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ABSTRACT

The direct methods of obtaining the eigenvalues
and eigenvectors of a matrix, such as the QR
algorithm of Francis, are certainly to be recommended
when it is necessary to compute all the eigenvalues
and corresponding eigenvectors of relatively small
matrices. However, fof larger matrices iterative
techniques may be the only feasible methods.
Iterative methods particularly come into their own
when:

1) the required number of eigensolutions is
substantially smaller than the dimension of the
matrix, |

2) initial estimates of the eigenvectors are
available,

3) the matrix is sparse.

It is often the case that many technical pfoblems
give rise to very large sparse matrices. The

author has been involved in marine engine vibration
problems and this gave rise to an interest in the
methods of obtaining eigensolutions of the matrices
involved. It is also usually the case that only

a few eigenvalues and eigenvectors need to be
determined accurately and that experience with
similar problems enables good initial approximations
to the eigenvectors to be made. Hence we see that
these are ideal conditions in which to use iterative

methods.



The best known iterative method is the power

method in which a trial vector is continually

premultiplied by the matrix until the iterates

become proportional to each other. This process

can often yield

an eigenvector in a very short

time but this cannot be guaranteed even with

improvements such as shift of origin and acceleration

techniques. To
the computation
vectors between
biorthogonality
methods and the
of ﬁhis thesis.

overcome possible poor convergence
is applied to general iteration
which an orthogonality or

relation is maintained. Such

developments thereof are the subject
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CHAPTER 1

PRELIMINARIES



1. INTRODUCTION

In this brief introduction we give mahy of the
definitions and fundamental results upon which fhe
following chapters are based.--In general, proofs
are given only if they are pertinent to later results.

The (i,j) element of a matrix A will be denoted
by aij' Vectors will be represented by lower case
letters; we shall very frequently be concerned with
systems of vectors which will be denoted by Xq9Xpgee-
eeesX . We shall refer to the matrix having x; a8s
its 1-th column as X. Matrices ofAeigenvectors will
usually be denoted by the letters U,V,W,X or Y. In
particular, matrices of right—haﬁd'eigenvectors will
be denoted by X and matrices of left-hand eigenvectors
by Y.

The notation |A| is reserved exclusively to
denote the matrix the elements of which are Iai

jl'
The determinant of a matrix is represented by det(A)

l.

and the norm of a matrix by ||A

The conjugate of the matrix A=(aij) is represented

by K:(Eij). The transpose of A is denoted by AT and
is such that its (i,j) element is equal to 8-
Similarly, the Hermitian transpose of A is denoted

by A" and is such that its (i,j) element is equal to

aji.
A diagonal matrix with the (i,i) element equal

to Ki will be denoted by diag(xi) or, if no confusion

can arise, A or D may be used to represent diagonal

10



matrices.

2., DEFINITIONS

The fundamental algebraic eigenproblem with

which we are concerned is determining some or all
of those values A for which the set of n homogeneous
linear equations in n unknowns

(A-AI)x =0 | (2.1)
has a non-trivial solution. Equation (2.1) may be
rewritten as'

Ax = Ax. (2.2)

The theory of simultaneous linear algebraic equations
shows that there is a solution, other than the trivial
x=0, if, and only if, the matrix (A-AI) is singular.
That is

det(A - AI) = O. (2.3)
The polynomial f(A)=det(A-AI) is called the
characteristic polynomial and the equation f£(A)=0
is called the characteristic equation of A.

Theorem 2.1 The characteristic polynomial of a matrix

of order n is a polynomial of degree n with leading

coefficient (—1)n; i.e.,

£ = ag + ah +oeees +a AT+ (DM (2.8)

n-
If the n solutions of

f(\) =0 (2.5)
are xq,xg,....,xn, then

x1x2....xn = det(A) (2.6)

11



Proof: The proof follows by expanding det(A-AI) in
terms of elements in the first row. A rigorous

treatment is to be found in Noble (1969).

Since the coefficient of A" is non-zero and we
are &orking in the field of complex numbers the
equation always has n roots. In general the roots
will be complex and of any multiplicity up to n.
These n roots are called the eigenvalues of the
matrix A.

Corresponding to any eigenvalue A the equation
(2.2) has at least one ﬁon—trivial solution. This
solution is called the eigenvector of A corresponding
to the given value of A. We refer to the pair (A,x)
as an eigensolution of the matrix A.

Theorem 2.2 (i) There exists at least one eigen-

vector, corresponding to each eigenvalue. '
(ii) The eigenvectors corresponding to
a given eigenvalue constitute a vector space.

Pr~of: To find an eigenvector corresponding to xi

we solve:

(A -2 Dx =0 . (2.7)

Since det(A-in)=O, this is a set of n
homogeneous equations in n unknowns, the coefficient
matrix having rank less than n. Hence a non-zero
solution exists, which gives an eigenvector. This
proves (i). To prove (ii) suppose that u and v are
two eigenvectors corresponding to Xi, then

Au = Au, Av = AV (2..8)



so that

Alau + gv)

ah;u + BA;V

AjCeu + Bv) - | (2.9)

Hence, au+gv is also an eigenvector and this
proves (ii).

We note in particular that any eigenvector is
arbitrary to the extent of a constant multiplier,
for if |

Ax = Ax (2.10)

then

Alxx) = A(kx) (2.11)

for some scalar k. It is often convenlent to choose
k such that the eigenvector has a particular
numerical property. We refer to such eigenvectors
as normalised. The most convenient forms of

normalisation are those for which

(1) xix = Zn: lxi|2 =1 (2.12)

L=}

(ii) if IXi' > |le’ J=Ts«c-eym

thenkxi =1, ' (2.13)

3. EIGENSOLUTIONS OF THE TRANSPOSED MATRIX

We now consider the eigenvalues and eigenvectors
of the transpose of a matrix A. By our previous
definitions the eigenequation for the transpose AT
is

A"z = Az . (%.1)



where we seek those values of A for which (3.1) has
a non-trivial solution. Following (2.3) these are

the values for which

det (AT - AI) = 0 (3.2)
and éince the determinant of a matrix is equal to that
of its transpose the eigenvalues of A are the same
as those of AT. We denote the eigenvector of AT

corresponding to Ki as z;, SO that we have

ATz, = Az (3.3)

Note that in general Xi¥zi“ Equation (3.3) may be
written as
T

T
ziA = Kizi.- (3.4)

To distinguish these vectors from the vectors X5

where

Ax. = A.x. . (3.5)

the zg are called the left-eigenvectors of A and

the x; the right-eigenvectors of A. If we speak

of just the eigenvectors of A the meaning will be

apparent from the context. ’These are the classical

definitions as given in, for example, Wilkinson

(1965) but for a lot of the work that follows it

is convenient to adopt the following slightly

modified definition of a left-hand eigenvector.
Instead of (3.4) we consider the equation

b = AYE (3.6)

which may be rewritten as

14
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A Ji = Xiyi' ' (3.7)

Note that yi=Ei. We prefer to use yH and AH rather

T

than-yT and A~ because we shall make extensive use

of inner-products and in this case

) =y =R - T (5.8)

i

and _
x'x > 0 ' (3.9)
for all non-zero X.
We illustrate this further by using both the
classical and modified definitions to prove the
following theorem.

Theorem %.1 A right eigenvector X5 and a left

eigenvector y. corresponding to distinct eigenvalues
J

Ki and Kj respectively are orthogonal.

Proof (i): We may rewrite equation (3.5) as

T, T
x7AT = Ajxy (3.10)
and from (3.3)
T
Az, = AN.2.. <11
25 = 5% (3.11)
Hence by postmultiplying (3.10) by % and pre-
multiplying (3.11) by XE we obtain
T,T T )
xi A Zj = ?\ixizj (3.12)
and
T,T T
x; A Z5 = Kjxizj. (3.13)

Subtracting gives

T



which proves that

. T _ . . ) .
X524 = 0, if Ay # Kj.

We note that as Xi_and Zj are, in general,

T . .
complex vectors, Xizj is not an inner-product as

(3.15)

is usually understood; for, in this case, we have

T T
Z.X.

RESS I
and not
T T
XjZy = Z3%;-

We note also that if x is complex we may have
xx £ 0.

In fact XTX may even be a complex number!

Proof (ii): We may rewrite equation (3.5) as

H,H - _H
and from (3.7)
H —
A o = )\. . s e
Y5 7 M5

(3.16)

(3.17)

16

(3.18)

(3.19)

(3.20)

Hence by postmultiplying (3.19) by Y and pre-

multiplying (3.20) by XE we obtain

H,H —~ H

xiA yj = Kixiyj
and

H,H o

xiA Y = xjxiyj .

Subtracting gives
H — —_
0 = Xiyj(xi - A.)

which proves that

(3.21)

(3.22)

(3.23)

(3.24)



This seems to us to be rather neater than the

previous result as Xiyj is an inner-product as usually

understood. In particular

xgyj = Y?Xi (3.25)
and
x> 0 (3.26)

for all non-zero X.

4. EIGENSYSTEMS WITH DISTINCT EIGENVALUES

Firstly we consider the theory of the system
of eigenvectors in the case of distinct eigenvalues.

The equation

certainly has at least one solution for each value

of Ki and therefore we are justified in assuming

the existence of a set of eigenvectors XgsXpseeaeyXpe

Theorem 4.7 The eigenvectors X corresponding to
distinct eigenvalues A; are linearly independent.

Proof: We assume that they are not independent and
let s be the smallest number of linearly dependent

vectors such that X41Koyeeae X ATE eigenvectors

corresponding to distinct eigenvalues Kq,Kg,....,KS

of A. Then
s

:E:aixi -0 (4.2)

let
and te

a. £ 0, i=1,25000058 (4.3)

(A - A Dx; =0 (%.1)

17



Premultiplying (4.2) by A gives

S

aiKiXi = Q. (4.4)

=1
Multiplying (4.2) by A, and subtracting (4.4) gives

5=

Doas(A = Adx; =0 D)

tx
and

a, #Z 0 and Ay # Ay 1 =1,2,..0,8-71 (4.6)

Equation (4.5) implies that Xg 1Koy eeessXg g

are linearly dependent which is contrary to our
hypothesis. Therefore there is no s<n and hence

the n eigenvectors are linearly independent and

span the whole n-dimensional space. From this result
we may easiiy prove the following theorem.

Theorem 4.2 FEach of the vectors X5 is unique, apart

from an arbitrary multiplier.

Proof: Suppose that corresponding to Kq there 1is

an eigenvector X, and a second X%. Then we may write

n

xq = Zaixi, (4.7)

=t

where at least one of the &g is non-zero.

Multiplying (4.7) by A gives

»n

Ax) = }:a.x.x.. (4.8)

Multiplying (4.7) by A, and subtracting from (4.8)

gives
n

0 = E:ui(xi - Axy. (4.9)

=2

But as the x; are independent we must have

a;(Ay = Ay) =0, 1 = 2,3,000.,1; (4.10)

18
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—> a. =0, i = 2,3,0000,0 (4.11)

as the eigenvectors are distinct. However, as at
least one of the a; Was NON-zero it must have been
o shoWing that X% is a multiple of X4 Similar

results hold for the left-hand eigenvectors.

We showed earlier that

- ,
and it follows that

H .

X375 # 0, i = 1,2,000e,yn.. (4.13)

If this were not so and X; was orthogonal to
Ti it would be orthogonal to yq,yg,..,.,yn.and hence
to the whole n-dimensional space. This is not possible -

as we demand that X5 is not the null vector.

5. SIMITARITY TRANSFORMATIONS

If we choose the arbitrary multipliers

associated with each X5 and yj so that

yfxi -1, i = 1,2,00ee,n (5.1)

this, together with (4.12), implies that the matrix
YH, which has y? as its i-th row, is the inverse of

the matrix X, which has X, as its i-th column. The

n equations

i = 1,2,000.,n (5.2)

may be written as

AX = Xaiag(h,). (5.3)



We have Just seen that the inverse of the matrix
X exists and is equal to vi. Hence we have

1 ax = YHAX - diag(h;) = A (5.4)

where

vix - x7x - 1. (5.5)
A transformation of the type X_qAX where X is non-
singular is known as a similarity transformation.

t
Equations (5.4) and (5.5) will be of the upmost

importance in the work that follows.

6. MULTIPLE EIGENVALUES

We have just considered the case of distinct
eigenvalues and we now look at the situation that
arises if one or more of the eigenvalues 1is repeated.
Unfortunately the position with respect to the eigen-
vectors is usually much more complicated than that
outlined in sections 4 and 5. However it may still
be the case that for a particular matrix A there
does indeed exist a similarity transformation which
reduces A to diagonal form. That is, there exists
an X, implicitly non-singular, such that
X AX = disg(hy) = A. (6.1)
Lemma 6.1 The determinant of the product of two
square matrices 1s equal to the product of the
determinants, thus

det(AB) = det(A)det(B). (6.2)

A complete proof is to be found in Noble (1969).

20



Theorem 6.2 If equation (6.1) is true the Ki are

the eigenvalues of A and each Ki occurs with the

appropriate multiplicity. In addition the columns

of X are the eigenvectors of A.

/l

x~Tax - axM1x

diag(h; - A). (6.3)

Proof: X (A - AIDX

L}

Teking determinants of both sides and using lemma 6.7
we obtain

det (X~ Ndet (A - AI)det(X)

= ]Ttxi - ) (6.4)
giving
det(A - AI) = [Ty - A)e - (6.5)

L=l
Hence, from theorem 2.1, the A; are the roots of the
characteristic equation of A. Writing (6.1) as
AX = XA . (6.6)
we see that the columns of X are eigenvectors of A.
Since X is non-singular, its columns are independent.

Note that if A4 1s, say, & double root then we have
where x; and x, are independent. Equations (6.7)

imply that any vector in the two-dimensional sub-
space spanned by x, and X5 is also an eigenvector.

For

A(g,]x,‘ + @2}(2) = B/]}\./]X/] + ngxlxg

Kq(gqxq + gexe). ‘ (6.8)

21



It is the case that for any matrix which can
be reduced to diagonal form by a similarity
transformation and which has multiple eigenvalues
of multiplicity m, say, that there is a certain
amount of indeterminacy associated with the
corresponding m eigenvectors. However, it is always
possible to select m vectors which span the m-
dimensional subspace and thus it is alwayS‘pbssible
to choose the complete set of eigenvectors to span
the whole n-dimensional space.

We showed in theorem 2.2 that there exists at
least one eigenvector corresponding to each eigen-
Value'and thus far we have only considéred the case
of m eigenvectors corresponding to an eigenvalue
of multiplicity m. We now consider when this is

not the case.

7. SIMPLE JORDAN SUBMATRICES

We consider the following very simple example.
Let
a ¢
A(a,b) = ( ) , where b # a. (7.1)
O b

This matrix has the two eigenvalues a and b and the

corresponding eigenvectors are

o= L

As b—a the eigenvalues become closer and the eigen-
vectors more and more parallel. In the limit b=a

and we have an eigenvalue a of multiplicity two and

22
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corresponding to it only one eigenvector. The matrix
A(a,a) is usually denoted by Cg(a) and in general
we define

cq(a) = (a)

and

Cs(a) = a & , for s >1

i a (7.2)

where Cs is of order s.
The matrix Cs(a) is normally defined to have

e=1 (see, for example, Wilkinson (1965)) but we feel
this to be too specific a choice for our application
as will be shown later.

Theorem 7.7 The matrix Cs(a) has an eigenvalue a of

multiplicity s but corresponding to these eigenvalues
there is only one eigenvector, namely x=e, where we
use -e; to denote the i-th column of the identity
.matrix.

Proof: Consider the set of equations

(C4(a) - al)x = 0, (7.3)
i.e., qu + €X, =0
OX2 + sx5 = O)
Oxs_q + exs =0
0

Ox_ = (7.4)

These equations have only the one solution

x2:X5=....=xs=O with X4 arbitrary. Hence e, 1s the
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only eigenveator of Cs(a).

Theorem 7.2 The matrix Cs(a) (s>1), cannot be reduced

to diagonal form by a similarity transformation.
Proof: Suppose there exists a non-singular X for
which

o x
S

diag(hy), (7.5)
that is

C X = X4, : (7.6)

then as we have shown in section 6, the Ki must be
equal to the eigenvalues of.Cs(a) and therefore we

must have

A= oa, i =1,2,000.,5. (7.7)

Equation (7.6) then shows that the columns of X are

all eigenvectors of Cs(a) and these columns must be

independent. The hypothesis that such an X exists
is therefore false and the theorem 1is proved.

The matrix Cs(a) is of a special type which

plays a major role in the theory of the eigenproblem.

8. JORDAN CANONICAL FORM

The matrix Cs(a) of the previous section is

called a simple Jordan Submatrix of order s. A block
diagonal matrix consisting of only simple Jordan

submatrices such as
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G5 ()
05(hp)
C = Cy(hy) | (8.1)
Co(A5)

Cq(hz)

L

- T- - -
is refered to as a Jordan canonical form and C is

A

said to be the direct sum of the simple Jordan

-

submatrices. The importance of the Jordan canonical
form is shown by the following fundamental theorem.

Theorem 8.1 Let A be a matrix of order n with r

distinect eigenvalues Kq,xz,....,Kr.of multiplicities
Mg sy eees,ll, where, obviously,

E:mi = n. (8-2)'

ix!
Then there exists a similarity transformation such
that
xTax - c. (8.3)

The sum of the order of the submatrices associated

with xi is equal to m, and, apart from the ordering

of the submatrices along the diagonal, the transformed
matrix C is unique. Although this theorem is of
fundamental importance the proof makes little use
of the techniques with which we shall be later
concerned but full details are to be found in Noble
(1969). |

From this theorem and the results of section 7
we see that the total number of eigenvectors of a

matrix A is equal to the number of simple submatrices



in the Jordan canonical form. Thus the matrix C
defined in equation (8.1) has five eigenvectors,

namely e,],e4,e.7,é9 and e, . The eigenvectors of A
are given by Xeq,Xe4,Xe7,Xe9 and Xeqq. Note that

in this example Kq is an eigenvalue bf multiplicity
three and has one eigenvector; Kg is of multiplicity

seven and has three eigenvectors and finally KB is
an isolated eigenvalue.

We see also that although we defined the elements
of the super diagonals of simple Jordan submatrices
to be 'e' it is possible_by a suitable similarity
transformation to give these'eleménts any non-zero
value. Furthermore the matrices of the similarity

transformation are diagonal. For example, take

ERG %
C, = a & and X = X2 . (8.4)
a € X
)
L 8 | X
Hence
rﬂ/xq _' Fa £ X4
X"104X _ ’l/x2 a € X5
’l/x5 a e X5
’l/x4 a € L X
L .IL B -
i T
a exg/xq
a £x,/x
= >e (8.5)
a ex4/x5
- a =

Notice that by a suitable choice of the X, we can

26



theoretically make xex arbitrarily close to (but
never equal to as shown in theorem 7.2) a diagonal
matrix. |

Finally we note that if the Jordan canonical
form of a matrix consists only of submatrices of
order one then the matrix can be diagonalised by

a similarity transformation.

Q. ELEMENTARY DIVISORS

Let C be the Jordan canonical form corresponding
to A and consider the matrix C-AI. Defining C as

in (8.1), for example, we see that

_

05(x1—x)

CB(KE—K)

(C - AI) = Co(Ap=N)

Cp(Ap=2)
Cq(xa-x)

(9.1)
The determinants of these submatrices of the matrix
(C-AI1) are called the elementary divisors of A.
Thus, in the example of (8.1), the elementary divisors

of any matrix A similar to C are
(A-0)2, (M), (Ap=A)Z, (A,-A)° and (h5=1).

Clearly, the characteristic polynomial of a matrix
is the product of the elementary divisors. If the
Jordan canonical form is diagonal we see that the
elementary divisors must be linear. We have already

seen that a matrix with distinct eigenvalues must

27
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have linear elementary divisors but if it has one

or more multiple eigenvalues 1t may or may not have linear
elementary divisors. If a matrix A has one of more
non-linear elementary divisors then one or more

of the simple Jordan submatrices is of order two

or more and hence A has less than n independent
eigenvectors. A matrix with fewer than n indepen-

dent eigenvectors is said to be defective.

10. DEROGATORY MATRICES

A matrix is said to be derogatory if there
is more than one Jordan submatrix (and therefore
more than one eigenvector) associated with Xi for .
some i. Conversely a matrix is said to be non-
derogatory if there is only one Jordan submatrix
(and hence only one eigenvector) associagted with

each distinct Ki for some i. A very thorough and

readable treatment of derogatory matrices is to be

found in Wilkinson (1965).

11. DEFECTIVE AND DEROCGATORY MATRICES

In order to>illustrate the four cases of matrices
classified according to their defective snd
derogatory nature we give examples taken from
Gregory (1960), to which reference may be made for
further details on classification of matrices.

(i) Non-defective and non-derogatory,



This matrix has four distinct eigenvalues Kq,Kg,

(11.1)

'KB and A4 and four linearly independent eigenvectors

- - r - [~
X4 0] 0
0 X5 0

b ?
0 O‘ X5
0 0 0
L - L . g

This matrix has three distinct eigenvalues xq,xa

i Ay |

5

and

and A4 with K1 of multiplicity two.

linearly independent eigenvectors where the two

eigenvectors associated with Aq may be any two

-

0
O

There are four

linearly independent vectors lying in the two dim-

ensional subspace spanned by

The other two eigenvectors are

e 0
0 1
and
0 0
L O L O

29
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I 0 0
0 0
and
x5 0
I 0 | ] x4_ .

(iii) Defective and non-derogatory,

- -

e

Again the matrix has three distinct eigenvalues

Kq,K and A4 with Aq of multiplicity two. However

5
there are only three linearly independent eigenvectors
— T - - - -3
Xq 0 0
0 0 0
) and
0 0
*3
0 0 X .
- - - - L “ A
(iv) Defective and derogatory,
[ T
Aq 1
A
A = 1
M
XLI. -
L- -

This matrix has only two distinct eigenvalues A,
and A4 with Aq having multiplicity three. Again

there are only three linearly independent eigen-
vectors. The two eigenvectors corresponding to

A, may be any two linearly independent vectors

/]

i kB o Ak g <




lying in the two dimensional subspace spapned by

- -

/]

0
and
0

The third eigenvector is
- .

Xy

o] |

0

-

12, SOME PROPERTIES OF HERMITIAN MATRICES

We have seen already the fundamental importance

of similarity transformations and we now look at a

special type of these transformations which plays

a vital role in both the theoretical and practical

aspects of the eigenproblem.

Our motivation for

considering these transformations comes from

considering some properties of Hermitian matrices.

Lemma 12.1 The eigenvalues of a Hermitian matrix

are real.
Proof: If

then

Now x'x is real and positive for x#0.
(XHAX)H - xiafy o xHax

and since x Ax is a scalar it must be real.

from (12.2) A must be real.

XHAX = KXHX.

Ax = AX

(12.1)
(12.2)
Fﬁrther
(12.3)
Hence

We note however that,

31



in general, the eigenvectors are complex. If A is
real the eigenvectors are always real.

Consider now the left-hand eigenvectors of a
Hermitian matrix. From (3.7) we have

Ay, = Ay, = Xy, (12.4)

and from (12.1)

Axi = AjX;e. (12.5)

As the Ki are real we see that ¥i=%5 for all 1i.
Thus the quantities x?yi which we saw to be of

importance in section 3 become Xi%g for Hermitian

matrices and it follows immediately that if a
Hermitian matrix has distinct eigenvalues then its

eigenvectors satisfy

xix. =0, i #3j. (12.6)
13
If we normalise the X; SO that
H _
X5 = i (12.7)

we see that in the equation

vHAx = A (12.8)

we may write

xHax

where, from equations (5.4) and (5.5),

H -1

H H_ 1 ana xB = x. : (12.10)

XX = XX

A matrix which satisfies equation (12.10) is
called a unitary matrix. A real unitary matrix is
called an orthogonal matrix. We shall see in the

next section that equation (12.9) in fact holds for

A | (12.9) .
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any Hermitian matrix A irrespective of thé multiplicity
of its eigenvalues. Unitary transformations have
desirable numerical properties and we now consider

the effect of applying a unitary transformation to

a general matrix.

1%3. REDUCTION OF A GENERAL SQUARE MATRIX TO

TRIANGULAR FORM

Before the main theorem of this séction we
prove two lemmas.

Lemma 1%3.1 If Uggeeesslg is an orthonormal set of

vectors of order n (s<n), then vectors VyseeeesV,_g

exist such that

Q= (uf]a"'°’usavqa""9vn_s) (13.1)

is a unitary matrix.

Proof: Suppose Wqsess-,W, a8re any linearly

independent vectors of order n. Consider the set
of n+s vectors

).

(uq,...o,us,wq,uoo.,’ﬂn

We reduce this to a linearly independent set by an

accept or reject procedure. The vectors Uggeessylg

we know are linearly independent; w, may or may
not be independent of them. If it is we shall
include it but let us assume that it is dependent
and is not therefore included. We shall now look
to see whether Wo is or is not independent of

Uggeeas,l again let us assume that it.is

S?
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dependent and not included. Proceeding in this way
we arrive at the "worst possible case' where we

havé found (wq,wg,....,ws) to be linearly dependent
upon (uq,ug,....,us). It now remains to show that
(ws+1,....,wn) cannot be linearly dependent upon
(uq,....,us). By hypothesis (wq,...,wﬁ) are linearly
independent and hence (ws+1,....,wn) are also.
Suppose W is linearly dependent upon (uq,....,us).

This means that corresponding to the s-dimensional

subspace spanned by (uq,....,us) we are able to
choose from (W1’°""Wn) s+1 independent vectors that

span this space. Thils 1is a contradicﬂtion'and hence

W, q cannot be linearly dependent upon (uq,....,us).

Continuing in this manner we find that (w ,....,wn)

s+1

are all linearly independent of (uq,..;.,us). Hence

we have obtained a set of n vectors, say
(u1"""us’zﬂ""”zn—s)
where

(Zﬂ"""zn—s) - (wq,....,wn) (13.2)

such that any vector is linearly independent of the
preceding vectors in the set. By means of the Gram-
Schmidt orthogonalisation procedure we may ortho-
normalise this set of vectors.

Lemma 13.2 The product of two unitary matrices 1is

itself unitary.



Proof: Let Wand V be two unitary matrices such
that
UtU = VUV = 1. | (13.3)
Then
‘ (vnEvo) = vfivilv - 1. (13.4)
We are now in a position to prove the following
theorem.

Theorem 13.3 Any square matrix A can be reduced

by a unitary transformation to an upper triangular
matrix with the eigenvalues of A on the diagonal.

Proof: Let A have an eigenvalue Kq with a
.correSponding eigenvector X4 which is normalised
such that [lx,[=1. We have shown that vectors
wé,....,wIl exist such that

Q = (XqaWosenee,wy) = [x4,W] (13.5)

is a unitary matrix. Hence

H H 1
QR = |x; [xq, Wq
H
jJ
[ H
waq Wiy
1 0 |
= (1%.6)
O In—1

so that W'x,=0. Thus, since

.AX/I = 7\.1){/], (15‘7)
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QAQ = XE A (qu W)
H
R
o =
i |(Mqxq, AW)
= _wH_
H
_ K4 XqAW
o  whaw
K4 B
*\o o) say. (13.8)

We now proceed by induction. If n=2 the theorem is
true as (13.8) is already in uppér'triangular form.

Now assume that A is n*n and the theorem is true

Haw orf (13.8) is of order n-1, and

a unitary matrix V exists such that VHCV is upper

for n-1. Then C=W

triangular. The matrix

U = (13.9)

is unitary and

' "1 0\, B1M O
et - |0 L
o v¥lo cllo v

'xq BV
= B . (13.10)

Hence (QU)HA(QU) is upper triangular. Since, from

lemma 1%.2, QU is unitary, A has been reduced to
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upper triangular form by a unitary transformation.

We have shown that if the result is true for a matrix
of order (n-1) it is trué for one of order n.
However, it is true for 2x2 matrices and the result

is proved by induction.

14 . SOME SPECIAL CASES

We have just proved that for any matrix A there
exists a unitary matrix R such that

RHAR = T (14.1)
where T is upper triangular.

Suppose A is Hermitian. Then, as RHAR is
Hermitian, T must be Hermitian and hence T must be
diagonal. This proves the result that we étated
at the end of section 12, that whatever the multi-
plicity of the eigenvalues a Hermitian matyix can
always be reduced to diagonal form by a unitary
transformation. Note also that if A is real symmetric
its eigenvalues and eigenvectors are real and hence
it may be reduced to diagonal form by an orthogonal
transformation. | |

It also follows immediately that the elementary
divisors of a Hermitian matrix are all linear and

hence it cannot be defective. If a Hermitian matrix

has any multiple eigenvalues then it is derogatory.

15. NORMAL MATRICES

We now ask if there is a more general class

37



of matrix, other than a Hermitian, which can be
reduced to diagonal form by a unitary transformation.

Thus far we have considered
H
R"AR =D (15.1)

where D has always been real. We now consider (15.1)

in the case of D complex. From equation (15.1) we

obtain
A = RDRE (15.2)
and hence
AH — ppHRE, (15.3)
Consider
AsE - pprERpHRE
- RDDERE
H~-H . .
= RD"DR~ (as diagonal matrices
commute)
- rDERHERDRY
= aHp. (15.4)
HE ,H

We show conversely that if AA"=A"A, then A may be
factorised as in (15.2). From (14.1) any matrix

A may be expressed in the form

A = RTRE (15.5)

where R is unitary and T upper triangular. Hence

we have
aal = porfPrpiRY - pofpPRogE - aHp (15.6)
giving
HoH o HooH

RTT"R" = RT"TR (15.7)
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hence

prtt - pip, |  (15.8)
Equating the elements in equation (15.8) we find

that all the off-diagonal elements of T are zero,

so that T is diagonal. Hence the most general class

of matrices which can be factorised as in (15.2) is

the same as that class of matrices for which

aal o aHp, | (15.9)

Such matrices are said to be normal. Obviéus examples
of normal matrices are Hermitian, skew-Hermitian.

and unitary matrices; also all diagonal matrices.

We now prove the following theorem which gives an
alternative definition of a normal matrix.

Theorem 15.1 A matrix A is normal if and only if

A=B+C (15.40)

where B is Hermitian, C is skew-Hermitian and

BC = CB. | (15.11)

Proof: (i) If equations (15.10) and (15.11) hold
then

Al o (B+0) (BR+cH)

- B 4+ BcH 4+ oB® 4 cclf

- 8B - BC + CB - C.C

- 8B - ¢cB + BC + clo

- s + ¢ 4+ 8o 4 ofe

- (8Hicty (B+0)

= afla, (15.12)
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HA then, for any matrix A, we

(ii) If AAF=a
may write |
A=B+¢C (15.13)
where B is Hermitian and C is a skew-Hermitian
matrix. This is seen by considering the (i,j) and

(j,i) elements of A.

a5 = bij tCy g | - (15.14)
and
These equations always have a solutlon, namely

by = Hagy + Ay3) (15.16)

1J
and
= 2 - 3 '
Ciy = ﬁ(aij aji)’ : (15.17)
Obviously we take bii=Re(aii) and cii=i*Im(aii).
From (15.13) we obtain
A o (Be) (B
- B8 - BC + ¢B + cHo (15.18)
and
Ay = et (B40)
- B8 - ¢B + BC + cHe. (15.19)
Hence we must have
-BC + CB = -CB + BC (15.20)
or
BC = CB (15.21)

which proves sufficiency.
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16. PRINCIPAL VECTORS

Finally in this introductory section we mention,
meinly for the sake of completeness, the idea of
principal vectors. We saw that a matrix A with
linear elementary divisors has n eigenvectors spanning
the whole n-space. If A has non-linear divisors
this is not true as there are fewer than n independent
eigenvectors. It is often convenient however to
have a set of vectors which spansthe whole n-space
and which reduces to the eigenvectors of A when A
has linear elementary divisors. We saw that if a

matrix can be diagonalised then

41

If it cannot be we take as a basisvthe n columns
of a matrix X which is such that

AX = XC (16.2)
where C is the Jordan canonical form of A. To
illustrate the importance of th