result if this was done

by the central computer.

Such a terminal is called intelligent.

3) On-line processing.

In on-line processing, the operator is permanently connected to the

computer resource. It is mainly used when a high degree of interaction

is required. It is clearly capable of supporting the design task but

is too expensive to be considered where the central computer is to be

capable of handling large analysis programs.

The best alternative appears to be a remote intelligent terminal

connected to a powerful central computer.

The computing power of the minicomputer has increased enormously

over five years, so that they are now capable of handling most of the

processing required by the five activities defined in section 1.1.

If such a proposition is true, it is possible to largely dispense

with the control computer and to use the intelligent terminal in a

'stand alone' situation.

Minicomputers first came into operation in 1962 and since their
•

introduction, their success has been remarkable, Equally remarkable

has been their increase in power.

The trend towards installing minicomputers is a move in the opposite

direction to large integrated program 5ybtems, maintained by central

organisations and accessible from terminals. Because of their increase

in power, the definition of a minicomputer is becoming obscure, but it is

21

generally accepted that it is a type of machine that can be offered in

a viable configuration with a core in the range of perhaps 8 to 32Kilowords.

Some machines of this type can be extended to a core size of 128Kilowords

or more, and they can be equipped with a wide range of peripheral devices

such as disk and magnetic tape storage, visual display units, plotters and

high speed printers as described, so that in their most sophisticated

configurations they can compare with some 'large' computers.

Their significance is that, in their smaller configurations, they

provide the opportunity for small firms to have their independent in-

house computer. This is particularly important for firms that are

interested in systems with interactive input and output through graphic

display units because the delays and costs involved in conducting inter-

active graphics remotely from the canputer are prohibitive in most

commercial applications. Thus mincomputers are essential to firms

involved in graphics, but otherwise, they should not be installed unless

a thorough study has demonstrated that it would not be cheaper to have

a terminal linked to a remote central computer. In this comparison, it

should be remembered that a minicomputer in-house necessitates sufficient

staff who can program for it, and who understand its operating system.

This leads directly to an increasing tendency to study the economics

of the entire design and construction process very carefully to decide which

areas are likely to yield the best financial return on the cost of applying

computers to them. One aim of this project is to test the capability of

a minicomputer in solving quite large and complex problems. It is necessary

to establish which type of programs can be successfully and economically

run on a minicomputer.

22

CHAPTER 2

A General Computer Aided Draughting System

2.1 Aims of the system.

There was a desire to provide a computer aided design system which

would be useful in many fields. The area in which all fields came

most nearly together was in graphics and draughting, and it was

therefore thought that a general draughting system would provide the

best base far any computer aided design system in a particular application.

The system should provide: a means of graphic data input and output

including the production of drawings, an operating or user action control

system and an interface far applications programs, which could be used

for design work in Civil, Mechanical and Electrical engineers.

Applications in mind were:-

Data preparation for structural analysis

Building design

Mechanical engineering component design

Printed circuit layout design

The software should comprise an executive and a set of program

modules, each module to perform one or more functions. In this way

users would select which modules they required for their particular

application, and, a library of modules could be gradually built up

continually adding to the power of the system without causing old versions

to become incompatible.

Once developed and tested, system modules should only be updated

by system programmers, application programmers should not be allowed

to modify the system modules to their own ends.

In particular modification of the data structure which would make

existing data incompatible should be avoided at all costs. The reason

for these restrictions was to ensure that persons working on different

problems but on the same project would be able to utilise the same

database. Thus data initially generated by an architect doing building

design could subsequently be used by the structural engineer to generate

data far analysis programs and to produce detailed reinforcement drawings.

LastlTy the data structure should be as simple as possible to allow

easy interaction with analysis programs. This was considered more important

than trying to obtain the last bit of speed out of the system by the

use of complex data structures as it was not anticipated that speed of

operation would be a limiting factor.

21

2.2 Hardware.

Previous development had been carried out at Imperial College

using a PDP 8/E* minicomputer, with 8K 12 bit words of core storage

and dual Dectape providing 500K of slow backing storage, connected

on-line to a D-MAC digitiser and Tectronix 611 storage screen.

The main factor limiting the use of this system was its slowness

of operation and difficulties in programming. All programs were written

in assembly language for the sake of efficiency, and because the level

of Fortran that the system could support was too low to be'substantially

useful. Since Dectapes were the only form of backing store, and these

have an access time of several seconds, the system had to be core resident.

This made expansion of the system extremely difficult.

The system on which the work by the author was carried out was based

around a PDP 11/45* which had considerably more power (see Fig. 2.1).

The main components of the system which was largely supplied by C.E.C.**

are now described.

a) Processor.

PDP 11/45 with floating point hardware for increased performance.

The performance of the PDP 11/45 is compared with that of the PDP

and CDC 6400 in figure 2.2.

b) Storage.

1) Main memory is 16Kilowords of 16bits each, this is expandible

up to 124Kilowords.

'Manufactured by Digital Equipment Corporation.

**Computer Equipment Company.

6
5
1
=

1
=

Operation
	

PDP 8/I
	

PDP 11/1.15
	

CDC 6400

12 bits
	

16 bits
	

60 bits

Memory cycle time 1.5 .9 .5

Add 3.0 .3 1.0

Multiply (fixed point) 360. 3.3 1.0

Divide 	(fixed point) 460. 7.0 1.0

Floating multiply - 4.55 - 6.55
6.55 - 11.95*

11.4

Floating divide -
6.555

5 	9 	*
- 18.

9
35

11.4

double precision - 64 bits.

Figura 2.2 Comparison of instru*tion execution times. micro seconds).

27

2) Fast backing store is provided by a 1.2 million word moving head

disk utilising removable disk cartridges so that each user is able to

maintain security over his own data and programs by removing his disk

after use.

3) Bulk storage was added in the form of a Magnetic tape unit*

in August 1974. This was reauired not only for storage purposes but

also to provide a medium for data transfer between the system and

other computer complexes.

c) Input and output devices.

1) An Lk 30 DECwriter was used as the system console. This prints

characters quietly at 15 characters per second but can be up-graded to

30 characters per second.

2) A high speed paper tape reader and punch capable of reading

characters per second and punching characters per second.

3) Serial line printer' ''with a maximum speed of 180 characters

per second. This is almost essential for the listing of results and is

extremely useful for obtaining listings of programs during developement,

as this is a slow process using the DECwriter.

4) D-NAC digitising/plotting table. 	The table has a working

area of 1.5 by 1.0 metres and consists of two flat surfaces, one above

the other. The upper surface, made of toughened glass and upon which

the operator may lay drawings and sketches, is used for digitising, the

lower surface is used as a flatbed plotter. Between the two layers a

gantry is driven by a servo-motor in the x-direction, and mounted on the

gantry is a carriage which is also driven by a servo-motor in the y-direction.

By a combination of gantry and carriage movement, it is possible to position

the carriage anywhere within the table surfaces.

*•Manufactured by Kennedy & Company.

**Logabax LX180.

28

The carriage contains a sensing coil and movement of the carriage

and gantry is detected by Moire fringe shaft encoders, driven by steel

wires attached to the gantry and carriage. A free pencil (Fig. 2.3)

containing a coil, through which is passed a LOOHz signal, is

held by the operator or above the digitising surface. The sensing

coils in the carriage detect x and y positional errors between the carriage

and the free pencil, and amplified signals are sent to the servo-motors

to drive the carriage towards the free pencil. The movement of the

carriage is monitored by the encoders and the outputs are fed to digital

counters in the CANAC interface.

When any one of the eight buttons on the free pencil is pressed

the computer reads the current x and y coordinates of the table and

records which button was pressed.

In the plotting mode the servo-motors are driven by signals from

the computer. A pen unit mounted on the carriage is also under computer

control, and raises and lowers the pen.

The digitising serves as the main input device for the system.

5) Tectronix 611 storage tube driven by S.E.N.* vector and character

generators mounted in the CAMAC crate provides visual display. This has

three intensity levels and by correct setting it is possible to arrange

that the lowest level be non storing. This is used to display a

tracking cross or cursor continually monitoring the position of the

digitiser without storing it on the screen.

6) A flat bed plotter with working area lsquare metre developed

at Imperial College is also connected on line to the system (Fig.2.ti).

This was driven by D.C. printed circuit motors via a stereo power

amplifier providing a great deal more power than was available in the

S.E.N. Electronique, Limited.

29

Cross hairs.

Numbers refer to function buttons.

Fi3ure 2.3 The digitising pencil

ngure 2.4 The flat bed plotter

digitiser/plotter. The gantry and carriage were also designed to be

as light and rigid as possible. Special rubber wheels were used to

reduce noise and proved so effective that the whole plotter is

virtually inaudible. The average plotting speed is 10 inches per

second and is as much limited by the flow of ink from the pens used

as by the drive mechanism.

d) CAMAC interface.

The digitiser/plotter, storage tube display, line printer and D.C.

plotter are all interfaced to the PDP 11/45 through a CAMAC? interface.

CAMAC provides a common standard interface (the CAMAC dataway) into

which hardware handling modules can be plugged. An interfacing module,

the CAMAC dataway controller, links CAMAC to the computer. This dataway

controller must be designed for the computer being used but the hardware

handling modules are all independent. These modules and the controller,

in the form of printed circuit boards, are plugged into a CAMAC crate,

which normally has space for 24 boards.

The following modules are present in the system:-

a) To interface digitising table.

1) Interrupt request register (EKCO 7013)

- Handles the operation of the eight function buttons on

the pencil.

2) Dual incremental encoder module (S.E.11. 2019)

- Monitors the carriage and gantry positions.

3) Digitising table interface (D-MAC GS101).

- Turns pencil light on and off.

- Raises and lowers pen unit on the carriage.

-Switches between plot and digitise mode.

32

b) b) To interface Tectronix 611 storage tube.

1) Storage display driver (S.E.N. SDD 2015)

- Controls operation of the tube.

2) Vector generator (S.E.N. VG 2028)

- Provides ability to display linear vectors with a minimum

number of instructions. Vectors may be any length and in

any direction.

3) Character generator (S.E.N. CG 2018)

- Generates ASCII characters at any position on the screen

with a choice of two character sizes.

IL) Display driver (S.E.N. DD 2012)

- Accepts X/Y increment/decrement signals from the vector

generator to display vectors on the screen.

c) To interface line printer (7065).

1) Peripheral Driver (7065)

- General purpose output module.

d) To interface the D.C. flat-bed plotter.

1) Digitising table interface. (DMAC CS101)

- Raises and lowers pen unit.

2) Dual error module

- Monitors the difference between where the table should be

and where it is.

33

The hardware is shown schematically in figure 2.5.

It should be noted that CAMAC was intended for use in situations

where very many peripherals were to be interfaced to the computer. The

controller which interfaces CANAC to the computer is capable of controlling

up to eight crates, each with twenty-four modules. In this application

only a few peripherals need be interfaced and it is now possible to

obtain interfaces from D.E.C. and other suppliers, which plug directly

into the PDP 11/45, for all the peripherals mentioned. This has become

cheaper and more efficient than using CAMAC.

RK05 1.2M 	I RK 11 Disk Paper tape PDP 11 16 Kilowords Kennedy 7 track LA 30 DECwriter
word moving 	controller
head disk unit

reader/punch processor core storage
16 bit words

magnetic tape 15/30 chars/sec

L 	 PDP 11 UNIBUS

PDP 11 CAMAC Branch driver (CEC BD 1000)
Crate controller (CC 1001)
Branch controller (BC 1002)

Binary Driver Error Dual
to B.C.D. module controller incremental
converter NEL 9193 EC 1004 encoder
NEL 7068 A loos

CAMAC DATAWAY

Interrupt
request
register
CR 1006

Storage Display Vector Character
tube driver generator generator
driver DD 2012 VG 2028 	. CG 2018
SDD 2015

Peripheral
driver
module
EKCO 7065

Coordinate \ Digitiser 18 Function Logabax LX 180 Tektronix 611

display buttons 180 char/sec storage tube

unit Plotter serial printer, disp;ay

Figure 2.5 Schematic diagram of the system hardware

35
2.3 	Software.

2.3.1 Introduction

The General Computer Aided Draughting System (GOADS) operates

under the standard PDP 11 Disk Operating System, known as DOS; which is

supplied by D.E.C.. This occupies the lowest 3.5Kilowords of core

depending on the number of device handlers currently in use. Although

GCADS does not use all the facilities available under DOS they are all

retained because to remove them would take significant, programming effort

and might place severe restrictions on the operations of future applications

programs.

The remaining core area, 12.5Kilowords, is divided into a resident

and overlay area.

The resident area contains a small executive, some very commonly

used subroutines and common areas.

All system and user programs are loaded into the overlay area from

the moving head disk unit. A map of core usage is shown in figure 2.6.

The method of calling overlays provided by DOS was not considered

to be of sufficient speed. To overcome this a special high speed overlay

system was written. The operation of this is described in the next section.

The majority of system programs are written in Fortran IV.

Subroutines only have been written in PAL 11 assembly language and only

where either, the program effectively interfaces to hardware and assembly

language must be used, or where not to do so would result in grossly

inefficient operation in terms of execution time and required core storage.

The user controls the system from the digitiser. The digitising

area is divided into two: the drawing area and the menu area (see Fig.

2.7). The menu is a 10 x 30 matrix of 20mm squares occupying the

leftmost 200mm of the table. When a point on the table is digitised,

DOS System area approx 3.3 Kilowords

GOADS Resident common approx. 1 Kiloword.

L GOADS Resident main 	approx .13_Kilowords

GOADS Resident subroutines approx 1.5 Kilowords

_address in octal bytes 30774
30776

Overlay area approx 10 Kilowords containing:

Overlay common
Overlay main
Overlay subroutines

36

Figure 2.6 Core utilisation

1500mm

Active table area

Symbols

Files

Levels

System
and

Commands

200mm

Menu area

L. - - - -IT- - - - - 	- -

Input Origin 	Skew control points

13.00mm.

Drawing area

Drive mode patch

Coordinate origin----

Figure 2.7 Use of the digitising surface.

38

the UOM determines from the coordinates of the point whether it is within

the menu area. If so, it is interpreted as a command by the computer.

In this way the user can issue 'menu commandst without having

to continually turn to the system console.

The software comprises a set of modules and utilities some of

which are subroutines and some overlays. These are described in section

2.3.3. The UOM forms the nerve centre of the system and has responsibility

for responding to menu commands and calling the correct module or utility.

The main functions that the system supports are:

- The input of straight line data (line mode).

- The input of special symbols including text, circles, dimensions and

arcs (symbol mode).

- The sectioning of data into levels.

- The filing of data.

- The use of data files as sub-pictures or macros.

- The editing of all types of data.

- The plotting of all data.

During the input of data, several aids are available to the user:

Windowing- a specified area of the table is magnified to fill the

display screen.

Control 90- the coordinates are constrained to be at an angle,which is

a multiple of 90 degrees, to the last point digitised.

Control 15- the coordinates are constrained to be at an angle, which is

a multiple of 15 degrees, to the last point digitised.

39

Drive mode - Instead of coordinates being calculated from the position of

the free pencil on the digitiser, the user is able to

increment the coordinates in, ones tens-hundredths or thousands

of millimetres, in x or y.

Find 	- The user is able to set the value of the coordinates to

those of previously entered.

The programs for the modules and point utilities are described in

section 2.3.3 and their operation in section 2.14.

140

2.3.2 Program communication and arrangement

Each time an overlay is called and loaded into core the previouS

contents of -the overlay area are destroyed. In order to communicate

between overlays three methods are employed:

1) The storing of information in the resident Common areas.

2) The storing of information in a disk file which is later accessed

by another overlay.

3) The storing of information on the overlay execution stack.

The Common areas in the resident area of core are set out and

their function explained in Appendix A-1. They contain;a set of system

parameters, some space for applications programs parameters, 256 words of

buffer space for the system and 512 words of buffer space for the application

programs. A real variable occupies two words.

Two subroutines STORCM(N) and RESTCM(N) are used to store and

retrieve the Common user buffer area to and from a contiguous random access

file CADMAC.RAO on the disk unit. The argument N defines the block number

in the file at which the writing and reading is to start. These sub-

routines enable the user to conveniently store and retrieve data between

overlays. The system itself by saving the common user buffer area before

use and retrieving it afterwards is able to utilise the Common user buffer

area without affecting applications programs.

Several of the system overlays perform utility functions such as

filing and display. The applications programs may wish to call such a

utility virtually as a subroutine. In order to facilitate this an overlay

execution stack has been created to work in conjunction with the high speed

overlay system mentioned in section 2.3.1.. This is now described in detail.

141

The load module of each overlay is assigned an overlay number

and is written into a contiguous random access file CADMAC.OVL on the

moving head disk unit. At the front of CADMAC.OVL is a directory containing

each overlay name, number, start record and length that has been written

into CADMAC.OVL. When GCADS is run the directory, excluding the overlay

names, is read into the resident core area.

Overlays are called into core by a statement CALL OVLINK (N)

where N is determined by:

N = (Overlay Number- 1) x 25

Overlays may also be called by a statement CALL STACK (N, ARG) where N

is determined as before and ARG is used to carry information to the overlay

defined by N. Both N and ARG are placed on the overlay execution stack

which operates on a Last In First Out principle. A statement CALL OVRETN

causes the overlay defined by the value of N at the top of the stack to be

called into core and the variable ISUB in common area SUBOV (see Appendix

A-1) is set to the value of ARG.

ARG can be used either to transfer an item of data to the overlay

called, or where the called overlay performs more than one function or

contains more than one entry point, to define which function is required.

By testing the value of ISUB as the first executable statement of

an overlay an individual segment can be selected for execution.

If the calling overlay stacks itself before stacking another overlay

then control will be returned to it after the called overlay has been

executed. This process is illustrated in figure a. Therefore overlay

segments may be called in a similar manner to subroutines but with two

important differences:

GO TO(1,2...)ISUB
1

CALL STACK((6-1)*25,1)
CALL OVRETN . 	
END

OVERLAY 8
COMMON/SUBOV/ISUB

OVERLAY 29
COMMON/SUBOV/ISUB

I 	-
GO TO(1,213)ISUB
1
CALL STACK((29-1)*25,2)
CALL STACK((13-1)*2511)
CALL OVRETN
2

OVERLAY 13
COMON/SUBOV/ISUB

GO TO(1,2)ISUB
1

CALL STACK((13-1)*2512
CALL STACK((8-1)*2511)
CALL OVRETN 	
2

CALL OVRETN
END

CALL STACK((29-1)*25,3
CALL STACK((8-1)*2512)
CALL OVRETN

UV-IMLAY 6

CALL OVRETN
END

!END

Figure 2.8 Example of overlay 'stacking'.

143

1) The arguments to the overlay segment called must be transferred

by one -of the methods previously outlined for communication between

overlays.

2) All variables in the calling overlay that are required after

such a call must be saved either in resident Common or on the disk unit.

Since each disk access will require on average 90 milliseconds it is

preferable to store data for transfer or which is to be saved in resident

Common. The resident Common storage locations thus have a high value

placed upon them and are only used where essential. It happens that

some parameters may only be used within a particular string of overlays

and other parameters are only used within a different string of overlays,

in such a case the same Common loacations will be used for the two sets

of parameters. i.e. The system can be split into subsystems and the role

of some of the variables in resident Common may change between subsystems.

The overlay execution stack may be cleared by a statement CALL CLRSTK

If a statement CALL OVRETN is executed and the overlay execution stack is

clear then the resident executive will call a special overlay, the User

Operations Nonitor, (UOM) , which forms the heart of the system (see

figure 2.9).

SYMBOLS

(START)

USER OPERATIONS MONITOR
DIGITISING & CONTROL MODE

FILE HANDLER

SET UP
PARAMETERS

MACRO HANDLER1

 	1

WINDOWING [DISPLAY

EDITORS

FIND FACILITY

USER PROGRAMS

A

BACKGROUND
MODE

Figure 2.9 	Block diagram of main links and communications in GOADS

2.3.3 System modules

a) Setup

On first entry to the system the resident executive calls the setup

module. This is used to initialise system parameters. Any of these can

later-be reset by menu command.

These parameters are:

1) Table origin 	- the point from which ell table coordinates

will be measured.

2) Input (Drawing) origin-the point from which all data coordinates

will be measured.

3) Skew 	- defines the angle between the drawing and

table axes.

4) Input scale

5) Output scale 	- data is plotted at a scale given by
Input scale divided by output scale.

6) Alphanumeric size - defines the size of text that would be plotted

if an output scale of unity was used.

7) Grid factor 	- coordinates are rounded to the nearest .

multiple of the grid factor.

The setup module also initialises the flag that indicates the

sub-picture processor status (see sub-picture handler), and initialises

the random access work files (see file handler;).

User Operations Monitor.

After the'setup module the UOM is automatically called. This is

the real centre of the system and contains the:badkgnound-loop, drive

mode, the interrupt handler, the meni.v1 command handler, the level handler

and symbol handler.

1) Background loop

When running GCADS the program that is most often under execution

is the background loop. It performs the following:

- Reads the table coordinates.

- Converts them to real drawing coordinates.

- Rounds coordinates if a grid factoris set.

- Applies CONTROL* and TRAILING origin adjustments.

- Displays the current input level number and any messages set in the

Common MESAGE area.

- Displays the cartesian and polar coordinates of the pencil relative to

the last point digitised (TRAILING ORIGIN MODE) or to the drawing

origin (ABSOLUTE ORIGIN BODE).

- Displays a tracking cross or cursor representing the current position

of the digitising pencil.

- Looks for a pencil button interrupt.

Application programs may display up to five, nineteen character messages

in the background loop by setting them in the last 25 variables in Common

area MESAGE. The first 27 variables are reserved for system messages.

2) Interrupt handler.

When the operator presses ore of the eight pencil buttons it

is detected by the bacground loop and control passes to the interrupt

handler. Buttons 2,5,6,7 are serviced by the UOM.

If button 1 is pressed, control is passed to the menu handler if

the interrupt occurred in the menu area. If not and the system is in line

mode (see symbol handler) it is serviced by the UOM. If the system is not

46

•

R
o
4-
ed

e
po
m
 a
nT
a
p

et
a

0

DRIVE
MODE

,

•

1d
9

.
.

. 	
,

.

IQ

i 	.

1

x
R -10' -10' -10 -I ENTER I I 0 1Q' 102

1

- .

i
-

_

li

1

g 5

. G
Y 	'1'

148

in line mode, a CALL OVRETN is executed and the next stacked overlay will

be called. This will be a symbol overlay.

Button 3 transfers control to the sub picture processor.

Button 14 transfers control to the 'window' overlay.

Button 8 is used to switch in and out of 'drive mode'.

When in drive mode only, the drive mode patch (Fig. 2.10) is recognised

by the background loop.

3) Drive Mode.

In drive mode, the cursor is driven from the last•poi.nt digitised

in discrete intervals either in cartesian or polar coordinates. A 90mm

square area of the digitising table at the bottom left corner of the table

is used to control both the movement and position of the cursor And the

value of the drawing coordinates. This enables accurate put of exact

dimensions.

4) Menu handler.

The menu is divided into four sections (Figs. 2.11-2.14).

Commands 	100 squares

Levels 	60 squares

Files 	100 squares

Symbols 	40 squares

The Command area of the meau is arbitrarily divided into two sections:

System Command area and user Command area.

The software makes no distinction between the syeStem and user

commands.

The menu square number is used to calculate which number overlay

should be called. In order that the position of particular command squares

WORKI NG

PARAMETERS

SET
INPUT
LEVEL

SET
SKEW

SET
INPUT
ORIGIN

SET 	.
GRID
FACTOR

SET
INPUT
SCRLE

SET
OUTPUT
SCRLE

90,
LOCK

15'
LOCK

Ruh WI NOOW SET
ALPHAN
SIZE

PEN PEN
2

PEN
3

PEN
4

LINE.
TYPE

LINE
TYPE

LI NE
TYPE

LINE
TYPE

TRAI LI NG
ORI GI N

RESOLUTE
ORIGIN

Fl LI NG 	RND
DI SPLAY

Fl LI NG DISPLAY

WORKSPACE
TO
FILE

FILE
TO
WORKSPACE

OUTPUT TO
ASSIGNED
DEVICE

ZERO
FILE

CLEAR
WORKSPACE

ERASE
SCREEN

DISPLAY
WORKSPACE

DISPLAY
FILE

DISPLAY
NO
LEVELS

DISPLAY
ALL
LEVELS

PI CTURE
COMPONENTS
(P.C.)

USE
FILE
RS 	P.C.

DISPLAY
ACTIVE
P.C.
PROCESSES

SELECT
P.C.
START

SELECT
P.C.
END

SELECT
P.C.
SCALE

ROTATION

TYPE
ROTATION

0 90 180 270

MIP1OR EDI TORS LINE
EDITOR

POINT
EDITOR

MACRO
EDITOR

MI SCELLANEOUS PLOT WORKSPACE

PREPARE
KINCMATIC
PLOT TAPE

CONTINUOW
MODE

CURVE FIT
WORKSPACE DEOUC

C
OM

M
AN

D
S

fa,
to

rn
c+
CD

0
0

TI
LI

SI
U

SU
D

O

ST
 A

SY
S

C
O

M
M

A
N

D
S

 1

OUTPUT

. ORTR OUTPUT

ORTA 	 •
RNRLYSI S

Of-1TR 	ENTRY .

RESULTS.
I NI 71 RTE
SOLUTI ON

OUTPUT
NODL
DEFLECTION

OUTPUT
ELEMENT

 STRESSES

.

J09
TITLE

-

NODAL
DATA

ELEMENT
DATA 	-

BOUNDARY
CONDITI ON

MRTERI AL
PROPS.

LORDS

•

NUMBER
AND

ODES
DI SPLRY
N

RNRLYSE
O. C. 	5

ANALYSE
LORDS

'

•

CRI 0
I NPUT I NPUT

ELEMENT ELEMENT
OI MENS.

ELEMET
MATERNAL

LORD
INPUT

BOUNAY
CONDITION
INPUT

FLOOR
DI RECTORY PROPS

MATER' AL
•

TITLE TLE

-
s
T
e
A
e
T

n
u
e
m

s
a v
o
o

U)

_.1

LU

."›.

LU

_J

LOAD SETS

BOUNDARY
CONDITION
SETS .

GENERAL USE

.
.

.
.

.
.

...

tr)
QC
Cs

LL GE
NE

R
AL

US

E

S 1 1_d

2

Figure 2.13 GCADS menu files.

ff)

OD

>—
CO

53

Figure 2.1/4. GCADS menu symbols

may be re-arranged at will without having to change many programs, a

mapping system is used. This is shown schematically in figure 2.15.

When a level, file or symbol square is digitised, the appropriate

handler is brought into operation.

5) Level handler.

Levels are used to section data. Data may be input under

160 different levels, although only 60 different levels can be directly

set from the menu.

Level markers are entered into the data stream by-menu command.

All data between a level marker 'n' and the next level marker is said

to be on level n.

The level handler contains a 160 bit array - one bit corresponding

to each level. If the bit corresponding to a particular level is set,

then the data on that level is said to be active. If the bit corresponding

to a particular level is not set, then the data on that level is said to

be passive. Passive data is invisible to the user (ie. it will

not be displayed or edited, but it will be filed).

Data levels can be declared active or passive by menu command

(see section 2.4).

6) Symbol handler.

Symbols are used to describe graphic data items when geometry

can conveniently be defined by only, a few points, and dimensional data

(eg. circles, ellipses, rectangles). They are program generated and are

used because:-

a) The item is best described mathematically and its dimensions may

be required to be variable, e.g. circle.

54

13

Menu command squares on table.

STACK: 	.BYTE 1.,6.,7.,8., 	
.BYTE

• •
•
•

Points to position in MENSEL

Menu map in subroutine MENMAP

Overlay number - 1

STACK: 	.BYTE 3., 9., 99.,23.,100., 	
.BYTE

Fixed menu map in software in subroutine MENSEL.

Figure 2.15 Menu mapping. FUnction stated in menu command

square.13 is executed by overlay number 101.

b) To digitise the item each time it was required would be tedious

and to use a- macro would produce an excessive amount of data.

c) The item is used so often that writing a special program to generate

it is justified, e.g. rectangle.

'When the user digitises the first point of the symbol, the UOM,

recognising that symbol mode is set, jumps to a statement CALL OVRETN.

Since the first segment of the relative symbol overlay is at the

top of the overlay execution stack, it is called into core. This stores

the point in common/symbol/ (see appendix A-1), stacks the next segment

of symbol overlay and then returns control to the UOM.

This process is repeated until the last point of the symbol is

collected, at which time the segment of the overlay that displays the

complete symbol is called. Finally, control is handed back to the UOM.

At any time during the construction or entry of symbol points,

the operator may return control to the UOM and re-enter 'line model.

57

c) File handler.

For reasons of speed the only type of file that the system directly

uses are random access files on the moving head disk unit. There are

two ways in which these are used: as working files or as mass storage

files. A total of sixteen files may be defined and if two disk units

are available the files may be arbitrarily spread between them.

The files that the system is- t6-7use-ai* listed in the FILE.DAT which

is created on disk unit zero. This is read by the SETUP module which

then looks up all the files listed to check their validity and length.

Each file is referred to by number in the programs, the number of a file

being determined by its position in the list in FILE.DAT.

Data is written to a working file by a statement:

CALL RAWRIT (IFN, IREC, ARR, NW)

and read by a statement:

CALL RAREAD (IFN, MEC, ARR, NW)

where:

IFN - is the random access file number.

IREC - is the record number to be written to or read.

ARR - is the array in core fran which data is to be read or written.

NW - is the number of words for transfer.

Each file is divided into 256 word records, if the number of variables

for transfer is not specified then 256 words (128 single precision real

or integer variables) will be transferred by default.

A mass storage random access file may contain many distinct sets of

data each pointed to by an index at the front of the file. This index

is initialised by a special overlay called by menu command. The number

of entries in the index is specified at the time of initialisation.

58

The file handler allows data transfer between work files and mass

storage files. GOADS uses only one random access file for mass storage,and

two working files. . CADMAC.AS1 is used to hold a set of 128 storage

files. CADMAC.RA1 is used to hold all data as it is input and is known

as the 'workspace', CADMAC.RA2 is used by the macro processor.

Four operations are carried out by the GOADS file handler:-

- Transfer of data from a working file to a transfer file.

- Addition of data to a working file from a storage file

- The display of a file

- Deletion of a file

Three variables in resident common are used to transfer arguments to the

file handler:-

- IONDIR (Common FILM) defines which operation is to be

performed.

- MNUN (Common MENU) defines the mass storage file number.

- ISUB (Common SUBOV) defines the random access file to be used.

IONDIR is set by digitising one of four menu commands and MUM by pointing

to one of hundred file squares on the menu. Thus each file square

represents a mass storage file.

The file handler is a powerful tool for use by applications

programs.

d) Display & Plotting Module.

This module displays on the storage screen or plots on the

flat bed plotter data in the workspace. If any symbols are present

in the data, then the symbol overlay display segments are called.

This can considerably reduce the speed of the display. The scale of

display is determined by parameters set by the twindowingt module.

e) 'Window module.

Window parameters define the area of the digitising table which is

to be displayed or plotted.

f) Macro Processing Module.

Any of 100 storage files represented by the file squares on

the menu can be manipulated by the macro processor and added to

the workspace or another storage file. Data that have been added to

the workspace in this way are referred to as macros. Macros may be

rotated, mirrored, and scaled and start and end points may be selected.

The transformation that the macro processor will apply to a file is

defined by a set of status flags in common area HICRO. These define:

a) The angle through which the macro will be rotated.

b) Whether a start point will be selected. When the macro is added

to the workspace the start point will be positioned at the trailing

origin. The other points in the macro will be translated accordingly.

c) Whether and end point will be selected. when the macro is added to

the workspace the trailing origin will be set to the position of

the end point.

d) Whether the macro should be scaled.

Only data on levels that are active will be processed by the macro

process. Data on passive levels is discarded.

Macros enable easy production of similar parts without having to

9

60

digitise each part separately. By creating a library of the commonly

used components in the 100 storage files the production of working

drawings may be considerably speeded.

g) Editors.

There are three editors: the point editor, the line editor

and macro/symbol editor. Each is a separate overlay called by menu

command. Their operation is described in section 2.4.

h) Peripherals Input/Output Module.

Allows the input or output of data to or from the woxkspace„ from

or to any data set. The data set can be on disk, paper tape or magnetic

tape. A permanent record of the workspace can be achieved,

2.3.4 Data Storage

Much research has been done on the efficiency and speed of in-core

data structures and list processinc):35 However in GOADS the data is stored,

both on disk and in-core. The designer of an in-core data structure is

concerned to minimise the number of memory references and the number of memory

locations required to solve a particular problem. A memory reference takes

approximately one microsecond, by comparison, a disk reference may take on

average seventy milliseconds - seventy thousand microseconds. Clearly with

a disk as the main storage medium the data structure must primarily be planned

to minimise the number of disk references. Furthermore, disk storage is

much cheaper than core storage and therefore less emphasis is placed on

trying to minimise the amount of storage space required by the problem and

more emphasis on maximising the speed of operation.

It is evident that the larger the quantity of core available for data

storage, in future referred to as buffer space, the smaller will be the number

of disk references required to process a given quantity of data, and the

faster will be solution. On the other hand any core used for storing data

carrmot be used for storing program instructions. A compromise is necessary.

Different objectives can be achieved by varying different factors. The

following objectives are listed in order of importance:

1) Maximise speed.

- Minimise disk accesses.

- Maximise buffer space.

- Allow the storage of redundant data to reduce operations.

2) Reduce storage cost

- Minimise core storage capacity

- Store minimum data.

3) Enable easy expansion and user interface.

- Keep it simple.

62

An obvious conflict exists over the amount of core space that should be

allocated for storing data.

The efficiency of a particular type of data structure depends on the

quantity of data which must be handled, just as the method chosen for the

manufacture of a component depends on the number of components to be prod-

uced. It is difficult to quantify just how much data a computer aided

draughting system will be required to handle. Assuming that a typical,

drawing consists of 2000 lines meeting at 700 points.

Two basic storage alternatives present themselves:

1) A list of points defining a series of continuous straight lines with

a marker to indicates a break in the series.

2) Separate lists of point coordinates and coordinate connections.

These two structures are illustrated in figure 2.16 and compared in figure

2.17. It can be seen that although the single list requires more storage

space it can be displayed much faster than a system using one list of

coordinate connections and another of the coordinates.

A single list structure has therefore been adopted in GOADS. In order

to make fortran programming and user interface even easier an integer

marker is associated with each pair of coordinates in the list. Point

coordinates are stored as single precision real variables in units of

tenths of a millimetre.

The integer marker is referred to as an I code and a list of the I codes

used by the system is given in figure 2.18. The chosen buffer size is

128 variables (256 words) for easy disk handling. The 128 variable data

block is divided into a L0 integer variable array, two 40 real variable arrays

and 8 free real variables. Since the two)40 real variable arrays most comm-

only hold X and Y coordinate data the three)40 variable arrays are referred

to as I, X and Y.

63

6

7

1

X

List structure
X 	Y
100. 100.
300. 100.
300. 200.
200. 200.
200. 400.
100. 400.
100. 200.
100. 100.
marker
100. 200.
200. 200. Coordinate

connections
Coordinates
X

1 2 100. 100. 1
2 3 300. 100. 2
3 4 300. 200. 3
4 5 200. 200. 4
5 6 200. 400. 5
6 7 100. "too. 6
7 1 100. 200. 7
7 4

Figure 2.16 Two approaches to data storage

64

List Connections &
coordinates

Best

2001

Worst

4000

Best

I
700

Worst

700 Coordinate
pairs

Markers &
pointers 0 1998 4000 4000

Total
locations 4002 9998 5400 5400

1 buffer
100 locs.

2 buffers
50 locs.

41 100

108 4080

Total
aisplai
inaits-

45 110 113.5 4085.5

1 buffer
400 locs.

2 buffers
200 locs.

11 25

27 4020

Total
display
units.

15 35 32.5 4025.5

*
One display unit is approximately 70 milliseconds.
Time to process each location is taken as .001 display unit.

T
0

A
G
E

I
S
K

A

C
E
S

E
S

F
0

D

S
P
L
A

Figure 2.17 Comparison of two types of storage structure.

The possible contents of the I, X and Y triplets are shown in figure 2.19.

One method of reducing the volume of data is to store repeated

sequences only once. Repeated sequences of data, referred to as macros in the

following discussion, could be stored in a separate list and referenced by

a special I code in the data list accompanied by parameters defining the

scale, rotation and translation at which they should be displAyed. The use

of such a system has disadvantages, namely:

1) Editing the contents of a macro after it has been positioned on a

drawing becomes difficult.

The display routine has to transform the macro data and this would

increase display time.

3) Searching for a point within a macro requires that the same transformatio

be carried out to calculate the position of the points within it thus

increasing the time required to find a point.

The macros are therefore stored in their full form in the data list in

GOADS. In some applications where the macros are clearly defined and will

not require editing it may be useful for the application programmer to

develop such a system.

Macros can contain any type of data and macros and symbols may be

nested in the same manner that DO loops may be nested in Fortran. This fact

is exploited by the macro editor(section 2.4.6).

A typical piece of data is given and explained in figure 2.20.

It was found that when large quantities of data needed to be displayed, the

display time ran into many seconds, particularly when many symbols were

included in the data. This was found to be most irritating to the user -

when the data was windowed and only part of it needed to be displayed on the

screen. Since all the data had to be processed—to discover whether it

would be on or off the screen there were periods when nothing appeared to be

66

Code 	Significance

0 	End of data

1 	Start of line

2 	Point on line

7 	Start of new data level

9 	Null data (produced by deleting data.)

11 	As 1 	(produced by line editor)

13 	Start of a symbol

14 	Point used to define the symbol

15 	Data defining bounding rectangle of symbol

16 	Last data of symbol

17 	Start of macro

18 	End of macro

19 	Non coordinate data

20 	Pause. Display is suspended until a pencil
button interrupt is detected.

21 	Start of new line type

22 	Start of new pen

Figure 2.18 	Icodes used by GCADS

Icode Xcode Ycode

1 X coordinate Y coordinate

2 X coordinate Y coordinate

7 Level number

9

11 X coordinate Y coordinate

13 Symbol number

11 X coordinate Y coordinate

15 .X coordinate Y coordinate

16 Non coordinate data Non coordinate data

17 Macro (File) number

18

19 Non coordinate data Non coordinate data

20

21 Line type 1-4

22 Pen number

7

Figure 2.19 Contents of X and Y-codes in GCADS

x

68

Icode Xcode Ycode

Set default level 60 7 60. O.

7 1. O. Set level 1

21 1. O. Set solid line type

22 1. 0. Set pen number 1

17 1. 0. Start of macro created from file 1

1 100. 100.

2 600. 100.

2 600. 200.

2 100. 200.

2 100. 100.

18 O. O.

7 2. O. Set level 2

13 3. 0. Start of circle symbol number 3

lit 50. 150. Centre point of circle

1)4 100. 150. Point on circumference of circle

15 50. 150. Lower left corner of bounding rectangle

15 100. 200. Top right corner of bounding rectangle

16 0. 0. End of circle symbol

13 3. 0. Start of second circle symbol

14 650. 150.

14 600. 150.

15 600. 100.

15 700. 200.

16 O. O. End of second circle symbol

0.. 0. O. End of data

Figure 2.20 Example of GOADS data

69

happening. To improve this situation four of the eight free variables in

each data block have been used to store a bounding rectangle of the data

within the data block. Each symbol also contains a bounding rectangle.

The display overlay checks the bounding rectangle of each block and if

the rectangle does not overlap the display area the block of data is not

processed. Similarly, if the bounding rectangle of a symbol is not in the

display area the symbol processing overlay is not called.

The introduction of bounding rectangles has considerably speeded display

but required considerable programming effort. Symbol bounding rectangles

not only have to be calculated at the time of input but also have to be revised

after editing. The bounding rectangle of each data block is recalculated

every time the data in the workspace is transferred to a semi permanent mass

storage file.

This experience has sustained the belief that maintaining a simple data

structure is most important, particularly where application programs must

be able to use the same database. However speed of operation must be main-

- tamed in an interactive system if operation is not to become tedious and

the introduction of bounding rectangles has proved: worthwhile. It should

be mentioned that data added without bounding rectangles will be displayed

so that they can be ignored by the applications programmer who does not want

the added complication.

70

2.4 Operation of GOADS.

2.4.1. Setup.
3

GOADS operates under DOS V008: To run the GOADS system the user must

be logged in under User Identification Code (UIC) 2,2. 	The system

is loaded by typing RU GCADS. The resident executive is loaded into core

and immediately calls the first SET UP overlay.

On starting the system, the message 'ZERO TABLE' is displayed on

the screen. The user must respond by digitising the lower left hand

corner of the menu. The point digitised defines the absolute table

origin - the point from which the pencil position will be measured -

if it is not at the lower left corner of the menu, menu commands will

not be correctly interpreted.

After the table is zeroed, the following message is displayed:

1) USE ALL DEFAULT VALUES.

SKEW - HORIZONTAL

INPUT ORIGIN - B.R. MENU

GRID FACTOR - O.

INPUT SCALE - 1.

OUTPUT SCALE - 1.

ALPHAN SIZE - 3mm.

2) SET ALL PARAMETERS.

This gives the user the option to use the default values of the working

parameters by pressing button 1; or to set them individually by pressing

button 2.

If the user chooses to set all the parameters, then the following

sequence is entered:

1) Message SET INPUT ORIGIN
	

(Screen)

Action 	Digitise a point below and to the left of all the

input data. If the data is on a drawing the point should

be marked for future reference.

Message 	ERROR - INPUT ORIGIN ON MENU 	(Screen)

This will only be displayed when the point digitised as

the input origin is over the menu area. The error message

is displayed for a fixed period and will then revert

to SET INPUT ORIGIN.

2) Message 	DIGITISE HORIZONTAL LINE FOR SKEW CONTROL

FIRST POINT 	 (Screen)

Action 	Digitise left hand end of a line parallel to the X-axis

of the data.

Message 	DIGITISE SECOND SKEW CONTROL POINT 	(Screen)

Action 	Digitise right end of skew control line.

The data x-axis will be defined as the line passing through

the input origin and paralell to the line defined by the

two skew control points. All data will be transformed

accordingly. The skew points should be clearly marked

on the drawing to be digitised. If at one time a quAntity

of data is taken from a drawing and subsequently more data

is required, the two sets of data will be exactly compatible,

regardless of the position of the drawing on the table, so

long as the same input origin, skew control points, and input

scale are used.

Message 	ILLEGAL SKEW 	 (Screen)

Only displayed when the left hand skew point is to the

right of the right hand skew point. After a Pixed time

the message reverts to DIGITISE SKEW CONTROL POINTS -

SKEW ORIGIN.

72

3) Message 	-- GRID FACTOR (MM) 	(DECwriter)

All drawing coordinates are rounded to the nearest

multiple of the grid factor.

Action 	Type the grid factor required in the format shown.

The grid factor is measured in millimetres.

Li) Message 	----.-- INPUT SCALE
	

(DECwriter)

Action 	Type the scale of the data to be input.

5) Message 	----.-- OUTPUT SCAT,R
	

(DECwriter)

The output scale defines the size at which data will

be output. An output scale of unity means that data

will be plotted at the same scale as that at which it

was input.

The input scale divided by the output scale gives the

scale at which data will be plotted.

Action 	Type the scale at which data is to be output.

6) Message 	----.-- ALPHANUMERIC SIZE (MM) 	(DECwriter)

The size at which text would be plotted if the output

scale is set to unity.

Action 	Type the required text size in millimetres.

After accepting the default values or on completion of the above

sequence the User Operations Monitor is called into core. 'When the

digitising pencil is over the drawing area a tracking. cursor is displayed

on the screen, a message stating the current input level is

observed at the top right corner of the screen and at the lower right

half of the screen the cartesian and polar coordinates of the pencil

relative to a trailing origin are displayed. In the absence of any

other messages, the user is free to use any of the menu commands or to.

start digitising data.

73

The SET UP overlays will have set some default values without

consulting the user. TheSe may be changed by the menu commands

listed below:

1) 90°LOCK 	In CONTROL MODE lines are constrained to be at

15° LOCK angles which are a multiple of 900 or 15° to the

x-axis depending on whether 90° LOCK or 15° LOCK

has been selected. 90° LOCK is set by default.

2) TRAILING The cartesian and polar coordinates displayed on the
ORIGIN

screen may be relative to the last point digitised
ABSOLUTE
ORIGIN 	(trailing origin), or relative to the drawing input

origin (absolute origin). Trailing origin mode is

set by default.

3) LINE 	There are four line types available and these are set
TYPE

by four menu commands. The type of line that each

menu command will set is displayed in each menu command

square. A solid line is set by default.

14) PEN 	Four pen numbers may be set from four menu commands.

These pen numbers correspond to the four pen units

on the flat bed plotter and enable different line thickness

or colours to be used during plotting.

Pen unit 1 is set by default.

5) SET 	The level at which data is being added to a drawing
INPUT
LEVEL 	is defined by digitising the SET INPUT LEVEL command

followed by a level menu square. It is usually

essential for the user to maintain a discipline over

the input levels of various types of data. It is therefore

wise to use this command after a CLEAR WORKSPACE which

sets the input level to the default level 60.

2.4.2 Data Innut.

Data input takes place either in line mode or in one of the symbol

modes. The current input mode is displayed in the top right corner

of the screen where most system messages are to be found. If no mode

is specified then the system is in line mode. When in an input

mode and whilst the pencil is over the drawing area of the table (not

over the menu area) a tracking cross is displayed on the screen and

the cartesian and polar coordinates of the pencil. The user is able

to issue any of the menu commands while in an input mode.

In line mode all digitised points are connected by lines. A

point is normally digitised by pressing button 1 on the pencil a line

is drawn between the last point digitised (the trailing origin)

and the current point. The new point becomes the new trailing origin

and when in trailing origin mode the cartesian coordinates will he set

to zero at the new point.

In order to break the series of lines produced by digitising

several points using button 1, a button 2 should be pressed. After

a button 2 no line will be drawn between the current trailing origin

and the next point digitised. Thus button 2 is used to 'break' a line.

If a button 2 was the last button pressed then a message 'LINE BROKEN'

will be displayed in the top right corner of the screen.

A symbol mode is entered by digitising the appropriate symbol

mode menu square. A message will indicate which mode is in use and

a further message will inform the operator of the significance of the

next point to be digitised (eg. the centre of a circle or the start

point of a text string etc.).

To aid the data input and construction several utilities are

available and can be called by pressing a pencil button:

714.

75

1) Windowing.

Upon first entry to User Operations Monitor the screen represents the

whole drawing area of the digitising table. Since the screen is only

one twelfth the size of the table, the data is displayed at a much smaller

scale than that at which it is input. Thus details are not

clearly visible. To overcome this problem, the user can select an area

of the table which he wishes to view at a larger scale. The procedure

is:

a) Press button 4.

A message 'LEFT HAND WINDOW POINT' is displayed.

b) Digitise the bottom left hand corner of an imaginary square that

will cover the desired area of the table (Button 1).

A message 'RIGHT HAND WINDOW POINT' is displayed.

c) Move the pencil from left to right across the table towards the

bottom right corner of the imaginary rectangle. As this is done a

rectangle is displayed on the screen, when this is seen to enclose

the required area, digitise the right hand window point. The data

within the rectangle will be displayed on the full area of the

screen.

The menu command 'RESET WINDOW' is used to return to the situation

where the screen represents the whole drawing area of the digitising table.

2) Angular Control.

In control mode lines are constrained to be at angles which are a

multiple of 90° or 15° to the x-axis depending on whether 90° LOCK or

15° LOCK was the last'LOCK' menu command selected. Control is switched

on and off by successive presses of button 6. When control mode is set

76

a message is displayed with the other system messages in the top right

corner of the screen, either 'CONTROL 90 NODE' or 'CONTROL 15 1.10DE'.

3) Finding.

The 'Find' facilities of button 7 makes it possible to join

new data with existing data and to position the trailing origin

accurately at a known position.

Pressing button 7 causes the following messages to be displayed

on the screen:

Button 1 	Searches for a point.

Button 2 	Puts cursor on a line

Button 3 	Finds intersection of two lines.

If the user wishes to join a line to an existing point or to find

a point for placing a macro, etc. then the cursor is moved close to the

point and button 1 pressed. If there is no point within a 5mm square

centred on the pencil position, the message 'NO NEkR POINT' is displayed

on the screen for a short time.

If it is wished to find a position on an existing line, then the

cursor is moved to the required position and button 2 pressed. This may

be done in or out of 'CONTROL MODE' as desired. Finding a position on

a line with the 'LINE BROKEN' message on the screen causes the point

on the line found to be perpendicular from the point digitised. However,

finding a position on a line while drawing a line causes the point to be

found to be the intersection of the two lines.

The third button enables the user to find the intersection of the

two lines when there is no previously defined point at that intersection.

The following summarises the main uses of 'Find' facility:

a) To ensure that data joins up correctly.

b) By using a break line before finding, to position the trailing

origin at a known point in order to :-

1) Use it as a starting point when entering drive mode.

2) Measure distances.

3) Use the position as an origin for a macro.

L) Drive Mode.

Drive mode allows the user to specify the location of points with

precision. In this mode the coordinates are driven in millimetre

increments from the trailing origin by positioning the pencil over the

'drive patch' on the menu and pressing button 1.

Drive mode is switched into and out of by successive presses of

button 8. On entry to drive mode, the user selects X-Y (cartesian)

or R-THETA (polar) drive mode by pressing button 1 or 2. When in drive

mode, a message 'DRIVE MODE' is displayed in the top left corner of the

screen, and the cursor jumps to the position of the trailing origin.

It is no longer related to the position of the pencil on the table.

The drive mode patch, positioned in the bottom left corner of the

table, is a 9 by 9 matrix of 10mm squares. When the pencil is positioned

over the central square points may be entered by the use of buttons 1 and

2. If the pencil is positioned over any other square, the coordinates will

be incremented by an amount detelpined by the position of the square

relative to the central square, every time button 1 is pressed.

In this way, when in cartesian drive mode, the x and y coordinates

can be incremented in ones, tens, hundreds and thousands of millimetres,

and when in polar drive mode the radius is again incremented in ones, tens,

hundreds and thousands of millimetres while the angle may be incremented

in ones, fives, fifteens and nineties of degrees.

Of the two remaining buttons, whose sue has not yet been described,

button 3 is used to hand control to the macro processor and button 5 has

a floating assignment. Because it takes much longer to move the pencil

78

to a menu command square than to press a button it was decided to

give the user the facility of choosing which menu command he would

most like to be able to call merely by pressing button 5. Button 5

is set up so that it is equivalent to the command CLINE MODE?. Thus when

the user wishes to return from a symbol mode to line mode, he needs

only press button 5.

To assign button 5 to another menu command, position the pencil

over the required menu command and press button 5. Button 5 is now

equivalent to this menu command.

The last facility, an important factor for the operator, is the

division of data into different levels. The operator can select one

of sixty different levels under which to input data, by digitising

the tSET INPUT LEVEL? menu command followed by a level menu square.

The operator is able to specify the levels to be active or dormant.

Data under an active level will be displayed and processed by the system.

In general, only filing operations will be carried out on data under

dormant levels. Thus by storing data under different levels and by

declaring them active a dormant the operator is able to:

a) Reduce deisplay and processing time.

b) Reduce editing time.

c) Obtain clear views of different categories of data (i.e. may

distinguish between water pipes and electrical cables).

To make the best use of this facility, it is advised that the user

sit dam and think about the best way to split his particular data into

levels. Much time can be saved by classifying data under different

levels before starting a job.

A message in the top right corner of the screen will tell the operator

which level number is the current input level. After a 'CLEAR WOMPACEt

command, the input level will be set to level 60. It is important to

79

remember to reset it.

An additional input mode is background model. In this mode it is

a calling program that is in control. To the user it appears similar to

line input mode, he is able to window, and change the position of the

trailing origin by pressing button 1, finding (button 7) 	driving .

It is used when the calling program wants the user to define a point

(e.g. the macro editor calls it to request the user to define the

point to which he would like a macro to be moved).

When the user has set the trailing origin to the required position,

he indicates his satisfaction by pressing button 5.

In this mode there may be instructive messages, but always the

message:

B5 ENTERS POINT

will be displayed.

This mode is also useful in applications programming and is discussed

further in Chapter 3.

80

2.4.3 Filing and display.

All data entered in one of the input modes described in section

2.4.2 is automatically buffered into a random access file called

the 'workspace'.

On entry to the system the workspace is empty. Data left in the

workspace at the time a run is terminated will be lost. The operator

is able to clear the workspace by giving the 'CLEAR WORKSPACE' command.

The menu command 'ERASE SCREEN' clears the screen of any information

which has previously been stored on it and the workspace is displayed

by digitising the 'DISPLAY WORKSPACE' command.

The data in the workspace may be stored under different levels.

To display all levels of data the user should digitise the menu command

'DISPLAY ALL LEVELS'. To display only selected levels of data, the user

should digitise the command 'DISPLAY NO LEVELS' followed by the level

squares of the levels that the user wishes to be displayed.

The data contained in the workspace may be filed in any of 100

semi-permanent mass storage files. These are represented by the 100 file

menu squares. There are four menu commands associated with these files:

After digitising one of these menu commands, the user additionally digi-

tises a file square to indicate which file is to be operated on. The

four commands are:

1) WORKSPACE The file pointed to is deleted and replaced by the
TO

FILE 	contents of the workspace. A message 'CONTINUE' is

displayed in the top left corner of the screen after

execution is complete.

2) FILE 	The contents of the file pointed to are ADDED to the
TO
WORKSPACE contents of the workspace. The workspace is then

displayed. If the file is empty, a message 'FILE EMPTY'

is displayed in the top left corner of the screen.

3) DISPLAY
FILE

4) DELETE
FILE

The contents of the file pointed to are displayed in a

brief form. (Symbols are not displayed).

The contents of the file pointed to are deleted.

81

The user is able to create a permanent record of data by transferring

it from the workspace to any assigned device or file. The procedure is:

a) Digitise menu command 'OUTPUT TO ASSIGNED DEVICE', a message will

be displayed on the screen:

B1 OUTPUT

B2 INPUT

where B1 and B2 refer to the buttons 1 and 2. After one of these is

selected, a message 'A003 nnnnnn ' will be written on the keyboard.

This is issued by DOS because it does not know which device is to be

used in the data transfer. The user must now assign the required device

or file as logical device 3. The method for doing this is described in

the 'DOS MONITOR HANDBOOK' reference 3.

After the data transfer is complete, control is returned to the

User Operations Monitor.

2.4.4 Macros.

Any of the 100 semi-permanent mass storage files may be manipulated

and added to the workspace. This enables similar items, components or

sections of data to be created in the workspace only once, filed and

subsequently reproduced with very little effort. Groups of data which

have been entered into the workspace in this way are called 'macros'.

As with levels, it is advisable for the user to study his problem

and to decide in advance which components shall be used as macros.

The operations which can be performed on a semi-permanent mass

storage file by the macro processor are:

1) Translation

2) Rotation

3) Scaling

4) Mirroring or handing

It is also possible to define the start and end point of a macro. When

the macro is added to the workspace, the start point will be placed

in the position defined by the trailing origin and the trailing origin

will be set to the coordinate value of the end point of the macro. A set

of status flags define which operations the macro processor will perform

when it is called into action. These are set by the following menu commands:

1) ROTATION 	Sets the clockwise angle through which the
00, 90°, 1800„ 270°

macro will be rotated as either Q°, 90°, 180°,

or 270°.

2) TYPE ROTATION
	

If the angle required is not any of 00, 90°,

180°, 270° then the 'TYPE ROTATION' conmand is

used and the angle is typed in on the DECwriter.

2

The macro will be mirrored about a line

through its start point and parallel to the

y-axis.

83

L) SELECT SCALE When the macro is processed, the user will be asked

to type in the scale required on the DECwriter.

5) SELECT START The user will be asked to define the start/end
SELECT EnD

of the macro at the time it is processed.

The ?SET SCALE', 'SELECT START', 'SELECT END? and IMIRRORI.menu commands

act as switches. The first time the command is digitised the relevant

status flag is set, the next it is unset, and so on. If the 'SELECT START'

flag is not set the start point of a macro will be set to the value of the

first data point in the macro. Similarly, if the ?SELECT END? point

flag is not set, the end point of a macro will also be set to the value of

the first data point in the macro.

The menu command 'DISPLAY ACTIVE PROCESSES' causes a display on the

screen which indicates which status flags are set and therefore which

operations will be performed when the macro processor is next used.

The display shows a flag representing a macro. The flag appears rotated

and mirrored according to the condition of the status flags. Messages

show what the user will have to set at the time a macro is processed:

SELECT START

SELECT END

SET SCALE

A macro is called by digitising the menu command 'USE FILE AS MACRO'

followed by the appropriate file square. If the ?SET SCALE' flag is set

a message is displayed requesting the operator to type the required scale

on the DECwriter. If either the ?SELECT START' or 'SELECT END' flags are

81i.

set the macro is scaled to a convenient size and displayed on the screen

with the following message:

B7 SELECT START (or END) POINT

B8 CONTINUE

The user Ifindsl the start or end point of the macro. If the user is

unable to find the correct point, he may use button 8 to allow the

processor to continue and the macro will be processed using the first

data point in the macro as the start (or end) point.

When processing is complete, the macro is displayed on the screen in

the orientation and position that it would be placed if it were to be

directly added to the workspace. However, the user has the option of

either accepting the macro as it is, or of repositioning it, or of storing

the processed macro in a semi permanent mass storage file. At this stage

the system appears to be in line input mode but a message is displayed:

B5 TO ENTER POINT

In this mode the user is able to use the find, drive and window facilities

of line input mode but no point is entered until button 5 is pressed when

the macro will be added to the workspace with its start point at the current

trailing origin. If a button one is given over a file square, then the

macro is filed. If a point is entered over the drawing area, the macro is

added to the workspace and displayed. The system reverts to input mode.

The last macro that was processed may be called by pressing button 3

whilst in an input mode. The system will enter the state just described

except that there is no option to file' the macro.

The most efficient way to use macros is to ensure: that the first

data point in the file to be used as a macro is the point required as

85

the start point; the trailing origin is at the point at which the macro

is to start; that the correct rotation angle is set; that no other status

flags are set. Then give the command USE FILE AS MACRO.. The macro

will be processed and displayed on the screen in the desired position.

Press button 5 to enter the current value of the trailing origin, the macro

will be added to the workspace and displayed.

If an end point is selected, the user may add a chain of macros

to the workspace by pressing buttons 3 and 5 repeatedly. The macros will

be added start point to endpoint, start point to end point, etc.

0

2.4.5 Editors.

There are three editors: point editor, line editor and the

macro and symbol editor.

1) Point Editor.

The point editor is used to move points on a drawing. The editor is

entered by the menu command 'POINT EDITOR'.

The operator has the following button options:

Button 1 Define point

Button 2 Define point to be joined to a line

Button 4 To window

Buttons Application function

Button 8 To exit

Button 1 is used to define t1- point to be moved. The point is located

by putting the cursor near it and pressing button 1. When the point

has been defined the operator has the following options:-

Button 1 	Locate point

Button 4 To window

Button 5 Application function

Button 6 OONTROL switch

Button 7 To FIND a point

Button 8 To exit

The new position of the moved point is defined either by digitising it

using button 1 or by FINDing another point. The latter method is used to

move one point to coincide with another.

If the point to be moved is defined using button 2 the operator is asked

to define a line to which the point is to be moved. This he does by FINDing

the two ends of the line. The point is moved to the line in such a way that

the distance moved is a minimum (i.e. at right angles to the line).

87

2) Line Editor.

The line editor called by the menu command 'LINE EDITOR' is used to

delete straight lines. On entry to the program the message:

PRESS ANY BUTTON WHEN NEAR LINE TO BE DELETED

is displayed. When this is done the program searches for a line near the

point at which a button was pressed. When aline is found which is within

the tolerance set in the program, it is continually displayed with the

messages:

B1 EXIT

B2 ADVANCE SEARCH

B3 DELETE LINE

If the line displayed is the line required, the user-deletes it by

pressing button 3. He may then exit (button 1) or look for a new line.

This is done either by moving the pencil so that the cursor becomes closer

to the desired line or if this fails by pressing button 2.

It is important for the user to understand that having found a line

the editor only searches for other lines within the buffer which contains

the found line until a button 2 is pressed when it will read through the

file until another line is found. The program is arranged in this way in

the interests of speed for it often happens that where several lines are to be

deleted, they are all contained within the same buffer. By moving the

position of the pencil around these lines will very quickly be found once

the one of the series has been located.

On exit from the program the next, screen is erased and the workspace

redisplayed.

3) Macro Editor.

The macro and symbol editor is called by the menu command 'MACRO EDITOR'.

It allows rotation, translation or deletion of any macro, nest of macros or

symbol.

88

The macro editor is called by the menu command 'MACRO EDITOR' and on

entry a series of messages are displayed:

B1 DEFINE POINT

B4 WINDOW

B8 EXIT

When the program is displaying these messages, it is said to be in state 1.

The operator defines a point within a macro or a real data point within,

a symbol. (because a symbol is program generated some of the points displayed

on the screen may not actually exist) by placing the pencil near the point

and pressing button 1. When the point is found the program moves to that

will be referred to as state 2. If the point found is within a macro

a box is continually displayed around the macro, if within a symbol the

symbol is displayed only once and the following messages are displayed:

B1 ADVANCE SEARCH

B2 INCREASE MACRO

B3 DELETE

B4 SELECT ROTATION

B5 REDISPLAY SYMBOL

B6 MOVE AND ROTATE

B7 MOVE

B8 RESTART

It may happen that more than one macro or symbol contain the same

point, in this case the first macro or symbol encountered in the workspace

is displayed. If this is not the one required, the operator may select

the next one by pressing button 1.

Where a macro is made from other macros and symbols, the macro or

symbol displayed may form only part of the macro that the operator wishes to

edit. This is because macros can be nested in a manner similar to DO loops

in Fortran and the smallest loop containing the found point is displayed.

89

The operator can request the contents of the next outer loop

to be displayed by pressing button 2 and the next loop out again by

another button 2. If no outer loop is found (i.e. there is no

containing macro) the program returns to state 1. If button 3 is

pressed the displayed macro or symbol is deleted and the program returns

to state 1.

If the operator wishes to rotate the found macro or symbol button 4

enables him to set up the rotation angle. The following messages are

displayed:

B1 TYPE ANGLE
B2 0°
B3 90°
B4 180°
B5 270°

These buttons define the rotation angle. If button 1 is pressed the

operator must enter the angle via the DECwriter. After the angle has

been set the program returns to state 2.

If the operator forgets which symbol was found, he may redisplay it by

pressing button 5.

When a button 6 or 7 is pressed, the program calls the background

mode and the user must enter the position to which the macro or symbol is

to be moved. During this move, the point found within the macro is used as

the locating point. If a button 6 was used to initiate the move the macro

or symbol will be rotated through the angle set by the use of button 4.

The box or symbol is redisplayed in the new position and the program

returns to state 2.

A button 8 returns the program to state 1.

90

2.5 Assessment of GOADS

GOADS has proved itself to be a useful tool for the production of

drawings of many types from simple flow charts and diagrams to full General

14 Arrangements. .However, it has shown its greatest potential as a vehicle

1
for applications programs 5

It has been used as a base for programs in: building design;

structural analysis; the layout, scheduling and costing of modular store

fittings; and for producing animated film sequences.

Inevitably there are criticisms of the present system:

1) The system suffers somewhat as a result of growth. It is almost

impossible to plan every detail of something radically new. During the

implementation of any such plan design changes are made as unforseen snags

appear, or, new ideas are concieved and the system is stretched to embody

them. Thus some parts of the programs have become less than elegant and a

certain amount of restructuring, particularly a careful look at the common

areas would tidy the software.

2) The system is too hardware dependent. In an industry in which

such rapid progress is being made in harware development, software that

depends on particular hardware is a very perishable commodity. In general

where GOADS software interacts directly with harware the interaction is

confined to a few subroutines. However the system is centred round the

digitiser as the main means of data input. A large amount of the software

reflects this and it would take significant effort in reprogramming to

replace the digitiser/storage tube combination with a different device.

It would be pleasing if the system were able to accept data from a variety

of devices such as teletypes, cathode ray tubes with light pens, digitisers

or storage tube terminals.

Different applications can best utilise different input/output devices...

91

The digitising table/storage tube combination is excellent for taking data

from existing drawings and sketches. Editing the same data might be more

easily achieved using a CRT graphics terminal. Thus in a time sharing

system with several man/machine interaction stations the devices used in

each station might range from a simple keyboard or alphanumeric display to

a graphic CRT terminal or digitiser and storage tube combination.

This would allow better use of the equipment and reduce the average cost

of each terminal.

The coat effectiveness of the draughting system depends very much on

the type of drawing to be produced. Where the drawings contain many common

features a library of components can be established. In such a case the

time savings and cost savings can be very considerable.

Where the drawings have only a few similar components the use of a

draughting system may only be justified if the acquired data is not only

used for producing drawings but also other purposes eg. analysis schedules,

costs etc..

It is certain that the policy of maintaining a simple andeopen data

base in order to allow the addition of applications packages was correct.

It is also true that a serids..cf system concepts have been developed which

are independent of all the harware used and which may certainly be employed

on future hardware.

GCADS not only adequately fulfills the role for which it was designed

but the role itself is extremely important for the development of applications

programs in Computer Aided Design.

92

CHAPTER THREE

Using GCADS for Application Programs

When GCADS was written, specific sockets were left free for use by

applications programs. The facilities available to the application

programmer are:-

- Overlaying system and overlay calling by menu command.

- Buffer and parameter space in the resident common area.

- Ability to obtain data from input devices and to file and display

data by 'stacking' GCADS utility overlays andby calling utility

subroutines.

1) Overlaying system

a) Using the overlay builder.

The overlay builder OVAL can handle up to 128 overlays. Each overlay

may be up to ten kilowords in length and is referred to by number within

the programs. GCADS occupies most of the lowest 30 overlay numbers. The

overlays are built by OVAL into a random access file CADMAC.OVL on UIC 2,2

on the moving head disk unit. In the following dialogue messages printed

by the computer are underlinPd.

The overlay builder is run by typing the command:-

RU OVAL

the computer responds with:-

OVERLAY BUILDER V001

the user may ten build overlays into the random access file using a command

of the form:-

* OVERLAYN/OV:NIOVERLA/M/OV:M, 	

where OVERLAIN and OVERLAYM are the load modules for overlay numbers N and

N.

93

The user may obtain a listing of the current overlays and overlay numbers

contained in CADMAC.OVL by the command:

*DV:/LI

where DV: is the device on which the listing is to be produced. To zero

CADMAC.OVL the

2/ZE

command is used.

Overlays are program called from CADMAC.OVL by subroutine calls to

subroutine OVLINK and STACK as described in section 2.3.2.

b) Adding a user menu command.

The call for a user overlay may either be initiated from within another

user overlay or by a menu command.

Clearly a users program must use at least one menu command to call the

first user overlay. Menu command squares one through forty are reserved

for user commands. The way in which menu command squares are mapped is

described in section 2.3.3. The steps that a user programmer must perform

to'link an overlay to a menu command square are as follows:

1) Link the overlay main program with its subroutines to a bottom limit

of 30776.

2) Select an overlay number MUM.

3) Select a free user command menu square and note its position in the

menu MNUM.

4) In the byte map in subroutine MENSEL select an unused location and

edit in the value of (OVNUM - 1). 	Note the position of the chosen

location MAPNUM within the byte map.

5) The byte map in subroutine MENMAP represents the first 80 menu command

squares. In the location MNUM in the map edit in the value MAPNUM.

6) Link GCADS overlay DIGOV which contains the menu handler with the

new versions of NENSEL and EENEAP and the GOADS library of subroutines to

a bottom -limit of 30776.

7) Run the overlay builder OVAL and build DIGOV as overlay 11 and the

user overlay as overlay OVNUM.

c) Adding a symbol

It is convenient at this stage to describe the linking of symbols to

menu symbol squares. It will be recalled that a symbol is a graphic item

whose display is program generated. There are two segments of program

concerned with each symbol: the first is to collect and store the data

points which define the dimensions and location of the symbol - the symbol

entry segment; the second to generate and display the symbol upon request

- the symbol display segment. These segments of program need not be within

the same overlay, in fact the speed of display is greatly improved if

commonly used symbol display segments are added to the GOADS display overlay

DISALL - overlay number 6.

The process of linking a symbol entry segment to a symbol menu square

is very similar to that of linking a user menu command except that

subroutines EENSEL and MENMAP are replaced by subroutines SYEGO and SYMAP.

1) Link the overlay main program containing the symbol entry segment with

its subroutines to a bottom limit of 30776.

2) Let the overlay number be OVNUM and the segment number be SEGNUM.

3) Select a free symbol menu square SQNUM

4) In the word map in SYEGO select an unused location N and edit in the

value of (OVNUM - 1)*25. In the Nth + 1 location in the byte map in S/EGO

edit in the value of SEGNUM.

5) In the byte map in SYMAP in location SQNUM edit in the value of N.

6) Relink DIGOV with the new versions of SYEGO- and SYMAP as before.

7) Run the overlay builder to build DIGOV as overlay 4 and the overlay

911.

95

containing the symbol entry segment as overlay number OVNUM.

A symbol display segment is called by a call to subroutine DISSYM(N),

which contains word and byte maps similar to those in SYEGO. These must

be updated as follows :

1) OVNUM is the overlay number containing the symbol display segment in

segment number SEGNUM.

2) In the Nth position in the word map in DISSYM edit in the value

(OYNUM-1)*25 and in the Nth + 1 position in the byte map edit in the value

of SEGNUM.

3) Relink and build all overlays that call DISSYM. This will certainly

include the display overlay DISALL and the macro editor MACR04.

2) Buffer and parameter space in the resident common area.

There are three common areas reserved for user overlays:

COMMON/GENR4/ SYS(2),USERP(8)
COMMON/MESAGE/SISTEM(27),USERM(515)
COMMON/USER/ USERB1(128),USERB2(128)

where

USERP is to allow the user to store parameters particular to his problem.

USERM is displayed as five lines of messages by the system when it is

in an input mode. Four characters may be stored in each variable, the last

character in a message must be a zero. Therefore 5 lines of 19 characters

are available. These are used to let user overlays receive data through

the system data input facilities and yet allow the user program to send

messages or instructions to the operator during data input.

USERB1 and USERB2 are intended to be used as buffer space and each

corresponds to one physical disk record in length. USERB1 and USERB2 can

be saved and restored to and from the disk unit by calling STORCM(N) and

96

RESTCM(N) where N is the disk record number in random access file CADMAC.RAO

at which the data transfer will commence.

In practice it has been found that there is a lack of parameter space

free for the user. In this case the user programmer may choose to use some

of the locations in USERM for storing parameters rather than messages.

3) Obtaining data points by 'stacking' 'background model.

It frequently happens that an application program requires coordinate

data from the digitising table. The application programmer can obtain the

data and allow the operator use of the draughting and construction aids

usually available in an input mode by stacking BACKOV the background overlay.

BACKOV stores the messages:

B5 ENTERS POINT
B3 EXIT

in common area MESAGE. and calls the background loop. The operator is able

to find, drive window etc. but the position of the trailing origin will

not be returned to the application overlay until the operator presses button 5.

If button 3 is pressed BACKOV sets MNUM in common area MENU to -1 and

returns control to the application overlay.

The current position of the trailing origin i.e. the last point entered

by the operator is returned in XT and YT in common area PARAIL

The advantages gained from using BACKOV are:

- The operator is always presented with a similar set of draughting

aids and button functions.

- The application programmer is saved from- a lot-of programming.

- Unnecessary duplication of programs is avoided and the application

programmer is able to pack much more useful work into each overlay.

97

CHAPThR FOUR

STASYS - STructural Analysis SYStem

4.1 Introduction

Methods of structural analysis can be divided into two groups (see

figure 14.1) analytical methods and numerical methods. The limitation:-

imposed by analytical methods is well known: Only in the simplest of cases

are closed-form solutions feasible. Approximate solutions can be found for

some simple structures, but in general for complex structures analytical

methods cannot be used with any degree of accuracy and one has to resort to

numerical methods. The numerical methods of structural analysis can be

divided into two groups:

1) Numerical solutions of differential equations for displacements or

stresses.

2) Matrix methods based on discrete-element idealisation.

In the first type the equations of elasticity are solved for a

particular structural configuration either by finite difference or by direct

numerical integration. In this approach the analysis is based on a

mathematical approximation of differential equations. Practical limit4ions

restrict the application of these methods to simple structures.. Also

solutions cannot be found for general structural configurations.

In the second method the structure is first idealised into an assembly

of discrete structural elements with assumed form of displacement or stress

distributions, and the complete solution is then obtained by combining these

individual approximate stress or displacement distributions in a manner

which satisfies the force-equilibrium and displacement compatibility at the

junctions of these elements. Methods based on this approach are suitable

Analytical methods Numerical methods

98

Structural Analysis

Solution of
differential
equations

Matrix methods
Discrete element
idealisation

Finite Numerical Displacement Force
Difference
technique

Integration methods methods

Figure 4.1 Methods of structural analysis.

99

for the analysis of complex structures. These methods involve an appreciable

quantity of linear algebra and the use of matrix algebra is convenient.

The formulation of the analysis in matrix algebra is ideally suited for the

solution on the digital computer.

The finite element method of analysis has been widely adopted in many

fields of engineering. The object under analysis is represented by an

assemblage of components or elements interconnected at a finite number of

points. It is the finite character of the structural connectivity which

makes possible solution by simultaneous equations. The approximation

involved in the use of the method is essentially physical. There need be

no mathematical approximation in the solution of the substitute system.

It is reasonable to suppose that the larger the number of elements used

to represent the original structure, the more accurate the representation

and hence the analysis will be. This has been the experience in practice

and most structures have to be represented by a considerable number of

elements.

Data defining the position of each nodal point, the material properties

of each element, the element interconnections and loading and constraint

conditions must be generated. It is the effort required in generating

and validating this data as well as the computing cost which must be balanced

against the probable gains obtained by carrying out the analysis.

In the aero industry minimum weight design is absolutely crucial and

yet rigorous safety standards have to be maintained. It is also an industry

where the same design may be used for a considerable number of production

units. The cost of analysis is therefore spread over a considerable number

of units. For these reasons a great deal of the developement of the finite

element method was carried out in the aircraft and aerospace industry.

However the comprehensive finite element analysis packages such as

NASTRAN that have emerged are extremely large. They can only be run on

large computers and are expensive to lite.

100

In the building industry for aesthetic reasons and because site

conditions may demand 	particular building design may only be used

,once. Optimum weight design is only important in so far as it may save in

material costs. Thus it is relatively important to keep the total cost of

the building design process as low as possible. Design cost may be as much

as one tenth construction cost. With the present high cost of finite

element analysis it is not generally considered to be justified unless

particular factors are involved:

- The design is radically new and its behaviour unknown.

- Exceptional and varied loading conditions are anticipated.

- The design is to be used for a number of buildings so the cost of

analysis will be spread and the benefits multiplied.

There also exists the problem that codes of practice may not allow

full exploitation of the knowledge gained from the analysis.

Computing costs are falling and have fallen over the last years, to the

extent that data preparation may cost more than the actual computer analysis.

It is in the area of data preparation that this project is aimed.

The desire is not only to greatly reduce the data preparation cost for

finite element analysis of buildings but also to determine the extent to

which the analysis might be carried out on minicanputers that a Civil

Engineering Consultancy would be able to purchase.

If such a system could be produced the tool of finite element analysis

would be placed in the hands of every engineer for use on many of the

problems that were not previously analysed accurately because to do so

would have been too expensive and time consuming.

The system was initially to contain only line and rectangular plate

elements because much modern building can be idealised by the use of

101

these alone. A further constraint that the elements should lie in a

vertical or horizontal plane was also added to facilitate data input.

The system makes use of, and relies on, the fact that buildings can

be considered as a series of layers and that data will frequently be

available on general arrangement drawings at different levels in the buildig.

building.

There are four stages in the analysis process:

1) Data input

2).Data collation and data analysis

3) Structural analysis

4) Output of results

The user creates graphic data files of each floor of the building

describing the structural elements and loading and boundary conditions.

When the user is satisfied that the graphic representation is accurate

the data analysis programs are initiated. If these issue no error or

diagnostic messages then the user proceeds to solution and subsequently

to the output of results.

It is important to realise that because there are data collation and

analysis programs between the graphic data which is input by the user and

the data that the structural analysis programs operate on, the user has

a great deal of freedom. He may not only use all the utilities and

facilities provided by GOADS but may also set up the graphic model of the

structure in any order.

102

I.2 Finite element theory

An elastic structure or continuum may be represented by many discrete

components or elements interconnected at a finite number of nodal points

situated on the element boundaries.
6,7
 The displacements of these nodal

points will be the basic unknown parameters of the problem.

A set of functions is chosen to define uniquely the state of displace-

ment within each finite element in terms of its nodal displacements. Thus

the displacement functions defuse uniquely the state of strain within an

element in terms of the nodal displacements. These strains, together with

any initial strains and the constitutive properties of the material define

the state of stress throughout the element.

A system of forces concentrated at the nodes and equilibrating the

boundary stresses and any distributed loads is determined, resulting in a

stiffness relationship of the form:

= mAluiA 	 A yA. 	IFIA
crsp 	sE0

where: IPIA represents the nodal forces on element A,

rie is the element stiffness matrix,

tUlA represents the nodal displacements of element A

IFIA represents the nodal forces required to balance any

distributed loads acting on the element

and IFi
0
 represents the nodal forces required to balance any initial

E

strains such as may be caused by temperature change, if the nodes are not

subject to any displacement.

It is not always easy to ensure that the chosen displacement functions

will satisfy the requirement of displacement continuity between adjacent

elements. Thus, the compatibility condition on such lines may be violated.

By concentrating equvalent forces at the nodes, equilibrium conditions are

103

satisfied in the overall sense only. Local violation of equilibrium conicb7,f

itions within each element will usually occur.

The choice of element shape and of the form of the displacement

functions will deterMine the accuracy of the finite element model.

It is also possible.to define the stresses or internal reactions

at any specified point or points of the eemniat.in terms of the nodal

displacements:

fcriA 	A fui A + taipA 4- tot

where: DIA is the element stress matrix

e
and 0/

A represents the nodal stresses for element A.

The last two terms are the stresses due to the distributed element loads

and initial stresses when no nodal displacement occurs.

In STASYS it is assumed that there will be no initial strains and

temperature effects are not included. Line and rectahgular elements are

used although it is hoped that other elements will be added to the system

later. In any case each nodal point in the structure is allowed six degrees

of freedom.

The stiffness matrix for the line element can be derived directly

from the differential equations for beam displacements in engineering

beam theory.

1014

4.2.1 Derivation of stiffness matrix for line element.

The derivation is for a slender straight bar of uniform cross section

capable of resisting axial forces, bending and twisting moments.

The forces acting on the element are F1 to F12 and the corresponding

displacements U1 to U12.

1) Axial forces F1 and F7

F1 	(' = - 1a EA. governing differential equation.
dxf)

hence F1 x = -UEA C1

has displacement U1 while U7 = 0 at x'== 1 then; C1 = F11 and:

F
1 = _

EA 	also F1 = -F7 from equilibrium.
1 ,U1

and assuming that the left hand end of the element

__V

105

2) Twisting moments Fit and Flo

Differential equation for twist 0 on the element:

F = -GJ dB — dx

• hence 	Fix = -GJ8 C1 	Let 8 = 0 at x = 1

then 0
1
 = F

14
1 Also 0 = U at x = 0

_ GJ
so 	

x - 1 v4 	
and F10 = -Fly 	

from equilibrium.

3) Shearing forces F2 and F8

2 	F

F12
0
	

1

The lateral deflection w on the beam subjected to shearing forces and

associated moments is assumed to be due only to bending strains.

d

dx

2
w EI = 	= F2x - F 2 	2 	6 (3.1)

F2x3
EIzw = 6

C1x C2 (3.2) 2

GiLAT = 0 at x = 0 and x = 1, and w = 0 at x = 1
dx

F2x3 	F6x2 4. 13F2
hence 	EIzw = 6 - 2 	12

F21
where F6 = 2 	also from equilibrium:

F8 = 2 	and 	F12 = -F6 F2
1

Now at x = 0, w = U2 and from 3.2 U = 2 	12 :I

6

13F2

106

therefore
	F2 = (12EIz/13) U2 	k2,2

F6.
= (6EIz/1

2) U2
 k6,2

F3 = (12EIz/13) U2
 k82

F12 = (6EIz/1
2
) U2 k1212

Similarly if the other end of the beam is displaced:

k8,8 = k2,2

and k1218 = k6,2

4) Bending moments F6 and F12

To obtain the stiffness coefficients associated with the rotations

U6 and U12
the beam is subjected to bending moments and shear forces.

Deflections can be obtained from equation 3.2. The constants C1 and

C2 must be revaluated for the new boundary conditions:

U6 = 0 at x = 0, x = 1 and t = 0 at x = 1

F2 , 3
Then the equation becomes: EIzU6 = 7-x-) - x) + 2

F6
(ix - x2)

and 	F2 = 6F6 141

The remaining forces can be determined from equilibrium and together with

the boundary conditions:

du = U6
 at x = 0

dx

to give:

F3 = (6E1z/1
2
) U6 k8,6

EI
F6 = 4 z U6 	k

6,6

107

(2EIz/l) 116 F12 = k1 2,6

and by symmetry k12,12 = k616

5) Shearing forces F3 and F9

These are exactly similar to the shear forces F2 and F8 except that

the bending moments F
5

and F11 associated with F3
and F

9
 are in an opposite

sense to F6 and F12 associated with F2 and F8.

Hence: 	k
3,3

= -k2,2

k
5,3

= -k612

k9,3 = -k 9,3 	8,2

k1113 = k1212

k
9 9

= k8,8

k11,9 = k12,8

Obviously it is I that is used in these expressions not Iz.

6) Bending moments F5 and F11

The same applies as for the shear forces and:

k5,5 = k6,6

k9;51 = k8,6

k11,5 = k12,6.

If all the stiffness coefficients are collected and put into matrix

form then the complete stiffness matrix for the line element is formed

as shown in figure L.2.

1- -1
cY1 H

L7IH

0
■0

0

Cv H 0 0 0

0 0 0 0

1-z
H 0

It="4 H r
■-T-1

0

0

0

0

0

1
C\I

0

0

O O 0

0 	 0

i 1„ 	" H
r-i .4 	m n

‘0 	0

1 H 0 4 0

0

0

108

H

H O

1-D I
CD H 	0

W

	

H 	k%1 0 •4) H 0

c`l 	 P.-1 H 0 0 0

11r-1 0 0 0 0 0

1-1 	1-1 1
H

0
WI
1 0 0 0 1-1

1-1 "f cra r-4 	 If-11"H
0 0 0 N.0 0 NJH 0

••■•■•••■••••■■••••■•■41.

Figure 4.2 Line element stiffness matrix

109

4.2.2 	Formulation of rectangular plate element stiffness matrix.

In the small deflection theory of thin plates the transverse (normal)

deflections Iwi are uncoupled from the in-plane deflections u and v.

Consequently the stiffness matrices for the in-plane and transverse

deflections are also uncoupled and they can be calculated independently.

Consider a typical element A.

z

In order to derive the stiffness matrix for the transverse deflection

w three degrees of freedom have to be considered at each point. Two

rotations about perpendicular axes x and y within the plane of the plate

and the lateral deflection w. We denote these displacements:

u. = 1 8 . Xl.

e.
yl

w. 1

6w
6v. .1

w.
1

We refer to the displacements of the element as:

u. 1

u.

uk

u1

A

a

110

Similarly at every nodal point forces Fi may be assumed to exist.

Each consists of three components:

F,. =
1

M.

F . zi

F.

F.

Fk

Fl

fP1
A

The primary interest is usually in the internally distributed moments

of the elements. The solution of the problem hinges on determining the

element stiffness matrix [1]
A
and the matrix relating the internal moments

to the element displacements rsiA.

The lateral deflection w may be represented by a polynomial in x and y .

Since three degrees of freedom exist at each of the four nodes, twelve

undetermined constants may be used.

A suitable expression is:

w = A
l

A
2
x A

3
y A4x

2
 + Asxy A6y2 A7x3 A8x

2
y

11- + A „3

from which we obtain:

x y = 	= A
3 A5

 x 2A6y A8x2 2A,xy 3A 103T2 3A11x3 3Al2xY2

= x = A
2
 + 2Allx A5y 3A7x2 4. 2A8xy A9./

2 	
3A11

x2.
 + Y 	12Y

3
y

Substituting as follows:

x.
a. = 0
	

yi
= 0

x.
J
 = a 	y.

J
 = 0

xk = 0 	yk- = b

x1 = a 	Y1 = b

we have: Ile = EGNAI

32w

6x2 -X =

where D Eh3
.12(1 - y2)

111

The curvature and twist at any point in the plate can now be determined

in terms of the twelve constants.

= [B1 cAl = CB] [c] -1-t
UA

From the theory of plate 8.

	

2 	2
(LE + ALE M - x= 	2 	2"

	

x 	y

?E N + V_ MY = -D(2 . 	67 	c)x2 '

2

hence we have:

= CD) X.

[D] _ Eh3
12(1 - v2)

1 	V 	o

v 	1

0 	0
	

2(1-y)

2A
4
+ 611_

7
x + 2A8y 6A11xy

y2

62w_

by2 -(2A6 + 2A9x 	6Al2xy

x 	A
5

+ 2A
8
x 2A 9." 	3A11 x2

	
3Al2Y2 6y-

[B] is shown in figure 4.3.

and

qeCB 	0 	0 	L 	0 	0
	

0

q.e9 	0 	c19 	z-

	

cre9 	
0 	o 	qz 	0 	-e9 	0 	3- 	0

qe 	0 	0 	qz

o qz 0

z-

0 0 z-

o 0

0 0 0 n 0 0 3- 0 0 0

0 0 0 0 0 '89 0 0 3- 0 0

0 0 0 0 0 0 0 1. 0 0 0

0 0 0 0 0 0 3- 0 0 0 0

0 0 0 0 0 0 0 0 3- 0

113

During any displacement the external work done must be equal to the

internal work.

If a displacement is such that it is unity in the direction of a

selected external force and zero in the direction of all other forces, the

internal work will be the same as the value of this selected force.

Writing ouA as equal to I the identity matrix then the external work

may be represented in matrix form as:

w xt 	
&uA)T(FIA 	I .{F)A

e
{FYI'

To each of these displacements corresponds an eaual internal work

done by the moments:

where
Wint = 	

;')()T (141dxdy

= [B][C]-1 (6uA) = [13] E Cri

Substituting for Z1Cand M and equating internal and external work

results in:

from

and

we have

£F}A = 	[BNC1-1)T rENO[C1-1 (UlAdx4Y

[qc]-1)Tuf[B]TDA [B] cbcdyi tcy1TulA

.)C = 	rcrl {Le

M = 	[D)1B3 (c)-1)fulA

11 , rsi AlulA

The matrix [A
A
is given in figure)4.6 together with the terms which

make up the in-plane stiffnesses.

114

Rectangular plate element in-plane forces

Consider a typical element A.

y

A

	>Ii 	x
vo

Two degrees of freedom have to be considered at each point. These

are in-plane deflections along the-axes x and y and are denoted as:

We refer to the displacements of the element as:

a

U. 1

uj

uk

ul

Similarly at every nodal point forces Fi may be assumed to exist.

Each consists of two components:

and 	(FjA =

Fi = Fx
F
y

F. 1

F.

Fk

F1

We assume that the edge displacement function is linear and a suitable

function is:

e xx

e
xY

where

u = C
1
p C2

pq C a
3 -

Y
u = C

5
 p C6pq

C7q
 C8

p = x/a 	and q = y/b

115

As in the case of plate bending the eight arbitrary constants can be

determined from the known displacements in the x and y directions at the

four corners of the rectangle. Hence we can obtain:

	

ux= (1-p)(1-0111 	(1-p)4u3 pqu5 p(1-q)u7

	

uy= (1-p) (1-q)u2 	(1-p)qu4 pqu6 p(1-q)u8

Examination of these two equations shows that the distribution of the

ux
and u displacements along any edge is linear and that it depends only

on the element displacements of the two corner points defining the part-

icular edge. Thus the assumed form of displacement distribution ensures

that the compatibility of displacements on the boundaries of adjacent

elements are satisfied.

Noting that:

crux 	du 1 x
e = — -

	

xx ax 	a. ap

	

au 	bu

eYY = e - ht
e = 6ux an

+ 	 .1. = 	---- "1"
1
au
x 1 au

	

-1W ay 	ox 	" oci 	a P

We find that the total strain-displacement relationship for the element

becomes:

-(1-c) 0 	0
a 	a 	a 	a

- -p 	
1 	
-p

0 	0 	0 	P 	0
b 	 b 	 b 	 b

-11:22 -(1-) in 	-a 	a 	9. 	-n 	1-q
b 	a 	b 	a 	b 	a 	b 	a 128

-(1-q) -v(1-p) -a
a

v(1-p) g
a

ya
b

-n '1
112

(1 -v2 a b b a

-v(1-q) - (1 -p) LE vg Q v(1-q) -2
a b a b u4

us
a b a

-(1-v)(1-p) -(1-v)(1-0) (1-v)(1-p) -(1-v)q (1=Y/P (1-v)q -(1-v2p (1-v)(1-q) u6
2b 2a. 2b 2a 2b 2a 2b 2a 127

118

Stress matrix SA for rectangular plate element under in-plane forces

Figure 4.4

14B + 2 (1 -v)B-1

2(1
2)4B 1 + 2 (1 -v)B

2B - 2 (1 -v)B-1 4(1 -3v) 	14B + 2 (1 -v)B-1

14B + 2

2B - 2

SYMMETRIC

(1 -v)B-1

v) 	14B-1 	+ 2 (1 -v)B

B (1 - 	
-1 	3

--(1 -3v)
2

4B 2 (1 -v)B-1

-2(1 -3v) 2B-1- 2 (1 -v)B 	2(1 	v) -2B 1 - (1 -v)B 2 (1-3v) 	-44B-1 + (1 -v)B 	-2(1 	v)
2 	 2

-1
2 (1 -v)B

2(1 -3v)
	-14B-1 + (1 -v)B 	v)

	
)4B

1
+ 2 (1 	-v)B

-2B - (1 -v)B-1 4(1 + v) 	.-.14.13 	(1•-V)B 1 4(1 •••3V)

-2(1 + v) 	-2B 	- (1 -v)B 	(1-3v)
	

2B-1 - 2 (1 	-v)B

-4B + (1 -v)B -1 2(1 -3v) 	-2B - (1 -v)B -1 2(1 	v)

Figure 4.5 Stiffness matrix for rectangular plate element,- in-plane stiffnesses.

The following three pages give the complete stiffness matrix

for the rectangular plate element. The matrix is partitioned:

T
K1,1 	K2,1

K231

118

The order of displacements is:

	

I- -Iixi 	7 - uxj
. 	13 - uxk 19 - umi

	

2 - u . 	8 - u 	. 0 -

	

Ym 	Yj
. 	14- llyk 	2 	uyi

	

3 - uzi 	9 uzj 	15 - uzk 	
21'. - uzl

Xj 4 - 9 	16 - A

	

xi 	
10-0 	xk 	22-0 xl

	

5 - 9Yi
	

11 - 0 .

	

YJ 	
17 - 0yk 	

23 - 0yl

	

. 	4 - gzi

	

6 - 9zi 	12 0 zo 	
18 - gzk 	2

Multiplier for in-plane terms:

E.t
12(1-v2)

Multiplier for bending terms:

E.

12(1-v2)a.b

where t is the thickness of the element.

in-plane

bending

Figure 4.6

Stiffness matrix for rectangular plate.element.

K111

1
2

3

4

5
6
7 	
8

9

10

11 	

12

SYMMETRI,C

+.)

0 0
4(13' + 13-I)

+ 1(14 — 4r)

0 0 + 1(1 + 401b Iter's + 	—
O O 12P1 + 1(1 + 40)a —yob 11/31+ A(1 — v)Jat

0 0 0 0 0 Q
—4,1 + (I — +10 — 0 0 0 + 211 —

— 3.) 2(1' — •74 0 • 0 • 0 —1(1 + + 2(1 — .)D

0 0 —2(2(1' —)9-a)
— 1(14 — 4v) 1—fi" + 1(1 + 41.)1b —.12191 + 1(1 — r)la O 0

40. 	A-9
1(14 — 4r)

0 0 I— 	+ 1l1 + 4016 — Mt — 1.)1b, 0 0 0 O —12/1-1 + 1(1 + 4011) LIP-'+,i(1 —01b'
0 0 +12/P + 1(1 — v)la 0 -' 	— 41a' 0 0 0 —12M + 1(1 + 41) a rab + 4(1 — Ole
O 0 0 O 0 0 0 0 O 0 Q

1 	2 3 	4 	5 	6 9 10 11 12

Figure 4.6a

= K1,2

1 3 4 5 6 8 9 10 12

-211 - 0 - 08- -to + 0 o o o o 31- 20 - 'V' -1-1(1 -3r) 0 0 0 0
-W + r1 -2d-. - (I - r)P o o 0 0 -1(1- 3r) -40, + (i - ,y1 0 0 0 0

0 0 -2(Jii
+ W4 - 41.) 1-8-' + 1(1 - 01b 145' - HI - 1014 o o 0 2C6̀ - 2/1-1) _ 104 _ 40

[2p-, + 1(1 — r)lb

--12fl-' + 10 - vAb

f1fi-11 - MI - ow

LS' - 1(1 4- 41-)10

0

0

o o 0 1P -' - 1(1 - t91b IV' + M1 - OP.. o o o 0

o 1- ii' + i(I - r))a 0 UM + A(1 - Ola, o o 0 (fl. - HI + 4r))a 0 (1P' - ,'.(1 - OW 0

o 0 0 0 0 0 ' 	0 0 0 	` -
0 0 0

3p - 711 - .),5-. -1(1 - 3,)
0 0 0 0

-215 - (1 - oil-' 1(1 , 0
0 o 0 lit - 3r) -411-' + 0 - 'II 10 + ,.) -zp-. - (I - .)i) 0

0 2(//' - 2p-.)
- 1(14 - 41.) -PI" + 1(- '')16 1-P' + 1(1 + 4r.)]a ° 0 0 -2(P" + Pi)

+ 1(14 - 4r) ""IP-1 - 1(1 - I)lb
. 	.

-- 1/0 - 1(1 - 1-)1,2 0

0 12P-' + 1(1 - r))b IIP-' - .'i,(1 - r')1b* 0 0 0 0 1 	6-' -- 1(1 - rilb UP -' + .i.(1 - OW 0 0
0 0 (--(3' + j(1 + 41)1a 0 HP' - MI - P))a' o o o

_
I 	Is' - 1(1 -')la • . 	0 no, + ,'.(1 - OW 0

0 o 0 0'' 0 0 0 0 0 0 o o.

Figure 4.6b

13
1L

15

16
17
18
19
20;

21

24
23.

24

1 	.

1 4
15

16
17
18
19
20

21

22
23

24

K2,2

SYMMETRIC

4/1-3 + 2(1 — .)A1

+ 2(1 — Wt.'

104-.0 to + 	— 011 I

0 0 4(d= + p-1)
+ /(14 — 4r)

0 0 I2P" + 1(1 + 4r)lb + A(1 — r)lb'

0 O —12Y + 1(I _+._4019 . UP.1-+-A(1

0 0 0 0 Q
—4/1+ (1 — — 30 0

0

0

0

0

0

0

0

4/9+2(1 — •)■9-'
—1(1+0 — 2,3-. —2(1 —

0 0 —2(2P' — 11')
—1(14 — 4r) ff3-1— 1(1 +4r)16 12P' + 1(1 — v)14 0 0 0

401 + 13-2) 	•
+ }(14 — 4r)

0 (F3-. — 	+ 4036 HP".— A(1 — r)lbs 0 0 0 12fl-a + 1(1 + 4r))b fid'+ Aft —

0 0 7129. ± 	— ;))a 0 — htl — P)10 0 0 0 42p.+.10 +4111a._ rob tip + 	—

0 0 0 0 0 0 0 0 0 0 Q

13 	 15 	16 	17 	18 	19 	20 	21
	

22
	

23 	2L.

Figure)4.6c

122

4.2.3 latrix transformation of coordinates.

The stiffness matrix for each element is defined in terms of a set

of local axes. The structure is defined in terms of a set of global

axes. Before the individual element stiffness matrices can be added t:

together to form the stiffness matrix which describes the complete structure

they must be transformed to the global coordinate system.

If CT] is defined as the matrix which transforms a vector from local

to global coordinates then:

	

1FIG = ITJT'F}L
	 And 	(AG = fTl[U]li

and from:

fi .G (kJ*

	

G JG 	and substituting we have,

ET3IFJL = fKOJNIL and Since the transformation matrix is orthogonal,

= flfriaGrTiflii, 	and since also IFIL = tiltlfq31,

[K3 = E1Tutui

= rionc*TiT

In general there will be a separate transformation matrix for each

element in the structure. Cal is of block diagonal form and each diagonal

block is a 3 * 3 submatrix

In STASIS line elements are used to represent beams and columns

whilst rectangular plate elements are used to represent slabs and shear

walls. As mentioned in the introduction constraints are placed on the

orientation of these components within the structure. The components are

shown in their general orientation in figure 4.7. The rotations that must

be performed are now described:

) Wall element

then

- '- and

Z

COLUMN ELEMENT
	

WALL ELEMENT

Y

■

Y

A

X

	 X

SLAB ELEMENT
	

BEAM ELEMENT

Figure L..7 Components in their general orientation

124

a) Rotate about global Z to line up local x and global X.

b) Rotate about global X through 900.

1 0 0 •cos sin 0 cos sin 0•

0 0 1 -sin cos 0 0 0 1

0 -1 0 0 0 1 sin -cos 0

2) Column element

a) Rotate about global Z so that the orientation point lines up with

global X.

b) Rotate about global Y through 90°.

0 0 1 cos sin 0 = 0 0 1

0 1 -sin cos 0 -sin cos 0

-1 0 0 0 1 -cos -sin 0

3) Beam and slab elements

a) Rotate about global Z to line local x with global X.

cos sin 0

sin cos 0

0 	0 	1

where ?cost and 'sin' stand for the sine and cosine of the appropriate

angle.

After the element stiffness matrices have been transformed to global

coordinates they can be directly added to form the global stiffness matrix.

The assembly process is shown in figure)4.8. The result is always a

symmetric banded matrix.

1 2 3 14 5 b 7

o o

2

(3' Element stiffness matrices

Stiffness matrix for complete structure

Figure 4.8 Assembly of complete stiffness matrix

125

126

4.2.4 Solution of equations

The -solution of the matrix equation:

forms the heart of the analysis process. The aim is to solve for U

the nodal displacements of the structure. For a large analysis problem

there will be thousands of equations and even for small problems there are

likely to be hundreds of equations. The fact that [K]G. is symmetric and

banded. reduces the number of coefficients that must be stored but the storage

problem, especially on a minicomputer, remains acute.

Fora tightly banded system of equations Gaussian elimination is a

fast and accurate method of solution. The core storage of a minicomputer

is not capable of containing the stiffness matrix, and it is necessary to

store the matrix on a fast random access peripheral storage device.

Several methods for performing the solution with only part of the matrix

K G in core at any one moment have been devised, but, usually for a given

core capacity the size of problem that can be solved is still limited by

the bandwidth of the system of equations. The solution used in STASYS is

based on an equation solver written by Cantin? and developed for use on

10
PDP 11 minicomputers by Grindley

The Gaussian elimination method has been described in many texts , and

usually operates on matrices or systems of equations in which the coefficients

are single terms. However in the method presented by Cantin the matrix

is divided into blocks of n by n and the Gaussian elimination is carried out

on the blocks. Gaussian elimination requires the reciprocal of the diagonal

terms of the matrix to produce multipliers. When operating with blocks

of the matrix as terms, the inverse of the diagonal blocks of the matrix

is used. The method only requires three blocks of the matrix and three

equivalent load vectors to be in core at any one time and thus the size of

127

problem that can be solved is only limited by the quantity of backing

store that is available. Because of the relatively slow speed of disk

accesses the solution becomes faster as the number of blocks needed to store

the matrix is reduced. The size of the n by n blocks is therefore chosen

to be as large as possible given a fixed amount of core storage.

The solution is carried out in double precision, that is each variable

is represented by eight bytes (four PDP 11 words). The disk is physically

divided into 256 word records (614 double precision variables) and it is

only possible to start a random access read or write at the beginning of

each record.

[K]G is partitioned into n by n blocks and it is convenient and

efficient if n is a multiple of the number of degrees of freedom at each
•

node in this case six, and if n
2
is a multiple of the number of variables

per disk record, in this case sixty-four. Thus the lowest convenient

value for n in STASYS is twenty-four. If this value were adopted each

block of the matrix would occupy exactly nine disk records. Unfortunately

it was discovered that the 16 kilowords of core available was not sufficient.

STASYS therefore uses a block size of eighteen by eighteen which requires

five and one sixteenth disk records. Six records are used for each block,

fifteen sixteenths of the sixth disk block is wasted.

Figure 4.9 shows how the matrix is divided into blocks, the smaller

squares representing the six by six submatrices at each node and the heavier

squares representing the eighteen by eighteen blocks in which the matrix

is stored.

STASYS runs on a PDP 11/45 with a single RK05 disk pack which has a

capacity of 1.2 million words. If the whole disk unit is used for storing

[K]
G then a problem with 1500 degrees of freedom, a half band width of 190

and 10 load vectors can be solved. In practice the 1.2 million word disk

is also used for storing program and other data, and only half the disk is

1 2 3 14 5 6

0

0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0

0

1 O 0

2 O 0

3 O 0

0

5

6

8

O 0

O 0 0

O 0 0

128

4
N

9

Figure 4.9 Block division of complete stiffness matrix.

129

available for storage of the stiffness matrix. However the price of disk

storage per byte has already dropped by a factor of four since the present

equipment was purchased. New minicomputer systems will therefore have

larger disk storage capacities and it may become solution time rather than

storage space that becomes the practical limiting factor.

130

14.2.5 Inclusion of boundary conditions

In general it is possible to modify terms in the overall stiffness

matrix and load vectors in order to allow for specified displacements. The

simplest method of doing this is to multiply the diagonal term in the

stiffness matrix corresponding to the specified displacement by a large

number, and to replace the load terms by the new diagonal term times the

specified displacement. In the special case where the specified

displacement is zero the load term will also become zero and it is this case

that is allowed for in STASYS.

However as we have seen the method of solution involves partitioning

the matrix into blocks and the diagonal blocks must be inverted. The

effect of having terms of excessively large value on the diagonal within

a block is to cause ill conditioning during the block invertion•.

Zinciewicz suggests an approach in which a zero is written in every

term of the row and column corresponding to the fixed degree of freedom

and the diagonal term is replaced by unity. This also causes ill conditioning

because the diagonal term is now excessively small compared with the others.

There is however no need to replace the diagonal term by unity since

if the terms in its row and column are all zero its value can have no effect

on the solution. In fact if the diagonal term is left alone and in the

general case the load terms are replaced by the diagonal term times the

specified displacement the desired result can be achieved without causing

any ill conditioning.

131

4.3 Data input

Data input in STASYS falls into seven categories:

- Element nodal.point coordinates

- Element dimensions

- Element material set number

- Sets of material properties

- Floor heights

- Nodal constraints

•
- Loads

The data input programs are interactive and use many of the facilities

of the draughting system described in chapter two.

In the design of STASYS effort has been made to keep the system

flexible. The operator is able to choose the order in which he wishes to

prepare data. Similar parts of a structure may be quickly reproduced by

using the 'sub-picture' processor and the three editors of the draughting

system. Forty of the semi-permanent mass storage files are reserved for

the users own requirements and sixty for storing the graphical representation

of each layer or floor of the structure.

Data can either be taken from existing General Arrangement drawings,

floor by floor, or the designer may create a model from sketches of a

proposed building. Whichever the starting point, the mode of operation

is as follows:

a) A grid is digitised or constructed which is common to all floors of

'the structure. This is normal building design practice and provides a

useful framework for positioning elements and other data. It is not

essential for the analysis.

b) The positions of the line and rectangular elements which represent

columns, walls, beams and slabs on the current floor are digitised. The

points are entered in 'background' mode described in section 2.L.2 and

132

and discussed in chapter three.

The elements are entered into the 'workspace' as 'symbols' and may

be edited and manipulated by the macro editor. Initially they are set

to have zero dimensions, and the symbol display programs display them

using values calculated from their coordinate values and default dimensions

stored in data statements within the programs.

c) Dimensions are assigned to the elements. Dimensions which are defined

by the coordinate positions of the nodal points may be omitted. The user

is able to set up six sets of dimensions corresponding to buttons one to

six on the pencil. Each set consists of the local x, local y and local z

dimensions as set out in figures 4.10 to 13. By 'finding' an element

and pressing a button the operator enters the dimensions into the element

symbol in the workspace. It is found that since many elements have the

same dimensions it is possible to enter the dimensions of all the elements

without too much resetting of the dimensional sets. The same philosophy

is used during the entry of loads.

d) Material properties are assigned to each element. One set of material

properties is defined to be allocated by default, i.e. the properties of

this set are used in the analysis if no other set of properties is assigned

to an element. In order to minimise the work of assigning material sets

the default properties are chosen to be those which apply to the largest

number of elements. Other material sets are entered via the keyboard as

and when required during the assignment process. Once a set of material

properties has been entered in this way it remains available for use until

deleted or overwritten by the user. Up to forty-two sets are allowed.

e) Boundary conditions are input. 	The'liser selects, tLe :type.of restraint

required as follows:

Button .1- - zero displacement in global X

Button 2 - zero displacement in global Y

133

BEAM ELEIE.NT.

z
A

z

X

ICODE 	X-POINT Y -POINT

13 SYnOL NUNBER ELEMENT NUY3ER

114 X-POINT ONE Y -POINT ONE

14 X-POINT TWO I -POINT TWO

19 LENGTH WIDTH

16 DEPTH MATERIAL NUMBER

Figure 4.10

X

Orientation Point

134

COLUMN ELEMENT.

x

ICODE 	X-POINT 	Y-POINT

13 	SYMBOL NUMBER 	ELEMENT NUMBER

X-ORIGIN 	Y-ORIGIN

14 	 POINT TO DEFINE ORIENTATION ABOUT Z-AXIS

19 	HEIGHT 	BREADTH
*

16 	WIDTH 	MATERIAL NUMBER

* BREADTH: The distance across the column in the direction of the line

joining the Origin to the Orientation Point.
**

WIDTH: The distance across the column in the direction at right angles

to the line joining the Origin to the Orientation Point.

Figure 4.11

135

SLAB ELEMENT.

X

ICODE 	 X-POINT Y-POINT

13 SYMBOL NUMBER ELEMENT NUMBER

14 X-POINT ONE Y-POINT ONE

.14 X-POINT TWO I-POINT TWO

14 X-POINT THREE I-POINT THREE

1)4 X-POINT FOUR I-POINT FOUR

19 * BREADTH WIDTH.5He

16 THICKNESS MATERIAL NUMBER

*BREADTH: Distance between Point One and Point Two.

WIDTH:. Distance between Point One and Point Four.

Figure 4.12

136

WALL ELEPENT.

	 X

ICODE 	X—POINT Y—POINT

13 SYMBOL NUMBER ELEMENT NUMBER

X—POINT ONE I—POINT ONE

11 X—POINT TWO Y—POINT TWO

19 LENGTH- HEIGHT

16 THICKNESS MATERIAL NUMBER .

Figure 14.13

137

Button 3 - zero displacement in global Z

Button 14 - zero rotation about global “xis

Button 5 - zero rotation about global Y axis
Button 6 - zero rotation about global Z axis

Button 7 - zero displacement in all degrees of freedom.

He is then able to select the nodal points to which the constraint applies

using background mode.

More than one set of boundary conditions can be stored. This is

achieved by storing the sets under different 'levels'. Ten levels are

reserved for boundary condition data.

The boundary conditions are displayed schematically as shown in figure 4.1

f) Loads are input. Three types of load can be input:

- Point loads

- Uniformly distributed line loads

- Uniformly distributed area loads

Moments are applied as two point loads producing the required moment. In

practice there are no external moments applied to building structures.

The loads may be applied by entering the positions of the loaded

points, lines or areas in 'background' mode. When defining an area load

a rectangle is digitised. Any slabs within the rectangle will have the

load imposed on them. As with the input of element dimensions six load

vectors can be set up and selected from the pencil buttons. For a point

load the value of a vector is interpreted in kilo-newtons, for a line

load in kilo-newtons per metre and for an are load in kilo-newtons per square

metre. The loads are displayed schematically as shown in figure 4.14.

As with boundary conditions loads can be stored under different levels.

In the analysis up to four combinations of different load sets may be

included. The way in which the levels and semi-permanent mass storage

files are allocated in STASIS is shown in figure 4. 15.

138

Display of boundary condition symbols.

X 'a Z
AX AY AZ nodal point fixed in all degrees of freedom.

X 	nodal point - no movement in X axis.

X Y AZ *• nodal point - no movement in X axis

- no movement in I axis

- no rotation about Z axis

Display of load symbols.

load acts in positive X direction

/1 	load acts in positive Y direction

0 	load acts in positive Z direction

load acts in negative X direction

load acts in negative I direction

load acts in negative Z direction

>150.00 	point load positive X, 150 kN

150.00
X El 	line load negative Z, 150.00 kN/M _

• •

ss nn

X 2I n X a

nun a
-75

a•mc n

a /Tana

X X X X II

area load negative Z, -75 kN/M2

Figure 4.14

I

L

E

S

60

.

F

60 FloOr Files
•

1

- 	4

11

1

_—__

__.

40 General

i

Files

2

L

V

E

L

S

1 , 	!
20 Load levels

1
i

_ 	,
10 Boundary condition levels

.

,

30 Levels for general used
_.

1 	2 .

Figure L.15 Allocation of levels and files by STASYS.

139

g) When a complete model of a floor has been built in the workspace,

it is filed under the appropriate floor file. A typical view of a floor .

is given in figure 4 .16.

At this stage it is convenient to enter the level of the floor in the

floor directory. The height of each floor is entered in metres above

some datum point. A list of floors and floor heights is displayed on the

screen by request.

After the graphic data for every floor of the structure has been

produced and filed the data is analysed and reformed for the analysis

process. To avoid confusion the processing of the data into a suitable

form is called data collation rather than data analysis.

	L

•

I 	0 	r 	J 	 1r

	

_..0 	J
	-.

i 	ir 	

	

a 	

	

IL 	 II 	I

L 	 JL 	

	0 	J

	

F 	11
	it 	IL 	 II

	

—II 	 4 	
1 r

	

:1 	 I
1

	JL 	IL 	
	 14_ 	

	

_1
no
	JI

I 	1 	 ir 	 N 	 1

	

I 5- 	 .,JI. 	
-

	

y 	,. 	
I 	 I

	

1 	

	

_a 	 JL 	 I

	

II 	 !F- L 0 	J

	

I 	F 	-q

	

d 	IL 	 II 	.

	-II 	 4 	ir 	1

	

' I 	Ir

	

II 	
1 	f 	 -I 	I _A 	

	

I,_ 	

	 II 	l' ,I 	
 if

	

_a 	
, 1

	

ir 	--.1 	

	

11 	 I 	_A 	JL 	,
	 II 	!i- 	

 1r 	

	

_0. 	
,
1

I 	r

	

I I 	 I 	il 	IL 	.

	

11 	 4 	
i r 	n

	

L 	 0 	J

	

ir 	

	

IL
ir
	IL 	 	 1 	 :1 	

c.—

I 	f
L

•

11

Figure 4.16a Typical plan of building floor.

.1511. V.- hr 2„..
RAATAZT

, 	o •

2SOMM DEEP R.C. 5LR13 2SUMM DEEP R.C. SLAB

>
>
>
>

> ,
>

>
>
>
>

>

>
>

.>
...,
T>
>
>
>

>
>
>
>

>
>

>
> __,_....—

.

.
.

.

SSO MM DEEP RIBBED SLAB
-

,
.

r a w
m
.
.
a

w
m
=
r

V

•

, 	. 	-

650MM DEEP RIDGED SLAB

•

•

. 	•

=
cc
41

. 	0

.
- u
a

w w

r

• •

.

65OMM DEEP RIBBED SLAB

. 	.

.

Wb
3
8
 '
D
'd
 d3
3
U
 W

W
0
S
L

Vi
e
w
 of ide

a
li
sed floor

• • 	6 e MJS 	•

142

4.4 Data collation

Data collation can be divided into five stages:

- Sort nodal points, create file of points

- Sort boundary conditions, create file of constraints for each floor.

- Analyse loads, create file of nodal loads

- Data output if analysis on mainframe

- Element and load assembly if analysis on minicomputer

During the first three processes the graphic data for each floor is

analysed and packed into three random access files. The filing is carried

out by file handlers like the one described in chapter two. The fourth

process, data output, is only performed if the solution of the 'equations

is to be carried out on a different computer or if a hard copy of the problem

data is required. If the solution is to be performed on the minicomputer

then the element stiffness matrices and load vectors are formed and assembled.

The last two processes use the data set up by the first three.

A brief summary of what each stage involves is given:

1) Sort nodal points.

Data for the floor under consideration is transferred by the operator

to- the workspace. Points defining the ends of line elements and the

corners of rectangular plate elements are stripped out and stored in a

temporary workfile. If two points are within 100mm of each other they are

considered as the same point.

The points are ordered by a simple bubble sort. The operator indicates

whether should be ordered primarily according to their X or Y coordinate

values. Points having a primary coordinate value difference of less than

the ?grid factor? are ordered according to the value of their secondary

coordinates.

143

The ordered points are displayed on the screen with their nodal numbers

so that the user can visually check the result. Finally the points are

filed in CADMAC.RA5 by the file handler.

2) Sort boundary conditions.

The user selects which levels of boundary conditions he wishes to use

for the analysis. Points are stripped from the boundary condition symbols

in the workspace along with the nodal constraint(s).

Each constraint is given a value according to the algorithm:

Value = 2(n-1)

where n is the number of the constrained degree of freedom as defined by

the number of the pencil buttons during the boundary condition input.

Where more than one constraint occurs at the same point the values

are added. The total value is stored with the point coordinates. It is

a simple matter to decode the total values during load assembly.

The points with constraint values are filed in CADMAC.RA5 by the

relevant file handler.

3) Analyse loads.

Data analysis of point loads is simple, for uniformly distributed

line and area loads a search has to be carried out to determine which beam

and slab components of the structure bear the load. Loads are then apport-

ioned to the nodes of these beams and slabs. If it is found that more than

25% of the applied load has not been distributed a diagnostic is printed.

This does not necessarily mean that the program is in error because it may

be that an area load has been applied over an area that has voids in it.

Any nodes with external loads acting on them are filed in CAMAC.RA9.

Loads due to the self weight of the structural elements are calculated

and assembled during the formation and assembly of the element stiffness

144

matrices.

4) Data output.

The following data is output to a specified device, usually the line

printer or magnetic tape unit.

- Nodal coordinates

- Element connections and material numbers

- Sets of material properties

- Nodal constraints

- Loads

5) Assembly of element stiffness matrices and load vectors.

This stage includes -the formation, transformation and assembly

of the stiffness matrices for each element, as well as the formation

and assembly of the loading data.

The outline of the process involved can best be conveyed by a flow

diagram figure 4.17.

Because of the way boundary conditions have been included, it is

necessary to zero the loads where a degree of freedom has been removed.

This is carried out after the assembly is complete. It should be noted

that the relevant rows and columns of stiffness coefficients are zeroed

- in the element stiffness matrices before they are assembled. This saves

having to do a lot of reading and writing to the disk to put them in after

the matrix has been assembled and is stored on disk.

There is little technical difficulty involved in the assembly process,

but it.is a lengthy process. The time fcr assembly of each line element

is approximately 1.5 seconds, and for each rectangular plate element 2

seconds. A twenty floor building represented by thirty elements per floor.

• therefore takes approximately twenty minutes to assemble.

Assembly proceeds floor by floor through the structure and each floor

plan is displayed prior to assembly enabling progrees.to be monitored.

Calculate number of disk blocks
required for solution

Add number of nodes on each floor
to obtain total

1Determine band width

Find node numbers for element
Find boundary constraint for element

Form stiffness matrix for element
Calculate loads due to self weight

Find element in workspace

1Decode constraints and adjust natrixi

ir
(Assemble stiffness coefficients and
self weight loads for each load case

e 	rAny more
lenents?

Read floor data to workspace
Read nodal and constraint data for
current and next floor to workfiles

No

No
y more

floors?) (Load assembly)

1145

1Deternine number of load cases

(Start

1Read floor directory

uffiaeal
Space?

Stop)..c., 	No

Yes

Yes

Figure !x.17 The assembly process.

146

4.5 Solution

The method used for solution has been described in section 4.2.4.

Condition numbers are calculated during the inversion of the diagonal

blocks of the assembled stiffness matrix. These are listed on the keyboard

or line printer as each block is inverted. The calculated displacements

are written back to the disk unit over the original load vectors.

Times for solution are plotted in figure 4.18.

i‘ Time minutes

25

20

10

0 	

	

0 	25
	

50 	75
	

100 	Nodal points

Figure 4.18 Time for solution against nodal points. Each of the three

sets of equations has a band width of 12 nodal points. Six degrees of

freedom at each nodal point.

It can be seen from figure 4.18 that the time required for solution

rises linearly as the number of nodal points in the problem increases, so

long as the band width of the problems remains the same. In general the

band width of problems increases as their size .and figure 4.18 is therefore

optimistic.

147

4.6 Output 	 s

Three methods are used to communicate the result to the engineer:-

a) List of global displacements.

b) Three dimensional display of displaced structure.

c) Stresses of selected elements.

A list of global displacements for each node may be output to

any device.

The user is able to get a much more immediate and clear view of the

deformations of the structure by displaying them in three dimensions.

Instead of a full schematic view of all the elements making up the

structure, a view of lines joining the nodal points is displayed for two

reasons:-

1) An adequate hidden line removal package for use on a minicomputer

has not yet been developed.

2) In the absence of 1), a full view of the structure is generally too

complex far the human eye to appreciate.

A set of lines joining nodal points to their neighbours is generated

to represent the structure. These can be displayed before and after

solution. When displayed after solution, the operator is asked to specify

a factor by which all displacements shall be multiplied in order to make

them visible. If necessary, the original structure may be displayed as

well as the displaced structure, in order to provide a frame of reference.

The three dimensional viewing package allows the operator to set the

following parameters:-

Spherical or flat projection plane.

Centre of view in cartesian coordinates.

Viewpoint in polar coordinates.

148

Distance of the projection plane from the viewpoint.

Position of the projection on the display screen.

Figure 4.19 shows a view of a simple frame in its original and

displaced states.

The third option allows the user to select a particular element in the

structure and obtain a print out of the stresses in that element.

The operator calls the appropriate floor file to the workspace. He,

is then able to 'find' the required element(s) and request a list of the

stresses.

If a rectangular element is selected, the stresses due to in-plane

forces and bending moments are calculated separately for the centre and

each corner of the element.

For line elements, stresses are calculated at each end and the centre

of the element.

Figure 4.19 A simple frame in its original and displaced states.

150

4.7 An illustrated example of the use of STASYS

This section is intended to draw together all that has gone before

and to give the reader a better feel of the physical reality of operating

STASIS. It therefore contains only a flow chart outlining the sequence

of operations (figure 4.20) and a series of photographs of the display

screen during the analysis process.

The example is an eight floor building with a central core represented

by rectangular plate elements and columns spaced round the perimeter of

the building connected to the core by beams. The building is represented

by.a total of 200 elements joined at 96 nodes.

(start) 	 Input grid

Input element
materials File for all

similar floors

---4>J Get floor Sort nodal points

'Input ele

I 	

ments 	

[Input element
dimensions

	 Get floor

No

'Add loads

Extract boundary
conditions

[Analyse loads

Display 3-D
view

'Assemble matrix
of stiffnesses

Solve

!Input result —401 Out put results

V
List nodal
displacementsi

;List stresses for }
selected elements'

Figure 4.20 Operation of STASYS

151

Make any
modifications

Create data
for.typical floor

	V.
Display original
and displaced
structure. 3-D.

Add boundary
conditions

~~gure 4.21 Schematic view of a typical floor (dimensionless elements).

Figure 4.22 Adding boundary conditions - elements now dimensioned.

Figure 4.23 An area load of .95 KN/m
2

and three point loads of 300 KN.

~~gure 4.24 The floor directory indicating the height of each floor

and the number of nodal points on each floor.

- I

Figur h.25 Lin s ~oining the nodal points of the undisplaced structure.

[------- -------------_ ._- - ---- -.- ---- -- -- --- --

.
I
I

I

~~gure 4.26 The displaced structure.

24.8 Assessment of STASYS

In successfully carrying through a finite element analysis there

are three main points at which errors could occur or be generated due to

programming:

Errors in data interpretation and manipulation

Incorrect stating of the element stiffness matrices

Inaccuracy in solving the set of simultaneous equations

Eliminating errors in data interpretation is achieved by displaying

the data and allowing the operator to visually check it. Eliminating

errors during the data collation stage has been achieved by listing the

data at many stages of the process and manually checking that it is in the

correct format and right magnitude, for a wide variety of data sets.

To establish the validity of the code which generates the element

stiffness matrices two different approaches have been adopted:

1) All the terms of the element stiffness matrix have been hand

calculated for a particular element and compared with the terms produced

by the code.

2) Simple sti%uctures for which analytical solutions can be easily

obtained have been idealised by finite elements. The results obtained

by solving the problems on the conputer for a variety of load cases

compare to the analytical solutions to an accuracy of at least two significant

figures and usually more.

For example in simple elastic theory the end deflection twt of a

cantilever of length 'L' due to a point load at a distance 'X' from the

fixed end is given by:

Wi3 WX2(L - X) w 	_—
3E1 2E1

L •

158

"I
,

159

The cantilever may be represented either by a series of plate or line

elements. In both cases the computer analysis has produced equivalent

results although the stiffness matrices involved have been different. .

Accuracy of the method of solution is more difficult to establish.

The Gaussian elimination procedure used in STASYS does not perform partial

pivoting. Some texts written on the general solution of simultaneous

11,12
equations suggest that such a procedure is necessary. However, it is not

reasonable to consider the equations which represent a physical structure

as being completely general since they possess specific attributes. They

are always symmetric and banded. Furthermore, the diagonal terms of the

matrix of equations are always similar to or greater in magnitude than

the other terms in the matrix. Livesley
13

 states that a working precision

of at least ten significant digits far all computer operations avoids any

serious trouble due to ill-conditioning when using the finite element method

of analysis on practical structures. In STASYS the assembly and solution

of the matrix of equations is carried out in double precision on the PDP 11/40

i.e., floating point values have a range of from .14 x 10-38 to 1.7 x 1038

with a significance of sixteen decimal digits.

Although the time taken to perform the solution is considerable, it is

still much quicker and more convenient to perform the solution on the

minicomputer. The illustrated example in section 4.7 was set up, solved

and photographed in a single two hour session. The time for solution was

twenty-three minutes. By conventional means the preparation of the data

cards alone would have taken us long. If one adds the time required for

a typical 'turn round' on a batch system and further remembers that there is

a strong likelyhood of data errors in the first run, one can appreciate

the convenience of STASYS.

160

CHAPTER FIVE

Conclusions and future development

A graphics capability has been developed on a minicomputer system.

By providing data input, display and handling facilities GCADS allows the

operator to create,modify, store and plot many types of drawings and helps

to eliminate most of the repetitious and tedious tasks involved in the

production of drawings by conventional means. To increase the efficiency

of production of particular types of drawing further modules may be added

to GCADS.

These graphic and data handling facilities may be used and built upon

to provide graphic aid in a wide variety of applications. Because the

applications programs use the same graphic database it is possible, where

these applications programs represent a series of stages in the design of the

same project, to spread the cost of data input for those items of data that

are common.

In particular programs have been added to enable fast generation of

data for the finite element analysis of structures which can be conveniently

viewed as a series of layers or floors. The set of equations which

describes the stiffness of the structure under investigation may be assembled

and solved on the same minicomputer.

The work has clearly demonstrated that a minicomputer system has the

power to set up and solve problems of a complex nature. Because the system

is one order of magnitude cheaper than typical commercial systems it is

economic to use it to solve these problems although the actual time required

for solution is much longer.

The low cost enables companies that were not previously able to purchase

their own computer facility to do so. The low running cost allows

engineers and designers to use powerful computer and graphic aids in solving

their everyday problems.

161

In the field of structural analysis there are a huge number of programs

already written to deal with a wide range of problems. At present, they

are underutilised because of data preparation difficulties, or because in

order to use them it is necessary to wade through a vast manual, or because

the computing facilities available are not convenient. Undoubtably, the

transfer of these programs onto a system such as GCADS would do much to

encourage their use and development.

The maximum size of problem that can be solved on a minicomputer

system depends on two factors. The first is the length of time that one

considers is reasonable or economic and the second is the quantity of

backing store in the system. In STASYS the time that a particular problem

takes to solve depends on the amount of main memory available and the

speed of data transfer between main memory and the backing storage device.

Cheaper memory, and, faster and larger disk units for the same price, can

now be purchased.

If at the same time, proper advantage is taken of the technique of

substructuring the size of problem that could be solved on a minicomputer

would be many, at least ten, times larger than is presently possible.

In the technique of substructuring, the structure is partitioned,

usually along physical boundaries, into smaller units - substructures. If

the stiffness properties of each substructure are determined, the substructure

can be treated as complex structural elements, and the matrix displacement

method of structural analysis can be formulated far the partitioned

structure. Once the displacements on substructure boundaries have been

found, each substructure can then be analysed separately rnder known

substructure-boundary displacements. The two advantages of substructuring

are

a) The si7,e of matrix that has to be handled and solved at any one time

is greatly reduced.

162

b) If the structure is carefully partitioned, groups of the sub-

structures will be the same. In this case, a reduction in data storage and

generation is possible and the stiffness properties of the substructures

need only be derived for one of each group.

Although substructuring involves the solution of a larger number of

sets of equations, the sets are smaller, and because of this fact and also

the economies mentioned in b), the actual time for solution of a problem

could be reduced. In such a case, substructuring would have an additional

advantage over the analysis of structures as single entities, even where

this is possible.

Using these ideas it is possible to work towards a firm proposal

for a new or upgraded minicomputer system. This would be able to carry

out draughting operations and really useful sized stress analyses. As

an extra bonus a COBOL compiler has just been announced by DEC which will

allow commercial administrative tasks to be run on the same system.

It is not possible to justify further expenditure if only one person

has access to the system at a time. A time sharing system, either RSX 11D

or RSX 1114, must be used. The RSX 11D operating system requires 20K words

of memory, plus an additional kiloword for each extra peripheral. Postulating

that a four terminal system would keep one processor constantly busy, and

allowing a 10K core segment for each terminal, 64K words of memory would

be the memory required. The COBOL compiler which requires at least 48K to

run effectively would be run with the system dedicated to it.

For the stress analysis programs the more core available the faster

solutions can be obtained, and again dedicated running would be preferable

for large jobs but not essential for development. Using the substructuring

technique a maximum of six blocks of matrix need be in core at once. With

64k words a matrix block size of L8 could be sustained. Moving from a block

size of 8 to 18 produced an increase in speed of 2.5 times. Moving from a

block size of 18 to !8 is expected to result in a similar gain.

163

A hypothetical structure which is idealised using 1000 nodes and

which can be divided into 10 substructures of 5 different types would

require the invertion of 6 different sets of 600 equations. The expected

solution time would be 72 minutes for all sets using the present disk units.

The temporary backing storage required can be calculated as being

approximately 3.6 megawords. At least a further 1 megaword would be needed

for program and other data storage. The minimum requirement is therefore

4.6 megawords.

To make best use of the draughting facility a library of standard

items would be created. In time this would expand to several megawords but

could be sectioned and archived on magnetic tape.

For design and analysis applications a data base containing information

on properties of materials, tables of design parameters, data on previous

jobs completed and data on the programs available for use would be built.

The main part of this would need to be on disk for interrogation.

There are two disk systems that can be considered, each consists of

a controller capable of handling up to eight transports. The smaller

of these offers 5 megawords/transport, the larger 20 megawords/transport.

The cost of the controller and the first disk transport for the smaller system

is approximately £6000 and for the larger. £8000. Subsequent transports

would cost about £3000 and £4000 respectively. For a commercial

environment the larger system is deemed necessary but for a university

the smaller system would be satisfactory for at least two years.

The composition of the four terminals depends on the work load and the

type of work. A digitising table is the best device for extracting data

from existing drawings, and one digitiser is essential. Editing of data

can be performed more easily by using a data pad/storage screen combination

or a refresh tube and light pen.

If a large amount of program development is likely then two of the

terminals would only have to be Visual Display Units with keyboards.

1614

If the smaller disk system was chosen with two transports, the cost of

upgrading the Imperial College system to the outlined specification

would be about £20,000. The cost per terminal would then be £15,000.

Assuming depreciation over a four year period the cost per year for

each terminal is similar to the cost of employing a single member of staff.

There can be little doubt that once•the software for these systems has

been fully developed they will create large savings in the time required to

design and schedule projects and large savings in the overall design cost.

165

References

1. 'A practical guide to minicomputer applications', edited by F. F. Coury

IEEE Press, New York, 1972.

2. 'CAMAC - a modern instrumentation system for data handling', Euratom,

1964, EURL100E.

3. 'DOS Monitor Handbook'

14. Knuth, D., 'The art of computer programming', Vol. 1.,'FUndamental

algorithms', Addison-Wesley.

5. Olds, IL, !Interactive modification of aircraft wiring diagrams',

Presented at Conference on 'Data structures', Little Hall, Cambridge,

4-5th Sept., 1973.

6. Zienciewicz, 0.. C., 'The finite element method in Engineering science',

McGraw Hill, 1971.

Przemieniecki, J. S., 'Theory of matrix structural analysis',

McGraw Hill, 1968.

8. Timoshenko S. P., & Goodier, J. N., 'Theory of elasticity',

McGraw Hill, 1970.

9. Cantin, G., 'An equation solver of very large capacity', Int. J. for

Num. Meth. in Enang., Vol. 3, 379-388, 1971.

10. Grindley, R. E., 'The development and application of a low cost

computer aided design system in Mechanical engineering', Ph.D. thesis

University of London, 1973.

11.. Wilkinson, J. H., 'Rounding errors in algebraic processes',

National Physical Lab., HMSO, 1963.

166

12. Albasiny, E. L., 'Error in digital solution of linear problems',

paper in 'Error in digital computation', Vol. 1., Wiley, 1965.

13. Livesley, R. K., 'Matrix methods of structural analysis', Pergammon

Press, 1964.

Besant, C. B., et al, 'The use of CADMAC systems in general draughting',

Presented at Conference on 'Computer aided draughting systems',

St. John's College, Cambridge, 2-4th April 1973.

15. McClintock, P. M., et al, 'STASIS - STructural Analysis SYStem an

application in CAD', Presented at Conference on Computers in

Engineering and Building design (CAD 74), Imperial College, London,

25-27th Sept. 1974.

167

Appendix A-1

GOADS use of Common areas

COMMON/BUFFER/

IB(0)

xB(40)
	

Buffer for workspace data

YB(40)

COMMON/FILHND/

IONDIR 	Used to indicate which filing operation is to be

executed:

1 Workspace to file 	2 File to workspace

3 Display file 	4 Use file as macro

NR1 	Points to the next disk record of the workspace

NR2INR3,NR4 	Used as record pointers for other random access files

IDP 	Points to the next I,X,Y triplet in the workspace

buffer to be processed.

IPEN, 	Indicates line broken (1) or unbroken 2).

XT,YT
	

Trailing origin

XTRlYTR
	

Current position of the digitising pencil.

COMMON/GENRI/

GEN(10) 	Reserved for application program parameters

d) COMMON/MACRO/

MAC(9) 	Macro processor status flags

XFLAG(4),YFLAG(4) Flag to display condition of the macro status flags.

COST,SINT 	Angle of rotation to be applied to macros.

COMMON/MENU/

MNUM 	Last menu square number used

168

WIPE 	Indicates which menu section

NC

NCORD

NOON

1 Commands 	2 Levels

3 Files 	4 Symbols

Indicates control mode

1 	Control 15° 	2 Control 90°

3 No control

1 Coordinates displayed indicate position from

trailing origin.

0 Coordinates displayed indicate distance from

absolute origin.

Indicates which control mode was selected from the

menu: 1 	Control 15° 	2 Control 90°

f) COMMON/MESSAGE/

ANSI . 	Alphanumeric text display size

LEVEL 	Current input level

MESS(515) 	Five messages to be displayed by the background loop

used by the system

MESS(5,5) 	Five messages to be used by the application programs

g). COMMON/PARAW

'FIFX,FIFY 	Absolute origin of x,y coordinates

CANG,SANG 	Cosine and sin of input skew angle

FISCL 	Input scale

GR 	Grid factor

XWNDWYWNDO 	Window origin

OPSCL 	Output scale

169

h) COMMON/PLOTER/

IPLPAR(L) 	Plotting control parameters for speedlacceleration

and accuracy

ICPEN(5) 	Information on pen unit status

ICLINE(5) 	Data on line type

i) COMEDN/SUBOV/

ISUB 	Points to overlay segment

j) COMMON/SYMBOL/

ISFLAG 	0 Line mode

1 Symbol mode, new symbol not allowed

2 Symbol mode, new symbol may be selected

NSYM 	Symbol mode number

JOKE 	Symbol point counter

Position of pencil

XSYM.(15),Y5yM(15) Storage for symbol points.

COMMON/USER/

BUFT(128),BUT2(128) Buffer space for use by application programs.

170

Appendix A-2

GCADS OVERLAYS

OVERLAY 1 	SETUPO

FUNCTION: 	Sets up table originIdata input origin, and skew control.

Called either by menu command or on first entry to the system.

Exits to digitising and control mode or to SETUP2 3.

OVERLAYS CALLED

SETUP2 	3

SUBROUTINES CALLED

Camac:. 	Curcon 	Erscn

Filsrt 	Getint 	Ovlink

Ovretn 	Plmsg 	'.Plots

PmsgO 	Setflg 	StorcL:

OVERLAY 2 SETSYM

	

FUNCTION: 	Sits up messages for symbols - to be displayed in background m

mode. Called by a symbol overlay exits to a symbol overlay.

OVERLAYS CALLED

None

SUBROUTINES CALLED

	

Ovretn 	Setmes

171

OVERLAY 3 	SETUP2

FUNCTION: 	Sets input and output scales, and grid factor. Called from

SETUPO 1 or from MenU:,coMmand, exits to digitising and control

mode.

OVERLAYS CALLED

None

SUBROUTINES CALLED

Ovlink 	Ovretn

OVERLAY 4 	DIGOV

FUNCTION: 	Digitising and control mode. ControlS data input and

services all menu commands. The centre of the system.

Initially entered from SETUP2 3. It regains control by

default.

OVERLAYS CALLED

All overlays called by menu command.

SUBROUTINES CALLED

Backgd 	Camac 	Clrlev

Erscn 	Levset 	Menmap

Mensel 	Ovretn 	Ovlink

Plotsc 	Setlev 	Stack

Stord 	Symap 	Symgo

172

OVERLAY 5 	ERROV

FUNCTION: 	Issues error messages on the DECwriter. Called by many

overlays. Normally exits to digitising and control mode.

OVERLAYS CALLED

None

SUBROUTINES CALLED

Ovretn

OVERLAY 6 	DISALL

FUNCTION: 	Displays the workspace and other work files in the same

format. Calls the symbol display segments. Called by

menu command or. by other overlays.

OVERLAYS CALLED

Any symbol overlay.

SUBROUTINES CALLED

Camac 	 Cvt 	 Dbeam
*

*
Dcol

*
Discrs 	Dissym

Delab
*

Dwall
*

Erscn

Levtst 	Plmsg 	PMsg0

Ovretn 	Plotsc 	Raread

Rwrit 	Rest= 	Screen

Stack 	Stor7 	Storcm

173

OVERLAY 7 OVFIL

FUNCTION: 	Writes or reads contents of a workfile to or from the

semi-permanent files (CADMAC.NS1). Also displays files

in abbreviated form. i.e. only lines displayed no symbols.

Called by menu command. Exits to digitising and control

mode.

OVERLAYS CALLED

MACRO2 16

SUBROUTINES CAME')

Camac 	Closms 	Deltms

Levtst 	Openms 	Ovlink

Ovretn 	Plmsg 	Plot

Pmsg0 	Reread 	Rawrit

Stack 	Stord 	Readms

Screen 	Writms

OVERLAY 8 	GRWNDO

FUNCTION: 	Sets window parameters. Called by menu command.

OVERLAYS CALLED

None

SUBROUTINES CALLED

Curcon 	Getint 	Plmsg

Pmsgo 	Ovretn

OVERIAU 9 	EDITOV

FUNCTION: 	Line editor. Galled by menu command. Exits to DISALL.

OVERLAYS CALLED

DISALL 6

SUBROUTINES CALLED

Camac 	Curccn 	Getint

Ovlink 	Plmsg 	Plotw1

Pmsg0 	Raread 	Rawrit

Screen 	Sdist 	Windrw

OVERLAY 10 	PEROP

FUNCTION: 	Peripheral input/output. Allows data to be transferred to

and frem the workspace from and to any device. Called by

menu command. Exits to digitising and control mode.

OVERLAYS CALLED •

None

SUBROUTINES CALLED

Asgn 	Erscn 	Getint

Ovretn 	Plmsg 	PmsgO

Raread 	Rawrit 	Stack

Stord

175

OVERLAY 11 	FINDOV

FUNCTION: 	Finds a point in the workspace. Called from DIGOV or from

a symbol overlay. Returns to calling overlay.

OVERLAYS CALLED

None

SUBROUTINES CALLED

Camac 	Findy 	Ovretn

Plotsc 	Stack 	Stord

SymgO

OVERLAY 12 	DEBUG

FUNCTION: 	Writes out contents of random access files in a choice

of formats. Used for debugging. Called by menu command.

OVERLAYS CALLED

None

SUBROUTINES CALLED

Raread 	Ovretn

176

OVERLAY 13 	BACKOV

FUNCTION: 	Overlay to return data points to application overlays. Also

used by the Macro processor MACRO3 and the macro editor

MACRO4

OVERLAYS CALLED

GRWNDO 8

SUBROUTINES CALLED

Backgd 	Find 	Ovretn

Stack 	Storcm 	Restmn

OVERLAY 15 	MOVPT

	

FUNCTION: 	Point editor. Allows points in the workspace to be moved.

Called by menu command. Exits to DISALL.

OVERLAPS CALLED

	

DSSAT.T. 	6

SUBROUTINES CALLED

	

Backgd 	Curcon 	Find

	

Getint 	Ovlink 	Plmsg

	

Plotwl 	Pmsg0 	Raread

	

Rawrit 	Stack

177

OVERLAY 16 MACRO2

FUNCTION: 	First of two macro processing overlays. Reads data from

specified mass storage to workfile CADMAC.RA2 rejecting

data on passive levels. Also gets scale from user if

appropriate macro status flag is set. Called by menu command.

Exits to MACRO3 17.

OVERLAYS CALLED

DISALL 6

MACRO3 17

SUBROUTINES CALLED

Levtst 	Openms 	Ovretn

Plmsg 	Pmsg0 	Rawrit

Read= 	Stack 	Storcm

OVERLAY 17 	MACRO3

FUNCTION: 	Rotates, scales and translates the data stored in workfile

2 by MACR02. Allows the user to place the macro in the

workspace. 	Called by menu command and by pencil button 3.

1111-its to digitising and control mode.

OVERLAYS CALLED

BACKOV 13

DISALL 6

SUBROUTINES CALLED

E:rscn 	Getint 	Ovretn

Plmsg 	PmsgO 	Reread

Rawrit 	Rastcm 	Stack

178

OVERLAY 18 	CONDIG

FUNCTION: 	Allows the user to digitise a series of points merely by

moving the pencil. Points either entered at time intervals

or according to the distance moved. Called by menu command.

Exits to digitising and control mode.

OVERLAYS CALLED

None

SUBROUTINES CALLED

Curcon 	Getint 	Ovretn

Plmsg 	PmsgO 	Iback

OVERLAY 19 PAPFIT

FUNCTION: 	Fits data in workspace to particular paper size for plotting.

OVERLAYS CALLED

DISALL 6

SUBROUTINES CALLED

Ersen 	Levtst 	Ovretn

Raread 	Rawrit 	Stack

179

OVERLAY 20 	MACRO

FUNCTION: 	Sets macro processor status flags. Called by several

menu commands. Exits to digitising and control mode.

OVERLAYS CALLED

None

SUBROUTINES CALLED

Erscn 	Camac

Ovretn 	Plmsg

Plotwl 	Setfig

Getint

Pinsg0

OVERLAY 21 	SYM002

FUNCTION: 	Hand]es the following symbols: ArcslcirclesIfillets

rectangles.

OVERLAYS CALLED

DIGOV 4

SUBROUTINES CALLED

Boxsym 	Circle 	Disarc

Midarc 	Ovretn 	Plotsc

Stack 	Setmes 	Stord

180

OVERLAY 22 	SYM003

FUNCTION: 	Dimensioning Symbol.

OVERLAYS CALLED

DIGOV 14.

SUBROUTINES CALLED

Boxbyla
	D'imen
	

Ovretn

Stack
	

Setmes
	

Stord

OVERLAY 23 	SYM004

	

FUNCTION: 	Text or alphanumeric symbol overlay.

OVERLAYS CALLED

DIGOV LR

SUBROUTINES CALLED

	

Boxsym 	Ovretn 	Stack

	

Setmes 	Symbl 	Stord

Tstext

181

OVERLAY 2L. 	TIDYOV

FUNCTION: 	Sorts garbage out when data is transferred from

workspace to semi permanent mass storage file. Called

from OVkIL.

OVLIALAYS CAT.T.F.D

None

SUBROUTINES CALLED

Ovretn 	Raread 	Rawrit

Stord.

OVERLAY a___MACRO4

FUNCTION: 	Macro and symbol editor. Operator can rotate, translate

and delete nests of macros or symbols. Called by

menu command.

OVERLAYS CALLED

BACKOV 13

MACRO 20

All symbol overlays

GRWNDO 8

SUBROUTINES CALLED

Curcon 	Disbox 	Disbyia

Getint 	Finds 	Ovretn

Plmsg 	Pmsg0 	Raread

Rawrit 	Re stem 	Stack

Storcm

182

•

Appendix A-3

FORTRAN subroutines in the GOADS library

Subroutines
Length Name called Function

1463 BACKGD CAMAC Main background loop.
CAMRTB
CORDIS
DISPCS
DSKEW
GRID
GETINT
PLMSG
PMSGO
SCREEN
TFLOOR
TLEV
MENAN

1072 BOXSYM STORD Calculates bounding rectangles for symbols
and stores them.

634 CIRCLE PLOTSC Draws arcs and circles.

316 CDISP CAMAC
DLOT

Displays coordinates on the coordinate
display unit.

MASK

489 CORDIS CDISP Displays coordinates on screen.
PLACE
PMSGO

233 CAERTB CAMAC Read the table coordinates.
DROT

1L42 CRPLOT PLOTSC Generates the vectors that make up characters.
Sends them to the display.

195 CURCON CAMFTB Displays the cursor on the screen.
CORDIS
DISPCS
DSKEW
SCREEN

183

Subroutines
Length Name 	called
	

Function

219 	CLOSMS IREAD
	

Closes mass storage file.
REREAD
RAWRIT
WORTRAN

59 DSKEW Deskews x,y coordinates.

943 DIMEN NUMBER
PLOTSC

Automatically dimensions between two points.

175 DISBOX CAMAC
PLOTW1
SCREEN

Displays box round macro on the screen.

168 DISPCS CURSND
DSPNST
DSPSTR

Displays a cross hair on the screen.

338 DISARC CIRCLE Displays arcs.

95 DELTfr BITCLR
IREAD
IWRIT

Deletes a mass storage file.

57 	ERSCN 	Erases the screen.

129 	FIISRT INITF 	Reads and inits random access files
SETFIL 	on the disk unit, which are to be used by GCADS.

506
	

FIND 	LEVTST
	Finds a point in the workspace.

REREAD
	

Called from MOVTP,
RAWRIT

- PLESG
PMSGO

184

Subroutines
Length Name 	called
	

Function

727 	FINDS CURCON 	Finds a point in the workspace and

	

DISPCS 	returns its position within the workspace.

	

LEVTST 	Called by MACROFOR.
PLMSG
PMSGO
RAREAD
SCREEN

as
565 FINDY FIND As FIND but checks bounding rectangles.

Called from FIRDOV.

89 FLENTH FUnction to calculate the length of a line.

164 GRID Rounds coordinates to a multiple of
the grid factor.

164 GETINT CAMAC
CVT
MASK

Looks for pencil button interrupt.

529 L00 MS CLOSMS
RAREAD
RANRIT
SUBMS

Searches mass storage file for free space.

463 NAMES CURCON
GETINT
PLMSG
PMSGO

Displays messages for macro editor.

203 NENAN
	

Determines menu-section and menu square
number of a point.

185

Subroutines
Length Name 	Called Function

301 MIDARC 	- Calculates spare point in an arc.

477 NUMBER 	SYML Displays number on the screen.

320 OPENMS 	RAREAD
SUBMS

Opens a mass storage file.

46 PLOTSC 	PLOT
SCREEN

To call plot and screen.

46 PLOTWS 	PLOTW1
- SCREEN

As PLOTSC but screen only PLOT.

164 PLOTS 	CAMAC
PLOTW1

Initialises display system.

1073 PLOTW1 	CAMAC
CAMRTB
PLOTD
WINDRW

Plots on the screen.

•■••■•••••••••■•••.

165 REARMS 	PLMEG
PMSGO
RAREAD
SUBMS

Reads data from mass storage file.

87 	SETFIG - 	Sets up flag to indicate macro processor status.

131 	SYMBL CHAR 	Displays symbols on the screen, or for
plotting.

101 	SDIST 	Calculates distance from midpoint of line to
another point.

Length Name
Subroutines
called Function

183 SELECT GETINT
FIND
CURCON
PLMSG
PNSGO

Enables selection of start and end points
in macros. 	Called from MACR03.

227 SETA'S Sets symbols messages.

264 STORD RAWRIT Stores IlX,Y triplet in workspace.
Calculates bounding rectangles.

65 SCREEN - Converts coordinates to screen size.

249 STOR7 PACK
RAWRIT

Stores data in format for kingmatic plot
in random access file 7.

1130 SPLINE Calculates coefficients of cubic spline
for curve fitting.

320 WRITMS LOOKNS
RAWRIT
SUBMS

Writes to mass storage file.

439 WINDWB Scissoring routine.

WINDOW As above but for plotter.

251 XBACK CAMAC
CURCON
GETINT
PLOTSC
STORD

Background loop for continuous digitising.

187

Iength*Name

Assembly Language Subroutines in the GCADS Library

Subroutines
Called 	FUnction

14 ASGN Requests that device be assigned
as logical device 3.

226 CAMAC CAMAC interface handler.

734 CHAR Defines and generates characters.

212 CURSND Displays cursor.

GVT Vit conversion routine for GETINT.

14 DEPACK Opposite of PACK.

243 DISSIM Stacks display overlay segment, for symbols.

20 DROT Bit conversion routine for CORDIS.

20 DLOT Bit conversion routine for CAMRTB.

112 DSPMDE Entry points DSPNST and DSPSTR to set screen
into non-store and store mode.

Length in Octal bytes.

188

Length Name
Subroutines
called FUnction

226 LEVEL LEVCLR
LEVSET
LEVTST
SETLEV
CLRLEV

Handles level operations.

12 MASK Routine to do a logical mask.

164 MENMAP - AlloWs menu commands squares to be
re-located.

200 MENSEL - Selects overlays after menu command.

1536 INLAY OVLINK
OVINIT
OVRETN
STACK
CIRSTK

Overlay handler.

14 PACK Packs second integer into second word
of first integer.

166 PLACE PLNSG Actually displays coordinates on screen.

152 HMG READY Plots messages on the screen.

1514 PMSGO READY Sets position and size at which messages to
be plotted on screen.

774 PLOTD Subroutine to drive flat bed plotter.

7014 RACSES RASET
RALOOK
RAREAD
RAWRIT

High speed randoM access file handler.

189

Length Name
Subroutines
called FUnction

1110 READFR Free format input routine.

120 RLOOK Looks up length of mass storage file.

104 STRCON RESTCM
RAREAD
RAWRIT

Stores and re-stores common user
area to random access file zero.

316 SUBMS BITTEST
BITCLR
BITSET 	•
IREAD
WORTRN
ZERO

Subroutines for mass storage handler.

26 SYMAP Symbol mapping routine.

261 SYMO CIRSTK
STACK
OVRETN

Directs control to symbol segments.

136 TANGLE

56 TLEV Converts integer number to ASCII.

76 TSTEXT Sorts text strings.

190

Appendix B - 1

STASYS use of Common areas

a) COMMN/GENRL/

DU' (6) 	Not used

IFLN 	Floor number

IBASE 	Number of nodal points up to current floor

MEM 	Number of current element

b) COMNON/MESAGE/

DUMMY (32) 	Used for GCADS messages

NM 	Number of blocks per row of stiffness matrix

NN 	Number of blocks per column of stiffness matrix

NTRKC 	Number of column vectors per row of stiffness matrix

NS 	Size of matrix blocks

NDF 	Number of degrees of freedom at each node

IELT 	Current element type

WPN 	Self weight at each node of the current element

LDC 	Number of load cases in solution

LDNUM 	Current load case number

HT 	Next floor level minus current floor level

XOFF

'OFF 	Three dimensional centre of view

ZOFF

XO

YO

OVER

UP

R

PP

NP

Origin of picture plane

Three dimensional viewpoint in polar coordinates

Distance of picture plane from viewpoint

Type of projection plane 1 Flat 	2 Spherical

191

Appendix B-2
STASYS OVERLAYS

ag16131. 	GRIDIN

FUNCTION: Grid points or grid arrays are entered in the workspace

and displayed on the screen. Called from menu command.

OVERLAYS CALLED

BACKOV 	13

SUBROUTINES CALLED

BUTNUT 	Discrs 	Getint

Ovretn 	Plmsg 	Pmsg0

Pltcrs 	Screen 	Stack

Stord

OVERLAY 32. 	CBSIN

FUNCTION: Beam, column, slab and wall elements are entered in the

workspace. Space is left for dimensions and material number.

Called from menu command. Exits to digitising and control mode.

OVERLAYS CALLED

BACKOV 	13

DISALL 	6

SUBROUTINES CALLED

Dissym 	Getint 	Ovretn

Plhdg 	Pmsg0 	Restom

Stack 	Storcm 	Stord

192

OVERLAY 33. 	CBSIZ

FUNCTION: Dimensions are entered into element data beads that are in

the workspace. The elements are displayed with their new

dimensions. Called from menu command. Exits to digitising

and control mode.

OVERLAYS CALLED

GRWNDO 	8

SUBROUTINES CALLED

Advanc 	Butnut 	Gurcon

Dbeam 	Dcol 	Dslab

Dwell 	Findsy 	Getint

Ovretn 	Plmsg 	Pmsg0

Raread 	Rawrit 	Restcm

Stack 	Star cm

OVERLAY 34. 	MATIN

FUNCTION: 	A material number is entered into the element data beads

that are in the workspace. New sets of material properties

may be written to records 20 & 21 of CADHt.C.RAO/. Sets are

listed.

OVERLAYS CALLED

SUBROUTINES CALLED

Advanc 	Butnut 	Curcon

Dissym 	Findsy 	Getint

Ovretn 	Plmsg 	Pmsg0

Raread 	Rawrit 	Rest=

Stack 	Storcm

193

OVERLAY 35. 	LODIN

FUNCTION: Load symbols entered into the workspace and displayed on the

screen. Called from menu command. Exits to digitising and

control mode.

OVERLAYS CALLED

BACKOV 13

. LODSYM 	45

SUBROUTINES CALLED

Butnut 	Dissym 	Ovretn

Plmsg 	Pmse 	Recsrt

Restcm 	Getint 	Stack

Storcm 	Stord

OVERLAY 36 	BCIN

FUNCTION: Boundary condition symbols are entered into the workspace

and displayed on the screen. Called from menu command.

Exits to digitising and control mode.

OVERLAYS CALLED

BACKOV 13

BCSYM 	lib

SUBROUTINES CALLED

Dissym 	Getint 	Ovretn

Plmsg 	Pmsg0 	Stack

Stord

1914

OVERLAY 37. 	FDREC

FUNCTION: Handles all entries and/or deletions to floor directory.

Called from menu command. Exits to digitising and control

mode.

OVERLAYS CALLED

None

SUBROUTINES CALLED

Butnut 	Erscn 	Getint

Ovretn 	Plmsg 	Pmsg0

Raread 	Rawrit 	Tfloor

Tnum

OVERLAY 38. 	LODEX

FUNCTION: Analyses load symbols in workspace and creates a load

file for tie floor. Called by menu command. Exits to

FILOV9 overlay 50.

OVERLAYS CALLED

FILOV9 	50

SUBROUTINES CALLED

Addlod 	Isita 	Isitl

Ievscu 	Levtst 	Ovretn

Raread 	Rawrit 	Stack

195

OVERLAY 44. 	SORTOV

FUNCTION: 	Sorts a file of x,y points into order according to

priority set by user. Called by NODEX.

NO OVERLAYS CALLED

SUBROUTINES CALLED

Ovretn 	Raread 	Rawrit

Tswap

OVERLAY L. 	LODSYM

FUNCTION: 	Displays load symbols. Called from DISALL via Dissym when

displaying workspace also from LODIN at time of entry.

NO OVERLAYS CALTRO

SUBROUTINES GALLED

Number
	

Ovretn

196

OVERLAY 16. 	BCSYM

FUNCTION: Displays boundary condition symbols in workspace. Called

from DISALL via Dissym when displaying workspace and from

BCIN at time of entry.

NO OVERLAYS CALLED

SUBROUTINES CALLED

Symbl 	Ovretn

OVERLAY 118. 	PNSHOW

FUNCTION: 	Puts point numbers as text symbols into workspace.

Called froM NODEX.

NO OVERLAYS CALLED

SUBROUTINES CALLED

Ovretn 	Raread 	Storno

197

OVERLAY 119. 	FILOV5

FUNCTION: 	Files to and from Random Access Files to

Mass Storage File CADMAC.RA5 (Boundary

condition file.

NO OVERLAYS CALLED

SUBROUTINES CALLED

Camac 	Closms 	Deltms

Openms 	Ovretn 	Ovlink

Plmsg 	Pmse 	Raread

Rawrit 	Readms 	Stack

Stord 	Writms

OVERLAY 50. 	FILOV9

FUNCTION: 	Files to and from Random Access Files to Mass

Storage File CADMAC.RA9 (Load file).

NO'OVERLAIS CALLED

SUBROUTINES CAELFD

Canac 	Closms 	Deltms

Openms 	Ovretn 	 Ovlink

Plmsg 	Pmsg0 	Raread

Rawrit 	Readms 	Stack

Stord 	Writms

198

OVERLAY 51. 	NODEX

FUNCTION: Extracts nodal points from workspace and puts them into

CADMAC.1A4. Duplicate points are eliminated. Called from

menu command. Exits through SORTOV, PNSHOW and DISALL to

digitising and control mode.

OVERLAYS CALLED

SORTOV 44

PNSHOW 48

DISALL 	6

SUBROUTINES CALLED

Ievtst 	Ovretn 	Plmsg

Prase 	Raread 	Rawrit

Stack

OVERLAY 52 	BCEX

FUNCTION: Extracts boundary conditions from workspace. Boundary

conditions at the same point are added together in such a

way that they can be decoded later. The extract is filed

in CADMAC.RA4 and then into CADMAC.RAS (Boundary condition

File). Called from menu command.

OVERLAYS CALLED

FIIDV5

SUBROUTINES CALLED

Levtst 	Ovretn 	Raread

Rawrit

199

OVERLAY 53. 	CRMS

FUNCTION: Initialises mass storage file defined by user, currently

CADMAC.MS1, .RA3, .RA5 and .RA7. Called from menu command.

NO OVERLAYS CALLED

SUBROUTINES CALLED

Bitset 	 Iwrit 	 Ralook

Raset 	 Rawrit 	Wortrn

Zero

OVERLAY 54. 	Fr LOS

FUNCTION: Files to and from Random Access File to

Mass Storage File CADMAC.RA3 (Nodal coordinate file).

NO OVERLAYS CALLED

SUBROUTINES CALLED

Camac 	Closms 	Deltms

Openms 	Ovretn 	Ovlink

Plmsg 	Pmsg0 	Rare ad

Rawrit 	Readms 	Stack

Stord 	Writms

200

OVERLAY. 	ELFRNT

FUNCTION: Lists elements from FLOOR FILES (CADMAC./51) to device 3.

Called from menu command.

OVERLAYS CALLED

FILOV3 54

SUBROUTINES CALLED

Levtst 	Ovretn 	Raread

Rawrit 	Stack

OVERLAY 56 	NDPRNT

FUNCTION: Out puts nodal points from Nodal Coordinate File (CADMAC.RA3)

to device three. Called from menu command.

OVERLAYS CALLED

FILOV3 54

SUBROUTINES CALLED

Ovretn 	Raread 	Rawrit

Stack

201

OVERLAY 61. 	P3DAT

FUNCTION: 	Prepares three dimensional data for view of

structural frame before and after displacements.

Working only from nodal points to maintain clarity.

OVERLAYS CALLED

FILOV3 	54
SUBROUTINES CALLED

Butnut 	Finlin 	 Getint

Ovretn 	Plmsg 	Pmsg0

Raread 	Rawrit 	Restcm

Stack

OVERLAY 62. 	DSTR1

FUNCTION: 	Allows user to select element in workspace for

which stresses will be calculated and printed by DSTR2.

Called by menu command. Exits to digitising and control mode.

OVERLAYS CALLED

FILOV3 54
DSTR2 	66

SUBROUTINES CALLED

Advanc 	Curcon 	 Disbym

Findsy 	 Getint 	Ovretn

Plmsg 	Pmsa 	Raread

Rawrit 	Restcm

202

OVERLAY 63. 	DISP3

FUNCTION: 	Displays three dimensional data set up by P3DAT 61. Called

by menu command. Exits to digitising and control mode.

OVERLAYS CALLED

DISALL 6

SUBROUTINES CALLED

Butnut 	Getint 	Getp

Ovretn 	Plmsg 	P1nsg0

Raread 	Stack 	Stord

OVERLAY 6)1. 	ENTPAR

FUNCTION: 	Allows the operator_ to reset the solution parameters.

Useful after a system failure. Called by menu command.

Exits to digitising and control mode.

OWIRLAYS CALERD

None

SUBROUTINES CALLED

Butnut 	Zero

203

OVERLAY 65. 	LISTND

FUNCTION: 	Lists nodal deflections. Called by menu command.

Exits to digitising and control mode.

OVrliLAIS CALLED

None

SUBROUTINES CALLED

Butnut 	Ndisp

OVERLAY 66 	DSTR2

TUNCTION: 	Calculates stresses in elements from

global displacements. Clled by DSTR1.

Exits to DSTR1.

OVERLAYS CALLED

None

SUBROUTINES CALLED

Bstres 	Lstres 	Ndisp

Nodik 	Pstres 	Stack

204

OVERLAY 81. 	SOLCON.

FUNCTION: 	Controls assembly of stiffness matrices. Reads through

each floor with graphic data for elements. Calls STELM 82

to form elements stiffness matrices and DUSEMB 83 to

assemble them. Called by menu command. Exits to LDSEMB 86.

OVERLAYS CALLED

FILOV3 54

FILOV5 149

OVFIL 7

STELM 82

LDSEM 86

SUBROUTINES CATTAD

Levtst 	Ovretn 	Ralook

Raread 	Rawrit 	Restcm

OVERLAY 82. 	STELM

FUNCTIONS: 	Forms element stiffness matrices in terms of local

coordinates and transforms them to global coordinates.

Exits to DUSEMB 83.

OVERLAYS CALLED

DUSEMB 83

SUBROUTINES CALLED

Bark 	Ovretn 	Plak

Raread 	Rawrit 	Stack

Swap

205

OVERLAY 83. 	DUSEND

FUNCTION: 	Puts boundary conditions into element stiffness matrices.

Assembles element stiffness matrices to form global stiffness

matrix. Also assembles loads due to self weight called by

STELM 82. Exits to SOLCON 81.

OVERLAYS CALLED

SOLCON 	81

SUBROUTINES CALLED

Belk 	 Inrec 	Nodlk

Ovretn 	Raread 	Rodisk

Wrdisk

OVERLAY 86. 	LDSEMB

iUNCTION: 	Assembles load vectors. Called by SOLCON 81 or by menu

command. Exits to digitising and control mode.

OVERLAYS GALLED

FILOV3 54

FILOV9 50

SUBROUTINES CALLED

Asload 	Getint

Plmsg 	Pmsg0

Rawrit 	Restcm

Ovretn

Raread

206

OVERLAY 87. 	SOLVE

FUNCTION:
	

Solves for displacements. Uses a Gaussian elimination

method of solution operating on blocks of the matrix.

Called by menu command. Exits to digitising and control mode.

OVERLAYS CALLED

None

SUBROUTINES CALLED

Exdisk
	

Malt
	

Ovretn

Syminv
	

Rddisk
	

Wrdis k

OVERLAY 88. 	 ZERLD

FUNCTION: 	Zeros LOAD VECTORS where boundary conditions demand it.

Called by menu command. 'Exits to digitising and control

mode.

OVERLAYS CALTRD

FILOV3 	54

1.aLov5 	49

SUBROUTINES CALLED

Gnum 	Ovretn 	Reread

Restcm 	Stack

207

Appendix B-3

STASYS SUBROUTINES

Length Name
subroutines
Called Function

187 ADDP RAWRIT Adds XYZ, XYZ coordinates to file CADMAC.R1'

506 ADDLOD RAREAD
RAWRIT

Adds loads to CADMAC.RA).

ADVANC RAREAD
RAWRIT

Advances through workspace.

511 ASLOAD
INREC
WRDISK
RDDISK
RAREAD

Assembles loads into global load vectors.

873 BARK ERMES Forms line element stiffness matrix.

337 BCLK RAREAD Finds boundary conditions for given node.

1289 BSTRES - Calculates stresses due to bending in plate
elements.

BUTNUT Allows entry of numbers by pencil buttons.

457 CADDP
ADDP
RDDISK
INREC

Looks up displacements of nodal points
and calculates their new positions.

229 DBEAM Displays beam element.

183 DCOL PLTREC Displays column element.

208

Length Name
Subroutines
Called Function

346 DSLAB PLTREC Displays slab element.

226 DWALL PLTREC Displays wall element.

ERNES - Writes an error message to DECwriter.

EXDISK see WRDISK see WRDISK

734 FINDSY
RAREAD
PLMSG
PMS00

Finds a symbol in the workspace.

739 FINLIN ADDP
CADDP
RAREAD

Finds nearest nodes along positive coordinate
axes to given node.

GETP RAREAD Gets XYZ coordinate triplets from CADMiC.R11.

460 GNUM
RAREAD
WRDISK
RDDISK
INREC

Given boundary conditions' coordinates, it
determines the node number and zeros appropriat
load vectors.

INREC - Function to calculate position of item
within a group which is filed in blocks.

698 ISITA ADDLOD Checks to see if slab is within area load.

564 ISITL ADDLOD Checks to see if beam is within line load.

LEVS
PLMSG
PMSGO Asks user if he set the correct levels.

209

Length Name
Subroutines
Called 	FUnction

LSTRESS Calculates stresses in line elements from
local displacements.

PIULT

Multiplies square matrices.

PLTCRS*

Displays a cross.

RDDISK

see WRDISK

NDISP
WRDISK
RDDISK 	Gets global displacements for a given node.
INREC

468 NODLK RAREAD Given element coordinates, it looks up
nodal numbers.

PLTREC PLOTW1 Displays a rectangle.

729 PSTRES Calculates stresses in plate elements
due to in-plane displacements.

SWAP
PLAK ERNES

RECSRT SWAP
To sort four corners of rectangle into
anticlockwise order starting from bottom left
corner. Checks that points make a reasonable
rectangle.

871 	1R:WRW Called by RDDISK/WRDISK to set up calls to
RAREAD and RANRIT, to transfer blocks of
matrix and load vectors.

RAREAD
RAWRIT
INREC

*Indicates Assembly Language.

210

Length 	Name
Subroutines
Called Function

197 STORNO STORE) Stores numbers as text symbols in workspace.

SWAP - Swaps a pair of real variables.

902 	SYNINV - Performs symmetrical invertion of blocks of
matrix.

TFLOOR* - Converts integer number to ASCIL. 	Sets messal
FLOOR - nnn, where nnn is number.

TNU}1* Converts integer number to ASCIL representatiq
Truncates two leading zeros. 	Leaves three
digits.

TSWAP Swaps pairs of I,X Y triplets if necessary.

34 NRDISK* RWRW Reads and writes blocks of matrix to and
from disk.

!ZERO ” Zeros an array of real variables.

e

211

Appendix C

Use of random access files by STASIS and GCADS

CADMAC.RAO Used by GCADS up to record 10

Records 20 & 21 - metterial:propertysett STASIS)

Records 22 & 23 - floor directory (STASIS)

Record 25 	solution parameters (STASIS)

Records 14 & 15 	element dimensions (STASIS)

Records 16 & 17 - load vectors (STASIS)

Records 34 to 38 - element stiffness matrix (STASIS)

CADMAC.RA1- Workspace GCADS

CADMAC.RA2 Used by macro processor (GCADS)

CADMAC.RA3 Dynamically divided into 60 mass storage files for the nodal

coordinates of each floor. 	(STASIS)

CADMAC.RA4 General working file (STASIS)

CADMAC.RA
	

Dynamically divided into 60 mass storage files for boundary

condition data. 	(STASIS)

CADMAC.RA7 Redundant

CADMAC.RA8 General working file (STASIS)

212

CADMAC.RA9 Dynamically divided into 60 mass storage files for load

data for each floor. 	(STASYS)

CADMAC.R10 Redundant

CADMAC.R11 Used for storing three-dimensional data describing nodal point

positions before and after analysis. (STASIS)

CADMAC.R12 Used to store global stiffness matrix and load vectors.

(STASYS)

CADMAC.ES1 Dynamically divided into 128 mass storage files for GCADS.

Only 100 may be accessed by menu command. STASYS reserves

60 of these for graphic data of each floor.

Reprinted from COMPUTER AIDED DESIGN 	 Printed in England

The use of CADIVAC systems in general draughting

C. B. Besant, A. Hamlyn*, A. Jebb and P. McClintockt
Department of Mechanical Engineering, Imperial College, London, England.

CADMAC is a stand-alone fully interactive computer aided design system. It is based on a mini-
computer and a range of peripherals, suitable for particular applications and environments. The system
is complete with the software necessary for application.

Draughting is of fundamental importance in most applications in the engineering and architectural
fields. Many of the applications require computation to be performed during and on completion of the
design process. Compiling and formatting the required data for computation on a computer can be a
difficult and a time-consuming task. Also, constructing the actual drawing to a required standard of
quality can be tedious.

A collaborative programme of work was undertaken at Imperial College in conjunction with John
Laing Design Associates, Computer Equipment Company — D-mac Ltd, and Scott Wilson Kirkpatrick &
Partners to develop methods and software for using CADMAC systems in the general draughting field.
A description is given of these techniques together with their application to a real problem.

A detailed description is also given of the CADMAC configuration used for this work together with a
description of configurations suitable for production environments.

Finally, the economics of utilising computer-based systems for general draughting are also discussed.

1 INTRODUCTION

Computer draughting is a special and important part of
c.a.d. Many firms and some universities are now examining
techniques for speeding up the draughting process by
removing the more tedious parts of draughting and providing
aids for the draughtsman. Drawing is, and will be, for many
years, the main method of communication between engin-
eers. Modern computer-produced drawings are of a high
standard with information often presented with great
clarity.

Once a design is in the computer it may be manipulated
in a number of ways and the results recorded on a plotter.
For example, if the design is in the computer in three-
dimensional form then it may be rotated through any angle
and a drawing produced showing any view. C.a.d. tech-
niques have often resulted in a better drawing presentation.
For example, pipe network layouts are often drawn as a line
diagram in 'isometric' form, using symbols for dimensions
and data. The symbols are then identified on a print-out
from a teletype or lineprinter and the listing is attached to
the drawing. By this means a large amount of information
can clearly be presented on one drawing.

The biggest advantage in computer draughting is the
ability to modify and update computer-held information.
It is here that the largest cost savings can often be made in
draughting. Computer drawings have often been considered
as being just a by-product of an aim to get into the computer
store all the product information. However, with over
100 000 draughtsmen presently employed in industry in
the UK and with the need to use drawing offices more
efficiently, much effort is now being put into computer
draughting in its own right.

* Sponsored by John Laing Design Associates.
t Sponsored by Scott Wilson Kirkpatrick & Partners.

Five years ago c.a.d. was in the province of large com-
puters but in the past three years, the availability and falling
costs of the new minicomputers have greatly increased the
possibilities of bringing c.a.d. techniques to a wide range of
users.

A research group in the department of Mechanical
Engineering at Imperial College, committed itself in 1969
to the development of a c.a.d. system based around a mini-
computer, such that the system could be operated in a
stand-alone mode or as a satellite to a large computer. A
system primarily for engineers was the main target and so
a practical communication system around the minicomputer
was developed. The complete system now known as
CADMAC, is being marketed by Computer Equipment
Company Ltd. which is a new sister company of D-mac Ltd.
who collaborated with the College on the development.

A description of the CADMAC system is given in this
paper together with a discussion on its use in two applica-
tion areas, namely architecture and structural engineering.

2 THE CADMAC SYSTEM

2.1 Peripherals and software

CADMAC has been designed to give users the widest pos-
sible choice of peripherals and software depending on the
application and environment. At the lowest end of the range
is a digitizer or a tablet connected in an online mode to a
desk-top minicomputer of 4 k of 16-bit or 12-bit word
capacity with a teletype. Such a system can be used to
digitize sketches with the computer aiding this process. It
is common to operate the system with a menu situated to
one side of the tablet or digitizer area. The menu consists
of an area divided into a number of squares. Digitizing a
point within any one of these squares, causes a routine to
be executed within the computer. Digitizing an instruction
(LINE) allows the user to input just the end-points of a
straight line and the computer will store the appropriate

Computer-aided draughting systems 41

Co-ordinate
display unit

From other -0.
tables

Visual
display unit

To othe
tables

Magnetic
tape units

G.P.O.link
	 Teletype

Digitizer/
plotter

Display driver
and other units

Interface

Camac
output

Camac
input

Menu

„e_. Area for
plotting and

digitizing

IBM 360
computer

PDP -8/E
computer
18k 12-bit
words)

C. B. Besant, A. Hamlyn, A. kb!, and P. McClintock

Fig.1. Diagram showing peripheral equipment around a
minicomputer in the CADMAC-8 system.

straight line between the points. The working scale is
simply chosen by digitizing an instruction (SCALE) and
typing in the desired scale on the teletype. There are many
other functions which are available to aid the user that
allow him to format the design in the computer and produce
an output in the form of punched paper tapes via the
teletype.

The paper tape can then be taken to a larger computer if
any complex calculations are required in the design; such as
stress analysis, heat transfer or cost analysis. A paper tape
may also be fed to an offline plotter where a drawing can be
produced.

These small c.a.d. systems have many other uses besides
creating a drawing in computer format. They can be used
for template construction, the computer working out areas
and cutting lengths; graph analysis where the computer can
be programmed to handle interpolation, integration of areas
and editing.

2.2 Work station for the designer

The smaller CADMAC systems are of limited use to the
design engineer since a display or plotting device is not
included. However, the CADMAC-8 system which is in
the middle of the range is a complete work-station for the
designer. The system configuration is shown in Figure 1
and consists of a combined input/output table which can be
used as a digitizer and plotter and operates in an interactive
online mode with the minicomputer. A storage tube is an
integral part of the system which can be controlled from
the digitizer, a joystick or teletype. The computer is a
Digital Equipment Corporation PDP-8/E with 8 k of core
and magnetic tapes or disc backing store.

While the CADMAC-8 system can perform all the draught
ing requirements of a designer, it has limitations when it
comes to performing complex analysis calculations. This
problem has been overcome in a number of ways depending
on the environment and application. One method of increas-
ing the computing power has been to link the system with
an ITT/IBM 360 time-sharing computer via a modem using
a GPO telephone line as with a teletype on the CAD
Centre's multi-access system. This type of system has

proved very successful on a joint research programme with
John Laing Ltd where the CADMAC-8 general draughting
programs have been used in conjunction with the Laing
costing suite, Laingwall, which were run on the ITT systems.
The user controls the whole operation from the CADMAC
work-station and, for example, a building such as an office
block can be designed, casted and general arrangement
drawings produced in less than a day. Laing are finding
that the CADMAC system approach is suitable for use by
both their architects and engineers.

The second approach at increasing the power of the
system has been to substitute the more powerful PDP-11
computer for the PDP-8 to give the CADMAC-11 system. A
typical system now in use at Imperial College is shown in
Figure 2 with its general layout being similar to that given
in Figure 1. The computer in this system has 12 k of core,
a 1.2 million word disc and 2 magnetic tape units. Extensive
use is made of the Fortran 4 capability with the PDP-11 disc
operating software which is an attraction for engineers who
are familiar with Fortran. The system is capable of handling
the general draughting work, being faster and easier to use
than the smaller CADMAC-8 system. It can also be used
for applications programs.

One typical research contract between the College and
Scott Wilson Kirkpatrick & Partners involves the use of
CADMAC-11 in the field of finite element stress analysis on
structures. The system is ideal for complex data prepara-
tion for such calculations and for the presentation of results
in a graphical form. The computer is relatively small for
finite element stress type problems and has involved new
techniques for obtaining solutions. There is a growing
trend in using this type of computer for analysis work as
well as for online control applications since its capital cost
is relatively low, it is small in physical size and can be used
in almost any environment. In fact, two CADMAC systems
at Imperial College work quite happily in engineering
laboratory conditions.

2.3 Tool for design engineers and architects

It is appropriate to discuss some of the detailed features of
the CADMAC system since it was designed at the College
in close collaboration with industry. More importantly, it
was designed with the aim of being a practical tool for
design engineers. Engineers usually generate their ideas in
the form of rough sketches. A system was therefore
envisaged which would either help the designer to turn the

Fig.2. A CADMAC-11 system at Imperial College being
used in the input mode.

42 Computer-aided draughting systems

Fig.3. A CADMAC table being used in the plotting mode.

rough sketches into the desired final form and in computer
format or even a system which would assist the designer in
the forming of the initial design. A digitizing table working
interactively with a computer seemed to be a more practical
device for inputting data to the computer than the light-pen,
keyboard method in conjunction with a display screen.

However, a display was considered to be an essential
feature of the system so that data fed into the computer
could be immediately verified. Also, the display is essential
for speedy editing of information stored in the computer
configuration. Another essential feature considered to be
desirable was a plotter so that good quality engineering
drawings could be produced.

A table was therefore designed and built at the College
in collaboration with D-mac Ltd for performing both the
digitizing and plotting functions.

The table contains two working surfaces, one beneath
the other. The top surface is of toughened glass and is the
input digitizing surface. Beneath this surface is a follower
mechanism which consists of a carriage, containing sensing
coils, running in the y direction on the top of a gantry
moving in the x direction. The carriage and gantry, shown
in Figure 3, both run on linear bearings which consist of
ground stainless steel guides and standard roller bearings.
The carriage and gantry are each driven by separate servo-
motors. Positional sensing in x and y is effected by two moire
fringe shaft encoders which are driven via separate stainless
steel wires attached to the gantry and carriage respectively.

The pencil used on the digitizing surface consists either
of a cross-hairline or ballpoint pen arrangement, both of
which contain a coil through which a 400 Hz current is
passed. The magnetic field set up by the digitizing pencil,
is sensed by the coils on the carriage and a signal is passed
via amplifiers to the servo-motors causing the carriage to be
driven to a position directly beneath the digitizing pencil.

The second table surface is of laminated wood covered
with formica and a p.v.c. backing sheet, and is situated below
the moving gantry. This surface is the output part of the
table where a hardcopy of a drawing may be produced on
paper. A set of four output pens is attached to the side of
the carriage. The output pens may be either ballpoint or
ink type. The movement of each pen is controlled by a
solenoid which in turn is controlled from the computer
interface.

The two table surfaces are contained within a thin rec-
tangular box structure which is mounted on a hydraulic
pedestal arrangement. The glass table top may be opened

The use of CADMAC systems in general draughting

to obtain access to the plotter.
A number of different table sizes are now in production

up to a maximum of 150 cm x 100 cm working area (as
shown in Figure 2).

2.4 Menu card

As with most CADMAC systems a menu is attached to the
right-hand side of the digitizing surface (Figure 2). Teletype
operations are minimized and the system is controlled with
the digitizing pencil using the menu. This method seems
suitable for engineers and architects who tend to do much
of their thinking with a pencil in their hand. The system is
easy to use and no programming experience is necessary.

Figure 4 shows a typical menu suitable for general
draughting work. Figure 4(a) shows the overall configura-
tion of the menu which is divided into a number of major
areas. The main area is the system commands which are
shown in detail in Figure 4(b). System commands make
up the basic control functions in the general draughting
software. User commands are for specific programs such as
stress analysis and heat transfer, which can be used in con-
junction with the data created by using the system commands.
Data may be stored under the file section or under levels
which is a sub-division of Files. Standard Components,
known as macros, may be stored on tape or disc under
Files which are used for speedy assembly of designs. The
area name Symbols is used for computer generated items
such as circles, arcs or any other shape which can be easily
calculated.

2.5 System costs

Approximate costs of CADMAC systems are shown in
Table 1 but it should be remembered that being modular in
concept, both in hardware and software, the system can
take many different forms. In an effort to produce a low
cost system, some customers of the system are now request-
ing multiple table configurations around one computer.

Table 1. Approximate costs of a few CADMAC configura-
tions

Approximate
CADMAC configuration 	 cost

Tablet with 4 k desk top mini computer 	£600
complete with software.

Digitizer online to PDP-8/E computer 	£16 000
with 4 k core and magnetic tape unit.
Also included is a v.d.u. and complete
operating software.

CADMAC-8 System consisting of 1 m 	£27 000
square input/output table, v.d.u. and
PDP-8/E computer with 8 k of core and
magnetic tape or disc unit. The System
includes a general draughting and
operating software package.

CADMAC-11 System consisting of 1.5 m 	£40 000
x 1 m input/output table, v.d.u. and
PDP-11/40 computer with 16 k core,
1.2 M word disc and high speed paper
tape reader/punch. The System includes
a comprehensive general draughting
software package.

Computer-aided draughting systems 43

C. B. Besant, A. Hamlyn, A. Jebb and P. McClintock

Fig.4(b). The System Commands in the Menu of the general
draughting software.

'"1V11 =IN 1:/'1(1'131110R ..'cYn'ir.l. w'''''' I l'A'1',.'1. INITIATI,

C

5 0
5 M
S .
T A
E B
M . S

01.F.AR ''. ANSOLUTE TRA11.11•10

I INF
1,PE 01100SI.

Wit SPA,
10 	1111.1..

101. TO
WI, SPACE

PERM
tics.FI

LINE
Hula.

POINT
EDITOR

.1.1A0R0
EN fox

SYMBOL
RDi inn Ko,

.■:;:nr:c rA'-'1'.'1.5 Rink; can A
ADIAYT
MAD 1,111TAI ITT

I 11 VIA. ALNIN MACRO US,

90° DUO MI° ARSOLUTE NIIKROK ROTATION

PLOT
OUTPUT
.
MEDIUM

OUTPHT

Fig.4(a). The Menu System used with the CADMAC general
draughting software.

36 Squares SYMBOLS

96 Squares I E F. S

60 Squares / 1 I 	1 S

60 Squares
SYSTEM

COMMANDS

36 '3■61,63,,

— — — — — — 	

USER

COMMANDS

3 CADMAC APPLIED TO DRAUGHTING IN
ARCHITECTURE

It is common practice for architects to produce rough
sketches of building layouts based on a grid. Converting
these rough sketches into working drawings is time-
consuming, tedious and costly. It involves the employment
of detail draughtsmen which can result in inflexibility and
problems when workloads fluctuate. In order to test the
application of CADMAC to the present problem, some
rough architect's sketches of a hospital scheme were con-
verted into working drawings using the system.

There were two sketches used in the test, one sketch,
drawing number SK 10 is a general layout of a wing of the
hospital and is shown in Figure 5. The other sketch, drawing
number SK 9, gives the detail of two rooms in the general
layout and is shown in Figure 6. The overall method of
digitizing the sketches was to first create a set of macros
(standard items) consisting of doors, windows, walls and
even a complete room with its contents. A system of guide-
lines was then digitized and macros were assembled, using
these lines to form the two drawings which were subse-
quently produced in hardcopy form on the plotter. The
details of this procedure are now described.

Sketch SK 9, giving the detail of rooms, was attached to
the digitizing surface of the table. The system program was
then called via the teletype which resulted in the initiation
of the CADMAC set-up procedure. The following requests
with their corresponding answers which are all performed
via the teletype, are given below:

1. SET TABLE ORIGIN — A point marked by a cross in the
bottom left-hand corner on the table is digitized. This

procedure sets the table origin to co-ordinate (o, o) so
that all points on the table will have positive co-ordinates.

2. SET DRAWING ORIGIN — A point on the drawing is
digitized to fix its origin.

3. SET SKEW — Two points are digitized on an axis of the
drawing. This ensures that any skew in the axes of the
drawing with that of the axes of the table is automatically
removed by the computer as each point is digitized.

4. INPUT SCALE— The required scale for digitizing is typed
in on the teletype.

5. GRID — The required grid factor is entered via the tele-
type.

A data level is then specified by digitizing (button 1) an
appropriate LEVEL square on the menu. The LEVEL
system allows a complex drawing to be divided into discrete
sets of data such as, walls, columns and service ducts and
these are all stored separately under LEVEL squares. A
number of levels are reserved for storage of construction
lines, and grid lines which may be suppressed when the final
drawing is produced. The LEVELS may subsequently be
combined into a single file under a FILE square. The
system is then ready for accepting data.

The first task in digitizing sketch SK 9 is the creation of
a macro databank consisting of windows, doors, wall panels
and room furniture. Each macro is stored under a FILE
square and a rough sketch of the macro drawn in the appro-
priate square for identification.

The actual digitizing procedure used to create a macro is
quite straightforward with little further requirement for
digitizing menu squares until the completion of a macro.

The normal digitizing mode is LINE MODE. In this
mode, button 2 is used to break a line and button 1 is used

44 Computer-aided draughting systems

to specify the start and subsequent points on the line. All
points are joined by straight lines as they are digitized.
Other digitizing modes include arc mode, circle mode,
dimension mode and tangential arc mode.

It has been found very difficult to produce good quality
drawings using a freehand digitizing process. A number of
digitizing aids have therefore been built into the system,
forming a close analogy to a set-square and ruler system:

Pressing button 6 will switch into operation a 15° or 90°
lock facility. When in operation this constrains all lines to
be at multiples of ISo to the arcs. When a point is digitized
the co-ordinate display unit zeros on the point. This
enables lengths of lines to be measured. Measuring lengths
manually, however, can be a time-consuming process
especially when no grid round-off is being used, and so a
drive mode is incorporated by which the cursor may be
driven around the screen in set incremental distances by
a menu patch. This permits very fast specification of line
length.

Verification of digitized data is performed by viewing
the display during the digitizing process. When an error is
located, the area in question is first magnified on the screen.
This function is performed by calling the WINDOW instruc
tion, button 4, followed by digitizing two points on either
side of the area where the error is located. The display
screen is then automatically erased and the enlarged area
drawn on the screen such that the two digitized points lie
on the extremities of the screen. If an error in digitizing is

).

'" r ' · ·-' -.. - -

---"'-- . . -~, ,---

~ ~~ 14f"~_ ~"" .
.... - ~,.. ;~~

The use of CADMAC systems in general draughting

;:':.: ~~-::;: :::':::-";':.:) -... . .. _',,-.. ...

U~~==t:.--t
:l
r

--." ~
"

::- ";.: '

Fig.6. Rough sketch SK 9. Room detail of a typical ward -
St. Anthony's Hospital, Cheam.

f
L

3(, 500
_ . ~3 J.c?~~4tOD

S3 ~oo "" ----- -- ~

Fig.5. Rough sketch SK 10. Layout of a typical ward unit - St. Anthony's Hospital, Cheam, London.

Computer-aided draughting systems 45)

X

it 	 ii 	

ITOU MM WINDOW

WPSN UNIT

1200 MM TOUR

Niitli§82"°

R5SEMBIALI WARD UNIT

EXAMPLE OF MACRO USAGE

C. B. Besant, A. Ilamlyn, A. Jebb and P. McClintock

ti

Fig.7. Macros for SK 9 and SK 10.

detected then the edit facility is called by digitizing EDIT.
Editing information is simple. A line can be removed by

moving the digitizing pencil until the cursor on the display
is close to the required line. Button 1 is then pressed and
the nearest line to the cursor will bright-up. If this is the
line required for erasure then button 3 is pressed and the
line is removed.

Lines may be added to digitized information using the
FIND instruction. The exact co-ordinates of a point on a
digitized drawing may be found by driving the cursor on
the display so that it is within 4 mm of the required point.
The FIND instruction is called by pressing button 7 and a
message is flashed at the top of the screen, either confirming
that a point has been found or asking the user to try again.
If the point has been found then a line is inserted using the
co-ordinates already found as the starting point.

Indirect FIND using button 5 will zero the co-ordinate
display on the found point but will not enter it into the data
stream. This enables distances to be measured from exist-
ing points.

The assembly of the drawing was commenced on com-
pletion of the macro databank. This was performed by
digitizing SELECT MACRO STATUS followed by digitiz-
ing a required macro square. The required macro was imme-
diately displayed on the v.d.u. so that it filled the screen
area. The instructions SELECT START POINT and
SELECT END POINT were also displayed, together with a
flag which indicated the orientation of the macro. The

start-point of the macro is a point on a macro which is
used to position it on the working area. The point is selec-
ted by driving the cursor on the display near to the desired
point on the macro and pressing button 1. The macro is
then positioned by digitizing a point at the required posi-
tion on the working area. The SELECT END POINT
instruction is used if it is required to join another macro on
to the one being selected. A macro may be rotated before
it is positioned on the working area by digitizing the appro-
priate rotation angle. The flag indicates the actual rotation
of the macro.

A large portion of the sketch SK 9 was constructed with
macros which permitted a short digitizing time. The macros
used in SK 9 and for subsequent use in SK 10 are shown in
Figure 7 and took a total of 60 minutes to digitize. The
final drawing of SK 9 produced by the CADMAC plotter is
shown in Figure 8 and this sketch took 6 minutes to
digitize.

Finally, sketch SK 10, the general ground floor layout,
was digitized in the same way as SK 9 using the same macros,
including considering the digitized drawing of SK 9 as a
macro. The final drawing of SK 10 is shown in Figure 9
and the digitizing time was 30 minutes.

Thus the complete digitizing time for both sketches,
including macros, was 96 minutes (and plotting times were
6 minutes for SK 9 and 30 minutes for SK 10). CADMAC
time can be purchased at £20 per hour and so the total
cost for the work was £31.

46 Computer-aided draughting systems

x

X X

X

The use of CADMAC systems in general draughting

4 APPLICATION OF CADMAC TO DRAUGHTING
IN STRUCTURAL ENGINEERING

One of the many important aspects of structural engineering
is the detailing of reinforced-concrete. There has been an
enormous expansion in the number of reinforced-concrete
structures over the past ten years and this has created a
shortage of experienced detailers who can cope with the
increasing demand for working drawings, The detail working
drawings tended to become more complicated because of
the increasing refinements in methods of design and also by
the lack of experienced detailers.

A characteristic of reinforced-concrete has been the large
variations in design of any one number which would satisfy
the criteria laid down by the architects and engineers. With
the structural engineers wishing to standardize the reinforced-
concrete design procedures in order to increase the effi-
ciency of construction work, the Concrete Society and
Institution of Structural Engineers produced a report [1]
which is intended to be used in conjunction with BS 1478
[2] with a view to satisfying the aims of the industry.

The work reported in this section is solely concerned
with the draughting processes in reinforced-concrete design
and reference [1] was taken as a basis in applying CADMAC
to this specific problem.

The work has been in progress for eighteen months on
producing drawings and bar schedules as an automatic pro-
cess from the completion of the design, but the aim here is
to show that CADMAC can create the shapes and symbols
used in reinforced-concrete detailing and produce a finished
drawing.

A completed structural engineering general arrangement
drawing was selected for the test. The drawing consisted of
the structural outline and dimensions. Also shown were
the reinforcing bars.

The system set-up procedure was similar to that des-
cribed in Section 3 with an input scale set at 1:100. The
data in the drawing was filed under a number of Levels
which are now described.

LEVEL 1 was the basic grid for the overall drawing. This
was created by setting a grid factor of 5.5 m and digitizing
only the required grid lines.

LEVEL 2 contained the structural outline. This was

.1111.11

TYPICAL WARD UNIT

A

Fig.8. Final drawing of SK 9 — Room detail.

Computer-aided draughting system s 47

/1/

Tbe use of CADMAC systems in general draugbting

J -$£3-~ . " ,-. - . " - . \ N

~ - I 1. _ I , • ... -..

[1 - I
- I

-l~ , .,. J

r~
I

I
I

I
II
I!

~
I .

I II - I -~ ~

Ir~
H- "-
~-- - ~

i.

I
I:

I VI ERENDEEL FRAME MAl N REI NFORCEMENT ONLY GRI~S 112 P- Q

- IL

~d""'" __ Otol. - .. Tim I .. f------., c_ . .. , I - lAo SIH .. -

Fig.11 . Typical reinforced-concrete detail drawing.

digitized with a grid of 5 mm _ All lines were set down to the
absolute accuracy of the dimensions by utilising the
TRAILING ORIGIN mode in conjunction with the co
ordinate display unit. Considerable use was also made of
the CONTROL 90 facility.

LEVEL 3 contained all the alphanumerics. Text strings
were set up on the teletype and placed on the work area by
digitizing ALPHANUMERICS followed by digitizing the
start point of the string. Dimensions were entered using an
automatic dimensioning system. This is performed by
digitizing the instruction DIMENSION followed by digitiz
ing the two points where the dimension is required. The
FIND facility is used in the determination of these points.
When the second point has been found and digitized, the
computer calculates the distance between the points and
inserts the correct dimension . A plot of the general assem
bly is shown in Figure 10.

A section of the general assembly was 'windowed' to pro
vide an outline required for a detail drawing. A new file
was created for the detail drawing which was also divided
into a number of levels defined below:

1. LEVEL 1 and LEVEL 2 - Windowed Levels 1 and 2
are of the general assembly.

2. LEVEL 3 - Outlines of section.
3. LEVEL 4 - Main reinforcement in elevation.
4. LEVEL 5 Main bars in section.
5. LEVEL 6 - Links in section.
6. LEVEL 7 - Links in elevation.
7. LEVEL 8 Alphanumerics, service hole symbols, arrows

and section flags .

- ., .~- .. -,,--
__ u

- '-

The detail drawing is shown in Figure 11. For this drawing
considerable use was made of the fillet mode in producing
the reinforcement bars in LEVEL 5 and the links in
LEVEL 6. Special symbols were created for arrows, section
flags and shaded circular sections. Macros were made of
groups of arrows, circular sections, repeated alphanumeric
strings and section outlines.

The time taken to digitize and plot the general assembly
was 210 minutes and 6S minutes for the detail drawing.
Thus the cost of the work was £91.

5 CONCLUSIONS

The CADMAC system proved to be most suitable for the
present applications being easy to use, easy to check for
errors and easy to correct mistakes. In most of the draught
ing work attempted so far, the most time-consuming part
is the creation of the macro databank. In many applica
tions, once a relatively small set of macros have been created,
a number of users can be satisfied, each user perhaps only
having to build a few extra macros in order to complete
his task.

Thus, if the macros had already been built for the
architect's work described in Section 3, the general layout
drawing could have been completed in 60 minutes including
plotting, and the detail drawing in 12 minutes . A draughts
man would have taken 960 minutes to complete the same
work by standard drawing methods and the drawings would
then have to be traced. The cost savings amount to about
50010, but more significantly the time saving is 888 minutes.

Computer-aided draughting systems 49 I

C. B. Besant, A. Hamlyn, A. Jebb and P. McClintock

When one considers that other programs, such as those
providing cost analysis, can be linked with the draughting
programs then enormous economic benefits can accrue in
the use of CADMAC. In fact a building cost program was
run in conjunction with the draughting program in an archi-
tectural application and once the draughting had been com-
pleted, the cost analysis could then proceed automatically.
This approach has considerable advantages in the field of
preparing designs and estimates for tenders.

Other draughting applications such as in structural
engineering, printed circuit layouts and mask generation,
mechanical engineering and textile design are all showing
considerable promise on CADMAC. Systems geared for
large-scale production type environments are under con-
sideration. CADMAC will take on the form of multiple
table configurations in a time-sharing mode for this type of
work and the cost per user can then be reduced.

6 ACKNOWLEDGEMENTS

The authors wish to express their thanks to all those in
Computer Equipment Company and the Computer Aided
Design Unit at Imperial College who have helped and made
this work possible.

7 REFERENCES

1. 'The detailing of reinforced concrete'. Report of the Joint
Committee of the Concrete Society and the Institution of
Structural Engineers. Technical Report TRCS 2, (May 1968).

2. 'Specification for bending dimensions and scheduling of bars for
the reinforcement of concrete.' British Standard 4466, (1969).

50 Computer-aided draughting systems

12k core
memory and
processor

Software
package

Bulk storage
I disc unit
2 tape units

PDP -I I computer

Teletype

High speed
reader/punch

From other
tables

Area for plotting

Camac
input

Display driver
and other units

Camac
output

Interface

Co-ordinate display unit

and digitizing

Visual display
unit

To other
tables

Digitizer /plotter

Menu

The use of computer aided design
techniques in printed circuit

layouts
C. B. BESANT*, A. HAMLYNt and P. M. McLINTOCKt

(Department of Mechanical Engineering, Imperial College of Science & Technology,
Exhibition Road, London, SW7, England)

Modern printed circuits are manufactured using a mask. This mask can be prepared by directing a
light beam around a photographic plate to describe the required circuit. An etching process is then
used to transfer the circuit from the photographic plate (the mask) to the circuit board.

A description is given of the techniques used to transfer a circuit design into a form suitable for
input to a computer and thence into a data tape for use in controlling a high accuracy plotter, where
the actual mask can be created using a light head. The work was performed using the CADMAC com-
puter aided design system to formulate the data tape. This tape was subsequently used with a high
accuracy Kingmatic plotter.

(Received on 19th February 1973)

1. PRINTED CIRCUIT MASK GENERATION

The initial requirements for p.c. mask generation involved
the need for a total system which would allow a designer or
user to digitize a circuit layout from a drawing on tempera-
ture stable material; produce a drawing of the digitized
layout for checking purposes and lastly to produce a mag-
netic or punched paper tape for use on a high accuracy
plotter system for final mask generation.

It was further required that the system used in the digitiz-
ing process should incorporate some interactive design
features so that the designer might be assisted during the
early stages of a design. This necessitates the use of a c.r.t.
within the system so that the user can view immediately
any information as it is digitized. The use of an online
computer is implicit in such a system and it is required that
this computer should be programmed in such a way that the
user may build up a databank of macros (standard items,

* Technical Director, Computer Equipment Co. Ltd., High
Wycombe, Bucks.
t Sponsored by John Laing Design Associates Ltd.

Sponsored by Scott, Wilson Kirkpatrick & Partners.

such as integrated circuits) which can be retrieved and dis-
played when required and then inserted into the desired
position on the design. The user should thus be able to per-
form the following basic functions on the macros—shift,
scale-change and rotation.

A number of other features were also thought to be
desirable, such as the ability to 'window' certain areas on
the table and then enlarge them on the c.r.t.: to reproduce
macros and to use computer generated symbols such as
arcs and circles.

2. CADMAC — AN INTERACTIVE
COMPUTER AIDED DESIGN SYSTEM

Only a brief description of CADMAC is given here as full
details of the system and general drafting software can be
found in Reference 2.

The configuration of the CADMAC system used for the
present work is shown in diagrammatical form in Figure 1.
It consists of a PDP-11/20 computer with 12k of core

FIGURE 1. The CADMAC:11 system using a PDP-11/20.

Volume 5 Number 3 July 1973 	 147

memory, two DECtape units, each unit being capable of
storing 200k of 16 bit words and a 1.2 megaword disc. The
computer also has a high speed paper tape reader/punch
and an ASR 33 teletype.

The computer is connected in an on-line mode to a
CADMAC combined digitizing/plotting table via a Camac
universal interface. The table has two surfaces, the top one
being a glass digitizing surface. The glass top may be opened
to reveal the lower plotting surface. The principle of opera-
tion is based on the D-mac servo-follower mechanism which
can be controlled by a digitizing pen on the top surface
when in digitizing mode. The computer controls the servo-
follower mechanism when in plotting mode and a set of
four pens attached to the moving gantry in the table per-
forms the actual plotting.

The c.r.t. which is incorporated into the system is a
Tektronix 611 storage tube display. A co-ordinate display
unit is also built into the system which can be used to
display the x, y co-ordinates on the table or other informa-
tion such as length of lines. An overall view of the CADMAC-
11 system at Imperial College, London is given in Figure 2.

3. USE OF CADMAC IN P.C. LAYOUTS

The software used for the present application is essentially
the general drafting software described in Reference 2.
This software is modular in concept and consists of a set of
seven system modules which are used to supervise the general
operation of CADMAC such as the initial system setup or
user data-handling. The system modules are designed such
that user application program modules can be 'plugged'
into the software system.

The user modules can be called into operation by using
the menu system which consists of a set of squares
2 cm x 2 cm positioned on one side of the digitizing sur-
face. When a point is digitized within a square, a certain

FIGURE 2. A view of the CADMAC-I1 system at Imperial
College, London.

C. B. Besant, A. Hamlyn and P. M. McLintock

user application program is called into core and started.
The menu used for the present work is shown in Figures 3
and 4.

Using the menu system is very simple, for example a
circle can be inserted by digitizing the symbol CIRCLE
followed by digitizing the centre point and a point at the
correct radius. The circle is displayed on the c.r.t. as soon
as the last point has been digitized. The meaning of each
menu square is self-explanatory from the identification in
the square. If, however, the reader is in doubt as to the
meaning of a particular instruction, an explanation is given
in Reference 2.

The digitizing pen also carries buttons which control the
user modules most frequently required. This eases the
user's general operational task by reducing the need for
frequent access to the menu area. The buttons also exercise
control within user modules since options may be flashed
to the operator via the screen.

------"■-------,......_

User Information

,___.____,--------.._____---e'

40 or more squares

40 squares Symbols

100 squares Semi-permanent Files

60 squares Levels

60 squares

40 squares

System commands

User commands

FIGURE 3. The menu system used with the CADMAC
general drafting software

148 COMPUTER AIDED DESIGN

The use of c.a.d. techniques in printed circuit layout

Some of the existing user modules in the CADMAC
general drafting system are particularly relevant to p.c. mask
work. For example the LEVEL system for structuring user
data is useful for double-sided p.c. boards. The LEVEL
system effectively allows the user to work in three dimen-
sions. Furthermore, it allows a designer to break down a
complex design or drawing into a series of simplified draw-
ings which can be superimposed at any time to form the
final design.

The MACRO facility is also extremely useful to the p.c.
board designer. Standard items (MACROS) such as compo-
nents, pins, pads, etc may be digitized and stored in the
computer for subsequent use in creating the main design.
The standard items may be stored in the MACRO bank as
single units or multiple units in a cell structure. The
MACROS may be used with considerable versatility. They
may be scaled, chained, rotated, erased and even their
internal dimensions may be changed.

4. DIGITIZING PROCEDURE AND PRODUCTION OF
DATA CHECKS

The initial requirement for using CADMAC in p.c. board
manufacture was to digitize a p.c. layout from a large scale
drawing on temperature stable material, and then to produce
data checking drawings together with a tape which could be
used to control a high accuracy plotter for the generation of
the p.c. mask.

The design used in the present test was for a Camac
module, namely a clock pulse generator. The design was
drawn at a scale of 4:1 on temperature stable material. The
circuit on one face of the board had been drawn in red and
on the other face in blue. The components were in black.

The design was placed on the working area of the digitiz-
ing surface of the table and secured with adhesive tape.
The system was then initiated via the teletype. The com-
puter responded by printing out a series of requests on the
teletype so that the system could be set-up for the digitizing
operation.

The first request was SET TABLE ORIGIN which was
answered by digitizing a point marked by a cross in the
bottom lefthand corner on the digitizing surface. This pro-
cedure sets the table origin to co-ordinate (0, 0), so that
all points on the table will have positive co-ordinates.

The second request was SET DRAWING ORIGIN which
was answered by digitizing a point on the drawing to fix its
origin.

The third request was SET SKEW followed by the
digitizing of two points on an axis of the drawing. This
ensured that any skew in the axes of the drawing with that
of the axes of the table is automatically removed by the com-
puter as each point is digitized. The skew correction is
important when data is used for either plotting the check
drawings or generating the final mask. The reason for this
is that most lines on a drawing are parallel with either the
x or y axis and such lines can be plotted with greater speed
and accuracy than diagonal lines.

The final request was INPUT SCALE which was answered
by typing the required input scale for digitizing. The scale
was set to 1:1 by typing 1.00. The LEVEL 1 square was
then digitized and a drawing number written on the square.
The system was then ready for accepting data.

The p.c. board layout had been drawn on the stable
material in two colours, red lines representing one side of
the board and blue the other. The p.c. design was divided
into five parts for data storage and these five parts were to
be stored under five level squares. LEVEL 1 was intended

CLEAR
CURRENT
FILE

DISPLAY
CURRENT
FILE

DUMP TO
ASSIGNED
PERIPH-
ERAL

DUMP
TO
FILE

ADD
FROM
FILE

DISPLAY
FILE

USE
FILE
AS
MACRO

PLOT
FILE FILING

S

S LEVEL T HANDLING E
M

CONTROL
FUNCTIONS

C
0

A
N
D
S

MACRO STATUS

COMMANDS

SET
INPUT
LEVEL

OUTPUT
ONLY
COMMON
LEVEL

OUTPUT
ALL
LEVELS

Y

TRAILING
ORIGIN

TABLE
ORIGIN

CONTROL
90°

CONTROL
15°

ERASE
SCREEN

RESET
INPUT
SCALE

RESET
INPUT
ORIGIN

RESET
GRID
FACTOR

RESET
SKEW

RESET
WINDOW

LINE
EDITOR

POINT
EDITOR

MACRO
EDITOR

M
EDITING 	 M

MACRO
STATUS
INFORM-
ATION

HAND
MACRO

ANY
ANGLE
ROTATION

0° 90° 180° 270'
 SELECT
START
POINT

SELECT
END
POINT

SELECT
ALPHA-
NUMERICS

IGNORE
LEVEL

ADJUST

IONS

CHAIN
MACROS

SET
SCALE

DEFINE
AREAS

DISPLAY
AREAS USER COMMANDS

FIGURE 4. The system commands in the menu of the general drafting software

-••■••••-<

Volume 5 Number 3 July 1973
	

149

C. B. Besant, A. Hamlyn and P. M. McLintock .

b

e

for the main red circuit lines of uniform thickness, LEVEL
2 was for parts of the red circuit which were either wide
lines, areas or tags. LEVEL 3 and LEVEL 4 were for the
blue circuit corresponding to the functions of LEVELS 1
and 2 respectively. LEVEL 5 was to be used for all the
MACROS (standard components).

The actual digitizing of the design was quite straight-
forward with little further requirement for digitizing menu
squares until the completion of a level. The following pro-
cedure was adopted during digitizing: for vertical and hori-
zontal lines, button 6, CONTROL 90 was pressed followed
by button 1 at the beginning and end point of a line.
Further end points could be digitized if the next line was
joined to the first. When it was required to digitize a com-
pletely new line, button 2, BREAKLINE was pressed and
the previous procedure repeated. The CONTROL 90
facility ensured that both horizontal and vertical lines
were digitized such that they were accurately parallel to
their respective axes. For lines at angles, the CONTROL
facility was omitted.

The procedure adopted for the LEVEL 2 and 4 drawings,
involving areas rather than lines, was to digitize the
perimeter of each area.

The component layout which was designated as LEVEL 5
was generated from a series of MACROS. These individual
MACROS are shown in Figure 5, and they are very
simple to build and use. The building process consists of
digitizing the actual MACRO and when this is complete it
is stored in the MACRO store by digitizing a blank MACRO
square on the menu and writing in a description in the
square.

The MACROS are used by digitizing the appropriate
square followed by digitizing a point on the drawing where
the MACRO is required. Prompting information is given via
the display to assist the designer in using a particular
MACRO.

Verification of digitized data was performed in the first
instance by viewing the display during the digitizing process;
and in the second instance by producing a drawing on the
plotting surface at the completion of digitizing a level. This
procedure was adopted for each level and the check plot
overlayed on the original design at the digitizing surface.
Where an error was located, the area in question was first
magnified on the screen. This function is performed by
calling the WINDOW instruction, button 4, and then digitiz-
ing two points on either side of the area where the error
might be. The display screen is then automatically erased
and the enlarged area drawn on the screen such that the two
digitized points lie on the extremities of the screen. If any
error in digitizing is detected then the edit facility is called
by digitizing EDIT.

Editing information is simple. A line can be removed by
driving the cursor on the display and moving the digitizing
pen until it is close to the required line. Button 5 is then
pressed and the nearest line to the cursor will be lit up. If
this is the line required for erasure then button 1 is pressed
and the line is removed.

Lines may be added to digitized information using the
FIND instruction. The exact co-ordinates of a point on a
digitized drawing may be found by driving the cursor on
the display so that it is within 1 mm of the required point.
The FIND instruction is called by pressing button 7 and a
message is flashed at the top of the screen either confirming
that the point has been found or asking the user to try

a

C

d

FIGURE 5. MACROS used in the p.c. design: (a) a pin;
(b) capacitor; (c) resistor; (d) diode and (e) integrated
circuit

again. If successful then a line is inserted using the co-
ordinates already found as the starting point.

The editing and find facilities are both easy and quick to
use and are capable of dealing with complete MACROS as
well as lines. The user is constantly assisted during this type
of work with prompting instructions on the screen.

Finally, LEVELS 1 and 2 were combined and a paper
tape output produced for the Kingmatic plotter, with the
correct 1:4 scale reduction factor. The same procedure was
adopted for LEVELS 3 and 4. LEVELS 2 and 4 carried
further instructions so that enclosed areas would be com-
pletely blanked out when plotted.

Example plots of LEVELS 1 and 5 using CADMAC are
shown in Figures 6a and 6b respectively.

5. MASK GENERATION

Printed circuit mask generation is performed on a high
accuracy plotter such as the Kingmatic Model 1215.

The Kingmatic at Imperial College did not have a photo-
exposure device and so the mask generation was simulated,
with an accurate plot of the circuit on paper. The software
required to operate and drive a photo-exposure device on
mask generation is very little different from the production
of an accurate plot with a pen.

A plot of the 'mask' for one side of the p.c. board, con-
sisting of LEVELS 1 and 2, is shown in Figure 7.

150 	 COMPUTER AIDED DESIGN

a b 1:1

(a) CADMAC plot of LEVEL 1 — red lines on design. (b) CADMAC plot of LEVEL 5 providing the layout of FIGURE 6.
MACROS

	r—

f
L-

I— IL

=

0 0
❑
0 0

0 0
0

0 ❑

• MI=1 •
• MINI •
ENO

❑ o❑

0

0 0

❑ •

•
• •
• •
• •

	r r L

Th)

The use of c.a.d. techniques in printed circuit layout

6. DISCUSSION

The CADMAC 	 for system proved to be most suitable fo the
present application, being easy to use, easy to check and
correct for errors. The total d'gitizing time for the complete

-j-77-fifThrj71 	

 	 L, 	

f ri
II

-11-1 	 tiFilircr4 	4-1 r 	

LI141,

FIGURE 7. Kingmatic plot of LEVELS 1 and 2 — the
simulated mask for one side of the p.c. board

p.c. layout was 2.5 hours, and the time for data verification,
including check plots, was 1.05 hours. The CADMAC
system of similar configuration may be hired from a bureau
at £25 per hour and thus the cost of producing correct
tapes for driving a mask generating device was less than £90.
A Kingmatic plotter may be used at a bureau for £35 per
hour and for the present two masks this would have cost
£60. Thus the complete task of producing the masks was
about £150.

It should be stressed that the CADMAC system could have
been more effectively used in the complete task by using it
during the actual initial design stage. This could result in
further savings in time and cost.

REFERENCES

1 Kingmatic Model 1215 Draughting Table, N.C. System News
No 2 (1972) Kongsberg, Norway.

2 Besant, C. B., Jebb, A. et al, 'CADMAC-11 — A fully interactive
computer aided design system' Comput. Aided Des. Vol 4 No 5
(October 1972), pp 239-246.

	t 	II

Volume 5 Number 3 July 1973 	 151

Automated module placement
and wire routeing according to a

structured biplanar scheme in
printed boards

G. ALIA, G. FROSINI and P. MAESTRINI
(Istituto di Elaborazione dell'Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy)

Heuristic procedures are proposed for solving the module placement and the wire routeing problems in
printed boards with the primary objective of reducing the area covered by the conductor paths. A
structured biplanar scheme has been adopted, into which the modules are placed on the nodes of an
array and the conductor paths are realized by means of horizontal and vertical connections, printed on
the different sides of the card and electrically connected via holes. The proposed method is well
suited for implementation on a small computer.

(Received on 30th January 1973)

1. INTRODUCTION

This paper deals with the problem of the design automation
of logical circuits. Specifically, the two problems considered
are the placement of the modules on a printed card and the
laying out of the wire among the module terminals.

A biplanar scheme has been fixed, into which the modules
are placed in the nodes of a matrix, and the conductor paths
are decomposed in horizontal (i.e. parallel to the rows) and
vertical segments. Horizontal and vertical segments are
printed on different sides of the card.

Heuristic procedures for solving the above mentioned
problems are proposed, whose primary object is the reduc-
tion of the total area covered by the conductor paths and,
indirectly, the total conductor path length. These procedures
require very limited resources for implementation and are
relatively fast, when compared to the alternative approaches
discussed in the literature. The major results in the whole
field of logical design automation are discussed in a survey
paper' and in a number of specific papers dealing with the
placement problem2'3, the wire list determination4-1 and
the wire layout definition8-1°.

The reduced complexity of the approach proposed in
this paper originates from:

1. The assumption of a fixed scheme for positioning and
connecting the modules.

2. The decomposition of the classic placement and wiring
problems into several cascaded subproblems.

Although by applying such constraints the degree of
optimality of the result is generally smaller than would
otherwise be possible, nevertheless in most cases the quality
of the result is satisfactory and adequate in view of the
limited cost of the method.

2. GENERAL DESCRIPTION OF THE
WIRING LAYOUT SCHEME

It is assumed that the circuit to be realized consists of a
number of interconnected multiterminal integrated modules
that are to be placed on a printed card. The problem of
decomposing a large network into minimally interconnected
subcircuits, such that each subcircuit is realizable by a printed

card, has been discussed in the literature and is not recon-
sidered here.

In the proposed scheme, the modules are placed on a
printed card according to an array configuration, as shown
in Figure 1. The modules occupy the nodes of the array
(the number of the modules is assumed not to exceed the
number of the nodes). For ease of discussion, assume that
the terminals of each module are vertically aligned and
that their number is the same for each module. The con-
nections are realized by means of horizontal and vertical
segments, printed on the first and the second faces of the
card, respectively. Horizontal and vertical segments of the
same conductor path are connected via holes (plated-
through). The horizontal or vertical segments are localized
in the strips between adjacent pairs of rows or columns.
Different strips are allowed to have different widths, accord-
ing to the number of segments they include.

Any conductor path between terminals of modules
assigned to the same column (e.g. the one denoted by (a) in
Figure 1) consists of a vertical segment connected to the
proper terminals by means of horizontal connections, which
are called 'terminal extensions'. The vertical segments are
placed in the vertical strip on the right side of the column
under consideration.

Any conductor path connecting modules assigned to
different columns (e.g. the one denoted by (b) in Figure 1)
consists of a horizontal segment and two or more vertical
segments, each vertical segment connecting the subset of
modules belonging to the same column. Each horizontal
segment is realized in a horizontal strip between two appro-
priate adjacent rows.

Subcircuits realized in different cards communicate
through the connector. In each card, the connector termi-
nals are assumed to be aligned on the top side of the card,
parallel to the rows. Any connection between a module
and the connector is realized by means of a vertical segment.

It is easily seen that any arbitrary set of connections is
always realizable according to the scheme in Figure 1, no
matter how the modules are positioned on the card. In the
proposed scheme the wire layout problem always has a
solution, without any wire crossing, while the success of the
classical approaches, e.g. the Lee's8 or Akers's9 algorithms, is
not guaranteed. However, the degree of optimality of the
solution to the wire layout problem is dependent upon the
positioning of the modules.

152 	 COMPUTER AIDED DESIGN

