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ABSTRACT 

Controlling or reducing congestion by changing basic features of a 

queueing process is an important aspect of applied queueing theory. Each 

change should alter statistical properties of the process to benefit 

either customers or servers. 

If customers with shorter service times are served first, or if ser-

vice is faster when the queue is long, the queueing times of most customers 

will be reduced. If longer idle periods are created by closing the service 

counter, servers are free to do ancillary work. These three changes in a 

queueing process are considered, individually, as ways of controlling 

congestion in a single server queueing system with Poisson arrivals. 

A simple queue discipline with only two non-preemptive priority 

classes is shown to be an effective method of reducing queueing times if 

prior information about service times is available. 

Faster service when the queue is long is the aim of hysteresis con-

trol. An equilibrium solution is obtained for a generalized model of 

hysteresis control with k pairs of control levels and arbitrary service 

time distributions. A special case, unilevel control, is shown to act 

automatically to prevent long queues from forming. 

How long a service counter should remain closed for ancillary work 

can be decided by referring to the number of waiting customers or to the 

virtual queueing time. In each case the inconvenience to customers of 

shutting down the server is determined by deriving the equilibrium 

queueing time distribution. 

A series of numerical studies explores the practical effects of 

these suggested methods of controlling congestion. 
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CHAPTER 1. Introduction 

1.1 A general model for a queueing process 

Models for queueing processes, whether simple or elaborate, generally 

describe the interaction of an arrival process and a pattern of service. 

Customers join the system, are selected for service from the pool of wait-

ing customers, and leave after being served. Usually, an adequate model 

of a particular queueing situation can.be specified by identifying the 

essential details of the arrival process, the selection pattern or queue 

discipline, and the service process. 

Two features generally suffice to describe the arrival process; 

these are the size of the customer population and the joint probability 

distribution of the intervals between arrivals. Obviously, many different 

arrival patterns are possible. In subsequent chapters attention concen-

trates on those situations for which the arrival pattern can be adequately 

represented by a stationary Poisson process with rate X>0. 

Arriving customers form one or more queues. Sometimes the possible 

size of a queue is limited; this particular case is usually called a 

limited waiting room model. In Chapters 2-5 the implicit assumption is 

made that arrivals form a single queue of unrestricted length. 

The queue discipline is a rule by which customers are selected for 

service. Many different rules are possible. For example, customers could 

be served in order of arrival, or could be assigned service priorities. 

Military communications traffic is an excellent example of a queueing sys-

tem with a queue discipline involving priority classes. 

Two features generally determine the service process. These are the 

number of servers and the joint probability distribution of customer ser-

vice times. In the single server situations which we consider, customer 

service times are independent realizations of a non-negative random 
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variable with distribution function of arbitrary form. According to the 

well-established classification system which Kendall(1953) introduced, 

the results of succeeding chapters apply to queueing situations which can 

be represented by the familiar model M/G/1. 

The following definitions should eliminate any confusion which might 

arise because terminology in queueing theory has not been standardized. 

Definitions 

A customer's queueing time, W , is the time between his arrival in 

the queue and the start of his service. 

A customer's waiting time, W, is the time between his arrival in the 

queue and his departure from the system. 

The queue length, L , is the number of customers queueing for service. 

The line length, L, is the number of customers in the queueing system. 

It follows that waiting time equals queueing time plus service time, 

and line length equals the number of customers being served plus the 

queue length. 

1.2 Measures of congestion 

Models of queueing processes not only describe but also quantify the 

amount of congestion in a queueing situation in terms of several different 

properties. Perhaps the simplest measure of congestion is the traffic 

intensity, p.; this is generally defined as the ratio of mean service time 

to mean inter-arrival time. Usually, if p exceeds unity, the system will 

be very congested. Conversely, if p<1, most systems will reach a state of 

statistical equilibrium. If customers arrive in a stationary Poisson pro-

cess and p<1, it is well-known that, with probability 1-p, a given custo-

mer will not have to queue for service. To know the probability of this 

event in a practical situation is often quite important. 
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Often, the mean queue length is used to measure congestion. However, 

specific knowledge of the probability distribution of Lq  can be useful, 

particularly when the size of the waiting room must be restricted. For 

example, with randomly arriving customers, the long-run proportion of cus-

tomers Who are turned away because the system is full can be evaluated. 

Occasionally, either the probability distribution of L or its mean value 

may be easier to determine. Since L equals Lq  plus the number of customers 

being served, it is usually a simple matter to derive the statistical pro-

perties of one quantity from those of the other. 

Mean queueing time and the probability distribution of Wq  are impor-

tant properties of the system in relation to the amount of congestion. 

This is particularly true whenever customer delays represent economic 

losses. Provided the loss per unit delay per customer is constant, Cox & 

Smith(1961, p.26) state that only mean queueing times need be considered. 

In other situations it would probably be helpful to know the queueing time 

distribution as well as its mean. For example, if standards of service 

are defined in terms of the long-run proportion of customers who queue 

for more than a fixed time, tail probabilities for the distribution of Wq  

will need to be evaluated. 

Sometimes other properties of a queueing system may best character-

ize the important aspects of congestion. For example, if serving costs 

are particularly high and idle time represents costly economic losses, it 

would be useful to know the distribution of the length of the busy period. 

In this case, congestion behind the service counter may be more important 

than delays to customers. 

In general, then, and whenever possible, congestion should be mea-

sured in terms of quantities which have an obvious physical or economic 

significance. 



1.3 Some general aspects of the problem of control 

Situations in which the level of congestion is likely to exceed toler-

able limits give rise to the problem of controlling a queueing process. 

Theoretically, by modifying one or more basic features of the system, i.e. 

the service process, queue discipline, etc., reductions in congestion can 

be obtained. Evaluating the effect of proposed modifications on the level 

of congestion in the system is an important aspect of the problem. 

Clearly, the level of congestion can be decreased by restricting or 

interrupting the arrival process. Sometimes this filtering effect can be 

achieved by taxing customers who decide to join the queue. The success 

of taxation as a method for controlling congestion depends crucially on 

the assumption that customers can be selectively discouraged from joining 

the queue by increasing the tax. Naor(1969) considers the use of a fixed 

tax in order to filter the arrival process of an M/M/1 queue. Adler & 

Naor(1969) examine a similar problem for the case of an M/D/1 queue. By 

assuming a linear structure of customer rewards and operating costs the 

same authors show that optimal joining decisions by individual customers 

do not necessarily determine a social optimum for the customer population. 

More recently, Yechiall(1971) has analyzed the problem of determining 

individual balking rules and social toll charges for a GI/M/1 queueing 

process. When customer rewards and queueing costs per unit time are linear, 

Yechiali is able to use Markov decision process methods to determine the 

form of control rules which maximize either the individual or population, 

infinite-horizon, average reward. 

Instead of taxing customers who join the queue in order to reduce 

congestion it may be simpler to limit the size of the queue. Customers 

who arrive when the system is full are turned away. This method has ob-

vious applications in telephone engineering and related fields. When the 

arrival process is Poisson, the long-run proportion of blocked customers 
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can be evaluated using the Erlang loss formula [cf. Saaty(1961, p.303)). 

Arguments which lead to the Pollaczek-Khintchine formula tcf. Cox & 

Smith(1961, p.55)1 show that mean queueing time in the M/G/1 queue does 

not depend on the queue discipline if customers are indistinguishable from 

the point of view of service time. However, if customer delays are mea-

sured in relation to the queueing time distribution, then the choice of a 

queue discipline will be an important one. The number of possible choices 

in any situation may be considerable. In Chapter 2 we examine ih greater 

detail queue discipline choices which can help to reduce congestion. In 

particular, the use of available information to minimize individual and 

overall customer delays will be emphasized. 

Sometimes it may be more important to reorganize server idle time than 

to reduce customer delays. This situation has been mentioned already in 

51.2. In Chapter 3 we consider detailed results regarding two methods of 

modifying the service process in order to restructure the server's busy 

and idle periods. 

Changes in the service process are frequently suggested whenever the 

primary aim of any control method is to reduce customer delays. Such 

changes might include an increase in the number of servers or a change in 

the service time distribution. 	In Chapter 4 we obtain equilibrium solu- 

tions for two related control methods which monitor the level of conges-

tion in a system and regulate the service process accordingly. In this 

respect, each method is analogous to modern industrial feedback control. 

The theoretical results of Chapter 4 point to a generalized model 

for adaptive control of the service process. In Chapter 5 we derive an 

equilibrium solution in this wider frame of reference and identify the 

results of §54.2 and 4_.4 as two.important special cases of the general 

problem. 
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CHAPTER 2. Choosing a queue discipline to control congestion 

2.1 Simple control techniques -- two-class non-preemptive 

priority disciplines 

For a fixed pattern of arrivals and customer service times the queue 

discipline determines how long customers are delayed. Kingman(1962) 

proves that, for the class of queue disciplines which do not affect the 

distribution of the number in the queue at any time, the mean of the 

queueing time distribution is independent of the discipline, but the vari-

ance is minimized by serving customers in order of arrival. If minimum 

variance for the queueing time distribution determines the preferred queue 

discipline, service in order of arrival would be the natural choice pro-

vided the alternative disciplines satisfy the above conditions. 

However, not all queue disciplines satisfy the conditions which King-

man specifies. Among those which do not are service patterns with mean 

queueing times which are less than the value specified by the Pollaczek-

Khintchine formula; for the M/G/1 queue it is this value to which King-

man's result refers. Schrage S Miller(1966) state that when the customer 

with the shortest remaining processing time is given a preemptive resume 

priority for service the line length at any time is minimized. However, 

it would often be impossible to follow this rule. Instead, what is needed 

is a practical queue discipline which can use available information to 

reduce congestion. 

Perhaps the simplest of all such rules is a two-class non-preemptive 

priority discipline requiring some prior knowledge of customers' service 

times. The Pollaczek-Khintchine formula specifies that if gj  is the jth 

moment about the origin of the service time distribution (j.1,2), then 

E(Wq) is equal to lAg2/(1-0, where Ag1 =p<1. However, if customers are 

classified as "long" and "short" according to their future service times, 

and if the "short" class is given non-preemptive priority, then the mean 
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queueing time can be much less than lAg2/(1-p). Within each priority 

class, customers are served in order of arrival. 

The credit for pioneering work on non-preemptive priority queue dis-

ciplines belongs to Cobham(1954,1955). Using Cobham's results, Phipps(1956) 

shows that a considerable reduction in EN ) can be obtained by giving non-

preemptive priority to the waiting customer with the shortest future ser-

vice time. Sorge implications of Phipps's shortest service time rule will 

be considered in §2.4. 

Let G(.) be an arbitrary service time distribution with corresponding 

density function g(.) and jth moment gi=j(tig(t)dt, 	Schrage & 

Miller(1966) show that when customers with service times not exceeding 0 

are assigned to class 1 and all others are relegated to class 2, the mean 

queueing time, EN 10), is given by 

- 	I— p Glqs)  
E (Vict,1 9S) i: x%- 0{t- pm} 
I) i where p(0)=X tg(t)dt< p<1 for all 0>0. This queue discipline is obviously 
0 

simple to administer and only requires a moderate amount of prior informa- 

tion concerning customers' service times. However, Schrage & Miller(1966) 

only briefly discuss the possibility that this discipline could be an 

effective, practical way of reducing congestion; many authors do not con-

sider this same rule at all. 

We can show that E(Wq10)-is smaller than lAg2/(1-0 for any finite, 

positive 0. If service times can be accurately estimated or are known in 

advance, it seems sensible to select 0 to minimize EN 910)  . Provided 

g(x)>0, (2.1.1) is minimized when 0=0*, where 0*  satisfies the equation 

r° 
9144  % 9, + ? Jo  Gt.t.\ at. • 	 (2.1.2) 

Then, if all customers are correctly classified, the ratio E(Wq)/E(Wq10=0*) 

attains a maximum value of 0
* 
 /gi. The following examples show the solution 

of (2.1.2) for several common service time distributions. 
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Example 2.1.1 

Let g(x)=11)-1  (0<x <2b), where Ab<1. Then 0
* 

is a solution of the 

quadratic equation p0*2-4b0*+4b2=0, and the optimum separation point is 

(2-2477)/A. 

Example 2.1.2 

When g(x)= kp( ktix)
k-1

e-kpx (k=1,2,...)  ) 0 must satisfy the equation 
r(k) 

ple relation 	 046 
Allf 	1-9 +9 e  w - 	 • 	 (2.1.3) 

e:t/A ("I) 
When k=2 and p=1, i.e.g(x).xe-x, we will call this service time distri-

bution D1. 

Example 2.1.3 

Let g(x)=pe-Px. Then 

-P•cb ) 
e t l+ 
	

t 

	

e + --CI- 	 (2.1.4) 

	

I- E. 	 /A 

When p=i we will call this particular service time distribution D2. 

Example 2.1.4 

Let g(x)=Ope-"+(1-0)kpe-kPx  (0 <0 <1; k >0). Then (2.1.2) becomes 

)4.6*  
= 

19 
[Ac + k1- 0 

t-Ro 
+ 	kee 	+ (1- 	 • 	(2.1.5) 

4  

By specifying values for 0, k and p, we can obtain a distribution with any 

desired mean and a range of coefficients of variation greater than unity. 

Thus, service times from this mixed exponential distribution are more var-

iable than service times from distributions in any of the preceding exam-

ples. When k=1/3, 6=i and p=1, i.e. g(x)./(e-x+1/3e-x/3), we will call 

this service time distribution D3. 

By specifying the parameters in the preceding examples we can solve 

(2.1.3), (2.1.4) and (2.1.5) numerically for any values of p between 0 

and 1. Particular solutions to (2.1.3), (2.1.4) and (2.1.5) for the 

-16" 	 If k=2, we obtain the sim- 

k.-.1 
* 
	 t- 	P 	 (  E E 141.4 564) 

 s. o  1:0  rc 
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Figure 2.1.1 	Service times, 0
*
, which optimally divide customers into 

two priority classes when service times are D1, D
2 
or D

3 
with traffic intensity p. 
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1 

(Erlang) 

O D
2 

(exponential) 

• D
3 

(mixed exponential) 
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distributions D1 , D2  and l
S
have been obtained; the values of 0 are plot-

ted in Fig. 2.1.1. 

Let G
1
(.) and G

2
(.) be two service time distributions with the same 

mean, and suppose that G1 (t)<G2(t) for all t >to. Then, for any p <1 we 

can 	) 

(j.1,2). For large enough service times, the distribution function for 02  

is bounded above by the distribution function for D1  and bounded below by 

the distribution function for D
3* 

Therefore, as Fig 2.1.1 indicates, the 

values of 0
* 

for D
1 
and D

3 
are always the smallest and the largest, respec-

tively. This ordering of the solutions to (2.1.2) by increasing magnitude 

corresponds to an ordering of the Dis by increasing variance. It is not 

obvious, however, that uniformly greater solutions to (2.1.2) will always 

be obtained for any other service time distribution which has the same mean 

as the Dis but which is overdispersed with respect to D3. 

It was stated previously that 0 /sal  is equal to the ratio . 

E(W )/E(W 10=0
*
), where the mean value in the numerator is given by the 

Pollaczek-Khintchine formula. Figure 2.1.1 indicates that when p exceeds 

0.8, changing from service in order of arrival to this simple priority dis-

cipline could reduce the mean queueing time by at least 1/3. If 0
* 
cannot 

be determined accurately, (2.1.2) shows that 0 should be at least as large 

as the mean service time. Under these conditions, i.e. 0=g1 , the ratio 

E(Wo)/E (Wq10=g1)  is equal to {1-p(g1 )}/{1-pG(g1 )}. Table 2.1.1 gives 

values of this ratio for the three distributions D1 , 02  and D3. Provided 

traffic is quite heavy and it is possible to predict whether individual 

service times are shorter or longer than the average service time, prac-

tical reductions in mean queueing time can be obtained by serving custo-

mers with shorter service times first. 
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p D
1 

 D D
2 

D
3  

0.05 1.014 1.019 1.022 

0.15 1.045 1.061 1.070 

0.25 1.079 1.109 1.126 

0.35 1.120 1.165 1.192 

0.45 1.166 1.231 1.271 

0.55 1.221 1.310 1.367 

0.65 1.287 1.406 1.485 

0.75 1.366 1.525 1.637 

0.85 1.465 1.676 1.836 

0.95 1.590 1.875 2.111 

Table 2.1.1 	Mean queueing time ratio showing the advantage of a 

priority discipline favouring customers with service times 

shorter than mean service time compared to service in order 

of arrival for traffic intensity p and D1 (Erlang), 

D
2
(exponential) or D

3
(mixed exponential) service times. 

2.2 Evaluating some effects of a change in queue discipline 

The results of §2.1 show that by using prior knowledge of customers' 

service times effectively, considerably reduced mean queueing times can 

be obtained in many situations. To explore this further we consider the 

changes in the queueing time distribution which this reduction in the mean 

value reflects. 

Kesten & Runnenburg(1957) derive a general expression for the Laplace 

transform of the equilibrium queueing time distribution for customers in 

the kth class of an r-class non-preemptive priority discipline queue. 

Using their expressions for the case r=2, we can show that if W . is the 

queueing time for customers belonging to class j (j=1,2) and if 0>0 is the 

service time which separates classes 1 and 2, then 

E (estdci,1  19 	ski-04. A 1(15) - A 1.6 e  
I

-S4 , 

X Qt(b) S 	e sk%)dx 
0 _ 

0 

(2.2.1) 
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(I- 	z (s)-). G(6)- s)  i? (I)) - 
stb qs) - s hi 11 e 	t 	- 	s 1 a % 

1(2:2.2) 

oto 

where t(0)=1-G(0) and z*(s) satisfies the equation 
0 

Z*(5) = X j (3(ixl ex p 	I Gt(A 7:11(s) 51] d'A • 

The Laplace transform of Wq  is therefore a linear combination of (2.2.1) 

and (2.2.2) which cannot be simply expressed. Even when service times 

are independent, exponentially distributed with mean 1/p, (2.2.1) becomes 

E (e-sw 1 0) z 	sx (1-9) 	(p4siee
1 
  #x)A(2-p) e

-4(M4s) 

s (.k+s)+ x4.. e: okwks) _ km 4s) (1- ern 

The queueing time distribution for each class of customers is a mix-

ture of a discrete probability, 1-p, at t=0 and a density for positive 

values of t. This is a form which direct considerations of queueing time 

distributions for M/G/1 systems would lead us to expect [cf. Cox & Smith 

(1961, pp.50-58)]. A non-preemptive queue discipline does not change the 

distribution of the length of the server's busy and idle periods; there-

fore, the long-run proportion of time that the server is idle is 1-p . 

It follows that, with probability 1-p, an arriving customer of either pri-

ority class will find the system empty and will thus avoid queueing. Since 

the proportion of queueing times which are zero is the same for service 

in order of arrival and for the priority discipline of §2.1, a reduction 

in mean queueing time indicates that the distribution of positive queueing 

times must be affected. 

To determine more precisely how changes in the queue discipline affect 

the queueing time distribution we compare the queueing time distributions 

induced by service in order of arrival and by the priority discipline of 

§2.1 in identical circumstances.' A second aspect of the analysis may sug-

gest qualitative conclusions regarding queueing situations in which this 

simple priority discipline is most effective in reducing congestion. 
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The complicated forms of (2.2.1) and (2.2.2) indicate that a combi-

nation of numerical and analytical methods will be required. To examine 

both the quantitative and qualitative aspects of the comparison we need 

to consider specific service time distributions. The distributions D1, D
2 

and D
3 

mentioned in §2.1 are simple examples of service time distributions 

with coefficients of variation, T, less than, equal to and greater than 

unity, respectively. By using 

_x 
D1 : g(x)=xe-x  (T=1/)/2), D2: g(x)=1e-lx  (T=1), D3: g(x).1(e-xie 3) 

(T=4-76-) we should be able to draw practical, qualitative conclusions. 

The mean of each D
i 
is 2; therefore, changes in the traffic intensity can 

be obtained by adjusting the rate, A, of the Poisson arrival process. 

When customers are served in order of arrival, the Laplace transform 

of the equilibrium queueing time distribution is given by 

( SW 

% I 	(10 5- ' ), 
-a 

 + csofw - 	- s*(5 	 (2.2.3) 

[cf. Cox & Smith(1961, p.57)] , where g*(s) is the Laplace transform of 

g(x), the service time probability density function. 	If the service time 

distributionisD.(j=1,2,3), the queueing time distribution may be obtained 

by inverting the particular form of (2.2.3). Thus 

where 

-44)c 	-bot 
D1  : 	4/9 	1Wct> 0)

0. 	
(, 

t4 7.) 	6(Q-6) 

Q I a- 	>,24. hill b iia.->,4kx44).)11 
-tic  0.—N) 

D2'  Pr (4Js:1.)m 1 V19, 	e. 	(Ac 0) ; 	(2.2.4) 

• 

(WI> 1( IV/ >o) 	$c• -a  e 
1 % - 6 ckc.-41 	

(ix>o) D
3
: 

d /A) 
Sfx 	 %ix 

where 	C.t7-444-"›.-(44.c1)1,) 	a= 6{ 14-.w4(4.4,q).1 

Since (2.2.1) and (2.2.2) cannot be inverted, exact probabilities of 

various queueing times for the particular cases D1, D2  and D3  cannot be 
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obtained. However, the moments E(W
k 

10) (j=1,2; k=1,2,...) can be eval-

uated and some of these are given by- 

E' Wt1,% I 4)) 
a  1-etc ' 	E 	10!l (t- 	ettll 

	(2.2.5) 

E N#41 si It) 	"3  	4. • X (311,(4))  

	

st 	/ 1 1-EU)) 	1 - p(411.1  

E  (W1  10) 	  
4 	(31(3).t6)  

31 	3 1- e1C011 (1- 	1 . (I-  1 P(6)11 
+ 	

i1.")1(1- e).1  

(vt3  gs), 	xst4 	 11(6) 	)2.(3).t 9,6 4. 	xl  ch  1
►  

c/)1 	14' 	P(t) 	2  it - el4)12 	2  it -  elt)r 	it-?(411-6 
(2.2.7) 

1 ?, (L(0  E 	 (314 	(x9.) 	 9  

VI 	4 	1-c,l0)13 
4 4 

 (1- t3)/i p(d1111 	(k-e) 	1--pl as) 14  

431(0112 	N2. 	CS3 	X (3.xW 3 	4. 	cA-A 9301  
.(1-9)11-1>W13 	(I-  0.1 11-p(0)11 	(1-011- etc1))14 	a(t-oi1-cAt1}4  

J 	

0: 

where g.(0)4tJ g(t)dt 	2,...). 
 0  

By using a probability distribution of known form to fit a queueing 

time distribution with unknown form but with known moments, the required 

probabilities can be estimated from the fitted distribution. To fit queue-

ing time distributions we can use either the two-parameter lognormal or 

the gamma distribution [cf. Kendall & Stuart(1963, pp.152,168)]. 

The precise form of a fitted probability density function is deter-

mined by solving two equations which respectively equate the parametric 

mean and variance to specific values for the theoretical mean and variance 

of the queueing time distribution. The accuracy of this approximation can 

be estimated by comparing the skewness coefficients of the fitted and theo-

retical distributions. 

A better approximation will be obtained if we only use a gamma or log-

normal distribution to fit the conditional distribution of positive queue-

ing times. Theoretical expressions for the moments of this conditional 

distribution can be obtained by multiplying the expressions in (2.2.5), 

(2.2.6) 
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(2.2.6) and (2.2.7) by 1/p; then, the conditional queueing time distribu-

tions for priority classes 1 and 2 can be fitted as previously indicated. 

Conditional probabilities can be estimated using the fitted distributions 

and then linearly combined using the factors G(0) and 5(0) as class 1 and 

class 2 weighting factors, respectively. 

Since the results will depend on 0, we use the values of 0
* 

plotted 

in Fig. 2.1.1 to fit the conditional queueing time distributions. 

Table 2.2.1 shows the skewness coefficients y. 	andyj  , for the 
, 

fitted lognormal and fitted gamma distributions, respectively, for class 

j (j=1,2) conditional queueing time distributions. The corresponding 

theoretical skewness coefficients, y., are also given. In every case 
Yj,G 

more closely approximates y. than does Yj,L (j=1,2). Therefore, we use 

only gamma distributions to fit the 20 conditional queueing time distribu-

tions for each D. (j=1,2,3). Secondly, apart from the seven instances 

p=0.05,...,0.65 for the D
3 

class 1 queueing time distributions, y. is usu-

ally less than yj,G  (j=1,2). Since the means and variances of the fitted 

and theoretical distributions are equal, this suggests that tail probabi-

lities of the fitted densities for D
1, 

D
2 
or D

3
(o=0.75,0.85,0.95) service 

times will be upper bounds for the exact probabilities specified by the 

theoretical queueing time distributions. Conveniently, the conditional 

probability that a customer who arrives during a busy period queues longer 

than a given length of time is an important indicator of the level of con-

gestion in the system. 

We can now calculate estimates, Qk(o'0
*

)' 
which are probably upper 

bounds for the exact values of Qk(p,0), the conditional probability that 

a busy period arrival queues longer than k times the mean of the same con-

ditional queueing time distribution. This conditional mean queueing time, 

E(W 10=0 ,W >0), is equal to EN 10=0
*
)/p; a formula for EN 10) is given 

In (2.1.1). Thus, the mean of a given queueing time distribution is taken 

to be the unit of scale for that distribution; comparisons of probabili- 
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Service Traffic 	Class 1 Distributions 	Class 2 Distributions 
Intensity 

Times 	p 	Y1 	Y1,G 	Yl.L 	Y2 	Y2,G 	Y2,L 

	

0.05 	1.59 	1.75 	3.-29 	1.69 	1.79 	3.41 

	

0.15 	1.54 	1.71 	3.20 	1.80 	1.85 	3.56 

	

0.25 	1.48 	1.67 	3.10 	1.89 	1.90 	3.71 

	

0.35. 	1.41 1.63 3.00 	1.96 1.95 3.87 

	

0.45 	1.33 	1.59 	2.89 	2.01 	2.01 	4.02 

	

0.55 	1.25 	1.55 	2.79 	2.06 	2.05 	4.16 

	

0.65 	1.18 	1.50 	2.68 	2.08 	2.10 	4.30 

	

0.75 	1.14 	1.46 	2.58 	2.10 	2.14 	4.44 

	

0.85 	1.22 	1.44 	2.53 	2.11 	2.17 	4.54 

	

0.95 	1.62 	1.51 	2.70 	2.08 	2.18 	4.57 

	

0.05 
	

1.98 
	

1.98 
	

3.94 
	

2.01 
	

2.01 
	

4.02 

	

0.15 
	

1.94 
	

1.94 
	

3.82 
	

2.02 
	

2.02 
	

4.07 

	

0.25 
	

1.89 
	

1.90 
	

3.70 
	

2.03 
	

2.04 
	

4.12 

	

0.35 
	

1.83 
	

1.85 
	

3.55 
	

2.04 
	

2.06 
	

4.17 

	

0.45 
	

1.75 
	

1.79 
	

3.40 
	

2.04 
	

2.07 
	

4.23 
D
2 	

0.55 
	

1.65 
	

1.72 
	

3.23 
	

2.05 
	

2.09 
	

4.28 

	

0.65 1.53 1.65. 3.04 
	

2.06 2.11 4.33 

	

0.75 
	

1.38 
	

1.56 
	

2.83 
	

2.06 
	

2.12 
	

4.38 

	

0.85 
	

1.23 
	

1.47 
	

2.61 
	

2.06 
	

2.14 
	

4.42 

	

0.95 
	

1.37 
	

1.44 
	

2.52 
	

2.04 
	

2.13 
	

4.41 

	

0.05 	2.27 	2.21 	4.65 	2.26 	2.22 	4.70 

	

0.15 	2.23 	2.16 	4.50 	2.22 	2.21 	4.67 

	

0.25 	2.18 	2.11 	4.34 	2.18 	2.20 	4.63 

	

0.35 	2.12 	2.05 	4.16 	2.15 	2.19 	4.60 

	

0.45 	2.05 	1.99 	3.96 	2.12 	2.18 	4.57 
D
3 	0.55 	1.96 	1.91 	3.73 	2.10 	2.17 	4.53 

	

0.65 	1.84 	1.82 	3.47 	2.08 	2.16 	4.50 

	

0.75 	1.67 	1.70 	3.17 	2.06 	2.15 	4.47 

	

0.85 	1.43 	1.56 	2.82 	2.05 	2.14 	4.42 

	

0.95 	1.24 	1.41 	2.47 	2.03 	2.11 	4.35 

Table 2.2.1. 	Skewness coefficients, y. .y ,G  and y. 	for class j conditional j 

queueing time, fitted gamma and fitted lognormal distributions, respectively, (j=1,2) 

when service times are D (Erlang), D (ex onential' or 0 .m" 
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ties among different queueing time distributions for the priority disci-

pline will be at the same multiples of mean queueing time, the means being 

different. For fixed p and each service time distribution D. we can also 

use the conditional mean queueing time, EN 10=0 ,W >0), to compare the 

distributions of positive queueing times determined by service in order of 

arrival and by the two-class priority discipline in identical circumstances, 

i.e. identical service time distributions and traffic intensities. To make 

this comparison we require Qk(p), the conditional probability that a busy 

period arrival in a service in order of arrival queue waits longer than k 

times the conditional mean queueing time,E(Wq10=0*,Wq>0), in the priority 

queue. The Qk(p) can be calculated using the formulae given in (2.2.4). 

The required probabilities are plotted in Figures 2.2.1, 2.2.2 and 

2.2:3. Each figure is paired; the left half shows the exact probabilities, 

Qk(p), for service in order of arrival while the right half shows the esti-

. 
mated probabilities, Q

k
(p
'
0 ), for the priority discipline of §2.1. The 

estimated probabilities were calculated by means of an algorithmic routine 

for evaluating the incomplete gamma function. 

To determine the effect of the two-class priority discipline on the 

level of congestion consider the two halves of each figure individually. 

When p is very small, the two queue disciplines are negligibly different. 

Since Qk(p,11 ) is an upper bound, the ratio Qk(p,0
*
)/Qk(p) is less than 

0.9 when p=0.25. For moderately large p the difference between Qk(p) and 

Qk(p,0
*
) is more pronounced, and in conditions of very heavy traffic, e.g. 

p=0.95, the ratio Qk(p,0*)/Qk(p)  is less than 0.25. By comparing the ra-

tios E(Wci)/E(Wq10.0*) (cf. §2.1) and Qk(p)/ak(p,e) for p >0.55 it may be 

seen that the reduction in long queueing times is more pronounced than the 

reduction in mean. 

To determine the type of queueing situation in which this priority 

discipline is most effective in reducing congestion is more difficult. 

The difference, Qk(p)-Qk(pa
*
), is generally greatest for D3, that is, when 
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tity, 6, where 6=G(O 
Y1 	)Y2,G 	

, as indicating the accuracy with 
Y1 	Y2 

for Y. 
andYj,G 

 in Table 2.2.1. If we interpret the dimensionless quan- 
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service times vary considerably. While most customers are assigned to the 

priority 1 class, customers with very long service times, who cause much 

of the queueing, are relegated to class 2. Therefore, when long service 

times occur more frequently, i.e. T>l, the effect of the priority disci-

pline should be more pronounced. Joint comparison of Figs. 2.2.1b, 2.2.2b 

and 2.2.3b appears to indiceate that by using the same multiples of E(Wci l 

0=0
* 

W 
cl 
 >0) differences among the priority discipline queueing time distri-

butions for the D!s have been eliminated. Although this effect was inten-

ded, real distinctions among the distributions of positive queueing times 

may be hidden by the different accuracies of the estimates, Qk(pa
*
), for 

each D.. This differing degree of accuracy is reflected in the columns 

which the estimates, Qk(pa), bound the true probabilities Qk(p,(d ), then 

probable underestimates or over-estimates of Qk(p,0 ) correspond to nega-

tive and positive values of 6, respectively. A value of 6 for each esti-

mation situation is given in Table 2.2.2. The Q
k
(p,0

*
) appear to be most 

accurate when service times are exponentially distributed. Table 2.2.2 

also indicates that unless p>0.75, we need to regard Q
k
(p
'
0
*
) with some 

suspicion for D
3 

service times. 

Provided service times are not constant, the simple priority disci-

pline of §2.1 substantially reduces most queueing times. Only customers 

with rather long service times are inconvenienced; these individuals 

generally experience very long queueing times as well. 
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p D
1  

6 

D
3 

0.05 0.083 0.001 -0.023 
0.15 0.080 0.002 -0.022 
0.25 0.089 0.006 -0.020 
0.35 0.106 0.011 -0.019 
0.45 0.132 0.020 -0.018 
0.55 0.167 0.036 -0.014 
0.65 0.203 0.064 -0.004 
0.75 0.220 0.112 0.021 
0.85 0.155 0.174 0.086 

0.95 -0.056 0.044 0.131 

Table 2.2.2 	Relative accuracy, 6, of a gamma approximation to a condi- 

tional queueing time distribution with traffic intensity, 

p, and Di(Erlang), D2(exponential) or D3(mixed exponential) 

service times. If 6>0(<0), the approximation over-estimates 

(underestimates) tail probabilities. 

2.3 More complicated control techniques -- k-class non-preemptive 

priority disciplines 

The results of g§2.1 and 2.2 suggest that if customers can be accu-

rately divided into k (k=3,4,...) homogeneous classes according to their 

service times, and if non-preemptive priorities are assigned to classes 

sensibly, average queueing times should decrease as k increases. 

Suppose that 0=00<01 <•••<0k=0. and an arriving customer is assigned 

to priority class j if his future service time, X, is such that Oi_i< X-1.1  

0=1,...,k). Provided the arrival process is independent of the queue dis-

cipline and the traffic intensity is less than unity, we can show, by a 

relatively simple argument, that average queueing time always decreases 

whenever an additional priority class is added to the priority discipline 

defined above. The following background, which is due to Kingman(1562), 
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serves as a basis for the argument. 

Suppose that, during a single busy period of any stable (p<1) queue-

ing process, n customers, labelled 1,2,...,n in order of arrival, join the 

queueandareserved.l i=1,...,n) be the sequences of 

times at which the ith customer arrives in the queue and enters service, 

respectively. Then (lc-S i-Ai> 0 (i=1,...,n) is the queueing time of the 

ith customer and the average queueing time during the busy period is 

1  
n. 
L Q. . A queue discipline is therefore an ordering of the n customers 
1=1 

who are served during the busy period. More precisely, a queue discipline 

is a permutation w e II on the n-tuple (1,...,n) determined by the chrono-

logical ordering of the SIs, where II is the set of all permitted queue 

disciplines. Thus, the identity permutation on (1,...,n) represents ser-

vice in order of arrival. Since Si  and Q. vary according to the queue 

discipline, these times are better represented by S i  (w) and Qi (w) (n ell; 

i=1,...,n), respectively. We can now prove the result; the argument de-

pends on an interchange technique similar to that used by Schrage(1968). 

Let w be the priority discipline which serves customers according to 

the classes [0.
J 1 

 ,0.) (j=1,...,k). From any class 
[0r-1 

 ,0
r 
 ) create two 

J  

new classes, [0
r-1

,0
s
) and [0s ,0

r'  
) where 0

r-1
<0
s
<0
r' 

and let 11+  be the 

queue discipline which serves customers according to this expanded version 

of the k-class priority scheme. Obviously, on each busy period of the 

queueing process, either it and N
+ 
are identical or it and w differ. When- 

ever 
	nt 	nr 

	

 it and w+  are identical — L Q. (0 1 = — L Q. (n+) ; 	therefore, consider 
' n

i=1 	
n. 
1=1 

any busy period on which it and 'irk differ. 

	

Let X. be the service time of the ith arrival 	Since it 

and w
+ 
 differ, there is a first instant w when, for two customers p and q, 

Or>Xp4s>Xclar_
1
, Sp(w)=w, A <w and S (w)>w. Let wi  be a discipline which 

coincides with x in every respect save that it1  interchanges q and p in the 

serving order. Clearly, 

‘7. E 	E cy-Tri)+xv_ x% ) 	Qi.  (iv) 
im 



- 31 - 

Either Ir
1 

is identical to w
+ 

or there exists a first instant z>w 

when, for two customers u and v, 0
r 
 >X
u  >0s 

>X
v-  >0r-1' 

S 
 u 
 (r

1 
 )=z, A 

v
<z and 

Sv(r1 )>z. Let r2  be a discipline which coincides with II) in every respect 

save that w
2 

interchanges u and v in the serving order. Then 
b, 

1- E Q. 0.1.9) < -L K • 	< -:7 E Q (TO  ti  z.   .1.2% 	:L.% 	i=% 

If w
2 

is not 1

4. 

 then, by a finite sequence of pairwise interchanges 

we can obtain r
+ 
 and 

_L E Q. (TO) < - • • < E 	• 
v.% 

By averaging over a large number of busy periods we can see that the 

average queueing time for w
+ 
 is less than the average queueing time for w. 

The preceding argument does not depend on assumptions regarding 

specific arrival or service time distributions. When arrivals are Poisson, 

Cobham's(1954) results give the expression 

E ( w 61  
‘ /.I -1 2 'It; i %-t) (4)0 11 1- e  tt) i 

for the mean queueing time, where 0=(00,...,0k), OH is the service time 
4( 

distribution function with derivative g(-) and p(x)=A tg(t)dt<p<1 	(x >0). 
o 

For fixed k>2, Oliver & Pestalozzi(1965) use dynamic programming to 

determine 0
*
, the value of 0 which minimizes (2.3.1). Whether the reduc-

tion tion in mean queueing time will compensate sufficiently for the increased 

administrative load will depend upon many factors including the number of 

extra classes added and the accuracy with which customers are assigned to 

their respective priority classes; it is difficult to quantify this. 

(2.3.1) 
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2.4 Idealized control techniques — a different priority class for 

each customer 

The central argument of §2.3 suggests that if customers' exact ser-

vice times are known in advance, then, to minimize average queueing time 

over all customers, the waiting customer with the smallest service time 

should always be served next. Phipps(1956) was the first to consider this 

shortest service time discipline. Schrage & Miller(1966) point out that 

Phipps's shortest service time rule is a non-preemptive special case of 

their shortest remaining processing time discipline. Subsequently, 

Schrage(1968) proves that the shortest remaining processing time rule mini-

mizes the number of customers in the system; that is, if the queue disci-

pline is to serve, preemptively, the customer with the shortest remaining 

processing time, then the number of customers in the queueing system never 

exceeds the line length for any other rule simultaneously acting on the 

same sequence of arrivals and processing times. 

By retaining the assumptions of §2.3 and by slightly modifying the 

argument given there we can show that, if the queue discipline is to serve 

the customer with the shortest service time at each service epoch, the mean 

queueing time, averaged over all customers, is minimized with respect to 

all non-preemptive rules applied to the same sequence of arrival and ser-

vice times. Although the proof is similar to that which Schrage(1968) 

gives, the addition of Kingman's(1962) framework (cf. §2.3) substantially 

improves the argument. The proof begins with any permissible discipline xi, 

say, which is not shortest service time and uses the pairwise interchange 

technique to establish the result. No other details will be furnished 

since the proof is very similar to that outlined in §2.3. 

As in §2.3, the argument does not depend on assumptions regarding 

specific arrival or service time distributions. For Poisson arrivals, 

Phipps(1956) has derived expressions for E(L ) and E(W Is), the mean queue-

ing time for a customer whose service time is s. These expressions depend 
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on the assumption that customers' service times are known exactly before 

they are served. Since estimates of customers' service times may be some-

what uncertain, we now consider how to incorporate this uncertainty into 

an expression for the mean queueing time when the queue discipline is the 

shortest service time rule. 

Suppose that customers who join an M/G/1 queue which is in equili-

brium are assigned non-preemptive priorities Si, S2,... which are inde-

pendent, identically distributed observations from a priority assignment 

probability distribution; the distribution is arbitrary up to monotonic 

transformation. For convenience we assume that P(s)=pr(Si  <s) (1=1,2,...; 

s >0). Whenever a customer departs, the next customer to be served is 

always the one whose priority is greatest, i.e. the customer whose assig-

ned priority is numerically smallest. However priorities are assigned, 

e.g. randomly, we shall require that u
j,s 	s 

.E(X) (j=1,2; s >0) can be eval- 

uated, where u. 	is the conditional jth moment about the origin of the 

service time, X
s' 

of customers belonging to the priority class with index 

s e [0,w). Let usEui,s, and suppose that s is a continuity point of PH. 

By adapting Phipps's(1956) argument to the results of Kesten & Runnenburg 

(1957) we can show that the first two moments of the queueing time distri-

bution for a customer with priority s are given by 

	

(Wi 1 s) I 
	asp 
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By using Laplace transform techniques, both Takacs(1964) and Cohen(1969, 

p.454) derive expressions which agree with (2.4.1) and (2.4.2). 

Integrate (2.4.1) and (2.4.2) with respect to s, the assigned prior- 

	

ity. 	It follows that 

(2.4.2) 

E(wct) -4 
foo 

(2.4.3) 

Jo
o.t

<IP(t) 
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We can use (2.4.3) and (2.4.4) to obtain both familiar and new results for 

the M/G/1 queue. The next three examples are important special cases. 

Example 2.4.1 

Since (2.4.3) is a generalization of Phipps's(1956) result, we can 

obtain Phipps's expression for EN ) by setting P(s)=G(s) and E(Xj)=si  
'9 

(j=1,2; s >0). Hence, if g.(t)=Jx Jg(x)dx (j=1,2; t>0) and Ag1 (t)=p(t)<1 
0  

for t>0, 

1)03 	 
ja 1 1-k4011  

e•3 	 Oo 

E(W1) XCI1 	(3(S) AS  4. ) 04  I  432.(5 g(s)d5  

1I- p(s113 	42  6  it- k:ASV/  

may be used to evaluate Var(W ). 

Suppose that the priorities assigned to customers are uniformly dis-

tributed over some fixed interval, say [0,1], and this assignment does not 

depend on service times. Obviously, the advantages of the shortest service 

time discipline will be eliminated. Moreover, since assigned priorities 

cannot be changed, low priority customers generally have long queueing 

times. When customers are served in random order, however, at any service 

epoch each customer has an equal chance of being served next. Therefore, 

queueing times should be more regular if customers are served In random 

order than if customers are served according to priorities assigned at 

random. 

Example 2.4.2 

If fixed priorities are randomly assigned, independent of each cus-

tomer's service time, then 

s 	0 <s <1 
P(s)= 	 E(X!)=gi  (j=1,2; s >0) 

1 	s >1 

After simplifying, (2.4.3) and (2.4.4) become 

and 
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Vco- 	X13('..k))  4 x131 (-"e\  
(1-07' 	tz (1.01  (2.4.5) 

This random priority discipline satisfies the conditions of Kingman 

(1962); therefore, the mean queueing time is identical to the Pollaczek-

Khintchine formula and to mean queueing time for service in random order. 

Cohen(1969, p.431) indicates that the variance of W for service in random 

	

order is .7,- 	+ (Ag2)2(2")  . This is smaller than (2.4.5), indi- 

	

2 	kg 

5 (1-p)(2-p) 4(1-p)2(2-p) 

cating that queueing times are more regular if customers are served in ran-

dom order than if customers are assigned fixed priorities at random. 

Conway & Maxwell(1962) mention a queue discipline which is the anti-

thesis of the shortest service time rule -- at each service epoch, always 

serve the customer with the longest service time. According to these au-

thors, this longest service time discipline can occur in practical situ-

ations. Apparently, a customer's importance is associated with the length 

of his service time; therefore, longer jobs are given priority over 

shorter ones. 

When long waiting times are subject to severe economic penalties it 

is probably sensible to give priority to the customer with the longest 

service time. Obviously, this particular queue discipline increases queue-

ing times in contrast to, say, service in order of arrival. Although the 

longest service time rule can occur in practice, this queue discipline has 

been given little attention in the literature; the expressions derived in 

Example 2.4.3 appear to be new. 

Example 2.4.3 

Since a customer's priority is inversely proportional to his service 

time, S<s if and only if X:os-1, where S is the customer's assigned prior-

ity and X is his service time. Therefore, P(s)=b(s-1) and (2.4.1) and 

(2.4.2) become 

31  	Al% 9a 9Y)1 
 • E 	I = 	Xii 2. 	eie k,..)) 2 I 	‘'I; I 	3i 1- 	e i As-' )11  # I P * (0  14 
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The averaged first and second moments of Wq  are given by 

/to 
4:3(z1 a-z  E 	x91.4 it_ei.$)wvx 

co 	 00 
<3 (T) 	 S 	9.a(-x.1  cs(z)  E(w1)=  xS 	 xaq ,,a  5101.(1-?-k?V1P 	Jo 	11-s) e  U.) 1 4  

We have already established that no non-preemptive queue discipline 

can be devised which is superior to the shortest service time rule in min-

imizing the mean queueing time, averaged over all customers. Under the 

same assumptions, i.e. that the arrival process is independent of the 

queue discipline and p <1, we can show that when the queue discipline is 

to serve the customer with the longest service time, the mean queueing 

time, averaged over all customers, will be maximized for all non-preemptive 

rules applied to the same sequence of arrival and service times. The simi-

larities between the two results are obvious; therefore, details of an 

argument proving the result for the longest service time discipline can 

be omitted. 

To illustrate some of the differences among the queue disciplines 

which we have considered, expressions for EN ) and Var(W ) from 552.2 

and 2.4 have been evaluated numerically for different values of p. The 

service time distributions used in the calculations are the three simple 

examples Di, D2  and D3  of §52.1 and 2.2. Tables 2.4.1 and 2.4.2 give the 

results of the calculations. 

The tabulated mean values show how much mean queueing times can be 

reduced if advance information about service times is used sensibly. The 

column corresponding to the longest service time queue discipline indicates, 

quantitatively, the effect which this rule has on mean queueing time, ave-

raged over all customers. For the two queue disciplines with mean queue-

ing times smaller than that for service in order of arrival, the reduction 

in mean value is greatest as p4-1; similarly, for fixed p, the same reduc- 
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Service 	Traffic Shortest 	Optimal 	Service in 	Random 	Longest 

Intensity Service 	2-class 	Order of 	Priority 	Service 
Times 	p 	Time Priorities Arrival Service 	Time 

0.079 0.079 0.082 

0.265 0.265 0.299 

0.500 0.500 0.620 

0.808 0.808 1.12 

1.23 1.23 1.92 

1.83 1.83 3.34 

2.79 2.79 6.11 

4.50 4.50 12.7 

8.50 8.50 34.9 

28.5 28.5 261. 

0.105 0.105 0.108 

0.353 0.353 0.383 

0.667 0.667 0.771 

1.08 .1.08 1.34 

1.64 1.64 2.22 

2.44 2.44 3.67 

3.71 3.71 6.35 

6.00 6.00 12.2 

11.3 11.3 30.1 

38.0 38.0 179. 

0.132 0.132 0.135 

0.441 0.441 0.483 

0.833 0.833 0.980 

1.35 1.35 1.72 

2.05 2.05 2.87 

3.06 3.06 4.79 

4.64 4.64 8.39 

7.50 7.50 16.4 

14.2 14.2 41.1 

47.5 -47.5 250. 

	

0.05 	0.077 	0.078 

	

0.15 	0.249 	0.253 

	

0.25 	0.449 	0.463 

	

0.35 	0.689 	0.720 

	

0.45 	0.985 	1.05 
D

1 	
0.55 	1.37 	1.49 

	

0.65 	1.90 	2.12 

	

0.75 	2.74 	3.16 

	

0.85 	4.40 	5.31 

	

0.95 	10.8 	14.1 

	

0.05 	0.103 	0.103 

	

0.15 	0.326 	0.333 

0.25 0.578 0.601 

	

0.35 	0.871 	0.922 

	

0.45 	1.22 	1.32 
D
2 	

0.55 	1.66 	1.85 

	

0.65 	2.24 	2.58 

	

0.75 	3.11 	3.74 

	

0.85 	4.73 	6.05 

	

0.95 	10.5 	15.1 

	

0.05 	0.128 	0.129 

	

0.15 	0.403 	0.412 

	

0.25 	0.709 	0.740 

	

0.35 	1.06 	1.13 

	

0.45 	1.47 	1.60 
D
3 
	

0.55 	1.96 	2.21 

	

0.65 	2.60 	3.04 

	

0.75 	3.52 	4.33 

	

0.85 	5.14 	6.80 

	

0.95 	10.6 	16.0 

Table 2.4.1 	Mean queueing times for five different queue disciplines when service 

times are D1 (Erlang), D2(exponential) or ymixed exponential) with traffic intensity p. 
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Service 
	

Traffic Shortest 	Optimal 	Service In 	Random 	Longest 
Intensity Service 	2-class 	Order of 	Priority 	Service 

Times 	p 	Time Priorities Arrival Service 	Time 

0.05 	0.209 	0.210 	0.217 	0.223 	0.248 

0.15 	0.697 	0.706 	0.776 	0.855 	1.17 

0.25 	1.34 	1.36 	1.58 	1.92 	3.25 

0.35 	2.30 	2.32 	2.81 	3.85 	8.07 

0.45 	3.9,5 	3.86 	4.78 	7.76 	20.1 

0.55 	7.30 	6.74 	8.25 	16.7 	54.1 

0.65 	15.7 	13.2 	15.2 	41.3 	170. 

0.75 	44.3 	32.4 	32.3 	131. 	719. 

0.85 	211. 	124. 	94.9 	705. 	5770. 

0.95 	5510. 2100. 888. 	22200. 406000. 

0.05 	0.411 	0.415 	0.432 	0.444 	0.479 

0.15 	1.32 	1.36 	1.54 	1.69 	2.12 

0.25 	2.43 	2.53 	3.11 	3.75 	5.49 

0.35 	3.94 	4.13 	5.47 	7.46 	12.8 

0.45 	6.32 	6.55 	9.22 	14.8 	29.7 

0.55 	10.8 	10.8 	15.8 	31.5 	74.2 

0.65 	21.5 	19.8 	28.7 	76.6 	215. 

0.75 	56.4 	45.1 	60.0 	240. 	831. 

0.85 	253. 	160. 	174. 	1270. 	5890. 

0.95 	6280. 	2400. 	1600. 	39600. 	330000. 

0.05 	0.714 	0.721 	0.754 	0.775 	0.839 

0.15 	2.26 	2.32 	2.67 	2.93 	3.72 

0.25 	4.05 	4.26 	5.36 	6.45 	9.65 

0.35 	6.34 	6.76 	9.35 	12.7 	22.4 

0.4S 	• 9.67 	10.4 	15.6 	24.9 	52.1 

0.55 	15.5 	16.4 	26:4 	52.1 	130. 

0.65 	28.6 	28.7 	47.6 	125. 	378. 

	

0.75 	69.2 	61.3 	98.3 	386. 	1450. 

	

0.85 	292. 	202. 	280. 	2020. 	10300. 

	

0.95 	6920. 	2740. 	2520. 	62200. 	585000. 

Table 2.4.2 	Queueing time variances for five different queue disciplines 

when service times are D1 
 (Eriang), D

2
(exponential) or D

3
(mixed exponential) 

with traffic intensity ps 
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tion is an increasing function of T, the service time distribution coeffi-

cient of variation. This latter aspect underlines a previous suggestion 

that queue disciplines which use prior information regarding service times 

are probably most effective in reducing congestion when service times are 

frequently quite different from their mean value. 

While Table 2.4.1 verifies that the shortest service time discipline 

minimizes mean queueing time, it is also apparent that the optimal, two-

class priority rule which was discussed in §§2.1 and 2.2 has at least one 

important characteristic. Both tables show that this practical queue dis-

cipline generally induces a queueing time distribution which has a smaller 

mean and variance than the comparable distribution when the queue disci-

pline is service in order of arrival. The entries in Table 2.4.2 also 

reflect the hidden disadvantages of the shortest service time rule. Con-

way & Maxwell(1962) point out that this ideal queue discipline reduces 

mean queueing times, overall, at the expense of customers whose service 

times are long. The shortest service time rule usually means that their 

queueing times will be excessively long as well. This disadvantage is 

shown in Table 2.4.2 in the values for queueing time variance; these exceed 

corresponding entries for service in order of arrival or the optimal, two-

class priority rule in conditions of heavy traffic. The rule of §§2.1 and 

2.2 generally appears to be a better method of reducing congestion than 

service in order of arrival or the queue discipline which always serves 

the customer with the shortest service time. 

The entries in Tables 2.4.1 and 2.4.2 also show that service in order 

of arrival causes less congestion than a queue discipline which assigns 

fixed priorities at random. Similarly, the values of E(Wq) and Var(Wq) 

for the longest service time rule emphasize that the reasons for choosing 

this queue discipline must be economic, since this rule appears to maxi-

mize not only the mean but also the variance of the queueing time. 
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There are many other priority queueing disciplines which we have not 

considered, including several types of preemptive disciplines. No doubt 

some of these disciplines would be more suited to individual queueing 

situations, particularly if service preemptions involve little loss of 

time. However, the optimal, two-class priority rule of g§2.1 and 2.2 Is 

a practical alternative to service in order of arrival whenever adminis-

trative simplicity and effectiveness in controlling congestion are major 

considerations. 
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CHAPTER 3. Controlling congestion behind the counter 

3.1 Linking shut-down control of the service process to queue size 

Ordinarily, congestion in the queue is the primary concern. However, 

the situation behind the service counter may also require attention. Ya-

din & Naor(1963) point out that if, for example, an M/G/1 queue is organ-

ized so that E(Lg  ) <1, the server may be idle nearly 30% of the time. Un-

less the unit cost of serving time is quite small, this idle fraction pro-

bably means resources are being wasted. Suppose that to do ancillary 

tasks the server could use, profitably, idle periods exceeding w times the 

mean length of an idle period. Such idle periods occur with probability 

e u) which may be quite small. By reorganizing the service process, how-

ever, it might be possible to create some longer idle periods which the 

server could suitably exploit. 

Yadin & Naor(1963) proposed shut-down control as a means of reorgani-

zing the service process in order to increase the length of individual 

idle periods. Simplicity is an important feature of this method; two 

operating phases characterize the reorganized service process. During a 

shut-down phase the server does ancillary work and a queue of customers 

forms. Once the queue equals a predetermined size, the server begins to 

serve the waiting customers. This latter phase is usually called the busy 

period. A busy period ends and a new shut-down phase begins when a depar-

ting customer leaves behind an empty system. 

Shut-down control is usually linked to the queue size; the critical 

value, N say, gives rise to the name (0,N) control which is sometimes used 

In the literature [cf. Yadin & Naor(1963), Bell(1971)]. However, other 

properties of the queueing process can be used to determine when a shut-

down phase should end. In §3.2 we consider a control method which moni-

tors the virtual queueing time. When this quantity exceeds a threshold 

level V during a shut-down phase, another busy period begins. 
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The (0,N) version of shut-down control has been investigated from two 

main perspectives. In their introductory paper, Yadin & Naor(1963) derive 

an expression for E(L), the average line length in the steady-state. In 

addition to the usual assumptions of (0,N) control, these authors include 

random start-up and shut-down intervals at the phase change epochs. In a 

brief discussion of costs, a total system operating cost which is linear 

with respect to the average value of each of its components is proposed. 

This assumption enables the authors to derive a simple expression for the 

value of N which minimizes the marginal cost per unit time of introducing 

(0,N) control into a steady-state M/G/1 queue. 

Heyman(1968) and Bell(1971) arrive at (0,N) control from a different 

starting-point; Bell corrects and improves the results which Heyman ob-

tained. Initially, both authors consider an M/G/1 queueing system with a 

removable server. The system operating cost is assumed to be linear, con-

sisting of different unit costs for customer waiting time, server idle 

time, server running time and fixed start-up and shut-down charges. Each 

author sets out to prove that shut-down control is the optimal stationary 

operating policy for continuously discounted, infinite-horizon, expected 

operating costs. Bell first establishes that an optimal stationary oper-

ating policy has a form which is no more than a simple variation on shut-

down control. Then, using a Markov renewal programming formulation he 

proves that shut-down control is the optimal stationary operating policy 

for an M/G/1 queue with the given operating cost structure. 

The theorems upon which the results of both Heyman(1968) and Bell(1971) 

depend only require bounded expected costs between transitions in the state 

space. The simple assumptions concerning operating costs probably sim-

plify the necessary algebraic manipulations. Neither author indicates how 

different assumptions about system operating costs might affect their 

conclusions. 
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Adopting (0,N) control in a queueing system changes important stochas-

tic processes, such as the queue size distribution. To assess how effec-

tively shut-down control reorganizes the queue we need to analyze the 

changed processes. Previous authors have usually restricted their atten-

tion to average values. In the following discussion we derive new results 

concerning the probability distributions of various stochastic processes 

in the reorganized queueing system. 

Shut-down control naturally divides the queueing process into alter-

nating shut-down phases and busy periods, say S(N) and B(N), respectively. 

Let Ts(N)  and TB(N)  be the corresponding lengths of S(N) and B(N). Since 

Ts(N)  is the sum of N independent, identically distributed exponential 

random variables, Ts(N)  has a gamma distribution with mean N/A. 

cc, 
- 

Suppose b*(s)j stb e 	(t)dt, where b(.) is the probability density 

function associated with the random variable TB(1) ET13' Cox & Smith(1961, 

P.145-147) show that b*(s) satisfies the functional equation 

b
*
(s)=g

*
{s+X-Ab

*
(s)}, where g

*
(,) is the Laplace transform of the service 

time probability density function g(•). Since TB(N) is the sum of N inde-

pendent, identically distributed random variables with Laplace transform 

b*(s) it follows that 

e sTSCHI r. 	 1,*(s) 	 (3.1.1) 

Nal 
For p<1, Cox.and Smith have shown that E(TB)=g1 /(1-p); hence E{TB(0)=7-, 

a result which Yadin & Naor(1963) obtain by using direct arguments with 

averages. 

Example 3.1.1 

When g(x).ue lix  and p <1, Cox & Smith(1961, p.148) have shown that 

2 	1,2 
t:.*(s)  

a 	I12 

E 
-s-Tis(v41 % (—L.[I+e+ -5--- (14-e#5.2)-4 1 )) 

a? 	A4 	AO. 	? 

Therefore, 



-44- 

It follows(Abramowitz & Stegun,1964,29.3.58) that the probability density 

is 	-“IA.4>) of T
B(N) N e  

N 	I t4  ( 	 ) t) 
t 

where IN(t) is the Besse] function of imaginary argument and Nth order. 

From the server's perspective, shut-down control links N idle periods 

to form one shut-down phase of average length NIX. However, customers 

generally experience longer queues and increased queueing times; there-

fore, we consider the equilibrium queueing time distribution. 

Since the queueing time process for an arbitrary customer, C, is gen-

erally non-Markov, we consider the Takgcs virtual queueing time process 

(sometimes called the waiting time process) [cf. Takgcs(1962, p.49)] . 

Initially, we assume that customers who arrive during a shut-down phase 

first contribute to the virtual queueing time process when the next busy 

period begins. This definition makes the virtual queueing time process 

Markov, and at any time t either the server is shut down, j customers are 

present (j=0,...,N-1) and the virtual queueing time, n(t), is zero, or the 

server is busy and n(t)=x>0. 

Let P.(t)=pr(server is shut down and j customers are queueing) (t >0; 

j=0,...,N-1) and p(x,t)=pr{server is busy and n(t)=x} (x>0; t >0). Since 

arrivals during S(N) first contribute to n(t) at the phase change epoch, 

the distribution function for n(t) is discontinuous at x=0, and continu-

ous for x>0. Time-dependent forward Kolmogorov differential equations 

for the probability distribution of n(t) are given by 

Po■t) - X ro  (-0 + 	o,t) 

k*-) - X P4 kt) + a pilt) 	, N- 

kok,t) z 	i)ki)k;t. - 	-1 X 1) (t.) 3 (16 hip(%-u,-01Mau, 
a,,, 	 N., 14 

where gN(x) is the N -fold convolution of g(x). 

(3.1.2) 
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When p<1, the equilibrium queueing time distribution for C coincides 

with the equilibrium probability distribution for the virtual queueing 

time. If we replace pi(t) and p(x,t) by pj and p(x), then steady-state 

equations corresponding to (3.1.2) are 

(3.1.3) A1)0 	v)lo 

N 	= X 

	

3 	
1,.. • 04-0 	(3.1.4) 

-%  
0 	p ( 14 ■ X p 	# X 	x TI,(4  00 	'X. i' llAnt-u)(16-4)41L4. 	(3.1.5) 

In equilibrium, according to (3.1.3), the rate at which departing custo-

mers leave an empty queue behind equals the rate at which arriving custo- 

mers find the system empty. 
00 

Let p (s)= e-sxp(x)dx and take Laplace transforms in (3.1.5) with 
04 

respect to x. Then 

N 
4d 	 *f 	44( 	Air 07. S p ‘S 	pt0 X plir(S) # XV> / C3 ‘$)1 + A p \Si Ca S) 	(3.1.6) 

Using (3.1.3) and (3.1.4) we obtain the expression 

	

_ ?c0) 	is4ksq4  

	

S- 	>0:3*(s) 

Since Ag1 =p, as s4-0+ (3.1.7) becomes 

p 
*( 	- P(o) 1'4% 

N-1 
Using (3.1.3), (3.1.4) and the normalizing conditionp..1. 

j=0 

we obtain the equation Npo + p*
(0)=1, 

14 1401  4.  N cLP(c) _ 
1-? 

17,*(s - 	( cNr 
Nis—x-003*w) 

i .e. 

Therefore 

(3.1.7) 

p(x)dx 

(3.1.8) 

and lim p
*
(s).p is the probability that C's queueing time is positive, 

s+0+ 

i.e. that C arrives during B(N) [CcB(N)] . Hence C arrives during S(N) 

[CES(N)] with probability 1-p, as direct considerations - indicate we should 

expect. 
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By definition, customers arriving during S(N) first contribute to 

the virtual queueing time process when B(N) begins. Therefore, if W (N) 

Is the equilibrium queueing time for (0,N) control 

Ei
-O./ (NI %4-1  
e % 	= 5- p. + p 

a. =0  1 - i cisl\ t'l  
• -.0 	slve4,  = 1? + ? 	 (3.1.9) 

swqtt: 
1- Vi(s)  

591 
.s1datti 

= (I-0E e ' I C e Skt.11)+ e Eie ' I CE 13041) . 

It follows that the queueing time distribution for a busy period arrival 

is not affected by the previous definition of queueing time for shut-down 

phase arrivals. We now relax that definition and consider the conditional 

distribution of W (N) for customers arriving during a shut-down phase. 

Exactly N customers arrive during each S(N); therefore C is the Jth 

arrival, 	 Srrival, Ci, with probability 1/N, i.e. pr(C=C.c (N))=1/N, 

If customers are served in order of arrival the jth arrival queues while 

N-j additional customers arrive and then while the j-1 customers preceding 

him in the queue are served. Therefore, 

-s‘,/ (c41 

X-vs 	 ‘C** IN) • 

Hence 	-sW( ) 
EEle 	IC.r.CieS(N1 priC.C.jeS(N)) 

4 cs*(,)1 
.N

3 
 IX-vs) 

-sIwaltil i.e. 	t le ' 	ICESNI.T. 1 	 +' 	
r, 	\,,, , 

(3.1.10) 

It follows from (3.1.9) and (3.1.10) k: 4h s:t $341(s 	:.%%.$) 1 ciirs\NI  . 

N h- kx4s)sir(s\ [ \ >0:s) - I ie") .1 E. 1 e (% 	" ? 	 
- sw (NI 	t  X-1- S 	i x ‘t■I 	1 	1 	 ls1 

1- i 914 (S\IN  0 
k 	I- 4?) 	s%st 
	 (3.1.11) 

4 )  
1- ? I-  ca*(S%  

SSt 
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In the limit, as s+04., the right-hand side of (3.1.11) tends to unity; 

hence (3.1.11) is the Laplace transform of a proper probability distribu-

tion. When N=1, (3.1.11) reduces to the Laplace transform of the equili-

brium queueing time distribution in an M/G/1 queue without shut-down 

control [cf. (2.2.3)]. 

Using (3.1.11) we can show that 

ct(141 	.1„!Cia... 4 i tl-t 
1..k, 	X • (3.1.12) 

An identical expression for EN (N)1 can be obtained by analyzing the 

total queueing time of all customers served during a shut-down phase and 

the subsequent busy period. Yadin & Naor(1963) obtain (3.1.12) by yet 

another argument. 

In an M/G/1 queue without shut-down control the equilibrium mean 

queueing time is Pg2/(1-p). It follows, from (3.1.12), that the increase 

in mean queueing time caused by shut-down control is i(N-1)/A. 

The form of (3.1.11) suggest an interpretation of the equilibrium 

queueing time process for busy period arrivals. Notice that 

cs4 (011/4 _ c°  I 
Sks, 	 kca l  

(k r- 1 ,2,•••) 

where gk(t) is the probability density function corresponding to Gk(t), 
00 

the k-fold convolution of G(.),A6k(x)=1-Gk(x) and kg,..itg(t)dt. Then 
' 

the equilibrium queueing time distribution for busy period arrivals has 

the Laplace transform 

44(s 	(%- 	 (3.1.13) 

The function h
k
(s) (k=1,2,...) is the Laplace transform of the probability 

density function for the equilibrium forward (or backward) recurrence-time 

in a renewal process with interval probability density function gk(x). 

-  
Notice, also, that 	

(1 p)s 	
is the Laplace transform of the equilibrium 

s-A-14g
*
(s) 
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queueing time distribution in an M/G/1 queue without shut-down control 

[cf. (2.2.3)1. Since (3.1.13) is the product of two Laplace transforms, 

the equilibrium queueing time for busy period arrivals has two independent, 

additive components. The first is a residual length of time related to 

the clearing of the initial N customers. The second component is the 

steady-state queueing time in an M/G/1 queue without shut-down control. 

The probability distribution for W (N) can, in principle, be obtained 

by inverting (3.1.11); this may be difficult in practice. However, the 

moments of W (N) are easily recovered. 

3.2 Linking shut-down control of the service process to virtual 

queueing time 

One possible disadvantage of (0,N) control is that all shut-down 

phase customers are regarded alike. If service times are well dispersed 

about the mean value, several shut-down phase customers with long service 

times could cause considerable unnecessary queueing. Since queue size is 

sometimes only a rough measure of the workload in a queueing process, a 

more refined indicator of system workload might overcome this disadvantage. 

This substitute indicator should account for the workload associated 

with each shut-down phase arrival. If the future service times of custo-. 

mers are known, or can be accurately estimated, Takgcs(1962, p.49) virtual 

queueing time process would be a suitable alternative. It is surprising, 

therefore, that the idea of linking shut-down control to the virtual queue-

ing time has not appeared in the literature. To analyze a queueing process 

in which virtual queueing time determines server availability, we need a 

definition of virtual queueing time which applies both to the shut-down 

phase and to the busy period. 

Definition 

The virtual queueing time, n(t), is the time which a customer arriving 

at time t would need to wait until his service began if customers were 
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actually being served at t. 

Thus, n(t) is equal to the sum of the future service times, residual 

or otherwise, of all customers in the system at t. The obvious analogue 

of the (0,N) rule is (0,V) control, where V is a fixed, positive value. 

As each shut-down phase customer arrives, n(t) increases by the equivalent 

of that customer's service 'time. When n(t) (t>0) first equals or exceeds 

V, a busy period begins. Subsequent shut-down phases begin whenever n(t) 

is reduced to 0, i.e. whenever a departing customer leaves an empty sys-

tem behind. 

Much of the discussion in §3.1 applies to the analysis of (0,V) con-

trol. Generally, we will replace N by V in the notation, e.g. S(V) for 

S(N), etc., but the basic assumptions of §3.1 will not be changed. 

Let N
I 
represent the number of customers who arrive during an inter-

val I, and let Si  (i=1,2,...) be the future service time of the•ith arri-

val. The S
i
s are independent, identically distributed, non-negative ran-

dom variables; therefore, standard renewal theory arguments [cf. Cox(1962, 

pp.36,45)] give 

(i) 
pr{NS(V)

=k} =G
k-1 

(V)-G
k
(V) 	(k=1,2,...), 	(3.2.1) 

(ii) E{N
s(v)}=

1+  Ii(V), 	 (3.2.2) 

CO 

where G
o
(.)E1 and H(•) 	G.(.) is the renewal function defined by 

1=1 
Cox(1962, p.45). 

If g
*
(s) is a rational function of s, an explicit expression for 

(3.2.2) can be obtained by first inverting the Laplace transform 

s(1-g(9)) 

and then evaluating the resulting real-valued function at V. 

There is a simple explanation for (3.2.2). Although the renewal func-

tion, H(t), specifies the expected number of renewals in the interval 

(0,t) given that a renewal occurred at t*0, H(t) does not include the event 

at the origin. In (0,V) control the analogue of a renewal at time zero is 

the arrival of the first customer during a shut-down phase. In determin- 
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ing E{Ws(v)) this customer must also be counted; therefore, when a busy 

period begins the queue contains, on average, 1+H(V) customers. 

Using elementary conditional arguments we can show that oo 	 iT 
le  smi =E  prt‘Istil=" E e 	N 	" SW/ ivr.1 

co 

X+s X+s 
• s 

	

	 " 
Gt,(\1\ (T74;) 0., 

(3.2.3) 

E 'Two I 	>, a  { 	k\il 1 - 
I+ 

X
140A 	. 	 (3.2.4) 

To obtain an expression for the Laplace transform of TB(v)  we use 

results derived by Cox & Miller(1965, pp.244-246) for the busy period in 

the Takgcs process. Thus 

ca 	71.0  [ e 	I 71 {s(v)1=/11: e 	 (3.2.5) .  

where n{S(V))=no  is the value of n(t) when B(V) begins, no  >V. The func- 

* 
tion w(s) is that particular root of the equation s=w-X+Ag (w) which is 

positive when Re(s)>0 and which satisfies w(0)=0. 

Integrate (3.2.5) with respect to the distribution of no; then, 

"5-rekv)1 	E 	;c...)(s) 'kca l 	
(3.2.6) 

Other results in Cox & Miller(1965, pp.51-55) may be used to show that 

E 	iNsm  
- 

• 

1 - I t- Z (g*(0) K(S,Z) 
	

(3.2.7) 

V 

	

where K(0,z)= 	zn{jre-Oxgn(x)dx} for Re(B)>0 (1z1<1). By evaluating 
n=o 

the limit of (3.2.7) as z+1- we can express E(e
-e n

o) in terms of g
*
(0) 

and K(0,1). Thus (3.2.6) becomes 

	

-sTeAN) 	*( 	
co I: -0(51,x 

E 	} 	i- [I - 9 	( sli 	e 	caCno ct ,* II (3.2.8) 
vv.() 

An expression for E{TB(v)} can be obtained from (3.2.8). However, it 

follows from the results of §3.1 that 

E 	1  = 	E 	1 . `It 4 9,14(v)  
em) 	 w  SW/  

(3.2.9) 
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s(v)

=n, (3.1.11) gives .  

m I 	 1- p 
N 	YN 

%si) I iV  (5111 

(3.2.10) 

x45 
- kx4s)cf (s) 

(%-el syva, 
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Example 3.2.1 
, 0-1 

If g(x)=11e-", then g
n
(x)= "Uxi 	 e-ux  and H(t)=ut (t >0). After 

r (n) 

simplification, (3.2.3) becomes 

El  f 57%1 
X4.5 

S V  X4.5 
e 

Therefore(Abramowitz E Stegun,1964,29.3.81) the probability density func-

tion of TS(V) is Ae 
-(uV+At) 

I0(26:177- ) (t>0), where 10(z) is the Bessel 

function of imaginary argument and order 0. 

Similarly, (3.2.8) becomes -w(Wv 
El ei rr  IAN/ ,...  At 	e 	1 ,tA..t.tot.) 

where w(s)=1[s+A-u+{(s+A-02+41101] and we take the modulus of the square 

root. 

Since H(x)=ux, (3.2.4) and (3.2.9) become 

14- IAN t 4,10.V 

/ t  ITStV)) z  X 	
) 	

EIT5M1 = Askt-e) 

To evaluate the queueing time distribution of an arbitrary customer 

we condition on 
NS(v) 

 and use the results of §3.1. 

1- ? 	I- 34r(s)  
s51 

It follows from (3.2.1) and (3.2.10) that 

-S14 kv) 1 
e.  t E Eie w  IN 

de 	-4/01.(v) , 

Stv) 

% „.1  lickv)-G(v)i. (3.2.11) 
v-% 

nzl 

This transform cannot be simplified without first specifying the service 

time distribution. However, by using (3.1.13) and (3.2.2) the simple 

formula 

El)ft)  (v)) 2- 2153 4. 	1.40/) 

11, 	2 	2 X 

can be obtained; obviously, 	HIV) is the increase in queueing time cau- 

sed by (0,V) control. 

(3.2.12) 
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Example 3.2.2 

	

(pV) 	
e 
-pV 

n-1 
Let g(x)=pe-Px. Then G

n-1
(V)-G

n
(V)- 	(n=1,2,...) and 

r(n) 

g
*
(s)=--a- p+s . Substituting in (3.2.11) gives 

s.m.V 	 skOi 
-44„lv11 	 ).4% 

e  x tie 	s)v  xiA (x4,5(14.-vs)e 	)4 	 (s+).-x) 
Preliminary attempts to invert this transform suggest that the probability 

distribution of W (V) can be expressed as the sum of a constant factor, 

an exponential term and a complicated linear combination of several Besse] 

functions of imaginary argument. The mean queueing time, E{Wq(V)}, is 

equal to —2--- 	. 

11(1-P) 

The preceding discussion is based on the assumption that server avail-

ability should be linked to virtual queueing time instead of queue size. 

It is quite possible that in a more refined version of shut-down control 

server availability would depend on both queue size and virtual queueing 

time. The optimal combination has not been obtained. 

3.3 The effect of shut-down control on a queueing process 

Users of shut-down control will probably be interested in quantita-

tively assessing its two major effects. The service process is reorgan-

ized to create some longer idle periods. For (0,N) control, Ts(N), the 

length of the shut-down phase, has a gamma distribution with mean N/A and 

coefficient of variation N. The distribution of 
TS(V)' 

the length of 

the (0,V) shut-down phase, depends both on V and on the service time dis-

tribution. If Ts(N)  and TS(V)  are made to have the same mean value, the 

distribution of 
Ts(v) 

is more dispersed than that of T
S(N)* 

An effect of equal importance in shut-down control is the general in-

crease in queueing times; every customer must queue because the server is 

never idle. Without shut-down control a proportion, 1-p, of all customers 

avoid queueing altogether. if shut-down control queueing times are too 
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long, the overall functioning of the system may be impaired. Therefore, 

we need to investigate the shut-down control queueing time distribution. 

Laplace transforms of the queueing time distribution for (0,N) and 

(0,V) control are given by (3.1.11) and (3.2.11), respectively. To evalu-

ate these expressions, a service time distribution must be specified. In 

• a similar situation in Chapter 2 we considered three service time distri-

butions, D1 , D2  and D3  (cf. §§2.1,2.2). These were chosen as simple ex-

amples of service time distributions with coefficients of variation less 

than, equal to, and greater than unity, respectively. For each Di  (i.1, 

2,3), the probabilities of various queueing times have been calculated for 

different values of the shut-down control parameters. These probabilities 

will be used to determine more precisely how shut-down control affects 

queueing times. 

Two queueing systems will be said to correspond if their respective 

arrival processes and service time distributions are identical; we sup-

pose that the time scale for each system is the same. In the remainder 

of §3.3 we compare the queueing time distribution in an M/G/1 queue with-

out shut-down control to queueing time distributions in corresponding 

shut-down control queues. Comparisons for (0,N) and (0,V) control are 

considered separately. 

Customers in a shut-down queue are likely to observe that queueing 

times are longer than necessary because the server is not available at all 

times. Therefore, from the customer's perspective, it is important to 

compare the probability of queueing longer than a fixed length of time in 

a queue without shut-down control to the probability of queueing longer 

than the same fixed length of time in a corresponding queue with shut-down 

control. Consequently, for the queue without shut-down control specified 

by Di  and p we have calculated Pk(p), the probability of queueing longer 

than k times EN ), where EN ) is the mean queueing time in that particu-

lar queue; for the corresponding (0,j) shut-down control queue we have 
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evaluated Pk(j,p), the probability of queueing longer than the same fixed 

time, k times E(Wci), (j=N,V). 

3.3.1 The effect of (0,N) control on queueing time 

The Laplace transform of the queueing time distribution for (0,N) 

control is given by (3.1.11). The transform is a linear combination of 

two separate transforms; each separate transform corresponds to a proba-

bility distribution. Therefore, by separately inverting two individual 

transforms for each Di, exact probabilities can be calculated. Details 

of the transform inversions are unimportant. In the worst possible case, 

D3, the probability distribution for W (N) is a linear combination of gamma 

distributions; hence, the required probabilities were evaluated numeri-

cally using the algorithm referred to in §2.2. For each service time dis-

tribution, the unconditional queueing time distribution for a queue with-

out shut-down control can be derived from the conditional queueing time 

distributions given in (2.2.4). 

Calculations were carried out for three values of N (2,5,8), three 

values of k (1,2,3) and 10 values of p (0.05,...,0.95) for each Di. The 

calculated probabilities, Pk(N,p), are arranged in Table 3.3.1. Due to 

rounding errors the results for p=0.95 are probably larger than the exact 

probabilities. Some of the probabilities are also plotted in Figs. 3.3.1 

a, b and c. 

A column of the same table also gives the mean queueing time, E(Wci), 

for corresponding queues without shut-down control; for a given Di  and 

p, k times EN ) is the fixed length of queueing time used in calculating 

both P
k
(p) and Pk(N,p). If required, mean queueing times in corresponding 

shut-down queues can be obtained by adding (N-1)/p to the given values 

of EN ). 

For fixed values of k and p the probabilities, Pk(p), are negligibly 

different for the three queues without shut-down control. Therefore, 
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p 
Dl  

(Wq  ) 

D2 D
3 

kwl 

D2  
03 

Pk(N,p) 

01D2 D
3 

D
I 

.k•3 

D2 D
3 

2 0.997 0.973 0.957 0.991 0.948 0.919 0.983 0.923 0.884 

0.05 0.079 0.105 0.132 5 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.998 0.998 

8 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

2 0.971 p.909 0.867 0.924 0.829 0.766 0.869 0.759 0.688 

0.15 0.265 0.353 0.441 5 0.997 0.995 0.994 0.993 0.990 0.987 0.989 0.985 0.978 

8 0.998 0.997 0.996 0.996 0.994 0.993 0.994 0.991 0.989 

2 0.919 0.832 0.772 0.807 0.697 0.622 0.695 0.587 0.516 

0.25 0.500 0.667 0.833 5 0.990 0.987 0.982 0.980 0.971 0.959 0.968 0.953 0.930 

8 0.994 0.992 0.990 0.988 0.983 0.979 0.981 0.974 0.967 

2 0.845 0.745 0.675 0.661 0.558 0.486 0.506 0.421 0.362 

0.35 0.808 1.08 1.35 5 0.980 0.973 0.963 0.957 0.937 0.908 0.930 0.891 0.841 

8 0.988 0.983 0.979 0.974 0.965 0.955 0.959 0.944 0.927 

2 0.752 0.653 0.580 0.508 0.426 0.368 0.337 0.279 0.240 

0.45 1.23 1.64 2.05 5 0.965 0.951 0.931 0.920 0.876 0.822 0.861 0.778 0.694 

8 0.978 0.970 0.963 0.952 0.935 0.915 0.923 0.894 0.858 

2 0.646 0.562 0.495 0.369 0.317 0.279 0.213 0.179 0.163 

0.55 1.83 2.44 3.06 5 0.942 0.914 0.877 0.852 0.768 0.682 0.723 0.590 0.486 

8 0.964 0.952 0.937 0.917 0.886 0.848 0.862 0.803 0.731 

2 0.536 0.483 0.428 0.269 0.241 0.228 0.144 0.122 0.126 

0.65 2.79 3.71 4.64 5 0.902 0.850 0.786 0.716 0.589 0.487 0.480 0.347 0.270 

8 0.942 0.921 0.896 0.856 0.795 0.720 0.746 0.623 0.507 

2 0.436 0.427 0.391 0.228 0.197 0.211 0.112 0.092 0.106 

0.75 4.50 6.00 7.50 5 0.817 0.728 0.634 0.466 0.365 0.306 0.226 0.164 0.152 

8 0.902 0.863 0.810 0.725 0.600 0.486 0.475 0.325 0.243 

2 0.414 0.396 0.404 0.215 0.169 0.206 0.084 0.072 0.084 

0.85 8.50 11.3 14.2 5 0.586 0.538 0.463 0.275 0.222 0.240 0.127 0.094 0.106 

8 0.793 0.708 0.597 0.388 0.306 0.278 0.181 0.126 0.132 

2 0.476 0.377 0.470 0.189 0.146 0.186 0.056 0.056 0.057 

0.95 28.5 38.0 47.5 5 0.486 0.408 0.477 0.211 0.158 0.200 0.065 0.061 0.062 

8 0.485 0.423 0.481 0.236 0.171 0.214 0.077 0.066 0.068 

Table 3.3.1 
	

Probabilities, Pk(N,p). that (0,N) shut-down queueing times exceed k times 

E(W ), mean queueing time in a non-shut-down queue with identical traffic 

Intensity, p, and DI (Erlang), D2(exponential) or D3(mixed exponential) 

service times. Shut-down phases end when N customers are waiting. 

The ev0Or■ts ■■•-% Wie,%5 Jr-v.1-414 are 0,Fosarox'w.nevir‘cw.% teacyAeulred 
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The probabilities that (0,N) shut-down and non-shut-down queueing times individually exceed k times the mean queueing 

time in the non-shut-down queue when service times are D
1'  D2 

 or D
3 
 and the traffic intensity is p. Shut-down phases end 

when N customers are waiting. In (a) lo..1 and N-2; in (b) k..2 and N-5. 
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The range of probabilities for all 

three non-shut-down queues 
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Fig. 3.3.1 c 	The probabilities that (0,N=8) shut-down and non-shut- 

down queueing times individually exceed three times the 

mean queueing time in the non-shut-down queue when ser-

vice times are D
1, 

D
2 
or D

3 
and the traffic intensity is 

p. Shut-down phases end when 8 customers are waiting. 

+ D
1 

(Erlang) 	a D2 (exponential) 	• D
3 

(mixed exponential) 

The range of probabilities that queueing time in any of the three non-

shut-down queues individually exceeds three times the mean queueing 

time. 
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these probabilities have been plotted in Figs. 3.3.1 a, b and c as the 

symbols, I ' to indicate the range of Pk(p) for the distributions D1 , D2  

and D3. 

Table 3.3.1 indicates several important aspects of the effect of (0,N) 

control on queueing time. For fixed p and Di, Pk(N,p), the probability of 

queueing longer than k times E(Wq), increases with N. Since E(Wq), mean 

queueing time in the corresponding queue without shut-down control, does 

not depend on N, the increase in Pk(N,p) is an obvious consequence of re-

quiring a greater number of customers to arrive before beginning a busy 

period. However, for fixed N and Di, the table shows that Pk(N,p) is de-

creasing in p. The reason for this decrease is discussed in §3.3.2. A 

consequence of this decreasing probability, however, is that the extra 

queueing time which shut-down control causes will be less additional incon-

venience to customers if traffic conditions are already heavy. 

Table 3.3.1 also shows that the probabilities Pk(N,p) are generally 

smallest for the most variable service time distribution, D3. This dif-

ference between the D
i
s arises because Pk(N,p) is defined as the probabi-

lity of shut-down queueing times which are long relative to mean queueing 

time, E(Wq  ) in the corresponding queue without shut-down control. By 

calculating, for fixed N and p, the probability of shut-down queueing times 

which are long relative to E{W (N)}, mean queueing time for the same shut-

down queue, It was found that the shut-down control queueing time distri-

butions determined by D1 , D2  and D3  do not differ significantly. The same 

calculations, which do not appear here, show that as N increases, so does 

the probability of queueing times at least as long as E{W (N)}; at the 

same time, however, shut-down control queueing times exceeding two and 

three times E{W (N)} become rather less probable. 



-59 -  
3.3.2 The effect of (0,V) control on queueing time 

The Laplace transform of the queueing time distribution for (0,V) 

control is given by (3.2.10) and (3.2.11). Though (3.2.11) is a weighted 

sum of Laplace transforms, the weights depend on the distribution of the 

conditioning variable NS(V)  and are independent of the transform argument. 

Thus, to determine the probability of a queueing time event, it is suffi-

cient to evaluate the required probability for (0,N) control where N=1,2,... 

and then calculate a weighted sum of probabilities, truncating the sum 

when convergence is adequate. For D 1, D2  and D3, general expressions for 

the weights are, at worst, a linear combination of gamma distributions in-

tegrated on the interval [0,V]; these can be evaluated without difficulty. 

Since the customer's perspective is equally important in both versions 

of shut-down control, we have calculated Pk(V,p), the probability that 

queueing time in a (0,V) shut-down queue exceeds k times E(W ), mean queue-

ing time in the corresponding queue without shut-down control. For each 

D., calculations were carried out for three values of p (0.25,0.55,0.85) 

and a range of values of V. The three values of p were chosen to repre-

sent light, moderate and heavy traffic conditions. Table 3.3.2 shows the 

approx1,-,oz.reet wolAwkei cscurAw.,ku. ok'oorfAb%.4.4.'%o,"%. 
calculated probabilities, Due to rounding errors, the values of Pk(V,p) 

for D1  service times when V>14.0 and p=0.25 are probably smaller than the 

exact probabilities. 

The last row of Table 3.3.2 gives the mean values, EN ), for corres-

ponding queues without shut-down control; given D. and p, k times E(W ) 

is the fixed length of queueing time used in calculating Pk(p) and Pk(V,p). 

Some probabilities from Table 3.3.2 are plotted in Figs. 3.3.2 a, b 

and c. For fixed k and p, the band of probability between horizontal lines 

on each graph represents the range of Pk(p) for Di, D2  and D3. 

Table 3.3.2 and Figs. 3.3.2 a, b and c show that unless p is reasonably 

large and V is quite small (two or three times the mean service time), shut- 



V k 

1 

p•0.25 

0
2 D 

3 

Pk(V,p) 	- 	60 

p.0.55 

DI 	D 
2 

- 

D
3 

D
1   

p.0.85 

D
2 D

3 

1 0.637 0.633 0.642 0.544 0.535 0.517 0.416 0.400 0.411 

2.0 2 0.565 0.555 0.556 0.332 0.331 0.323 0.210 0.170 0.209 

3 0.495 0.488 0.487 0.200 0.200 0.199 0.081 0.073 0.085 

1 0.890 0.830 0.809 0.750 0.692 0.655 0.446 0.442 0.431 

4.0 2 0.834 0.765 0.736 0.530 0.479 0.447 0.230 0.187 0.221 

3 0.775 0.704 0.673 0.356 0.318 0.296 0.094 0.080 0.093 

1 0.963 0.918 0.888 0.860 0.794 0.747 0.500 0.491 0.458 

6.0 2 0.932 0.872 0.833 0.686 0.603 0.551 0.251 0.206 0.232 

3 0.897 0.826 0.782 0.515 0.437 0.391 0.108 0.088 0.101 

1 0.983 0.958 0.932 0.914 0.858 0.811 0.569 0.542 0.491 

8.0 2 0.966 0.926 0.890 0.788 0.698 0.635 0.275 0.229 0.246 

3 0.945 0.894 0.850 0.644 0.542 0.479 0.124 0.097 0.109 

1 0.990 0.976 0.957 0.939 0.898 0.856 0.640 0.593 0.528 

10.0 2 0.978 0.954 0.926 0.848 0.767 0.703 0.305 0.256 0.260 

3 0.965 0.931 0.895 0.736 0.629 0.555 0.141 0.107 0.118 

1 0.992 0.984 0.971 0.952 0.922 0.887 0.704 0.641 0.565 

12.0 2 0.983 0.969 0.948 0.883 0.817 0.756 0.343 0.286 0.277 

3 0.973 0.952 0.923 0.796 0.697 0.621 0.160 0.120 0.128 

1 0.991 0.989 0.979 0.960 0.938 0.909 0.755 0.684 0.603 

14.0 2 0.983 0.977 0.961 0.904 0.851 0.796 0.388 0.320 0.297 

3 0.976 0.964 0.942 0.835 0.750 0.675 0.182 0.134 0.138 

1 0.981 0.990 0.983 0.965 0.947 0.924 0.794 0.721 0.638 

16.0 2 0.975 0.981 0.968 0.918 0.875 0.897 0.438 0.356 0.318 

3 0.968 0.970 0.953 0.861 0.789 0.719 0.207 0.151 0.148 

1 0.950 0.990 0.982 0.967 0.953 0.933 0.822 0.752 0.670 

18.0 2 0.945 0.982 0.970 0.926 0.891 0.849 0.489 0.394 0.340 

3 0.939 0.973 0.957 0.877 0.817 0.754 0.236 0.170 0.160 

1 0.884 0.986 0.976 0.952 0.953 0.937 0.827 0.777 0.698 

20.0 2 0.879 0.979 0.966 0.916 0.900 0.863 0.525 0.430 0.364 

3 0.874 0.972 0.955 0.873 0.834 0.779 0.261 0.191 0.172 

EN ) 0.500 0.667 0.833 1.83 2.44 3.06 8.50 11.3 14.2 

Table 3.3.2 	Probabilities, Pk(V,p), that (0,V) shut-dawn queueing times exceed k times E(Wq), 

mean queueing time In a non-shut-dawn queue with Identical traffic IntensIty,sp, 

and D1 (Eriang), D2(exponential) or D3(mixed exponential) service times. Shut-down 

phases end when the virtual queueing time >V. 
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Fig. 3.3.2 	The probabilities that (0,V) shut-down and non-shut-down queueing times individually exceed k times the mean queueing time 

in the non-shut-down queue when service times are D1, D
2 
or D

3 
and the traffic intensity is p. Shut.-down phases end when 

the virtual queueing time > V. In (a) k.1 and p.0.25; in (b) k.2 and p-.0.55. 
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Fig. 3.3.2 c 	The probabilities that (0,V) shut-down and non-shut-down 

queueing times individually exceed k times the mean queue-

ing time in the non-shut-down queue when service times are 

D
1' 

D
2 
or D

3 
and the traffic intensity p=0.85. Shut-down 

phases end when the virtual queueing time 	V. 

D
1 
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2 
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3 

(mixed exponential) 

• 
- • 

K 
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k= The range of probabilities that queueing times in all three non-

shut-down queues exceed k times the mean queueing time (k=1,2,3). 
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down queueing time probabilities, Pk(V,p), are often at least twice as 

large as Pk(p), the probability of queueing for the same fixed length of 

time in a corresponding non-shut-down queue. When V is an order of magni-

tude larger than the mean service time, shut-down queueing times which are 

long relative to EN ) are almost certain unless traffic conditions are 

already heavy, e.g. p=0.85. 

It was noted in §3.3.1 that for fixed k, N and D 	Pk(N,p) is decreas- 

ing in p. Table 3.3.2 shows that when k, V and Di  are fixed, Pk(V,p) is 

also a decreasing function of p. An explanation for this dependence is 

suggested below. 

Since D
1, 

D
2 
and D

3 
have the same mean, changes in the traffic inten-

sity are obtained by adjusting the rate of the Poisson arrival process. 

The conditional mean and variance of the queueing time distribution for 

shut-down phase arrivals, E(W (N)1CeS(N)1 and Var{W (N)ICcS(N)), are both 

monotonic decreasing functions of X. Conversely, E(Wq), the mean queueing 

time in a corresponding queue without shut-down control, is an increasing 

function of X. Therefore, the conditional probability that shut-down phase 

arrivals queue for longer than k times EN ) decreases as A increases. 

This effect is accentuated by the weighting factors which determine the 

unconditional probability Pk(N,p). When p is small, the factor 1-p empha-

sizes the shut-down phaSe arrivals queueing time distribution; when p is 

fairly large, the weighting factor, p, emphasizes the contribution to 

Pk(N,p) of the queueing time distribution for busy period arrivals. The 

mean of this latter conditional distribution is an increasing function of 

A which always exceeds EN ), but as ()A the difference between the con-

ditional mean and EN ) becomes small relative to EN ) for sensible values 

of N. Therefore, we conclude that prN (N) >kE(W )1Ca(N)} is also a de-

creasing function of X. Hence, as p=2X increases, the probability Pk(N,p) 

decreases. Obviously, since Pk(V,p) is a linear combination of Pk(N,p)'s 

and the weighting factors depend only on V and the service time distribu- 
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tion, Pk(V,p), the probability of (0,V) queueing times which are long rela-

tive to EN ), will be a decreasing function of p as well. Thus, the ex-

tra queueing time which either (0,N) or (0,V) control causes will be less 

additional inconvenience to customers if traffic conditions are already 

fairly heavy. 

3.3.3 Choosing between (0,N) and (0,V) control 

In deciding between (O,N) and (0,V) control in a given situation, the 

choice to be made would probably depend on several factors, but particu-

larly on the pairs of values of N and V which define alternative versions 

of shut-down control. If we make the mean length of the shut-down phase 

the same for both (0,N) and (0,V) control then, for a given service time 

distribution with renewal function H(.), (0,i) and (0,Vi) are alternative 

versions of shut-down control, where N=i , V=V, is a solution of the equa-

tion N=l+H(V) 

t 	g2 
Cox(1962, p.47) shows that H(t)--+---7- 	o(1). Thus, for each 

g1 2g1 - 1 

servicetimedistributionD.,we can approximate 1+H(V) by IV+ 4g2; 

therefore, 

v= 2N -ig2 	 (3.3.1) 

defines a set of alternative versions of shut-down control, {(0,n),(0,Vn)1 

where N=n, V=Vn  satisfies (3.3.1) (n=2,3,...). The probabilities Pk(no) 

and Pk (V
n' 
 p)(n=2,3,...) which were calculated in §§3.3.1 and (3.3.2) can 

then be used to choose between (O,N) and (0,V) control in a number of dif-

ferent queueing situations. 

Table 3.3.3 gives values of P1 (N,p) and P1 (V,p) when V is defined by 

(3.3.1) for seven values of N (2,...,8) and the service time distributions 

D1, D
2 
and D3; • the three values of p (0.25,0.55,0.85) represent light, 

moderate and heavy traffic conditions, respectively. We suppose that, for 

the given set of alternative versions of shut-down control, the version 

with uniformly smaller values of 151 (-,p) for a given Di  and p is the better 
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p=.25 

P1 (N,p) 

p=.55 p=.85 
N V 

p=.25 

P 1 (V'p) 

p=.55 p=.85 

0.919 0.646 0.414 D
1  

2.5 0.718 0.602 0.422 

0.832 0.562 0.396 2 D
2 

2.0 0.633 0.535 0.399 

0.772 0.495 0.404 D
3 

1.5 0.560 0.469 0.407 

0.976 0.854 0.439 Dl 4.5 0.914 0.782 0.458 

0.961 0.767 0.435 3 D
2 

4.0 0.830 0.692 0.442 

0.935 0.690 0.416 0
3 

3.5 0.776 0.624 0.426 

0.987 0.920 0.499 D
1  

6.5 0.970 0.876 0.516 

0.982 0.870 0.482 4 
02 

6.0 0.918 0.794 0.491 

0.973 0.813 0.435 0
3 

5.5 0.872 0.726 0.451 

0.990 0.942 0.586 D1  8.5 0.985 0.921 0.587 

0.987 0.914 0.538 5 D
2 

8.0 0.958 0.858 0.542 

0.982 0.877 0.463 D
3 

7.5 0.923 0.797 0.483 

0.992 0.952 0.675 D
1  

10.5 0.990 0.943 0.657 

0.989 0.934 0.598 6 
02 

10.0 0.976 0.898 0.593 

0.986 0.910 0.502 0
3 

9.5 0.951 0.846 0.518 

0.993 0.959 0.745 D
1  

12.5 0.992 0.955 0.717 

0.991 0.944 0.657 7 D
2 

12.0 0.984 0.922 0.641 

0.988 0.927 0.548 0
3 

11.5 0.968 0.880 0.556 

0.994 0.964 0.793 D 14.5 >0.992 0.964 0.766 

0.992 0.952 0.708 8 
02 

14.0 0.989 0.938 0.684 

0.980 0.937 0.598 0
3 

13.5 0.977 0.904 0.593 

Table 3.3.3 	Probabilities, PON,p) and P1 (V0), that in alternative (0,N) 

and (0,V) shut-down queues queueing times exceed mean queue-

ing time in a corresponding non-shut-down queue with traffic 

intensity, p, and D (Erlang), D (exponential) or D (mixed 
1 	2 	3 

exponential) service times. 
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choice in that specific queueing situation. 

Table 3.3.3 shows that when p equals 0.25 and 0.55, P1 (V,p)< P1 (N,p) 

for each D1 , though the difference between corresponding entries is not 

always significant. When traffic is heavy, e.g.p=0.85, neither (0,N) nor 

(0,V) control is clearly the better choice on the basis of the stated cri-

terion. However, corresponding entries in the table for alternative ver-

sions of shut-down control are negligibly different when p=0.85. There-

fore, Table 3.3.3 suggests that, from the customer's perspective, (0,V) 

control is probably a better choice than (0,N) control for many queueing 

situations. However, the advantages to customers of adopting (0,V) con-

trol instead of (0,N) control in heavily congested queueing systems are, 

at best, marginal. 

In Chapters 4 and 5 we return to the problem of controlling conges-

tion in the queue; therefore, we now relax special definitions and conven-

tions which were a necessary part of the preceding discussion of shut-down 

control. 
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CHAPTER 4. Adaptive control of the service process 

4.1 Linking the service process to the line size 

Modern industrial processes frequently utilize feedback control pro-

cedures to ensure the quality of the finished product. By frequent or 

continuous monitoring of selected properties, process deviations which 

might affect product quality are detected. Corrective action is then auto-

matically taken to prevent an unacceptable decline in the quality of the 

end-product. 

Similar techniques ought to lend themselves naturally to the problem 

of controlling congestion in a queueing system. However, relatively few 

models have been suggested. Those which have appeared usually link the 

control action to the line size process. This association is a natural 

one since the length of the line is one indication of the amount of con-

gestion in the system. Furthermore, the number of customers present may 

be one of the few properties of a queueing system which can be quickly 

evaluated or continuously monitored. 

Control models which have been suggested generally require Markov 

assumptions. For the M/M/s queueing process, Moder & Phillips(1962) pro-

pose a control rule which permits the number of active servers to vary be-

tween the limits s1  and s2  (s1 <s2). Two control levels, n and N (n<N) are 

selected, and initially s
1 
servers are active. Each time the queue size 

increases from N-1 to N customers, an additional server is introduced un-

less s
2 

servers are already busy. Conversely, each time the queue size 

drops from n+1 to n customers, a server is withdrawn unless only s1  servers 

are active. The authors evaluate the usual equilibrium properties such as 

the state probability distribution, E(L), E(Lq) and the rate at which ser-

vers are activated. Some numerical computations illustrate the results 

obtained. 
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Unless channel start-up and running costs are negligible, however, 

the rule which Moder and Phillips propose is probably too sensitive to 

random fluctuations in the queue size. When an extra serving channel has 

just been opened, the coincidental arrival of another customer before at 

least one departure occurs is hardly sufficient reason to open yet another 

service channel. 

A different approach to a similar situation has been suggested by 

Magazine(1971) who considers the same Markov queue with s servers but re-

stricts the system capacity to M customers. At points equi-spaced in time 

a control decision is taken based on the number of customers present and 

the number of active servers, say k <s. Three different types of decisions 

are possible; additional servers, to a maximum of s-k, may be activated, 

surplus servers, to a maximum of k, may be withdrawn, or the system may 

be left unchanged. By assuming constant start-up, shut-down, and unit 

operating costs which are identical for each server, and convex customer 

holding costs, the author is able to use dynamic programming techniques 

to deduce the form of an optimal control policy. Though Magazine considers 

three different criteria for optimality --minimum expected operating cost 

discounted over a finite horizon, the same cost discounted over an infinite 

horizon, and minimum average operating cost — he shows that, in each case, 

the optimal control policy for this periodic review situation can always 

be characterized by a non-decreasing sequence of s integers. Regrettably, 

Magazine does not suggest a method for determining the optimal policy in 

a particular situation nor does he provide worked examples to illustrate 

the results. 

In concurrent papers, Yadin E Naor(1967) and Gebhard(1967) have sug-

gested an interesting technique called hysteresis control. The rudiments 

of the method are probably best understood by referring to Fig. 4.1.1. In 

the simplest case, two control thresholds, r and R (r<R) are selected. 
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>  L 
r R 

Fig. 4.1.1 	Relation between line size, L, and the exponential service 

time rate parameter, a, determining a hysteresis control 

pattern. 

Customers may be served according to exponential distributions at one of 

two rates, a1 or a2, with a1 <a
2'  
• the initial service rate is determined 

by the initial line size. 	If the line size increases to R, the service 

rate changes from 
of 
 to a2; if the line length subsequently decreases to 

r customers, the service rate changes to 
of 
 again. Gebhard(1967) analyzes 

both the unilevel (single control parameter, hence r+1=R) and bilevel hys-

teresis control models (r<R-1) for the M/M/1 queue in the steady state. 

Yadin & Naor(1967) consider a somewhat more general rule, again in the 

steady state, A total of k pairs of control levels (rn,Rn) (n=1,...,k) 

are permitted by these authors; arrivals are Poisson and the k+1 distinct 

service time distributions are exponential with means l/pn  (n=1,...,k+1) 

respectively, where 0<pi  <—.<plo.1. In each paper the equilibrium distri-

bution for L and its usual associated properties are obtained. 

More recently, Scott(1971) has suggested a model for hysteresis con-

trol of the Poisson arrival process of an M/G/1 queue. Neither uni-

level nor bilevel hysteresis control of the service process for the M/G/1 

queueing system appears to have been considered at any time. 
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4.2 Unilevel control of the service process 

Unilevel service process control is an elementary analogue of modern 

industrial feedback control characterized by a single control parameter N. 

Customers are individually served at a single counter according to one of 

two service time distributions, G
1
(.) or G

2
(-). If L

t 
represents the num-

ber of customers in the queueing system at any time t >0, then unilevel 

control rules specify that: 

(i) when L
t
<N the customer at the service counter is served according 

to the distribution Gi(*), 

(ii) when L
t 
 >N the customer at the service counter is served according to 

the distribution G
2
(.) 

(iii) if L
t 

increases from N-1 to N while a customer, C, is being served, 

immediately terminate service to C according to G1 (-) and begin a 

new service time for the same customer according to G2(*). 

Though rule (iii) might be considered unrealistic, it simplifies the 

analysis of the resulting line size process. Hence, decisions to change 

the service time distribution are made at arrival and service epochs. 

We suppose that the probability density function g1 (.) corresponding 

to the service time distribution G.(-) (i=1,2) can be written in the form 
oo 

gi (*)=0i(41i(*), where 4)J1 (.)=1-G1 (.), (i=1,2), and that P24tg2(t)dt<1. 

We will denote the Laplace transform of the probability density function 

*, % jr)-st 
gi(t) by gi ks)= e 	got)dt, (i=1,2). 

Since L
t 

is generally non-Markov, we augment the state space by adding 

the supplementary variable St  representing the elapsed service time of the 

customer being served. The stochastic process (Lt,St) is Markov. 

Let po(t).pr(Lt=0) (t >0) and pn(t,x).pr(Lic.n,St=x) (n=1,2,...; x >0; 

t >0). The following time-dependent Kolmogorov forward differential equa-

tions can be obtained: 
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It-.  i).0(t) + X F.0(0 .- f p,  (t ) 44.) Oi(ocl Aix , 	(4.2.1) 

).._ p (+.., N. ) 4. _s,_._ p..,(*..,,,c\ 4 { N+0,1-x.1 } v)1 (*.,0o = 0 , 	(4.2.2) at ' 	/>t 

_t_.  p(t,,x) 4  t il..1(i., ,x) 4  { ), 4  oi(..,o) ri(t.,,,,3 t xt..tt,..x) , (at.,.. • ,t4.• 6 (4.2.3) a-,  

P ti')6  + `) ? ("t0c.) 4 iX 4 02.(-01 rt t,,x1 ---- 0 
at. N 	ant  

	(4.2.4) 

3 1,..k t tx) .4. a 17..(t.,-K4 { 	0 ( 	I,  (t 1r..) tr X (t. )00 , X 4 	% 	. 	 (:1=N+i,Niab...).(4.2.5) 
Ti 4 	Ti; 3 	 7. 	3 ' 	A-% 

Solutions to (4.2.1) to (4.2.5) must also satisfy the boundary equations 

co 
(t,c) = pkt) + 	tt ot\ 

" 	
cl (n) oc  , 	(4.2.6) 

( Co 

	

p.(t,o) = 	p.(t,10 (i6,( ,)(doc. 	( -1 2,..•.14-2.) 	(4.2.7) a 	,3  Ai% 

	

E. (t.c)) : r  F. (i. ,x.> ib(10 clix. 	 (4.2.8) 
1■1-% 	o t4 ' 2  

Ca . 	 03 
pr4k -k. ) tr Z. X j r lt,,0014,, -I. j r ct,no gs

x(,K) 44. 	(4.2.9) 
N-% 	 N41 

	

C 	 0 
00 

rs(t 1  0) f:- I 1:1},. ,1‘) 0( qt) cA oc. , (..1.-zw-+%,r44.,...) 	(4.2.10) 
0 

Let po  and pn(x) be the steady-state analogues of po(t) and pn(t,x) 

(n=1,2,...; x >0). Equilibrium equations corresponding to (4.2.1) to 

(4.2.10) are given by 

(4.2.11) XPo = ID  v.,( 	q,(e.4) 

12.Crio 4 / 	4:1 4(^4) 	F.,(e0 = 0 	 (4.2.12) 

Pi  • eX• ' 	Ott ,t) 1)k qt.) 	a !it 	 ). • • ,N 	(4.2.13) 

any p 	A + Cb.atfx\ F,14(n6 	 (4.2.14) 
ant. " 

(4.2.15) 

p,k(1,1 = Xizo 	j 	45,(1(.1 	, 	 (4.2.16) 

	

p.(e) =1°F. k 	cab
' 
 (10 ci 	 •'2 1%3/4-  a)  (4.2.17) 

P (16  +{ -IL. a+ 416(..A} ft (10 	fa.(1A 
a-% 

-4441> WV3.b• • •) 
anc 
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00 	C0 

p W 	p(i6aft 	p("Ai6(1666‘ 
tv 	 N-4%  0 

co 
?. (0) 	(.10 14) 

3 	0  i4.% 

Solving  (4.2.12) and (4.2.13) iteratively we obtain 

F.4(ftcl 	V". Fa.t 	(1A 	) . 

(4.2.18) 

(4.2.19) 

(4.2.20) 

(4.2.21) 

(kr441,N40.,.•.) . 

N-1 
Define the probability generating  functions Pi 	

" 

	

(x;z). 1 p 	and 
n=1 

P2(x;z)= 	p (x)zn (1zI 20). Using  P2(x;z) we can combine (4.2.14) and 
n =N n 

(4.2.15) in the single equation 

eq4 

which has the solution 

- x 4 - 7.) 
P .% •)

) 	
e 	(N1 	(4.2.22) 

where P (0-z)=1im P2(x;z). 
2 ' 	2 ' 

x-0-0+ 
Similarly, we can combine (4.2.18), (4.2.19) and (4.2.20) in the 

equation 

oo 

= XF3 Z 	(0) Z. 4 Li 	z) 4> (14) 4iN , / 	N 	t.4..1 	 2. 
00 

where p.=ip.(x)dx, (j=1,2,...). By substituting  (4.2.22) in (4.2.23) and 

solving  for P2(0;z) it follows that 

Nil 	N kcA  
X N I 	- 	 (4.2.24) 

Z - 911:0,-J10.) 

Therefore, once expressions for the pj(0)'s (j=1,—,N-1) have been ob-

tained, both P1 (x;z) and P2(x;z) will be uniquely determined. 

Using  (4.2.21) in (4.2.11).and (4.2.16) we can show that 

p 	X?c, 	?1(o\ X  ?° 	\ 4 X cci17:34% (X) • 

In general, values for p
3
(0),...,p(0), unique to within p

o
, may be 

N-1 

(4.2.23) 
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obtained iteratively by solving the equation 

to\ 
10=0.1+t-1z 

	

(k) 	k 
d 

where g1 .(A)= k  gi(A), (k=0,...,N-2) and 61k  
dA 

delta. By evaluating pc., unique solutions for (4.2.11) to (4.2.20) will 

be determined. 
N-1 

Let Pl(z)= 	pkzk  = Pi(x;z)dx, P2(z)= 	pkzk  47:(x;z)dx. The nor- 

	

' 	k=1 	0 	k=N 

malizing equation which determines po  is therefore 

P%  to Jr P2(tlr-1 . 	 (4.2.25) 

By integrating (4.2.22) with respect to x and substituting for P
2'  
(0.z) we 

P 
can show that 	

=.
D
N -1 	• 

P
2
(1) 	Hence (4.2.25) becomes 

	

. 	1-p 
2 

N-t i-1 

	

P 0  # VI 	9'  2. 	7 ER(0) '7, 1,(x) = % NI-I I-ex lit; 
111 .7. 0 

J -or. 	v't • 

ell 
where J 

n 
 (X)=fxrib

1 
 (x)e -Xxdx, (n=0,...,N -2). 

0   

Expressions for the marginal probability generating functions P1 (z) 

and P
2
(z) are given by 

N-t 	k-1 
Pi  (.7.) = E ti E p ( o) A_.% _ j ( >,) 

t- 	v.% I 
k v 1 n t 	,,-, 	*IN . 

v4 * 

	

c)(7)pz. 	7. 	 
N-t  "i• - S I c X - >. %) 

Useful general expressions can be written for several interesting 

properties of the model. The mean line length is given by 

o0 

where gi,J=Jtjg,(t)dt (1=1,2; j=1,2,...). The rate, a, at which changes 

from G1  (-) to G2(.) occur is given by 

Q- = pm-%  

ler ( 14) ( 	- (01 ck,*(N) • a  pw 	2  4C. ett - FaN 	J2 	I 

( ..)S1( *(kN 

ca,'" ) = (iz a, • • •, 

is the familiar Kronecker 

(4.2.26) 

E(L) PI (%) 1)14-1  N'. + 	 2  
ea  
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the total rate of changes in the service time distribution is 2a. The 

long-run proportion of time during which customers are served according to 

G
2
(.) is given by 

)1 = p 	ea 
N-) 

Similarly, if n is the long-run proportion of customers who are served 

according to G2(-) we can show that 

m 	p1,4-I  

The following examples illustrate.  the application of unilevel service 

process control to a queueing process. 

Example 4.2.1 
-pix 

Let G
1
(x)=1-e 	(1=1,2) where 0<ti1<p2' This is the case which 

Gebhard(1967) treated. The results given below agree with expressions 

which he obtains in another way. Using the boundary equation solutions 

vpt(0\14.4.to) Po 

we can show that 

N 

Pt 	_ ?tZ (CIO)  ? 
I- ?CZ. 	° 

Hence 

P. k 	 ro 	(k. 	•
t. 

N-1 N 
(1) 't Pa z p 

- Q).2' 

"" .1-1441 
(k-1)-1 1N-i) t. 	11 	ea 	pa, 1 	. -) 

and 

1).-•?`"(e,-,  e ) 
Formulae for E(L), a, C, and n are given by 

(‘-e,)(%-. 9,11 Po 

E(L) = )0 	̀ Ì's 	 - e)).  
CT T. x e, 

Pt 	(9.- N.\ I t,t _ t  4  I- 
(I- c›,( I- pa) 	(1-P,l(t- Pal 

„N-.1 
/2.  =  re 	pc.  P 

1 - P2. 

Since we can replace p2  in the preceding example by cut  (c>1), it 

follows that the assumption, G
2
(x)=G

1
(cx), does not produce any special 

simplification of the general results. 
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By forming an equilibrium probability generating function for 

pN,... in the general case, we see that 

N-t 	 z - Ica: (A- a x)  

This expression resembles the probability generating function for the equi-

librium line size distribution in an M/G/1 queue [cf. Cox & Smith(1961, 

p.56)]. The similarity is due to rule (ill) and underlines the fact that 

transitions from state N-1 to state N initiate a change in the service 

time distribution. 

Example 4.2.2 
- 

Let G1(x).(1-p)(1-e 
pix 

 ) + p(1-e
-v1x 

 ) 	(0<p<1; pi, v1 >0) 

x -112Y 

Jr  

	

and G2(x)/1. 22ye 	dy 	i.e. G1 (•) is a mixed exponential distribution and 
0 

G
2
(.) is a two-stage Erlang distribution. The equilibrium probability 

distribution for L is given by 

P. S -5 
1st- 	kNe, 	X \S 4 	P., P 	A) - ss  (X 	(..1 .4.c., • . • ,t4-%) 

	

a 	 ) 	 sa  
1-N+t 

p. - ?N.- %  /t (—x 	t (—x—) 
a t% 

where s
1' 

s
2 
are the roots of x2-(v

1
+0

1
+A)x+u

1
(v

1
+A)+ pA(v

1
-p

1
)=0 and 

t
1' 

t
2 

are the roots of x2-x(A+211
22  
) +02 = O. Expressions for p

o 
and E(L) 

	

l x \ 
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+ ----- 
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NA 	 N-t 

E(L) = ?,, {s t s2 - 53  it 14  P(‘'‘')-4$1 ( X-S1) N (+,)14 + X 1 t 

sx-s, 

N-1 	 VA -% ("Z.-% 91  ).-.)■7.) 
+ 	p4.%  z (4.2.27) 

= N ,N* t, • . 
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In §4.3 the results for this particular combination of service time 

distributions will be used in a numerical study. 

The next example characterizes all service time distributions GI(.) 

which, if substituted for G
2
(.) in a unilevel control scheme, would reduce 

the mean number of customers in the system. 

Example 4.2.3 

Let GO.), G2(.) and 	be be three distinct service time distribu- 

tion functions. Suppose that G2(.) and 	have have the same mean p but 

variancesa2ande+2 respectively.Sincesolutionsfor p.(0) (j=1,...,N-1) 

depend only on GO.) and A, the pis (j=0,...,N-1) will be the same if we 

substitute G+
2
(.) for G

2
(.). Let E(L) and E(L+) represent the mean line 

size for the distribution pairs GO.), G2(.) and G1 (s), G;(.), respec- 

tively. Then 	 2 

X el41 4 	( Cr%  - Cr4  ) 

2(1' E'Sa  
Therefore, provided G2(.) is less dispersed than G2(.), i.e. cr

+
<a, the 

mean number of customers is always less when G2(.) is substituted for 

G
2
(-). This is another consequence of rule (iii). Obviously, the decrease 

in E(L) will be maximized for fixed N and p2  if a+=0, that is, if service 

times are constant when the line size exceeds N-1. 

4.3 The effect of unilevel control on the distribution of L 

The theoretical results of §4.2 do not indicate how much the line 

size distribution is affected by unilevel control, nor the occasions when 

unilevel service process control can be implemented to distinct advantage. 

By investigating, numerically, the distribution of L in different situa-

tions, we shall try to explore these two questions. 

Three features of unilevel .control can be adjusted; these are the 

control threshold parameter, N, and the two service time distributions 

G
1
(.) and G

2
(.). Since service time distributions may be largely deter- 

E (L) - E 
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mined by other considerations, we will concentrate on the relation between 

N and the distribution of L, regarding the choice of Gl(-) and G2(-) as a 

question of secondary importance. 

Unacceptable levels of congestion are often associated with very long-

tailed distributions for properties of the queueing system such as line 

length and queueing time. 'To determine characteristics of the line size 

distribution under unilevel control and to gauge the effect of unilevel 

control on a congested queueing system, we will compare tail probabilities 

for the equilibrium distribution of line length in different sets of cir-

cumstances. To standardize comparisons for different distributions of L 

under unilevel control we will use the mean value of each line size dis-

tribution as the respective unit of scale. Therefore, we calculate the 

probability that line length exceeds integral multiples of its mean value, 

i.e. 	
Rk ' (WPl' 

P
2 
 )=pr{L>kE(L)} (k=1,2,...; N=2,3,...). Since the traffic 

intensities p1, p
2 

also indicate the relative level of congestion, we will 

consider various combinations of p1  and p2. 

We choose G
1
(-) and G

2
(.) to represent a range of distributions. in 

§§2.2 and 3.3 three distributions — a two-stage Erlang(D1 ), an exponential 

(D
2
) and a mixed exponential distribution(D

3
) — were used in this way. We 

cannot consider all possible combinations of GO.) and 	from from this 

triplet; however, three sensible choices are the pairs when 	and and 

G
2
(.) have the same mathematical form, e.g. both exponential, etc. A 

fourth choice is the pair with GI N a mixed exponential distribution and 

G
2
(.) a two-stage Erlang distribution, since Erlang service times are more 

regular than mixed exponential service times. The four combinations, then, 

are 
-11 1 x 

C1: 
g1 	1 

(x)=u2xe 

-vix 

C2: 
g
2
(x)=v

1
e 

-P,X 
2 	4. g2 (X)=u2Xe 

v2x 

g2(x)=v2e 
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-11 1 X 	-0X 	-13 
 2  1 	 -132x 

C3: gi(x)=0-pdmie 	+ 	, g2(x)=(1-p2)a2e 	+ p2O2e 	, 

09:11 ,P20, 

-11x 	
- 

C4: gi(x)=(1-qdyle + 

	

	

-y,x 

, 0<q1 <1, g2(x)=4xe • 

For each combination C i  (1=1,2,3,4), pairs of values (p1 ,p2) in differing  

ratios to each other can only be obtained by adjusting  the parameters of 

the distributions. For fixed A, the values of p., v (1=1,2) in C1  and C
2 i 	1 

are determined if p
1 
and p

2 
are fixed.' The same is not true of the mixed 

exponential distribution. As in §§2.2, 2.4 and 3.3 we require that pi=i, 

al =313, (1=1,2), q1 =1 and y1 =381;  y2  is determined if A, p2  are fixed. 

Theoretical expressions for the equilibrium distribution of L for the 

combinations C
2 

and C
4 
are given in Examples 4.2.1 and 4.2.2 respectively. 

Results for the other two combinations appear below. For C1  and C3  the 

expression for E(L) has been omitted;  this can be derived from the equi- 

librium distributions 

i4t 
p., 	X) 	x) 

C
1
: 	P. - (Si-S0 	 S, 

s tr,4 	t 	4  t%1 N t • • • 

(+1.)t4  	a 	L ( xT (hT 3,-sx 	2-• X 	 s.a 	st 

where si, s2  are the roots of x2-x(X+211 1 )+111=0 and t1 , t2  are the roots of 

x2-x(X+2p )+p2=0, 
2 2 

(S104,t44.1....) 
t 	 N-% 	 t 	N 

c/2. {  Sm.' A% - F1 (CA,- a )  ( x ) 	d.,4- p,((3,- 00-s,  ( x -1  } 
4 Po t- e.2 	ss' -5; 	\ s', 	s..s. 

	

2. , 	s;.) 
i ?,\I 	 i x V4  

ss% -sla,4 PIC(51- 001 i- Vi) 	s l id ii. k0-. 1...s‘s‘ 1- 	1i.2.)  4 	. 2. 	. 	,   	s 	s t s 	2, 	. 

	

S% 5% 	S2 X  t S7.' Si 	si-')■ 	3. 	% 	2. 
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) 	2  3 4   S, - Si 	s: 	s;,- : 	2. 
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where 	
, 2 

s' s' are the roots of x2-(8
1
+a

1
+A)x+a1(31+A)+p1A(01-a1)=0  and t' 

1 	 1,  

ti are the roots of x2-(02+a2+X)x-i-a2(132+A)+P2A(B2-a2)=0. 

The probabilities Rk(N;pl,p2) 	(k=1,2,3; N=2,...,10) have been calcu- 

lated for different values of p
1 
and p2; • the results of the calculations 

are given in Tables 4.3.1 a, b, c and d. The mean values, E(L), which 

were used in the calculations are also given. To represent a range of 

queueing situations, eight different traffic intensity combinations, (p1, 

p2), ) were considered for each C i,  these being (1.5,0.95), (1.5,0.55), 

(1.1,0.95), (1.1,0.55), (0.9,0.15), (0.9,0.55), (0.5,0.05) and (0.5,0.25). 

The values p1 =1.5 and p1 =1.1 represent systems which could not achieve an 

equilibrium without unilevel control. Each of these values is combined 

with p2=0.95 and p2=0.55 typifying heavy and moderate traffic conditions, 

respectively. Similarly, p2=0.25 and p2=0.05 represent light and very 

light traffic; these values would probably be a reasonable choice for p2  

only if traffic is moderate or light when fewer than N customers are pre-

sent, i.e. p1 <0.5. 

Under the conditions shown in Tables 4.3.1 c and d, combinations C3 
and C

4 
satisfy the requirements of Example 4.2.3. Since an Erlang distri-

bution is underdispersed with respect to any mixed exponential distribu-

tion having the same mean, entries for E(L) in Table 4.3.1 d are uniformly 

smaller than corresponding entries in Table 4.3.1 c. 

A general feature of the probabilities in Tables 4.3.1 a, b, c and d 

is the short-tailed character of each distribution considered. For all 

values of N, pi  and p2  except p1 =0.5, the probability, R3(N;p1 ,p2), that 

line length exceeds three times the mean value of the same distribution, is 

frequently much less than 0.1. Similarly, unless p1.0.5, R2(N;p1 ,p2), the 

probability that a line exceeds.twice its average length, is usually less 

than 0.15. Since p1 =0.5 appears to be exceptional, we consider this case 

separately. 



131■1.5 

E(L) 

p11.1.1 11 •0.9 1  p1■0.5 N k p1m1.5 

Ilk(t"1"72)  

0.9 p1"0.5 

P2='55 Pe'95  Per'55  13 2=.95  P2'.15  pe.55  P2''05  P2'.25  pe.55 p2■.95 pe.55 p2-.95 pe.15 pe.55 p2m.05 p2..25 

1 0.452 0.359 0.416 0.380 0.565 0.391 0.372 0.429 
1.73 15.1 1.57 15.0 0.6.65 1.46 0.382 0.554 2 2 0.104 0.129 0.096 0.137 0.085 0.19 0.371 0.307 

3 0.022 0.046 0.045 0.049 0.085 0.042 0.019 0.107 

1 0.401 0.378 0.333 0.367 0.362 0.517 0.454 0.474 
2.46 . 15.9 2.10 15.4 1.12 1.83 0.594 0.695 3 2 0.092 0.127 0.077 0.132 0.054 0.139 0.146 0.178 

3 0.009 0.043 0.017 0.044 0.006 0.030 0.146 0.045 

1 0.374 0.374 0.511 0.381 0.495 0.389 0.482 0.490 

3.26 16.7 2.65 15.9 1.55 2.19 0.719 0.774 4 2 0.040 0..117 0.065 0.128 0.038 0.105 0.190 0.203 

3 0.004 0.037 0.014 0.043 0.005 0.023 0.059 0.073 

1 0.360 0.372 0.447 0.371 0.573 0.458 0.493 0.496 

4.12 17.6 3.24 16.5 1.95 2.53 0.788 0.816 5 2 0.018 0.109 0.057 0.125 0.186 0.081 0.207 0.212 1 

3 0.001 0.034 0.006 0.039 0.003 0.018 0.079 0.084 co 
cm 

1 0.352 0.371 0.563 0.362 0.443 0.505 0.497 0.498 

5.02 18.5 3.86 17.1 2.33 2.86 0.824 0.838 6 2 0.008 0.101 0.051 0.114 0.143 0.132 0.214 0.216 

3 0.000 0.030 0.002 0.036 0.003 0.014 0.086 0.089 

1 0.632 0.370 0.517 0.380 0.495 0.409 0.499 0.499 
5.96 19.5 4.49 17.7 2.69 3.18 0.842 0.849 7 2 0.008 0.101 0.047 0.111 0.113 0.107 0.217 0.218 

3 0.000 0.026 0.001 0.033 0.000 0.011 0.090 0.091 

1 0.628 0.369 0.483 0.373 0.398 0.443 0.500 0.500 

6.91 20.5 5.15 18.4 3.03 3.47 0.851 0.854 8 2 0.004 0.094 0.020 0.109 0.091 0.159 0.218. 0.218 

3 0.000 0.023 0.000 0.030 0.000 0.009 0.091 0.091 

1 0.625 0.369 0.570 0.367 0.435 0.470 0.500 0.500' 

7.88 21.5 5.84 19.1 3.34 3.75 0.855 0.857 9 2 0.002 0.088 0.019 0.101 0.146 0.131 0.218 0.219 

3 0.000 0.020 0.000 0.028 0.000 0.008 0.091 0.092 

1 0.624 0.369 0.543 0.388 0.464 0.393 0.500 0.500 
8.86 22.4 6.54 19.8 3.63 4.02 0.857 0.858 10 2 0.001 0.082 0.009 0.099 0.121 0.110 0.219 0.219 ' 

3 0.000 0.017 0.000 0.025 0.001 0.006 0.092 0.092 

Table 4.3.1 a 	Probabilities, Rk (4121.02), that line length, L, in a unilevel control queue with control threshold N exceeds k times its mean value, E(L). 

When 1.<N(L>N) service times are Erlang(Erlang) with traffic intensity o1 (p2), i.e. combination C1 



p 1.1.5 pr1.1 

E(L) 

p 1 .0.9 p 1 =0.5 N k p 1.1.5 p 1 

Rk(No1'p2) 

.1.1 	p 1 =0.9 01.0.5 

p2-.55 p2=.95 p2..55 p2..95 p2..15 pe.55 p2-.0S p2-.25 p2..55 p2-.95 p2-.55 p2..95 pe.15 02..55 p2=.05 02..25 

1 0.423 0.365 0.390 0.361 0.514 0.367 0.345 0.400 
1.71 19.4 1.58 19.1 0.605 1.48 0.363 0.533 2 2 0.128 0.138 0.118 0.136 0.077 0.202 0.345 0.100 

3 0.039 0.049 0.065 0.051 0.077 0.061 0.017 0.100 

1 0.367 0.376 0.309 0.366 0.334 0.487 0.433 0.455 

2.35 19.9 2.04 19.4 1.04 1.81 0.590 0.697 3 2 0.111 0.135 0.093 0.138 0.050 0.147 0.149 0.182 

3 0.019 0.048 0.028 0.049 0.008 0.045 0.149 0.046 

1 0.337 0.371 0.472 0.372 0.467 0.374 0.469 0.478 

3.07 20.6 2.55 19.7 1.47 . 2.16 0.745 0.811 4 2 0.056 0.126 0.079 0.133 0.240 0.113 0.203 0.217 

3 0.009 0:045 0.024 0.048 0.005 0.034 0.070 0.087 

1 0.581 0.368 0.412 0.361 0.549 0.447 0.485 0.489 

3.86 21.4 3.10 20.1 1.88 2.52 0.845 0.887 5 2 0.053 0.125 0.069 0.129 0.183 0.090 0.227 0.234 

3 0.005 0.041 0.011 0.046 0.004 0.027 0.098 0.106 

1 0.561 0.366 0.521 0.370 0.434 0.499 0.493 0.495 

4.70 22.3 3.68 20.5 2.28 2.87 0.909 0.933 6 2 0.028 0.118 0.062 0.126 0.145 0.134 0.239 0.242 

3 0.001 0.038 0.006 0.045 0.003 0.022 0.112 0.116 

1 0.549 0.364 0.476 0.361 0.490 0.414 0.496 0.497 

5.58 23.2 4.28 21.0 2.66 3.21 0.947 0.962 7 2 0.015 0.112 0.056 0.123 0.118 0.111 0.244 0.246 

3 0.001 0.034 0.005 0.042 0.003 0.018 0.119 0.120 

1 0.541 0.363 0.558 0.373 0.405 0.452 0.498 0.499 

6.49 24'.1 4.90 21.6 3.03 3.54 0.970 0.978 8 2 0.015 0.106 0.052 0.121 0.097 0.093 0.247 0.248 

3 0.000 0.031 0.003 0.041 0.000 0.016 0.122 0.128 

1 0.536 0.362 0.524 0.366 0.446 0.483 0.499 0.499.  

7.41 25.1 5.53 22.2 3.38 3.85 0.983 0.987 9 2 0.008 0.101 0.027 0.118 0.159 0.144 0.249 0.249 

3 0.000 0.028 0.001 0.038 0.000 0.013 0.123 0.124 

1 0.524 0.362 0.496 0.379 0.478 0.414 0.500 0.500 

8.36 26.1 6.19 22.8 3.71 4.16 0.991 0.993 10 2 0.005 0.095 0.026 0.116 0.135 0.123 0.249 0.250 

3 0.000 0.025 0.001 0.036 0.000 0.011 0.124 0.124 

Table 4.3.1 b 	Probabilities, Rk(N;p1,p2), that line length, L, in a unilevel control queue with control threshold N exceeds k times Its mean value, E(L). 

When L<N(1. >N) service times are exponential(exponential) with traffic intensity 01 (02), I.e. combination C2. 



P1m1.5: p1 =1.1 

E(L) 

1,1 =0.9 p1 -0.5 N k p1.1.5 

R 	(N:prp2) 

p1 -1.1 	p 1 =0.9 p1 -0.S 

p2=.55 p2-.95 p2-.55 p2-.95 p2=.15 p2=.55 p2=.05 p2=.25 p2-.55 p2=.95 p2=.55 p2=.95 p2=.15 p2-.55 p2-.05 p2-.25 

1 0.407 0.369 0.374 0.364 0.483 0.351 0.325 0.379 

1.77 23.6 1.63 23.3 0.571 1.53 0.343 0.514 2 2 0.146 0.138 0.134 0.142 0.072 0.126 0.325 0.095 

3 0.055 0.054 0.083 0.055 0.072 0.077 0.016 0.095 

1 0.345 0.374 0.290 0.363 0.615 0.459 0.415 0.437 

2.33 24.0 2.02 23.2 0.982 1.80 0.569 0.679 3 2 0.124 0.140 0.104 0.141 0.310 0.149 0.147 0.179 

3 0.047 0.052 0.040 0.055 0.047 0.056 0.147 0.045 

1 0.312 0.368 0.440 0.364 0.440 0.355 0.455 0.466 

3.00 24.5 2.49 23.4 1.40 2.12 0.739 0.812 4 2 0.069 0.132 0.143 0.142 0.226 0.115 0.205 0.221 

3 0.016 0.049 0.033 0.053 0.006 0.043 0.075 0.093 

1 0.533 0.364 0.383 0.368 0.522 0.429 0.475 0.481 

3.74 25.2 3.00 23.6 1.80 2.47 0.862 0.912 5 2 0.065 0.131 0.076 0.137 0.176 0.158 0.235 0.243 

3 0.010 0.047 0.018 0.054 0.005 0.035 0.110 0.119 

1 0.511 0.361 0.487 0.372 0.418 0.483 0.486 0.489 

4.53 26.0 3.55 23.9 2.20 2.82 0.950 0.983 6 2 0.038 0.124 0.068 0.139 0.142 0.131 0.250 0.255 

3 0.006 0.043 0.016 0.052 0.004 0.029 0.128 0.134 

1 0.497 0.374 0.445 0.363 0.475 0.407 0.259 0.262 

5.36 26.9 4.12 24.3 2.59 3.17 1.01 1.03 7 2 0.037 0;124 0.062' 0.136 0.117 0.110 0.139 0.141 

3 0.002 0.041 0.009 0.051 0.003 0.024 0.072 0.075 

1 0.487 0.372 0.524 0.370 0.518 0.448 0.264 0.266 

6.23 27..8 4,71 24.7 2.97 3.52 1.05 1.06 8 2 0.023 0.118 0.057 0.133 0.190 0.095 0.144 0.146 

3 0.001 0.038 0.005 0.048 0.003 0.021 0.078 0.080 

1 0.480 0.371 0.490 0.362 0.441 0.480 0.267 0.268 

7.12 28.7 5.31 25.1 3.34 3.86 1.08 1.09 9 2 0.014 0.113 0.054 0.130 0.163 0.148 0.148 0.149 

3 0.001 0.034 0.005 0.047 0.000 0.018 0.082 0.083 

1 0.476 0.370 0.554 0.371 0.476 0.418 0.269 0.269 

8.03 29.6 5.93 25.7 3.70 4.19 1.09 1.10 10 2 0.009 0.108 0.051 0.128 0.140 0.129 0.149. 0.150 

3 0.000 0.033 0.003 0.046 0.000 0.016 0.084 0.084 

Table 4.3.1 c 	Probabilities, Rk(N;p1 02), that line length, L, In a unilevol control queue with control threshold N exceeds k times its mean value, E(L). 

When L<N(L>N) service times are mixed exponential(mixed exponential) with traffic intensity pl(p2), i.e. combination C3. 



• 

p1 ■1.5 p1-1.1 

E(L) 

P .03.9 P w0.5 H k P 	..1.5 

R 	(N'p 	P 	) k 	' 	1' 	2 

pt -1.1 	p 
1.139 1

.0.S  
w.55 p2-.95 p2-.55 p2w.95 p2-.1S p2-.55 p2-.05 p2-.25 p2w.55 p2-.95 p2w.55 p2-.95 p2-.15 p2-.S5 p2=.05 p2-.25 

1 0.407 0.379 0.374 0.374 0.483 0.351 0.325 0.379 
1.52 14.9 1.40 14.7 0.565 1.31 0.342 0.498 2 2 0.093 0.136 0.183 0.135 0.072 0.171 0.325 0.379 

3 0.043 0.049 0.040 0.048 0.072 0.082 0.016 0.095 

1 0.345 0.369 .0.528 0.358 0.615 0.459 0.415 0.437 
2.12 15.5 1.84 15.0 0.978 1.64 0.569 0.671 3 2 0.079 0.133 0.142 0.129 0.310 0.123 0.147 0.179 

3 0.017 0.045 0.031 0.046 0.047 0.058 0.147 0.045 

1 0.568 0.363 0.440 0.369 .  0.440 0.355 0.455 0.466 
2.81 16.2, 2.34 15.4 1.39 2.00 0.738 0.809 4 2 0.072 0.122 0.118 0.133 0.223 0.095 0.205 0.221 

3 0.007 0.041 0.012 0.045 0.004 0.021 0.075 0.093 

1 0.533 0.359 0.545 0.383 0.522 0.429 0.475 0.481 
3.56 17.0 2.88 15.9 1.80 2.37 0.862 0.910 5 2 0.031 0.113 0.103 0.129 0.176 0.158 0.235 0.243 

3 0.003 0.035 0.010 0.043 0.003 0.017 0.110 0.119 

1 0.511 0.381 0.487 0.372 0.418 0.483 0.486 0.489 

4.36 17.9 3.43 16.4 2.20 2.74 0.950 0.982 6 2 0.030 0.112 0.092 0.125 0.142 0.132 0.250 0.255 

3 0.001 0.033 0.004 0.039 0.003 0.014 0.128 0.134 

1 0.497 0.379 0.445 0.389 0.475 0.407 0.259 0.262 
5.19 18.8 4.01 17.0 2.59 3.11 1.01 1.03 7 2 0.014 0.104 0.040 0.122 0.117 0.110 0.139 0.141 

3 0.000 0.028 0.002 0.038 0.002 0.012 0.072 0.075 

1 0.487 0.377 0.524 0.380 0.518 0.448 0.264 0.266 

6.06 19.7 4.61 17.6 2.97 3.46 1.05 1.06 8 2 0.006 0.097 0.037 0.111 0.190 0.171 0.144 0.146 

3 0.000 0.025 0.002 0.035 0.002 0.010 0.078 0.080 

1 0.636 0.376 0.490 0.372 0.441 0.480 0.267 0.268 

6.96 20.6 5.22 18.2 3.34 3.81 1.08 1.09 9 2 0.006 0.090 0.034 0.109 0.163 0.148 0.148 0.143 

3 0.000 0.023 0.001 0.032 0.000 0.009 0.082 0.083 

1 0.630 0.376 0.554• 0.391 0.476 0.418 0.269 0.269 

7.87 21.6 5.85 18.8 3.70 4.14 1.09 1.10 10 2 0.003 0.084 0.032 0.107 0.140 0.129 0.149 0.150 

3 0.000 0.020 0.000 0.029 0.000 0.008 0.084 0.084 

Table 4.3.1 d 	Probabilities. Rk(N;pl,p2), that line length, L, in a unileyei control queue with control threshold N exceeds k times Its mean value. E(L). 

When 1.44(L>N) service times are mixed exponential(Eriang) with traffic intensity 01 (p2), i.e. combination C4. 
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Fig. 4.3.1 	Probabilities, Rk(N;p1 ,p2), that the line length, L, exceeds k times its mean value In a unilevel control queue with 

control threshold N and service time combination C
I 
(10,2,3). In (a) k.1, p1 =1.5, p2-0.55; In (b) 	p1.1.1, p2=0 55. 

+ C1 (service times are Erlang(Erlang) when L<N(I.N)) 	a C
2 

(Service times are exponential(exponential) when L<N(L2N)) 

• C
3 

(service times are mixed exponential(mixed exponential) when L<N(L2N)) 

The range of Rk(N;pl,p2) for all Cis when p2-O.95; k and pl  are as given in (a) and (b). 



-85- 

.5 

.4 

1 

0 

0 

■ 

0 
■ 0 

f 

0 	0 	0 
■ 

2 
	

3 
	

4 
	

5 
	

6 
	

7 
	

8 
	

10 
	

11 

N 

Fig 4.3.1 c 	The probabilities, R2(N;p1,p2), that the line length, L, 

exceeds twice its mean value in a unilevel control queue 

with control threshold N and service time combination C 

(1.1,2,3,4) when p1.1.1 and p2.0.55 

+ C1  (service times are Erlang(Erlang) when L<N(1.2N)) 

• C2  (service times are exponential(exponential) when L<N(L2N)) 

• C3  (service times are mixed exponential(mixed exponential) when L<N(1.21 

0 C4  (service times are mixed exponential(Erlang) when L<N(L2N)) 
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For fixed pi  and p2, graphs of probabilities from Tables 4.3.1 a, b, 

c and d have been plotted against N (cf. Figs. 4.3.1 and 4.3.2). The 

probabilities for C
4 

frequently coincide with those of C
3 

(cf. Tables 

4.3.1 c and d); therefore, probabilities for the former distribution 

combination have been plotted only when C4  is noticeably different from 

C3. Consider first Figure 4.3.1. 

The plotted points show the probabilities Rk(N;pi,p2=0.55) when p1 >1 

and k equals 1 or 2. The horizontal band on Figs. 4.3.1 a and b encloses 

the range of R1 (N;pi,p2=0.95) for all Cis and all N, p1  being fixed, 

thereby indicating the approximate long-run proportion of time that a line 

exceeds its average length in any of the prescribed circumstances. For 

fixed k and N, the tables show that if traffic is always heavy, i.e. pi>l, 

p2=0.95, the standardized probabilities, Rk(N;pi,p2), do not vary much 

among the Cis. When pi>1 and p2=0.55, individual distribution combinations 

are more easily distinguished (cf. Fig 4.3.1). 

Interpreting the probabilities Rk(N;pi,p2) when 13240.95 is made more 

difficult because E(L), the respective unit of scale for each line size 

distribution, need not take integral values; L, however, is a discrete 

random variable. One example of the difficulty which this causes is par-

ticularly prominent whenever pl/p2>2 (pin.5). The tables show that for 

fixed pl,p2  and Ci, unit increases in N usually cause E(L) to increase by 

less than unity. If E(Li) is the mean line length when N=j, the apparent 

relation between R
1'  
(N-p

l'  p2 
 ) and N (decreasing as N increases) is abruptly 

reversed between R1 (j;pi,p2) and R1 (j+1;pi,p2) if p<E(Li)<E(Li+1 )<p+1 for 

some integer p (see, for example, Table 4.3.1 a when p1.1.5, p2.0.55, j=6, 

p=5 or Table 4.3.1 c when pi=1.1, p2=0.55, j=3, p=2). If the sample 

space for the line size process was continuous rather than discrete, or 

if a continuous approximation to the distribution of L could be devised, 

this difficulty obviously would not arise. However, taking the above 

difficulty of interpretation into account, Tables 4.3.1 a, b, c and d and 
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Fig. 4.3.2 	Probabilities, Rk(N;pi,p2), that the line length, L, exceeds k times its mean value in a unilevel control queue with 

control threshold N and service time combination CI  (1.1,2,3).. in (a) k=1, p1 =0.9, p2=0.55; in (b) 	pi=0.5, p2=0.15. 

+ C1  (service times are Erlang(Erlang) when L<N(L2N)) 	a C
2 

(service times are exponential(exponential) when L<N(L2N)) 

• C3  (service times are mixed exponential(mixed exponential) when L<N(1.211)) 
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Fig. 4.3.2 c 	The probabilities, it1 (N;p1 ,p2), that the line length, L, 

exceeds its mean value in a unilevel control queue with 

control threshold N and service time combination C
i  

(10,2,3) when p1 =0.5 and p2.0.25. 

+ C1  (service times are Erlang(Erlang) when L<NMN)) 

C2  (service times are exponential(exponential) when L<N(LN)) 

•
3 
 (service times are mixed exponential(mixed exponential) when L<N(Le1)) 
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Figs. 4.3.1, 4.3.2 suggest that R1 (N;p1 ,p2) decreases as N increases. 

The effect of the abrupt changes mentioned earlier is clearly illustrated 

in Fig. 4.3.1 a. For each Ci, the general decrease in R1 (N;p 1 ,p2) com-

bines with one sudden increase to partition the control levels 2,...,10, 

naturally, into two distinct sets on which il1 (N;p1 ,p2) is a decreasing 

function of N. 

Since the inequality p<kE(Li)<kE(Li+1 )‹p+1 for some integer p is sat-

isfied less frequently when k is 2 or 3, it is more apparent from Tables 

4.3.1 a, b, c and d that, for fixed 
p1,p2 

and C
i 

(p
1
00.5), R

2(N;p1,p2) 

and R
3 '

-p (N 	) both decrease as N increases (cf. Fig. 4.3.1 c). p
2  

The case p1 =0.5 remains to be interpreted. Two aspects of the re-

sults for this case require explanation (cf. Fig. 4.3.2 c). The probabi- 

lities Rk(N;p1=0.5,p2) converge very quickly as N increases. 	If p1.0.5, 

a change from G1 (.) to G2(.) occurs infrequently unless N is typically 2 

or 3; thus, nearly every customer's service time is an observation from 

G
1
(.). For non-unilevel control queues with traffic intensity 0.5 and 

service times specified by the distribution G1 (.) from combination Ci, 

simple calculations show that lines exceeding k times the value of E(L) 

given in the table for C i  (k=1,2,3) occur with probabilities which are 

approximately the tabulated limiting values. 

The tabulated distributions also show that when N is seven or more, 

the R
k'  
(N.p1 
	' 
=0.5 p

2 
 Ps for C

1 
and C

2 
are considerably larger than the cor- 

responding values for C3  and C4. The mean values for these cases reflect 

the fact that the choice of G
1
(.) for C

3 
and C

4 
(mixed exponential) is 

overdispersed with respect to the choice of G1 (.) for C1  and C2  (Erlang 

or exponential, respectively). The differences in E(L) among the Cis is 

quite small. However, since L is a discrete random variable, the defini-

tion of R
k'  
(N.p

l'  p2 
 ) exaggerates small difference's in E(L) among similar 

line size distributions when the respective mean values happen to bracket 

an integer. This is the single reason, in this case, for the very 
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different values of R
k
(N;p

1
=0.5,p

2
) (k=1,2,3) given in the tables. 

To explore further the effect of unilevel control on the distribution 

of the line length we now compare line size distributions in similar cir-

cumstances for queues with and without unilevel control. We begin by de-

fining an overall traffic intensity, p, for any unilevel control queue. 

It is a well-known property of the Pi/G/1 queue that if po  is the 

equilibrium probability that the system is empty, 1-po  is the long-run 

proportion of time that the server is busy. This property is one which 

unilevel control does not affect. Therefore, we define p, the overall 

traffic intensity in a unilevel control queue, to be 1-po. According to 

(4.2.26), pc,  depends on N, p1  and p2, the three essential features of uni-

level control; hence p=p(N;p1 ,p2). 

We also assume that when unilevel control is introduced into a queue-

ing system the mathematical form of the existing service time distribution 

is retained in choosing GI N and G2(-). With this assumption and the 

above definition of p=p(N;p1 ,p2) we can specify queueing systems without 

unilevel control which correspond to those with distribution combinations 

Cl, C2  and C3  for all values of N, p, and p2; C4  is excluded because 

G
1
(-) and G

2
(-) have different mathematical forms. Call the service time 

distributions in these queueing systems without unilevel control CI, CI 

and 	
' 	 2'

.  C'
3 
 respectively, where C'. g(x).112xe-Px  C' g(x)=ve-vx, and 

-a 	-Ox 
C'. g(x).(1-p)ae x+ pBe 	, 0<p<1. To ensure the closest correspondence 

between C
3 
and C3 we fix p=3 and a=30. 

Call L the line size process in a queueing system without unilevel 

control. A unilevel control queue with service time distribution combi-

nation C
i 
and parameters N, p

1 
and p

2 
will be said to correspond to a 

queueing system without unilevel control if the latter system has service 

time distribution Cl and traffic intensity p=p(N;p1 ,p2), the overall traf-

fic intensity in the given unilevel control queue. To determine how uni-

level control affects the line size distribution in a queueing system, we 



- 91 - 

now calculate R
k
(p)
' 

the probability that line length, L , in a non-uni-

level control queue with traffic intensity p exceeds k times mean line 

length, E(L), in the corresponding unilevel control queue with overall 

traffic intensity p=p(N;p1 ,p2), i.e. Rk(p)=pr(L>kE(L)Ip=p(N;p1 ,p2)}. 

For each unilevel control situation previously considered (cf. Tables 

4.3.1 a, b and c), values Of Rk(p) for the corresponding queue without uni-

level control have been calculated. The results are given in Tables 4.3.2 

a, b and c. The correspondence between Rk(p) and Rk(N;p1 ,p2) for fixed CI 

and C
i 
(1=1,2,3) is indicated by identifying entries in Tables 4.3.1 and 

4.3.2 by the same values of N, p1  and p2. The overall traffic intensity, 

p=p(N;p1 ,p2), is also given in Table 4.3.2. 

Entry by entry comparison of Tables 4.3.1 and 4.3.2 shows the effect 

of unilevel control on the line size distributions for corresponding queue-

ing systems. Figs. 4.3.3 a, b and c illustrate some of these comparisons; 

for fixed k, N, pi  and p2, each graph shows the respective ranges, for all 

Ci  and Ci (1=1,2,3) of the probabilities Rk(N;p1 ,p2) and Rk(p). 

Comparing corresponding tables for Rk(N;pl,p2) and Rk(p) underlines 

the short-tailed aspect of the line size distribution for unilevel control 

in contrast to the line size distribution for the queue without unilevel 

control. For corresponding queues, unilevel control often produces two 

and three-fold reductions in the probability of lines exceeding the same 

length, k times E(L); larger reductions can also be found. By providing 

faster service when the line is longer than N-1, unilevel control acts 

automatically to control the line length. This automatic action modifies 

the distribution of line length by redistributing much of the probability 

originally associated with lines longer than N amongst the states 0,..., 

N-1. For unilevel control situations with pi>l, lines with N-2, N-1 and N 

customers are probably the most frequently occurring in the system; the 

effect, in this case, is very similar to that of industrial feedback 

control. 



p1 =1.5 

p(N;PI.P2) 

. 
1
=1.1 	P 1 =09 1 =05 P 	. p 	. 

1
=15 

Rk(p) 

p 	. 	p 	. 1
=11 	1 =09 p 1 =0.5  

p2=.55 p2-.95 p2=.55 p2-.95 p2=.15 p2=.55 p2-.05 p2-.25 . p2=.55 p2-.95 p2-.55 p2-.95 p2=.15 p2-.55 p2-.05 p2=.25 

1 0.644 0.607 0.538 0.505 0.565 0.468 0.372 0.429 

0.821 0.976 0.757 0.966 0.565 0.710 0.372 0.429 2 2 0.385 0.376 0.262 0.251 0.284 0.302 0.372 0.157 

3 0.229 0.233 0.182 0.125 0.284 0.124 0.117 0.157 

1 0.719 0.761 0.532 0.553 0.448 0.559 0.454 0.474 

0.911 0.987 0.836 0.972 0.696 0.770 0.454 0.474 3 2 0.562 0.576 0.332 0.314 0.282 0.284 0.178 0.195 

3 0.389 0.435 0.207 0.171 0.176 0.143 0.178 0.077 

1 0.789 0.849 0.635 0.607 0.543 0.464 0.482 0.490 

0.953 0.993 0.880 0.976 0.760 0.804 0.482 0.490 4 2 0.650 0.718 0.382 0.364 0.267 0.261 0.202 0.209 

3 0.536 0.607 0.272 0.219 0.186 0.147 0.081 0.086 

1 0.848 0.906 0.624 0.636 0.603 0.509 0.493 0.496 

0.974 0.996 0.908 0.980 0.797 0.826 0.493 0.496 5 2 0.736 0.819 0.424 0.411 0.334 0.239 0.212 0.215 

3 0.639 0.744 0.288 0.259 0.184 0.144 0.087 0.089 

1 0.894 0.942 0.690 0.662 0.499 0.543 0.497 0.498 

0.985 0.998 0.927 0.983 0.821 0.841 0.497 0.498 6 2 0.810 0.886 0.461 0.446 0.297 0.274 0.216 0.217 

3 0.734 0.836 0.308 0.300 0.177 0.138 0.090 0.091 

1 0.939 0.964 0.685 0.701 0.535 0.461 0.499 0.499 

0.992 0.999 0.941 0.985 0.838 0.853 0.499 0.499 7 2 0.878 0.931 0.495 0.489 0.266 0.245 0.218 0.218 

3 0.821 0.898 0.330 0.340 0.132 0.130 0.091 0.091 

1 0.958 0.978 0.687 0.723 0.455 0.484 0.500 0.500 

0.995 0.999 0.951 0.987 0.850 0.861 0.500 0.500 8 2 0.916 0.958 0.493 0.530 0.239 0.268 0.218. 0.219 

3 0.876 0.937 0.354 0.381 0.125 .0.121 0.092 0.092 

1 0.972 0.987 0.732 0.744 0.479 0.503 0.500 0.500 

0.997 0.999 0.960 0.989 0.859 0.868 0.500 0.500 9 2 0.944 0.974 0.527 0.560 0.262 0.237 0.219 0.219 

3 0.917 0.961 0.379 0.421 0.118 0.112 0.092 0.092 

1 0.982 0.992 0.736 0.774 0.498 0.433 0.500 0.500 

0.998 0.999 0.966 0.990 0.866 0.873 0.500 0.500 10 2 0.964 0.985 0.533 0.596 0.233 0.211 0.219 0.219 

3 0.946 0.977 0.405 0.459 0.132 0.103 0.092 0.092 

Table 4.3.2 • 	Probabilities, Rk(o), that in a non-unilevel control queue with traffic Intensity, p, and C; (Erlang) service tImes,the line length. 

exceeds k times mean line length In the corresponding unilevol control queue with overall traffic Intensity p.o(N;p1,p2). 



p1.1.5 

P(NPI .P2) 

p1 -1.1 	p1-0.9 p1 -0.5 N k 

R
k
(p) 

pi-0.9 pr0.5 

02•.55 p2-.95 0e.55 02•.95 02•.15 pe..55 02•.25 p2-.95 p2-.55 p2-.95 p2-.15 p2-.55 p2-.05 P2- - 2' 
1 0.592 0.519 0.504 0.411 0.514 0.444 0.345 0.400 

0.769 0.968 0.710 0.957 0.514 0.667 0.345 0.400 2 2 0.350 0.278 0.254 0.177 0.265 0.296 0.345 0.160 

3 0.207 0.145 0.180 0.076 0.265 0.132 0.119 0.150 

1. 0.651 0.653 0.495 0.461 0.422 0.533 0.433 0.455 

0.867 0.979 0.791 0.962 0.650 0.730 0.433 0.455 3 2 0.489 0.427 0.310 0.221 0.274 0.284 0.187 0.207 

3 0.318 0.279 0.194 0.102 0.178 0.151 0.187 0.094 

1 0.711 0.746 0.594 0.507 0.518 0.455 0.469 0.478 

0.918 0.986 0.841 0.967 0.720 0.769 0.469 0.478 4 2 0.511 0.557 0.352 0.257 0.373 0.269 0.220 0.229 

3 0.427 0.421 0.249 0.130 0.193 Q.159 0.103 0.109 

1 0.809 0.817 0.582 0.534 0.581 0.504 0.485 0.489 

0.948 0.991 0.873 0.971 0.763 0.796 0.485 0.489 5 2 0.655 0.674 0.388 0.293 0.338 0.254 0.235 0.240 

3 0.530 0.551 0.258 0.161 0.197 0.161 0.114 0.117 

1 0.844 0.870 0.647 0.574 0.495 0.542 0.493 0.495 

0.967 0.994 0.897 0.974 0.791 0.815 0.493 0.495 6 2 0.713 0.761 0.418 0.329 0.310 0.293 0.243 0.245 

3 0.602 0.666 0.270 0.194 0.194 0.159 0.119 0.121 

1 0.877 0.908 0.639 0.597 0.535 0.474 0.496 0.497 

0.978 0.996 0.914 0.977• 0.812 0.830 0.496 0.497 7 2 0.769 0.827 0.446 0.365 0.286 0.270 0.246 0.247 

3 0.689 0.754 0.312 0.223 0.188 0.154 0.122 0.123 

1 0.904 0.935 0.687 0.632 0.468 0.500 0.498 0.499 

0.986 0.997 0.928 0.979 0.827 0.841 0.498 0.499 8 2 0.830 0.877 0.472 0.400 0.265 0.250 0.248 0.249 

3 0.750 0.822 0.324 0.258 0.150 0.148 0.124 0.124 

1 0.927 0.955 0.682 0.652 0.495 0.521 0.499 0.499 

0.991 0.998 0.938 0.982 0.839 0.850 0.499 0.499 9 2 0.868 0.913 0.466 0.433 0.292 0.272 0.249 0.249 

3 0.805 0.873 0.339 0.288 0.145 0.142 0.124 0.125 

1 0.945 0.969 0.682 0.683 0.517 0.462 0.500 0.500 

0.994 0.999 0.947 0.984 0.848 0.857 0.500 0.500 10 2 0.899 0.939 0.492 0.466 0.268 0.249 0.250 0.250 

3 0.850 0.911 0.354 0.318 0.138 0.134 0.125 0.125 

Table 44.2 b 	Probabilities, Rk(p), that in a non-unilevel control queue with traffic intensity, p, and q (exponential) service times, the line length, C, 

exceeds k times mean line length in the corresponding unilevel control queue with overall traffic intensity p.p(N;p1,p2). 
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0..55 p2..95 pe.55 pe,.95 p2-.15 p2-.55 p2-.05 p2-.25 p2-.55 p2-.95 p2-.55 p2-.95 p2-.15 p2-.55 p2-.05 p2-.25 

1 0.567 0.472 0.484 0.370 0.483 0.430 0.325 0.379 

0.739 0.962 0.680 0.950 0.483 0.638 0.325 0.379 2 2 0.345 0.226 0.257 0.145 0.253 0.206 0.325 0.160 

3 0.213 0.111 0.189 0.057 0.253 0.143 0.119 0.160 

1 0.616 0.582 0.473 0.395 0.615 0.510 0.415 0.437 

0.836 0.973 0.758 0.954 0.615 0.699 0.415 0.437 3 2 0.461 0.342 0.303 0.166 0.401 0.283 0.190 0.210 

3 0.346 0.201 0.195 0.070 0.268 0.159 0.190 0.105 

1 0.668 0.669 0.565 0.432 0.495 0.443 0.455 0.466 

0.892 0.980 0.810 0.958 0.688 0.740 0.455 0.466 4 2 0.507 0.451 0.402 0.196 0.363 0.272 0.226 0.236 

3 0.385 0.309 0.242 0.086 0.198 0.168 0.117 0.125 

1 0.765 0.743 0.554 0.469 0.559 0.492 0.475 0.481 

0.926 0.986 0.845 0.962 0.734 0.770 0.475 0.481 5 2 0.599 0.561 0.370 0.223 0.336 0.322 0.246 0.251 

3 0.469 0.423 0.247  0.109 0.205 0.172 0.132 0.136 

1 0.798 0.802 0.616 0.506 0.485 0.5.31 0.486 0.489 

0.949 0.990 0.871 0.966 0.765 0.791 0.486 0.489 6 2 0.647 0.651 0.396 0.259 0.315 0.302 0.257 0.260 

3 0.548 0.528 0.285 0.132 0.205 0.173 0.142 0.143 

1 0.831 0.854 0.608 0.527 0.525 0.473 0.263 0.265 

0.964 0.993 0.891 0:969 0.788 0.808 0.492 0.494 7 2 0.719 0.732 0.420 0.288 0.296 0.284 0.145 0.147 

3 0.604 0.626 0.291 0.157 0.202 0.171 0.082 0.083 

1 0.860 0.890 0.655 0.560 0.557 0.501 0.266 0.267 

0.975 0.995 0.907 0.972 0.806 0.821 0.496 0.497 8 2 0.761 0.793 0.442 0.317 0.331 0.267 0.148 0.149 

3 0.674 0.706 0.299 0.179 0.197 0.167 0.084 0.084 

1 0.886 0.917 0.649 0.579 0.497 0.524 0.268 0.269 

0.982 0.996 0.919 0.975 0.820 0.832 0.497 0.498 9 2 0.801 0.842 0.463 0.345 0.308 0.291 0.150 0.150 

3 0.724 0.773 0.330 0.206 0.163 0.162 0.085 0.085 

1 0.908 0.938 0.687 0.609 0.521 0.473 0.269• 0.270 

0.987 0.997 0.929 0.977 0.831 0.841 0.499 0.499 10 2 0.837 0.880 0.483 0.374 0.287 0.272 0.151 0.151 

3 0.771 0.827 0.339 0.234 0.159 0.156 0.086 0.086 

Table 44.2 c 	Probabilities, Rk
(p), that in a non-unilevel control queue with traffic intensity , p, and C3 (mixed exponential) service times, the line 

length, I. , exceeds k times mean line length In the corresponding unilevel control queue with overall traffic intensity p-p(N;p1,o2). 
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When both pl  and p2  are less than unity, the overall effect of uni-

level control on the distribution of line size in a queueing system is 

less marked (cf. Fig. 4.3.3 c). However, comparing Tables 4.3.1 and 4.3.2 

in this case shows that Rk(N;pl,p2) is always less than Rk(p) for the 

corresponding queue without unilevel control. When p1.0.9, lines exceeding 

two and three times E(L) occur at least twice as frequently in queueing 

systems without unilevel control as do lines of the same length in cor-

responding unilevel control queues. However, lines longer than E(L) 

appear to be only slightly less probable for unilevel control than for the 

corresponding queue without unilevel control. The entries in Tables 4.3.1 

and 4.3.2 for p1=0.5 show that in these moderate traffic conditions, unle-

unless N is typically 2 or 3, unilevel control hardly affects the line 

size distribution. 

The results indicate that in queueing situations which are heavily 

or very heavily congested, unilevel service process control is an effec-

tive means of reducing mean line length and the probability of lines 

which are long relative to E(L), the reduced mean line length. In par-

ticular, unilevel control can be used to manage queueing situations which 

otherwise cannot be expected to reach an equilibrium. There is some 

evidence (cf. Figs. 4.3.1 a and b) to suggest that when service times 

vary considerably, unilevel control is more effective in regulating the 

line length. This distinction is less important, however, than the 

degree to which changes in the line size distribution are affected by 

the choice of N. For fixed p1 , p2  and Ci  the mean line length, E(L), is 

smallest when N=2; however, the disruptive effects of changing from slow 

to faster service probably decrease as N increases. In any practical 

situation both aspects of unilevel control should be considered in 

choosing the control threshold. 
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4.4  Bilevel hysteresis control of the service process 

If the cost of changing from one service time distribution to another 

is substantial, bilevel hysteresis control could be more suited to the 

situation than unilevel control. According to strict bilevel control rules, 

a change from G2(.) to GO.) cannot follow a change from 	to to G2(-) 

unless two or more service completions have occurred. This enforced delay 

between changes from slow to faster service and back to slower service 

again is one of the features distinguishing bilevel hysteresis control 

from unilevel control. It follows that bilevel control requires two dis- 

tinct control parameters, one to determine changes from GO.) to 	and and 

the second to indicate changes from G2(.) to G1 (.) (cf. Fig. 4.1.1). Since 

bilevel hysteresis control is a generalization of unilevel control, we can 

use the discussion of §4.2 as a guide in analyzing a similar model for 

bilevel hysteresis control of the M/G/1 queueing process. Unless other-

wise indicated, the notation and assumptions of g4.2 will not be changed. 

Under bilevel hysteresis control, customers may be served according 

to one of two service time distributions, G
1
(.) or G

2
(.); the decision 

points of the control process are the arrival and service epochs. The 

choice of service time distribution depends both on the number of custo-

mers present and on the immediate history of the process. Two control 

parameters, r and R (r<R), are required. The following rules determine 

the service time distribution for the customer currently in service: 

(i) when 	the customer is served according to the distribution G1 (.), 

(ii) when L >R the customer is served according to the distribution G
2 
 (.) 

' 

(iii) when r<L
t
<R the service time distribution is not changed 

(iv) if L
t increases from R-1 to R while a customer, C, is being served 

according to the distribution G1 (.), Immediately terminate service 

to C and begin a new service time for the same customer according 

to the distribution G
2
(.). 
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As in the case of unilevel control, rule (iv) serves to simplify the 

analysis of the resulting line size process. 

Since L
t 

is generally non-Markov we redefine the state of the system 

by adjoining two supplementary variables, St  and Zt. The former supple-

mentary variable, St, is the elapsed service time at time t; Zt  is an in-

dicator function which takes the value j when G.(.) (j.1,2) is the service 

time distribution in use at time t. 

Let po(t)=pr(Lt=0) (t?0), pn(t,x;1)=pr(Lt=n,St=x;Zt=1) (n=1,...,R-1; 

x>0; t>0) and pn(t,x;2).pr(Lt=n,St.x;Zt=2) (n=r+1,r+2,...; x>0; t>0). 

Time-dependent Kolmogorov forward differential equations for bilevel hys-

teresis control are given by 

co 
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Solutions for (4.4.1) to (4.4.5) must also satisfy the boundary conditions 
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Let po, pn(x;1) (n=1,...,R-1; x>0) and pn(x;2) (n=r+1,r+2,...; x>0) 

be the steady-state analogues of po(t), pn(t,x;1) and pn(t,x;2) respec-

tively. Equilibrium equations corresponding to (4.4.1) to (4.4.11) are 

given by 

oo 
X ro  z 	(ot 	i6,<06 ckx. 

O 
(4.4.12) 

) P 	1 	1 	951(.A 	(nk %) r. o, 	 (4.4.13) 

a rit  
. (1‘.., 	(1),(..,61 Fta(00..ol 	A p.i_Cttx., 	 (4.4.10 

p 	a) 4 1 	x# c6 .(nA 	1:1,(% .0. 	 (4.4.15) 
asit r4, 

x4 0(,,01 	 (4.4.16) 

v) (GI t) = XF.04.1.3? (.1(.0)  cs(iA)a., 	(4.4.17) 
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(4.4.20) 

oo 

p.(0 ;2) 	 (46 cl/K 	(„.1=r4t....•$R-I IP..41,R42.,*••) (4.4.21) id  
0  .141 

00 	 00 
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0  Rot 

The general solution for (4.4.13) and (4.4.14) is 

.3-' 
(x y\ 	1-.),(0;‘) 	 e„-xf**4:M4.1 , (1=1,- -.1g-`) • (4.4.23) 

.1-M, 
,wto 

R-1 
Define the probability generating functions Pi(x;z)= 	pk(x;1)z

k 
and 

k=1 
P
2
(x;z)= 	p

k
(x;2)z

k 
(1z151). Using P

2
(x;z) we can combine (4.4.15) 

k=r+1 
and (4.4.16) in the single equation 

7.) -4 	• 	 z) 

which has the solution 
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-xqco-x)4: 
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 (4.4.24) 

where P
2
(0;z)=11m P

2
(x;z). Similarly, combine (4.4.21) and (4.4.22) in 

x+0+ 

the single equation 
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oo 	[i=1; j=1,...,R-1 
where p.(i)jp.(x;i)dx 	. By substituting (4.4.24) in 

J o 	i=2; j=r+1,r+2,... 

(4.4.25), we can solve for P2(0;z); hence, 

R41 	( 0
) 

D  . 	ci42  (x) 
1- 41 

- trit  

Since the system is in equilibrium, it follows that 

(4.2.26) 
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0 

Therefore, 

V4% r,4% 	- ,,,k ct,t) 

13 ( N  . .1..) --• X va (t)  1  -  4 
	
e 	A1.6) . 	(4.4.27) 

2 $ 	R-I lc-r/4'kN-Xz) z2 

By substituting  for p1 (x;1), p2(x;1) in (4.4.12) and (4.4.17) we can 

show that 
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By substituting (4.4.23) in (4.4.18) we obtain the equation 

,k 44.(k1 
(32-2 )• •• 3 r•-1 

kzo 
.141-■k 	lk 	10 

which may be solved iteratively to obtain expressions for p3(0;1),... 

pr(00) which are unique to within pos. To obtain expressions for Pr+2(0;1)' 

''''PR-1(°;/) in terms of p
ro  (0;1) and po, iteratively solve 

.1c OA 
P (0'3 0  {E 	

* 
0%).  0.■ (x\ 

11/4 	1(1.  
• kzo 

By (4.4.20) pR_1 (0;1)=0. Hence, Pr+1(0;/) 
 can be determined to within po 

0 	r4 % 1 .. • s  R- 
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and the expressions for pr+2(00),...,pR_2(00) can be simplified as well. 

To obtain unique solutions for (4.4.12) to (4.4.22) a normalizing 
oo 

condition is required. Let P i (z)=J(P.(x;z)dx (1=1,2). The relation 
o I 

which determines the unique solution of (4.4.12) to (4.4.22) is given by 

R.-t W.+ 
pc,4 E 	v.(0;  o 	

4 
 kx) 	P 	(R-T1   - 

'• 	'CO. " 	?o 	I V)2  
oo 

where J
n
(A))fxrls23

1
(x)e-Axdx, (n=0,...,R-2). The left hand side of (4.4. 

o 
28) is a linear function of pc); by solving (4.4.28) for pc), unique solu-

tions for the steady-state equations (4.4.12) to (4.4.22) will be deter-

mined. Hence the marginal probability generating functions for the states 

(j;1) (j=1,...,R-1) and (k;2) (k=r+l,r+2,...) are 

k-I 

P:(1)  ` E2k  EY),■6 r‘ J (0 ) 
k = 	vrz0 	4.%  

a ("Z) = P 	11. 	k  
1- ca(  X- X7.) 

R" 	 (X-X7.) I-Z 

respectively. 

General expressions can be written for several properties of the 

equilibrium process. For example, the mean line length, E(L), is given by 

1%1 

E(1-) ' P, (%) 	(R-r\  PR" 	c R41-41) fot  4. 
?2. 

The rate, a, at which the service time distribution changes from G1 (-) to 

to G2(.), or vice versa, is equal to 

R-  

This relation was used to obtain (4.4.27). If 	is the long-run propor- 

tion of time that customers are served according to G2(•), then 

P to 	("-)e2 	(1) . 

Since the  the arrival process is Poisson and customers arrive or depart 

singly, a result due to Khintchine(1932) which is quoted by Cox & Miller 

(1965, p.269) guarantees that the equilibrium line size probability 

) 	(4.4.28) 
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, and po  is defined by the equation 
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distribution imbedded in the continuous time process at departure epochs 

is identical to the equilibrium distribution in continuous time. There-

fore, the probabilities pn(j) approximate the proportion of customers who 

leave behind a total of n customers and the service process operating at 

level j. However, no customer can depart and leave the system in the 

state (L=R-1;Z=1). it follows that pR_ 1 (1) must approximate the propor-

tion of customers whose service is interrupted by a change from GO.) to 

G2(.). Since the system is in equilibrium, pR_ 1 (1) also approximates the 

proportion of customers whose departure causes a change from G
2
(.) to 

G
1
(.). Therefore, if n is the proportion of customers whose service times 

are independent observations from the distribution G2(-), 

1;)(6 = F.C\  P2. (R- 	+  

% -1).a 
Similarly, since pc)  is the long-run proportion of time that the server is 

idle, the overall traffic intensity, p, is equal to 1-po. 

The following examples illustrate the application of bilevel hyster-

esis control to different queueing situations. 

Example 4.4.1 

-uix 
Let G.(x)=1-e 	(i..1,2) and 0<11

1
<11
2' 

The solutions to the boundary 

equations are 

p (o.01 = X( 14c:o po  

R.:1-1 

1:;(0. 0 :: XE. 0:1 	t- si), 
vt 	

t (itr-ttl••• ) R-11 . 
3 ' 	 R-1- 

/- et 
where p .—lt. 

. Hence, 
1 
P1 	. 	 a t 

p 	 %. (11 .. 1,... pl. 	(at: s,.•.,r) 	, 	p). 1 	1::. 	?I -  e% 	( jul-41,. • •,R-1) , 
a 	,., 	 a 	0 

1-  eti -1-  

p la) , po  A, P2- Pt"- 
 r 

	

( iv ri l). “wR) . 	p,(2.1 ,... po  A, :,:':'.- 	( 1=z41 )R4a,••• 	. 

1-?2 
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Formulae for E(L), a, and n are therefore given by 

R-11 

E(L) 1,[  C)1 	Pi kS'i- F) (R-r1 	 C'■  f 

R.-% I 	 R-I 

er 	x■- c>) 	 F, P, (t-e,1 	N(R-r..t)41  • 

	

R-r
1 " (3 R-r 
	t-ca 

This example corresponds to the case treated by Gebhard(1967) and the 

above expressions for the equilibrium probabilities, etc. are identical 

to results which Gebhard obtains, by solving steady-state equations for 

this particular Markov queueing process. 

Note that by setting r+1=N=R, bilevel hysteresis control reduces to 

unilevel control and the expressions in Example 4.4.1 are identical to 

the results of Example 4.2.1. 

To illustrate, briefly, a few of the differences between bilevel hys-

teresis and unilevel adaptive control, line size distributions for several 

combinations of r, R are presented in Table 4.4.1. The final column in 

the table gives the distribution of L for unilevel control. Both G/ (.) 

and G(-) are assumed to be exponential distributions. 

The next example considers the effect of bilevel hysteresis control 

on the switching rate, a. 

Example 4.4.2 

Suppose that G1 (x).1-e Px  and G
2
(.) is arbitrary with p

2
<p

1
. Let a 

be the switching rate for a bilevel hysteresis control model with control 

levels r and R (r<R-1) and let a' be the corresponding rate for a unilevel 

control model with control threshold R. According to Examples 4.4.1 and 

4.2.1 	R-t 	I- e. 4 	R-I 	t 
Cr 	h  et i'o 

t- e, R.. 
% ,.„ 	1 	9. 	(R-1-1 (9,- c>.7. 	1 	= 	1 	- Pt 	(e.- el) . R.. 

Po 	1-9, 	(1_ e -r) ( I. e.3.) 	PO 	1 " P% 	(I- 91)(1- e2.) 
Then a<a' and E'<E, where E l  and E are evaluated for the same unilevel and 

bilevel hysteresis control models, respectively. Thus, if server opera-

ting costs are higher for the distribution G2(.), a decrease in the 

where 
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0.033 

0.018 

0.010 

0.012 

4.78 

0.051 

0.363 

0.030 

0.045 

0.067 

0.070 

0.038 

0.021 

0.012 

0.013 

5.17 

0.063 

0.370 

0.023 

0.034 

0.052 

0.084 

0.046 

0.025 

0.014 

0.019 

5.59 

0.083 

0.385 

0.018 

0.027 

0.040 

0.105 

0.058 

0.032 

0.017 

0.021 

6.03 

0.123 

0.423 

0.014 

0.021 

0.032 

0.134 

0.074 

0.041 

0.022 

0.028 

6.48 

0.244 

0.541 

Po 

P1(1)  

p
2
(1) 

p3(1) 

p
3
(2) 

P4(1)  

p4(2)  
p5(1) 

p5(2) 

p6(1)  

p6(2)  

p7(1) 

p7(2) 

p8 (2) 

p
9
(2) 

p10(2) 

p11 (2) 

pr(L>12) 

E (L) 

a 

Table 4.4.1 	Equilibrium marginal probability distributions for the line 

length, L, in six different hysteresis control queues with 

control levels (r,R) and traffic intensity 1.5(0.55) for 

slow(fast) exponential service. Changes from slow(1) to 

faster(2) service occur at rate a, and a proportion, n, of 

customers receive faster service. 
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switching frequency and presumably in the switching costs as well will be 

partly offset by increased serving costs. 

It was suggested that rule (iv) simplifies the analysis of bilevel 

control. However, if rule (iv) is omitted, we can still determine the 

equilibrium line size distribution. 	In this case, the decision points of 

the process are service epochs. The analysis follows similar lines, but 

is complicated by the possibility that when the state of the process is 

(R,x;1), transitions through the states (R+1,y0), (11-1-2,z0) (x<y<z), etc. 

may occur before the next departure leaves the system in the state (j,0;2) 

(j>R). Thus, deleting rule (iv) increases the number of possible states, 

but as the results of the next example illustrate, the difference between 

the solutions for the two models is probably negligible in most situations. 

Example 4.4.3 

-11.x 

	

Let G i(x)=1-e 	(i=1,2) and 0<u1 <u2. When rule (iv) is deleted 

the equilibrium distribution of L is given by 

( 	 k 
vbktil 	%Ic=1,...,r) 	p(s) % 1100 	-1xl! 	(k‘ro,...oz-6 

?, k- r4 
kt) 	 pic( 21 % 	El,  - 	(kgr4y 
k 	° (t4(:01c-R 	eR-ri.1 	 ()% 

k-141 

f> (al z vs-0  ill  22 	k)2. 

1-  ea ("1* %(:),:- e% 	

e, 	(%-Pxl 	(k-cR*1 V.*2 	) 
t 

k-r 

(14 	" (&4-0N-k),) 
 

where B = " (, 
 ,\

, and p
o 

satisfies the equation 
• it-ri 

(e•-Pal PR  kR— r4?,)  
?„.) 	c)r"--" ) 

Example 4.4.1 gives the solution for the same service time distributions 

when rule (iv) is not deleted. 

Similar comments apply to the results of 54.2. 

Whether rule (iv) is retained or deleted, many factors will undoubt-

edly influence the choice of control parameters in any practical applica-

tion of bilevel hysteresis control. The conclusions of §4.3 are only a 

guide in making such a decision. 
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CHAPTER 5. Generalized hysteresis control of the service process 

5.1 2k-level hysteresis control 

A natural, though somewhat less practical, generalization of both the 

unilevel and bilevel control models discussed in Chapter 4 is one with 2k 

control levels. The most general formulation of 2k-level hysteresis con-

trolinvolvesk-OservicetimedIstributionsG.H (j=1,...,k+1) and k+2 

control level pairs, (rn,Rn) (n=0,...,k+1), with 0=ro<R0=1<ri<R1 <-<rk< 

R
k
<r

k+1
=R

k+1
=,=. Figure 5.1.1 shows a possible configuration when k=2. 

Fig. 5.1.1 	Relation between line size, L, and service time distri- 

butions, G(-) (j=1,2,3), in generalized hysteresis control. 

In their introductory paper on hysteresis control, Yadin & Naor(1967) 

assume arrivals are Poisson and service times at each control level are 

Independent, exponentially distributed. Using the methods of Chapter 4, 

thernoregeneral 2k-levelcasewhenthe) are arbitrary can be solved. 

In the present chapter, the principle results are outlined. 
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The decision points of 2k-level hysteresis control are the arrival 

and service epochs. The choice of service time distribution depends both 

on the number of customers present and on the recent history of the pro-

cess. If L
t 

is the line size process at any time t, the following rules 

determine the service time distribution at each decision point: 

(1) 	when Rj-1 <L
t 
 <r 	the customer is served according to the distribu- 

tion 	

j' 

tion G.(-) (j=1,...,k+1), 

(ii) when rj<Lt  <R., the service time distribution remains unchanged, 

(j=1,...,k), 

(iii) if, while a customer, C, is being served according to the distribu-

tion Gi(-), Lt  increases from 11.1 -1 to Rj, immediately terminate ser-

vice to C and begin a new service time for the same customer accor- 

ding to the distributionGi+1  (.) 	(j=1,...,k). 

Only rule (iii) causes a customer's service time to be interrupted. 

We assume that G1 (.) has derivative gi (.)=0,(A01 (.) with Laplace 

transform el(s)= :-sitgi(t)dt, (i=1,...,k+1) and that 0 
f -k+1 

fw 
=Votgk+1 (t)dt<1. 

Redefine the state of the process, in equilibrium, as the triplet 

(L,S;Z); L is the line size process, S is the elapsed service time of 

the customer in service and Z takes the value i if G
i
(-) was chosen at the 

last decision point (i=1,...,k+1). 	If po=pr(L=0) and pn(x;j)=pr(L=n,S=x; 

Z=j) 	(n=r +1,..., R -1; j=1,...,k+1; x>0) then steady-state equations 
i-1 	j 

for the probability distribution of (L,S;Z) are given by 

r o0 

NP0 	t:),Gx-,0 4:1,(46clix (5.1.1) 

a 	p(tx;141) 41X4.15.(e)01 F) (,,,,..):40 .0 , ki=0,".,k) 	(5.1.2) 

aim. I:41 	A4.1 	r 41 
4 	 a 

	

1>Gx. I.W1+ i N 4. iS ( 061 to■ ( 'X i :141) % X f> cl, ii 6 1  tiv V: 4.2 ” . ct •• I . 	(
s 1 3 ) atg " ) 	 :141 	im 	 3 " 14-t 1 	- • • 

.1 ":3 )••• 1 k 

00 

P 0; %) 13" ?13  4. I r 	fv,x) eX 
a 1 (5.1.4) 
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p (0; 'ski) 	p (4(;  ..14, 1 	(.1.) 	 41 11 ..  •• • R-1  R 	••• v.% r.4.1 	(5.1 5 ) 

 O t\41 	141 	 1 441 i41 1  '141 

00 	00 
v,,,..(0,,10J ) 	ck .(qo% , (3=1 ,..-0‹. 	(5.1.6) 

.1 1 	
. r4 e t 	0  r4t a 	

4 

V> t oa ;:IN =0 	) 	(.1 :--t ). ••,V.) 	 (5.1.7) R. -t 
00 	oo 

(°;..r")  x  r 	r(ix.....v41)0.)4k7"rx 	 (5.1.8) 0  

R -1 
j+1 

	

Let P(x;z)= 	y p.n(x;ji-ozn ozi<l) (j=0,...,k). Solutions to 
jill1=1".11 

(5.1.2) and (5.1.3) for j=0,...,k-1 are given by 

L7."    -" 

	

sz,.  • 
 

	e 	.41(,,t) 	. 
14, 

	

rtze-+% 	hetr..0 

When j=k we can combine (5.1.2) and (5.1.3) in the single equation 

z) 	xz-x 	t)tly,z) 
■i)c 	k+t 	k-%.% 	k4% 

which has the solution 

P ( • 2.) P 	e ki t - 	kA.% 
(ix) 	 (5.1.10) 

k4.% 

where P(0;z)=11m P(x;z). We can also combine (5.1.5) and (5.1.8) as 
k+1 x+0+ k+1 

o3 
co 	r  k 	 i 	k 

PicOli)L2L V) t•X;7..\ Ch (ItsIctoX - Z 	P___(‘Xik41)06(16C1'4( + A rkkli 1 (5.1.11) 
l 	2 0  1/44% 	.“ 	0 vir." 	

kil 	g t k 
i oo 

where pn(j+1)= pn(x;j+l)dx, (n=r.+1,...,R -1; j=0,...,k). 	By substitu- 
o 	j 	j+1 

ting  (5.1.10) in (5.1.11), we can solve the resulting  equation for P(0;z);  
k+1 11•4•% 	r 41  °O thus 	k 	k  X iza‘c? 1  -. z 	pr( ,k;1) cl) (1c1 at% 41 	kt-t 

	

P(0 ;2) - 	k 	 o k 	. 	 (5.1.12) 
k.1.% 	2- (3*(X-VZ) 

k4t 

(5.1.9) 
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k41 	 R - % 	z- 941(x-xx.) 	
(5.1.13) 

Unique solutions for (5.1.1) to (5.1.3) will be determined if unique ex- 

pressions for pn(0;j+1) (n=r +1,...,R -1; j=0,...,k-1) can be derived. 
j 	j+1 

We begin by obtaining expressions for pi(00),...,p(00) which are 
R

1
-1 

unique to within po  and then sketch the details of a general procedure for 

evaluating p (0;j+1) 	(n=r +1,...,R -1; j=1,...,k-1). 
n 	j  

Substitute solutions for p1 (x;1) and p2(x;1) in (5.1.1) and (5.1.4) 

to show that 

	

s ,(o• 	- 
9

0

) 	
(0', % 	X

'
P
,(
°
Ar

1 - 3
*,  

,) 4 X 
	g4't  . 

In general, we can obtain expressions for p
3
(00),...,p (0;1) in terms of 

ri  

po  by solving, iteratively, 

vlm (",N E p 	s 	q b% 	7.7 	(Y. 	•,r -1) 	(5.1.14) evort 	r% 	1 	J s  

	

vvva 	 n. 
*(m)  dm  * 

where gl  (X)=---- g
1 
 (X), (m=0,...,RIF2). 	If we substitute for p(x;1) and 

dX
m   

r
1
+1 

p(x;2) in (5.1.6) we obtain 
r1+1 

(v,A 
4*(X1 	1 (- 	( X pis( 0;  0 	(5,k x) 	(0;0)5 	E 	(5.1.15) r4.1 	a 

rie,t 

which can be solved for p(0;2), say, In terms of p(0;1) and po. Continued 
r

1
+1 	r

1
+1 

iterative solving of (5.1.14) for n=r1 +1,...,R1 -2 generates expressions 

for p(00),...,p(00) in terms of p(0;1) and po. But according to (5.1.7), 
r1+2 	R

1
-1 	r

1
+1 

p(00)=0. Using this equation for p(0;1), we can evaluate p(0;1) in terms 
R
1
-1 	 R

1
-1 	r1+1 

of po  and hence simplify the expressions for p(00),...,p(00); we can 

r 1+1 	R1-2 

also solve (5.1.15) for p(0;2). Hence, values for p(0;1),...,p(0;1), 
r
1
+1 	 1 	 R1-1 

co 

Since the system is in equilibrium, Xp(k) = p(x;k+1)0(x)dx; hence 

1 Rk-1 0  rk+1 	k+1 

1Z 44 	r144 I 
Z 	- Z 

1::/  0 • z) = X p(k) 



p(0;2) which are unique to within po  have been obtained. This expression 
r
1
+1 

for p(0;2) is the initial solution for level 2. 
r

1
+1 

In general, solving the jth level boundary equations (j=1,...,k) also 

determines the value of p(0;j+1), the initial solution for the (j+1)th 
r.+1 
J 

level. With this initial solution, an equation derived from (5.1.5) 

[of. (5.1.14)] can be solved iteratively for p(0;j+1),...,p(0;j+1) in 
r.+2 	R. 

terms of po. Next, substitute for p(0;j+1), p(j) and p(x;j+1) in (5.1.8) 
R. 	Rrl 	R.+1 

to obtain an expression for p(0;j+1) in terms of po. Continued iterative 
R.+1 
J 

solving of the equation derived from (5.1.5) then generates solutions for 

p(0;j+1),...,p(0;j+1) which are unique to within po, and expressions for 
R.+2 ri+1  

p(004.1),...,p(0;j+1) which can be written in terms of p(0;j+1) and p
o
. 

r+2 	R- 1 	 r+1 

3+1 	j+1 	 j+1 

But according to (5.1.7), p(0;j+1)=0. This equation determines a solution 
R-1 
j+1 

for p(O;j+1) in terms of p
o 
and hence p(0;j+1),...,p(0;j+1) can also be 

r+1 	 r+2 	R-2 
j+1 	 j+1 	j+1 

evaluated to within pos. Finally, the initial solution for level j+2 can 

be obtained by substituting in (5.1.6) and solving the resulting equation 

for p(0;j+2). 
r+1 
j+1 

Thus, beginning with an initial solution for level j+1, it is possible 

to solve all the (j+1)-level boundary equations, determining p(0;j+1),..., 

m+1 
p(O;j+1) and the initial solution for level j+2 in terms of poi. The pro- 
R-1 
j+1 

cedure is identical for j=1,...,k-1. Hence solutions for p(0;j+1),..., 

r.+1 
J 

p(0;j+1) (j=0,...,k-1) which are unique to within p
o 

can be obtained. 
R-1 
j+1 
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To obtain unique solutions for (5.1.1) to (5.1.8) we require a nor- 

R-1 

j+1 	co 

malizing equation. Let P(z)= 	pn(j+1)zn=jfP(x;z)dx (j=0,...,k). 
j+1 n=r+1 	0  j+1 

k+1 
Since p + X P.(1)=1, therefore 

° j=1 

1"0 	 E?(01:14-61
1 
 :\v-kx\ 4.1z.(k, (wk-voq.k.„ - 	) (5.1 . 16) 

v.^.  1"'wt  kl 	?k3et 
3 co 

wherev(X)=J[x%(x)e-Xxdx 	r -2; j=0,...,k-1). The left 
j+1,m c 	j+1 	j+1 .  

hand side of (5.1.16) is linear in pip; hence pc,  is uniquely specified by 

(5.1.16) and unique solutions for (5.1.1) to (5.1.8) can be obtained. 

The marginal probability generating function for the states (n;j+1) 

(n=r +1 ,...,R-1 ), i.e. the (j+1)th level, is 

j 	j+1 	t..1  

	

.141 	A 	 vv. 

P.(1) = 	z" Tipkt1;:vo a vi (0 , 
a41 yy,. 444 orn 

rvz.r 4. 1  rnt 

it 4. 
1,4 	U. 	 ok  ( X - >CO 

z 	 V.4 	( • 
) 

R.ct z q (X-VZ.) 	1- i  
""" 14-it 

The marginal steady-state probabilities, po, pn(j+1), can be used to 

obtain expressions for the usual properties of the equilibrium queueing 

system. These expressions are simple generalizations of the formulae 

derived in §4.4 for corresponding properties of bilevel control. There-

fore we omit them from this outline. 

Obviously, by making the substitution r
J
..41..R.-1 for some values of 

J 

j in the preceding discussion, the solution procedure can be simplified 

since (5.1.5) is then only defined for n>N.+1. Similarly, (5.1.6) and 
*3 

(5.1.7) are together superseded by the equation p(0;j)=Jp(x;j+1)0(x)dx. 
N,-1 	ON. 	j+1 

When r.=N.=R.-1 for all values of j, the resulting model is a k-level 
J J J 

analogue of the unilevel control model discussed in §§4.2 and 4.3. 

The following simple example concludes this discussion of generalized 

hysteresis control. 
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Example 5.1.1 

-p.x 
Let G.(x)=1-e 	, (j=1,...,k+1) where 0<p

1 
 <-..<p

k+1' 
	Define 

p.= — and assume that pk+1<1.  Solutions for the boundary equations are 
J u j   

given by 

where 
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The value of po  is determined by the equation 

k 	 k-i 
R•- r. 	 R. -R.41 .14*1 3 	R• " r• 

Pe—I— z 
 
 	Aa  )1 41 

" l
Ri- r

4 
	E .i %it 	

-

341
R  a.  3i-

4

r

%  

i■ 
1-5 	1  341 	Au° 	 1 

 
 ?Si% 

If we set k=1, the results of Example 5.1.1 reduce to those obtained in 

Example 4.4.1. 
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CHAPTER 6. Concluding remarks 

6.1 An alternative to optimal control 

The question of explicitly optimizing the control of single server 

queueing systems has been largely ignored in preceding chapters except in 

5g2.1 and 2.2. There it was necessary to choose a service time, 0, which 

divides customers into "short" and "long" classes. The particular value, 

0
*
, which was selected is one which minimizes mean queueing time. 

Optimal control of queueing processes is not a neglected subject in 

the literature. Various authors whose work has already been mentioned 

have tried to explore this question [cf. Heyman(1968), Bell(1971) and 

Yechiali(1971)]. Most authors adopt one of two approaches. 

One may postulate a queueing system with a specified cost structure 

involving items such as holding, serving, start-up and shut-down costs 

and a finite list of possible actions in each situation. This approach 

usually requires the use of dynamic or Markov renewal programming tech-

niques to determine the form of optimal policies for different planning 

horizons, with and without cost discounting over time. For examples of 

this method, see Heyman(1968), Bell(1971), Yadin & Zacks(1971) and 

Crabill(1972). 

On the other hand, one may prescribe a control policy of a particular 

form for a given queueing system. in this case, the effect of the pre-

scribed control policy on various system features is usually determined 

in terms of average values. Optimal control is then introduced as the 

problem of selecting control parameters io order to minimize costs or max-

imize revenues as determined by a postulated cost framework. This approach 

is exemplified by the work of Yadin & Naor(1963), Moder & Phillips(1962) 

and Gebhard(1967). 

A few authors adopt a third approach to the problem of optimal con-

trol of queueing processes. This involves applying traditional mathema- 
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tical methods in order to optimize a particular aspect of a queueing pro-

cess. Thus, Shapiro(1965) uses the second method of Lyapunov to minimize 

the mean squared deviation of waiting time from a predetermined standard. 

Man(1973) utilizes the Pontryagin maximum principle to determine a dynamic 

operating policy in a time-dependent M/M/s queue with N-s places for queue-

ing customers. The optimal control policy which Man derives regulates 

the customer arrival rate in order to minimize the mean squared excess of 

customers over servers in a specified finite interval of time. 

The development of Chapters 2-5 has not followed any one of these 

three common approaches. In applications of queueing theory [cf. Lee 

(1966)] the problems that arise do not appear to require rigorous, optimal 

solutions for conceptual models; however, practical, operational solu-

tions are obviously necessary. Ideally, developments in queueing theory 

should arise as new problems are met. When this is not the case, theore-

tical advances ought to be supplemented by indications of their appropri-

ateness and applicability in various situations. 

For this reason, no attempt has been made to optimize the methods 

suggested in Chapters 2-5. It might be possible to define a general cost 

structure and, within that frame of reference, determine which of the 

various control techniques optimizes a selected objective criterion. 

Instead, attention has concentrated on some ways in which information 

about the present, or perhaps future, state of an M/G/1 queueing system 

can be used to manage congestion. By a series of numerical studies an 

attempt has been made to determine the likely effects of the suggested 

methods on existing queueing processes. 

Various qualitative conclusions are another result of these same 

numerical studies. In each case, there appears to be some evidence, occa-

sionally quite conclusive, that the suggested control methods are most 

effective in managing congestion when the service time distribution is 

more dispersed than the exponential distribution. Conversely, when 
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service times tend to be regular, the various methods considered appear 

to be less effective. Obviously, for a fixed arrival pattern and queue 

discipline, the degree to which a system is congested will very much de-

pend on the service time distribution. Since the suggested control me-

thods — with the notable exception of shut-down control — tend to impose 

a greater regularity on the system than had existed previously, so the 

differential effect of those same control methods on more congested sys-

tems Is greater. 

As an alternative to theories of optimal control, then, specific 

changes in the basic features of a queueing process have been suggested. 

Theoretical treatments of the results of these changes are supported by 

quantitative evidence in specific cases indicating qualitative effects in 

more general situations. Lee(1966) demonstrates conclusively that "appli-

cations involve much bending and twisting of the theoretical models". 

This suggests that results which offer insight into simple schemes for 

managing congestion are probably of greater practical importance than 

theoretical solutions for optimizing the control of a given queueing 

system. 

6.2 Some outstanding problems 

No mention was made in Chapters 4 or 5 of the equilibrium distribu-

tion of W , the queueing time. Since service times under hysteresis con-

trol depend on the line size, customers' queueing times are partly deter-

mined by the pattern of subsequent arrivals. In most cases, this depen-

dence makes the equilibrium queueing time distribution difficult to analyze. 

However, if customers are served in order of arrival, the Laplace trans-

form of the distribution of Wq  for unilevel control can be derived by the 

following argument, provided the control threshold, N, equals 2. 

Clearly, the probability distribution of Wq  will be of the form 

P
O4-(1po)v(x); po  is the equilibrium probability that the line size is 
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Let C be any customer who joins the queue during a busy period. 

Since N=2, the service time distribution for all customers preceding C in 

the queue will be G2(.). When C's service time begins the number of cus-

tomers behind him in the queue, i.e. who arrived during C's queueing time, 

is j with probability pi41 /(1-p0) 	pk/(1-po) is the equili- 

brium probability that the line size, L, is k (k=1,2,...), given that L>0. 

Since arrivals are Poisson 

P1+I  	 e 	v "lot- ex 
iro+ J 

and so 

v. o .E. .14.,7? .4 E. 
c° 	f c't) 	 
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But by (4.2.27) we know that for N=2, 1 p.zi=p 
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To determine v'(s), set s=X-Az in (6.2.1). Then 
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When N>2 the number of customers who arrive while C is queueing may 

cause a change in the service time distribution, either from G1 (.) to 

G
2
(.) or vice versa. Since C's queueing time is determined by the service 

times of customers preceding him in the queue, it follows that C's queue-

ing time depends on both the number of customers who follow C in the queue 

and their arrival pattern. This greatly complicates the problem of deter- 

mining the equilibrium queueing time distribution in general. 	if the 

distribution of Wq  could be determined when N>2, numerical studies such as 

zero and v(x) is the conditional probability density function of positive 

-sW 	 ot) 
queueing times. Thus E(e 	c1 )=p

o
+(1-p

o
)v
*
(s), where v

*
(s)=Jfe sxv(x)dx. 

- 

o+ 
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those in §§2.2, 3.3 and 4.3 could be used to quantify the effects of uni-

level control on queueing time. 

Similar comments apply to the problem of determining the queueing 

time distribution for bilevel hysteresis control. An expression for the 

general form of this distribution is unlikely to be obtained before the 

analogous unilevel control problem has been solved. 

Excluding a few authors whose work has been mentioned, almost no one 

has considered the problem of controlling multi-server queueing processes. 

No doubt this is partly due to the considerable analytical difficulties 

which are encountered whenever the queueing process is non-Markov. There 

is the added problem, however, of devising multi-server control schemes 

which are both sensible and practicable. Kingman(1962) has shown that if 

customers are indistinguishable from the point of view of service time, 

and if we exclude the possibility of an idle server while other customers 

are queueing, then service in order of arrival minimizes the queueing time 

variance. Until some means of using further information about the state 

of a multi-server queueing process is devised, full server availability 

combined with service in order of arrival is probably the most effective 

solution to this very practical problem. 
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