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ABSTRACT  

The direct methods of obtaining the eigenvalues 

and eigenvectors of a matrix, such as the QR 

algorithm of Francis, are certainly to be recommended 

when it is necessary to compute all the eigenvalues 

and corresponding eigenvectors of relatively small 

matrices. However, for larger matrices iterative 

techniques may be the only feasible methods. 

Iterative methods particularly come into their own 

when: 

1) the required number of eigensolutions is 

substantially smaller than the dimension of the 

matrix, 

2) initial estimates of the eigenvectors are 

available, 

3) the matrix is sparse. 

It is often the case that many technical problems 

give rise to very large sparse matrices. The 

author has been involved in marine engine vibration 

problems and this gave rise to an interest in the 

methods of obtaining eigensolutions of the matrices 

involved. It is also usually the case that only 

a few eigenvalues and eigenvectors need to be 

determined accurately and that experience with 

similar problems enables good initial approximations 

to the eigenvectors to be made. Hence we see that 

these are ideal conditions in which to use iterative 

methods. 
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The best known iterative method is the power 

method in which a trial vector is continually 

premultiplied by the matrix until the iterates 

become proportional to each other. This process 

can often yield an eigenvector in a very short 

time but this cannot be guaranteed even with 

improvements such as shift of origin and acceleration 

techniques. To overcome possible poor convergence 

the computation is applied to general iteration 

vectors between which an orthogonality or 

biorthogonality relation is maintained. Such 

methods and the developments thereof are the subject 

of this thesis. 
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1. INTRODUCTION  

In this brief introduction we give many of the 

definitions and fundamental results upon which the 

following chapters are based. In general, proofs 

are given only if they are pertinent to later results. 

The (i,j) element of a matrix A will be denoted 

by aij. Vectors will be represented by lower case 

letters; we shall very frequently be concerned with 

systems of vectors which will be denoted by x1,x2,... 

.",xn. We shall refer to the matrix having xi  as 

its i-th column as X. Matrices of eigenvectors will 

usually be denoted by the letters U,V,W,X or Y. In 

particular, matrices of right-hand eigenvectors will 

be denoted by X and matrices of left-hand eigenvectors 

by Y. 

The notation IAI is reserved exclusively to 

denote the matrix the elements of which are la . ij.1. 

The determinant of a matrix is represented by det(A) 

and the norm of a matrix by HAll. 

The conjugate of the matrix A.(a..ij) is represented 

by -17..(87ij). The transpose of A is denoted by AT  and 

is such that its (i,j) element is equal to aji. 

Similarly, the Hermitian transpose of A is denoted 

by AH  and is such that its (i,j) element is equal to 

a ji.  

A diagonal matrix with the (i,i) element equal 

to Xi will be denoted by diag(X.1) or, if no confusion 

can arise, A or D may be used to represent diagonal 
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matrices. 

2. DEFINITIONS  

The fundamental algebraic eigenproblem with 

which we are concerned is determining some or all 

of those values X for which the set of n homogeneous 

linear equations in n unknowns 

(A - XI)x = 0 	(2.1) 

has a non-trivial solution. Equation (2.1) may be 

rewritten as 

Ax = Xx. 	(2.2) 

The theory of simultaneous linear algebraic equations 

shows that there is a solution, other than the trivial 

x=0, if, and only if, the matrix (A-XI) is singular. 

That is 

det(A - XI) = O. 	(2.3) 

The polynomial f(X)=det(A-XI) is called the 

characteristic polynomial and the equation f(X)=0 

is called the characteristic equation of A. 

Theorem 2.1 The characteristic polynomial of a matrix 

of order n is a polynomial of degree n with leading 

coefficient (-1)n; i.e., 

f(X) 	a0  + miX + 	+ an_10 -1  + (-1)nXn. (2.4) 

If the n solutions of 

f(X) = 0 	(2.5) 

are X1' ,....,Xn, then 

 

 

X1  X2 	X = det(A) — (2.6) 



12 

Proof: The proof follows by expanding det(A-XI) in 

terms of elements in the first row. A rigorous 

treatment is to be found in Noble (1969). 

Since the coefficient of Xn  is non-zero and we 

are working in the field of complex numbers the 

equation always has n roots. In general the roots 

will be complex and of any multiplicity up to n. 

These n roots are called the eigenvalues of the 

matrix A. 

Corresponding to any eigenvalue X the equation 

(2.2) has at least one non-trivial solution. This 

solution is called the eigenvector of A corresponding 

to the given value of X. We refer to the pair (X,x) 

as an eigensolution of the matrix A. 

Theorem 2.2 (i) There exists at least one eigen-

vector, corresponding to each eigenvalue. 

(ii) The eigenvectors corresponding to 

a given eigenvalue constitute a vector space. 

Pr-..of: To find an eigenvector corresponding to Xi  

we solve 

(A - XiI)x = 0 . 	(2.7) 

Since det(A-XiI)=0, this is a set of n 

homogeneous equations in n unknowns, the coefficient 

matrix having rank less than n. Hence a non-zero 

solution exists, which gives an eigenvector. This 

proves (i). To prove (ii) suppose that u and v are 

two eigenvectors corresponding to Xi, then 

Au = Xiu, 	Av = .Xiv 	(2.8) 



so that 

A(au + 0 ) = aX.11 + 0X.1V 1  

= X 	+ 0y) (2.9) 
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Hence, au+flv is also an eigenvector and this 

proves (ii). 

We note in particular that any eigenvector is 

arbitrary to the extent of a constant multiplier, 

for if 

then 

Ax = Xx 

A(kx) = X(kx) 

for some scalar k. It is often convenient to choose 

k such that the eigenvector has a particular 

numerical property. We refer to such eigenvectors 

as normalised. The most convenient forms of 

normalisation are those for which 

(1) 	El .xi 1 2  =1 
	

(2.12) 
L.i 

(ii) if Ix.' 	Ix .I 	j=1,....,n 

theilicxi = 
	 (2.13) 

3. EIGENSOLUTIONS OF THE TRANSPOSED MATRIX  

We now consider the eigenvalues and eigenvectors 

of the transpose of a matrix A. By our previous 

definitions the eigenequation for the transpose AT 

is 

	

ATz = Xz 
	 (3.1) 
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where we seek those values of X for which (3.1) has 

a non-trivial solution. Following (2.3) these are 

the values for which 

det(AT  - XI) = 0 	(3.2) 

and since the determinant of a matrix is equal to that 

of its transpose the eigenvalues of A are the same 

as those of AT. We denote the eigenvector of AT  

corresponding to Xi  as zi, so that we have 

ATzi = X.z . i (3.3) 

Note that in general xi/z 	Equation (3.3) may be 

written as 

z.A. = X.z.. 

To distinguish these vectors from the vectors xi, 

where 

Axi  i 

the zi are called the left-eigenvectors of A and 

(3.4) 

(3.5) 

thexi  . the right-eigenvectors of A. If we speak 

of just the eigenvectors of A the meaning will be 

apparent from the context. These are the classical 

definitions as given in, for example, Wilkinson 

(1965) but for a lot of the work that follows it 

is convenient to adopt the following slightly 

modified definition of a left-hand eigenvector. 

Instead of (3.4) we consider the equation 

. 
YIA  

which may be rewritten as 

(3.6) 



AHy .1  = T. y. 1 1' (3.7) 
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Note that y.1=zi  . We prefer to use y
H and AH rather 

than y and AT because we shall make extensive use 

of inner-products and in this case 

(x,y) a xHy = yHx = (y,x) 	(3.8) 

and 

xHx > 0 
	

(3.9) 
for all non-zero x. 

We illustrate this further by using both the 

classical and modified definitions to prove the 

following theorem. 

Theorem 3.1 A right eigenvector xi  and a left 

eiganvectaryj  . corresponding to distinct eigenvalues 

X.1  and X respectively are orthogonal. 

Proof (i): We may rewrite equation (3.5) as 

xi
T  xT.A. = X.x. AT

and from (3.3) 

 . = X .z 

Hence by postmultiplying (3.10) by zj  and pre- 

multiplying (3.11) by xTi  we obtain 

(3.10) 

(3.11) 

xT.AT  z. = X.x.z. j 	1 I j 

and 

T x.T  A z. = j 	j 

Subtracting gives 

0 = x.z.(X. - Xj.) 
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which proves that 

x.z = 0, 1 j 	if X. X .  

Wenotethatasx.and z, are, in general, 

(3.15) 

complex vectors, x.z.j  is not an inner-product as 

is usually understood; for, in this case, we have 

xizj 	j z.x. 

and not 

x.1z.j  = z.jx.1. 

We note also that if x is complex we may have 

xTx < 0. 

In fact xTx may even be a complex number! 

Proof (ii): We may rewrite equation (3.5) as 

xl./AH  = 	.x1.1  

and from (3.7) 

AHy
J  
. T.y

J
.. 

.(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

Hence by postmultiplying (3.19) by yj  and pre-

multiplying (3.20) by x7 we obtain 

H H 	— H xA y 	X.x.y. j  

and 

H H 	— H x.A y. = Xj 	j.x.y. . 

Subtracting gives 

— — 0 = x.H j  y.(X. 	j - X.) i  

which proves that 

x.y.j  = 0, 	if X. / X.j. 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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This seems to us to be rather neater than the 

previous result as x.yj  is an inner-product as usually 

understood. In particular 

xiyj 	jxiyi 
	(3.25) 

and 

xHx > 0 
	

(3.26) 

for all non-zero x. 

4. EIGENSYSTEMS WITH DISTINCT EIGENVALUES  

Firstly we consider the theory of the system 

of eigenvectors in the case of distinct eigenvalues. 

The equation 

(A - XiI)xi  = 0 	4.1) . 

certainly has at least one solution for each value 

of Xi  and therefore we are justified in assuming 

the existence of a set of eigenvectors x1,x2,....lxn. 

Theorem 4.1 The eigenvectors xi  corresponding to 

distinct eigenvalues Xi are linearly independent. 

Proof: We assume that they are not independent and 

let s be the smallest number of linearly dependent 

vectors such that x1 1  x2""" xs are eigenvectors 

corresponding to distinct eigenvalues X1,X ,....,Ns  

of A. Then 

E a .1  X • = 0 
	 (4.2) 

and 
	LC I 

ai 	0, 	i = 1 12,....,s 	(4.3) 
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Premultiplying (4,2) by A gives 

(4.4) = 0. a. 

Multiplying (4.2) by Xs  and subtracting (4.4) gives 

and 

Ea.1(XS 	2. X.)X. 	= 0 (4.5) 

a. 	/ 0 and 	X. 	/ X, 	i 	= 1,2,...,s-1. (4.6) 

Equation (4.5) implies that x1,x2,....,xs_1  

are linearly dependent which is contrary to our 

hypothesis. Therefore there is no s<n and hence 

the n eigenvectors are linearly independent and 

span the whole n-dimensional space. From this result 

we may easily prove the following theorem. 

Theorem4.2Eachofthevectorsx.is unique, apart 

from an arbitrary multiplier. 

Proof: Suppose that corresponding to Xi  there is 

an eigenvector x1  and a second xl. Then we may write 

X t1 = :E:a.X. 
	 (4.7) 

L=1 

where at least one of the i is non-zero. 

Multiplying (4.7) by A gives 

X1 x), = EaiXixi. 	(4.8) 

Multiplying (4.7) by Xi  and subtracting from (4.8) 

gives 

0 = 	- X1  )xi. 	(4.9) 

But as the :xi  are independent we must have 

ai(Xi  — X1 ) = 0, 	i = 2,3,....,n; 	(4.10) 
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> a 
	0, 	= 2,3,....,n 

	 (4.11) 

as the eigenvectors are distinct. However, as at 

least one of the i was non-zero it must have been 

al  showing that xl is a multiple of x1. Similar 

results hold for the left-hand eigenvectors. 

We showed earlier that 

x.y. = 0, 

and it follows that 

 

(4.12) 

= 1,2,....,n..  (4.13) 

Ifthiswerenotsoandx.was orthogonal to 

yi  it would be orthogonal to y1,y2,....,yn  and hence 

to the whole n-dimensional space. This is not possible. 

aswedemandthatx.is not the null vector. 

5. SIMILARITY TRANSFORMATIONS  

If we choose the arbitrary multipliers 

associatedwitheachx.and y. so that 

yixi = 1, 	= 1 12,....ln 
	(5.1) 

this, together with (4.12), implies that the matrix 

YH1  which has yi as its i-th row, is the inverse of 

thematrixX,whichhasx.as its i-th column. The 

n equations 

Ax. = .1x1, 	i = 1,2,....,n 	(5.2) 

may be written as 

AX = Xdiag(Xi). 	(5.3) 
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We have just seen that the inverse of the matrix 

X exists and is equal to YH. Hence we have 

X 1AX = Y AX = diag(Xi) = A 
	(5.4) 

where 

YHX = X-  X = I. 	(5.5) 
A transformation of the type X-1AX where X is non-

singular is known as a similarity transformation. 

Equations (5.4) and (5.5) will be of the utmost 

importance in the work that follows. 

6. MULTIPLE EIGENVALUES  

We have just considered the case of distinct 

eigenvalues and we now look at the situation that 

arises if one or more of the eigenvalues is repeated. 

Unfortunately the position with respect to the eigen-

vectors is usually much more complicated than that 

outlined in sections 4 and 5. However it may still 

be the case that for a particular matrix A there 

does indeed exist a similarity transformation which 

reduces A to diagonal form. That is, there exists 

an X, implicitly non-singular, such that 

X-1AX = diag(Xi) = A. 	(6.1) 

Lemma 6.1 The determinant of the product of two 

square matrices is equal to the product of the 

determinants, thus 

det(AB) = det(A)det(B). 

A complete proof is to be found in Noble (1969). 

(6.2) 
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Theorem 6.2 If equation (6.1) is true the Xi  are 

the eigenvalues of A and each Xi  occurs with the 

appropriate multiplicity. In addition the columns 

of X are the eigenvectors of A. 

Proof: X-1(A - XI)X = X 1AX - XX-1IX 

diag(Xi  - X). 

Taking determinants of both sides and using lemma 6.1 

we obtain 

giving 

det(X )det(A - XI)det(X) 

= 11-(Xi - 
1.1 

det(A - XI) 	7"(Xi X)- 

(6.4) 

(6.5) 

Hence, from theorem 2.1, the Xi  are the roots of the 

characteristic equation of A. Writing (6.1) as 

AX = XA 	(6.6) 

we see that the columns of X are eigenvectors of A. 

Since X is non-singular, its columns are independent. 

Note that if Xi is, say, a double root then we have 

Ax1 	X1x1 and Ax2 =  X1
x
2 
	(6.7) 

where x1 and x2 are independent. Equations (6.7) 

imply that any vector in the two-dimensional sub-

space spanned by x1  and x2  is also an eigenvector. 

For 

2x2) = L1X1x1 	2X1x2 

= X1 x1 + g2x2). (6.8) 
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It is the case that for any matrix which can 

be reduced to diagonal form by a similarity 

transformation and which has multiple eigenvalues 

of multiplicity m, say, that there is a certain 

amount of indeterminacy associated with the 

corresponding m eigenvectors. However, it is always 

possible to select m vectors which span the m-

dimensional subspace and thus it is always possible 

to choose the complete set of eigenvectors to span 

the whole n-dimensional space. 

We showed in theorem 2.2 that there exists at 

least one eigenvector corresponding to each eigen-

value and thus far we have only considered the case 

of m eigenvectors corresponding to an eigenvalue 

of multiplicity m. We now consider when this is 

not the case. 

7. SIMPLE JORDAN SUBMATRICES  

We consider the following very simple example. 

Let 

A(al b) = (a 6) where b / a. 
0 b  

This matrix has the two eigenvalues a and b and the 

corresponding eigenvectors are 

rEl 
E 

and 
 

LOi 	Lb - a 

As b-4a the eigenvalues become closer and the eigen-

vectors more and more parallel. In the limit b=a 

and we have an eigenvalue a of multiplicity two and 

(7.1) 
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corresponding to it only one eigenvector. The matrix 

A(a,a) is usually denoted by C2(a) and in general 

we define 

Cs(a) = 

C (a) = (a) 

a c 

a E 

a E for s > 1 

and 

a c 

a (7.2 ) 

where Cs is of order s. 

The matrix Cs(a) is normally defined to have 

c=1 (see, for example, Wilkinson (1965)) but we feel 

this to be too specific a choice for our application 

as will be shown later. 

Theorem 7.1 The matrix Cs(a) has an eigenvalue a of 

multiplicity s but corresponding to these eigenvalues 

there is only one eigenvector, namely x=e1  where we 

use ei to denote the i-th column of the identity 

matrix. 

Proof: Consider the set of equations 

(Cs(a) - aI)x = 0, 	(7.3) 

i.e., 	Ox1 + cx2 

Ox2 + cx3 
= 0 

Ox 	A- EXs = 0 s -1 

Oxs = 0 

These equations have only the one solution 

(7.4) 

x2=x3=....=xs=0 with x1  arbitrary. Hence e1  is the 
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only eigenveator of Cs(a). 

Theorem 7.2 The matrix Cs(a) (s>1), cannot be reduced 

to diagonal form by a similarity transformation. 

Proof: Suppose there exists a non-singular X for 

which 

X-1CsX = diag(Xi), 
	(7.5) 

that is 

CsX = XA, 
	 (7.6 ) 

then as we have shown in section 6, the Xi  must be 

equal to the eigenvalues of Cs(a) and therefore we 

must have 

Xi  = a, 	i = 1,2,....,s. 	(7.7) 

Equation (7.6) then shows that the columns of X are 

all eigenvectors of Cs(a) and these columns must be 

independent. The hypothesis that such an X exists 

is therefore false and the theorem is proved. 

The matrix Cs(a) is of a special type which 

plays a major role in the theory of the eigenproblem. 

8. JORDAN CANONICAL FORM  

The matrix Cs(a) of the previous section is 

called a simple Jordan Submatrix of order s. A block 

diagonal matrix consisting of only simple Jordan 

submatrices such as 
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03(X1) 

c (x2) 

C2(X2) 

C2(X2) 

c1(x) 

is refered to as a Jordan canonical form and C is 

C - (8.1 ) 

said to be the direct sum of the simple Jordan 

submatrices. The importance of the Jordan canonical 

form is shown by the following fundamental theorem. 

Theorem 8.1 Let A be a matrix of order n with r 

distinct eigenvalues X1,X2,....,X.r  of multiplicities 

mm2'r where, obviously, 

Erni  = n. 
L.1 

Then there exists a similarity transformation such 

that 

(8.2) 

-1 X AX = C. (8.3) 

The sum of the order of the submatrices associated 

with X. is equal to mi  and, apart from the ordering 

of the submatrices along the diagonal, the transformed 

matrix C is unique. Although this theorem is of 

fundamental importance the proof makes little use 

of the techniques with which we shall be later 

concerned but full details are to be found in Noble 

(1969). 

From this theorem and the results of section '7 

we see that the total number of eigenvectors of a 

matrix A is equal to the number of simple submatrices 
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in the Jordan canonical form. Thus the matrix C 

defined in equation (8.1) has five eigenvectors, 

namely e1,e4,e7,e9  and e11. The eigenvectors of A 

are given by Xe1,Xe4,Xe7,Xe9  and Xe11. Note that 

in this example Xi  is an eigenvalue of multiplicity 

three and has one eigenvector; X2  is of multiplicity 

seven and has three eigenvectors and finally X3  is 

an isolated eigenvalue. 

We see also that although we defined the elements 

of the super diagonals of simple Jordan submatrices 

to be 'E' it is possible by a suitable similarity 

transformation to give these elements any non-zero 

value. Furthermore the matrices of the similarity 

transformation are diagonal. For example, take 

[a e 

C4  = 	a and X = 1 x2 
a ael 

Hence 

x3  
. (8.4) 

        

        

X-1C4 X = 

1/x4 

 

a 6 

a e 

a z 

a 

 

x1 
x2 
x
3 
x4 

        

        

        

a EX2/x1 

a ex3/x2 	 (8.5) 
a EX4/x3 

a 

Notice that by a suitable choice of the xi  we can 
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- 1 theoretically make X CX arbitrarily close to (but 

never equal to as shown in theorem 7.2) a diagonal 

matrix. 

Finally we note that if the Jordan canonical 

form of a matrix consists only of submatrices of 

order one then the matrix can be diagonalised by 

a similarity transformation. 

9. ELEMENTARY DIVISORS  

Let C be the Jordan canonical form corresponding 

to A and consider the matrix C-XI. Defining C as 

in (8.1), for example, we see that 

C
3
(X1-X) 

C2(X2-X) 

C3(X2-X) 
(C - XI) = 

C2(X2-X) 

C1 (X3-X ) 

(9.1) 

The determinants of these submatrices of the matrix 

(C-XI) are called the elementary divisors of A. 

Thus, in the example of (8.1), the elementary divisors 

of any matrix A similar to C are 

(X1-203, (X2-X)3, (X2-X)21  (X2-X)2  and (X3-X). 

Clearly, the characteristic polynomial of a matrix 

is the product of the elementary divisors. If the 

Jordan canonical form is diagonal we see that the 

elementary divisors must be linear. We have already 

seen that a matrix with distinct eigenvalues must 
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have linear elementary divisors but if it has one 

or more multiple eigenvalues it may or may not have 6-Aec,r-

elementary divisors. If a matrix A has one or more 

non-linear elementary divisors then one or more 

of the simple Jordan submatrices is of order two 

or more and hence A has less than n independent 

eigenvectors. A matrix with fewer than n indepen-

dent eigenvectors is said to be defective. 

10. DEROGATORY MATRICES  

A matrix is said to be derogatory if there 

is more than one Jordan submatrix (and therefore 

more than one eigenvector) associated with Xi  for 

some i. Conversely a matrix is said to be non-

derogatory if there is only one Jordan submatrix 

(and hence only one eigenvector) associated with 

each distinct X. for some i. A very thorough and 

readable treatment of derogatory matrices is to be 

found in Wilkinson (1965). 

11. DEFECTIVE AND DEROGATORY MATRICES  

Ih order to illustrate the four cases of matrices 

classified according to their defective and 

derogatory nature we give examples taken from 

Gregory (1960), to which reference may be made for 

further details on classification of matrices. 

(i) Non-defective and non-derogatory, 
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1 

X2 

X3 
X4 

.10 

This matrix has four distinct eigenvalues X1,X2, 

X
3 
and X4 and four linearly independent eigenvectors 

x1 0 0 0 

0 x2 0 
and 

0 

0 0 x3  0 

0 0 0 

(ii) Non-defective and derogatory, 

xl  

A = 

3 
X4 

This matrix has three distinct eigenvalues XilX3  

and X4 with X1 of multiplicity two. There are four 

linearly independent eigenvectors where the two 

eigenvectors associated with Xi  may be any two 

linearly independent vectors lying in the two dim- 

ensional subspace spanned 
r 1 -  

0 

0 

0 

by 

and 

0 

I 

0 

0 

The other two eigenvectors are 

xl  
x 

A= 
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0 
	

0 

0 
	

0 
and 

x3 	0 

0 	x4 

(iii) Defective and non-derogatory, 

A= X3 
X4 

Again the matrix has three distinct eigenvalues 

Xl'X3 and X4 with X1 of multiplicity two. However 

there are only three linearly independent eigenvectors 
■•• 

x1 0 0 

0 0 
and 

0 

0 x3  0 

0 0 x4 

(iv) Defective and derogatory, 

Xl  1 

A= 
xl 

X4 

This matrix has only two distinct eigenvalues Xi  

and X4 with X1 
having multiplicity three. Again 

there are only three linearly independent eigen-

vectors. The two eigenvectors corresponding to 

X1 
may be any two linearly independent vectors 
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lying in the two dimensional subspace spanned by 

1 0 

0 
and 

0 
• 

0 1 

0 0 

The third eigenvector is 

0 

0 

0 

12. SOME PROPERTIES OF HERMITIAN MATRICES  

We have seen already the fundamental importance 

of similarity transformations and we now look at a 

special type of these transformations which plays 

a vital role in both the theoretical and practical 

aspects of the eigenproblem. Our motivation for 

considering these transformations comes from 

considering some properties of Hermitian matrices. 

Lemma 12.1 The eigenvalues of a Hermitian matrix 

are real. 

Proof: If 	Ax = Xx 	(12.1) 

then 

xHAx = XxHx. 

Now xH  i x is real and positive for x/O. Further 

(xHAx)H = x
HAHx = xHAx 

(12.2) 

(12.3) 

and since xHAx is a scalar it must be real. Hence 

from (12.2) X must be real. We note however that, 
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in general, the eigenvectors are complex. If A is 

real the eigenvectors are always real. 

Consider now the left-hand eigenvectors of a 

Hermitian matrix. From (3.7) we have 

Ayi  = AHyi 	 (12.4) 

and from (12.1) 

Axi X1x1. 
	(12.5) 

As the X. are real we see that y.3_.x.3. for all i. 

Thus the quantities x.yi  which we saw to be of 

importance in section 3 become x.x. for Hermitian 

matrices and it follows immediately that if a 

Hermitian matrix has distinct eigenvalues then its 

eigenvectors satisfy 

(12.6) 

If we normalise the xi  so that 

(12.7) 

we see that in the equation 

YHAX = A 

we may write 

XHAX = A 

where, from equations (5.4) and (5.5), 

XHX = XXH I and XH X 1. 

A matrix which satisfies equation (12.10) is 

called a unitary matrix. A real unitary matrix is 

called an orthogonal matrix. We shall see in the 

next section that equation (12.9) in fact holds for 
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any Hermitian matrix A irrespective of the multiplicity 

of its eigenvalues. Unitary transformations have 

desirable numerical properties and we now consider 

the effect of applying a unitary transformation to 

a general matrix. 

13. REDUCTION OF A GENERAL SQUARE MATRIX TO  

TRIANGULAR FORM  

Before the main theorem of this section we 

prove two lemmas. 

Lemma 13.1 	 , .... ,u  , us is an orthonormal set of 

vectors of order n (s<n), then vectors v1,....,vn_s  

exist such that 

= (111,4.0.o,Us,V1,41.4.4.-17
n-s

) 

7   

is a unitary matrix. 

Proof: Suppose wi ,....,wn  are any linearly 

(13.1) 

independent vectors of order n. Consider the set 

of n-Es vectors 

(111,....,Us ,W1,4Doodo,Wn )o 

We reduce this to a linearly independent set by an 

accept or reject procedure. The vectors ul,....,us  

we know are linearly independent; wi  may or may 

not be independent of them. If it is we shall 

include it but let us assume that it is dependent 

and is not therefore included. We shall now look 

to see whether w2 is or is not independent of 

u1 	us. : again let us assume that it.is " 



dependent and not included. Proceeding in this way 

we arrive at the "worst possible case" where we 

have found (w1,w2,....,w) to be linearly dependent 

upon (u1,u2,....,us). It now remains to show that 

(ws+1"'"'wn) cannot be linearly dependent upon 

(u1,....,us). By hypothesis (wi,...,wn) are linearly 

independent and hence (wq- s1"""wn) are also.  

Suppose ws+1  is linearly dependent upon (u1,....,us). 

This means that corresponding to the s-dimensional 

subspace spanned by (u1,....,us) we are able to 

choose from (wi ,...., wn) s+1 independent vectors that 

span this space. This is a contradic/tion and hence 

ws+1  cannot be linearly dependent upon (u1,....,us). 

Continuing in this manner we find that (ws+1,....,wn) 

are all linearly independent of (u1,....,us). Hence 

we have obtained a set of n vectors, say 

(111,00001U5 lZ110000 ,Zn s ) 

where 

(z1 ,—"zn-s )  c (wl'"'"wn ) 
	 (13.2) 

such that any vector is linearly independent of:the 

preceding vectors in the set. By means of the Gram-

Schmidt orthogonalisation procedure we may ortho-

normalise this set of vectors. 

Lemma 13.2 The product of two unitary matrices is 

itself unitary. 

74_ 



Proof: Let U.and V be two unitary matrices such 

that 

 

35 

UHU = VHV = I. 

Then 

(13.3) 

 

(VU)H(VU) = UHVHVU_= I. 	(13.4) 

We are now in a position to prove the following 

theorem. 

Theorem 13.3 Any square matrix A can be reduced 

by a unitary transformation to an upper triangular 

matrix with the eigenvalues of A on the diagonal. 

Proof: Let A have an eigenvalue X1  with a 

corresponding eigenvector x1  which is normalised 

such that lix1JH. We have shown that vectors 
2. 

w2,....,wn  exist such that 

Q = (x1,w2,....,wn) 	[x1;4] 	(13.5) 

is a unitary matrix. Hence 

QHQ = [4] [xi,  

vH 

xHlxi x1HW 

WH WW xi 

[ 1  0  0 	In-1 

so that WHx1  =0 Thus, since 

Ax1 = 1x 

(13.6) 

(13.7) 
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QHAQ = [4] A (x1, 

WH 

x1i(X1x AW) 

WH 

(X1  xHI AW) 

B 1 say. 
0 C 

0 WHAW 

(13.8) 

We now proceed by induction. If n=2 the theorem is 

true as (13.8) is already in upper triangular form. 

Now assume that A is n*n and the theorem is true 

for n-1. Then C=WHAW of (13.8) is of order n-1 1  and 

a unitary matrix V exists such that VHCV is upper 

triangular. 	The 

is unitary and 

UHQHAQU = 

matrix 

U 

	

[1 	0 
H 

	

0 	V 

1 

	

0 	VHCV 

(1 

[X1  

BV 

v 
 

°CO 

0  0) 

Y- 

(13.9) 

(13.10) 

Hence (QU)HA(QU) is upper triangular. Since, from 

lemma 13.2, QU is unitary, A has been reduced to 
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upper triangular form by a unitary transformation. 

We have shown that if the result is true for a matrix 

of order (n-1) it is true for one of order n. 

However, it is true for 2*2 matrices and the result 

is proved by induction. 

14. SOME SPECIAL CASES  

We have just proved that for any matrix A there 

exists a unitary matrix R such that 

RHAR = T 
	(14.1) 

where T is upper triangular. 

Suppose A is Hermitian. Then, as RHAR is 

Hermitian, T must be Hermitian and hence T must be 

diagonal. This proves the result that we stated 

at the end of section 12, that whatever the multi-

plicity of the eigenvalues a Hermitian matrix can 

always be reduced to diagonal form by a unitary 

transformation. Note also that if A is real symmetric 

its eigenvalues and eigenvectors are real and hence 

it may be reduced to diagonal form by an orthogonal 

transformation. 

It also follows immediately that the elementary 

divisors of a Hermitian matrix are all linear and 

hence it cannot be defective. If a Hermitian matrix 

has any multiple eigenvalues then it is derogatory. 

15. NORMAL MATRICES  

We now ask if there is a more general class 
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of matrix, other than a Hermitian, which can be 

reduced to diagonal form by a unitary transformation. 

Thus far we have considered 

RHAR = D 	(15.1) 

where D has always been real. We now consider (15.1) 

in the case of D complex. From equation (15.1) we 

obtain 

and hence 

Consider 

A = RDRH 

AH RDHRH. 

AAH = RDRHRDHRH 

(15.2) 

(15.3) 

= RDDHRH  

RDHDRH (as diagonal matrices 
commute) 

= RDHRHRDRH  

= AHA. 	(15.4) 

We show conversely that if AAH=AHA, then A may be 

factorised as in (15.2). From (14.1) any matrix 

A may be expressed in the form 

A = RTRH 
	

(15.5) 

where R is unitary and T upper triangular. Hence 

we have 

AAH = RDRHRDHRH = RTHRHRTRH AHA 

giving 

RTTH RH  = RTHTRH 
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hence 

TTH 	T. 	 (15.8) 

Equating the elements in equation (15.8) we find 

that all the off-diagonal elements of T are zero, 

so that T is diagonal. Hence the most general class 

of matrices which can be factorised as in (15.2) is 

the same as that class of matrices for which 

	

AAH  • AHA. 	 (15.9) 
Such matrices are said to be normal. Obvious examples 

of normal matrices are Hermitian, skew-Hermitian, 

and unitary matrices; also all diagonal matrices. 

We now prove the following theorem which gives an 

alternative definition of a normal matrix. 

Theorem 15.1 A matrix A is normal if and only if 

A = B + C 
	

(15.10) 

where B is Hermitian, C is skew-Hermitian and 

BC = CB. 	(15.11) 

Proof: (i) If equations (15.10) and (15.11) hold 

then 

AAH (B+C)(BH+CH) 

= BBH + BCH + CBH + CCH 

• BHB - BC + CB - C.0 

• BHB -.CB + BC + CHC 

BHB + CHB + BHC + CHC 

• (BH+CH)(B+C) 

	

= AHA. 	(15.12) 
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(ii) If AAH=AHA then, for any matrix A, we 

may write 

A = B + C 	(15.13) 

where B is Hermitian and C is a skew-Hermitian 

matrix. 	This is seen by considering the (i,j) and 

(j,i) elements of A. 

a..ij = bi 	+ c j 	ij 

and 

aji  = bij  - 

(15.14) 

(15.15) 

These equations always have a solution, namely 

bij  = i(aij  + Eji) 

and 

cij = i(aij - 	). 

(15.16) 

(15.17) 

Obviously we take bii=Re(aii) and cii=i*Im a. ) 

From (15.13) we obtain 

AAH = (B+C)(BH+CH) 

= BHB - BC + CB + CHC 

and 

(15.18) 

AHA = (BH+CH)(B+C) 

= BHB - CB + BC + CHC. (15.19) 

Hence we must have 

-BC + CB = -CB + BC 

or 

(15.20) 

BC = CB (15.21) 

which proves sufficiency. 
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16. PRINCIPAL VECTORS  

Finally in this introductory section we mention, 

mainly for the sake of completeness, the idea of 

principal vectors. We saw that a matrix A with 

linear elementary divisors has n eigenvectors spanning 

the whole n-space. If A has non-linear divisors 

this is not true as there are fewer than n independent 

eigenvectors. It is often convenient however to 

have a set of vectors which spansthe whole n-space 

and which reducesto the eigenvectors of A when A 

has linear elementary divisors. We saw that if a 

matrix can be diagonalised then 

AX = Xdiag(Xi). 	(16.1) 

If it cannot be we take as a basis the n columns 

of a matrix X which is such that 

AX = XC 	(16.2) 

where C is the Jordan canonical form of A. To 

illustrate the importance of these vectors we give 

an example used by Wilkinson (1965), where a fuller 

treatment of the subject is to be found. 

Suppose A is such that 

C
3
(X
I
) 

X ) 

C2(X2) 

C1(X3) 

AX= X , 
	

(16.3) 

then in the usual notation for the columns of X, 

and letting E=1 for simplicity in equation (7.2), 
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we obtain 

Ax1-=?N.1x1 
	Ax4=X1x4 

	Ax6=X2x6 
	Ax8=X 3x8 

Ax2=X1x2+x1  Ax5=X
1
x5+x4  Ax7=Xlx +x6  

Ax34.1x3+x2' 
	 (16.4) 

from which we see that 

(A-X1I)x1=0 (A-X1I)x4=0 (A-X2I)x6.0 (A-XI)x8=0 

(A-X1I)2x2=0 (A-X1  I)2x5=0 (A-X2I)2x7=0 

(A-X1I)3x3=0. 	 (16.5) 

Each of the vectors therefore satisfies a relation 

of the form 

(A - X.I)jxk  = O. 
	(16.6) 

A vector which satisfies equation (16.6) for a given 

value of j, but does not satisfy it for any lower 

value of j, is called a principal vector of grade j 

corresponding to Xi. Eigenvectors are principal 

vectors of grade one. Note that, although there 

exists a set of principal vectors which spans the 

whole n-space, in general principal vectors are not 

unique. If x is a principal vector of grade j 

corresponding to Xi  then the same is true of any 

other vector obtained by adding to x multiples of 

any principal vectors of grade j or less corresponding 

to Xi. 



CHAPTER 2  

JACOBI-LIKE METHODS FOR REDUCING MATRICES 

TO DIAGONAL FORM 
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1. INTRODUCTION  

In this chapter we describe techniques for 

solving the eigenproblem for general complex 

matrices by methods related to the Jacobi method 

for real symmetric matrices. These techniques are 

applicable to any form of matrix but are of 

particular relevance in the case of small dense 

diagonally dominant matrices. Determining the 

eigensolutions of such matrices forms a vital part 

in the acceleration of simultaneous iteration and 

hence their relevance to our work. 

Historically, the method for real symmetric 

matrices discovered by Jacobi (1846) is the oldest 

process for determining eigensolutions which is 

applicable for use on an electronic computer. The 

extension of this method to deal with Hermitian 

matrices is simple and it is then a relatively easy 

step to consider normal matrices. 

We saw earlier that for a normal matrix A there 

is always a unitary matrix V such that 

VHAV = diag (Xi). 

However for an arbitrary matrix A this is not in 

general true but having considered normal matrices 

we are well placed to tackle the problem of general 

matrices. 

All of the methods we consider depend upon 

the application of a series of similarity 

transformations to convert the matrix A into a 
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special form,. In the simplest cases the similarity 

transformations are unitary matrices which reduce 

A directly to diagonal or, in practice, to nearly 

diagonal form. In the general case we shall use 

similarity transformations to reduce the matrix to 

normal form before applying unitary transformations 

to further reduce A to diagonal form. 

Finally in this chapter we give brief details 

of an abortive attempt to use an algorithm 

proposed by Rutishauser. 

2. THE CLASSICAL JACOBI METHOD FOR REAL SYMMETRIC  

MATRICES  

In the method of Jacobi the original matrix 

is transformed to diagonal form by a sequence of 

plane,rotations. In fact, to complete the 

diagonalisation would require an infinite number 

of such rotations but in practice the process is 

trminated when the off-diagonal elements are 

negligible to working accuracy. As we are 

considering real symmetric matrices, which we know 

have real eigenvalues and eigenvectors, we use 

real plane rotations. 

Let the matrix V of order n be such that 

vPP = v
clq 
 = cos0 

vpq  = -vv= sin0 

v..
11 

= 1 	i / pl q 

vii  = 0 otherwise. 
	(2.1) 
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We note that 

T 	T VV = V V = I. 

If we denote the original matrix by A0  then 

(2.2) 

we may describe the Jacobi process as follows. A 

sequence of matrices Ak  is produced satisfying the 

relations 

Ak  = VTA V k 	k k-1 k ' k = 1,2,.... 1.... 2.3) 

We note that as Ak-1 is symmetric, so too is Ak. 

The matrix Vk is determined by the rules which 

follow. If no confusion can arise we shall denote 

the elements of Ak-1 	aid  by a . and those of Ak 	aid. 

Using 	

a.. 

Using this notation we consider the details of 

equation (2.3). The only elements of Ak_i  that are 

altered are those in rows p and q and in columns 

p and q. Hence the modified elements are given by 

a! = aid , 	i,j / p,q 	(2.4) 

app
= a.  

PJ
cos0 - a

qJ  
.sincZ 

/ Plq (2.5) 
= aqjcos0 + apjsin 

app  = a 
PP 

 cos29f + a
clq 

 sin20 - 2a
Pq 

 sinrkosriS 

(2.6) 

aq
q 
 = a 

qq 
 cos2qS + a

PP 
 sin2riS + 2a

Pq 
 singtcosqf 

aP
q 
 = a

Pq 
 (cos2ri - sin -̀q1) + (app  - a

qq 
 )sin9Scosr6 

= a' 
qP 

(2.7) 

We do not explicitly state the form of a'. 1  a 	or 
JP Jq 



47 

a' since these follow by symmetry. 

We now introduce two functions which we shall 

use extensively in what follows. Firstly the 

function defined by 

n n 

N2(Ak) 
 

and secondly 

h 

t2(Ak) = 	 I ac 
13 

1=1 

We note that t2  (Ak) = N.2  (Ak) - 

(2.8) 

(2.9) 

Elac15)1 2. 11 

laC ) 1 2  ij 

We notice that the transformations given by 

(2.3) leave N2(Ak_i) unaltered and that Ak will tend 

to diagonal form if and only if t2(Ak) 	0. We 

therefore need only consider the effect of the off-

diagonal elements and noting from equation (2.5) 

that 

'2 + a'2 = 2 	2 app 
	qj 

	app  + a qj j / Plq 	(2.10) 

we see that the only reduction in t2  (Ak) that can 

take place is through the reduction of la' I (and 
Pq 

la(
1
' 
 1)l). 

 

Hence it is clear that the maximum reduction 

in t2(Ak) will occur if we use (2.3) to reduce la I Pq 

as much as possible. In fact it is possible to 

make apq  zero at any stage. For if 

aP
q 

= a
Pq 

 (cos20 - sin20') + (a 	- agq)sin$cos0' 
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= a
Pq 

 cos20 + (app  - a
qq 

 )isin20 

= 0 	 (2.11) 

then 

tan20 = 	2a Pq (2.12) 

  

(a 	- a ) 
qq PP 

 

We shall always restrict 	such that 

-r/4 5. 0f  5_ r/4 	(2.13) 

and if aPP --aqq we take to be ±r/4 according to the 

sign of apq. 

It is clear that in order to obtain the maximum 

reduction of t2(A) at every stage we should choose 

p and q such that 

apq 
	ij = max(a .) . 	(2.14) 

With the choice of ¢ given by (2.12) we reduce 

aP
q 
 to zero and hence at the k-th stage 

t2(Ak) = t2(Ak_1) - 2(a
(k-1))2. 
Pq 

Since apq  was the absolutely largest of all the 

n(n-1) off-diagonal elements of A we have 

t2(Ak) 	(1-2/(n2 - n))t2(Ak_1)). 

Hence, at the k-th stage 

t2(Ak) (1-2/(n2-n))kt2(A0). 

If we let N=2(n2-n) we obtain 

t2(Ak) < e
-k/Nt2(A0  ). 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

This shows that the process is convergent although 
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in practice (2.18) is a very crude bound as we shall 

see later. 	Suppose we define r by 

k = rN 	(2.19) 

then 

t2(ArN) < e-rt2(A0) (2.20) 

< 6 2t 2(A0) (2.21) 

if 	r > 21n(1/e). (2.22) 

If, for example, e.2-t, then 

r > 21r2 	1.39t. (2.23) 

3. CONVERGENCE TO A FIXED DIAGONAL. MATRIX.  

We still have to show that Ak tends to a fixed 

diagonal matrix with the eigenvalues of A on the 

diagonal. Suppose the iteration is at a atage such 

that 

t(Ak) < e 
	( 3.1 ) 

and suppose the eigenvalues hi  of Ak  (and hence of 

A) are arranged in non-increasing order. If we 

similarly arrange the diagonal elements of Ak  to 

be in non-increasing order it may be seen that the 

elements in the two sequences differ by less than 

e. This follows from the minimax characterisation 

of the eigenvalues of the sum of two symmetric 

matrices as given by, for example, Wilkinson (1965). 
k) 

Thus the aii, arranged in some order, lie in intervals 

of width 2e centred on the hi. Since we may make 
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E arbitrarily small, the eigenvalues can be located 

to any desired accuracy. 

It remains to show that each aii
(k)  . 	does indeed 

converge to a specified Xi. We firstly consider the 

case of distinct eigenvalues and define E by the 

relation 

0 < 4c = min(X. - X.I. 	(3.2) 
i/j j" 3  

Let k be chosen so that (3.1) is true, then from 

(2.16) it is satisfied for all subsequent values 

of k. With this choice of E the intervals centred 

on the X.1 
 are clearly disjoint and hence there is 

just one of the a..(k)  in each interval. We_assume 11 

the X 	aii(k)  and the . 	have been ordered as before and 

now show that each aii(k)  . 	lies in the same interval 

at all later stages of the iteration. 

Suppose the next iteration is in the (p,q) 

plane. The only diagonal elements to be altered are 

•a(k-1)  and aliV); 	pp 	qq 
hence a(k)  and a(k)  must still 

PP 

be the two diagonal elements in the intervals 

centred on X and X . We show that it must be a
PP
(k)  

which lies in the interval containing X . For, 

reverting to our earlier prime notation 

aq
q 
 - X

P 
 = a 

qq 
 cos20 + a

PP 
 sin2  0 + 2a

Pq 
 sinScos0 - X 



Hence 

= (a
qq 
 - X

q 
 + X

q 
 - X )cos2 
 P 

+ (app  - X )sin20 + 2a
Pq 

 sinOcos0. ( 3 . 3 ) 
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la 	
2 

' 	_ 	-p 	pp  X 'si 
q 

	

	
n

q  - X PI ? 1Xci  - 1 Icos20 - [a 
	- 	0 

-laqq  - Xqlcos20 - lapq l 

4Ecos 0 - Esin2  0 - E cos 	- 

= 2Ecos20. 	 (3.4) 

However, 

Itan2$I = I2aPq /(aPP - aqq  )1 

:5 2E/26 

= 1. 

Hence for 0 in the range given by (2.13) we have 

1201 < r/4 and hence 

Iagg  - Xp  1 > 226 _ 

(3.5) 

(3.6) 

showing that aq
q 
 is not in the interval centred on 

X
P.  

The result is not substantially altered if there 

are multiple eigenvalues present. We define E such 

that C3.2) is true for all distinct xi and X . 

If Xi  is an eigenvalue of multiplicity m, then 

precisely m of the a..(k)  lie in the interval containing 

X. and the proof that none of the app  and a
qq 
 lying 

in different intervals centred on distinct values 

of X can move out of those intervals remains valid. 
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Hence, whatever the multiplicity of the eigen-

values, after a certain stage of the iteration each 

diagonal element of Ak  remains in a fixed interval 

centred cm. as k is increased and the width of that Xi  

interval tends to zero as k tends to infinity. 

4. THE GERSCHGORIN DISCS  

Suppose the eigenvalues Xi  of A are distinct 

and that 

minIX. - 	= 26 	(4.1) 
i/j 

and we have reached, at the k-th stage, a matrix Ak  

for which 

 

- Xil < 3/4 1  maxi I 	E aij  
i/j 

(4.2) 

together with 

(n - 1)c < 5/4. 

 

(4.3) 
The Gerschgorin discs are definitely disjoint, since 

Ia(k)  - a(k)I > IA i  - XJ I 	Iaii(k)  - x  1 ii 	jj 

- lack)  - X.I 
jj 	J 

> 3,5/2 . 	 (4.4). 
Hence we have 

- Xil < (n - 1)c . 	(4.5) 

If we perform upon A the similarity transformation 

corresponding to multiplying the i-th row by c/o 

and the i-th column by 5/c, then the i-th Gerschgorin 
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disc is certainly contained in the circle 

18.1125)  -XI < (n - 1)62/S 
	

(4.6) 

while the remainder are contained in the discs 

la(k)  - Xi < (n - 2)e + 5 1  
jj 

j / i. 	(4.7) 

The i-th disc is certainly isolated from the others, 

so from (4-.6) we see that when the absolute values of 

the off-diagonal elements have become less than e 

then, for sufficiently small c, the diagonal elements 

differ from the eigenvalues by quantities of order 

E
2. This result holds for the simple eigenvalues 

even if A has some multiple eigenvalues. 

We see that we can obtain very good estimates 

of the eigenvalues when the off-diagonal elements 

have become small. It is therefore important that 

the convergence of the Jacobi method should become 

more rapid in the later stages of the iteration. 

Some results on quadratic convergence are known but 

before considering these we consider different forms 

of the Jacobi method. 

5. VARIANTS OF THE JACOBI METHOD  
The process we have outlined so far depends 

upon determining at each step the absolutely largest 

off-diagonal element. Searching for this element 

is fairly time consuming on an automatic computer 

and so it is usual to select the elements to be 

eliminated in some simpler manner. 
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Any method in which each of the off-diagonal 

elements is eliminated just once until all n(n-1)/2 

elements have been chosen as pivot is called a 

generalised serial Jacobi method. Each sequence 

of n(n-1)/2 rotations is called a sweep. The special 

serial Jacobi method is the particular case of a 

generalised serial method in which the order of 

elimination of elements in each sweep is given by 

(1,2), (1 13),...., (1,n); (2,3), (214),....,(21n); 

; (n-1,n). The special serial method is 

particularly suited to implmentation on an electronic 

computer. Forsythe and Henrici (1960) have shown that 

the special serial Jacobi method does in fact converge 

but the proof is quite involved. We do not consider 

it here as the algorithm we have actually used is 

slightly different and is referred to as the 

threshold Jacobi method. 

The maximum reduction that can be achieved 

in t2  (Ak) at any stage by a rotation in the (p,q) 

plane is given by 2(a(k-1))2. If a(k-1)  is much 
Pq 	Pq 

smaller than the average value of the other off-

diagonal elements then there is little point in 

performing the (p,q) rotation. This idea leads 

to the threshold Jacobi method. With each sweep 

there is an associated threshold value and any 

rotation based on an off-diagonal element which is 

below the threshold value is omitted. We may 
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assume withollt loss of generality that the off-

diagonal elements are of order unity and typically 

we might then choose the set of threshold values 

2-2,2-4, 2-81  2-12. Assuming that 2-12 is the 

smallest number m on the machine for which 

1.0 + m / 1.0 
	( 5.1 ) 

we select all subsequent threshold values to be 

2-12 This means that only zeros are skipped in 

the fourth and later sweeps. A suitable criterion 

for terminating the proCess is to stop when n(n-1)/2 

successive elements have been skipped. We give later 

-the details of the implementation of the algorithm 

that we have used. It is important to notice that, 

with the threshold Jacobi method, termination is 

guaranteed as there are only a finite number of 

iterations corresponding to any given threshold 

value. From the analysis of section 4 we see that 

the diagonal elements of A then differ from the 

eigenvalues by less than (n-1)62/5. 

6. ULTIMATE QUADRATIC CONVERGENCE OF JACOBI METHODS  

We showed in section 4 that we would expect 

a Jacobi method to be ultimately quadratically 

convergent. It has been shown that several variants 

of the Jacobi method do indeed have ultimate 

quadratic convergence when the eigenvalues are 

distinct. The first result in this field was 

obtained by Henrici (1958). For completeness we 
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summarise, using the notation of sections 2 and 4, 

the best results obtained so far. 

For the classical Jacobi method, SchOnage (1961) 

has shown that if 

IX. - X.I ?_ 26 , 	i 	j 	(6.1) 

and if we have reached a stage at which 

t(Ar) < io 	(6.2) 

then 

t(Ar+N) 	(in - 1)1t2(Ar)/g , 	(6.3) 

where N=in(n-1). 

For the general serial Jacobi method Wilkinson 

(1962) has shown that, subject to (6.1) and (6.2) 

 t(Ar+N) 	1(n2 - n)2t2  (Ar)A . 	(6.4) 

For the special serial Jacobi method Wilkinson 

(1962) has shown that 

t(Ar+N) < t2(Ar)/(226). 	(6.5) 

We discuss only (6.5) in detail. 

7. BOUND FOR THE SPECIAL SERIAL JACOBI METHOD  

As before we assume that the eigenvalues Xi  

of AO satisfy 

IXi  - XjI ?_ 26 , 	i / j. 	(7.1) 

Following Wilkinson (1962) we let 

Sk  = 24(Ak). 	(7.2) 

Suppose we have reached the stage when 



< 5/4. 

Then from the preceiding sections we have that 

MAk  - diag(aW)HE  < 6/2 

and hence for some ordering of the Xi  

1411)  - 	= 1(411)  - Xi) - (aT - xj) 

+ 	- Xj)1 

(xi - xil - 14_1) - xil 

lack) - %.1 
Ji 

(7.3) 

(7.4) 
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> 28 - 2S - io 

= 6 	 (7.5) 

We recall that the effect of a plane rotation is to 

reduce (Sk)
2 by the square of the element which is 

reduced to zero and hence, if (7.3) holds for any 

k, it holds for all subsequent k. For convenience 

we assume that equation (7.3) holds when k=0. 

In the special serial Jacobi method the elements 

are annihilated in the row order given in section 5. 
We denote the N off-diagonal elements in their 

correct order by mlloc21....0(11- and the angles of 

rotation corresponding to them by 0119S21....10N. 

If cot. is annihilated by a rotation in the (p,q) 

plane we have 

Itan29=Cil = 

   

 

a(i)  - a(i)  
PP 	qq 
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and hence 

< 210e. I 
	

(7.6) 
5 

(7.7) 

Since 

2 	2 - Si = sa.+1 	1 

we have 

0 S2 = 

Hence, from (7.7) 

1 1..ji < '0'" 
2/t2 

82  
I 

(7.8) 

(7.9 ) 

(7.10) 

We now consider the effect of the rotations 

on the element ck after it has been annihilated. 

It is only affected by a subset of the later 

rotations - namely those in the (p,q) plane where 

oCi  lies in the p or q-th row or column. In order 

to simplify the resulting analysis we consider firstly 

the following particular case. We let p=1 and 

consider what happens to apq  as q=21 3,....,n. From 

equations (2.5) and (2.7) we see that 

a(1) - 0 12 - ' 

a(2) 0.cosqS2  - aQ)sin2 , q  = 3  12 

q = 2 



q = 2 

q = 3 

q . 4 

= 5 

= aTcosqS3  - a42)sin03  , q = 4 

a,r)  = 4121-2)cosszrn_i  - a2)s inOn_i  , 

	

q = n, 	(7.11) 

where we use Oi  to denote in the correct order each 

of the N angles needed in one complete sweep. Since 

IcosOi l 	1 we have 

1421-1)1 I a52)IlsinpS21 + la42 ) lisin031 + 

	

la2)lisin0n_11 . 	(7.12) 

Similarly we may consider the history of the other 

elements in the first row. In particular  
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a13(1) = _ (0) 	ri5 	a(0)sin0  

	

al3  cos 	23 	, 

(2) _ 0  
a13 

gf a(3) = 0 cos0, - a(1)sin 13 - 	9 	43 	3 ' 

a(4) _ n(3)nnR0 - a(1)sino 
13 - -13 --- 4 	a53 )sing, ' 

-1) - a(n _ (n 13 	a1 3-2)  cosgfn_i  - al(113)sin0n_1  , q = n. 

(7.13) 

Hence we have 

143-1 ) 1 < 101Isinq + 1413 )11sin04 1 

+ l a 13 )11 sinOn_1 1 . 	(7.14) 



rt-i 	)4, 	 a.-1 (E (4,1i ) ))(Esin2ri5 
j J • 

4.2 k—i+a 
E(411..-1))2  < 
1=2  1=2 (7.17) 
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In general 
It 

143-1)1 =5  :E: lag)II sin k_i 1  
k.i+1 

Hence 

a(11-1)  = 0. ' 

j = 213,....1n-1 (7.15) 

(7.16) 

Now, as each rotation alters only two elements in 

each of the relevant rows and leaves the sum of their 

squares unaltered we have 

k-, 
(al(c11-.2))2  + E(akj )2  = E (ak j  (0) )  2 	. 

k = 3,4,....,n (7.18) 

Hence, certainly 

/L-4 	 Ot 

E(a

l
(11. 	

j j 
1))2 ( 	

k 
y.:2 2(a(0) 

'
2) (E

sin20 

3=2 	 J.1 	1=2 
S2 tsin20j 

We note that this sum of squares of the first row 

is unaltered by subsequent transformations in this 

sweep. 

Secondly we consider the sum of the squares 

of the super-diagonal elements of the second row 

on completion of their succesive annihilation. 

From a discussion similar to that for the first row 

we obtain 

2 	:E] sin2  . n-1 	gC° .1 =  n+ I 

(7.19) 



2n-3 
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< s2 :E2 sin 20. n2 0. 
1.'144 

and this sum then remains constant. 

(7.20) 

 

In general, for the k-th row we have 
k-2 ft-t 

:E2  (n+k-2) 2 	2 	2] 	2 ( 	) 	S (n) 	sin ft5g(j) akj  
j=koq  

ft-k-2 
2 2] So 	sin2  °g(j) ' 

i =o  
k 	(7.21) 

where the exact form of f(n) and g(j) are 

defined by 
k-, 

f(n) E (n - i) 
Lml 

• k-4 

g(j) = 2 + 	(n - i) + j 
i..1 

Adding equations (7.21) for k = 1,2,....,n-2 we 

and 

(7.22) 

(7.23) 

obtain 
2 E S < S . 	sin2  . N 0 

2 2 < S .S 0 0 
S2  

S4 
0 
2 6 

(7.24) 

Clearly a similar result must hold for each of the 

rows in every sweep and hence in general we have 

SN 	0 < S2/5 . 	(7.25) 

Thus, from (7.2) 

t(AN) < t2(A0) 	(7.26) 
22 	26 
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or 

t( AN ) c  t2 (A0 ) 	 (7.27) 
22 6- 

as stated in (6.5). 

In fact (7.27) is often a bad estimate in reality, 

for we have replaced 

la11 	j25) - a( j) 1 
	

i 	j 

by S whereas some may be much larger. We also 

replaced all Sk  by So  and finally it is usually the 

case that some of the contributions made to an element 

after annihilation are positiVe and some negative. 

8. MULTIPLE EIGENVALUES  

In all the foregoing we have assumed that 

IX- —X.a( 	0 	i 	j 	(8.1) 

and all the convergence proofs have contained a 

factor 1/5. Obviously all the proofs break down 

if S is zero and even if d is small we would expect 

the rate of convergence to be slow. In fact it has 

been shown, see for example SchOnage (1961), that 

if none of the eigenvalues is of multiplicity 

greater than two then quadratic convergence can 

be guaranteed for the classical Jacobi method. 

Little theoretical progress seems to have been made 

in the case of eigenvalues of multiplicity greater 

than two. However, our experience sugests that 

convergence is usually just as fast if there are 
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repeated eigenvalues. Wilkinson (1965) reports 

similar findings and justifies them on the following 

grounds. 

In the first place if all the eigenvalues are 

equal to Al  then the matrix is diagonal and no 

iterations are required. Now suppose the eigenvalues 

are all very close so that 

X. = a + Si 	 (8.2) 

where the Si  are small compared with a. Then we 

have 

Vdiag(a + Bi)VT  

for some orthogonal V, and hence 

A = aI + Vdiag(si)VT. 

Now 

t (Vdiag( si)VT) 	( :DTA 

(8.3) 

(8.4) 

(8.5) 

which shows that the off-diagonal elements must be 

small initially. Computation with A is identical 

to computation with (A-aI), and this matrix is no 

longer special in the original sense. However, as 

all the elements of (A-aI) are small to start with 

we may expect that the reduction of the off-diagonal 

elements below a prescribed level will require less 

operations for this matrix than for a general 

symmetric matrix. In fact if maxiSi1.0(10-r), then 

we would expect to reduce the off-diagonal elements 

of A below 10-t-r  in the time it usually takes to 
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reduce them to 10-t 

9. CALCULATION OF THE EIGENVECTORS  

If the last rotation to be performed is Vs  

then we have 

)A (V1V2....Vs) = diag(Xi) 	(9.1) 

to working accuracy. The eigenvectors of AO  are 

therefore the columns of the matrix X defined by 

X = V1V2' Vs . 
	(9.2) 

If the eigenvectors are required, then at each 

stage of the process we may store the current product 

V1V2....Vi. This requires n
2 storage locations in 

addition to the 2(n2+n) needed for the upper 

triangles of the Ai. This scheme automatically 

gives all n eigenvectors. 

10. COMPUTATIONAL ASPECTS OF THE ALGORITHM  

We are now in a position to discuss in detail 

the implementation of the algorithm that we have 

used. Various schemes have been proposed in the 

past; Jacobi (1846) inspected the absolutely largest 

off-diagonal element apq  and then chose the angle 

of rotation ri2S such that in the matrix Ak+1 the 

(p,q) element was zero. After the rediscovery of 

the method by Gregory (1953), when for the first 

time it was used in automatic computing, it was 



P" 1-P" 
and during the first three sweeps it performs only 

a= 	12 la  Pq 
(10.1) 
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applied in such a way that p and q ran row-wise 

through all super-diagonal elements of the matrix 

and agaih the rotation angle 0 was chosen every 

time to annihilate the (p,q) element of the matrix 

Ak+1' Later Pope and Tompkins (1957) suggested a 

strategy which tended to avoid inefficient 

rotations and thus achieved diagonalisation with 

less effort. In practice we have found the 

proposals of Pope and Tompkins to be of little 

application and our basic algorithm is due to 

Rutishauser (1966). 

The pivots of the Jacobi rotations are chosen 

by row-wise scanning of the upper triangle of A. 

Before each sweep we calculate 

those rotations for which 

laPq I > 0.20-/n2  = h . 
	(10.2 ) 

In the later sweeps h is set to zero. If a is less 

than or equal to some preset tolerance the process 

is terminated. The tolerance may be altered by the 

user but we have taken a typical value to be 

2n(n-1).m where m is the smallest number for which 

1.0 + m / 1.0 	(10.3).  

on the machine being used. 

If before the (p,q) rotation the element a 
Pq 

is small compared to app  and small compared to a qq1 
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then aP
q 
 is set to zero and the transformation is 

skipped. By small we mean that the addition of 

100.1a
Pq 

 1 to both app  and a
qq 
 does not alter the 

two diagonal elements on the machine being used. 

This is certainly meaningful as it produces an 

error no larger than would be produced if the 

rotation had been performed. However, in order that 

the procedure can be used on perturbed diagonal 

matrices this device is suppressed during the first 

four sweeps. 

In order to illustrate the difference between 

our stopping criteria and Rutishauser's consider the 

following example of order 2. Let 

A = 
a 	e 

E b 
(10.4) 

where 

E = m/2 

and a and b are approximately of order unity. 

Based on our stopping criteria the matrix A is 

diagonal and we should accept the eigenvalues 

= a 	X2 b 

and the corresponding matrix of eigenvectors 

( 1 0 
v= 

 ) 

0 1 

(10.5) 

(10.6) 

(10.7) 

Rutishauser's algorithm would however perform a 

rotation to give, to machine precision, the eigen- 



values 

X1 	, = a 	X2  = b 

and the corresponding matrix of eigenvectors 
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2-  2-i i  
= 	1 	1) • 

2-2  -2-2  
(10.9) 

 

We think it unlikely that there would be many 

instances in which it was advantageous to perform 

the extra rotation and in our particular application 

to simultaneous iteration it is often disastrous. 

In order to annihilate the (p,q) element the 

rotation parameters c (=cos$) and s (=sin$) are 

computed as follows. Firstly, instead of taking 

We compute 

2a 
tan2S = 	Pq  

a - a 
qq PP 

(10.10) 

g = cot2$ 	(aciq  - app)/2apq 	(10.11) 

giving 

1 	2t 
— = tan2O - where t 	taruf. 	(10.12) 

1-t 
 

From (10.12) we have 

or 

We take 

1 t2 2gt 

t2 + 29t - 1 = 0. 

t = -9 ± (1 + 92  ) 2:I  

where we require the smaller (in modulus) root. 
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If lot  is large we do not use the above but instead 

we take 

t = 1/20. 

To find whether lot  is large we form 

h = a - a 
qq 
	pp 

and test if 

h + 100.1a 1 
Pq 

to machine precision. 

The solution of (10.15) which we require is 

given by 

	

1 	1  

	

-g + (1 + 92)2 	1/(9 .+ (1 + 2  )7) 

if Q 	0 	(10.19) 

and 

t = Igl - (1 + 92)2  = -1/(101 + (1 + 92)2) 

if Q < 0. 	(10.20) 

From t we easily calculate 

1 
c = cose = 1/(1 + t2)2  

whence 

s = sine = t.cose 

and 

= tan(S/2) = sine/(1 + cos0). 

(10.21) 

(10.22) 

(10.22) 

Finally we mention that the program does not 

operate directly on the diagonal elements of the 

matrix A but transfers them to a one—dimensional 

array d and then acts upon this. In order to ensure 

maximum accuracy of the eigenvalues, as well as 

updating d at each rotation (for the purposes of 
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calculations performed during any particular sweep), 

the alterations to d are also accumulated separately 

and at the end of each sweep these totalled increments 

of all the diagonal elements during the sweep are 

used to compute new and better values of the latter. 

We give more details in chapter 5. 

11. NUMERICAL DETAILS  

In an attempt to diminish the accumulation of 

round-off errors the following computational formulae 

are used. To calculate c,s and r we proceed as 

follows. Let 

h = a 
clq 
 - app 	 (11.1) 

G = ih/apq  

t = 1/(IGI + (1 + Q2)4) if g > 0 or 

t = -1/(101 + (1 	92)2) if G < 0 

1  c = 1/(1 + t2)2  

S = t.c 

T  = s/(1 	c) 

(11.2) 

(11.3 ) 

If Q is large we replace (11.3) by t=1/29. We modify 

the formulae (2.6) and (2.7) as follows. We know 

tan20 = 2apq/(aqq  - app) 	(11.7) 

therefore 

tan0 	a pq 	• (11.8) 
- 1 - tan2  0 a - app  pp  

 

Hence, from 
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aP
P 
 = a

PP 
 cos2 + a 

qq 
 sin2  0 - 2a

Pq 
 sinOcos0 
	

(11.9) 

we have 

aP
P 
 = app  + (a

qq 
 - a

PP 
 )sin2 - 2a

Pq 
 sin0cos0 

= a + a (1 - tan20)sin20  - 2a sin0cos0 
PP 	Pq 

 
tangy Pq 

= app  - a
Pq 

 sinOcos0 - a
Pq 

 tan2  OsinOcos0 

=app  - a
Pq 

 sin0cosOsec20 

= app  - a 
Pq
tan0 . 

Hence, we use the computational formulae 

a' = a 	- t.a 
PP PP Pq 

a' = a 	+ t.a 
qq qq pq 

aPq = 0 . 

Similarly for the off-diagonal elements of A, and 

also for the components of V, we do not use equations 

(2.5) but instead modify them in a similar manner. 

For if 

	

a'. = a 
Pi 	
.cos0 - a 

qd  
.sin0 	(11.14) 

Pi  

we have 

a'. 
	

1 

	

= a 
Pi 	
.(1 	2sin2  70) - a

qi  
.sin0 

P  

	

Pj 	qi 
cos-0 

	

app 	sin9qau  + a. 
Pi  
.tani0). 

It might be thought that analogously to (11.11) we 

would use 
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a'p 
 = cos0(a. 	-. a. c13.tang0 	(11.16) 

	

j 	pj  
i., f ce e 4: .i. 0 c., a vc,,,tc,.. Q_. s i..". ee_ LE..s f'o t.,..ol,....,f3  .2.pr-el-- 

but this o ffers from the disadvantage that #ea44 
is s.L.-..i.(a-,- to tk4.1 of CH. iii-) . 	 - tAlko-, . 0 Ls 5...„0.A.) 

-Rtu-at-i-en 
tin. 

(11.15) has a Biai4m-um rounding error half that of 

(11.14). Hence, we use the computational formulae 

. + 7.a .) apj 
	c13 PJ 	PJ ' 

sac1'  J . = aqj  . + 	.(a 
PJ 

. - T.a 
cl
.) . 
a 

In the program we work only with the upper triangle 

of elements of A and hence equations (11.17) are 

onlyusecliftheappropriatea. PJ and aqj  . are in this 

upper triangle. In fact we use three pairs of 

equations to modify the elements of the p- and q-th 

row and column as follows. For 1<j 4p-1 we take 

alp = ajp  - s.(ajq  + ajp.7) 

aljq  = ajq  + s.(ajp  - ajci.7) , 	(11.18) 

for p+1 < j q-1 
a'. = a

P3  
. - s.(a. + a P3_7) 

	

P3 	Ocl  

ajq  = ajq  + s.(apj  - ajci.7) , 	(11.19) 

and for q+1 < j 4 n 
al'jj  = apj  - s.(aqj  + apj.7) 

aqj  = aqj  + s.(apj  - aqj.r) . 	(11.20) 

This completes the details of the algorithm; we 

discuss the programming aspects in chapter 5 and 

a listing of the program is given in appendix 1. 
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12. THE JACOBI METHOD FOR HERMITIAN MATRICES  

Nearly all of the results we obtained in the 

previous sections for real symmetric matrices carry 

over to the case when A is Hermitian. We define 

the rotation matrix V of order n such that 

vPP = v
qq. 
 = cow; 

vPq = eiG  sing; 

_  
vqP = - e igsin0 

V.. = 1 
	

i 	pl q 

vii  . . = 0 otherwise. 

We note that 

H 	H VV = V V = I . 

Denoting the original matrix by AO  we may 

describe the process by the sequence of matrices 

Ak = Vk 
(12.3) 

As Ak-1 is Hermitian we see that Ak 
is also. In a 

similar notation to section 2 the modified elements 

are given by 

ai! = aid , j 
il j / pl q 	(12.4) 

a
,=a_

Pa
coso_a

qa
eiGsin0 

Pj  
j / Plq 

aq
j  

= a
qa  
.cos0+. apj  e 	sinO 

a' = a
PP 

 cos29S + a 
qq
sin20 

PP  

- sinOcos0(aPq e-ig + a ei0) 

(12.5) 



aq
q 
 a 

qq 
 cos20 + a 

PP
sin2 
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+ sinOcos0(apq  e 	+ a ei@) 

aP
q 
 = a

Pq 
 cos20 - agpe2igsin2$  

+ eiQsin0cos0(a
PP 
 - a ) . 

(12.6) 

(12.7) 

 

Again we notice that the transformation given 

by (12.3) leaves N2(A) invariant and that A tends 

to diagonal form if and only if t2(A)-*O. Again 

it is possible to reduce apq  to zero at any stage. 

For if 

a 	a cos20 - a e2iG  sin 2 
Pq Pq 	

qp 

+ 	eiGsinicos0(a
PP 
 - a

qq 
 ) 

0 . 	 (12.8) 

Then 

aPq e
-i(Dcos20 - aqP ei@ sin2  0 

= (a
qq 

 - aPP )sinOcos0 , 	(12.9) 

thus 

aPq (cos@ - isin9)cos20 - a (cos@ + isin9)sin
20 

= i(aqq  - app)sin20 . 	(12.10) 

Therefore 

(cos20 - sin20)(Re(a Pq )cos@ + Im(a Pq
)sinG) 

+ i[(cos2$ + sin20)(Im(apq)cos0 - Re(apq)sin0)] 

i(aqq  - app)sin20 . 	(12.11) 



Hence, taking 

gives 

and 

Im(apq)cosg = Re(apq)sinQ 

tang = Im(apq )/Re(apq ) 
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2(Re(a )cosg + Im(a )sing) 
tan20 = 	Pq 	Pq 	(12.14) 

(aqq - app) 

Therefore 
tan0 

1 - tan2 	a - a 
qq PP 

where 

= Re(a
Pq 

 )cosQ + Im(a 
Pq

)sing . 

(12.15) 

(12.16) 

As before we restrict ourselves to implementing 

the threshold special serial method and rearrange 

equations (12.5), (12.6) and (12.7) into a more 

convenient computational form. These then become 

aP
P 
 = app  - 12tan0 

aq
q 
 = a

qq 
 + Qtan0 

a' = 0 
Pq 

(12.17) 

(12.18) 

where 2 is defined as in (12.16). Analogously to 

equations (11.17) we obtain 

a' . = app  . - sin0(a 
qJ  
.eiQ + T.apj  .) 

PO  

and 

qj 	q3 	PO 
-i0 .e 	- r.aq

J
) . 	(12.19) 

As before the program works only with the elements 
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in the upper triangle of A and hence we again use 

three pairs of equations for computational purposes. 

These are similar to those employed in the symmetric 

case. For example, if 1 j < p-1 we use 

a!P = 	
-s(a

Jq
-eig  + ajP* 7

-) 
J  

atici  = ajq  + s(ajpeig  - ajci.r) . 	(12.20) 

The complex arithmetic is performed by breaking all 

equations down into their real and imaginary parts. 

The only other feature of the program which 

does not occur in the symmetric case is the 

computation of cosg and sing. From (12.13) we form 

(12.21) 

(12.22) 

(12.23) 

t = tang . 

If (t (< 1 then form 

cosg = 1/(1 + t2  )2  

and 

sing = t.cosg . 

If , however, t > 1 we take 

Re(a ) 
Pq tl  = 1= 	 

t Im(apq) 

and form 

(12.24) 

(12.25) 

(12.26) 

sing = 1/(1 + ti )2  

cosg = t1.sing . 

The other computational details are identical with 

the symmetric case. Programming details are given 

in chapter 5 and a listing of the program is included 

in appendix 2. 

All the convergence results given earlier carry' 



over to the liermitian case with little or no additional 

analysis. The results of sections 3 and 4 require 

no modification as the eigenvalues and diagonal 

elements of a Hermitian matrix are real. The proof 

given in section 7 also holds,forwe note that all 

the equations and inequalities involving the off-

diagonal elements rely not on these elements but 

on their moduli. In addition, the proof nowhere 

depends on any of the off-diagonal elements being 

real. In particular, LexP(i0)1=1. 

13. THE JACOBI METHOD FOR NORMAL MATRICES  

We have shown in chapter 1 that a normal matrix 

is the most general form for which there exists a 

unitary transformation such that 

VHAV = diag(Xi) . 	(13.1) 

We saw also that if A is normal we may write 

A = B + C' 

where B is Hermitian and C' is skew-Hermitian and 

BC' = C'B . 

If we now write 

C' = iC 	(13.4) 

C is a Hermitian matrix and we may replace equations 

(13.2) and (13.3) by 

A = B + iC 	(13.5) 

and 

BC = CB 	(13.6) 

respectively, where B and C are now both Hermitian 
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matrices. Hence in order to diagonalise a normal 

matrix it is only necessary to diagonalise two 

Hermitian matrices. We now consider some relations 

between commuting matrices and their eigenvectors. 

Lemma 13.1 If A is normal then A and A
H have a 

common complete system of eigenvectors. 

Proof: From the relations 

VHAV = D and VHAHV = DH 
	

(13.7) 
where D.diag(ii), we have 

AV = VD 

and 
	

AHV = VDH . 	(13.8) 

The matrices A and AH therefore have a common 

complete system of eigenvectors, namely that formed 

by the columns of V. 

Lemma 13.2 If any two matrices B and C have a common 

complete system of eigenvectors then they commute. 

Proof: Suppose the common system of eigenvectors 

forms the columns of the matrix V. Then we have 

B = VD1V
-1 and C = VD2V

-1 	(13.9) 

Hence 

and 

BC = VD V
-1 	 1 

VD2V = VD1D2V 
-1 

1 

CB = VD2V
1
VD1 V

1 
 = VD2D1V

-1  . 

(13.10) 

As diagonal matrices commute so do B and C. 

Theorem 13.3 If B and C commute and have linear 

elementary divisors then they share a common system 
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of eigenvectors. 

Proof: Suppose the eigenvectors of B are v1,v2,... 

vn  and that these vectors form the columns of the 

matrix V. Then 

	

V1BV = diag(Xi) 
	

(13.12) 

where the X. are not necessarily distinct. The 

manner of proof is dependent on the number of 

repeated eigenvalues and their respective 

multiplicities but an example will suffice to show 

the method. Let us suppose that 

Al  = X2  = 	= Al  

1+1 = X1+2 = 	= Xm 

and that Xm+1 Xm+2,....,Xn are all distinct. Equation 

(13.12) may then be written as 

-1 V 	BV = 

Since 

we have 

which gives 

X1I1 
X
1+1

Im-1-1 

Xm+1 

. 	X.v. Bv2   

CBvi  = X.Cv. 

B(Cvi) 	Xi(Cvi) . 

• • • • 

(13.15) 

(13.16) 

(13.17) 

(13.18) 
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Thus if -vi  is an eigenvector of B corresponding to 

X. then (Cv.) lies in the subspace of eigenvectors 

corresponding to X1. Hence 

Cv1  = pil vi 	P21v2 	Pllvl 

Cv2  = P12v1 P22v2 "" P12v1 

Cv =p V +D V + 	+DV 1 	11 1 	-21 2 	-11 1 

Cv1+1 = q11 v1q21v2+  "" 1-(1M1.vin, 

Cvm  = qimvi  + q2mv2  + 	+ qmmvm  

Cvm+1 = m+1vm+1 

 

Cvn n v . n 

 

(13.19) 

These equations may be written in matrix form as 

P 

VI  CV CV = 

Q 

fr'm+1 (13.20) 

  

Since C has linear elementary divisors it follows 

that so too must P and Q. Hence there exist matrices 

T and U such that 

     

     

1 
T PT = 

Al 

1 
and U

1
QU 

ki
l+1 
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Writing 

 

T 
U 
In_ml 

 

W = (13.22) 

  

we have 

W-1V 1CVW = diag(Ai) . 	(13.23) 

However, from (13.15) we obtain 

W-1V-1BVW = diag(Xi) . 	(13.24) 

Hence B and C share a common system of eigenvectors, 

namely the vectors which are the columns of VW. 

We may make use of this theorem to enable us 

to diagonalise a normal matrix. In equations (13.5) 

and (13.6) the matrices B and C commute and, as they 

are Hermitian, both have linear elementary divisors. 

From (13.5) we may determine a matrix V such that 

VHBV = diag(Xi(B)). 	(13.25) 

Thus 

VHAV = diag(Xi(B)) + iVHCV 	(13.26) 

From theorem (13.3) we see that VHCV will be 

diagonal only if there are no repeated eigenvalues. 

If it is not diagonal however it follows that we 

can certainly find a matrix W such that 

WHVHAVW = diag(Xi(B)) + i.diag(Xi(C)) . 	(13.27) 

A similar algorithm could be devised which 

was based upon first diagonalising the matrix C. 

In our algorithm we use, as before, the threshold 
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special serial Jacobi method on the matrix A but 

base the transformation on B or C depending upon 

which one gives the greater reduction in t
2(A). 

For a normal matrix A it is necessary to operate 

on the whole of the matrix A or on the two upper 

triangles of B and C. We opt for the former as it 

is extremely easy to calculate the elements of B 

and C when they are required and much more economical 

to perform one set of rotations on A. 

Computationally the program follows that for 

Hermitian matrices with only two exceptions. 

Firstly it is necessary to calculate b and c • bpq 	pq, 

these follow directly from (15.16) and (15.17) of 

chapter 1. Secondly it is necessary to calculate 

apq  as we are not necessarily reducing this to zero. 

A full listing of the program is given in appendix 3. 

Convergence of our method for normal matrices 

relies only on the convergence of Jacobi's method 

for Hermitian matrices and this we have discussed 

in the previous section. We note that although a 

normal matrix may have complex eigenvalues these 

are dealt with as an ordered pair of reals thus 

enabling us to use the results from the Hermitian 

case. 

Finally we must mention the work of Goldstine 

and Horwitz (1959) who developed an optimal 

algorithm for diagonalising normal matrices. Ruhe 

(1967) proved that for row cyclic choice of pivots 
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this algorithm was ultimately quadratically 

convergent; Loizou (1972) established the same 

result for maximal pivot choice. Unfortunately 

the Golstine and Horwitz algorithm is difficult 

to implement and we believe our algorithm to be 

very competitive. This is because it is easy to 

implement, runs nearly as quickly as the algorithm 

for Hermitian matrices and is very close to being 

optimal. 

14. GENERALISED JACCBI METHODS  

Many attempts have been made to generalise 

the wellLknown Jacobi algorithm for the diagonalisation 

of a real symmetric matrix to arbitrary matrices. 

We have just discussed an extension for normal 

matrices but for a non-normal matrix it is no 

longer possible to use unitary transformations 

alone although, as we have shown in chapter 1, it 

is possible to use unitary transformations to 

triangularise an arbitrary matrix. Attempts to 

formulate computational methods for doing this have 

not been very successful as shown by Causey (1958), 

Greenstadt (1955), and Lotkin (1956). Another way 

of generalising the Jacobi method is to use both 

unitary and non-unitary transformations and attempt 

to diagonalise the matrix. It is essential to 

restrict the non-unitary transformations and use 

them only to bring the matrix closer to normal. 
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Eberlein (1962) and Rutishauser (1964) have both 

proposed such methods, the former using non-unitary 

transformations and the latter using diagonal 

similarity transformations. Eberlein has proved 

the global convergence of her method and Ruhe (1968) 

has shown a slight modification of the algorithm 

to be ultimately quadratically convergent for non-

defective matrices. No convergence proofs of 

Rutishauser's algorithm appear to exist and such 

attempts as we have made lead us to suspect that 

the method is not of general applicability. 

15. MINIMISATION OF MATRIX NORMS. 

We prove firstly a theorem due to Mirsky (1958) 

upon which the attempts to diagonalise a matrix 

are based. 

Lemma 15.1 Schur states that if A is a complex 

(n*n) matrix with eigenvalues X1,X2,....,Xn  then 

11A4 EIXi 1 2  . 
L.1 

There is equality if and only if A is normal. 

Proof: For any matrix A there exists a unitary 

matrix R such that 

RHAR = T 

where T is a triangular matrix whose diagonal 

elements are the eigenvalues of A. We know that 

if A is normal T is diagonal. 

From (15.2) we have 

(15.1) 

(15.2) 



which gives us 

A = RTRH 

HAH E  = HRTRHH E  

= IITHE  

(15.3) 

(15.4) 
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This follows because the Euclidean length of each 

column of RT is equal to that of the corresponding 

column of T. Since 

HTHE 	lxil9i 	 (15.5) 

with equality if and only if T is diagonal the lemma 

is proved. 

Theorem 15.2 Let A be an (n*n) arbitrary complex 

matrix with eigenvalues X1,X2,....,Xn  then 

-1 2 infdS ASHE = 
(15.6) 

L=8 

where the lower bound is taken with respect to all 

non-singular matrices S. Furthermore the lower 

bound is attained if and only if A is normal. 

Proof: Denote by T1  a matrix such that Ti
1  AT1  is 

triangular, say 

X1 	b12 . 	. b1n 

X2 ' 	. . b2n 

• • • • 

Xn 

T-1AT 1 	1 (15.7) 

Let 161be not greater than unity and define 
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T2'= diag(105,6
2,....15n-1) . 	(15.8) 

If S0 
	we have 

lisPl As04 = WI2
1T11AT1T24;  

11. 
= 	:E] 	 10.k  12

0
,2(k-i) 

Uzi 	
i I   

)4L414(n 

EIXi12 	2n(n-1 )10262 (15.9) 

where b=maxl .bik  1. The relation (15.6) now follows ilk 

since by (15.1) 

11S-1AS4 

for all non-singular S. Further, if A is diagonal-

isable then the lower bound of HS-1ASHeis clearly 

attained. If, on the other hand, the bound is 

attained so that, for some S, 

ils-1114 
then S

-1AS is normal and A is diagonalisable. 

16. EBERLEIN'S ALGORITHM  

Mirsky's theorem on the minimisation of matrix 

norms gave Eberlein (1962) the idea for a method 

of making complex matrices arbitrarily close to 

normal form. She proved global convergence, with 

some restriction on the choice of pivot elements, 

and found experimentally that an extension of the 

procedure produced a nearly diagonal matrix. 

(15.10) 
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Ruhe (1968) has proved that slight 

modification of Eberlein's original 1962 

algorithm is ultimately auadratically convergent 

for row cyclic choice of pivot. Using the 1962 

paper Eberlein (1970) has published a program to 

reduce arbitrary complex matrices to nearly diagonal 

form. It is this algorithm which forms the basis 

of our program. 

17. THE TRANSFORMATION MATRICES  

As we have already mentioned the basic 

philosophy of Eberlein's method is to use shear 

matrices to reduce a matrix A arbitrarily close to 

normal form. It then may be made almost diagonal as we 

have shown previously. In practice the shears and 

rotations are performed together to minimise the 

arithmetic operations required but for theoretical 

purposes it is much more convenient to consider 

them separately. We steal'_ concentrate firstly on 

the effects of shearing. All the results that follow 

have been proved by Eberlein but we consider our 

proofs to be shorter and simpler to understand. 

Define the shear matrix S by 

sPP = sIraq = coshy 

. 
s
Pq 

= "E 	leifl  sinhy , y and 0 real qp 

s . . = O.. 
l j il j # plq. 	(17.1) 

For arbitrary A the elements of the transformed 



matrix A' defined by 

are given by 

A' = S-1  AS (17.2) 
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a! = aid  i,j / pl q 

a'. = api_  coshy - iaqi
eiflsinhy 

a!=aip  coshy-ia. 
-ipsinhy 

aqi  aqic = 	oshy + iapie
-10  sinhy 

aiq = 	ip oshy + ia eiO  sinhy 

a' = a
PP 

 cosh2y - a
qq 

 sinh2  y 
PP  

/ Plc]. 	(17.3) 

- isinhycoshy(a Pq e-1-0  + aqp  eifl) 	(17.4) 

aP
q 
 = a 

Pq 
 cosh2y + a 

qP
e24sinh2y 

+ iei0sinhycoshy(a
PP 

 - a qq) 

aq
P 
 = a

qP 
 cosh2y + a 

Pq
e 24sinh2y 

-ip s. +ie 	inhycoshy(app  - aqq) 

aq
q 
 = a 

qq
cosh2y - appsinh

2y 

4 isinhycoshy(a Pq  e
-if3  + a

qP  e
if3) 

(17.5) 

(17.6) 

(17.7) 

Equations (17.4) to (17.7) may be written more 

simply if we use the following substitutions. Let 

D = 

E = 

F = 

app - 

a 	+ 
pq 

a 	- 
qP 

a 
qq 

a qp 

a 
Pq 

(17.8) 

(17.9) 

(17.10) 



B a
Pq  e

-14  + a 

C = a
Pq 

e-ig - a eig  . 
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From (17.4) we have 

a' = a
qq 
 - a

qq 
 cosh2y + a 

PP
cosh2y - 2isinh2y.B 

= a
qq 
 + Dcosh2y - 2isinh2y.B 

= a
qq 
 + 2D(1+cosh2y) - 2iBsinh2y 

= i[(a
PP 

 +a 
qq
) + Dcosh2y - iBsinh2y] . (17.13) 

From (17.7) we have 

aq
a + a sinh2y - a sinh2y + 2isinh2y.B q. 	qq 	qq 	PP 	• 

= a
qq 
 - Dsinh2  y + 2iBsinh2y 

= a
qq 
 - 2D(cosh2y-1) + 2iBsinh2y 

= i[(a
PP 

 +a 
qq
) - Dcosh2y + iBsinh2y] . 	(17.14) 

From (17.5) 

a'
Pq = e

ifl
(aPq e

-i °cosh2y + aciP  e
iosinh2y + --iDsinh2y) 

= eifl[ia e-43  - ia el-13  
Pq 	qP 

+ '2I(a 
Pq 

e-10 + aciP  e
i/3)cosh2y + --iDsinh2y] 

= 2el-13(aPq  e
-j3  - agile' + Bcosh2y + iDsinh2y) 

= le143 ( 2 	+ Bcosh2y + iDsinh2y) . 

From (17.6) 

(17.15) 

a' = e (3(a eiOcosh y + apq e-iflsinh2y + --iDsinh2y) 



= fie-54(a
qP  e

j4  - a
Pq  e

-i  + Bcosh2y + iDsinh2y) 

= 7e
-1g 

 (-C + Bcosh2y + iDsinh2y) . 	(17.16) 

Hence we write equations (17.4) to (17.7) in the 

form 

a' = i[(aPP +aqq ) + Dcosh2y - iBsinh2y] 
PP  

a'Pq = ieip(c + Bcosh2y + iDsinh2y) 

a' = 3e-14(-C + Bcosh2y + iDsinh2y) 

aq
q 
 = i[(a

PP 
 +a 

qq
) - Dcosh2y + iBsinh2y] . (17.20) 

We define the commutator matrix C such that 

C = AAH  - AH  A 
	(17.21) 

and note that C is Hermitian. An arbitrary matrix 

A is normal if and only if 

C E 0. 	(17.22) 

We also introduce A defined by 

A E N2(A) - N2(A'). 	(17.23) 

It is obvious that, to bring a matrix closer to 

normal form, we shall be interested in positive A 

at each step and ideally in maximising A at each 

step. 

We now compute A for the single transformation 

of (17.2). Let 

Al 	:E2 (lapil 2+laip l 2+1aqi1 2+lai,1 1 2) 
Lowl,  

- 	
(la, 121.1 a,   121.1 a(,4i124. 1 ai    12)  .,. 07  24) pil  I  ip l   I 
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From equations (17.3) we obtain 

laPi 1 2 	(a 
P
:coshy - iaqieiPsinhy) 

 .coshy 	-4sinhy) 

 a picosh
2y + aqiaqi

- 

sinh2  y 

+ isinhycoshy(apiaqie- -iP -apiaqiei-P) 

(17.25) 
 

laip ipip iqiq 1 2  = a a cosh
2y + a a 

- 

sinh2  y 

- l A  
+ isinhycoshy(aipiq  a e 	ipiq -a a e- B  ) 

(17.26) 

.12 = aqiqicosh
2y + a

Pi 
TPi sinh2y 

- + isinhycoshy(a qi
e-i un -a

piaqie°) 

(17.27) 

and 
 

laiq 
12 = aiq 6iq ipip cosh2y + a a 

- 

sinh2  y 

P + isinhycoshy(aip  a. 

- 

ei  -a.pa.q
-1p) e 	) iq 	i i 

(17.28) 

Hence 

Al  = 	Eapjpi(1_cosh2y_sinh2y) 

+ aip aip (1-cosh
2y-sinh2y) 

+ aqiaqi(1-cosh2y-sinh2  y) 

+ a. T. (1-cosh2y-sinh2y) iq iq 



-2isinhycoshy(apjclie-f-Epiagid1  

+ai 	ei19 -a.i  a e 1P p iq 	p iq 

Some simple manipulation then gives us 

(17.29) 
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Al  = 	{(apigpi+aipJip+acijcii+aijig)(1-cosh2y) 
LOb% 

- isinh2y[eiP(ai  6ici-Tpiacii) 

(gipaicrapiTcii)]} 

(Iapi124.1aip12+1aqi12+lai 12)(1-cosh2y) 

where we 

L*1!., 
- isinh2y(eifK - e Y1-0 

= G(1-cosh2y) - Hsinh2y 

define 

(17.30) 

K = 	(aipaici  - T.piaqi) (17.31) 

H = i(eiPK - e-iPTO 

= -2Im(eiPK) (17.32) 

G = 	(lapil 2+1a. 	12.0_ ip' 	''qii 
12+1,. 	12 

l'iql 

(17.33) 
Now let 

a 	, 	l a 	12 	l a 	12 	l a, 
2 	pp 	gqi 	PP 

la:1(112 . 
 (17.34.) 

Then 

O2 = apppp
+aqqqq--1[(app+aqq)("g.+T.qq)+DT)osh22y pp 

-iBT5sinh2ycosh2y+il3Isinh2ycosh2y-FISEsinh22y] 

. 



= [a a, + a a - a T 	a • pp pp qq.  qq.  pp Ta pp qq 

- IDI2cosh22y - IBI2sinh22y 

+ i(BT-TD)sinh2ycosh2y] 

• i[(app-aqq)(app-) - ID12cosh22y 

- IBI2sinh22y + 2i(BF-SD)sinh4Y] 

= i[-IDI2sinh22y - IBI2sinh22y + 2i(BT-TD)sinh4y] 

= -i(1/91 2-FIDI 2)sinh22y + i(BT-ED)sinh4y 

(17.35) 

Finally we define 

°3 	
ap(112 4.  1 %1,12 _ !a, 12 	l a, 1 

1 pci l 	1 col. 
	

(17.36) 

Then 

A
3 
 = la 

pq  l 	1 
12 4.  ia 

co 
 1

2 	12 	r iLcU + BEcoSh2y 

-iBDsinh2ycosh2y + iBDsinh2ycosh2y + ffsinh22y1 

. la  i2 4.  la 	12 	-In a  12+ 1 a  12 
I pql 	

qP 	
pql I cipl 

-a
Pq -a-qP e

-2ie - a 	
Pq

e2i-P+ IBI2cosh22y 

+ IDI2sinh22y + i(BD-B171)sinh2ycosh2y] 

= ilia
Pq  1

2  + la 12  + 2Re( Pq aq10 )e2iis 

- IBI2cosh22Y - IDI2sinh22y 

- i(ED-B5)sinh2ycosh2y] 

• 2(1B12(1-cosh22y) - IDI2sinh22y 

- 2ica-BrOsinh4y) 
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= ir -(IBI I 1 2)sinh22y - 4i(7D-BT)sinh4Y] . 

(17.38) 

Combining the results for A2  and A3  we have 

A2 A3 -(1B12+IDI 2)sinh22y - ji(a-BT)sinh4y 

= i(1B12+1D12)(1  -cosh4y) + Im(M)sinh4y. 

(17.39) 

Hence we finally obtain 

A . A1  +A2  +A3 

= G(1-cosh2y) - Hsinh2y + i(1B12+1D12)(1-cosh4y) 

+ Im(ED)sinh4y . 	(17.40) 

18. OPTIMAL SHEAR PARAMETERS  

With the definition of the commutator matrix 

C given by equation (17.21) and the expression for 

A we obtained in (17.40) we are now in a position 

to prove the following. 

Theorem 18.1 Setting the two_first derivatives 

of A to zero for the maximum is equivalent to 

annihilating c'
Pq. 

 In fact we have the identity: 

c' = eiF i. 3A - 
Pq 

2 2 3y 

1  

sinh2y 

(18.1) 

Proof: We recall the formulae of the last section 

A = G(1-cosh2y) - Hsinh2y + 2(1B 2+1D12)(1-cosh4y) 

+ Im(BD)sinh4y 	 (18.2) 

G = 	:E2 (lapil 24. 1 aip124. 1 a i  2 (18.3) 



H = 	- 

K = 	(ai  T - T. a ) p iq 	pi qi 
1#7)4, 

B = a e-j-19  + a eil9  
Pq 	qP 

C 	a
Pq  e

-iP - a eif3  

D = a - a 
PP qq 

E = a + a 
Pq qP 

F = aqp  - a
Pq 

 . 

We note also that 

(18.4) 

(18.5) 

(18.6) 

(18.7) 

(18.8) 

(18.9) 

(18.10) 
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c 	= (AA
H 

- A
H
A) 	- 	T. 	— T.i  . a.i  ) pq 	pq 	pi qi 	p q 

L=o 

From (18.2) we have 

-2Gsinh2y - 2Hcosh2y - 2(1B12+1D12)sinh4y 
.)y 

+ 4Im(ED)cosh4y . 	(18.12) 

Also, we have 

Now 
aH 	

113 	-ip — = -e K - e K . (18.13) 

Thus 

BI2 	l a p 12 
ci l la 12  .+ 2Re(g.Pq  a e2i ) . (18.14) 

MBI2 2iA 
- 4Re(T. a ie 

Pq 

= -4Im(Tpciacipe2iP). 	(18.15) 

Also 

Im(TD) = Im[(apcleift +Tue-1')D] 	 (18.16) 



[Im(BD)] = im[iD(T, Pq eiP  - aqpe-13)] 
dp 

-  = Re [D(T.
Pq  e

iF 
 - aclip e

-1/3  )1 Jj - (18.17) 
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Hence 

646' 	(e1PK+e-1°1Osinh2y + 4Im(E a e2i0)sinh22y 
Pq 

+ 2sinh2ycosh2yRe[D(Tpcie i -Tue 1 )]. (18.18) 

We now consider c'Pq . From (18.11) we have 
A 

c' 	= :E:(a' T.' -T.' a' ) pq 	pi qi ip iq 
L=1 

= 	 p (a' T' -Ei  a ) i qi p iq 
P-1, 
+ a' T' - T' a' + a' a 	- 	a' 

PP ciP 	qq 	Pq qq 	PP Pq 

= 	[(apicoshy-iagie l sinhy) 
L*p4, 

*(E . oshy-iTpieiPsinhy) 

- ipcosily-idE. 1(3 sinhy) 

	

*( •alqc 	ip oshy+ia ej4sinhy)] 

+ - 543(Z+T3cosh2y-iTsinh2y) 

*(Dcosh2y-iBsinh2y) 

+ 2e11(C+Bcosh2y+iDsinh2y) 

*(-75cosh2y-i7sinh2y) 

 
apiaqi

- 

cosh2y-aqiapie
2i0  sinh2  y 

-a.ip a. cosh2y+ a e4sinh2y] 

	

iq 	. ip 

[ 

- 1 
[apiTpielsinhycoshy+a qiaqie

10  sinhycoshy 
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+a. a. 	iq eiPsinhycoshy+a la eiPsinhycoshy] 

+1-e1P[-ncosh2y+TDcosh22y-iffsinh2ycosh2y 

+iUBsinh2y-iffsinh2ycosh2y-EBsinh22y 

-fficosh2y-Bfcosh22y-iDfsinh2ycosh2y 

-iCTsinh2y-insinh2ycosh2y+Dfsinh22y] 

- - [cosh2y(apiaqi-aipaig) 

+ e2iPsinh2y(ai  T -a-  a )] p iq pi qi 

-ieiPsinhycoshy 	dapi l 2+laip l +lacii1 2+laig 1 2) 
P4  

ipr 
LtHilttr] 

	

= f1  + f 2 say. 	 (18.19) 

f l  = (-7cosh2y+e2iP sinh2y.K) - 2ie1Psinh2y.G 

= e1q-Zie-1P(cosh2y+1) + 2e1PK(cosh2y-1)] 

- 2iesinh2y.G 

= ie1P[cosh2y(e-e-IPTZ) - (e4°K+e-3147) 

- iGsinh2y] 

= ieiP[-iHcosh2y 	(ei40K+e-iF10 - iGsinh2y] . 

(18.20) 

f2  2e1q-cosh2y(UD+Cf) + cosh22y(TD-B7) 

-2insinh2ycosh2y + isinh2y(UB-C17) 

-2iBEsinh2ycosh2y + sinh22y(D7-713)] 



= ie1P[-2cosh2y.Re(UD) + 2sinh2y.Im(C7) 

+ i(1+cosh4y)(7D-BT) - isinh4y(Df+EB) 

+ i(cosh4y-1) (DT3-T5B)] 

= ie1 [-2cosh2y.Re(n) + 2sinh2y.Im(CT3) 

+ cosh4y(7D-B7) - isinh4y(1D12+1B12)] 

= ie1ia[-2cosh2y.Re(Cb) + 2sinh2y.Im(n) 

+ 2icosh4y.Im(TD) - isinh4y(IDI2+IBI2)] • 

(18.21) 

However 

Re(G1) = Re(p( pcleiP — acipe-1p)) 

and 

Im(CE) = Im[(apcie-i19 -a peiP)(-87pcleiP-1-g.cipe-ii3 )" 

= Im(aPq 	
e-2iP  - aPq aqP e2i13) 

= -2Im(TPq  a e24) . 
	(18.23) 

Hence we obtain 

c'Pq = ie1rn[-iGsinh2y - iHcosh2y 

- isinh4y(IB12+1D12) + 2icosh4yIm(TD) 

- 	+ 

- 4sinh2y.Im(Tpqacipe2iF) 

- 	2cosh2y.Re[D(apcle1P  - Ecipe-1F)] . 

(18.24) 

Comparing equations (18.12), (18.18) and (18.24) 
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we see that 
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eiP 	- 
c„ = 
11 2 L 2 ?y sinh2y ap  

(18.25) 

and the theorem is proved. 

19. CONDITIONS FOR CONVERGENCE 

Before the main theorem we prove some lemmata. 

Lemma 19.1  

H - 2Im(BD) = -2Im(cpcie-1F) 	(19.1) 

Proof: From (18.4) we have 

H = i(e4/K - 

= 2Im(Ke-42) . 	(19.2) 

From (18.6) and (18.8) we have 

2Im(BD) = 2Im[(a, 	e-143)(a -a )1 
Pq 	PP qq 

= 2Im(aPP T
Pq  e

lvg-a
Pq 

 a 

+ a a-  e-iP --a-. a e-11°  ) 
PP ciP 	qq 

= 2Im[(appgclp-Tppapq  

+ (a T. -T. a 	(19.3) Pq qq 	qq 

using Im(zeig).-Im(Te-iQ). From (18.5) and (18.11) 

we note that 

Tc + (g. a -a T. 
ci
) + (i a -a T. ) 

PP Pq PP P 	qq Pq qq 

Hence 

-c 
Pq 

(19.4) 

H - 2Im(7D) 	-2Im(cpcie-1F) . 	(19.5) 



Ep a 12+1a. 
Pi 	ip 

oi 

= G. (19.15) 

We therefore wish to show 

IHI < G. 

From (18.4) 

H = i(eiFK - e -113R) =-2Im(e4K) . 

As 

K = 	(ai 	- T a ) 
p iq 	i p qi 

we obtain 

1111 ‹;21 EIaipaiq  - apiacii )1 
i*p, 

2 E laipTiq  - Tpiagil. 
OP, 
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Lemma 19.2  

Proof:  

Now 

IH - 2Im(RD) 	G + 

IH - 2Im(711))1 < IHI + 21Im(11)1. 

2IIm(BD)I < 21111 

	

1 B12 	I D 12 (19.8) 

(19.9) 

(19.10) 

(19.11) 

(19.12) 

(19.13) 

Now, for any complex numbers a,b,c,d we have 

2IaB - caI < 21a71 +2.1a11 

l al2 	1 10 12 	ici2 	
Id12. 

(19.14) 

Hence 

2 14E: I al  . 	a 	I 
paiq

-a  pi qi 



Therefore  
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IHI < G 

and we obtain 

IH - 2Im(71)1 < G + IB12  + 11)12  - 

 

It follows that, certainly 

1H - 2Im(TD)1 < G + 
1B12 	ID1 2 

G + 2(1B12  1D12). 	(19.18) 

Lemma 19.3  

+ 2(1B12+1D12) < 4114 

= 4 E 2: I a..ij1 2. 	(19.19) 

Now from the definition of G in (18.3) it remains 

to show 

IBI2+IDI2 < 
2(Iapp1 24.1aqq1 2+1apc11 2+1acip12).  

. 	(19.20) 

Now 

BI2  = la 1 2  + la 
Pq 	Pq P 

1 2  + 2Re(-67 a
(I  e

2iP) 

 2 	2la
Pq

1 	+la 1 	+ 2179
P 
 qa 

13
1 

1 a  12 4.  la 	2 	2 	a  12 

	

qp i
1 	la

pql
1 l

qp i 

Also 

= 2(lapc1 1 2  + lacip 1 2) • 

D1 2  = (a -a )(T -T ) 
PP qq PP qq 

= 1 a 1 2  + la 12 - a a 	- a-  a 
PP 	q(1 	PP qq 	PP qq 

la 	12 + la cici 
	

2Re(a  1 2 _ 	a- 
q) 

 
PP (1 PP  

(19.21) 



lapp 
 1
2  + la

qq  1
2  + 21aPP  T. 

qq 
 1 
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2(la
PP

1 	1 aqq 1 2) 

From (19.21) and (19.22) we have 

IB12  + 1D12 	2(lapp l 2+1aqq1 2+1apq  

(19.22) 

l acip12 )  

 

and hence 

(19.23) 

G + 2(1B12 + 1D12) 	< 	4114 	(19.24) 

which proves the lemma. 

Lemma 19.4 	If 

(19.25) tang =--Re(c pg )  

Im(cpq) 

then 

lIm(cPq e-110 )12 
	lc pq12 = 0 	. 	

(19.26) 

Proof: 	If 

Im(cpq)sinp + Re(cpq)cosp = 0 	(19.27) 

then 

Re(cPq e-IP) = 0. 	(19.28) 
 

T his implies c
Pq  e

-iP is purely imaginary. Therefore 

c e-iP = t 
Pq 	

cpqe 1,0 

= t ilcPq  1 . 	(19.29) 

Thus 

lIm(c
Pq  e

-iP)12  = lcPq  1 2 
	

(19.30) 

and the result is proved. 
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We now prove 

Theorem 19.1 Let A denote A(y) where y is defined 

by 

H-2Im(M) 
-tanhy - 	 

2[G+2(1B12+11)12)] 

-Im(cpcie-19) 	
(19.31) 

G+2(1B12+1D12) 

then 
c  

a 	•  Pq
12 

 
3 04 

(19.32) 

Proof: Recalling (17.40) 

A = G(1-cosh2y) - Hsinh2y + 

+ Im(Mb)sinh4y . 

Thus 

A = -2Gsinh2  y - 2Hsinhycoshy 

+ 2(1B1241D12)(- 2sinh22y) 

1 2)(1-cosh4y) 

(19.33) 

+ 4Im(R)sinhycoshycosh2y 

-2Gsinh2y - 4sinh2ycosh2y(IB12+1D12) 

-2sinhycoshy[H-2Im(Bb)cosh2y] 

= -2sinh2y[G + 2cosh2y(IB12+1 1)12 ) 
 

-2sinhycoshy[H - 2Im(7b)(1+2sinh2y)] 

= -2sinh2y[Gi+ 2(1131 2+ID12) + 2sinh2y(IBI 2+ 1 1e)  

-4sinhycoshyIm(TD)] 

-2sinhycoshy[H - 2Im(TD)] 
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-2sinh2y[G + 2(1B1 2+1D1 

-4sinhycoshyIm(TD)] 

+ 4sinhycoshyIm(cpcie-1F) . 	(19.34) 

Therefore 

2cosh2ytanhy.Im(c elP) 
Pq 

- cosh2ytanh2yEG + 2(1B12+1D12) 

+ 2sinh2y(IB12+1D12) 

- 4sinhycoshyIm(TD)] . 

From (19.1) and (19.31) we obtain 

(19.35) 

2 1 /M ( Cpe1i8 )1 2  

G+2(1B1 2+1D1 2 ) 

.1[IM( Cpcie1P)2. [G+2 (1 B 1 2+ 1 D 1 2 ) 

+2sinh2y(1B12+1D12) - 4sinhycoshyIm(17D)1} / 

/[G+2(1B12+1D12) 

cosh2y1cPq  1 2  
{2 - [G+2(1B12+1D1 2) 

G+2(IB12+1D12) 

+2sinh2y( I B I 2+1D I 2 ) - 4sinhycoshylm(BD)] /  

AG+2(1131 2+1D1 2) 
(from lemma 19.4) 

+ 2sinh2y(1B1 2+1D1 2) 

cosh2y 
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cosh2y1c 12  
Pq  

{[G+2(IB12+1D12) 

G+2(1B12+1D12) 

-2sinh2y(1B12+1D12) + 4sinhycoshyIm(TD)1/ 

AG+2(1B1 2+1D1 2)4 

cosh2y1c 12  
_ 	Pq 	1 - 

G+2(1B12+1D12) 

[2sinh2y(1B12+1D1 2) - 4sinhycoshyIm(Bb)] 

G+2(IB12+1D12) 

(19.36) 
We now consider the expression inside the brackets 

/312+ 1 D12. 

	

[2sinhly(1 	) 4sinhycoshyIm(BD)1 

G+2(IB12+1D12) 

	

2 	2( 1 131211D12)  

= 1 + sinh y 

G+2(IB1 2+1D12) 

]

+ 4(coshy/sinhy)Im(11) 

4Im(70).cothy 
1 + sinh

2y -1 + 	 

G+2(1B1 2+1D1 2) 

= 1 + sinh
2
y I -1 +  4Im(a )  

i(2im(ED)-H) 

[ 

 --1(2Im(TD)-H) + 4Im(TD) 
= 1 + sinh2y   

G+2(1B1 2+1D1 2 ) 

2(2Im(1-3D)-H) 



105 

2 	3Im(ED)+2H 
= 1 + 2sinh y 	  

2Im(ED)-H 

31m(BD)+2H 

2Im(ED)-H 
(19.37) 

(19.38) 

1 - 2sinh2y. 

Now 

2 sinh y = 1/(coth2y-1) , 

therefore 

[H-2Im(Bb)] 2  
sinh•2  y - 	  

	

4[G+2(IB12+IDI2)] 2_  [H-2Im(fD)] 2 	• 

[H-2Im(11)] 2  

3[G+2(IBI 2+ 1 D i 2 2 
(19.39) 

Therefore 

= 

1 

1 

[2sinh2y( I B I 2+1 DI 2 ) - 4sinhycoshyIm(BD)] 

- 2 

2 

1 

3 

G+2(1B1 2+IDI 2 ) 

[2Im(ED)-H] 2  31m(BD)+4H 

[2Im(ED)-11] 

[G+2(1B1 2-FIDI 2)]2. 

[31m(BD)+-a-11] 

2Im(fD)-H 

3 [G+2(IBI 2+ 1 1) 12A2 

2[G+IBI2+1 D12] t2G+3( 1 B12± 1 D 12 )/2] 
1 

3[G+2(IB12+IDI 2)] 2 

1 G2+4G(I 131.2+11)12)+3(1B12+1D12)2 
= 1 - 

3 [G+2(IBI 2+ 1 D i 2 )] 2 

1 - 1/3 



= 2/3 . 

From lemma 19.3 and using 

cosh2y > 1 
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we have from (19.36) and (19.40) 

l c 	12 

Pq  2 	> 	 • 

6114 

Therefore 

I cpc112 

o 

31IA4 

(19.42) 

(19.43) 

 

which proves the theorem. 

We have thus obtained a lower bound for A. 

Eberlein (1962) has proved sufficient conditions 

for 

2 lim N (Ci) = 0. (19.44) 

It then follows from theorem 19.1 that as N
2(Ai) 

is a decreasing monotone function bounded below by 

E I xi  I 2  

HA1A1-.1  - AiA IIE 	0 	(19.45) 

or, equivalently, that 

tIxi 
,.=. 

12 (19.46) 

as i increases. 
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20. IMPLEMENTATION 

We have closely followed the implementation 

due to Eberlein (1970) but one major change has 

been made. Eberlein orders the eigenvalues at the 

end of each sweep so that 

IRe(Xi)1+1Im(Xi)1 	IRe(Xi+1)1+1Im(Xi+1)1, 

1.1 121....,n-1 . 	(20.1) 

With this Ruhe (1968) has shown that the process 

is ultimately quadratically convergent. We carried 

out two further experiments. In the first the 

ordering was such that 

1x1I> 1x21 	) Ixn1 
	

(20.2) 

and in the second no ordering was used. Over a 

wide range of examples, including many with 

multiple eigenvalues, ordering was found to have 

a negligible effect. The number of rotations 

needed to almost diagonalise the matrix was nearly 

always the same and never differed by more than a 

few per cent but always the running time was less 

without ordering as the permuting of the rows and 

columns of the matrix was avoided. We are further 

encouraged to omit the ordering as in our 

particular application to simultaneous iteration 

the matrices upon which the generalised Jacobi 

method is applied are often diagonally dominant 

with the diagonal elements such that 

lalll 	 la221 	 OS" 	lann IO 

	 (20.3) 
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We note that there is no question of the process 

not converging whether it is performed with or 

without ordering; it is simply that it has not been 

proved that ultimate quadratic convergence can be 

guaranteed to take place if there is no ordering. 

However, our experience suggests that, in general, 

ordering is not necessary and some time can be saved 

by omitting it. A listing of the program is given 

in appendix 4. 

21. RUTISRAUSER'S ALGORITHM  

Finally in this chapter we mention an algorithm 

due to Rutishauser (1964). The algorithm is 

delightfully simple but we show that convergence 

can never be proved. 

Given an arbitrary matrix A Rutishauser forms 

the commutator matrix C 

C = AAH  - ANA. 	(21.1) 

The element cPq is annihilated using Jacobi's 

method for normal matrices. The rotation matrices 

R needed for this are also used to form 

A' = RHAR . 
	 (21.2) 

We then choose the larger of 	and c 
qq 

 , say c PP1 

and perform a shear on A' given by 

where 

A" = S
-1  A'S 

S. 3  . = S. 13. 
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save that 

spp  = x . 

The elements of A" are then given by 

0. = aid  aid   

aU = x.! ip 	a ip 

a" = a'x 
Pi 	pi./  

a" = a' 
PP PP 

Again we attempt to maximise A given by 

A = 	la..12  - Elau.12 ij 

/ P 

/ P 

/ P 

(21.5) 

(21.6) 

(21.7) 

:E] l aid  1 2 	le 1 2 	(21.8) 

=
ip' 

12 	(1_1 	Ir1  /x2)1- 1 2  

;#p 
(21.9) 

From (21.9) 

do = -71a. 12  + x -471a .12  ip 	1-31  pi' 
LAp 	 Lop dx2 

If 

(21.10) 

d o 
- 0 	 ( 21.11 ) 

dx2 

then 

x4 	y•la  12 / 1":"•l a  12 . 
4.-d' pi' / LI  'pi 
LOp 

(21.12) 

We then form the new commutator matrix and continue 

annihilating its elements in a serial fashion. 

In attempting to prove convergence we looked 
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at two possible approaches. Firstly after each 

rotation-shear pair and secondly after a complete 

sweep. We have counter examples to show that in 

both cases A is not nearer to diagonal form than 

before. The overall process is often convergent 

but is extremely slow and does not appear to be 

a contender with the Eberlein type algorithm. 



CHAPTER 3 

ON THE ORTHONORMALISATION AND BIORTHONORMALISATION 

OF SETS OF VECTORS 
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1. INTRODUCTION  

In this chapter we shall consider firstly the 

problem of orthogonalising a set of p linearly 

independent real vectors. The orthogonalised vectors 

will then be normalised to give an orthonormal set. 

Thus, if we let 

X =x 	x 17  2'"" ' p 

where the xi  are vectors of n components we shall 

obtain 

XTX = I 

or, equivalently, 

(x1. x) = B. j' jl 

This is solved by the Gram-Schmidt process and is 

well documented by, for example, Rice (1966) and 

(1.2) 

1 . 3) 

Bjorck (1967). We then extend the process to permit 

the xi  to have complex elements and orthonormalise 

such that, instead of equation (1.2), we have 

XHX = I . 	(1 .4) 

Finally we turn to the problem of biorthonormalisation. 

That is, given two sets of vectors (which may be 

complex), 

X = [xx2'....1xp 

and 

Y = br1,Y21-"-IYp] 
	

(1.5) 

we wish to biorthonormalise such that 

YHX = I 
	

(1.6) 
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or, equivalerttly, 

(y. 
j  
x) = 8ij  . 
	(1.7) 

We note that the Gram-Schmidt process is a particular 

case of biorthonormalisation given by setting 

y • = x • 	112,....,p. 	(1.8) 

The problem of biorthonormalisation does not appear 

to have been studied although a passing reference 

to it is made in Clint and Jennings (1971). 

Having discussed the theoretical aspects of 

these problems we look at the implementation of 

them on a computer. It is well known, for example 

.Rice (1966), that the classical Gram-Schmidt process 

is not suitable for automatic computation but that 

a slight variant of it, the modified Gram-Schmidt 

process, is well constructed for an electronic 

computer. Analogously we introduce a modified 

biorthonormalisation process. For our application 

to simultaneous iteration we require great accuracy 

on two points; firstly that the vectors are 

orthogonal, that is, for a specified E I  

(X.
1I
X
j
) < 
	/ j 	(1.9) 

and secondly the invariance of the original subspace 

defined by 

[X11X2,O0009Xp] 

	

( 1 . 1 0 ) 

In order to ensure the greatest possible accuracy 

we introduce reinforcement into our algorithm. 

This is a device to reorthogonalise any vector 
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which may be thought to be not strictly orthogonal 

to its predecessors. 

2. GRAM-SCHMIDT ORTHONORMALISATION  

Suppose we have a set of p linearly independent 

real vectors, each of n (non-infinite) components, 

[ff2' "" ' fp  ]. From these we wish to construct 

an orthonormal set 01,02,....' p] such that 

&joy cooTcop = gii  . 
From the set 1 .fi1i.1,....,p1 we first of all 

	

construct an orthogonal set 101 	....,p1 where 

(4,iopi) = 0 	i 	6 

/ o 

and 

‘kl = fl 

= a21f1 	f2 

(2 .1 ) 

(2.2) 

4/k ---Eakifi 	fk 
	k = 2,3,....,p , (2.3) 

I.1 
where the aij  . . are constants appropriately determined. 

Consider now the reciprocal system 

f11 

f2 =  c211 + ik2 

k-i 
fk Ecki 	+ 'kk 	k = 2,3,....l p . (2.4) 

Li I 
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We require tile ¢i  to be orthogonal thus, on taking 

inner products with 	we obtain 

k-i 

(0i,fk) = Eckj(kl0j ) + (0i4k) 

cki(#i'#i)  • 

Equation (2.5) immediately gives 

(#i'fk)  . 
cki = 

From equation (2.4) we obtain 

(2.5) 

(2.6) 

#k = fk 

= 

 
fk  -t (# i'fk)  

	

. Oi 	k=2,....l p . 	(2.7) 

`'' (‘&i, 0i) 

The set I1kik=1,....10 L now orthogonal. If we 

further demand that ,Lt be orthonormal, that is, 

that 

01,i ) = 
	 (2.8) 

we form 

ok = ok/Hokli 

	

tkc 	
(2.9) 

(#k4k)1  

and the set tOkik=1 1....10 is now an orthonormal 

set. (Throughout this chapter 11.11 denotes the 2-norm.) 

We may modify equation (2.7) to give 



k—s 
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= fk 	(Si'f k )Si 
bal 

SIC = 4k/1140 

k=2,....,p 

k=1,2,....,p . 	(2.10) 

 

The above, the classical Gram-Schmidt process, 

holds for real vectors in which case we note that 

(f,g) = (g,f) 	(2.11) 

and, for vectors of finite dimension, we take 

( f 

 ,g)= fTg 

 

(2.12) 

With only slight modification the process holds 

for complex vectors. However, in this case 

 

    

(f,g) = (g,f) 	(2.13) 

where 7: denotes the complex conjugate of z. Also, 

analogously to (2.12) we take 

(f,g)  = fHg 
• 
	 (2.14) 

We may thus summarise the classical Gram- 

Schmidt process as 

$1 = f1/11f111  
k-f 

Sk = fk E (0i , fk)oi 

Ok = S000 
k=2,....,p . 

(2.15) 

3. MODIFIED GRAM-SCHMIDT  

It is well known, see for example Rice (1966), 

that the classical Gram-Schmidt process is often 

computationally disastrous. 	This has led to the 

introduction of the modified Gram-Schmidt process 

which we explain below. 

In the classical Gram-Schmidt process we 
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remove, at the k-th stage, all components of the 

now orthonormal f1,f2,....,fk-1  from fk' In the 

modified process we remove the relevant component 

of the k-th vector from each of the remaining 

(p-k) vectors. We may summarise the process as 

follows 

01 = 

f(1) 	f(i-1) 	(0i,4i-1 )0i  

	

i = 1,2,....,k-1 	j 	k = 21....,p 

0k 
= f(

k
k-1)/11„(k-1)11 

where we define f(0)=f k 	k* 

(3.1) 

By comparing equations (2.15) with (3.1) the 

similarity of the two processes will be seen. It 

is also apparent that the modified process is easier 

to implement than the classical one. We now prove 

the following theorem. 

Theorem 3.1 The classical and modified Gram-Schmidt 

processes are theoretically identical. 

Proof: We rewrite the second equation of (2.15) 

as 

f(k-1) f(0) (01,40))01 (02,f1(c0))02  

( k-1'fk()))°k-1 
	(3.2) 

and rewrite (3.1) as 

f(k-1) 	
k i
,(0) (d  f(0))0 	(02,41))02  

''1' k ' 1 

„..(k-2))d 
"" 	(0k-l''k 	 c-1 ' 	(3.3) 

• 
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We see that for p=1 or 2 the computations involved 

in the two processes are identical but for p 3 they 
are performed in a different order. 

To prove that the processes are theoretically 

the same we need to show that 

(0i740) )0i = (46i141-1))0i 
	1 i k-1 . 	(3.4) 

Consider 

 

= 	[4i-2 ) 

= (0i,f(12))0i  

as (S.,0i-1 ) = 0. Similarly we may show 

= (0i,4i-3))0i 

Repeated application gives 

= (0i,4°))0i 

Since equation (3.7) holds for all 

(3.6) 

(3.7) 

1 < i < k-1 
	 (3.8) 

it follows that equations (3.2) and (3.3) are 

identical and the theorem is proved. 

Rice (1966) has given a simple error analysis 

to show why the classical Gram-Schmidt process may 

be computationally poor and this we outline. 

Suppose that for some value k we have 

(9'i3Oj) = 6ij 
	i,j < k-1 . 	(3.9) 



Let 

where 

k-o 

fk  E 0.0. + 7, 
L.I 

(7110i) =0 	for 1 zs. i 	k-1 
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Then 
k-i 

9511C = f k —(9Si lf k )rif i 

	

k-1 	 1(4 

	

= E 	+ - E Co ( E 0.0-+ n )]r2C ' 	j 

	

tor 	4=1 
k-i 

= n 	1: (E OiciP0j 
4=1 

From equations (3.9) and (3.12) 

Ekl = (°k'9°1)  

= (01V1100,01) 

k-I 

( 43i6iPe jl 

(3.12) 

(3.13) 
1100 

Hence non-orthogonality effects are magnified by 

the factor 1/11$0 in the classical Gram-Schmidt 

process. If, as may quite often happen, 117/11 becomes 

small then 1101 11 becomes small. This increases the 

cif which makes 01"c  tend to become a linear 

combination of the lOili=1,....1k-11. Thus Ekk-1 l   

approaches unity and the vectors, instead of being 

orthogonal, become parallel! 

However, the modified Gram-Schmidt process 

always has cklk-1=0 (to machine accuracy). For 

we have 
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"
rd 	rd gi-1)) rd i-1  
"il'k 	ẁi''k )(0i 3Oi ) 

= 0 . 	 (3.14) 

Rice (1966) has carried out a large number of 

experiments and all his results support the 

theoretical findings given above. It is also 

apparent from the above analysis that if the 

classical process once loses orthogonality it then 

always produces almost identical vectors. 

However the modified process always generates 

distinct vectors (even if they are not orthogonal) 

as we know that fik is always orthogonal (to machine 

accuracy) to 0k_1. 

In addition to the simple analysis given above 

BjOrck (1967) has given a complete rounding error 

analysis of the Gram-Schmidt process. In order 

to illustrate the difference between the classical 

and modified processes he gives the following 

example. 	Suppose 

[f 1 ' f 2 f 3] 	= 1 1 1 

6 0 0 
(3.15) 

o e 0 

o 0 6 

where e is a small number such that due to the 

machine round-off error 1+c2  is everywhere put 

equal to 1. It is easily verified that, if no 

other rounding errors are made, then the 

maximum deviation from orthogonality of the 
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computed 	is given by 

1(03,02)1 
2 

11°0211°2112 

for the classical process and 

1(03,01)1 	 2, 

2-6 

 

11°3112146111 2 	 3  

for the modified process. 

(3.16) 

(3.17) 

4. REINFORCEMENT  

By reinforcement we mean reorthogonalising 

one of the (supposedly orthogonal) Ok  against 

In general there should be no 

need to reinforce but if a particular fk  is almost 

parallel to one of the preceding 	
( 

if fkk-1) 
°I 

is a vector all of whose components are small it 

may well be advisable to take the precaution of 

reorthogonalising. We have no proof of the validity 

of the strategy we describe, which was first 

suggested by Rutishauser (1970), but over a large 

number of experiments it has been seen to be 

satisfactory. 

At the k-th stage of the modified Gram-Schmidt 

process we form successively the inner-products 

(0i,f1(ti-1)) 	i=1,....,k-1 	(4.1) 

and finally 



k-i 

t = 
L=) 

(4.3) 

and let,  
s  = (f(kk-1) ' k f(k-1)) (4.4) 

122 

114k-1)11 = (f i(ck 1) 14k 1))i 
	

(4.2) 

If any of the products (4.1) were large this would 
( be an indication that di  and fki-1) were nearly 

parallel and that a large component of fk  existed 

in the 9Si  direction. The existence and removal of 

such a large component might well suggest the 

desirability of reorthogonalising. We might also 

(k-1) (k-1) expect (fk 	,fk 	) not to be pathologically 

small. If this were the case the resulting error 

in 0k  defined by (3.1) might be magnified. With 

these points in mind we form at-the k-th step the 

total t given by 

The possibly undesirable situations we have outlined 

above correspond to either 

t s 	(4.5) 

or 

S.6 = 0 

where 6 is the machine precision. As a typical 

value for s is 0(10-12) if equation (4.6) is true 

( it is clear that every component of fkk-1)  must 

be very small. In this case we assume fk  to be 

linearly dependent upon 10.1i=1,....,k-11 and set 

(4.6) 



(4.7) 
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If however relation (4.5) is true but (4.6) is not 

(- we reorthogonalise fkk 
1)  . It is a relatively 

arbitrary choice but we replace (4.5) by the test 

Is t > 100.s ? 

If so, we reinforce fk; otherwise we accept 'k 

and proceed to fk+1. The factor of 100 appears 

to err on the side of caution but does not cause 

many unnecessary reinforcements to be performed. 

As a high degree of orthogonality is required in 

our application this is the factor we have used 

throughout. 

(4.8) 

5. COMPUTATIONAL FORMULATION  
The modified Gram-Schmidt process is delight-

fully easy to program and follows exactly the 

theoretical formulation given in equations (3.1). 

The tests for reinforcement are as given in section 

4. Two versions of the program are needed; one 

is for the case of real vectors, the other for the 

complex case. The latter is similar to the real 

case with all the complex arithmetic performed 

using only real variables. Both routines use a 

separate subprogram to calculate the inner-products 

and, for the complex case, three additional 

subprograms are required. Full details of the 

programming are to be found in chapter 5 and 
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listings of the orthonormalisation routines are 

included in appendix 5 (real case) and appendix 6 

(complex case). 

6. BIORTHONORMALISATION  

We have just discussed the problem of 

orthonormalisation and we now turn to that of 

biorthonormalisation. Thus given two sets of p 

vectors with n components (p.n.), Ifili=1,....,p1 

and Igili=1 1....1 p1 it is possible, subject to 

certain conditions (in this case rather more 

stringent than those of the Gram-Schmidt process), 

to biorthogonalise the vectors to give two new 

sets 	and 10=1,...,0 such that 

= 0 
	

j 

/ o 	i = j . 	(6.1) 

We may further demand biorthonormalisation of the 

sets 	and 19fit; 

	

( i3Oi) = 0 	i / j 

	

1 	i = j . 

We assume from the outset that If.} and 1 .gi1 

	

may be complex and express 	and Oi  in terms of 

our original sets 11 and 10. Thus 

(6.2) 

 

1 = f1 

it2 = a21f1 + f2 
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k =Eakif. + f k 	k=2,....l p 	(6.3) 

and 

01 = gi 

952 = b2161 	6

• 

2 

0
k 
 =Eb ki-i 6k k=2,....l p 	(6.4) 

i..1 

where the 
aid 	bid 

and b are appropriately determined. 

Consider now the reciprocal systems 

f1  = 41  

f2 = c211)1 	*

• 

2 

  

k-t 

  

and 

f = k Eckiaki 
Lui 

 

k=2,....l p 	(6.5) 

 

61 = 951 

62 = d21$1 t

• 

2 

 

 

k-i 

6k - Edkir5i 95k k=2,....lp . 	(6.6) 

We require the 4i  and Oi  to be biorthogonal thus, 

on taking inner-products of (6.5) with Oi  and of 

(6.6) with 4i, we obtain 

(95i'fk)  = cki(95i' 

and 

dki(411'95i)  

(6.7) 

(6.8) 
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These equations immediately give 

cki 
 = (Oilfk) 	(6.9) 

(Oil0i) 

and 

dki  - (111i'gk) 
	

(6.10) 

(Oil0i) 

where we define the inner-products exactly as before 

in section 2. From equations (6.5) and (6.6) we 

obtain 
k4 

= fk L.1 
- 	(silfk) 

(oioti ) 

and 

ok - gk -E dkisi 
Lsl 

(i'gk) 	0. 
= gk 	. 

Lm' (0110i) 

The sets 10iii=1,....,p1 and 10ili=1 1.. .. 10 are 

(6.11) 

(6.12) 

now biorthogonal. If we further demand that they 

be biorthonormal, that is, that 

= 1 = 
	 (6.13) 

we may modify equations (6.11) and (6.12) to give 

and 

ok = fk  - 
L.I 
k4 

Si = gk -Eokilgogsi 
C= I 
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The question of how to calculate the normalising 

factor is much more complicated than in the Gram-

Schmidt process and we leave a full discussion to 

section 8. However the obvious approach, by 

analogy with the previous sections, would be to 

form 

(0k oak ) = 	100 

  

(6.16) 

and then to take 

    

    

(6.17) 

 

I 
(0,0k)' 

 

°k  
0k  - 

(°k°4k)-21  

(6.18) 

Whilst this is theoretically acceptable in practice 

it may not be satisfactory as we see in section 8. 

7. MODIFIED BIORTHONORMALISATION  
We summarise the biorthonormalisation process 

as: 

Biorthonormalise f1  and g1  to give Y1and  01 

such that (b1,01)=1, 

k-s 

$blC = f k 	 k )VI 

= gk E(oilgk)0i 
L=I 

biorthonormalise 0' and 0' to give 

Ok  and dk  such that (Pk'
0k)=1 - 

Following section 3 it seems natural to introduce 

k=2 ,....,p 

(7.1) 
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the modified biorthonormalisation process in which, 

at the k-th stage, we remove the relevant 

components of the k-th vector from each of the 

remaining (p-10 vectors. This contrasts with 

equations (7.1) in which we remove all components 

of the first (k-1) biorthonormal vectors from the 

k-th one. We may summarise the modified process 

as follows: 

Biorthonormalise f1  and g1  to give $61  and 01  

such that ($k1 ,911)=1, 

f(i) = f(i-1) 	(i-1) 

	

- (Oilfk 	)Pi k 	k 

,(i) = (i-1) 	(i-1) 	i=1,....1k-1 

1°1c 	gk 	(iIgk 	)95i 

(- biorthonormalise fk
k 1)  and gi(ck-1)  to 

give pi, and 0k  such that (sPk,Ok)=1 

k = 2,....,p 

( 	( 
where we define fk0)  =fk  and gk

0)  =gk. 

Comparison between equations (7.1) and (7.2) 

shows the similarity of the processes and again 

reveals that the modified one is easier to 

implement. We now prove the following theorem. 

Theorem 7.1 The classical and modified biortho-

normalisation processes are theoretically 

identical. 

Proof: We consider firstly equations (7.1) 

rewritten as 

(7.2) 



	

(0))d-  "" 	(/bk-116k 

and equations (7.2) we write as 

f(k-1) = f(0) 	(d 	f(0))0  

	

-k 	\-1 '-k 	'1 1 	- 

	

"" 	(92rk-1"-k 

(k-1) 	( 	( 	
- 6k 	= 6k

0) 
 - ( 1'6k

0) )
°1 

df(1))0  z 

irk-1 

( 
(/b2'6k

1) 
 )°2 - 

(7.4) 

(7.5) 
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f(k-1) = 40) 	(01,11(c0)) ,1 	(02,40))2  

(reCk-1'f°))1lik-1 

(k-1) ( (0  ( 0  () 
6k 	= 6k

0) 
 - 	 116k0)

)d 	( 

""216k
0) 

 ''
d  
2 

(7.3) 

(k-2) 
"" 	(56k-1 76k 	)°k-1 • (7.6) 

Again we can see that for p=1 or 2 the computations 

involved in the processes are identical but for 

p > 3 they are performed in a different order. 

To prove the two schemes are identical we need 

to show that 

(0i ,40) )Y,i  = (fisi ,4i-1) )Vii 	 (7.7) 

and 	 1 	k-1 . 
(0) 	(i-1) 

( i16k )øi = ( il6k 	)51Ci 	(7.8) 

Consider 

_ oil  [4i-2 Oi_1 ,4i-2 )) i_1] c  1/1i  

(by (7.2)) 

(7.9) 



as (O lk_1)=0. Similarly we may show 

(°i'fki-2)))b1 = (Si'fki-3)) i 

and, by repeated application of (7.2), that 

th .p(i-1))th  (d 1,(0)) 
Jri = "ji"k ifi ' 

A similar argument shows that 

(i-1))d 	(0))  
(t4i'gk 	= (/6i'gk J'

d  
i ' 

(7.10) 

( 7 - 11 ) 

(7.12) 
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Since equations (7.11) and (7.12) hold for all 

1 4 i < k-1 	 (7.13) 

it follows that the theorem is proved. 

Identical analysis to that used in section 3 

shows the inherent instability of the classical 

biorthonormalisation process and for the modified 

biorthonormalisation proce.ss shows a stability 

similar to that for the modified Gram-Schmidt 

process. We have carried out extensive tests of 

both the classical and modified biorthonormalisation 

programs and the experimental evidence strongly 

supports the theoretical analysis. Indeed there 

would seem to be no reason whatever to implement 

either the classical Gram-Schmidt or the classical 

biorthonormalisation as, in both cases, the 

modified schemes are easier to program and give 

better results. 

We included reinforcement in our biortho- 

normalisation scheme utilising the technique of 

section 4 and applying it to both sets of vectors. 
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Thus we form 

tL  =EI(Oilf i-1))1 2  

and 

tR = E 	 ) ) 1  2 

in place of equation (4.3). We replace equation 

(4.4) by 

, (k-1) (k-1) 
s = I Lgk 	Ifk 	)1 . 

We now perform the tests given in section .4 

independently to both tL  and tR  and reinforce if 

either result suggests that it is necessary. 

(7.14) 

(7.15) 

8. NORMALISATION  

There is one very important difference 

between orthogonalisation and biorthogonalisation. 

In the Gram-Schmidt process the inner-product 

(pSk,0k) is always real and positive irrespective 

of whether the vectors are real or complex. Hence 

H°0 = (Sk'CSk)1  

is always real. However, in the case of biortho-

normalisation, there is no reason why, for real 

vectors, (qS10  0 ) should be positive and hence .k• 

(8.1 ) 

(95k'k
)2 may be complex. If it is desired to remain 

wholly within the real plane then the sign of each 

of the components of one of the vectors Ok  or ,bk  

should be changed. 
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This leads us to consider how the normalisation 

should be performed. We saw at the end of section 6 

that theoretically we may take, for an unnormalised 

)4k  and 0k, 

5 k  

(qSk°k)  

0' 
Sk 	 

= 

(OklY"02  

Unfortunately there is no reason why this should 

give us 

(8.2) 

(8.3) 

= 0(HoO) 	(8.4) 

and in practice the two norms are often wildly 

different. We therefore propose the following. 

We wish to determine 

= k/x 	and 	= sk/A 
	 (8.5) 

such that 

k'0k)  
($61'c, 011c) = 	- 1 

7A 

together with 

(8.6) 

= HOO . 	(8.7) 

Equations (8.5) give 

	

= 	 k 	ix, 

	

Thus , cAr-oN,',1  J 	si,i>sorLpt k 

and H0:11 = 
11?fkII 
 . 	(8.8) 

IAI 

H0R 
(8.9) 

Ixl 	IAI 



6) • c.i-c 

7 = 1111 	
] 7  

-Renee 

11011.011 

Eby 

(8.14) 

giving 
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lx1 	011 

III 

Equation (8.6) gives 

(8.10) 

 

TIA = (10) 	 (8.11) 

thus (8.10) yields 

011 
= - 1(&10)1. 

11011 

Similarly we may obtain 

1141 • l(fr,0)1. 

(8.12) 

(8.13) 

and 

(8.15) 

Hence equations (8.5) and (8.15) give us a method 

for normalising such that 

= 1100 . 	(8.16) 

We have imp]gmented the above in our program and 

found it most satisfactory. The implementation 

is straightforward, as is the rest of the biortho-

normalisation process, and a complete listing is 

included in appendix 7. 

= 11011
[0&,0) 
	 • 

11011.14611 
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9. APPLICABILITY  

We know that in order to be able to orthogonalise 

a pair of vectors using the Gram-Schmidt process 

they must be linearly independent. In order to 

be able to biorthogonalise two sets of vectors we 

must have that, at each stage 

(Oili) / 0 	i=1,....,p . 	(9.1) 

Some rather long and tedious manipulation of 

equations (6.11) and (6.12) shows that this is 

equivalent to demanding. that at the k-th stage 

(f1,g1) (11,g2)  "" (fl'gk)  

(f2'g1) (12,g2) •••• (f2'gk)  
det / 0 

(flOgl) (fkl2)  •••• (fk 5 gk) 	(9.2) 

k= 	. 

Conversely if equation (9.2) is true for all k then 

it is possible to biorthonormalise the two sets of 

vectors. 



CHAPTER 4  

ITERATIVE METHODS 
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1. INTRODUCTLSDN  

In this chapter we give an account of some 

of the mere commonly used iterative methods for 

solving the eigenvalue problem. Most methods are 

essentially iterative in nature but here we confine 

ourselves to those which are concerned with the 

determination of no more than a few eigensolutions. 

We restrict ourselves for the moment to 

matrices having linear elementary divisors. For 

any such matrix A we have 

A = X.diag(Xi)X-1  

= XAYH 

= 	X X-Yll  L.1 i i 

where the rows yi of Y
H and the columns x. of X 

are the left-hand and right-hand eigenvectors of 

A normalised such that 

y.ix.I  = 1 . 

Hence 

As  = X.diag (xT)yH 

x,  A s 	H 
= 2, A.x.y. 

.1.• I 

S=1 121310000 

(1.2) 

(1.3) 

and if 

IX1 1 > 12\21 	> IX„i l 	Ixnl 

(1.4) 

the expression on the right of (1.3) is ultimately 

dominated by the terms EX.
s 
 llx.y.H  . This is the . 	i 

La I 
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fundamental result on which the methods of this 

chapter are based. We note also that it is the 

basis of both the LR and QR algorithms and we 

begin by looking briefly at these. 

2. THE LR ALGORITHM  

Before continuing with the discussion of 

methods leading up to simultaneous iteration we 

look at the LR algorithm due to Rutishauser (1958) 

and the QR algorithm of Francis (1961). We shall 

show that there is a close theoretical similarity 

between simultaneous iteration and the LR and QR 

algorithms. 

Rutishauser's algorithm is based on the 

triangular decomposition of a matrix and we write 

A = LR 	 (2.1) 

where L is unit lower triangular and R is upper 

triangular. We now consider 

L-1AL = L 1(LR)L = RL . 	(2.2) 

Hence if we perform a triangular decomposition of 

A and then multiply the factors in the reverse 

order we obtain a matrix similar to A. In the LR 

algorithm this process is repeated indefinitely 

and, renaming the original matrix Al, the algorithm 

is defined by the equations 

As-1 = Ls_iRs_i  ; R
s iLs 	As 

(2.3) 



, 
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We know As 	
similar to A5-1 and hence, by 

induction, to Al. Rutishauser showed that under 

certain restrictions 

and 

xi  
Rs 	As --* X2 X 

• • 

Xn 

as s 	. 

( 2 . 4 ) 

We now derive some relations between the 

successive iterates which we shall find of use later. 

From equations (2.3) we have 

As = L-s11As-1Ls-1 

and, by repeated application, it follows that 

(2.5) 

As  = (Ls11Ls
12  .... Li-1  )Al(LiL2 	Ls-1) 	(2.6) 

LL 	LA=ALLL 1 2 '"' Ls-1 As 	1 1 2 	s-1 

The matrices Ts and Us 
defined by 

(2.7) 

Ts  = L1  L2 	Ls and Us  = Rs Rs-1  .... R1 
 (2.8) 

""  

are unit lower triangular and upper triangular 

respectively. We now consider their product. 

TsUs = L1L2 	Ls_1(LsRs)Rs_1 	R2R1  

=L 

	

1L 2  .... L s-1A sR s-1 	
R2R1 

A1L1L2 	Ls_iRs_i 	R2R1  
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= A1Ts-1Us-1 • 
	 (2.9) 

Repeated application of this result gives us that 

Ts  Us  = Al 
	(2.10) 

Thus Ts  Us 
 is the triangular decomposition of As  

3. CONVERGENCE OF THE LR ALGORITHM  

We assume initially that the eigenvalues of 

Al satisfy 

Ix1 1 > lx21 > 	> Ixn1 . 	(3.1) 

Since Al must then have linear divisors we may write 

= Xdiag(X1 )X 1  = XDSY . 	(3.2) 

We define the matrices LX' UX' LY  and U by the 

relations 

	

X =LU ; 	Y=LU 

	

X X ' 	Y Y (3.3) 

Where the U's are upper triangular and the L's unit 

lower triangular. All four matrices are independent 

of s and the triangular decompositions exist only 

if all the leading principal minors of X and Y are 

non-zero. From equations (3.3) we have 

A1s  = XD
sY 

= L U DsL U XX YY 

= L U (DsL D )DsU X X 	Y 	Y 

Clearly DsLyD-s  is a unit lower triangular matrix 

and its (i,j) element is given by 

(3.4) 
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1ij . . 	j (X./X)s 	when,i > j 

and hence we may write 

DsL D-s  = I+Es 	where Es->0 as s-5-00. 

(3.5) 

(3.6) 

Equation (3.4) therefore gives 

As1  = LXUX(D
sLYD-s)DsUY  

= L
X 

U
X 

(I+E S)D Uy 

= L (I+U E U-1)U DsU-- X XsXXx 

= Lx(I+Fs)UxDsUy  

where Fs 	0 as s 	. 	(3.7) 

The matrix (I+Fs
) has a triangular decomposition 

for all sufficiently large s and, since Fs-).0, both 

the factors of the decomposition tend to I. For 

small values of s this decomposition may not exist 

corresponding to the case which arises when a 

principal minor of some As  is zero. Ignoring this 

possibility we see that, in the notation of the 

previous section, 

Ts ---> LX • 

From this it follows that As 
tends to upper 

triangular form with the Xi  in the correct order 

on the diagonal. 

If one or more of the leading principal 

minors of Y vanishes Wilkinson (1965) has shown 

(3.8) 



that there is nevertheless a permutation matrix 

P such that PY has a triangular decomposition. 

Denoting this by LyUy  we have 
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As XDs PT  L U = (XPT)(PDsP
T)L U 1 	y y 	Y Y • 

If XPT has a triangular decomposition LxUx, that 

is if all its leading principal minors are non-

zero, then we can show as before that 

Ts ---> LX 

and As 
tends to a triangular matrix with DP

T as 

its diagonal. 

(3-9) 

(3.10) 

 

4. EIGENVALUES OF EQUAL MODULUS  

We now consider the case when Al has some 

eigenvalues of equal modulus but all its elementary 

divisors are linear. We assume that all the leading 

principal minors of X and Y are non-zero as we have 

just considered the case when they are not. We 

have 

As 	XDsLyUy  . 	 (4.1) 
1 

Suppose 

IxrI = Ixr+11 = 	= Ixt1 
	

(4.2) 

and all the other eigenvalues have distinct moduli. 

The elements of DsL D-s  in the (i,j) position 

below the diagonal therefore tend to zero unless 

t > i > j > r 
	(4.3) 

in which case they remain equal in modulus to lij. 
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When all the eigenvalues of equal modulus are 

in fact equal we may write 

DsLD-s = L+Es 	where Es 	as s--->00 	(4.4) 

where L is a fixed unit lower triangular matrix 

which is equal to I, except for the elements in 

position (i,j) which satisfy (4.3) where they are 

equal to lij. If we write 

XL = LXUX 

then we have 

As  = X(DsL D-s)DsU 1 	Y 	Y 

X(L+Es )DsUy  

(4.5) 

= LXUX(I+L
-1  Es)DsUy  

= Lx(I+UxL-lEsci )UxDsUy  

= LX(I+Fs)UXDsUY 	where Fs-*0 as s-->00. (4.6) 

The matrix (I+Fs
) has, as before, a triangular 

decomposition for all sufficiently large s and, 

since Fs 	
both the factors of the decomposition 

tend to I. Hence we see again that 

Ts ---* LX 
	(4.7) 

where Lx  is the matrix obtained by factorising XL. 

We notice that the columns of XL are a set of 

linearly independent eigenvectors of Al  since XL 

differs from X only in that columns r to t are 
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replaced by combinations of themselves. Thus 

multiple eigenvalues corresponding to linear divisors 

do not prevent convergence. 

If the eigenvalues are of equal modulus but 

are not actually equal then the matrix L is of a 

similar form as before but the non-zero subdiagonal 

elements are not now fixed. If 

Xi = IXil exp(iQi) 
	(4.8) 

we have 

lid  = 1. .expris(Q.-Q j.)] . -  

The matrix XL is fixed apart from columns r to t. 

For each value of s these columns consist of a 

linear combination of the corresponding columns 

of X. Thus in the LXUX decomposition of XL all 

columns of LX are fixed except for columns r to t 

and hence, apart from these columns, Ts  is 

convergent. 

We also mention for the sake of completeness 

that if Al is symmetric and positive definite the 

(4.9) 

process is always convergent, irrespective of the 

multiplicities of the eigenvalues. Further details 

may be found in Wilkinson (1965). 

5. THE QR ALGORITHM  

We now turn to the QR algorithm of Francis 

(1961). In place of the triangular decomposition 

used in the LR algorithm Francis uses a 



factorisation into the product of a unitary matrix 

Q and an upper triangular matrix R. 

The algorithm is defined by the equations 

As  = QsRs  

As+1 
	nH A  n 

- QsQsRsQs 

RsQs 
	 (5.1) 

and at each stage we see that we are now using a 

unitary transformation in place of the general 

similarity transformation of the LR algorithm given 

by equations (2.3). The factorisation of As  is 

essentially unique and indeed it is unique if we 

take the diagonal elements of Rs  to be real and 

positive. The advantage of this factorisation is 

that the vanishing of a principal minor of As  does 

not cause a breakdown of the process as it does 

in the LR decomposition. We note that if As  is 

real both Qs and Rs are real. 

The successive iterates satisfy relations 

similar to those for the LR algorithm which we 

derived in section 2. We have 

A 	QHA s+1 	s sQ s 

H H 
Qs(Qs-1As-1Qs-1)Qs 

= (44-1 "" Q1)A1(Q1Q2 --. C2s)  (5.2) 

14-4 
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which gives us 

Q1Q2 "" QsAs+1 = AlQ1Q2 '"' Qs ' 
	(5.3) 

All As are therefore unitarily similar to A
l  and 

if we define Ps and Us by 

Ps = Q1Q2 .... Qs 
	

Us = RsRs...1 	Ri 
	(5.4) 

and consider their product we obtain 

PsUs = Q1Q2 "" Qs-1 (QsRs)Rs_i 	Ri  

= Q1Q2 	Qs_lAsRs_i 	Rl  

= A1Q1Q2 	Qs_iRs_i 	Ri  

= A1Ps-1Us-1 

Hence 

Ps  Us  = Al 

Thus P s  Us  is the factorisation of A. ' 

(5-5) 

(5.6) 

6. CONVERGENCE OF THE QR ALGORITHM  

In general the matrix As  tends to upper 

triangular form under similar, but less stringent, 

conditions than were necessary for convergence of 

the LR algorithm. We note firstly one small 

difference between the two algorithms. 

If A1 is already an upper triangular matrix 

the LR algorithm gives us 

Li  = I '• 
	

R1 = Al 
	(6.1 ) 

and hence 

As = Al 
	for all s. 	(6.2) 
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This is not true however for the QR algorithm if 

we insist that Rs 
should have positive diagonal 

elements. Writing 

aii  = 	, 	D = diag(exp(i0i)) (6.3) 

we have 

Al  = D(D-1A1) , 	A2 = D
-1  Al  D 
	(6.4) 

Hence, although A2  has the same diagonal elements 

as Al the super diagonal elements are multiplied 

by complex factors of modulus unity. Obviously 

we cannot have As 
tending to a strict limit unless 

all the eigenvalues are real and positive. 

However, the factors of modulus unity are of little 

importance and we say that As  is essentially 

convergent if 

As+1 	D 1  AsD 
	(6.5) 

asymptotically for some unitary diagonal matrix D. 

The proof of convergence is very similar to 

that given for the LR algorithm. We assume 

initially that the eigenvalues of Al  satisfy 

l xi l > 1x21 > 	> Ixn1 - 
As before we may write 

A1s  = XDSY 

but we now define Q,R,L and U by 

X = QR , 	Y = LU 

(6.6) .  

(6.7) 

(6.8) 

where R and U are upper triangular, L is unit lower 



triangular and Q is unitary. The QR decomposition 

always exists but, as before, the triangular 

decomposition of Y exists only if all its leading 

principal minors are non-zero. The non-singularity 

of R follows from that of X. 

An analysis similar to that in section 3 gives 

US 

where 

As 	Q(I+Fs)RDsU 1 

Fs REsR
1  

and 

Fs 	0 	as s 	00. 	(6.11) 

The matrix (I+Fs) may be factorised into the product 

of a unitary matrix Qs  and an upper triangular 

matrix Rs  and, since Fs->0, Qs  and Rs  both tend 

to I. Hence we have 

(QQs)(RSRDsU) . 	- (6.12) 

The first factor of (6.12) is unitary and the second 

. is upper triangular. Provided Ai  is non-singular 

its factorisation into this product is unique and 

hence 

Ps = QQs 
	(6.13) 

except possibly for a multiplying diagonal unitary 

matrix. Hence Ps converges essentially to 
Q. If 

we insist additionally that all Rs  have positive 
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diagonal elements then it is possible to calculate 

the unitary diagonal factor from equation (6.12). 

The proof shows that provided all leading 

principal minors of Y are non-zero we not only have 

convergence but that the eigenvalues are correctly 

ordered on the diagonal. Although Y will not have 

a triangular decomposition when one of its principal 

minors vanishes there is always a permutation matrix 

P so that PY has such a decomposition. The 

reasoning is the same as that for the LR algorithm 

given in section 3. 

7. EIGENVALUES OF EQUAL MODULUS  

We again assume that Al  has linear elementary 

divisors but that some of its eigenvalues are of 

equal modulus. The analysis is similar to that 

of section 4 except that we replace equation (4.5) 

by 

XL . QR 	(7.1) 

which gives us 

= QR(I+L lEs)DsU 

= Q(I+RL lEsR-1)RDsU 

Q(I+Fs)RDsU 

= (QQs)(RsRDSU) 	where Fs-40 as saw. 	(7.2) 

where Q s  Rs 
 is the factorisation of (I+Fs). Hence 

Ps 
tends to Q which is the matrix obtained by 
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factorising XL. The rest of the discussion is as 

for the LR algorithm given in section 4. 

8. THE POWER METHOD  

The simplest application of the idea of section 

1 is to the power method for determining the 

dominant eigensolution. 	Let uo 
be an arbitrary 

vector and let the sequences vs  and us  be defined 

by the equations 

vs+1 = Aus 

us+1 = vs_o/max(v s+1) 
	

(8 .1 ) 

where we use the notation max(x) to denote the 

element of maximum modulus of the vector x. Clearly 

we have 

us = A
suo/max(A

suo) 

and if we write 

U
o 

= 	ax. 1 1 

then, apart from the normalising factor, us  is 

given by 

a.OX
1  
. = X[61- X 	Ea

1
.(X.A. )SX.] 

1 	 1 1 	11 	1 
2 

If IX1  I>IX2 ' I>IX3  l>....IXn I then, provided a1/0 1  

we have 

(8.2) 

(8.3) 

(8.4) 

us 	x1/max(x1) and max(vs) 	X1 

Hence this process provides simultaneously the 

(8.5) 
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dominant eigenvalue and the corresponding eigen-

vector. If IX1/X2I is close to unity the 

convergence is very slow. 

If there.are a number of independent eigen-

vectors corresponding to the dominant eigenvalue 

this does not affect the convergence. Thus if 

Xi  = X2  = 	= Xr  

and 

lxil 	 Ixn1 
	

(8.6) 

we have 

	

Asuo = Al  Ea.x. 	E a • (X.A )s 

	

1 1 	1 1 1 xi   

---> X, Ea.x. . (8.7) 

The iterates therefore tend to some vector lying 

in the subspace spanned by the eigenvectors 

(x1,....,xr), the limit depending upon the initial 

vector u0. 

9. COMPLEX CONJUGATE EIGENVALUES  

If the dominant eigenvalues of a real matrix 

are a complex conjugate pair X1  and 71  the iterated 

vectors will not converge. In fact if x1  and 71  

are the corresponding eigenvectors an arbitrary 

real vector uo 
is expressible in the form 

ri 

Uo = a1  x1 + a1  x1 E CL 
-i-X 

 
i • 

( 9 . 1 ) 
ir3 



Hence we have 

i(a+sQ) 	-1 a+sG).- 
Asu 	P e  0 = rs  [ 	xl  + pie 	x 1 	l 1 
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a . (X . /r1  )sx.1  3 

where 

(9.2) 

 

X1 = rlei@  
is a1  = pi e 	. (9.3) 

The components of x3' n ultimately die out, 

but if we write 

vs+1 = Aus , max(vs+1) = ks+1 , us+1 = vs+1/ks+1 

(9.4) 

it is clear from (9.2) that neither ks+1 nor us+1 

tend to a limit. If we denote the j-th component 

of x1  byEj  .exp(i j  61) equation (9.2) gives  

(Asuo)i  ---4 2p1r icos(a+Si+sQ) 

and hence the components of us  oscillate in sign. 

If X1 and X1 are the roots of 

X2 px q  = 0  

we have 

(9.5) 

(9.6) 

s+1 (As+2 	pA- qAs)uo  ---> 0, s---> co 	(9.7) 

or 

ks+1ks+2us+2 	Pks+lus+1 	qus ---* 0 	(9.8) 

and hence ultimately any three successive iterates 

are linearly dependent. By the method of least 

squares we can determine successive approximations 

ps  and qs  to p and q. We have 
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us+lus+2 
ks+1ks+2 

usus+2  

T T  us+1 s+1 us us -sks+1 H  4.1 

us 	qs 
T 	T 

us us u 

When ps  and qs  have tended to limits p and q, 

X1 and Al may be computed from the relations 

(9.9) 

Re(X1) = 
	Im(X1 ) = 2(A2+4q)1-  . 	(9.10) 

10.-SIMULTANEOUS DETERMINATION OF SEVERAL EIGENVALUES 

The essential feature of the previous section 

is the determination of two eigenvalues from a single 

sequence of. iterates. The fact that the eigenvalues 

were complex conjugate is really not pertinent and 

the method may be extended to cover the determination 

of several real or complex eigenvalues. Suppose 

for example that 

Ixil 	lx21 > Ix 31 > 1X41 	> 	(10.1 ) 

The components of x4  to xn  will die out rapidly 

in the iterated vectors and we shall soon reach 

a stage at which us  is effectively given by 

a1X11-02X2+03X3. If we define quantities p2,p1  and 

p0 by the equation 

, 
(X-X1)(X-X2)(X-X3) 	X3 +p2X2  +p1A+po  (10.2) 
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then 

(A3+p2A2+p1A+p0I)us  = 0 	(10.3) 

giving 

- (A3us) = (A2us  , Aus  , us) p2 

[ 

p1 

The coefficients pi  may therefore be obtained by 

least squares from any four consecutive iterates 

following us. 

Po 

(10.4) 

The use of such a technique would have most 

to recommend it when IX1'  1 IX2  1 and IX3
1 were 

close, since it is in such circumstances that the 

iterates are slow to converge to the dominant 

eigenvector. Unfortunately if X,, X2  and X3  are 

of the same sign and close together the equations 

determining the pi  are ill-conditioned. For these 

reasons the method is of little practical value. 

In general to determine r eigenvalues in a well-

conditioned manner we require r independent sets 

of iterated vectors. Such methods we discuss 

later. 

11. DEFLATION  

If A is real and has real eigenvalues it is 

possible to employ shifts of origin to give 



154 

convergence either to Xi  or to Xn. In the case 

of complex matrices, by using appropriate shifts 

of origin, we could in principle make a number of 

the eigenvalues dominant in turn but in practice 

this device would usually be prohibitively 

difficult to use. 

It is natural to_ask whether we can make use 

of our knowledge of X.1  and x1  in such a way that 

another eigenvector may be found without danger 

of again converging to x1. One class of such 

methods depends essentially on replacing A by a 

matrix which possesses only the remaining eigen-

values. We shall refer to such methods as 

methods of deflation. 

Probably the simplest is that due to 

Hotelling (1933) which can be applied when an 

eigenvalue Xi  and vector x1  of a symmetric matrix 

Al are known. If we define A2 
by the relation 

w A2 	Al - %lxlxl 	where x1x1=1  

then from the orthogonality of the xi  we have 

A21 x. = Al a.  x. - X1  x1 
1T xx. = 0 
	i=1 

= Xixi  , 	i/1 . 	(11.2) 

Hence the eigenvalues of A2  are 01X21....,Xn  

corresponding to eigenvectors x1,x2,....,xn  and 

the dominant eigenvalue Xi  has been reduced to 
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zero. 

When Al 
is unsymmetric there is a corresponding 

deflation technique also due to Hotelling (1933) 

but it requires the determination of the left-hand 

eigenvector y1 as well as x1. If both are 

determined and normalised so that y1x1=1 then, 

defining A2  by 

= Al - X1x1y,11 1  

we have from the biorthogonality of the xi  and yi  

(11.3) 

A x. = Al  x. - X1  x1  x. = 0 2 1 1 y 1
H 	, 	i=1 

	

= X.x.1  , i1 	(11.4) 

We have found in practice that these two methods 

of deflation have rather poor numerical stability 

and their use is not to be recommended. 

12. TREPPEN-ITERATION  

One problem in using iteration and deflation 

is that in general we do not know at each stage 

whether the current dominant eigenvalue is real 

or complex, repeated, or whether it belongs to a 

non-linear divisor. It is possible to avoid this 

difficulty by working simultaneously with a 

complete set of n vectors and ensuring that they 

are independent by taking these n vectors to be 

the columns of a unit lower triangular matrix. 

If at each stage we denote the matrix formed by 
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the set of n vectors by Ls  the process can be 

summarised as 

Xs+1 = ALs 
; 	Xs+1  = Ls+1

Rs+1 
	(12.1 ) 

where each Ls is unit lower triangular and each 

Rs 
is upper triangular. If we take 

L0  = I 	
(12.2) 

then we have 

L s  Rs  = Xs  = 
ALs-1 . 	

(12.3) 

Thus 

LsRsRs-1 = ALs-1
Rs-1 

= AALs-2 

= A2Ls-2 ' 
	(12.4 ) • 

therefore 

Ls(RsRs_./ 	R,) = AsL0  = As. 
	(12.5) 

Hence Ls  and (RsRs_i 	R,) are the matrices 

obtained by the triangular decomposition of As  and, 

by comparison with the LR algorithm of section 2, 

Ls 
is equal to the product of the first s lower 

triangular matrices obtained in the LR algorithm 

while the Rs 
are identical with the individual 

upper triangular matrices in the same algorithm. 

Although the LR and treppen-iteration algorithms 

are theoretically similar it does not follow that 

in practice their behaviour will be even 

approximately alike. 
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There is, no need to use a complete set of n 

vectors and it is possible to work with a set of 

p vectors in unit lower trapezoidal form. Denoting 

these by Ts  the process becomes: 

ATs 	
Xs+1 ; s+1 = Ts+1Rs+1 

	(12.6 ) 

where Rs 
is a p*p upper triangular matrix. If the 

p dominant eigenvalues of A have distinct moduli 

then 

Ts --> T 
	(12.7) 

where T is obtained by trapezoidal decomposition 

of the matrix of p eigenvectors. In general if 

IX11 > 1X21 	IXpl > IXp+11 	iXn1 

(12.8) 

Ts 
does not tend to a limit but it does tend to 

an invariant subspace. This process was first 

described by Bauer (1957) and was called treppen-

iteration. 

If 

1X1 1 	I X21 

	
(12.9 ) 

the first column of Ts  will converge to x1  in a 

few iterations and at this stage there is little 

point in including x1  in the matrix Ts  when 

computing 	In In general if the first k vectors 

of Ts 
have converged we need not multiply these 

vectors by A in subsequent steps. We may write 



T = [T(1)  T(2)] s 	s 	s (12.10) 
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where Ts
(1)  consists of the first k vectors, which 

have converged, and Ts
(2)  consists of the remaining 

(p-k) vectors which have not. We now define Xs+1 

by 

X -ET(1) AT( 2 )] s+1 	s ' s 

where Ts
(1)  is already in trapezoidal form but AT(2) 

consists, in general, of (p-k) full vectors. Xs.4.1  

is then reduced to trapezoidal form in the obvious 

way. 

13. ORTHOGONALISATION TECHNIQUES  

We now turn to an alternative technique for 

suppressing the dominant eigenvector (or eigen-

vectors). The simplest application is to real 

symmetric matrices and these we now consider. 

Suppose X1  and x1  have been determined so that 

	

Ax1 = X1x1 
	(13.1) 

where A is real and symmetric. We know that the 

remaining eigenvectors are orthogonal to x1  and 

hence we may suppress the component of x1  in any 

of the other vectors by orthogonalising them with 

respect to x1. This leads to the iterative 

procedure defined by the equations: 
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vs+1 = Aus , 	Ws+I A = 
vs+1 - 	

T 
(vs.oxi)xl  

us+1 = wsil/max (ws+1) 	(13.2) 

where we assume that 

113(111 2  = 1 . 	(13.3) 

Clearly us  tends to the subdominant eigenvector 

or, if A has a second eigenvalue equal to X1, it 

tends to an eigenvector corresponding to Xi  which 

is orthogonal to x1. 

Unless 

I xi  1 > I x2 1 
	

(13.4) 

it is not strictly necessary to orthogonalise with 

respect to xi  at each iteration but if A is of high 

order the work involved in the orthogonalisation 

is in any case relatively small. 

This process may be generalised to find x1,41  

when x1 1  x21""' xr have already been determined. 

The corresponding iteration is defined by 

vs+1= Aus 	ws+1 = vs+1 - I] (vs+lxi)xi 1  L.$ 

Us+1 = Ws+i/MaX(Ws+1) . 

We note that, apart from rounding errors, this 

method gives results identical with those of 

Hotelling described in section11 1  for, from (13.2) 

we have, 

ws+ 1 = s+1 - (vs.o
xi)xl  

(13.5) . 
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= Aus 	1 s - x (uTAx1  ) 

= Aus - X 	Tx x (u 	) s 1 

= Aus - X1x1(x1us) 

= (A - X1x14)us  . 	 (13.6) 

The analogous process for an unsymmetric 

matrix A requires the computation of both the left-

hand eigenvector y1  and the right-hand eigenvector 

x1. If these are normalised so that 

H = x1  y1 	1  

'we may use the iterative procedure 

H 
vs+1  = Aus  , = v s+1 s+1 (vs+1Y1)x1 

us+1 = ws_o/max(w 4) s+1 

Because of the biorthogonality of the left-hand 

and right-hand eigenvectors the component of xi  

in ws+1 is suppressed. Again, there is the 

generalisation when r eigenvectors have been 

determined: 

H 
vs+1 = Aus  , 	

ws+1 = vs+1 	E ( Ts+-Pri )xi 

us+1 = ws+1/max(ws+1)  • 

(13.7) 

(13.8 ) 

(13.9) 

14. TREPPEN-ITERATION USING ORTHOGONALISATION  

In treppen-iteration we iterate simultaneously 

with a number of vectors whose independence is 
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maintained by.reducing them to standard trapezoidal 

form at each step. There is an analogous 

procedure in which the independence of the vectors 

is maintained by using the Gram-Schmidt 

orthOgonalisation process. Consider firstly the 

case when we iterate simultaneously with n 

vectors. Denoting the matrix formed by these 

vectors at each stage by Qs  the process may be 

summarised as 

AQs  = Vs+1 	Vs+1 = Qs+1Rs+1 
	(14 .1 ) 

where the columns of Qs+1 
are orthogonal and Rs+1 

is upper triangular. Hence 

AQs = Qs+1Rs+1 

and if we take 

Qo = I , 

we have 

As  = Qs(RsRs_i 	R,) , 	(14.4) 

by reasoning similar to that of section 12. 

Equation (14.4) implies that Qs  and (RsRs_i 	R,) 

are the matrices obtained by orthogonal 

triangularisation of As. Comparison with the QR 

algorithm of section 5 shows that Qs  is equal to 

the product of the first s orthogonal matrices 

determined by the QR process. Thus, if all the 

ixil are different, Qs  essentially tends to a 

limit, this being that matrix obtained from the 
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triangular orthogonalisation of X, the matrix of 

eigenvectors. The diagonal elements of Rs  tend 

to IX11. In the general case, where some of the 

eigenvalues are of the same modulus, the 

corresponding columns of Qs  may not tend to a 

limit but they ultimately span the appropriate 

subspaces. We note, as in section 6, that 

theoretical equivalence of this method with the 

QR algorithm does not imply that in practice they 

will produce even similar results. 

1 . - BI-ITERATION  

Bauer (1957) suggested a generalisation of 

'the methods which we have so far discussed and 

this he called bi-iteration. At each stage two 

systems of n vectors, {xi} and lyil, are used and 

these comprise the columns of two matrices Xs  and 

Y. The two matrices Ps+1 and Qs+1 
defined by 

Ps+1 =  AXs ' 	Qs+1 = A Ys 
	(15.1 ) 

are formed and from them the two matrices Xs+1 and 

Ys+1 
are derived. The columns of these matrices 

are chosen to be biorthogonal and the equations 

defining the i-th columns of Xs4.1  and Ys+1 are 

therefore 
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(s+1) 	(s+1)(s+1) 	(s+1) 
xi 	p. 	-r1 1  .x  1 	-r21 .x 2 

(s+1) - 	- r1. 	x-1,ii-1 

(s+1) 	(s+1) 	(s+1) 	(s+1) 
yi 	= qi 	-uliyi 	-u2iy2  

( s+1) —. ui-1 iYi-1 

where therki and  uki  are chosen such that 

(15.2) 

(s+1) T (s+1) 
(Yk 	) x. 	= 0 (x(s+1) )Ty(s+1) - 0 

Clearly we have 

Ps+1 = Xs+1Rs+1 1  

k = 1 	i-1 . 

Qs+1 = Ys+1Us+1 

where Rs+1 and Us+1 
are the unit upper triangular 

matrices formed from the rki  and uki. From the 

biorthogonality we have 

YT s+1Xs+1 = Ds+1 1  

where Ds+1 is a diagonal matrix. If we take 

X0  = Y0  = I 

we have 

A=X R 	AX =X R 1 1 , 	s s+1 s+1 ' 

AT 1U1 , A
TYs=Ys+1Us+1 ' 

giving 

(15.5) 

(15.6) 

(15.7) 

As  = X R R 	R 	(AT)s = Y U U 	U sss_i.... 1 	sss_1.... 1  

(15.8) 

Hence 
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A2s = (YsUsUs-1 	U1)
TXsRsRs-1 	Ri 

= (U1 U2 	Us)Ds(RsRs-1 "' R1) 
	

(15.9) 

showing that the unit lower-triangular matrix 

(UTUT  .... Us) is that corresponding to the 1 

triangular decomposition of A2s. In the LR 

algorithm (L1L2 	L2s) is the matrix obtained 

by the triangular decomposition of A2s and hence 

UT s = L2s-1L2s (15.10) 

Results from the LR algorithm carry over 

immediately to bi-iteration. If the 1X11 are 

distinct (UT U2  .... Us) tends to the matrix given 

by the triangular decomposition of Xs  and hence 

and 

In practice the columns of Xs  and Ys  are normalised 

at each stage, usually so that 

(s) 	(s) max( . 	) = max(y. 	) = 1. xi  

Hence in the case of distinct 1 .Xi1 

Xs 	X and Ys ---> Y 

(15.12 ) 

(1 5 .1 3) 

where X and Y are the matrices formed by the right-

hand and left-hand eigenvectors respectively. When 

some of the 1X.1 are equal the subspaces formed 
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by the corresponding columns of Xs  and Ys  tend to 

the relevant invariant subspaces. If A is 

symmetric the two systems Xs  and Ys  are identical 

and the method becomes essentially that of section 

13 as the columns of Xs 
are made orthogonal at each 

stage. 

In order to facilitate comparison with the 

LR algorithm we have considered the case when Xs  

and Ys 
consist of complete systems of n vectors 

but the process can still be used when they have 

any number of columns, p say, from 1 to n. Exactly 

the same equations apply but now Rs  and Us  are 

p*p matrices. In general the process will provide 

the p dominant left-hand and right-hand eigen.- 

vectors or invariant subspaces. 

It is against this background that we procee.01 

to consider simultaneous iteration and its 

developments. 

16. SIMULTANEOUS ITERATION 

The particular case of bi-iteration for 

symmetric positive definite matrices was discussed 

by Rutishauser (1969) who later (1970) published 

an algol program for this method. We have also 

discussed the symmetric case, Gudgin (1971), and 

here we simply recall the main points. 

The basic idea of bi-iteration was that two 
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sets of iteration vectors (xl' x2" ...,x ) and 

(y1,y2,....,yp) are iterated simultaneously with 

A and AT respectively. The iteration is then 

combined with linear iterations such that at any 

timethesystemsx.and y are biorthogonal. It 

is assumed that 

1 p n 	(16.1) 

although usually 

1 < p 4 n . 	(16.2) 

If A is symmetric the two sets of iteration vectors 

can be chosen to be identical and they then form 

a system of orthonormal vectors (x1lx2  ....,xp) 

which are the columns of an n*p matrix X such that 

XTX = I . 	(16.3) 

Denoting the matrix X after k iteration steps 

by Xk  the method is given by 

i) Choose X0 	0 such that XTX0  =I 

ii) Zk=AXk_i  

k=1,2,.... 

iii) Xk=ZkRi-cl 
	

(16.4) 

where Rk is an upper triangular matrix with positive 

diagonal elements chosen such that Xk  has its 

columns orthogonal. This implies that 

ZkZk
p T 1,0„ 	uT,D  

= (Xlc""k) ('-k"k) 	-"k"k (16.5) 

and we compute Rk  by Gram-Schmidt orthogonalisation 
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of the columns of Zk. Provided A is positive 

definite it will be shown that with equations (16.4) 

limXk  = V 

limRk = D , a p*p diagonal matrix 

- (16.6) 
where both limits exist and 

VTAV = D . 	 (16.7) 

Thus the columns of Xk converge to eigenvectors 

and the diagonal elements of Rk  to eigenvalues of 

the matrix A. 

This result can be established by showing that 

(16.4) is equivalent to the LRCH transformation 

(by which we mean the LR transformation with 

Cholesky decomposition into two transposed factors 

- see for example Wilkinson (1965).) if the latter 

is applied to the matrix 

G1 	0 = XTATAX0 	0 = XTA2X0 	
(16.8) 

where X0  is an n*n orthogonal matrix obtained by 

appending (n-p) further columns to X0. If we use 

(16.4) with the initial matrix X0  then the k-th 

iterate Xk is related to the k-th LRCH trans-

formation Gk+1 of G1 by 

T 2 Gk+1 = XkA Xk (16.9) 

where Xk  is contained in the first p columns of Xk. 
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This also enables us to estimate the convergence 

rate, for letting A have eigenvalues 

X2  > 	Xp >Xp+1 	 Xn > 0 (16.10) 

and if vj  is the eigenvector corresponding to Xj  

( 
then, denoting the j-th column of Xk  by xj

k)  , we 

have 

Hy.
a - 

xck)H = 0(qk) 

where q=max(Xj+i/Xj , Xi/Xj_i). A proof of this 

theorem is to be found in Bauer (1957). 

The scheme given in (16.4) conceals the fact 

that we are actually performing an iteration with 

p-dimensional spaces. Letting Ek denote the linear 

space spanned by the columns of Xk we have 

Ek 	yGEk_i} . 	(16.12) 

We know that if A is symmetric and positive 

definite,. then limEk exists and is an invariant 

subspace of A. We note that the Xk  given by (16.4) 

appear simply as a means for spanning Ek  but that, 

for example, 

Xk = AXk-1 
	 (16.13) 

also defines the sequence Ek. However the Xk  

produced by (16.13) are of little practical use 

since they are not in general numerically stable 

while those produced by (16.4) are. 
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In the case of stable convergence the angle 

0(k)  Si 	between the j-th eigenvector vj  and Ek  is 

asymptotically for k-aoo 

0( .) 	where qj  = Xp+1  /Xj  . 	(16.14) 

To establish this we note that (16.4) and (16.13) 

are both orthogonally invariant. By this we mean 

that if U is an n*n orthogonal matrix then 

replacing A by UTAU and X0  by U
TX0  has the effect 

that all Xk are replaced by U
TXk and the Rk are 

unchanged. Thus we can assume without loss of 

generality that 

A = diag(X1,7 2,....,Xn). 	(16.15) 

Now E0  can be spanned by the p vectors 

••• 

1 

0 	 • • • 	 0 

0 	0 	• 

xp+111 	xp+1,2 	. 	xp+1,p 

n1 	xn2 xnp  
. . 

(16.16) 

and hence from (16.12) Ek  is spanned by the 

vectors 
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0 	 • • 	 0 

0 ,
2  
k 
A • • 	0 

0 	 0 

k 	 lk 	lk Xp+1xp+1,1 	"p+lxp+112 . . "p+lxp+1,p 

Xnxn1 	Xnxn2 	Xnxnp 

Va. 

(16.17) 

• 

From (16.17) it follows immediately that the 

angle S(k)is at most 0(Xk  i/Xk). 

This result also shows the interesting and 

important fact that there are directions in Ek  

which are closer to the eigenvectors vj  than the 

columns of the matrices Xk as generated by (16.4). 

Improved convergence may be obtained by a 

modified iteration procedure for which the 

convergence rate is the same as given in (16.14). 

In his paper of 1969 Rutishauser gives such a 

scheme and this we now describe; the algorithm 

we have implemented is explained in the next 

section. 

Rutishauser defines the "projected eigen-

value equation" 

YTA-2Y = D
-2 (16.18) 
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- where YTY.1 and Dk
2  is a p*p diagonal matrix. 

The matrix Y is the matrix whose columns are the 

projection of the columns of A-2  onto Ek. The 

solution' of (16.18) is 

Y = AX k-1 D-1 k-1 k k 

where Qk is a p*p orthogonal matrix which 

transforms 

nT, n  1-)2  into ielkk--k G =X
T A2X k k-1 k-1 	w  

and Xk-1 is the previous iteration matrix, the 

columns of which are assumed to be orthogonal. 

Assuming the diagonal elements of Dk  are in 

decreasing order such that 

(16.19) 

(16.20) 

d11 	d22 	dpp > 0 
	

(16.21) 

Rutishauser (1969) suggests the following scheme 

for obtaining Xk  from Xk-1: 

i) Zk=AXk_i  

ii) Gk=ZkZk  

iii) Solve the eigenvalue problem for Gk. 

That is, compute Qk  and Dk  as in (16.20) 

iv) Xk=ZkQkDifl. 	 (16.22) 

Using equations (16.22) the convergence is given, 

not by (16.11), but by 

dvi  - x?)11 = 0(q1,;) 	(16.23) 
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where qi=Xp+1/Xj. 

This scheme has been tried in practice and 

found to suffer from the disadvantage that there 

is no guarantee that the computed Xk  will be 

orthogonal. Additionally, large errors may be 

introduced in step (iv) of (16.22) if any of the 

d.. are small. 

17. AN ALTERNATIVE APPROACH TO SIMULTANEOUS ITERATION 

We now return to the ideas of section 13 for 

an alternative and simpler approach to simultaneous 

iteration. This also leads directly to our 

implementation of the method. 

Previously we saw that if we had determined 

Al  and x1, where we assume the eigenvalues to be 

in non-increasing order, it was possible to 

determine X2 and x2 
by iterating with an arbitrary 

vector which had been orthogonalised with respect 

to x1. In general when x1,x2,....,xr_1  had been 

determined it was possible to obtain 	and xr  

by iterating with an arbitrary vector which had 

been orthogonalised with respect to the already 

determined x.. 

This leads naturally to a scheme in which the 

iterations are performed, not serially, but in 

parallel or simultaneously. Thus we let 
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X = [x1'X2' "'" Xp 
	(17.1) 

and ensure that 

= Ip  . 	(17.2) 

We then form the product 

X' = AX 1  

reorthogonalise X' and repeat (17.3). 

This is repeated until the process has converged. 

We note that if 

IX1 1> IX21> .".> IX I> IX 	I> IX 	I p+2 

(17.3) 

. . . 	I xri  I 
then convergence is guaranteed. Hence we may 

summarise the basic process as: 

i) Choose X0 	0 such that XTX0  =I 

ii) Yk:=AXk_i  

" (17 . ) 

k=1,2,.... • 

iii) Xk'.=Ykk R-1 where XTkXk  =I 	(17.5) 

In order to accelerate the convergence of this 

method we consider the projected eigenvalue 

equation: 

TAv Bk  = v 	• 

We note that Bk is a matrix of order p and we 

denote the eigensolution by 

vk'kv
u  
k = Dk 

If the first r columns of Xk are eigenvectors of 

A then the first r rows and r columns of Bk  will 

(17.6) 

(17.7)' 
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be zero except for the diagonal elements which will 

be equal to the first r eigenvalues of A. This 

leads to the following scheme for obtaining Xkl_i  

from X k'•  

i) Choose X such that XTX 0 	0 0 

ii) Y:=AXk  

iii) Bk:=XkY = XkAXk  

iv) Solve the eigenproblem for Bk. Thus, 

we compute Vk  and Dk  such that 

VTB V = Dk  

v) Yk:=XkVk  

vi) Xk+1 * • =Yk  R-1  where Xk+1  Xk+1 	I 	(17.8)  

and steps ii) to vi) are repeated for k=0,1,2,.... . 

18. THE INTERMEDIATE STEPS  

The iteration rule defined by (17.8) is extremely 

powerful but it is important to realise that, as we 

saw in section 16, the final space Em  produced by 

m steps of (17.8) is the same (apart from rounding 

errors) as that produced by m steps of (17.5). 

Hence there is nothing to be lost by using (17.5) 

m-1 times followed by one step of (17.8). A 

further saving in time is possible by replacing 

(17.5) with the even simpler rule 
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Xk = AXk-1 	
k = 112,.... 	(18.1) 

However, in this case, two further precautions are 

necessary. We have seen earlier that continued 

iteration using (18.1) makes the columns of Xk  

become more and more parallel. Thus we must always 

orthonormalise Xk+m-1 after using (18.1) m-1 times 

and also we must limit m so that the columns of 

Xk can never start to become parallel. 

In order to choose the correct value of m we 

note that if 

1x1  I /I xp  I )m- 
 

< 10 	(18.2) 

then the parallelisation of the columns of Xkl_m_i  

will not have gone further than to cause the loss 

of at most one decimal digit when the columns are 

next orthonormalised. Obviously as Xi  and X are 

not known we take the current values of d11 and 

dPP as approximations. At the begi(ing of the 

iteration d11 and 	are not known and in the first 

few steps they are still far from Al  and Xp. In 

order to prevent m being too large we start 

therefore with m=2 and allow it to increase by one 

at each stage of the iteration. Thus we have the 

following computational scheme: 

i) Let k=0, m=2 

ii) Choose X0 	0 such that XTX0  =I 



iii) Perform m-1 steps of (18.1) on Xk  

iv) Orthonormalise the columns of Xk+m-1 

v) Let Y=AXk_i_m_i  

vi) Let B=XkT 	Y +m-1 

vii) Compute V and D such that VTBV=D 

viii) Let Xic+m=Xk+m_iV 

ix) Orthonormalise the columns of Xk+m 

x) Let k=k+m 

xi) Test for termination 
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xii) If ( Id11  I/Idppl )m < 10 let m=m+1 

xiii) Go to (iii) 

In practice we have found it advantageous to 

perform step (iii) between steps (viii) and (ix), 

omitting step (iv). This saves one orthonormal-

isation at each stage and our experience is that 

it does not impair accuracy or convergence. 

(18.3 ) 

 

19. TESTS FOR CONVERGENCE  

Rutishauser (1969) has stated that "the most 

efficient computing process becomes doubtful, if 

it is not possible to determine the proper time 

for termination automatically". 

In this algorithm it is relatively easy to 

determine the proper time for termination of the 

process. The diagonal elements of D in (18.3) (vii) 

will be changing throughout the iteration process. 
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Thus, as soon as the first diagonal element does 

not appear to change between successive stages of 

(18.3) it is determined to machine accuracy. We 

may then test for the second diagonal element and 

thence for the later ones. 

This test is not sufficient for the eigen-

vectors. It is true to say however that if the 

eigenvalues have not converged to a given 

precision the eigenvectors will not have converged 

either. Thus we do not start testing for 

convergence of an eigenvector until after the 

corresponding eigenvalue has converged. We base 

our test for convergence of the vectors on examining 

the w-norm of each vector and testing whether this 

has altered between successive stages of (18.3). 

In practice it is unlikely that we shall 

need to determine the eigensolutions to full 

machine accuracy and the tests are ammended to take 

this into account. Thus for the eigenvalues we 

test whether 

d!. - II 	ii 
for i=1,21....l p 

d!. 

where dii  is the current value of Dii, dii  was 

the value of D.i  at the previous stage and E. is 

the desired tolerance. Similarly for the eigen-

vectors we test whether 

(19.1) 
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11x111.0  - Ilxill 

(19.2 ) 

c 	for i=1,2,....l p 

where xi  is the i-th column of X. The p 

quantities on the left of inequality (19.2) form 

the components of the error vector described in 

chapter 5, section 15. 

Once g eigenvectors have been accepted the 

active powering steps of (18.3) are no longer applied 

to these columns but they are retained for ortho-

normalisation of the columns g+1 to p. 

20. THE HERMITIAN CASE  

The extensions of the algorithm for the 

symmetric case needed to cover the Hermitian case 

are straightforward. We have already discussed 

the generalisations of the Jacobi and ortho-

normalisation algorithms and these are used in 

place of the symmetric and real versions. The 

only other alteration needed is to work with 

complex eigenvectors and Hermitian transposes. 

Thus the steps of (18.3) are replaced by 

i) Let k=0, m=2 

ii) Choose X0  such that X
HX0  =I 

iii) 

 

Let Y=AXk  

iv) Let B=XkY 

v) Compute V and D such that VHBV=D 
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vi) Let Xk+1=XkV 

vii) Perform m-I steps of (18.1) on Xk  

viii) Orthonormalise the columns of Xk+m 

ix) Let k=k+m 

x) Test for termination 

xi) If (Id111/IdppI  )in  < 10 let m=m+1 

xii) Go to (iii). 	 (20.1) 

21. EIGENVALUES OF EQUAL MODULUS 

We saw in section 10 that it is not necessary 

for convergence that all the eigenvalues must be 

distinct. In fact, for both the real and 

Hermitian cases, if we are iterating with p 

vectors the only condition necessary for 

convergence is that 

IXpl > 
	 (21 .1 ) 

It should be noted however that if IX I is close 

to IXp+1I  then convergence may be impracticably 

slow. In practice p should be chosen as far as 

possible so that 

I Xp  I 4  17\.k 
	 (21.2) 

where k is the number of eigensolutions that it is 

desired to compute. 

22. THE GENERAL CASE 

We now turn our attention to the case of a 
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general matrix and as for the symmetric algorithm 

we return to the ideas of section 13. We shall 

assume initially that 

Ix11> IX21> . ... >IXp 1 > I Xp+1 1) 	(22.1) 

and hence that there are p left-hand and p right-

hand eigenvectors corresponding to the p dominant 

eigenvalues. 

Having calculated the first r eigenvalues and 

eigenvectors we saw how to suppress the appropriate 

components of these in order to calculate the 

(r+1)-th eigensolution. Applying the process 

simultaneously to two sets of p vectors we may 

write the algorithm as 

i) Choose Yo  and X0, both n*p, such that 

YHX0 =I 

ii) Form Yk=AHYk-1, Xk=AXk....1  

k=1 12,.... . 
iii) Biorthonormalise Yk  and Xk 	(22.2) 

To accelerate this method we consider the 

projected eigenvalue equation 

B=YkAXk 
	 (22.3) 

We denote the eigensolution of B by 

TL.B.TR = D 
	

(22.4) 

where TL  and. TR are respectively the left-hand and 

right-hand eigenvectors of B and D is a diagonal 

matrix of the eigenvalues of B. Thus we are leId 
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to the following accelerated scheme for determining 

Y 	and X 	from Y and Xk. 

i) k+1 

	k 	k' 

i) Choose Yo and X0 	0 such that YHX0  =I 

ii) Form W=AllY V=AXk 

iii) Form B=YlicV 

iv) Solve the eigenproblem for B; that is 

compute TL, TR  and D as in (22.4) 

v) Form Yk+1=WTL' Xk+1=VTR 

vi) Biorthonormalise such that Y!-14.-1 -..X k k+1=I (22.5) 

and repeat steps ii) to vi) for k=0,1,.... 

Just as it was possible to use powering steps 

in the symmetric case so in the general case we may 

use a similar device to speed up the process. We 

replace steps (ii) and (iii) of (22.2) by the 

simpler rule: 

Yk =AHYk-1 ; Xk =AXk-1 	k=1,2,.... 	(22.6) 

As before we use m-1 steps of (22.6) followed by 

one step of (22.5). For the reasons outlined 

previously in section 18 it is essential that m 

is limited in order to prevent the columns of Yk  

and Xk becoming less and less biorthogonal with 

respect to each other. This leads to a scheme 

very similar to that for the Hermitian case 

except that we are now working with two sets of 
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vectors. 

i) Let k=0, m=2 

ii) Choose Yo  and X0  such that YgX0=I 

iii) Let W=AHYk, V=AXk  

iv) Let B=YHV 

v) Compute TL, TR  and D such that 

TLBTR=D 

vi) Let Yk+1=WTL' Xk+1=VTR 

vii) Perform m-1 steps of (22.6) on Yk  and Xk  

viii) Biorthonormalise such that YHXk  =I 

ix) Let k=k+m 

x) Test for termination 

xi) If (Idg+1 I/Idpp I )m < 10 let m=m+1 

(g is the number of eigenvectors 

accepted thus far) 

xii) Go to (iii). 	 (22.7) 

23. EQUAL EIGENVALUES  

We know that an arbitrary matrix does not 

necessarily have a complete set of eigenvectors 

and hence the case of equal eigenvalues is more 

complicated than for Hermitian matrices. Suppose 

firstly that the matrix is non-defective but 

derogatory; we then have a situation similar to 

that of the Hermitian case and convergence is 
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possible if 

IXpl > IX134.11 - 

If the matrix is defective (irrespective of 

whether or not it is derogatory) in as much as one 

or more of the first p eigenvectors do not exist 

there is no guarantee that the process will be 

convergent. However all our experimental results 

suggest that convergence does normally take place. 

(23.1) 



CHAPTER 5  

COMPUTATIONAL DETAILS 
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1. INTRODUCTION  

In this chapter we describe the implementation 

of the theory that we have discussed in the pi'eCeiding - 

chapters. We also explain the operation of the 

programs and give sufficient details to enable a 

prospective user to run them. 

All the programs have been written in Fortran 

and developed on an I.C.L. 1904S machine using the 

XFAT compiler. They will run on all 1900 series 

machines but small modifications may be needed to 

enable them to be used with other compilers on 

different machines. In the descriptions of the 

programs that follow we list the non-standard 

functions and explain their purpose so that any 

necessary alterations may be made easily. 

We begin in the next section by describing 

the general structure of the programs and then we 

give details of the Jacobi programs. This is 

followed by a description of the simultaneous 

iteration programs and finally we give details of 

some test runs. 

2. PROGRAM STRUCTURE  

All the programs are written in a similar 

manner in order to facilitate their use and 

comparison between them. The basic structure of 

the programs is as follows: 

i) A steering segment. 
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ii) The main program segment (called the 

MASTER segment in 1900 Fortran). 

iii) The main subroutine (which performs 

most of the calculation). 

iv) Other subroutines 

v) A final subroutine, altered by the user, 

used for the input of data. 

The steering segment is used to allocate 

channel numbers to the peripherals. Following the 

usual Fortran convention we have used channel 5 

as input from the card reader and channel 6 as 

output to the line printer. Channel 4 is used, 

if necessary, for additional monitoring information 

with channel 2 used for both input to and output 

from an internal array. This enables character 

conversions from text strings to integers (and 

vice versa) to be performed. Although machine 

dependent a facility similar to this is normally 

provided with most compilers. 

The main program segment is used principally 

to print the headings and output the results; in 

particular no calculations pertinent to the problem 

are performed in it. This is because the writer 

is convinced that a reasonably neat presentation 

of the results is an important feature of any 

computer program. Implicit in this is the need 

to display the name of the program, the date and 

time when it was run, the example number and a 
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clear heading to each set of results. The absence 

of any calculations from the main segment also 

means that an intending user can see at a glance 

the form the output will take just from looking 

at the first segment. We have also assumed that 

if the line width of the output is 120 characters 

or more then it is to a line printer and the results 

are centralised on the page. If however the line 

width is less than 120 characters the results are 

all left-justified as this is particularly 

suitable for output to a teletype if the program 

is being run on-line. 

The first subroutine normally performs the 

bulk of the calculation and it is here that the 

theory we have developed is implemented. Often 

repeated calculations such as the formation of 

inner-products are not performed here but are left 

to the following subroutines. 

In all the programs the final subroutine is 

used to input or store information about the 

matrix. Since this will change from problem to 

problem it is up to the user to modify this 

routine for his particular problem. 

3. A JACOBI PROGRAM FOR SYI'INETRIC MATRICES - JACO  

The program takes as data a real symmetric 

matrix A of order n and calculates its eigenvalues, 

X., and optionally the eigenvectors, vi. Also 
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printed are the number of rotations needed to 

diagonalise the matrix to a preset tolerance. 

Should the total number of sweeps exceed fifty 

the program is terminated and a warning message 

is printed. Additionally the program will, if 

requested, form the matrix V
TAV and normalise 

the vectors such that 

  

1=1,210000 (3.1) 

We now describe each routine. 

Master segment  

At the beginning of this segment the arrays 

are dimensioned. If it is desired to alter the 

size of these arrays this is the only point at 

which a change to the program has to be made. 

Five arrays are used and as far as possible their 

names have been chosen with reference to the 

theoretical discussion of earlier chapters. 

A(n*n)--storestheelementsaij  of the 

original matrix A. 

✓ (n*n) - stores if they are required the 

elements of the matrix V, the columns of which 

approximate the eigenvectors of A. 

D (n) - stores the approximations to the 

eigenvalues %i. 

B (n) - used as workspace. 

Z (n) - used as workspace. 

The value given to n must be the same for each of 
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the five arrays. 

There is a call to an I.C.L. subroutine 

TIME(T). This returns in T the time of day as an 

eight bit character string. All the other 

subroutine calls are to segments appearing later 

in the program. 

Subroutine Jaco  

The coding follows exactly the computational 

details given in sections 10 and 11 of chapter 2 

and we describe only the additional features not 

mentioned there. Firstly, as the matrix A is 

symmetric, only the upper half is used in the 

computation. This means that the information 

stored in the lower half can be used to recreate 

the original matrix. Secondly, in order to 

ensure the maximum possible accuracy in the eigen-

values the following device is adopted. During 

each sweep, as well as updating the vector D at 

each rotation, the updates are accumulated in a 

separate vector Z. At the end of each sweep the 

value in Z is then used to produce a fresh value 

of D. This is given by updating the value of D 

as it was at the end of the previous sweep (stored 

in B) by the current value of Z. Although this 

uses an extra 2n storage locations it does 

ensure great accuracy in the eigenvalues as very 

small individual increments in the elements of D 

are accumulated independently. 
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Having completed the diagonalisation process 

to the required tolerance the program uses the 

exchange sort algorithm to order the eigenvalues 

(and their corresponding vectors) such that their 

moduli are in non-increasing order. 

Subroutine Normalisation  

This subroutine, if called, normalises the 

eigenvectors as in (3.1). 

Subroutine Check  

As with Normalisation this subroutine is only 

called if specifically requested by the user. It 

uses the calculated values of the eigenvectors to 

form the product VTAV storing the result in A. 

All the summations are performed in double precision. 

Subroutine Elapse  

This subroutine, which is used in all the 

programs we have written, performs three small 

calculations needed by other routines. Firstly, 

it calculates the mill time that the program has 

used. This involves using the I.C.L. subroutine 

MTIME(N) which gives N as the number of milli-

seconds so far used by the program. This is 

converted to minutes and seconds and output at the 

end of the program. Secondly, Elapse uses the 

machine routine DATE(D) to obtain in D an eight 

character text string containing the date. In 

order to print the month as a three letter 

abbreviation we call DEFBUF. This routine, combined 
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with the use of channel 2, enables us to access 

an internal array called BUFFER and perform the 

necessary character conversion. 

Finally the subroutine calculates the machine 

constant. That is, the smallest number m such 

that 

1.0 + m / 1.0 . 	(3.2) 

This means that there is no need for the user to 

provide this information for each different 

machine. 

Subroutine Mxop  

Mxop has been developed as a general purpose 

routine for the outputting of matrices. The input 

parameters for the subroutine are the matrix A, 

its actual dimensions as defined in the Master 

segment, the size of matrix it is desired to output, 

the format required for an individual element, the 

number of printing positions per line, the logical 

stream number for the output channel and finally 

a flag. If the flag has a negative value the 

output is left-justified; if flag is positive the 

output is centralised on the page. If flag is zero 

Mxop is not initiallised and the output is then 

in the same format as on the previous occasion. 

It is recommended that flag is set to zero if the 

same format is being used a number of times. This 

saves reinitiallising Mxop with a consequent saving 

of time. 
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The form of the output from Mxop consists of 

a heading to indicate which columns of the matrix 

are to be printed followed by those columns. The 

program automatically prints as many columns as 

the width of line allows. For example, suppose 

a (20*15)_thatrix is to be output centrally on a 

120 character line with each element printed under 

the format F16.8. The output from Mxop would_take 

the form: 

COLUMNS 1 TO 7 ARE: 

all 	a12 

• .111 

a13 

• • 

. . 	' 

• 

. 

• 

a20,1 	a20,2 a20,3 • • a20,7 

COLUMNS 8 TO 14 ARE: 

a18 	al  9  a1,10 . . 	. . a1,14 

• • • • • • . 
a20,8 	a20,9 a20,10 ' a20,14 

COLUMN 15 IS: 

a1,15 

• 
a20,15 

There are no restrictions on the size of matrix 

Mxop can handle including (n*1) and (1*n); in the 

case of (1*n) matrices however the column 

headings are suppressed. This subroutine has 

proved invaluable in the programs we have written 
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and also during the development stage of many 

other routines. 

Subroutine Input  

This routine is used to input the data for 
is 

each example and itlthe user's responsibility to 

write the appropriate sections of code. A 

computed GO TO statement transfers control on the 

n-th example to the CONTINUE statement numbered 

n*100. The user then inserts an appropriate 

section of code to set the elements of the array 

A(I,J) equal to the elements (aid) of the matrix 

whose eigensolution it is desired to calculate. 

This may be done either by generating the elements 

of A or by reading them from data cards. Finally, 

after inputting A, control must pass to a RETURN 

statement in order to leave the subroutine. 

This concludes the description of each 

section of the program. 

4. DATA REQUIRED BY JACO  

The data required by the program is very 

simple and takes the following form. 

i) The first data card (read from the Master 

segment) must contain three integers punched in 

the format (212,13). The first of these is the 

number of examples to be run, the second is the 

size of the arrays as dimensioned in the Master 

segment and the third is the width of output line 



required. 

ii) The second data card contains information 

about the first example and this is given in the 

format (I21I1,A6,2I1). The first number is the 

dimension of the matrix A for this particular 

example; this must be less than or equal to the 

dimension of the array A in the Master segment. 

The second number is 1 or 0 depending on whether 

or not it is desired to calculate the eigenvectors. 

The third is a text string defining the output 

format required. Typical values might be F16.8 

or E20.10. The last two numbers are flags and if 

nothing is punched these are taken as zero. If 

however a 1 is punched in the first of these two 

positions then subroutine Check is called; a 1 

in the second position calls subroutine Normalisation. 

iii) If the elements of A are to be read from 

cards these should now follow. The format is 

obviously dependent upon what the user has 

specified in subroutine Input. 

iv) After the data cards of iii), or if there 

are none, a second card as in ii) should follow 

for the second example. A similar pattern now 

follows for the subsequent examples. 

5. TEST RESULTS  

A listing of the program together with a 

sample of the output from one of the test runs is 
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to be found in appendix 1 and we give here some 

comments on the test runs. Examples 1 to 7 are 

all taken from Gregory and Karney (1969) and 

example 8 is due to Rutishauser (1966) and quoted 

in Wilkinson and Reinsch (1971). These two 

excellent books have provided the author with 

much inspiration. For convenience we shall refer 

to Gregory and Karney as GK and list the example 

number in their book. 

Example 1, GK 4.1, is a 4*4 matrix typical of the 

type that occurs within simultaneous iteration. 

The eigenvalues and eigenvectors were obtained to 

10 significant figures after 10 rotations in 0.042 

seconds. 

Example 2, GK 4.2, is a 4*4 matrix with a repeated 

eigenvalue. Again the eigensolutions were obtained 

to 10 significant figures, this time after 17 

rotations in 0.057 seconds. 

Example 3, GK 4.15 taking n=10, is a matrix of 

order 10. The first eight eigenvalues were computed 

to 10 significant figures and the last two to 9 

significant figures with a similar accuracy in the 

eigenvectors. 120 rotations were needed taking 

0.644 seconds. 

Example 4, GK 4.13 taking n=10, is the Hilbert 

matrix of order 10. The computed eigensolutions 

are all correct to 10 decimal places. The execution 

time was 1.128 seconds in which 231 rotations were 
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performed. 

Example 5, GK 4.20 taking n=10 and a=3, needed 234' 

rotations taking 1.125 seconds to produce eigen-

solutions to 9 decimal places. 

Example 6, GK 4.20 taking n=10 and a=0, needed 89 

rotations taking 0.512 seconds to produce eigen-

solutions to 9 decimal places. 

Example 7,  GK 4.10, is the Rosser matrix. 125 

rotations in 0.546 seconds produced the eigen-

solutions to 7 decimal places. 

Example 8, Rutishauser (1966), is a matrix of 

order 44. Our program used 6280 rotations in 1 

minute 39.8 seconds. The eigensolutions are all 

correct to 9 decimal places and compare favourably 

with Rutishauser's results. 

6. A JACOBI PROGRAM FOR HERMITIAN MATRICES- HMJO 

The program takes as data a Hermitian matrix 

A of order n and calculates its eigenvalues, Xi, 

and optionally the eigenvectors, vi. Also printed 

are the number of rotations needed to diagonalise 

the matrix to a preset tolerance. Should the 

total number of sweeps exceed fifty the program 

is terminated and a warning message printed. 

Additionally the program- will, if requested, form 

the matrix VHAV and normalise the vectors such 

that 

1 	i=1 2 1 1....I n • (6.1) 
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The routines are very similar to those for the 

real symmetric case and we describe only the 

differences between the two. 

Master segment  

Throughout our programs we have used only 

real arithmetic and since the original matrix A 

and its matrix of eigenvectors V may be complex 

two additional arrays are needed now for storing 

A and V. In our programming we have, without 

exception, used "R" and "I" as the last letter of 

an array name to indicate that that array contains 

either real or imaginary components. Thus, 

instead of a complex array A, we use two real 

arrays AR and AI. 

AR (n*n) - stores the real components 

Re(a..ij) of the original matrix A. 

AI (n*n) - stores the imaginary, components 

Im(aij) of the original matrix A. 

VR (n*n) - stores the real part of the matrix 

V, whose columns approximate the eigenvectors of A. 

VI (n*n) - stores the imaginary part of the 

matrix V. 

Subroutine Hmjo  

The coding follows the computational details 

given in section 12 of chapter 2. The same device 

employed in the real symmetric case is used to 

ensure maximum accuracy in the eigenvalues. 



198 

Other subroutines  

The other subroutines are identical to those 

described in section 3 except for the slight 

modifications needed for complex working in 

Normalisation, Check and Input. 

7. DATA REQUIRED BY HMJO  

The data is input in exactly the same form 

as that described in section 4. It is the user's 

responsibility to ensure that the real and 

imaginary parts of A are correctly input. 

8. TEST RESULTS  

A listing of the program together with a 

sample of the output from one of the test runs is 

to be found in appendix 2. 

Example 1, GK 6.6, is a 4*4 matrix typical of the 

type that occurs within simultaneous iteration. 

The eigensolutions were obtained to 10 significant 

figures after 13 rotations in 0.090 seconds. 

Example 2, GK 6.7, is a 4*4 matrix with a repeated 

eigenvalue. Again the eigensolutions were 

obtained to 10 significant figures after 17 

rotations in 0.115 seconds. 

Example 3,  GK 6.8, is a matrix of order 5 and 46 

rotations in 0.327 seconds produced the eigen- 

solutions to 9 decimal places. 

Examples 4 to 9,  GK 7.10 taking n=6 to 11 in example 
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B, have only imaginary components. All the 

solutions were produced to 9 decimal places. The 

number of rotations needed and the time taken 

were 101 (0.861), 131 (1.245), 178 (1.843), 

220 (2.534), 305 (3.741) and 319 (4.212). 

9. A JACOBI PROGRAM FOR NORMAL MATRICES - NMJO  

The program takes as data a normal matrix A 

of order n and calculates its eigenvalues, Xi, and 

optionally the eigenvectors, vi. Also printed 

are the number of rotations needed to diagonalise 

the matrix to a preset tolerance. Should the total 

number of sweeps exceed fifty the program is 

terminated and a warning message is printed. 

Additionally the program will, if requested, form 

the matrix VHAV and normalise the vectors such 

that 

=1 
	

i=1 ,2,....,n . 	(9.1) 

Again we describe only the differences between 

this program and the previous one. 

Master segment  

As well as the original matrix A and the 

eigenvectors V being complex the eigenvalues may 

be too. This means that the arrays D, B and Z 

must each be replaced by two arrays. In addition, 

since the whole matrix is acted upon in the 

program, it becomes necessary to keep a copy of 
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the origin/al matrix. Thus we have the following 

additional arrays. 

AAR (n*n), AAI (n*n) - store a copy of the 

original values of AR and AI. 

DR (n), DI (n) - store respectively the 

approximations to the real and imaginary parts of 

the eigenvalues. 

YR (n), YI (n) - used as workspace. 

ZR (n), ZI (n) - used as workspace. 

The change of array name from B to Y is to avoid 

any possible confusion with the theory as given 

in section 13 of chapter 2. 

Other subroutines  

The coding for subroutine Nmjo follows exactly the 

computational details given in section 13 of 

chapter 2. The other subroutines are unaltered 

from the Hermitian program. 

10. DATA REQUIRED BY NMJO  

The data is input exactly as in section 7. 

11. TEST RESULTS  

A listing of the program together with a 

sample of the output from one of the test runs 

is to be found in appendix 3. 

Examples 1 and 2, are both 4*4 matrices constructed 

for test purposes. 23 rotations in 0.2 seconds 

were needed in both cases to produce solutions 
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to 9 decimal places. 

12. A JACOBI PROGRAM FOR GENERAL MATRICES - GLJO  

The program takes as data an arbitrary complex 

matrix A of order n and calculates its eigenvalues, 

X., and the left and right eigenvectors, w. and 

v. respectively. Also printed are the number of 

rotations needed to diagonalise the matrix to a 

preset tolerance. Should the total number of 

sweeps exceed fifty the program is terminated and 

a warning message is printed. The routines are 

now described. 

Master segment  

As with the other Jacobi programs it is at 

the beginning of this segment that the arrays are 

dimensioned and it is here that any change to 

their size must be made. The arrays used are as 

follows. 

AR, AI (n*n) - store respectively the real 

and imaginary components of the original matrix A. 

AAR, AAI (n*n) - store a copy of the 

original matrix. 

WR, WI (n*n) - store the elements of the 

matrix whose columns approximate the left 

eigenvectors of A. 

. VR, VI (n*n) - store the elements of the 

matrix whose columns approximate the right 

eigenvectors of A. 
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DR, DI (n) - store the approximations to the 

eigenvalues Xi. 

EN, EM (n) - used as workspace. 

The value given to n must be the same for each of 
twelve_ 

the f4..e-e arrays. 

Subroutine Gljo  

The coding follows that given by Eberlein (1970). 

The only difference is that described in section 

20 of chapter 2. Thus no ordering of the eigenvalues 

takes place during the execution of this routine 

until immediately before returning to the Master 

segment to output the results. The ordering is 

such that on output, 

I X1 1 	I X21 	-"' 	I Xn1 
	

(12.1) 

Subroutine Check  

This routine, if called by the user, uses the 

calculated values of the left and right eigen-

vectors to form the product W
TAV, where W and V 

are the matrices whose columns are given by wi  

andvi  . respectively. All the summations are 

performed in double precision and the resulting 

product is stored in A. 

Other subroutines  

These are as previously described. 

13. DATA REQUIRED BY GLJO  

The form of the data is very similar to that 
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described in section 4. The difference occurs in 

(ii) where the data card is in the format (121 A6111). 

The first number is the dimension of the matrix 

A for the particular example; the next is a text 

string defining the output format required and the 

third is a flag to call subroutine check. 

The real and imaginary.  elements of A must be 

input separately and this is the user's 

responsibility. 

14. TEST RESULTS  

of.the program together with a sample 

of the output from one of the test runs is to be . 

found in appendix 4. 

Example 1, GK 5.1, is a 3*3 real non-symmetric 

matrix with real eigenvalues. 33 rotations in 0.366 

seconds produced the eigenvalues and the left-

hand and right-hand eigenvectors to 9 decimal 

places. 

Example 2, GK 5.3, is also a real non-symmetric 

matrix of order 3. The eigensolutions were 

obtained to 8 decimal places after 21 rotations 

in 0.237 seconds. 

Example 3, GK 5.5, is a real non-symmetric matrix 

of order 4 with real eigenvalues. The solutions, 

correct to 8 decimal places, were produced in 0.557 

seconds after 42 rotations. 

Example 4, GK 5.8, is a real non-symmetric matrix 
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of order 4 with two real eigenvalues and a complex 

conjugate pair. 18 rotations in 0.246 seconds 

produced the eigensolutions correct to 9 decimal 

places. 

Example 5, GK 5.2, is a 3 3 real defective matrix. 

After 60 rotations taking 0.511 seconds the isolated 

eigensolution was obtained to 9 decimal places 

with the repeated eigenvalues and their associated 

vector being obtained to 5 decimal places. 

Example 6, GK 6.5, is a complex matrix of order 4 

and the results were obtained to 8 decimal places 

after 54 rotations taking 0.753 seconds. 

Example 7, GK 6.4, is a complex matrix of order 

3 and the results were obtained to 8 decimal 

places after 21 rotations taking 0.234 seconds. 

Example 8, Eberlein (1970) example I, is a real 

matrix of order 7 with one real eigenvalue and the 

rest complex conjugate pairs. 126 rotations in 

2.714 seconds produced the results to 10 decimal 

places and this compares favourably with Eberlein's 

results. 

Example 9, Eberlein (1970) example II, is a real 

matrix of order 5 which is defective. 240 

rotations taking 3.052 seconds produced the 

isolated real eigenvalue and its corresponding 

vector to 10 decimal places. The complex conjugate 

eigenvalues and their corresponding vectors were 

obtained to 5 decimal places. 
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15. A RITZ ITERATION PROGRAM FOR SYMMETRIC MATRICES 

- QKRZ 

For a real symmetric matrix A of order n the 

program calculates the em absolutely largest 

eigenvalues, Xi, and their corresponding eigen- 

vectors, xi. There is no need to store the matrix 

A; all that is required is to be able to form the 

vector w where 

w = Av 	(15.1) 

without altering v. The iteration is carried out 

with p vectors where ip..em and usually p > em. 

The optimum value of p will depend on the 

distribution of the eigenvalues but if no know- 

ledge of this is available a reasonably good rule 

of thumb is to choose p equal to em plus 2 or 3 for 

smallish values of em. The eigensolutions are 

obtained to the tolerance requested and optionally 

the eigenvectors may be normalised such that 

= 1  , 
	i=1,2,....,p . 	(15.2) 

We now describe the program. 

Master segment  

All the dimensioning of the arrays is 

performed at the beginning of this segment and 

this is the only point at which any change may 

need to be made. The following arrays are used 

and as far as possible their names have been 

chosen with reference to the earlier theoretical 



206 

discussion. 

X (n*p) - stores the matrix X whose columns 

approximate the eigenvectors. 

V (n), W (n) - used as workspace in forming 

the product. 

RV (p*p), B (p*p) - used as workspace. 

D (p) - stores the approximations to the 

eigenvalues Xi. 

F (p) - stores the error vector as described 

in chapter 4, section 19. 

BB (p), Z (p), DOLD (p), LARGE (p) - used as 

workspace. 

The values given to n and p respectively must be 

the same for all the arrays. 

There then follow three READ statements 

which input the data required by the program. 

These statements refer to the FORMAT statements 

labelled 10, 20 and 30. 

There is a call to an I.C.L. subroutine 

TIME(T). This returns in T the time of day as an 

eight bit character string. All the other 

subroutine calls are to segments appearing later 

in the program. 

Subroutine Qkrz  

The coding follows exactly the computational 

details given in sections 17 to 19 of chapter 4 

and we desiribe only the additional features not 

mentioned there. After the tests for convergence 
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there is a call to subroutine INFO. This outputs, 

on channel 4, intermediate information concerning 

the progress of the program. We describe INFO 

fully below. A test is also made to see whether 

it is likely that the required number of solutions 

will be obtained in the next few steps. If this 

is the case the value of m (the number of pre-

multiplications to be performed) is reduced to 2. 

Finally a check is made to ensure termination in 

the event of the number of iterations having 

exceeded some preset value. 

Subroutine Jaco  

This is exactly as described in section 3. 

Subroutine Ortho  

This routine uses the modified Gram-Schmidt 

process with reinforcement to orthogonalise a 

set of vectors X(n*p) with 11-.p. For the sake of 

generality the routine assumes that the first F 

columns of X are already orthonormalised but for 

our purposes we always take F equal to zero. 

The coding follows equations (3.1) of chapter 3 

with the reinforcement as described in section 4 

of the same chapter. If reinforcement is found 

to be necessary the message "Warning 1 in ortho" 

is output on channel 4; if a column of X is 

found to be linearly dependent and is thus set 

identically equal to zero as in equation (4.7) of 

chapter 3 the message "Warning 2 in ortho" is 
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output. 

Real Function Inner Product  

This routine is called by Ortho and calculates 

the inner-product of columns k and 1 of the vectors 

held in X. The summations are performed in double 

precision arithmetic. 

Subroutine Randomisation  

Randomisation places ps7•do random numbers 

in the range (-1,1) into the columns of X; these 

then form the starting vectors for the iteration. 

If approximations to the eigenvectors are already 

known a facility exists for using these. This is 

detailed in the next section. The random numbers 

are obtained from the I.C.L. routine FPMCRV 

which generates pstl4do random numbers in the range 

(0,1). Most machines have a similar facility to 

this and there should be no difficulty in making 

the necessary alteration. 

Subroutine Info  

We have briefly mentioned this routine which 

outputs, after each test for convergence, 

sufficient information for the user to see the 

progress, or otherwise, of his program. The 

subroutine is split into two halves; both 

output the same information but the first does 

this in display form suitable for a line printer 

whilst the second is more compact and suitable 

for a teletype. Whichever form the output takes 
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the information displayed is as follows: 

Number of steps performed, 

Number of eigenvectors accepted, 

Number of eigenvalues accepted, 

Number of solutions to be computed, 

The error vector, 

The present approximations to the eigenvalues. 

Clearly the user could alter this routine if he 

felt more or less information was required but we 

have found the above to be most useful. 

Subroutine Normalisation  

This routine, if called by the user, normalises 

the eigenvectors Ixil such that 

=" 1 	i=1,21.... l p . 	(15.3) 

Subroutines Elapse and Mxop  

These are exactly as described in section 3. 

Subroutine Product 

Product performs a similar role to subroutine 

Input in the Jacobi programs. A computed GO TO 

statement transfers control on the n-th example 

to the CONTINUE statement numbered n*100. The 

user must then insert a section of code which is 

such that it computes 

w = Av, 	(15.4) 

where w and v are both vectors of n components, 

without altering v. Finally, after computing w, 

control must pass to a RETURN statement in order 

to leave the subroutine. 
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This concludes the description of each 

section of the program. 

16. DATA REQUIRED BY QKRZ  

The data required by the program takes the 

following form. 

i) The first data card (read from the 

Master segment at the format .statement numbered 

.10) must contain four integers punched in the 

format (12,15,12,13). The first of these is the 

number of examples to be run, the second and 

third are the values of N and P respectively used 

to dimension the arrays in the Master segment and 

the fourth is the width of output line required. 

ii) The second data card contains 

information about the first example and this is 

given in the format (15,12,16,12,E9.2,A6,11). 

The first two numbers are the dimensions of the 

array X for this particular example; these must 

be less than or equal to the dimensions given to 

X in the Master segment as input in (1). The 

third number is the maximum number of iterative 

steps that it is wished to perform. If there 

has been no convergence after this number the 

program is automatically terminated. The fourth 

parateter is the number of solutions it is 

desired to compute and the fifth the accuracy to 

which they are required. The sixth parameter is 
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a text string defining the output format required, 

a typical value might be E18.8. Finally we have 

a flag which, if set to one, normalises the vectors 

as in (15.1). 

iii) If in advance approximations to the 

eigenvectors are known a considerable saving in 

computer time can be effected by starting the 

iteration with these approximations instead of 

using random numbers. For this reason the following 

facility is available. If on the second data card 

described in (ii) the third parameter, the maximum 

number of steps to be performed, is given a 

• negative value then it is assumed that initial 

approximations to the eigenvectors are to be input -

and randomisation is suppressed. The input is 

controlled by the format statement labelled 30 and 

the IF statement immediately preceiding it. The 

user is advised to alter the format statement to 

suit his particular needs. Although the maximum 

number of steps has been given a negative value 

the upper limit is set as the absolute value of 

that read in. 

iv) After the data card described in (ii) 

and any possible cards for (iii) a second data 

card as described in (ii) should now follow for 

the second example. A similar pattern is 

followed for each subsequent example. 
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17. TEST RESULTS  

A. listing of the program together with a sample 

of the output from one of the test runs is to be 

found in appendix 5. In all the examples which 

follow we,  requested the solutions to an accuracy 

of 10-8. 

Example 1, GK 4.13, is the Hilbert matrix of order 

10. The iteration was performed with four trial 

vectors and requested two eigensolutions. In 6 

steps taking 1.921 seconds the program had 

accepted 3 eigenvalues and 3 eigenvectors. 

Example 2, GK 4.15 taking n=10, was described in 

section 5. We used four trial vectors and requested 

two eigensolutions. 8 steps taking 1.275 seconds 

in fact produced 4 eigensolutions. 

Example 3, is a diagonal matrix included to check 

consistency of the program. 

Example 4, GK 7.2, is a tridiagonal matrix of order 

21. Five trial vectors produced 3 eigensolutions 

after 75 steps taking 8.275 seconds. It is worth 

noting that as the eigenvalues are poorly 

separated the value of m is increasing throughout 

the program; that is, an increasing number of 

intermediate premultiplications are performed at 

each stage. 

Example 5, GK 7.3, is again a tridiagonal matrix 

of order 21. Five trial vectors produced 4 eigen-

values and 2 eigenvectors after 67 steps in 12.289 
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seconds. Again the value of m is increasing 

throughout. 

Example 6, GK 7.4 taking a=0, b=1 and n=201  is a 

tri-diagonal matrix of order 20 with very poorly 

separated eigenvalues. After 132 steps taking 

17.911 seconds and iterating with six trial 

vectors 4 eigenvalues and 3 eigenvectors were 

obtained. As the eigenvalues are so close the 

value of m is constantly increasing. 

Example 7,  GK 7.10 taking n=19 with xk=yk= 

=[k(n-k+1).1
, 2

, is a tridiagonal matrix of order 20. 

Using six trial vectors 4 eigenvalues and 2 eigen-

vectors were obtained after 64 steps in 15.022 

seconds. In this example the eigenvalues are well 

separated and m increases only slowly. 

Example 8, Rutishauser (1966), is the matrix of 

order 44 described in section 5. Four trial vectors 

produced 3 eigenvalues and 2 eigenvectors after 

189 steps taking 21.983 seconds. With the very 

close eigenvalues m increases rapidly. 

18. A RITZ ITERATION PROGRAM FOR HERMITIAN MATRICES 

- HMRZ  

For a Hermitian matrix of order n the program 

calculates the em absolutely largest eigenvalues, 

XI  , and their corresponding eigenvectors, xi. It 

is not necessary to store the matrix A, all that 

is required is to be able to form the vector w 
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where 

	

w = Av 	(18.1) 

without altering v. The iteration is carried out 

with p vectors where p).- em and usually p> em. The 

eigensolutions are obtained to the requested 

tolerance and optionally the eigenvectors may be 

normalised such that 

	

. 1 , 	i=1,2,....,p . 	(18.2) 

The program is similar to the symmetric case 

and we concentrate our description on the 

differences. 

Master segment  

As before the arrays are dimensioned at the 

beginning of this segment but as the eigenvectors 

may be complex most arrays now have to be 

doubled to hold the real and imaginary parts. 

XR, XI (n*p) - store the real and imaginary 

parts of the matrix X whose columns approximate 

the eigenvectors. 

VR (n), VI (n), WR (n), WI (n) - used as 

workspace in forming the product. 

RVR (p*p), RVI (p*p), BR (p*p), BI (p*p) -

used as workspace. 

D (p) - stores the approximations to the 

eigenvalues Xi. 

F (p) - stores the error vector. 

BB (p), Z (p), DOLD (p), LARGE (p) - used 

as workspace. 
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The values given to n and p respectively must be 

the same for all the arrays. 

Subroutine Hmrz  

This is identical to Qkrz except for the complex 

arithmetic which is performed by working separately 

with the real and imaginary parts of the variables. 

Subroutine Hmjo  

This is exactly as described in section O. 

Subroutine Cortho  

This is a complex arithmetic version of Ortho. 

It produces exactly the same warning messages. 

Subroutine Hinp.  

This subroutine replaces the function Inner 

Product in the symmetric case. It calculates, 

using double precision, the Hermitian inner- 

product of the columns k and 1 of the vectors 

held in X. 

Subroutine Cabs  

We now describe three routines not needed in 

the real symmetric case. The first of these is 

CABS which calculates the absolute value of a 

complex number, returning this as a real variable 

with the original number unaltered. 

Subroutine Cdiv  

This divides one complex number by another 

returning the result as a third parameter. Both 

of the original numbers are unaltered. 
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Subroutine Cs,qrt  

Given a complex number CSQRT calculates its 
tvL-Lk arcs, 

square root,(lying in [-2r,27] and returns this as a 

second parameter leaving the original number unaltered. 

Subroutine Randomisation  

This is as previously described and in the 

Hermitian case random numbers are only put in the 

real part of the array X. This ensures that if 

the vectors are all real no unnecessary imaginary 

components will be introduced. 

Subroutines Info, Normalisation,  Elapse and Mxop  

These are as previously described save for 

the adaption of Normalisation to complex 

arithmetic. 

Subroutine Product  

Product is as described before but the user 

must remember that the vectors w and v now are 

represented each by two arrays WR, WI and VR, VI 

respectively and that the matrix product 

W = AV 	(18.3) 

must be programmed as 

WR =_Re(A)..VR - Im(A).VI 

WI = Re(A).VI 	Im(A).VR . 	(18.4) 

19. DATA REQUIRED BY HMRZ  

The form of the data required by HMRZ does 

not differ from that described in section 16. 
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20. TEST RESULTS  

A listing of the program together with a 

sample of the output from one of the test runs 

is to be found in appendix 6. In all the examples 

which follow we requested the solutions to an 

accuracy of 10-8. 

Example 1, GK 4.13, is the Hilbert matrix of 

order 10. The Hermitian program produced identical 

results to the symmetric program. 

Examples 2 and 3, GK 6.6 and 6.7, are both small 

matrices but three trial vectors produced 3 eigen-

solutions in 6 steps in 1.3 seconds. 

Example 4, GK 7.10 taking n=11 in example B, is a 

tridiagonal matrix of order 12. Four trial 

vectors produced 2 eigensolutions after 50 steps 

taking 10.341 seconds. 

Example 5, GK 7.10 taking n=19 in example B, is a 

tridiagonal matrix of order 20. As in example 4 

we used four trial vectors to produce 2 eigen-

solutions after 101 steps taking 23.660 seconds. 

In both these examples m increases slowly 

throughout. 

21. A RITZ ITERATION PROGRAM FOR GENERAL MATRICES  

- RITZ 

For a general matrix A of order n the program 

calculates the em absolutely largest eigenvalues, 

Xi, and their corresponding left and right 
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eigenvectors, yi  and xi  respectively. It is not 

necessary to store the matrix A; all that is 

required is to be able to form the vector w where 

w = Av 

or 

w = AHv 
	 (21.1 ) 

without altering v. The iteration is carried out 

with p vectors where p > em and usually p> em. 

The eigensolutions are obtained to the requested 

tolerance and optionally both sets of eigen-

vectors may be normalised such that 

= 1 , 	i=1 21....,p . 	(21.2) 

The program is related to the Hermitian case 

but appears more complex by the need to 

introduce left and right vectors. 

Master segment  

We list the arrays dimensioned in this 

segment. 

YR (n*p), YI (n*p) - store the real and 

imaginary parts of the matrix Y, the columns of 

which approximate the left eigenvectors. 

XR (n*p), XI (n*p) - store the real and 

imaginary parts of the matrix X, the columns of 

which approximate the right eigenvectors. 

VR (n), VI (n), WR (n), WI (n) - used as 

workspace in forming the product. 

LVR, LVI, RVR, RVI, BR, BI (p*p) - used as 

workspace. 
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DR (p), DI (p) - store the approximations to 

the eigenvalues Xi. 

LF (p), RF (p) - store the left and right 

error vectors. 

EN (p), DOLD (p,2), LARGE (p,2) - used as 

workspace. 

The values given to n and p respectively must be 

the same for all the arrays. 

Subroutine Glrz  

The coding follows exactly the computational 

details given in section 22 of chapter 4. The 

need to test the left and right vectors is the 

only real difference between this program and the 

Hermitian case. 

Subroutine Gl!jo  

This is exactly as described in section 12. 

Subroutine Biortho  

This routine uses the modified biortho-

normalisation process with reinforcement to 

biorthonormalise two sets of vectors Y and X. 

The coding follows sections 7 and 8 of chapter 3. 

If reinforcement is found to be necessary the 

message "Warning 1 in biortho" is output on channel 

4; if it is found that it is not possible to 

biorthonormalise at a particular stage the message 

output is "Warning 2 in biortho". 

Subroutine Cinp  

This subroutine calculates, in double 
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precision, the inner-product of two complex vectors 

yk  and xl. 

Other subroutines except Product  

These are as described in Hmrz. 

Subroutine Product  

This is of a similar pattern to that in Hmrz 

but as well as being able to form the matrix 

product 

w = Av 

it is necessary to be able to form 

w = AHv . 

These must be programmed as 

WR = Re(A).VR - Im(A).VI 

WI = Re(A).VI + Im(A).VR 

and 

(21.5) 

WR = Re(AH).VR + Im(AH).VI 

WI = Re(AH).VI - Im(AH).VR . 	(21.8) 

An additional parameter, Hermit, is passed to the 

subroutine to determine which product is required. 

If Hermit is negative (21.1) should be formed but 

if it is positive (21.2) is needed. 

22. DATA REQUIRED BY RITZ  

The form of the data required by Ritz is 

basically the same as for Qkrz as described in 

section 16. However, the second data card is in 

the format (I542,16,12,E9.2,A6,2I1). The first 

six parameters are exactly as described previously 
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and the eigth is the normalisation flag, previously 
A 

the seventh parameter. The only addition, the 

seventh parameter, is an integer used to control 

the computed GO TO statement in subroutine 

Product. It has been found advantageous for our 

purposes to introduce this additional parameter 

but a user may well wish to revert to the same 

pattern employed in the symmetric and Hermitian 

programs. 

23. TEST RESULTS  

A listing of the program together with a 

sample of the output from one of the test runs is 

to be found in appendix 7. In all the examples 

which follow we requested the solutions to an 

accuracy of 10-8. 

Example 1, GK 5.5, is a small matrix but nevertheless 

is a useful test. Three trial vectors produced 

3 eigensolutions after 36 steps in 7.828 seconds. 

Example 2, GK 5.8, has a complex conjugate pair 

of eigenvalues. Three trial vectors produced 3 

eigensolutions after 44 steps in 7.242 seconds. 

Example 3, GK 6.5, has four well separated complex 

eigenvalues. Three trial vectors produced 3 

eigenvalues and 2 eigenvectors after 68 steps in 

10.695 seconds. 

Example 4, GK 6.10, is a Hessenberg matrix of 

order 10. We used four trial vectors to produce 
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4 eigenvalues and 3 eigenvectors in 1 minute 40.3 

seconds after 128 steps. 

Example 5, Clint and Jennings (1971) Table 4, is 

a Hessenberg matrix of order 7. We used four trial 

vectors and in 41 steps computed 3 eigenvalues 

and 2 eigenvectors. The execution time was 23.376 

seconds. Our results compare well with those 

given by Clint and Jennings. 

Example 6, GK 5.26, has as its dominant values a 

repeated eigenvalue with linear elementary divisors 

and a pair of complex conjugate eigenvalues. 

Iteration with four trial vectors determined the 

4 eigenvalues and 2 eigenvectors after 29 steps 

taking 14.790 seconds. 

Example 7, GK 5.23 taking 6=10-10, is a sparse 

matrix of order 20. Using six trial vectors we 

obtained 5 eigenvalues and 2 eigenvectors after 

123 steps taking 1 minute 45.5 seconds. 

Example 8, GK 7.10 taking n=19 in example A, is a 

sparse matrix of the type particularly suited to 

simultaneous iteration. We used six trial vectors 

and obtained 4 eigenvalues and 2 eigenvectors in 

1 minute 3.3 seconds after 70 steps. 
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CONCLUSION 
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CONCLUSION  

We have written a program to find the 

dominant eigenvalues and the corresponding left-

hand and right-hand eigenvectors of an arbitrary 

complex matrix using simultaneous iteration. 

In general simultaneous iteration produces 

results accurately and with great reliability, 

although running time can be high. The method 

really comes into its own for large sparse matrices 

having no particular pattern. 

In his program for symmetric matrices 

Rutishauser (1970) uses Chebyshev iteration in the 

premultiplication steps. The inclusion of some 

device similar to this would probably enhance our 

program for general matrices, particularly in the 

case of poorly separated eigenvalues. 

It certainly appears that there is a need for 

a simultaneous iteration program for arbitrary 

matrices and the author hopes that his program 

may prove its worth (or otherwise) through 

practical application. 
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APPENDIX 1  

A JACOBI PROGRAM FOR SYMMETRIC MATRICES 



0021 
0022 
CO23 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
C031 
C032 
0033 

0)36 
1037 
0038 
0039 
C040 
t041 
(042 
C043 
(044 
v045 

(:047 
1,048 
0049 
0050 
0051 
C052 
t053 
0054 
C055 
C056 

H173 
0059 
c060 

H21 
C063 
C064 
0065 
(066 
c067 
1068 

1Y7r4 
C071 
C072 
C073 
C074 

Mg 
0077 
Cb78 	

IF (RES .EQ. U) GO TO 41)0 
WRITE (6.330) 

1:079 	330 FOR'IAT (10 .////,' THE RESIDUAL MATRIX V"AV IS GIVEN BELOW1') 
CORD 	CALL IIXoP (A.01(1N,DIMN.N.N,FIELD,LENGTH,680) 
COA1 	400 CALL ELAPSE (E,DATE.1,K) 
0081 	IF (K) 630,999,41 0 
0083 	410 WRITE (6.420) (LINE(1), 1=1,60) 
0 084 	420 FORMAT OH .////,31X.60A1) 
COA5 	40 To 500 
C0A6 	430 WRITE (6.440) (4INE(I), 1=1,40) 
C087 	440 FORMAT (10 ,////t1X,40A1) 
0088 	500 CONTINUE 

999 STOP H417) 	 NONM 
STOP OK 

0091 	END 

MASTER 
INTEGER BIMII,EIVEC,ROT,RES,LINE(73),DATE(3) 
REAL A(44,44), V(44,44), D(46), B(44), 2(44)1 MC 
DATA LINE/73*1H*/ 
K=1 
CALL ELAPSE (E.DATE.7,K) 
mC=E 
READ (5.10) NUMBER,DIMN,LENGTH 

10 FORMAT (2I2,13) 
1F (LEN0TH .LT. 120) K=-1 
nn 500 00=1,NUMBER 
CALL INPUT (A.DIMN,N.NO,E11JEC.RES,NORM,FIELD) 
CALL TIME (T) 
IF (K) 120,999.10(i 

100 wRITE (0.110) (LINE(1), 1=1,73), (DATE(I), 1=1,3), T. NO 
110 roRMAT (101.//,14X,,THE METHOD OF JACOBI FOR THE EIGENSOLUTION OF 

lA REAL OXN SYMMETRIC MATRIP./.24X.73A1,///,45X,ITHIS PROGRAM WAS 
2PUN OU'./3,1K.A3.1X,I2,/,45X.'AND EXECUTION STARTED AT',A9,//,54X, 
3,EXAMPLE NUMBER'rI3) 
GO TO 140 

120 WRITE (6.130) (LINEW 	 4 . 1=1.34), 	(DATE(1 	I=1,3, Tt NO 
130 FORMAT (1H di/M.' JACOBI FOR REAL SYMMETRIC MATRIChS'./.1)(.34A1 

1.11.1  DATEt•'.13,1 X.A3.1)(.12,5WTIME:',0,5X,'EXAMPLE NUMBER',I3) 
140 WRITE (0.1501 N,N 
150 FORMAT (10 ,////,' THE ORIGINAL-.13,1 )0,12,' MATRIX A IS GIVEN BEL 

10 
CA
W
LL

1 
 mxnn (A.DIMN,DIMN,u,N,FIELD.LENGTH,6.0 

CALL ELAPSE (E,DATE,1 ,K) 
CALL JACO (A.O.V.0.2.01MN.N,ROT,EIVEC,MC) 
CALL ELAPSE (E,DATE,1,K) 
IF (RES EQ. 1) CALL CHECK (A/V.BEDIMN,N) 
1 F (NORM LEo 1) CALL NORMALISATION (V,DIMN,N) 
IF (ROT) 400,250,‘50 

200 ROT=-ROT 
IF PO 2:U099,21 0 

210 WRITE (6,420) 
220 FORmAT (10 .////r32)(,1 ** WARNING * A MAXIMUM OF 50 SWEEPS HAVE BEE 

1N COMPLETED ** 1 ) 
GO TO W ,50 

230 WRITE (6.40) 
240 FORMAT C1 .////,' ** WARNING 	A MAXIMUM OF 50 SWEEPS HAVE BEEN C 

10,1 PLETED ** 1 ) 
250 IF (K) 21099,460 
260 wRITF (6. 70) RoT 
270 FORMAT (10 ,////043)014,1  JACOBI ROTATIONS HAVE BEEN USED') 

GO TO 3on 
280 WRITE (6.i90) ROT 
190 FORMAT (1 	.////,1X,I4,1  JACOBI ROTATIONS HAVE BEEN USED') 
3Q9 WR1TF (6.31o) 
310 FORMAT (10 ./Ill' THE EIGENVALOES OF A ARE:') 

cALL MOM (n,),D;IIN,1,N,Fito,LENoTH,6,o) 
IF (FI1JHC ,E0. 0) GO TO 400 

320
OTTE 
 FO

TTE(6.) 
RMAT i1

320
H ,////,' THE MATRIX OF CORRESPONDING EIGENVECTORS IS GIV 

1FN BELOW') 
CALL MXoR (V.DINNOIMN,N,N,FIELD,LENGTR,6,0) 

END OF SEGMENT, LENGTH 	317, NAME NONM 



0092 	 SWIEnoTiNE JACO (A.0,V,8.Z,DIMN,N,ROT,EIVEC/MC) 
C093 	INTEGER nIMN,N,EIVEC.ROT.RES,P,Q 

PEAL AOIlw.niwO, DoinN), u(01W601mm), 0(DtMN)1 1(0IMN). MC 
W1A IIONIAC PRECISION SON 
0096 	IF (Ftvi:r .LQ. 0) GO TO 30 

no IA 1=1,N C097  
nO 10 J.ItN C098 

10 v(I 4J)=0 0 (099 
(100 	nO ,n p=10, 

H81
0 v(pfp.10 
.,0 ,,,0 , P=,,N 

0103 	D(0)=A(P.P) 
(104 	 II(D)=D(P) 
0105 	 40 7(0)=0.0 
C106 	 90T=0 
0107 	 rps.,04*(11-1)*0.5*MC 
c108 	nO 100 1=1,50 
C109 	 st=A 0 
C110 	0011  int) n=1,N.1 
till 	no 1210 0=P+1,N 
(112 	 TPAP=ABS(A(0,9)) 
(113 	100 s0,4 =GNII+DBLE(TEMP) 
(114 	 SM=GNM 
0115 	IF (gm .LE. EPS) GO TO 500 
0116 	TRESH=0 0  
0117 	IF (I .LT. 4) TRESH=11.2*SM/N**2 
C118 	00 11') p=1,1-1 
0119 	no 730 (/.13.01,N 
0120 	 G=100.0*A0S(A(P.171)) 
0121 	 IF IT .GT. 4 .ANn. ARS(D(P))+G .01  ABS(D(P)) .AND. 
C122 	 1 	AVIG(1):0))+G .0. AGS(n(Q))) GO To 310 
0123 	IF (ASS(A(P.0)) .LE. TRESH) GO TO 320 
024 	H=0(0)-D(P) 
0125 	IF (AfISH)*G .EQ. ARS(H)) GO TO 110 
C126 	 THETA=0.5*H/A(P,O) 
0127 	 T.1.0/(ABS(THETA)+SORT(1.0+THETA+.2)) 
0128 	 IF (THETA .LT. 0.0) T=-T 
0I29 	GO TO 12n 
0130 	 110 T.A(P,0),N 

Elii 	
120 r=1.21/sokT(1,0+T+T) 

SmT*C. 

ElN 	
TAU=S/(1,04,C) 
H=T*A(P.9) 

035 	7(P)=Z(n)-H 
0136 	 2( 0 )=ZO)fli 
0137 	n(0)=D (n)-14 
0138 	D(0)=D(Q)+H 

tilZ3 	
A0,0).0 0 
IF (0 .0). 1) GO TO 210 

0141 	no 200 .1=1,P-1 
C142 	 4JP=4(.1.n) 
C145 	 AJO=A(J.Q) 
0144 	 A(J,0)zAJP-Si, (4J9+AJP*TAU i 
C145 	200 A(J,n)=0Q+5*(AJP-AJO*TAU 
C146 	210 IF (P+1 	CT. 4-1) ou TO e 0 
047 
	

DO 270 1+1.Q-1 

Elt0 	
APJ=A(P.3 
AJO=A(J.Q 

0150 	 A(P.J)=APJ-S*(A.19+APJ*TAU) 

El;1 	
220 A(.1.0)=A.14+S*(ApJ-AJO*TAU) 

0153 	 00 
250 IF Kn

240 J=I1 
.EQ. 

4N1I.N 
 GO TO 250 

Mt 	
APJ=A(P.J) 
A0J=A(Q.J) 

0156 	 A(0-1).A0J-s4,(AnJ+ApJ*TAII) 
0157 	240 A(4.J)=AnJ+s*(APJ-AQJ*TAL) 
0158 	250 IF (FIVEC .EQ. 0) GO TO 300 
0159 	 00 260 J=1,W 
060 	vin=vc.I.P, 
1.161 	 vJo=v(J , Q) 
06Z 	 v(.1.0)=VJP-S4, (VJO+VJP*TAU) 

b122 	
260 (,)=v3Q+s*(VJP-VJO*TAII) 
30Q POT=ROT.1 

0165 	no Tn 320 
C166 	510 4(10,0=0 0 
C167 	320 cONTTPUE 
0168 	 330 CON/INUE 
(169 	 no 340 p=1,N 
0170 	 R(P)=0(0) 41(P) 
C171 	n(n)=130) 
C174 	 340 20))=0.0 
0173 	 400 CONTINUE 
0174 	 907=-ROT 
CIS 	500 no 5/0 1,211,r1-1 
cl 6 	 DO 540 (1=P+),N 
CI 7 	TVP=A0s(D(p))-ARS(D(0)) 
1170 	 IF (TEMP) 510'530'530 
0179 	 510 Sm.D(0) 

0181 	
0(P)=0(q) 
n(0)5SM 

0182 	no 520 1.1.14 
0183 	 =`=(1,o) 

ORg 	52.0 
vci,p?e,(I,u) 
vti,n)=sm 

086 	53e cONTINUE 
0187 	540 CONTINW: 
C188 	no 600 tm1'N-1  
C189 	nO 6n0 .11514104 
C190 	 600 A(I.J)=A(J/1) 

RETURN 
Ell 	END 

END OF SEGMENT' LENGTH 	821, NAME JACO 



Cln L: 	SOnRoUTINE 4oRMALISATION (V,DIMN,N) THTEGER nIM:4 
0195 	REAM vOIMN,n1MN) 
0196 	no ›n J=1,N 0197 	AuX=1,(1,J)• 0198 	no 10 I=2,N 0199 	IF (ARS0/(I,J)) .GT. ABS(AUX)) AUX=V(I,J) CGOO 	10 coNTiNUE 0201 	no 2n 1=1,14 C?02 CGO3 	0(7,J)v(I,J)/AUX 20 coUTTNUE 
q8! C 	30 cOvTINUE RETURN C206 	END 

END OF SEGMENT, LENGTH 	03, NAME NORMALISATION 

0207 	SURROOTINE CHECK (A,w,R,bIMN,N) 0208 	REAL A(i1Il1N.DlMiJ ), VOIMN,DIMN), B(DIMN) C209 
0U 	

no 40 I=1,N nO 30 J=1,N 
0212 	7)10)";111=i,N 
0213 	2030  Rum=sum+A(I.K)+V(K,J) R(J)=UM 01! 	no 4nS J=1,N 0216 	40 A(I,3)=R(J) 0217 nO An K=I,N 
0218 	no 70 r1,141 
0g 0221 	

cuM=0 
no 6n6 =1,N 60 Rum=suM+W(I,J)+A(I,K) 70 A(J)=SUH 

tiN 	
no SA I=N 

80 AcI,K)=11()) 
;VDU" tii6 

END OF SEGMENT, LENGTH 	156, NAME CHECK 

PPEGERIC 111:1P(ff;4304t  IL), BUFFER(2) 

IN 	DATA CALL/2./ 	. 
nATA MOIITH/IJAN,,,FERIIIMAR',PAPR'OMAY1,,JUNI,IJW.TAUGIOREP'. 

ffli 	i IOCT",,, NOVI!DEC't 
GO To (100,240,500). NO 0233 	100 CALL MTIME (N) C234 	FEN 

qig 	
CALLIOCALL IF (CALL .EQ. 2) GO TO 110 c 37 	EE=E 

Hu 	RETURN 110 FRE-FE 
fflq 	E=E*1 0E-3 RETuRO 
Mi 	200 CALL nEFRUF (2,8,BUFFER) CALL DATE (E) 
Eig 	210 VINNT9Ailt" E 0246 	READ (2.220) (nAT(I). 1=1,3) 0247 	220 FORmAT CT2,1X,I2.iX.12) 
1, 0250 	

nAT)=HONTH(DAT(2)) E,E 01.0E-03 Cite 230 IF 1.0*EE .EQ. 1.0) GO TO 240 0251 	F=FE 
0252 	FE=EF/2.0 
fflls 	Z40 RETURN GO TO 230 
0255 	300 IF (K) 170,370,31 0 0256 	310 IF (F .6E. 60.0) GO TO 330 
fflg 	WR1TF (6.320) E 320 FORMAT Liu .////,44X.IEXECuTION TIME wAS',F7.3,1 SECONDS') 0259 	GO To 300 0260 	330 IF (F .GE. 120.0) Go TO 350 C261 	E=F-60.0 a62 	wRITF (6fg40) E  
L:e65 	340 FORMAT 0 .//i/,40X,'EXECUTION TIME WAS 1 MNUTEI,F7,30 SECONDS' 
C264 	11 

Ogg 	
350 GO TO 304 1=F /60.0 F=E-I+60 0 C267 

WRITE (6,360) I, E 0268 360 FoRMAT (04 ,////,39X,'EXECUTION TIME N4S',I3,' MINUTESI,F7.3.1 SEC 
qP 	

10VS') 
0 1 	GO in C272 370 wRITF (6,380) E in voR4 (IN ,////,' EXECUTION TIME WAS'.F9.3,' SECONDS') 
0275 	END 

END OF SEGMENT, LENGTH 	182, NAME ELAPSE 



	

C276 	WIROWTINE MOP (4,DTMN,DIE1P,N,P,FIELD,LF.NG7H,STREAfI,IFLAG) 

	

C277 	INTEGER oIMA,OINP,P,WIOTw,STREAM 

	

V278 	REAL 4(01MI.o1MP). FROT;(6), FR!1T2(6), BUFFER(2) 
nATA MIT1/6H( 	.1HN.8:001P- 	.1W4.1HE,8H) 

,1HN,B;;XOP 	
/ 

	

1M 	nATA FRI1T4/6H( 	 .14NomE,84) 	/ 

	

C281 	IF (IFLAA) 10,20.10  

	

C282 	10 CALL DEFRUF (2,1600FFER) 

	

C283 	FRIIT1(5, FRMT2(5)=FIELD 

	

. C184 	WRTTF (:,20) FIELD 
V 85 '20 FORMAT (A0) 

	

0286 	READ (2.30) WIDTH 

	

C287 	30 FORMAT C1X.I2) 

	

4288 	IF (P*q!nTH-LENGTH) 100,100,40 

	

0289 	40 N1=LFWGTHP4I1TH 

	

c290 	N2=15/01 

	

0291 	143T=P-A*N2 
C292 ,FiATFLAG) 50.999,60 

	

t293 	50 4 

	

C294 	N4=1 

	

0295 	r,0 TM 70 

	

0296 	60 N3=(LEN6TH-0.0 WIDTH)/24.1 

	

C207 	N4=CIEN6Td-LAST.41 IDTH)/2+1 

	

C298 	70 !.'RITE (2.00) N3.NI.N4.LAST 

	

a 	80 FORMAT (T ) l READ (2.0 ) ERMT1 (2). FRMT1(4), FHMT2(2), FRMT2(4) 

	

C301 	90 FORI!AT i484) 

	

C302 	no TO 300 

	

0303 	100 Y2=0 

	

0304 	IF (IFLAG) 110,909,120 

	

C305 	110 N3=1 
WGO TA 110 

fTWNGT H-p*W/DTH)/2.1 

	

8 	
a  

(2.140) N3.P 

	

C309 	140 FORMAT i214) 

	

013 	150 ;AAA A.p,12), FRHT1(2), FRMT1(4) 
no TO 210 012 

	

C313 	200 IF (N2) 099.710,3An 

	

4314 	210 wRITE (STHEAM.FHMT1) ((A(IrJ), J=1,P). 101.N) 

	

Hlg 	30 0 N511=2,,N1 

	

. 017 	IF (N-1) 909.400.31 0 

	

C518 	510 nn 130 K=1,12N1,81 

	

B20 9 	
KK=K+N1-1 

• WRITE (STREAM. 320) K. KK 

	

C321 	320 FORMAT OH ,/,' COLUMNS',13,' T0',13.' ARE 

	

0322 	330 wRITF (3TREAM.ERMT1 ) ((A(I,J), J=K000, 1=1,N) 

	

ffl2 	
IF (VT-1) 370A141.360 

340 WRITE STREAM.350) P 

	

C325 	350 FORI1 AT ,:1H .1.,  COLMMN',I3,' IS!') 

	

C326 	WRITE (STREAM.FRMT2) (A(I,P). I=1,N) 

• C3 

	

V127 	no rn 3
N1.

70 

	

28 	360 KK=421 

	

1329 	WRITE (STREAM,320) KK.P  

	

C330 	WRTTF (STREAM.FRMT2) ((A(I,J). JOCK/P), 1004) 

	

C331. 	370 RET!IRII 
4U0 no 410 K=1,N7N1,N1 

tiii 

	

C334 	
YK=X4.141-1 

410 wRITE (3TREAM,FRNT1) (A(1,J), J=K,KK) 

	

0335 	IF (LAST-1) 440,421,430 

	

C336 	420 WRTTF (:',THEAM.FRMT2) A(1.P) 

	

v337 	GO Tn 440 

	

8391 	
430 KK=92N1+1 

wRITF (STREAH,FRNT2) (A(1,J), J=KICDP) 
V340 440 RETURN 

C34 - 

	

(341 	999 sTO
D
R MXOP 

EN2 

END OF SEGMENT. LENGTH 	477, NAME MXOP 



	

OH 	
SUGROUTIUE.INP4T (A.0IMNIN.NO.EIVE0,RES.NORM.EIEL0) 
INTEGER 0IPA.RES.EIVEC 

	

1.345 	REAL. A(DTHNOIMN). FIELD 

	

0346 	REM/ (5.10) N. EIA(EC. FIELD, RES, NORM 

	

i.A67 	 10 roWIAT (1Z,1#A6.Z11) 

	

048 	no To (100,400,504,400.500.600,700,800,900)r NO 

	

0349 	100 c0,,Tifilii! 

	

C350 	 READ (5.110 ( (A(It.1). .011.4). 1.1.4) 

	

051 	 110 FOR'IAT (AGO.0) 

	

(352 	pET9pN 

	

053 	 ZOO rONTTNUE 

	

0354 	 GO Tn 1:10 

	

1.355 	 300 conTINUi4 

n 	
1
0 J

=
l
0

A 

	

tql9 	o :1ul 
no 0 

	

1358 	 310 A(T.J)=0 0 

	

059 	 no 120 IlligN 

	

(360 	 A(I,I)u1 0 

	

C361 	Al11,N)=1 

	

0362 	320 A(0.I)=I 

	

(363 	 (I.ErIPN 

	

0364 	400 CWITINUE 

g8 t113 	 i 
410 A(I.J).,.1relOAT(I+J1) 

pET'lprl 	. 
500 C(PrifflUE 

x=? ,n 
510 X=2;p*X 

nO )70 r=1,11 
DO 520 jal,w 

520  A(I.J)=0 0 A(1.1)=-1.0 
ACI.N)ki-lf0 
n0 510 1.11.:N WI 
A(1,I+1)1X 

530 A(T+1,Ii=)( 
60 540 1.101-2 
A(1.14,7). .0 

540 A(14.2,1)m .D 
EET'IRN 

600 CCUTI00E 
X=0.6  
GO To 510  

700 coriTTUT,-: 
8E 4 D t5.710) ((A(I,J)t Pg1,8). I.11,8) 

710 FORMAT 000.0) 
RET!IRII  

800 rONTroll 
no 310 ialeN 
no POO la ,i4 

810 4(1,1)=0.0 
A(1.1),A(N,0=5.6  
A(1.2X,A(2,1).001-1.N),A(111011).2.0 
nn nw.9 v4,-1 

820 A(1.1)=6 0  
DO FM 1..2.N-2 
J=141 

830 A(IfJ),A(J.I ) 03.0 
3 no 40 I.1,N-2 

J=I+7 

	

55 	RAU 6(1..1).A(J,I1=1.6 

	

X486 	 Jxy...PI3  nO CO In1.14-.3 

	

.0407 	 850 A(I.J),A(JoI).11.0 

	

1.408 	REr.IRN 

	

Etn 	900 CONTINUE 

1366 
C367 
c368 
(.369 

• 	070 
C31 
c37

7
7 

0.373 
Hc 
e376 
077 
e37 
e379

8 
 

03
080  

81 
082 

• 	C381 
1.184 
ons 
086 
C311 7 
I:3MS 
0389 
e390 
1.391 
0392 
C393 
e394 
095 

1,391 391 
1.398 
0399 
0400 
0.01 
1.402 
1.405 
C604 

END OF SEGMENT. LENGTH 	492. NAME INPUT 



THE METHOD OF JACOBI FOR THE EIGENSOLUTTON OF A REAL NXN SYMMETRIC MATRIX 

THE ORIGINAL 4X 4 MATRIX A Is GIVEN BELOUt 

1 

A. Aninno0oF IA 
4. 11 00000E ,,J 
4. qo ormogE ,,,) 
4. on 000000E 00 

THE EIGENVALUES OF A ARE! 
1.5)00000000E 11 

THIS PROGRAM WAS RUN ON 13 AUG 74 
AND EXECUTION STARTED AT 06/11/41 

EXAMPLE NUMBER 	2 

Ge 4.00000o11000E 00 00 4.000100E 
6.000100 onuE 00 1.091 0 0 A0uO0r 00 .0000000000E 00 
1.now.1 00 	q00E 00 0.00000,10000E 00 

1.0000000000E 

.0000000000E 00 
4.0J0100 000E 00 4.00000.100M ou .0000000000E nO 

17 JACOBI 	ROTATIONS HAVE BEEN USED 

5.0000000000E 00 5.000000000AF 00 -1.0000000000E 00 

THE MATRIX OF CORRESPONDI10 EIGEUVFCTORS is GIVEN DELowi 
1.00000000c0E 	-8.4a45632524E-01 -9,9999999996F.-01 -9,0999099999E.01 
1.0..100(10fle09E 	1 0000000100E 00 -8:4043657 524E-01 0:0999999 c97E.01 

;:84 8$$81)0P-"1 -0ANTME:81 N8WHIV41.11 .3:0800030.8V 

THE RESIDUAL MATRIX V'AV IS GIVEN RELow; 

-3-kliagg1? 
i.74A2 9827 	1455191 2BE-11 5,0b00n0000)E 00 -5.0 1 03299 .11 
2.9103830457E-1 i .i:455191522.8E.11 -8.731149137,JF.11 -1.0000000000E 00 

EXECUTION TIME WAS 0.057 SECONDS 



APPENDIX 2  

237 

A JACOBI PROGRAM FOR HERMITIAN MATRICES 



1031 	TVTUR DIMEIVEGfROT,REGFLINE(79),DATE3) 
CO23 	REAL AR(14,12),AI(12,12), VR(12,1270,1(14,12), D(10, S(12). Z(12) 
CU24 	REAL MC 

EM 	D AT A LINE/ 79*111*/ 
CU2r 	CALI. ELAPSE (E.DATE,2,K) 
CU28 	MCmE 

Uili.  
c031 	10  FLM:NrE1 11201:IK::LIENGTH  

MS 	
DO 500 101041)10 ER 
CALL INpUT (AR,A.I,DIMNIN,NO,EIVEC,RESJNORM,FIELD) 

... 	C015 
Cul4 	

itIAKTIYWU9,100 

Mg . 	

100 WRITE (6110) TNE(I)c 1'1,79/, corn 10,3)1 1, NO 
110 FOR1AT (181,//, 1X, 'A JAcouI-LIKE M THOo OR OBTAiNING_THE EIGENSO 

(036 

1igTroNS OF A NX,1 HERmITIAN DATRIX't f1X. 2Alii/WOWTHIS PROGRA 
0039 	2M WAS RMN 01 1 ,13,1X,A3,1X,IZI/$45)(0 1 AND MCl/ ON STARTED AT.,A90 

c041 	
3 // 5qWEXAMPLE NUMBER',I3) 

WRITE o 

pc.° 

88ti 	
1.00 WRITE 	.130) rEct), I"1/43), (DATEl)* Is1,3), T NO 
130 FORMA T.41H /1 nil/  A JACOOI■LIKE MET OD fOR HWIT AN.MATRICEsix 

(.4112 

1 /0X.I.J41.//s DATEC.I311X,A3,1X11 -4, XrIIIMEI ..10. At'EXAMPLg NO 

Utg 
I:04( 	150 FORMAT OH ,////0 THE OBIOINALI430)0/120 MATRIX A *1 GIVEN SRL 

1 1.0W7PW150) NA 

.... 	C048 
CU49 	TIT?! (6,160) 
C050 	160 FOR'IAT (1H ,/,' REAL PART') 

ffll 	CALL MOP (AP,OIMN,DinN,N.N,FIELD.LENOTH,600 
WRITE (6.161) 

C053 	161 EOW1AT (1H ,/,' IMACIINARY PART!) 
C054 	CALL rocnP iAI,DIMN0IMN,N.N,FIELDILENOTH96,0) 
(055 CALL EIADS (E,DATE,I,A) 
i056 	CALL WiJO APDATO,VR,Y1,S,ZeDIMN,N,ROT.EIVECIMC) 

C058 	
CALL FLAPS.? (g,06TFOLK/ 1,05f 
IF (RE s,  .tg, 1) CALL cliecx (AR,AtoR,vtoa,0imN,N) 

COSY 	 IF (o0ii .Eq. 1) CALL NORMALISATI0N (VR,VIIDIMNoN) 

C061 	40g ROTn-ROT 
IF (ROT) Z00,250,450 .... 

 
C060 

c063 	00 WRITE (6,?20) 
IF (K) Z30,999,210 cU64 

g) 	
eL, FORMAT (111 ,////,32X,'** WARNING " A MAXIMUM OF BO SWEEPS HAVE BEE 

IN COMPWED **I) 
C066 	GO TO 4J0 
C067 	430 WRITE (6,240) 
(068 	440 FORMAT (IH,////0 4o* WARNING • A MAXIMUM OF SO SWEEPS HAVE BEEN C 
C069 	10MPLETED **I) 

CU71 	
4)0 IF (K) 730099060 CUILI 
460 WRITE (6,4-(0).RQT 

Fq 
074 	

au FoRmAT (in ,////,41)016.' JACOSP.LIKE ROTATIONS HAVE SEEN USED') 
Go TO 300 

[00 WRITE (00290) ROT 

,- 
 

Cola 	300 WRITE (6,310) 
490 FOR'IAT (1H (///r1X.I40 JACOBI.LIKE ROTATIONS HAVE BEEN MDT) 

C077 	S10 E01171AT (1H #////,' THE EIGEHYALUEG of A ARE;') 
C078 	CALL MKrIP (o,1.DIMN11,NFFIELPfLENOTH.6f0) 
CU79 	IF (EIvr,C .EQ. 0) 0n TO 400 
CORO 	WRITE (6,370) 

HR1 	320 FORmAT (1,////0 THE MATRIX OF CORRESPONDING EZOINVICTORS IS GIV 
1EN RFLrP)Il 

C0A5 	WRITE (5,1 01 

(086 
C085 	

CALL 101* rROIMNOIMN,N,N,FIELD.LENOTHOS,O) 
WRITE 6'1 1) 
CALL wolo Iti,DIMN,DImN,N,N,FIELD/4ENGTH,6,0) 

C014 

8P4 
c o O 	330 FORMAT 1H .1111'' THE RESIDUAL MATRIX V"AV IS GIVEN BROW) 

WRITE 11,3.50). 	, 
IF (RE5 .M.0) GO TO 400 

'Uo0 wRITR (0,160) 

MI 	FAii.EM*pipP,DIMN.DIMN.N.N.FIELDsLENOTM.6,0) 

0093 	CALL MW(AispIMNOTM4,NrN,FIELDtLERSTHIP6.0) 
CU94 	400 CALL ELAPSE (E,WEr3,9 
C005 	IF (K) /3p 909,410 
0(.096 	410 WRITE (6,47.0) (LIUE(I), 141•60) 

4cy FoRmAT 1H ,////,31X,6OA,) 

M
cu91 	

I 430 WRITE 
 GO To 5 0 

ITE ( 1440) (cINE(I). I+1.40) 
C100 	440 FORTIAT OH .////.1X,40A1) 

881 	
500 	E

K  
CONT/NU 
STOP O 

R81 	999 
EN
STOPO NORM 



MI 	
SupRouTINE HmJ0 (AR,AIrDO/RoVIrgeZFOIMNoNtROT.MINCIMC) INTEGER ronN,N,ElvEc,R0TIR,08RES 

Clop 0108 	REAL AR(DI1N•DII1N), AI(DIMN/DIMN )L  VRCOINNOIMN). VI(DIMINeDIMN) 

MIO 	
REAL D(D1W1). D(0110; Z(DIMN), MU noosiE PRECISION S ri IF ( Eivre .CO. 0) 0 TO 30 

Hl; 
MI 	1U VI(I,./ v • VR(I•4 8.8 

DO 1R :1:4 

0115 	DO 70 Pm1oV C116 
HUI 	3U DO 40 P=1,N 20 VR(P,P)m1.0 

Plg 	8(P):10(e) D(P)pAR(PIP) 
40 2(P)=0.0 

Mi 	
ROTn0 
firgVnillig8.1*" 

innUlt0)**2+AI(Pig)**2) 100 SW1.2SUII+DRLE(TErIP) 
INN .LE. EPS) 40 TO 610 
'WI 12(.3 0'. 4) TRESNa0.24,SH/N"2 
00 5 00 P=1,0-.1 DO 500 1.P.01,N TEMP=SORT(AR(P•01)**2+AI(P0)**2) G.Tnn.o*TEnP IF (I .GT• 4 .AND. Ansocp))441 EQ. 140S(D(P)) .AND, 1 ABICD(1))+G .E). ADS(D( 0))) 00.TO 410 IF (TEMP 'LE. TRESH) GO TO 420 	.. EmAR(P,O) FEA/(PIO) IF (A05(E)ABS(E)) 200,210,210 4CUU TcE/F ST01.DfSORT(1.0+T*T) CTeTO* 

Sz  410 GOFTE 20 

CTa/.OpO RT(1.047*T )  
CCU 84ZAE *0T+F+ST 

Rlg t126 C12f C128 
Hi 
M

t 
/ 

MI C135 
P3t; '18 
839 40 C141 Cita 

11  46 
1 143 44 145 

c  C148 
0
147 
149 C1 
M
50 

	

2 	1120)0)-D(P) IF( (ADS01)0'EQ. AOS(N)) GO TO 230 015S THETAn0:5*1/0MEGA 
0

154 

	

C155 	To1.0/(ADS(THETA)+SQRTTO+TMIT4461q)) 

	

Mt; 	
IF (THiTA .LT. 0.0) Tow 

	

C158 	430 TvOMEG / 0 GO TO 40 
440 Em1.0/SORT(1.0.17.1) 

	

0159 	ST*C 
Flo 

	

.1 1 	TAunS/0.0.0C) HuT*000A 

	

162 	Z(P)o2(P)wN 0163 C 

	

0165 	
Z(0)aZ(Q). 

	

C164 	D(P)10(P) ... 
i166 
168 

	

16? 	rflP:23:0 

D(0)0(1)4. 

IF (P .E , 1) GO TO 310 

	

IMP 	00-3.00.-JstAasel 



	

Ciii) 	AiJO;As(J;(2) ' 
ARJImAR{J,Q) C171 

ifi 

	

1 4 	

AIJ1121 J,P) 
A1,11.8 Jfq) ' 

	

1175 	
AR(J.P uANIP•S*(ARJO0 C7+41JQIIT+ARJP10 TAU) 
AR(J0).3103P141ARJP,IICT.AI4P4STwARJQ0 T8U, 

	

P 	
AI(J.I )nAIJP-S4  AIJ0+CT-ARJ(1+874,APP*TAU) 

300 Al(J0)=AIrS4 AI4P*CT+ARJP*ST.AIJ(PTAU) 
310 IF 4P+1 .0 . g-1) GO TO 330 

0$ 

	

180 	
no -.20 .1mr)  109-1 

	

HR1 	

ARP.ImAR(PrJ) 
ARJOmAP11) 
AIPJmAI Po ) 

	

C1A3 	AIJI.AI .1, ) 

	

8g. 	
AR(P.Pr,ARPJ,-S4(ARJQ*CT+AI.IgtoST+ARPJ+TAU) 

	

C186 	AI(P,J)=AIPJ-.0,  -AI.1010CT+ARJ(1,5T+4 0J*TAU) 
AR(.1.01?=ARJ1I++ ARP.1 4,CT+AIP,I0ST.A81(.1*TAU) 

	

t189

)RP 	no At(),()).A1Jci+s* 'APJ*CTORP.I+ST*A JIPTAU) 

DO 340 J.1+1,N 

	

188 	330 IF (0 .F. O. q) G TO 350 

ARPJmARIPT • C190 

pl 
195 

	

194 	

AIPJnAl Ps ) 
AROJmAR Q. ) 

Al9J.AT Qt.)) 
AR(P,J)mARPJ■S*(ARQP,CT..AIWIFST.ARPPTAU) 

	

C196 	
AR(9,1,AR9J.0S*( ARPJ*CT+AIPP,ST•ARQP,TAU) 
AI(PIJ mAIPJ.•S+ AIQJ*CT+ARQ.1+ST.A1P,1*TAU, 

C195 

	

C19, 	340 Al(1,.) mAiv+s* AIPJ*CT...ARPJ•STAACWTAU) 
191S 

	

199 	
350 IF (EiVrc .v). 0) GO TO 400 

DO 760 J.1 ,r 
200 

	

Eq; 	W.J;I:MJ:Ii 
49JP0VR(J.1:/ 

C203 VIJOI(J.1

p

) 

	

C204 	VR(J.P OfFJP .SVRJQ+CT+VIJ4*ST+VR4P+T8U, 
NVR(J.1 .vRros* VRJ94ET.V1jp+STwVR10,TAU 

 360 VI(J0)=VIJP.S4  Vi/04CT.48J4*ST.VIJPITAU) 
i(j.0)=VIJq+S*(VIJP*CT4VRJPPSTwV0018U) 

	

C208 	400 ROT=R0T+1 

	

C209 	40 TO 420 

	

C210 	410 AR(P,O)=0.0

N  

	

till 	440 CONTIUE 
AI(P,q)=0.0 

	

1
2 11 6 
	

D ( P )= 0( P )
+i(P)  

co 510 p=1 0 

	

213 	500 COOTIOUr 

	

; 	
D(P)m0(0) 

	

C218 	
510 z(P)e0.0 
000 CONTINUE 

1 
2 0 

	

2 1 	
610 no 6s() Pi1,N-1 

ROT=-ROT 

DO 650 9511+10 

	

222 	TENP.A0n(D(P))-ADS(D(0) 

	

C223 	IF (TEPIP) 620.6400640 
r24 
225 

	

226 	

620 smmr(r) 
nir)mn(q) 
D(0)p.511 
DO 63? Imjin 

Eqg 
IS/cn:rTIVR(10:1) 

	

P
q 	VR(1.0 mSM 

	

231 	SMmVI(I,P) 

	

232 	vi(y,r)mv1(1,4) 
coo victoomsn 

	

Hil 	

640 CONTINUE 
650 CONTINUE 

DO 670 I.101.0 

	

C217 	DO 670 .161 +1-0 

	

C238 	AR(I.J )nAK(J,I)' 
r39 

	

240 	
070 Al(1..1)se.A1(JiI) 

RETURN 

	

241 	END 

IND OF SEGMINTI MOTH 1211• NAME HM.10 



	

0242 	SUERONT/NE NORMALISATION (01011I.DIMNoN) 

	

0243 	INTEGER nInu 

	

1

244 	REAL VR(DIMDIMN).VI(DIMNfDIMN) 

	

245 	 DO in .1:410N 

	

246 	AUX0VR(1..1)**2•VI(1,J).,1, 2 

	

267 	00 In tl2sti 

	

248 	TEmp.va(i,J),..?+vi(i.4).*z 

	

249 	IF (TE1O .0T. AmX) AUXaTEMP 

	

C250 	 10 CONTIWW. 

	

Hil 	
AUX=SIRT(A;IX) 
00 7n 1=1.1 

i253 

	

254 	
VRII,J)=0RII.J)/AUX 

20 91(1..))=VI(1,J)/AUX 

	

255 	 30 CONTINUE 

	

8g, 	
NETnRN 
END 

END OF SEGMENT. IANGT8 
	126. NAME NORMALISATION 

	

0258 	SUBROUTINE CHECK (ARsAI,0R.VI,B.ZIDIMNsN) 

	

259 	 REALlIgh gmeoimAiliolmaotma), YROIMNIDIMN),VI(DIMN/DIMN) 

	

261 	 DOUBLE REctiloN sumn,sumi 

	

1

264 	 DO 40 I=1.11 

	

263 	 DO 30 J=1.1 

	

?64 	 SUM0 .SUMI=4.0 

	

465 	 DO 20 K=1 ,N 

	

c4nn 	SUMR=SUMR*AR(T,0 10VR(Nfj)-A1(i0WVIcSe4) 

	

tab! 	 20 SWII=SUMI+AH(1.1 )*VI(X,J)+Al(isX)*VRIX/J) 

	

C268 	8(J)=SUHR 

	

0269 	.30 Z(J)=SUNI 

	

c;:470 	 DO 40 J=1.3 

	

ti471 	 AR(I,J)=B(J) 

	

127e 	40 Al(i,J)=z(0) 

tgi 
D u an K=1 ..1 

00 70 J=1.!4 

	

P6 	
SUMR,SWII0.0 
DO 60 I=101 

	

277 	 SUMR=SLN1R.0 VR(I,J)*AR(1,K)+VI(I/J)*AICI,K) 

	

C278 	 60 SUMI=SUNI.VN(IsOsAICIM''VI(I/J)*AR(IIK) 

	

0270 	 am=sulR 

	

two 	70 zw.suni 

	

C481 	 DO 80 1=1'4 

	

r

82 	AR(I,K)=13(1) 

	

?$3 	80 Al(I.K)=Z(I) 

	

484 	RETMRN 

	

C285 	END 

END OF SEGMENT, LENGTH 
	

340s NAME CHECK 

C286 

	

i;28! 	
SUBROUTINE ELAPSE (E.DAT.NO.X) 
INTEGER CALL. DAT(3), MONTH(12). OUFFER(2) 

i288 

	

289 	
DATA CALL/2/ 
DATA NONTH/IJAN,',FEPOMAR'OAPRI.IMAYIIIJUNIeljlalevAUGI,osEpl, 

	

290 	1 'OCT'r'NO.:1 ,'DECl/ 

C319 3.10 IF 
O O 34.■0 G T 
 (E .GE. 120.0) GO TO 350 

	

Bi? 	
E=E-60.n 
WRITE (4,340) E 

	

324 	340 FORMAT (1H ,////s40WEXECUTION TIME WAS 1 MINUTE'sF715,1  SECONDS' 

	

023 	
G 

1) 
o TO 3^0 

	

0325 	350 	
) 

I=E
E-I
/60.o 

	

Vie' 	c:4.6;  

	

0 I 	 ORITE (c.. 60) I, E 

	

028 	360 FOR!AT OH p/i//139WEXECUTION TIME WAS's130 MINUTESI.F7.30 SEC 

	

c32y 	loos') 

	

C330 	GO TO 3n0 

	

4331 	3(0 URITE ((,31O) E 

	

Pi2 	suo FORrIAT (1H 1 ////,' EXECUTION TIME WAS',F9.3,' SECONDS') 

	

4,3 3 	390 RETIMH 

	

0334 	END 

0291 

r2r
e 

293 
294 
295 
96 

49Y 
98 

r99 
380 

i0/ 
303 
104 
0305 
C306 
0307 

EiV4 

Sill? 

CAi 
C314 
C315 
0316 

081  

GO TO 	C100.200.300), 	NO 
100 	CALL 	firlm 	(N) 

E=N 
cALL=1-CAlL 
IF 	(CALL 	.EQ. 	2) 	GO 	TO 	110 
EE=E 

11V NME 
E=E*1.0(1-.3 
RETURN 

200 	CALL 	DEFSUF 	(2.308UFFER) 
CALL 	0,17. 	E.) 
WRITE 	(i..2 	0) 	E 

21 0 	FOWIAT 	'A:3) 
READ 	K2220) 	(DAT(I). 	1=113) 

420 	FOR9AT 	(Ie.1X,I7,1X,12) 
DAT(2)=MOATH(VAT(2)) 
EfEr:=1.0E-01 

430 	IF 	(1.0.0EE 	.EQ. 	1.0) 	GO 	TO 	240 

O
E /2

3
0 GEO=E =TE 

440 RETnRN
20  

300 	IF 	(K) 	7,70,370,310 
310 	IF 	(r 	.(',E. 	60.0) 	GO 	TO 	330 

WRIT 	C6.420) 
320 	FORnAT 	.1 0 	,//i/044WEXECUTION TIME 	WAS',F7.3,' SECONDS') 

END OF SEGMENTS LENGTH 	182, NAME ELAPSE 



0335 	St/IMP/TINE MXOP (A.DIMN,DIMP,N,P,FIELDsLENGTH.STR4AMeIFLAG) 
C336 	INTEGER olMH,DIMpIP,WIDTiOSTREhH 
C33( 	REAL A(DI11N,D1MR). FRMT1(6), FRMT2(6)t DUFFER( 2) 
 DATA FR1T1/8H( 	08/0811X0P 	OHNo1NE.88 	/ 

C339 
C340 	

DATA FR1?/3H( 	.1814.81iXolP 	118)4118COIN 	/ 
IF (1FLAG) 10,200,10 

Q341 	10 CALL EF(OF (216,0UFFER) 
434i 	FRmT1(5), FRMT2(5)mFIELD 
C343 	WRITE (2,?0) FIELD 
C344 	'eV FORMAT (A0 
C345 	READ (2.30 WIDTH 
C346 	30 FORMAT (1X,I2) 	

. 

Hii 	

IF (i5,0410Tg-LENGTH) 100.100140 
40 N1=LFNGTH/4IDTM - 

Ne=^iN1 

C351 	
LAST=p-N1hR2 
IF (IFLAG) 50,999160 

C35e 	50 N3=1 

43 
si353 	

G
N
O
4=1 

T 54 o 70 
1355 60 N3=(LENGTH-II1*WIDTH)/2+1 
0356 	N4=CLE4GrI—LAST*WIDTH)/Z+1 
0357 	io WRITE (Z. pp) 83,N1.144,LAST 
058 
c359 
c360 	

do FORMAT (414) 
REAR (2,90 FRMT1(2). FRMT1(4)o FRMT2(2). PRMT2(4) 

Yu FoRmAT (4,14) 
0561 

100 N21(11 
3)0 

C36t 
C363 	

N3=1 
0365 	

110,999,120 
.364 	

110 I  

C.565 
C 	

GO TO 130 
366 1ZU N3m/LEMGTH.•P*WIDTH)/2+1 
C36, 	130 WRITE (2.140) N3$1' 
• C368 
C369 	

140 FORMAT (214) 
READ (2.150) FRIIT1(2), FRMT1(4) 

C370 150 FORMAT (2A4) 

4
O
3 i 
p 	GO T 210 

LOU IF (
O
N2) 999,210,300 

4:373 	el() WRITE (sTREAM.FRHT1) (CACI,J), Jul.P). 100) 
C374 RET'llifi 
0375 	300 02q1=N2.02, 
c376 	IF 4N-1) .991400.310 
we 	310 DO J30 K=1/11Z141.M1 
C378 	KK=K+N1-1 
C37Y 	WRITE (STHEAm,320 K. KK 
(illy 	31U FORMAT (1fi ,/, 	COLUMNS',I3.1  T01 ,13,1  ARE O) 
i,.. 8 	330 WRITE (STREAM,FR11T1) ((q(11J). JINK,KK), Im101) 
C38e 	 IF (LAST-1) 370,340,300 
C383 	34u WRITE (STBEAM,350) p 

350 FORMAT (1M ./,' CoLUMN't 130 Illy ) C384 
C385 	WRTE (STREAM.FRMT2) (WO), 1101,N) 
c3A6 	WRITE   370 
c38f 	30U K092111+1 
1,388 	WRITE (STREAM,3201 KK,P 
0389 	 WRITE (STREAM( FRMT2) C(A(I,J), J,akK,P)► ImieN) 
1,390 	30 RETmR0 
C391 	400 DO 410 K=1,112141,N1 
0391 
C393 	

KK=v,,41-1 
410 WRITE (STREAM.FRMT1) (A(1.J). JoK.100 

C394 	 IF (LA5T-1) 442.4M430 
c395 	4Z0 WRITE (STKEAMsFRMTD A(1,P) 
096 	GO TO 440 
139( 	430 KK=012111+1 
C398 	WRITE (STREAMfFRMT2) (A(leJ), J.KK,P) 
099 	44u RETURN 	.. 
c4Ou 	YYV STOP MXOP 
‘,401 	END 

END OP SEGMENT/ LOGIN 427. NAME MXOP 



!t48015 	

SUINOoTINt rPUT (ARiAI,OIMN,N,NO,EivEC,RE8,NORM,11 161.0) 
INTEGER DIMI,E 1./EC.RES 

4 04 	 REAL AR(DIM:,DIMN),AMXMN,DIMN) 
READ (5.10) N.FIELD,EIVECoRESINORM 

0406 	10 FORNT (I4,46.311) 
0407 	GO TO (100,,001.100,400,500,600,700,800,900), NO 
0408 	100 CONTINUE 
C409 	REAn (5.110) (CAR(I,J).AIAIPJ)e PoltN)t Well) 

ql? 	
110 FORu

UR
AT (200.0) 

RETN 
C41e 	400 CONTINUE 
C413 	GO TO 100 
014 	300 

G
cONT

T
INUE 

U415 	o n 100 

V.16 	400 conTinuE 
'4 t 	DO 410 1=1/ 
C418 DO 410 j=1L 
C41V 	410 AR(I,J). AI. I.J)11 0.0 
020 	DO 420 I=1.4•1 
C4V1 	Z=SORT(FLOpliff(Nm1))5 
C4ee 
9423 	

AI(1.1-01)0 
4eo AI(1+1,1)4-4 

RETuRO 04 

igi 	

5UU CONT!NUE 
GO TO 400 

600 CONTINUE 

C 	
GO Tn 400 

429 f00  cO NTI N
A
UE 

C
0
4

0 	
dOU CONT1NU

0 
 
0 

C431 	GO 70 400 
033 	900 CONTINUE 

035 
3 GO 

O
TO 400 4 

EN u4  

END Op SEGMENT, LpNoTH 	203, NAME INPUT 



13:3:2,337,?,,33;11:2 ::lì.0.1K04.̀ii:S -i:ig?ZitsuaE.:8; .91:909090909090909090701-81,  1 

-‘?:14r0090`)0907}9090°01-3 .0,1gA;iggi:g1 ..tigf,t217,121E:8; 1:;iligg121:12 

THE MATRIX pf CORRC1PONDIDG EIGENVE0T0RS IS GIVEN BELoWI 

REAL pARI 

A JACUI-LIIII METHOD FOR OBTAINING THE EIGENSOLUTIONS OP A NXN HERMITIAN MATRIX 

THIS PROGRAM WAS RUN ON 2 AUG 74 
AND EXECUTION STARTED AT

2 
 17/26/07 

EXAMPLE NUMBER 2 

THE ORIGINAL 4X 4 MATRIX A IS GIVEN BELOW'  

REAL PARI 
7.o000onpo g oD Lounnouon8 00 1.0000no0000E Oo . 0000000000g 00 
3.4 OvOlir t On r.Orno0nuOu  00 	olouoououe ou . .00000uoonut ou 

1 .1:8 88880o8 i 88 .1:84888888o 0 0 -i:00 00 oo00E o 
.00 0080o00E 08  . .00oom000g oo 

00000o0000t oo 

IMAGINARY PART 

'.88881
0
838889 

-1: 0000E 0 - .0ogoo 
00 00000E 0 

0.0000000000g.01 2.00000010000E 00 200000000001 00 
0.00000000out.01 ..t.uu00000000E 00 .2.0000000000E 

00 2- 0000000000g 00 0.0000000uouE.01 11.0000000000k.o3 
2:0000000000g 00 0.000o0o0000E.01 0.0000000000B.01 

17 JADO01+41E5 ROTATIONS NAVE BEEN WM 

THE EIGERVALUES OP A ARE; 
1.20000000006 01 8.0000000000E OU 8.0000000000E 00 2.2178405400E01 

IMAGINARY PART 

ilAg4)51q:1; 	.;q1.inOgga:82  
liv7.7000>00E.ul 

.Vag3/10 	
: so/10018f1-02 7:0550148170E.° 

4 . 	.0550148160B.01 -2:4304002104E.01 	.9999900997E4.01 

12102p010E.01 	91872366!-11 - 	d2781411958g:114 

-1:0M1:11/ 10492UggE,1i : .24h641d4t:il "TAUT 119111=4 1:1111tripl 73:gigg112,W1 
-1: it ? ;1: 1 111=12 h■1:lf - :1g i441341:11 :t:Ita$:1741:11 

EXECUTION TINE. WAS 0.116 SECONDS 

THE RESIDUA' MATRIX N'AV IS GIVER BELOW; 

REAL PARI 

IMAGINARY PART 



APPENDIX 3  

245 

A JACOBI PROGRAM FOR NORMAL MATRICES 



02, 

	

MI 	
INT EGER DITILEIVEC,q0T/RES.LINE(76),DATES3) 
REAL AR(12,12),A1(1,_,12), VR(12,12),V1(1202), DR(12),DI(12) 

	

CO24 	REAL YR(12),YI(12), 2R(12),ZI(12), AAR(12,12),AA1(12,12), MC 

	

CO25 	DATA LINE/76,0 1H*/ 
KO CO26  

	

gni, 	CALL ELAPSE (E,DATE,2,K) 
08 

	

2Y 	
MCF' 

CO
E  

READ (5,10) NIHIDER,DIMN,LENGTH 

	

C030 	10 FORMAT c2I2,/3) 

	

C032 	
IF (LENGTH .LT. 120) Xz...1 C031 
DO 500 NO=1,NUMRER 

	

q115. 	
CALL INPUT CAR,AI,DIMN,N,NO,E/VECoREStNORM,FIELD) 

	

035 	
DO 2n 1=1,N 
DO 20 J=1,N 

	

0036 	AAR(T,J)=AR(10.1 ) 

	

CO3( 	CO AAI(I,J)=A1CI,J) 

	

G038 	CALL TIME (1) 

	

C040 	100 WRITE (6,110) (LINE(1), 1=1,76), (DATE(I)s I=1,3)1 Ti NO IF (K) 120,909 E 100 C039 

E8t 	
110 FORMAT cvil,//,?-ex.,A JAC00I-LIKE METHOD FOR OBTAINING THE - EIGENSU 

1LUTIONS OF A NO NORMAL MATR/X',/,21X/76A1,///,45)(1 1 THIS PROGRAM W 

	

C043 	2AS RUN ONI,I3,1X,A3,1X,I2,/,45X,,AND EXECUTION STARTED ATI,A9e//, 

	

044 	3 54X,'EXAMPLE NUM3ERI,13) 

	

t8tg 	GO TO 140 
120 WRITE (6,130) (LINE(1), 1=1,40), (DATE(I), I=1,3)r 1, NO 

r048
4(  

	

049 	

130 FORMAT (1H /MM.,  A JACODI,LIKE METHOD FOR NORMAL MATRICES 1 //, 
1 1X,40A1,//,' DATE:',13,1X/A3s1Xeleo5WTIMEI'vA015X,'EXAMPLE NUMB 

1.050
2ER',I3) 

140 WRITE (6,150) N'N 

	

0051 	1P0 FOVIAT (In 'Mi.' THE ORIGINALIII3f 1 X 1 fI2O MATRIX A IS GIVEN BEL 

	

4052 	10W1') 

	

4053 	WRITE (6,150) 

	

(O54 	160 FORMAT S1H ,,,, RgAl PART', 

	

C055 	CALL MVP (ARsDIMN,DIMN,N,N,FIELD,LENGTH,6,10 

	

0156 	WRITE "(6,161) 

	

MIC 	
161 FORMAT (1H JO IMAGINARY PART') 

CALL MXOP (AI,DIMN,DIMN NtN,FIELD/LENGTH,60) 

	

C061 	
CALL ?NW° (AR,A/,DR,DIILVI,YR,Y1aRtZI,DIMN.N,ROT,EIVEC,MC) 

	

C060 	
CALL ELADSE (E,oATE,1,1( 0059 

	

8821 	

CALL ELAPSE (E,DATE,1,K) 
IF (RE s .E1 	1) CALL CHECK (AAR,AAI,VR,0I,YR,YI,DIMN,N) 
IF (NORM .0. 1) CALL NORMALISATION (VR,VI sDIMN,N) 

	

C064 	IF (ROT) 200,250'250 

	

065 	LOU ROT=-ROT 
IF (K) 7!30,999,210 

4ZU FORMAT (lit 

IT 

	

L30 WRITE 
2
(6( 240)

Z 	
(6,240) 

1N COMPLETED *40 ) 
GO TO 20 

C4v FOR'IAT OH 'Mit' 4,* WARNING .• A MAXIMUM OF 50 SWEEPS HAVE BEEN C 

	

8W. 	250 IF (K) 780,99,760 
10MPLETED **,) 

	

CO Z5 	L60 WRITE (6,420) R:)T 
b 

	

077 
	L'U FORMAT (in ,////,41X,14,1  JACODI■LIKE ROTATIONS HAVE BEEN USED') 

	

C O?08 	OW 
GO 

	V,0,290) ROT 
C079 

	

0080 	
e90 FORMAT (1H ,////,lx,14,1  JACOB1mLIKE ROTATIONS HAVE BEEN USED') 
Sou WRITE (6,310) 

	

88
C063 	

510 FORMAT (AH ,////,' THE EIGEUVALUES OF A ARE GIVEN BELOW0) 
P WRITE (0,160) 

CALL MXOP (DRO,DIMN,101,FIELDILENGTH16,0) 

	

0084 	WRITE  

C
.
0    F ( 

	 X
V

(6, 161) 

	

C085 	_ ..CALL
E
m
I

o
C (En 

0
. 0,0) 

1M
G1 
,
TO 

N
4
,F
00 
ELD,LENGTH,6.0) 

	

008? 	WRITE (0,3d0) 

 

	

C088 	320 FORMAT (1H ,////,' THE MATRIX OF CORRESPONDING EIGENVECTORS IS GIV 

	

0y089 	1EN RFLO,1. 1  

	

0090 	
) 

WRITE (6:1(+0) 

	

M2 	
CALL mX1P (vR,DIMN,DIMN,N,N,FIELD,LENGTH.6,0) 
WRITE (6,161) 

	

0093 	CALL MX0P (VI,D/MN,DIMN,N,N,FIELD8LENOTO6s0) 

	

094 	IF _01E5 ,E1 0) GO TO 400 C 

	

L095 	WRITE (A,JJ0) 

	

0096 	330 FORMAT (1H ,////,' THE RESIDUAL MATRIX V"AV IS GIVEN BELOW) 

	

C09( 	WRITE ((,,I61) 

	

c098 	CALL ,1 '1P (AR,DIMN,DIMN,Nril,FIELD0LENGTH,6,0) 

	

0099 	WRITE (6,161) 

	

000 	CALL !IXIP (AAI,DIMN,OINN,NoN,FIELD/LENGTH,6,0) 

	

t181 	
400 CALL EWSE (E,nATE,3,K) 

	

0103 	410 WRITE (6,420) (LINE(I), 1=1,60) 
IF (K) ..30,099,41;) 

	

0104 	4e0 FORMAT (1H ,////,31X,60A1) 

	

C106 	
GO TO 5,10 C105 

430 WRITE (6,440) (LINE(7), 1=1.40) 

	

C101 

8;8$ 	

440 FORMAT (1H ,//// ,1X,40A1) 
500 CON 	M TIM7 

STOP OK 

	

0110 	999 STOP NOln 

	

0111 	END 

,////,32x,1** WARNING a  A MAXIMUM OF SO SWEEPS HAVE BEE  

OMB 	
410 WRITE (6,420) 

882g 

END OF SEGMENT, LENGTH' 	437,  NAME NONM 



"N. 

r 
• 

	

Elli 	
SUBROUTINE !IWO (AR/A1FDR.01.VR,VI,VR,YIPZI1,2101MNiNFROTpEIVEC. 

1 MC) 
INTEGER Dimm,u.EIVEC,ROT,P0 0114 

	

El4 	
REAL AROIMI,DImN).A1(DPIN,DION), DR(DIIN) ,DI ( DINN )  
REAL %/RkDI11,011mN),VI(DIMNe0ImN), YiltDIMN),YILDIMU) 

	

011( 	 REAL 2R(nI:1:1).ZI(DIMN)g H0 

	

11$ 	
DOUGLE PRECISM 3UN 
IF (FIVr2C .EQ. 0) GO TO 3U 

	

ffl7 	
DO 10 1=10 
DO 10 J=10 

C122 
1 0 IllaqiN 

0123 

	

EM 	e0 IIR(0,p)=1.0 

	

0126 	 SO DO 40 P=10 

	

0127 	 DR(P)=A q (P,P) 

	

Hilli 	
DI(2)=4I(P/p) 
YR(P)=D1kP) 

	

8Y 	40 IMDIM).0.0 

8ii i 

	

C 4 	

RO= 
ERST=

0
*MV N*N 

DO 600 1=1,50 

	

nig 	
SUM.0 
DO 100 P=10-1 

	

C137 	 DO 100 Q=P+10 

	

0138 	 TEmpr.Sn'ZT(AR(P.Q)*4,2+Al(P:01)**2)*SCIRT(AR(Q/P)**201I(40)*102) 

	

G139 	100 SUM=sUM+DBLE(TEHP) 

	

040 	SM=SuM 

	

0141 	IF ( SM .LE. EPS) GO TO 610 

	

Elti 	IIPW?Lq. 4) TRESH=0.2*SM/Nor*2 

	

8M 	
DO 50o P=10-1 
DO 500 0=P+1 ,N 

	

0146 	 BRPQ=CAC(P0)+AR(Osp))/2.0 

	

014f 	BIPO=(AI(P,Q)-410•P))/2.0 

	

C148 	0RPQ....(AI(P,o)+AI1/49,p))/2.0 

	

6149 

	

CIPQ=CAR(-1,P)-AR(PpQ))/2.0 
E=BRPO*•2+01PQ**2 
F=CRPO**2+CIPQ**2 
Gr.(DR(Q)-DR(P))**2 

	

0153 	 H=01(4)-DI(P))**2 

IC( 	
IF (E+G-F-H) 200/210,210 

euu IFLAG=2 

	

G 56 	 G=100.0*SCIRT(F) 

	

0157 	 IF (I .GT. 4 .AID. ABS(DI(P))*G ,Eq, ABS(DI(P)) 

Plg(/ 

	

0160 	

1 AuD. AG5(DI(Q?)+G .Eq. AnS(4(1))) GO TO 410 
It (G .LE. TRES4) GO TO 4/0 

	

0161 	
E=CRp0 
F=CIPQ 

	

V164 	 EE=nRPQ 

	

flg4 	H= 
FFIPQ 

DI(Q)-DI (P) 
0165 GO TO 220 

[10 IFLAG=1 0166 

	

016( 	 G=100.0*SQRT(E) 

	

0168 	 IF ( I .GT. 4 .AID. ABS(DR(P))+0 .EQ, ADSOR(P)) 

	

016Y 	 1 .A4D. ABS(DR(Q))+G .EQ. ABS(DR(Q))) GO TO 410 

	

0170 	 IF (G .LE. TRES4) GO TO 44U 
ErBRPQ r71 

	

172 	F=SIPQ 
173 EE=CRPQ 

in  

 T

H=D
=C

/(

I

F( 

Q
Q 
-DR(P) 

	

HT' 	
t4u I

=E
AOS(E)-48 S(F)) 230,240,240 

0178 

 

ST=1.0/SORT(1.0+T+T) 

H=TOS1250 
0179 
C180 

8R 	
440 T=F/E 

CT=1.0/SORT(1.0.*T*T )  
0183 

	

C184 	
ST=T*CT 

C5v 04EGA=F-cT+F*ST 

	

0185 	 OmEGADAOH=EE*CT+FF*sT 

	

0186 	 IF (A5S(H)+5 .En. AOS(H)) GO TO 260 

	

018( 	 THETA=0 .5*H/DAEGA 

	

C188 	 T=1.0/(40S(THETA)+SORT(1.0+THETA**2)) 
IF (THETA .LT. 0.0) T="T 

i'ilt()  
GO Tn 7' 

460 T=CmFGA/
0  
H 

	

' 92 	en, c=1.0/SORT(1.0+T*T) 

	

(193 	ST*c 

	

C194 	 TA0=s/(1.0.0C) 

	

G195 	H=T*OMEGA 

	

v1 96 	 IF (IFLAG .EQ. 1) GO TO 280 

	

01 99 	

2/(P)=1(P)-R 
ZI(iz (q )*H 

	

199 	 DI(P)=D (P)-H 

	

COO 	 DI(0)=DI(Q)+H 

	

tql 	
En(C*C-S*S)*(DRPQ*CT*BIPQ*ST).(DR(P)-DRO))*S+C 
F=n1P0*CT-IIRPQ*ST 

	

Oe 3 	 BRPn=L*CT-F*sT 

	

VC04 	BIPOF+CT+E*ST 
Ce05 
0206 

	

C20 7 	 NiiiinE 

	

M$ 	
0,1(,,p)..-0/p0 
H.(np(p)-0R(0))*s*s+2.0*s.c*0mEGADAsti 

	

0210 	ZR(P)=ZRM-H 
C211 	 ZR(Q)=71(0)+8 
C21i DR(P)=DR(P)-H 

	

0113 	DR(1)=DR(Q)*R 

	

0214 	 GO TO 200 



• 

	

r2
15 	260 ZR(P)=2R(P)-N 	---- 

	

16 	790)=ZR(0)+H 

	

6.21e 	DR(P)=DR(P)-H 

	

. 0218 	DR(1)=DR(Q)48 

	

0219 	E=(C*C-:,*3)*(CRPO*CT+CIPQ*57).(DI(P)..01(0))*S110 0 

	

Hig 	
F=CIPD*ET-1RP9*ST 
CRPO=E*CT-F*ST 

	

g222 	CIP,I=F*CT+E*ST 

	

U223 	AR(P,4)=»CIPQ 

	

C224 	A1(Ps4)=CRPO 

	

0225 	AR(O,P)=CIPQ 
C226 

	

;2/i 	

.T 
AI(0 0)::CTIP11 
H(DI(P)-DI(0))*S4S+2.04S4C*OMEG404SH 
ZI(P)=2I(?)-H 
ZI(q)=ZI((1)+H 

	

0230 	DI(P)=DI(P)-H 

	

ffli 	

DI(q)=DI(Q)+8 
490 

DO  
IF _

0  
( 3() 

0 
 .EQ, 

 /
1)

1 
 GO TO 310 

1p- 

	

C234 	ARJP=AR(.1sP) 

	

C235 	AIJP=AIOrP) 

	

r4
36 	ARM.:AROIC1) 

	

3r 	AIJO=AItJ0) 

	

38 	AR(J,P)=ARJP-5*(ARP)*CT+4IJO*ST+ARJP*T4U) 

	

Eig 	
AI(J,prAlip.s.(A/J,1*cl.";3.1(1.sT+AI4p.TAui 
AR(J0 =ARJo+s*(ARJp.c.r."1 ".sT.AR,, q.TAu 

	

(.241 	AT(J,0)=AIJ14.5*(AIJP+CT4AKJP+ST..AIJ*TAU) 
C242 

	

0243 	 25J:P{Ni 

	

0244 	AROJcAR 0,4 

	

0245 	AI0.1=AI■0•J) 

	

0246 	AR(D,J)=ARPJ-S*  

E 	
AISP,=AIPJ-S•AI6J+CT+AKOJ*ST+AIPJ*TA/

M 	AR 0I. =4i1J+S*APPJ+CT+AIPJ*ST.ARQJ*TAU 

	

0249 	300 AI(Q,J)=AIC,J+5*(AIPJ*CT■AkPJ*5T+AIRJ+T4U) 

	

OP 	
310 IF iP41 .GT, a-1) GO TO 340 

n0 320 Jr.P4.1,(1-1 

	

0252 	ARPJ=AR(Psj) 
AIPJ=Al(P,J) 0253 
ARJOR(J0) 

	

n 	AIJO=AI(J,Q) 

	

C256 	ARJ)=AR(Jsp) 

	

0257 	AIJP=.4I(J1P) 
ARQ.1=AR(0,4 

ffl/ 	A IRJ=A1(0eJ) 

	

q29, 	
AR(,,J)=Au".*(ApolJ*cT.Ako*sT.ARei,./A0 

t26 	
Ai(,,J)=Alp.1„(Afu.cT,A,q.J.sT+Ale *TAO) 
A8(.1 t 0)=ARJQ+S.(ARJD*CT.4IJP,I,ST.4RJ0*T4U) 

	

0263 	AI(.1.0)=AIJ14,S+(AIJp#,CT+ARJP*ST-A1Jg+T4U) 

' 

	

lir 	

ARCJITARJP.S1AU0d,CT+AIJO*ST+ARJP*TAI 
AI!..I.P =AIJP-Sg,  AI.1■1*CT-4RJQ+ST+AIJP*TAJ 
AR(O/J =Aii/.1.0 3 4,  ARPP,CT+AIPJ*ST-4RU*TAU 

520 AI(Q,J).-..AIQJ+S*(AIPJ*CT...Ai(PJ*ST.A1c2J*TAU) 

	

0266 	350 IF (0 .E0. H) Go TO 350 

	

0269 	. 	DO 340 .1%.(141/N 
0270 ARPJ=AR(P.4) 
0271 AIPJ=AI(Pf.1) 

	

0272 	AR0J=ARCO,J) 

	

0273 	Alo,I=A;(0,J) 

	

0274 	AR(P,J)=ARPJ-S4,(AROJ*CT-AIQJ*ST+ARP.PiTAU) 

	

0275 	AI(P.J)=AIPJ-S*(410J*CT*AR9J•ST+AIPJ*TAU) 

	

0276 	AR(Q,..1)=AROJ+S* (ARpj*CT+AIPJ+ST..ARgjo,T4U) 
AI(Q,J)=AIJ 

	

ISd(AIPJ*0T■ARPJ+STAICJATAU)

T: 	

ARJP=ARJ,F) 

	

0279 	AIJP=A1 10) 
ARJO=AR JO) 
AIJP=AI ifQ) 

	

0282 	AR(.1,2?=44JP-S*(ARJ04,CT+41JO*ST+4RJP+748) 

	

ffli 	
AI(.10)=AIJP-S.0(AIJI*CT-.4RJQ*ST+4IJP*TA0 
AR(J,0)=ARJ(2+5*(ARJp*CT.,4IJP*ST.ARJO*TAU) 

	

0285 	340 AI(J,Q)=.A1J+S,, (AIJ2*CT+ARJP*ST-AIJR*T4U) 

	

4286 	5>i, IF (EIVEC .EQ. 0) GO TO 400 

	

(
028( 	DO 360 g(.141

P) 
C2

.N  

	

288 	VRD=V
89  

	

0290 	
VIJP=VI(JI,P) 
VRJO=VR(.1,0) 

	

t'4"94 1 	
VIJO=VI%J.1) 
VR(J,P)-.)/Rjp-Se(VRJ0*CT+VI411•ST+VRJP*TAU) 

	

0293 	VI(J.P)=VIJp-S*(VIJQ*CT-VRJ(.1+ST+VIJP*TAU) 

	

CO4 	VP(.1,0)=Vkjt)+5*(VRJp*CT.VIJP*ST-VRP)+TAU? 

	

Y405 	snu VI(J.0)=v1j,4•5*(VIJA+CT+VRJP*57-VIJQ•TA1.0 

	

1,00 	'Jr.,4 	R0T=R07+1 

	

C297 	Go TO 0 

	

0298 	410 AR01,4),A
0  
1(11,0),AR(QfP),AI(Q.P)=0,0 

	

v499 	
W ME0300 	, PRI 

	

0301 	DO 510 P=1.11 

	

0302 	YR(D)=V2(P)4.2R(P) 

	

0503 	YI(P)=YI(P)+2I(p) 

	

0304 	DR(P)=VR(P) 

	

0305 	DI(P)=Y1(P) 
C306 

	

ti8g 	

510 ZR(P),WP)m0.0 
600 CONTINH4 

ROT=-ROT 

	

0309 	610 DO 650 P=10-1 

 
f< 1.L. 	

DO 650 q...13TH 
TEMP=ABS(DR P))-ADS(DR(Q)) 
TF (TEND) 6..0.640.640 



chi 
03
3
35 

'536

4  

33/ 
0338 
0339 
0340 
0341 
0342 
043 
Q5 
C35

44  

8i;1 
0355 
0354 
Si555 
6350 

0358 
'”u 

0 
C361 
0562 
0363 

43
0
06
65 

C36 
C56 6/ 

0370 
0371 

0575 

0313 
0335 

Bit 
0325 
0326 
032f 
028 
C329 

END OF SEGMENT, 

6Zu 

DR(0)= 
nR(n)3DR04) 	• 

Sn 
sM=DI(P) 
DI(6)=DI(Q) 
DI(QSn 
DO 630 1=1,N 
5m=vR(1,p) 
VR(I,P =VH(1,0 
vRci,o 
sri=v10,n) 
VicI,p2eNI(1,(4) 

63o VIct,O)zStf 
640 cOnTIoLIE 
65u coN7InUE 

RETURN 

LENGTH 2032r NAME NUJO 

0330 	SUBROUT/NE.NORMALISATION (VRd/I#DIMN,N)  
INTEGER Din!! 
REAL VR( DIMNIDIIN),VI(DIMN,DIMN) 
DO 30 J=1/N 
AUXTWR(1.J)**24.V1(1#J)**2 
DO 10 Iw2#U 
TErin.VRti,j)**24m1(1,J)**2 
IF (TEnn .GT. AUX) AUX4TEMP 

10 CONTINUF: 
AUX=SORT(AUX) 

VR(/'.1)=911,J)/AUX 
DO 20 I1, 

20 VI ( TrJ)=VI I#J)/AUX 
30 CONTINUE 

RETUR
N  RET 

END 

END OF SEGMENT, LENGTH 	126, NAME NORMALISATION 

0346 	SUBROUTINE CHECK (AR,AI,VR,VI,D,ZIDIMN,N) 
034! 	REAL AR(DPIN,D11N),AI(DimNolfiN), VR(DIONOIMN),VI(DImN,DIMN) 
048 REAL D(DI11.1), Z(DIMN) 
0349 	DOUBLE pRECISIO1 SWIRISOMI 
C350 	DO 40 I=1,N 

DO 3n J=10 
sumR.Suni00.0 
Do 2n K=1,N 
comR=cuqR+AR(1,K),boR(KIJ)-AI(1,K)+VI(KIJ) 

zu gomr=tull +AR(IIK)*VIcKIWAICI,K)*VR(W) 
B(J)=SUNR 

Sc., 2(J)=SIMI 

) 
DO 40 1)=10i 

A
R 

40 l(I
,
,J)=2( ) 

ACIJ=BT 

DO BA K=If.J 
DO 70 J=1,N 
SUMR#SU1I20.0 
DO 6n 1.1,!J 
su1‘R.SUIR*vR(i,J)*AR(I,K)*V1(1,J)*Att1$K) 

61.1 BU9I=SUMI+VR(I,J)*AI(I,14)'VI(I#J)*AR(1,0 
B(J)=SU1R 

TV 2(J)=CLIMI 

AR(I,K)=q) 
DO BO I=1# 

80 AI(I,X)=2( ) 
RETURN 
END 

END OF SEGMENT, LENGTH 	340, NAME CHECK 



C374 	SUBROUTINE ELAPSE (E,DAT,NO,K) 
C375 	INTEGER GALL, DAT(3). MONTN(12), BUFFER(2) 

,93, 	glP, sehirmJAN.,,FEB.,,mAR,,.Apv,,mAy.,,JuN.,,m,,,Au.,,,,E,,, 
0378 
C379 	

1 'OCT'.'N071,'DEC'/ 
GO TO c100,200,300), NO 

C580 	 100 CALL MTIME (N) 
C381 	EN 
C38z 
C383 	

cALL3-CALL 
IF (CALL .Eq. 2) GO TO 110 

Bh 	
EE=E 
REPIRN 

eig, 1.0 E=E-EE 

BEI 	

E=E*1.0E-3 
RETMRU 400 CALL DEFRUF (2,3.SUFFER) 

C390 	 CALL DATE (E) 
C391 	 WRITE (2.210) E 
C392 	 210 FOR9AT (A8) 
03

93 	 READ (2,220) (DAT(I), 1.1,3) 
i3 	

eeu FoR9AT (wlx6A.1 3 I2) 
DAT(2 =!, .1.! ( 	T( 

0396 	 E,EE=1.0E-03 
C397 	 250 IF (1.0+EE .EQ. 1.0) GO TO 240 

Re4 	Fil4/2.0 _ (300 	 GO TO 230 
C401 	44U RETURN 
clop? 	300 IF (K) 770.3701310 
t;403 	310 IF (E .GE. 60.0) GO TO 330 
0404 	WRITE (6.320) E 
005 	.520 FOR'1AT (1N ,////,44WEXECUTION TIME WAS',F7,3,' SECONDS') 
c*06 	 GO TO 3^0 
6407 	330 IF (E .GE. 120.0) GO TO 350 
C408 	E=E-.60t0 

WRITE (6,340) E C40% 

EM 	
540 

1)  
FORMAT (1N ,////,40X,'EXECUTION TIME WAS 1 MINOTE 1 4F7,3,1  SECONDS' 

1z 
04i; 	

0 GO To 3 0  04 
550 I=E/60.0 

Nif112:360) I, E  

0.17 	560 FOR"AT (111 ,////,39WEXECUTION TIME wAS I PI3,' MINUTES',F7.3.' SEC 
10ND51 ) 

8t1$ 	 WRITE 
310 

370 WRITE (0,380) E 

ti13? 	
580 FOR'IAT (1N .////0 EXECUTION TIME WAS'fF9'3,' SECONDS') 
590 RETuRN 

0422 	 END 	
. 

END OF SEGMENT; LENGTH 	182; NAIIE ELAPSE 



	

C423 	SUBROUTINE 11x0P (A,DIMN,DIMP,N,p,FIELD,LENGTH,STREAM,IFLAG) 

	

0424 	INTEGER DI1N,DIMP.P.WIDTH.STREAM 

	

esp 	REAL A(DIM10IMP). ERMIl(o). FR1T2(6). SUFFER(?) 
.1MNI8HXOP 	OHN.18E,84) 	/ 

	

4 6 	DATA FRIT1/0H( 
OHNtiSHXOP 	ONNONE,88) 

	

02, 	DATA FRIT2/3H( 	 / 

	

0428 	IF CIFLAG) 10.200.10 

	

0429 	10 CALL DEr.0UF (2,16 BUFFER) 
NyTr5). FRMTR( 

	

0430 	 5)=FIELD 

	

C431 	 (7.80) FIELD 

	

0 432 	2U FORMAT (A6) 

	

0433 	READ (2,30) WIDTH 

	

0434 	30 FORMAT (1X.I2) 

	

0435 	IF (P401IDT 1I-LENGTH) 100,100.40 
0436 40 N1=LENGTHVAIDTH 

	

C437 	 2=7/01 

	

C438 	LAST=P•N1*N2 

	

C4
440 	50 	1
39 	IF (/FLAG) 50,999,60 

N3= 0 

	

0,41 	N4=1  

	

0442 	GO TO 70 

	

0443 	6U N3=((LEN;TH-N1 404IDTH)/24.1 

	

0444 	N4=CLENITI■LAST*WIDTH)/2+0 

	

(,445 	10 WRITE (2.60) N3,N1,114/LAST 

	

C446 	030 FOR',AT -Z4I4) 

	

0447 	READ (2.90) FRMT1(2), FRMT1(4), FNMT2(2), FRMT2(4) 

	

V148 	
90 FOR 

	S4A4) 

	

e410 	
100  Ump 3 0 

	

0451 	IF (IFLAG) 110,999,120 

	

0452 	110 N3m1 

	

0455 	GO TO 174 

	

0454 	120 N3=_O.ENGTH-P.64IDTH)/2.1 

	

0455 	130 WRITE (2,140) N3sP 

	

0456 	14V FORMAT (RIG) 

	

0451 	READ (2.150) FR11T1(2). FRMT1(4) 
0458 

	

2t190 	

15U FORMAT (2A4) 
GO TO 210 

400 IF (N2) 999,210,300 

	

0461 	410 WRITE (STREAM,FRMT1) ((A(I,J), JeCIIP). I=1,N) 

	

0462 	RET'IRIJ 

	

0463 	30V N2N1:N2*N1 

	

C464 	IF (N-1) 999 400'310 

	

0(,465 	1111 DO 330 X=1:112N1rN1 

	

0466 	KK=K+011 

	

0467 	WRITE (STREAM,320) Ks KK 

	

0468 	320 FORMAT (1H..,/,' CoLuMNS',13,1  TO' 13,' ARE(') 

	

0469 	330 WRITE (1TlicAm,FRMT1) ((A(I,J), palc,KK), I=1/N) 

	

0470 	IF (LAST-1) 370,340,360 

	

0471 	340 WRITE (ITHEAM,350 ) r 

	

C1472 	350 FOR"AT (1H ./,' COLUMN1 ,13,1  ISO) 

	

0473 	WRITE (STREAM,FRMT2) (A(1,0, 1=1/N) 

	

0474 	GO TO 370 

	

0475 	360 KK=”21-0 

	

C476. 	WRITE. STRAM.320) t(XtP 

	

047f 	WRITE STREAMPERMT2) ((A(liJ), J=KKoP). Ial,N) 

	

0478 	370 REPIRN 

	

0479 	400 DO 410 01,N2141,N1 

	

C4$0 	KK=v+01-1 

	

0481 	410 WRITE (STRE4M,FRMT1) (A(1,J), .1:10KK) 

	

0482 	IF (LAST-1) 440,420,430 

	

0483 	420 WRITE (STREAM.FRMT2) A(10) 

git 43
v GO To 440 

KK=N2N1+1 

	

0486 	WRITE (3TREAM,FRMT2) (A(1,J), J=KKIP) 

	

0487 	44U RETURN 

	

0488 	999 STOP MXOP 

	

0489 	END 

END OF SEGMENT, LENGTH 	42?, NAME IIXOP 

	

RI? 	
sonqnuTTNE !fowl.  (AR.AIIDIMN.N.NO,EIVE0FRES,NORM,FIELD) 
INTEGER DiMEIVEc.2ES 

	

0492 	REAL AR(DIM:l.DINisAI(DIMN.DIMN) 

	

0493 	READ (5,10) N,FIEL9,E1vEc,REso0Rm 

	

0494 	10 FORMAT .0e,46,311  

	

0495 	GO TO (,00.400.-300.400,500,600.700.800,900). NO 

	

0496 	100 CONTTNIJE 

	

C49( 	READ (›.110) (CARCIEJ)1A101J). .10104), 1111,N) 

	

gq 	
110 Fop,AT ;200.0) 

RETURN 

	

C500 	200 CONTINUE 

	

0501 	GO TO 100 

	

0502 	301) CONTINUE 

	

C503 	GO TO 100 

	

C504 	400 CONTINUE 

	

C505 	GO TO 100 

	

006 	)00 CONTINUE 
C501 100 

	

0508 	
GO TO 

Ouv CONTINUE 

	

0509 	GO TO 100 

	

0510 	fUU CONTINUE 

	

0511 	GO TO 100 

	

C512 	C00 CONTINUE 

	

0513 	GO TO 110 

	

051

D  

4 	YUU CONTINuE 

0 
0
51 	 EN
515 	GO 

D
TO 100 

END OF SEGMENT, LENGTH 	128, NAME INPUT 



A JAC00I-LIKE METHOD  FOR OBTAINING THE EIGEND0LuTONS Op A NAN NORMAL MATRIX  

THIS PROGRAM WAS RUN ON 22 AUG 74 
AND EXECUTION STARTED AT 17/32/00 

EXAMPLE NUMBER 2 

THE ORIGINAL 

REAL PART 

4X 4 MATRIX A IS GIVEN BELOW' 

IMAGINARY PART 

-111mm81 
1:7R2eanii:8; .N2m51.441:8; 4:3;,ggigg1:81 -4:1226mtP14; 

1.1275 91512E-01 2,7699157816 .02 -5.5888827189E■033 a.27 3291202E.01 

23 JACOBI+LIKI ROTATIONS HAVE BEEN USED 

THE EIGENVALUES OF A ARE GIVEN BELOW; 

REAL PARI 
8.7424234466E-01 

IMAGINARY PART 	
3.9311659081E-01 

40(1518443128.01 

4.05061341328..01 

2,9933140445E-01 

7,61370830778.01 

1.57020598478.02 

4.48660287228.01 

OF CURRESPONDIIG EIGENVEETORS IS GIVEN BELOW; THE MATRIX 

REAL pARI 

IMAGINARY PART 

1.;531880771E-01 .4.5538921493E-02 

1:4;315/82Pal "4e3M71:81 
-4.4270r376238.01 .3.40116392925.01 

7.0829571846E-01 9.9987117327E.01 
8.13253534628.01 .6.31874134658.02 
7.1421963504E.01 6.078876798ZE.0s 
9.99960278,28.01 .4.96325025258.01 

.3.6474387658-0 5.71z5964400E.01 1.0797695578E002 1.6051071054E.0 

1.143ingiTS .MitiZ292?1:81 *WOMPE:81 111.PLTIN11.1 -4.809 138599 ...o .0.5421350999 .01 -8.2122124r47E-0,3 .1:43615104z08:01 

THE RESIDUAL MATRIX 

REAL pail 

IMAGINARY PART 

V"AV TS GIVEN BELOW, 

 

R.74n234464E-01 1.0958545342E-11 -3.2787061913E.11 3.0112290918.14 
-541495446185E-12 4.9051844513E-01 -1.39854810408.11 0.28 753261rE.14 
Z.5124791136E.11 .2.7406681352E.11 2.9935140444E.01 .5.99 98068988.1g 
2.4802382370E■12 6.848.'1569078.11 .8.12860889(1E.1Z 1.57020598498.04 

 

.4:100C21=f 	 gillM1=1/115;26"4"T 
-4:4566,129;21i-Bt 

EXECUTION 

1:9:glOiRM:11 -1:tlif2=1:41 -4:466,124;M:4; 

EXECUTION TIME WAS 0.216 SECONDS 

    



APPENDIX 4 

253 

A JACOBI PROGRAM FOR GENERAL MATRICES 



MASTER 
INTEGER DIMM,ROT.RES,LINE(84),DATE(3) 

0023 	REAL AR(12,12),AI(12,12), 4R(12,14)1wI(12,12), VR(12,12)0/1(1202) 
0024 	REAL AA1(1,12),AA1(12,12),.EN(12).EM(12), DR(12).D1(12), MC 
0025 	DATA LIAE/84*1H*/ 

CO28 	MC=E 
CALL ELAPSE (E,DATE,2,K) 

881i 

C031 	

READ (5,10) NUMBER,D(MN,LENRTH 
1U FOR1AT (212,13) 

22Ln 
IF (LEN( TH .LT. 120) K10+1 

MailOMUDIMN.N. 

CO29 
0030 

NO,RES,F1ELD) 
0034 	DO 20 1.7113 
0035 	DO 20 J=10 

AAR(1,.1?=AR/I,J) 0036 

8818 	
;et/ AAI(1,„At 1,J) 

CALL Tide ( ) 
0939 	IF (K) 120999,100 
0040 	100 WRITE (6.110) (LINE(1), I=1384),_ (DATE(I), I=1,3), T. HO 

11U FOH1AT (1H1,//,111X,'A JACOD0*LIKE HEIM/0 FOR OBTAINING THE EIGENSO 
SW 	11.UTvON OF A N.(cri GENERAL cotirLEx NATRIA'dokix,640,//1,45x,,THIs P 
0043 	2ROGkAq ',AS Ru,d 0141.'3 1%,A3,1X,12p/lOWAND EXECUTION STARTED AT' 

0045 	
3.A9,//$54A,'EXA1PLE NOM0ER',13) C044 
GO TO 140 

C046 	140 WRITE (6,130) (LINE(I), 1=1,49) 	(DATE(I), 1=1,3), T. NO 
C04'/ 140 FOR'IAT (1H .//////,' A JACOBI-LIKE MET1130 FUR GENERAL COMPLEX MATR 
0048 	110ES',/.1.6.49A1,//,' DATE;',13,1X,A3.1X,I2,5X,'TIME:',A9,5X,'EXAMP 
0049 

884 	
140 WRITE 16,150) N'N 

2LE 91.111fRiL I3) 

150 FOR"AT (14 ./Ille' THE ORIGINAL 0 ,130X',12/ 1  MATRIX A IS GIVEN BEL 
0052 	10011/ 
0053 	WR ITE (6.160) 
En§ 	

160 FOR1AT (1H ,/,' REAL PART' A 
CALL 1)(010 (AR,DIMN,DIMNIN.N,FIELD,LENGTH,6/K) 

HUI 	
161 FOR1AT (IH ,/,' 1MAG/NARv PART') 

WRITE (6,161) C056 

CALL qX0P (AI.DIMN,DIMN,NDNIFIELD,I.ENGTH,6,0) 
0059 

882? 	

CALL ELAPSF (E.DATE,10 
CALL GLJO TAR,A1,wR,WI,vR,VI,EN,DROI,DIMNINIMO,ROT) 
CALL ELAPSE (E,DATE,1,K) 

0062 IF (RES .Ea. 1) CALL CHECK (AARtAAI,WR/WI,VR,VI,ENFEN.DIMN,N) 
IF (ROT) 20,250,250

UN  Cuu ROT=-ROT 
0065 	IF (K) 230099,210 
0066 	C10 WRITE (6,240) 

qt? V 	

tCv 
1N  
F

GO

OR1AT (I 
ED
d ,//

')
.32X,I*0 WARNING • A MAXIMUM OF 50 SWEEPS HAVE BEE 

CoPLpT ** 
TO
M 
 _,0 

00770 	C30 WRITE (6 240) 

0072 	• 	10MPLETEO 0*,  
440 FOR1AT rid Imo' ** WARN1KG .0 A MAXIMUM OF 50 SWEEPS HAVE BEEN C 0071 

C073 	C5u IF (K) 280,9 9,260 
0074 	/60 WRITE (6.270) ROT 
0)75 	CA, FOR1/T (1H ,////136)(.14,' JACOB1*LIKE ROTATIONS AND SHEARS HAVE Be 
;6 	lE 	SE0') 

els° WR I TE 
I-077 
C078 	

ci T sou 
(6,290) ROT 

0079 	CYO F0R1AT (1d ,////.1X,14,' JACOBI*LIKE ROTATIONS AND SHEARS HAVE BEE 

88R? 	
1N USED') 

300 WRITE (4,310) 
0082 	310 FOR'IAT (1H ,////,' THE EIGEUVALUES OF A ARE GIVEN BELOW/ 
0083 

C08.5. 	

WRITE (6,160) 
CALL mX2P (DR.1,D1m11,101,FIELD,LENSTH,6,0) 0086 

. WRITE (g> 161) 
CALL mxo's 41)10,DIMM,1,N,FIKLDILENSTHs6tO)--  0086 

 

008/ 	WRITE (6.34o) 

0090 	

340 FoR1AT cId ,////.' THE MATRIX OF CORRESPONDING RIGHT-HAND EIGENVEC 
1TORS IS GIVEN BELOW;')W4 
WRITE (6,160) 

C091 CALL f1X0P (VR,DIMN,DIMN,N,N,FIELD,LENGTH,6,0) 
0.092 	WRITE (6,101) 
0093 	CALL MXOP (VI,DIMN,DIMN,NeN,FIELD/LENGTH,6,0) 

Wa 	
330 FOR1AT (1N ,////,' THE MATRIX OF CORRESPONDING LEFT-HAND EIGENVECT 

WRITE (6,330) 0094 

1ORS IS GIYEA DELOW;') 
009( 	WRITE (0.1o0) 

CALL lip (1R,DINN,DIMN,N,N,FIELD,LENGTH,6,0) C098 

MO 	
WRITE 6,161) 
CALL n gP C11,1)/MN,DIMN,N,N,FIELD;LENGTH,6,0) 

0101 	IF (RES .EQ. 0) GO TO 400 
0102 	WRITE (6,340) 

818Z 	
340 FOR1AT (1H ,////.1 THE RESIDUAL MATRIX W"AV IS GIVEN BELOW;') 

C105 	NiTLEFIXV(21AR,D1/1N,D1mN,NrN,FIELD,LENGTH,61 0) 

84, 	
wR TE (6,161) 
CA L rIXOP (AAI,DIMN,0IMN,N,N,FIELD/LENGTH,6/0/ 

C108 	4(10 CALL ELAPSE (L,DATE,300 
IF (K) 430,999,410 

410 wRITE (6.420) (LIUE(I), 1.1360) 
420 FOR1AT (IH ,////.317.160A1) 

GO TO 500 
43u WRITE (6,440) WNE(I6, 101J40) 
44v FORqAT (1H ,/// ,1X,4 A1) 

Mg 	
5Uu 

S
C
TOP
OT1INUE 

OK 

8118 	
999 STOP NOAM 

END 

81 ?90 

0114 

END OF SEGMENT, LENGTH 	449, NAME NONH 



C1 

	

C121 	

51.1,1DOIITINE GLJO ( AR.AIFUR,WI,VR,VI,ENODR.0DI.DImN,N.140.ROT) 
INTtGE= nril,nnT 
REA AROITIOIIN) AI(DIM,i,DIMN), WR(OPIN,DIMN),W1(DIMN,DIMN) 

	

0122 	REAL VR,nIql.n1IN):vI(DIMNinIMN), EN(DI1N), DDR(DIMO.DDI(011.0 

	

0123 	REAL nA)„qn.r4C,ISW,MC 

	

Mg 	
maRvs=0 
RoTmn 

	

026 	EPS=10.001*(N-1)*M0 
0121 

	

028 	
DO 10 Im1.P-1 
wR(1,1,vi(1,I)=1.0 

	

0129 	wI(I,I),IJI(I.I)=0.0 

	

C130 	DO 10 J./+1,u 

	

8111 	10 WR(/.,1),I.N(J.I).WI(I.J),WICOf 
1 VR(I.J),VP(J,I),V1(10J).91K

O
J.I)=0,0 

C133 

	

0134 	
uR(”,N).vRp,u)m1.0 
wItNA),VI 10)=0.0 

	

0135 	DO 46') IT=1,50 

	

1,136 	IF (MARK .EQ. 1) GO TO 450 

	

X1 38 	
TAUm0.0 

	

038 	nO 110 Km104 

	

0139 	TEM=0.0 
0140 

	

0141 	la lf!".W% GO TO 100 

	

0142 	ARIK=AR(I,K) 

	

043 	AIIK=AI(1,K) 

	

8W 	TEmmARJ1:*ARIK+AIIK.AIIK.TEM 
100 CONTINUE 

0146 TAIJ=TAU+TEM 

	

81tg 	
4 

110 CONTINUE 

0149 
IF 
RK
(
=
TAU .LE. EPS) GO TO 450 

M1 
0150 

	

051 	
Do 430 K=11.1 
D0 430 	 154. .N 

	

01 	 HJ.H8.1.1I,Q= .0 

	

P54 	
DO 310 I=loN 
IF (I .0. K .OR. I ,EQ, M) GO TO 300 

	

1;5 	ARK =AR('. ) 

	

0156 	AIK =AI( . ) 

	

415f 	ARmI=AR(II. ) 
0158 
0
1 

 
AIMI  =AI ( M, 

	

16
9 
	A

R
I :A 	s 

0161 

	

0164 	
4PII:AR ( I841) 
All'I=AIr,9) 

	

0164 	
HRaMP+4KI•APIT+AIKI+41MI-4RIK+ARIM..41IK*41/M C163 
8I=H7+AIKI.%R*II-ARKI*AIMI-A;IK.Allf1+4IIK*ARIM 

	

MI 	

TE= ARI*ARIK+AIIK•AIIK+ARMI.AR11.0 AImI.AIMI 
TEC=ARITI.ARIM.AIIM*AIIM+4RKI+ARKI•AIKI.AIKI 
G=G+TE.TEE 

	

0168 	RJ=0J-TE+TEE 

	

0,69 	300 ConTINUg 

	

070 	sly coNTINUc  
071 
C172 
C173 

 BI-A! ,M)+AI(,K) 
BR=ARTM)+AR(M,K) 

ER=AR( .M)-AR(M,K) 

	

0174 	EI=AI(K,M)-Al(M,K) 

	

8136 	
DR=ARMiTAR(O.M? 
DI=AIck.K)-AlcA,m) 

	

017e 	TE r.AP*11P+El+EI+DR*DR 
017M 

	

S1P0 	

TEE=RI*3ITER*ER+DI*DI 

IS
IF 

W
(TE 

0
.LT. TEE) GO TO 3Z0 

=1. 

821e 

	

018.3 	

C=OR 
S=EI 

C1 	
D=DR 	. 
DEi 

	

C185
84 	

RoOT2=$ART(TE) 

	

1186 	GO To 330 
C18/ 

	

0188 	
SZU ISu=-1.0 

CmIII 

	

C189 	5=-CR 

	

C190 	0=DI 
0191 

	

0192 	
DEmOR 

192  ROnT2=SORT(TEE) 

	

0193 	530 RonTimSfIRT(S*S•C*C) 

	

0194 	$1G=1.0 

	

4195 	IF (D .LT. 0.0) SIGnv1.0 

	

0196 	SA=0.0 

Sl3fi 

'.194 	

CA=1 0 
IF 0 .LT. 0.0) CA=-1.0 
IF (RonTi .GE. ERS) GO TO 350 
SX,S4=0.0 

0201 	CX.CA=1.0 
0402 	E=Er 

	

14  R4 	8BI 
IF (ISW .GT. 0.0) GO TO 3402 

0205 	E=EI 
C206 	8=-BR 

20
02/ 	340 ND=

To
4)n4 +1F*DE

o  C 	GO r 

0cd09 	350 IF (ARs.•s) .LE. EPS) GO TO 360 
210 	cA=c/R0,1T1 

4211 	sA=1/RniT1 
021e 	360 C077.4=D/ROnT1 
0213 	COTX=COT?A+(SIG+St1PT(1.0+COUX*COT2X)) 
0214 	SX=SIG/IgMT(1.0+CUTX*COTX) 

M 	 P7:) 2Tg 	 ( 	1+3I.EI)/ROOT1 

Wg 	
TSE:-.(n.R.8I-E,R.EI)/RnOT1 
TEmS/G*PnOT1*DE+TnE*D)/ROOT2 

P219 	TEEm(n.nE+71o71.T.SE)/R0012 
0220 	IIP=P00T2*;0072+TEL+TEE 



%ow 

TEF=H3+CX1)( 
Hil 	C OS?A=CA*C -SA+SA 

	

0223 	SIN2,1=2.04  At,SA 

	

0224 	TEm=HR*COS?A+NI'SIN2A 

	

0225 	TEP=HI*0524■HR+SIN2A 

	

0226 	HR=CX*C.,:+HR-SX*SX+TEM.CAATEE 

	

C22/ 	SI=r)(4,C::*HI+SX*SXwTEP,SA*TEE 

	

0228 	8=I1W*TE*CA*ETA*SA 

	

HiSO ? 	
5/0 E=CA*ETA-IS.4+TE*SA 

s.+.4R-SIG*ROT2irE 

	

0231 	C=4I-SIG+RO3T2*0 

	

0232 	R00T=50rj(C*C+S*S) 

	

0233 	IF (ROOT .GE. EPS) GO TO 38A 

	

Olt 	
CR.CRIO 
SS.SH= .0 

	

0236 	GO TO °O 

	

0237 	380 C0=-C/RIOT 

	

0238 	SB=S/ROOT 
0239 
C?4 	

TEE=CB*B.4.SB 
NC=TE*I 

	

6240  1 	 TANN=
E
ROIT/

FE  
(G+2.0*(NC+ND)) 

	

0242 	CH=1.0/SORT(1.O-TANIlATAUM) 

	

0243 	SN=CH*TANH 

	

0244 	39U TEM=SX*SH*(SA*CB`SB*CA) 

	

0245 	C1R=CX*CS-1EM 

	

C246 	C2R=CX*CH+TEM 

	

0241 	 C1IICKI=-.5X*SMIP(CA*C8+SAASB) 

	

0240 	TEP=S *CH*CA 

	

0249 	TEM=CX*.1M*Sa 
C250 

	

0251 	
S1R=TEP-TEM 
S2R=..TEP-TM 

ffli  T 
TE 

M
P=
=
SX*CM* 

EX+SH* 

	

0254 	SlI=TEP+TEM 

	

1;255 	S2I=TEP-TEM 

	

0256 	TEM=SORT(S1R+S1R.S1I•S1I) 

	

fflg 	
TEPSF(52R.T+STSZI) 
IF (TM .6T. t a .A D. TEP .17. EPS) GO TO 420 

0259 

	

0260 	
MARK=0 
DO 400 TO N 

	

0261 	ARKI=AR(K.1 

	

262 	ARMI=AT. 

	

0263 	AIKI:AI K. 

	

0264 	AI°I=AI,Ms ) 

	

0265 	AR(K.I).C1R*ARKI-C1I+AIKI+S1P*ARMI■S1I+AIMI 

M 	AI((K,I))=C1R-AIKT+C1I*ARKI*S1R*AIMI+11I+ARM , AR(10)=S2R.ARKI-S2I+AIhI.C2R*ARMI-C24+AIM 

	

6268 	AI('1,I)=S2*AIKI.S2I*ARKI*C2R*AIMI+C2IIIARMI 

	

0269 	WRIK=UR(It ) 

	

at 	
WRI,I=NR(W) 
WIIK=WI(I. ) 

0272 

	

06 	
1414177td!KR!URIK".C1/*WIIK.S1R*WIMmS1I*14IIM 
WI(I.K)=C1R*WIIK+C1I+WRIK+SiR*U11M+S1I*WRIM 
kiRcIsM2=S2R*WRIK'S2I*W111(.c2R*WRIM-C2iWIIM 

SiR) 

	

277 	
400 WItI,1)=S2R*1411K+S2I*WRIA.C2R*WIIM+C21*WRIM 

DO 410 I=1LN 
ARIK=AR(I,K) 0278 

	

Cti9 	
AM-laY'M te 0 

	

0281 	AII°=AJ I'M) 

	

0282 	AR(I.K)=C2R+ARIK*C2I*AIIK-S2R*AR/M+S2I+AIIM 

	

C283 	AI(Id()=04R+AIIK*CZI*ARIK-S?R'AIIM-S2I+ARIM 

	

0284 	AP(I.M)--k+ARIK+SlI*AIIK+C1R*ARIM-,C1I*AIIM 
6285 

	

0286 	
AI(I,M):-S1Ii1R*AIIK"S1I+AKIK*C1R+AIIM+01I*ARIM 
URIKuVR(I,K) 

C28/ VRIr1 =11RVeT 
288 VIIK.,0,1 I. ) 

	

C289 	VIr1=VI Ii) 

	

0290 	 VR(IrK)..%1C2R+VRIK^C2I•VIIK'Sn*VRIM40S2I+VIIM 

	

0291 	 IiI(/,K)=C2R*VIIK+C.2I+VR/K-S2P*VII11-S2I*VRIM 
I (/ 

	

0292 	 VR 	=-S1R+VRIK+alI*VIIK+01R*VRIM-C1I*VIIM 

	

q?9Z 	410 VI(I,M =^51R*VIIK■SII*VRIK+C1R*VIIM+ClI*VRIM 629 420 CONTINUE 

	

0295 	R0T=R0T+1 

	

0296 	430 CONTINUE 

	

029/ 	440 CONTINUE 

	

0298 	ROT=.-ROT 

	

v299 	450 DO 460 1=10j 

	

0300. 	DDR(I)=AR(I.I) 

M 

460 DD I
6
(
n
1; 

=

: 

 p, 

	

I)

i 	

0
O
.n

oI 	i 

	

0304 	01=)DII) 

	

0305 	600 

 

EN(I)=DR*DR+DI*DI 

	

0306 	00 640 K=1.N■1 

	

C30/ 	DO 640 1=K+1,N 

	

0308 	TEM=EN(K)-FI(L) 

	

0309 	IF (TEM) 010,630,630 

	

0310 	 010/TE"-EN(0 
EN(K)=E;1(L)0311 

	

0 512 	 EN(L)=TEM 
TEM=DDR(K) 

	

HU 	DDR(K)=N)9(1.) 
0315 DDR(L)=TO 

	

0516 	TEM=DDI(K) 

	

031! 	DOI(K)12DDI(4) 

	

0318 	DDI(1.)=TEM 



-019- 	DO 620 I=.1 .N... -. 

	

0320 	TEM=VR(I,K, 
0321 

	

0322 	
VR(1,10.VR(IIL) 
VR(1,0=TED 

	

H24 	
TEM,VI(I,K 
VitI,K)n0ICIO.) 

	

0325 	VICI,L)=TgU 

	

0326 	TEn.W1(1, 

Sig 

 
 Wp(I,K),IURCIA,) 

wa(I,L)=T411 

	

032Y 	 TErlt.,WICI,lo 

	

0330 	
620

WICI,K).11I(1,10 
6o wi(T,L)-T4t1 

	

Hil 	650 CoNTIN02 

	

0333 	040 CONTIUUE 

0335 

	

t:334 	 RETURN 
END 

END of SEGMENT. LENGTH 17071 NAME GLJO 

	

C336 	swIrevITTHE CHECK (AR,Al,wH,wi'vR,v1,EN,Em,DImN,H) 

	

C33F 	INTEr4R Dill; 

	

0338 	REAL AR(nimpI,IN),AI(DImN,D1mN), WR(DImN,DImN)/wI(DIMNOIMN) 

	

0339 	REAL YR(DI 1:I.DINN),V1(DIMNIDIMN), EN(DIMN)/EM(DIMN) 

	

0340 	DOu.nLE PRECISION SUFIR,SUMI 

	

0341 	DO 40 I1/N 

	

0342 	Do 30 J=10 
r
3
45 

	

44 	
SUulz,SWII=0 0 

	

'345 	
00 20 K-.211N.  
SUr'r=suIR.A1(I.K)+VR(K,J)-AI(I/K)*VI(K,J) 

	

0346 	20 suni=sT11.0 AR(I.K)*VI(K,J)+AI(1 1 K)*VR(K,J) 

	

0347 	EN(J)=SUNR 

	

1348 	50 EM(J)=SUM 
0349 

	

0350 	AR(I 01 =EN .1) 
Do 40 1=1. 

	

0351 	40 Al(T / J =EM J) 

	

Eiii 	DO 30 j1. 
DO 70 1=1. 

	

0354 	suril,sUl1= .0 

	

0355 	no 6n K=1, 

	

0356 	S01IP=S9!IR*'AR(K.1)*AP(K.J)wW/(K.I) 0,A1(KFJ 

	

0357 	60 SUrII=SOII+'JR(K.I)+AI(K.J)+WI(K,I)*AR(KfJ 

	

0358 	EN(I)=SUMR 
C359 

	

9360 	
70 Em(1)110 

	

Hg/ 	8U AI(I,J)=EM I) 

DO 80 =tl 
AR(I / J =EN 1 ) 

	

8324 	_ END 
RETURN 

END OF SEGMENT, LENGTH 	350, NAnE 

SW 
Su

T
R
A
On
ER
T I

C
NE .ELAPSE (3(E, DA

MONT
N
H
O
(
K
2
)  
), BUFFER(2) 

0367   DATA CALL/2/ 

	

C368 	DATA /10;1TH/PJAN',1 FEBIIIMARirlAPR',IMAYI.IJUNr.'JLVOAUGIOGE101, 

M9  

	

0 	
1 ,OCT,,iN01,1 ,,DrC 1 / 
GO TO C100,200'100), NO 

	

037, 	100 CALL MTIME (N) 

03 

	

03;i 	E
AL
a 

C
rl 
L=3-CALL 

	

0374 	IF (CALL .EQ. 2) GO TO 110 

	

375 	EExE 

	

0376 	
110 gi42 (i37? 

L378 

	

0379 	
E=E*1.0E.3 
RETURN 

C380 

	

Sill 	
zoo CALL DEFRUF (2.8,BUFFER) 

CALL DATE 1E) 
WRITE (2.210) E 

0385 

	

0384 	
e1u FOR'IAT t8) 

REAn (2;210) (DAT(I), Im1/3) 

	

0385 	ezu FORNT (I4.1X,I2.1X.12) 

	

V c.6 	DAT(2)=MONTII(DAT(2)) 

	

0387 	E,EE=1.0E-10 

	

r

88 	250 1; (1.0+EE .EQ. 1.0) GO TO 240 
V19 

	

390 	IME/2.0 

	

0391 	GO TO 230 

	

0392 	240 RETURN 

	

0395 	500 IF (I() 170,370,310 

	

0394 	310 IF (E .GE 60.0) GO TO 330 

	

0395 	WRITE (6.320) E 

	

0396 	S40 FOn"AT (1:1 ,////,44X,'EXECUTI0N TIME WASI,F7.3,1  SECONDS') 

L938 

	

M 	

GO TO 300 
350 IF (E .GE. 120.0) GO TO 350 

E=E-60.0 
WRITE (6040) 540 FoRrIAT (1t1 .//t/.40X.IEXECUTION TIME WAS 1 MINUTE 1.F7.3.1  SECONDS' 

	

0402 	1) 

	

40
404 
	

550 
Go  

E
T
6
o 
 0
3n
0 
0 

	

C405 	E=E-169
; 

 

o 

	

c46 	WRITE (6
.
3 60)  I, E 

0407 

	

0408 
	300 FOR'IAT (1H .////.39WEXECUTION TIME WAS',I3.1  MINOTESI.F7.3.1  SEC 

10NDS,) 

	

N
)y 	

GOIT 
TO 3n0  

4 	S70 WRITE (6.380) 

	

0411 	sau FOR'IAT (1H .//7/.1  EXECUTION TIME WAS'/F9.30 SECONDS') 

	

0,1g 	
SYu RETURN 

END 

END OF SEGMENT, LENGTH 	182, NAME ELAPSE 



	

C414 	 SORPOWT/NE fIXOP ( A.DIMN.DIMP.N.PIFIELDILENGTH.STREAM.IFLAG) 

	

C415 	 INTEGER 011,J,DIMP.P.WIDTH.STREA1 

	

0416 	 REAL A(DI:11 0IMP), FRMT1(6), FRIT2(6), DUFFER(2) 

	

0 417 	 DATA FR1T1/3H( 	OHN.8H)(11P 	OHN.1HEt8H) 	/. 

	

WI 	DATA FRIITZ/P,H( 	OHNI8HX.1P 	.1N.1,1HE.8N) 	I 

	

C420 	
IF (I;L!,4) 10,20000 

	

0421 	
1O CW AR LILrE DtEDUF (2,16,BqFFER) 

	

V.55 	
FRMT1(5), FRMT2(5)=EIELD 

r422: 

	

0425 	 SO FORIAT (1X.I2) 

40 FOR'IAT (AD) 
READ (2.30) WIDTH 

(2.20) FIELD 

IF (0*qIDTII-LENGTH) 100000,40 

	

ii421 	 40 N1cLENGTH/WIDTH 

	

L428 	 N2=P/O1 

	

il.0 39 	
LAST=P+014N2 

0IF (IFLAG) 50499,60 

	

tD 	)u N3s1 
N4=1 

	

0433 	 GO TO 70 

	

0434 	 60 N3=0.Eqr,TH.NIAWIDTH1/241 

	

0 435 	 N4= (LENGTHLA3TvWIDTH)/24 2. 
r36 
43/ 

	

438 	
tiO FOR'IAT (414) 
70 WRITE (2.60) N3,n1,114,LAsT 

READ (2,90) FR11T1(2). FRMT1(4), FRMT2(2), FRMTZ(4) 

	

4:439 	 90 FOR'IAT (4A4) 
0440 

	

0441 	 100 112. ;0 310 

p4ti 110 
N;; IFLAG) 110,999,120 

44  G010 130 

	

C445 	 110 N3=(LEN(ITH-p*111DTN)/241 

	

C40 	 130'WRITE (2.143) N3.P 

	

C44, 	 14V FOMIAT all.) 

	

0448 	 READ (2,150) FRMT1(2). FRMT1(4) 

	

.0.49 	 150 FURmAT (2/14) 

t1M 

	

0452 	
400 i? Tr42i199,210,300 
410 WRITE (STREAM, FRMT1) ((4(1t.1), JR1,12), 100) 

0453 	 RETORU 

	

454 	 3uv.NeN1=N2-N 1 

	

0455 	 IF (N-1) 5.99L440.310 

	

C456 	 310 DO 330 K....11VNleN1 
0451 

	

C458 	
KR=K+01-1 
WRITE (STREAM/320) K, KK 

	

0459 	 310 FORIAT (111 ,/., COOmNS 1 03, 1  70 1 ,i3.' OW) 
4;460 

 
330 WRITE (STREAM/FRm71 ) i(A(1,J), J=00(), 1=1,N) 

	

&tge 	540 l 	
IF (LAST-1) 3/0,340,360 
WRITE (STREA11p350) P  

	

0463 	 550 FOR'IAT (1H 

	

 

  	 7

' if' COUIMN',I3.' IS,') 

	

0
0

46
4 
	

WRITE 
3

S
0

REAM/FRMT2) (A(I/P), 1.1 r N) 

	

0466 	 360 Kic=”2:11+1 

	

046f 	 WRITE (STREAMI320) KK,P 

047  
c4280 

	

1,4 9 	
WRITE (STREAMIERMT2) ((A(I,J)e Jc(1(0), 100) 

	

(;47, 
	

370 ';(6,,T:illis71,112t11,N1 

	

0472 	 410 WRITE (sTR EAmsERmT1) (A(i.J), liql(oKK) 

	

0473 	 IF (LAST-1) 440,440,43V 

	

0474 	 420 WRITE (STREAM,FRMT 2 ) A(10) 

tiag 

	

c47/ 	
450 

G
K=201+1 
O TO 440 

WRITE (STREAMIERMT2) (A(1•J), J=10:#12) 

	

_0478. 	. 	440 RET'ARN._. . ... 	__ . ___ ..._. -. -_ 	. _ 

	

047Y 
	

999 STOP MXOP 

	

(.;480 	 END 

END OF SEGMENT. LENGTH 	427, NAME MXOP 

f• 



indNI SINN eist? 	NiON21 galwaYS JO CN3 

O 	
aN3 
	

PALSO

Oan
NniNoD 

 n(e 	/60
O 

 

	

Nbh138 	91,0 

	

Q10mCL'1)1V 	020 	SLO 

	

0 l.n(01)01 	'1.0 

	

Noy! 02Q 00 	CLO 
• O'LhcriL-r)av 	nu? 	Pt51 

	

O'0b(r4I)IV'(r'I)HV 	LLO 

	

' li'i:J ni 80 	MR 

	

3mi11NO3 	ono 	BOLO 

	

0C9 01 09 	/00 

	

JfiN111A3 	nn/ 	
NO lohil8 

	

(0(892) 1V,Ja01 	nLa 	4,00 

	

(N'Llil 0(MiLrf etr,O2Y,(t'1)100) (0L9'S) 0v3M 	COO 

	

3nNI1NO3 	009 , 	700 

	

COL 01 09 	1.00 

	

3n1J111,03 	AOC 	0051 

	

001. ul 09 	A671 

	

DnilliNO3 	nab. 	$7671 

	

001, ul 09 	16/1 

	

:J(NI1.,00 	nor 	'9611 

	

001, 01 09 	5611 
3cluIl:,00 flop toll 

	

leah138 	v61) 

	

(0'OO) LVLAIol 	021 	7611 

	

(N'Llel i(N,Logr ecr!mly» COWS) 0138 	LW 

	

0.0c(r11)11, 	nu 	06,1 

	

N'LmI OLL 00 	6$2/1 
NiLcS

1') 	00 	p 
-Ofilzwo3 001. 

	

ON 1(00606017/00Vonsion05000ygoovnOV000 01 09 	9915 

	

(1.119V?I) LVLIJOd 	nL ' 	WO 

	

SaVallIPN (WS) 0V38 	1p,1 

	

(NWIO,NWIO)IV'MO'NWO)HV 1v3H 	cv11 
,. 53H,NU/0 H3D31N1 

	

(0132dISWON.N,NWiatIY,tiv) locINI anlinokluns 	'LW 



A JACOBI-LIKE METHOD FOR OBTAINING THE EIGENSOLUTION OF A NXN GENERAL COMPLEX MATRIX 

THIS PROGRAM WAS RUN ON 22 AUG 74 
AND EXECUTION STARTED AT 17/54/22 

EXAMPLE NUMBER 6. 

	

5.1R3
. 000 000 	.000000 	0 

00 
 -1:0000000000 00 . n000000000 Oy 

81191 	1133883M31 
0
0 =2.88SSSS833S1 00 4%1883838Si 00 • 

	

. 000 000 	.000000 	0 	0 .5,0000000000E 00 0.0000 ououou wol 

NMUMI i:888888888 IIHRFAtilE 

	

1. 00 0000 	Ov g:0000000000E 00 	:0000000000E 00 4:0000000000 00 

54 JACOBI-LIKE ROTATIONS AND SHEARS NAVE BEEN USED 

THE EIGENTALUES OF A ARE GIVEN GIL0141 
REAL PARI 

4.0000000005E 00 5.00000000071 00 1.0000000003E 00 1.00000000068 00 

THE ORIGINAL 4X 4 MATRIX A IS GIVEN RELOW1 

REAL pARi 

IMAGINARY PART 

IMAGINARY PART 
8.0000000024E 00. 7.0000000017E 00 6.0000000017E 00 5.000000001gE ou r-1 

1.0227351332E 00 1.0874546756E 00 8.7319021398E-01 

;TOON 1.9°AVIT 4.fflqieggE.0 
j 55 6684 - 	1.074a 755 	w 	$10w ,459E. 

THE MATRIX OF CORRESPONDING RIGHT-HAND EfGENVEET0RS IS GIVEN BELOW, 

REAL pARi 

i
,1502378664E 00 

ligqgi4:131 
.75 66 /13E-01 

IMAGINARY PART 

  

AARE ITERII 0111111;111:11 : :82936.5,7.E:0 

   



THE MATRIX OP CURRESPONDIMG LEFT-HAND EIGENVECTORS 13 GIVEN BELOW, 
REAL PAR: 0446044 	8 	1 9.63086

5
4
t$
6E601 8.7799955119633E■■011   ."9.61 801 91 6467

;
948781EE4-09 .1.80

i
733
i
5588673026EE.

S
0U 

.:010141; :1Jan;VRP
g
.8? SIg84104:81 1:82i= S 

IMABINART PART +1.1393666564E-0i  1.8672648840E11 4.1409921949E01 1182371213E60 6i. 39,1 667126E60 1,8472648E164r  1 -5136714310E19 . 	anyik:81 
1. 393667 38E+0 63.734529770 	1 	409Y 1434E. 1 2. 787333 11A■0 61.8472648849 601 64. 4099 1466E6 1 	:34485442g31.01 

THE RESIDUAL mATBIA :OAP IS GivEN BELOW: 
REAL PAR: 

IMAGINARY PART 
-2.7°333 9967E-11  .01.9710a02g89g9R9A21E1A.10  1.1567480472E60 	4:3381042949E611  41.

.
4
11
999

1
4
60
4
1

8E
1:1
B
0  

.5:7812580198E609  iI
.

l
116
if
1
3
598

1
g
O7
e
2
n
7 	1

o
4 OU 1:0000000003E
f  

-1:19 H141 	
451 3394'33°1:U 

2:IA8
0
18201

2
2
g
34; 4:462Y1 4:4 11322323286E.00 3:0036000811gl0 

EXECUTION TIME WA$ 0.753 SECOND, 



APPENDIX 5  

262 

A RITZ ITERATION PROGRAM FOR SYMMETRIC MATRICES 



	

ffli 	YAMPA DIDI,DInp,p,Em,G,N,1,INE(64),DATe(3) 

	

CO25 	REAL x(7.50,3), v(250), Y(150) 

	

CO2/ 	
RIM:  Ftrif8), 0(8.8), D1,8)* F(8), BO(8), VV. DOLD(8), LARGE(N) CO26 

	

WI 	"1 
cowlou No,FIELD,LENGTH,K 
DATA LINE/64+1H*/ 

CU28 

	

C
031 	C=E
031 	C 

M
ALL ELAPSE (E.DATE,2,K) 

C  

	

C033 	READ (5,10) NUMRERiDIMN,DIMP,LENdTH 

	

CUS 	10  irriLTN(W1 11.51.i!20i3 K=■1 
C014 

036 

	

C037 	
DO 500 :0a1,NUMBER C  
READ (5.20) N.P.KM,EM.EPSIFIELP•NORM 

	

C038 	10 FORMAT (15,12,16,12.E9.2.A6.I1 ) 

	

Eflr 	
30  gRgy 401;:0(1) READ (5,50) ((X(IFJ), Jal,P)s Io1,N) 

CALL TOE (T) 
R V/ 

	

C043 	
IF (K) 120,999,100 

100 WRITE (A,1101 WHEW, 1=1,64), (pATE(1), I=1 3) T, NO 

	

C044 	110 FORMAT OH1,//.79)6'THE METHOD OF "QUICK RITZ" ITERATION FOR A REA 

	

COGS 	11 sYmnE.RIC mATRIxv,/,'49X,o,01,///,45x,ITHis PROGRAM WAS RUN 0141,1 

	

ale; 	
z3,1X,A3,1X,I2,/.45X,PAND EXLCUT1ON 4TARTED ATI.A9e//.54X.IEXAMPLE 
3NUmr1ER'13) 

	

C048 	GO TO 10 

	

COGO 	140 WRITE (.r 30) (LINE CIA/ I=1.351,ADATEII). I=10)f T I  NO 

	

CO50 	130 FORMAT (1H 8 //////,' QUICK RITZ" FOR SYMMETRIC MATRICESio/t1X135A 

	

(,G 51 	Ile/I,' DATE:',13,1X.A3r1X.I2.5WTIME1 1 .A9,5WEXAMPLE NUMBER',13) 

	

COSL 	140 CALL EL PS (E.DA1E.1,K) 

	

0053 	cALL IKilz (X.V.'1*RVoPoDoFfElgoZ0DOLDoLARGEoDIMN0DIMP.NIPIEM, 

	

C054 	1 Km,KS,11.1.1C.EPS) 
(.055 

	

C056 	
CALL ELAPSE (E,DATE,1sK) 
IF (NIR!! .E1. 1) CALL NORMALISATION (XIDIMN.DIMP,N,P) 

	

C05/ 	IF (K) 720.999,200 

	

0158 	1UU WRITE (.5.410) R.Q.EPS 

	

CU59 	110 FORMAT OH //7/.7. .I2,' EIGENVALUES ANC0,13.1  EIGENVECTORS HAVE 

	

cagle 	

1 RFEN 6P,CEPTED TO AN ACCURACY OF's1PE9.2) 
GO TO lio. 

C060 

(1 WR ITE (,,,430) 4.6,EPI 

	

c063 	45111FENITCCP'4FVf64:1)PE927; EIGENVALUES AND'oI30 EIDENVECTORS HAVE B 
(064 

	

‘066 	rig tij(1471 FAT ( 1g09/4/,' THE'03,' APPROXIMATIONS TO THE EIGENVALUES Age 
CU65 

C061 

	

CL68 	
1.') 
CALL riXop (HoloDInPolePoFIELD,LENOTHo6.10 

	

0 069 	WRITE (6.310) 

	

;070 	31U FOPMAT OH o////,' THE MATRIX OF CORRESPONDING EIGENVECTORS IS OIV 

	

Mi 	
310 FORMAT (18 ,////.1  THE',130 SETS OF CORRESPONDING ERRORS ARE1 1 ) 

lEN nELMJ.,) 
CALL MX115  (K.DIMN.D/MP,N,P;FIELD,I,ENGTH.6,0) 
WRITF (6,3n) P 

CU71 
CU71 

	

C076 	
CALL MXMP (F,1,DIMPo1oR o FIELD,LENGTH,6o0) 
CALL ELAPSE (E,OATEolloK) 

	

C071 	IF (K) 420,999,400 
400 WRITE (6 {0)(41 UE.( 1 /1 "1,60) 

	

U 	
41U FORMAT OH ,////.31X.60A1) 

C081 

	

C08/ 	
41U WRITE (6,'130) 

GO TO 50P 
( LINE 

5u0 CONTINUE 	
!LIAli41.4°) 430 FORMAT (1H o// 

	

C085 	
STOP OK 

C086 YSIY STO
P NONM 

(15 
84 

END OF SEGMENT. LEWIN 	332r NAME NONM 



	

C087 	SoR7nUTTNErIKRZ (X.V.IhRV.8,D,F,B3.21DOLD.LARGE,DIMN,01MP1N,p8E 

	

CU88 	1 Km,Ks,2,G,MC,EPS) 
CU89 INTEGEF 0/Thnt1P,P,EM,N,G01.G1 

	

CU90 	REAL X(')IrYJ,DI1), “(p1:114). W(DIMN), RV(DIMP.DIMD), 8(DIMP,DIMP 

	

CUO1 	REAL !(7,1!IP) ,  F(oltin). BEI(DIMP), Z(DIMP), DoLD(D/MP), LARGE(DIM 

	

CU92 	REAL INNER PRODUCT, MC 

	

CU03 	nOunLI! ;,RECISION SUM 

	

(.094 	no ln 1=1,p 

	

CC95 	n0LD(I)..0.0 

	

CU96 	IU LARGF!!)=0.0 

	

0097 	C 3d IS 7',/2 7() IS LARGEST EXPONENT ON M/C) 
...-.  

	

C098 	r.0 ,:T,-37; 0-,LOGO(ILOAT ( N)) 

	

CU99 	KS.1,N.G1 ,H17.0 
0100 4=2 
1101  22=9.1 

..... FpS2=10.0*EPS C12 

	

c1
0
03 	IF (KM .LT, 0) GO TO 30 

	

004 	DO 20 J=1.P 

	

C105 	 CO CALL RA"DIPUSATIof; (X,DIMN.DIMP,N.J.22) 
.... 

 

	

0106 	30 CALL ORTHO (XeRVeDIHN,DIMP,N.P.OFMC) 
C10, Km=1ARS(01) C  

FORM S'X'AX 

	

Fl
110
n 	

Do 11
3  100 DO 10 K

pg
=G+1
l

,p 

	

H1/ 	
11u v(I) XCL,Ki 

0 -: 	C 

CALLPRIDqCT (V,W,DIMN,N) 

	

0113 	DO 130 J=G+1.P 
1.- 	C114 	

?)(DINT(716°TeliN 

	

Mg 	1 -CD SU"=SUti+X ( I,J)*U ( I) 

	

0117 	 130 s(J-G,G-G)=SUM 

	

C118 	 C SOLVE E-VALME PRO3LEM pop a I.E. V/Bv00 

	

Pr 	cALL JACO (D.DtV'EtBarDIMPRP+G,K0fMCIEPs2) 

	

L1 0 	IF (G .E0. 0) GO TO ZUO 

	

C121 	DO 140 I=G+1.P 
C122 

	

V123 	140 P7M/D(J) 

	

0124 	nO 15') I=14 

	

C125 	15u D(I)=DOLO(I) 

	

C126 	 C FORM Xe•ev WERE Y.AX 

	

C12/ 	 • CUL; no 220 Jne3+1,P 

	

0126 	DO ?ID InliN. 
C129 11V V(1)0XCI,J) 

	

C130 	 CALL PRODUCT (V,W00IMN,N) 

	

01 1 
qi; 	 eeu X(I.J)=9(I) 

DO 220  1=10 

DO 750 IQ ,N 
8i! 
C135 

	

C136 	 Rrli (:)CijK:1:PP 

	

C137 	e30 SOm=s011+X(I.K)*RVCK-GfJ..0) 
• 

	

0138 	44u .2(J)=SUU 

	

ilit 	
DO 251 JI.G+10 

e5u x(I,J)=7(J) 

C 	
C PLNFoR,1 is p;;EnTiPLICATIONS 

DO 310 K=1.1- 

81t1 	
DO 	3 10 JaG+1,P 
Do 300 

	

C145 	
Tal,N 

	

0146 	
3UU V())=X(I,J) 

CALL PRODUCT (1/04.DIMN/N) 

	

0147 	 DO 310 I=1fN 

	

C148 	310 X(I.J)=q(I) 
KS=KS+M 

	

8t9 0 	C Fowl X=YR 

	

C151 	 CALL nRTHO (x,D,Dimq,DIrlp,N,p4,m0 

	

Flii 	
c cHt,K STFPS AND CONVERGENCE 

IF (0 .GE. P) GO TO 430 

	

C154 	 DO 4n0 Imi4+1,P 

Cl 
C155 

	

56 	 400 
IF 

m01
AB
+ 	

(SC(Dn (I)-D(1))/D( I)) .GT, EPS) GO TO 410 
Ni1 	

o 

	

C15/ 	410 MeN+1.11 

	

C158 	H10 

	

C160 	
DO 42o IsiG+1,p C159 

4eu DOLO(I)=D(I) 

	

Fin 	
4,0 no 454 J=G+1,P 

AUX=A1S;X(1.J)) 

	

C164 	 ta !('1467i0J)) .GT. AUX) AUX=ADS(X(I,J)) 
0163 

	

Elgg 	
440 CON TI0MF 

F(J)e(LARGE(J)"AUX)/AUX 

	

C167 	450 LARGF(PeAMX 

	

C168 	DO 460 JeG+1fP 
C169 

	

C170 	460 4 .F
I A.lik2,ICF(J)) .GT. EPS) GO T0 470 

4ru GliqtG1 

	

8;12 	01 30 

	

C173 	CALL INFO (n,F,nIMP,P,KS,G4FEM) 

	

C174 	IF (0.LF. :I) Go TO 510 
. 

	

0175 	IF CG LT. EM) GO TO 500 

Me 
GmN 

	

1C78 	GO
2 
 TO 510 

flP 
C18t 
0183 

018
g  81 °  

- 	 6 

END OF StGmENT, Lewin( 	794.. NAME WM 

5UV G=N 
,11, IF SG .5F EM nR KS GEt  KM) GO TO 520 

CON5T1= 01STfACOGIOCADS(DiCt1))) 
Clo,ST2=1*ALOG10(ABSCD(0+1)/p(p))) • 
IF (FLOAT01) .LT. CONST1 .AND. CONST2 .LT. 1.0) MoM.1.1 
Go To 100 

)zu RETURN 
END 



sunRWITINE JACO (A,D,v,R,2,0ImN.NiRoT,EivEcfmc•Ep52) 
INTEGERR0111:1,E(vEc,RnT,PEs,p,0 
RE1L AD111,1,0m1), D(DIMN), v(DiMN,DIMN), 	z(0triN), MC 

FlA 
0189

g  

C190 DOMTLE PRkCISION SLIM 

	

0191 	DO in I=101 
0, 

	

0192 	Do 11 J=1 

	

0193 	lu v(I,J)=O.0 
0194 DO 20 P=1,N 

	

0195 	eu v(P,p):41.0 

	

C196 	3v Do 40 P=1LN 

	

0
197 	n(p)=A(P,r) 

	

198 	B(P)=o(P) 

	

H3?) 	
40 z(P)=0.0 

ROT=0 

	

0201 	EPS=5.011*(N-1)*MC 

	

l3 03 	Surim0.0 
DO 400 1=1,50 

	

0204 	DO 100 P=1,N-1 

	

C206 	
Do 100 r)= +1,N 0205 
TE1,1=ARI(A(p01)) 

	

0207 	101) sUT1=sMM+DO LE(TEMP) 

	

0208 	Sm=SUM 

	

0209 	TF (VT .LE. EPS)  GO TO 500 

	

0210 	TRESH=0.0 

	

0212 	
IF (1 .LT. 4) TRESH0.244M/N60,2 0211 

	

0213 
	DO 130 p=1,N-1 

nO 330 1=13+1,7 

	

0214 	G=100.0-AOS(A PA)) 

	

0215 	IF (I .GT. 4 .AND. AOS(D(P))+G ,EQ. ABS(D(P)) .AND, 

	

0216 	1 AnS(n(n))+G .EQ. ABS1D(Q))) GO TO 310 

	

0217 
	

IF (AOS(A (P,Q)) -LE. TRESH) GO TO 320 
H=D(0)-n(p) 

MO 	
I F (AnS(H)+1  .E0. Aos(H)) Go TO 110 

THETA=0.5*N/A(P,Q) 

	

Hi1 	
T21.07CADG(THETA)+GORT(1.0+TNETAibill)) 
IF (THETA .47. 0.0) TIT-T 

	

8W, 	110 T=A(15,4)/ 
GO TO 120 

	

0225 	14u c=1.07GQ117(1.0+T*T) 

	

C226 	sorTAT 

	

0227 	TporJR/(1.0,00) 

	

qg 	
7 P =2 P - 
H7T,,,, A(Pcp) 

2(0)=7.0)* 

02215 

	

02 1 	n(P).D(7)-1 

	

0232 
	

0(0)=0(g)* 

	

c234 	WiciP7;4? 1) G 0 TO 210 

	

0236 	
DO 200 Jx10..1 
AJP=A(J,P) 

0235 

	

C239 	

AJOA(J,Q) 
A(J.n)=AJP-S*(AJQ+AJP*TAU) HN 

40u A(J.Q)=AJO+G*(AJR-AJO*TAU) 

	

0240 	41u IF (P+1 .GT. Q-1) GO TO 2302  

	

0241 	DO 270 J3P+1,01.1 

	

Hti 	
APJ=A(P,J) 
AJ0=A(J,0) 

	

0244 	A(P,j)0APJ-S*(AjQ+ARj*TAUj 

	

0245 	4eu A(J,D)=AJo+G*(ApJ-AJW,TAU) 

	

(.247 	
43u IF (Q .EQ. N) GO TO 250 1.(.246 

	

024E 	
DO 240 J=q+1,N 
APJ=AcPH 
0JmA(,J 

	

Mr) 	A(P,J)=APJ-5*(AQ.1,0APJ*TAU) 

	

0251 	440 A(0,J)0AQJ.I.s*(APJ-A1J*TA0) 

	

C252 	45u IF (FIVE0 ,EQ. 0) GO TO 300 

	

C254 	vJP=v(4,P 
DO 260 Jur ce53 

	

C255 	v.115=V(J.0 

	

8N, 	
v(j,p),e,TP-S*(V.A+Vjp+TAU) 

ebu 1/(J,Q)=VJQ.S*(VJP-VglibTAU) 

	

gi! 	

..iuu ROT=ROT+1 
GO Tn 320 

31u A05,0)=0.0 

	

Cetsi 	340 coNTINNE 

	

0264 	

.50 Fr1;01.1L" C262 3 
0263 

8(P)101P)*2(P) 

	

Mg 	340 z(7).0.0 
D(P).D(P) 

	

WI 	
40, CONTiOUE 

PoT=-ROT 
50u 00 540 P=1.N-1 C269 

0270 
0271 
C272 
0273 
C274 

Mg 

H;r1 

0 

0283 
0284 

Do 54o 1=P4.10 
TETTP=AP10(p))-ABS(1)(0)) 
IF (AnGTElp) .LE. EPS2) 00QT0 530 
IF (TEMP) 510,530;530 

51G 5M:9(P) 
n(15).00.1 ) 

(01(()9521"Ill1PN 
S410:(10) 
V(I,R)101(1,(1) 

Stu 1./(1,01.1111 
530 coNTINUE 
>4U CONTINUE 

RETURN 
END 

END OF SEGMENT, LENGTH 
	

200. NAVE jACO 



	

C285 	SU17DUTINE ORTHO (x,R,DIFIN,Dimp,N,p,c,mc) 

	

p 	 pITEGFA DITI,ww,p,F,0RIG 
REAL 7.(nIWI,DINP). N(DIMPIDOMP), INNER PRODUCT, 

	

eAa 	nouDLE PRECISION SUM 
C289 

	

g.37 	
DO In X=F*1.P 
ORIG=1 

lu Suo=n.0 

	

0292 	IF (tc.r0. 1) GO TO 40 

	

C293 	DO In T=1,K-1 
0294 smmER nRoDuCT (X.DiMN,D11o,N,I,K) 

	

C295 	IF (ORIG .EQ. 1) R(P^X+1.1)=S 

	

006 
	

SU
O  
M=S

l 

1/0
.1+= 

S*
/
5 

	

C
e9
8 	

D
(J.K)=M

1
J
N
. 0.S*X(J./) 

	

0/99 	eu coNTIlor 
 

	

 00 	su CONTTr1O7' 

	

C301 	40 =5;14.;RODUCT (X.DIMN,DIMO.N,X.X) 
0302 

	

83 	I 
T
F
RS/G

(S
M 
0 .GT. T/100.0 .AND. T*MC .NE. 0.0) GO TO 50 

030t 

	

(406 	
O= 
WRITE (4.100) 

	

0307 	100 FORMAT 0 WARNING 1 IN ORTHO') 

	

0308 	IF (S*MC ,NE 0.0) GO TO 10 

	

0309 	WRITE (6.11nS 

	

0310 	110 FOR1AT (' WARNING 2 IN ORTHO') 

	

C311 	s=y.0 

	

C312 	R(P-K+1.K)=0.0 

	

0513 	50 IF (s .EQ. 0.0) GO TO 60 

	

0314 	S=SORT(S) 

	

0515 	R(P-K4  .K)6S 

	

M6 
	C=1S=1„_n7 

6u Do 7n =10 
0318 

 C319 

	

Hi? 	

70 X(3,1()=R0(0,10 
80 CONTINUE 

RET 
END

URN 
 

END OF SEGMENT, .LENGTH 
	

2641 NA1E ORTHO 

0322 
C323 
0324 
Q35 

12 
C32

2
6 

07 
0328 
03 ?9 

Hi; 

REAL FUNCTION INNER PRODUCT (X.DIMN,DIMP,N,X,L) 
INTEGER DIHNIDIMPFP 
REAL X(DIMN.DIMP) 

SU
DOMUILE PRECISION SLIM 

LE 
DO 10 I=1,N 

10 4Uo=s0M+X(I,K)1(111.) 
RETERPRODUCT4S41 

MN 
END 

END OF SEGMENT. LENGTH 	80. NAME IUNERPRODUCT 

	

0332 	SUBROUTINE RANDOMISATION (X.DIMN.DIMP,N,L,2) 

Cii3  

	

4 	
INTEGER DI11,DV1P 
REAL X(DIMN.DIMP) 

	

C335 	DO 10 1=1/W 

	

0336 	lu X(I,L)L27.0*FPMCRV(Z)1.0 

	

0337 	Z=FPMCIW(Z) 

	

0338 	RETURN 

	

C339 	END 

MC 

END OF SEGMENT, LENGTH 671 NAME RANDOMISATION 

C340 	sUS=0uT1NE INFO (n,F,D11PLP,KstG,NIEM) 

Sin 	
INTEGER DIMN.DIMP.STREAM.PREV,G.HuEMO/LINE(63) 
REAL F(DloP), D(DIMD) 

Hia 	
DATA LI1F767 61H*,, PREV70/ 
COr1,1 04 ”0/FIFLD,LENITN.X 

C345 	IF (K) n0,200,103 
C346 	100 IF (PRE" .F1 Ho) Gn TO 120 

WRITE Up1101 No. (DINE(!), 1=1,63) C347 
We 	110 FoRmAT 091,7/,2RX.,INFOROAtIONAL OUTPUT ON LOGICAL STREAM 4 FOR 

lxvIDLE MOmBER',1 3A/,29X,63AV 
CA 	1Zu wRTTE (6,1.50) 0.=,4,r1 
0351 	150 FoRnAT :14 ,/b4lx.,NoMDFR OF STEPS PERFORMED 10,16,/, 
(452 	1 43X,,N1mGFR oF ETGrNvEcToRS ACCEPTED 11'.13/7.,  

2 43X4oNgonER OF FIGEAVALuESU ACCEPTED =',13t,/ 0353 
3 43X. 0 N"IUER Or S003. TO RD COMPUTED .1 1 .13F 
Go To 310 

0354 

0 
0357 	

20U IF (PRE'!.Eq. NO) GO TO 7202 
t.IRITE (4,41n)  11,  (LINE(1),./.1,4?) 

elu FOR1AT cim ,//,77/,' INFORMATIONAL. OUTPUT FOR EXAMPLE NUMBER I.I5 

tiN : eep%U01).230) xS,G.R.Em 
C361 	e50 FoRoAT (1H /,,, STEPS PERFORMED 50,16,/,1 E1GENVECTORS ACCEPTED 

1'.13,/.,  E1GENVALUES ACCEPTED .11 .13.Fr. SOLNS. TO DE COMPUTED • 
213) 

MI 

Hglo 	

500 WRITE (ig3;0)  
"5" "R"A;r96P (1!(TFP1,115T, ThIg!PENGTH,4,10 

Ba 	
CALL 
WRITE V.13;°)  

5Z0 FORMAT ( THE APPROXIMATIONS TO THE EIGENVALUES ARES') 

::11:%1I1

4X1P (D/1.DIMPO.P,FIELD.LENGTH.4.0) 
Hq 

M1 	

PREV.NO 

END 

9F0 
END OF SEGMENT. LENGTH 	173,  NAME I 



Am. 

375 	

sun,fluT,N, :I ORMWSATION (X,DIMN,DIMPIN.P) 
INTr:GE( P.:L.,DI. ,P 
REAL X(DIFN,DIMP) 

0 	
DO 3n J.1,p 

C378 	
AuX=x(,j) 
DO 10 m.P, 

C379 	IF (AD Ci(I,J)) .GT. ABS(AUX)) AUXqX(I,J) 
C380 10 CONTINUE 	- 
V381 	DO Zn I:110 

Hil 	

x (r,J)=gCI,J)/AUX 
eu CONTINUE 
.50 CONTIqUE 

C385 
C386 	

FaimR4 

END OF SEGMENT, LENGTH 	105, NAME NORMALISATIONP 

C37 
f43;227(I LELAM( DAIOR1111), BUFFER(2) C388 

C389 	DATA CALL(?./ 
C390 	DATA MO1TN/IJAN,o'FEBI,,MAR',,APR'rtMAYI,IJUNI,,AY'PlAUBIOBBPI, 
0391 	1 '117T', 1 N0q.",'DEC 1 / 

GO TO (100,200,300), NO 

Ci3iil 	

100 CALI_ MTImE (N) 
EaN 
CALLa3.-CALL 

SW 	
IF (CALL .2Q. 2) GO TO 110 
EEnE 

EM 	RETF_IRN 
110 E=E-EE 

C400 	EKE*1.0E-3 
C401 RET,IR 
0402 	

ri 
[00 cALL DFFROF i2,8,8UFFER) 

C403 
	

CALL DATE (E) 
WRITE (r!.210) E 

C405 	210 FORMAT (48) 
V406 	READ (2.220) (DAT(I), Im1.3t 
L407 
C408 	

4ZU FOR1AT (re!,1X,I2,1X.I2/ 
DAT(2)=!104TH(DAT(2)) 

r 09 	EtEEa1.0E-01 

41? 	
430 IF (1.0-PEE .0. 1.0) GO TO 240 

412 	F4/2„_0 

r13 	GO TO 230 
414 	e40 RET,IRN 
415 	500 IF (K) 170,370,310 

0416 	510 IF (F .6E. 60.0) GO TO 330 
WRITr (6,32n) E 

Cc4 J! 	520 FOR'IAT CiH ,////,44X,I EXECUTION TIME WAVIF7.301 SECONDS') 
0420 	350

GE:E17 
IF (E .OE. 120.0) Go TO 3502 

C421 
C422 w 
C423 	

340 g1TF (6,340) E 
FoRmAT C1H ,/// /.40X,'EXECUTION TIME WAS 1 MINUTEI,F7.30 SECONDS, 

C424 	1) 
V425 	GO TO 340 
0426 	550 1=E/60.0 

 C42e 	E=E-r+60.0 
wRITE (6,36D) I, E 

M 	560 FORIAT (111 ,////..59X.1 EXECUTION TIME WAS',I3f,  MINUTES,,F7,3f ! SEC 
430 	lONDI') 

C631 

i 	

Go To 3^0 
5(0 wRITF (6 380) E 
58v FOR1AT CO .///W EXECUTION TIME WAS',F9.3,0  SECONDS') 

V434 	590 RET'ARN 
0435 	END 

END OF SEGMENT, LENGTH 
	

1821 NAME ELAPSE 

• 



	

0436 	STN  TINE 11.(A.1)IMI,DIMR,N,FIELD,LENGTH.STRBAM.IFLA0) 

	

RirS 	
INT.GER D111,1) 1P,P.,141 TH,STREA 
REA A(ntnIgni,P), FRn 10), FRMT2(6), BUFFERI 

	

C439 	DATA FRIIT1/1H( 	:=14)1:1; 	OHMOHEISM 	/ 
c440  

	

0441 	
DATA FRmTe/lH( 
IF (IFLAG) 10,200,10 	

0H1,1,1HE,88 

	

(442 	10 CALI, DEFOF (2,161 BLIFFER) 

	

0 4 4 3 	 FRF,T1(5). FRNT2(5)EFIELD 

	

Q444 	WRITE (1.1) FIELD 

	

c445 	40 FOR'1AT 'C46 

	

C446 	READ (2,30 WIDTH. 

	

C44f 	30 FOR!IAT (1.12) 

	

448 	IF (D,041DTH-LFNGTH) 100,100.40 

	

449 	40 N101LENGTHP4IDfil 
450  

4 
NI 

	

Mg 	

N2n/01 

irT7UNO/999.60 
50 N3n1 

84.1 
GO TO 70 

6u  
c4 

N3m
m
(LtENGTHN--nL 

- 

i*W*IDT
I
N
)!T /

1
2 +1 

	

V.
5
8 
	

(U WRIT 
EN

2
T
00)

A
U
T
,
W
1
D
114,LAST 

	

4: 	

80 FoRIAT (414)

:: 	

REAn (2.0o) FRMT1(2), FRMT 1(4). FRMT2(2). FRMT2(4) 
 Yu FoR,1AT (4A4) 

4 GO TO 300 

	

r4
63 	100 8221 

	

464 	IF (IFLACI) 110,999,120 
65 

	

4c:..469 	

11U 83m1 

	

!!7'81 	

GO TO 130 
14(.1 N3m(LENGTH-P*WIDTH)/2+1 
130 WRITE (2.140) 83,P 
140 FOgIAT (214) 

	

Q 470 	READ (2.150) FRMT1(2), FRMT1(4) 

	

4 4 	

15Q FoR'IAT (2A4) 

	

Ni 	
evv la TP42N99,210,300 
410 WRITE (STREAM,FRMT1) ((A(I.J), Jol,P), WO) 

	

Q475 	RETURN 	. 

	

W7 	300 N2N1=N2*N1 
IF (N-1) 999.400.310 

	

C478 	.510 DO 130 Kx1.N201,(41 

	

0479 	
lanTililgEAM.)20) Kt KK 	, Q480 

	

C4R1 	SCLI FOR'14T (10 ,/. C0L,ImNS1,13,1 T01 ,13,1 ARE1 ) 

	

C4RL 	330 .!RITE (3TRFAM,FRMT1) ((A(I,J), J'K,KK), rill1,H) 

	

Pi! 	

IF (LAST-1) 370 L340 360 
.540 WRITE (STnEAM.15n 
550 FOR'IAT (.1+1 ,/, LuOmp,i3,1 Igo) 

WRITE MFREAM/FRMT2) CA(ItP), Im1eN) 
GO TO 370 

360 Kx=q2111+1 
W R I T

E RIRDI:NPziK'dAci 

	

c490 	 ..1), J.KK,P), 1,11,N) 

	

C49i 	
31,0 RETURN 
400 00 410 Ka1012N101 

	

C493 	ocK=KoN1-1 

	

(494 	410 WRITE (STREAM,FRMT1) (A(1,J), J110100 

	

0495 	IF (LAST-1) 440,420,430 

	

r4

96 	42u WRITE aToREAM.FRMT2) Ai1 8P) 

	

c)r 	 • 

	

498 	430 KKaN2N1+1 

	

0499 	WRITEWRITE (STREAM.FRMT2) (Wn es JaiKKoP) 

	

;01 	
44u RET!11N 
YYY STOP MXOP 

	

04 	END 

END OF SEGMENT. LENGTH 	427, NAME NX0P . 



	

C505 	SUPROUTINE PRODUCT (V,W,DIMN,N) 

	

fg8g 	
INTEGER nlm4 
REAL 9(DI11U), Q(OIMN) 

	

C506 	 DON,IE PRECISION SUN 

	

C507 	 COI!,104 NO 

	

0508 	 GO TO (100,200,300,400,500,600,700,800,900), NO 

	

MY, 	
100 CONTINUE 

DO 120 I=1,4 

	

C511 	 SUr1z0.0 

	

051/ 	 no lin jo,n 

	

5ii 	

surl,,surti.(1.0/FLOATC/4.J-1))*V(J) 
110 c0,,T1qu 

w(i)c, VML(SUM) 

	

C516 	 141) CONTINUE 

	

0
517 	 RETNRO 

	

518 	 LOU CONTINUF 

	

C519 	 DO Z10 1:11;1.0 

	

C520 	 w(I)=V(T)+FLOAT(1)+V(N) 

	

521

25 	
st 

41U CONTI
n

NUT: 
52z Lm=.0 

no ?20 10101 

	

CT 	SUutISWI+FLOAT(I)*V(I) 

	

C5 5 	 CCU CONTTNUE 
w()2SNOL(SUM) C5 6 

	

fgg 	
WINN 

3UU CONTINUE 

	

C529 	 wil)=4.0*Vri 

	

EH; 	.. B:1:3V1:: 3 

	

0532 	 DO 310 IN4,14 

	

C533 	 W(I)10/(!) 

	

035 
 034 	

::: 7TIIIII: 

	

C536 	
RETuRN 

	

C537 	 KLI(N.-1)/2 

	

C538 	 W(1)=Kv/(1)+V(2) 

	

C539 	 W(K-0.1)=V(K)+V(K+?) 

	

0540 	 W(N)=V(N-.1)+K*V(N) 

	

Wed 	
LaK 
DO 1.410 Igqd: 

	

C545 	 Lt-1 

	

C544 	 Jel-'14,1 

	

0 545 	 w(I)0/(I-1).1.0, V(I)+V(I+1) 

	

0546 	 w(J)=V(J-1)+LeV(J)+V(J+1) 

	

0547 	 410 CONTINUE 

	

0548 	 RETNr; 

	

C549 	 500 CONTINUE 

	

C550 	 KE(N-1)/2 

	

C551 	 W(1)0I+V(1)+V(2) 

	

052 	 W(K+1)=V(K)+V(0.2) 

	

C553' 	WCN/oV(N-1)-K*V(N) 

	

FM 	DO K510 510 I=4,K 

	

C556 	 Lcl-1 

	

C557 	 .1101-14.1 

	

C558 	 W(1)mV(I-1)+L*V(I)+V(14.1) 

	

C559 	 W(J)...V(J-.1)-L*V(J)+V(J*01) 

	

C560 	 51v CONTINUE 
C561 

	

Rgi 	
6UU 1474:11qUE 

	

C564 	
W(1)=V(D 
w(N)=V(N-1) 

	

0565 	 DO 610 1=4,1..1 

	

C566 	 w(!),,v(1-1)+v(I+1) 

	

C56( 	 010 CWITIUUE 

	

C568 	RETNRN 

	

89r) 	
(UU CWIT1007. 

x.vIRT(FL9AT(N.1» 

	

831 	o.x*v( ) 
DO 710 I=,N-1 

	

Mi 	
yptx 
X=soRT(FLOAT(I*(N-I))) 

	

0575 	 W(I)=Y+V(1-1)+X*V(I+1) 

	

EM 	flu cunTINuE 
Y2X 

	

IW 	

W(m)=Y+V(N-1) 
RETNRN 

BUU CONTME 
W(1)=5.0*V(1)+2.0*V(2)+V(3)1V(4) 

	

BRi 	
w(?).2.1.v(1).6.0.vp).3.0*?(3),v(4).vo) 
w(3).,!(1) 43 o*v(e).„ 0 6 V(J)+3.0+V(4)+V((5)+T) 

	

0584 	 W(42)=V(39)4.V(40)+3. 1%+V(41)+6.0•V(42)+3.04, V 43)+9(44) 
w(47,)=V(40)+v(41).0.3.n•v(4e)+6.00/(43).2.0*V 44) 

	

EVElg 	W(44)=V ( 41)*V(0) 4 2.0*V(43)+5.0•V(44) 

	

8gr 
	nl 

 nLW=V
o
( I-3)+V

1  
I -2)03.0*VII'1X+6.0*V(1)+3.0*V(I+1)09(I4 2)+V(I43) 

	

0589 	 WIII=SNGL(SU(1) 

M1 81U UUC  gIy  

	

C592 	 YOU CONTINUE 
RETURN C503 

	

C594 	 END 

END OF SEGMENT, LENGTH 	805, NAME PRODUCT 



THE METHOD OF "Quick RITE" ITERATION FOR A REAL SYMMETRIC MATRIX 

THIS PROGRAM WAS RUN ON 22 AUG 74 
AND EXECUTION.STARTED AT 17/39/06 

EXAMPLE NuMDER 1 

3 EIGENVALUIS AND 3 EIGENVECToRS NAVE BEEN ACCEPTED TO AN ACCURACY OF 1.011E-D8 

THE 4 APPROXIMATIONS TO THE EIGEWALUES AREs 
1,7519106702E 00 5,429204848E401 3,5741816272E-02 2,5308907688E+03 

PIE MATRIX OF CORRESPONDING EIGErvECT0115 15 GI Er  BEinwl 
;:8;9$ 02.W.g? .1:Wa0n991.8s1 -6.°P8 4 4161F-81 ■-1:,1,1;8=9061-V, 1.0) 0 o t.u. 

Ng 
+98972- 33 

 :1.2WW7R81 3:4MNRE:81 	 01?=:81 3:0;53,,47445E-01 .4:6.,36945(E-01 -.4.50616(51565002 4.6.0646,6230E.01 
;.P44;1476g:81 :t:414731M9:81 :i1P,P37;N:81 :3396;1;Va:31 
HiBrigigE:g1 :tiggaM81 	 4A212r0;;E:81 1.;;WW81 
1:75'10003439E-01 ■3:10048578674E.01 .5:54363763515.01 7,2TD7972693E.01 

THE 4 SETS OF CORRESPONDING ERRORS AREI 
1.04014334875■11 .1.1410745EE91-11 4.2474223150E010 4.28013056971.00 

EXECUTION TIME WAS 1,950 SECONDS 



ERROR VECTOR 151 

APPRuXIMATIONS TO THE Eio NvALUE 8RE. 
—1.020R0000;0E_Oo -1.0u0oo0000ug ou -1.000oomme oo 0,00000000001 00 
1.0311415i 56 04 2.5612776372E.01 5.1845470385E.D3 1.5400640715E-04  

TRE 

THE 

NUMBER oF STEPS PERFORMED • 	2 

NUMBE R OF WIMpre WEF11 : Numhe o 	LNS. 0 BE u MP TE • 

THE ERROR VECTOR ISI 
THE APPRuXIMATIums  Tu 

INFORMATIONAL OUTpUT ON LOGICAL STREAM 4 FOR EXAMPLE NUMBER 1 

NMEF 
NUMBER R 

o  
uF iniNiEJWSOANIETE8 • 4  

NUMBER 
OF larlr.4gEBE MIMED • 2 NUMBER OF 

THE -f
2,8039

O

349
R4
088E

4

-03 4.3195772231E-03 9.782407673E.03 0.16612i53766.01 

:WO74A 
 

 3.4192956849E.01 3.5747816253E.02 2.530876414711.0i 

NUMBER OF STEPS PERFORMED • 	6 

WIRE1 OF 112141i621s ppg 
NUMBER OF 	LNS. TO BE 	MP TED • 

10601433487E-11 .1.16107456896.11 4.2474223130E010 .3.28013656976.06  

i.fEW6182146 3.44929548415E.01 3.574181602Ew02 2.53089076881685 

THE ERROR VECTOR ISI 
THE APPROXIMATIONS TO THE 

a . 



APPENDIX 6  

272 

A RITZ ITERATION PROGRAM FOR HERMITIAN MATRICES 



MASTER 
INTEGER DIWI,DIqPIP,EM/GIN, INE(6(1),DATE(S) 
REAL XR(50,3),M(50,8), VR(OTI(5(1), WR(50),0(50) 
REAL RVR(8,r1),RVI(8.11), 8R(.3.8 ,BI(8.8)I D(8), F(8). BB(8) 
REAL Z(1), on0(11). LARGE(8), 1C 
COmMOM NO,FIELD,LENGTH,K 
DATA LINE/60+18+f 

CALL ELAPSE (E,DATE,2,K) 
MC'E 
READ (5,10) NUMIER,DIMN,DIMP,LENGTH 

1U ForrIAT (14 152.12/13) 
IF (LE8GTH 1 .LT. 140) 101■1 

READ 	.2U 	, , ,EM,EPS,FIETNURM 
Zu FORMAT (15,1206,12,g9.?,,1001 

DO WhM0-4 ),W)plkA 

IF (KI ,LT. 0) READ 0,30) k(A (IsJ)I )(Wt.!), toltP)* 141,N) 
30 FORMAT (2G0.0) 

CAI!. TIME (1) 
IF (K) 120099.100 

1UU WRITE (6,1 1) (LINE(I), I=1,60), (pATE(I). itr1,3)P T. NO 
110 FORmAT (18 ,//,31X,,THE METVOD OF QUICK RI

T
Z ITERATION FOR AN HE 

3NAT,W191  Ni;(:11 AIVOYillii0(11'7X4TVIIRTVN”,V,VtLIUAULEIW1§ / 
3E111

O 
WRITE 

13) 
G 	11 

120 wRITE (,,,
y
130) (08E01, Im1;35),,(DATEM, 10,3),  T. NO 

130 FORmAT (18 ,/(////,f QUICKORITz' FOR HERMITIAN MATRICES',/,1X,35A 
4I ,A1N3,1X,IIOSX,I TIMEllrA9,5X,'EXAMPLE NOMBER',I3)  1 10116 

VrAT‘':XR■XI.vR:v1 191R,WY.RV ,RVI OR,BI D F 1111.Z,DOLD, 
1 LARGE.,n1 1 1',0IMP,N,P,EA'KM.KS,HR G,MC:EPS) ' ' ' 
CALL ELApSE (E,DATE,1,10 	- 	' 
IF (80RM ,C1 1 CALL NORMALISATION (XR,XI,DIMN,OIMP,N,P) 
IF (K) 720,919,00 

400 WRITE (6,',)10 11,G,EPS  
410 FORMAT 1 111 ,/(f/eZ1X,I2,1  EIGENVALUES AND's13,' EIOENVECTORS HAVE 

1nEEN ACCEPTED TO AN ACCURACY OF 1 ,1PE9.4) 
GO TO 240 

420 wRITE (0,30) 11.0,EPS 
450 FORMAT (111 ,////,1X,I2.1  EIGENVALUES AND',I3,0  EIGENVECTORS HAVE 8 

1EEN ACCEPTED TO 1 ,1PE9.2) 
440 WRITE (1,300) P 
300 FORMAT 18 ,(//(0 THE',I3o' APPROXIMATIONS TO THE EIGENVALUES ARE 

11') 
154.412p3M1,DImP,10,FIELDeLENGTH.6,10 

310 FO MAT (18 ,(///,' THE MATRIX OF CORRESPONDING EIGENVECTORS IS GIY 
1FN RFLOO:') 
WRITE (1,3RO) _ 

320 FoRmAT 18 ,/,'ArIAL.P.IIRT'l . 
E1 0114,EWW,Dim 'Dim ,N,F,FIELDfLENGTH,60) 

Sel FORMAT (111 ,/.' IMAGINARY PART') 
CALL (IXoP (XIOIMNIDIMP,NoPIFIELD.LENGTHf610).  
WRITE (0,330) P 

330 FORMAT (18 ,////1 1  THE 8 ,15,1  SETS OF CORRESPONDING ERRORS ARE)') 
V CALL MP (F,110 MP,1,1),FIELD.LENGTH,010) 

CALL ELAPSE (E,DATE.30K) 
IF .09,41/999,r . 

AUU oRITF (6. 10) 	Arig(I/, 10.60) 
410 FORMAT (1 ,// ,51)060A1) 

WRITE 5? 4zu wRITE ( 
0
:4301.0 11A(in ;11,40) . 

430 FORMAT in ,,,,ifixf4vA1) 

500 EVOPOP 	• 
'#99 STOP NOUN 

END 

IS8! 
0025 
CO20 
CO2( 

R)11 
0032 
C033 

HY; 
C030 
UO3/ 
C018 
C (139 
C040 
C041 
C042 
C043 
044 
4) 0 

040 

r0
0047 

48 
4 

'1)50
Y  

SH1 
0053 
C054 
0055 
0050 
C05/ 
C058 

0060 

'06i 
{061 

'U63 
C064 
Cu 
C060

65  

C06/ 
C068 

C071 
L..072 
CU73 

EW4 
C070 

CU 8 
CO 
0080 
CORI 

003 
C084 
r
U
A5 
8 

- 'OR(
0  

CUR? 
C000 
c091 

END OF SEGMENT, LENGTH 3631 NAME NOW, 



c094 	SUDROUTINE  liMR2 (XR.XI,VR,VI■wR,WI/RVR,RVI.BR.8I.D.F,BEI,Z.DOLD, c093 	1 LAIOE,DIlq,DIMP,N.P,EM,KM,KS,H,G,MC,EPS) C004 	INTrGER DM,DIMR,P,EM,00i,H1/(11 Cu95 	REAL XR(DITI,DIMR),X1(DIMN,DIMP), VR(DIMN),VI(DIMN) CU96 	REAL UT111),WI(DIHN), RVR(DIMPOIP),RYX(DIMP,DIMP) 
CU9( 	REAL DR DIIP,DUIP),n1(DIMP,DIMP), DOIMP), FOIMP)/ BBOIMP) 
MI'l 	

REAL 7.(01Me). DOLDOImPX, L ARGE(DIMP)o MC 000qLC PRECISI04 buflReSIIMI 	. C098 
DO ln I=10 

0101 	DOLD(I)=0.0 0102 	10 LAROE(I)=0.0 C103 	C 58 IS 7Gf2 (76 IS LARgEST EXPONENT ON M/e) C104 	CONST=334-ALOG1OULOAT(N)) 
Og 	MS.2 1,4110 K(11110 
10f ZZ=0.1 0108 	EPS?=10.0*EPS 

0109 IF (Km .LT. 0) GO TO 40 C11U 	DO 70 J.1,P C111 	20 CALL RA1DOMISATION (XFODIMN,DIMPsNojeZZ) 
Hli 	DO 38 111J3 C114 	.50 XI(I,J)=0.Q 
0115 	40 GALL CORTW1 (XR,XI,01MN,DIMPRN,P,OrMe) KM=I t)DS(KM) HO 	C FORM R.-,% AX 
E1U 	100 DO 130 K.G.1 1,p DO 110 I=1,N 
H 	110 VI(I)=M(If) VR(I)'.).0(1,9 

CALL PR6DOCY SVII/1/I,WRoWI,DIMN,N) 
013 	DO 130 J=0.01,P 
C126 	

SUmPLS0M1=0.0 
DO 1Z0 1=1,N Mt 

C12( 	SUtio.=SIPIR+XR(I,J)+WR(1)+X;(Ifj)*OICI? 
C128 	140 surIT.suniri J)+0(/).xACI,o)*0(4) DR cJ—,1,[;-q .S0(111 C129 	13U DIkJ—G,L-u =S0Mf 

C SOLVE E—v1LmE PROBLEM FOR a I.E. wi liveri. 
GAIL imp) (0R,81.D.RvRFRV4,011.2.01mP.P■G,KoisMC,EP82) 

MI 	IF (G .rf) 0) GO TO 200 
(134 	71,41 112I Y.7.641°  C135 	140 D(J+G)=D(J) 
0136 	DO 150 I=1,G 
0137 	150 D(1)=DOLD(I) C118 	C FURM X.,..YV Q;IERC YpAX 
0139 	4UV DO 77.0 J=q+1,11 (14U 	DO 210 /=114 C141 	VR(11).)(P.(1,,q (142 	00 vi( t)pAl(1,J 
010 	CALL PRinuCT (V11011,wR,WIOIMNiN) 

82 	DO 77.0 
 046 	ZGo XICI,J)=W1(1) C147 	DO 250 1.11,11 

0148 	00 240 J=ti+1,P SUMR,S911=0.0 
Mir: 	

DO 230 !:.01.10 
sum0=SMMR4XR(104)*RVRCK-G/J-0•XICI.K)*RVIc1(m.G,J.G) 

0152 	230 SUmI=SU'll.'XR(1,K)+RVICK-.0.J'G)+XICI,K)*RVR(K.G/JoG) 
C153 	Z(J)=101R C154 
C155 
	240 RD(J)=591I 

DO 750 J1+1,P 

C15f 	150 XI(I,J),-.D0(j) XQ(I,J)=2 j) C156 
H;t1 	C PERFORm m PRE.I'ILTIPLICATIONS DO 310 K=1/1-1 
C160

.  
DO 310 J=G+1,p 

(161 (164 	DO 300 I=1,N VR(I)DXR(I,J) 
l" 	

,J 
 . 

JOU Vf(r)Xf(I) 
64 GAIL PRnocr (vR,vi,wrowisoimN,N) 

0165 	DO 310 /21,N 

C167C168 	310 p(11B:UiR 066 

(169 	C FORM XmYR 	. 
PO0+14 	• 

H IV 



	

C170 	CALL CO1TIO (KR.AI.DIMN8DIMP,N.POIMC) 

	

EM 	
C CHECK STEPS AND CONVERGENCE 

IF fil .GF. P) GO TO 430 

	

C17a 	DO 4P0 I=N+10 
IF (ADS(000(1)-D(1))/0(1)) .GT, EPS) co TO 410 	- 

1 	111201 4.1 

	

flf! 	410 

n"210 r2041,p Mg 

	

C179 	 440 DOLO(I)=D(I) 

	

C180 	430 DO 450 imc:41,9 

	

C181 	AUx=sORTCKR(1,J)**2+XI(1,J)**2) 

	

C182 	DO 440 IrliCoN 

	

C183 	2Z=SOPT(XR(I/J)**2+XI(1,J)**2) 

	

C1A4 	IF (22 .GT. AUX) AUX=ZZ 

	

C185 	440 coNTruu 

	

C186 	F(J)=CLAP0E(J)-AUX)/AUX 
450 LARGP(.1)=Aux C187 

MI 

	

Eng 	

DO 460 J=G+1,p 
IF CADS(FCJ)) .GT. EPS) GO TO 470 

46v 61201+1 
4(0 G4q+01 

C192 

	

c193 	CALL INFO (D F,DIMP,P,KS,GillyEM) 

	

0194 	7(6 .LE. 'If Gel TO 510 

	

C195 	IF (0 .LT. EM) GO TO 500 

	

HS/ 	
GuM 
mx2 

El” )ye 02H" 510 

	

C200 	 510 IF 0 .nF. EM OR KS .GE. KM) GO TO 520 

	

HD 	cO4sT1=CONST/ArincAns0(G+1))) 

	

C203 	
cons72=q4,ALOG1 CAGs(D(G+1)/D(P))) 
IF CFLOATCM) .LT. CONSTI .MID. CONST2 .LT. 1.0) MRA4 1 

	

0204 	GO TO 100 
C205 

	

0206 	
540 RETURN 

END END OF SEGMENT. LENGTH 1 093. NAVE HMAZ 

	

C207 	SUnPOnTINE HT 	0.2/DIMN.N.ROT.E/VEC/MC.EP32) 

	

C208 	INTEGER DM. /"Eeal:raii  

	

C209 	REAL AR(DInA01 .1k), A ( InN,0InN). 0(DIMN,DIMN), VI(DIMN,DIMN) 

	

0210 	 REAL D(P!0"), R(DIMN)f Z(DIMN), MC 

	

0211 	 DOtIDLE PRECISION SUM 

	

Mg. 	DO 10 1=10 
DO 10 j=1.N 

	

0214 	VRCI,J)=0.0 

{in 

	

'217 	

10 VICI,J)=01 
DO 20 P=1, 

zu UR(P,P)=1. 

	

Ein 	31, DO 4n 0=1,4 
D(P)=AR(P,P) 

	

C220 	 a(P)=D(P) 

	

(,1211 	
0 

	

1 	40 2C
T=0
P,m0.0 

FFS=5.0*N*( fr1)+MC 
R  

DO 600 Iu1.0 

	

C225 	sUM=0.0 

	

C226 	DO 100 P31.N-1 

	

0227 	DO 100 1=P+104 

	

0228 	TUID=SORTCAR(P,Q)**2+AI(P,4)**2) 

	

0229 	100 slvl.sum+00LECTEnP) 
C230 

	

ffl/ 	TRESN=0.0 

sm=sum 
IF (Sri .LE. EPS) GO TO 610 

	

ai 	IF SI .LT/ 4) TRESHm0.24SM/N"2 
DO ,nn Pci,:i-1 

C235 

	

C236 	
DO 500 1=P+1,N 
TEM^PSO7TCAR(P#O)**2+AI(P,Q)"2) 

	

c238 	G=100.0*TE1P 
IF (I ,GT. 4 .A4D. AISCD(p)).1,0 .ED. ABS(D (P)) .AND, 

	

'i;151 	1 ARGCD(0))+G .F1. ADS(0(0))) GO TO 410 

	

240 	IF CTEnP .LE. TRESA) GO To 420 
C241
2 	

EuAR (P,O) 

	

Ce 	ruIE1) 

	

C243 	 IF
A 
 ( 111

CP
(E)-.411S(F)) 200.2101210 

	

(.244 	eU0 TcE/r 

	

C246 	
ST=1.0/SORT(1.0+T*T) C245 

	

0249 

	GO TO 220 
CT=T+ST 

 [10 TmF/E 
 

VraT*C 
CT=1.0rOBT(1.0.0T4T) 

(C 251
Hmn(q)...D(P) 

CLU OmEGA= *CT.0F+ST 

	

EH! 	IF CAcIS(H).0G .EQ. ABS(H)) GO TO 230 
TRETA=0.5,4/0nEGA 

	

CO5 	Tu1.n/CAGS(TNETA)+SORT(1.04,TMETA**2)) 

	

Ce56 	IF (TNETA .0. Tx-T 

	

Egg 	00 To 240 
‘30 TcOnFGA/N 

	

C259 	40) Cc1.41/S(IRT(1.0+T•T) 

	

(360 	, 	ScT+C 

gl 

	

263 	
741.47+:1)qh"C) 
2(P)2,20)-11 

	

C264 	2(0).z(04,4 

	

C267 	

D(P).0(p)-H 
D(0).D01)+M 

C265 
C266 

AR(p,0).0.0 

	

C268 	AICP,Q)=0.0 

	

C269 	IF 40.rAilgiGO 70 310 

	

EiP? 	ARJPuAR(.I,P) 



	

Mi 	VIP:MI'M 
274 
275 

	

.276 	 N/17Pin-s.(ARJ(I*0.+AI.N.sr./0p.TA0 
AR( ,0 .AR (1+S*(ARJP+CT.AIJPIPST-.ARJqt.TAU) 

.... 

	

0277 	 Al(J,P)=AI P-$*(AIJO+CT■ARJ014ST+APP+TAU) 

	

C278 	 300 Al(J,(1)=ALM4S*, (AIJP+CT+ARJP+ST.ALINitTAO) 

	

Mr) 	310 IE (P+1 GT q-1) GO TO 330 

	

t2R1 	 TRPMRI 'CI-1  

	

C282 	 ARJqr-AR(Jfq) 
C285 

	

C284 	
AIPJmAliPT 

..„ 	E3Rg 	
AR(P,J)=ARPj..S.(ARJ0*CT+AIJO*ST+ARPJ+TAU) 
AIJO=AICJ, ) 

	

C28.7 	 41(8,J).AIpJ-s*(..A1J0*CT.I.ARJ0*ST.A4p.bb AU) 
AR(J, (1)=ARJ14+5*(ARPJ+CT.AIPJ+ST■AR41U) 

6. 	

r88 

	

289 	
340 AP/,0).AIJ(14.54, (■AIPJ*ET+ARPJ*ST.AIJR11,  AU) 350 IF (0 .r711. 4) GO TO 350 

290 

	

C291 	
DO 140 J=Q 4,10 
ARPJ=AR(P/J) 

0292 AROJ=AR(1) 
C205 AIPJ=A105( ) 
C294 410J=AI(Cis 

	

C295 	 AR(P,J)=ARPJ-S*(ARQJ*CT.A1U+ST+ARPJ*TAU) 

... 	
C29( 	

AROIJ)=ARW+STRPJ*CT+AIP,I*STwAR(IP,TAU) 
AI(P,J)=AIPJ.-S* AIGJ*ET+AROJ+ST+AIPJ+TAU) 

C296 

	

C209 	 350
340 AI(0,J)=A11J+$4,  AIPJ*CTmARPJloST■AIqJ*TAU) 
350 IF (FIVf:C .Eq. 0) GO TO 400 

DO 360 .1..WI 

C208 

	

t302 	
VRJP=VR(J,P) 

	

C303 	 VIJP.V J) 
VRJO.V1Jeq)

O  • 

	

0304 	 VIJO.V JO) 

	

C306 
	 VR(J.P =V1p-S* VRJO*CT+VIJII*574.VRJP+TAU) 

VR(ji0 ..VR (14.S* VRSPI,CTmVIJP*ST■VR,04,TAU) 
C305 

	

C5 07 	 VI(J(P).VI p-S* VIJO+CT.V8J(PST.VIJP*TAU) 

	

C30d 	 360 VI(J ,/l)=ViJI+S* VIJp+CT+VILIp*ST.VIAIPT4U) 

	

C309 	 4Uv RoT=ROT+1 
C 3 0 

	

C31
1

1 	 410 
GO TO 

	

C314 	 Al(P,Q).0.0 

	

HU 	
440 CONTI0MF 
500 cOk"r11)U 

C315 

	

C316 	
DO 510 P=11 
D(R)=D(P)+Z P) 

	

C311 	 D(P)=n(p) 

	

C.518 	51U z(P)e0.0 

	

0319 	 600 Co,rrINWC 
0320 

	

C321 	
ROT=-ROT 

610 DO 6q0 P=1(17■1 

	

C322 	 DO 650 0.p,, ,N 

	

M! 	
TEmPrA8S(D(P))-AGG(D(q)) 
IF (AqS(TEMP) .LE. EPSZ) GO TO 640 

	

C325 	 IF (TEMP) 620r640,640 

	

HP 	
620 SM=P(P) ... 

D(P)=O(Q) 

	

0328 	 0(0)=SM 
C32Y - 	 C330 	

DO 630 1=1,q 

	

C331 	
Sm=vR(I,P) 
vl/(I,P)=1/R(Ifq) 

	

t
C315 	

VR(I.O.SM 332 

	

0334 	 vICI,P =1,I(1.4) 
SM=V1(1,P) 

	

339 	

2,4(4 talihem  
ott CONTINUE 

RETURN 
END 

i;e1 
'.3t7 
338 

END OF SEGMENT, LENOTH 1174. NAME NMIJO 



• 

ti 

0403 
0404 
C405 
0406 

r4

8g  
409 

eU 

'10 

Rre 

0415 

0340 	SUDP0MT/Ng CORT.40 (XR,XI.DIMN.D/MPIN,P,E.MC) 
C341 	INTEGER DIM1,DIMP,P,F 
C342 	REAL XR(nImIsDIMP).XI(DIMNOIMP), MC 
C343 	DOMnLE PRECISION SUn 
0344 	DO In K=F+1.P 
0345 	10 SlimwM 
0346 	IF (KEn. 1) GO TO 40 

I 0347 	DO 3n =1,I(-1 
C348 	CALL NIMP (XR.XI.DIMN.DIMPoN.I.K.SRISI) 
C349 	CALL CA3S (SR,SI,S) 
0350 	SNM=SUil+S*S 
C351 	DO 2n .1”1.1 
0352 	TEmrs 	=X;I(J.K)-SR*XR(J.I)+SI*XI(J.9 

MI 	
X I(J,K)=XI(J.K)-SI*XR(J.1)TSR*XI(Ji1 

eU XR(J.K)TEMP 

MI 	
30 CONTINW2  
40 CALL HINP CAR.X1eDIMN,DIRP.N,KIKISR,SI) 

0357 	CALL cAns (SFOSI,S) 
0358 	SLIM=SUM+S 

H60 	 IFS 
 

(S  .GT. T/100.0 .AND, To,MC .NE. 0.0) GO TO 50 
0361 	WRITF (4,100) 

Figi 	
lou FORMAT ,,' tIARNINS 1 IN CORTHO') 

IF (S*Mc.ME. 0.0) GO TO 10 
0364 	WRITE (4.110) 

Mg 	
110 FORMAT (' mARNINO 2 IN CORTHO') 

5R.SI=0,0 

iigg 	
GO TO 61 

SU CALL CS1RT(SR.SI.TR.T1) 

gig 	
CALL CDI9 (1.0.0.0,TR,TIoGRoSI) 

60 CALL J.001 0370 

	

END OF 	SEGMENT. LENGTH 	307. NAME CORTHO 

	

0377 	SunROMTINE HINP (XR,XI.DIMN,DIMPO.K.I.SR,SI) 

	

C378 	INT7.0ER DIF11,DIFIFI 

	

C379 	REAL XRCDIMOIMP).)(1(DIHNOIMP) 

	

0380 	DOMILE PRECISION SUr1R,SUMl 

	

0381 	Stlf,P,,SUI)=0.° 

	

C3Fte 	DO In i=1,,, 

	

Fin 	
sumR.vp1R.xR(1,12.xr;(1,0.)(100.x1(1,

;  lv su,Tsull.u(100.x1(1,0-xl(I00.xR(1,4 

	

FiRg 	
SR=SIVIR 
SI=SUMI 

	

0
C3R? 	

E
RET4RN 

	

388 	ND 

	

END OF 	SEGMENT. LENGTH 	1610 NAME HINP 

	

0389 
	

SUDRO'ITTNE CABS (ZR,Z1/8) 

	

RA' 	
XR.ASS(2R) 
XI=AnS(ZI) 

E393 1
0 IFOC CXITXR) 20.2000 
RIR 

	

C394 	XRnXI 

	

395 	)(1
F
2  0  

	

C396 	eU IF (XI) 30,40,30 
C 

	

0398 	RrXR*SQRT(1.0+R*R) 

	

C

397 	3V RcXI/XR 

3 	 RETININ 

	

Q400
99 	

4U R=X4 

	

0281 	END
RETuRrl 

	

END OF 	SEGMENT. LENGTH 	66' NAME CABS 

 TEMP 	=SR,,:.:R(J,K)-Si*XI`J,K) 

	

0372 	XI(J,K)=SIga(J.K).SR,XI(J.K) 
1373 

375 

	

376 	

70 XR(J,K)=TOP 
374 8Q CONTINUE 

END
RETURN  

SU'IPOUTINE CDIV (XR,X1rtafWliZRai) 
YRn'IR 
YIM"I 
IF (APS(YR)-ABS(TI)) 20,20,10 
ticY1/YR 
YR=4+Y +VR 
2R=(YR.010,X1)/YR 
21=(XI-H*AR)/YR 

RETTyi 
TImm•YR*TI 
ZR,(H+XR.P.XI)/TI 
ZI,(H*Xl-XR)/TI 
RETMRM 
END 

ENO OF SEGMENT,  LENGTH 	671 NAME CDIV 



;ill; 	

SUIPnuTINE CSQRT (ZR,ZI,yR,V1) 
xR=ZR 

C420 	Xim7.7 
cut_ CATS (XR,XI.H) 
H=soRT((AHS(XR)+H)/2.0) 
IF (XI) 10,I!0,10 

EM 	
lo XI=Xi/(2,04,!p 
Cu IF (XR) 40,...,0,30 

Me; 
0,28 	

" N34 70 
40 IF (XI) 60,50,50 

c429 	54) KR=Xi 
t,430 	xiiM 

Go TO 70 C431  
1432 60 xam-XI 
c433 	XI=-11 
C 	fu YRRXR 

Ri

434  

g 	RETURN
0437 

END OF SEGMENT, LENGTH 	88, NAME CSQRT 

Rg0 	
SUnDouT/NE RANDOMIS ATION (X,DIMNIDIMP,N,L,Z) 
INTrGER DIT1,DIMP 

C440 	RE4L X(DImN,DIMP) 
0441 	no 10 1=11N 
0462 	10 x(IlL)=7.0*FPMCEV(Z)*1.0 
c443 	2=FPmCRV(4) 

RETURN 
Rt 	ENO 

END OF SEGMENT, LENGTH 	67, NAME RANDOMISATION 

0446 
C447 	MRialtaIMMAIEArrjra00.01,1,LINE(65) 
t!448 	REAL F (nimP), D (nihp)  
6449 
0450 	

DATA LIHE/63•14./, pREV/0/ 
commori .!o,FIELD,LENGTH,K  

C451 	 IF (K) 7.00,p00,100 
C452 	11)0 IF (pREy ,F. 	Nn) 00 TO 120 
0453 	WRITE (4,110) :11, (LINE(I), 1.1,63) 

0.1t 
0456 	

11u FORMAT Z1H1,//,79X.,INFORIATIONAL  OUTPUT ON LOGICAL STREAM 4 FOR 8 
1xAmPLE WinERI,I3,/,2oX,63A1) 

12u WRITE (4,130) KS,G,H,EM 
0457 	13Q FORMAT ou /(143x1,NmnER OF STEPS PERFORMED 10,16,/, 
C458 	1 4..IX,,NlmoF JF FIGENVECTURS ACCEPTED =1,I3r/./ 
C450 	2 43X,,Nmmar2, OF EIGENVALUEs ACCEPTED =',I3,7, 
0460 	3 43X,INIn4ER OF sOLNS. TO BE COMPUTED ..,13) 

R21 	
Go TO 310 

euu IF (pREV .EQ. NO) GO TO 220 
0463 	WRITF (4,210) NO, (LINE(I), T=1,42) 
c464 	clo FORMA T (1M ,//////,' INFORMATIONAL OUTPUT FOR EXAMPLE NUMBER1,13,7 
465 	1,1X,62A1) 

C466 	e2u WRITE (4,230) KS,G,H,Em 
0467 	CSC FORMAT (1H //A,  sTFPS PERFORMED o',141/.1 EIGENVECTORS ACCEPTED 0 
C468 	1.,13,/,' EI4ENvALUES ACCEPTED c1,13,70-SOOS, T 1) BE COMPUTED .,, 

Vat 	
2/3) 

3uv WRITE T316) 

R31 	
sly FORMAT , THE ERROR VECTOR ISO) 

CALL MX P SFO,DIMP,10,FIELD/LENGTH,4,0 

0474 
 0473 	wRITE (4 3V» 

32o FORMAT :; THE APPROX IMATIONS TO THE EIGENVALUES ARE0) 
0475 	CALL MX3P ( 001,DIMP,1rPrFIELDILENGTN,4,0) 
C476 	PREVaNO 
C477 	RETURN 
0478 	END 

END OF SEGMENT, LENGTH 	173, NAME INFO 



	

BM 	
susPouTtme NoRvIALIsATIoN (X.YIDIMN,DIMPoNsD) 

	

C4R1 	
INTEGER 1111:/01np,p 
REAL X(DIM1,DIMP), Y(DIMNOIMP) 

0482 

	

C483 	
DO 3n j=i f p 
SR=XC1rJ) 

	

0484 	SImv(1,J) 

	

C485 	AUX=SR*SR+SI*SI 

	

0487 
 v486 	DO in '.12 

TR(11)
,1 

 

	

0488 	TlaY(I.J) 

	

C489 	2Z=TR•TReTI*TI 

	

0490 	IF (22 .LE. AUX) GO TO 10 

	

C491 	SR=
InTI

T 
S

R 
C492  
0493 

	

0494 	10 VOTWI0E 

	

0495 	CALL CDIV (1.0,0.0,SR,SI,TR,TI) 

	

0496 	DO 20 1=111 

	

0497 	SR 	r.TR*X(//.1)1.1*Y(I,J) 

	

0498 	Y(I..1)=TI*X(10.1)+TR*V(I,J) 

	

C409 	ZO X(I.J)=1R 

	

flH 	

30 CONTINUE 

. EN 
REDTURN 

END OF SEGMENT, LENGTH 	176, NAME NORMALISATION 

	

H8/ 	WarcILU;AMcg,D  A;h7g(12), BUFFER(Z) 

	

0505 	DAT‘ CSLI/?/ 

	

C506 	DATA MoAfH/IJAN,,,FEBIlIMAR,,,APR,FIMAYI./IJUNI0AYIFIAUGIOSEPI, 

	

Mi 	

1 1 07.T,,,NOVI,I6EC,/ 
GO To Sino,znn,300), NO 

10U CALL MTIME (N) 

	

0510 	EmN 

	

C511 	caLL133-CALL 

	

0.12 	IF ccALL .Eq. 2) GO. TO 110 

	

513 	EEcE 
p14 

	

5 	
RET,JRN 

110 EsE-EE 	_ 

	

316 	EcF4.1.0E.) 
RETuRN 

	

H'ilg 	eD0 GALL DEr0uF (2,8,BUFFER) 

	

Mg 	
CALL DAIE E) 
WRITE C',410) E 

	

0521 	C10 FOR94T (ALI 

	

C522 	READ (2.210) (DAT(I), 10,3) 

	

0523 	ceu FOR"AT (let1X,I:t1X,I2) 

	

0524 	DAT(2),e104711(DAT(2)) 

	

026 	
ErEE=1.0E-03 	. 

C3V IF (1.0+EE .ECI. 1.0) GO TO 240 

	

tgg 	
E=ER 
EE3CE/2.0 

	

N 	

GO TO 230 
G40 RET9RM 
300 IF (K) 370r370,310 

	

Pli 	
310 IF CF: .GE. 60.0) GO TO 330 

WRITE (4,,320) q 

	

c531. 	sec) FOR'14T (1 1i ,//r/.44X,'EXECuTIoN TIME WAS',F7.3,' SECONDS') 
C535 

	

GO TO 3,,0
0c53367 

	

0 
330 IF (F. .GE. 120.0) CO TO 350 

E=E-Au n 
uR1TE (6,340) E 

	

0539 	340 FORMAT (1H 1////,40X0EXECUTION TIME WAS 1 IIINUTE',F7,3,t SECONDS' 
1) 
Gn TO 300 

	

N 	55v IcE/60.0 

	

C543 	ERE-I+69.0 

	

C544 	WRITE (Q,360) 1, E 

	

C545 	36Q FORMAT (1H ,////t39Xt / EXECUTION TIME WAS',13,' MINUTES I tF713,1  GEC 
0546 

 WRITE 
Go Tn 300 

3t0 RITE (6,380) E 
054 	380 FORMAT ON ,////,' EXECUTION TIME WAS',F9.3,' SECONDS') 

0551 

	

0550 	
END 

390 RET'JRN 

END OF SEGMENT, LENGTH 	182, NAME ELAPSE 



SUBROUTINE MXOP (ArBIMN,BIMP,N4PrFIELOPLENGTH/STREAM,IFLAG) 
INTrGER DIIN,Of1PIP,W,IDTHISTREAM 

1111 	

REAL 0,0101,0IMP), FR,1110), FR1T2(6), BUFFER(2) 
DATA FR1T1/3H( 	s1HNe8HX/IP 

olHNidUrlP 	
olHq/1HE,88) 	/ 

DATA FR1TUnH( 	 OHNOHEr8H) 	/ 
C557 	IF (IFLAG) 10.200,10 
C558 	1U CALL OLFROF (",!.16,BUFFER) 

gg90 	
FROT1(5), rRMT2.(5)=FIELD 
WRITE (:1,2r FIELD 

C561 	gu FOR1AT (A6 

RI! 	

READ (2..30 WIDTH 
30 FOR1AT (1,!(.,) 

IF (P*WIDT0-CENGTH) 100000,40 
C565 	4U N1=LE11GTH/QIOTH 
C566 	N2mR/N1 
C567 	LASTnP-!)1*N? 
C568 	 IF (IFLAG) $0,999,60 
C569 	OU N31 
C570 	N4.1 
C571 	GO TO 7n 
C572 	60 N3=CLENGTH-N1+WIDTHITi 
C573 	N4meLENGTH*LAST*WIDTH /2+1 
C574 	

8U 
tv WRITE (7,80) A3,N1014.1,AST 

M5 	
FORMAT 0.14) 
READ (2,90) FRMT1(2)1,  FRMT1(4), FRMT2(2). FRMT2(4) . 

90 FORmAT (4A4) 

ISM 	10U N940 3"  
C580 	IF (IFLAG) 110,999,120 

Mil 	
110 N3.1 

Go TO 130 
C585 	14v N3=(LENGTH*O*UIOTN)/2+1 
C584 	1.51) WRITE (2 140) N3,F,  

BR 	
140 FOR1AT (214) 

READ (2,1515 FR11T1(2). FRMT1(4) 
C587 	150 FORMAT (2A4) 

GO TO 2AO 
euu IF 012) 999 710,300 

NH 	

41U.wRITE (STREAM,FRMT1) (( 61(1,J), J=1,P), 1=10) 
RETURN  

3uU N2N1=02,,,N1 

894 	310 
IF (N*1) 9991000310 
DO 330 K21.NZN1,N1 

(,595 	KKmv.10111 
0596 	WRITE (STREAM.320) K. KK 

Eng 	
.2U FOR1AT (14 ,/,' Cnt.1MNS,,I3, 
13O WRITE (STREA4,FRMT1) ((A(1..1).Tni.i1( 1),A7E1:Zi 

C599 	IF (LAST-1) 370,340,360 
0600- 	34U WRITE (STREAM,350) p 

E281 	
3SU FOR"AT OH ,/,' COLumv,/31,  

WRITE (1TREAM,FRMT2) (A(IrP) ,1 11,11iN) 

AN 	
GO TO 370 

JOU XXcU2N1.1 
C605 wRTTE (STREAM$320) gl(03  
C606 	WRITE (STRCAM.FRMT2) ((A(10.1), JpIcKtP)o Im10) 
C607 	310 RETURN 

HU 	
4ut, 00 410 KH1,N2N1,N1 

C610 	
KK=K411-1 

410 WRITE (1TREAM,FBMT1) (A(1/.1), J=K/KK) 
C611 	IF ((LAS'- 1) 440 1a0,430 
0612 	4e0 WRITE (STREAM:FRMT2) A(1.P) 
06613  
6 	

GO 
=
TO 

1
440

1 
.015

14
._. . 	43U WRITE  (STREAM.FRMT2) (A(1/J)., J=KK,P) 

WIN Q616 	44U RET  

C 	
99Y STOP I1XOP 

C6618 
I2 

END 

END OF SEGMENT, LENGTH 	427, NAME IIXOP 



	

C619 	 SUBROUTINE PRoDqCT (VRIV/IWRO4I,DIMN/N) 
C620 

	

C621 	 REA 
1NTrGER D111,pRry 

L VR(DM ). 'JICDIMN), WR(DIMN), WI(OIMN) 

	

C622 	 REAL Al2,12,12)01(12,12) 

	

623 	 nour.1LF PR4CISION SUHRFSUMI 

	

624 	 nA T A  DREWO? 
,525 

	

t,626 	 . 	WW<YR0,200,300 ,4001500,6001700,800 ,900)1 NO 

	

C627 	 1UU CONTINHC 

	

C628 	 DO 120 I=101 

	

Hict, 	
SUMI,SUM=0.0 
DC 110 J=1•4 

	

C631 	 SWIR=SUMR+(1.0/FLoAT(I+J-1))*VR(J) 

	

0632 	 110 WIDGU!,I+(1.0/FLOAT(I+J-1))+V/(j) 

	

0633 	 wR(1)=GI. G sUHR) 

	

0634 	 14U WICI)=3NG4 SUM) 
0635 RETtiDN 
C636 COU CONT/NUF 

	

C637 	 IF EDREV .E(. NO) GO TO 220 

	

Mt! 	
READ (5k 210) ( (AR(I,J),J=1,N).1=1,N), C(AI(IrJ)1.141,N).10.N) 

C10 F=10(4G0.0) 

	

Eft? 	CCU Do 240 T=1LN 

	

C642 	 SUMR,SUqI=0.0 

	

c643 	 DO '30 J=101 

	

C644 	 SUn0.=.5U1R+AR(I,J)*VR(J)-AI(I,J)41/I(J) 

	

C645 	 d3U GuriT=Gq11 41P(I,J)+VI(J)+AI(IIJ)*VR(J) 

	

C646 	 WR(T)=GIG4 SWIR) 

	

C647 	 44U WI(I)cSNGL SUM) 

Sgt0 500 CO NT INUE 

	

0650 	

TuN 

GO TO 200 

	

C651 	 400 CONTINUE 

	

C652 	 X1=SORTEFLOAT(SN-1)) 

	

C653 	 wR(1)=-X1 4VIC2) 
IC1)=X10/R(i 

	

Eg;§ 	Do 410 K44,N- 

	

0 	
y1.-1 x,.s1nRT(FLoAT(K.04.K))) 

	

UU 	
wRm.-yi*,!,(K-1).xl.vi(01 ) 

41U WIttO=Y14VR(K-1)+X1*iR(K01; 

EN? 

 

 0AR 
yle-xl 

CN)-Y1 4VI(r4-1) 

	

0662 	 WIC"ImY1 4VR(N-1) 

	

C663 	 RET'IRN 

	

0664 	 5UU CONTINUE 

	

0665 	 GO TO 400 

	

C666 	 60U CONTINUE 
C66? 

	

C668 	
(00 CONTINUE 
nuu CONTINUE 

	

C669 	 900 CONTINUE 

	

C6
C670 	

E
RET
ND

!JRN 
71  

END OF SEGMENT, LENGTH 
	

416, NAME PRODUCT 



THE METHOD OF "QUICK RITZ" ITERATION FOR AN HERMITIAN MATRIX 

101SEUMN1/APIDOIA4 T218//2/4 

EXAMPLE NUMBER 4 

2 EIDENVALUES AND 2 EIOENVECTORG HAVE BEEN ACCEPTED TO AN ACCURACY OF 1.00E1.00 

THE 4 APPROXIMATioNs TO THE EIOUIVAOES 	I 
.1aD0000u0DE OT

O 
 .
K
1.1000000000E 01 8,99999974371 00 .8,99999974385 OU 

THE MATRIX 011  CDRRtsR0NDIm4 51G5NvECToRS IS GIVEN NE Lowl 
REAL RAG: 

-A.209139i537E.12 .8.753.1865046E-12 
•5MNTE:?1 055ang821:?11) 1 1 . 	0 	.2 

-7.2+2,15071 E-10 -7.694125 770E-1U 
.i.97614J041E-01 . .9,81414705-01 

I-Winona() E Oo 9.999999 9991.01 
9.567884262 E-10 9.5496943686E-10 

-4.7/937?449,1.1 -4.7855441315E-10 
-8.4115425426E-1 .8.451)4Z54741.01 

3.4103277922E-0 	3.45022(7975E-01 
.2:MWii2E:,11 .2:BM1,130E:S1 

.1.7327066929E.01 .1.7127(196929E.01 

11.18539'9591W4611:081 li2f1 48687292551 /16 41 622871 HE(81 
-8.445z888188E.01 .0,4852888188E.01 
1.4017(31415E-05 1,4105597074E.02 

-3.3466577Z5oE.01 .3.34665(7z51E-01 
-2.9110933610E,,06 .2.8658$68914E.06 
140g9m0yu)o 09 9.9999 99999E-0 

1
.02]..(3.010E.Q, 	.829761458b1.0) 

:V6YdillYifE:8; -0.2tDRIBgl:N 
IMAGINARY PART 

4.8,24210587E-02 -4.65242105878-02 -4.3220115123E-02 1..32202e8859E-0, 
-1:4PWAE:r1 1./WMATJE:8; t:Igt”aglE:81 :igtV4g561:31 -1.2, 02151,3E-0 	I:2860255085E-09 -9,9999160902E.01 9.9999159681E.01 
11.4115425473E-01 .0.4513425475E-01 -3.6101846490E-07 3.6102937484E-uf 

-:(92PW":4 81°"8"111 -010WIR -6.110 66 o31 	s: 844 513 ( 	0 	_4 2 	U E. 	. :2 	180 E. 1 
3.90143n471E-01 .3.0(6143047q-OA -2.09494201f7E.13 .L6379788071E-it 
1.,610,49010E.09 .1,474250 05,16t-py .0.081622629E.01 81030626640E.01 
- 431151M7 -0 	1.54:s/1335o 71.01 4.013 4384031.07 .4. 135,847735E.or -4.98289409731-10 4,90459409 3t.10 1.712 DaprIE-01 01. 127500461Xmo1 

THE 4 StTI OF CORRESPONDING ERRORS ARE: 
-1.06467965065-09 -1.0579200848E.0 9.2991097273E-05 9.2647140121.05 

EXECUTION TIME WAS 10.408 SICONDS 



INFORMATIONAL OUTPUT ON LOGICAL STREAM 4 FOR EXAMPLE NUMBER 4 

TEL 
THE 

NUMBER OF STEPS PERFORMED • 	2 
WHEN oF eIGENvECToRS ACCEPvED • 0 
NUMBE

R 
 OF EIGENVAluEo AccEprep • 0 

NUMBER of poov. TO BE COMPUTED • 2 
ERROR VICTOR Ifs 

-1E  0c00 	00 .1.00000000001 00 -1.0000000000E 00 01.0000000000E 00 
APPRoXINATIoN8 TV THE El ENV LUE AREt 

3. 620 VOY IE on -3.06e05901141E 00 -6.2422522079E•01 6.24223220711.01 

THE ERROR VICTOR Ill 

TIE APPROXIMATTONI TO 

NUMBER OF STEPS PERFORMED • 	4 
Hanel 

OF 
 EINVECINS ACCEPT • 0 

Lusv.AioEsa NAgfeg : 2 681R OF 16 

-1.7194316848E;01 5.46241380981.02 5,32177390401.02 .2,59104441E41.01 
THE 

PYYXtqfipg 56 .9.5154477138E 00 4.0117095301E-02 .4.91170954381.07 

THE ERROR VECTOR 181 

THE Ap•RuXlmATIoN8 TV THE 

NUMBER OF STEPS PERFORMED • 	6
a  

NUM
BER 3; 11111Upr 	: 8 

NUMBE OF SOLNI, 0 BE COMPUTES • 2 
3.71950937631E-02 .2.2553242016E-02 1.2537201467E.02 .2.69643632254.04 

.1.050766149U1 01 2.334555000E 00 .20345359451E 00 

THE ERROR VECTOR hip 

PIE APPRoXlmATIoNs TO 

NUMBER OF STEPS PERFORMED r 	a 

OOP811 8f !HUMPH'  pEE;f18 : 8 
NUMBER OF SOLNS, 0 BE COMPUTED • 2 

-1.2653731127E-02 .4.2535,078441E.03 5.24283312901.02 

TN! COMOOEWR5i .1 .0f/11676454E 01 4,4443241440E 00 11.203504643,1•02 , .4.44632414491 00 

tiOPRI; Of elaghc;811EWAlep ."0 

WV a; istrviglE numg : 
THE -1.699J9St

5

82

A

E;04 1.4408257652E+02 -4.9370039004.03 1.50769864576. 

V1014P21/ Si 

 

 .1,0914072785E 01 6.4054164265E 00 .6.40547662661 00 

THE ERROR VICTOR lip 

TH1 APPROXIMATIONS TV 

THE ERROR VICTOR 318 

THE APPROXIMATIONS TO 

NUMBER OF STEPS PERFORMED • 	15 
NUMBER OF EIGENVECTORS ACCEPTED • 0 
NUMBER OF EIGENvALUeS ACCEpTED • g 
UMBER OP ROLNR. TO BE COMPUTED • z 

1.36656483871.02 9.4059314851.05 2.3760554096.02 6.949710805510g 

THE  151416141;711181 .1.091163724971 01 0.2024609946E 00 .4.2024609441

. 

 ou 



NUMBER OF STEPS PERFORMED • 	20 
NUMBER OF EIGENvEcToRs ACCEPTED • 0 - 

HUMBER 8f IRWAWie 68F84/8 
4.4064604862E-03 3.300029225E003 5,8350554635E002 4.961500024061•01 

THE APPRuXIMATIoN, TO THE E GENYALUES A E 
1 1.099v45400BAR0i .1,0999454808E 01 8.8808129508E 00 •8.850e129509E 00 

NUMBER OF STEPS PERFORMED . 	26 
NUMBER OF EIGENVECTORS ACCEPTED • 0 
NUMBER 
NUMBER Sf 162WAiSEgE 6A$C;18 : 2  

THI APPRuXImATIoNI TO THE EIB.B A U 	ARE: 
3,115t2115E-04 3,4902404335E-04 -4,3184284709E-03 .1,0461010740E.05 

8,9901743652E 4,99017436538 00 01,0999993625E 01 00 

THE APPRUXIMATIoNi TO THE 
3,3p1l  32

1.710
E437E-

E

06  6,0572618911E-06 -1.3349613392E.03 .1,09891561541.03 

i1499v7 01 

 

 .1,09999510972E 01 8,9995177449E 00 .8,90951774491 00 

UIRIR OF OWAA5ETEipTED .41 0 
NUMBER OF EIGENVAtUES ACCEPTED • 2 
NUMBER OF BoLNA, TO BE COMPUTED • 2 

THE ERROR VECTOR IS; 
41705094347E-0A 4,0457826766E.05 5.9770306235E.04 5,86912985521.04 

THE APpAuXIMATIoNI TO THE EI ENvALUES ARE. 
1. 000000000E 1 .1.1000000000E 01 8,99910857018E 00 .8.9999857020 00 

NUMBER OF STEPS PERFORMED • 	50 
NUMBER OF 

118141Ms 
 ACCEPTED : 

NUMBER OF ..05. .0 BE 
THE ERRom VECTOR 251 

-1164
El CNVAL 	A, 

6706506E-09 .1,0570200848E009  9,2991897273E-05 9,26471409121.05 
THI APRAuXIHATIoNS TO THE 

1, 000 00
U
000
CS

E 
RE
01 .1,10000000008 01 8.8999997637E 00 •8,9999997438E 00 

THE ERROR VECTOR ISS 

THE ERROR VECTOR SiI 

THE ERROR VECTOR 13s 

5E 1.0 9 9  3 01 

NUMBER OF 	STEPS 	PERFORMED . 33 
HUMBER OF E1GENVECTOR3 ACCEPTED • 0 
NUMBER OF EIGENVALUES ACCEpTED • 0 
NUMBER OF SOLN5, 	TO se COMPUTED • 2 



APPENDIX 7  

285 

A RITZ ITERATION PROGRAM FOR GENERAL MATRICES 



Silil. 	INTEGER orIA,Dmp,p,TypE,Em,G,H,LINE00),DATE(3) 

88ig 	
REAL yR:2,1,6),yi(20,6), KR(2C,6),X1(20,6) 
REAL VR(2.0),V1(?0), WR(20).:)1(20, 

CO2( 	REAL LVR(6,6).1.1(6,6). RI/R(616),RVI(6,6), BR(6,6),B1(6,6) 
CU28 	REAL DR(6),D1(6). LF(6),RF(6), Enco, DOLD(6,2), LARGE(6,2), MC 

Hit 	
CO"MON TYP,HO,FIELD,LENGTH0K 
DATA LINE/60+1H*/ 

0031 	K=1 
CO3e 	CALL ELAPSE (E,DATE,Z,K) 
C033 	MC2E 

Hit 1U 

	

	"J 
READ (5,10) NUMTIERDIMN,DIMP,LENGTH 
FORMAT 1 12115'12) 

0036 	IF (LENGTH ,LT. 1201 K=.1 
CO3'1 
C038 	

DO 500 NO=1,NUMBER 
READ (5,20) N.P,KM.EM.EPS.FIELDITYPE,NORM 

co

t

r

V

i 	e) FORMAT  .(1
T
, 12, 16.12 ,E9=1.2p,A

) 

 6,211) 

Hi 	1
IF

r
(KM

ci.
I
0,x

a)
I
READ

, J
(5,30

,
(
I
YR
,
( 

 

N
1
) 
0 ,1 101(1,J), J=10), 1*1,N). 

x 
CU4e 	30 FORMAT :260.0) 
C043 	CALL TIME (1) 

Ht. 	WRIT
E) 120r9, 00 

100 WRITE (71.1 a) qINEfI), 1=1.60), (PATE(I). I=1,3), 1, NO 
goce. 	110 FORMAT till ,//. 1X. THE METHOD OF 'QUICK RITZ ITERATION FOR AN AR 
1,047 	1BITRARY MATRI4',/.31X,60Als//645WTHIS PROGRAM WAS RUN ON',13,1A 
C048 	2,A3,1X,I2,/,45WAND EXECUTION STARTED ATI,A9,//,54X,'EXAmPLE NUMB 
c049 
.050 	

3ER'113) 
1  GO TO 160 

8
0;1 	1e0 WRITE (6,130) (LINE(!), 1=1,351, (DATE((I)t I=1,3), T t  NO 

0052 	130 FORMAT (1H //////,"QUICK RITZ" FIR AROITRARY MATRICES',/ f1X,35A 
C055 	11,//,' DATE:1 115,1X,A3.1X,12,5X,ITIME:',A9r5WEXAMPLE NUMBER 1,13) 
p54 	140 CALL ELA5SE.(E.DATE,1K) 
‘055 	CALL GLRZ (YR,Y1rXR,XI,VR,V1rWR,WIILVRoLVIrRVRIRVI,BRoBI, 
C056 	1 DR.DI.LF,RF,EN,DOLD.LARGE,DIMN,DIMP,N,P,EM,KM,KS,H.G,MC,EPS) 
0057 	CALL ELAPSE (E,DATE,1,K) 

HH 	

IF Cori  .EQ. 0) 00 TO 150 
CALL NOMALISATION 

GO
((  

CALL NORMALISATION (XR,XIIDIMN,DIMP,N,P 
0061 	150 IF (K) 220,999,20C 

— 	

Pii 	

ewv WRITE (6.110) H,G,EPS 
elo FORMAT (1H ,////,21X.12,1 EIGENVALUES AND 1 .13,' EIGENVECTORS HAVE 

1BEEM ACCEPTED TO AN ACCURACY OFit1PE9,2) 
'0 5 	GO 	ACCEPT

ED 
 

C066 
	

cv .RITE (6,230) H,G/ EP$ 
[SO FOR"AT ;14 ,/i/piA,12o,  EIGENVALUES AND',13,' EIGENVECTORS HAVE 8 

CO65 	1EEN ACCEPTED T01 ,1PE9.2) 
0069 	e40 WRITE (6.300) P 

88P 	
300 

1
FORMAT (1H ,////,' THE',I3,' APPROXIMATIONS TO THE EIGENVALUES ARE 
1') 

C072 	WRITE (6,310) 
C073 	310 FORMAT (1H ,/,' REAL PART') 
C074 	CALL mXnP (OR.1,DIMPt1,P,FIELD,LENGTH,6,K) 
C075 	WRITE (6,311) 

HP 	
311 FoR,AT (1H ,/,' IMAGINARY PART') 

CALL MOP (n1.1,DIMP,I.P.FIELD,LENGTH,6,0) 
0078 	WRITE (6.320  
0079 	5Zu FORMAT oft a/U.' THE MATRIX OF CORRESPONDING LEFT-HAND EIGENVECT 
C080 	1ORS IS 9IVE4 BELOW0) 

E8g1 	WRITE (0.310, 
CALL mXnp (VR,DIMN,DIMP,NeP/FIELD,LENGTH,6,0) 

CC83 	WRITE (6.311) 	 . 
C084 	CALL MX0P (VI,DIMN,DIMP,N,P,FIELD,LENGTH,61 0) 
CG85 	WRITE (6,3301 

— 	C086 	330 FOP.9AT (1H ,////,I THE MATRIX OF CORRESPONDING RIGHT-HAND EIGENVEC 
008% 	1TORS IS GIVEN BELOW:') 
'068 	WRITE (6.310) 
0089 	CALL WAN,  (XR,DIMO,COMP,N,P,FIELD,LENGTH,6,0) 
C090 	WRITE (4 311) 
C091 . 	CALL mXnb (XI,DIMUDDIMP,N,P,FIELD,LENGTH,6/0) 
CO9e 	WRITE (6.340) P 

HP,
34U FORMAT (1H .////,' THE',13/ 1  SETS OF CORRESPONDING ERRORS ARE;') 

COv5 
WRITE (6.353) 

350 FORMAT 1' EFT-NAND') 
0096 CALL mxnP LF,1,DIMP,1,P,FIELD,LENGTH,6,0) 
CUT( 	WRITE ((6.351) 
COOS 	351 FORMAT (1 RIGHT-HAND') 
0099 	CALL MX0P (qE,1,DIMP.1,R,FIELD,LENGTH/6,0) 
C100 	CALL ELAPSE (E,DATE,300 
C101 	IF (K) 420,099,400 

IA 	

4UU WRITE (6,10) (LINE(I), Im1/60) 
41 0  FOR'IAT (111 .// /, 

105 	
GO TO 510 

4eu WRITE (6.430) (LIME(!), In1g40) 
0106 	430 FOR"AT (1H ,////91X,60A1) 
C107 	)00 CONTINUE 
C105 

Mr 	

STOP OK 
999 STOP WHIM 

END 

END OF SEGMENT, LENGTH 
	

475, NAME NONM 



	

0111 	 SURP•O't1INE GLRZ (VR,V10(110(I.VR,VI,UR,W1pLVR.1,VI,RVR,RVI401R,81, 

	

C112 	 1 DR.DI.LF.11,EN.DOL0.LARGE,DIM0,01MP,N,P.EM,KM/KSeNrGIMCFERS) 

	

Q113 	 INTEGER 019U01'1R,P.EM01,uoi11,61 

	

014 	 REAL VR(01,D17!F),Y1CDIMN,DIMP), XR(DUIN.DIMR),X1(DIMN,DIMP) 

	

C115 	 REAL VR(DITI),VI(DIMN), OR(DIMN),NI(DIMN) 

ql% REAL LVR(01:1P,DIMP),LV1(01MP,DInP) ,  RVR(nIMP , DIMP)IRVI(DIMPoDIMP) 

	

118 	
REAL OR;011P.DPIP),B/(DPIPPD1  MP), DR(DIIPJ,D1(DIMP) 
REAL LF % 01!IP),RF(DIIIP). E1J(0IMP), DOLU(DInR,2) ,  LARGE(DIMPt2), MC 

	

0119 	 DOUBLE PRECISION SUMR,SOMI 

	

020 	 DO 10 I=1PR 

	

0121 	 D00(1,1),D0LD(1.2)=0.0 

	

0122 	 10 LARGE(1,1),LARGE(I0)=0 0 

	

C123 	 C 38 IS 76/2 (76 IS LARGEST EAPONENT ON m/c) 

Ep 	
M2 

	

26 
t 	

CONST=31 0"ALOG10(FLOAT(N)) 
AS,G,NoCi 	7s310 

2= 
0127 

	

C128 	
ZZ=0.1 
EPS1=SQIIT(EPS) 

	

0129 	 EPS2=10.0*EPS 

	

030 	 IF 10 .LT. 0) GO TO 40 

	

Elii 	
DO 2n J=1,P 

zu CALL RANDOIIISATION (YR,DIMN,DIMPOOJ•ZZ) 

	

Eli! 	
DO 3n j..01,p 
DO 30 1=1,N 

	

0135 	xR(I,J)=9R(I,J) 

	

Elie 	
vici,J)=0.0 

30 XI(I,J)00 

	

C158 	 40 CALL 0$102 ';(0 (YR,Y1,1010(1,0IMNOIMP,N0,0,NC) 

	

flI33 	
KM=/AB50411) 

C FORM 0=V"AX 

	

0141 	 100 DO 140 K=0+10 

	

0142 	 DO 110 1=1,N 

	

0143 	VRCI)=XR(I,K) 

	

C144 	11U VI(1)=XICIO0 

	

F

45 	CALL PR1DUCT (ViltVIIOR,WI/DIFINDNr°1) 

	

146 	 DO 120 I=1/N 
141 

	

48 	
XRCI,K)=WR(I) 

0 140 X1(1,0=W1(1) 
0149 DO 160 J = G4.1,p 

SWIR.SWII=0.0 

	

Hi

150 

	
DO 130 1=1,1 
SUMR=S0:1R+YR(1,J)+OR(1).VICI•Jl•WISI? 

• C153 	 130 SUMI=SU'11+VR(I,J)+WI(1)**V1(11.1) *OR ( I/ 

	

0154 	 BRCJ.-G,1;-G)=SLIMR 

.1i! 

/ 

157 

41 

	

160 	

140 01(.1.-G,K-0)=SOMI 
DO 160 K=G+1,P 
DO 150 1,N 
VR(1)=Y1ICI.K) 

150 v1(1)=91(10 ) 
CALL PRnnuur (VTIon,WR•wl , DIMN•Nr1) 

	

C161 	 DO 160 1=1 N 

	

C162 	 yitclol=w1t, 

	

E12! 	
160 YI(I,K =UI I) 

C SOLVE E-VA 1E PROGLEM FOR B I.E. OAViD 

	

0165 	CALL GLJO (:311,01•LVR.LVI,RVR,RVI,EN,DB•DI,DIMR,P0B,M0fEPS21/) 

	

1.166 	 IF (0 .E0. 0) GO TO 200 

	

067 	 DO 180 I=G41,P  

	

MI 	
J:04.1-1 

. DR(J.G)=15R(J) 

	

0170 	 180 DI(J4.0 )=Di(J) 

	

071 	 DO 100 /.1.. o 

	

017e 	 pitc1)=DnL0/I,1) 

	

0173 	 190 DI(I)=D1LD /o2) 

	

0174 	 C FORM YsYO, X=AV 
4UU DO 230 11/N 

El;g 

	

Elg 	
DO 220 J= +1,P 
SWIR,SOMI=0.0 
DO 210 K=G+1,P 

0179 

	

SIP 	
strip.sulR,AR(1,10.RyR(K-G,J-G)-xisi,K).RvI(K.G,./"G) 

41U SW12.SU1I.XR(IIK)*RVI(K-G,J-G)+Xli.),K)* RVR(K"GrJ oG) 
VR(J)=S1MR 

	

C182 	 421.1 VI(J)=S1M1 

	

0183 	 DO 230 JnG+l ip 

	

HP 	
xR(1,J).vRsJ 

45U XI(I,J)=VI(J 

	

Elf, 	
DO e69 IaltN 
DO 250 J-441,p 

	

81N 	
SOMR,S01I=0.0 

	

0190 	
DO 240 K=G+1,P 
sumR.s5'1R+YR(I,K)*LVR(K.G,J-6)0fICI,K)*LVI(K-0,J.0) 

	

0191 	 440 stpli=sTii-yR(I,K).Lvi(K.G,J-G)syx(100*LvR(K-G,J.Q) 

	

El3i 	
VR(J)=SllIR 

458 VI(J) -SIMI 

	

C194 	 Do 265 J= +1,P 

	

0195 	 yR(I,J)=VR(J) 

	

0196 	 460 vici,J)=1/1(J) 

• 



gl3r1 	
C PtRFORM m PREMMLTIPLICATIONS. 

DO 310 K=1,q-1 
0199 	DO 310 J=G41,p 
C200 	DO 300 1=1,0 
0201 	VR(I)=XR(4,J) 
0202 	.U0 VI(1)=xI(1,J) 
0203 	CALL PR1DUCT (VROVI,WR,WIIDIMN~+1) 
CCO4 DO 310 I=1 ,N 
0205 
0206 	

XR(I,J)=WR(1) 
510 X1(1,J)1(I) 

Lq84 	
DO :po K.,.. 01-1 
DO J30 J= +10 

0.e09 	DO 320 I=1,N 

0212 	
32D ■17M9fa:fl 

CALL PRODUCT (VRO/I,WR,WI.DIMN,N,1) 
Pl? 

0213 	DO 330 1=1,11 
C214 	YR(I,J)=WB(1) 
0215 	550 
16 	

YI(I,J),, 
c(
217 	

WI (I 
.2 	

) 
340 XSaKS4M 

C FORM  Y"X=I ‘ 
c218 	CALL RItIRTRO 01,YI,XR,XIIDIHN,DIMP,N,P,G,MC) 

tqt 	
C CMtCK 	EPS,  AID CIMERGENCE 

IF (H .0E._ P) G1 TO 450 
0221 
	

DO 4n0 r._-04.1,P 
IF (ADS(DA(I))-EPS1) 401,401,402 

0223 	401 22=ADS(D00(I,1)-DR(I)) 

0 	
GO TO 403 

225 
0224 

40c 22=A0S(004D(I,1)-DR(I))/DR(1)) 

c2i6 	 405 IF (ASSOI(1))-FPS1) 404,404,405 
k 2  f 	 404 ALIZ=ADS:Do1,D(I,2)-DI(I)) 

0229 	405 AUX=AOSWOLD(1,2)-DI(I))/DI(I)) 
GO TO 416 t,22/1 

0230 	406 IF (ZZ .G7. EPS .OR. AUX .GT. EPS) GO TO 410 

0232 	410 H=H+H1 
400 H1=414,1 G231 

235
Pili  
 m1=0 

DO 420 /0.1.1,p 
DOLD(I11)=0R(I) 

0236 	420 DOLD(I,27.)=)/(I) 
0237 	430 DO 450 J=6.41.P 

M19 	
AUX=SORT(YR(1,J)**2+YI(1,J)**2) 
DO 440 I=2,t1 

0240 	22=S0RTiVR(1,J)**2+YI(I,J)**2) 
IF (Z2 .GT. AUX) AUX=ZZ 

gii 	
440 CONTI0917 

1F(J)=CLARGE(J,1)-AUX)/AUX _ 

SM 	 J 
450 LAR0P(.1)=AUX 

DO 470 =G4,10) 
0246 	AUX=GORTIXR(1,J)**2+XI(1,J)+12) 

DO 460 t=4 E N 
ZZ=SORT,XR(IrJ)**2+XI(I,J)**2) 
IF (22 .GT. AUX) AUX=ZZ 

6248 
0249 

	

ffl? 	
.460 CONTME 

RF(J)=CLARGE(Jr2)••AUX)/AUX 

	

ffli 	
470 LARGF(Jr2):AUX 

DO 480 J=G+1.P  

	

Hil 	480 G1=01+1 
IF (ADS(LF(J)) .GT. EPS .0R. ABS(RF(J)) .GT. EPS) GO TO 490 

	

0256 	490 G=G+G1 

	

0257 	01
A

0 

	

25e. 	CALL INF() (0P,DI,LF,RF, 

	

02
6
660 	IF 

1,259 	IF (G .LE. It) GO 70 510 
IF (0 .LT. EM) GO TO 500 

	

8g1 	m=2 
0,01 

p 	 GG 

	

63 	 O TO 510 

	

0 265 	
501) mN 4264 
510 IF (0 .GE. EM .0P. KS .GE. KM) GO TO 520 

	

C266 	CALL C A TS (DR(G+1),1)I(G+1),ZZ) 

	

0267 	 CALL CATS (bR(P).DI(P),AUX) 

	

0268 	CO1ST1=CONST/6LOG10(22) 

	

0269 	CONGT2m'liALOG1OKZZ/AUX)_ 

	

cdt0 	 IF (FLOATVO .4T. GONST1 .AND. CONST2 ,LT. 1.0) mit14.1 

	

0271 	GO TO 100 

	

c272 	520 DO 600 J=,0 

	

G273 	DO 600 1=1 1+ 

	

0274 	600 Yl(I,J)=...Y1(1,J) 

	

0275 	RETVAU 

	

0276 	END 

END OF SEGMENT, LENGTH 1718r NAME GLRZ 



•-• 

	

0277 	S09anwT/NE GLJO (AR.AirWRIW/oVR,VIDEN,DDR,DDI,DimNIN/M0fEPS2.ROT) 

	

0278 	 INTEGER DIMROT 

	

0279 	REAL AR DI! 	WR(DI1NIDIMN),WI(DIMN,DIMN) 

	

0280 	 REAL VR(nr1J,0I1N),VI(DIMN,DIMN), EN(DItIN), DOR(DIMN/fDDI(DIMN) 

	

0281 	REAL mAX,14D,NC,ISw,11C 

	

0282 	 MARK=0 

	

1483 	 ROT=0 

	

0284 	Ep5=100*N*(N-1)1bM0 
I 

	

0285 	DO 10 =1f0-1 

	

C286 	 wilfI0),IJR(I I I)=1.0 

	

Mi 	

W1(1,1)0.11(1,0=0.0 
DO 1 0 J=I +1 in 10 

	

	 I) WR(I.J).WR(J,II,WI(I,J),W1(JI. 

	

C290 	 1 VRCI,J).VkCJ.I).VI(I.J),V1fJoI)E0.0 

	

0291 	 WR(4,N).VR(11,14)=1.0 

	

C292 	 WI(w,N).VI(N.N)=0.0 

	

C293 	 DO 440 IT=1.50 

	

C294 	 IF (MARK .EN. 1) GO TO 450 

	

C295 	 TAU.a 

	

C296 	 DO 110 K=1.N 
V9? 

	

298 	DO 100 1=1,4 
TEM=.0.0 

	

299 	 IF fI .E0. 10 GO TO 100 

	

M(112 	
ARIK=ARCI,K) 
ATIKAI(IPC) 
rEm=ARIL*ARIK+AIIK*AIIK+TEM 

	

Mi 	

lou coNTIouC 

110 cooTiNUE 
TAIITAU+TEfi 

	

0306 	 IF (TAU .4E. EPS) GO TO 450 
p

3

0, 

	

'308 	
MARI,=1 
DO 430 KOIN..1 

	

09 	 DO 430 1t=K+1,N 

	

C510 	H.J,NR•HI,G=0.0 

	

gii 	
IF fI ,_En. g .OR. I .EQ. M) GO TO 300 
DO 310 1=1,0 

ARKI=AR(01) 

ii t 
AIKI=AT  K. 

 ARNI=ARMg 

	

t 6 	 AImI=AI"  ) 
1,317 

 

ARIK=AR(If 

	

0318 	AIIK=AI(I'') 

	

HH 	ARPI=AR(Ift ) 
AII"=AI(I(' ) 
mR=NR+ARK4+ARNI+AIKI•AI4I-AR/K+ARIM-AIIK+AIIM 

IM
ii

HI=HI+AIKI..,uni-A0K/*A1,11-ARIK*411w+AIIK*AR 
TE= ADIK+ARIK+AIIK*AIIK+0;imI*ARMI+AIMI*AIMI 

	

024 	TEE=An.lit,ARIM+AIIM*AIIM+ARKI*ARKI+AIKII,AIKI 

	

93i5 	G=G+TE+TEE 

	

4326 	R.1=,1 J-TE.I.TEE 

	

0327 	3U0 CONTINUE 

	

0328 	310 CONTTNWE 

	

4329 	BR=AR(K.M)+4R(M,K) 

	

Ili; 	

8I=A/(K,M)+Al(M,K) 
ER=ARTM)-AR(M,K) 
EI=AIS .f1?-410.10;) 
DR=ARC .0-Aci,o) 

0330 

	

CM 	
DI=AlfK.10-A/(M,M) 
T =FIR*:IRIEI*EI+BR*DR 

	

iii! 	
IF (TE LT. TEE) GO TO 320 
TEE=BI+1I4ER+ER+DI*5I 

ISW=1.0.  

	

Eiiir, 	 SCaDR 
aEI 

	

0541 	 DaDR 

	

2 	DE= C34 	 DI 

	

043 	 RO0T2=SORT(TE) 

	

c344 	 GO TO 330 

	

45 	 320 ISw=-1.0 

	

0346 	 C=BI 

	

C341 	 S=-ER 

	

0348 	 D=DI 

	

C349 	 DR 

	

0350 	
DE 
RooT2=SORT(TEE) 

	

0351 	350 Ro0T1=SrIpT(s*S.C*C) 

	

C35e 	 S1G=1.0 

Wi 
SA=0.0 
IF (0 .LT. 0.0) SIG=-1.0 

C.5 t 
C3i6 

If gn(W'At?) 71,8°To 350 

CA=1.0 

	

8;$ 	
SX,SA=0 0 
CX/CA=1:0 

	

C560 	 EER 

	

C361 	 8=DI 

	

gigi 	
I 
E=E
F USW .07. 0.0) GO TO 340 

	

0364 	 8=-
I
BR 

	

Mi 	
340 ND=D*D+DE*DE 

GO TO 3'0 
350 IF (AOSCS) .LE. EPS) GO TO 360 

	

0368 	 CA=C/RoOT1 

	

01;/ 	

360 coTeX=DIR 00T1 
COTX=CoT?X+(SIG*SORT(1.0.00T2X+COT2X)) 

SA=;'ROOT1 C369 
t:370 

SX=SIG/:',0RT(1.0+COTg*GOTX) 
cX=IX*CIT4 

	

0373 
	 ETA=(ER*01.1.00I*EI)/RoOT1 

	

0375 	TsEz(DR*BI-ER+EI)/R0071 _ 



	

0376 
	

TE=SIG*(-ROnT1*DE+T•D)/900T2 
TETEE=(D*ilE+R1nT1*TSE) /R00T2

SE
ROOT2 

	

ti” 	
N0zR0nT7*RnoT2.0TEE*TEE 
TEE=HJ*CX*5X 

	

038o 	 C052A=0A*CA-SA*SA 

	

0381 	 Sln2A=2.0*0A*SA 

	

0382 	 TEm=NR*COS7A+M*SIN2A 

	

0383 	 TEP=H1*C0S2A-iiR*SINA 

	

Hi'' 	
Ha=cx.cx.H -sx..sx.Trm-CA*TEE 
141=CX*CX ,bu/fnX+SX*TEP"SA*TEE 

	

0386 	 R=IRIpl.TE*,c4+ETA*BA 
0387 

	

0388 	
Sfil E=CA:ETA-IS/*TE*5A 

sraHR-SIG*RIOT24,E 
0389 

	

0390 	
0=81-51C00(1072*0 
Roor=saRT(c*c+s*s) 

	

p31 	
IF (Rn0T .GE. EPS) GO TO 380 
C8,CH=1.0 

	

393 	 S8,SH=0.0 

	

0394 	 GO TO 300 

	

0395 	 380 C8=-0/900T 

	

0396 	 S0=S/ROOT 

	

0397 	 TEE=09en-E9S8 

	

0398 	 N0=TEE+TEE 
TA007.901T/(G+2.0*(NC+10)) 

	

UN 	CH=1.0/SQRT(1.0-TANti+TANH) 

	

t81 	
390 SM=CH*TANH 

7EM=5X+,4*(SA*C11"50*CA) 

	

403 	 01RITCX‘0H-TEM 

	

11P 	

0211=0)(*CH+TEM 
011,C21=-SX*SH*(COCEI+SA*50) 
TEP=SX,PCH*0A 

	

, 4 7 	 TEM=0X,SHA,S8 

	

0408 	 S1RzTEP-TEM 

	

0409 	 S2R=-TEP-TEM 

	

0410 	 TEP=SX*CH*SA 

	

0411 	 TEM=0X+IH*C8 

	

0412 	 S1I=TEP+TEM 

	

0413 	 S21=TEP-TEM 

	

clt'. 	TEM=S097(5111*SIR'S1/*S1q 
0415. 	 TEP.90RT(s2R*s2R+s2/*s2/ 

IF (TEM .0. EPS .AND. TEP .0. EPS) GO TO 420 

	

8147 	MARK=0 

	

SW 	
DO 400 I=1/ 
ARKI=AR(K, 

	

0420 	 ARMI=AR(M, 

	

C421 	 AIKI=A10(, 
C422 AIMI.A1(M, ) 
c423  AR(Ko1)=C1R*ARKI-C1I*AW+S1R+ARMI■S1I+AIM1 

	

0426 	 AISK,1?=C1k*AIKI.C1/*A9i.p.S1R*AIMI+SII*ARM 

	

C425 	 ARW,Ii=52R*ARKI-571*AIKI+C;.,P, ARMI-021+AIM 

	

0426 	 AI(m o l)=52 *AIKI.S21*ARKI+C2R*AIMI+021.ARMI 

	

ttg 	
WRIK=MEr, 
WRIM=IJR / o . 
WIIK.mI I, 
w/Im=1,10,M) 

0429 
0430 

	

0431 	 WR(1,K)=c1R*WRIX-011*0IIK+SiR*0RIm-S11*WIIM 

	

0432 	W1(1,K)z.C19.UlIK+C11*vRIK+s19*ulim+S11*WRIM 

	

C433 	 wR(1,113=112Z*vRIK-52I+0IIK*C2R+IJRIM-02I+AIM 

	

0434 	 400 WI(I0)=S29*WIIK 4 S2I*WRIK.C2R*0IIM.C21*WRIM 
435 DO 410 I=1,N (; 

	

c436 	 ARIK:AR(I,K) 

	

',43f 	 ARIM=AR(/eM) 
AIIK=A1(1,q 

439 

	

438
L40 	 ARli:/)t: r.. R*A9IX-C214,AIIK-52ReARIM+.921+AIIM 

	

StVe 	
Al(Ior.)=C19*AIIK4C7I*ARIK-5?.R*AIIM-S214,ARIM 
AR(I,M)=-519 4, ARIK.011*AIIK+C19 *ARIM-C11,6AIIM 

0443 A1(1,M).-SiRsAIIK-S1I'ARIK+01R•AIIM+011 *AR1M 

	

0446 	 VR1K=VR(I,K) 

	

0445 	 VRIM=09(1,M) 

	

0446 	 VIIK.VI(IsK) 

	

0441 	 VII 41=V1(I,'1) 

	

0468 	 VR(I,K).C29*VRIK-C2/ 4,0IIK-S2R+VRIM+S7I+VIIM 

	

0449 	 VI(I,K).C*2R,1IP:4C21*VRTIC-SR*VIIM-S214,VRIM 

	

St;? 	
VR(7,n)=-51R*VRIK+SlI*VIIK+C1R+VRIM'ClI*VIIM 410 V1(1,1,=-S1R*0IIK-S11*VRIK+01R+VIIM+011*9111M 

	

0,S2 	 420 00mTIMmE 

	

0453 	 ROT=ROT4.1 

	

0454 	 430 00mT1NUE 

	

0455 	 440 co,TINuE 
8tt, 

M 
0461 
0462 
0463 
0464 
0465 
0466 
046Y 
0468 
64610 

0470 04i1 
0472 
0473 
0474 

45V 

 . 

R07=-1101 
DO 	660 	I=104 

 00 9((1)9=1I.1 
DOI609 A= 

	
di 

DR=D0R(I)  
DI=D01(1) 

600 EN(1)=DR*DR+DI*DI 
DO 	660 	Km1,71.1 
DO 	660 	11-10.1,N 
TEN=Em(0-E1(0) 
IF 	cgtS(TEM) 	.LE. 	EPS2) GO TO 610 
IF 	(TEM 	630,650 ,650 

610 TEM=DDR(K)-)DR(L) 
IF 	(A9SCTEM) 	,V. 	EPS2) GO TO 620 
IF 	(TEM) 	630,65 ,650 

64t) TEM=001(K)-GD1( 	) 
IF 	(A05(TEM) 	.LE. 	EPS2) 00 TO 650 
IF 	(TEM).630,650s650 



C475 
.0476 
0477 
0478 
"79 

04
4 
 81
0  

0482 
0483 
q4s 
v485

4  

0486 
0487 

00489
488 

0490 

0693 
0494 
C495 
0496 

0498 
0499 
0500 

03U TEMtIEN(K) 
EN(K)=E1(6) 
EN(l)=TEN 
TEM=DDR(K) 
DDR(K)=0D4(L) 
DDR(L)=TEM 
TEMm0DI(K) 
DDI(K)=DDI(4) 
DDI(L)=TEM 
DO 64U ImirN 
TEM=WR(IrK) 
WR(IrK)=NR(IrL) 
WRCIA.)=TEM 
TEM=0,4) 
WI(I

141
0()=WI(IlL) 

WI(IrL)=TEM 
TEM=VR

)
(IrK) 

VR(I0(=VR( 
YR(I.L)=TEM/r1.)  
TEM=VI(1,K) 
VI(I.K)=VI(IrL) 

040 VI(I,L)=TEM 
05u CONTINUE 
600 CONTI1LJE 

RETURN 
END 

END OF SEGMENT, LENGTH 1766, NAME GOO 

81; 

	

0520 	CALL CINP 3.I.KrYR.YI,KRIXIOIMN/DIMP,SR.S1) 
DO 50 Im1/1 

	

0521 	CALL CA3S SR.SIrS) 
9p/ 

	

9 23 	
RSUmmRS1M*SmS 
DO 40 J=1.1  

	

0524 	TEMP 	.-.:KR(J.K)—SR*KR(J.1)+SI*XI(JrI) 

	

525 	
4u XR(J.K)=TEI1P 

XI(J.K)=XI(J.K)-SI*XR(JrI)*SR*XI(JrI) 

	

526 
..., 	527 	50 CONT/NUr 

	

.... 	528 

	

652Y 	
OU CALL COP (1.K,KoKRoXItYR.YIrDIMNOIMP/SR/S1) 

CALL CARS (SR,SIrS) 

	

0530 	LSUMeLS1M+S 

	

0531 	RSOMmRSOM*S 
V32 

	

'533 	RTmRSOM 
LTmLSUM 

	

6534 	IF (eS .0, 17/100.0 .AND. LT+MC .NE. 0.0) .AND. 

	

0535 	1 	(S GT. RT/100.0 .AND. RT*MC ,NE. 0.0)) GO TO 70 

	

C530 	WRITE (4,91n) 

	

83(3 	910 FORMAT (' WRNING 1 IN OIORTH01 ) 
IF (s*Nr /NE. 0.0) GO TO 10 

	

039 	WRITE (4,920) 
•-040 	Yeu FoNmAT ( ,4ARNING 2 IN BIORTHO') 

	

041 	SRz0,0 

	

042 	SI=0.0 

	

0543 	GO TO 80 

	

0545 	
(0 CALL CI1P rKrKeKR,XIIKRoXI.DION.DIMP,SR/SI) 

KNORm=SIRT SR) 
0544 

	

0546 	CALL CI1P 1,K,K.YR,YI,YRIVIIDIMNOIMP,SR,SI) 

	

Rtg 	
YNOROm$ORT(sR) 
CALL CAMP (1K .,K.XR,X11YR,Y1,DINN.DIMP.SR.S1) 

	

C549 	SR=SR/O:NOR1E,Y1ORO) 

	

0550 	SI=SIMN0R1*YN1RO) 

	

C551 	CALL CSORT (SR.SI,TRrTI) 

	

0551 	D1RmKNORM*TR 

	

0553 	011=KNORM*TI 

	

C554 	D2Rm*NORO*TR 

	

0555 	D2ImYNIRo*Ti 

	

C56 	CALL CDIV (1.(1,o.o,D,R,D11,s11,s1) 

	

v551. 	03v  DO vit J..11.N 

	

0558 	TE'1P 	= SR*KR(J.K)+SI*XI(J.K) 

	

C559 	XI(J0()=-SI*KR(JeK)*SR*X1(JrK) 

	

C560 	90 XR(.1,K)..= TE:IP 

	

061 	CALL CDIV (1.0,0.0.b2R.D2I.SRI, SI) 

	

6561 	DO 100 J=1,4 
C563 

 
TEMP 	= SP.vR(J1K)-SI*11(J,K) 

	

v564 	YI(..1,1()= Slo,YR(J,K)+SR*YI(J,K) 

	

0565 	Tuu vR(J.4).= TEP 

	

9560 	11U CONTIHIJE 

	

C56/ 	RETmR0 

	

0568 	END 

	

END OF SEGMENT. LENGTH 	381 NAME BORTH() 

BD 
RR 
0506p665 
	10 LSUM=0

0
.0 
K DO 11=F4103  

9508 	RSUMm0.1 
9509 	IF (KEQ. 1) GI TO 60 

I C510 	DO 10 =1/11((-1 
9511 	CALL CM' (1.IrKeKR.XIFYRrYI,DION,DIMPoSR,SI) 
012 	CALL CABS (SR.SI'S) 

SgU 	 0 DO 
LS0M2mLS-411H*S*s 

Jr 1 
0515 	TEMP 	=11(.1,K)-SR*YR(J,I)+SI*YI(Jr1) 

,.., 	0510 	Ylt.).1()=YI(J,K)—SImYR(J,1)*SR*Y1(jel) 
C517 	Cu YR(J.K)=TEMP 

30 CONTINUE 

 EsIORTHO (YRoYleXReXt.DIMNrDIMPoNsPeFeMC) 
INTEGER D11,DIMP,PrF 
REAL YR(DIM1,DIMP),YI(DIMN.DIMP), XR(DION,DIMP),X1(DIMNOIMP) 
REAL LT.0.1C 
DOUOLE PRECISION LSUM/RSUM 



0631 

C63
C6323 

C634 
0635 
4636 

C63/ 

	

CP9 	
sunnooTTNE rill(' (N.K.L,YR , YI.XR,XIFDIMN.DIMP,SRISI) 
INTEGER 6I'll,DPIP 

	

ti 571 	 REAL YR(DIMDPIP),  YI(61MN,DIFIR), XR(DIMN,DIMP), XI(DIMN,DIMP) 

	

SM 	
DOUBLE PRECISION SN'IR,SLIMI 
sOmR=0,0 

	

9574 	 SUM I=0 

	

G575 	 DO In I=1,N 

	

0570 	SUNP=SU1R+YR(1,0*Xn(1,1)+YI(1,K)*XI(1,L) 

	

057/ 	IU SlvkI=SUlI-Y1(I,K)*KR(1,L)+YR(1,4)*XI(Ie1.) 

	

0578 	 SR=SNGL(SU1R) 

	

C57Y 	 SI=SNGL(SUMI) 

	

81V 	

RETURN 

END 

END OF SEGMENT, LENGTH 
	

169e NAME CINP 

	

0582 	 SUBROUTINE CABS (ZR.ZI,R) 

	

0585 	 XRRS(2R? 

	

0584 	XI=AnSUI) 

	

C585 	 IF (XI..XR) 20.20,10 

r587

t.  

' 	

10 R2)(11 
XFOIXI 

	

588 	XI=R 

	

0589 	eV IF (XI) 30,40.30 

	

0590 	 50 R=XI/XR 

	

0591 	 R=XR*SCIRT(1.0*R*R) 

	

0592 	 RETURN 

	

0595 	40 R=XR 

	

C594 	 RETURN 

	

0595 	 END

UR 

 

END OF SEGMENT, LENGTH 	66, NAME CABS 

	

0596 	 SUBROUTINE CDIV (XR.XI/WR,WI.ZRaI) 

	

C597 	YR=UR 

83$ IF (AOS(YR)-AOS(TI)) 20,20,10 
HrV 

en 	

10 
g 	 VR=

T
H*
I/

VI
R  

4-YR 

	

0602 	 2R=(XR+H.XI)/VR 

v6 4 
 =C 

20 

ZIXI*H01)/VR O 

	

0605 	
RET,1RN 
H=YR/Y! 

	

C606 	 YI=N+YR4 /1 

	

C60, 	ZR=(H*XR4A1)/YI 

dgg8 

	

UN
O 	

2I=CH*XIwXR)/V I 
RETR N 

 END 

END OF SEGMENT. LENGTH 	97, NAME CDIV 

	

0611 	 SUBROUTINE CSQRT (ZR.ZIIVRtVI) 

	

8i 	
XR=2R gl  X1=21 

	

0614 	CALL CARS (xnocipm) 

	

0615 	H=SORT(CABS(XR)+H)/2.0) 

	

6016 	IF (XI) 10,20.10 

	

C61Y 	IV X1 2:(I/(2.0*M) 

	

C616 	 Zu IF (XR) 40,30,30 

	

0619 	50 xR=H 

	

0621 
 0520 	Go TO 70 

4u IF (XI) 60.50.50 

	

0622 	5V XR=XI 

	

C625
0623 	 XIzH 

GO TO 70 

	

C625 	60 XR=-XI 

	

C626 	XI=-11 

	

C62, 	70 YR=XR 

	

0628 	TI REXT 

	

0629 	 TTIRN 

	

0630 	 END 

END OF SEGMENT , LENGTH 	880  NAME CSQRT 

SUBROUTINE RAN6nMISATION (X.DIIIN.01MP,N,L,Z) 
INTEGER DP11,DIIn 
REAL X(611N,DIMP) 
no 16 I=1,N 

IV X(I,L)K2,0*FPMCRN(2)-1.0 
RETIIRN 
END 

END OF SEGMENT. LENGTH 	64. NAME RANDOMISATION 



	

C638 	sugpnuTIN INFO (oR,D/, LF,RF,Dimp,P,Ks,c0,em) 

	

C639 	INTEGER DiMp,TY2E,STREAm,pREv,G,H,E1,p,LINE(63) 
G640 

	

C641 	
REAL LF0I'IP),RF(UPIP), DK(DIMP),DI(DIMP) 

	

C642 	
DATA LINE/63+0k/, pREv/of. 
COmmoN TYPE,NO,FIELD,LENGTH,K 

	

C643 	IF (K) 200,200.100 

	

Q644 	1UU IF ((PREY ,r1, Nn) on TO 120 
L645 
646 

	W RIT (...,110) N1' LINE( !), 1=1,63) 
C 110 FoRmAT .1 	,//,29X,IiNFoRmATIONAL OUTPUT ON LOGICAL STREAM 4 FOR E 

	

C641 	IxAftoLE INM7IER 1 I3,f,29X,65A1) 

	

0648 	1L6 u;TTE (4 130) KS ,G,N EM 

	

C649 	156 FORmAT (ili ,//,43X,4umDFR OF STEPS PERFORMED .1 ,16,f, 

	

C650 	 oF EIGFNVEcToRS ACCEPTED = 1 .131f, 

	

C651 	
1 43X, 1  NTIBER 
2 43X,wWIN0FR OF EIGENVALULS ACCEPTED =1,13.1, 

Cgii S, 	
3 
GO  
43X,,WBER OF SOLNS. TO BE COMPUTED =1,I3) 

TO 310
IN 

 

	

Q654 	[UV IF (PRE'! ,Eq. NO) GO TO 220 

	

L655 	wRITE (4,410) NO, (LINE(1), 1=1,42) 
c656 

(' RIGHT-HAND') 

 RoxIMA 

nu FoR,IAT (1H ,//////,' INFOHHATIONAL, OUTPUT FOR EXAMPLE NuMBERIII3,/ 

	

6657 	1.1X.42A) 

	

058 	ezu wRITE (4,0o) Ks,G,A,Em 
L659 

	

C660 	
[36 FOR'IAT ON ,//,' STEPS PERFORMED =e04,/,1  EIGENVECTORS ACCEPTED m 

0661 

	

C662 	

1',13,/,' EIGENVALUES ACCEPTED =,113,1,' SOLNS. TO BE COMPUTED mi, 
213) 

300 WRITE (4(310) 

	

663 	316 FOPmAT ( TIE ERROR VECTORS AREO) 
G664 

	

0665 
	WRITE (4,320) 

320 FoR,IAT 0 EFT-HA10 1 ) 

	

1666 	CALL MOP LF,1,DIMP,10,FIELD,LENGTH14,K) 

	

2667 	WRITE C4.3 0) 
0668 
t669 

	

X670 	
530  PAZ'll.A71X,CP (RF,I,DIMP.1,P,FIELD,LENGTH,44) 

WRITE (4,340) 

	

0671 	 T/oNS TO THE EIGENVALUES ARE1 0 ) 

	

0672 	
540 FORmAT (1H .1.,  THE APP 

	

0673 	
wRITE (4,350 ) 

3bu FoRmAT er REAL PART') 

	

C674 	CALL mOP (DR,1,DIMP,1,P,FIELOILENGTH,4,0) 
C675 WRITE (4,300) 
0676 366 FORMAT 0 IMAGINARY PART') 

	

1677 	CALL mXoP 01,1rOIMP1rP,FIELO,LENGT8s6,0) 

SW 

	

9 	
PREVNO 
RETURN 

C680 9 

	

0681 	
99 STOP INFO 

END 

END OF SEGMENT, LENGTH 	222, NAME INFO 

	

C682 	SUBROuTTNE NORMALISATION (X.V,DIMN,DIMP,N,P) 
C683 

	

0684 	
INTEGER DIMI,DImp,p 
REAL X(5IM4,DIMp), y(OinNoiNp) 

	

7685 	DO 30 J=.18P 

	

0686 	SR=X(1,J) 

	

0687 	SI=Y(1,J) 

	

Q688 	AUX=SR*SR+SI*SI 

	

tgn 	
DO 10 1=2,N 
TR(I,J) 

	

691 	TI=YOLJ, 

	

0692 	frTR,I,TR+TI.T1 

	

C,233 	sR.(r .LE. AUX) GO TO 10 
t. 	4 

	

C695 	SI=TI 

	

C696 	AuX=22 
C69f 

S O 

10 CONTINUE 
CALL CDIV (1.0,0.0,SR,SI,TR,T1) 

	

p

C698 

090 	
P 20 1TR*1,!/ 
R 	=X(1,J)71+1(1,J) 

	

0701 	Y(I,J)=71*X(1,J)+TR*Y(1,J) 

	

c702 	eu x(I,J).sR 

	

,703 	30 CONTINUE 

	

0704 	RETRN 

	

0705 	END 

END OF SEGMENT, LENGTH 	176r NAIE NORMALISATION 



UP 	lirlialrginj.LAVT(g'44N0q), BUFFER 
47 5 	DATA CALL/../ '' 	' 
C709 	DATA MOTrei/ IJAN,,,FEDI,JMAR,OAPRI,,MAYI,PJUNI,IJLY'OAUGIOSEP,, 
Cf10 	1 'OCT'''110,/', 1 0:IC'/ 
0711 	GO TO (100,200,300), NO 
C714 	. luu CALL MTIME (N) 
Eilt 	E=N 

cALL=3-CALL 
C215 	IF (CALL ,ER. 2) GO TO 110 
C1 	EE=E 
C717 	RETuRN 
0 8 	110 E=E-EE 

E=E0.0E-3 019 
C720 

gii 	

RETuRu 
400 CALL nErauf (2,8,BUFFER) 

CALL DATE ,1 E) 
WRITE (2,2 0) E 

024 	610 FOR'IRT (Ad) 
0725 	READ (2.2e0) (DATO). 11.3) 
0726 	[to FOR'lAT (I20X,I2,1X,I2) 

DAT(2)=u047U(DAT(2)) 

gli 	
E Er=1 IF03 

4so a ?.1.6., 	,E11. 1.0) GO TO 240 
C730 	EmEE 
C731 	EE=EE/2,0 

GO TO 230 MI 	440 RETuRu 
300 IF (K) 370,370,310 

q7i5 	.51(1 IF (E .CE. 6n.o) GO TO 330 
0 6 	wRITF (.32o) 
0 7 	3Z0 FoRriAT (IN ,////,44x,'ExECUTION TIME WASI,F7.3,1 SECONDS') 
cnis 	Go TO 300 
Cfs, 	330 IF (E .CE. 120.0) GO TO 350 
C740 	'E=E-60.0 

WRITE (6440) E 
Eiti 	340 FORNT ciu ,//,/.40X.IEXEculloN TIME WAS 1 MINUTE',F763,1 SECONDS' 
0743 	1) 
0744 	GO To 390 
045 	350 1=E/60,0 
c766 	E=E-1,1,60.0 
04-1, 	OTTE (6,460) I, E 

 
C748 	360 FOR".AT oh ,/ //039X,0EXECUTIoN TIME WAS',I3,1 MINUTEST,F7,30 SEC 
0749 	lONDS,) 

al 	
GO TO 300 . 

Sf0 WRITE (6,380) E 
052 	380 FOR'IAT (111 ,/I/I,' EXECUTION TIME WAS',F9.3,' SECONDS') 
c753 	390 RETURN 
0754 	END 

END OF SEGMENT, LENGTH 	182, NA!IE ELAPSE 



	

0755 	SUBROUTINE 1X0P (A,DIMN,DIMP.N/P,FIELDsLENGTH,STREAMoIFLAO) 

	

M% 	
INTEGER 011,DTIP,P,wIDTH/STREAM 
REAL A(D1114,n1Mp),  FRmT1(6), FR:1T2(6), BUFFER(4) 

ONN,WIX/1P 

	

0755 	DATA FR1T1r1H( 	 1114;/.1HEt8H) 	/ 

	

?;g0 	
DATA FR1TeP1H( 	1HNt6HK1P 	t1HN1HE/811) 	/ 
IF (IFLAG) 1(1,200,10 

	

0761 	10 CALL DEFBUF (2,16,B'IFFER) 

	

L
762 	FROT1(5), FRMT2(5)4FIELD 

	

763 	WRITE (;:,20) FIELD 

	

C116i4 	"Cu FOR1AT (A6) 
READ (2.30) WIDTH 

30 FOR1AT 1X,12) 
IF (p*U?Dt'ri—LENJGTH) 100,100,40 

0768 

	

0769 
	40 N1=LEIGTR/YIDTH 

N2=11 /111 

	

0c770 	LAST=P..11*q2 

..... 

	

 7
p31 	

IF (IFLAG) 50.999.60 
50 N3=1 

	

73 	N4=1 
077 
C775

4  71 
6U 

GO  
N3=

T
(L
O 
 ENGTH-11*N/DTH)/2+1 

	

0776 	N4=(LEWITH—LAST*WIDTH)/2+1 

	

0777 	10 WRITE (7.80) N3,N1eN4fLAST 

	

8;3t1 	
81) FOR1AT .(4I4) 

READ (2,90 FRMT1(2). FRMT1(4), FRMT2(2), FRMT2(4) 

	

9780 	90 FOR1AT (4A4) 

	

C721 	100 112:0' 3"  
Q783 110  gwfIFLAG) 110,999,120 

	

t;“ 	GO TO 110 

	

0786 	120 N3=CLENGTH-p*WIDTN)/2+1 

	

078f 	130 WRITE (2,140)  N3,P 

	

0788 	140 FOR1AT (214) 

	

Q789 	READ (2050) FR171(2), FRMT1(4) 
 150 FOR'1AT :2A4) 

GO TO 211 

	

tgi 	
,uu IF tm2) g99.210,3n0 
410 WRITE (STHEAM,FRMT1) (CA(I/J), .100), I= ,N) 

8qt
RETURN  

300 N2N1=N2.N1 

8f3/ 
IF (N-1) 996L400'310 

310 DO 330 K=1,1241,N1 
0798 

	

0799 	
KK=K+11-1 
WRITE (STREAM,32D) K KK 

	

0800 	3Z0 FOR1AT OH ,/,' COLUANS,,I3,1  701 .130 AREI'l 

	

8881 	330 WRITER ( 	
(CA(18.1). J=K/KK), !MN) 

IF (LAST-1) '370,540,360 

	

0803 	340 WRITE (STREAM,350) p 

	

0804 	350 FDR1AT ,OH /,' CoL'I71N',T3 ' IS:g) 

	

0805 	WRITE (.,TREAM,FRMT2) (A009 ), I=1,N) 

	

0806 	GO TO 370 

	

0807 	360 KK=N2N1+1 

	

0808 	WRITE (STREAM/320) KK,P 

	

0809 	WRITE (STREAM,FRMT2) ((A(I,J). J=K1(0), IliN) 

	

0810 	3/U RETuRN 

	

0811 	400 DO 410 K=1,14211iN1  

	

0812 	K1(21(.011-1 

	

Hii 	

410 WRITE (STREAM.FRMT1) (A(1fJ), J=01(K) 
IF (LAST-1) 440,11425900,p)  

440 WRITE (1TREAM.FR 

	

0816 	GO TO 440 

	

0817 	450 KK="221+1 

	

0818 	WRITE (STREAM,FRMT2) (A(1,J): JaKKIPI 

	

069 	440 RET1Rn 

0821 
YYY STOP MXOP L8 0 

END 

END OF SEGMENT, LENGTH 
	

427' NAME MXOP 



	

Slai 	
SUHROuT/NE PRoDUcT (VROTO,N1,w/,DIMN,N,HERMIT) 
INTEGER oI9N,PREV,HERMIT,TTPE 

	

C824 	REAL 
LL 
	 WR(DIMN),wI(D1MN) 

	

Egig 	
REAL AR00,10),AT1,1QX 
Do0OLE pRECTSION UMR,b0MI 

	

0821 	DATA PRJ7007 

	

ii0 	
cowtoN TyPELNO 

g GO TO ( 00,400,30P,400,500,600,700,800,900), TYPE 
030 100 CONT/NUE 

	

0831 	IF (pREv .E1. NO) GO TO 120 

	

0832 	READ (5,110) ((A8(I,J),A1(I,J), JOIN), 1=1,8) 

	

0833 	110 ForiAT (200.0) 

	

c814 	REV=O 

	

3g 	
lgo IF oF f HENRNIT) 121,121,150 

H 1g1 DO 140 IOLN 
C837 

	

0838 	
SuriRISLINIq0.0 
DO 130 JOIN 

	

0839 	SutiR=SuNR•AR(1,J)*VO(J)-Al(I,J)*VI(J) 

	

0840 	130 SLH,I=S01I+AR(I,J)*Vi(j)+Al(i,J)*VRW, 

	

0841 	WR(I)=5”NR 

	

C842 	14U W1(1).sltil 

	

C843 	RETURN 

	

C844 	1)0 DO 170 I=1,14 

	

C845 	SuNR,SOMI=0.0 

	

0846 	DO 160 J=1,N 

	

086f
dig 	

SUPIR=SUIR+AR(J,!)+VR(J)+Al(J,I)*VISJ 
16u suN/=s0114AR(J,I)*VI(J)-AICJ,I) 	W *VR 

	

(149 	wR(I).$NHR 

	

0850 	17v WI(I)=SNMI 

	

Hill 	
RETURN 

guo CONT INUE 

	

C8 3 	ou gu(HERMIT) 210,210,230 
0854 

	

085) 	 Do 220 r=1.1-1 

	

0856 	wR(I)=14.uAII),,N*01(I+1) 

Hig
wI

( T)=K*1/1(/).N*VI(I4.1) 
[gu K=K-1 

	

0859 	wR(N)=1.08-10*VR(1)*VR(N) 

	

C860 	WI(”)=1.0E-10*VI(1)+VI(N) 
C061 
L86g

RETNN 
430 wik(1)R=N*VR(1)41.0E-104NR(N) 

	

0863 	wI(1)=N*VI(1)4,1.02-104,91(N) 
r64 

	

865 	trilo I=2,N 

	

164, 	WR(1)=Nwvit(/-1)+K*VR(1) 

	

qg 	

. 	WI(I)=N*Vi(I-1)+XIbV1(1) 
g4U K=K-1 

L. 6Y 

	

C870 	
RETURN 

Suu cONTINNE 

	

C871 	IF (HEWITT) 310,310,330 

	

0871 	51u WR(1)=VR(2 ) 

	

0873 	. 	WI(1)=Vi(C) 

	

0874 	DO 320 K= ,!1-1 

Mg 	
N K=0-K,'L 

wR(K)=NOIV R (K-1)+K*VR(K+1) 
Se wicK1 =NK.vieK.1)+K.VI (K.01) 

	

SPg 	• wRM=VR(N-1) 
0879 

	

EgR? 	

WIVI)=VI(N-1) 
RET'IRU 

ssu wR(1)=0-1/R(2/ 

	

C884 	WIt1)=c1-1)*VIL2, 

	

c883 	Do 560 K=2,11-1 

	

c884 	NK=1-K 

	

_ .0.885 	. 	.1(1=K-1 

	

C886 	WR(K)=v *vR(11)+NK•vR(1(+1 ) 

	

c8 8r 	349 wr(K)=0*v i (141)+No,VicK+1) 

	

0888 	wRO!)=(q-1),,,vR04-1) 

	

0889 	w1 ( 1)=(11-1)*vI(1-1) 

	

0890 	RETuRn 

	

0891 	400 cONTINUF  

	

0892 	)U0 CONTINUE 

	

0893 	6uu cONTINUE 

	

0894 	(00 coNTTNUE 

	

089) 	800 coNT1NUE 

	

0896 	 900 GONTINWE 

	

C89! 	END 

END OF SEGMENT, LENGTH 	709, NANE PRODUCT 



THE MATRIX OF CURRESPONDI'IG RIGHT-HAND EIGENVECTORS IS GIVEN BELOW, 
REAL PARS 

9;9f1993993 E:81 ;:11y1g34tg11.11 Wagnimm Y.HUOM17.81 
2.9649894016E-01 9:9999999999E-01 1:8032/82399E.01 1:8032787218E.01 

i.ol0000noogE ol Firso44ilvol . 1.00000000u/ oo 1.00000000cl ou 314=6:81 .flyglIft0a MIVUe50:81 NIVNtggla 

THE METHOD OF "QUICK RITZ" ITERATION FOR AN ARBITRARY MATRIX 

THIS PROGRAM WAS RUN ON 22 AUG 74 
AND EXECUTION STARTED AT 18/38/46 

EXAMPLE NUMBER 6 

4 EIGENVALuES AND 2 EIOENVECTORS NAVE BEEN ACCEPTED TO AN ACCURACY OF 1.00E.06 

THE 4 APPROXIMATIONS TO THE EIG!UVALUES AREI 
REAL PARI 	

3.0000000001E 00 3.0000000000E 00 1.9999999985E 00 2.0000000007E 00 
IMAGINARY PART 

5.7206765570E-11 -1.4leellooseL.11 1.000000000ZE 00.e9.9999999987E.01 

THE MATRIX OP cURRe3FoNGI40 LEFT-HAND EIGENVECTORS IS GIVEN BELOW:  
REAL PARI 

-3.613391941E1 -2.4”257_20mE:18 -6.90091WE:01 
..44116R2$4i.lu 404,4 .0E41 . .30 396631  :01. 

-5:6951189g5E-0 -4:00021013CE.01 .1,444498 le3E.09 . :492 06246)E.OY 
0.0609900990E-01 1.1u5o515209g.01 6.7YourouolE-lo 7.z40124fosia.ou -3.11i4643o44E.01 1.ououou000ut ou -2.20/4697069E-11 .6.8i4o7dY237eot 

IMAGINARY PART 
-4.4^?6459351E-11 .6.490324924/E-11 2,0000008041E-01 .2.0000007301E-01 
6.310325715 E-11 1.1019304971E-10 0,000000000UE.01 0.00000u0o0oE.01 
1:0W;ME:16 -Z:V.11961928E41 1:asmts44E:g; Alaumml:n 
4:833M2M4:81 -8:8U1Nog4=8; -2:111a1=1:1? •.ngilPatgl:111  

IMAGINARY PART 3.8179Katioiv-12 3.4ollsoarE-0 11.6379taaminz 4,o8magoms1 
41-15 6. 3186 89 	 6 

-1. :89  9403 E-1i 3.4611g/ vroy 	
19597q3946E-1 . 6.1  :,573792884E..0z 

=1: P -  1 ii-1 	3: 21 21 	0 : 	1:?  gbil0YE. 	 llgtsgisg. 
.0 112 057 E-0 	o.ouou00000uk. 1 1.039344oro3E. i • :639344519SE.OL 

THE 4 SETS OF CORRESPONDING ERRORS ARE: 
LEFT-HAND 

-2.9033703039E.09  .7.8564464101E■11 -1.4823517329E.O7 0.2648271689E.of 

EXECUTION TIME WAS 14.841 SECONDS 

RIGHT-NAND 
-2018402400..09 8.5055849555R■11 -8.9006766408E.108 .7.63271272988•08 



IUFORIIATIONAL OUTPUT ON LOGICAL STREAM 4 FOR EXAMPLE NUMBER 6 

NUMBER OF STEPS PERFORMED • 	2 

NUMB E R Of 112tNiVas HEEPIEi : 8 NUMBER OF SOLN S. .0 BE COMPUTED • 2 
THE ERROR VECTORS AR1g 
LEFT-NAND 
RIGRT.OAND 	

-1.0000000000E 00 0.000U000000E OU ■1.0000000000E 00 al.00000u0000e 00 
-1.0000000000E 0) .1.0000000000E flu 0.0000000000E 00 .1.0000000000E ou 

IRE APPRuXIMATIONS TO THE EIGENVALUES ARE1 
REAL VW 5.1n30217221E 00 2.11471131065E 00 1.5258417191E 00 06.78959362331.01 

4.05222123901..12 .2.5216142542E■11 6.1744475494E•12 .1.7024E40258E411 

NUMBER OF STEPS PERFORMED • 	4 Mall 8f 118IMP2Is HEMP) : 8 
NUMBER OF SOLNE. 0 BE COMPUTED 0  2 

8 .36497285671'01 2.24,2572620E.01 -.4.6677818321E.01 01.89519370281.01 
RIGHT■RAND 

8.52591681301'01 1.255689622SE 00 .4.39804799328-01 .1.15519529368.01 
IRE ABB0.0XIMATi0N1 TO THE EIGENVALUES ARE: 
REAL PARI 
IMAGINARY PART 	 3.4169276508E 00 4.9996085617E 00 1.9768174780E 00 1.97681147811 00 

5.61909712621-11 .1.0972574555E00 9.4116127468E.01 69.41181274521.01 

NUMBER OF STEPS PERFORMED • 
W1814 OF  118E44 682s WEETE8 ■: 
NUMBER OF 	OS.. TO BE 	MP TEO • 

RIGHT■RAND 
-7.31676304101-02 4.0245122059E-03 3.2124953410E-02 3.67751434841.04 

THE APPROXIMATIONS TO THE EIGENVALUES ARE: 
REAL PARI 
IMAGINARY PART 	

3.00960302678 00 2.9999917454E 00 1,9930324185E 00 1.99303241851 00 
1.44010225114E011 1.6884420365E.11 1,0058487427E 00 0.0058487420E OU 

NUMBER OF STEPS PERFORMED • 	11 
NuriBE; OF ElmEczals ACCEPTED : 
NUMBER Of IOLNS.40EBE HAPAE3 • 2 

RIGN7-NAAB 	 '1.0044029550E.02 .2.01532791048.02 -1.2024044930E1'02 .9.86960557668.05 
■E.60767006901.03 7.34548143031..03 -6.66567627078.03 p5.53654249356.05 

THE APPRUXIMATIUNS TO THE EIGENVALUES ARE, 
REAL PAR' 3.00002384101 00 2.99999999478 00 240015928590 00 2.00013920301 00 
IMAGINARY PART 

2.44810005608.10 02.3309443971E01 9.99943825111E.01 .9.509943626561•01 

IMAGINARY PART 

THE ERROR VECTORS ARE* 
LEFT-HAND 

THE ERROR VECTORS ARE* 
LEFT-NAND 

-1.1649621273101 1.0907090413E-03 3.0429616867E-02 3.39623212318.02 

TH
FT.
E 
 ERANu

RROR VECTORS ARE *  
LE  



THE ERROR VECTORS ARE, 
LEFT-NAND 

RIGHT-HAND 	
-1.0R45253720E-0 

-1.2492520826E-0 

THE APPROXIMATIONS TO THE EIBENUALUE3 ARE 
REAL PAR' 

3.0000000055E 0 

NUMBER OF STEPS • PERFORMED • 	16 
NUMBER OF EIGENVECTORS ACCEPTED 	0 

NUMBER OF IRRAME NA551E8 : 

4 .3.1701056510E-06 2.6123719007E...04 

4 2.2053405750E-06 5.4377088164E.05 

0 2.9999999999E 00 1.99999977046 00 
IMAGINARY PART 

2.71709123176.04  

6.06738234916.0) 

1.9999997696E 00 

-6.0364092290E.12 .1.1365506405E-11 1.0000003340E 00 .1.0000003345R 00 

NUMBER OF STEPS PERFORMED • 	22 
NOBER oF EIGENvECToRS ACCEPTED • 

NPRi5 OF iffIgNME WRTH : 

RIGHT-HAND 
-7.4157177683E-07 1.5463153440E-0 4.5858375081E.06 4.5454076873E.06 

THE APPROXIMATIONS TO THE EIGENVALUES AREI 
REAL PAR' 

2.9099999999E 00 2,9999999999E 00 4.0000000004E 00 2.0000000001E 00 

THE ERROR VECTORS ARE; 
LEFT-HAND 

RIGHT-HAND 	
-2.9033703039E-09  .7.85644641010.11 -1.48235173290.07 .1.2648271689E.07 

-2.1104402404E-00  0.5055049555E01 -8.90067664006.00 .7.63271272906.06 

THE ApPRoximATIoNS TO THE EIGENVALUES ARE, 
REAL FAR' 

3.0000000001E 00 3.0000000000E 00 1.9999999955E 00 2.0000000007E DO 
IMAGINARY PART 

5.72067655706.11 .1.41721100546.11 1.0000000002E 00 .9.9999999907E.01 

THE ERROR VECTORS ARE, 
LEFT-HAND 

-6.2117235606E.07 .1.9739321607E-00  6.3885465529E-06 6.3196252129E.06  

IMAGINARY PART 
-4.9483577990E-11 .2.1073990094E-12 9.9999999960E...01 .9.99999999936.01 

NUMBER oF STEPS pERFORMED • 	29 

(01 112EMMIs AWES : 
NUMBER OF SOLNE, TO BE COMPUTED • 2 


