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ABSTRACT 

The structural relationship is studied between 

variables with observations coming from two or more 

populations. 

Initially we examine in detail the structural 

relationship between two variables with observations 

from two populations, or groups. The maximum likelihood 

estimates of the unknown parameters are derived, tests 

of the adequacy of the simplest model against various 

more general alternatives are found, and, finally, tests 

of hypotheses about the parameter of principal interest, 

the slope of the relationship, are considered. 

An extension of the two-group, two-variable case 

to permit an arbitrary number of groups is then 

considered. All the aspects studied in the two-group 

case are again considered in this generalization. 

Finally, a multivariate generalization is 

considered. In this model an arbitrary number of 

parameters and groups are permitted though identifiability 

considerations restrict the number of variates that can 

be included in relation to the number of groups. Only 

the difficult problem of finding the maximum likelihood 

estimates of the unknown parameters is considered in 

this model. 
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The theoretical results are applied as part of 

the analysis of an experiment on apple trees. 



ACKNOWLEDGEMENTS 

I am extremely grateful to my supervisor, Professor 

D.R. Cox, for suggesting the research described in this 

thesis and for his constant invaluable guidance. I 

would also like to thank Mr M. Pearce for providing 

computer routines for the calculation of univariate 

and bivariate normal probabilities, and the other 

members of the staff and fellow students whom I 

consulted on various topics. 

This research was supported throughout by a New 

Zealand National Research Advisory Council Fellowship 

and I am most grateful to the Council and to the New 

Zealand Ministry of Agriculture and Fisheries for 

granting me-the necessary study leave. 

My thanks also go, to Dr S.C. Pearce for providing 

the data used in Chapter 5. 



5 

CONTENTS 

Page  

ABSTRACT 	 2 

ACKNOWLEDGEMENTS 	 4 

CONTENTS 

LIST OF TABLES AND ILLUSTRATIONS 	6 

CHAPTER 1 INTRODUCTION 	 8 

CHAPTER 2 THE TWO-GROUP, TWO-VARIABLE MODEL 

2.1 Specification of the model 
	

14 

2.2 Maximum likelihood estimation 

of the parameters 
	17 

2.3 Asymptotib expected values and 

variances of the estimators 
	38 

2.4 Tests of the adequacy of the 

simplest model 
	

39 

2.5 Tests of hypotheses about the 

slope 
	 55 

CHAPTER 3 THE K-GROUP, TWO-VARIABLE MODEL 

3.1 Specification of the model 
	

72 

3.2 Maximum likelihood estimation 

of the parameters 
	73 

3.3 Asymptotic variances of the 

estimators 
	 78 

3.4 Tests of the adequacy of the 



- 6 - 

Page 

Simplest model 
	

83 • 

3.5 Tests of hypotheses about the 

slope 
	

94 

CHAPTER 4 MULTIVARIATE GENERALIZATION 	97 

CHAPTER 5 ANALYSIS OF AN EXPERIMENT ON APPLE 

TREES 	 108 

APPENDICES : 1 The determination of the nature 

of turning points of likelihoods 	120 

2 Moments of the sums of squares 

and products in the k-group 

model 
	

126 

3 Moments of the regression slopes 

in the k-group model 	130 

REFERENCES 	 133 

LIST OF TABLES AND ILLUSTRATIONS 

Page  

TABLES : I Maximum likelihood estimates of the 

parameters 	 34 

II Bounds on the significance of the 

intercept test 	 49 

III Rejection percentages of the slope 

tests 	 70 



7 

Page  

IV Measurements on the apple trees 

at 15 years 	 110 

V Parameter estimates in the simplest 

model 	 113 

VI Intercept estimates in the 

regression model 	 117 

FIGURES : I Estimated relationship for 

simulated data 	 27 

II The regions of applicability of the 

parameters estimates when s >0 yx 36 

III Graph of log of weight above ground 

versus log of-trunk girth 	112 



8 

Chapter 1 

INTRODUCTION 

This thesis deals with structural models for the 

relationships between several variables. Various 

models have been considered for studying such relation-

ships; these were outlined in Moran's (1971) review 

paper on functional and structural relationships. In 

all these models we wish to study something about the 

relationship between a dependent variable, Y, and one 

or more independent variables, Xi. 

The most commonly studied models are the regression 

model, which relates a random variable to several fixed 

variables, and the multivariate normal regression in 

which the variables are assumed to have a joint 

multivariate normal distribution. A third model, 

studied by Berkson (1950), assumes that the observations 

on the independent variables are target values for some 

quantity in an experiment but because of random 

variation these target values are not actually attained. 

Finally, there are the errors-in-variables models; that 

is, the functional and structural relationships. In 

these both the dependent and the independent variables 

are measured with error and it is the relationship 

between the true, unobserved, variables which is 
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supposed of interest. 

Suppose that we have observations (Yi,Xi) (for 

simplicity we consider just one independent variable, 

X) which are derived from the variables (V.,Ui  ) by the 

addition of random errors (e.,6.). That is, 

Y.1  = 'V.1  + E.1  and X. = U. + 6. . 

We assume that the true variables, V and U, are 

connected by the linear relation 

V = a + 13U . 

What analysis is appropriate depends on the reasons 

for which we are studying the relation. If we are 

really interested only in studying the relationship 

between the observed variables (Y.,X.3.), for example 

for the purposes of the prediction of a value of Y 

corresponding to an observed value of X, then we 

should use a regression analysis. If, however, we 

are interested in the underlying linear relationship 

itself then we should use one of the other models. 

If the errors, e and 6, can be assumed to be independent 

of U then we use either the functional or the 

structural relationship while if, on the other hand, we 

can assume that the errors are independent of the 

observed values, Xi, then we use the Berkson model. 

The first case is of interest here. By assuming that 

the variables Ui are fixed we get the functional 

relationship model, and by assuming that they are 
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independent random variables we get the structural 

relationship model. We shall now concentrate on the 

structural relationship. 

Let us assume that the errors, e. and 6, have 

normal distributions with zero means and unknown 

variances, that U has a normal distribution with 

unknown mean and variance and, further, that the ei  

and d are independent of each other and of the U.1. 

These are the usual assumptions in the structural 

relationship model but it is well known (see, for 

instance, Moran, 1971 or Kendall and Stuart, 1973, 

Ch.29) that the parameters are unidentifiable in this 

model. If we can assume non-normality of U or the 

errors, or if we have additional knowledge about some 

of the parameters (for instance, knowledge of one or 

both of the error variances or their ratio), then we 

may overcome this unidentifiability; Moran (1971) 

reviews this topic, so that no additional references 

need be given here. 

The additional information can also take the 

form of an instrumentalvariable; if this variable, W, 

is correlated with U but not with E or 6 then we can 

find a consistent estimator for the slope, (3 (see, for 

instance, Moran, 1971). When the instrumental variable 

takes only the values ±1 and so groups the observations 

then the relationship is estimated by the line joining 

the sample means of the two groups; 5ee, for instance, 

Kendall and Stuart (1973), Ch.29. This estimate was 



suggested also by Wald (1940) when the additional 

information takes the form of particular knowledge 

of the ranking of the unobserved Ui. Richardson and 

Wu (1970) also study this model when the observations 

are known to belong to several groups and they suggest 

using the ordinary regression estimate for (3 but 

based on the group means rather than the individual 

observations. For two groups this is the same as Wald's 

estimate. In this thesis the whole question of the 

analysis, via the structural relationship model, of 

data from several groups is examined•in much more 

detail. 

In Chapter 2 we assume that there are just two 

groups. We estimate the parameters by maximum 

likelihood (ML) in §2.2 where it is noted that, while 

Wald's estimate (ie the between-means slope) for the 

slope is found as the solution of the likelihood 

equations, it is not always the ML estimate and it 

is not, by itself, a satisfactory estimate of the 

slope. We find that the slope estimator is bounded 

by the two regression slopes (of Y on X and of X on Y) 

so that the limiting behaviour as the two groups merge 

into one is the same as that for the one-group case 

as described by Moran (1956). Asymptotic estimates 

of the variances of the ML estimators are derived in 

§2.3. In §2.4 we consider tests of the adequacy of the 

model; in particular we want to know whether the within-

group variances are equal and if it is reasonable to 
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assume that the observations are scattered about a 

common line rather than about a different line for 

each group. The final section of Chapter 2 is devoted 

to the question of testing hypotheses about the slope. 

The results of Chapter 2 are extended, in Chapter 

3, to the more general case in which the observations 

belong to k>2 groups. Many of the results carry over 

with only minor modifications. 

In Chapter 4 we consider a further extension of 

the model by studying the relationship between p+1 (p>1) 

random variables. Only the question of estimating the 

parameters has been considered in this model and we are 

led to the interesting result that the vector of slopes 

is estimated by the last canonical variate of a 

between-and-within canonical regression analysis. 

In Chapter 5 the theoretical results from the 

earlier chapters are applied in the analysis of an 

experiment on apple trees. Two measurements were made 

on each tree in the experiment, one providing a 

measurement of cambial activity and the other providing 

a measurement of apical activity. The trees were 

grouped according to thirteen different rootstocks. 

A new procedure that enables relatively easy 

determination of the nature of turning points of 

likelihoods is discussed in Appendix 1. When a 

solution has been found to likelihood. equations it 

is then necessary to see if it is at a maximum; this 
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is particularly true when the likelihood equations 

have more than one solution. Virtually all the 

likelihoods studied in this thesis have more than one 

turning point and the method described in Appendix 1 

has considerably simplified the problem of finding the 

maxima. 

In the final two appendices we outline the 

procedures for finding the moments of various sums of 

squares and products and various regression slopes 

that are required in different parts of the thesis. 
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Chapter 2 

THE TWO-GROUP, TWO-VARIABLE MODEL 

2.1 Specification of the model  

Through the structural relationship model we 

wish to investigate the underlying relationship between 

two or more variables observed with error. For 

instance, in the example that we shall analyse in 

Chapter 5, we want to study the relationship between 

cambial and apical activity in apple trees but we can 

only get imprecise measurements of these variables 

through the measurement of the trunk girth and the 

weight of the tree above ground. In this chapter we 

consider the simplest case, the linear structural 

relationship between two variables sampled from two 

groups or populations. 

Let the two variables of interest be U and V. 

We assume that these variables are linearly related, 

V = a + SU, 

and it is this relationship which is of interest. 

However, we actually observe the variables X and Y 

which differ from their "true" values, U and V, by 

random errors; 



- 15 - 

X = U + d 

and 
	

Y = V + c. 

Let X. 	 ij 
and Y be random variables representing 

ij  

observations on the j'th member of the i'th group 

and let the number of members of group i be ni. Then 

= a + f3U.. + e.. 
13 	13 	13 

	

X.. = U.. + Si. 	(j=1,..,n.; i=1,2), 

whereweassumethattheUii have independent normal 

distributions with means pi  and variance 02, N(pi,a2), 

the (Sii  are independently distributed as N(0,ap, the 

ci. are independently distributed as N(0,a2), and the 

errors, cij and ij, are independent of each other and 

of the 	We shall later refer to this model as 

model I. 

This model assumes that the observations in the 

two groups are scattered about a common line rather 

than about a different line for each group, the groups 

differing only in the mean. In other words, the 

between-group slope is the same as the common within- 

group slope. In §2.4 we relax some of the restrictions 

on the model, mainly for the purpose of testing the 

adequacy of the model for a particular set of data 

against certain more general models. 

The assumptions of model I imply that the 

observations (Yiji  ,X j 
 ) have independent normal 
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distributions with means (a+6p.,p.) and a common 

covariance matrix 

+a k 

n = n1 + n2' 

2 ni  

Si  = / 	(Yi. -  a - i311i) 
i=lj=1 	3  

S2 =. (Y 	 )(xI].. -p.) ,13 	- f3pI   

S3 	ij = II (x- p.) 2. 

The log-likelihood of the observations {(yii,xii);j=1,.., 

n.; i=1,2} is thus 

= -n.log(270 - 1/2n.logl E I - 2  1E  {(a2+a ) 	-26a2S2  

+ 02(5 2+a)s31, 	(1) 

where 1E1 	= 02020.2 4. a 2a 2 	ea2
e. 

 
6 

Note that the parameter space is restricted by the 

inequalities a2>0, q>0, a>0 and lEl>0. The last 

inequality ensures that no two variances can be zero 

simultaneously; this would make the model trivial and 

the above expression for the log-likelihood would be 

undefined. 

a2a 24.0.2 	n 

E = 	
e 

E 

aa 2 	2 2 

Let 

and 
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2.2 Maximum likelihood estimation of the parameters  

To facilitate the determination of the nature of 

the solutions of the likelihood equations, the equations 

will be solved sequentially. That is, the first 

likelihood equation will be solved to get an estimate 

of the first parameter in terms of the remaining 

parameters, this estimate will be substituted into the 

second equation which will then be solved for the second 

parameter in terms of the remaining parameters, and so 

on. We will then be able to calculate the pivots of 

the matrix of double derivatives of the log-likelihood. 

In fact, the j'th pivot is found from the derivative 

of the log-likelihood with respect to the j'th parameter 

by substituting the estimates obtained for the previous 

parameters and then differentiating again with respect 

to the j'th parameter. If all the pivots are negative 

when evaluated at a solution of the likelihood equations 

then that solution is at a local maximum of the 

likelihood, if all are positive then the solution is at 

a local minimum, and if any two have opposite signs then 

the solution is at a saddle-point.- The method is 

described in more detail in Appendix 1. 

So that complicated notation involving circumflexes, 

tildes, etc, can be avoided, the notation used below 

will be a little unconventional but it should not lead 

to any confusion. For instance, the expression in 

equation (2) below is to be interpreted as an estimate 
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of pi when a, 8, a2  and 02  are known. If a, a, a2 and 6  
2 a are replaced by their ML estimates, then the 

expression in equation (2) becomes the ML estimate of pi. 

The log-likelihood of the observations is given 

by equation (1). Differentiating it with respect to pi, 

we get 

Dt/Dp = n.{8a26(Y.1.  - a - 13P ) + a2(K. - pi) 	. e 1. 

Equating this to zero we find 

ui = ro-2/- 	0.2K.  1/(p2a2+a2) 	(i=1,2). 	(2) 1PuOYi. u 	E l• 	 c 

The first two pivots are 

@2,413111 = -ni(82q+a)/1E1 	(i=1,2) 

which are both negative for any choice of 8, a2, ac; 

and a2  in the parameter space. 

Differentiating the log-likelihood with respect 

to a we get 

a2/@a = nf(a2+at;)(17 	—a5) — si732(x — 5)}/lEI, 

wherep--W.Substitiatingforp.from equation 

(2), we find that M./Da becomes simply 

n(y 	fax )/(R2a24.a621 • • • • 	6 	,  (3) 

Equating (3) to zero gives us 

a = y - Ox 	(4) 

and, on substitution into equation (2), we get 
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{p(5 2( 7.  _;; + (3;1 ) 	a 2.7c.  )/020.2+a21 	(i=1,2).(5) 
6 '1. -r •• 	•• 	e 1. 	6 e" 

The third pivot is the derivative of (3) with respect to 

a; this is just -n/(0
2akt.cy), 

which is again negative 

for any choice of a, as and ae in the parameter space. 

Differentiating the log-likelihood with respect 

to a 2  we get 

DR. 	n(P2q+a2) 	1 

aa2 	2 E 	2 E 2 (a

2a 	+2aat2saS2  +aZS ). 

11 	11  

When a and pi  are replaced by the expressions in 

equations (4) and (5) we find that 

y. - a - ap = a2{ (y• - y ) - a(x. - x ))/02021.a2,  •• 	i• 	•• 	 ` 

and x. - p
i 	

-13.01f671.- Y.) — B(Xi.-  X )1/02a24.02) 
la 	 •• 	6 e ' 

and'hence that 

S1  = ns 	+ na4
e
B(R)/02,„24,2e12 

YY 	
.6  ." 

S
2 
= ns 	- naa2a2B(a)/0„.224„.212" yx 	6 c 	

.6  .6  

and 	S
3 
= ns 	+ na2a4B(R)/(R2a2+0.2)2 

xx 
	,, 	e, , 

where B(a) = b
YY 
 -2ab 

yx 
+12.2b 

 xx
, 

-  

b 	= II(y. - 
YY 	1- 

2 
i

/ n , 

s yy = 	1 1 	y.. )2/n , 
ij 

and similarly for b , b , s 	and s . 
yx xx yx xx 

Hence, after substitution of the expressions in 
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equations (4) and (5) for a and pi, 3k/Da2  becomes 

n(R 2a2+a2)  6  6, 	(r3 20.4s +2(30.20.2s +0.4s  ) (6) 
21E1 	21ZI2 	

6  YY 	6 E yx 	E XX . 
~ 	~ 

Equating this to zero gives us 

1  02es 	+2Raa2s
(3 	c yx 

4.cos 	_ a0.(a2a24.
ae
2 

6 YY 	e xx 	6 	6'  
a 2 	 • 	(7) 

(a2a24.a21 2 
' 

The fourth pivot is the derivative of (6) with respect 

to a2. Since, at any turning point, (6) is itself 

equal to zero, this pivot, when evaluated at any 

turning point, can be shown to equal 

-n(6.2ag+0. )2/(21E1 2), 

which is negative for any choice of 0, a2, aS and aF  

in the parameter space. 

Differentiating the log-likelihood with respect to 

a6 we get 

	

Di 	no20.24.a21 1 
E 	113 20.4s  _ 2130.2032(1 2+a2 s  

1 	 el
l 
 2 

	

aa2 	21E1 	2IE 2  

(r32a2+cfc2) 2S3}. 

When a, pi  and a2  are replaced by the expressions in 

equations (4), (5) and (7), Waag becomes 

n{02T(0)h(0,a6'  
0
E) 

+c
c 
 ir 20

6  
÷a

c
I 
 
w(3) 	s 

YY  
020

6  
+0

c
13 

2(02a2+a2)2h(0,a62  ae2) 6 e 	' 

(8) 

where 	W(0) = s 
YY 

 -20s yx +02s  xx, T(R) = W(R) + B(R), 
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and h(13,ag,a) = (320.
6
4 S 	+213a 2a 2s 	+CI4S 
YY 	6 e yx 	xx' 

Equating (8) to zero we find that ag is a solution of 

the cubic equation 

, E  $2TO)h(0,q, , 02 +0.4 02,2+62,,(3)  _ s 
YY(0

2,2__2)3 = . (9) 

While this equation can, in priniple, be solved 

explicitly, the solutions are too complicated to be 

of any use. However, we can avoid the problem. We 

shall carry on to the next stage of the solution of 

the equations. 

Differentiation of the log-likelihood with respect 

to a 2  gives us 

at 	n(a2+q) 	1 
+ 	21(a2+0.2)2s  _2"2(0.2+0.2)s 43.2a4s  1.  = 	 

aa2 	21E1 21E1 	6 1 	6 2 	3 

Rather than attempting to solve this by direct 

substitution, let us consider 

a6 	
aQ 0.

6  2  at 	ak (S1  - 2f3S2 +f32S3) 

(01,20.2÷(5 21 a ci2 	 cs.2 
6 unS 	6 	2a2 	2a2(13 2a2+a2) 6 e' 	 6 e 

If we substitute for a and pi  from equations (4) and 

(5) this expression becomes 

n 

202  2 

nT(f3) 
( 10 ) 

2(A20.2.4.a 21 E  xr- 	6 	el 

Equating (10) to zero gives us 132(55+a = 	In a 

similar manner we can show that 320.24.cr 2 = 
‘11/1 „ " 
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Sae  = S1/n, and a2÷a26  = S3/n. Substituting for a and 

pi from equations (4) and (5) we can easily solve the 

resulting equations to get, for f3 0, 

and 

a2 = 
(as xx  - s yx  ) (s yy  - as yx  )B(0) 

sw 2 m 
(8s -s )T(a) 

xx 	yx  as  = 	 = a2(0)'  say,  
aW(0) 

(s -as )T(8) 
2 	YY 	Y a - 	x 	= a2(a), say. 

A 
Substitution of a2(a) and a2(a) for a2  and a2  in 6 	6 
equation (5) gives us 

(5S -S )(7. - +13X 	(S -OS )X.
yx  xx 	yx 	l•  (i=1,2) (14) 

w(a) 

We now return to the problem of finding the fifth 

pivot. It is the derivative of (8) with_respect to at;. 

Hence the fifth pivot, evaluated when as = ag(a) and 

a2 = 	is  

na2{a2(s yy  s xx  - s2  ) + 2(sYY  -as yx)21 yx  

2T2(13)(S yy  S  xx  -S2 yx 

which is negative for any real a. 

It is the sixth pivot which is more tricky, 

because we were unable to get an estimate for as in 

terms of a2  ands without using the likelihood equation 

for a2. But let us suppose that 3
6  
2 (c 2,f3) is the 

solution of equation (9) for which P(8(a),a) = r326  (a). 6 E  
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Note that when a2  = ;-'20), equation (9) has just one 

real root, a2 = a6
20) . Substitution for a, pi and a2  6  

from equations (4), (5) and (7) and substitution of 

p(a2 
'
a) for a2  in W3a2  gives us expression (10) 6' e 	6 	e 

with a2  replaced by 	 ' 32(a2e  a); the sixth pivot is the 6 	6  

derivative of this with respect to la. We thus find 

that the sixth pivot, evaluated when a2E  = 626(0), is 

nw(R){13 2g(0) + 1} 
(15) 

2(sYY - 	
Yx
)T2(a) 

where 
a 

g(a)  = I ___p(a2,0)  
6 6 	 2=a20) ovE 	6 	• 

To find g(a) we replace as by ;(;(a,a) in the 

cubic equation (9) and differentiate with respect to 

02. From this we get a linear equation for aapa,a)/Da 

in terms of P(a2,P.), e a2  and a. Hence, since we know 6  

that P(a2(a),a) = Cr26  (a), we can easily find g(a). 6  
Substituting g(0) into expression (15), we find that the 

sixth pivot, evaluated at any turning point, is 

-nW20) 

T2(a){02(s yy  s xx  -s2  ) + 2(s YY 
 -as 

yx
)21 

yx  

which is negative for any real a. 

Differentiating the log-likelihood with respect 

to a we get 
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32, 	• 2 2 naa 	a2 aot  
{ 130 2 (0.2+a 2 )s  + ( ,_ /3 2 0.20.2 + 0.20.2 + a 2a 2 Is  — = 	 

as 	1E1 	1E  I 2 	 6' 1 	c 	6 c' 2 

1 
- 5a26531 + 	(a2+aDln,P, 	alli) 

1E1 	u  1 " 

- aa Inp(x 	. i  1 1 1. 	1 (16) 

When a and pi are replaced by the expressions in 

equations (4) and (5) we find that 

na 2 {0(3 2
6 
 (b 

YY - 
alp yx ) +02(b yx - ab xx)1 E  

ipi (yi•
-a- f3p ) - 

(p2a2i.aE22 Lp 6  . 
and 	 noga r a, 0.2 (13 	- ab  ) ÷ a (b 	- b  ) } w 6 Lp (s x yy  p yx 	e yx 	xx  np.(x. -p. - . 1 1 1• 	1)  1 	 ta2a2+a212 ,p 6 e. 

We showed previously that when 3k/D6 =Dk/9q=Dk/3a=0, 

then S1  = n(5262+a), S2  = na62  and S3  = n(62+a5). 

Substituting all these into equation (16), we find that 

3k/3a becomes simply 

n{aa2(byy  -ab yx  ) + a2(byx -abxx )1/(2.2a26+02e)2' (17) 6 	E  

which, on substitution of 1326(a) and 
c(a) 	for a 2  and 

2 a becomes 

n{(asxx -syx) (byy -abyx) + (syy -asyx)(byx -abxx) 
. (18) 

Toms) 

Hence a is chosen as a solution of the quadratic equation 

f (a) = (asxx -syx)(byy -abyx) +(syy -asyx)(byx -abxx) = 0. 

Before finding the roots of this equation, let us 
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consider the last pivot; it is the derivative of (18) 

with respect to a. Hence the last pivot, evaluated at 

the turning points (ie when f(a) = 0), is 

nfi(a)/{T()w(8)1 

where f'(a) is the derivative of f(a). To get a 

maximum we want a solution of f(a) = 0 for which f'(a) 

is negative. The two roots of f(a) = 0 are 

syyb -s b 	 (Y,x)  
a = 	

xx 	xx yy  

2 (s b - s b ) yx xx 	xx yx 

where d(y,x) = 

xx 
b yy  -s yy  b xx  )2-4(s yx  b xx  -s xx  b yx  )(s yy  b yx  -s yx  b yy)1 

If we choose the minus sign we can show that f' is 

negative and so we get a maximum while if we choose the 

plus sign f' is positive and so we get a saddle point. 

As there are only two groups, b yy  b xx = b2  and the two yx 

solutions of f(a) = 0 simplify to 

a a b /b 
yx xx 

at the maximum and 

a (b s -b s )/(b s -b s ) 
xx yy 	yx yx 	xx yx yx xx 

at the saddle point. 

Since 

- 	= a(x.1  -x.  ) 	(i=1,2) and El(a) = 0, .  

the estimates for a2  c62, a2 andp.1  from (11), (12), 

•• 
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(13) and (14) simplify considerably. In fact, the 

unique local maximum of the likelihood occurs at 

p. = p. = x. 	(i=1,2), 

a = a = y - 0x , •• 

a 2  = 62  = S yx/5 , 

2 	'̂2 as  = 6S  = s 	- s  xx 	yx 

2 	^.2 = S 0 = C 	E 	YY 	yx 

and 	a = 	= b /b 	. yx. xx 

Note that the estimates of a2  and a2  are undefined when 

= 0; during the derivation of these estimates we had 

to assume that S 0. However, we shall see later that 

the above estimates are inappropriate when r3 is near 

zero. We have now completed the solution of the 

equations. 

/NI 

It is interesting to note that our estimate, 0, 

of 0 depends only on the between-group scatter and in 

no way on the within-group scatter. This is rather 

surprising because the model assumes that the scatter 

within groups tends to be along the same line as that 

between groups, and so the within-group scatter should 

also contain some information about the slope. This 

information is clearly going to be important when the 

group means are close together. Figure I illustrates 

such a situation. The points plotted are from a 

simulation of the model with group means 0 and 1, 
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a = 0, 0 = 1, a 2  = 25 and the error variances, 01 and 

a2, both 1. The between-group slope, R, for these data 

is -3.56 and the corresponding fitted line is clearly 

quite ridiculous. This underlines the fact that the 

estimates we have found are not necessarily the ML 

estimates. 

All we have done so far is to locate the local 

maximum of the likelihood. But we can easily see that 

this point is not always in the parameter space, which 

is restricted by the inequalities a2  > 0, as > 0 and 

a 2  > 0 (and 1E1 > 0). Depending on the value of 0, e - 

any one of ;2, as and ;2  could be negative. When this 

occurs, the maximum within the parameter space (which 

is what we require for a ML estimate) will be on one of 

the boundaries. 

It is not difficult to see that s must lie between 

the two within-group estimates of the slope, s yx /sxx and 

S YY 
/S  Yx , for all three of ;2  ;2  and ;2  to be non-

negative. When this condition holds (for convenience 

we shall call it the "internal condition"), the local 

maximum of the likelihood lies inside the parameter 

space and the above estimates (ie a, pi, etc), which we 

shall call the "internal estimates", are the ML 

estimates. Note that when the internal condition holds 

the saddle point is outside the parameter space so that 

the local maximum is the only stationary point, and 

hence the absolute maximum, inside the parameter space. 

When the internal condition does not hold, the internal 
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estimates are no longer the ML estimates. The maximum 

will be on one of the boundaries and so we must now find 

the maximum of the likelihood on each of the three 

boundaries. 

To find the maximum on the (u26=0)-boundary, we set 

a2  to zero and find the solution of the other likelihood 

equations. The derivative 92./Dpi  becomes 

n. (xi 	p - .)/a2  • 

so that we get pi  = Ri  (i=1,2). The first two pivots 

are -ni/a2  (i=1,2), which are both necessarily negative. 

The third derivative, 32,/3a, becomes 

• 
)/ae2 

so that we get a = y - f3x and a third pivot of -n/a2. 

The fourth derivative, DR./3a2, becomes 

(-na 2  +S
3
)/(2cr4), 

which, on substitution of Xi,  for pi, equals 

n(-a2  +s xx)/(2a4). 

Equating this to zero gives us (5 2  = sxx  and the fourth 

pivot, evaluated when 3t/aa2  = 0, is -n/(2a4). The 

derivative of k with respect to y2, DIV3cr becomes 

-n/(2ci) + (Si - 20S2  + VS3 )/ (2cre4 ) , 

which, on substitution of y - 13x 	for a and x. for •• 	•• 	1. 

p., equals 
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n{_cr 2+,1,(S)},020c41./  

Hence we get cE = T(0) and a fifth pivot, evaluated when 

32,/3a = 0, of -n/(2aZ). Finally, 3Z/30 becomes 

-0S3 	e  )/a2 	a. + lIn.p.i.  1(y. . -a- au.) 	. 	l• - p.) 1/a2,  1 

which, on substitution of y - 0x foraandx.for •• 	•• 	1. 
pi, equals 

n(tyx -0t xx)/a2  .  E 

We thus get a = t yx /txx and a final pivot of -t xx/a2, 

which is again negative. We have thus established that 

the maximum on the (a(;=0)-boundary occurs when 

pi = x.1 . 	(i=1,2), 

Imp 

a = y - x t /t , •• 	" yx XX 

2 a _ - s , xx 

a 2  = 0, 

a2 t 	, 
yy yx xx 

and 	0 = t /t . yx xx 

We shall call these the "(a2=0)-boundary estimates". 

The estimate of t yx /txx for a is hardly surprising for 

when a2=0 there is no error in the variable X and so we 

have the familiar Y on X regression problem. The 

maximum of the log-likelihood on the (q=0)-boundary is 

6 
= -n.log(271.) - 1/2n.log{s xx  (t  yy  - t2  /t xx)} - n . yx  
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Finding the maximum on the (a=0)-boundary is very 

similar to finding the maximum on the (ag=0)-boundary 

and so we shall omit the details. The unique turning 

point, a maximum, on the (a=0)-boundary occurs at 

pi  = x••  + 	y..)tyx/tyy  (i=1,2), 

a =y -x " t /t 	, •• 	yy yx 

a 2  = S t2  /t2  
YY Yx yy 

2 =  t 	t2 	, 
6 	xx yx yy 

a 2  = 0 , 

and 	= t /t 	. 
YY 

yx 
 

These estimates are the (02=0)-boundary estimates. When 

a2=0 there is no error in the variable Y so that the 

estimate t 
YY 

 /t 
 Yx

, the inverse of the overall regression 

slope of X on Y, is again not unexpected. The maximum 

of the log-likelihood on the (a=0)-boundary is 

= -n.log(27) - kn.logfsyy(txx -t;x/tyy)} - n . 

We now find the maximum of the log-likelihood on 

the (a2=0)-boundary. Note that when a2=0, 

=11i- "ij arld=c1-1-".4-6  
X. 	Y. 	1 	C. 

so that we have replicated observations on just two 

points. From the derivative of the log-likelihood 

with respect to pi, we get 
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2  
pi = Oa6(Y -  a) 	a2 xi 1/0202+02) 	(i"1,2), 

• 6 

as in equation (2). The first two pivots are 

-fl.
i
(S2a2+a2)/(a2

6
a2) (i=1,2), 

6 6 	6 

which are both negative. When a2=0, aZ/Da becomes 

n(y - a - Sp)/a2  , 

which, on substitution of the above expression for pi, 

becomes 

n(y - a - Sx )R(1202+0.21. 
••  

Hence a = y - Sx 	and the third pivot is -n/(S2a2
6
+a2). 

	

•• 	6 

It is easiest if we introduce Dt/DS next. With 02=0, 

avaf3 becomes 

i• - a - f
31-1 .)/a2  

which, on substitution for a and pi, equals 

n{1302
6 
 (b 

yy 
- Sb 

yx 
) + 02(b

yx 
 - Sb 

xx 
)1/(320.2o±0.2

E
) 2 

as in equation (17). We thus get two estimates for S, 

the solutions of the quadratic equation 

g(S) = Sa2(b
yy 
 -Sb 

yx 
) + a2(b

yx 
 -Sb 

xx
) = 0. 

6 	 E  

Since b b = b2  

	

yy xx 	yx 

g(S) = (Sa
6
2b /b +cr2)(b 	) 
yx XX 	yx xx 

and the solution of g(S) = 0 that makes g'(S), and hence 

also the fourth pivot, negative is S = b 
yx 
/b 

 xx
. The 
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other solution makes g'(a) positive and so it is at a 

saddle point. When a = b yx  /b xx  the above expression for 

p
i 
simplifies to xis. When 02=0, aQ/3026  equals 

(-na2 +S36  )/(2a4) 

which, on substitution of x. for p
i
, becomes 

n(-a2 +s xx)/(2a4). 

Hence G2
6 
 = s xx  and the fifth pivot is -n/(2a4). 

Similarly, we get a2  = s
YY 	 s 

and a final pivot of -n/(2a4). 
 

Hence the (a2=0)-boundary estimates are 

pi 	1 = x.- 	(i=1,2), 

= y - x b /b yx xx 

02  = 0, 

S 
XX 

a2 = S 
YY 

and a = b /b . yx xx 

The maximum of the log-likelihood on the (a2=0)-boundary 

is 

ko = -n.log(271.) - 1/2n.log(s yy  s xx) - n . 

We can show that this is the absolute maximum on the 

(a2=0)-boundary despite the fact that there is also a 

saddle point on the boundary. 

The various sets of estimates are summarized in 
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Table I. The ML estimate of a parameter is its internal 

estimate when b /b lies between s /s and s /s , 
yx xx 	yx xx 	YY Yx 

its (a2=0)-boundary estimate when b 
yx 
/b

xx does not lie a  

between s 
yx /sxx and s YY 

/s
Yx 

but s 
xx (tyy - t2  /t xx) is yx  

less than both s 
yy 
(t

xx 
- t2  /t yy  ) and s yy  s xx  , its (02=0)- yx  

boundary estimate when b 
yx 
/b

xx 
does not lie between 

s 
yx 
/s

xx and s YY 
/s

Yx 
but s 

yy 
(t

xx 
- t2  /t yy) is less than yx  

both s xx (t
yy 

- t2  /t xx  ) and s yy  s xx  , and its (a2=0)- yx 

boundary estimate otherwise. 

TABLE I 

MAXIMUM LIKELIHOOD ESTIMATES OF THE PARAMETERS 

	

Parameter Internal 	(J2=0)-bdy 	(a2=0)-bdy (:12=0)-bdy 

	

estimate 	estimate 	estimate 	estimate 

t 

ui X. 	 X. 
1. 	 1. 

- - yx  
x (y• " 	1. y..)  

YY 

- 	yx - 
y.. b x •• u 	•• xx  

yx  - 
y - 

t x  y•• b xx xx .. •• yx •• 	.. 

	

a2 	s b /b 	s 	s t2  /t2 	0 yx xx yx 	xx 	YY yx  YY 

b 

	

2 	xx 

	

es 	 o 	t - t2  /t 	s 

	

u 	sxx - s yx b 	xx yx yy 	xx yx 

b 
S 	--Y-2-C 	t 	t2  yy yx b 	yy yxit  xx 	 YY xx 

b lb yx xx 
t /t 
yx xx b /b 

yx xx 
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With some algebraic manipulation we can describe 

the regions of the sample space in which the different 

sets of estimates are appropriate in terms of 

inequalities involving b yx  /b xx. Define region A to be 

the region of the sample space in which b yx  /b xx  lies 

between s /s and s /s . Then the internal estimates yx xx 	yy yx 

are the ML estimates when the sample lies in region A. 

Define 

r1  = (s yy  /s xx)k, 

1/2 r2 = {1- (t /b xx  ) Is /s xx 	yx xx 

and r 	2 	/s 	- s /b ). 3 	yy yx yx xx 

Let region B be the region of the sample space in which 

b /b lies in the interval yx xx 

( max(-rl,r2) , yx  /s xx  ) when syx  > 0 

or in the interval 

( s yx /sxx , min(r1,r2) ) when  syx  < 0. 

Let region C be the region of the sample space in which 

b yx /bxx lies in either of the intervals 

(sYy/s
yx  , co) or, if r3 <-r 	(r3 '-r1)  when  syx  > 0, 

or in either of the intervals 

(-co ,s 
YY 
 /s ) or, if r1 <r3' (r1  ,  r3) when syx  < 0. 

Let region D be the remainder of the space; that is, 

the region in which b yx /bxx lies in the interval • 
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( -co ,min(r2'r3) ) when s  yx > 0, 

or in the interval 

( max(r2,r3) ,c0 ) when s  yx < 0. 

Then the (a=0)-boundary estimates are the ML estimates 

when the sample lies in region B, the (c =0)-boundary 

estimates are the ML estimates when the sample lies in 

region C, and the (a2=0)-boundary estimates are the ML 

estimates when the sample lies in region D. When s  yx > 0, 

we can show that either -r1<r2< r3  or r3  < r2  <-r1. In 

the first case the regions are illustrated in Figure 

II (a) and in the second case they are illustrated in 

Figure II (b). 

FIGURE II 

THE REGIONS OF APPLICABILITY OF THE PARAMETER ESTIMATES WHEN s > 0 yx 

(a) -ri  < r2  < r3  

4----- D ----4- -4----- B ----4- 4---- A ---.4. 4---- C -----).- 
b 

I 	I 	I 	 I 	 ) b
yx 

r2 	0 s  yx /s xx 	s YY /s Yx 	
xx 

(b) r3 < r2 < -r1 

 

1 	 
I 	-r 	0 s Is 	s is 3 1 	yx xx YY yx 

 

  

  

xx 

A: internal 	B: a2 =0 	C: cr 2  =0 D : o2  =0 
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Except when the group means are extremely close 

together, the probability that byx/bxx  lies well outside 

the range of syx/sxx  and SYY/SYX  will be very small. 

So, except in this extreme, we can make the simplifying 

approximation of ignoring the (a2=0)-boundary estimates 

and using either the (cy=0)-boundary estimates or the 

(a2=0)-boundary estimates in region D. But the maximum 

on the (a26=0)-boundary is greater than the maximum on 

the (a2=0)-boundary when 

. 
lb 	I < (s 	) yx xx 	yy xx 

Hence, we can approximate the ML estimates by using the 

internal estimates when b /b 	lies between s /s yx xx 	yx xx 

and s /s 	the (a2=0)-boundary estimates when b /b yy 
Yx' 	 yx xx 

lies between s /s 	and -sign(s )(s /s ) and the yx xx 	yx yy xx 

(02=0)- boundary estimates otherwise. 

If we re-examine the numerical example discussed 

earlier in this section (and illustrated in Figure I), 

we find that the maximum occurs on the (a2=0)-boundary 

and so the ML estimate of S is t /t = 1.030. This 
yy yx 

clearly makes a good deal more sense than the internal 

estimate of -3.56. The ML estimates are clearly not 

going to give the sort of ridiculous fit that the 

internal estimates can give. The final estimate of 

S, emerging only after a careful study of the likelihood 

function, is sensible on general grounds. 
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2.3 Asymptotic expected values and variances of the  

estimators  

In order to estimate the precision of the parameter 

estimates we need their estimated variances. In this 

section we obtain asymptotic expected values and 

variances. These should be interpreted as moments of 

the asymptotic distribution of the ML estimators rather 

than as asymptotic expansions of the exact moments. The 

asymptotic variances could be found from the information 

matrix but it is easier to calculate them directly. In 

using the estimates, it must be borne in mind that they 

are only asymptotic estimates and that when the group 

means are close together the asymptotic properties of 

the ML estimators will be approached very slowly. The 

asymptotic properties of the ML estimators are, in fact, 

just those of the internal estimators. 

The moments of the within-group and between-group 

sums of squares are derived in Appendix 2 and the 

asymptotic moments of byx/bxx  are found in Appendix 3 

but no further details of the calculations will be given 

here. The asymptotic expected values and variances of 

the internal estimators are 

E(Tti) = pi 	(i=1,2), 

E(a) = a - 13q17/(nbpp) + 0(1/n2), 

where 5 = (nip].  +n2p2)/n and bpil  = nin2(pl-p2) 2/n2, 
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E(a2) = a2  + a2(a-232biiii)/(n32bpp) + 0(1/n2), 

E(32) = 	fa20 2 +2/320.2b 	N/fr,(32.- D ) 0(1/n2), as 	 6  pp..... 	PP 

E(Q2) = G 2 	f$20.20.2 +20. 2b )/(nb ) + 0(1/n2), 6, 	
PP 	PP 

E(R) = R + Oag/(nbilm) + 0(1/n2), 

var(ui) = (a2+ap/ni  (i=1,2), 

var(a) = (32ag+a)Inipi/(n2b1.01) + 0(1/n2), 

var(P) 	10.4(320.g+0.62) +blip( i E 1 +2r32(0)},/,(ni3 2b1111) +0(1/n2),  

var(ap = fcr 4  (Vag-Fae2 ) +bpp(11+232ap}/(11132bpp) +0(1/n2), 

var(32) = {$2a4(ea2+a2) +b pp  (321E1+2a4)}/(nb P4
) +0(1/n2), - 	e  

and 	var(S) = (eag+a)/(nblip) + 0(1/n2). 

2.4 Tests of the adequacy of the simplest model 

Before we fit the simple model (ie model I, the 

model discussed in the earlier sections of this chapter) 

to data we will usually want to check that the data are 

consistent with the model. As we normally wish to fit 

the simplest model which adequately describes the data, 

we want to fit model I whenever possible rather than a 

model with more parameters. In this section we shall 

consider three such more general models and find 

procedures for testing whether they fit the data 
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significantly better than the simplest model. Of course 

many other departures from the simplest model could be 

considered but it is hoped that the ones discussed here 

will be the most useful. 

In the first generalized model we allow the 

intercepts on the y-axis of the two groups to differ. 

In other words, the common within-group slope of the 

two groups is allowed to be different from the between-

group slope. This model, which we shall call model II, 

has the same specifications as model I except that a is 

replaced by ai. We now find a test for the hypothesis 

that a1=a2 in this model. 

But first let us find the maximum of the 

likelihood for model II and the ML estimates for a1 

and a2. Leaving the parameter a till last, we can 

solve the remaining likelihood equations in terms of 

in the same way that we did in model I. In fact, 

the algebra is very similar and we get as solutions 

(i=12), a 2  = S pi =  xis  (i=1,2), ai  = -f3Xi  1. 	 • 	, yx 

U2  = S -S /$ and a 2  = S 	f3S I with all the xx yx 	yy yx 
corresponding pivots of the matrix of double derivatives 

of the log-likelihood being negative. However, on 

substitution of these estimates, 3t/as becomes 

identically zero. Hence the likelihood is maximized 

in a subspace of the parameter space, any choice of the 

parameters in that subspace being equally good. The 

reason for this lack of identifiability is that while 



41 - 

we have increased the number of parameters in the 

likelihood by one to eight, the dimension of the minimal 

sufficient statistic has remained at seven. Note, 

however, that we cannot choose a completely arbitrarily 

for we still require any choice of the estimates to be 

in the parameter space. To ensure that all the variance 

estimates are non-negative we must choose a between 

s yx  /s  xx  and s YY 
 /s 

 Yx
. Hence the log-likelihood achieves 

its maximum, 

= -nfl + log(2.01 - 2n log(syysxx  - s;x)/ 

for any choice of the parameters such that pi  = Ri. 
(i=1,2),(xi =y.1  -ax.1 	(i=1,2), a 2  = s /a, 

. 	. 	 yx 

a6  
2 = s 

xx  s  yx 	
a 2 	s YY - asyx  and a lies between E  

s yx /sxx and s 
YY 

 /s  Yx. 

Now let us consider the likelihood ratio test. 

When the null hypothesis that al=a2  is true, model II 

reduces to model I. The maximum of the log-likelihood 

for model I equals is  when b /b lies between s /s yx xx 	yx xx 

and s YY /sYx and otherwise it equals the maximum of 

and 

2,6 = -n{1 + log(270) - kn log{s xx  (t  yy  - t2  /t xx)}, 

QE 	

yx  

= -n{1 + log (27r) - kn log{syy  (txx  - ty2 x/tyy ) } 

2,o  = -n{1 + log (21T) } - kn log (syysxx ) 

Making the approximation suggested near the end of §2.2 

(ie of ignoring 2,0), we get as twice the logarithm of 

the likelihood ratio a statistic which has the value 0 
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when b yx  /b  xx  lies between s yx  /s  xx  and s YY 
 /s 

 Yx
, the value 

n log (s s -s2  ) - n log{s (t - t2  /t )} 
yy xx yx 	xx yy 	yx xx 

when b /b 	lies between s /s and —sign(s )(s /s yx xx 	yx xx 	yx yy xx 

and the value 

n log (syysxx  - sy2 x ) - 	log{syy  (txx  - ty2 x/tyy ) } 

otherwise. The problem is finding the distribution of 

this statistic. Certainly it would be very unreasonable 

to think that it might be approximately distributed as 

a chi-squared variable for there is a finite probability 

that it takes the value zero. Instead we find another 

test procedure. 

Moran (1956) gave an example of a test of 

significance in a similar unidentifiable model and a 

very similar argument'can be used to get a test here. 

To achieve the maximum of the likelihood in model II 

we must choose the estimate of a1-a2 between the bounds 

s 
a(y,x) = (yl.- y2.) - 	x2.)sYY  

yx 

and 	b(y,x) = (il.-  Y2.) - s
yx(7c

1.
_ x

2.
).  

xx 

We get a conservative test of the hypothesis that 

a1=a2 by considering tests based on these bounds. 

First we find the distribution of b(Y,X) 

conditional on X = x, where X
T
= (X11'..,Xln  ,X21'..,X2n ) 2 

and similarly for x. Conditional on X = x, the Yid  have 
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independent normal distributions with means 

	

2 2 	2 / 2 2 M.. = a. + 0a21.1./(a +a) + aa 	../(a-+a6) 13 	xI3 

and variance 

a2 = 02624.a2 	f3204/(0 24.a2
6
).  

YX  

Hence we find that, conditional on X = x, b(Y,X) has a 

normal distribution with mean 

a  _a + pa 2 (, 	, 	/(0.2_1_,,2 )  1 	2 	" 6'"1 "2" ' 

and variance g(x)a2YX'  where 

1 	1 	(Xi.- R2.)2  
g(x) = 	+ — + 	 ns n

1  n2 	xx 

Hence, conditional on X = x, 

b(Y,X) 	(al  - a2) - f36c 	- P2 ) /(6 2+q) 
B(YIX) 

g2(X)ayx  

has an N(0,1) distribution. 

We now find an independent estimate of ayx  which, 

on substitution into B(Y,X), gives us a Student t 

distribution. Let 

33 Z..13 = (Y1.. - m1..)/aYX . 

Then,conditionalmX=x,theZ..
13  are independently 

distributed as N(0,1). Define the vector Lp  to be a 

	

column of p ones. Let ZT  = (Z 	Z 	Z 	Z 	) 11" 1111 2  21" 2n2  
and 
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e
T = 

1 	1 
L 	) 	(21--22.)  

7F--  - g (x) 	n n 1 	n -n 2 	 ( 
1 	2 	 nsXX 	

xil 21.,— ,Rn -51 11 1.12  2.. • 

Then eTZ = B(Y,X). Since, conditional on X = x, B(Y,X) 

is N(0,1) then 

B 2 (Y,x) = ZTeeTZ 

has a chi-squared distribution with one degree of 

freedom, which we shall write as Xi. Let 

1 	1 T 	f T 	T , 	T 	f T 
El = -- r (En ' 2n j and  E2 = —V t21.1 , I'ilri n12 	1 	2 	 2 1 	2 

where 0
P 
 is a vector of p zeros. Then 

T T 	- 2 Z c.c.Z = n. - -1-1- 	Z. 3.• 

is distributed as 4 for i=1,2. We now wish to choose 

a vector d so that 

eeT(In  - c1  c - c2c2  - dd
T) = 0 --

T 
1 

. 	i and 	21S1 	9.2S2 	
T  ) is idempot ent. For then 

B2(Y,X) and 

ZT(In  - c1  c - c2 c
T - ddT)Z --1

T 
--2 -- 

will be independent 	variables. The choice 

1 

	

dT   (x 	 - 	) 
xx  

1/2 	11 	1. "" ' 2n 	2. (ns) 	2 

achieves this aim. That is, conditional on X = x, 

B2(Y,X) is distributed as 4 and is independent of 
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V(Y,X) = B(Y,X){ 	YX  } 

n (sYY  - s 2YX /sXX ) 
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ZT(1 - c c - c cT - ddT)Z = n(s _ s2 /s  )/0.2 
-n -11

T 
-22 	YY YX XX YX' 

which is distributed as xn2_3. 

Hence we have established that, conditional on 

X = x, 

is distributed as tn-3' the Student t distribution with 

n-3 degrees of freedom. But this distribution does not 

depend on x so that, unconditionally, 

aq(11-112)W 	n-3 
V(Y,X) = {13 (Y,X)- (a1-a2) a 24.0.2 	)lng(x)(s YY -sYX /s 

is distributed as tn-3' 

Defining 

YX - c(Y,X) = - YX  a(Y,X) = (R1.- 2-) - ---(Y1.- 2.), 
YY 	 YY 

we can similarly show that 

U(Y,X) ={c(Y,X)- 
Sc f2 (a2-al) 	6E  (111-11 	 n-3 

02a2.4.cr 	f320.21.0.2
ng(Y)(Sxx—Sx/Syy) 

is also distributed as tn-3 though not, of course, 

independently of V(Y,X). 

Suppose, temporarily, that f3 >0 and pi  -112  >0 

and consider the statistic 
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S(Y,X) = c(Y,X){ 

n - 3 

 

ng (Y) (sXX sYX/sYY)  

Then, when the null hypothesis that a
1 
=et

2 
is true, 

S(Y,X) is greater than the tn_3 variable U(Y,X). 

Consider first the alternative hypothesis that a2 - ai< 0. 

When this alternative is true, the factor 

2 
(30.21 	_ a 1) J (020.2+0.2) 

'-' " 

will increase U(Y,X) relative to S(Y,X). Hence a small 

value of S(Y,X) indicates a possible departure from the 

null hypothesis in the direction of a2  - al  <0. But 

since S(Y,X) is larger than a tn_3  variable when the 

null hypothesis is true, then the true tail probability 

is less than that of the tn_3 distribution, namely 

Pr{W<S(y,x) 1W has a tn_3  distribution} = F
n-3

{S(y,x)}, 

where F
n-3 

is the distribution function of the t
o-3 

distribution. In other words, S(y,x) is more significant 

than is indicated by the tn_3  distribution. 

When we consider the alternative hypothesis that 

a
2 
- a

l 
> 0, the unknown factor 

Sae (a2 
 _

a 1)/(a2a2+0.2) 

has the opposite effect and so a large value of S(Y,X) 

is indicative of a departure from the null hypothesis in 

the direction of a
2-a1 

>O. The value S(y,x) will be 
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less significant than is indicated by the tn_3  

distribution since the true tail probability is greater 

than 

Pr{W>S(y,x) IW has a tn_3  distribution} = F
n-3{-S(y,x)}. 

Now consider the statistic 

T(Y,X) = b(Y,X)f 
n - 3 
	 11/2. 
ng (X) (syy  - sh/sxx )J 

Assuming still that (3 >0 and 111 -112  >0, T(Y,X) is 

greater than the tn_3 variable V(Y,X) when the null 

hypothesis is true. This is the same as the relationship 

between S(Y,X) and U(Y,X) but now a large value of 

T(Y,X) indicates a possible departure from the null 

hypothesis in the direction of a2-ai  <0 while a small 

value of T(Y,X) indicates a possible departure in the 

direction of a2-a1  > 0. The true tail area greater than 

T(y,x) is greater than 

Pr{W>T(y,x) IW has a tn_3  distribution} = Fn_ {-T(y,x)} 

while the true tail area less than T(y,x) is less than 

Pr{W<T(y,x) IW has a tn_3  distribution} = Fn_3{T(y,x)}. 

Combining the tests based on S(Y,X) and T(Y,X), 

we see that, when 13 >0 and Ill -112  > 0, a departure from 

the null hypothesis that al  =a2  in the direction of 

a2-a1 <0 is indicated by the values S(y,x) and T(y,x) 



- 48 - 

with significance somewhere between Fn_3(-T(y,x)} and 

Fn-3{S(Y,x)}. A departure from the null hypothesis in 

the direction of a2-a1  > 0, on the other hand, is 

indicated by the values S(y,x) and T(y,x) with 

significance somewhere between Fn_3{-S(y,x)} and 

Fn-3{T(Y,x)}. If we wish to do a significance test 

we use the least significant value for each one-sided 

test. That is, we reject the null hypothesis in favour 

of the alternative that 
a2-a1 <0 if 

S(y,x) < -tn_3(y) 

and we reject in favour of the alternative that a2 - al >0 

if 

T(y,x) < -tn_3(y). 

Each of these tests has size less than y. 

The above tests are only appropriate when (3 > 0 and 

p1- p2 >0. The other cases can be treated in a similar 

manner and the results are summarized in Table II, where, 

for simplicity of notation, we have written F(S) in 

place of Fn_3{S(y,x)}, etc, and t in place of tn_3(y). 

In the absence of prior knowledge of the signs of R 

and pi  - 112  we must choose our test on the basis of the 

signs of s yx 	1 
and x, 0 L  - xn 

. 
instead. But if we have 

strong prior knowledge of the signs of f3 and pi - p2  

we should use this knowledge to choose the appropriate 

test even if the signs of syx  and x1.-  x2. indicate the 

use of another test. However, any contradiction with 
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the prior belief of the signs must be weighed against 

the degree of belief and a cautious approach might be 

to use both tests. 

TABLE II 

BOUNDS ON THE SIGNIFICANCE OF THE INTERCEPT TEST 

Sign Sign of Alternative Significance of sample 	Conservative 

of $ pi  -1.12  hypothesis Lower bound Upper bound critical region 

+ + 	a1>a2 	F (-T) 	F (S) 	S<-t 

+ + 	a1<a2 	F(-S) 	F(T) 	T<-t 

+ - 	a1>a
2 	

F(S) 	F(-T) 	T > t 

+ - 	al <a2 	F(T) 	F(-S) 	S > t 

_ 	
+al a2 

> 	F(-S) 	F(-T) 	T > t 

+al a2 
< 	F(T) 	F(S) 	S < -t 

- - 	al > a2 	F(-T) 	F(-S) 	S > t 

- 	- 	a1  < a2 	F(S) 	F(T) 	T < -t 

We now consider extensions of the simplest model 

that allow the variances in the two groups to differ. 

In a practical situation the objective will normally be 

to find a model reasonably consistent with the data and 

reasonably economical in parameters. The number of 

possible models of the present type is great, of course, 

but we shall consider just two. In the first, model III, 
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we allow the variances in the second group to be 

proportional to those in the first group, the constant 

of proportionality being unknown but the same for az, 

a 2  and az. In the second extended model, model IV, the 

variances in one group are assumed unrelated to those 

in the other group. We use the likelihood ratio test 

for testing the appropriate hypothesis in each model. 

We now find the maximum of the likelihood in the first 

of these models. 

If the variances in the second group are X times 

those in the first group, the log-likelihood of model 

III is 

= -n log (2n) - hn loglE1 -n logX -{(a2+q)(S11+S12/X) 

2"2(S21±S22/X) 	 2) 

where I I I = 
/322,2 +. 0.2 y y 6  y 	S'e' 

as before, and 

n. 	n. 

. = a - api) 2, S2i  = 	a - OPi)(xii  - Pi) 
j=1 3 	j=1 

ni  

and 	S31  . = 1(x.1  .- p.1) 2 	(i=1,2). . 	3 j=1 

Maximization of the likelihood is very similar to the 

maximization in model I. The likelihood equations for 

pi  and p2  yield 

ui  = {13q(-yi.- a) -1-062-xi.}/(32q+a) 	(i=1,2), 
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as in the simplest model, and the first two pivots are 

-n1  (32a2+a2)/1E1 	and -n2($2a2+a2)/(X1Z1). 6 e 	6 e 

The likelihood equation for a, on substitution of the 

above expressions for pi, yields 

a = y(X) - BR (A), •• 

where 
	Y (X) = (Xn11. + n22.  )/(Xn1  +n2  ) etc. 

The third pivot is 

-(An1  + n2  ) /{ ( 201+0.62  ) }.  

On substitution of the above expressions for a 

and pi, Sil  +S12/X becomes 

nsYY (A) + na4B 	,x) j tRc.20.24.aze
lz 
" 

where 	
nsYY 	3 	i 

(A) = (173.i  -i1.) 2  + 1 (y2i  -12.) 2/A, 

- 	n2 	r11112(Y, -Y0 )2  
nb (A) = 	fY -y (x)}2+ — Gr2.-i.cx)}2  - 	 • `'• 

YY 	nl l. 	
X 

etc, and B(3,X) = byy(x) - 213b yx  (A) + (3 2b xx (A). 

Similarly, S21  +S22/X becomes 

	

ns yx 	 Ve-  (X) - n(3a 2,2n(a,x)/(a2a2+a212 

and S31 +S32/X becomes 

ns • (A) + 2,14 B f a  x ) /02,2+a 2 1 2 

	

xx 	 `" 	 ' • 

An1  + n2 
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Thus maximization with respect to a2, a2 a2  and $ 6 ' e 
becomes the same as in model I but with s YY(A)  replacing 

s 
YY 

 , b 
YY 
 (X) replacing b 

YY
, and so on. We thus get 

a2 (A) = syx  (A)/f3, 

a26  (X) = s xx  (A) -s yx (X)/(3, 

and 

szl(X) = s
YY 

 (A) - asyx  (X), 

byx(A) 	byx 

b (A) 	Kl.- K2  
xx 	

. 	
xx 

say. 

Since B(g,A) = 0, then, on substitution of the above 

estimates, Sil  +Si2/A becomes nsyy(X), S21 +S22/X 

becomes ns (A) and S31 +S
32/X becomes ns (A). Hence, yx 	 xx 

we find that the log-likelihood when maximized with 

respect to all parameters except A is 

Q (X) = -n{1 + log (2ir) } - 1/211 log12001 - n2logX 

where 
	

I 2(X) I = syy(X)sxx") -sy2x(A).  

Maximization of £(A) with respect to A yields the 

ML estimate of A, namely 

A = {t12 + (t1  +16t11t22)  1/(4t11), 

where tii = n (s 	s 	- s2  ) 	(i=1,2), i yyi xxi 	yxi 

t12 = (n
1
-n2)(syylsxx2 -2syxlsyx2 +syy2sxxl ), 

and s 
yyl 	(yid j = Y(y - .17 )2/ni, etc. 

The maximum of the log-likelihood in model I is 
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o = -n{1 + log (27r) } - Zn log(s yy  s xx  -sz  ), yx 

and so we use 

A A 	 A A 	 A 

2{2.(X) -Zo} = -n loglE(X)1 +n log(s yy  s xx-sz  ) +2n2logX  yx 

as a test statistic for testing the hypothesis that A =1 

against the alternative that X 1. This statistic is 

asymptotically distributed as Xi  when A = 1. 

As in the simplest model, the maximum of the 

likelihood may not be in the parameter space. If there 

were a significant probability of this occuring we could 

do better by taking account of it through the use of the 

ratio of the maxima of the likelihoods in the respective 

parameter spaces rather than simply the ratio of the 

likelihoods at the respective internal estimates. 

However, this complicated task will not be attempted 

here. 

We now turn to the other extension of the simplest 

model in which the variances in one group are unrelated 

to the variances in the other group. While the 

extension we have just considered is included as a 

special case of the present model, we will get a more 

sensitive test against the particular departure from the 

simplest model by using the above test rather the test 

we are about to derive. The specifications of the model, 

model IV, are the same as for model I but with a 2  

replaced by al, ci replaced by ah and ciE replaced by 

cr. . Thus, for example, ah is the variance of the 
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errors in the X variable for group 1 while a262  is the 

error variance in the X variable for group 2. Define 

the new parameters 

= A2
ai   

(1 2.  
, Yi  = 
	and xi 	Gi2 

Then the log-likelihood of the observations is 

	

= -n log(27r) - 	Eil - 1/2X (xiSii-2yiS2i+4)03i)/1 Eil 

where 
	

lEi l = (Pixi  - Yi 

and S11  ., S21  . and S3i  are defined as before. 

The solution of the likelihood equations is again 

very similar to the solution in model I, though in this 

case it is best to introduce the equation for 3 before 

the equations for xi, yi  and cpi. We again find that 

there are two turning points, the maximum occuring when 

p. =x. 	(i=1,2), a = y - 3x , 	= b /b , x. = s . a.• 	•• 	•• 	yx xx 	xxi 

yi  = s yx1  . and cfoi  = s YY1  
.• The maximum of the log-

likelihood for model IV is thus 

= -n{1+ log(2Tr)} - 1/2Xnilog(syyisxxi  - sy2xi). 

Hence, for testing the null hypothesis that ai2  =0'22, 

2 	
e 	

2 aS1 = a62 and a2l  = ae2 against the general alternative 

we use the statistic 

2(2,- 2,
o
) = n log(s yy  s xx  - s2  ) - Xnlog(s .s xxi  - syx12  ) yx 	.  

which, when the null hypothesis is true, is asymptotically 

distributed as 4. 
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2.5 Tests of hypotheses about the slope  

In this section we consider tests of the null 

hypothesis that f3 =f30  against the alternative that 

o, all other parameters being unspecified in both 

hypotheses. From such tests we can obtain also 

confidence intervals for a by defining the (1-y) 

confidence interval for a to be the set of all 00  for 

which the null hypothesis that a = 00  would not be 

rejected at significance level y. First we find a test 

statistic, based on the ML estimate of 0, which is 

asymptotically normally distributed. 

As the number of observations, n, tends to 

infinity, the probability that the local maximum of 

the likelihood lies inside the parameter space tends 

to one, unless a = 0 or one of the error variances, as 

or a2, is zero. Hence the asymptotic properties of 

the ML estimator of $ are just those of the internal 

estimator, byx/bxx. Now 

byx/bxx  = (Vi.- i2.)/(5<1.- 	.) 

is the ratio of two correlated normal variables. The 

numerator, (Y1.- 	 has has mean 00(111-y2) and variance 

n(02a2+a2)/(n1n2) when 0 = 0o, the denominator, X1.- X2., 

has mean II1-112 and variance n(eq.a(;)/(n1n2), and their 

covariance is n00a2/(n1n2). The exact distribution of 

Ti is given, for example, by Hinkley (1969) where it is 

shown also that 
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Ut  = (13 - So) { 
nb 

( :1 2+cr  2) /42 	zo. 2 + pt 
6 	 PO 	

e 

1/2 

where 	bPP = D1.(11. -17)2/n, 

is approximately distributed as N(0,1). In fact, the 

distribution of Ufi  tends to the N(0,1) distribution as 

theprobabilitythatRI.-R_
2-  has constant sign tends to 

one. 

In Appendix 3 we show that 

E(ii) = S + 0(1/n) 

and 	var(S) = (32q+a)/(nblip) + 0(1/n2). 

Hence, under the null hypothesis that S = 

f 
0 	

nb 
PP 	

1/2 
U
* 
= 	13 ) 1 02(1

6  
2 + ci

e
2 

'o  

will also be approximately distributed as N(0,1). The 

choice between the statistics found from Ut  and U by 

replacing the unknown parameters by their ML estimators 

is not obvious but a limited numerical study suggested 

that the statistic based on U was the better. So we 
* 

shall concentrate just on U . We now need the ML 

estimators of the parameters in the null hypothesis 

model in which 3 = So  is known. 

In the solution of the likelihood equations in 

§2.2, the likelihood equation for 0 was not used until 
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the end. Equations (4), (11), (12), (13), and (14) thus 

give us the ML estimates for the model with = ao  known. 

These are, for 00  # 0, 

(0 o  s xx  -s yx1  )(y. 
. 
-y 

- 
+ 0 0  x ) + (syy  -0 0 yxs )x2 

(i=1,2), 

W(f3o)  

IMO 

y.. - 130x.. 

(So  xx  - s ) (s 	- a 	)B(0 

	

".2 = LE 	o xx 	yx 	yy 	o yx 	0  

	

ao 	ao ) 0 0 

(0 o sxx -s 
yx
)T(0o) 

00'1( a0 )  

and 
	

a - 
(syy -0  o 

 s yx 
 )T(0 ) 

W(I30)  

Of course these estimates are only internal estimates, 

being appropriate when a2I as and a2 are all non-

negative. The various boundary estimates apply 

otherwise. The estimates on the ci2  =0 and cr2  =0 

boundaries are found later but for the meantime we 

assume that the boundary estimates are not important. 

Substitution of the internal estimates of the 

parameters into U gives us, for 00  0, the statistic 

n1/2(byx/bxx-ao) {(aosXX-sYX )bYX +  (sYY-13osYX)bmd U(00) - 
{W(ao)T(0o)13XX1 1/2  

which we use as an approximately N(0,1) distributed test 
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statistic. This test will be asymptotically efficient. 

But if we have a moderate sample size and the group 

means are close together, then the test will be far 

from efficient for the same reasons that b /b is a YX XX 

poor estimator of 8 in this sort of situation. 

Essentially the problem is that byx/bxx, the internal 

estimator of a, will have a much larger variance than 

the ML estimator. Improving the estimate of the variance 

of bYX /bXX by taking account of the boundary estimates 

or obtaining the exact distribution of bYX /bXX will not 

overcome this problem. Instead we must look for a quite 

different test statistic. 

One way of dealing with problems involving 

nuisance parameters is to condition on a sufficient 

statistic for them. By doing so we will get a similar 

test. But, unfortunately, the minimal sufficient 

statistic for the nuisance parameters in the present 

problem is the same as the minimal sufficient statistic 

for all the parameters (ie 8 and the nuisance 

parameters) when 8 0, so that this approach is not 

possible. For a = 0, however, the dimension of the 

minimal sufficient statistic for the nuisance parameters 

is two less than the dimension of the minimal sufficient 

statistic for all the parameters. Hence we can find the 

joint distribution of the observations conditional on 

this sufficient statistic. The derivation of this 

distribution is rather long and the distribution itself 

is complex and so they will not be given here. The 
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test based on the derivative of the conditional log-

likelihood with respect to P., 92,c/3p say, evaluated at 

= 0, would be locally most powerful among all tests 

based on the conditional distribution if it were not 

for the fact that it is a function of the unknown 

nuisance parameters. But as the derivative does contain 

these nuisance parameters we must replace them by the ML 

estimators in the null hypothesis model. We now derive 

these estimators. 

When a = 0 the log-likelihood is 

= -n log (2u) - kn loga - kn log(a2+ap 

- 1I(yij-a)2/(2ap - IX(xii-Pi)2/{2(a2+01)}. 

from which it is immediately obvious that 62  and as 

cannot be estimated separately. We must treat a2+ag 

as a single parameter. We again solve the likelihood 

equations sequentially and check on the signs of the 

pivots of the matrix of double derivatives of the log-

likelihood. From the derivative of 2, with respect to 

ili wegetx.astheestimateofp..The first two 

pivots are both -1/(a2+a2). From Dk/Da we get y 	as •• 

the estimate of a and a third pivot equal to -1/a. 

The derivative with respect to a2+ag with pi  replaced 

by xi.  gives us s xx  as the estimate of 02+a2 and -1/2n/s2  xx 

as the fourth pivot (evaluated at a2+ag = sxx). Similarly 

we get t 	as the estimate of a2  and -1/2n/t2  as the final 
YY 	s 	YY 

pivot. All the pivots are negative so that the unique 
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turning point is a local maximum. 

Dividing 32,c/D13, evaluated at s = 0, by its 

conditional standard deviation (conditional on the 

sufficient statistic for the nuisance parameters) and 

then replacing the unknown nuisance parameters by the 

estimators we have just found, we get the statistic 

h 
Q
* 
= (n-l)ktYX /(tYY  tX  ) 

Actually we have to estimate (52  by the estimate of a2+q, 

s 
xx

, because a
2 
and a

2 cannot be estimated separately. 

We could use Q as an approximately N(0,1) distributed 

statistic but we can actually get an exact distribution. 

Let V = Q*2/(n-1). Then 

(n-2)V 	(n-2)t2  /t 
Q2 	 YX XX 

1 - V 	t - t2  /t YY YX XX 

can easily be shown to have an F distribution with 1 

and n-2 degrees of freedom. First we condition on 

j 
X..
1] = xi 

 for all i and j, and then we use Cochran's 

theorem to show that 

nt2YX /tXX 	
n(tYY 

- tYX2  /tXX ) 
and 

1E1/(0.2+q) 	IEI/(a2+ap 

have independent (non-central) x2  distributions and so 

their ratio has a non-central F distribution. When 

= 0 the non-centrality parameters both become zero 

so that the ratio has a central F distribution. But 
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this distribution does not depend on the x..ij  so that the 

1/2 result holds unconditionally. If we let R = t /(t t ) 
YX 	YY XX 

then 

Q = (n-2) 2R/(1  -R2)1/2  

has a Student t distribution with n-2 degrees of freedom 

when 6 = 0; we use this for testing the hypothesis that 

6 = 0. 

But we still do not have a satisfactory test of 

the hypothesis that a = 60  when 00  0, so let us try 

the Neyman C(a) test (Neyman, 1959). Letting k be the 

log-likelihood function for the full model and y 

represent the nuisance parameters, we calculate the 

function 

ak/ao — (avay)Tb 

where the vector b is defined by 

[ --1 E[ — b 0 • 

a 22, 

E 
D 2k 

Dividing this function by its standard deviation and 

replacing the unknown nuisance parameters by their ML 

estimators in the model where a = 00  is known, we get 

the Neyman C(a) test statistic which we use as an 

approximately N(0,1) distributed variable. The 

calculations required to get this statistic are long 

and tedious and so no details will be given here. We 

get the statistic from 

a6Dy 	aye  
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1pp - 5)( 	- 0 x..)/((B2o  4.0. u22)yn.(1.- 5)20 v (o) o 13 	d 	 3. 

by replacing the unknown parameters by their ML 

estimators. We now derive these ML estimators. 

The internal estimates were found earlier in this 

section. We saw that they had virtually been obtained 

in §2.2 and the same is true of the (ag=o)- and (a=0)- 

boundary estimates. The (a=0)-boundary estimates for 

p. (i=1,2), a, a2  as and a2  are x. 	(i=1,2) y -6 x 

s xx, 0 and T(So), respectively, and the (a2=0)-boundary 

estintatesofthesameparametersare , 	)/0o •• 	1- 	•• 

(i=1,2), 	130X..  , syy/S, Tooup,(2, and 0, respectively. 

Explicit expressions for the (a2=0)-boundary estimates 

(ie, the estimates when the true X-variance is zero) 

could not, however, be obtained. So let us make the 

approximation of ignoring the (a2=0)-boundary estimates 

and then examine the C(a) statistic. It turns out that 

the statistics we get by using the internal estimates, 

the (a2=0)-boundary estimates and the (a2=0)-boundary 

estimates are all the same, namely 

C(130)  = n1/2 (bYX aobXX )/IT (13o)bXX }1/2 * 

But it is clear that this is really no improvement on 

the test based on the ML estimator of S. 

The above tests are inadequate because they fail 

to take account of the fact that if 13o is well outside 

the range of the within-group slopes though not 
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significantly far from the between-group slope then a 

departure from the null hypothesis is suggested. The 

information about the slope comes from two sources, the 

between-group slope and the range of the within-group 

slopes. The tests we have obtained so far, except the 

test for the null hypothesis that 3 = 0, use only the 

first source but it is not difficult to construct a 

test which uses both sources of information. 

First suppose that we have a sample in which 30  

lies within the range of the within-group slopes. Then 

no departure from the null hypothesis is indicated by 

these within-group slopes and so we can use only the 

first source of information and test for such a departure 

with a statistic based on the between-group slope. That 

is, we use the statistic U(30). 

But suppose that 30  lies outside the range of the 

two within-group slopes. Then both sources of 

information can be used. The appropriate set of 

estimates of the parameters is one of the sets of 

boundary estimates. The regions of the sample space 

in which the different sets of estimates are appropriate 

cannot be specified just in terms of inequalities 

involving 30  (like we did in §2.2 where the regions 

could be specified by inequalities involving b 
yx 

 /b  xx). 

However, as in §2.2, we can get a good approximation by 

choosing the regions so that the internal estimates are 

used when So lies between s yx /sxx and s 
YY 

 /s 
 Yx

, the 
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(0. 2
6
.0)-boundaryeatimatesareusedwheriOlies between 

s /s 	and -sign(s )(s /s )1/2 , and the (a2=0)-boundary 
yx xx 	yx yy xx 

estimates are used when 00  lies elsewhere. First 

suppose that the sample is such that 00  lies between 

s yx  /s xx  and -sign(s yx 
 )(s yy  /s xx)

1/2  ; then we use the 

(a2=0)- boundary estimates. In particular, our estimate 

of a26 	 6 is zero-. Now, if we knew that 0.2  =0 then we would 

be in the familiar Y on X regression situation and would 

use the overall regression slope for testing the null 

hypothesis that a =50. So it seems reasonable to do the 

same here. We now derive a test based on the overall 

regression slope of Y on X, tyx/txx. 

We shall reject the null hypothesis if 

Z = Ityx/txx  - E(tyx/txx ;0 =00) I > k(y), 

where k(y) is chosen So that the probability of 

rejection, given that 0o lies between 
sYX /sXX and 

-sign(sYX )(sYY /sXX ) 
h , is y. We assume that 

Pr{-(sYY /sXX  ) 1/2  > So I sYX >0 ; f3=f3 

and 
	

Pr{ (sYY /sXX ) 1/2  < o I sYX < 0 ; a = 	} 

are both negligible. Hence, when syx  > 0, we condition 

on 

sYX /sXX > max(0,0o) 

and when sYX  <0 we condition on 

sYX /sXX < min(0,0 ). 
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Suppose first that syx  > 0. Then we reject the null 

hypothesis if 

Z > k(y) 

where k(y) is chosen so that 

	

Pr{Z > k(y) I  syx/sxx  >max(0,60) ; a = 	= y. 

In other words, we reject the null hypothesis if 

Pr{Z>z I sYX /sXX > max (0, 3o) ; S =ao} < y. 

To evaluate this conditional probability we 

approximate the joint distribution of tyx/txx  and 

sYX /sXX by the bivariate normal distribution. 

Expressions for the asymptotic moments of tyx/txx  and 

sYX /sXX are given in Appendix 3 and we approximate the 

means and variances in the normal distribution by these 

expressions with the unknown parameters replaced by 

their ML estimates when 0 = So. Note that the ML 

estimates are always the (q=0)-boundary estimates when 

we use this test. Define 

1 W = (tYX/tXX - o IntXX/T(0o
)11/2 

/ 

V = (syx/sxx  - 00) (n-4) sxx/T(30) } 2  

and 
	

b = min(0,0o){(n-4)s xx  /T(S 0)1 2. 

Then we reject the null hypothesis if 

Pr{ IWI > 1w1 I V> -b ; 3 =30} < 
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where W and V have a bivariate normal distribution with 

zero means, unit variances and correlation 

1/2 p = (s /t ) xx xx 

Let 1'(.,.;p) be the distribution function of this 

distribution and let (1)(.) be the distribution function 

of the standard univariate normal distribution. Then 

we find that the null hypothesis is to be rejected if 

(1)(b) - (1)(1wl,b;P) + (1)(-1w1,b;P) 
	  < 1. 

(b) 

For sYX  <0 we get exactly the same result except 

that b is replaced by 

c = min(0,-60){(n-4)sxx/T(60)11/2. 

Define 

e = min{0 , sign(syx) 601 { (n-4)s XX/T(60))  2. 

Then if 6o lies between s /s 	and -sign(s )(s /s ) h 
yx xx 	yx yy xx 

we reject the null hypothesis that 6 = 6
o if 

(1)(e) - (1)(1w1,e;p) + (1)(-1w1,e;p) 
(19) 

(1)(e) 

Before we go on to find a test for the case when 

1/13o lies between s yx /syy and -sign(s yx  )(s xx  /s yy) , let 

us see whether or not the above test really does have 

size approximately equal to y. The doubt over the 

achievement of this aim stems from the fact that we 

always estimate cl,; by zero, which is a lower bound for 
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ac;. This means that, when at; is not zero, we tend to 

under-estimate the variances of sYX /sXX and t /t YX XX and 

to over-estimate the absolute values of their 

expectations. To see the effect of this we first note 

that e will most commonly be zero and the numerator in 

(19) will usually be dominated by (1)(-1w1,e;p). So let 

us consider the effect of the under-estimation of a2  

on (1)(-1w1,0;p). Clearly Iwl will tend to be larger 

than 

It yx  /t xx  - E(tYX /tXX ) 

fvar(tyx/txx)11/2  

so that the rejection criterion (19) will tend to reject 

fewer samples than planned. That is, the test size will 

tend to be less than y. 

It can be seen on general grounds that the test 

will have size approximately y when 	is is zero but will 

become more conservative as c increases. Of course, 

2 as a increases (relative to a2  and j2), it becomes 

less likely that this test will be used, which is an 

important compensation. However, given only that this 

test is used on a particular sample, we cannot say how 

conservative it is. There seems to be no (non-Bayesian) 

way of satisfactorily adjusting for this conservatism. 

We might consider replacing y in (19) by some compromise 

value greater than y but this would mean that for some 

values of the parameters the test would have size 

greater than y while for other values it would have 
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size less than y; it seems better to leave the test as 

it is. 

Now let us consider the case when 1/a0  lies 

1/2 between s yx /syy and -sign(s yx  )(s xx  /s yy) . Then we 

always estimate cr by zero and so, as we would if we 

knew a2  were zero, we base our test statistic on the 

overall regression slope of X on Y. Rewriting the null 

hpothesis as 1/8 = vao  and interchanging the roles of 

Y and X, we can use the previous results. Define 

w = (t yx  /t yy  - o)1/-0
0
2t 
YY
/T(ao)1

h , 

e
* 	 h = min{0 ,sign(s yx  )1/a 0o  }{(n-4)a2s yy  /T(a 0)1 , 

and p = (s 	)1/2. 
YY YY 

Then, when 1/ao lies between s yx /syy and 

-sign(s yx  )(s xx  /s yy)
1/2  ,.we reject the null hypothesis 

that a = ao if 

* * 	* * 
cli(e ) 	cDtlw I,e ;p 	+ 

,
I,e ;p 

* 	 < Y. 

To summarize, then, our test procedure is as 

follows. If ao 	0) lies between s yx  /s xx  and s YY  /s Yx, 

we reject the null hypothesis that a = so if 

luw0 )1 > k1/27 

where k
ky 

is the upper 1/27 point of the standard 

univariate normal distribution. If ao  lies between 

h s yx /sxx and -sign(s yx  )(s yy  /s xx) , we reject the null 
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hypothesis if 

(I)(e) - (1)(1wI,e;p) + (1)(-1w1,e;(3) 
	 < y 
(1)(e) 

And if 1/13o lies between s yx /syy and -sign(s yx  )(s xx  /s yy)2,  

we reject the null hypothesis if 

e, *, 	* 	*, 	* I 
	

* 
(1)(e ) 	(Dtlw lie :p J + (Dt-lw 	,e ;p j 

(D(e ) 

The test based on u(00) has size approximately y while 

the other tests have size approximately equal to or less 

than y. 

For confirmation of the conclusions about the 

sizes of the different tests, ten thousand samples 

were drawn from a simulated model with n1  = n2  = 20, 

= f3.0  = 1, a = 0, pi.= 0, 112  = 10, a 2  = 25 and 
0.2
6  = 0 -2 = 1. The size, y, was set at 10% and the 

proportions rejected by the tests were calculated after 

each 1000 samples. The results are summarized in Table 

III. The number of times a particular test is used 

does, of course, vary slightly from one set of 1000 

samples to the next but this in no way obscures the 

general picture. On average the test based on byx/bxx  

was used on about 60% of the samples while each of the 

other two tests were used on about 20% of the samples. 

Obtaining confidence intervals from the above 

• 

tests is not a trivial matter but with routines available 
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for computing bivariate normal probabilities it is not 

too difficult to do this on a computer. 

TABLE III 

REJECTION PERCENTAGES OF THE SLOPE TESTS 

No. of 
	

Rejection percentages, at 10% significance level, 

samples 	of test based on 

b /b YX 	XX tyx/txx  tyy/tyx  

1000 10.9 2.7 6.2 

1000 12.5 7.6 6.3 

1000 11.6 5.3 6.1 

1000 10.7 5.9 8.9 

1000 9.8 3.5 5.6 

1000 8.6 10.3 4.8 

1000 10.3 5.7 6.6 

1000 10.6 9.1 5.8 

1000 10.5 7.0 9.6 

1000 9.2 6.4 5.3 

Average rejection 

percentage 10.45 6.38 6.55 

Total no. of 

times test used 6056 1976 1968 

The tests we have derived in the latter part of 

this section are for testing the null hypothesis that 
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a = ao only when (3o 0. When 0o = 0 we use the 

statistic Q defined earlier in the section. 
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Chapter 3 

THE K-GROUP, TWO-VARIABLE MODEL 

3.1 Specification of the model  

In this chapter we consider an extension of the 

two-group model to allow for the inclusion of more than 

two groups of data. The model has the same 

specifications as the two-group model of Chapter 2 

except that now the data come from k > 2 groups. That 

is, the observations f(yij  xij) ;j=1,..,ni ,i=1,..,k1 

come from the model 

1-  (31J- 13 a 13 13 

and = U.. + 6 	, 
1] 	13 	ij 

where the Uij are independently distributed as N(pi,u2), 

the Eij have independent N(0,a2) distributions, the 

ij have independent N(0,a2) distributions, and the 

errors, Eij  and Sij, are independent of each other and 

of the U. . We shall call this model V. 
13 

As in the two-group model, the 	 3 (Y13 ..,X1..) have 

independent normal distributions with means (oc+p.,p.) 

and variance 

E = 	
a2G24.0.

e  
2 RG2 

0„:3 2 	a21..a 
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and the. log-likelihood of the observations is 

= -n log(21r) - 	loglE1 -1/21 (a2+apS1- 21362S2  

(R2(124.62)s31/1E1 

where n = In., 

E1 
= p,262a 2 	62a2 	6262 

e 

k ni  

S 	= 	(y.. - a, - 131..t.) 
1=13=1 

S2  = II(yi j - a -(xij -Pi), 

and 
	

S3 = II (x1]  ..- 11.) 2 . 

3.2 Maximum likelihood estimation of the parameters 

In the solution of the likelihood equations for 

the two-group model in 52.2, the special property that 

holds when there are two groups but not when there are 

more than two groups, namely b yy bxx = b2  , was  yx 

deliberately not used until near the end, when it was 

used to simplify the expression for the estimate of R. 

Hence, as in the two-group model, there is one saddle 

point and one local maximum, the local maximum occuring 

at 

Pt/ 

Pi = Pi  - 
Os - s ) 	. 	y + 	)+ (s -Os )x. xx yx 	•• 	YY yx 1. 

WO) 
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a = a = y.. 	(3x..  , 

G 2 = 	= 
	(F4S xx  - syx) (syy  - Fgsyx)B ((j..) 

R/12(ib 

2 	a "'2.  - = cr cs   
(Rs -s )T(R) 

xx yx  
1 

"Ai cD 

(s - s )T(R) 
02 = 	YY 	yx  

W(R) 

and 
s b -s b -d(y,x) a  = a  _  yy xx 	xx yy  

2 (s b - s b ) 
yx xx 	xx yx 

where d(y,x) = 

1 (s b 	-s  s b )2  - 4(s b - s  s b )(s  (s b 	-s b ) xx yy 	yy xx 	yx xx 	xx yx 	yy yx 	yx yy 

B(R) = b -2Rb +R2b 	, W(R) = s -2Rs + yy 	yx 	xx 	
yy 
	yx 	xx 

and 	T(R) = W(R) + B(R). 

Again this local maximum can lie outside the 

parameter space so that the above estimates are only 

internal estimates. When 	6  or 62  is negative the 

appropriate estimates will be on one of the boundaries 

a 2 = 0,  ci 2 O, or a 2  =0. We now find the maximum on 

each of these boundaries. 

The special property of the two-group model was 

not used at all in obtaining the (ag=0)-boundary 

estimates in §2.2 and so the results apply equally to 

the more general k-group model. That is, the only 
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turning, point on the (a=0)-boundary, a local maximum, 

occurs at 

ui = 1- 	(i=1,...,k), 

a = y..  - (tyx/txx)x..  

2 
— S 

xx 

QE = t 	t2 /t 
yy yx xx 

and = t /t 	. yx xx 

As for the (q=0)-boundary estimates, the (a;=0)- 

boundary estimates are unchanged in the k-group model. 

That is, the maximum on the (a;=0)-boundary occurs at 

pi 	1 = x.. + (t /t )(Y. - 	(i=1,..,k), yx yy 	. 

a = y.. - (t 
YY 

 /t 
 Yx 

 )x 
•• 

2  = s t2  /t2  
YY Yx yy 

02 = t 	t
2 

XX yx/t  yy 

a2 = 0 , 

and 	= t /t . 
YY 

yx 
 

Finding the (a2=0)-boundary estimates is more 

difficult because in the two-group case we had to use 

the fact that b yy b
XX 

= b2  . We still get  yx 
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a = y..- - 13x..  

and 

P. = ) 	
1 6 	3.- - 

	137c. 	+ a2K.
* 
 l/($2a2+a2  

6 e
) (i=1,..,k) 

from the likelihood equations for a and pi, and from 

the equation for $ we get that P. must be a solution of 

Rat (byy  - 3byx) + ac2(byx  - 13bxx) = 0 . 	(20) 

From the likelihood equations for as and ae we get 

as = XI (xis -  pi) 2/n and aE = II (Yid- a - api) 2/n, 

which, on substitution of the above expressions for a 

and pi, become 

2 a  = s
xx 	" 

1320.4
6
B(3)/(a2

6

24.a212 

6   

and 
a 2 = s 	0.4

E
13(,)/(2a2+,7212.  

yy 	6 ei  

From equation (20) we - can show that 

1-0 6
2 / 

6 
aa2(p-2.- 

2) = 	-b )/B ( 3) w , 
xx yx 

and 	09(R2q+cr) = (byy - f3byx)/B(a). 

Substituting these into equations (21) and (22), we get 

a2  = S
xx 	cab xx  —b yx)2/B(0) 

and 	a2
e 
 = s 

YY 
 + (b 

YY 
 - 

Yx
) 2 /B (13) . 

Hence, from equation (20), we get a quartic equation for 

(21)  

(22)  

{(3.s xx  (byy  - f3byx) - syy  (abxx  - byx) }B (3) 

- (byy  - 13byx ) (Rbxx  - byx) (byy  - 32bxx) = 0, 	(23) 
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which requires numerical solution. Having found a 

numerical solution, we should, of course, check that 

it corresponds to the global maximum. This will not 

be particularly easy, in general, but we saw in the 

two-group model that the (a2=0)-boundary estimates are 

the least likely to be used and that we could safely 

ignore them in all but the most extreme cases. (By 

"extreme" we mean that the group means are very close 

together and 0 is near zero.) 

To be strictly correct we should use the internal 

estimates when all the internal estimates of the 

variances are non-negative; we should use the 

(a2=0)-boundary estimates when one of the internal 

estimates of the variances is negative and a is less 
yx 

than cyx  and do ), where 

a 	= s (t - t2  /t ), yx xx yy yx xx 

C 	= S (t -t2  /t ), yx yy xx yx yy 

d(1 ) =Is xx +0 b xx  -b yx  )2/B(S
*
)1{s 

YY 
 + (b 

YY 
 -a b 

Yx
)2/B(0 )1, 

* 
and S is a solution of equation (23); we should use the 

(a2=0)-boundary estimates when one of the internal 

variance estimates is negative and c is less than a 
yx 	yx 

and d(0 ); and we should use the (a2=0)-boundary 

estimates otherwise. However, as in the two-group case, 

we will usually be able to approximate the ML estimates 

by choosing the internal estimates when 13, the internal 
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estimate of (3, lies between s yx  /s  xx  and s YY /s  Yx
, the 

(a2(5 =0)-boundary estimates when (3 lies outside the range 

of s yx /sxx and s YY /sYx but W < (syy  /s xx)1/2 , and the 

(a 2=0)-boundary estimates otherwise. 

3.3 Asymptotic variances of the estimators  

In §2.3 we found the asymptotic variances of the 

ML estimators in the two-group model directly but in 

the more general k-group model this method would be too 

difficult because of the much more complicated 

expression for the estimator of S. Instead, we find 

the asymptotic variances by inverting the information 

matrix. 

Let St be the log-likelihood of the observations 

and define 

iaa = -E(a22./Da2), 	iap  = -E(D2V3a3p), 

i 	= -E(a2t/aa2), 

and so on, where pT = (p 'pk) and a
T = (02 0.26  021, c).  

Let yT = (a ,pT , aT ,13); then the information matrix is 

iT iT act -ap -aa a$ 

i = 
-.YY 

i 	i 	i 	i 
aP -PP -Pa -41  
i iT i i aa pa -aa af2. 

iT iT i 
ia3 -PI3 a$ a 
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We can easily show that 

iaa  = n(a2+ap/1E1, lap  = (aq/lE1)(ni,..,nk), i a a = 0, - 

	

i= 1.117(,,24„.2)/I T I , 	= fla 20.24_,21  _ pp 	,,, 6  -6,/1!:: 1}diag(n ,..,nk), aa 

	

	 1 

pa = 0, 	1 	= (130.2/IZI)(n 1P1''''nOk" - 	- 	-PP) 	- 

.T 	2/( I) 	2 " 2 2 	2 	2 2 	2 • 2 	2• 1 	= (naa 	a6(0 a6+ae) ,-a ae , a6 ta +a )1 6 a0 

in  = ne clE 1 2r3 2ap/I E I + (0.2+q)Xnipi/lE I , 

and finally that 

(a2a21.a21 2 	a4 6 E l  
1320.4 

n 
1 = aa 	21E1 2  

aE 	(R2a 24.a2)2 	f12a 4 

02(5 4 (a2+a2) 2 

Let v , vT , etc be the corresponding terms in 
as -ap 

v = 
-YY -YY 

We wish to find vaa,  vaa and the diagonal elements of 

vPP and v aa. Let 

T 
.T iaa lap A = 	and bT  = (ia0  40) 

lap 1-PP 

Then we can show that 

and 	B = 

vf3r3 

as 

= 

vT -ap 

Ypp 

(iRR - bT 
	 1  A 	b - ia -

T iauu$ ), 

.T 	 . = {A - bbT/(i 	1 - 	i 	)} RR 	-a$-aa-a$ 
-1 
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Hence, using the result that 

(A + uvT) -1 = A 1 -  A 1 uvTA-1/ + vTA-1u) , 

where u and v are p-dimensional vectors and A is pxp 

and non-singular (see, for example, Press, 1972,p23), 

we find that 

B = A 1 + v A 1bbTA-1 

and, similarly, that 

.cy 	
. 	.-1 	-1 vac =i(1 ..0 +v 	

-1. 
(31313  l 

T  l c13aaca 

It is not difficult to find the inverse of A, 
A.0 

A 	
c eT 

=  - 	, 
e F 
"or 	 0,0 

say, because i
PP 
 is diagonal. In fact, 

c = 1/(i T i-1 	), 	-1 eT = -ciT  aa -ap-pp-i  ap 	ap
.
pp 

F = (i - i iT /i )-1  = i-1  + ci-1i iT i-1, -pp -ap-ap aa 	 PP 	 PPaP-aP-P 

from which we get 

c = (32ag+c)/n , eT = -(gag/n)Lk  , 

where Lk  is a vector of k ones, and 

1E1 
F = 	N diag(lin 

a202.4.a2 
e 

00.4 p.,  6 
L T

-k  1/nk) + 	 
n(02a2+a2) 

Lk  -k  

e 

Hence we find 

A lb = ( U , 03.01/(32ag+a)1011-5,..flik-170. ) 

-1 
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and so • 

b

T

A

-l

b 

= 1.152/1a2a2+a21 	02„.4vn.u?/TIE1,02(124.0.211 

SO 0,4 FP 	
6 	c. 	 w 	It-1, Li  - 	d 	e 

and 

	

A

1

bb

T

A

-1  = 

Ti2 gT 

g H 

where 	 gT = { 3cp/( 320 ;+c) } ( - - rk)T 

and 	

H 

={

2,5:37 	2 ci(;+0. )  2 } (11  Talk) (11 	 T.  

The 3x3 matrix icc  can easily be inverted to give 

1 

1aa 
-1 

n

2 

(3. 

(M+213204) -(1E1-2S2a2(1) -132(1E1-2a E) 

-(1E1-2(32a2ag) (1E1+2132ap -13 2(1E1-2qa) 

-13 2(1E1-2a2a) -132(1E1-2aga) a2(02 IEI+2a) 

  

Hence 

.T -1 
1
a0166 = (a 2/f3) (1 , 	, 0 2 ) , 

.T -1 
160i  iaf3 = nak(IE 4-2a2C4)/1E1 2 

and 

4 

.-1. .T .-1 

11 	
= 

1 

-aa-a8-1a8-aa 	a2 

1 -1 a 2  

-1 1 

2  

1 

• 

R2 

a4 

We are now in a position to use the formulae 

obtained earlier for evaluating v

08

, vaa 

 - 

, vPP and v . 

We get 

v80 	
e 

= (82a2+a2)/(nb PP ), v

act 

 = (13 2a +a2)Xn.

1

p 2/(n2b

PP 

 ), 

1  

where b PP = Xn.(p. - 2/n the j'th diagonal element of 

v is 

-PP 
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I E /{ni °2°.(;-Firj) 	÷ 
82a: S+ 

	(Pi 	2 }/{nbPP 
(8206+0)  

and the diagonal elements of vac  are 

(1E1 +2132a4)/(n13 2) + 04(13 2ag+a)/(n82bp11), 

(1E1 +2820p/(n82) + 04(82ag+a)/(n82bliu), 

and 	(821E1 + 2(54)/n + 0204(8202+a2)/(nb 

	

6 e 	PP 

Let a be the ML estimator of a, and so on. Then 

we have proved that 

var(a) = 1A 2a24.el vn.n?„,,n2,  D ) + 0(1/n2), 6  et 11,1.% 	pp 

1E1 	 p 2 
	 f 
Vol pu  %Hi F. 

var ( li) -     + 0(1/n2), 
%+a2) 	nb n.(82a62 pp'

2 fa0.2+(1
c
2 

e 	 ' 

(1=1,..,k), 

var(a 2  = le (8 2ag+a) +bp:v(1E(+213 204) }/ (TIP> 2- 
 
b ) + 0(1/n 2 ) 

var(q) = {04 (82ap_cre2) +blip ( 1 E 1 +2/320.v 1/ (n132bilp) + 0(1/n2 ) , 

( 2 )  = wa4(0,20.24.a2) +b  021E 1 4.2ed var 	 1/(nb ) +0(1/n 2 ), 
6 	pp 	PP 

and 	var(R) = (8202+a)/(nbilp) + 0(1/n2). 

These expressions are the same as we got in the two-

group model with the exception of var(pi) 

However,theaboveexpressionforvar(I.)reduces to 

that given in §2.3 when k=2, for when k=2 we can show 

that 

	

bpp + (p -5)2  = nb pp1  /n. 	(i=1,2). 
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3.4 Tests of the adequacy of the simplest model 

As in the two-group case, we shall be interested 

in testing whether the data are adequately described by 

the simplest model, model V. We shall define extensions 

of this model and then find tests of the hypothesis that 

model V is the true model. 

First let us consider model VI which is the same 

as model V except that the intercepts, ai, of the groups 

differ from each other. We wish to find a test of the 

null hypothesis that al  =... =ak  in model VI. Before we 

maximize the likelihood for this model we note that the 

model has 2k+4 parameters but that the dimension of the 

minimal sufficient statistic is only 2k+3. Hence, as in 

the two-group model, we expect that the likelihood will 

be maximized over a subspace of the parameter space 

rather than at just one point. In fact nothing essential 

is changed in going from the two-group case to the 

k-group case and so the log-likelihood for model VI 

attains its maximum, 

= -n{1+ log(210} - kn log (syysxx  - sy2 x ) 

xi. 	171,- 8x. 	(i=l,..,k), 

a2  = Syx /P'f 	= sxx -syx/' ae = syy- asyx  and 8 lies - 

between s yx  /s xx  and s YY 
 /s 

Yx.
. 

Let Q be the maximum of the log-likelihood in 

model V. Then 
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= -n{1 + log(270 } - 1/2n log{ (syysxx  - sy2 x )T(FUW(F) } , 

where W(R) = s -2Rs +R 2s , T(R) = t -2Rt +R2t , 
yy 	yx 	xx 	yy 	yx 	xx 

s b -s b -d(y,x) 
yy xx 	xx yy  

2 (s b 	- s b ) yx xx 	xx yx 

and d(y,x) = 

1 (s xx  b yy  -s yy  b xx ) 2  - 4 (s yx  b xx  - s xx  b yx  ) (s yy  b yx  - syx byy ) 1 2 , 

provided 8 lies between s yx /sxx and s
YY 

 /s yx, and 

otherwise Q is the maximum of 

o 	-n{1 +log(27)1 - 1/211 log{s (t 	-t2  /t )} xx yy yx xx 

and Lc = -n{1 +log(27)} - 1/2n log{syy (txx  t2  /t yy )
}
. yx  

Note that this is actually only an approximation because 

we have ignored the maximum on the (a2=0)-boundary which 

we saw in §3:2 could not be found explicitly. 

We would like to use 2(k -St) as a test statistic 

but does it have an asymptotic X2  distribution? 

Certainly the regularity conditions (see, for example, 

Cox and Hinkley, 1974, p281) do not hold, for model VI, 

because the nonidentifiability means that the probability 

distributions defined by two different values of the 

vector of parameters are not necessarily distinct. 
A - 

However, we can still show that 2(k - JO is asymptotically 

distributed as )(1.2. 

Consider placing a restriction on the parameters 
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in model VI in such a way that the new model, model VII, 

is identifiable. We also choose the constraint to be 

consistent with the null hypothesis. For instance, we 

could choose any constraint of the form Igiai  = 0 where 

Igi  = O. In the usual way we can show that the log-

likelihood for model VII attains a maximum of Q when 

pi  = xi.  (i=1,..,k), ai  = yi.- 8xi.  (i=1,..,k), 

a2 = s  i 	-2 
yx1 8" 

o = s xx  -s yx  /8, a = syy  - 8syx  and 
- 	- 

0 = 13g, = Lgiyi./Igixi. when 8g  lies between syx/sxx  

and s 
YY 

 /s 
 Yx
. Otherwise, the log-likelihood attains 

its maximum on one of the three boundaries, a 2  =0, 

a 2  =0 or a 2  =0, and the maximum attained will be less 

than Q. Let Qg  be the maximum of the log-likelihood 

for model VII. We showed that Qg  = 2 when 8g  lies 

between s yx /sxx and s 
YY 

 /s 
 Yx
. But since gl,..,gk  were 

chosen to make the constraint consistent with the null 

hypothesis then, when the null hypothesis is true, the 

probability that 8g  lies between s Is and s /s 

	

yx xx 	YY Yx 
tends to one as n-)-co. Hence, when the null hypothesis 

is true, 

Pr(t =2) 	1 as n.÷03. 

Model VII satisfies the regularity conditions 

and so 2(tg -2,) is asymptotically distributed as xlc_2  

when the null hypothesis is true. Hence 2(2 	is 

also asymptotically distributed as 	 when the null k-2  

hypothesis is true. The result does not depend on any 

particular choice of gi,..,gk  but, in the event of a 
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rejection of the null hypothesis, the possible choices 

of gi,..,gk  which satisfy the condition that 8 lies 

between s yx /sxx and s YY /sYx give information on what 

possible extensions of model V might adequately describe 

the data. 

Our test of the adequacy of model V against the 

alternative that allows the intercepts of the groups to 

differ is thus to reject model V if 2 (2 - Z) is greater 

than the selected significance point of the 4_2  

distribution. This test is clearly of no use when k =2 

but in §2.4 we described a test which can be used in 

this special case. 

Now let us consider extensions of model V in which 

the covariance matrices differ from group to group. We 

shall study the same extensions that we considered in 

the two-group case, first letting the matrices be 

proportional and then letting them be completely 

heterogeneous. 

Define model VIII to be the same as the simplest 

k-group model except that the covariance matrix of 

(Y. ,X. ) is A E instead of just E. We shall need to 1j 1j 

impose some constraint on Al,..,Ak, for instance Pti =k 

or the restriction used in the two-group case, Ai  =1. 

And, of course, we require Xi  >0 (i=1,..,k). The log-

likelihood of the observations is 
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1 	1 
Q = -n log (27) - 1/2n loglE1 - /nilogXi- 	y 	f(a2+e) 

 s li 

	

1 	21Eli X. 	' 
1 

_ 	 1  nes 	1. 020.2+0.
e
2 s  

2i 	' 

where 	S 	= I(yij -a - 1311.)2, 

S 	= X(Yii  - a - 	-Pi) 

and S31 . = (xiJ 	 2 	(i=1,..,k ) .  . 

In maximizing the log-likelihood we proceed much 

as in the two-group case. The likelihood equations for 

pl,..,pk  yield the solutions 

p = {3a2 	
1(yi.- a) + a2X. * }/(82a + 2 

	
i=1,..,k), 

and the corresponding pivots of the matrix of double 

derivatives of the log-likelihood are all negative. 

The likelihood equation for a yields, on substitution 

of the above expressions for the pi, 

a = Y.. (A) 	6-c.,(X) 

	

where ir..(X) = (IniYi./Xi)/n and X •• 	1 (X) = (In.X /X )/n i 

and the corresponding pivot is negative. When pi  and a 

equal the above expressions, 

S1  (X) = ISli1 /X. = ns 
YY 

 (X) + n6413(8,X)/(82626+a2)2, 

82(X) = IS2i/Xi  = nsyx(X) - n8agaB(3,X)/(f32a(;+6)2, 
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and S3(X) = 1S3i/Xi  = nsxx(X) + na 2a'pE1(8,20/(820g+a)2, 

where 	B(a,X) = b 
YY 

 (X) - 	yx(A) + a2bxx(X), 

nsYY (A) = 	13 	3.-)2/X.,  

nbyy  (A) = 	 (X) 2  /Xi, 

and so on. 

Hence, after maximization with respect to pi,..,pk  

and a, the log-likelihood becomes 

1 
= -n log (27r) - In1log21  - 1/211 loglEl 	

2 I E I 
	f(a2+a )S (X) 

- 2aa2S2(X) + (a2a2+a)S3(X)}, 

which is the same as in the simplest k-group model 

except for the term InlogXi and with s YY(X)  replacing 

s 
YY 

 , b 
YY 

 (X) replacing b 
YY
, and so on. Hence maximization 

with respect to a2, 	a2  and a becomes the same as in 

the simplest model and we get 

s 
a2 	yx (A) 
a = 

Psxx (A) - syx(X) Hs
YY 	
(A) - f3s yx(X)113(0,X) 

aW2(R,X) 

2 113Sxx  (X) 	Syx  (A) IT(13,X) 

W(R,A) 

62 - 
fs

YY 
 (A) -r3s yx  (X ) }T(R,A) 

E 	 W(3,X) 

a6  - 

and 	= i(X), 

where 	W(a,X) = s
YY 

 (A) -2r3s yx(X)  + a 2sxx(X) , 
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, T(3,X) = W(13,A) + B(13,A), 

and am is the same as the S defined earlier in this 

section (ie, the ML estimate of 8 in the simplest k-group 

model) but with s
YY 
 replaced by s 

YY 
 (X),  b

YY 
 replaced by 

bYY (A) and so on. 

The maximum relative likelihood of X1" .' Xk  is thus 

Q (X) = -n{1 +log(2Tr)} - In.logX. 

{s (X)s (X) S y
2 x (X)}T(R(A),X) 

- kn log[ 	YY 	xx 	
-- 

 

W((X),A) 

If we choose the constraint on X1,..,1ic  to be XXi  = k, 

then we need to maximize ii(X) -0(IXi-k) with respect 

to X1,..,Xk  and O. This is too complicated to be done 

analytically and so the maximization must be done 

numerically. Let 5■1,...,Stk  be the values of X1,..,Xk  

which maximize k(X) subject to the constraint IXi  = k. 

Then for testing the null hypothesis that X1  = ... =Xk  = 1 

we use the statistic 2{t() -74,}, where i, the maximum 

of the log-likelihood for the simplest k-group model, is 

defined earlier in this section. This statistic is 

asymptotically distributed as 4_1  when the null 

hypothesis is true. 

We now turn to the other extension of the simplest 

model in which the variances in each group are unrelated 

to the variances in the other groups. As in the two-

group case, this model includes the previous one as a 
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special case and so the test derived below could be 

used in place of the previous one. However, the 

previous test will be more sensitive in detecting the 

presence of proportional covariance matrices when they 

exist and the simpler model provides a more economical 

description of the data. 

The log-likelihood for the new model, model IX, 

is 
k 	 k 

log (270 	1/2 In.loglE1  .1 	o.?+(5S2.i  )s 	2WS . 

	

- 	i 	11 	i 21 i=1 	i=1
f(  
 

+ (3261+a2.)S30/1Eil, 

where lEi, 1  = 0(122 
+ 6

22 	2 2 
''' i

0. 
 di 	i

a 
	+ 

a  
ei 	S1

0 
 ei 	(i=l,..,k) 

and Sli' S2i and  S3i are as defined for model VIII. 

The solution of the likelihood equations is much the 

same as before but it is best to leave the equation for 

a until the end. The likelihood equations for 111,..,pk  

yield 

u.  = 'Re ( 7. 	a) + e.R.  1/0202.4.a2.1 	(i=1,..,k),  
"I 	It' 6V-1 1* Ell  

and the corresponding pivots of the matrix of double 

derivatives of the log-likelihood are all negative. If 

we substitute these estimates of pi,..,pk  back into the 

log-likelihood we get 2. = LZ
* 
 where 

Qi = 	. log (2ff) 	kn . log I . 	1/2n. { (a 2.+cr 2  . s 	. -213a?s 
1 	-1 	1 	1 61 yyi 	1 yxi 

+ (13 2cr+a El2  .)s XXI  .1/IE.' - kn. B. (f3,a)/ 	2aLcr+ 	, 
1 	1 1 

B.1  (a,a) = (yi•-a -Ox )2  and n
1 
 s 
YY1 	(Yid = /( 	-yi• ) 

2
'etc. 
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Each 2„i  is the same as the log-likelihood for the 

simplest k-group model (model V) maximized over pi,..,pk  

anclabutwithB.(a,a)replacingB((3),n.replacing n, 

al replacing a2, and so on. As 	does not contain 1, 

agj  or a. for j 	each•Zi  can be maximized separately 

with respect to al, . aL.  and aL.  and so we get (as in 

model V) 

cyF = s yxl  ./a - (asxxi -syxi )(syyi -asyxi )B.(a,a)/{aW1(a)}, 1 	 1  

(52=03Sxxi -SyxiM1 	1O,a)/{W. ( 3  ) } , Si  

and 	a2 = (s yyl  . - syxj)Ti(a,a)/Wi(a), 

W.(13) = s 	. -2as 	. +a2s 	. where 	
YY1 	yxl 	xxl 

and 	Ti(a,a) = Wi(a) + Bi(a,a) 	(i=1,..,k). 

On substitution of these expressions into R. , we 

see that the maximum relative likelihood of a and a is.  

= -n{1+ log(2Tr)} 	zEn1log I 	1, 

where lE1=(syyl.sxxl.-syxl 2 . )T1(130.)/W.(a) (i=1,..,k). 

We can easily show that 

	

@/i(a,$)/3a = 	a -  137cid/Ti(a,a) 

and D2(a,13)/30 = 

	

11, (y. ){(as 	-s 	)(y. -a) + (s 	-as 	)x. 1 
1• 	 xxi yxi 1• 	yyi yxi 1.  

T (13,00W.03) 	•• i 
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No analytical solution has been found to these two 

likelihood equations so that 'i(a,13) must be maximized 

numerically. When k =2, however, we can solve the 

equations by choosing a and 13 to satisfy y.1.  - a -(3x1  =0 

(i=1,2), and we saw in 52.4 that this solution maximizes 

the likelihood. Let a and (3 be the values of a and 13 

that maximize 1,(a,13). Then for testing the null 

hypothesis that al=...=qc  , „
6
2 	2 1( and 61--rm=a k 

we use the statistic 

2{R 20.(a,R) - 

••• 

where Q is the maximum of the log-likelihood for model 

V. When the null hypothesis is true this statistic has 

an asymptotic X3(k-1)   distribution. 

Note that in the last two models the maximum of 

the likelihood may lie outside the parameter space which 

means that we found only the internal estimates of the 

parameters. However, this does not affect the 

asymptotic results. 

If we have rejected the simplest k-group model in 

favour of one of the extended models we may then be 

interested in knowing whether this extended model 

adequately describes the data. For this purpose we now 

consider an even more general model in which both the 

intercepts and the variances vary from group to group. 

That is, the model has the same specifications as the 

simplest model but with a replaced by ai, a2  replaced 
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by al, as replaced by agi  and (1T. replaced by 

In much the same way as in the previous models 

discussed in this section, we can show that the log-

likelihood achieves its maximum, 

Zt =---r1{l-Flog(271)}-1/2.X11.1og(s 	.s 	. - 1 	yyl xxl yxl 

whenever pi  = xi., ai  = 	al = syxi/ , 

a2  = sxxi -syxi 	, a2  = S 	-13Syxi (i=1,..,k) and i 	ci 	YYi 
P. lies between syxi/Sxxi and s yyl ./syxi for all i. 

The nonidentifiability problem is the same as 

we encountered in model VI and so we can still derive 

asymptotic x2  results. For testing the null hypothesis 

that al = . =ak we use the statistic 

2{0- 4.(a,R)}, 

which has an asymptotic x32c_2  distribution when the null 

hypothesis is true. For testing the null hypothesis 

that al =... = 	= k ' a621 = ... =a2  and a2  = 	= 2  we 1 	 (Sk 	el 	ck 

use the statistic 

t A 2(9 - St) , 

which has an asymptotic x3(k-1)  distribution when the 

null hypothesis is true. 
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3.5 Tests of hypotheses about the slope 

We now consider tests of the hypothesis that (3 =130  

in the simplest k-group model. Most of the work done on 

the two-group model applies equally to the k-group model 

with little or no modification. As in §2.5 we first 

find a test statistic based on the ML estimate of R. 

The asymptotic properties of the ML estimator of 

(3 are just those of the internal estimator, 

s yy  b  xx  -s  xx  b  yy  -d(y,x) 

2 (s b - s b ) yx xx 	xx yx 

where d(y,x) = 

xx b yy  -s  yy  b  xx ) 2  —4(s yx b  xx  -s  xx  b  yx 
 )(s  yy  b  yx  -s  yx  b yy)11/2. 

Subtracting from 13 its asymptotic expectation, 130, and 

dividing by its asymptotic standard deviation, 

I pt 2
o
0 +a2)/(nb PP)12  (see Appendix 3), " 6  

we get 
* 	( nb 
U = 	- Ro ) 1 	

PP 	}1/2  
rot
o
a2
6
2+a2 

' 

as in §2.5. We wish to replace the unknown parameters 

in U by their ML estimators when (3 =f30  is known. The 

expressions for these estimators are exactly the same 

as in the two-group case since their derivation is 

unaffected by the change from 2 to k groups. Hence we 

get the statistic 
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n1/2  (13: - 130) 
U(3 	- 	 o) 	,,,1/2,0 

	{  (3osXX - sYX ) 2bYY + 
4.  ""0" (Po) 

2 (Ciosxx  - syx ) (s yy 130syx) byx  + (syy 13 0SYX 2bXX 

1/2 

which reduces to the statistic in §2.5 when b b =b 2  YY XX 	YX.  
We use U(30) as an approximately N(O,l) distributed 

statistic for testing the hypothesis that 13 = 130  O. 

The criticisms given in §2.5 of the use of this 

test alone apply equally here. Furthermore, the 

construction of the test that overcame these criticisms 

depended in no significant way on there being only two 

groups. In fact the only changes we need to make to 

the test in §2.5 are to change U(00) to the expression 

given above and to alter the term (n-4) to (n-k-2). 

The latter term comes from the expression in Appendix 3 

for the variance of sYX /sXX. Our test of the null 

hypothesis that 13 =13o 	against the alternative that 

o is thus as follows. If 3o lies between s /s yx xx 

and s YY /sYx we reject the null hypothesis if 

lu(30)1 > kkY ' 

where k
1/21 
 is the upper ky point of the N(O,l) 

distribution. If 3o lies between s yx /sxx and 

-sign(s yx  )(s  yy  /s  xx)2 
3- 
we reject the null hypothesis if 

4)(e) - (1)(1v/I , e ; p) + 4)( -lwl ,e;P) 
1, 

4)(e) 

where (1)(.,.; p ) is the distribution function of the 
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bivariate normal distribution with means zero, variances 

one and correlation p, (I)(.) is the distribution function 

of the standard univariate normal distribution, 

1/2 e = min{0,sign(syx0}1(n-k-2)s xx/T(6 )1 , 

w = (t /t - a )Int /T(a yx xx 0 xx 0 

p = (s /t )1/2, xx xx)  

and 	T ( (3) = t - 2S t + 2  t . 
0 

 
yy 	o yx 0 xx 

'If 1/6o lies between s /s 	
and -sign(s )(s /s )1/2 yx yy 	yx xx yy 

we reject the null hypothesis if 

(I)(e
*
) - (I)(1w

*
I ,e

* 
 ; p*) +

*
I ,e

* 
 ; p*) 

Y. 
(I)(e ) 

where e .= minfO,sign(s yx 0  )1/6o11(n-k-2)6
2s yy/T (S )1 2, 

w = (tyx/ty y -1/fi0 ){ (23tyy/T(f30 ) }1/2 , 

and 1/2 p = (s YY /t 
 YY

) . 

The test based on u(60) has size approximately equal to 

y while the other two tests have size approximately 

equal to or less than y. 

For testing the null hypothesis that 6 =0 we can 

use the same statistic as in the two-group case, namely 

Q = (n-2)1/2R/(1- R 2 ) 1/2 

1/2 where R = tYX /(tYY tXX ) . This has a Student t 

distribution with n-2 degrees of freedom when 6 =0. 
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Chapter 4 

MULTIVARIATE GENERALIZATION 

In this chapter we outline an extension of the 

model of previous chapters to allow for the inclusion 

of several independent variables XT = (X1,..,X ). We 

assume that we have observations f(yij,xij);j=1,..,ni , 

i=1,..,10 which come from the model 

Y.. = a + TU.. + eij, 

X. = U. + 

where the U..13  have independent multivariate normal 

distributions with means u and common covariance matrix 

T, the E..13  are independently normally distributed with 

means 0 and variances 62, the 6ij  are independently 

multivariate normally distributed with means 0 and 

diagonal covariance matrices T6  = diag(T61,..,T6p), 

and the errors, eij  and Sij, are independent of each 

other and of the U. . - 

If we let Z. = (Y ,XT ) then we can easily show -ij 	(Y.. ,Xi. ),  
that the Zij  have independent normal distributions with 

means 

a 	(3 P. 1 
B. = -1 

ui 
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E = 
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and covariance matrix 

i3 T,rii +ac 
 

z 	aT T  
''' 

• 

T T -6 

Note that we could not expect to be able to estimate 

more unknowns in E than the number of distinct elements 

(p+1)(p+2)/2, of the sample covariance matrix. Apart 

from 8, which also appears in the mean of the 

distribution, there are p(p+1)/2 distinct unknowns in 

the symmetric matrix T, p unknowns in T6'  and with the 

other unknown, 	this makes exactly (p+1)(p+2)/2 

unknowns. Hence we could not have allowed T6  to be a 

general symmetric positive semidefinite matrix and still 

have been able to estimate all the parameters. Of 

course, in some circumstances it may be more appropriate 

to restrict the form of T and reduce the assumptions 

about the form of TS. We must also have 

k > p + 1 

in order to be able to estimate all the parameters in 

the means. The number of sample means is k(p+1) and 

the number of unknowns, including 8, is pk +p + 1. 

The log-likelihood of the observations is 

= -1/2n(p+1)log(27) - 1/211 loglE1 - 

k n. 

1/2 X 	(z.. - Ai )
TE-1(z.. -0 ), - -13 i=1j=1 13  

where n = 	, as before, and we assume that T is positive 
• .■ 
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semidefinite, Tol,...,T6p and a2  are all non-negative 

and E is positive definite. We now find a solution of 

the likelihood equations. 

Since p appears only in 0i, we first consider 

32./32i  = 	0i), 

where zi.  = Yzil/ni  . Since E is positive definite then 

it is also nonsingular and we can show that its inverse 

may be written as 

0 (T+T )-1 
	

.■ - 11(-
T
' 

0 	Ol  -1 

where flT , 	1E1 
P Y = 	TkT+T ) 1T 13. + U2  = 	 > 0 -6 	 6 	

IT+T I 6 

and ,T 	r, 	,T , -F 	-1) 
• = 	, -S TT TT 	) 6 

Note that the positive definiteness, and hence non-

singularity, of T-FT6  follows from that of E. It is 

easily seen that 

(ae1./3p.)
T = (a , - ), p 

where Ip  is the pxp identity matrix. Hence 

ak 	DO 	3Z 

aui  Dp. DO 1 -i 

—1 (z. — e.1) 	(i=1,..,k), -1. - 

from which we find 
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ak n.(T+T, () 
+ [(1+T(s)Y-ItsPol 	1 (T+I(s)-1xi. 

	

— A(T+T (s )-1  Pi 	(i=1,..,k), 

where A = (T+T )y 	f3 6 a
TTV  We can easily show that A —- — 

is positive definite and hence that 

-- i pi  = (T+Tcs)A 1  IT60(Yi.-a) + ( T+T6 )y -cos
T 

 TicE+To
-1 

 

and 3 2 k/D111 = -(ni/Y)(T+T-F1A(T+T ) 
-1 

6 	6 	
(i=1,..,k), 

which is clearly negative definite. Hence the above 

solution for the pi  in terms of the other parameters is 

at a maximum (with respect to the pi) of the likelihood. 

We can expand A-1 as 
Ps. 

u-1  = 
1 
, 	

6 
)-1   - Y

1
4 ) 
,

6 
)-1T 

6
3
, T 

0 
 , 	

0
%-1 

r 

where 	11) = Y + 0
TT6  (T+T6  )-1 T6  > 0, 

from which we can derive 

p .
1 
 = X, 	Tis 	1otY. . 	. - a - x.  " 1 

i=1,..,k). (24) 

Let us now consider the parameter a. The 

derivative of 2. with respect to a is 

Dk 	k aeT  . 32, 	k x  -1 	T -1 - __ =  = 1 ni(1 , 0 )E 	(zi  — 0i). — —   3a 	l=1 Da 	90 ..1 	i=1 	. 

-1 

But 
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so that. 

ak/3a = 	a -) -
TT(T+'16)-1   (x..-  u) }/Y • 

When pi  is given by the expression in (24), then 

- 6Tp = (1 -13TT6  6/4)) (yi•  - a - 6 x ) - --  

and x.3.-- - p. = -T
6 
 6(y. - a - 6T 1  x. . )/11) . 1 	- - -- 

Hence, with the p replaced by the expressions in (24), 

3R/Da becomes simply 

n(y..  - a - Tx. • )/11). 	(25) 

from which we get 

- a = y - 6T  x . • 

To show that we have now found a maximum with respect 

to the p and a we need just to show that the derivative 

of (25) with respect to a is negative (see Appendix 1). 

But this derivative is just -n/lp and so the result is 

proved. 

Define 

bYY = Xni (yi•  - y - 
2 ) /n 

b
yx 	1 1 

= In.(y. 
.- 
- y.•  )(x. - - x -.)/n , -I - 

_ 
•• bxx = yn .1 3.  (x. •- - x •• )(x - 	)T/n - - - -i• - x 

-  S 
YY 

= D 3.y.j 	i• -y )2  /n , etc, 

B(6) = b 	- 26Tb 	+ 6Tb 6 , 
YY 	-x 	-x- 

(26) 
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and 	S = 
s 	sT 
YY -.yx  I . 

-yx -xx 

Then, with the pi  and a replaced by the expressions in 

(24) and (26), we find that 

Tv fz.. _ e.I TE-1,z.  _ 0.1  
LL'-lj 

becomes 

r n trace(SE-1)  + nB0)/( T 	+cr). 

Hence the maximum relative log-likelihood of T, T 6 a2  6  

and (3 is 

r = -kn(p+1)log(27) - kn loglE1 - kn trace (SE-1  

- 1/2nB(13) 	6 2+ 

By analogy with the univariate case we might 

anticipate that the maximum of 2, with respect to T, 

T6 
	T, and a2  occurs when T T and a2  are chosen so that - -6 

B(s) 
E = S = S +  	, 

w2  (s) 

where 	W(f3) = s 	- 213Ts 	+ YY 	-yx 	-xx- 

and 	T = (syy  - 13 Ts yx , s
T
x  - 

T  s ) . - 	-y 

So let us now check to see if this choice satisfies the 

likelihood equations. Let 

r 	) 
Qt  = 	loglE1 - kn trace(SE 1) • 

Then 
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az 	
3,91 ST

— = (13 , I — 
DT 	-P  az 

P 

att 
(0 , I )—  
l 	-P aE 	[1p  

nB(f3) 
diag(13 2,..,(3 2), 1 —

3T 2WTT6  3 + QE)c ) - --  

where diag(a/,..,ap) is a diagonal matrix with al,..,ap  

as diagonal elements and D(A) = diag(all,a22,..,app), 

where A = (aid), and 

3Q*  
T — 	(1. , , 	1/21-1B(13)/(iJT 	a 2 ) 2, 

a62 	- 3E 0 	 6 
6 

t 
where 	 = -1/2nE-1 	-S)E-1  . 

3E 

*-1 To evaluate 3k /3E we first expand S. 	as 

S*-1-1 = S 	- BWS-1TS
-1
/{W2(R) +B(3)ETS-1C} 

(see Press, 1972, p23). Using the fact that 

T -1 (syy  ,syx)S 

-p+1 = SS =  (s ,s )S-11' 
-yx -xx 

we see immediately that 

T -1 S 	= (1 , -(iT) 

and hence that 

1 	 BO) 	I 1 —1 	(1 , -3T), 
WO)T(0)(-31 	• 

= s (27) 



2W(a)T(a) -13 

nB(R) 	[11 
(1 , -aT) . 
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where T(a) = W(a) + B(R), and finally we see that 

* 
E=S 

 

When E = S
* 
 we can easily show that aTT6  13 + cy 2  becomes - 	- 	 - -- 	6 

T(R). We can now verify that the likelihood equations 
O./ 

for T'  T6  and a2  are satisfied and hence that a solution  

of the likelihood equations is 

T = sxx 	{B(13)/W2  (f3.) (S 
xx- 

- s yx  )
Ts xx  -s

T 
x  ) - Td 1 - 	- 	- 	-y  

	

Toi  = [T(B)/(W(a)ail](,s,xxa - syx)i 	(i=1,..,p), 

and 
	

aE = Cir(2) /w 	} (syy  - jsyx) 

We have not, of course, proved that this solution 
* 

maximizes 2, and, so far, attempts to do this have 

failed. However, in the univariate case we know that 

this solution is the only solution of the likelihood 
* 

equations and that it maximizes 2 ; it would be rather 

surprising if this were not also the case here. So, 

bearing in mind that the assertion that the above 

solutions maximize 2, with respect to T, T(5  and a2  is  

unproved, let us continue with the maximization. 

Using the expression in (27) for S*-1, we can 
4.1 

show that- 

f 	 , tracetSS*-1) = (p+1) - B(a)/T(a). 

Hence, after maximization with respect to T, Td  and a2, 
.4 	04 

a 9, 

E 

* 

2, becomes 
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2(2) = -1/2n(p+1){1+log(27r)} - 1/2n logIS*I. 

Consider 

w2(3) 	-B(R)E
T 

This determinant may be written both as 

w2(R)Is + {B(p/W2 M)§T1 = W2(2)I *1 

and as 	ISIN2(R) + B(R)ATS-1E1 = ISIW(R)T(R). 

Hence 	IS*I = ISITT/W(p, 

and so we can write the maximum relative log-likelihood 

of a as 

i(a) = -1/2n(p+1) {1 + log(2.7) } - 1/21-1 logISI 

+ 1/21-1 logN(8)/T(0)}. 

A 

To maximize k we need only to maximize W(13)/T(0). 

Define 

-t_ tT± 
T = 	yy Yx 

-yx -xx 

f where t
YY 
 = s

YY 
 + b

YY' 
 and let bT  = (1 , 

wish to maximize 

bTSb / bTTb . 

Then we 

But this is maximized over arbitrary b by choosing any 
.60 

b such that 

(S - X T)b = 0 , 	(28) 

where Am  Xm is the largest root of 
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18 - XTI = 0 

(see, for example, Rao, 1965, p59). The vector b that 

satisfies (28) is unique only up to changes of scale 

and so we can scale b to make the first element equal 

to one. A slight difficulty could occur in practice if 

the first element of b turned out to be zero or very 

nearly so. This means that the line of best fit is 

parallel to the Y-axis. As the problem is essentially 

symmetric in the Y and X's we could interchange the Y 

with one of the X's to remove the difficulty. We have 

thus found that R, achieves its maximum of 

when 

-1/2n (p+1) {1 + log(270} - 1/2/1 logISI + hn logArn  

= (s xx  - X mt xx  ) (syx  - X mt yx) I. -- 	-- 

The vector b is the last canonical variate (ie, 

the canonical variate associated with the smallest 

canonical correlation) of a between-and-within canonical 

regression analysis. Essentially this means that the 

slope of the estimated line is chosen so that the values 

yii  - xii  are least correlated with group differences, 

as might have been expected on general grounds.  

We have now completed the solution of the 

likelihood equations having found the solution 

ui  = Xi. + {(. - Y..) - F(X.1  - x )1(s 13'  - s )/W(Ii) Y1. 	 - 	xx- yx 

A 	 AT- a = y - f3 X.. -•• 
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A 	
• 	

A 	 A 	 A 
	

A 

	

T 	S 	+ 03 ((WW2  (0)1 (s 	- s ) T  s - sT ) - T -yx 	-xx -yx 	-6 ' 

A 	 A A 

Tdi 	- = T(0)(s xx-  (3 -s yx1 )./(0.W (R)} 	(i=1,..,p), - 	- 

Cr = {T(R)/W(R)}(S 	- RTS ) 
YY -Yx ' 

	

and 	R = (s 	-A t )-1(s - t ), m_xx -yx m-yx 

where Am is the largest root of 

IS - ATE = O. 

This solution is thought to correspond to the absolute 

maximum of the likelihood but there is one unproved 

step in the argument. Of course, we know from the 

univariate special case that these solutions can 

sometimes lie outside the parameter space, in which 

case the maximum inside the parameter space will 

probably lie on one of, the boundaries. No attempt 

will be made here to find any of the boundary 

estimators. 
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Chapter 5 

ANALYSIS OF AN EXPERIMENT ON APPLE TREES 

In this chapter we apply some of the theory of 

previous chapters as part of the analysis of an 

experiment on apple trees. The data were provided by 

'Dr S.C. Pearce, East Malling Research Station, for a 

discussion at the British Region of the Biometric 

Society in 1969. 

A commercial apple tree consists of two parts 

grafted together, the upper part, or scion, and the 

rootstock. In this experiment different rootstocks, 

which largely determine the size and development of the 

trees, were being compared. From each of thirteen 

rootstocks a clone (a set of plants raised asexually 

from a single parent) of eight was raised and trees of 

the scion Worcester Pearmain were grafted on rootstocks 

from these clones. After 4 and 15 years measurements 

of cambial and apical activity were taken. We shall 

concentrate solely on the data collected after 15 years. 

Activity of the cambium, the meristematic tissue 

beneath the bark, may be measured by the girth of the 

trunk while activity of the meristematic tissue at the 

apex of shoots may be measured by the weight of the part 
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of the tree above ground. The data for these two 

measurements at 15 years are given in Table IV. In 

Figure III we have plotted the natural logs of weight 

versus girth. Logarithms were taken so that the data 

would at least approximately meet the assumptions of 

the models we wish to fit, for instance to make the 

relationship linear and to comply with the assumption 

that the errors are independent of the true values of 

the X variable. Also the slope, 0, being now 

dimensionless, is easier to interpret. 

The log-log plots in Figure III suggest that the 

simplest k-group model studied in Chapter 3 might fit 

the data reasonably well; the within-group scatters do 

not look inconsistent with bivariate normal samples and 

the means of the groups appear to be scattered along the 

same line as the within-group scatters. The three sets 

of estimates (internal, (a(;=0)-boundary and (a=0)- 

boundary) obtained from fitting this model are given in 

Table V. The estimated standard deviation (S.D.) is 

based on the asymptotic standard deviation of the 

internal estimator. The ML estimates are, in this case, 

the (a2=0)-boundary estimates, though the internal 

estimates are only slightly different. 

The 95% confidence interval for the slope, 0, is 

(2.15,2.38). Since we took logs and the weight is 

essentially a volume measurement, the slope represents 

a proportional difference in growth between the volume 
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TABLE IV 

MEASUREMENTS ON THE 	APPLE 	TREES 

Rootstock 1 

AT 15 	YEARS 

Trunk girth (mm) 

Weight above 
ground (lbs) 

358 

760 

375 	393 	394 

821 	928 	1009 

360 

766 

351 

726 

398 

1209 

362 

750 

Rootstock 2 

Trunk girth (mm) 

Weight above 
ground (lbs) 

409 

1036 

	

406 	487 	498 

	

1094 	1635 	1517 

438 

1197 

465 

1244 

469 

1495 

440 

1026 

Rootstock 3 

Trunk girth (mm) 

Weight above 
ground (lbs) 

376 

912 

	

444 	438 	467 

	

1398 	1197 	1613 

448 

1476 

478 

1571 

457 

1506 

456 

1458 

Rootstock 4 

Trunk girth (mm) 

Weight above 
ground (lbs) 

398 

944 

	

405 	405 	392 

	

1241 	1023 	1067 

327 

693 

395 

1085 

427 

1242 

385 

1017 

Rootstock 5 

Trunk girth (mm) 

Weight above 
ground (lbs) 

404 

1084 

	

416 	479 	442 

	

1151 	1381 	1242 

347 

673 

441 

1137 

464 

1455 

457 

1325 

Rootstock 6 

Trunk girth (mm) 

Weight above 
ground (lbs) 

376 

800 

314 	375 	399 

606 	790 	853 

334 

610 

321 

562 

363 

707 

395 

952 



TABLE IV 	(continued) 

Rootstock 7 

Trunk girth (mm) 

Weight above 
ground (lbs) 

266 

414 

241 	380 	401 

335 	885 	1012 

296 

489 

315 

616 

358 

788 

343 

733 

Rootstock 8 

Trunk girth (mm) 

Weight above 
ground (lbs) 

231 

375 

250 	219 	275 

410 	335 	560 

205 

251 

213 

272 

266 

478 

226 

278 

Rootstock 9 

Trunk girth (mm) 

Weight above 
ground (lbs) 

299 

506 

381 	362 	372 

882 	737 	772 

369 

827 

368 

821 

408 

1149 

410 

1035 

Rootstock 10 

Trunk girth (mm) 

Weight above 
ground (lbs) 

431 

1609 

	

465 	484 	527 

	

1658 	1789 	2375 

463 

1556 

412 

1418 

514 

2266 

522 

2508 

Rootstock 11 

Trunk girth (mm) 

Weight above 
ground (lbs) 

387 

1052 

	

414 	387 	390 

	

1167 	981 	944 

327 

737 

424 

1392 

421 

1326 

382 

1052 

Rootstock 12 

Trunk girth (mm) 

Weight above 
ground (lbs) 

448 

1258 

	

435 	451 	450 

	

1304 	1290 	1288 

428 

1176 

424 

1177 

482 

1331 

469 

1490 

Rootstock 13 

Trunk girth (mm) 

Weight above 
ground (lbs) 

452 

1499 

	

412 	425 	460 

	

1412 	1488 	1751 

464 

1937 

457 

1823 

463 

1838 

473 

1817 
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TABLE V 

PARAMETER ESTIMATES IN THE SIMPLEST MODEL 

Parameter Internal (ag=0)-bdy (a=0)-bdy Estimated 

estimate estimate estimate S.D. 

11 1  5.926 5.923 5.901 0.030 

P2 6.115 6.110 6.060 0.030 

11 3 6.096 6.097 6.095 0.030 

11 4 5.964 5.965 5.974 0.030 

115 6.066 6.062 6.023 0.030 

P6 5.888 5.881 5.830 0.030 

11 7 5.773 5.770 5.776 0.030 

P8 5.452 5.457 5.537 0.030 

11 9 5.917 5.913 5.882 0.030 

P10  6.156 6.165 6.220 0.030 

P11 5.964 5.967 5.989 0.030 

11 12 6.108 6.105 6.068 0.030 

11 13 6.100 6.110 6.180 0.030 

a -6.49 -6.59 -7.50 0.38 

a2 0.0077 0.0074 0.0072 0.0011 

a2 -0.00031 0.0000 0.0026 0.00049 

a2 0.0157 0.0142 0.0000 0.0032 

0 2.246 2.263 2.416 0.064 
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and linear measurements. If the growth in all three 

dimensions were proportional we would expect a value of 

about 3 for (3, while if the trees tended to be of uniform 

height but growth in the two dimensions were proportional 

we would expect a value of about 2. The confidence 

interval includes neither 2 nor 3, suggesting that the 

true situation is somewhere between these two special 

cases. 

It would be interesting to test the assumption 

that the within-group scatters of observations are 

parallel. If we are going to allow these slopes to 

vary with group it would be unreasonable to assume a 

common intercept. Hence we want to test the hypothesis 

that the within-group slopes are equal, the intercepts 

being allowed to vary with group. We have not derived 

a test procedure for this but we would not expect to 

get a substantially different answer by assuming that 

either o-26  =0 or o 2  =0 and using the appropriate 

regression test. In this case the ML estimate of as 

is exactly zero which suggests that the errors in the 

X variable, trunk girth, are small. Hence it seems 

sensible to test the hypothesis assuming that as =0. 

The F-statistic for this purpose has a value of about 

0.96 which is very insignificant. Hence there is no 

evidence of non-parallelism of the within-group scatters. 

When we consider other tests of the adequacy of 

the simplest model we see, however, that it does not 
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fit the data satisfactorily. The xi, statistic for 

testing the null hypothesis that the intercepts of the 

thirteen groups are all equal against the general 

alternative, with the variances assumed not to differ 

with group, has a value of approximately 131 which is 

highly significant. If the variances are now allowed 

to vary with group, the test is still highly significant. 

So let us now assume that the group intercepts are not 

equal and test to see if the variances differ with 

group. 

The test of the null hypothesis that the variances 

do not vary with group against the general alternative, 

the group intercepts being assumed to differ in both 

hypotheses, has a value of 55.4 which has a significance 

of about 2% on the X
36  
2  distribution. So while there is 

still some evidence of heterogeneity amongst the 

variances this evidence is not overwhelming and the 

model that allows the intercepts to vary with group 

but which assumes that the variances are constant from 

group to group fits the data reasonably well. 

Unfortunately we are unable to identify the parameters 

in this model so that it is of little direct use. We 

are thus forced to make an additional assumption if we 

are to proceed. 

In §3.4 we saw that if we could impose some linear 

constraint on the intercepts then we could estimate all 

the parameters. However, in this case there is no 
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obvious constraint that could be used and it seems 

much more reasonable instead to set as =0. This is 

what we now do. 

We have already accepted that the model which 

allows the intercepts to vary with group but which 

assumes that the variances do not vary with group 

provides an adequate fit to the data. With the 

additional assumption that as =0 we have the model 

Yij  

where the X.j  have independent normal distributions 

with means pi and common variance a2, the cij have 

independent normal distributions with means 0 and 

variances a2, and the sij 	Xi j. independent of the X. . 

In this model we estimate 8 by s /s , pi by x.1  , yx xx 	- 

ai by y- (s yx  /s xx ' )x , a2  by sxx  and a
2 by 

s - s 2  /s . For this set of data, then, we estimate 
yy yx xx 

8 by 2.273 and its standard deviation by 0.078. The 

estimates of a2  and aE are 0.0074 and 0.0040 

respectively. The estimates of the means, 	are are the 

same as those in the "(q=0)-boundary estimates" column 

of Table V and their estimated standard deviations are 

again 0.030 in each case. The estimates of the 

intercepts, ai, and their standard deviations are 

summarized in Table VI. 

Note that, while the standard deviations of the 

individual intercept estimates are quite large, the 
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standard deviations of differences between them are 

much smaller; in fact, they vary from 0.032 to 0.064. 

There are no obvious groupings of the intercepts and, 

in the absence of further information, the assumption 

of a random effect for the intercepts seems a 

reasonable one. In fact a plot of the estimates, a., 

of the intercepts against the expected order statistics 

from a normal distribution shows that the values a. 1 

are reasonably consistent with a sample from a normal 

. distribution. We can estimate the variance, acc, of 

the ai  by subtracting the average of the estimated 
^ 	^ 

variances of the ai - a from the mean sum of squares of 

the ai - a. This gives us 0.0095 as an estimate of a2a. 

TABLE VI 

INTERCEPT ESTIMATES IN THE REGRESSION MODEL 

Parameter a1 a2 a3 a4 a5 a6 a7 

Estimate -6.71 -6.75 -6.63 -6.63 -6.73 -6.78 -6.69 

Estimated S.D. 0.46 0.48 0.48 0.47 0.47 0.46 0.45 

Parameter a8 a9 a10 all a12 
a13 

Estimate -6.53 -6.73 -6.48 -6.59 -6.72 -6.46 

Estimated S.D. 0.43 0.46 0.48 0.47 0.48 0.48 

The standard deviation of differences between the 

estimates, x, of the means, pi' is approximately 0.043. 



- 118 - 

From the ranked estimates of the X means, 5.457, 5.770, 

5.881, 5.913, 5.923, 5.965, 5.967, 6.062, 6.097, 6.105, 

6.110, 6.110 and 6.165, we can see that the mean, 

5.457, of group 8 is clearly significantly different 

from the others. But are the others consistent with a 

common mean? A between and within analysis of variance 

on the x..1]  for all groups except group 8 gives an F 

ratio with a significance of about 8%, showing that 

there is, in fact, little evidence that these group 

means are unequal. 

Our overall summary of the data is thus as 

follows. The observations on the variable log of 

trunk girth are measured with small errors which we 

assume to be zero, and within each group the 

observations are consistent with random samples from 

a normal distribution with variance 0.0074 (S.D. = 

0.0011); the mean of the distribution for group 8 is 

estimated by 5.457 (S.D. = 0.030) and it is 

significantly less than the common mean, 6.006 (S.D. = 

0.0087), of the other 12 groups. The observations on 

log of weight above ground, Yij, are related to the 

observationsonlogoftrunkgirth,X„by the equation 

Y..="0(-4-(3X.. 	E.. 	(j=1,..,8 ; i=1,..,13), ij 	13 

where (3 is estimated by 2.273 (S.D. = 0.078), the ai  

are consistent with a random sample from a normal 

distribution with mean -6.65 and variance 0.0095 (the 

individualestimatesofthea.are given in Table VI), 
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and the.c. are consistent with a random sample from a 1J 

normal distribution with mean zero and variance 0.0040. 

This gives a quite concise representation of a 

potentially quite complicated situation. Data were 

also collected when the trees were four years old but 

the next step of analysing the four-year-old data and 

relating the results from the two ages will not be 

done here. 
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Appendix 1 

THE DETERMINATION OF THE NATURE OF TURNING 

POINTS OF LIKELIHOODS 

In relatively complicated problems the likelihood 

equations may have several solutions and it is then 

desirable to examine which solutions correspond to 

local maxima; of course the same problem arises in 

optimization calculations in other contexts. In 

principle, this examination can be done by calculating 

the matrix of second derivatives of the log-likelihood 

and then looking at the signs of the principal minors. 

If the equations have been solved analytically, however, 

this can be very tedious and we present here a method 

that, when applicable, avoids these calculations. 

Virtually all the likelihoods studied in this thesis 

have more than one stationary value and the amount of 

work saved by the use of this method is considerable. 

In the method described here the pivots of the 

matrix of double derivatives of the log-likelihood are 

calculated. The pivots can be interpreted as the 

factors by which one principal minor is multiplied in 

order to get the next principal minor. Hence the 

method is equivalent to that described above. In the 

theorem stated below we find expressions for these 
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pivots.. It is these expressions that hold the key to 

the method because we shall see that they can be 

determined with very little effort during the solution 

of the likelihood equations. 

The essential idea is related to pivotal reduction 

in linear systems (see, for instance, Fraser, 1959, 

pp. 170-3) and to a result of Richards (1961) for 

finding the covariance matrix in nonlinear problems. 

In particular, the interpretation of the pivots that 

. we give here, roughly speaking as second derivatives 

of the log-likelihood after optimization with respect 

to previous parameters, is closely related to the 

interpretation given by Jowett (1963) in the linear 

regression model. 

The likelihood equations are solved in a 

sequential manner that enables easy calculation of the 

pivots of the matrix of double derivatives of the log-

likelihood. The signs of these pivots determine the 

nature of the turning points; if all are negative when 

evaluated at a turning point then that point is at a 

local maximum; if all are positive the point is at a 

local minimum; if any two have opposite signs the point 

is at a saddle point; and if one of the pivots is zero 

we may need to investigate higher order derivatives or 

to reparameterize. 

The method depends on the following result. 

Theorem. Let Z(0,( be a twice differentiable function 
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of 0 and 4), and let 1T = (AT,4)). Suppose that 

3R, 
= 0 for all 4), 

30 r2( q )  

where g is a differentiable vector function of cp, and 
^O. 

suppose also that the matrix 329/D02  is nonsingular at 

(0,(p) = (g(4)0)40). Then, when 4) = 4)0, 

 

alt 

   

a2t 

 

a 

0=g(q)) d4)t34) e=g (01.  

       

 

a y e 

 

0=g(p) 

 

30 2 

 

         

The proof of this theorem is not difficult; 

essentially it is a matter of showing that the pivot, 

e=g(40)1  

 

evaluated at 4) =
o
, is equal to 113 211 3 21  

42 34 ao2 [ 	3034) 

evaluated at (0,4)) = (g00)40). A more general result 

was essentially proved by Richards (1961). The pivots 

of the matrix of double derivatives of a log-likelihood 

are terms like the last term in the equation in the 

statement of the theorem and their calculation is made 

easy by solving the equations sequentially as we now 

see. 

Let k(6) be a log-likelihood function of AT  = 

3 2 k  
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(01,..,0p). Then the first step in the sequential 

procedure is to solve the first likelihood equation, 

32./301 = 0, for 01 in terms of the remaining parameters, 

02'..,8p. Let such a solution be 01(02'..,8p).  The 

first pivot is just a 2vael. 

The next step is to substitute 01(02,..,0p) for 

01  in the likelihood equation for 02  and then to solve 

the resulting equation, 

= o, 
e 	 ) 1 1 2" p 

for 02  in terms of the remaining parameters, 03,..,0p. 

Let such a solution be 32(03,..,0p) and let 01(03,..,0p) 

be the result of replacing 02  by 02  in 31(02,..,0p). 

The second pivot is the derivative of the left-hand-

side of the above equation with respect to 02. 

At the third step we substitute 01  for 01  and 02  

for 02 in the derivative of the log-likelihood with 

respect to 93. By equating this derivative to zero we 

get an equation which we solve for 03  in terms of 04,.., 

0P, and by differentiating again with respect to 03 we 

obtain the third pivot. 

Continuing in this manner, we eventually get the 

sets of solutions of the likelihood equations and the p 

pivots whose signs must be investigated at each of 

these sets in order to determine which are at local 

maxima, which are at local minima, and so on. 

   

90 2 
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This method is useful only if the likelihood 

equations can be easily solved sequentially. However, 

the functions g((1)) are not necessarily needed explicitly 

so that the pivots can sometimes still be found without 

too much difficulty even when the equations have not 

been solved strictly sequentially; §2.2 of this thesis 

provides an example of this. Of course it is not 

necessary to adhere strictly to the method presented 

here or to the direct method; in some problems it may 

be best to use the direct method to get the first few 

minors and then to use the method described here for 

determining the higher order determinants where its 

advantages can be most pronounced. 

We can prove a multivariate generalization of 

the above theorem which states, under similar 

restrictions, that if 

a 
-- Z(0,0 
90 

= 0 
0=g (q)) 

for all (0, 

   

then the matrix 

a 2 2, 
9y 2  0=2($) 

is positive (negative) definite if the two matrices 

and 2.J.19= 
e=g(ct ) 	 431: 0=g(01  

•NI 	 I., "4 "0 ••• ONO 

a 2 2. 

ao 2  

are both positive (negative) definite. This theorem is 
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used in. Chapter 4, though there it was convenient to 

frame the problem as the sequential maximization of 

Z(01,02,03) with respect to 01, Z{61(02,03) , 02  03} 

with respect to 	and and so on. 
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Appendix 2 

MOMENTS OF THE SUMS OF SQUARES AND PRODUCTS 

IN THE K-GROUP MODEL 

We outline here a derivation of the moments of 

the sums of squares and products of the observations 

in the k-group model studied in Chapter 3. These 

moments could, of course, be found from first principles 

but this would be long and tedious; here we use the 

noncentral Wishart distribution to get the moments much 

more economically. 

Sincetheobservations,Yij 	Xi;, and X 	are 

independently normally distributed with a common 

covariance matrix, then the matrices of between-group, 

within-group and overall sums of squares and products 

have noncentral Wishart distributions, the first two 

being independent. Consider first the between-group 

sums of squares and products. Since the 147;;( i.,Ri.) 

(i=1,..,k) are independently normally distributed with 

,u.) 

= 

and common covariance 

26  2+0. 2 	f3cr  2 

r 

 

matrix means 	vn(a-01.1.. 

aa2, a21-(5 2 

then 

B = n  
b YY 

YXb  

bYX 

bXX 
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where bYY  = Xni( i.- ••)2 /n, etc, has a noncentral 

Wishart distribution with k-1 degrees of freedom, 

covariance matrix E and noncentrality matrix 

k 

-k -15) 	F 	
PP f3 	

r )T  = b - 	n 	
132 13  

(0 - 	
I Z=1 	 1 

where ezT   = VIT(a+ap2, ' p2, ) and b
PP 	1 i = In.(p. -5)2/n; see, k  

for example, Press (1972, p112). 

The characteristic function of all = nb YY' 

2a12 = 2nbYX and  a22 = nbXX was shown by Anderson (1946)  

to be 

c((D) = Eiexpfi trace(AW] 

1E1-1(k-1)expl-1/2X(62,-6)TE-1(6t-U)1 

101-1(k-1)expl-1/2X(6 -13)TE-10E-1(0276)} 

where Q = (E-1- 2i( -1, A = (aid) and (I) = ((Pi* Let 

a((D) = 2i1032G2+-  ° "11 	213a24)12 	(a24-q"22/  

4- 41E1(4'114)22 - C612)  ' 

and 

b (4))  = 	(°21511 2"12 +X22)  + 2 (R 2c 	(4)114)22 4)12)  

Then we can show that 

c0) = {1 - a(4)) } -1(1(-1)exp[nbilpb ( 	(29) !)/{1 - a(T) 1] • 

From this it is easy to show that the cumulant generating 

function is 
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log{c(4))1 = nbvpb(4)){1 + a((D) + a2((1)) + ...1 

1/2(k-l)fa(4)) + 1/2a2(4)) + 3a3(4)) + ...}. 

We can easily pick out the first and second order 

terms in the cpii  from logfc(01 and hence get the first 

and second order moments of the between-group sums of 

squares and products. These are 

E(bYY ) = 132b
PP 
 + (k-1)(82a2+a2)/n , 

E(byx) = Oblip  + (k-1) 862/n  , 

E(bXX) = bpp + (k-1)(a2+a2)/n , 

var(bYY  ) = 2(02a2+a2){202b PP
/n+(k-1)(82a2+a2)/n21 

cov(b
YY' 

b
YX 
) = 28b

1111 
(213 2+cy 2 )/n + 2 (k-1) 8a2 26 0. 

e  
2+ 2 in2 

var(b ) = b 	(482a24.(32a2+a2 
YX 	PP 	e )/n + (k-1)(1EI +213 2c0)/n2  , 

cov(bYY ,bXX  ) = 2$2
62{2bpp/n + (k-1)a2/n2} , 

cov(byx  , bxx) = 281app(2a2+ag)/n + 2(k-1)8a2(a2+ap/n2  

and var(bxx) = 2(a2+q){2b1.1/n + (k-1)(a2+ap/n21 . 

Higher order moments can also be obtained easily. 

Let us now consider the within-group sums of 

squares and products. Define syy  = 1X(Yij- Yi.)2/n, 

etc. Then, since the (Yii,Xii) 

are independently normally distributed with means 

(a+8pi ,pi) and common covariance matrix E, 



- 129 - 

s YY SYX 

s 	s 

has a (central) Wishart distribution with n-k degrees 

of freedom and covariance matrix E. The characteristic 

function of all  = nsYY' 2a12 = 2nsYX and  a22 = nsXX 

can be found from equation (29) by replacing blip  by 0 

and k-1 by n-k. Hence the moments of the within-group 

sums of squares and products can be found from the above 

expressions for the moments of the between-group sums 

*of squares and products by replacing blip  by 0 and k-1 

by n-k. 

We can get the moments of the overall sums of 

squares and products in a similar fashion. Of course 

we could also get these from the above results using 

the fact that B and S are independent. Define 

tyy  = /Y(Yii 	i.,) 2  /n, etc. Then 

T = n t YY 
tYX 

tYX tXX 

has a noncentral Wishart distribution with n-1 degrees 

of freedom, covariance matrix E and with the same 

noncentrality matrix as in the distribution of B. Hence 

S = n 

YX 	XX 
 

6,1 

we can obtain the moments of the overall sums of squares 

and products from the expressions for the moments of the 

between-group sums of squares and products by replacing 

k-1 by n-1. 
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Appendix 3 

MOMENTS OF THE REGRESSION SLOPES IN THE K-GROUP MODEL 

Here we outline the derivation of the first and 

second moments of the between-group, within-group and 

overall regression slopes in the k-group model discussed 

.in Chapter 3. We can get exact moments for the within-

group slope but for the other two slopes we can get 

only asymptotic moments. 

To find the asymptotic expected value of the 

between-group regression slope of Y on X we use 

ryx) _ 	1 	 v 2  
	 EkE(byx ) +.}{1    

 —1] 
XX E(bxx) 	E(bXX) E(bXX)2 

where U = bYX  -E(bYX  ) and V = bXX -E(bXX) . We get 

E(byx/bxx) = a - aapk-3)/(nbilli) + 0(1/n2). 

We use a similar expression to find E(141x/bh), from 

which we can show that 

var(byx/bxx) = 032q+a)/(nb1111) + 0(1/n2). 

We can get the asymptotic moments (by which we 

mean the moments of the asymptotic distribution) of the 

overall regression slope of Y on X in exactly the same 



s f(s ,s ,s )ds ds ds yx xx yy yx xx yy yx xx .S
i 
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manner. The first two such moments are 

[ 

	

E t-1' 	a2+b" 	 + (3(3.13"(a2-1-a-1-3b")  + 0(1/n2) 1 -.. = 13 

	

tXX 	 6 
a2+,240 

 pp 	6 n(a2+a2+b
PP  )

3  '  

and 

var(t /t = 	b  la2+ -11E1 
YX xX' 	ku -rusi  

PP' 	
...„21, 
	p up -1-  

3b2  1E1 + b3 02(5 24.a2cl ifn(,24.,24.b 	.4,  ) 	+ 0(1/n2). 
PP'-' PP 6 c'Jf' 	

,f o pp  

The asymptotic moments of the within-group 

regression slope of Y on X could also.be found in the 

same way, but in this case we can find the exact 

moments. The joint density of sYY  , sYX  and sXX is 

f(s
YY ,sYx 

,s 
 xx

) - 
(2n)n-k  (s s 	- s 2  ) (n-k-3)  

yy xx 	yx 
.1

I lEl l(n-k)r{1/2(n-k)}N1/2 (n-k-1)1 

X exp[-1/2n1(a2+a2)s 
YY 

 -213a2s yx + (0202+02)s 
XX 	~ 
MEI] ; 

E  

see, for example, Press (1972, p101). Using the fact, 

easily proved by induction, that 

co 	i 
f(x-a)2m  exp(-cx)dx = r(1/2m+1)exp(-ca)/c m  
a 

where m is an integer, we can evaluate 

00 CO 

f -Co0 	S2 yx
, 
 xx 

directly and so find the moments of sYX /sXX . The first 

two such moments are 

E(syx/sxx)= Sa 2/(a21-ag) 
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and var(s / 1 YX' SXX) 
1E1 

 

(n-k-2) (G 2-1-0- 2) 2 • 

Much algebra is required in the evaluation of 

cov(sYX /sXX ,tYX /tXX ) but the method is straight-forward. 

We already have E(syx/sxx)E(tyx/txx) and we calculate 

the other term, E{(syxtyx)/(sxxtxx)}, with an expansion 

like that used to find E(bYX /bXX ). The independence of 

the between-group and within-group sums of squares and 

products makes the calculation possible with the moments 

found in Appendix 2. We find 

1E1 
cov(s /s 	,t /t ) - 	 + 0(1/n2). YX XX YX XX n(a24.0.21(a24.a244a  

6.. 6 PP' 

Similar expressions for the moments of the 

regression slopes of X on Y can be determined from the 

symmetry of the model. By replacing Y by X, X by Y, 

b3 
by 32bpp, 3 by 1/3, a2  by (32a2, a2  by o and a2  by 

a2 we can use the above expressions for the moments of 

the regression slopes of Y on X to get the moments of 

the regression slopes of X on Y. 
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