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ABSTRACT  

Three accelerated turbulent boundary layers have 
• 

been set up in a plane convergent channel and studied 

experimentally. The accelerations considered correspond 
dU1G 

to values of K (a 
v/

1U2,G dx1 	
) equal to 1.5 x 10

-6, 2.5 x 10-6 

and 3.0 x 10
6 and encompass the range over which laminarisation 

of the turbulent boundary layer is known to occur. Mean 

velocity profile measurements in the three boundary layers 

showed a deviation from a fully turbulent solution towards that 

appropriate to a laminar flow as K was increased. Measurements 

of fluctuating quantities made with a constant temperature hot- 

wire anemometer served to emphasize some of the differences 

between the turbulence structure of low Reynolds number 

accelerated boundary layers and that normally observed in high 

Reynolds number flows. 

The main outcome of the theoretical programme 

has been the provision of a new model of turbulence which is 

applicable to both the fully turbulent and the viscous sublayer 

regions of the boundary layer. The model involves solution of 

partial differential rate equations for turbulence kinetic 

energy and dissipation rate of turbulence energy together with 

the mean momentum, thermal energy (for heat transfer predictions) 

and continuity equations. 

The model has been applied to the prediction of wall 

boundary layer flows in which the accelerations are so severe 

that the boundary layer reverts partially towards laminar. 

In all cases, the predicted hydrodynamic and heat transfer develop- 

ment.of the boundary layers is in close agreement with the 

measured behaviour. 
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CHAPTER 1 

INTRODUCTION  

1.1 General Background  

The behaviour of turbulent boundary layers in 

accelerating flows is a subject which has attracted a 

number of experimental examinations in recent years. The most 

important finding to be established by these studies is 

that, when the acceleration is severe enough, the originally 

turbulent boundary layer undergoes a reversion towards 

laminar (refs. 2, 49, 50, 63 and 80). The phenomenon has 

been variously termed 'laminarisation', 'reverse transition', 

'inverse-transition' and 're-laminarisation'; the first of 

these will be adopted for the present work. 

The majority of the measurements of strongly 

accelerated boundary layers have been of highly 

non-equilibrium flows; that is, of flows where the structure 

undergoes rapid evolution in the direction of flow. In 

these cases it is not possible to ascribe a single parameter 

to denote precisely when laminarisation will occur. However 

Launder (49), Moretti and Kays (63), Patel and Head (68) and 

Schraub and Kline (80) found experimentally that the 

parameter K [= 
v 	dUlG 

] provided a useful if rough 

U211G dx1 

guide as to when an accelerated turbulent boundary layer 

would undergo reversion to laminar. If a turbulent 

boundary layer is subjected to an acceleration of magnitude 



so that K exceeds a value of approximately 3 x 10-6 then 

reversion to laminar flow will eventually ensue. 

Accelerations giving rise to values of K at least 

an order of magnitude larger than the above commonly arise 

in rocket nozzles and in flow over turbine blades. Values 

of K of the order 10-6 may arise in many other fluid flow 

devices, e.g. in wind tunnel contractions and in closely 

packed heat exchanger tube banks. The problem is thus one 

of substantial practical significance. 

'Constant-K' Boundary Layers 

The flow which develops in a plane convergent 

channel gives rise to boundary layers which are completely 

similar for both laminar and turbulent flow. In turbulent 

flow, it is the only flow configuration with varying free 

stream velocity in which the characteristic viscous and 

turbulence length scales may develop at the same rate; 

thus it is the only case where complete similarity of the 

turbulent boundary layer may exist. For these boundary layers 

the acceleration parameter K, skin friction coefficient 

and any local Reynolds number are invariant with x1. 

The work of Schraub and Kline (80) first indicated 

that the study of 'constant-K' boundary layers might 

be of special relevance to the problem of laminarisation. 

They examined the sublayer structure of accelerated 

turbulent boundary layers by means of dye injection and 

hydrogen bubble techniques. They found that the sinuous low 

momentum sublayer streaks which are a feature of 
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turbulent boundary layers on smooth surfaces did not suddenly 

cease to form above a certain level of acceleration. Instead 

they suffered a progressive diminution as the value of K 

was steadily increased. On the basis of their results 

Schraub and Kline suggested that the boundary layers could 

be placed in three categories. 

(1) K < 10-6: no detectable effects of the 

acceleration on the sublayer structure of 

the boundary layer. 

(2) 10-6 < K < 3.5 x 10
-6: sublayer structure of 

the boundary layer markedly affected by the 

acceleration but the layer remains essentially 

turbulent. 

(3) K > 3.5 x 10
-6: a complete degeneration to 

laminar flow occurs if the acceleration continues 

for sufficient time. 

Although Schraub and Kline's experiments were 

performed in boundary layer flows in which K varied in the 

x1 direction the measurements suggested that it would be 

possible to set up a family of constant K similar boundary 

layers which would exhibit a progressive shift from turbulent 

to laminar as K was increased. That this was indeed the case 

was demonstrated by Launder and Stinchcombe (51). They 

investigated experimentally turbulent boundary layers at 

three constant values of acceleration parameter K 

(0.7 x 10-6, 1.3 x 10-6 3.0 x 10-6). As K was increased 



their mean velocity profiles exhibited a continuous shift 

towards those appropriate to a laminar flow. Acceleration 

eliminated the wake and made less definite any division 

between the viscous sublayer and the fully turbulent regions 

of the layer. In addition, Launder and Stinchcombe made hot 

wire measurements showing high turbulence intensities, 

which indicated that the boundary layers were all essentially 

turbulent. However Launder and Stinchcombe acknowledged that 

their measurements suffered from substantial three-dimensional 

effects and that their measurements thus served to indicate 

qualitative trends only. 

Support for the above conclusion also arises 

from experimental heat transfer studies. Moretti and Kays (63) 

have noted a substantial reduction in Stanton number on the 

application of a negative pressure gradient (acceleration) 

and a subsequent rise on its removal. However their data 

showed detectable dips in Stanton number even for accelerations 

where K did not exceed 10
-6; that is barely one third of that 

required to cause complete degeneration of a turbulent flow to 

laminar. 

1.2 Prediction of Laminarisation  

In view of the practical importance of the phenomena 

in question, a means of predicting both its occurrence and 

consequences is clearly desirable. Now, recent years have 

seen a significant advance in the development of means of 

predicting both laminar and, nost especially, turbulent flow. 
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This advance has been brought about by the advent of the 

high speed digital computer which has made possible the 

development of a number of numerical schemes for solution 

of the time averaged forms of the partial differential 

equations which govern fluid motion e.g. references (1) 

and (31). However, for turbulent flowlaveraging results 

in a loss of information to the point where the equations 

of motion are not closed. Unknown velocity correlations 

arise and these must be approximated in terms of known 

quantities to produce a closed set of equations before 

solution can be attempted. Such an approximation is here 

termed a 'turbulence model'. 

For steady turbulent boundary layer flows a 

number of authors (e.g. ref. (69)) have made use of the 

Prandt1 mixing-length model of turbulence to obtain pre-

dictions. More recently more complex turbulence models 

have also been utilised e.g. references (62) and (65). 

Generally the results obtained provide predictions of 

sufficient accuracy for practical engineering purposes 

over a wide range of boundary layer flows. However to 

the knowledge of the writer these models all fail to 

predict the main properties of boundary layers undergoing 

laminarisation. For example the predictions of Moretti 

and Kay's data presented by Patankar and Spalding (69) 

fail to display any dip in Stanton number in the region 

of acceleration and as a result the predicted heat transfer 

rates at the end of the acceleration were typically twice 

as high as the measured values. 



1.3 The present contribution  

The foregoing sections have pointed to the absence 

of a reliable means of predicting the development of the 

turbulent boundary layer in an acceleration. Also, from 

the experimental viewpoint, it is evident that the majority 

of measurements of accelerated boundary layers have been of 

highly non-equilibrium flows; that is flows where the 

turbulence structure undergoes rapid evolution in the 

direction of flow. In these cases it is difficult, if not 

impossible to separate the effects of flow 'history' from 

those of acceleration. With the aforementioned points in 

mind the present work was embarked upon: its purpose was 

twofold:- 

(1) 	To study experimentally the hydrodynamic behaviour 

of a turbulent boundary layer when subjected to strong 

acceleration. This was carried out by means of an examina-

tion of the similar turbulent boundary layers which arise-

from flow in a plane convergent channel. These boundary 

layers have special relevance to the phenomenon of laminari-

sation since they have a turbulence structure which is 

'frozen' in the flow direction, The effects of acceleration 

may thus be considered in isolation from those of flow 

'history'. The accelerations considered covered the range 

over which laminarisation was known to occur i.e. 

10-6 < K < 3.0 x 10-6. The experiments included measurements 

of mean and fluctuating quantities and may thus help to 

provide a better understanding of laminarisation. 
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(2) 	To develop a reliable means of predicting the 

behaviour of the turbulent boundary layer when subject to 

strong acceleration, i.e. laminarisation. The procedure 

must be capable of predicting the development of both the 

hydrodynamic and thermal boundary layers and thus provide 

predictions of local heat transfer rates and skin friction 

coefficients. It is desirable that the method be as general 

as possible so that it may be easily extended to handle 

flow situations where, in addition to acceleration, large 

fluid property variations and surface mass transfer are 

present. At the same time the procedure must be economical 

and easy to use. 

1.4 Outline of Thesis  

This thesis is divided into five chapters of 

which this introduction is the first. 

The second chapter introduces the reader to 

the relevant equations of fluid motion. Included are the 

partial differential equations which govern the development 

of the boundary layer. Also presented are the ordinary differen- 

tial equations to which the above stated partial differential 

equations reduce for the similar boundary layer. 

Chapter three contains a description of the 

writer's experimental work. It begins with a review of 

previous relevant experimental work by other workers. This 

is followed by a description of the experimental apparatus, 

instrumentation and experimental technique. Finally the 
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results obtained are presented and discussed. Comparisons 

are made with other data where appropriate. 

Chapter four contains the writer's theoretical 

contribution to the present work. The chapter is split 

into four main sections:- 

NY The chapter begins with a review of existing models 

of turbulence. The review covers a range from the 'simple' 

models which attempt a description of turbulence purely in 

terms of the mean velocity to the more complex types in 

which turbulence is described in terms of various (and 

many) properties. 

(2) Section two is concerned with predictions of accelerated 

boundary layers obtained through numerical solution of the 

boundary layer equations with an 'augmented' mixing length 

model of turbulence. The path followed in devising the 

model is outlined together with the checks made on the 

numerical accuracy of the solutions. The section ends with 

some comments on the mixing length model. 

(3) Section three is devoted to a turbulence model which 

is based on the solution of a partial differential rate 

equation for turbulence kinetic energy together with an 

algebraic length scale distribution. Comparisons between 

prediction and experiment are made. 

(4) Finally in section four a new turbulence model is 

presented in which characteristic velocity and length scales 

of the turbulence are obtained from the solution of partial 
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differential rate equations for turbulence kinetic energy 

and dissipation rate of turbulence kinetic energy. The 

section and Chapter ends with a comparison between predicted 

and experimental hydrodynamic and heat transfer results. 

Finally in Chapter five the achievements of 

chapters three and four are summarised and re-appraised. 

Suggestions are made for future theoretical and experimental 

work. 
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CHAPTER II  

THE EQUATIONS OF MOTION  

2.1 Introductory Remarks  

The purpose of this chapter is both to provide 

the reader with an introduction to the mathematical description 

of the motion of a fluid continuum and to provide a foundation 

for the presentation and discussion of the results of the 

present study. The motion of any fluid is governed by the 

physical laws of conservation of mass and momentum (Newton's 

2nd Law) which in this case may be expressed through the 

continuity and Navier-Stokes equations. The chapter begins 

with a statement of these equations. For turbulent flows it is 

not practicable to attempt solution of the equations and the 

approach commonly adopted for their treatment is that of 

averaging the equations. The averaged Navier-Stokes 

equation is therefore next to be presented. The remaining 

part of the chapter is concerned with the equations of the 

boundary layer to which the present work is restricted. The 

boundary layer forms of the averaged Navier-Stokes equation 

are presented together with various integral equations which 

may be derived therefrom. 	Finally, the chapter ends with 

a presentation of the ordinary differential equation to which 

the partial differential boundary layer equation reduces for 

the similar boundary layer with which part of the present work 

is concerned. 
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2.2 The Navier Stokes and continuity equations  

The spatial distribution of velocity with time of 

a fluid continuum is represented by the Navier-Stokes equation. 

For an incompressible, Newtonian fluid this may be written in 

cartesian tensor notation as:- 

ap 61.J
1  . 	au. ' 	a2u. 

Pat + P Uj ax. 	ax. 	ax.ax. 

	

1 	3 3 
( 2 . 1) 

To this must be added the continuity equation 

au. 
i 

ax. — 0 	 (2.2), 

(repeated suffices imply summation over the three values of the 

repeated suffix). 

The above equations together with boundary conditions 

represent a closed set, the solution of which would in principle 

provide a complete description of any turbulent flow. However 

these equations are extremely complex and for turbulent flow 

appear impossibly difficult to solve. Turbulent motion is 

three-dimensional in nature and has appreciably variations 

in velocity over times and lengths which are small (typically 

of the order 10-2 secs and 10-3 m. respectively); 	numerical 

solution of the equations is therefore not practicable. There-

fore the approach adopted here is that followed by the vast 

majority of workers in the field of turbulent flow: the 

equations are averaged to convert them into equations for the 

variation of statistical quantities. This treatment was first 

used by 0. Reynolds (74) and is perhaps the only practical 

approach to the problem of turbulent motion. 
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The total velocity and pressure are each separated 

into mean and fluctuating components:- 

P  = 7 4- P 	U. = U. + U. 
1 	1 	1 (2.3) 

where P and Ui, the time* mean values of P and Ui  respectively 

are defined by:- 

T 	T 
1 	1 17. . Lt ,T, j P dt ; U. = Lt T, j Ui  dt 

o 	I  m 	o T...03 	.1....4.co 

The fluctuating components thus have zero mean values. 

On substituting (2.3) and averaging the Navier-Stokes 

equation the following result is obtained:- 

ati. ai 	a 	aUi 
P
_ 

3 axe  axi 	axe  ax (4 	. - p 	(2.4) 

where the overbars denote averaged values: for brevity they 

will be dropped from the means U and P from hereon. Equation 

(2.4) is known as the Reynolds equation. It contains the unknown  

velocity correlation, u.a.u.3 
 which represents the mean rate of 

transfer of momentum by turbulent movements. The velocity 

correlation u.a_u.3  has been traditionally termed the Reynolds 

stress tensor; if it could be determined then the mean motion 

would be known. 

An equation for uiuj  may be derived by further 

manipulation of the Navier-Stokes equation. It may be written:- 

In general the only meaningful average is the probability 
(or ensemble) average. However for flows with mean values 
stationary in time, to which the present work is restricted, 
the probability and time average are identical. 
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DR.. 	au. 	au. 	
a 

Dt 	-R 	- Rjm ox1 	(uu -Rim axm 	axm ijum 

—u 	
a 	p au 	auk  

0 raX. jP 	ax. uiP  ] P axj ax. 

a2R.. 	au. 	au. 1 	1 v 	— 2 v axm  axm 	axm axm 
(2.5) 

where R. . E U.U. 
13 	1 3 

As may be readily observed, further unknown quantities appear 

on the R.H.S. of equation (2.5). 

Equation (2.5) may be contracted to yield an equation 

for the turbulence kinetic energy:- 

Dk _ a 	
r  a  Dt ax m  axm  

    

u 	(u. u. + P/ p) } 
m —37f 

 

 

	

au. 	au. 2 
U.U.  ax 	

v  ( 
ax
1) 

.
1

. 

	

3 	3 

(2.6) 

where k E u. u. 
-37-3 

2.3 The boundary layer equations  

For the boundary layer, where there is one predominant 

direction of mean flow, equation (2.4) is much simplified. For 

the steady incompressible plane two-dimensional boundary layer 

the equation may be reduced to:- 
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aul 	au1 ap a ti„au
1 

	

Pul ax1 	PU2 ax2 - 	ax1 	ax2 	ax2  

a 
axi  ful2 	u22 

and the continuity equation becomes:- 

au au
2 n 

ax1

1  
4.  ax2 - 

o u1u2 3 

(2.7) 

(2.8) 

The last term on the right hand side of equation (2.7), the 

normal stress term, is usually small and is normally neglected. 

A section of the present study is concerned with heat 

transfer to the boundary layer. It is therefore appropriate to 

introduce the thermal energy equation. An equation describing 

the enthalpy distribution in the two-dimensional plane boundary 

layer may be derived in a manner similar to that in which 

equation (2.7) is derived.* It may be stated: 

n  a(.) 	u  a® a 	ae 
P-1 ax 	0  2 ax2 	ax2  fm  ax2 

   

- pu2e1 	(2.9) 

In equation (2.9) a term analogous to the normal 

stress term of equation (2.7) has been neglected. 

Integral equations of the boundary layer  

For constant property two-dimensional plane boundary 

layer flows equations (2.7) and (2.9) may be integrated with 

respect to x2 whereupon the following results:- 

dR2 Cf - KR2 {11+1} 	F U1,G dx1 	2 (2.10) 

*For a more detailed discussion of the equations 2.1 to 2.9 
the reader is directed to ref. (38). 
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(
dR

A + 	 (2.11) 
R
A 	w 	G 3 	+ F d DD - 

u11G dxI 	DE)W - eG] dx 

2.4 The similar boundary layer  

The similar boundary layers which arise from flow in 

a plane convergent channel are the subject of the experimental 

part of the preent study. In this flow the acceleration 

parameter K is constant from station to station and the 

equations (2.7), (2.8) and (2.9) may thus be reduced to ordinary 

differential equations in terms of a similarity variable 

proportional to [U1,G x2/ ] with the following normalisations: 

U1 	u/u2  
f(n) = u 	S(ti) 	173.7  l,G ,7  

equations (2.7) and (2.8) may be expressed*:- 

f" + K(1 - f2) - Ff' - S' = 0 	(2.12) 

(where the primes denote differentiation with respect to 	) 

with boundary conditions: f(0) = 0 and f(°) = )1. 

With the above choice of variables it is easily 

demonstrated that:- 

R2 = f f(1 - f) d 	and Cf/2 = f"(0) 0 

and thus the local skin friction coefficient and any local 

length scale Reynolds number are invariant with x1. The two-

dimensional momentum integral equation then reduces to:- 

Cf/
2 

= R2K(1-1 + 1) - F 	(2.13) 

* For a fuller discussion of equation (2.12) the reader is 
directed to refs. (51) and (83). 



- 3 tanh2  {Ft - tanh-1  if - 2.0 
U1,G 	

2  

U1  (2.14) 
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Now for the laminar flow, i.e. S = 0 with zero 

surface mass transfer parameter, F equation (2.12) may be 

integrated analytically to yield:- 

This solution yields the following results:- 

R22K = .120; H = 2.0 

However, for turbulent flows analytic approaches to the integra-

tion of equation (2.12) are not likely to be fruitful and 

numerical methods of solution must be adopted. 

Equation (2.12) may also be used to determine the 

Reynolds stress distribution in a similar boundary layer from 

the measured mean velocity profile. The equation may be 

integrated to yield:- 

- S(r) = K 	- f2) din - f'(71) + F [f(n) - 13 	(2.15) 
11 

and thus the velocity profile may be used . to determine the 

Reynolds stress - ulu2  . 
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CHAPTER III  

THE EXPERIMENTAL INVESTIGATION  

3.1 Introductory Remarks  

In this chapter the results of the writer's experimental 

study of strongly accelerated turbulent boundary layers are 

presented. The study entailed a detailed examination of the 

similar turbulent boundary layers which arise from flow in a 

plane convergent channel and included measurements of both mean 

and fluctuating hydrodynamic quantities. The chapter also 

includes a review of the results of previous related experi-

mental investigations. 

The chapter comprises three main sections the first 

of which is concerned with a review and discussion of the 

results of previous hydrodynamic and heat transfer (experimental) 

studies relating to accelerated turbulent boundary layers.and 

laminarisation. Sections II and III are concerned with the 

present experimental study. In section II the apparatus used 

is described and this is followed by a description of the 

technique adopted to perform the measurements. Finally in 

section III the results of the current experimental study are 

presented, discussed and finally compared with the findings 

of other workers where appropriate. 
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3.2 SECTION I - A review of previous experimental studies  

of accelerated turbulent boundary layers  

In reviewing the existing experimental studies of 

accelerated turbulent boundary layers it is desirable to 

distinguish between those properties normally associated with 

the turbulent boundary layer in mild and zero pressure gradient 

and those peculiar to accelerated flows. Therefore, before 

proceeding with the discussion of previous experimental work, 

it is appropriate to mention briefly some of the properties 

normally associated with the turbulent boundary layer developing 

in mild or zero pressure gradient. 

3.21 The turbulent boundary layer in mild and zero  

pressure gradients  

The turbulent boundary layer developing in zero 

pressure gradient over a smooth, impermeable plane surface has, 

over the years been the subject of many experimental investigations 

A careful examination of the results of these experimental 

studies led Coles (21) to conclude that the mean velocity 

profile of a, turbulent boundary layer developing in zero pressure 

gradient could be described by a two parameter family of the form 

U1 	x U 	xo  2n f( 2 T
) + 	W( 

T
K 	x2,G 

( 3. 1) 

The functions f and w which are supposed universal are known as 

the law of the wall and the law of the wake respectively. 

The parameter n characterises the 'strength' of the wake component. 

In the viscous region in the immediate vicinity of the 

wall (say x+  2 < 5) the law of the wall reduces to the linear form:- 
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U1 = X2 
	 (3.2) 

In the fully turbulent regime of the near wall region, i.e. 

x2 > 30 the law of the wall reduces to the well known semi-

logarithmic law:- 

Ul
+ 	1 = — In x

2 
+ C 	(3.3) 

where x and C are universal constants having values, recommended 

by Coles, of 0.41 and 5.0, respectively. 

The law of the wake was presented in tabulated form 

by Coles and the 'strength' parameter n given as a unique 

function of momentum Reynolds number R2. The function is such 

that it which is zero for values of R2 less than 500, increases 

steadily between 500 and 3000 and is sensibly constant for all 

higher Reynolds numbers. 

The velocity profile family of Coles has also been 

found to provide an adequate description of the velocity 

profiles measured in turbulent boundary layers developing in a 

wide range of arbitrary pressure gradients. Here, however the 

'strength' of the wake parameter it must be allowed to vary in 

the flow direction; its value will not be given by a unique 

function of R2 as in the constant pressure case. 
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3.22 Laminarisation - the early experimental evidence  

The phenomenon of laminarisation seems to have been 

first observed by Sternberg (81) in 1954. He found that an 

initially turbulent boundary layer underwent reversion to 

laminar for flow around the shoulder of a projectile in a Prandtl 

Meyer type expansion. Subsequently possible examples of 

laminarisation were noticed by Senoo (78), 1954 and by 

Sergienko and Gretsov (79) 1959. Senoo found the boundary 

layer on the end wall of a turbine nozzle cascade to be laminar 

in the region of the throat in spite of the upstream layer 

being turbulent. Sergienko and Gretsov took measurements at 

inlet to and exit from a supersonic wind tunnel, the boundary 

layer at the former being turbulent and at the latter laminar. 

The above results prompted Launder (49) and (50) to 

undertake a detailed hydrodynamic study of the incompressible 

turbulent boundary layer under the influence of strong 

acceleration. Launder obtained both mean profile and fluctuating 

quantity data. His conclusions may be summarised as follows:- 

(1) The effect of the acceleration is to reduce an initially 

turbulent boundary layer to laminar providing the 

acceleration is sufficiently strong and is applied for 

sufficient time. The pressure gradient parameter K is 

important in the determination of whether laminarisation 

will occur. 

(2) Important features of laminarisation are the thickening 

of the sublayer in normalised x-1.2  co-ordinates and a 

deviation of the velocity profile from the law of the wall. 
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A pertinent study of laminarisation was performed 

by Schraub and Kline (80) who utilised dye-injection and 

hydrogen bubble techniques to study the sublayer structure 

of accelerated turbulent boundary layers. As we have already 

seen they were the first to provide a description of the stages 

by which laminarisation occurs. 

In 1965 Moretti and Kays (63) published surface heat 

flux data for accelerated boundary layers with K between 0 and 

4 x 10-6. However, no hydrodynamic or temperature profile 

data was furnished. Moretti and Kays concluded that for K 

greater than 3.0 x 10-6 the heat transfer rate rapidly 

approached the laminar boundary-layer level, suggesting that 

laminarisation was occurring. Their data also indicated 

substantial dips in heat transfer rates for lower accelerations. 

3.23 Further hydrodynamic studies  

A number of hydrodynamic studies of accelerated 

boundary layers followed the aforementioned experiments. 

The studies were mainly of equilibrium* (or at least near 

equilibrium) boundary layers which represent a simpler case 

than arbitrarily developing flows. Equilibrium boundary layers 

have a turbulence structure which is 'frozen' (or only slowly 

changing) in the flow direction and therefore allow the effects 

of flow history to be eliminated. 

* An equilibrium boundary layer is one in which all of the 
velocity profile outside the viscous sublayer is similar 
when plotted in velocity defect co-ordinates. For these 
flows the pressure gradient parameter 0 is invariant in 
the flow direction. Similar boundary layers therefore 
constitute a special subgroup of equilibrium boundary layers. 
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Herring and Norbury (37) studied experimentally 

high Reynolds number equilibrium boundary layers in mild 

acceleration. Velocity defect profiles were established 

corresponding to values of the pressure gradient parameter 

0 (. 51/, dP/dx ) of - 0.35 and - 0.53. Their data agreed 
'w 	1  

well with the theoretical predictions of Mellor and Gibson (61) 

which were based on a high Reynolds number 'equilibrium' 

theory. 

The experiments of Launder and Stinchcombe (51) 

were concerned with the determination of the effects and onset 

of laminarisation. They made an experimental study of the 

similar (constant K) turbulent boundary layers which occur 

from flow in a plane convergent channel. Three constant 

values of the parameter K were considered (K = 0.7 x 10-6, 

1.3 x 10-6 and 3.0 x 10-6). As K was increased, the mean 

velocity profiles exhibited a continuous shift from a typically 

fully turbulent form to one more akin to that of a laminar 

boundary layer.' Acceleration eliminated the wake and a thicken-

ing (in x4-2  co-ordinates) of the viscous sublayer as K was 

increased was evident. Launder and Stinchcombe also performed 

measurements of longitudinal turbulence intensity with a constant 

temperature anemometer. For the three boundary layers it was 

found that there existed a large self-preserving turbulence 

intensity, thus indicating that the boundary layers were all 

essentially turbulent. Launder and Stinchcombe however 

acknowledge that their results suffered from substantial three 

dimensional effects. When they applied the two-dimensional 

momentum integral equation (2.10) implausibly low values of 
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Cf/2 
were obtained; at K = 0.7 x 10

-6  the skin friction 

coefficient, Cf/2  calculated with equation (2.10) was estimated 

to be about 35% low. This behaviour was attributed to stream-

line divergence which worsened as K was increased. The 

experimental findings of Launder and Stinchcombe can therefore 

only be regarded as qualitative. 

Badri Narayanan and Ramjee (2) investigated, in 

a hydrodynamic study, the accelerated turbulent boundary layer. 

Included in their experiments were four 'constant-K' accelera-

tions (K = 0.75 x 10
-61  2.8 x 10-6, 5.2 x 10-6  and 7.2 x 10

-6
). 

Both mean velocity and longitudinal turbulence intensity data 

were obtained with a constant current hot wire anemometer. 

For those cases where K > 2.8 x 10-6 their measurements indicated 

that the mean velocity profiles had almost reached a fully 

laminar form at the end of the acceleration. In these cases, 

a substantial decay in the turbulence intensity j7 /U1 G was  
also noted. The measurements are, however, not as accurate as 

one would like. It is also doubtful whether the boundary layers 

reached equilibrium by the end of the acceleration. 

Patel and Head (68) studied experimentally strongly 

accelerated turbulent boundary layers in the entry region of a 

pipe. The favourable pressure gradients were created in the 

entry length of the pipe by mounting a centre-body symmetrically 

in the pipe. Mean velocity profiles were obtained with a 

flattened tip pitot tube and wall shear stress with a sublayer 

fence approximately .003 ins high. This sublayer fence was 

calibrated in zero pressure gradientsagainst a Preston tube. 

In the region of strong acceleration the velocity profiles when 

plotted semi-logarithmically in UI - x2 co-ordinates indicate 
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that:- 

(1) The velocity profile in the wall region departs 

substantially from the inner semi-logarithmic law; 

the profiles lie above the inner law. 

(2) The wake is eliminated by the acceleration 

(3) The division between the viscous sublayer and the 

fully turbulent regions becomes less pronounced. 

(4) The sublayer becomes thicker (in x
+
2  co-ordinates) 

in the region of acceleration. 

3.24 Heat transfer to the accelerated turbulent boundary layer 

In a hydrodynamic and heat transfer study, Zaric (90) 

appears to have detected laminarisation in what would, at first 

glance, seem an unsuitable environment; namely flow through a 

roughened passage. The roughened surface was a continuous 

symetric saw-tooth form with an apex angle of 148°. 

The flow near the rough surface was alternately 

accelerated and retarded due to the profile of the rough surface. 

Towards the end of each accelerated region the local Stanton 

number dropped significantly and the measured velocity profiles 

were laminar-like in form. 

Experimental studies of flow in rocket nozzles have 

also been concerned with laminarisation. Boldman, Schmidt and 

Gallagher (9) obtained heat transfer and mean profile data in 

the convergent section of a conical supersonic nozzle. To 

perform their experiments they utilised two nozzles of included 

angles 60 and 120 degrees which resulted in average values of K 
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up to approximately 30 x 10-6. The measured surface heat 

transfer rates exhibited large deviations below a fully 

turbulent correlation and approached values more appropriate 

to a laminar flow. At the nozzle exits the mean velocity 

profiles were also laminar-like in form. 

Back, Cuffel and Massier (3) performed a series of 

tests on a supersonic convergent nozzle. Their measurements 

included surface heat transfer data, mean velocity profiles 

and mean temperature profiles within the nozzle. The accelera-

tions were such that K changed rapidly along the nozzle axis 

with averaged values of K ranging from 10-6 to 10
-5. A reduction 

in surface heat transfer below a fully turbulent correlation 

was observed above a value of K of about 2 x 10-6. At the 

highest accelerations the surface heat transfer rate was 

reduced to a value approximately 50% below that given by the 

fully turbulent correlation. Both temperature and velocity 

profiles approached laminar forms at the highest values of K. 

3.25 The 'Stanford continuing programme with mass transfer'  

A substantial experimental research effort into the 

hydrodynamic and heat transfer aspects of the accelerated 

turbulent boundary layer is being undertaken at the University 

of Stanford, U.S.A. The programme includes studies of the 

turbulent boundary layer with surface mass transfer and is 

proceeding under the direction of Professor W. M. Kays. 

As a part of the aforementioned investigation Julien 

et al (43) and Thielbahr et al (82) studied the effects of 

surface mass transfer on turbulent boundary layers undergoing 



- 31 - 

moderate accelerations. The experiments were conducted in 

parallel, and with identical flow conditions on the same 

apparatus. Julien et al present the results of a hydrodynamic 

study and Thielbahr et al heat transfer measurements. The con-

stant values of acceleration parameter K considered were 

0.57 x 10-6, 0.77 x 10
-6 and 1.45 x 10-6. For each acceleration 

a range of values of mass transfer parameter was investigated 

from F = -0.004 (suction) to +0.006 (blowing). Julien et al 

obtained mean velocity profile data by use of a flattened 

pitot tube. From this data they calculated the wall shear 

stress by (a) the application of the two-dimensional momentum 

integral equation (2.10) and by (b) a sublayer method based 

on extrapolating the measured velocity profiles to the wall. 

For the zero mass transfer case the measured profiles dentical 

trends to those found previously by other workers; namely a 

progressive 'overshoot' of the semi-logarithmic law of the wall 

and an elimination of the wake region as K is increased. The 

main effect of mass transfer was, in the case of suction, to 

augment the effects of the acceleration and, in the case of 

blowing to reduce them. Similar results were noted by Thielbahr 

et al in the heat transfer study. At a particular acceleration 

the Stanton number was reduced by suction and increased by 

blowing at the surface; a contrary behaviour to that normally 

associated with the turbulent boundary layer. The temperature-

profile measurements also showed that the thermal boundary layer 

penetrated far outside the velocity layer by the end of the 

acceleration. 

Strongly accelerated turbulent boundary layers with 

and without surface mass transfer were studied by Loyd et al (56) 
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and Kearney et al (45). The work was concerned with both 

hydrodynamic and heat transfer aspects of the turbulent 

boundary layer; the results of the hydrodynamic study being 

presented by Loyd et al and those of the heat transfer 

investigation by Kearney et al. The experiments, which 

relate to two constant values of the acceleration parameter 

K (namely K = 2.0 x 10
-6 and 2.5 x 10

-6) were performed in 

parallel under identical flow conditions on the same apparatus. 

The measurements covered a range of mass transfer parameter F 

between 0 and +0.004 (blowing). Loyd et al made mean velocity 

profile measurements with a flattened tip pitot tube and also 

performed longitudinal turbulence intensity measurements with 

a constant temperature hot wire anemometer. The wall shear 

stress along the test plate was calculated by estimating the 

slope of the measured mean velocity profiles at the wall and by 

application of the two-dimensional momentum integral equation 

(2.10) to the velocity profiles. At the end of the acceleration 

Loyd found that the measured mean velocity profiles approached 

those appropriate to a similar laminar boundary layer as K was 

increased but progressively deviated therefrom as the mass 

transfer parameter F was increased. The effect of varying 

the Reynolds number R2  at the beginning of the acceleration was 

also considered. It was found that the further the initial R2  

was above the asymptotic similar value the more rapid was the 

response of the boundary layer to the acceleration. For all 

cases a large turbulence intensity was present at the end of 

the acceleration although in some cases a decay (when plotted ' 

in normalised form) was evident through the acceleration. 
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Kearney et al present the results of the heat 

transfer study in which both surface heat transfer rates and 

temperature profiles were measured. The measurements indicated 

that the local surface heat transfer rate fell below that 

appropriate to a fully turbulent layer by an amount which 

increased progressively (with or without blowing) as K was 

increased. Further heat transfer measurements were performed 

to investigate the effects of (1) various conditions at the 

start of the acceleration and (2) step changes in blowing within 

the region of acceleration. The distribution of 'turbulent 

Prandtl number' across the boundary layer was calculated from 

the measured profile data. The results suggested that the 

'turbulent Prandtl number' correlation for constant pressure 

turbulent flow may also be valid for accelerated boundary layer 

flows. 

3.3 SECTION II - Experimental apparatus and technique  

3.31 Experimental apparatus  

The experiments to be described were carried out in 

the working section of an open circuit wind tunnel, shown 

schematically in figure (3.1). 	The working fluid, air is supplied 

by a centrifugal fan powered by a 10 b.h.p variable speed motor. 

The fan is capable of delivering a volume of 3,300 ft3/min at a 

pressure of 10 inches of water. 

The air enters the fan via a filter box of dimensions 

3 ft. x 3 ft. x 4 ft. From the fan the air passes into a 

settling chamber of cross section 4 ft. wide x 21 ft. high via 

a diffuser. The settling chamber and diffuser contains five 
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wire mesh screens and a honeycomb section of aluminium foil 

the purpose of which is to minimise the turbulence intensity 

in the working section. In designing the mesh screens, the 

recommendations of refs. (11) and (14) were followed. Of 

critical importance is the open area ratio, which if less 

than .57 in the final screen can cause vortices which randomly 

affect the boundary layer in the transverse direction. Finally 

the air enters the working section through a 9:1 contraction. 

The working section is a 16 in x 9 in rectangular 

duct constructed from i in thick perspex (plexiglass) sheet, 

a section of the roof of which can be set at any inclination 

to the lower wall. The roof and lower wall, the test plate 

thus form a 

the present 

to the test 

temperature 

section the  

2-dimensional plane convergent channel. Throughout 

study the roof was set at approximately 10 degrees 

plate. Measurements performed with a constant 

hot-wire-anemometer indicated that in the working 

longitudinal turbulence intensity was about 0.1%. 

No swirl component of velocity could be detected. 

The test plate was constructed from a 16 ins x 60 ins 

x 0.5 ins thick section of perspex (plexiglass) sheet. It rests 

on rails attached to the side of the working section and thus 

its position relative to the convergent section is readily 

adjustable. Static pressure holes of .022 ins. diameter are 

spaced at 2.0 ins. intervals along the centre line of the plate. 

Access holes of diameter 2.875 ins. through which the probes 

could be inserted are located at 4.0 in. centres along a line 

parallel to but offset by a distance of 4.0 in from the centre-

line of the plate. These holes were plugged when not in use. 
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3.32 INSTRUMENTATION  

(1) 	Pitot boundary layer probe  

Mean velocity profiles were obtained with a flattened 

tip pitot tube. The probe is illustrated in fig. (3.3). 

The probe tip is .011 ins. high by a.120 ins. wide with a 

wall thickness of .002 ins. The probe was constructed so that, 

although it was inserted into the working section at a distance 

from the centre line the transverse could be made with the pitot 

tube tip along the centre line of the test plate. 

(2.) 	Pressures  

All pressures were measured with a null reading 

tilting U-tube micromanometer. This instrument contains a 

silicon fluid of specific gravity .822. It can be used in the 

pressure range 0 - 1.5 ins. of fluid with an accuracy of + 10-4 

ins. of fluid. The manometer is fully described in ref. (12). 

(3) Boundary layer traversing gear  

The probes were manually positioned rdletive to the 

wall with a traversing gear which utilises two standard micro-

meters the scales of which are divided into increments of .001 

inches. The gear was such that two probes could be traversed 

simultaneously if necessary. 

(4) Stanton tubes  

Stanton tubes were produced from Gillette stainless 

steel razor blades of thickness .004". They were glued to the 

test surface with Evostik Contact adhesive and could easily be 

removed on completion of the measurement. 
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(5) Hot Wire Equipment  

The hot wire measurements were performed using the 

equipment listed below:- 

i) 2 DISA constant temperature anemometers 
type 55A01 

ii) 2 DISA lineariser units type 55D10 

iii) 1 DISA R.M.S. Voltmeter type 55D35 

iv) 1 DISA Random signal indicator and correlator 
type 55A06 

v) 1 Solatron Digital Voltmeter type LM 1420.2 

vi) 1 Telequipment Oscilloscope type D53 

AY 
vii) 1 Bruel & Kjar spectrum analyser type 2112 

The longitudinal turbulence intensity measurements were performed 

using a standard DISA gold plated boundary layer hot wire probe 

type 55F04. Shear stress measurements were performed by use of 

a standard DISA miniature hot wire X-probe type 55A38. 

3.33 Qualification of the riq  

The sloping roof of the working section was raised 

so that a uniform free stream velocity was obtained. The 

resulting constant pressure boundary layers were then measured 

at 4" intervals along the centre line of the test plate with 

the flattened tip pitot tube. 

The criterion used to determine whether the. boundary 

layer profiles so obtained were similar to those normally found 

in constant pressure plane flow were as follows. 
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(1) The value of Cf/2 found by Clauser chart should agree with 

the Cf/2 - R2 
correlation of Coles (21). 

(2) That the strength of the wake found should also agree with 

the correlation of ref. (21). Coles designated a turbulent 

boundary layer as normal if the wake strength is within 

+ 20% of the value given by:- 

(R2  - 500) AU . 2.65 [1 - exp (- U 	 850 
T 

 (3.4) 

for R2 > 500 

The constant pressure data obtained satisfied the 

above criteria to a reasonable accuracy and the apparatus was 

deemed satisfactory. A typical measured mean velocity profile 

is displayed in figure (3.4). 

3.34 Experimental technique  

(1) Distances  

In all cases traverses were started at the wall 

position. The position of the probe relative to the wall was • 

determined by moving the probe into contact with the wall and 

then adjusting the micrometer screw by increments of.0003 ins. 

until a gap was visible. The reflection of the probe could be 

observed in the polished surface of the test plate and it is 

therefore estimated that the position of the wall can be deter-

mined to within .0005 ins. 
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(2) Mean velocity  

Mean velocities were obtained by measurement of 

the difference between the total pressure Ptot  and the 

static pressure Ps with a flattened tip pitot tube. 

The velocity is given by:- 

U = fp (Ptot 
- P

s
) 

2 3 2  (3.5) 

As there is considerable disagreement as to the effect of 

turbulence on pitot tubes no correction was made for this 

effect. 

For a flattened pitot tube of dimensions similar 

to those used in the present study, the effect of viscosity 

is found to be negligible(ref. (60)) for a Reynolds number 

(based on the tip height) greater than 30, For the measurements 

presented here the minimum Reynolds number always exceeded 

30 and thus no correction was needed. 

The only correction made to the velocity measurements 

was a displacement correction, similar to that proposed by 

McMillan (59), which was added to the distance from the wall. 

The correction applied was 0.15 times the probe tip height. 

It is intended to account for the effect of a mean velocity 

gradient on the probe reading: for the probe used in the 

present study the displacement amounted to about .002 ins. 

and is therefore only significant in the region very close 

to the wall. 



Cf/2 = R2K (H + 1) + 	2  
• v 	dR 

11G dx1 
( 3. 7) 
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(3) Wall shear stress measurement  

The wall shear stress was measured by use of 

Stanton tubes. These were glued to the test plate when 

required and removed on completion of the measurement. The 

Stanton tube is a sublayer device which must be of dimensions 

such that it lies within the linear (U1  = X2
+
) velocity 

profile region immediately adjacent to the wall; because of 

its (small) physical dimensions calibration is always necessary 

In the present study the Stanton tubes were calibrated in situ 

against a Preston tube. The Preston tube, a total head device, 

is found to have a fairly universal calibration in flows where 

the mean velocity profile in the fully turbulent near wall 

region is described by the semi-logarithmic wall law (equation 

(3.3)); an essential requirement for its use. It was therefore 

used to calibrate the Stanton tubes in the constant pressure 

flows which resulted when the roof of the test section was 

raised. The Preston tube calibration of Patel (67) was used. 

A typical Stanton tube calibration was:- 

TWd2 

4pv2  

Ape 	.736 .34 [ 4pv2  (3.6) 

No pressure gradient corrections were added to the Stanton 

tube measurements. 

An estimate of the wall shear stress was also obtained 

by application of the two-dimensional momentum integral equation 

(2.10) to the measured mean velocity profiles. The skin friction 

was then given by:- 
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where for a similar boundary layer the last term on the right 

hand side of (3.7) is zero. The constant K boundary layers 

considered here only asymptotically approached their similar 
dR2 

U11G dx1 

graphically whereby it was found to contribute negligibly to 

the skin friction coefficient. 

(4) Hot-wire-anemometer measurements  

By suitable choice of the lineariser exponent a 

calibration curve of the following form was obtained:- 

-E. P + QU 	 (3.8) 

For each probe a value of exponent was chosen by trail and 

error and then retained throughout the experiments. 

The hot wires were calibrated in the test section 

of the tunnel against a pitot tube. In all cases a calibration 

was carried out prior to each profile measurement. This cali-

bration was found to change by less than 2% over the time it 

took to perform a complete boundary layer traverse. The 

tangential cooling correction of Champagne (17) was applied 

to the X-wire measurements. No other corrections were applied. 

The method of reduction of the raw hot-wire-anemometer data 

is described in appendix 1 . A typical calibration curve is 

displayed in figure (3.5). 

solutions. The term was therefore estimated 
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(5) Spectrum Measurements  

The spectrum measurements were performed with a 

Bruel and Kjar frequency analyser operating with a bandwith 

of 1/3 of octave. The normalised frequency spectrum is then 

given by:- 

G(f) - e22 (f)  
total  

 

(3.9) 

 

where 	
co 

where 	G(f) df 
Jo  

This frequency spectrum was transformed into a wave 

number spectrum F(ni) by use of the identities:- 

2nf 
U1,c 

U 
F(n 1  ) 	2 G(f) n 

(3.10) 

where U1 ,c (the convective velocity) was assumed equal to U
l  the 

local mean velocity. This assumption is known to be only 

approximate in shear flow; the convective velocity may differ 

significantly from the local mean velocity and is also a 

function of wave number. The assumption has nevertheless been 

used by a majority of workers and, in the absence of more 

precise knowledge of the convective velocity, must be utilised 

here. It should be of sufficient accuracy for present purposes. 
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(6) Setting up an Asymptotic boundary layer  

(i) Estimation of the Acceleration parameter K  

The velocity outside the boundary layer for flow in 

a convergent plane channel is given by:- 

U
o  U = 

1 	- x'1 
(3.11) 

where U
o is the velocity at x1' = 0 and where t is the distance 

between the line of intersection of the channel planes and 

xl i  = 0. With the aid of the continuity equation it may be 

deduced that:- 

v tan m 
U h o o 

(3.12) 

where h0  is the channel height at x'1  = 0 and a is the angle 

between the channel planes. 

In practice the above expression is only approximate 

but its use does result in a value of K reasonably close to 

that desired. 

(ii) Positioning the test plate  

A similar boundary layer, is most easily obtained if 

the boundary layer at the beginning of the constant K acceleration 

is as close as possible to its asymptotic similar form. In the 

experiments described here the conditions at the channel entrance 

were controlled by the position of the test plate, which was 

variable relative to the convergent channel. 

The method adopted in setting up similar boundary 

layer utilised an iterative technique the outline Of which is 
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is as follows:- 

a) Estimate a value of R2 appropriate to a similar 

boundary layer arising at the value of acceleration 

parameter K being considered and position the test 

plate so that this estimated value is achieved at 

the channel entrance. 

b) Measure with a pitot tube the mean velocity profiles 

at the convergent channel entrance and exit 

c) Compare the resulting values of R2  and re-position 

the test plate accordingly 

The procedures (b) and (c) were repeated until the 

values of R2 at the channel entrance and exit were approximately 

equal. The only limitation on the above method is that the 

boundary layer at the channel inlet must be fully turbulent; 

a fully turbulent boundary layer in zero pressure gradient 

with R2 less than about 400 is difficult to obtain. 

(iii) Calculation of the acceleration parameter K  

At the end of each test the acceleration parameter 

K was calculated accurately from the measured variation of free 

stream velocity along the test plate. The free stream velocity 

was measured with the pitot tube at 4 in. intervals along the 

test plate and a least squares polynomial then fitted through 

the data points. Finally K was obtained by differentiation of 

the polynomial. 
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3.4 Experimental Results  

'In this section the measurements performed during the 

present experimental study are presented and discussed. 

The turbulent boundary layers under consideration are those 

which arise from flow in a plane convergent channel. As 

noted in Chapter II the above boundary layers will 

asymptotically approach similar form. This asymptotic 

similar boundary layer will have mean velocity profiles 

which are similar when plotted in normalised co-ordinates, 

and acceleration parameter K and local length Reynolds 

numbers which are invariant with x1. 

Laminarisation is known to occur over the range 10-6<K 

>3.5 x 10-6. For this reason three values of K equal to 

1.5 x 10-6, 2.5 x 10-6 and 3.0 x 10-6 have been studied 

experimentally during the present work. The quantities 

measured, in each case consist of mean velocity profiles, 

wall shear stress, longitudinal turbulence intensity and 

spectra of longitudinal turbulence intensity. For the lowest 

value of K,ie K 	1.5 x 10-6 measurements have also been 

performed of normal and transverse turbulence intensities 

and Reynolds shear stress. The boundary layers at the 

other values of K were considered to be too thin for the 

latter measurements to be performed with any degree of 

accuracy. Various integral parameters have also been 

calculated from the measured mean velocity profiles. 

3.41 Mean Quantities - Integral parameters  

Figures 3.6, 3.7 and 3.8 show the variation through the plane 

convergent channel of momentum-deficit thickness Reynolds 
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number,  R2, shape factor H, skin friction coefficient 

Cf/2 and acceleration parameter K. It may be observed 

that, for the three cases, K reaches its constant value at a 

distance of approximately 8 ins from the convergent channel 

entrance and is maintained constant to within about 5% over 

a distance of approximately 20 ins. In each case both R2, 

H and Cf/2 are maintained sensibly constant in the region 

of constant K. The values of Cf/2 obtained by use of the 

two-dimensional integral equation and directly by Stanton 

tube agree to a reasonable accuracy (approximately 5%). 

This provides evidence to support the view that a two- 

dimensional flow has been attained. 

At K.1.5 x 10
6 (figure 3.6) R2, H and Cf/2 have 

constant values of about 680, 1.50 and .0025 respectively 

throughout the region of constant K. Figure 3.7 (where 

K = 2.5 x 10-6) shows the variation of R2 and H through 

the acceleration for two different initial values of R2 

at the convergent channel entrance. At the beginning of the 

constant K region, the two values of R2 are 340 and 390 

respectively. In the case of the lower value, R2  is 

maintained sensibly constant and H shows a small but perceptible 

rise to a constant value of 1.6. However for the higher initial 

value/ R2 decreases and the shape factor rises slowly through the 

acceleration. At the end of the channel R2 and H have values equal 

to 340 and 1.6 respectively; values identical to those 

resulting from the lower initial R2 value. The estimated 

asymptotic values of R2, H and Cf/2 are 340, 1.6 and .0023 

respectively. 

The variation of R2, H and Cf/2 through the acceleration 
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for K = 3.0 x 10-6  is shown in figure 3.8. The behaviour 

of R2 and H is shown for three initial values of R2 at 

the channel entrance. At the beginning of the constant K 

region of acceleration the values are 470, 390 and 340 

rpsperi-ivelv. 	two  highest 4 n4stial values of n  R2  give 

rise to boundary layers with decreasing values of R2  through 

the constant K acceleration. The boundary layers arising 

from the lowest initial value of R
2 also display a very 

small though progressive decrease in R
2 through the 

acceleration. The shape factor increases slowly and does 

not appear to reach a constant value. The changes in R2  and 

H are small and probably fall within the error bounds of 

the measurements. However it is not possible in thiscase 

to conclude from examination of R
2 and H whether or not 

the boundary layer has reached similarity conditions by the 

end of the acceleration. 

3.42 Mean velocity profiles  

For the three values of K presently considered the 

mean velocity profiles at various x1  stations covering the 

constaAt K portion of the acceleration are displayed in 

figures 3.9, 3.10 and 3.11. On linear scales the normalised 

velocity U1/U1,G is plotted with abscissa the similarity 

variable r 	uI  G X2) On each figure the velocity profile ,
V 

 

appropriate to a laminar similar boundary layer is also shown. 

The velocity profiles shown in figures 3.9, 3010 and 3.11 all 

exhibit small changes in shape from channel entrance to exit. 

These small changes in profile shape are of course 	he 

expect erl 	bounder 	layers at the beginning of the co-lAant 
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acceleration are not likely to be in equilibrium but will 

approach asymptotically their respective similar solution 

as the acceleration proceeds to take effect. 

The velocity profiles for K = 1.5 x 10
-6 and 

K = 2.5 x 10-6 shown in figures 

similar for [U1/U11G  ] less than about 0.5, i.e. in the 

vicinity of the wall. The main changes in profile shape 

occur in the region . 75<[U1/U1G] < .9 where a slight 

filling out, i.e. increase in velocity, of the profile 

takes place through the acceleration. The velocity profiles 

- 
corresponding to K = 3.0 x 10 

6  (figure 3.11)show slightly 

different behaviour from those of the other accelerations 

in that changes, again small, take place in the vicinity of 

the wall for n‹ 103 where the velocity profiles appear to 

become less steep through the acceleration. There is also 

some slight filling out of the velocity profile in the outer 

region. 

On comparison of the measured velocity profiles (figures*3.9 

3.10 & 3.11)for the three constant K accelerations presently 

considered it may be observed that boundary layer velocity 

profiles approach progressively nearer to those appropriate 

to a similar laminar boundary layer as K is increased. 

The velocity profiles displayed in figures3.10 and 3.11 _6  
and which correspond to K = 2.5 x 10-6.and K = 3.0 x 10 
respectively are those measured, in each case for the 
lowest initial values of R2 at the channel entrance. 

3.9 &3.10 are closely 
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The extent to which the mean velocity profiles are 

similar is shown in figures 3.12, 3.13 and 3.14 which 

correspond to K 	1.5 x 10-6, 2.5 x 10-6  and 3.0 x 10-6  

respectively. On semi-logarithmic axes, the normalised velocity 

amount of scatter in 

(or self-preserving) 

shown on the figures 

stations covering the 

Although there is a small 

the profiles they are clearly similar 

with respect to the chosen axes. Also 

3.12 - 3.14 are the stress lines which 

U1/U1,G is plotted against r at x
1  

final 8 ins of the accelerations. 

would result from the measured wall shear stress values if the 

mean velocity profiles were described by the semi-logarithmic 

wall law.* On comparison of figures 3.12 - 3.14 it is evident 

that, for the three cases the measured velocity profiles lie 

above the line; the deviation increasing progressively as.K 

is increased. 

* The logarithmic law of the wall may be written 

U1 
UT  

x U 
In [ 2 T 	c  

j  

where, by definition UT = U1G Cf/2 
and thus we may also write 

X2 
U1 G 

L v  
U1 	Cf/2  

U1, 
In 

1,G u  
Clearly if 1/U17G  is plotted against 

C 

x2  U1  .G  

on semi-logarithmic axes then, for every constant value of 
Cf/2 

a straight line will result. This plot is called a 

Clauser chart and is often used for the estimation of wall 
shear stress co-efficient Cf/2. It will obviously only 

provide accurate estimations of Cf/2 
 of there exists a region 

of mean velocity profile which is represented by the law of 
the wall. 
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In figures 3.15 - 3.17 mean velocity profiles are plotted on 

semi-logarithmic axes in U , x2  co-ordinates. The measured 

values of Cf/2 are used in the normalisation. For each 

value of K a typical mean velocity profile, measured near 

the end of the acceleration is plotted. Figure 3.15 refers 

to K = 1.5 x 10-6, figure 3.16 to K = 2.5 x 10 6  and 

figure 3.17 to K 	3.0 x 10-6  respectively. Also shown on each 

figure is the straight line corresponding to the logarithmic 

law of the wall. 

On comparison and examination of the figures three main 

features concerning the velocity profiles become evident. 

Firstly the mean profiles, for the three values of K, have 

no wake i.e. no portion whcih may be represented by the law 

of the wake, ref (21). Secondly the velocity profiles show 

a deviation from the law of the wall. The profiles lie 

above (overshoot) the wall law by an amount which increases 

progressively as K is increased. Thirdly it is difficult to 

distinguish any clear division between the viscous sublayer 

and fully turbulent regions of the velocity profiles. Indeed 

Indeed at the two highest values of K i.e. K = 2.5 x 10-6 and 

K = 3;0 x 10-6 a division seems completely absent. • 

3.43 Fluctuating Quantities  

(1) 	Longitudinal turbulence intensities  

2  Longitudinal turbulence intensitie u1 are 
U1,G 

shown in figures 3.18, 3.19 and 3.20 with similarity variablen 

In figure 3.18 the turbuler_ intensity profiles for as abscissa. 
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• K = 1.5 	10-6  are shown at various x
1 stations through 

the constant K region of the acceleration. The maximum 

intensity of about .11 occurs near the wall at 77 equal to 

approximately 3 x 102 and from this value the intensity 

falls of rapidly with increasing r in a smooth concave 

fashion. A small decay in turbulence intensity in the inner 

half of the boundary layer, through the acceleration may be 

observed and in the initial part of the acceleration some 

slight growth (in nco-ordinates) in the thickness of the 

layer is evident. The profiles do however exhibit a fair 

degree of similarity from station to station throughout the 

acceleration. 

In figure 3.19 the turbulence intensity profiles for 

K = 2.5 x 10 6 
at various stations through the acceleration 

are displayed. The maximum intensity again occurs close to 

the wall at DA% 3 x 102 where it has a value between .11 and 

.12. From its maximum value, the intensity falls off rapidly 

(as for K = 1.5 x 10-6) with increasing n. Through the 

constant K region of the acceleration a decay of about 8% 

in maximum turbulence intensity may be noted and in the 

initial part of the acceleration a slight thickening of the 

layer occurs. In other respects however the profiles display 

an excellent degree of similarity throughout the acceleration. 

The turbulence intensity profiles for K = 3.0 x 10-6 

are displayed in figure 3.20. As for the other values of K, 

the peak intensity occurs in the immediate vicinity of the 

wall at = 3 x 10A2  approximately. and falls off rapidly 

with increasing?". However figure 3.20 shows a more substantial 

decay in turbulence intensi=ty through the constant K acceleration 
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than that occurring for the other values of K. This decay 

is most pronounced in the maximum intensity in which a 

decrease of about 25-30% occurs between the beginning and 

end of the acceleration. It thus seems likely that the 

u1/U1 turbulence intensity 1/U1G profile does not reach its 

similar or self-preserving form by the end of the acceler-

ation. 

(2) Turbulent shear and normal stress measurements 

For the lowest value of K considered in the present 

study (i.e. K = 1.5 x 10
-6) hot-wire-anemometer measurements 

were performed with an X-wire. The results are shown in 

figures3.212 3.232 3.247 3.251 & 3.26.By traversing the boundary 

layer at x1  = 12ins with the X-Wire first in the x1  - x3 

plane and then in the x1- x2 plane profiles of both 

Reynolds normal and shear (non-zero) stresses were obtained. 

In the constant K acceleration the boundary layer becomes 

thinner in physical co-ordinates as x1  and thus the stream 

velocity is increased and by the end of the acceleration is 

too thin for X-wire measurements to be performed. However 

at x1  = 12ins the boundary layer was approximately .sins 

thick and it was thus possible to make X-wire measurements. 

Because of the greater physical dimensions of the X-wire it 

is not possible to obtain turbulence measurements as close 

to the wall as with the single normal hot wire used for the 

longitudinal turbulence intensity measurements. 

The Reynolds shear stress (-111u2) distribution through 

the boundary later (measured with the X-wire) is shown 

in figure 3.21 with  abscissan• The shear stress falls off 

smoothly with increasing distance from the wall and has its 

greatest value at the measuring station nearest the wall 
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u1 2/U2 where - G  is about .0008; a value which is only 

about 30% of the measured wall shear stress. This result 

is not unexpectedhowever, since it may easily be shown that 

the shear stress will decrease rapidly with increasing 

distance from the wall in a strongly accelerated flow. Also 

shown is the Reynolds stress distribution obtained from the 

measured mean velocity profile at x1  = 12.0 ins with the 

aid of the integrated similarity equation (equation (2.15)). 

The agreement between the distributions of u1u2 obtained by 

the two methods is not particularly good: although both 

profiles have maximum values considerably less than the 

wall shear stress there is considerable discrepancy in the 

detailed profile shapes. Some part of this discrepancy may 

be due to the fact that the boundary layer may not have 

reached its asymptotic similar form at x1  = 12.0 ins and 

thus use of equation (2.15) would have been inappropriate. 

The Reynolds shear stress distributions obtained from 

the mean velocity profiles with the aid of equation (2.15) 

for the three values of K considered are shown in figure 

3.22. It may be readily observed that, in the three cases 

the shear stress (-u1u2) falls off smoothly with increasing 

distance from the wall. As expected.* both the maximum 

• The boundary layer equations in the limit as the wall 
is approached reduce to: 

dP/dx1 
7372-  

which on normalisation may be written as:- 

as 	 T 	2 - K where 	jpu 1;G 

and where T . total (turbulent + viscous) shear stress 
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values and overall levels of shear stress (-u1u2) fall with 

increasing K; at K = 1.5 x 10
-6 

the maximum value of 

(- u1u2) is about 70% of the wall values whereas for K 

3.0 x 10-6 it is only about 30% of the wall value. 

In figure 3.23 the Reynolds normal stressesPrf  

U 	3/171 G 11G 	7 

and  u3/U1 G  (measured with the X-wire) for K = 1.5 x 10
-6 

are shown. The intensities all have maximum values in the 

immediate vicinity of the wall but fall off as the distance 

from the wall is increased. Near the wall the longitudinal 

turbulence intensity 1/U 	is by far the greatest, being 

about twice the magnitude of the transverse intensity which 

is in turn about 30% larger than the normal component 

-2-  
2/U1 G 	

At the outer edge of the boundary layer the 

three intensities become equal. The normal stress 

measurements shown in figure 3.23 are in roughly the same 

proportion to each other as those found in a constant 

pressure, high Reynolds number turbulent boundary layer, 

e.g. Klebanoff (46). However, the intensities of figure 3.23 

fall off more rapidly than in the constant pressure case. 

This difference corresponds to the relative differences 

in shear stress distribution arising in constant pressure 

and strongly accelerated flows. In a constant pressure flow 

the shear stress in the vicinity of the wall is approximately 

constant whereas in a strongly accelerated flow the shear 

stress decreases rapidly with distance from the wall. 

In figure 3.24 the turbulence kinetic energy k/U2 1G 

and the structure parameter -u1u2/k profiles are plotted 

with abscissa r. The turbulence kinetic energy profile 

follows the expected form, decreasing smoothly with increasing 
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distance from the wall. The structure parameter - u1u2/k is 

approximately constant over roughly 75% of the boundary 

layer as is the case in high Reynolds number flows. However, 

its magnitude (about 0.22) is about 25% less than the value 

found in high Reynolds number boundary layer flows, e.g. 

ref (46). 

The co-efficient of correlation 	is displayed in 

figure 3.25. A roughly constant value of approximately .35 

may be observed over 75% of the layer with the co-efficient 

going to zero at the wall and the outer edge of the boundary 

layer. This result is similar to that found in high Reynolds 

number turbulent flow. However the value of correlation 

co-efficient is less than the value of approximately 0.5 

which is that obtained in high Reynolds number boundary 

layers e.g. Klebanoff (46). 

Some measure of the accuracy of the X-probe measurements 

may be obtained from figure 3.26. Displayed is the longitudinal 

intensity u1/U1,G measured with (a) the single normal wire 

boundary layer probe (DISA gold plated) (b) the X-probe in 

the x1  - x2  plane (c) the X-probe in the xl  - x3  plane. The 

agreement of the profiles obtained by the three methods, it 

may be observed is very good. The two X-probe profiles are 

essentially co-incident and lie slightly above the single 

wire measurements. Any differences may be accounted for by 

the fact that the X-probe, which utilises two wires, is likely 

to lead to results slightly less accurate than the single 

normal wire. In X-probe measurements small errors may be 

introduced by the interaction of the two wires and by the 

fact that the two wires are a finite distance apart and thus do not 

measure at the same point in space. 

u1  u2  
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3.44 Spectra of Longitudinal turbulence intensity  

For each of the three values of K presently considered, 

the spectra of longitudinal turbulence intensity were 

measured at two x
1 stations for various positions in the 

boundary layer. The results of these measurements are 

shown in figures 3.27 - 3.38. 

(1) K = 1.5 x 10- 6 

The spectral measurements obtained for K =,1.5 x 10-6 

at station x1  = 12ins are displayed in non-dimensional form in 

figure 3.27; the length v/U1G, which is here proportional to 

the boundary layer thickness has been used to perform 

normalisation. For values of "covering the range 103< < 9 

x 103, the spectrum measurements fall, to a fair approximation 

onto a single curve.  This is a slightly surprising result 

since high Reynolds number turbulent-boundary layer data 

e.g. ref (46) would lead one to expect the proximity of the 

wall to influence the shape of the spectrum at the inner most 

position (which corresponds to x2/x2 G fis0.1).. As expected, 

the spectra decrease smoothly with increasing wave number. 

Figure 3.28 shows,again for K = 1.5 x 10-6 the spectral 

distributions obtained at station x
1  = 20 ins at the same 

values of ? as for station x1  = 12. The measurements show 

identical results to those displayed in figure 3.27. 
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The variation in spectra along lines of constant rthrough the 

acceleration is illustrated in figure 3.29; the spectral 

distribution atr.= 103 for x1  = 12.0 ins and x1  = 20.0 ins 

is shown. It is evident that the normalised spectra do not 

appreciably change either shape or level and are thus similar 

in the region 12 ins < x1  < 20 ins. This result provides strong 

evidence to support the view that the boundary layer set up 

at 1.5 x 10-6  is very close to its asymptotic form. 

(2) K = 2.5 x 10-6 

Figures 3.30, 3.31, 3.32, 3.33 and 3.34 show the 

longitudinal intensity spectrum measurements for the boundary 

layer arising at K = 2.5 x 10-6. The spectra at various 

positions in the boundary layer covering the range .5 x 103 < 

f)< 4.8 x 103 at station x1  = 16 are shown in figure 3.30. The 

spectra fall off with increasing wave number smoothly but more 

rapidly than for K = 1.5 x 10-6. For r< 1.6 x 103 the spectra 

at various positions in the layer lie on one curve with some 

deviation occuring in the low wave number range. There is some 

evidence of influence of the wall on the spectrum measured at 

the position nearest to the wall, r = 0.5 x 103. The results 

of spectrum measurements performed at station x1  = 24 ins and at 

the same values of t, as for x1  = 16 are displayed in figure 

3.31. The measurements show exactly the same trends as those 

obtained for x1 = 16 ins differing only in level. 

The variation of normalised spectral distribution of 

intensity through the acceleration is illustrated in figures 

3.32 and 3.33. Displayed is a typical variation, at constant 

r , of the spectrum with distance through the acceleration; 
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figures 3.32 and 3,33 corresponding to 	0.5 x 103  

and 	V = 4.8 x 103 respectively. A quite large 

decay in normalised spectra through the acceleration may 

be observed in both figures 3.32 and 3.33. The curves 

however appear to be of similar shape and seem to differ 

mainly in level i.e. a scaling difference. That this is the 

case may be observed from figure 3.34 where both spectra at 

xi  = 16 and x1  = 24 are normalised with the same length 

/U1,G] 	= 16. The spectra measured at constant but at 

two values of x1 may now be observed to lie, to a fair 

approximation on a single curve. Two explanations of this 

fact seem possible and they are: 

,(a) The length on which the spectra scale remains constant 

between x1  = 16 and x1  = 24. This implies that the physical 

dimensions of the turbulent eddies remains constant and 

changes occur in intensity level only. 

(b) The assumption (utilised to transform the measured 

frequency distributions into wave number spectra, see p 41) 

that the velocity at which turbulent eddies are convected 

passed a fixed point in space is equal to the local mean 

velocity is in error. The turbulent eddies are convected 

with a constant velocity proportional to the velocity at 

x1  = 16 ins and changes occur in both turbulent scale and 

intensity. 

The present measurements do not enable distinction to 

be drawn between either of the above explanations; either or 

some combination of both remains plausible. 
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(3) K = 3.0 x 10
-6 

The spectrum measurements performed for K = 3.0 x 10
-6 

for various positions in the layer at two x1 
stations are 

shown in figures 3.35, 3.36, 3.37 and 3.38. These 

measurements display almost identical behaviour to those 

obtained for K = 2.5 x 10
-6. The discussion and interpret-

ation of the spectra of longitudinal intensity for 

K = 2.5 x 10-6 may thus be taken equally to apply to those 

obtained at K = 3.0 x 10
-6
. 

The spectrum measurements performed at the three values 

of acceleration parameter K presently considered exhibit both 

similarities to and differences from the results obtained 

in high Reynolds number flows e.g. ref ( 46 ). An important 

difference is the absence, in all three cases, of any region 

of the spectrum which varies as ni5/3 This is not an 

unexpected result since the occurrence of a -5/3 law depends 

on the existence of an inertial subrange which in turn depends 

on a large separation in wave number space between the energy 

containing eddies and the eddies responsible for the 

dissipation of turbulent energy. This separation is not 

likely to occur in low Reynolds number flows and in fact an 

overlap between energy containing and dissipation eddies is 

more likely. The latter suposition is supported to some extent 

by the similarities between the present spectrum measurements 

and those obtained at the edge of the viscous sublayer in 

high Reynolds number boundary layers e.g. ref (20). In 

both cases a very sudden fall in the spectrum with increasing 

wave number is to be noted. 

* For a more detailed discussion the reader is directed to ref (38 



The longitudinal integral scale is properly defined as 

f+  A. 	a 	u.(x) u.(x+r) — —  
u. (x) u. (x) 
— — 

- co dr1 
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The scale of the turbulent motion may also be 

estimated from spectrum measurements. The longitudinal 

integral scale* of the turbulence is given approximately 

by: 

= Lt F(n1) L
x 1 n1 0  

(3.13) 

(for a fuller discussion see 
Hinze (38)) 

For the present measurements the spectra show some scatter 

in the low wave number region and it is not possible to 

extrapolate the spectral density F( n1) to zero wave number 

with any high degree of accuracy. The expression (3.13) may 

however be used to obtain an order of magnitude estimation 

of the integral scale. On performing this we Obtain Lx1/5p.,.. 1 

for all the boundary layers presently considered. This result 

indicates the presence of large turbulent eddies of physical 

dimensions comparable with boundary layer thickness. 

and thus represents a distance over which the velocities are 
correlated. It provides a measure of the physical dimensions 
of the largest eddies of the turbulent motion. The length 
Lx1 is approximately proportional to the integral scale A1 
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3.45 Comparison with other similar turbulent boundary  
layer data  

The data obtained during the present experimental 

study are compared with the constant K boundary-layer 

data of other workers in figures 3.39 and 3.40 which 

display the variation* of R2 and H and K. Included in the 

figures are the constant K boundary layer data of Launder and 

Stinchcombe (51), Badri Narayanan and Ramjee (2), Julien 

et al (43), Loyd et al (56) together with the present data. 

The data of Julien et al and Loyd et al were obtained in 

the same experimental apparatus. Their results represent part of 

a much larger experimental investigation into the effects 

of heat and mass transfer and pressure gradient on the 

turbulent boundary layer which is proceeding under the direction 

of Professor W M. Kays and his associates at the University of 

Stanford,U.S.A. Also shown in figures 3.39 and 3.40 is the 

The reader is reminded that a turbulent boundary layer 
developing in a constant K acceleration will 
asymptotically approach a similar solution for which R2  
and H will be invariant with x1. For this similar flow both R2 and H will be given by unique functions of K. 
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equilibrium boundary layer data of Herring and Norbury for 

which p = -.53 (wherep E1/Tw 
dp/dx

1
). Launder and 

Stinchcombe (51) showed that equilibrium boundary layers where 

- .5 would approach asymptotically the similar constant K 

boundary layer solution. Furthervmore they estimated that 

the Herring and Norbury data was very close to similar at 

the last measuring station. It is. thus appropriate to 

include the data in this discussion of similar turbulent 

boundary layers. To facilitate discussion of the various 

data the similar theoretical solution appropriate to 

laminar flow is shown together with the 'fully turbulent 

standard' mixing length solution of ref. (52). 

The results of Herring and Norbury, Julien et al 

(K. = .57 x 10
-6 

K = .77 x 10
-6) and Badri Narayanan and Ramjee 

(K = .6 x 10
6) are representative of similar boundary layers 

arising in a mild acceleration. For these layers the 

momentum deficit thickness Reynolds number R2  and shape 

factor H, lie very close to the'theoretical' fully turbulent 

solution. This is not an unexpected result since the Reynolds 

numbers are relatively large; we should also not expect a 

mild pressure gradient to distort the turbulence structure 

of the boundary layer to any appreciable extent. 

Boundary layers in strong accelerations are represented 

by the data of Launder and Stinchcombe, Julien et al 

(K = 1.45 x 10-6), Loyd et al, Badri Narayanan and Ramjee 

(K = 2.8 x 10
-6) and the present measurements. The 

experimental results of the present study display a smooth 

shift in measured values of R2 and H from those appropriate 

to a 'fully turbulent' boundary layer towards those of a 
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laminar flow as K is increased. 

The data of Launder and Stinchcombe also display a 

similar trend but their values of R2 are substantially 

lower than those of the present study. The experiments 

of Launder and Stinchcombe however were, as they acknowledge 

markedly affected by three-dimensionality of the mean flow 

which, they estimated, produced values of R2  too low by 

approximately 30%. However, as they again point out, the 

shape factor measurements are less effected by lack of two- 

dimensionality and their values agree fairly well with 

the shape factors measured in the present study. 

The experiments of Badri Narayanan and Ramjee (K = 2.8 

x 10-6) result in a value of R2 which is in very close 

agreement with the present data and a shape factor which is 

.estimated to be about 6% higher than the value implied by the 

present data. 

The constant K boundary layer data of Julien et al 

(for K = 1.45 x 10-6) and Loyd et al is presented by them' 

as being representative of layers which have reached 

'similar conditions'. Their data however differ$ from the 

present data by quite a large amount. The discrepancies 

between the values of R2 and H measured in the present study 

and those obtained by Julien et al and Loyd et al appear 

to increase with K; at K = 2.5 x 10-6 Loyd's value of R2  

is about 30% higher and the shape factor is approximately 

8% lower compared with 15% higher and 72% lower at 

K = 1.45 x 10-6. The reason for this discrepancy may be 

readily observed in fig.3-.41 where the variation of R2 and 

H along the test section in the experiments of Julien and 
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Loyd is shown. The physical dimensions of their apparatus 

resulted in values of R2 
at the beginning of the acceleration 

which were much larger than the asymptotic similar values. 

Thus, although in other respects their experiments are of 

a high quality, the boundary layers at the end of the 

acceleration have clearly not reached their asymptotic form; 

both R2 
and H are still changing quite appreciably. 

3.46 Concluding Remarks  

Three constant K turbulent boundary layers have been set 

up in a plane convergent channel and studied experimentally. 

The values of K considered i.e. K = 1.5 x 10
-6 K = 2.5 x 10-6 

and K = 3.0 x 10
-6 cover the range over which laminarisation 

occurs. 

The boundary layers have mean velocity profiles which 

asymptotically approach those of similar boundary layers at 

their respective value of K. For the three values of K the 

boundary layers have over the final stages of the acceleration, 

mean velocity profiles which are 'similar' to a high degree and 

thus values of R2 and H which are essentially constant from 

station to station. The measured values of skin friction 

coefficient are also constant (to within the experimental error) 

throughout the acceleration. The mean velcoity profiles 

display a relative shift from those appropriate to a 'fully 

turbulent' boundary layer towards those of a similar laminar 

boundary layer as K is increased. For the highest value of 

acceleration i.e. K = 3.0 x 10
-6 the mean velocity profiles 

have values of R2 and H which approach those of a similar 

laminar boundary layer. These results are in broad agreement 
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with the results of other experimentalists. 

Longitudinal turbulence intensity profiles were 

measured at 4 in intervals through the constant K region 

of the accelerations. The profiles show some decay of 

intensity through the acceleration although for K = 1.5 x 10-6 

and.K = 2.5 x 10-6 the amount is small. For K = 3.0 x 10-6 

a larger decay is evident; being most noticeable in the 

maximum intensity near the wall in which a decay of about 

30% occurs. It should be noted that a changing longitudinal 

intensity profile (normalised) in the acceleration is not 

inconsistent with a similar mean velocity profile. Any very 

large scale fluctuation will contribute to the longitudinal 

intensity but at the same time is unlikely to contribute 

appreciably to the Reynolds stress [- u
1u2 ] and as a result 

*the mean velocity will remain unaffected. Also turbulence 

quantities e.g. 	 111112, u2, 	respond to the effects of pressure 1  

gradient, in general more slowly than the mean velocity and 

in addition provide a more sensitive indication of the 

structure of the turbulent boundary layer. The approach of 

profiles of fluctuating quantities to their similar form 

will proceed more slowly than the mean velocity profile. The 

longitudinal turbulence intensity profiles thus provide 

a very sensitive test'of the'closeness to similarity' of the 

boundary layers. 

However, for K = 3.0 x 10-6, in addition to the decay in 

longitudinal turbulence intensity there is a small but 

perceptable increase in shape factor through the acceleration. 

At the end of the acceleration the resulting values of R2  and 

H of 275 and 1.75 respectively are quite close to the values 
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of 220 and 2.0 which are appropriate to a similar laminar 

boundary layer at K = 3.0 x 10-6. In view of this it 

seems possible that for K = 3.0 x 10-6 a similar turbulent 

boundary layer may not exist; that is, an initially 

turbulent boundary layer if subjected to an acceleration of 

K ..3.0 x 10-6 will eventually decay to laminar. The above 

remarks however remain conjective only,since in the present 

study it was not possible to maintain the acceleration for a 

sufficient distance for either a fully similar turbulent 

boundary layer to arise or for complete degeneration to 

laminar to occur at,K = 3.0 x 10 6
. 

For the three accelerations presently considered the 

spectra of longitudinal turbulence intensity were measured 

at various positions in the boundary layer and at two x1  

stations. These spectra differ from those obtained in 

high Reynolds number flows in that a [-5/3] law was absent. 

The spectra do, however indicate the presence of large eddies 

of wave length comparable with the boundary layer thickness; a 

result also obtained in high Reynolds number flows. 

At the lowest acceleration, i.e. K = 1.5 x 10-6 

measurements of the Reynolds shear and normal stresses were 

made with an X-wire hot wire probe. The measurements indicate 

that the normal stresses are roughly in the same proportion 

to each other as in high Reynolds number flows. The structure 
11 

parameter rulu2] and correlation coefficient 	
12 

L k  u2] u  2 1 	2 
as in high Reynolds number flows, approximately constant over 

a large part of the boundary layer but have values which are 

less than those found in high Reynolds number flows. It thus 

seems plausible to conjecture that the Reynolds shear stress 

are also, 
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approaches zero more rapidly than the turbulence kinetic 

energy in a turbulent boundary layer which is undergoing 

degeneration to laminar; the turbulence becoming more 

disorganised and random in nature. 
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CHAPTER IV 

THEORETICAL CONTRIBUTION  

4.1 Introductory Remarks  

The design of equipment for practical applications 

requires, in a large number of cases, the calculation of 

various fluid flow phenomena. 	Some idea of the importance 

of this requirement may be obtained if mention is made of 

some of the many situations where accurate prediction of 

the flow is needed•. 	Prior knowledge of the flow is 

required for the design of aircraft, heat exchangers, 

rocket nozzles, gas turbines, compressors and combustion 

chambers; for example the aircraft designer needs to be 

able to predict drag and the efficient design of heat 

exchangers requires prediction of local heat transfer 

rates. 	To meet the needs of the designer a calculation 

or prediction method must fulfil certain requirements, 

namely that it provides accurate and reliable solutions 

and that it is economical to use. 

The motion of any fluid continuum is described 

by the Navier-Stokes equation. 	However, fluid motion 

has traditionally, and for very good reason, been divided 

into two categories, namely laminar and turbulent flows. 

For laminar flow, the numerical solution of the equations 

of motion is at present possible, although in general not 

a trivial task, and solutions have been obtained for a 

number of cases. 	However, most practically occurring 
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flows are turbulent and solution of the Navier-Stokes 

equation is not, in this case, a feasible proposition. 	In 

order to make the turbulent flow problem tractable, it is 

necessary to separate the mean and fluctuating motion and 

then average the Navier-Stokes equation. 	Averaging, 

however, results in 

where the equations 

mean motion unknown 

motion arise in the 

termed the Reynolds 

a loss of information to the point 

are not closed. 	In the equation of 

velocity correlations of the fluctuating 

form of apparent stresses traditionally 

stresses. 	Additional equations for 

derived by manipulation of 

further unknown correlations 

these Reynolds stresses may be 

the Navier-Stokes equation but 

are then introduced. 	Of course equations may be derived 

for these further unknowns and so on. However the number 

of independent unknowns increases at a greater rate than 

the number of equations and so rigorous closure is just not 

possible. 	Thus any treatment of turbulent flow in which 

averaged equations are utilised will, of necessity, involve 

approximation. 	At some stage it is necessary to curtail 

derivation of further equations and to approximate the 

unknown correlations in terms of known quantities. 	Such 

approximations have been individually termed 'closure 

assumptions' and when taken collectively to form a closed 

set of equations constitute a 'turbulence model'. 	The 

calculation of turbulent flow thus involves the devising 

of (a) a model of turbulence and (b) an efficient and 

economical means of solving the resulting equations. 

Clearly the development of (a) and (b) are closely related. 
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The calculation of turbulent flow was in the past, 

for the most part,restricted to the calculation of steady 

two-dimensional turbulent boundary layers for which procedures 

based on the ordinary differential integrated equations of 

motion were developed. However these lacked generality 

and 'over the past decade have been largely superseded by 

methods based on solution of the partial differential 

boundary layer equations. 	The past five years have also 

seen the development of numerical schemes for solving the 

averaged partial differential (elliptic) equations for 

two-dimensional steady flow e.g. ref (31), and for two-

dimensional unsteady (or time dependent) flow e.g. ref (1). 

The two-dimensional turbulent boundary layer remains, 

however, an important sub-class of turbulent flow and 

provides a close approximation of many important practical 

applications e.g. flow in ducts and pipes and flow over 

turbine and compressor blades. 

The present work is concerned with devising 

a procedure for calculating the development of the turbulent 

boundary layer with particular reference to strongly 

accelerated flows and laminarisation. 	However before 

introducing the present contribution it is appropriate to 

review the various turbulence models which have been 

proposed by other workers. 	The remainder of this Chapter 

is thus divided into four main sections, the first of which 

is concerned with a review of existing turbulence models. 

In sections II, III and TV the present contribution is 

described. 	Section II is concerned with predictions 
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made with the aid of a mixing length turbulence model. 

Presented in Section III are some predictions obtained with 

a turbulence model based on an approximated form of the 

turbulence kinetic energy equation together with an algebraic 

length scale distribution. 	Finally in Section IV a new 

turbulence model is presented. 	The model provides for a 

description of turbulence in terms of two scalar turbulence 

properties for which differential rate equations are solved. 

The model is applied to the calculation of a range of 

accelerated flows and comparisons made with experiment. 

4.2 SECTION I - A brief survey of existing turbulence models  

All the models to be reviewed here have the 

common aim of calculation of the Reynolds stress tensor 

Rij (71.1jui) which appears in the averaged equation of mean 

motion: 

DU. 131 . 	r 
p 	± l v

3 	Rij 

A large number of models have been proposed in 

order to obtain a closed set of equations and these vary 

both in principle and in complexity and sophistication. 

It is thus necessary before surveying the models to adopt 

a method of classification. 	The one chosen here is that 

of categorising the closure assumptions into two basic 

groups depending on whether (a) the Reynolds stress is 

assumed directly proportional to the mean rate of strain, 

or (b) the rate of change of Reynolds stress is specified 

in terms of local flow parameters. 	Models which fall into 

(4.1) 
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the former class will be called 'turbulent viscosity' 

models. 	Those of the latter group involve solution of a 

partial differential rate equation for the Reynolds stress 

and will therefore be termed differential rate models. 

(1) .'Turbulent Viscosity' Models  

Models of this group represent the simplest 

level of approximation and involve representation of the 

Reynolds stress in terms of a function of the mean rate 

of strain. 	All models of this type may be written in the 

general form:- 

2/3k5i..- 	S.. u.u. 	VT 13 (4.2) 

	

. 	W.I. 
where S. 3  . = ZU 1  1 - 	+ 

	

ax. 	6x. 

	

J 	1 

and where yr  is a 'turbulent viscosity' which must be 

specified in terms of either the mean velocity field or 

some properties of the turbulence. 

(2) Differential Rate Models  

Models which fall within this group have the 

common feature of requiring solution of a differential 

equation for the Reynolds stress. 	By manipulation of the 

Navier-Stokes equation (see ref (38)) an equation for R.. 13 

may be derived:- 

I DE = - R.mZx
m 

-AR im 377- - 	fujuiuml 
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.t.i. 	1.1. 
p, 	1 + ----2 - 2.-.E 	up. 	+ p 6x. i 17-37 uiP I + 

	

ip ax. 	ax. 
3 	 3 	1 

+ v 2 v 
bx mm 	(4.3) 
m m 

The unknown terms appearing on the right of the 

above equation may be either approximated in terms of Rid, 

the mean velocity field and various length scales or 

obtained from solution of differential rate equations for 

those quantities. 	Of course these equations will contain 

further unknowns for which approximations must be made. 

Models at this level of closure usually include one or more 

equations for turbulence length scales. 	For the simplest 

case, (where only an equation for Rij  is utilised), the 

models in general involve solution of a minimum of six 

differential equations in addition to the mean momentum 

and continuity equations. 

The two basic groups defined above may be 

subdivided still further. 	Thus we differentiate between 

simple 'turbulent viscosity' models in which the viscosity 

is specified purely in terms of flow geometry and local 

mean velocity and more elaborate turbulent viscosity models  

in which turbulence is recognised explicitly; VT  is specified 

in terms of some turbulence properties for which differential 

rate equations are solved. 

Similarly, models of the differential rate group 

are subdivided into those in which closure assumptions are 

made to the R.. equation, here termed Reynolds stress  

Closures, and those for which closure is effected at a 

higher order. A number of higher order models have 



- 73 - 

been proposed but they are extremely complex and uncertain 

in nature and at present do not represent a practical 

solution to turbulent flow. 	Therefore they will be 

classified collectively under the subgroup heading higher  

order models. 

4.21 'Turbulent Viscosity' Models  

(1) Simple 'Turbulent Viscosity' Models  

This model has been used extensively in the 

calculation of turbulent boundary layer flows for which it 

reduces to: 

Ul - v
T 7-c- u1u2 	2 

(4.4) 

The turbulent viscosity is specified either (i) 

in terms of the flow geometry or by (ii) the Prandtl mixing 

length hypothesis. 

An example of (i) is the constant turbulent viscosity 

model proposed by Prandtl (71) for free jet flows: 

V T C 5 (U, 	U, ) 
MAX 	MIN  

(4.5) 

where C is a constant and 5 is the jet width. 

The Prandtl mixing length hypothesis results in: 

,2 DUI VT 	6x2I (or in general v T = 0 - 
2  
m Sinn s mn ) (4.6) 

where tm is the mixing length which must be specified in terms 

of flow geometry. 	The mixing length model has been used 

with considerable success for the calculation of a wide 

range of both free and wall boundary layer flows, see e.g. 

ref (69). 	The model has also been used to a lesser extent 
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'for the calculation of 'recirculating flows' (see e.g. ref (31)) 

although the success is here limited. However the degree 

of success obtained depends directly on the correctness of 

the mixing length specification and thus some prior knowledge 

of the flow is required before calculation can be made. 

Many' appraisals of the validity and implications of the 

mixing length model are available in the literature (e.g. 

refs (38) and (84)) and so detailed discussion is not 

warranted here. 	Suffice it to say that the model appears 

to be a good approximation if confined to self-preserving 

flows which can be described by single time and length 

scales and flows in local equilibrium where the spatial 

and time development proceeds slowly. 

(2) More Elaborate 'Turbulent Viscosity' Models  

Models of this group have the common feature that 

the viscosity is assumed to depend on turbulence rather 

than mean flow properties. They represent an improvement 

over the 'simple viscosity models' in that turbulence is 

recognised explicitly; the evolution of the turbulence 

field being incorporated through differential equations for 

one or more properties of the turbulence. At the same 

time the models involve only a small amount of additional 

effort for solution over the 'simple viscosity models' 

and considerably less than the closures at the Reynolds 

stress level. 

The 'turbulent viscosity' may now be written:- 

T 
1 

= k2L (4.7) 
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where L is a turbulence length scale which may either be 

specified algebraically in terms of flow geometry or obtained 

from solution of a differential equation. k is the turbulence 

kinetic energy which is obtained from the solution of a 

differential rate equation. 	The model was proposed independ-

ently by Kolmogorov (47), Prandtl (72) and Emmons (27). 

With an algebraic scale distribution, the model has been used 

in the calculation of various boundary layer flows by a 

number of workers, some examples of whom are Weighardt (72), 

Glushko (30), Beckwith and Bushnell (8) and Mellor and 

Herring (62). 	The model has also, to a lesser extent, been 

applied to the calculation of two-dimensional recirculating 

flows, e.g. ref (87). 

Specification of an algebraic scale distribution 

in terms of flow geometry requires some prior knowledge of 

the flow to be predicted. 	The desire to dispense with 

this constraint led a number of workers to propose differential 

equations from which the turbulence length scale could be 

obtained. 	Kolmogorov (47) appears to have made the first 

suggestion of this kind in proposing a turbulent viscosity 

model based on solution of equations for turbulence kinetic 

energy and frequency of turbulence. 	Harlow et al (35) 

postulated an equation for L (later replaced by an equation 

for dissipation rate of turbulence energy)as part of a viscosity 

model and applied it to the prediction of turbulent pipe 

flow. 	The agreement between calculation and experiment was 

however poor. 	(Harlow's group have now discarded 'turbulent 

viscosity' models in favour of those based on approximation 
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and solution of the Reynolds stress equations.) 

Rotta (77) derived a differential equation for 

an integral scale of the turbulence as a component of a 

turbulence model in which closure assumptions were made 

for the unknown terms in the Reynolds stress equations. 

Recently Rodi and Spalding (76) and Ng and Spalding (65) 

have utilised Rotta's length scale equation in a turbulent 

viscosity model to obtain predictions for a range of 

boundary layer flows; Rodi and Spalding present predictions 

for quasi-parallel free flows and Ng and Spalding predictions 

for wall boundary layers. 

A slightly different approach was recently adopted 

by Nee and Kovasznay (64) who proposed a differential rate 

equation for the 'turbulent viscosity' itself. 	With an 

algebraic length scale distribution the model was applied 

to the calculation of a number of wall boundary layer flows. 

4.22 Differential Rate Models  

(1) Reynolds Stress Closures  

A rigorous approach to the calculation of the 

Reynolds stress tensor ujui  necessitates approximation and 

solution of the Reynolds stress equations. 	It is unlikely 

that a truly universal general turbulence model will be found 

which does not involve closure at least at this level of 

approximation. 	However the difficulties in both closing 

the equations and then subsequently solving the resultant 

set deterred most earlier workers - at least those with any 

intention of using their models - from proposing closure 
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at the Reynolds stress level. 	A contributing factor was 

that most workers were concerned with boundary layer flows 

only for which the simpler models in most cases suffice. 

Recent interest in the development of general 

turbulence models has resulted in a good deal of attention 

being attracted to closure at the Reynolds stress level. 

The first turbulence model based on closure at this level 

of approximation was given by Rotta (77). 	The closed 

set of equations with a turbulence scale distribution given 

by Nikuradse's (66) mixing length expression was solved for 

the case of a plane channel (outside the viscous sublayer 

only). 	In a subsequent paper (77) Rotta derived, from 

the Navier-Stokes equation an equation for an integral 

scale of the turbulence which was to be used in place of 

the mixing length expression. 	More recently, Donaldson 

and Rosenbaum (25) have effected closure of the Reynolds 

stress equations by a method of invariant modelling. An 

algebraic scale distribution was utilised and the equation 

set was applied to the calculation of the constant pressure 

plane boundary layer. 	An attempt was also made to predict 

natural transition. 

Harlow et al (32) have also considered models 

based on the Reynolds stress equations. 	They proposed a 

model which involves solution of an equation for dissipation 

rate of turbulence kinetic energy as well as the Reynolds 

stress equations. 	The model has been tested in a number 

of situations. 	Harlow and Romero (33) used the model with 

moderate success to study the distortion of isotropic 
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turbulence and Daly and Harlow (22) obtained predictions 

for flow in a plane channel. 	At present the model is not 

accurate near walls and is still under development. 

A different approach to the closure of the Rid  

equation was recently adopted by Bradshaw et al (10) who 

proposed a boundary layer calculation method which was based on 

a differential rate equation for the shear stress [-ulu2]. 

Use was made of Townsend's (84) proposal that, for boundary 

layer flows, the ratio fulu2/k1 might be constant in regions 

of persistent shear. 	Bradshaw et al extended this 

proposal by hypothesizing that the ratio [u1 u2/k. ] was a 

well behaved function of the cross stream co-ordinate for 

boundary layer flows. 	The assumption was then used by 

Bradshaw et al to convert the turbulent kinetic energy 

equation into one for shear stress [u1u2] and with an 

algebraic dissipation length scale formed the basis of a 

boundary layer calculation procedure. 

of demonstration, 	 l  ratio Cu u 7 	 1 
2/k] was assumed constant. 

The method was used for the successful prediction of a range 

of constant property wall boundary layer flows and has also been 

used for the prediction of compressible boundary layers. 

The method has also been extended so that certain types 

of three dimensional flows may be calculated. 	However the 

model in its present form has certain restrictive features: 

it is unsuitable for the prediction of flows in which the 

shear stress changes sign or for which an axis of symmetry 

exists e.g. pipe flow. 	Extension of the model to handle 

almost any boundary layer flow is in principle possible but 

For the purposes 
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considerable prior knowledge of the flow would be required 

for specification of the variation of Culu2/0 and 

dissipation length across the layer. 	The model is thus not 

as general as the various turbulent viscosity models. 

Hanjalic (36) has recently presented boundary 

layer predictions obtained with a turbulence model based 

on the simultaneous solution of the equations for turbulence 

kinetic energy, dissipation rate of turbulence energy, and 

Reynolds shear stress Eulu21. 	Calculations were performed 

for a wide range of high Reynolds number flows which 

included wall boundary layers, turbulent pipe and channel 

flow, and various assymetric and free turbulent flows. 

The agreement of the predictions with experiment was in 

almost all cases excellent. 	This is of particular note 

since the calculations were performed using a single set 

of empirical constants; the model is thus extremely general. 

(2) Higher Order Models  

There have been a number of proposals for 

turbulence models in which closure assumptions are made at 

a higher level of approximation than for models at the 

Reynolds stress level. 	However the models are of necessity 

complex in form and usually involve large numbers of 

differential equations and assumptions which are extremely 

uncertain in nature. 	They do not, at present, represent 

a practical approach to the calculation of turbulent flow 

and so only a few examples will be discussed here. 

Chou (18) proposed a turbulence model in which 
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.closure assumptions were made in the equation for triple 

velocity correlation. 	The pressure fluctuation terms were 

approximated by consideration of Poisson's equation for 

the fluctuating pressure and an additional equation was 

derived for the vorticity decay. 	From this latter quantity 

the micro-scale of turbulence, which was utilised in the 

approximations, was obtained. 	The closed set of equations 

was applied to the calculation of turbulent flow in a plane 

channel for which quite good agreement was achieved with 

the small amount of data available in 1945. 

More complex models based on approximation of the 

triple velocity correlation equations have also been proposed 

by Davidov (23) and Kolovandin and Vatutin (48). 	However 

no applications of the models have been presented. 

Another approach to the problem of closure has 

recently been proposed by Lundgren (58). 	Closure was 

effected by making assumptions regarding the multipoint 

probability distribution functions for velocity rather than 

the velocity moments. 	However no applications of the 

model have so far been presented. 

An approach which may provide information 

regarding turbulence structure was that adopted by Deardoff (24). 

For flow in a channel, a time dependent, three dimensional, 

numerical solution of the Navier-Stokes equation was 

performed for the large scale motion. 	For turbulent 

motion of scale smaller than the computational mesh a 

'turbulent viscosity' closure approximation was used. 

While models of this type will not for many years provide 
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a practical general solution for turbulent flow, the 

results of a few such calculations may provide useful 

information and guidance for the fraMing of lower order 

turbulence models. 

4.3 SECTION II - Early attempts at the prediction of  

Laminarisation  

4.31 Determination of the Onset of Laminarisation  

Initial theoretical work into the phenomenon of 

laminarisation was directed into devising a parameter 

which would determine its onset. 	This work yielded 

parameters which may all be written in the form K.(Cf/2)-n  

and for which values of the exponent n equal to 1, 1 and 

3/2 were separately proposed e.g. ref (4), (51). 	Of 

these exponents the value 3/2 is probably the most 

appropriate. However if parameters of the above type 

are to provide an indication of the onset of laminarisation, 

then it is necessary that the acceleration be applied for 

some appreciable time and be changing only slowly in the 

flow direction. 	The reason for this is that the mean 

velocity and, especially, the turbulence structure i.e. 

[u1u2] will not respond instantaneously to the effects of 

acceleration. 	Moreover, in the case of a slowly changing 

acceleration, the skin friction coefficient CCf/2] will 

also vary slowly and be related to the acceleration 

parameter K. 	Cf/2  is usually an inaccurately known 

parameter in accelerating flows and as a result there is 

little experimental evidence to prefer parameters of the 
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general form K.(Cf/2)-n  over the simpler parameter K. 	The 

parameter K has the benefit of containing only external 

flow parameters which are usually well specified in practically 

occurring flows. 

A conceptual improvement over parameters of the 

typeK.(Cf/2)-n  was made by Patel and Head (68) who proposed 

that the onset of laminarisation was controlled by the 

77  parameter v/ua bT/ 	is an average shear 
T 

x where /?)c 2 	2 

stress gradient over the inner region. 	The parameter was 

used by Patel and Head to correlate the departures from 

the law of the wall which occur in low Reynolds number 

turbulent flow in pipes and channels and in accelerated 

boundary layers. 	The parameter, although an improvement 

over earlier ones, suffers from the defect that the inner 

fraction over which the shear stress gradient should be 

averaged must be chosen in some arbitrary fashion. Moreover, 

from the experimental viewpoint it is a formidable task to 

measure shear stress gradients near walls in accelerating 

flows. 

Recently Bradshaw (13) has formulated a model 

which is purported to determine the onset of laminarisation. 

Bradshaw argued that turbulent flow would be directly 

dependent on viscosity when the shear-stress-producing and 

dissipating range of eddy sizes overlapped and that 

laminarisation would thus occur when the viscosity 

independent region disappeared. 	As a measure of the 

overlap region, an eddy Reynolds number(Tt/ 	L/ )2 	v was 

introduced (where L is a length scale associated with the 
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shear-stress-producing eddies). 	By putting L equal to 

the mixing length (xx2) and from consideration of high 

Reynolds number constant pressure flows a critical value 

of this Reynolds number was deduced. 	Laminarisation 

would thus occur if the maximum value of the Reynolds 

number (Tt/ )1-L/v  was below the critical value through. 

the layer. 	Bradshaw demonstrated that his model was 

consistent with Preston's (73) value of the minimum 

Reynolds number necessary for the existence of a turbulent 

boundary layer in zero pressure gradient and the Patel- 

Head shear stress gradient parameter. 	He also attempted 

to demonstrate that his criteria would account for laminarisa-

tion of a boundary layer over a porous surface with suction. 

The model of Bradshaw suffers, however, from two shortcomings: 

firstly it allows only the determination of the onset of 

laminarisation and provides no information regarding the 

types of flow which will arise under the influence of 

laminarisation. 	It is known that in moderate accelerations 

boundary layers may arise which exhibit features intermediate 

between those of fully turbulent and laminar boundary layers, 

e.g. the dips in Stanton number shown in the experiments of 

Moretti and Kays: the model does not provide a means of 

predicting these features. 	Secondly, when applied to flows 

with suction the model gives rise to a laminarisation 

criteria in which the boundary layer thickness 5 appears. 

It is difficult to envisage, however, that transpiration 

induced laminarisation could be influenced by events far 

from the surface (which is the implication of including 5). 



- 84 - 

4.32 Some Predictions of Laminarisation with a Mixing Length  

Model 

Early attempts at the prediction of laminarisation 

centred around use of the Van Driest (26) near wall mixing 

length specification*:- 

= st x2(1  - exp {x2N11 
	

(4.8) 

This expression was found by Van Driest (with 

the constants A  and Al-  assigned the values 0.40 and 26.0 

respectively) to lead to predictions of mean velocity 

profiles in turbulent pipe flow which were in excellent 

agreement with measured values throughout the sublayer 

and semi-logarithmic regions of the flow. 	Now, an 

important observed feature of boundary layers undergoing 

strong acceleration is a thickening (in x2 co-ordinates) 

of the viscous sublayer. 	The parameter A+  may be 

interpreted as a measure of the thickness of the sublayer. 

Thus if A+  is allowed to vary then a means exists for 

modelling the observed behaviour of the sublayer of 

accelerated boundary layers. 

In papers by Launder and Jones (52) and (53) 

and Jones and Launder (42) proposals were made for the 

specification of A+  in terms of a function of p+  which 

was to be used in conjunction with a simple empirical 

In Van Driest's original proposal, the wall 
shear stress appeared in the argument of the exponential. 
The expression was generalised by Patankar and Spalding (69) 
who replaced the wall shear stress with the local value. 
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lag equation. 	Since then a number of other workers have 

proposed models for the determination of A. 	Kays et al (44) 

correlated the Stanford experimental data to obtain A+  as a 

function of the local dimensionless pressure gradient, p+  

and surface mass transfer rate m+. 	They then used the 

correlation together with a lag equation similar to that 

proposed by Launder and Jones (53) to obtain predictions 

of their data. 	An 'A+ model' which was intended to be 

applicable to accelerated flows with surface mass transfer 

was also proposed by Launder and Jones (54). 	The 

laminarisation criteria of Bradshaw (13) was re-interpreted 

by utilising the Van Driest mixing length formula to 

obtain an expression for A+. 	The model displayed the 

correct qualitative trends for variations of sublayer 

thickness caused by acceleration or suction through a porous 

surface. 	'A-1-  models' which purport to be applicable to 

accelerated flows with surface mass transfer have also been 

proposed by Cebeci and Mosinskis (16) and Powell and 

Strong (70). 

While a number of the above proposals do 

represent an improvement over the 'standard' Van Driest 

formula (equation (4.8)) there appears no evidence that a 

wholly satisfactory prescription of near wall mixing length 

has yet been devised; indeed, later in this section it 

will be argued that such a prescription is not achievable. 

The remaining part of this section is concerned 

with some mixing length predictions of strongly accelerated 

flows obtained by the writer. 	Much of this work is 
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described in papers by Launder and Jones (52) and (53) 

and Jones and Launder (41). 	It is included here mainly 

to provide the reader with some idea of the limitations of 

a mixing length model when applied to the calculation of 

accelerated flows. 

4.33 The Model Considered  

Hydrodynamic predictions were performed through 

solution of the continuity and mean momentum equations 

(equations (2.7) and (2.8)). 	The Reynolds stress W1112) 

was obtained by use of a simple turbulent viscosity model 

in which the viscosity was assumed given by the Prandtl 

mixing length hypothesis:- 

\T  

= tA

aUl  
7,7  (4.9) 

  

where the mixing length,tm  was given by a ramp function 

modified in the near wall region by a Van Driest (26) 

formulation: 

tm = xx2 Dv 	o  <  x2 	7 
A -
1, 5.99  

= A 5.99M 	x2 ›.1c/x8'99 

x2 P  Dv 	1. - exp 	1 
vA+  

where x and Aare constants of values .40 and -09 respectively. 

6.99 is the normal distance (from the surface) at which the 

velocity differs by 1% from the free stream value and where 

M is chosen to give a continuous shear stress at the ramp 

join. 
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Such a ramp mixing length distribution seems 

to have been first used by Hudimoto (39) and was 

substantiated by Escudier (28) in an examination of a 

diversity of experimental data. 	The mixing length 

model defined by equations (4.9) and (4.10) with e 

having a constant value of 26 will be here termed the 

'212.12LEI.212(121112.T9111.11121t1:- 
For flows with heat transfer it is necessary 

to calculate the development of the thermal boundary 

layer. 	This may be achieved through solution of the 

thermal energy equation (equation (2.9)). 

The termuja which represents the transfer 

of thermal energy by turbulent motions was approximated 

in a manner analogous to the turbulent viscosity 

model for momentum. 	It may be written:- 

7777 
Urp 

	a 0 	 (4.11) 

where aT  is a turbulent Prandtl number whose value was 

taken to be 0.9 throughout the boundary layer. 

Patankar and Spalding. (69) used their finite-

difference procedure for the solution of the boundary 

layer equations to apply a mixing length model similar to 

that given by equation (4.10) to the prediction of a 

diversity of flows. 	Their finite difference solution 

was patched near the wall at x2  about 100 onto a one 

dimensional solution obtained once and for all by use of 

the Van Driest expression and the molecular viscosity did 

not appear explicitly :In the finite difference equations. 
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Reasonable agreement with experiment was achieved for a 

range of high Reynolds number flows. 	The model however 

completely failed to predict the effects of laminarisation 

on the boundary layer. 

In the present work the finite difference procedure 

was extended so that the complete boundary layer equations 

were solved for all the layer including the near wall 

viscous sublayer region. 	This circumvented the need for 

the one dimensional approximation in the near wall region 

but necessitated the use of a larger number of cross stream 

grid lines. 	There were several reasons for this decision: 

a) It was felt that the one dimensional approximation was 

unlikely to be satisfied over any appreciable region in 

strongly accelerated flows. 	This conjecture has subsequently 

been shown to be correct by Loyd et al (56) who found from 

an examination of their profile data that the one dimensional 

relation T+  = 1 + /114-U1 + p+4 was inadequate beyond 4>5 for 

strongly accelerated flows. 

b) Earlier experimental studies (49) and (68) had suggested 

that the principal effects of strong acceleration on the 

turbulent boundary layer were displayed in the sublayer. 

One such feature was the increase in thickness (in x+  2 

co-ordinates) of the viscous sublayer with increasing 

acceleration. 	In view of this it was anticipated that 

successful prediction of laminarisation might be accomplished 

if some means could be found for predicting the thickness 

of the sublayer. 	As noted previously, this variation in 

sublayer thickness may be incorporated in the mixing 
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length model if A+  is allowed to vary. 

However, predictions based on a variable A+  

model necessitated either the carrying out of a one 

dimensional calculation after each forward step or extension 

of the finite difference scheme to cover all the layer 

including the near wall region; the latter of these was 

clearly to be preferred. 

c) In a boundary layer undergoing laminarisation, the 

region of significant viscous stresses would ultimately 

extend to cover all the layer and not, as in high Reynolds 

number flows, be confined to a region in the immediate 

vicinity of the wall. 	Thus part of the reasoning behind 

the introduction of one dimensional solutions no longer 

applied. 

4.34 Similar Boundary Layers 

Attention was first focussed on the prediction 

of the similar turbulent boundary layers which arise from 

flow in a plane convergent channel; we have seen that 

these layers have special relevance to the problem of 

laminarisation. 	However before predictions could be 

made it was necessary to check the accuracy of solutions 

obtained with the modified version of the finite difference 

procedure. 	Similar boundary layers were particularly 

convenient for this purpose also, since here the partial 

differential boundary layer and continuity equations 

reduced to a single ordinary differential equation. 

Thus it was possible to solve this ordinary differential, 

'similarity' equation numerically and compare the resulting 
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solution with that obtained with the finite difference 

procedure. 	Details of the numerical solution of the 

'similarity' equation and a discussion of the results 

obtained are given by Launder and Jones (52). 

Initially some difficulties were experienced 

with.the finite difference procedure, first in obtaining 

similar solutions and then in achieving agreement with 

the solution of the ordinary-differential 'similarity' 

equation. However these were resolved with the removal 

of a number of small inconsistencies* from the finite 

difference procedure. 	A comparison of the two solutions 

then revealed excellent agreement with only small 

differences between profiles and values of R2 and H which 

agreed to within about 4%. 	These small differences could 

be accounted for at least in part by the small discrepancies 

in mixing length specification between the two solutions; 

these were associated mainly with the definition of 

boundary layer thickness and could not easily be removed. 

The finite difference solutions satisfied the 2-dimensional 

momentum integral equation (2.10) to within 2%. 	As 

an additional check on the accuracy of the finite difference 

procedure solutions were obtained for laminar similar 

boundary layers for which an exact analytic solution existed. 

The calculated mean velocity profiles were practically 

indistinguishable from the exact profiles and the predicted 

values of Ra  and H were within 2% of their exact values. 

These inconsistencies do not appear in later versions 
of the Patankar-Spalding finite difference procedure. 
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,4.35 Constant Al-  Solutions - Comparison with Experiment  

A comparison of predicted similar boundary layer 

mean velocity profiles with experimental data is displayed 

in figures 4 .1(a) and 4.1(b). 	The predicted profiles are those 

obtained by use of the mixing length model defined by 

equations (4.9) and (4.10). 	Figure 4.1(a) shows the mean 
U1/ 	 Ul G x2 1  velocity 	U1,G plotted with abscissa ( 	)K2. 	The 

experimental data are those of Herring and Norbury* (37), 

-0.53), and Jones (40); the exact laminar solution 

is also shown. 	It may be observed that the data of 

Herring and Norbury are, indeed, well predicted by the 

theoretical solution. 	Agreement is less satisfactory, 

however, with Jones' data at K.2.2 x 10-6. 	The discrepancy 

between measurement and prediction is greatest near the wall, 

where the slope of the theoretical profile is considerably 

greater than the measured. 

The above discrepancy is shown in sharper relief 

in figure .4..1(b) where theoretical and experimental profiles 

are plotted semi-logarithmically on U1, x2  axes. 	The 

laminar solution and universal profile 

1/ U, 	.40 In x2  + 5.3 	 (4.12) 

are also plotted. 	At K.2.4 x 10-7, the predicted profile 

and the data of Herring and Norbury lie close to equation (4.12). 

At K.2.2 x 10-6 the predicted profile lies somewhat below 

The data of Herring and Norbury is of equilibrium 
rather than similar boundary layers. 	However, as is remarked 
elsewhere in this thesis, p.61, the data is, in fact also 
closely representative of a similar boundary layer at 
K.2.4 x 10-7. 
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equation (4.12) but the measured solution lies considerably 

above it; that is, the effective sublayer thickness of 

the measured profile is significantly thicker than that of 

the theoretical solution. 

Further evidence of the respective successes and 

shortcomings of the predicted solutions is presented in 

figures 4.1(c )and 4.2(b ). Since R2  and H are constant for 

a given value of K, a single point on these graphs corresponds 

to a particular similar boundary layer. 	Here, attention 

is focussed on the predicted solution for e=26 marked by 

a dashed line. 	In figure 4.1(cl the Herring and Norbury 

data and those of Badri Narayanan and Ramjee (2) for their 

mildest acceleration lie very close to the predicted. 

turbulent solution. 	Jones' data, however, lie midway 

between the turbulent and laminar solutions as do those 

of Badri Narayanan and Ramjee for their steeper accelerations 

(though, with the latter data, it seems doubtful whether 

the boundary layers had truly reached an asymptotic form). 

The data of the present experimental study, although not 

available at the time the calculations were performed, are 

also shown; a shift of the measured boundary layers from 

turbulent to laminar as K is increased is clearly 

displayed. 

The predicted and measured variation of the 

shape factor, H, with K is shown in figure 4.2(b). 	Because 

the viscous sublayer has been included in the theoretical 

solution the shape factor increases with K. 	The rise in 

H, however, is not nearly as rapid as that of the measured 
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solutions. 

4.36 Variable A Solutions  

The above comparisons with data have shown the 

predicted solutions to be in close agreement with 

measurements for values of K upto about 10
-6. 	For 

higher values of K, the data show a progressive shift 

towards the laminar boundary layer solution. 	Indeed, 

the data on figure 4.2(b)would seem to suggest that no 

non-laminar solution exists for a value of K in excess 

of approximately 4 x 10-6. 	Figure 4.l(b)had shown clearly 

that one important shortcoming of the theoretical 

solution was that no means were incorporated to allow the 

region over which viscous effects were important to 

grow as K increased. 	Thus it seemed worth investigating 

whether by increasing A+  one could obtain solutions in 

tolerable agreement with experiment. 	Hence a finite 

difference solution of the similar boundary layer at 

K.2.2 x 10-6 was obtained with A
+ chosen (by trial and 

error) so that the predicted profile had the same value 

of R2  as Jones' measured solution i.e. R2=430. 	(This 

latter result was obtained by the writer in an earlier 

experimental study (40) and was the only data available 

at the time the calculations were performed; the results 

of the present experimental study and those of Julien 

et al (43) and Loyd et al (56) did not become available 

until later). 	The required value of Al-  was 61 and in 

figures 4.1(b) and 4.2 (a)the theoretical and measured velocity 
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profiles are plotted. 	The result surpassed expectations 

for the complete experimental profile was indistinguishable 

from that predicted with A+  = 61. However one data point 

did not provide sufficient information to determine the 

variation of A+  with K for all similar boundary layers. 

In the absence (at the time) of more experimental data it 

was necessary to speculate how Al-  depended on K. 	The 

hypothesis used was that, for similar boundary layers, A
+ 

varied with K at a rate just sufficient to prevent the 

skin friction co-efficient exceeding some maximum value. 

The value chosen was that implied by Jones' data; namely 

[Cf/2]  max = -0024. 	It is of interest to note that this 

was the same value of skin friction which Coles (21) 

suggested was the maximum a turbulent boundary layer in 

zero pressure gradient could attain. 	[An examination of 

the present experimental results and the data of Julien 

et al (43) and Loyd et al (56) reveals that the above 

hypothesis was not far removed from the truth.] 

The required value of A+  .for a particular value 

of K was determined by solving the boundary layer equations 

for a range of A+  and by interpolation, selecting the 

value which gave the desired skin friction coefficient. 

As a result A+  could be expressed as a function of K. 

In fact A+  was correlated in terms of p+  since one 

dimensional theoretical arguments(ref (51))had suggested 

that it would be a better indicator of the onset of laminarisa- 

tion than K alone! 	The variation of A+  with p+  found from 

* The parameter p+ may be written as -K (Cf/2
-3/2.) 

Hence for similar boundary layers, since Cf/  is uniquely 
related to K, it is immaterial whether K '2 

or p+  is used. 
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the maximum Cf/2 hypothesis was closely described by:- 

As  = 26 
	

p > - 5.36 x 10
-3 

As = 11,- 2800 p
+ 	p+< - 5.36 x 10

-3 
	(4.13) 

where the subscript 's' denotes a value of A+  appropriate 

to asimilar boundary layer. 

The predicted variations of R2 and H with K, 

with A+  calculated from (4.13) are represented by the 

broken lines in figures 4.1(c)and4.2(b). 	The predictions 

display a plausible shift from the turbulent to the 

laminar solution as K is increased. 

4.37 Non-Similar Boundary Layers  

So far a method has been proposed for determining 

the effective sublayer thickness A+  for the similar boundary 

layers which occur from flow in a plane convergent channel. 

However, in practical applications, the boundary conditions 

are very rarely, if ever, such that similar layers arise. 

It is thus necessary, for the successful calculation of 

practically occurring flows, to have a means of determining 

A+ for non-similar (non-equilibrium) flows. 	At this 

point it should be noted that the method proposed for 

similar boundary layers, if applied to non-equilibrium 

situations, implies an instant response of the sublayer to 

changes in p+; a totally implausible behaviour which 

leads to predicted laminarisation effects which occur 

much too rapidly. 

For non-similar flows it was thus proposed that 
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.the local rate of change of Al-  was proportional to the 

'amount' the layer was out of equilibrium; a measure of 

which was taken to be the difference between the local 

value of A+ and the hypothetical value that Al-  would 

attain if local conditions prevailed everywhere, i.e. if 

the value of p+  was constant and equal to its local 

value. 	Hence this may be written:. 

dA 
dx = c 	- KIT (4.14) 

where c is an empirical constant whose value must be 

chosen by recourse to experiment and where the value of 

A+  is determined from equation (4.13) with the locally 

prevailing value of p+. 	The length [ /U ] was taken as 

a representative sublayer scale. 

It should be added that equation (4.14),although 

appealing in view of its simplicity, has little physical 

justification. 	It does however provide a simple and 

convenient method of introducing an essential lag in the 

effects of changes in boundary conditions on the predictions. 

4.38 Heat Transfer Predictions  

Predictions of the heat transfer data of Moretti 

and Kays (63) were obtained by simultaneous solution of 

the mean momentum and thermal energy equations, (2.7) and 

(2.9) in conjunction with the above quoted turbulence 

model. 	In the version of the finite difference programme 

used by Patankar and Spalding (69) the rate of spread of 

the finite difference grid was controlled by the calculated 
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rate of entrainment of fluid into the momentum boundary 

layer. However in strongly accelerated flows it is 

possible for the thermal boundary layer to extend beyond 

the velocity layer, e.g. ref (45). 	For the calculations 

presented here the grid control was such that this latter 

behaviour was possible; values of entrainment were 

calculated from consideration of both the momentum and 

thermal energy equations and the larger value used for 

grid control. 	The value of the constant c, appearing in 

the lag equation (4.14) was chosen by trial and error 

whereby two values were found to be necessary. 	They 

were:- 

c = 3 x 10-4 	A+  > A5 

(4.15) 

c = 3 x 10-5 	A+  < A+s  

Figures 4.3(a) - 4.3(c)show experimental and predicted 

Stanton numbers for three tests in which a virtually 

constant value of K is applied for a distance of 2 ft 

starting at about 4 ft from the start of the test section. 

In each of the tests the experimental Stanton numbers 

decrease rapidly in the accelerated region and then rise 

again when acceleration falls to zero. 	In the acceleration 

region the Stanton number variation is generally well 

predicted by the model. 	At the start of the acceleration 

and just upstream therefrom the predicted Stanton numbers 

consistently lie below the measured value. 	However, 

much of this discrepancy would appear to be attributable 

to experimental error in this region for many of Moretti 
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and Kays runs display a virtually constant Stanton number 

between x1 = 3.0 and x1 	4.0 ft irrespective of the 

position where the acceleration begins. A discrepancy 

which cannot be attributed to experimental uncertainty is 

that which appears downstream of the acceleration. 	The 

experimental Stanton numbers rise considerably more 

quickly than the predicted. 

Figures 4.3(d) & 4.3(f) show predicted and measured 

Stanton numbers in flows where the acceleration parameter, 

K, varies roughly sinusoidally with distance, the acceleration 

occurring over a length of about 1 ft. 	In each case the 

acceleration was preceded by a development of 5 ft in zero 

pressure gradient and a step change in wall temperature 

was imposed at 2 ft from the entry to the test section. 

Despite this close similarity between these three tests 

upstream of the contraction, there is no concurrence between 

the relative behaviour of the experimental and predicted 

solutions in the region of zero pressure gradient. 

In figure 4.3(d)the predicted Stanton number is about 

10% higher than the data; in figure 4.Xf) about 4% higher 

and in figure 4.3(e)about 6% lower. 	In each case the 

boundary layer predictions were started upstream of the 

step in wall temperature with estimated initial velocity 

and temperature profiles. 	These estimates, especially 

for the temperature profile, may have been significantly 

in error. 	It was found, however, that making changes'in 

these profiles upstream of the step in temperature had a 

negligible effect on the Stanton number a foot or so 
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downstream of it. 	Moreover, it is very difficult to see 

how imperfections in the model used in the calculations 

could account for the inconsistency dEthe predicted 

solution relative to the measurements. 

Because of the above discrepancies in the zero- 

pressure gradient regions, it is less easy to draw 

conclusions about the accelerated region than would otherwise 

be the case. 	However certain patterns are evident. 

Firstly, up to the peak value of K the predicted Stanton 

number follows the trend of the data faithfully even 

though, in figures 4.3(d) and 4. 3(e), the predicted Stanton 

numbers are too high. As K falls away to zero the 

predicted Stanton numbers rise sharply whereas the 

measured values continue to fall for a while before rising. 

As a result, the predicted minimum Stanton numbers are some 

75% higher than the measured. 	The discrepancy between 

experiment and prediction is rather larger for figure 4.3(f) 

than for the other two runs, and it is noted, for this 

test K reached a maximum value of about 6 x 10
-6. 	This 

value is almost twice as large as the maximum acceleration 

in which a turbulent boundary layer may persist. 	The 

fact that the measured Stanton numbers only begin to rise 

someway downstream of the predicted minimum is thus to be 

expected. 	The mixing length model used here however 

implies that the boundary layer is still essentially 

turbulent and therefore cannot plausibly be expected to 

display this feature. 	The lack of agreement in figures 4.3(d) 

and 4.3(e)may also be partly attributable to the same 
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reason. 

There are however a number of other possible 

sources for the disagreement between predictions and 

experiment, all of which are related to defects in the 

model. 	Firstly, the model supposes that the major 

effects of laminarisation on the boundary layer are 

restricted to the sublayer. 	Some evidence exists that 

suggests that this is the case for similar boundary 

layers but it may not be so for arbitrarily developing 

accelerated flows. 	For example the mixing length model 

may be expected to predict values of Reynolds stress 

which are greatly in error in the outer region. 

However the model was retained since it was felt that 

events in the outer region (where the Reynolds stress is 

small in accelerated flows) would not have appreciable 

effect on the skin friction or Stanton number. 	In an 

attempt to substantiate this supposition, modifications 

to the specification of turbulent viscosity in the outer 

region of the boundary layer were considered. 

Firstly the constant mixing length model of the 

outer region was replaced by a constant turbulent viscosity 

modified by on intermittancy factor. 	This may be written:- 

yT = N8lu1,GY 
	

(4.16) 

where N is a constant whose value was assumed to be -018.* 

This value of constant N was chosen to give 
agreement with high Reynolds number constant pressure 
boundary layer data. 
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The distribution of intermittancy y across the layer 

was taken from the measurements of Klebanoff (46) in 

zero pressure gradient. 

Secondly the constant mixing length of the outer 

region was modified by the inclusion of a generalised 

form.of the Van Driest damping function all across the 

boundary layer. 	This modified mixing length specification 

may be written:- 

A
m = xx2Dv 	x2< .1  5 x .99 ) 

) 
) 

) where veff  = v  + vT 	
) 
) 

I 	
) 

and vl = 4'232  '6111 	 ) 
v ax2 1 

In the inner wall region the above expression is 

identical with the original mixing length specification 

described by equation (4.10). 

When predictions were obtained with the two 

models given by equations (4.16) and (4.17), the results 

were negligibly different from those obtained with the 

original outer model; that is in spite of the fact that 

the models each lead to very different distributions of 

turbulent viscosity for the outer layer. 	This result 

lends support to the original contention that events in 

the outer region ( 	where Reynolds stress is 

small) do not contribute appreciably to the development 
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of strongly accelerated boundary layers; the evolution 

of the strongly accelerated boundary layer is dominated 

by the inner wall region. 

The question also arises as to whether p
+  is 

an adequate parameter with which to correlate the effects 

of laminarisation on the sublayer in non-similar boundary 

layers: 	The need for the empirical lag equation (4.14) 

to obtain passable predictions clearly suggests that it is 

not. 

	

	This may also be expected to apply to all other 

parameters which result from a one-dimensional analysis. 

The empirical lag equation (4.14) may be inter-

preted as a means of correcting the inadequacies of p+  as 

a general laminarisation criterion. 	However, use of the 

equation cannot be expected, in general to lead to reliable 

prediction of accelerating flows._ Of course passable 

agreement with experiment could always be obtained for 

particular types of acceleration by adjustment of the lag 

constant 'c'; this is however tantamount to feeding in the 

answer. 

Some efforts were made towards removing the 

above defects by considering alternative variations of the 

model. 	The effects of laminarisation on the sublayer 

thickness parameter A+  were correlated against various other 

parameters which were intended to be unrestrained by one- 

dimensional considerations. 	The method adopted for the 

For similar boundary layers the parameter p+ is 
of course adequate since it and all other local parameters 
are invariant in the flow direction. 
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determination of the p function i.e. the maximum Cf/2  

hypothesis, was utilised to express e first in terms of 
.57  

the Head-Patel shear stress gradient parameter [pu3  ax ] 2 

and secondly in terms of a maximum eddy Renolds number 

i (fT/   p, 2m' v  across the layer. 	Both these models were 

then utilised to obtain predictions of the heat transfer 

data of Moretti and Kays (63). 	Calculations were also 

performed with A+  determined by use of a model proposed 

by Launder and Jones (54). 	This latter model was based 

on extension of Bradshaw's (13) critical eddy Reynolds 

number hypothesis for laminarisation. 	However the 

three above A+  models all gave rise to heat transfer 

predictions which, although varying in detail, were in 

no better agreement with experiment than the simpler 

original e4p+} model. 	For this reason detailed 

consideration of the results should not be necessary. 

At this point it is as well to consider the 

more fundamental question as to whether it is possible 

to extend a local equilibrium (simple 'turbulent viscosity') 

turbulence model to cover situations which, as in 

strongly accelerated flows, are far from equilibrium. 

There is no reason to believe that this is possible and 

in fact there is evidence to suggest that the converse 

is true. 	For example it seems reasonable to assume, 

in the light of both experimental and computational 

results, that in general no local mean flow parameters 

exist which may be used to ascribe the effects of strong 

Thus acceleration on the mixing length constants. 
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augmented simple turbulent viscosity turbulence models are 

likely to be of restricted applicability and may be used 

with confidence only for the prediction of flows similar 

to those from which they were derived. 	In the opinion of 

the author any further work into the specification of 

mixing length is unwarranted; future effort can well be 

more fruitfully directed towards devising higher order 

turbulence models. 

It was therefore decided that effort would be 

directed towards the task of devising a turbulence model 

in which the 'turbulent viscosity' was specified purely 

in terms of local properties of the turbulence for which 

differential rate equations were to be solved. 	The 

simple viscosity models previously described make use of 
1 

the single velocity scaleluiu217  and a length scale specified 

in terms of flow configuration to describe the turbulence. 

Neither of these scales are entirely satisfactory. 	The 

11  
velocity scaleI ulu2  2  although a turbulence property may 

be zero when, for example, k or u 	are finite. 2n 	The 

length scale specification in terms of flow geometry 

(or boundary layer thickness) is even less satisfactory 

for this is not a property of the turbulent motions but 

rather a scale of the mean motion. 	Thus we may anticipate 

that if any substantial improvements in prediction are to 

be achieved then differential rate equations for both 

characteristic velocity and length scales of the turbulence 

must be solved. 
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4.4 SECTION III - A More Elaborate Turbulent Viscosity Model  

This section is concerned with predictions of 

turbulent flows obtained with the aid of a turbulence model 

based on approximation and solution of the differential 

rate equation for turbulence kinetic energy in conjunction 

with.an algebraic length scale distribution. 

4.41 The Model Considered  

The model makes use of the turbulence energy 

equation:- 
au, 

	

ak 	, 	) [)k 	u2(u.u. 

	

'-'1-E7 	'2T72 	6x2 '572 - "2"— 3 3 	
2p/

P)- 
ulu2

)x 

bui  
- v(b)---c.) (4.18) 

with the following approximations:

aUl  

- 

- u1u2= vT ax2 

au . 	k- 3/2  
v(1) 	CD ox
)D 

7 u,(u.u.p/ ) 
3 3  

vT )k 
ak 

bx 

(4.19) 
where VT  = Cp.  k2), [1 - expf- Aetlj 

.t r)  = t[l - expf- ADR.L13 

and R' = k2t, 

The values of the constants CDr, C 	a.„, A and AD p 
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were assumed to be 0.416, 0.22, 1.53, 0.016 and 0.263 

respectively; these values and the forms of the functions 

of Reynolds number R. were recommended by Wolfshtein (86). 

The length scale t was specified in terms of the 

boundary layer thickness by the following algebraic 

function:- 

• x2 	x2 al  
= ' 777—  

	

99 	'99 	99 	2 

2 	" a' 	x2 	a3-al  
= al + a2 	) T"---"a7 < 	a2+a4 	(4.20) 

	

99 	'99 	2 	'99 

, 2 , 	x2 	a3-al 

	

'99 	 *9 
= a3  - a4 	7-9 	a2+a4 

where 5.99 is the distance from the solid wall to the 

point where the:mean velocity differs by 1% from its 

free stream value. 	The constants a1, a2, a3  and a4 

have the value -17, -291  -565 and -42 respectively. 

The above length scale distribution is similar to that 

given by Glushko (30) from consideration of constant 

pressure, high Reynolds number boundary layer measurements. 

In retrospect the function seems unnecessarily complicated 

and a simple ramp function, similar to that used for the 

mixing length specification, would probably have sufficed. 

The function, when used in conjunction with the approximations 

given by equation (4.19) results in predictions which are 

in good agreement with measurements for high Reynolds 

number constant pressure flows. 

The turbulence energy equation with approximations 
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given by equations (4.18) through (4.20), the mean momentum 

and continuity equations together with boundary conditions 

form a closed set which may be solved. 

(1) Boundary conditions for the turbulence energy equation  

The following boundary conditions were imposed 

on.the equation for turbulence energy:- 

X2  = o 	k = o  

x2  = X2 G k = o 
(4.21) 

where the subscript G denotes the outer 'edge' of the 

boundary layer. 	The 'edge' of the boundary layer is 

here defined as the surface beyond which all quantities 

considered are constant; it does not necessarily coincide 

with the 'edge' of the velocity boundary layer. 	It 

should also be noted that a zero free stream turbulence 

energy never arises in reality. 	Nevertheless for the 

calculations presented here we assume kG  is zero; most 

experimentalists have endeavoured to achieve this condition. 

(2) Solution of the equations  

The above-described partial differential equation 

for turbulence energy together with the mean momentum 

and continuity equations were solved by means of the finite- 

difference procedure of Patankar and Spalding (69). 	One 

hundred cross-stream grid lines were employed with the grid 

compressed near the wall so that about half were distributed 

within the region x2  less than 100. 	The forward x1 step 

was typically taken to he 0.3 times the boundary layer 

thickness. 	The modifications outlined in Section I were 
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embodied in the version of the procedure used and so the 

'growth' of the finite difference grid was not tied 

uniquely to the velocity layer. 

(3) Discussion of results  

The predictions obtained with the above turbulence 

energy model were, in all cases considered,* practically 

identical with those obtained with the conventional 

(A+  = 26) mixing length model of Section I. 	For 

accelerated boundary layers the predictions are therefore 

in conflict with measurements. 	This latter conclusion 

is in agreement with the work of Caldwell and Seban (15) 

who found that the use of a turbulence energy model (with 

algebraic scale) brought no improvement in the prediction 

of strongly accelerated flows. 	Caldwell and Seban also 

made numerous unsuccessful attempts to modify their model 

in order to procure agreement of predictions with 

experiment for strongly accelerated flows. 	A similar 

result has also been achieved by Mellor and Herring (62) 

for arbitrarily developing plane boundary layers (excluding 

strongly accelerated flows). 	They found that predictions 

obtained with a turbulence energy model (with algebraic 

scale) were indistinguishable from those obtained with 

the aid of a simple mixing length-viscosity model. 

In view of the above findings a detailed examination 

of the predictions obtained with the aid of the above- 

described model is not thought necessary here. 	Some 

results, typical of those obtained are shown in figures 3.39 

and 3.40, where, for similar boundary layers the predicted 

Predictions were made for constant pressure and 
accelerated boundary layer flows. 
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variation of R2 and H with .K is displayed. 
	Also shown 

in the figures are the predictions obtained with the 

standard (A+  = 26.0) mixing length model of Section I. 

As may be readily observed, the curves obtained with 

the aid of the two models are practically indistinguishable. 

4.5 SECTION IV - An Energy-Dissipation Turbulence Model  

This section is concerned with the formulation 

and presentation of a more elaborate turbulent viscosity 

model in which length and velocity scales are determined 

from the solution of partial differential rate equations 

for turbulence kinetic energy and dissipation rate of 

turbulence energy. 	The model differs from others of its 

type in that viscous terms have been included so that the 

model may be applied both to the fully turbulent and 

sublayer regions of the boundary layer. 	Thus the 

procedure of patching a fully turbulent finite difference 

solution onto a one-dimensional 'law of the wall' solution 

is avoided; a feature of the model which is essential to 

the successful prediction of laminarisation. 	The proposed 

model contains a number of empirical constants and functions 

but it is emphasised that these have all been obtained by 

reference to high Reynolds number constant pressure boundary 

layer data only. 

4.51 The Proposed Model  

(1) 	The starting point for the derivation of the model 

is Rotta's (77) approximation of the Reynolds stress 
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equation. 	This may be written in the following form:- 

---- DRij 	u4 u. 	I 	u u 
	 + 4, 	+ 	
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1 u.p + 	u.p i  ]+ (1 - c2) 5 	+ c e  u.u. 
p 	1 	3 j 3 	2 	3  = 

k 

where c1 and c2 are functions of Reynolds number RT 	
k2 / ) 
ev 

which approach constant values at large RT. 	The function 

c2 takes a value of unity at low RT  and approaches zero mi mj 
for large values of RT. 	The coefficients atj' ati are 

functions of the turbulence which must be estimated. e is 

the dissipation rate of turbulence kinetic energy. 

If consideration is now restricted both to plane 

boundary layer flows and to the stress component R12  there 

results: 

DR12 	aU1 	21 	22 	aU 1 
U22" * 	+ c

1 K 
 u u 1 2 oX2 	fa12 	all 

(4.23) 

a 	bR 12 - 	- u aP 	c2 s ulu2  
ax2 (\) 2 	2u1 

Furthermore, if the terms representing the 

transport of R12  are now neglected, we obtain:- 

21 
[u2  - (a 

12 

22 a:IT 
a )1 
11 - 2 

   

u1u2  (ci 	c2 ) = 0 (4.24) 

0 
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Some justification for this latter approximation 

arises from the considerable success which has been 

achieved with mixing length turbulence models; they also 

imply the neglect of transport of R12. 	This leads us 

to suppose that for many flows the transport terms are 

indeed negligible. 
21 	22 

The values of the coefficients a and a were 
12 	11 

estimated by Rotta to be given by: 

21 	22 
a 2 	2 a 	= 0.8 u2 = -0-2 u1  12 	11 

(4.25) 

On substituting the above values and re-arranging 

equation (4.24), there results the following relation: 

0-21c[ul2.  + u21 

eLc, + c2] 

Now for boundary layer flows [1112  + u21  may 

plausibly be assumed proportional to the turbulence 

energy k. 	With this assumption equation,(4.26) may 

be recast as:- 

- Ulu2 = F 	k/e 6x
2 
	(4.27) 

where F is a function of Reynolds number RT 
(_k/ ) 

VC 
which has a constant value for large values of RT. 

An estimate of the high RT  value of F may be 

obtained if it is-  first-noted that 
_ 

0.2 Ili U2 0-2 
c1 	k 	cl 

(4.28) 

- u1u2 = c7 2

aUi  
(4.26) 
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The constant c1 may be estimated by consideration 

of the cl  may be estimated by consideration)of the 

experimental data of Tucker and Reynolds (85) on the return 

of an initially anistropic turbulent flow to isotropy in 

the absence of strain or shear. An examination of the 

data.in conjunction with equation (4.28) leads to a value 

of c1 
equal to 2.5 (see ref (75)) which in turn gives 

FZ.: -08. 	Such a value of F will later be shown to 

be appropriate to the successful prediction of boundary 

layer flows. 	The low RT form of the function F cannot 

at this stage be estimated since there is a total absence 

of data concerning low Reynolds number turbulence. 

If a dissipation length scale is now introduced 

i.e. t
o 

r=7 k3/21  then the relation (4.27) may be re-written 

as: 

 

but = F k2t, e  7572  

 

 

(4.29) 

which will be recognised as a 'turbulent viscosity' model 

with VT = F k2 . 
P e 

Here it should be emphasized that the above 

result is not peculiar to Rotta's approximation of the 

Rij  equation. 	For boundary layer flows, a 'turbulent 

viscosity' relation will result from any approximation 

of the R12 equation on neglect of the terms describing the 

transport of R12, providing that the remaining terms are 
.111/  

approximated by linear combinations of 	fx2' Rij' k 

and L (where L is any turbulence length scale). 

(4.30) 
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Nevertheless the above derivation does 

emphasize some essential requirements which must be 

fulfilled if a 'turbulent viscosity' model is to provide 

accurate predictions of flow development. 	Firstly it 

is clear that 'turbulent viscosity' models are appropriate 

only.to boundary layer flows (to which the present work 

is restricted). 	Secondly, 'turbulent viscosity' models 

may be expected to lead to accurate predictions only if 

the transport of ulu2 is negligible. 	This latter 

requirement is unlikely to be fulfilled in general: 

there are undoubtedly boundary layer flows in which the 

transport of u1u2  plays a significant role. 	Nevertheless, 

the degree of error which the neglect of the transport of 

u1u2 
entails may only be determined by application of the 

model to the calculation of boundary layer development 

and comparison of the results with experiment. 

To complete the model a means of calculating 

both the turbulence energy and the dissipation rate of 

turbulence energy is required. 	Here their values will 

be obtained by solution of approximated forms of the 

exact partial differential transport equations for 

turbulence energy and dissipation rate of turbulence 

energy. 	The approximation proceeds as follows: 

(2) The Turbulence Energy Equation  

An exact equation for the turbulence kinetic 

energy may be derived by manipulation of the Navier- 

Stokes equation (2.1), e.g. see reference (38). 	For 

boundary layer flows the equation may be written:- 
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Dk 	k 	
Ul 

Dt3x2 v  2 — 
u2 3 (u.u. + p/  )1 - ulu2

p 	 2 7  
- e (4.31) 

viii 2 
where E = v (77+) 

 

The first term on the right of equation (4.31) 

represents the transport of turbulence energy by pressure 

fluctuations, turbulent motions, and the effects of 

viscosity. 	It has the form of a diffusion term. 	The 

second term on the right of equation (4.31) represents 

an interaction between the mean and fluctuating motion 

which leads to a transfer of energy from the mean to the 

fluctuating motion. 	It thus represents a production of 

turbulence energy. 	The last term in equation (4.31) 

represents the rate of dissipation of turbulence energy 

into heat by the action of viscosity. 

The first term on the right hand side of 

equation (4.31) is the only one which requires approximation 

at this point. 	The approximation adopted is as follows:- 

u2 (u ju j  + p/p ) = vT bk 

lk x2 
(4.32) 

where ak  is a 'turbulent Prandtl number' for turbulence 

energy, which is assumed to have a constant value. 	Such 

an approximation has previously been proposed independently 

by a number of workers, e.g. Prandtl (72), Emmons (27). 

Measurements of u2ujuj  and k in the. fully turbulent 

region of the boundary layer (where u2p/  is thought to 
p 

be negligible) provide some evidence in support of the 

model, e.g. see references (36) and (89). 	The lack of 
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measurements in the sublayer of the boundary layer 

however precludes direct comparison of the model with 

experiment for low turbulence Reynolds numbers. 

(3) 'The Equation for Dissipation-Rate of Turbulence Energy 

An exact equation for the dissipation-rate of 
• 

turbulence kinetic energy may be derived by manipulation 

of the Navier-Stokes equation (2.1). 	This may be 

achieved by first differentiating the momentum equation 

for ui  with respect to x., multiplying by (2vAu_l1  axj  
and finally averaging. 	The result is:- 

2 

Dt 	v bx.Ax. 
.3 

2_ 

2 u 3  
Au. 	

3  
u. 

v ImAx. Ax.Ax m 
(1) 

Au.Au 	.111_ 2  
- 	

AUj 	

[ax. j A m 
	Aui 

+ 	] 

	

v Axm x. 
	

ax. 
	m Ax 
3  

(2) 

2 

	

Au. 	
m 	i 

- 
	cv  u 	v xi 	A A▪ x 	m 772 + .c. 	A . 	xi  (4.33) 

  

(5) 

 

To close the equations it is necessary to make 

closure assumptions for the terms numbered 1 - 5 appearing 

on the right hand side of equation (4.33). 	There is no 

direct experimental evidence about any of the terms 1 - 5 

and closure therefore involves a substantial amount of 

speculation. 
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Equations for the dissipation rate of turbulence 

kinetic energy have previously been proposed in various 

forms by Chou (18), Davidoff (23), Harlow and Nakayama (34) 

and Lumley (57). 	In deriving the presently proposed 

dissipation rate equation, use has been made, where 

appropriate, of the work of the above authors. 	The 

procedure adopted here is that of approximating the 

unknownterms1-5intermsofRij  and e  by judicious use 

of a combination of the assumption of similarity of all 

turbulence microscales and 'flux-gradient' approximations. 

The approximations are chosen so that their tensor 

properties conform with those of the exact terms and also 

so that they reflect the observed property of turbulent 

motion at high turbulence Reynolds numbers, namely that 

the motion is not directly effected by molecular viscosity. 

The 'flux-gradient' approximation used may be 

written in the general form: 

u jol a  vT 	 bx j  (4.34) 

where a is a constant of order unity. 	0 is the 

fluctuating component and the mean part of the quantity 

considered. 	An essential requirement for its use is that 

should be convected by the mean motion. 	Such flux 

approximations are discussed by Hinze (38) p. 24. 	The 

approximation of terms through the assumption of 

microscale similarity is facilitated by the introduction 

of a dissipation microscale defined by: 
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2 
(Wli 	= k/

A
2 	env) 

• t bxj  
(4.35) 

The assumption of microscale similarity is 

considered in some detail by Chou (18). 

Term 

This term may be approximated by use of the 

flux approximation (4.34), whereby:- 

2v 	3 	
2Ui  • 	?,2U

3
. 

 m *1 
	 = - F1 v  vT[ 	] 

bxi  zixibxm 	bxi xm  

The approximated term is of an order comparable 

with those which have already been neglected in deriving 

the 'turbulent viscosity' relations (4.29) and (4.32) and 

so strictly it should also be neglected here. 	Nevertheless 

it will for the present be retained; it was found 

necessary for the prediction of a plausible turbulence 

energy distribution within the sublayer of the boundary 

layer. 

Term 2 

The term is approximated through the assumption 

of microscale similarity. 	A term may be constructed so 

that it conforms with certain properties of the exact 

term under contraction of the indices. 
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e. • 5. 	bu
-L 
z  

Jm  
axj aui  

Oila
ui AUi 	0 
axj bXm 

With the above restrictions and assumptions the 

following approximation results:- 

bui 	 ). 

	

buj 	E 	m 	J 	F v  R. 

	

2v xm 	
1 bx. 	)x.

3 	
2 	3m bxm  

1 	m 
A
2 

F2  R. bUj k 3m --- bxm  

(For a detailed derivation of this result, the reader is 

directed to Chou (18) ). 

Term 3 

This term is not easily approximated by either 

microscale similarity assumptions or by use of the flux 

approximation. 	Davidoff (23) has argued that the term 

should be negligible. 	Here, after experimentation with 

approximations of the form:- 

p Ak 
vT 	] and k a  DT )x. 

3 
axj  
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which were found to be negligibly small for boundary 

layer flows, the term was neglected. 

Term 4 

The term represents the destruction of the 

dissipation rate by the action of viscosity. 	It may 

be approximated through the assumption of microscale 

similarity, whereby there results:- 

2 	2 u. 
2 v2 [ 	3 	] 	2 F 	k = 3 v -bxibxm  F3  

e 2  

k 

The above result has been derived in a rigorous 

manner by Chou (18) and Lumley (57). 

Term 5 

The following approximation was used to represent 

this term:- 

2 
v [ um Li

a.. 
+ 	 vT 	e  

	

v bum 	 E' ] _„ - a ,x. 	1 

	

bx. 	xi. 	e ,xm  

The result was obtained by application of the 

flux relation (4.34) to the first term in the curly 

brackets. 	Strictly it does not apply to the second 

term. 	However both terms have similar effects in that 

they both represent a diffusive transport of dissipation. 

In the absence of anything better, it seems appropriate to 

consider their effects simultaneously. 	The approximation 

is consistent with that adopted for the turbulence kinetic 
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energy equation. 

After incorporating all the above approximations 

the proposed form of the dissipation-rate equation may be 

written:- 

2 
2 

De. 	e   
Dt 	[ v + 

vT  	F 	
U 

	

a e 	6xm,  1 v vT 6xi xm  

F e R. 	- F 2 1- Jm j  bxm 	3 (4.36) 

where the terms (y e , Fl, F2  and F3  are functions of the 

k2  
Reynolds number RT  (E  / ). 	The derivation does not 

suggest the forms of the functions except in that they 

should not deviate far from unity. 	The functions must 

also approach constant values for large values of RT  

in order that the model conform with the observed 

properties of high Reynolds number turbulence, i.e. the 

motion is uneffected directly by the action of molecular 

viscosity. 	At large values of RT  the terms in the 

above equation in which the molecular viscosity appears 

explicitly will also be negligibly small. 

The dissipation-rate equation proposed above 

contains similarities to the forms proposed independently 

by Chou (18), Davidoff (23), Harlow and Nakayama (34) and 

Lumley (57). 	For the case of homogeneous turbulence, 

all the proposed equations reduce to identical forms. 

The main differences result from the approximation of the 

terms which reflect the inhomogeneity of the turbulence. 

For example, Davidoff (23) proposed to obtain the term 
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representing the diffusive transport of dissipation-

rate by turbulent motions by solution of a partial differential 

equation for that quantity. 	Harlow and Nakayama (34) 

used a flux relation such as (4.34) to approximate the 

diffusive transport of e due to pressure fluctuations 

in terms of mean pressure gradient an spite of the fact 

that pressure is not convected by the mean motion). 

When the above dissipation rate equation (4.36) 

is specialised to plane boundary layer conditions it 

reduces to:- 

De 
Dt 

= 	 c [ 
ax2 	c 

vT  
r x2  F1  

2 2 
, 

vT L 
21 

-I bx2  

2 

+ F2  7 vT  
bx2 

F3 e
2
/ 	(4.37) 

2 
where vT  = F k /, 

The actual forms of the functions and their 

'constant' values for high RT  must, however, be determined 

by recourse to experiment. 	Here they were established 

by applying the complete turbulence model, comprising 

equations (4.29), (4.31) and (4.36) together with the 

mean momentum and continuity equations to a number of 

simple flow configurations. 

. 4.52 Determination of the Reynolds Number Functions  

(1) The decay of homogeneous isotropic grid turbulence  

An estimate of the form of F3 may be obtained 
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from the experimental data of Batchelor and Townsend (5 & 6) 

on the decay of isotropic homogeneous grid turbulence. 

For this case the turbulence energy and dissipation rate 

equations reduce to:- 

dk 
= 

de 
dt - F3 k 

(4.38) 

At large turbulence Reynolds numbers the data 

indicates that k a t-1  which requires that F3  = 2. 

However, in the final stages of decay, i.e. at low 

Reynolds numbers, the measurements indicate that an 

exponent of -5/2  is appropriate. 	This latter decay 

law requires that F3  = 1.4. 	The change-over between 

the two decay laws occurs quite rapidly at RT 	) 1. 

The function F3 was thus represented by:- 

F3  = 2.0 fl - 0.3 exp(-4)1 
	

(4.39) 

The similarities between boundary layer (shear 

flow) and homogeneous isotropic turbulence are perhaps 

tenuous. 	This is particularly so for the viscous 

sublayer of the boundary layer, the structure of which 

is markedly different from that found in low Reynolds 

number isotropic turbulence. 	In view of this we should 

not be surprised if some modification of the low RT forril 

of F3 is subsequently found to be necessary when the 

model is applied to the sublayer of the boundary layer. 

In the fully turbulent (high RT) region of the boundary 
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layer the similarity may be greater for there 'local 

isotropy' is thought to prevail. 	The assumption of 

'local isotropy' implies that the dissipation processes 

in shear flows are overall similar to those arising in 

isotropic turbulent flows. 	This is a plausible assumption: 

at high Reynolds numbers, the main dissipation of 

turbulence energy occurs in a high wave number (small eddy) 

range of the turbulence spectrum, whereas the main 

transfer of energy to the turbulent motions (by the action 

of the mean strain) occurs in a low wave number (large 

eddy) range. 	There usually exists a large separation 

(in wave number space) between the two ranges and so,to 

a first approximation, F3 	2.0 may be reasonably expected 

to apply. 

The remaining functions of turbulence Reynolds 

number may be treated more conveniently if their high 

and low Reynolds number behaviour is considered separately. 

(2) The high Reynolds number form of the model 

As was noted above, the functions of the turbulence 

Reynolds number appearing in equation (4.37) have constant 

values at high RT. 	Moreover, terms in which the molecular 

viscosity appears explicitly will then be negligibly small 

and may therefore be neglected. Also we have observed 

that a constant value of F3 equal to 2.0 is appropriate 

for high Reynolds number turbulence. 	An estimation 

of the remaining 'constants' may be obtained from 

consideration of measurements in the turbulent boundary 
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layer developing in constant pressure along a flat plate. 

In the near wall, fully turbulent region of the boundary 

layer the mean velocity profile is found to be described 

by: 

1nPw/ox2 + c 	(4.40) U1 = 

and the Reynolds stress is approximately constant and 

equal to the wall shear stress i.e. -13 111u2 = TW.  

In addition, the convection of momentum, turbulence energy 

and dissipation rate are negligible and the turbulence 

energy is also approximately constant. 	With the above 

considerations in mind the turbulence energy and 

dissipation rate equations reduce to: 

2 
0 	bU 	- 

3'ci2 
(4.41) 

0 = 

ax2 
b__.]+  

eco ax2 
F2 e 

m 

2 

VTE--=] 
)(2 

2-  
F3 
 e2  
3m  

where vT  = F 10e  
Pm  

The subscript 'm' denotes the high RT  'constant' values of 

the functions. 

After noting that FT/ 	the equations 
P xx2  

may be manipulated to yield the following relations: 

2 

Crw  

(4.42) 
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Now x  has a value of about 0.42 and the 

parameter T4D k is found to have a constant value of 

about 0'3 in the fully turbulent region of the boundary 

layer. 	On inserting these values and the value of F3  

previously chosen we obtain: 

.09 ; 	F2 	2.0 - 	/a  
co 

A value of F = .09 is very close to that 
Poo 

estimated previously (p 112) from consideration of the 

return of an initially anisotropic turbulent flow to 

isotropy in the absence of strain or shear. 	The fact 

that closely similar values of F 	arise from consideration 
11„, 

of flows of very different character lends support to the 

validity of the assumptions made thus far. 

All that now remains to close the high Reynolds 

number form of the model is the choice of the values for 

the 'turbulent Prandtl numbers',a k  andae . 	The Prandtl 

numbers were chosen by reference to computer experiments. 

The equations (4.31) and (4.36) were solved for the fully 

turbulent region of the boundary layer for the case of 

constant pressure plane flow with the aid of the finite- 

difference procedure of ref. (69) 	A detailed description 

of the method of solution will not be given here; suffice 

it to say that the finite-difference solution was patched 

onto a 'fully turbulent' one-dimensional solution just 

outside the viscous sublayer of the boundary layer. 	The 

inner boundary conditions for turbulence energy and 

dissipation rate were thus given by:- 

0.59 
F 

mc. 
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3/ 
 

-2 	 T 	/ 2 
k 	= (--t) F 	(-- 4./) 	/ xx2  

P 

The resulting solutions were compared with the 

H-R2 correlation of Coles (21) and the measurements of 

Klebanoff (46) for the plane turbulent boundary layer in 

zero• pressure gradient. 	The Prandtl numbers, uk  and 

e 
were then adjusted until reasonable agreement with 

both Coles' correlation and Klebanoff's mean and 

fluctuating profile data was procured. 	The set of 

constants which give 'best' agreement for the high 

Reynolds number plane turbulent boundary layer in zero 

pressure gradient are listed below 

F 
Po, 

-09 

F2 co 

1.55 

F3 m 

2.0 

(71(  co 

1.0 

a e,,,, 

1.3 

The above constants differ only slightly from 

a set proposed by Hanjalic (36) for a similar (though 

not identical) turbulence model. 	Hanjalic applied his 

model to obtain satisfactory predictions of a wide 

range of high Reynolds number boundary layer flows. 

............. ...... ,...,.. 
(3) The Low Reynolds Number Form of the Model  

The extension of the model to regions of low 

turbulence Reynolds number such as exist in the viscous 

sublayer of the boundary layer is based on less secure 
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ground than the high Reynolds number form of the model. 

The viscous sublayer occupies a very thin region adjacent 

to the wall and is usually only a few thousands of an inch 

thick; as a result few measurements have been possible. 

Measurements that do exist indicate that the sublayer 

(down to 4 = 1 at leaSt) has a strongly three dimensional 

intermittant structure which is perhaps more akin to an 

unsteady laminar flow than to turbulent flow. 	The 

sublayer is a region of high relative intensity i.e. 

u1/11 and strong anisotropy and inhomogeneity in 
1 

 

which strong interaction between the mean and fluctuating 

motion takes place for all scales of the turbulent motion. 

Thus the assumption which description of turbulence in 

terms of two scalar quantities, k and e, implies (namely 

only small deviations from homogeneity) is not likely to 

be accurate. For example the model contains the implicit 

assumption that the two point velocity correlation tensor 

u.(x)uj(x 	r) varies only slowly with spatial 

position x compared with separation r (see reference (18)). 

This condition is not likely to be satisfied in the large 

intensity gradients which exist in the sublayer of the 

boundary layer. 

In view of the above facts we should not expect 

the present turbulence model to be capable of providing 

a detailed description of the macroscopic properties of 

the turbulence structure of the sublayer. 	Nevertheless, 

we proceed with the task of extending the model to account 

for the viscous sublayer in the knowledge that considerable 
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success has already been achieved (by a large number of 

workers) through use of the Van Driest sublayer mixing 

length model. 	The present model is a good deal more 

sophisticated and should therefore lead to an improvement 

over the Van Driest formula; we may reasonably expect 

the model to provide a fairly close description of the 

overall behaviour of the sublayer. 

(4) The Limiting Form of the Model :  

The task of extending the proposed turbulence 

model so that it may be applied to the sublayer of the 

boundary layer is most conveniently accomplished if 

first the asymptotic behaviour as R--IP'0 is considered. 

In the sublayer RT0-0 as the wall is approached and 

there is an appreciable region 0 <x2 S  5 in which 

inertial forces are negligible. 	In this viscous region 

the turbulence energy and dissipation rate equations 

reduce to:- 

d2  k 
0 = v dx2 - e 

2 

d2e 0 	= 	v -a-,-5. - F3 	e 2 

2 	o k 

(4.43) 

where the subscript 'o' denotes the low RT  asymptotic 

value of the function. 

Now it is well established that the turbulence 
, 2 

energy varies as (x'2) in the viscous region x2 < 5 and 

is zero at the wall. 	It may easily be shown that this 

implies a value of F3 equal to zero. 	If the restriction 
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of a quadratic variation of turbulence energy is relaxed 

then 1/ < F3 < 1 must be satisfied if all the terms in 6 — o  

the above limiting forms of the equations are to remain 

bounded at the wall. A value of F
30 

= 1/6 produces an 

energy variation proportional to [4]4; the exponent 

increases rapidly as F3  is increased. 	An unbounded 

behaviour of any of the terms at the wall is both physically 

extremely unrealistic and likely to lead to considerable 

difficulty in the task of obtaining numerical solutions 

of the equations; it should therefore be avoided. 

The need to predict a reasonable energy 

distribution in the sublayer suggests that F30  should be 

a function which has the property of approaching zero 
2 

rapidly (at least as x2 ) as the wall is approached. 

However when F, was assumed given by such a function of 
-Do 

RT and the equations solved certain undesirable features 

arose; mainly a large unrealistic growth in turbulence 

energy in the sublayer and a spurious behaviour in 

regions of low RT  away from walls. 	The approach also 

resulted in wall boundary conditions for the turbulence 
a. 

energy and dissipation rate equations i.e. k = ax2  = 0 

at x2  = 0, which were difficult to apply numerically. 

At this point the reader is reminded that the 

above behaviour of F differs from that found in the 
3o 

final stages of decay of isotropic grid turbulence where 

F3 = 1.4 was obtained. 	It is also in conflict with the 
0 

 

derivation of the model which suggested that all the 

functions, including F301  should not deviate far from unity. 
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The necessity of F, = 0 in the viscous region x2  < 5 

may thus be taken to reflect the limitations of the proposed 

turbulence model when applied in regions of steep 

intensity gradients. 	A systematic extension of the mode' 

so that it may be applicable to regions of steep intensity 

gradients involves modification ol-  most of the approximations 

and is, at best?  an extremely difficult and uncertain 

task. 	Here a simpler procedure was adopted whereby a 

term was added, on an empirical basis, to the turbulence 

energy equation so that the correct asymptotic behaviour 

resulted. 	This path was followed in the belief that 

events in the region x, < 5 were not of great significance 

as far as the mean velocity profile was concerned for 

there v  is much greater than vm. 	Of course, this is only 

true providing that events in the region x2  < 5 do not 

unduly influence the turbulence profiles outside the region 

as would be the case if e  were allowed to go to infinity 

at the wall (a result which arises from F, = 1'4 at the _)(3  

wall). 

The method adopted to obtain the required 

additional term is outlined below, 

that at the wall: 2 

total dissipation rate 
2 

First it was noted 

(4.44) - 3 
2 

Now measurements of the instantaneous velocity 

profile within the sublayer (Bakewell (7)) have shown 

that at any instant of time the velocity vadcs linearly 

with x2. 	This -Zindin.j  implies that 
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u1 	a14t.)-'x2 

u3 	akt-). x2 

(4.45) 

whereal  .4t-} are functions of time whose mean values are 

zero. 	With the insertion of equation (4.45) into (4.44) 

there results: 

total dissipation rate (4.46) 

If, further, u2, the normal component of 

fluctuating velocity is presumed negligible, we obtain 

from equation (4.46) the following expression for the 

variation of kinetic energy near the wall: 

2 	2 	
2 

	

u1  + u3 	2 	2 ( 2)  = [ a12  	+ a3  
(4.47) 

We now construct a term which reduces to the 

total dissipation at the wall. 	From equations (4.46) and 

(4.47) it is readily verified that one such term which 
12 1 

satisfies this requirement is:- 	2v  252  )(2  

and this was added to the turbulence energy equation to 

give the correct asymptotic behaviour of the turbulence 

energy at the wall. 

At this point it must be stressed that the above 

procedure is not the only one possible. 	It does however 

provide for a simple but necessary means of modifying 

the model to procure agreement with experiment within the 

sublayer of the boundary layer. 	It has the additional 

advantage of allowing the application of homogeneous 

boundary conditions to the turbulence model at the wall, 
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thus considerably simplifying the task of obtaining 

numerical solutions of the equations. 

The form of the remaining functions were chosen 

by confining attention to the calculation of constant 

stress Couette flows. 	For this flow the mean momentum 

equation (2.7), the turbulence energy equation (4.31), 

(with the additional term) and the the dissipation rate 

equation (4.36) reduce to: 

)Ui 

	

° = dx2 	VT)  2 

	

2 	1  
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= d 	vT\  dk 1 
+ 
	F  11 	, Fdk2  1  

0 dx U v + ak' dx2  J  	vI'L  dx J  - e  - "Ldx2  I  

	

2 	 2 

2 

2 	2 d U11 vT de 77 0 = — [( v + —) 	] + F 1 v v T  —7-  -' dx2 	ae 	2 	dx2 

2 

	

+ F2 e 	dUl 	- F3 

	

k 	7(- 2 

2 

with boundary conditions 

x2 	0 	k = e = U1 = 0 

x2 	= x2 ,c 	F 2  
P 	p. 
T 3/  

(.-
w
) '2/ xx / 2,G 

U1 = Ul,G 

where x2 G denotes the outer boundary of the flow. 

Initally the above set of equations (4.48) 

(4.48) 
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were solved numerically with the turbulent viscosity 

specified by way of the Van Driest formula (A.4-  = 26) 

(4.8): rather than by the relation (4.29). 	This practice 

enabled attention to be focussed simply on the dissipation 

rate equation which was then tuned to give a plausible 

turbulence energy distribution within the viscous sublayer. 

The turbulence measurements within the sublayer of a pipe 

flow by Laufer (55) were used to provide.a guide to the 

required energy profile. 	Close fitting of the data was 

however thought unwarranted as measurements within the 

sublayer are of relatively low accuracy and as a result 

the measured k profile is probably only accurate to 

within about 20%. 	In practice the estimation of the 

functions in the e equation turned out to be a 

relatively simple matter for a reasonable k profile could 

be obtained through choice of a suitable constant value 

of F1  alone; the other functions F2, ak  and as  could 

be allowed to retain their 'constant' high RT  values 

and F3 given by the isotropic grid turbulence decay 

result. 

On achieving a satisfactory turbulence energy 

distribution within the sublayer, the 'turbulent viscosity' 

relation (4.29) was inverted to provide a preliminary 

estimate of the Reynolds number function F : 

F = e/k2 	vT 
Van Driest 

where F = F kRT and F 4.c4 	-09 
P P 
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Finally the equations were solved using this 

estimate of F to calculate the 'turbulent viscosity'. 

Small adjustments were then made to the function until 

the predicted velocity profile agreed closely with that 

obtained through use of the Van Driest formula. 

This latter task completed the 'derivation' 

of the turbulence model which may now be applied to the 

calculation of both the sublayer and fully turbulent 

regions of the boundary layer. 	The equations which 

constitute the turbulence model, together with the 

mean momentum, continuity and thermal energy equations 

may thus be restated:- 

Mean Momentum  

DU1 	 )U1  

1 dux 
A 

Dt 	Z-Z-) 	A 	
[ (V 	vir  ) axe  a 

P 1 	x2 

Continuity  

aX1 0 i 	)C2  

Thermal Energy 

DO rir  = 	 2_ ax2 	a 	aT )  ) 3x2  
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Dissipation Rate  

  

2 
2 

. 	. 
6.1j1 De . 	

L
r
(
v 

a
11  \.) 

+ ) 	+ F1 6x2 _ 	›c2 
)c2  (4.49) 

)1J 
+ F2 vT [ 	

- F3 
K 	X2  

where vT  = F k24 
	

Fp = expf- 2.5/(1 + RT/50)1 

F1  2.0 

F2  = 1.55 

F3  = 2.0 [1.0 - 0.3 exp(- RV] 

QT = 0.9  

ak = 1.0  

a 	1.3 

and RT k2  
ev 

The above equations (4.49) together with 

boundary conditions form a closed set which may now be 

solved. 

4.53 The Validity of the Proposed Model  

The assumptions contained in the foregoing 

model are many and are such that it is difficult, if not 

impossible to establish conditions for their validity. 

Indeed, in view of the crudity of the assumptions the 

2 2 

k 
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relation between the model and 'real' turbulence may be 

thought tenuous. 	It is a disappointing feature of the 

derivation that we were unable to use more of the available 

experimental information. 	For example, it is well 

established that shear flow turbulent motion is dominated 

by'a'large eddy structure and that the outer region of 

the boundary layer is intermittent in nature. 	Both 

these features were ignored completely in the derivation. 

In this respect, however, the present turbulence model is 

no different from any other model which attempts a 

practical solution to turbulent shear flow; other 

proposers of turbulence models have also been unable to 

use much of the available experimental information. 	It 

seems likely that the reason why workers (including the 

writer) have been unable to utilise more of the available 

experimental information in framing turbulence models is 

due to the extremely complex and 'non-local' nature of 

turbulent motion. 	At the same time, many of the existing 

measurements are of a qualitative nature and are thus not 

of direct use for the task of formulating closure assumptions 

to the Reynolds equations. 	Also it has not been found 

possible to measure many of the important quantities for 

which assumptions must be made to effect closure of the 

equations e.g. the pressure-rate of strain correlation 

P 1  ax . However, even if sufficient experimental information on 
 

was available for the formulation of a turbulence model 

which described the detailed (macro and microscopic) nature 

of the motion then it is probable, in view of the 'non-local' 
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nature of turbulent motion, that the model would involve 

integro-differential equations of complexity approaching 

that of the Navier Stokes equation itself. 	It would not 

therefore represent a practical solution to turbulent 

shear flow. 

The requirement that a turbulence model represents 

a practical solution to turbulent flow and therefore 

involves a small number (2 to 3) of simple partial 

differential rate equations necessitates crude physical 

assumptions regarding the turbulence structure. 	For 

practical applications, however, it is necessary only 

to calculate the behaviour of certain statistical means 

e.g. ui,C) and for this purpose these crude physical 

assumptions may suffice; it is not necessary to predict 

the detailed structure of the turbulence. 

It must also be remembered that considerable 

success in the prediction of boundary layer flows has 

already been achieved with mixing length models. 	These 

contain substantially less of the features of turbulence 

than the present model; indeed they do not recognise 

turbulence explicitly at all. 	The present model may 

certainly be expected to lead to an improvement in 

predictive ability over mixing length and other simple 

viscosity models. 	Its validity and range of applicability 

may, however, only be established by application of the 

model to the calculation of boundary layer development and 

subsequent comparison with experiment. 
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4.54 The Boundary Conditions and Method of Solution of the  

Equations.  

(1) Smooth Wall Boundaries  

The boundary conditions for the turbulence 

energy, dissipation rate and mean momentum equations at a 

smooth rigid wall are:- 

U1  = 0 ; U2  = U2 ,1  ; k = 0 &e = 0 	(4.50) 

(2) Free Boundaries  

The boundary conditions for the turbulence energy, 

dissipation rate and mean momentum equations appropriate to 

a free fluid boundary may be stated:- 

dkG 
Ul,G 	= 

2 
deG 	F eG u1,G '37 	3  kG 

(4.51) 

- 1 dP 
U
1,G Up)71-- 	p" dxx1 

where G subscripts denote conditions outside the free 

stream boundary of the flow. 	Equations (4.51) are, of 

course, the limiting free stream forms of equations (4.49). 

-The free boundary is here defined as that surface beyond 

which all quantities considered deviate only by a small 

fixed amount (taken as i%) from their respective free 

stream values. 	This boundary will not in general coincide 

with either the 'edge' of the velocity layer or the average 

position of the interface between rotational and irrotational 

'turbulent fluid'. 

eG 

dTJ 
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(3) Axes of Symmetry  

At axes of symmetry the following boundary 

conditions may be imposed on the equations for turbulence 

energy, dissipation rate and mean momentum:- 

. 6x2 

U
1 0 • 112- 	= 0 	0 	(4.52) ' bx2 	ax2 

(4) Solution of the Equations  

For the steady plane flows presently considered 

the governing set of partial differential equations 

(comprising equations (4.49)) were solved by means of the 

finite-difference procedure of ref (69). 	One hundred 

cross stream intervals were employed with the finite 

difference grid compressed near the wall so that about 

half were distributed within the region where x2  was 

less than 100. 	Typically the forward step size was 

chosen as 0.3 times the local boundary layer thickness. 

Calculations performed with various other numbers and 

distributions of cross stream intervals and forward step 

sizes established that the solutions were of sufficient 

numerical accuracy. 

(5) Initial Profiles  

In addition to the boundary conditions discussed 

in the foregoing paragraph it is necessary to specify the 

initial profiles of Ul, k, e and before integration of 

the equations may be commenced. 	For the calculations 

to be presented here estimated 'fully turbulent' profiles 

were used. 	In the case of the similar boundary layers 
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.considered, the solution is formally independent of the 

initial conditions and hence the forms of the initial 

profiles are unimportant. 	For the other flows it was 

usually possible to start the calculations well upstream 

of the region of interest on which, as a result, the 

initial conditions had little influence. 	Measurements 

of profiles of Ul  and e at the initial xl  station existed 
for a few cases and these were therefore used whenever 

available. 	However in all cases it was necessary to use 

estimated profiles of the turbulence quantities k and e. 

Details of the estimated initial profiles for U1,8 , k 

and care given in Appendix 

4.55 Presentation and Discussion of Results  

(1) The Turbulent Boundary Layer in Zero Pressure Gradient  

Figure 4.4 	displays the predicted variation 

of boundary layer shape factor, H and skin friction 

coefficient, Cf with momentum deficit-thickness Reynolds 

number R2. Also shown are the H R2 and Cf R2 

correlations of Coles (21) obtained from what he considered 

to be the most reliable constant pressure plane boundary 

layer data. 	For values of R2  greater than 2500 the 

predicted values of H and Cf agree with those of Coles' 

correlation to within 1%. 	For values of R2 less than 

2500 there is a small but systematic departure of the 

predictions from the correlation of Coles, the predicted 

shape factor being too high and the value of Cf  too low. 

(Typically, at R2  = 1000, the predicted value of H is 
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about 3% high and the value of Cf  is about 9% low.) 	As 

far as the shape factor is concerned the differences are 

probably not significant and can be accounted for by 

experimental uncertainty. 	The experimental values of H 

may also be expected to be influenced by the method of 

inducing transition from laminar to turbulent flow and 

probably the predicted values on the initial profiles. 

The principal reason for the discrepancy in 

Cf may be observed in figure 4.5 where mean velocity 

+ 
profiles are plotted for several values of R2  on U1 - x 2 

axes. 	The predicted profiles display a detectable 

Reynolds number dependence in what is normally termed the 

'universal' wall region. (50 < xo  < 200). 	Now, Coles 

estimated the local skin friction coefficient by use of a 

presumed universal semi-logarithmic wall law; indeed 

his correlation includes a proposal for this law. 	However 

if the boundary layer does in fact possess a Reynolds 

number dependence similar to that predicted, then Coles' 

values of Cf would be in error by an amount similar to 

the discrepancy between the prediction and correlation. 

In the absence of accurate measurements of wall shear stress 

it is not possible to conclude with certainty whether it is 

the prediction or the correlation that reflects the true 

behaviour of the turbulent boundary layer at low Reynolds 

numbers. 

^ 	^ • J ^ ,` • - -•• 	• 
(2) Mean Velocity Profiles  

The predicted mean velocity profiles at values 
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of R2 ranging between 2,000 and 16,000 are displayed 

on semi-logarithmic axes in figures 4.6 - 4.9 . Also 

shown are the mean velocity profile measurements of 

Wieghardt (88). 	The agreement between predictions and 

measurements is in all cases excellent. 	Wieghardt did 

not make velocity measurements close to the wall and so 

a detailed comparison of the predicted and measured 

profiles within the sublayer and near wall region is not 

possible. 	There is, however, some very slender evidence 

(resting on a single point velocity measurement) to suggest 

that a discrepancy between measured and predicted velocity 

profile exists in the near wall region; the predicted 

profile being slightly too low. 

In figure 4.10 	the predicted mean velocity 

profile at R2 	7,700 is displayed on linear axes and 

compared with the measured mean profile of Klebanoff (46). 

The predictions are again in excellent accord with the 

measurements. 

(3) Fluctuating Quantities  

The predicted profiles of turbulence energy, k 

and Reynolds shear stress, - p1111121  for R2 equals 7,700, 

are shown in figure 4.10 	• 	Also shown are the 

turbulence measurements in a zero pressure gradient 

boundary layer of:  Klebanoff (46). 	The predicted variation 

of both k and -u1u2 are in good overall agreement with 

the measurements. 	In the region close to the wall the 

predicted turbulence energy is too low by about 8%. 
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However, in view of the experimental uncertainty of 

turbulence measurements near walls the discrepancy is 

probably not significant. 	At the outer edge of the 

boundary layer the predicted profiles of k and - Pu1u2 

do not fall to their free stream values as rapidly as 

the measurements. 	This latter discrepancy is not 

thought to be important since in the outer region 

(x2  > 2.O iris) the values of k and - p111112  are small 

compared with their maximum values and therefore do not 

significantly affect the development of the boundary 

layer. 

In figure 4.11 the predicted turbulence energy 

profile within the sublayer of the boundary layer is 

shown. 	Also displayed is the turbulence energy profile 

taken from the measurements of turbulent pipe flow by 
171  

Laufer* (55). 	The total shear stress (g--- - Pu1u2) bx2  

is approximately constant in the sublayer of a high 

Reynolds number pipe flow which, in this respect, is 

similar to the high Reynolds number plane boundary layer. 

Laufer's turbulence measurements in the sublayer of a 

pipe flow may therefore be used for the purposes of 

comparison. 	The predicted turbulence energy profile in 

the sublayer lies below the measured profile. 	The 

maximum predicted turbulence energy occurs at x2  - 25 

* — —Klebanoff did not make turbulence measurements 
2 	2 of u2 & u3 deep within the sublayer and indeed utilised Laufer's results to estimate their variation in his 

boundary layer. 
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which is at roughly the same position as the measured 

maximum. 	Its value is, however, about 20% too low. 

Nevertheless, in view of the uncertainty in the measurements 

2 of k within the sublayer (especially u) the predictions 

are considered to be of acceptable accuracy. 	Measurements 

. 	.2 of u 	(the largest and most accurately measurable 

component of k) within the sublayer provide an estimate 

of the accuracy of the measured turbulence energy profile. 

Measurements in nominally identical flow situations by 

different workers display a scatter of about ± 30% in the 

maximumvalueof the sublayer turbulence energy 

profile is thus probably accurate only to within about 

20-25%. 

4.56 Accelerated Flows  

(1) Similar Boundary Layers  

Attention is first directed towards the prediction 

of the similar hydrodynamic turbulent boundary layers which 

arise from flow in a plane convergent channel. 	Although 

these boundary layers have been discussed in some detail 

elsewhere in this thesis it is appropriate, at this 

juncture, to mention that they have profiles which are 

completely self-preserving and flow parameters K, R2, H 

and Cf etc. which are invariant in the flow direction. 

In figures 4.12 and 4.13 the predicted variation 

of momentum Reynolds number R2  and shape factor, H with 

acceleration parameter K is shown. 	Also included in the 

figures are the experimental results of the present study, 
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Jones (40), Julien et al (43), the similar boundary layer 

data of Badri Narayanan and Ramjee (2) and the equilibrium 

boundary layer data of Herring and Norbury (37). 	As was 

noted previously this latter data, although of equilibrium 

flows is closely representative of a similar boundary layer 

at K•= 2.4 x 10-7. 	For the purposes of comparison the 

solution appropriate to a laminar flow and that obtained 

with the standard mixing length model are also displayed. 

The agreement between prediction and measurement 

is on the whole good. 	The model displays the correct 

qualitative trend of a reversion from turbulent to laminar 

flow as K is increased. 	Indeed above a value of K of 

3.2 x 10-6 no turbulent solution exists. 	That is to say 

that if the predictions are started with an initially 

fully turbulent boundary layer then, on application of 

the acceleration, a gradual decay to zero of the 

turbulence results and the mean velocity profile collapses 

to that appropriate to a laminar flow. 	This result is in 

broad agreement with the experimental results although the 

data is not sufficiently definite to establish accurately 

the value of K at which degeneration to laminar flow 

occurs. 	The predictions of R2  and H for K > 10-6 accord 

with the measurements to a close degree. 	For values of 

K less than 10-6 there is, however, some discrepancy; 

the predicted values of R2  being too low and the values 

of H too high by a few percent. 	Notwithstanding these 

latter small discrepancies, that the predictions display 

the observed reversion from turbulent to laminar flow 
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is an encouraging result; one which it should be noted 

is not obtained with the standard (A+  = 26) mixing-length 

model. 

Figure 4.14 displays, on semi-logarithmic U1... x2  

axes, the predicted mean velocity profiles for a range 

of values of K between 10
-7 and 3 x 10-6. Also shown 

is the 'universal' semi-logarithmic wall law. 	It may 

be observed that the predicted profiles show a progressive 

amount of 'overshoot' above the law of the wall as K is 

increased. 	Also as K is increased the division between 

the fully turbulent and the sublayer regions of the 

predicted profiles becomes less pronounced. 	This result 

is in overall agreement with experiment; measured mean 

velocity profiles in both similar and non-similar boundary 

layers in strong acceleration display an 'overshoot' 

above the law of the wall. 	Again the result is not 

predicted by standard mixing length models as is illustrated 

in figure 4.1. 

Figure 4.15 compares the predicted mean 

velocity profile for K = 2.2 x 10-6  with the measurements 

performed by the writer in an earlier study. 	There is 

some discrepancy between the detailed shape of the profiles 

but the main point to note is the predictions, like the 

measurements, show that the velocity profile lies 

considerably above the 'universal' law of the wall. 	By 

comparison, predictions obtained with the standard 

mixing length modell figure 4.1, 	fell below the 

logarithmic line. 
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The predicted mean velocity profiles at 

K = 1.5 x 10-61  2.5 x 10-6 and 3.0 x 10
-6 are compared 

with those measured during the present experimental 

study in figures 4.16, 4.17 &4.18 . 	In all three cases some 

discrepancy between prediction and measurement is evident. 

For the lowest value of K the boundary layer thickness 

is correctly predicted. 	However the predicted profile 

lies slightly below the measured in the region 

.6 U1
/U1 G 	

1 < •85 but above it in the region 
U
/U1G  > •85. < 	1 

The maximum error in velocity is about 7%. 	In the case 

of the other values of K the boundary layer thickness is 

slightly underestimated but the predicted profiles again 

lie below the measured profiles in the 'central' region 

*6 < 1 /17/1G  < -9. 	The error in predicted velocity 

appears to increase slightly with K; at K = 3.0 x 10-6  

the maximum error being about 10%. 	In the near-wall region, 
Ul  for 	/U1 G  less than 0.6 the predictions and measurements 7 

appear to accord reasonably well for all three values of K. 

In figures 3.21 & 3.24 the measured turbulence 

energy, k and Reynolds stress u1u2  profiles at K = 1.5 x 10-6  

are compared with the predicted distributions. 	It was 

not possible to make turbulence measurements in the near 

wall region and so comparison of the predictions with the 

measurements is unfortunately restricted to the outer 

4/  of the boundary layer. 	Nevertheless it is evident 5  

that the predicted turbulence 'energy and Reynolds stress 

agree reasonably with the measurements nearest the wall. 

In the outer half of the boundary layer the agreement is 
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less satisfactory as the predicted distributions of 

k and u1u2 
fall off to their free stream values more 

rapidly than the data indicates. A striking feature 

of the calculations is the behaviour of the parameter 

which is predicted to be roughly constant over 1111.1
2/k 

an appreciable 	region of the boundary layer 

in which it has a value of about 0-22. 	This value, 

which is in good agreement with the measurements in the 

near wall region is substantially less than the value 

of 0'3 found in a boundary layer developing in constant 

pressure. 	However, in the outer half of the boundary 

layer the predicted distribution of the. parameter - u/u2  
/k 

falls off (as in the case of k and 1717-2) more rapidly to 

its free stream value than the data indicates. 

To summarise the predictions of similar boundary 

layers, it can be stated that the gross features of the 

flows such as the variation of R2 and H with K, the 

thickening of the viscous sublayer and the degeneration 

to laminar flow for a value of K near 3.0 x 10
-6 are in 

accord with experimental data. 	This measure of agreement 

may be regarded as a major achievement of the model. 

There are detailed discrepancies in the predicted profile 

shapes; being most evident in the prediction of the 

turbulence quantities, k and ulu2. 	It may, however, be 

possible to improve these profile predictions simply by 

a better choice of the empirical constants appearing in 

the model.* 	For example, at K = 1.5 x 10-6 the 

The present experimental results did not become 
available until the final stages of the present study. 	Time 
did not permit further optimisation of the constants. 
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predicted distributions of k and 7172  fall off to their 

free stream values more rapidly than the data indicates. 

This indicates that a greater diffusion of k and e away 

from the wall is required. 	This may, perhaps, be brought 

about by modification of the diffusion terms for k and 

by, say, reducing the Prandtl numbers ak  and cr • 

However it must be stated that all the constants 

appearing in the model are interdependent and it is not 

certain that the agreement of prediction with experiment, 

for accelerating flows, can be improved without detriment 

tb the constant pressure results. 	Whether or not this is 

so may only.  be  determined by further computer experiments. 

Finally it should be mentioned that modifications to the 

forms of the functions F3 and F are not likely to bring 1-t 
improvement to the predictions. 	Experience with the 

model has shown that the form of the function F3 has little 

effect on boundary layer flows; indeed it could well have 

been put equal to its high RT  

everywhere. 	Tie requirement  

constant value, i.e. F3  = 2.0 

that the model predict the 

mean velocity profile in the adjacent wall region of high 

Reynolds number constant pressure flows imposes a great 

restraint on (and practically fixes) the form of F 

(2) Non-Equilibrium Flows  

In practically occurring flows the boundary 

conditions are rarely, if ever, such that similar boundary 

layers arise. 	It is thus of great practical importance 

that the model be able to predict the behaviour of non- 
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equilibrium accelerated boundary layers. With this in 

mind predictions were obtained and compared with the 

measurements of heat transfer to accelerated boundary 

layers by Moretti and Kays (63), Filetti (29) and 

Kearney et al (45). 

In figures 4.19 to 4.25 	the predicted variations 

of Stanton number are compared with the measurements of 

Moretti and Kays and Filetti. 	In all these experiments 

the acceleration is preceded by a development length of 

between 4 ft and 5 ft in which the free stream velocity 

is uniform; a step change in wall temperature is applied 

at x1 
equal to two feet and downstream therefrom the wall 

temperature is maintained nearly constant. 

For Filetti's runs (2 & 3) and Moretti and Kays' 

run (42) shown in figures 4.19, 4.20 & 4.24 the accelerations 

were such that the value of K was fairly uniform, with 

values of about 2.0 x 10-6 and 3.2 x 10
-6 respectively. 

In each case there is a marked drop in Stanton number in 

the region of acceleration and a rise downstream therefrom. 

The predictions consistently mirror this experimental 

behaviour though for each test the Stanton numbers are 

somewhat lower than the measured - even upstream of the 

acceleration. 	Indeed, for the data shown in figures 4.19 

and 4.21 the largest discrepancy between measurement and 

prediction (about 15%) occurs in the region 3 ft < x1  < 4 ft 

where the pressure gradient is zero. 	To the writer's 

knowledge all other theoretical models that have been 

applied to the prediction of these flows exhibit lower 
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values of Stanton number than the measured over this region 

of the flow. 	In view of this, the present predictions 

may be deemed to be satisfactory. 

For the data shown in figures 4.22, 4.23, 4.24 & 4.25 

K varies roughly sinusoidally; the data displayed in 

figures 4.22, 4.23& 4.25 has a peak value of K of about 

4 x 10-6  and that in figure 4.24  a value of 7 x 10
-6. 

In figures 4.22, 4.23 &4.25 the predictions like the measurements, 

show a rapid falling off in Stanton number in the region 

of severe acceleration. 	The predictions, however, 

display too early a recovery as the acceleration dies 

away. 	There is some evidence (figure 4.25 )to suggest 

that the predicted recovery, although taking place too 

soon is not as rapid as that displayed (when it does occur) 

by the measurements. 	A similar behaviour is displayed 

in figure 4.24 for the more severe of the accelerations. 

Agreement between measurement and prediction is even better 
4.25. 

than in figures 4.22, 4.23 847TTile end of the acceleration 

the predicted boundary layer reverts towards turbulent 

more quickly than the measurements suggest. 

Figures 4.26 to 4.29 compare boundary layer 

predictions with the measurements of Kearney et al (45) 

in strongly accelerated boundary layers with blowing at 

the wall. 	In these experiments the acceleration was 

preceded by a development length of about 1 ft in which 

the free stream velocity was uniform. 	The accelerations, 

applied over 11 ft, were such that K was fairly uniform 

with a value of 2.5 x 10-6. 	The temperature difference 
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between the free stream and the wall was maintained nearly 

constant throughout the test section. 	Various values and 

distributions (along the test plate) of the blowing parameter F 

were studied. 	The predictions shown in figures 4.26 to 4.29 

were all started with the measured mean velocity and temp-

erature profiles at the beginning of the acceleration, the 

first measuring station. 

In figure 4.26 	the predicted variation of 

Cf
/2' 

R2 and St is compared with the measurements for a 

case in which the blowing parameter, F was zero. 	The 

predictions are in good agreement with experiment. 	The 

predicted skin friction coefficient remains roughly 

constant, as do the measurements, throughout the acceleration; 

the predicted values being about 4% too low. 	The 

predicted variation of R2 is also in close accord with 

the measurements with some small deviation (10% maximum) 

occurring towards the end of the acceleration. 	The 

Stanton number decreases smoothly in the region of 

acceleration and here the predictions and measurements 

also closely agree. 	However, as the acceleration dies 

away the predicted Stanton numbers do not rise as 

suddenly as the data indicates; the maximum discrepancy 

being about 15%. 

The data shown in figure 4.27 is of an 

accelerated boundary layer to which blowing at the wall is 

applied; the value of F is maintained constant and 

equal to *004 throughout the test section. 	The agreement 

between the predictions and the measurements is not as 
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good as in the previous case . 	The predicted values of 

Cf 
show a slight decrease through the region of 

/2 
acceleration whereas the measurements display a small 

increase. 	The predicted variation of R2  is in quite 

close accord with the measurements with a small deviation 

occurring at the end of the acceleration. 	Discrepancies 

also exist between the predicted and measured Stanton 

numbers. 	The measured St values decrease smoothly 

through the acceleration; the predicted values do also 

but at too great a rate. 	Some explanation for the 

discrepancies that exist for this case may be found in 

the fact that the data probably represents a difficult 

case to predict since K and F produce opposing effects in 

accelerating flows. 	For example a positive value of F 

tends to increase St whereas K tends to produce a decrease; 

a fine balance between these effects probably exists. 

It should also be mentioned that the mixing-length-Al--

correlation model of Kearney et al does not predict 

this case accurately. 

In figures 4.28 and 4.29 predictions and 

measurements are shown of accelerated boundary layers in 

which a step in blowing is applied about half way through 

the acceleration. 	In figure 4.29 the blowing (with 

F = .004) is applied over the initial region of the flow 

(and removed about half way through the acceleration) 

whereas in figure 4.28 the blowing is applied over the 

latter half of the flow. 
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Figure 4.29 shows a measured Stanton number 

variation which falls smoothly in the initial region of 

acceleration until the step in blowing parameter is 

reached whereupon it rises sharply. 	Downstream of the 

step the Stanton number continues to fall until the end 

of• the acceleration whereafter a rise occurs. 	In 

figure 4.28  the measurements show a smooth decrease in 

Stanton number in the initial half of the acceleration. 

At the step in blowing parameter F a sudden fall in 

Stanton number occurs and this is subsequently followed, 

at the end of the acceleration region by a small increase. 

In both cases (figures 4.28 and 4.29 ) the enthalpy 

deficit thickness Reynolds number RA  increases monotonically 

through the flow. For both the flows shown in figures 

4.28 	and 4.29 	the predictions accord reasonably well 

with the measurements although (as in the previous cases) 

the predicted Stanton numbers do not rise quite as 

rapidly at the end of the acceleration as the measurements 

indicate. 	There is also some discrepancy (about 10% 

maximum) between the predicted and measured values of 

RA shown in figure 4.29 
	

However, this is not 

considered to be significant as Kearney et al used the two-

dimensional integrated thermal energy equation to calculate 

the experimental values of RA, which are thus likely to be 

of questionable accuracy. 	Notwithstanding these detailed 

discrepancies, the overall agreement is good; a 

satisfactory result considering the sudden changes in 

boundary conditions which were applied to these flows. 
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4.57 Concluding Remarks  

I. 	In this section a new turbulence model has been 

presented in which a description of turbulence is provided 

through solution of partial differential equations for 

turbulence kinetic energy and dissipation rate of 

turbulence energy. 	The model is such that it may be 

applied to the calculation of both the fully turbulent 

and the viscous sublayer regions of the boundary layer. 

This latter feature was achieved through the inclusion 

of terms which represent the direct influence of 

molecular viscosity on the turbulence structure in the 

near-wall region. 

2. The model has been applied to the prediction 

of the turbulent boundary layer developing in constant 

pressure and to a number of strongly accelerated flows. 

For some of these latter boundary layers blowing at the 

wall was present. 	Some discrepancies between experiment 

and prediction have emerged, but overall the model has 

been shown to be remarkably successful in predicting the 

hydrodynamic and thermal consequences of acceleration. 

The model appears to offer substantially greater 

predictive accuracy than has so far been achieved with 

the mixing length and other simple 'turbulent viscosity' 

models. 

3. For the future, some improvement (although 

probably small) in predictive accuracy may be possible 

by a better choice of the empirical constants appearing 

in the model. Any further optimisation of these constants 
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should, however, be performed through examination of a 

slightly wider range of plane boundary layer flows than 

presently considered with perhaps consideration being 

given to equilibrium boundary layers in mild adverse 

pressure gradient. 	It must be recognised, however, 

that.the model is relatively insensitive to the choice 

of constants and any improvements are thus likely to be 

small. 	Improvement in the low Reynolds number form 

of the model may perhaps be achieved if, say, the 

'turbulent Prandtl' numbers, ak and a  are made functions 

of the Reynolds number (k7€  ) rather than given constant 

values. 

4. 	In many practically occurring strongly 

accelerated flow situations large temperature gradients 

also exist. 	These variations in temperature produce 

associated gradients in fluid properties e.g. density and 

molecular viscosity. 	The model, in its present form, 

may be applied to the prediction of these flows. 	Of 

course, to obtain accurate predictions some further 

development of the model will in all probability be 

necessary. 	Further testing of the model is therefore 

required to establish its applicability to flows with 

large fluid property variations. 
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CHAPTER V 

Conclusions  

The aims of the present study which were set 

out in the Introduction of this thesis have, for the most 

part., been achieved. 	The main findings have been 

outlined at the end of each chapter and so all that remains 

is to summarise the outcome of the research. 

5.1 The Experimental Programme  

Three 'constant K' turbulent boundary layers 

have been set up and studied experimentally. 	The values 

of K considered were 1.5 x 10
-6, 2.5 x 10-6 and 3.0 x 10

-6 

respectively. 	Mean velocity profile measurements in these 

boundary layers displayed a thickening of the viscous 

sublayer (in x2  co-ordinates) and the division between the 

fully turbulent and the sublayer regions of the boundary 

layer became progressively less pronounced as K was 

increased; indeed, at K equals 3.0 x 10-6 no division 

could be identified. 	Also observed with increasing K 

was the progressive deviation of the measured velocity 

profiles from the semi-logarithmic law of the wall. 

An implication of this result is that turbulent flow 

calculation procedures which use the semi-logarithmic 

law as part of the solution (e.g. by patching a finite 

difference solution of the boundary layer equations onto 

a semi-log-law near the wall) may be expected to yield 

results which become increasingly in error with increasing 
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accelerations. 	The above results are in accord with 

the findings of other workers in studies of arbitrarily 

developing accelerated flows. 

The measurements of fluctuating quantities 

yield results which illustrate some important differences 

between the turbulence structure of low Reynolds number 

accelerated boundary layers and that normally found in 

high Reynolds number flows. 

...... • • - 

5.2 The Theoretical Contribution  

The main outcome of the theoretical work has 

been the provision of a turbulence model which is 

applicable to both the fully turbulent and the viscous 

sublayer regions of the turbulent boundary layer. 	The 

model involves solution of partial differential rate 

equations for turbulence kinetic energy and dissipation 

rate of turbulence kinetic energy. 	It contains a 

number of empirical constants but it is emphasised that 

these have all been obtained by rference to high 

Reynolds number constant pressure boundary layer flows. 

The model, when applied to the calculation of a range 

of accelerated boundary layer flows, led to hydrodynamic 

and heat transfer predictions which were in close overall 

agreement with experiment. 	It thus offers substantial 

improvement in predictive accuracy over simple mixing 

length models which fail completely to predict the 

consequences of strong accelerations. 
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5.3 Suggestions for Further Work  

Although the proposed model was remarkably 

successful in predicting the overall behaviour of 

boundary layers undergoing laminarisation, comparisons 

with the results of the present experimental study 

have• revealed certain detailed discrepancies. 	These 

are most evident in the predicted profiles of turbulence 

energy and shear stress. 	However, due to considerable 

delay by the manufacturers in delivery of a fan the 

results of the experimental study did not become available 

until the final stages of the programme. 	At this late 

stage it was not practicable to embark upon a programme 

of modification of the model. 	Nevertheless, some 

suggestions have been made as to how the predictions may 

be improved and these should be investigated. 

In principle the model in its present form may be 

applied to boundary layer flows in which large fluid property 

variations arise due to, say, large temperature differences. 

The application of the model to these flows appears 

worthwhile, though small adjustments will in all 

probability be necessary to obtain accurate predictions. 

The model may also be profitably applied to the calculation 

of low Reynolds number turbulent pipe and channel flows. 

From the experimental viewpoint there is a 

general shortage of data regarding low Reynolds number 

turbulent flows. 	The task of devising and refining a 

turbulence model for low Reynolds number shear flow 

would have been substantially aided if measurements of 
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all the components of u.Iu.3  had been available for a 

range of similar turbulent boundary layers encompassing 

accelerations upto the point at which complete degeneration 

to laminar'occurs. 	The physical dimensions of the present 

apparatus precluded such measurements. 	In the future 

detailed turbulence measurements in accelerated boundary 

layers could be made by either utilising a working fluid 

with a larger viscosity than air (e.g. water or glycerine) 

or by using much lower velocities than presently used; 

either methods would yield boundary layers which were 

much thicker, although in neither case can it be said that 

the attendant experimental difficulties are trivial. 

Other simpler low Reynolds number turbulent 

flows could perhaps be studied to advantage. 	For 

example, measurements performed in a low Reynolds number 

turbulent flow under the action of pure shear or strain 

would certainly be of aid in devising low Reynolds number 

turbulence models. 	In any case more quantitative 

measurements of low Reynolds number turbulence particularly 

within the viscous sublayer of the boundary layer are 

certainly required. 
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Nomenclature  

Meaning  
Equation of  

First Appearance  

     

A 	a function appearing in the 
Van Driest near wall mixing 
length formula 

As 	A+ for a similar boundary 
layer 

A 	constant in turbulence 
energy equation 

AD 	constant in turbulence 
energy equation 

al'  a2, 

a3 & a4 

ami 

constants in algebraic 
length scale equation 

coefficient of dimensions 
(velocity)2  : a function of 
turbulence 

4.8 

4.13 

4.19 

4.19 

4.20 

4.22 

4.45 

2.10 

ai(t) 

Cf/2 

C 

non-dimensional coefficient, 
a function of time 

T
W
/ 2 skin friction coefficient, 
PU1,G 

constant in semi-logarithmic 
law of the wall 	 3.3 

C
P 	

specific heat at constant pressure 

CD, C 	constants in the turbulence energy 
P 	equation 	 4.19 

non-dimensional functions of RT 	4.22 Cl, C2 

c 	a constant in lag equation for A+ 	4.14 

Dv 	Van Driest damping function 	4.10 

d 	height of Stanton tube 	3.6 

E 	D.C. voltage signal from hot-wire 
anemometer 	 3.8 

e 	fluctuating voltage signal from 
hot-wire anemometer 
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Equation of  
Symbol 	Meaning 	First Appearance  

F4n14. 

F1,  F2.. 

& F3 

surface mass transfer parameter, 

U2 w /U1 G 7 

spectral density of ul  

functions of Rm  appearing in 
dissipation rate equation 

F 	function of RT in 'turbulent viscosity' formula 

2.10 

3.10 

4.36 

4.27 

U fkrp. 	1/U1,G 	 2.12 

f4..x. 	'law of the wall' 	3.1 

f frequency 	 3.9 

Gkf4- 	frequency spectrum of u2 	3.9 
51 

H shape factor, 	/52 	2.10 

ho 	height at entrance to plane 
convergent channel 	3.12 dU1,G 

 

distance between entrance and line of 
intersection of planes forming 
convergent channel 3.11 

Am  mixing length 

  

4.6 

IT 2D algebraic length scales in turbulence 
energy equation 	3/2  

k 
dissipation length scale, 

4.19 

4.29 
e 

'matching' function 	4.10 

K acceleration parameter IR77--  G 	1 

k 	turbulence kinetic energy, uiui 	2.6 
2 

L a turbulence length scale 

Lxl 	length scale representative of large 
eddy size 	 3.13 
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Equation of  
ymbol 	Meaning 	First Appearance  

non-dimensional surface mass 
transfer, U2,w/U 

T 

N constant in 'turbulent viscosity' 
formula 	 4.16 

n1 	wave number in direction 1 	3.10 

constant in laminarisation 
parameter 

PI  V, Ps 	mean static pressure 

Ptot 	total pressure 
	 3.5 

P constant in hot-wire anemometer 
response equation 
	3.8 

p 	fluctuating component of pressure 

Lp 	Stanton tube reading 
	3.6 

p+ non-dimensional pressure gradient, 

dP 
PUT3 dx 1 

Q constant in hot-wire anemometer 
response equation 	3.8 

." 
qw 	wall heat flux 

R..13 	Reynolds stress tensor, u.u.3 	2.5 

R2 	momentum-deficit-thickness Reynolds 
number, 52U11G/v 	2.10  

R 	enthalpy-deficit-thickness Reynolds 
number, AU17G/v 	 2.11 

R k4o turbulence Reynolds number, —6-‘, 	4.19 

RT 	turbulence Reynolds number, k2/ve 

two-point velocity correlation 
tensor, 	 u.(x)u.(x+r) — 
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Equation of  
Symbol 	Meaning 	First Appearance  

vector separation with 
components rl, r2  and r.,1  

- 
qw 

Stanton number, 	 4:1  _e  ) 
ov
, 

 i,G
(
7G w 

U 6 2 
/U
1,G 

2.12 

S1J.. 
	twice the mean rate of strain 	4.2 

T 

U: U. 1' 

temperature 

time 

mean velocity components 
(i = 1, 2 and 3) 

UT 	wall friction velocity, fw ip 	3.1 

Uo 	velocity outside boundary layer 
at entrance to plane convergent 
channel 	 3.11 

Uc 	convection velocity 	3.10 

AU 	'strength of the wake' 	3.4 

+ 	 . 
U1 	non-dimensional velocity, Ul/UT 	3.2 

u . 	fluctuating velocity component 
(i = 1, 2 and 3) 

ui 	r.m.s. of fluctuating velocity 

wkx2/x2G} the law of the wake 	3.1 ,  

xi 	co-ordinate axes (i = 1, 2 and 3) 

x1 
	co-ordinate in the mean flow 

direction 

x2 	co-ordinate normal to the wall 
and mean flow direction 

x3 
	co-ordinate parallel to the wall 

and normal to the mean flow direction 

r 

St 



- 165 - 

Equation of  
Symbol 	Meaning 	First Appearance  

non-dimensional distance 
normal to the wall, x2UT/v 	3.2 

distance from entrance to plane 
convergent channel 	3.11 

molecular thermal diffusivity 	2.9 

x2 

x1 

a 

Clauser equilibrium parameter, 

61 dP 
T 5e 
intermittency 

 

intermittency factor 

A 	enthalpy-deficit thickness, 

0G  
Ul (, ) dx2  

o 1 , G u

e 

 w G 

6 	boundary layer thickness 

61 	displacement thickness 

1(1- Ul/U )dx2 
o 1,G 

62 	momentum-deficit thickness, 

u1 	U1  

o 
-u
11G 

(1- /U1,G)dx2 

6.. 13 Kronecker tensor 

4.16 

0 

dissipation rate of turbulence 
kinetic energy 	 4.22 

U1 
V 

mean thermal energy 	2.9 

fluctuating component of thermal 
energy 	 2.9 

von Karmen constant (p,,,  '4) 	3.1 

similarity variable, 
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Equation of  
_Symbol 	Meaning 	First Appearance  

	

1 11 	integral length scale of turbulence 
in direction 1 

	

A 
	 constant in mixing length constant 	4.10 

	

A 
	turbulence microscale, vk 

P 
	dynamic molecular viscosity 

v' v T 

E 

kinematic molecular and 'turbulent' 
viscosities respectively 

3.14159 

density 

molecular Prandtl number 

GT 'turbulent' Prandtl number for 
thermal energy 4.11 

Gk 'turbulent' Prandtl number for 
turbulence energy 4.19 

'turbulent' Prandtl number for 
dissipation rate of turbulence 
energy 

T
t 

11-1  
total shear stress, (IL 	- Pu1u2) x2  

turbulent shear stress, (- pulu2) 

Subscripts  

G 	denotes free stream conditions 

max 	refers to maximum 

min 	refers to minimum 

o 	refers to limiting value of zero 

w 	denotes wall conditions 

co 	refers to limiting value of infinity 

Superscripts  

denotes time averaged properties 

denotes 'law of the wall' non-
dimensional co-ordinates 

4.36 
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Appendix 1 : Analxsis of_the_electrical signals obtained  
from a linearised hot-wire anemometer  

Introduction  

The equations which govern the response of a 

hot-wire anemometer have been derived by Champagne and 

Sleicher (17). 	They applied the equations (which include 

the effects of the tangential velocity component as well 

as the non-linearities caused by high turbulence intensity) 

to an idealised X-wire array the two wires of which were 

aligned so that their normals were inclined at +45°  and -45°  

to the flow direction. 	The two wires were also assumed 

to have identical response equations. 

In the present work, in order to obtain measurements 

close to the wall, it was necessary to position the X-probe 

so that it formed an angle of about 5°  with the wall; 	the 

wire normals were thus inclined at angles of +50°  and -40°  

to the flow direction. 	Also in practice it is seldom 

possible to adjust the gains of the two linearisers so that 

the response equations of the two wires are identical. 	The 

equations which govern the response of this 'non-ideal' 

X-wire array are thus presented. 	For reasons of practicability 

the analysis is restricted to low turbulence intensities. 

The linearised constant temperature anemometer  

The output voltage of a linearised constant 

temperature hot-wire anemometer is given by:- 

E4t4 = P + G Ueff kt) 
	(A.1.1.) 
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Ekt-)- is the total output voltage, Ueffkt) is the total 

effective 'cooling' velocity and P and G are constants 

which depend upon the wire resistance, geometry, temperature 

and lineariser settings. 	Now according to Champagne and 

Sleicher the effective cooling velocity for a wire inclined 

so that its normal forms an angle a with the mean flow 

direction is given (to first order) by:- 

Ueff = UMcosa (1 + 1k2tan2a - 
1/8k

4tan4al 

u 	u 
x 	

m 
+ 	+ a tyni 

(A.1.2) 

where a = [tana (1 - k2(1 + 2tan2m) 

k4  4.  2 	tan2a(1 + 4tan2a)1] 

/(1 + 1k2-tan2a - 1/8k4tan4m) 

Um  is the mean velocity, um  is the fluctuating component 

of velocity in the flow direction, un  is the component 

of fluctuating velocity normal to the flow direction in 

the plane of the X-array and k represents the fraction of 

the velocity component, parallel to the wire, that effects 

the wire cooling. 

Following the findings of ref (17) a value of 

k of 0.2 was adopted for the hot-wires used in the present 

study. 

Now equations (A.1.1) and (A.1.2) may be 

combined to yield:- 
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+ e = P + QUm(1 + m  +a a Um 	m 

where Q G cosm{1 + 1k2tan2a, - 2k4tan4a} 

(A.1.3) 

E is the average (D.C.) output voltage and e is the 

fluctuating component of voltage. 	If equation (A.1.3) 

is averaged then there results:- 

P + QUm 
	(A.1.4) 

The 'constants' P and Q must be determined by calibration 

of the hot-wire with respect to, say, a pitot-tube. 

Equations (A.1.4) and (A.1.3) may be manipulated 

to yield:- 

e = Q (um + a un) 
	

(A.1.5) 

The single 'normal' hot wire  

For a single hot-wire aligned normal to the flow 

direction 'a' and thus 'a ' are both zero. 	Equations (A.1.4) 

and (A.1.5) then yield the following expressions for the 

mean velocity and the turbulence intensity in the flow 

direction:- 

u1  = Of - P)/(1 

(A.1.6) 

irr? 172 /Q 

The X-hot-wire probe  

The equations (A.1.4) and (A.1.5) may be used 

to evaluate the electrical signal obtained from an X-wire 

aligned to the flow direction as shown below:- 



- 

wire A 

wire B 

By applying equations (A.1.4) and (A.1.5) to the 

above X-wire array we obtain, after some manipulation:- 

e 2  
= U2 	u2 + 	ax 2 aA unum QA 

,eBx 	-I- 
2 

V--) = U2 	a2 u2 
QB 	B n + 2 aB unum 

(A.1.7) 

Q a + QBaB)u2 
2  

t 
,eA  + eB)

2 
_ u2 + ( A A  

QA + QBA + QB 

2(QAaA  + QBaB) 

(QA + QB) 

 

u u n m 

where the subscripts A and B denote the values of 'Q' and 

'a' appropriate to the wires A and B respectively. 	The 

equations (A.1.7) may be solved to yield values of um, 

u2 and umun from measured values of eR, e2  and (eA + eB)2. 
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Appendix 2 : Initial profiles for the predictions  

Before numerical solution of the boundary layer 

equations may be commenced it is necessary to specify 

the initial profiles of all the dependent variables. 	Where 

_experimental profiles were not available it was thus 

necessary to use estimated 'starting' profiles. 	The 

following initial profiles were therefore assumed:- 

(1) Mean velocity  

For the 'starting' profile of mean velocity it 

was assumed:- 

= U n- for Z > Z J 

1 
U
1,G 

x
2,G •Cf where 	Z = x2/  • 	and Z 	[ 

Ix21G 	 /2 

the boundary layer thickness, x27G.and exponent n were 

obtained from estimated values of R2 and H. 

i.e. 	n = (H - 1)/2 

x2 ,G =
R2 (Hil)H  

Ul G  H-1 , 

Because of the linear profile for Z < Z. these latter 

expressions are only approximate. 	Nevertheless they 

should be of sufficient accuracy for the present purpose. 

and U 	U x2  for Z < Z 1 	T   



3'2 e = k /A  
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(2) Turbulence kinetic energy  

The initial profile of turbulence kinetic energy 

was assumed given by:- 

k = ao 	alZ 	a2Z2 
	a3Z3 
	

x2 > 25 

k 7  (4)2 [b0  bl 	< 25 

The quantities ao, al, a2, a3, bo and b1 

appearing in the above equation were evaluated by imposing 

the following conditions on the k profile 

Tw 	dk at 4 	25, k = 3.3 - and0 Tz- 
dk and at Z = 1, k = kG and 72- 	0 

(3) Dissipation rate of turbulence kinetic energy  

For the initial profile of dissipation rate it 

was assumed that: 

• where A was given by:- 

= 	x. Z(1 - iz) x21G 	(F 	).75  
w,00 
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Fig. 3.2(a) 	Hot-wire signal processing equipment. 

Fig. 3.2(b) 	General layout of apparatus 
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Fig 3.3(a) 	Traversing mechanism 

Fig 3.3(b) 	Flattened tip pitot and Preston tubes. 



g 2 , 42. 

o.7 

o.5 

• 

o.4ZVi  
10 

1  
soy 16 5 104' u 	x 1,c1 	e. 

FICA.1 , 	BOUNDARY A"IER. IN ZERO PRESSURE GRADIENT, 

MEAN VELOCITY PROFILE R 	abet la 



so wootterwiD ; 1. ' 
Z 

' 39cnid SIM 	' XV )..ItiVCINnoca '5IG Bnzirr, 
OT 	6 	9 	1. 

I 	I 	I 

2 

3 



• 
• o • o•o 

• `' 
• 

•  

• STANTON 'TUBE MEASUREMENTS 

0 MOMENTUM BALANCE (Ec;C, s• -r ) 

• • • 0 • • 
• 

Boo 

Goo 
R e 

400 

Zoo 

oo3 

• oo2. 

• • .; 

.001 

• 0 • 0 

0 
0 	5 	1,o 	1.5 	ao 	25 	3o 

co 

•-• 

I 	I 	I 	1 	I 	1 
Bo 5 	 i5 Co 25 30 o 5 to 1.5 20 25 

DISTANCE FROM WEoc%E. 	fins) 	 DISTRNCE FROM WET:Yoe 	 C+v+ s)  
F.  3.6: 'tasoustpAIZt.e LAY ER NI A PLAO.4E CONN ERC,ENT CHANNEL: V42.1A-r N OF R2)1.4 , C;(2, &  

TI-12OUGH TkE AC.CELSRATION, 



• 
• 0 0  • Q 0 • 

• STANTON 'TUBE MEASUREMENTS 

0 MOMENTUM BALANCE (Ect2.3.7 

0 

I 	I 	I  0 
to 15 2.0 25 So 

x (ins) 

6 6 6 6 

I 	j  

o03 

• 0°2 

cF 

• col. 

0 
lo 15 20 25 Bo 

( tins) 

2.0 

400 —0 0 0 

a a 
Boo 

Ft 

2oo 

loo 

o 	  
1o, 	15 	2.0 	25 	SO 

DISTANCE FROM WEDGE, INLET (iiiS) 
PIG. 5.7  ; soUNDAR"f I—AYER. IN A PLANE 

1  
0 5 10 15 2.0 2S SO 

DISTANCE. FROM WEDGE INLET (ins) 
CONVER.GE,NT CHANNEL VARIATION OF Calf Hi 

cpia 4 K THCZ UN-1 THE. AccSugmAN•riON 



• oo3 

.002 

CF 

.001 

0•000 0 o e 
• • 

• STANTON TUBE MEASUREMENTS 

0 MOMENTUM BALANCE (Ecip 3•7) 

2:o 
0 

0 

loo 

Boo 

2
400 

Boo 

Zoo 

3.0 

2'o 
14406  

----- 0 
---0 

10 15 20 25 Bo 
• X (ins) 

10 15 20 25 So 
(iris) 

1 	1  
lo 15 2o 25 Bo 	0 5 10 	zo 25 SO 

DISTANCE. FROM WEDGE INLET 	 DISTANCE FROM WEDGE INLET (;rIs) 
FI at .B.13 .. BOUNDARY LAYER IN A PLANE COSNER.C.IENT' CHANNEL: vARIATioN OF Cal  'H I  cpia 4 K  

I.': 	A e" W i 	t7 dT t P1 t‘i 



- 189 - 

ito 

.8 
UI  

Aim ink o
,t - o 

o 
n[a 0 

OA 0 
0 

0 

CP 

.7 

oz 	, 1 
A )4 1 	16 ims, 

x 	« 24 ins. 
	 LAMINAR SOLUTION 

1 	1 	1 	1 	1 	1 	1 	1 
2 	5 	4 	5 	co 	8 

Ulp X  21 x10 3  
i 

Oto.'5.9.  'CONSTANT 141  BOUNOAPLY LAY ER : MEAN VELOCITY PROFILE  

K 	1,  5 x10 '̀0   



2.0 

c)- 01. 	z 15311a:lici A1vD013N NV31,4 :416..t 3.',"1 )%IibsCihir10421 	INVISN00 OVS stD1 

S OT 
X 	n cS 

• z 

	

I 	N01.1.r1-105 rv'1slIvs1V1 

	

0 	I. 	.0 0)  
V ,-, 

	

I 	.561! oz z X 	v 	r1 
FF1 • s 14 I, 	0 

0 	0 	vc3  6170 S 8E10°GcbS5  0.T 



141 

o•6 

O. 4 

0'  

1:1  Li3  62  A30(3464  • • 
• . •111 

CAtj 

ch 0bo  4) Gs tbs. pa 	tb A 0 CC 00 cb A 	A 

o 0 

o X 	12. ins. 
x 	: 20 ins, 

X 1 : ninS, 

	 LAMINAR. SOLUTION 

	

I 	I 	I 	I 	1  

	

G 	7 	a 	c? 	to 

x id" 3  

F 	3.11  \CONSTANT le BOUNDARY LAYER. MEAN vgLocrr•i,  PROFILES )  k : o % io-b 

I L 	I 
a 

 

	

4 	5 
[511 U i,ca  '4  

3-4  



oi01  102  
p Ui 4  X 2  

	 ̀ CoNSTANT 	1',OUNDAR.:11  LAIYER. : 

MEAKI YELOGITY PROFILES /  K :1 , 5 00-1°  

- 192 - 

1.0 

.8 

.6 

4 

.2 

io; 

VELOCII'Y PROFILE 
atIvEIJ 61# THE. 
LOGARITHMIC LAW 
OF THE WALL a • 

a • 
0 

• X 	: 16 ins. 

a 	X 	r. 2.0 Ins, 

A K 2.04-;ms, 

o X i : 2.8 ins. 

1  

o' 
.6a 

• 



VELOCITY PROFILE 
GIVEN BY THE 
LOGIARiTHMIC. 
LAW 05 THE WALL 

.11,=•••••• 

o Xi: 20 inS, 
A X1 - 2.4inS, -  a 	y 

i : ZS iris , 

1 	 I 	i 
1Od 
	

102. 	 io's 
I U l i cd(2.  

1.0 

C 

'4 

'2 

- 1.93 - 

14 

FtG. 3.13 1. 'CONSTANT 14 1  BOUNDARY LAY ER 1, 

  

MEAN VELOCITY PROFILES 1 1G: ZS % 10-  (° 

     



1 	 1 	1 

103 
0 
101  10 2 

J1 	Z -L 

- 194 

1'O 

'6  

U" 
U1,01  

4 

gig:fa:6
a cg@ RaglaggYfhekilP 

VELOCITY PROFILE 
CitvEN BY THE 

A 
Do 	 LOGARITHMIC LAW 

tO 	 OF THE wALL., 

04° 
A 	X1 7. 201MS, A 

A 
a 	: 24 Iris, 
o X1 z2.8tris, 

111••••••• 

2 l•-••••••• 

FIG.  1.14, 'CONSTANT K' BOUNDARY LAYER:  

MEAN VELoc.ITY PRoFtLES = Si 0 •Hi0 



ZZ 

20 

15 

12 

10 

8 

0:) 

4 

2. 

• • 
• 

• • •• 
••• 

• • • • • • 
+ 1 

1 U 	 2 '4 	X4 4- S•0 
1  

• 

• 

• 
• 

- 195 - 

1 2. °Ao 	 0  

Ft or. 3.15: 'CONSTANT 141  BOUNDARY LAYER ;  14 :1.3 x 1er42  

MEAN VELOCITY PROFILE IA UNIVERSAL. 

CO.. ORDINATES. 



2 

0 

u em s  I • 
• • III  

a 0" 

a 
a 

I 
• 

I 
• 

22 

Zo 

18 

1(12 
U+  i 

14 

12 

is • 
• asit 

III 

+ 	ri 
U1 :—.41  lk•IX a  + m'0 

10 

8 

b 

4 

- 196 - 

101 	 102 	 101  
X +  2. 

FIG. -6.1b  : '  CONSTANT  v...' BOUNDARY LAYER., It = 2..5 X10` t°  
MEAN VELOCITY PROFILE IN UNIVERSAL. 

CO. ORONAT ES 



- 197 - 

22 

ao 

113 

16 
U+  

14 

12 

10 

8 

6 

4 

2 

+++ +4 
 + 

4- 

U1 ='4401 LI1X+z+ 5'0 
4- 

0 
101  1 10z 	 0 3  • 

X +a  

F1c1,3.17:  •  CONSTANT 44 1  BOUNDARY/ LAYER )  g = 3'o%1ClO 
MEAN •/E,LOCITY PROFILE IN UNNERSAL  
GO- ORDINATES. 



4,,a 
• SO,  

ot, 

 

C)0011, 	1011 

   

     

     

ST112101id A It5N3INI Szly3-Incatt11. "IVNICrIltOts101 2$3.1.11-1 AtiVatsmos 	1SY15NO'D, :54'S 3x) 

e- 	£ 
crt 	[ 	• 

zT TT of 13 9  

41.) 	1 ovio+ 0  f 	4.v> 0 o0 

43
U-14-1 

- 

V o 0 at> 
	Zo. 

v  v33 
> cb,  

o Cita • +in  + 
O (77   

.9P 0+ + 
o vo 

ov 004- 
o cl+ 

arm, 
'404  

90 • 



o X1  r• 12. 6015 

>< = 20 ins. 

+ 	X 	= 24in5 ,  

o r28ins. 

1 

4 	5 	co 	7 
u ticm  )4 a] 

)(1,c," 3  

FIG. 3'4 9; 'CONSTANT 141  SOUNDARY LAYER 1. LONGilTUDISIAL TURBULENCE 1NTENSIT'•( 

PROFILES, K.: 2.5 y..10-b 



N.) 
0 
O 

tito 4a4+o 	oi- 
I 	I 	I 	I  

9 	10 

INTENSITY PROFILES, 

0 

.)•4  
FIG, 1,20: 'CONSTANT 14' BOUNDARY 

% 3.0 s 10" (ct 

2,] x -3 1.0 

3 4 5 	 7 

LAYER LONITUDINAL TURBULENCE 

0 
? 0  

o it, 0 
+ A  0 

S)  r, 
0* 1E 4e  

0 or  +Ai, tier 12144040  

0 

a 

0 

, 04 

• 

■ 

• 14 

.12 

• o8 

• etG 

0 Cep 
0 o  0 



°ZOO . 

SZ 00 . 

' 	°tot 
A.I.MolIN NV31/4 31.4.1. 4O 	CalNennvIv, 
NOLL nettusta SS31,15 "al`ii3H5 iNannebnl — 

Ii3.1.3v401#13Ntl BIWA ..1.0H V 4.utt.sk  oalinsvaw 
SS321.1.5 avass.  1Na, neairu 	• 

GS321.1.5 "arV3i.15 

i7T 	ZT 

el  s 

, Or 
WI 

t 

; 	3) 	1 Ativo..inoca ism INVI5NO7, 

2  

' 

KtiTn  S 

• • g 00 0 . 

? • • • I. • 

otO 0 • 

5531,15 tV31-15 Is3nn9tin1 031v:3tid 



- 202 - 

.00E5 

.0020 

`U1 U 
U1'0% 

oo15 

.0010 

.0005 

4 	- 
142" 

FICA, 3 , 22'. ‘GONSTANT W BOUNDARY LAyERS: 

TURBULENT SHEAR STRESS PROFILES  

(CALcUL.ATED FROM MEASURED MEAN 

VELOCITY PROFILES,, 



• 08 

LA.Iz 	• 06 

u1)Gt 
u.' 

s • 04 u 1IG 

• 02 

A 
A 
A A 	 A 	U.' 11 

U11  Ci• A 

a .o, 	 • 	U.' A 	 • 	S O 	 U Ais 	 1 I C" 
ilAA .14",... 

•° •° 	 + 	.%) 
• 	a 	 2 
. ••• 	A 	 U1iGir +Ft+ ++++4+ 	•• 	A • 4-.1. 	 A 

+ 	• • 	A + + 	• 

	

+ + • 	A + 

I 
A + A

l 
 + 4 

1 
la 	14 	16 

t e 4 4 

I 	I 	I 	I 	I 
0 	a 	4 	G 	S 	10 

[U1,0  X 2.1 sx lee
V 

Fla , B. ZS: CONSTANT IC.' BOUNDARY LAYER 1  14 T. 1'5 %1O-(̀ ' 

   

  

TURBULENCE INTENSITY PROFILES X  1:12 ins • 



0.05 
0 

0 

0 

PREDICTED 
k PROFILE 

0 

PREDICTED ."1 LIZ 
preo FILE 	k. 

.004 

0 

4 	Co 	 8 10  12. 

.001 

0 

0 
0 

0 0 
0 

.003 

k_ 
1J 2  1,c1 

.002 

•• U.1 U.2 
k 

 

0 k 

025 

0.2 
U.1U 

Sk 

0.15 

- 204 - 

utic, 	%les 
L 

Fic.q. B.24  %CONSTANT K1  BOUNDARY LAYER- 1  K. = 1'5 1410-
PROFILES OF TURBULENCE ENERGY AND  

	

STRUCTURE PARAMETER • 	/K. 	1 r. 12 inS. 



• 

• • • • 

• • 
Abo• • 

4146- 

   

.• 
S
. • • • 	• 

• 

• • • 
• 

• 
o 	 I 	 I 	 I 	 I 	 I 	 I • 	I 

0 2 	4 	 Co 	 5 	10 	12 	14- [SD U ila  X 2.1 
JA  

Ft G. 3. ZB:  ' CONSTANT Ki  BOUNDARY LAYER, K : 1. 5 )4 10" Co  

vAtaloVrtoN OF COEFFICIENT OF CORRELATION ACROSS THE LAYER )  Xi   12 ins  



• 

• Mr.% 
4p°  

• i2. 

• 1 o 

S. 
• •

• 

• 4 

• NORMAL WIRE (b.l, PROBE) 	 1 
o 1C,- WIRE (X.1 -$3  PLANE) 	 Tv 

01 
A IC - WIRE (x1  - )(2,  PLANE) 	 i 

*4.0 0o • Ltio 40 • 
• 
• En 

• 

	

'02 	 • m 
• a 

• • 0 ,-• • co,  01 

	

0 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 
0 1 a S 4. 5 G 7 8 9 10 11 12 

[S' U1,c4  X 2.1 x10.1  

)4' 
FI , 3.2.00: 'CONSTANT Ki  BOUNDARY LAYER.)  14.4:1.5 )410 e*Ca LONOITUDINAL TURBULENCE INTENSITylXir. 1Z ins.  



— 207 — 

hIspit4q1 
0 0!),..e,g1 0 0 

log 

10° 

0 

• 
0 ~ 9.O x 1O 3 A o 

A 09 G. 1 x 10 3  0 • 
A 

D : 3 3.0 x 10 00 
• t) : i.o x10 5 

A 
0 

3 
LAW 

•O 
0 

• 161 

2 10 	I 	I 	I 	I 	I 	I 	. 	I 	1 
10-5 	10-4 	1,0"/ 	10-2 	10-1 

Yr% 
9 Li ticx 

FIG. 3 , 27: / CONSTANT 	BOuNPARY LAYER.) k 1.1,5 00.40 

SPECTRA OF I—ONGITUDINAL. TURBULENCE  



104  

0 
• 

103 

U 

• 

U 
• 

• 

• 

-z 
10-5 	 10-3  

11 1.  

- 208 - 

61  it  

o i : B. 8 x10 '' 2
°a  

& 1 : b•c? x io o 
O 4.) : 2'4 x103 	4 8  
• , ,.. 140 A 103 	o 

100 

LAW 

a • 

A 

Oa 

FIG. 3'2.8: SPECTRA OF LONOiTUDNAL TUR.SUL.ES10E  
1t.erwr.1 CITY %.e. 1 5 w.low 	XA 7. 20 IfIS 



- 209 - 

104  

++ 
°66'66  

loa  

103 

O 

o 	.T12. 
+ x1  ao 

0 
-I- 

O 

O 

0 

O 

O 

O 

+o 

+0 

I 	 I 	 I +O  I 
los  5 	10 "4 iv% 	10" B 	 1,0"2 	 JO- 1  

UG1  

F. 3,29 :  SPECTR-A OF LONGITUDINAL. TUIZSULSKICE 
INTENSITY'.  Kr. 1. b xio-  (0,  1) .-... 1 to x 1O 



- 210 - 

9 

10 4 

to3 

o 

10 2 0 

o°4  

°DA o 1): 5. 4 slo 
• t) 1.58 x103 	othA 

g• r) = 3.20 %lo a  
+ 4.71) % 103   A 

0+ 

Op 
0+ 

of  

1 26 A 
0 

0 A 

I 	 I 
Z 	1.0-L iez

to-5 1.0 	
mi 

-4 - 10 
JA 

S 

3 

FICA, 3.3o:  SPECTRA OF 1..osiGiTUIDINAL TURBULENCE 
IN-MN 	K : 2, 5 "4 10-6  X i  zi 1e,inS  



a 

0 a 

2 to- 

- • 211 - 

5,4. $002, 

1 '6  103  

l"3.2  K10 3  

ry: 4-8 x103  

o 

° 
o 

A 
o 0  

0 

INTENSITY 	2.5 >k lo" 	Xi  :-. 24ri. 

0 

O 
a 

0 
0 

to' 

lo3  

102  

to 

LL 
(trl 

10°  

16' 

0 

t 

4 
O 

10"5  101°4 j4ni  

U 
SPECTRA OF L.0NIGtTuDINAL. TURBULENCE 



3 10 

- 212 - 

log'' 

04 

o• 
o• 

• x1  :16 iris 

o x l  I 24ins 

0 * 

 

 

0 0 

0 0 

io° 
0 4, 

o• 

olo 

0 • 
I 	I 	I 	1 162

10-5 	10-4
11 	10-$ 	1.0- 	io-1  

J41 	
2, 

 
p ulicit  

F1G.3.32.; SPECTRA OF LONGITuDINAL. TURBULENCE 
INT EN GIT•( : k = 2.5 x lo- G 1  t)  = 5.4s1o2 



4 
10 

I  
2, 10 5 	jo-  

Yon% 

- 213 - 

0000 

103  

00°0 
• • 0 

• •• 
01 

00 
Oe 

OS  
0  

102  

• X• = 16 Ins 
02.4- ins 1 

00 

0 • 

• 

162  
10-5  

F1 G.3.33' SPECTRA. 0 LoNtGrructs4a.t. TURBULENCE 
INTENSITY 14, 2, 5 x 	co ;  1.) ,::4 ,8$10 3  



•••••••• 

••••••M• • 

X r. 1 	

1.'9:54)410 X1  :16'ms'  

214 - 
,104_ 

10 3  

10 

10° 

10-1  

10.2 

10-5 	10-4 	10-$ 
t 1 

FIG/. 3 ,34 SPECTRA OF I.ONG0TupistAl. TURSULENCE  

INTENSITY AT TWO X1- STATIONS NV:WM.15ED  

WITH THE  SAME. LENG.T1-1 StALE K= 2, 5 x"10"(° 

10-2. 

SCALimor LENGTH se.6" U (1)---) 1:10ins 



105  

- 215 - 

104  ••••••••••• 

o o 

o or) : 5.0 00 /  
A 	5s103  
a 17 	)410 

44%103  

o A 

o 

6 

413  
0 

a 
0 

A 

la ° 
A 

0 
a 

A 

0 

141  t 

0 A 
a 

0 
162  

10- 
)4ni 

U1,04  

10-3  

FIG,  B.35:  SPECTRA OF LONGITUDINAL. TURBULENCE  
INTENSITY 	3- 0 x 10°  6  1  - X r.1Co 	, 1 



- 216 - 

104 

Jo° 

A0 
0 

o 	sicta 

A 	49 1 .4 103 

CI 17 2.8 11, 

+ 	4.oxio3 

4 

0 

0 
0 

0 + 

10" 5 1.0 -S 	10'2  10-4 .41"" I 

FIG. 3.36: SPECTRA OF Lot•I %Tut:, 'NAL TURBULENCE  
tNITESISITY 	3, 0 )4101"C" 	xi  : 24 ins  

20-2,  



• 0 

• 
0 

o • 

• x i 	16 Ins 
0 x : 24ins 

104 

102 

181  

e• 

o• 
• 

o • 
o e 

o • 
o • 

0 • 

o • 

-1 LAW 

0 

0 

• 

• 

- 217 - 

!W I/GI  

PI CI. 3437: SPECTRA OF L.ONC/ITUDINIAL TURSULENCE  

INSENSITY : K :  SiO k10 -  	I 5'0 )4 102 



• to°  

• 0 

e 0 

0 
• 

0 
• 

• 0 
• 0 

- • 218 - 

104  

0000 0 
• 4 0 • • • • 

o• 0 • 
0 • 

o• 

0• 

0 

• 0 

• X : 16 ;ns 

0  Xi  : 24 ins 

• 0 

0 
0 
• 

I 	1 	I 
10-4  u 	10-  

.1"" -1 

.? u l,c, 
Flo, 3. 3 6  : SPECTRA, OF i..0NCTITUDINAL TUR.SuLE,NiCE 

tNITEN SIT1' : V< r 3,  0 y. 10  -15  1 : 4-4 y.10-  6  

101  
10-5 3 10 



- 219 - 

104  1,N, •••••••••• 

NERRINGI NORBUR•l 

0 	BADRA NARAYANAN 4 R.AMJEE. 
• LAUNDER STINCHCONISE 
• JONES 
A 	PRE SENT RESULTS 
Q STANFORD oAturA 

AQ 
A 
0 

	 MIXING LENGTH (Adr :2,b)PREDiCTiosi 	A 
— TURBULENCE ENERGY-ALCqESRAIC 

I-ENGTH-•iiScost-r( IvIorzEt. Pesoicnoss 
— LAMINAR sot-uTiow 

102  

10-7  10-(o  

FIG ,  5,39: `cosisTANT 	BOUNDARY LANER', YARIATION OF 

R2 wiTH K 



••=.1••••••• IIPM•••••••••••• 	 •••1•=••••••• 

2. - 

N.) 

'1.8 

0 HERRING NORBURY 
❑ BADR.I NARAYANAN RAMJEZ 
M LAUNDER 4 STINCH COMBS 
A J ONES 
A PRESENT RESULTS 
Q STANFORD DATA 

MIXING LENGTH CA} 17.Z.b) PREDICTION 

TURBULENCE ENJERGY"ALC4BRAIC LENGITH 
-vISCOSITY 1440PEL PREDICTION 

— LAMINAR. SoLu- ioN 

1.O 	I 	I 	j 
O 	1 	Z 	3 	4 	5 	 7 It~c 1O 0:1 

F.1 C 7j, 40 4, %CONSTANT K' BOUNDARY LAYER VARIAT %ON OP H %NIT H  

2 . 0 41••••••••Imm 

8 1O 
I 	I 
q  

1.6 

1.4 

1. 2. 



1.6 

• 14 Is 1.4+ S 

0 k = Z.00 io"b  
0 l< 2.50 io" 

10 20 Bo 4o So lo 20 So Bo 4o 
DISTANCE ALONG PL ATE (INS) 	 DISTANCE ALONGI PLATE (INS) 

3.41 STAN FORD GROUP CONSTANT K.' BOUNDARY LAYER DATA  

VARIATION OF INTEGZAL PAIMAMETER.S THROUGH THE ACCELERATION ,  

1,2 

i.0 	  

12oo 

l000 

Soo 
R2 

boo 

400 

Zoo 

./4.11.10 



10 

0.8 

0.6 

0.4 

0-2 

ui  
l oci 

7 1 	 3 	4 	5 	6 
(Ullef  )42)14 1,2 

leJ 
0). MEAN VELOCITY PROFILES FOR CONSTANT 14 I SOUNDARY LAYERS 

(a) 
(b) 

14 
VARIATION of Ri WITH 
a 	HERRING 4, NoRBURY) 	a DADRA NARAN(ARtAN*1  
0 LAUNDER. 4 STINCHICOmBIC • JONES, 
	 LAMINAR Sot-LITtONI, 

— TURBULENT SOLUTtON, A+ 7 Z41 
TuRSuLENT SOLUTION )  Alrr; C.p+) 

I 	I 	111111  
2 	3 	4 	5 6 7 8 9 103  

01 Q 2 	3 	4 5 6 7 8 9102  1mi  
I 	1111111 

0 

b), MEAN vELocrril Pa.cipg.es  , 

124 

20 

vim 16 

12 /•' .......;..>,- / 
/ 
(c)• ..---- .• 

• 

o). 
b)• 

.4. -, 	,...- ,....-- 	• JONES . 
... 	___-- 	____. - I' 

..... -- 
..------ e • --o 

-arbli --- -1 •. , _... - ,--- • • 	. ---- ...--• 
fe" 	 • --Old).  __._-•••••  - ----- - -ir 

	 LAMinIASZ 

	 U+ 	fn 4+5-0; 
— 	—K = 2.2 )4 to-  c,Af-x:(01  

C) • — • —K =2.4x10G)".: 2 Co 
a). 	 z Klo-101 A4  2(0 

HERRING ttsiORSuRN 



22 

2.0 

■ 

•• 1.6 
11  • 

1.4 

.1.2 
0 • 2 3 4 5 

1.8 u 	0.6 

2 	4 	6 	8 	10 	12 	14 	16 

(L410, X2.) ,41,2 
V 

0.), MEAN VELOCITY PROFILES '  E%PERINAENTAL 
AND 	PReolc•rE0 SOLUTION To 'CONSTANT 
BOUNDARY LAYER, K = Z.2 slOwb, 

• JONES 
	 A+ 7. 61 

— A44  r 2 b 

b), VARIATION OF SHAPE PAGT012 WITH 
a BA0R1 NAR,A*YANAN3 
O LAUNDER STNCHCOMBE; 
• JONES '1 
0 HERRING if. NORBUR%Y; 
A PRESENT RESULTS; 
	 LAMINAR SoLUT1ON 

— 	(P+  
A41: Zb 



• • • 

2 	 4 irT) 

/ ‘ 	, r t 	-(S I , 
1 	‘, • 1 \" 

k 

	

// 	k 	12 x 
/ 

 / i 	1 	• 	 ,0 
2 3  x(r0 4  

St vs x: Morette and Kays run 11. 
2 	3 X (r) 4 

ct.) St vs x: Moretti. and Kays run 10 

003 	 -003 

• 
•002 	 -OOP 

St 	 St 

•001 	 • .• 
	 CO 

•,'"N 	-30 
-2 x 

/ 
0 	 0 	 0 

1 

0 5 2 	3 

St vs x: Filetti Run 2 b) 

CO3 - 

-002 

St 

-00 ; 

-30 
-2 
- 
	0 

25 	6 3  X(FT)4  
0.7) St vs x: Filetti Run 3 

-003 

-002 

•St 

001- -5 
----------"'N 	—1,0 

\ 	- 3 0 
// 	 \ / 	 ‘ / 	 \  

a 	 1 	 1 	/ I 	 1 	\ 	0 2 	3 x (r1.) 4 	5 	6 
C) St vs x: Moretti and Kays run 42 

-003 

002 

St 

•001 

0. 

e.) St vs x: Morette and Kays run 12 

N.) 
r 
12:s. 

'IC.1.4.• 



5 

Cp $10 3  

• 0-0'8 

4 	6 10 	12 	14 
R a x10.3  

4.4: 130uNDARY LAYER IN ZERO PRESSURE COZAD! ENT  

VARIATION OF H AND CP Sq1TH  

• 0—* 

  

0 

PREDICTION 
coLES (2.1) 

0 

• H 

1.2 



'2 I 

'SLOINICITIO 	Ni 59110tici 	 
A111013A NVatii 413.43101,100 St056321c1 02137 NI b30 W1 AlsvaNnoe 

c°T 	z  of 
0 



1'o 

.9 

.5 

'3 

DATA OF SNI 16C11.4 AR DT e1.54) 
PREDICTEDPROFILE 

103 	u iica x a  /2;  1O4  10 

FI 	4.6  ', BOUNDARY LAYER IN ZERO PRE5 UnE Of RAD I awl- MEAN Si E 1.0 C I T."( PROFILE  
CD  ' 



z 

31l. O21d ca.L.VCS'aid 
(99) laleveHtSim 	• 

01.14P% -6  al 3-1Woad 

 

   

Airzo-vars roe31A4 itialciVtIV 32srISS3T1d Ob32 t'll a 3Aven AbyciNnoe : L'i,  • lot 
et  

OT 	z kp'. 	07 	z at 
to 	x 	fg) 	s 

2 . I 

s 

6. 

0 



icr  
.."1";?.E, 

102  

	 BOUNCAR.1" 

	

3.0 	U X ...i...._ 	 104- 
1, 

	

IN 	Z.E:120 Piz ESeLAZ S  aizAr.);swr, MEAN VSL,C,/..',..rry PfZ0 

0' 
0 

0 \WE'rlARI:1* (68) 

	 PRECICTE.A PR.OWILE, 

. 	L  

9 



=22t1 	1...IX0O`13is rivavi 	3lin553Vci 0113Z NI 	)•adcztv nos 

2 V' x 6n 
Sot. 	s o't 

1 

S 0 

S,0  

90 

6.o 

0,T .011••••••••••=1. 



90 
(cii)oNtifes-t)i 

'55311.1.5 25V3H5IsIV AlvesNs -30N3irv412in1 	Ong k-r 

/ 	Yra• • 

zni >I 0 
vt.r1 	v  

twor3V4 AO 53111A0VA 'INSICIVZO szvIssaties ObB7 NI "2:13AVel ).,ZIVONr10431 	IA 
(u!) 7X 

• 

.0 

gio 

4%.'0 ("14. 0 

L no 

5,oTx 9 0.T 

1.0.•••• 



• 
	

• 

• PIPE FLOW DATA • 
LAUFER'S Rs 9001000 FLOW 

PREDICTED DI5TReUTION  

ZO 	30 

2 

- 232 - 

F I G, 4 .11 TURBULENCE KINETIC ENERGY  

WITHIN THE VISCOUS SUS LAYER  



4 

- 233 - 

0 i-tekte.imcg NORSURY 

O BAORI NARAYANAN 
RAMJEE, 

A JONES 

(10  STANFORD DATA 

A 	PRE SENT STUDY 

R2. 

10 

LAMINAR SOLUTION 

MIXING LEN 04TH SOLUTION 

PREDICTION WITH THE k • 6 MODEL. 

••••••1111. 

10 2 	
 

10.7  

   

K 
10.6  

Fi 	12:. CONSTANT 	BOUNDARY LAYER VARIATION 
or R

z 	 



2.2 

2.0 

1.6 

1.4  

1.2 

1.0 	  
o 	1 	2 	.3 	4 	5 	Co 

K 
9 	10 

I 

3ADR.1 NARA'YANAN 4 RAmJEE 

• JONES 
0 HERRING it Nowsetua.%( 

STANFoRC, DATA 

A PRESENT :STUDY 

— LAMINAR SOLUTION . 

	 MIxING LENGTH SOLUTION 
	 PREDICTION WITH THE 14. E. MODEL 

Fl Ca. 4.1V  %CONSTANT ki  BOUNDARY LAYER VARIATION  OF H  WITH K  



K:10 -4°  

K 	x 1 0 

i 
1 	

4- U1.4. 	X 2  +.5 0 

0 	 1 	 1 	 1 	 1 

20 o 	 10 1 	 + 102 
X 2  

Ft Cad , 4— 14 1  ‘ CONSTANT K' BOUNDARY LAYERS PR EDI CTEC MEAN vELOCATY PROFILES , 

lo 

24 — 
u4r  

Zo 

1 

12 

4 



/2 
• • 	ONES (4'0) 

2 

24 

20 

PREDICTION 

,X+  S•O 1 	2 

4 

0 	 
to 

FICa , 4 .15  : CONSTANT K' BOUNDARY LAYER MEAN VELOCITY PROFILE iG = 2, 2 x10"4:1 



• 

- 237 - 

• 
o' e'• 

, '7 

Ui/G 

Co 

PREDICTED PROFILE, 

3 

( 	I 	I 	I 	I- 	I 	I 
4 
	

5 	6 	-T 
VIA% i0.,B 
v 

FICA, 4.1b ‘COWSTANT K' BOUNDARY LAYER MEAN! •/E.L.00ITY 

1.5 s10" (1; 



• 
• 
• 
• 
• 
• • • 
• 

PREDICTED PROFILE 

.2 4- 
1 

- 238 - 

If, 	4 	5 	(o 	7 

[r UliGk2 	x10' 3  

FIG', 417 'CONSTANT K' BOUNDARY LAYER. 

MEAN VELOCITY PR.OFILE IC = 1, 6 10" 

I 	  



0'8 

U1)G 
0. 6 

o. 4 

0.2. 

N.) 

• • 	• 

PREDICTED PRoFit-e, 

• • 	• 
• 

0 
	

1.0 	 2.o 	 3 o 	 o 	 5.0 
U .1A z % 0 

FIG. 4.18 'CONSTANT W BOUNDARY LAYER MEAN VELOCrry PROFILE, k 	xelo" 



•004 

1111. 

to*•  • 	• •• 
0 

• 003 

St. 
• 

O 

• 
• 

.002 
• FiLeert.1 RUN 
	 PREDICTION 

• So 
•••• •® • • 

• 001 	 1  
(FT,) 	4 

Fi C4, 4-19 VARIATION or $t WITH Xi  

5 Q;) 



•oo4 

.0o3 
• • • 

• 

 

0 

St 

• 0 
• 

.002. 

 

• FILETLI RUN 

	 PREDICTION 

•• • •• 

   

2. )4 (FT) 4 

FiG, 4.2.0: VARIATION OF St WITH Xi 



010  

•• 
0 
0 0 

•• 
•• 	• • •••

• 

09 
• 
• 

5 
	

Co 

.002 
• MORETTI 4 KAYS RUN 42 
	 PREDICTION 

1 
N.) a:. 
NJ 

i 

5 	X.1 (FT) 
	4. 2 

• ood4.. — 
4. 
K%10 G  

• 
• 

A.• . •• 0.0• • • 
• fie 00  

• 0 0 B 

s 

a 

0 

PI CA. 4,21: VARIATION OF St \41114 X  i 



• • 

• oc)3 

St 

• 002 

.001 

1  
a4, 	 5 	 CD SCF1 

FIG,4. 22 VARIATION OF 	WITH  

• 

•
• • • ••. • 

0 	 2 

— 4 

)41012 

• 
• A .9  • •• 

• MOR.ETTI KAYS RUN 
	 PREOICTION 

• 
so 



.o.o3 

St 

• 0oZ 

.001 

0 
a 

1  
S 	x CPT) 

1 

4 
14 400  

N 

I 	• 

• MORETTI 4. kAY5 RUN 10 

PREDICTION 

• • 
• 

FIG, 4.25; VARIATION OF St WITH X i  

5 



• 
• • 

• ilre----tosAl 
0 

NO11'01(332:34:I 

To° 

ZOO 

;S d0 NOi .1.4eiseJWs ; 4.2 • 

rrti 	II1.7210W • 

111*\%.• 

410.40  
\• 

• 



L 

t.% sa.INN 45 40 NOtIVIliVN SZ.ir 'kto 

"k, 	(1.4 1.>4Sc 	it 

• 

• NOt.i."D10321cd 
• •4)  • Zoo' 

2 	5)..4ci 	40. 

Soo. • 
• •• 

• 

4re • • • 
0110 0. • 

••••• 
• ••••• 

4110. 

► 

0 

as 

•• 



0:t 

• ON 
\ 

• 

211SSNX>10.1. .I.V51-1 1.4.1.1M tIS AV 'I ),:tisriCINflOS CS ,I.VZITISZ,V % cra. to leZi 
(14)4  

	

e 	2 	"C 	0 	S 	ir 	S Llii )X z 	T 	0 

	

I 	I 	I 	I 	I 	I 	I 

is101.1.7ICaticl 

o = 
Nn2i 1d IS A3NVANOWM •  00.0 

221 
009 

009 

• 
• 

002 

(16fX 
£ 	Z 	S 	0 0 

.500. 

2iJo 

200 

s00. 



o 0 2 

cF1 
00 

3 	4 
X(Pt) 

0 	 S 	4 	5 
A(Ft) 

.002. 

St 

 

tom•••• 
9 • 9..4 

I 	I 	' 

it 00 

/Zoo 
R2 

Boo 

400 

''N•  • • 
• KeARNEY ET AL ;ZUNI 0830b9-1 

F w .004 

	 PREDtCTION 

10 

0 	2 	2 	 4 	5 x t) xi(P 
FIG.4 ,27:  ACCELERATED BOUNDARY LAYER 'W ITH HEAT AND MASS 111-t.A144SFER. 

5 



I 	I 
0-0-0 • • • ••,.,•  • 

• 

(A.ex € 
I 	I 

 

'2  
1 

 

0 

200. 

ii 00 

900 

000' 

000.0 

0009 
v 

0009 

2iSdSN't21.1. SSVIN CI NV .1.s*1-1 W ltM lei )0$^1 ,%'?11/CINC10 
(;) 

2. 	9 

Cialbls3'13,Vd 

9 	 
cldtA .17 

11 	I 

  

  

0.S 

ti :icrtPaz,o‘ sneas "so Ls -I:3101*a 

• 
	_41-04)-v

mi  l 

NOt.1.-z lasta 

• 
0000T 
0 

Too 

200• 

SOO • .M••••••••- 



I 	I 
6 	

I  

	

8 	r\> 

0X(9t) 

.004 
F 

002 

0 	1 	a 

002 
5t 

col 

I 	I 	I 
5 	6 	7 

• • 4o...4i-0-9-4D-0-0 

o 	2 

6 000 — 

4o0o 

Ro  

loco 

3  X(Ft) 4  

FIG. 4 . 29 PREDICTION OF HEAT TRANSFER DATA  

• KEARNEY El" AL RUN 113b5... 
PREDICTION 

•• 	 4)  2.0 
• 0 

6 7 

3.0 

1.0 

4 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249

