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ABSTRACT 

Radial distribution functions have been generated from the wide angle 

X—ray diffraction from atactic polystyrene: 

H H 
— C — C -
H 

CH CH 

CH CH 
CH n 

and from atactic polymethyl methacrylate: 

H CH 
— C — C 
H CO 

0 
CH
3 

The functions were extremely sensitive to systematic normalisation errors 

in the region r <32. whilst in the region r >A they were relatively free 
of such errors. Preferred molecular orientation was induced in these 

polymers so that strong equatorial and meridional arcing of the diffrac- 

tion pattern was obtained. 	Intramolecular scattering effects are shown 

to predominate in both orientated polymers although pronounced inter-

molecular scattering was detected. Possible molecular conformations and 

packing arrangements are discussed for atactic polystyrene whilst the 

effects of annealing below Tg  and the swelling of polymethyl methacrylate 

are explained in terms of changes in intra— and inter—molecular ordering. 

n 
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CHAPTER ONE 

A Survey of the Literature Dealing with the Morphology of the Amorphous  
State of Synthetic Polymers  

1.1 Introduction 

The kinetic theory of high elasticity which was developed in the early 

1930's has been successful in quantitatively explaining rubber elasticity 

and the properties of dilute polymer solutions
1
. 	In particular the Flory- 

Bueche's statistical random coil model has predicted the mean-square end-to-

end distance and radius of gyration of polymer chains in dilute solutions. 

In the condensed state, linear amorphous polymer molecules are assumed to 

display the same "unperturbed" conformational properties as isolated macro-

molecules in an ideal solvent2-4. The success of this model has fostered 

the view that bulk amorphous polymers are totally disordered systems consist-

ing of deeply entangled molecular coils possessing large amounts of free 

volume. 

This model does however suffer from some considerable drawbacks. It 

assumes that the distribution of chain segments about the centre of mass of 

an isolated molecule is Gaussian in nature and predicts that the segmental 

density at any point decreases as the length of the molecule increases. 

Since the specific density of a polymer is not seen to decrease with increas-

ing molecular weight and since there is no evidence of significant density 

modulations, the number of intermolecular segmental interpenetrations (i.e. 

entanglements) per unit volume must increase with increasing chain length. 

'To overcome the forces involved in entanglements, energy must be invested 

when untangling the molecules. Thus if the entanglement density is a 

function of the chain length, the heat of mixing of the polymer with a 

solvent should be also. This is not observed experimentally. 

Secondly Fox et al.
5'6 have shown that the maximum Newtonian melt 
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viscosity 11.  depends on the polymer molecular weight M in the following 

manner 

where K
1 and K2 

are constants and M
c is a "critical" value of M. The 

visco-elastic maximum relaxation time also has this molecular weight depend-

ence. Neither phenomenon can be satisfactorily explained by the model. 

The concept of entanglements is subject to objections on the grounds of 

polymer crystallisation. Polarised light studies7  of the crystallisation 

of natural rubber and polybutadiene have been reported in which samples 

were repeatedly melted and recrystallised. 	If the melting temperature was 

not too high, the same spherulitic patterns were completely and precisely 

reproduced. From pure geometrical considerations this would imply that 

deep entanglement is unlikely. 

It is known that polymers crystallise from the melt in lamellar struc-

tures in which the molecular chains are more or less perpendicular to the 

flat surfaces. The chains fold on these surfaces and re-enter the lamellae 

either adjacent to or close to their points of exit. 	The time periods 

involved in the crystallisation process are thought to be much shorter than 

the maximum relaxation times of the polymers in question8 
 . How therefore 

can a polymer crystallise each molecule separately onto the growing lamellae 

over time periods shorter than it takes the same polymer to untangle itself? 

In the light of such arguments the validity of the random coil as an 

accurate picture of the amorphous states of crystallisable polymers at least 

has been seriously questioned. The possibility that non-crystalline poly-

mers such as unstretched natural rubber and amorphous polystyrene contain 

some form of ordered elements has been suggested on and off since the 1920's. 

This view originated from X-ray and electron diffraction studies of organic 

liquids and their polymers, and has been supported by work on magnetic 
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susceptibility9, differential thermal analysis
10 
 , crystallisation kinetics11, 

calorimetry
12 density13 and dark—field diffraction microscopy14. 

To date no really conclusive demonstration of short range ordering in 

glassy polymers has been made. However, several structure models which 

assume various degrees of chain ordering have been proposed and these are 

discussed in this chapter. A full review of the literature on WAXD and 

SAXD regarding amorphous studies is given in later sections. We now con-

sider some electron microscopy experiments which have probably been the most 

spectacular and controversial of the studies of the morphologies of polymer 

glasses. 

1.2 Electron Microscope Studies of Amorphous Polymer Films 

Recent electron microscope studies have created considerable excitement 

because of the appearance of tiny structures on the surfaces of thin polymer 

films. 	In the mid 1950's several Russian workers, notably Kargin15-18 

reported seeing structures from a few hundred Angstroms to several microns 

in size on solution cast films. 	These studies led Kargin to propose that 

amorphous polymers contain quite ordered elements which he envisaged as being 

bundles or packets of molecular chain segments orientated more or less para- 

llel to one another. 	Studies of fluorinated rubbers cast from solution 

showed very clear 10008 diameter particles irrespective of the solvent 

used17. Kargin calculated that these particles probably contained up to a 

thousand molecular chains. Unfortunately many of the published micrographs 

of this period as well as some of the specimen preparation techniques were 

somewhat controversial. 

Schoon et al.19  have observed small spherical particles 30-558 in 

diameter on the surface of a number of amorphous films including natural 

rubber and a copolymer of butadiene and acrylonitrile. 	They also reported 

seeing larger structures of the order of hundreds of Angstroms in size on 

films of the non—crystallisable polymers atactic polystyrene and atactic 

polymethyl methacrylate
20'21. Again these micrographs were considered by 

many to be unreliable since they were obtained by an iridium replication 

technique, the resolution of which is comparable to the particle size 

reported. 
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In 1967 Yeh and Gei122'23  published their now famous papers on the 

crystallisation of polyethylene terephthalate (PET) in which they reported 

seeing ball-like structures or "nodules" 45-1001 in size on the surfaces 

of films cast from solution and quenched from the melt. When the PET 

films were annealed just below the glass transition temperature, T , the 

nodules were reported to aggregate in small clusters. Depending upon the 

annealing temperature, time and film thickness, large structures suggesting 

the initial growth stages of spherulites were formed and the (711) and (011) 

reflections appeared. Several other crystallisable polymers including 

bisphenol-A polycarbonate
24-26 

and isotactic polystyrene14 have now peen 

reported as possessing similar nodular structures which appear to be the 

first stages of the spherulite crystal growth pattern. Yeh and Geil 

tentatively proposed that the glassy state of crystallisable polymers 

at least should be likened to the Fringed Micelle Model of crystalline 

polymers; the crystallites would be replaced by the nodules, which were 

suggested to possess some kind of paracrystalline order (possibly of the 

kind proposed by Hosemann27). 

Strain-induced crystallisation studies of PET
23 

showed that after 

stretching the nodules were more or less aligned in short rows of 2-5 

nodules at approximately 50°  to the stretch direction (at this stage the 

electron diffraction pattern was that of a highly orientated fibre). If 

the drawing was performed at an elevated temperature (260°0 the angle of 

inclination of the rows to the stretch direction was increased to 900. 

Yeh and Geil argued that the alignment was achieved by nodule _rotation so 

that the partially ordered chain segments within each nodule became aligned 

parallel to the draw direction. 

Further studies of the deformation behaviour of PET films were per-

formed by Klement and Geil
28 
 in which they investigated both uniaxial and 

biaxial stretching. The uniaxial stretching showed similar effects to those 

described above while the biaxially drawn films showed no evidence of row 

alignment. 	Occasionally large clusters of nodules were seen (250-300X in 

diameter) similar to those reported for annealed PET which they christened 

supernodules". 	Gold decoration experiments suggested that these struc- 

tures were several nodules tied together by internodular links which upon 

drawing rotated the nodules parallel to the draw direction. 
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Yeh
29 

has proposed a detailed two-phase model based on his morphol-

ogical studies of various amorphous polymers called the Folded-Chain Fringed 

Micellar Grain Model (Fig.1.1). 	It consists of two major elements: the 

grain (G) and the region between the grains or the intergrain region (IG). 

The grain is subdivided into an ordered domain (OD) about 20 to 4OR in 

diameter and a grain boundary (GB). Within each ordered domain the chain 

segments are more or less parallel to one another with nearly constant spac-

ings (so that the order is regarded to be better than nematic). The degree 

of order may vary with each grain and from one polymer to another depending 

upon thermal history, chemical structure, etc. The grain boundaries are 

considered to be about 10 to 20R thick and contain mostly folds, a few chain 

ends and some entanglements. The intergrain regions vary from 10 to 501 

in size and consist of more randomly packed molecules, including low molec-

ular weight molecules and portions of molecules going from grain to grain 

(internodular links). Yeh has argued that several physical phenomena such 

as viscous behaviour and lamella formation are consistent with this two-

phase model. 

Interesting as these e.m. studies are, they have on their own, so far 

failed to convince the majority of scientists of the existence of chain 

ordering in the amorphous state. Part of the problem lies in the diff-

iculty of the technique itself: limiting resolution, specimen contamina- 

tion, beam damage, etc. 	In particular these experiments have failed to 

give us information about the details of the proposed structures, since 

they refer to their outline only. Dark-field diffraction microscopy is 

now being used to help in this aspect14. Polymer chemists have been 

particularly reticent about chain ordering. Ciferri, Hoeve and Flory3 

in their paper on stress-temperature coefficients and conformational energies 

of polymer chains state that: "These results are at variance with the often 

postulated pseudo ordering of chains in molten polymers such as polyethylene. 

The molecular shape of the polyethylene dilutent must surely be quite incom-

patible with any conceivable ordered arrangement of chains of this polymer". 



Fig.1.1a Schematic representation of the random—coil model. 

Fig.1.1b Schematic representation of the folded—chain fringed 

micellar grain model showing the ordered domain (OD), the grain 
29N 

boundary layer (GB), and the intergrain region (IG). (Yeh ). 
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1.3 The Densit of Amor hous Pol ers : Robertson's Model 

Table 1.1 lists the densities of several common synthetic polymers in 

both their amorphous and crystalline states. Robertson
30 

has argued that 

the relatively high densities of the amorphous polymers demands a fairly 

large amount of ordering to occur within them. Using a simple model con-

sisting of strings of cylindrical beads, he attempted to develop a means 

of assessing the order in an amorphous polymer from its density. 

Polymer dc da 

Polyethylene 1.00 0.855 

Polypropylene 0.937 0.854 

Polystyrene (isotactic) 1.111 1.054 

Polyvinyl alcohol 1.345 1.269 

Polyethylene terephthalate 1.455 1.335 

Bisphenol-A polycarbonate 1.30 1.20 

Nylon 66 1.220 1.069 

da/dc 8(1=d) 

0.855 15.00  

0.911 8.4 

0.947 4.8 

0.943 5.2 

0.917 7.8 

0.92 7.5 

0.876 12.4 

Table 1.1 A comparison of the amorphous and crystalline densities 

da and dc 
of several synthetic polymers 

These cylindrical beads of length 1 and diameter d are assumed to be jammed 

together with each bead touching its neighbour's but not necessarily parallel 

to them. The angle between two neighbouring beads is considered to be ran-

domly distributed between 0
o 
and some cut off angle to*  (Fig.1.2). 

Robertson estimated that for chains which tend to pack in a planar zigzag 

fashion, the ratio of the densities of the amorphous and crystalline states 

is given by 

2 	1 — cos 3 e*  

{ 	

2 	}-1 7 1] 0 — cos3  Er) 
* 	+ 3 2 

in . 3 0 s  

where da and dc 
are the densities of the amorphous and crystalline phases. 
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If the polymer chains tend to pack in helices, the ratio is 

da 	
t3\2{ 

3 1- cos A* u 
2 1 

 2 

sin 2  01 1  
2 * 

3 0 sin T 

By lifting the restriction on 9 , we have that in the case of the amorphous 
state being that of a random coil: 

d
a 
dc 

= 0.652 	(using 1 = d) 

This is much smaller than the ratio for real polymers (Table 1.1). 	Using 

the reasonable assumption that 1 = di  Robertson computed the value of the 
^* 

"order parameter" U for each polymer from the known d
aidc values (Table 1.1). 

The small values of tjd obtained indicated that a fairly high degree of order 

exists in the amorphous state. 	If the root-mean-squared end-to-end distance 

0 is calculated for polyethylene assuming 0. 	15
o 
and 1 = 2.51R, a value 

fifteen times larger than that found by intrinsic viscosity measurement is 

obtained31. To overcome this difficulty Robertson proposed that there is a 

certain small probability that the chain will fold back on itself as in crys-

tal lamellae so that at each junction the next bead can be within a cone 
, 

either 0
o 
to 0

* 
or (1800 - 0

*
) to 1800. The root-mean-squared distance 

calculated using this assumption is reduced to about one quarter of that of 

the viscosity measurement, without affecting the density. 

Thus this model goes a long way in simultaneously meeting the require-

ments of both chemists interested in chain statistics and morphologists 

interested in short range ordering. The order postulated here is strictly 

one dimensional in nature. The polymer chains tend to lie parallel to one 

another but there is no particular correlation between neighbouring chains 

about their axes or along their length. 
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1.4 Recent Models of the Amorphous State of Polymers 

Numerous new models for the amorphous state of linear polymers and 

polymer melts have been suggested within the last year which assume some 

degree of chain folding. Pechhold and Blasenbury32 have described a 

"Meander model" in which supermolecular structures are composed of tightly 

folded separate bundles of nearly straight chains. An increasing concen-

tration of kink defects is introduced into these otherwise aligned chains 

until their overall properties approach that of a melt. These super-

molecular structures have been shown to be thermodynamically stable. 

Using this model they have shown that the Gibbs free energy, the geometry 

and the radius of gyration of the folded molecules depend only on molec-

ular parameters such as the interchain distance, the length of a kink 

segment and the energy of a fold. 

Privalko and Lipatov33 have suggested that the sharp change in the 
molecular weight dependence of the Newtonian viscosity of polymer melts at 

Mc as described in section 1.1, can be explained by the onset of "kinetic" 

chain folding as the molecules make the transition between a chain-extended 

conformation to a statistically chain-folded conformation. This suggestion 

has been supported by recent magnetic susceptibility measurements9.. A 

sketchmatic representation of the Privalko-Lipatov model is shown in Fig. 

1.3. All chain conformations above the polymer melting point are assumed 

to be essentially unperturbed (as in the Flory-Bueche's random coil). The 

mean-squared end-to-end distance is therefore given by 

(h2> = Nb2 0-2  

where N is the number of main chain bonds, b the length of each single bond 

and a- the steric factor (a measure of the hindrance to internal rotation). 

The molecules are assumed to have chain folded conformations, so that the 

mean value of <h> is approximately 

<E> 	naA 

where a is the chain thickness (a
2 
= the cross-sectional area of a chain, 

end on), n-1 is the number of folds in the chain folded entity with a given 
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<h> 

Fig.1.3 Privalko—Lipatov model for the polymer amorphous state.33 
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fold length <1> and A is a numerical constant. These equations are 

correct only on the condition that the randomly folded molecules display 

the conformational properties of unperturbed random coils. This is 

imagined by assuming that both the size and the location of the regions 

of short range order depend upon the temperature and the time of observa- 

tion. 	That is, the instantaneous structure of the polymer corresponds to 

one of many possible randomly folded chain conformations. When the time 

of observation is sufficiently long as for example an equilibrium stress-

strain experiment or an experiment to measure solvent diffusion, the experi-

ment "sees" a time average of chain conformations which behaves like an 

unperturbed random coil. By borrowing a term from statistical mechanics 

we can say that the experiment measureE, the ensemble average of a large 

number of thermodynamically-identical folded chain conformations. 

Thus to date the following models of the polymer amorphous state have 

been proposed: 

Flory-Bueche's statistical random coil. 

Robertson's bead model. 

Yeh's two-phase, nodule model. 

Pechold and Blasenbury's meander model. 

Privalko and Lipatov's ensemble of randomly folded chains. 

all of which can find experimental evidence to support them. 

Since it is not really surprising that ordered elements have been 

reported in the amorphous states of crystallisable polymers, interest in 

the fundamental questions concerning the polymer amorphous state is now 

centred on the non-crystallisable polymers such as polymethyl methacrylate 

and atactic polystyrene. 

After brief descriptions of recent small-angle X-ray diffraction and 

wide-angle light scattering studies the final sections of this chapter deal 

in detail with the literature concerning wide-angle X-ray and electron diff-

raction studies of amorphous polymers. 
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1.5 Small-Angle X-Ray Diffraction (SAXD) Experiments  

Some of the scepticism about the reports of nodule structure has 

arisen because electron microscopy deals only with thin films or surface 

replicas. It may be that nodules are peculiar to free surfaces where 

the molecular chains may be free from certain conformational constraints. 

To assert that nodules are also typical of the bulk material, confirmation 

must be sought from other techniques. Since nodules presumably have higher 

electron densities than their surroundings, SAXD which is sensitive to local 

electron density fluctuations Ae , is an obvious tool for investigating the 

bulk properties. 

Harget and Seigmann34 have reported SAXD studies of amorphous PET and 

have shown them to be consistent with the nodule structure seen by Carr, 

Geil and Baer24. 	Intensities were recorded over the 20 range 17min. to 4o 

for CuKa radiation, corresponding to Bragg spacing of 3008 to 22R. Unfor-

tunately they used the Guinier's law approximation for single particle scatt-

ering (which is valid only for very small angles and very dilute systems) to 

calculate the radius of gyration of the scatterers. Their data was at all 

points, above the angles for which Guinier's law should hold and the nodules 

observed by electron microscopy can hardly be considered dilute. However 

they showed that the SAXD observed was slightly dependent upon the thermal 

history of the specimens, i.e. the annealing time below Tg or the quench 

rate from the melt. 

Lin and Kramer35 have reported that the SAXD from amorphous poly-

carbonate exhibited a sharp rise in intensity at ultrasmall angles 

(29 < 0.08°  for CuK radiation). At much higher angles the SAXD was 

superimposed on a diffuse halo centred at an angle corresponding to a 

spacing of 10R. Since SAXD depends only on the electron density differ-

ence at , microvoids as well as local density fluctuations within the sample 

could cause the detected intensity. By doping the specimen with small 

amounts of iodine (1.3%), a reversible uniform decrease in the SAXD intensity 
was observed, corresponding to a decrease in Ae . Lin and Kramer argued 

that if microvoids were responsible for the SAXD, the addition of such small 

quantities of 12  could only increase lSe.  and therefore the scattered inten-

sity. They accordingly ruled out the possibility that microvoids are the 
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primary scattering centres. From absolute intensity measurements the 

minimum relative density fluctuation between nodules and their surroundings 

was estimated to be 1.6% with an upper limit of 1.8% (from fcc close packing 
of nodules). This would suggest that the Yeh model which assumes an almost 

crystalline density for the nodules and predicts a relative density fluctua-

tion of 21% is much too extreme. 

Since these experiments were performed it has been shown that the SAXD 

observed from polymers is very sensitive to impurities within the samples. 

Kirste36 has reported that studies on purified polymers has shown that the 

bulk of the SAXD observed from commercial grade samples is due to additives 

such as inhibitors and plastiziers. 

1.6 Birefringence and Light Scattering Experiments  

In anisotropic media, light generally has two refracted paths and the 

media are said to be doubly refracting or birefringent. Changes in bire-

fringence may sometimes be used as a measure of the orientation processes 

within molecules or of strain at various bonds. 	Strain birefringence 

measurements have shown that the optical anisotropies due to strained or 

swollen polymers were much smaller than those on the unswollen polymers. 

Nagai37 , Gent and Vickroy38 attribute this reduction in optical stress 
coefficient to the disappearance of short-range segmental order of swelling. 

Yeh39  interpreted these results in terms of the disappearance of short-range 

interactions between one ordered region and another when the polymer was 

swollen. 

Addleman40 has shown that inhomogeneities exist within pure polymethyl 

methacrylate. Pure methyl methacrylate monomer was polymerised in sunlight 

while its structure was continuously monitored using wide-angle light scatt-

ering. Three parameters were measured throughout the experiment: 

1. 	The Rayleigh ratio (scattering cross-section per unit volume) of 

the light scattered through 900  with its electric vector parallel 

to that of the incident radiation (R90). 
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2. The depolarisation ratio P 90 : the ratio of the intensities of light • 
scattered through 900  with electric vectors perpendicular and parallel 

to that of the incident radiation. 

3. The dissymmetry Z60  : the ratio of the intensity of light scattered 

through 600  to that scattered through 120°  (the electric vector of 

the scattered beam parallel to that of the incident beam). 

Fig.1.4 shows how these parameters varied with time together with the 

percentage polymerisation. For a given size of discrete inhomogeneity R90  

is proportional to the product of the number of inhomogeneities per unit 

volume, and the square of the refractive index difference between the 

inhomogeneity and the matrix. It is also a function of the size and dist-

ribution of the heterogeneities. Z60  is directly related to the size of 
inhomogeneities (the larger the value of z60  the larger the inhomogeneity). 

e90 is for small-scale inhomogeneities a measure of the isotropy of the 
scattering entities. 	It takes the value of zero for a perfectly isotropic 

scattering entity and gets numerically larger with increasing anistropy until 

the limiting value of unity is reached. 

Fig.1.4 shows that after an induction period of several days the 

scattering was typical of that found for high molecular weight polymers in 

dilute solution. After this Z60  decreased monotonically whereas R90  

increased to a peak value and then decreased. This behaviour indicated 

that the polymer molecules pervaded the entire volume of the solution and 

no longer scattered as separate entities. At this stage less than 1% 

polymer was present (this is consistent with random-chain statistics41). 

With further polymerisation (up to 15% polymer) R90  continued to decrease 

as did Z60 indicating that either the molecules became compressed to very 

small sizes or were completely interpenetrating so that the mixture exhib-

ited only small scale refractive index discontinuities. After this both 

and Z60 increased until the system was solid. From the final scattered R90  

intensity distribution a value of ^-500 was obtained for the correlation 

distance (a measure of the size of the scattering heterogeneities). 

Addleman has proposed a differential contraction model for amorphous 

polymers in which inherent density heterogeneities are assumed to correspond 
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to mechanical heterogeneities within the material (i.e. relatively low 

density regions also have low modulus). During the required volume change 

on polymerisation high internal stresses would be generated. 	If internal 

equilibrium is maintained the low density (low modulus) regions would expand 

by more than the higher density regions, increasing the density difference 

between the high and low density regions and hence the intensity of light 

scattered. 

Fig.1.5 shows the results of an identical experiment on the polymer-

isation of styrene. The general scattering behaviour was similar to that 

during the polymerisation of methyl methacrylate with two major exceptions: 

1. The final scattering was very much lower in intensity than that from 

the polymethyl methacrylate. This is consistent with the model since 

it predicts that the final scattering will depend upon the contraction 

during polymerisation (the contraction of styrene being about 60% that 

of methyl methacrylate). 

2. The depolarisation of the scattered radiation which was absent in the 

polymethyl methacrylate, remained in the polystyrene. 

1.7 Wide-An le X-Ra and Electron Diffraction Ex•eriments 

The first extensive study of the wide-angle X-ray diffraction (WARD) 

from rubbers and polymer glasses was made in 1925 by J.R. Katz42,43. 	In 

a paper published in 1927 he stated that in a number of cases the polymer 

diffraction pattern exhibited one more ring than the corresponding unpoly-

merised liquid. For example, liquid styrene had just one diffuse diffrac-

tion halo corresponding to a Bragg spacing of --4.82.1  while polystyrene had 

two: one at _,4.8a and a smaller one at --10a. This extra diffraction 

halo was termed the "polymerisation ring". Upon stretching the polystyrene 

samples the extra ring was seen to split into two broad equatorial maxima. 

Katz therefore concluded that the polymerisation ring in polystyrene arose 

from interferences between neighbouring main chain segments which were 

aligned roughly parallel an average distance of 10X apart. However the 

absence of sharp Bragg reflections suggested that this alignment was far 

from perfect. 
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In 1943 G.D. Coumoulos44  investigated the electron diffraction from a 

series of amorphous polymers (Table 1.2) and found that the diffraction halos 

he obtained were characteristic of the polymer side chains. 

Polymer 

A 

d-spacings of halos in R 

B 	C 	D E 

methyl methacrylate 1.2 2.2 2.8 - 6.6 

ethyl methacrylate 1.2 2.2 2.8 4.6 7.5 
n-butyl methacrylate 1.2 2.2 2.8 4.8 9.0 
tl -ethoxy-ethyl methacrylate 1.2 2.2 2.8 4.8 9.5 
methyl acrylate 1.2 2.2 - 4.1 6.5 

ethyl acrylate 1.2 2.2 - 4.3 8.0 
polyvinyl acetate 1.2 2.2 - 4.0 7.0 

Intensities of halos as D,E)B>A?C 

Table 1.2 Electron diffraction data from selected amorphous 

polymers44. 

The two outer halos (A and B) are common to all the polymers considered 

while the dimensions of the two inner ones (D and E) vary from polymer to 

polymer. The polymers in the methacrylate series are distinguished by an 

extra ring (C) at a d-spacing of 2.8R. Halos A and B correspond to d-spac-

ings of 1.2R and 2.2k respectively and appear in the diffraction patterns of 

all long chain organic molecules. They were first reported by Stewart45  in 

1928 in connection with X-ray scattering from liquid n-paraffins and have 

been attributed to the spacings between carbon atoms chemically bonded to 

nearest neighbours (1.548) and to second nearest neighbours (2.5R) in a 

polymer chain. Halo C appeared only in the methacrylate polymers of 

Table 1.2 and was always of weak intensity. Since it only appeared when 

a hydrogen atom in the main chain was replaced in each unit by a methyl 

group it was suggested that this represents the mean distance between methyl 

groups along the main chain. The two remaining halos D and E were suggested 

as being inter-molecular in nature on the grounds of the following observa-

tions: 
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1. A "sharpening" of the D ring occurred when the specimens were orienta-

ted by stretching. 

2. The Bragg spacings for the E rings corresponded to the calculated size 

of each side chain. 

Coumoulos proposed that the E ring corresponds to the distance of closest 

mutual approach of two main chains when they are separated by a single side 

chain. He concluded that scattering by side chains is responsible for the 

characteristic halos and that the polymer molecules would have to be grouped 

into clusters with their chains lying roughly parallel in an otherwise ran-

dom system. 

In 1953 Krimm46  investigated the WAXD from glassy polystyrene and 
observed two broad halos at d-spacings of 8.848 and 4.678. At room temper-

ature the 4.678 ring was approximately twice as intense as the 8.848 ring. 

Orientation of the sample by drawing produced a concentration of scattering 

at the equator for the 8.848 ring and a concentration of scattering at the 

meridian for the 4.678 ring. When the WAXD from unorientated polystyrene 

was measured as a function of temperature the Bragg spacings and the relative 

intensities of the halos changed as the temperature was increased (Table 1.3). 

Temperature °C Relative intensities 

14.67/18.84 

Bragg spacing . 

26 2.0 8.84 4.67 

70 2.0 8.84 4.67 

90 2.0 8.84 4.67 

135 1.5 8.84 4.67 

170 1.4 9.03 4.77 
200 1.35 9.50 4.92 

Table 1.3 The effect of temperature on the WAXD from glassy 

polystyrene
46• 
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Fig.1.6 The WAXD from amorphous atactic polystyrene as a function of 

temperature (Kilian and Boueke
51). The curves have been arbitrarily 

displaced. 

Fig.1.7 The variation in Bragg spacings of the first two halos of 

atactic polystyrene with temperature: (a) the most intense; (b) the 

second most intense. 	(Kilian and Boueke51). 	This is strong evidence 

that (a) arises from intramolecular interferences while (b) arises from 

intermolecular interferences. 
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Fig.1.8a Examples of densitometer tracings obtained from electron 

diffraction patterns of an atactic polystyrene (mol.wt.11800,000) 

upon successive increase of exposure to electron irradiation or 

degree of cross-linking. Curve (A) 60; (B) 120; and (C) 240 

seconds exposure to 80-kV electrons at a low beam intensity. Each 

curve is displaced arbitrarily upward for clarity. (Yeh14). 

I0 
	

100 	 1000 
	

10,000 
IRRADIATION TIME (Sec) 

Fig.1.8b Increase in d-spacing of the 4.78X ring as a function of 

degree of cross-linking or irradiation time of exposure to 80-kV 

electrons at a low beam intensity for various molecular weight 
14. atactic polystyrenes. (Yeh ). 
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Kilian and Boueke51 have also measured the WAXD from amorphous poly-

styrene as a function of temperature over the range 20°-160°C (Fig.1.6). 

The Bragg spacing of the strongest peak (,-4.61) was found to be approx-

imately constant with temperature while that of the weaker peak rose 

rapidly as the temperature exceeded the glass transition temperature T 

(Fig.1.7). Thus it was concluded that the halo at --8.8i was due entirely 

to intermolecular interferences while the one at —4.61 was probably almost 

all due to intramolecular effects. 

More recently Yeh14 has reported the results of an electron diffraction 

study of both atactic and isotactic polystyrene. 	In both cases he detected 

four diffuse rings at Bragg spacings of 91, 4.788, 2.238 and 1.268. Neither 

the tacticity nor the molecular weight appeared to cause any difference to 

the electron diffraction pattern. By irradiating samples with 80KV elec-

trons he was able to cross-link the sample and induce a detectable change in 

the pattern. 	In all samples the major change observed was an irreversible 

shift in the position of the 4.788 ring ( 4.78,6.3a) i.e. a pronounced 
increase in the d-spacing as the amount of cross-linking increased (Fig.1.8). 

EVidence for a slight broadening of this ring and a decrease in its intensity 

was also found. No detectable change was observed in either the 2.238 or 

the 1.268 ring. Due to experimental difficulties the 9R ring was not 

monitored. 

1.8 Radial Distribution Analysis of the WAXD 

In section 1.7 we have seen that most of the early X-ray studies of 

amorphous polymers were concerned with the size of the diffraction halos 

and their possible interpretation in terms of intra- and inter-molecular 

spacings. This led some of the early workers to conclude that polymers 

in their non-crystalline state probably contain a fair degree of short range 

order. That these materials might have a definite structure led a few 

crystallographers to attempt structure determinations by performing a Fourier 

synthesis on the experimental X-ray intensities. The application of Fourier-

synthesis to X-ray data from non-crystalline materials was originally pro-

posed by Zernicke and Prins47  and their method has been employed in a 
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Fig.1.10 Electronic radial distribution functions for several amorphous 

polymers obtained by Bjornhaug et al. 50 
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Fig.1.11 (a) Experimental electronic radial distribution function for 
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somewhat modified form by Simard and Warren48  in 1936 to obtain the atomic 

radial distribution function (RDF) of unstretched natural rubber. The 

RDF will be discussed in detail in the remaining chapters and represents 

the density of atoms (or electrons) ,(r) in a spherical shell of thickness 

dr at a distance r from an "average" reference atom. The RDF has maxima 

for r values corresponding to distances between greatest densities of atoms 

or electrons in the system and thus represents the average structure of the 

sample. 

Fig.1.9 shows the RDF obtained by Simard and Warren for natural rubber. 

The four peaks in the RDF out to 6X were explained in terms of the individ-

ual hydrogen chains in rubber without the need for considering the conforma-

tion or relative orientation of the chains. 

In 1954 Bjornhaug, Ellefsen and Tonneson50 published several electronic 
radial distribution functions from atactic polymers including polyvinyl 

acetate, polystyrene, polymethyl methacrylate and polyvinyl alcohol obtained 

from photo-metric measurements of X-ray films (Fig.1.10). Their analysis 

showed peaks at 1.5X and 2.5X as expected. 	In the case of polymethyl metha- 

crylate, the experimental distribution was compared with a theoretical dist-

ribution curve calculated from atomic distances obtained from a molecular 

model building set. 	Fig.1.11a shows the experimental RDF (solid line) 

compared with a theoretical RDF (dotted line) which corresponds to an 

infinite non-planar zigzag chain having a repetition period of 4.7k. The 

very distinct differences between the two curves of Fig.1.11a were assumed 

by the authors to be due to the contribution from distances between molec- 

ular chains. 	Fig.1.11b shows the difference of the two curves, assumed to 

correspond to inter-molecular distances. 

Kilian and Boueke
51 

have examined the scattering from glassy polystyrene 

at several temperatures and showed that the RDF's obtained were similar to 

those expected for model compounds as diverse as phenolphthalein and 

poly(meta-methylstyrene) (Fig.1.12 and Fig.1.13). 	This comparison indicated 

the importance of steric effects involving the bulky phenyl substituents on 

the macromolecules in determining chain conformation in the non-crystalline 

state. They showed that intra-molecular effects dominate the diffraction 

of polystyrene. 



of Phenolphthalein. representation Schematic 

Fig.1.12 The experimental atomic 

radial distribution function for 

atactic polystyrene (a) compared 

with that calculated for amorphous 

phenolphthalein (b).' (Kilian and 

Boueke5  ). • 1 

Fig.1.13 	Tho experimental radial 

distribution function for atactic 

polystyrene at 166o (a) compared 

with that calculated for isotactic 

poly(meta—mcthvlstvrene) 03). 

(Kilian and Bouke51). 
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The helical structure of isotactic 

poly(meta-methylstyrene). 
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More recently Wecker, Davidson and Cohen
52 

have obtained atomic RDF's 

from three polystyrene glasses: quenched and slowly cooled atactic poly-

styrene and isotactic polystyrene (Fig.1.14). The RDF's exhibit five 

principal peaks centred at 1.5, 2.5, 5, 6, and 10i in all of the glasses. 

Polystyrene sample Density Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 

Quenched atactic 1.048 1.51 2.53 5.05 6.11 10.1 14.7 

Slowly cooled atactic 1.048 1.51 2.53 5.01 6.09 10.0 14.6 

Quenched isotactic 1.056 1.51 2.53 5.00 6.13 10.3 14.9 

Annealed isotactic 1.069 1.43 2.49 4.94 6.42 10.7 

Table 1.4 The Peaks in the atomic RDF's of Weckerl .Davidson and Cohen52. 

In an attempt to analyse the peaks beyond 2.5k a "theoretical" RDF was 

calculated based on the crystal structure of isotactic polystyrene. Using 

the crystallographic data the distances to all carbon atoms in one repeat 

unit were computed. Fig.1.15 shows this theoretical RDF superimposed on 

the RDF for annealed isotactic polystyrene. The authors could identify 

their theoretical peaks as follows: 

First peak (1.5k) : caused exclusively by bonding neighbours along the chain 

and in the phenyl rings. 

Second peak (--2.5R) : caused by second nearest neighbours in the molecule 

and some distances across the phenyl ring to third nearest neighbour atoms. 

Third peak (--3.72.) : involved almost equal numbers of inter- and intra-

molecular contributions. The intra-spacings were almost all between phenyl 

atoms and chain atoms while the inter-spacings were all phenyl-phenyl spac-

ings between neighbouring chains. 

Fourth peak (4.7R) : causes very similar to the third: closely divided 

between inter- and intra-spacings, nearly all inter-spacings being phenyl-

phenyl while almost all intra-spacings were phenyl-chain. 

The third and fourth peaks taken together covered the range of 3.4 to 

5.2k and involved 164 spacings of which 86 were interchain. All but ten 

• 
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. 

Fig.1.14(b) 	Atomic radial distribution function for quenched isotactic 

polystyrene (squares) compared with quenched atactic polystyrene (line)-. 
52\ 

(Wecker, Davidson and Cohen ). 
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Fig.1.14(c) 	Atomic radial distribution function for annealed isotactic 

polystyrene. 	(Wecker, Davidson and Cohen52). 

Fj:g.1.15 	Experimental radial distribution function. for annealed isotactic 

polystyrene superimposed on a calculated distribution function based •on the 

crystal structure as determined by hatta and Corradini5 (Necker, Davidson 
52N  and Cohen ). 
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of the interchain spacings were between phenyl atoms, and all but twenty 

of the intrachain spacings were between phenyl and chain atoms. In the 

light of this information Wecker, Davidson and Cohen concluded that the 

5R peak in the experimental RDF was due very largely (--87%) to phenyl-

phenyl interchain and phenyl-chain intrachain spacings. 

Fifth peak (5.2R - 8R) : involved nearly 700 spacings two thirds of which 

were interchain. The separation of spacing types into phenyl-phenyl (for 

interchain) and phenyl-chain (for intrachain) present in the third and 

fourth peaks breaks down here. 70% of the phenyl-chain distances were 

interchain and 4% of the phenyl-phenyl distances were intrachain. This 

was caused largely by 

(a) c-axis at 6.658 places phenyl rings directly above and below the ref-

erence atom resulting in many intrachain phenyl-phenyl contributions. 

(b) interchain axis spacing of 7.3R places two chains in the proper 

interchain position for phenyl-chain spacing to occur. If only 

these two features were considered half of the observed spacings 

were left unaccounted for. 

There were numerous contributions to the scattering at separations beyond 

a, most of which were intermolecular in origin. 

Markova, Ovchinnikov and Bokhyan53 have studied the electron diffrac-

tion from high density polyethylene melts over a wide temperature range and 

have obtained the radial density plots shown in Fig.1.16. By comparing 

their functions with the scheme of the distribution of interatomic distances 

in crystalline polyethylene and by calculating model RDF's the authors 

claimed to have established that the broad maxima at radii of larger than 

4 are all intermolecular in nature. They concluded that such a number of 

intermolecular maxima is possible only with the parallel packing of neigh-

bouring sections of chain molecules on a scale not less than 50R (in the 

direction perpendicular to the molecular axis). 

Finally Wignall and Longman54 have recently reported the results of 

a WAXD study of bisphenol-A polycarbonate. Three samples were examined: 

sample A an "as received" injection moulded sheet, sample B a similar sheet 



. Fig.1.16 	Radial density functions for polyethylene melts over a:wide 

temperature range. 	(Narkova, Ovchinnikov and Bokhyan'-). 
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Fig.1.18 Radial density functions for bisphenol-A polycarbonate: 

(a) for sample A; (b) for sample B; (c) for sample C. 	(Wignall 

and Longman54). 
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Fig.1.17 	Atomic radial distribution 

functions for bisphenol-A polycarbonate: 

(a) for sample A; (b) for sample B; 

(c) for sample C. 	(WiEnall and LonEman54) 
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subsequently annealed at 1200C for three hours and sample C, a sheet 

annealed for 122 hours at 190
o
C. The latter two samples showed slight 

increases in their densities and marked changes in their impact properties. 

The atomic radial distribution functions obtained are shown in Fig.1.17. 

By assuming that the molecular conformation of a repeat unit of the chain 

was the same in the amorphous state as in the polycarbonate crystal, the 

authors claimed to have shown that all the observed peaks up to r = 6.0R 

together with their approximate relative intensities may be accounted for 

by intramolecular spacings. The peaks falling at r = 4.95X and r = 5.17k 
for samples A and B respectively could not be attributed by this model and 

were therefore suggested as possible candidates for inter-atomic distances 

resulting from the average intermolecular chain spacings in polycarbonate. 

A suggestion which is supported by the observation that the interchain 

spacing in the polycarbonate unit cell is 5.058. No attempt was made to 

index the peaks occurring at values of r>6X. The peaks at r4;1R were 

believed to arise from truncation error in the Fourier transform process. 

(It is shown in Chapter III that this is more likely to be due to faulty 

normalisation). 

Fig.1.18 shows the radial density plots obtained for the three samples. 

There is little significant difference between the plots for A and B which 

appears to eliminate any explanation of the change in the impact properties 

due to intermolecular re-ordering. This is consistent with the very small 

difference in density between samples A and B. However the radial density 

plot of sample C showed a marked periodicity of interval --5.5X. This 

extended over a radial distance of 50R to 60k. 

1.9 Concluding Remarks  

In this chapter I have attempted to describe the kinds of experiments 

that have been performed to help to elucidate the true nature of the glassy 

state of synthetic polymers. Various new models of this state have now 

been proposed which require varying degrees of local segmental order on the 

microscale. Density considerations alone appear to require that the chain 

packing in the condensed state is highly efficient. Diffraction experi-

ments appear to be the most fruitful approach to the study of this problem 

but classical WAXD has been largely neglected. 
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CHAPTER TWO 

The Fundamentals of X-ray Diffraction and the Interatomic Distance Function 

2.1 Introduction 

Studies of atomic structure are based on the diffraction of X-rays, 

electrons or neutrons. In principle the theory of structure analysis is 

the same for all radiations; however, certain differences in the nature of 

the physical interactions mean that each method has an optimum range of 

application. Electrons are scattered by electrostatic interactions with 

the nuclei and electron shells, whereas X-rays are scattered by the electron 

shells only. Neutrons are scattered by nuclear forces and are unaffected 

by the electron shells. For example, in the case of electron scattering 

the diffraction data gives a picture of the distribution of electric potential, 

whose peaks correspond to the positions of the nuclei. 

In spite of its limitations (e.g. low accuracy in locating H atoms) X-

ray diffraction is the method most universally used because of its experiment-

al simplicity. In this chapter the fundamentals of X-ray diffraction are 

presented with the aid of Fourier Transform methods and the concept df the 

interatomic distance function is introduced.
56
'
57 

2.2 Scattering Amplitude 

X-rays are electromagnetic waves of very short wavelength which are 

generated when high-energy electrons impinge on a metal target. Typical 

X-ray wavelengths used in diffraction studies range from 0.56X for a Gold 

target to 2.29X for a Chromium target. The direction of propagation of 

a beam of such waves can be specified by the wave vector k wherelki. 27clx 

and X is the wavelength. The position of a point in three dimensional 

space may be specified by a vector r, so that the wave can be described by 

Acos21c(k.r +0) or more conveniently Aexp[i(k.r +0)1 in which A is the 

amplitude and 0( the initial phase. 
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When a beam of such X-rays is incident upon an assembly of atoms, the 

electrons within each atom become secondary emitters of X-rays and the 

incident beam is said to be "scattered". The major part of the incident 

intensity is scattered coherently, and this intensity can be used for 

structural studies because it occurs without change of wavelength and with-

out loss of the phase relationship between the incident and scattered rays. 

Scattering by a crystal may be considered simply as "reflections" from 

crystal lattice planes. These reflections occur only when the scattered 

waves are in phase (Fig.2.1), the reflection condition being 

n)̀ = 2dhk18ine 	 (1) 

This is Bragg's Law, which relates the direction 9 of the scattered beam 

to the interplanar distance dhici. Reflections occur whenever the path 

difference is an integral number of wavelengths nX. In this simple geo-

metrical derivation however, the process of interaction of secondary waves 

is not evident. The rigorous approach is to consider the secondary waves 

as coming from every point in the scattering object. Consider two such 

scattering centres (Fig.2.2), the origin (r = 0) is located at one centre, 

the position of the other being specified by the vector r. The initial 

plane wave falls on these centres, each of which becomes the source of a 

secondary spherical wave. In general, the initial wave arrives with diff-

erent phases at the two centres, so that the scattered waves will have a 

corresponding phase difference. Constructive interference will occur in 

directions for which the phases are the same, destructive interference for 

those in which they are opposite. The resulting intensity distribution 

has a strict relationship to the structure of the scattering system. 

If )k. is very large relative to the distance r between the centres 

the two scattered waves will have nearly the same phase in all directions, 

in which case the scattered intensity would be independent of angle. 

Interference occurs only if the separation is comparable with the wave-

length; it does not occur if )1/4 is very much greater than r. 
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Fig.2.1 	Scattering from a crystal considered as reflections from 

lattice planes.
56 

56 
Scattering from two point centres. 
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In Fig.2.2 the wave scattered at r in the direction k has a path 

difference relative to the wave scattered at r = 0 in the same direct-

ion of 

k.r - ko  .r = (k - ko  ).r - - - 	- -- (2) 

So if the initial wave is of unit amplitude (A = 1), the centre at r 

produces a wave 

fexp{i(k - 110 ).r] = f expi(s.r) 	 (3) 

The factor f indicates the scattering power of the centre. The 

amplitude of the scattered wave is proportional to f. Furthermore, 

in equation (3) we have the vector 

S = k - k o 	 (4) 

It is also convenient to use the vector 

	

S 	= - -o 
k - k 	

(5) 
21K 	21,c 

In Cartesian co-ordinates s(x,y,z) and S(X,Y,Z) are related by 

x = 27cX 
y = 2-KY 
	

(6) 
z = 2-KZ 

If the angle of deviation of the scattered beam from the initial direct-

ion is designated by 20 then the scattering of the initial beam ko  in 

the direction of k can be represented by analogy with Bragg's Law for 

crystals as a reflection at an angle 0 from a plane 'pt (Fig.2.2), 

although there is actually no such reflection. 

s and S are perpendicular to 'p' and from Fig.2.2 we have 

11 	= 	= sine 

	

2 / 	47c 

s = 4sine and S = 2sin0 	 (7 ) 
). 	 )■ 
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The scattering object contains a large number (n) of such scatter-

ing centres so that the resultant wave is a summation of expressions of 

the type of (3): 

f.e27z4§..Ei) = F(S) 
	

(8) 

j=1 

F(S) is called the scattering amplitude. Equation (8) extends the 

concept of f (the scattering power) for a single centre to any physical 

scattering object. 

The set of discrete points in positions r,
J 
 can be replaced by an 

object whose scattering power has a continuous distribution e(r). 

Since X-rays are scattered by electrons we take e(r) as the time-

average of the electron density within the object. This continuous 

function will have maximum values at the atoms and values close to zero 

between them. The electron density within a single atom is defined by 

the corresponding function ea(r). 	Thus equation (8), which is the 
sum over discrete centres f., can be replaced by an integral for the 

continuous function 6r): 

F(S) = 
	

ir(1
...)e2x i(- .r),vr 	 (9a) 

in which dvr is an element of the scattering volume V. This gives 

the amplitude as a function of S or s and so defines the amplitude for 

any direction k = k + s. In Cartesian co-ordinates 
+00 

F(X,Y,Z) = 	
5Q0cortz)e27ci(xX+yY+zZ )dxdydz 	(9b) 

_ 

The integrals of (9a) and (9b) are Fourier integrals and these are 

considered in detail below. F(S) is specified in the space of the vector 

S (reciprocal space) and is the "image" of (r) in that space. These 

two functions have a unique relationship. 

n 

s. 
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2.3 Scattering by an Isolated Atom 

Inserting ea(r) in (9), the atomic scattering amplitude is 

J.  
f(s) = 	Pa(r)ei(260dvr \  

v 

(10a) 

It is sufficient to assume here that the atom has spherical symmetry, i.e. 

a(r) = Qa(r), so it is convenient to express this amplitude in spherical 

co-ordinates. 	It is simple to show that 

f(s) = 	 47cr2  P a(r) sin sr dr \ 
Sr 

(lob) 

f is therefore a function of the modulus of s(sin eh.) and thus spherically 

symmetric in reciprocal space. Curves of f(sin eh-) have been calculated 

for all atoms and Fig.2.3 shows a few of interest in polymer science. The 

characteristic feature of these curves is a smooth fall off of f towards 

large angles. 

Since sin sr 	1 as s --).0 we have 
Sr 

co3 

f(0) 	).47rr2 ea(r)dr = 

f at zero scattering angle is simply the integral of the atomic electron 

density, i.e. Z (the number of electrons present). This is to be expected 

since regardless of the positions of the electrons, no phase shift occurs 

in the primary beam direction. 

2.4 Scattering from a Group of n Atoms 

The electron density for a set of n atoms at points 

r r r 	r 	r is given by 
-n 

J
.(r - r .) 
	

(12) 

j=1 



•O 	0-2 	0-4 	0-6 	0-8 	I.0 

sin 9 
x 
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Fig.2.3 The atomic scattering amplitudes for hydrogen, carbon, nitrogen 

and oxygen. 
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Using (9) and (10) we have for the scattering amplitude of a set of n atoms 

n 

F(S) . 

	

	 f (S)e 2xl q.11 
	

( 13) 
j=1 

Equation (13) is almost precisely the same as equation (8) for scattering 

point centres. Thus diffraction from a set of atoms can be reduced to 

the problem of diffraction from a set of points making allowance for the 

angular variation in the atomic scattering amplitude. From (13) we can 

compute the scattering amplitude for any molecule or set of molecules and 

also for crystals. 

2.5 Scattering from a Crystal 

A crystal consists of groups of atoms repeated periodically in three 

dimensions. 	The electron density !.(x,y,z) is therefore a periodic 

function of all three co-ordinates x,y,z. The crystal structure can be 

described by reference to the array of atoms in the unit cell, whose edges 

have lengths a, b and c. Repetition of the unit cell along the transla-

tions a, b, c generates the entire crystal lattice. The array inside the 

unit cell therefore determines the diffraction pattern of the crystal. 

Thus for a crystal, the Fourier integral of (9) for a general function 

must be replaced by an analogous integral for a periodic function. 

In a one-dimensional crystal where the electron density has a period a, 

the scattering amplitude is 
a 

F 	= 	'(1c ) e 	a 
h 	a 	dx 

i(27:11) 	
(14) 

0 

where h in an integer. In contrast to a general (aperiodic) function 

Cr) which produces a continuous set of values for F(S), the periodic 

function .(x) results in a discrete set of Fourier coefficients Fh. 

The Fourier transform of a periodic function is zero if h is not an integer. 
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F(S) for a function of period a differs from zero only when S= h so that  
a 

F(S) = F( a — ) 

h i Thus, Fh  have a certain mutual separation ( 7 ) in reciprocal space. 

Similarly, the Fourier coefficients for a three—dimensional crystal are 

a b c 
1 	 hx + Ly1 + lz \ 

Fhk1 = abc 	(xly,z)e
2
7C
i(  a 	b 	c idxdydz 

o o o 

1(r)e2 dvr 
SI 

where h,k,l are integers and /1 is the volume of the unit cell. The 
h k 	1 components of S (which here is denoted by H) are 7, 17, and —. Thus in 

the case of scattering from a non—periodic object, the distribution of 

F(S) in reciprocal space is continuous, i.e. scattering with some intensity 

is possible in any direction, whereas scattering from a crystal produces 

only certain definite diffracted intensities. 

The points at which F differs from zero and takes the values F l  

form a periodic distribution in reciprocal space, known as the reciprocal 

lattice (Fig.2.4). 	Each point (h,k,l) is characterised by a reciprocal— 

lattice vector 

H = ha* + kb* + lc* 
	

( 17 ) 

whose origin is at (0,0,0). 	Comparison of (17) with the argument of the 

exponent of (16) shows that 

a* = 1/a 

b* = 1/b 
	

(18) 
c* = 1/c 

for orthogonal unit cells. Therefore the diffraction conditions for a 

crystal are 

(15)  

(16)  

S = H 
	

k= k +s=k+ 	H 
	

(19) 



• 

• 

• 

• 

• 

• 

• 

• 
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Fig.2.4 Reciproc
6
al lattice and the reflection sphere: 1) for X—rays; 

5 
2) for electrons. 
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This defines the possible k directions for the diffracted beams. Any 

given position of the crystal gives rise only to those beams corresponding 

to an intersection between the reflecting sphere and reciprocal lattice 

points (Fig.2.4). Thus the conditions for the occurrence of the diffracted 

beams are dependent upon the orientation of the crystal relative to the 

primary beam and on the radius 1A of the reflecting sphere. 

From equations (1), (7) and (19) we have 

14k11 = 1/dhk1 
	 (20) 

i.e. the vector Hhkl  in the reciprocal lattice has a length 1 /dhk1 and 

is perpendicular to the hkl planes of the crystal lattice. 

Since the arrangement of atoms in the unit cell is repeated throughout 

the crystal, the scattering amplitude may be found by summing equation (13) 

over just one unit cell. 

F(hkl) 
f.e2 wi(L1.H) 	Tife27ci(hxj + kyj 	lzj) 

L-1  J (21) 

This gives the structure amplitude for the hkl reflection (S is replaced 

by H for crystals). 

In a crystal, large values of Fhk1  (strong reflections) are obtained when 

hkl is perpendicular to hkl planes which are densely populated. Also 

in any object which lacks true crystallographic planes but contains layers 

or rows of atoms, large values of F(S) will arise whenever S is perpendic-

ular to them. 

2.6 Intensity 

The scattering amplitude F(S) is governed by the electron density 

0(r) and thus the absolute value of F(S) must be deduced from the 

scattering characteristics for a single electron. 	Classical electro- 

dynamics gives this as 

e2 
fe 2 m c 

(22) 
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where e and m are the charge and mass of an electron and c is the velocity 

of light. P is a function of 9 which describes the degree of polarisa-

tion produced within the scattered beam. For unpolarised incident radia-

tion, the square of (22) is 

2 	e2 2 1+ cost  20  fe = (---7) 	2 (23) 
M C 

The amplitude of the scattered wave is proportional to that of the incid-

ent wave and inversely proportional to the distance r from the object. 

The intensity is always proportional to the square of the modulus of F(S) 

F(S) 2  = F(S)F*(S)dZI(S) 	 (24) 

so that 

e4 	1 

m 	

+ cos
2 
20  ) I 	I() 2 c 4r 2 	2 

Equation (25) gives the intensity of classical scattering by a single 

free electron and it is often called the Thomson scattering equation. 

The factor /1 + cos
2 
29\ is called the polarisation factor for an 

unpolarised beam.
2 If the primary beam is not unpolarised, the polar-

isation factor takes a different form. The numerical factor 

e4  = 7.94 x 10 -26  cm2  in (25) 
4 m2 c4 

is best excluded from equations describing the scattering amplitude and 

intensity, by expressing them in terms of a single electron (i.e. in 

electron units). It is assumed in what follows that F is in such units. 

2.7 Fourier Transforms 

The integral of equation (9) which connects F(S) with the electron 

density Q(r) is a Fourier integral which has the important property of 

reciprocity. That is, Q(r) can be calculated by the inverse Fourier 

transform if F(S) is known: 

(25)  

(26)  

= 	F(1) e-27".(2.1.)dv 	(27) 
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This property is widely exploited in diffraction theory since (27) is 

basic to the solution of structure problems. The prime difficulty of 

this analysis is that the observed intensity gives only the modulus of 

the scattering amplitude IF(S)I = TIM whereas the F(S) 	IFlexp(i0() 

of (27) also has a certain phase (The Phase Problem). 

F(S) is called the Fourier transform of the function P(r) and \ 

Or) is called the inverse Fourier transform of F(S). 	Q.(1) and F(S) 

are said to form a reciprocal pair of transforms. We shall represent 

this operation by the Fourier operator 	: 

F(S) = 	[Q(E)] 	(28a) 

(28b) 

It follows that 

i[ I[e(ET 
	

(29) 

i.e. the double operation restores the original function. Since 

expix = cosx + isinx we can separate the complex operator if into 

its real and imaginary parts 

(30)  

and T give the Fourier cosine and sine transforms 
EQ(E)] = A(S) : real component of F(S) 

(31)  

(6E)] = B(S) : imaginary component of F(S) 

so that 

F(S) = 	[c(,)] = 	Q(E)cos27-4.L. dvr  + i 1 .(r)sin2.71,7S.r dvr 
	(32) 

= A(S) + iB(S) 

-1 
= 	{Fi()] 
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In general F(S) is complex and can therefore be represented in terms of 

its modulus IF1 and a phase 

F = 1Flexpia = IFIcosot + ilFI sine 

so that 

= A
2 
+ B

2 

cosy = --- and sinm 
IFS 	IFI 

A diffraction experiment yields IFI
2 

so that if O(  is deduced in some 

way, the Fourier synthesis of (27) can be performed and the structure 

of the scattering object is obtained. 

Equation (27) which expresses the function Q(r) as a Fourier 

integral with respect to exp[27ci(S.r)] having a continuously variable 

coefficient F(S), is the generalisation of the representation of a 

periodic electron density as a Fourier series 

	

1 > 

	 /hx ky lz\ 	(36) 

	

Q(x1Y1z) = 11  /1 	Fhk1 exp{ -2 7C 	+ 	+ -)] a b c t 	 T 
We may imagine the period of (r) of (36) to increase indefinitely, in 

/h k 1 which case the functions Fy- — cN become infinitely close together and a' b'  
go over to a continuous function F(S), causing (36) to become (27). 

2.8 The Microscope Analogy 

Image formation in optical and electron microscopes may be summarised 

as 

a) scattering of incident waves by the object to produce a 

diffraction pattern. 

b) focussing of the diffraction pattern by lenses to produce 

an image. 

F 1 2  

and 

(33)  

(34)  

(35)  
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a) is a Fourier expansion while b) is a Fourier synthesis. Unfortunately 

no lenses capable of focussing X-rays are available so that the synthesis 

must be done by calculation. Thus a Fourier synthesis is really a 

mathematical X-ray microscope with a magnification of about 100 million 

capable of showing us atomic structure. The main disadvantage of this 

microscope is that it gives us no direct indication of the phases: these 

must be found by calculation from the most probable models. 

The microscope analogy may be taken a step further to illustrate 

another property of (27). F(S) cannot be measured throughout the whole 

volume of reciprocal space but is limited by the wavelength of X-rays 

used, that is Smax =  24. This means that e(r) cannot be calculated 
with infinite limits as in (27) but only for a sphere of finite radius 

Smax 

6E) = 	,.. F(E)e-27̀  gs-r-)crs  
2- 1st<  

This is equivalent to a reduction in the resolving power of a microscope; 

the image being distorted by the so-called "termination waves". However, 

if F(S) becomes vanishingly small,on a sphere of radius 24 which is 

dependent on the form of Q(r) then 07) becomes equivalent to (27) and 

no resolution is lost. This termination effect is considered in more 

detail in Chapter III. 

2.9 Convolution 

The operation of convolution or folding of a function is widely used 

in diffraction theory. The convolution is the result of distributing a 

function f1
(x) in accordance with a law specified by another function 

f2(x). 

The convolution operation is most readily explained by reference to 

some properties of the Dirac S -function. The integral of the product 

(37) 
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of some function with the S-function, samples the value of the first at 

X = 0 
+0. 

f(x)5(x)dx = f(o) 
	

(38) 

The S-function may be specified at x = x' instead of x = 0, in which case 

the value of f(x) is sampled at x = x' : 

f(x)E1(x - x')dx = f(x') 
	

(39) 

Now consider an analogous integral with the sum of two 5 -functions 

having certain weights, say 1 : 2, at the points x' and x" 

f
2 = 8(x - 	2 6(x - x") 	(40a) 

in which x" = x' + a, as in Fig.2.5. 

From (39) we have 
+co 

J f(x)f2dx = f(x') + 2f(x' + a) 
	

(40b) 
CO 

Here f(x) is distributed in accordance with the f2 of (40a), it is dis-

placed to the points at which f2exists and its values at those points 

are multiplied by 1 and 2. 	Here f2  in "x'-space" is inverted with respect 

to the x-space in which it was originally specified. 	This is clear in 

(39) in which the x' in the argument of the S -function has a negative 
sign. 	Extending (39) to any f2(x), we have the integral 

+06  

f
1
(x)f2

(x - x )dx = Q(x' ) 
	

(41) 

which we shall call the Q-convolution. 	It gives the distribution of one 

function in accordance with a second function inverted relative to the 

convolution space. 	Therefore it is readily seen that 

4.4P 
f 1(x)f 2(x' - x)dx = P(x') 	(42) 
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f2(X) 

X' 	 x" 

functions 	fi(x) and f2(x) 

"4-- a  

b) 	(? - convolution Q((1) = Jf, Lx) f2  (x -Xt ) dx 

a 

c) 
	

P - convolution 	PCx5 	 X)< 

Fig.2. The P and Q convolution of the functions f1(x) and f2(x) 
56 
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gives the distribution of one function in accordance with a second function 

not inverted with respect to the convolution space. We shall call this 

the P-convolution. The inversion is without importance if one of the 

functions has an inversion centre; then P = Q. If no sharp peaks are 

present in f1 and f2 
their general features are less apparent in the 

convolution although the general rule is still fulfilled; one function 

is distributed according to a law specified by the other. 

2.10 Convolution Theorem 

This theorem states that the Fourier transform of the convolution of 

two functions is the product of the transforms of each separate function. 

This may be written in brief as 

[f 1(x)® f2(x)] = Tfi(x)] j[f2(x)] 
	

(43) 

where the symbol OD is used to denote convolution. The converse state-

ment is 

[f1(x)f2(x)] 	= 	{fl(c)] ® 	(±20ci 
	

(44) 

The convolution theorem plays an important role in transforming func-

tions which can be recognised as the convolution of two others or as the 

product of two others. 

2.11 Self-Convolution and the Interatomic-Distance Function 

An especially important case of Q-convolution is the convolution of 

a function with itself, which is called self-convolution or convolution 

square and is denoted by, 2  . For a three dimensional electron density 

function Q(r), the self-convolution is 

= t-( E' ) = 	— 	(45a) 
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The value of Q(r') is unaffected by rewriting as 

Q(10) 
	

(r ) Q(E. L' )dvr 	 (45b) 

Also the primed and unprimed arguments can be interchanged so that 

2 

Q(E) = .-VE) = 	Q(r') 	- 	(46a) 

Q(L) = Or.) = 	 + 19dvr , 	(46b) 

Q(r) is in the same space as 	(r). 

2 
Q(r) = !.(r) takes large values whenever r' of (46a) and (46b) 

corresponds to a distance between points r and r + r' such that (>,(r) 

has large values at both points. Since Q(r) represents the electron 

density of a set of atoms 	I.j) and has its largest values at 

the centres of these, (Q(r) is large whenever r' = rj  - rk , i.e. when- 

ever r is equal to the vectors joining points ri , r2, r3, 	 and so 

on. 	The self-convolution ',.(r) is therefore called the Interatomic- 

Distance Function. 

The functions of (46a) and (46b) are identical so their transforms 

are identical and therefore 

	

t(E)] = F(§)F*(a) = I(S) 	(47) 

Thus we have the useful result that the diffracted intensity and the 

interatomic-distance function are reciprocal Fourier transforms. Fourier 

transformation of I(S) gives a function which is directly related to the 

atomic structure of the object. Fig.2.6 illustrates the relationship 

between Cr) and the system of interatomic vectors Q(r). The array of 

atoms is not shown by e(r) itself but it does provide valuable information. 
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Fig.2.6 a) Structure containing four atoms, b) interatomic distance 

function Q(r) = C(r) for this structure, c) the representation of Q(r) 
56 as the sum of displaced and inverted e(r) 
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The main properties of the interatomic distance function are as follows 

1. the vector joining each pair of atoms in e(r) is represented 

in Q(r) by a vector arising from the origin. 

2. Q(r) always has a centre of symmetry (so that (47) is a 

cosine transform). 

3. the height of peak jk in Q(r) is proportiOnal to the product 

of the peak heights of atoms j and k in Or). 

4. the origin (r = o) is always the site of the strongest peak 

(the distances of the atoms from themselves). 

2 
5. if 0(r) contains n atoms, then 0(r) contains n2 peaks of \ 

which n fuse at the origin and the other n(n - 1) are 

distributed over the volume of Q(r). 

2.12 Conservation of Intensity 

Since I(S) is real and everywhere positive, its transform is free 

from the basic difficulty encountered with the scattering amplitudes, 

namely the need to know the phases. 	Q(r) is centrosymmetric, i.e. it 

does not alter when -r replaces r. 	I(S) is also centrosymmetric and 

the transforms of Q(r) and I(S) are thus cosine transforms. 

From equation (13) 

I(S) = IF(s)1 2  
N 

f .f e27 	- Lk)  
/ 	J k 

j=1 k=1 

(48) 

  

The centrosymmetry of I(S).now becomes obvious if we pair off terms 

containing r. - rk  and rk  r., and pick out terms having j = k. —j — 	—j 



I(S) = >  f . (S) + 2 L4  
	 J 

2 

j=k 	j> k 
j k cos2-x(S.rjk  ) — — (49) 
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This gives 

using rjk  = r — rk  . The first sum of (49) is always present and is  
sometimes called the gas component of the intensity since it describes 

the scattering of isolated atoms as may be observed with monoatomic gases. 

Each term in the second sum represents a plane wave in reciprocal 

space having rjk  normal to it. This wave has positive and negative parts, 

the mean being zero so that the mean of the double sum is also zero. The 

interferences described by this double sum cannot alter the total intensity 

provided by the isolated atoms; they only alter its distribution. Thus 

the integral of the intensity over the whole of reciprocal space equals the 

integral of the intensities given by the isolated atoms. Since for our 
/ purposes f2  0) has spherical symmetry, the integration may be performed for 

spherical belts of area 47CS2 and thickness dS : 

N  
 

,I(S)dv 	= 	> 	f
2 
 (S) 4-K.S

2 
dS 

j=1 0 

This value of the amount of intensity is independent of the distribution 

of atoms in space. 

The second sum of (49) describes for a particular atomic array, the 

distribution of the total available intensity. This is illustrated in 

Fig.2.7. The effect is very pronounced for crystals where the intensity 

is concentrated into isolated sharp peaks, while in liquids the intensity 

maxima are broad and isotropic. 

Equation (50) may be called the Law of Conservation of Intensity and 

it may be used to normalize experimental intensities to the scattering by 

a molecule or a unit cell of a crystal since the number of scattering atoms 

in the object is scarcely ever known. 

(50) 
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S 

Fic.2.7 The law of conservation of intensity. 
56 



2 7z  dr J.  eit  Q(r) — dt sr so that 	I ( 
2 

(53) 
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2.13 The Radial Distribution Function 

Objects such as amorphous polymers which have spherically symmetric 

intensity distributions may be described by a single parameter 

s = 27:S = 4-2t sin eh. I  the distance in reciprocal space from the origin. 
I(S) is transformed to Q(r) by the Fourier integral and thus Q(r) is also 

symmetric by virtue of the reciprocity theorem. 

From (47) : 

I(g) = 	 R(E)] = 	Q(r)e2.ni Qa...odyr 	 (51) 

Transforming to spherical co-ordinates as in Fig.2.8 we have 

I(s) 

27c. 

dI IS 0 0 0 
Q(r)eisrcosa r2sina drdoc (52) 

now let sing doc dt 
sr 

sr 

o -sr 

■ 4 -7K) Q (r)r
2  sinsr dr 

sr 

00 

2 	 I(s)s2 sinsr ds 

0 
	sr 

Thus 

Q(r) 

(54)  

(55)  



dv' r2  sinadecd4'd r 

z 

y 
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FiE.2.8 	Spherical Polar co-ordinates (r, x, ̂F 
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The vector r loses all indications of its spatial position in the 

spherically symmetrical function. The vectors for the various pairs of 

atoms are superimposed by spherical rotation, and so we can establish 

only the distances between atoms, not the spatial orientation of the 

distances. 

Equation (55) may be rewritten as 

op 

	

Q(r) = 	12 ,c sI sinrs ds 
27C r 

0 

Multiplying both sides by 47cr we have 

00 

	

47crQ(r) = 	sI sinrs ds 

0 

2 
Since Q(r) = Cr) and each vector joining pairs of atoms in 'P(r) is 
represented in Q(r) by a vector arising from the origin, (57) is usually 

rewritten as 

00 

47c r( Or) — 	) 	— \_o 	 sI sinrs ds (58) 
0 

where to  is the macroscopic number density and Q(r) is defined as the 

most probable time average electron density at a distance r from an atom 

arbitrarily selected as the origin. 	Equation (58) is referred to as the 

Radial Distribution Function (RDF). 

In equation (58) and all previous equations, all X—ray photons are 

assumed to be elastically scattered, that is, I is assumed to be completely 

coherent. However, in experiments, I is never completely coherent and 

several corrections have to be applied to the observed intensity before 

the integration of (58) can be performed. 

(56)  

(57)  
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Equation (58) is the self-convolution of the time-average electron 

density within the sample, and is thus sometimes called the electronic 

radial distribution function. 	It will be shown in Chapter III that to 

avoid disasterous termination effects (58) must be replaced by 

00 

\ 
47V4(3,(r) - 0

1 - 	- 	f2  )sinrs ds 
uc 

(59) 

 where uc  f2 is the independent coherent scattering for a unit of composi- 

tion of the material and I is normalised to that composition. 	(59) is a 

radial distribution function, which, exclusive of the intra-atomic electron 

distributions, represents a measure of the probability of finding electrons 

mutually separated by a distance between r and r + dr. 

In an attempt to improve resolution the interference function of 

(59) is usually replaced by the function 

I- 	f2  

f2 

From the convolution theorem of (44)  it is readily seen that this has the 

effect of. deconvoluting (59) with the distribution function of an "average" 

atom. This drastically sharpens all peaks in the function since they now 

represent distances between atom centres. This sharpening effect tends 

also to exaggerate spurious details and may lead to serious difficulties 

in the interpretation of the experimental distribution curves. For this 

reason electronic distribution functions of the type of (59) have been used 

throughout this study. 

In addition to the interatomic distance function or radial distribution 

function 4wrk(r) - Ccl , the radial density function 

co 

47:r2[e(r) - Co] = 	s(I - 
	

2 sinrs ds 	(60) 
0 
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is also used. This function represents the probable number of electrons 

(or atoms) within a spherical shell of thickness dr at a distance r from 

an "average" point in the sample. The radial density functions reflect 

more directly the atomic distribution. A common application of such data 

involves the evaluation of the quantity 

ri+A 

Ci  = 	4xrte dr 

r.- 

in the vicinity of each of the peaks, thus obtaining the number of first, 

second, third, etc. nearest neighbours about the average atom. 	This 

procedure is always uncertain however because of the overlapping of the 

peaks. 

To conclude this section we will summarise the nomenclature used in 

radial distribution analysis: 

Electronic radial distribution function 

(61) 

co 

4-nrC(r) = 4-xr eo 	2 s(i - 	2 sinrs ds 

 o 

Electronic radial density function 

4-Kr2  C(r) = 4-n r2C 0  + 2r  s(I — 	f2)sinrs ds 

0 

Reduced electronic radial distribution function 	(RDF) 
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Reduced atomic radial distribution function 

00 

I — 
4-icr k(r) — 	fs( 	)aims ds 

o 

The reduced form 47;rk(r) - C'clis most commonly employed (interatomic 

distance function) and is the easiest to present graphically. 

2.14 The Cylindrical Distribution Function 

An assembly of chain molecules often has statistical cylindrical 

symmetry. The averaging of a distribution function z(r) on account of 

cylindrical symmetry gives rise to the electronic cylindrical distribution 

function (CDF) or more precisely the projection of this function on the 

basal plane 

27c.r zc(r) 

This function represents the density, in the basal plane, of neighbours at 

a distance r, where r is the polar radius from the axis r = 0. 

To zc(r) there corresponds in reciprocal space a cylindrically symmet-

rical interference function 

ic(R) 	ic(R, Z 	0) 	Ic(R, 0) - 	 1.1 f2 
	

(62) 

This means that the intensity must be measured along the equator of the 

diffraction pattern. The two functions are related by the Fourier-Bessel 

transform 
00 

277r zc(r) = 27cr zav + 2 r2 ikRg-x S 

0 

	o(2rR)RdR 

E
f t 

(63) 

in which 
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Note that the zero order Bessel functions: 

jr2X 

J0(27t.rR) 	21w 	expti 	cos4J (64) 

arise from the cylindrical averaging of the exponent in the transform 

IS I(s)exp(i r.$)dvs  

(c.f. radial averaging which produced the function sin rs. . rs )  

The intensity distribution I(01Z) along the meridian of the diffraction 

pattern provides information about the internal structure of the molecules 

and enables us to construct a distribution function for the atoms within 

them. A one-dimensional Fourier transformation gives us the one-dimen-

sional distribution function, by analogy with (59) and (63) 

s
max 

H
3(z) = H3(0) 	77 

	(I(01Z) - Ef2)coszs ds 
	(65) 

0 

which is the function for a line distribution of the atoms within the 

molecule in projection on the principal axis. 

2.15 The Distribution Function for a Distorted Lattice 

An ideal periodic three dimensional lattice of points can in general 

be distorted in two different ways: 

a) Distortions of the first kind: a lattice distorted in this way has 

points which have a certain probability of being displaced slightly 

from their ideal positions but on average the assembly retains its 

crystalline order throughout the volume (the long-range order is 

preserved). 	A typical example of this is the thermal vibrations of 

the atoms in a metal crystal (Fig.2.9a). 
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b) Distortions of the second kind: a lattice distorted in this way has 

only statistical mean translations a and b which merely give the 

probable relative positions of adjacent atoms and does not extend to 

a description of the entire volume. 	This type of lattice is called 

paracrystalline (Fig.2.9b). 

Fig.2.9c shows that distortions of the first kind in an ideal two 

dimensional lattice leave the distribution function (self-convolution of 

the lattice) still ideally periodic but the peaks become diffuse. 

Distortions of the second kind cause the distribution function to 

take the form shown in Fig.2.9d. 	The distribution of nearest neighbours 

is reasonably distinct: there is short-range order. 	Distances to second 

nearest neighbours vary more widely since there is addition of the varia-

tions in the distances from one molecule to the next and from the second 

to the third. 	The more distant the neighbour the more diffuse becomes 

the distribution function and the probability of finding  a molecule becomes 

the same everywhere. 

Distortions of the second kind are characteristic of liquids and are 

often found in chain molecule assemblies. The essential point in the 

discussion of these distortions is the allowance for short-range order, 

the entire distribution function can be deduced if the distribution law 

for nearest neighbours is known. Fig.2.10 shows the distribution function 

z(x) for an ideal one dimensional lattice with paracrystalline distortions. 

The peaks are equally spaced at intervals of 

a = x H1(x) dx 

where H1
(x) is the distribution function for nearest neighbours. 	The 

peak at x = a is the distribution for nearest neighbours H
1(x) while the 

peak at x = ma is the distribution for the m
th 

nearest neighbours and is 

given by the m
th convolution of H1(x) with itself. 

	Peak width is spec- 

ified via the mean-square fluctuation which for H1(x) is 

0. 

j
-cH1(x) (x - a)2  dx = A2 

(66)  

(67)  
0 
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a 

C 

Fig.2.9 Distortions of a) the first, and b) the second kind in an 

ideal two—dimensional lattice; distribution functions of c) the first, 

and d) the second kinds 

Fig.2.11 	Z(X), the interference function of the second kind 
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This is the measure of statistical fluctuations in distances between first 

nearest neighbours. 

The general features of the interference function Z(X) for para-

crystalline distortion are shown in Fig.2.11. The peaks here are equally 

spaced at a and decrease uniformly in intensity in similar fashion to 

z(x). 

It has been shown that the height of interference maxima is given 

approximately by 

* 
max
(h)  —2 A. h2  (Aig„)2 

(68)  

where Aig, is the ratio of the width of fluctuations of the distance 

between first neighbours to the mean distance between them. The height 

is inversely proportional to the square of this ratio and to the square 

of h (the order of reflection). 	The integral half-width of the diffrac- 

tion maxima is given by 

1 2 2 	2 OX h (—) 
a 	a 

The existence of separate maxima in the interference function result from 

the region of order in z(x) which is bounded by the "radius of interaction" 

x
141 

outside which z(x) becomes practically smooth. 	This arises when H
m 

becomes so broad that it has attained half its peak value at the distance 

x = a/2 and overlaps its neighbours so much that z(x) becomes almost con- 

stant. 	It can be shown that the critical value of m is given by 

M _ 	1  
(2.5,61;:)2  

and 

(69)  

(7o) 

XM  = Ma 	 ( 71) 
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CHAPTER THREE 

Experimental Procedure 

3.1 Brief Description of Apparatus 

X-ray measurements were made on a Philip's vertical powder diffract-

ometer (goniometer type PW 1050/25; X-ray generator type PW 1310). The 

intensity data was obtained with both CuKat(). = 1.5418 R) and MoKoc( X = 

0.7107 R) radiation using a McLean's curved graphite monochromator in the 

diffracted beam. A Xenon filled proportional counter (PW 1965/20) employ-

ing pulse height discrimination was used to detect the X-rays. The gen-

erator supplied 60 KV maximum at 2 KW giving highly stable tube current 

and voltage (stabilised to within 0.03% for mains fluctuations of ± 10%). 
An angular range of 0

o 
- 160

o29 was possible on the goniometer which had 

facilities for both continuous-line and discrete-step scanning. 

The electronic counting and measuring cabinet consisted of high and 

low voltage supplies, pulse amplifier and analyser, scaler and timer com-

bination, ratemeter and strip chart recorder, step-scan control and digital 

printer. Fig.3.1 is a schematic block diagram of the arrangement of these 

receiving circuits. Low voltage pulses from the proportional counter were 

first amplified and sharpened in a pre-amplifier mounted in the counter 

housing. These then passed via a transmission cable to a pulse shaper 

where each pulse was shaped to 1 F sec. All the received pulses were then 
amplified again, but only those with pulse heights above a certain threshold 

or between certain chosen limits were transmitted further. This discrim-

ination meant that practically all pulses due to electronic noise were 

rejected together with X-ray harmonics passed by the monochromator. Thus 

only pulses of almost equal amplitude were applied to the scaler. The 

output from the amplifier could also be applied to the ratemeter, which 

smoothed out the pulses into a fluctuating current recordable on the strip 

chart. 

The scaler and timer worked in conjunction and both could be pre-set 

to operate the printer in the step-scan mode. Intensities were measured 
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in the reflection geometry over the range 2°  - 160°20 at angular intervals 

of 0.520 up to 50°20 and 1.0°20 up to 160
o2e . This gave s = 4xsiner>,, 

a range of .14 - 8.03 for Ciao( and of .31 - 17.41 for MoKo . 	Data was 

collected by point counting for fixed time periods, both from "single slit 

runs" and runs where the high angle data was obtained on larger slits in 

order to improve the accuracy of the counting in this region. 

3.2 The Diffraction Geometry 

The X-ray diffractometer is a device for obtaining scattered X-ray 

intensities as a function of angle between the incident and diffracted 

beams. The relative positions of the X-ray source, sample and receiver 

satisfy a modified Seeman-Bohlin parafocussing arrangement so as to obtain 

maximum intensities. The essential features of the parafocussing arrange-

ment are shown in Fig.3.2. In the Seeman-Bohlin parafocussing geometry, 

all X-rays scattered through 2G degrees from the curved sample S will be 

brought to a focus at G. In the symmetrical reflection diffractometer, 

the receiver, G, pivots about a flat sample, S, so as to maintain a constant 

sample-to-receiver distance SG. The circle ESH is called the focussing 

circle, and in principle every photon detected at G will have been scattered 

through 2e degrees. In practice this focussing condition is only approx-
imately met since the sample is flat and not curved. Fig.3.3 shows that 

as the detector at G is rotated about S towards larger 20 the radius of 

the focussing circle decreases, since FS and GS are constant. 	Thus to 

maintain the focussing conditions the flat sample must be rotated at half 

the angular speed of the detector so that it remains tangential to the 

circle. 

The focus at G is not perfect since the whole of the sample surface 

cannot lie on the circle and because of the finite dimensions of the source 

and slits. However aberrations may be kept acceptably small by limiting 

the beam divergence. 

The circle described by the detector is called the goniometer circle 

and is shown in Fig.3.4. The triangle SGG' is an axial section through 
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the diffraction cone which is sampled at G. Fig.3.5 shows the experi-

mental arrangement. Divergence of the beam is limited by a soller slit 

and primary slit assembly so that the whole of the primary beam is incident 

upon the specimen surface. A receiving slit of the same size is chosen 

so that only the irradiated area is seen by the detector. The X-ray back-

ground is improved by a scatter slit which excludes from the counter all 

rays except those emanating from the specimen. 

The monochromator uses the focussing principle shown in Fig.3.2. The 

distance B between the centre of the crystal and the detector window for a 

given wavelength 'X is given by 

d 
	2Rsin em  

where 

wavelength of the radiation. 

R = radius of curvature of the crystal surface. 

d = interplanar spacing of the (0002) graphite planes. 

e = glancing angle at the monochromator. 

The monochromator transmits a narrow band-width of wavelengths centred 

about the Rot line of the target material. This effectively eliminates the 

white X-ray background, the kt1 line and such parasitic scattering as X-ray 

fluorescence. Although the band-width is small nth order reflections of 

the .21/4- harmonics may still be transmitted. 	These higher harmonics can be 

suppressed by means of pulse height discrimination. 

The proportional counter has a resolving time of approximately 2ys 

allowing a linear response up to rates of greater than 100,000 counts per 

second. The Quantum-counting efficiency depends on -X , the dimensions of 

the counter tube, the composition and thickness of the window, and the 

nature and pressure of the gas. 



Fig.3.5 The experimental arrangement. 
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3.3 The Determination of the Absolute Intensity 

In order to yield the interference function for Fourier integration the 

experiment and the processing of the measured data must meet the following 

requirements: 

1. The measured intensity must be obtained as the medium's response to a 

monochromatic primary radiation. 

2. Apart from the molecular configuration all effects which influence the 

angular distribution of the coherently scattered intensity must be 

eliminated by adequate correcting functions. 

3. All kinds of extraneous scattering not characteristic of the molecular 

structure (Compton scattering, double scattering, fluorescence, scatter-

ing from sample holder and air scattering, etc.) must be eliminated 

either physically or by calculation from the total scattered intensity. 

4. The intensity measured in arbitrary units (counts per second) must be 

put on an absolute scale (normalised to electron units). 

5. The interference function must appear in the Fourier integral as a 

function of the variable s instead of the scattering angle 2e. 

6. The coherent and incoherent scattering functions of the independent 

atoms must be known as accurately as possible because of the dual role 

they play in the course of calculating the RDF. 

The Polarisation Factor  

All unpolarised electromagnetic waves are partially or totally polarised 

when reflected from dielectric interfaces. Although a completely satis-

factory explanation of this phenomenon can only be given by Quantum theory, 

classical electromagnetism gives an adequate picture for our purposes. 

Fig.3.6 shows the experimental arrangement in which unpolarised X—rays 

from the anode are incident at an angle 9 onto the surface of the flat 

specimen. Consider this incident wave as being resolved into two electric 
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Fig.3.6 The symmetrical reflection geometry. 

Fig.3.7 	The polarisation of electric vectors on reflection from 

the specimen. 
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vector components of equal amplitude EP  and EH. The diffracting electrons 

in the sample are set into forced vibrations parallel to both vectors, 

perpendicular to the beam, and thus radiate X-rays of the same frequency. 

Oscillating electric charges radiate maximum energy into directions perpen-

dicular to their plane of motion and no energy in planes parallel to it. 

Fig.3.7 shows that EH is independent of the angle() ; whereas EP  decreases 

by cos2e as e increases, until at 2$ = 900, El)  = 0 and the beam is plane 
polarised. 

Thus the diffracted intensity at an angle 2$ is proportional to: 

EH
2 

+ 	(Epcos2e )
2 

or, since 	I = E
2 

= Ep
2 

+ 	= 2EP2 = 2EH
2 

E
2(1 + cos22e  ) 

2 

Thus to obtain the true diffracted intensity, the experimental intensity 

must be modified by the factor 

P(8 ) 	= 	1 + cos
22e  

2 

which is independent of the diffractometer geometry. 

The presence of a crystal monochromator in the diffracted beam intro-

duces a further polarisation and modifies the correction to 

P( ) 	= 	1 + cos22e cos
22a.  

1 + cos
2
20( 

where o( is the Bragg reflection angle of the monochromator. 
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The Absorption Factor  

All X—rays are absorbed to some extent in passing through matter, the 

amount depending upon the absorption coefficient of the material concerned 

which is constant for a given wavelength of X—rays. The linear absorption 

coefficient p. is defined by 

11  
I  

loge I t ge I 

where I
o and I are the incident and transmitted intensities respectively 

and t the specimen thickness (cm), i.e. 

I 
 = e

—pt 

The absorption factor will therefore be sensitive to wavelength and thus 

must be treated separately for the coherent beam (constant ) ) and for the 

incoherent beam (X changing with B ). 

When the absorption is extremely low scattering takes place not 

only at the surface of the sample but also from its interior. 	This 

volume scattering results in a displacement and asymmetric broadening 

of the diffraction peaks and an angle dependent intensity effect
58
. 

Fig.3.8 represents a cross—section of the system in the plane of 

incidence. 	The incident and scattered beams are assumed to be parallel, 

of uniform intensity and of rectangular cross—section (breadth Z, width A 

and A + 2a). 	The beam widths A and A + 2a are determined by the slit 

sizes and the goniometer geometry, such that a sip O. 	The irradiated vol- 

ume is a parallelpiped represented in the diagram by OESR. The radiation 

detected is scattered from a prism represented by OEKP, if the sample 

thickness t is greater than or equal to DP. 	The detected volume will be 

OEKNL if t is less than DP (i.e. DM). 	If t is less than FK (i.e. DH), 

the volume is OEJG and scattering from the whole volume is detected. For 

X—rays scattered from a volume element dV of material with linear absorption 
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Fig.3.8 Cross-section of the system in the plane of incidence. 
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58 

The limits of integration for the volume V. 
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coefficient jz and total path length X the scattered intensity will be 

dI = I0ell7C  dV 

Thus the total intensity scattered by V is 

I = Io 	el/.4  dV 
V 

Fig.3.9 shows the limits of integration for the volume V. For example 
for the volume OEJG, i.e. when 04-b.c-l- a sec 

Acose+xcote 
t 

I •= Io S S 	expka( 2xcsce)jdXdYdZ 

xcotO ° 

giving 	I 	e-2ptcsce) 

I0AZ 
where 211 

Similarly we have for volume OEKNL i.e. 2  a sece4 	+ a)sece 

I = K 1(1 -e-2iitcsce)  + ( 2tcose  
' A 	- a + ...1)e-2p.tcsce-e-i; 

	

A 	of of 

and for volume OEKP, i.e. 02(A + a)sece 

I = 14.1 - —(1 - e-o()e-(;1 
ot 

where 	of = 2pAcsc28 and r = 2jlacsc2e 
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To reduce the complexity of these equations all diffraction measurements 

were made using divergence and receiving slits of the same size, so that 

a = 0. As t-4.00, 	= I0AZ/2}i and is independent of 9 . Thus for 

the volume OEKP (t)fEA + a)sec9), the absorption correction is 

It 	1 A(9) = 77,  = 1 - 7(1 - e ) 

Compton Modified Scattering 

In 1923 Compton discovered that when a beam of X-rays of well defined wave-

length ).0  is scattered through an angle of 29 by a metallic foil, the 

scattered radiation contains a component of well defined wavelength l■
1 

which is longer than 7.0. 	This phenomenon is called the Compton effect. 

The wavelength lk1 is dependent upon the angle of scattering 20 but hardly 

at all on the material comprising the foil. 

Compton scattering arises from collisions between a photon and a 

comparatively loosely bound electron. Part of the collision energy is 

transferred to the electron and the wavelength of the scattered photon is 

accordingly modified. No interference takes place between radiation 

scattered by different electrons of.the material system (addition of 

intensities). 

Fig.3.10 shows how such a collision might be represented, with an 

X-ray photon striking an electron (assumed initially at rest) and being 

scattered away from its original direction, while the electron receives an 

impulse and begins to move. 	In the collision the photon may be regarded 

as having lost an amount of energy that is the same as the kinetic energy 

gained by the electron, though actually separate photons are involved. 

The wavelength 'Xi  of the inelastically scattered photon is always 

greater than 7 0̀  since the photon has lost energy and from momentum con-

servation considerations it depends upon the scattering angle by 

- ') :) mhc(1- coe2e) 
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Fig.3.10a Wavelength spectra of quanta scattered at various angles 

from a carbon foil. 	From A.H. Compton, Phys. Rev. 22, 409, (1923). 
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Fig.3.10b A collision between a quantum and a free stationary electron. 
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This equation gives the increase in wavelength expected for a photon that 

is scattered through angle 20 by a particle of rest mass mo; it is independ-

ent of the wavelength )1/4.0  of the incident photon. 

The quantity moc  is called the Compton wavelength of the scattering 

particle, which for an electron is 0.0241. The greatest wavelength change 

that can occur will take place for A = 1800  when the wavelength change 

will be twice the Compton wavelength. 	Since the Compton wavelengths of 

other atomic particles are very much less due to their larger rest masses, 

the maximum wavelength change in the Compton effect is 0.0488. 

The Compton modified scattering is incoherent and takes no part in the 

interference phenomena characteristic of the structure. Compton scattering 

intensities of independent atoms have been calculated from Hartree-Fock and 

Thomas-Fermi-Dirac wave functions. However Hajdu59  has recently shown that 

the incoherent intensities of atoms can be approximated by an analytic func-

tion of s containing three individual atomic parameters. 

2  Iino(s) = 	Z - 	f(s)]  	{ 	- Dif exp(-Ks) - exg-Ls)./ 

1 2 
where the coherent intensity [f(s) 	is obtained from a nine parameter fit 

for the atomic scattering factors 

4  
f(s) = A. exp(- .Bis2) + C 

i=1 

Since a crystal monochromator was employed in the diffracted beam it was 

found necessary to correct these tabulated incoherent intensities for the 

monochromator's discrimination against Compton scattering. The monochroma-

tor bandwidth was estimated experimentally by measuring the width of the 

001 Gold peak when the monochromator was set on a white X-ray portion of 

the Mc or Cu spectrum (Fig.3.11). 	The Compton profile was modified in 

accordance with the shape of this peak as shown in Fig.3.12. It was found, 

however, that this correction had to be further modified (bold curve of 

Fig.3.12) before the experimental intensity curves could be successfully 

normalised. 
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Fig.3.12 The Compton intensity for polymethyl methacrylate corrected for monochromator cut-off. co N 
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Modified Absorption Factor for the Incoherent Intensity 

Various workers have pointed out that the wavelength shift of the absorp-

tion coefficient for the incoherent scattered beam must not be ignored if 

a relatively short primary wavelength is used and high scattering angles 

are involved. Hajdu and Palinkas have proposed formulae for this factor 

derived frog  Victoreen's empirical formula for the mass absorption 
60 

coefficient 

= 	( 30%2 
- 4D).3) = 

d>. 

-1 9 1 
CM A 

q' is constant for a given experiment CX, Q, CI  D being constant). For 

a finite but small wavelength change 6.")., the increment Ap of g can be 
replaced by the first term of the Taylor's expansion 

= 	 q' P). 
d 

This approximation is allowed since the Compton wavelength shift cannot 

exceed 0.0488. The known Compton formula substituted into this express-

ion yields 

	

flu = qsin29 	cm 1  

where 	q = 0.048q' 

= 0.048 e(3C).2 -  4D ).3) 

is the density of the sample (g.cm3), )■ the primary wavelength (R) 
C and D are the atomic constants of Victoreen's formula61  For a complex 

system C and D are linear combinations of the corresponding constants of 

the constituent atoms. 

The modified absorption factor Al(0) for the incoherent beam is 

obtained by properly substituting gl = g + 0 u in the starting integral 
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expression of the derivation of the absorption factor 

I 	I le-(y + pt)xcsce dXdYdZ o  

V 

Thus for the OEKP, i.e. t; , --L-(A + a)sece 

1 I = 	- --(1 - e-cL')e- 
oe 

where 	K' = IoAZ 

+ 

= (211 + Ap)Acsc29 

(2y + 411)acsc20 

1  The modified absorption coefficient for a 0 is A'(9) = 1 - -7(1 - e -0C ) 
OC 

Multiple Scattering 

In addition to singly scattered photons the measured diffracted intensity 

includes a component of multiply scattered photons whose total scattering 

angle in the sample is 20 degrees. 	Numerical estimates of the fraction 

of double scattering which is the major fraction of the multiple scattering 

have been made by Warren and Mozi, Dwiggins and Park for unpolarised radia- 

tion. 	Fig.3.13 shows how this component arises in the symmetrical reflec- 

tion geometry of the diffractometer. The primary X-ray beam of intensity 

Io is incident upon the flat diffractometer sample at an angle 0 . A frac-

tion of the primary photons incident upon the elemental volume dV are scatt-

ered through an angle 201  into another part of the sample. A small frac-

tion of this intensity J(201) is scattered by the volume element dV2  through 

292 degrees so that these X-rays leave the sample at the angle of incidence 

8and are detected by the proportional counter. 
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62 Fig.3.13 Double scattering in the symmetrical reflection diffractometer. 
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Warren and Mozi have shown that the doubly scattered intensity 12  at 

a distance R from the sample is given by
62 

2 

I2 = I
o 
	

),]-(2 ()2)exp(-11L)dVidV2  
R2 	V 	

2 Cre r 2j(2 

1 	V2 

where n = number of units of composition per unit volume 

r = distance between first and second scattering points 

V1 	volume of sample illuminated by incident X-rays 

V2  = volume of sample viewed by detector 

Te.2 	coherent electron cross-section for double scattering 

L = total distance travelled by X-ray beam in the sample 

Dwiggins and Park have shown that the ratio of secondary to primary inten- 

sity can be represented by63 

2 2 12 	 Z 
J1 g(b,q,  e out) 

where ,J ,J  and )j{ m} are the atomic number, atomic weight and mass absorp- 
tion coefficient of the element j respectively. 	b and q are parameters 

which are used to approximate the scattering J. The function Q has been 

extensively tabulated so that 12/11  may be determined without making lengthy 

calculations. Except for samples with very high absorption coefficients 

the correction for double scattering is too large to be neglected. 	Typical 

values of 2/I1 range from 1 to 10% with materials containing mainly hydro-

carbons for ut values of 0.3 to 3.0. 

3.4 The Normalisation Process  

Two independent methods are available to us for finding the factor trans-

forming the numerical values of the experimental intensity from arbitrary 

units into electron units. The first method consists of simply dividing 

= 	Ef2 TA  .11  in  
Jr-J1  



intensity (see Chapter II). 	In the case of spherical symmetry, Krogh-Moe64 

and Norman
65 

have shown that the scaling factor required to equalise the 

intensities is given by 

The second method relies on the principle of the conservation of 

intensity, requiring that the total amount of theoretical scattering 

intensity 2  f + I. inc shall be exactly the total amount of experimental 
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a theoretical intensity value by the corresponding experimental one 

= 
7f2  + Iinc for s. 

1 Iexpt 

where Iinc is the calculated incoherent scattering together with double 

scattering, and 
Iexpt 

the corrected experimental intensity. At high 

values of s., s. must converge to a single constant value, since I
expt 1 	1 

tends to the scattering of independent atoms. 	It is obvious that the 

mean value of a number of such converged quotients must yield a more 

reliable value. 	The resulting quotient is used as the normalising factor 

for s > s  
min 

oC = 
0 

m  
s2(  Zif2 l

ine )ds - 2 w2Z 

in  2 
s Iexpt

ds 

0 

   

The second term in the numerator here corresponds to the absence of 

the zero-angle scattering from the experimental intensity in the denom- 

inator. 	The fact that 0( and 	agree is obviously a necessary condition, 
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but does not mean that the correction process is perfect. If both the 

measurements and the calculations were acceptable, experience showed that 

the values of 0( and c, agreed to within TA accuracy. 

Normalisation Error 

Many authors have discussed normalisation procedures and the errors intro- 
.6 66 duced by improper normalisation! 	If It  is the value of the correctly 

normalised intensity 

It = Ef
2 
+ Iinc  + I coh 

then if the data is scaled to (1 + a)I
t the function transformed is 

(1+a)I-(Ef2.
1-1inc)  .(1 + a )Icoh  + a( 	

2 	
I 

+ I. nc) 

The transformation of the first term is correct (subject to termination 

errors), multiplied by (1 + a). 

If the Compton scattering is approximated to 

Iinc - fm
2
) 	then 

  

Zm 

 

=a(
2  

f + Iinc ) - 1/Zmgm
2  + aZM 

The transform of the first term is a weighted intra-atomic radial distribu-

tion function having a peak maximum near the average atomic radius and a 

minimum near the average atomic diameter. The transform of the second 

term is the function 

2a )__JZm  (sin(rsmax 
 ) - rsmaxcos(rs

max 
 )) 

roc  

which is oscillatory in r. 
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Fig.3.14 Variation in the radial distribution function G(r) arising 

from normalisation errors (from Kaplow et al.
67). The large peak close 

to r = 0 is characteristic of such errors. 
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For example if smax  14a 1  the first few maxima will be at 0.23, 

0.78 and 1.30k, and the minima at 0.52 and 1.05. 	Scaling errors may 

thus change the areas under peaks and produce peak shifts. Fig.3.14 

shows Kaplow, Strong and Averbach's estimate of a 1% normalisation error 

on their radial distribution functions of liquid mercury67. The character-

istic large peak close to r = 0 is readily detected in all incorrectly nor-

malised RDFs and can thus be used as a measure of the quality of the process. 

3.5 The Effect of Neglecting Small Angle X-ray Diffraction (SAXD)  

The Fourier transform of the scattered intensity, the reduced radial 

distribution function, is given by 

Co 

	

G(r) = 47crk(r) 	= '27-K 	s(Iexpt 	f2)sinrs ds 

0 

The term - 47nr to  arises from the omission of "volume (zero-angle) 

scattering". 	This is the intensity scattered at extremely small angles 

due to the finite size of the scattering sample and is unobservable for 

macroscopic samples. Thus the above expression for G(r) is correct only 

if all the scattered intensity, except volume scattering, is included in 

Iexpt.  However, materials containing density fluctuations of much greater 
than atomic size produce scattering at angles far too small to be measured 

by conventional wide angle diffractometers. 

Cargill68 
has considered the effect on the radial distribution function 

of neglecting SAXD, and has shown that if the SAXD and WAXD are well separ-

ated, an approximate expression for G(r) is 

	

Gexpt(r)  = 4wr[e(r) 	Cotl 	(11(cf6)/ eo2)X (W 'r)jj 

/1 (CO) is the average square of atomic density fluctuations, 1 (0)1r) is 

the density fluctuation correlation function, and GO is a volume element 
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Fig.3.15a An interference function 1(K) for a material in which the 

wide-angle and small-angle X-ray scattering are well separated. 

(g3 	K) is the small-angle scattering intensity). 
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Fig.3.15b 	(i) Reduced radial distribution function G(r) corre- 

sponding to interference function of Fig.3.15a when small-angle 

scattering is included. (ii) Gexp(r)  corresponding to interfer-

ence function of Fig.3.15a when small-angle scattering is 

neglected. (iii) 4-Kr Co(Tk":( 62))/ to2 ) (czar) which is the diff- 

ei.ence between G(r) and Gexp(r). 	Note change of vertical and 

horizontal scales. (from Cargill
68 ). 
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larger than the average atomic volume but smaller than the scale of long 
.v range density fluctuations. 	The term ( -112(62))/eo
2
)k1 (4D,r) describes 

atomic density fluctuations. 

Thus neglecting SAXD gives rise to a Gexpt(r) which appears to corre-

spond to a material of greater average atomic density than that of the 

sample being studied. 

Fig.3.15 shows the effect on the reduced radial distribution function 

of the inclusion and omission of small angle scattering. 

In the case of amorphous polystyrene52  it has been calculated that 

under the "worst possible" conditions this contribution to the results is 

approximately 3% at r = 10X. 

3.6 The Termination Process and Termination Error 

The Fourier transformation of (58) requires that the intensity of the 

scattering be known from s = 0 to s = co. The experimental intensity curve 

is, however, only known between the limits s = s
min and s = smax

. 	The 

effect of the omission of scattering between s = 0 and s
min was discussed 

in the previous section. 	The termination of data at s x <coo introduces 

spurious detail in the resultant transform (this termination error was 

touched on in section 2.8 while discussing the microscope analogy). 

Fig.3.16 shows the reduced radial distribution function 

8.o 

	

4-Kr[C(r) — co] 	Ss1 sinrs ds 
o 

for polystyrene. 	The termination of the data at s = 8.0 has led to a 

violently distorted RDF. 	To overcome this effect the normalised intensity 

I(s) must be replaced by the interference function 

	

I(s) — 	f2  

uc 

where) is the sum over the atoms of the unit of composition of the sample. 

uc 
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Fig.3.16 Reduced radial distribution function for polystyrene obtained without normalising 

the intensity. 	The termination of data at s = 8.0 has led to a violently distorted RDF. 
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If I(s) is properly normalised and extends over a sufficient range of s, 

the interference function will tend to zero so that 

00 	 smax 

s(I - Ef2)sinrs ds becomes 	s(I - Ef2)sinrs ds 

If the interference function I - Ef
2 
does not completely damp away to 

zero within this range a small termination ripple of approximate period 

27Vismax will remain. It has been demonstrated by Bragg and West that 

its influence may be reduced when the intensity is multiplied by a function 

exp(-ks
2
), sometimes called an artificial temperature factor, convergence 

factor or damping factor. The value of the constant k is selected so as 

to effectively eliminate the termination ripple in the transform. Unfor-

tunately this procedure also distorts the true peaks and results in an over- 

all reduction of the resolving power. 	In Chapter IV it is shown that when 

our intensity data was terminated at s = 8 (cukoc) and s = 17 (Mokok) no 

significant changes in the transforms were seen showing that no large term-

ination of information was occurring. 

Transforming the function I - Ef2 has the effect of removing from 

the RDF all electron-electron vectors from within each single atom, leaving 

only the vectors between electrons in different atoms. Thus peaks in the 

RDF close to r = 0 have no physical meaning and must therefore be spurious, 

a fact used to ensure good normalisation. 

Two additional types of errors, not considered here, may be of conse- 

quence under certain conditions. 	Instrumental broadening and the combined 

presence of Koc...
1 
and 1{0C

2 radiations can both cause a damping of the derived 

distribution function. These errors can be readily corrected if necessary 

but were not significant in these experiments. 
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3.7 Concluding Remarks 

In this chapter I have high—lighted the problems of normalisation 

because it is this procedure which leads to the largest systematic error 

in the RDF. Unfortunately the normalisation process is necessary since 

without it the Fourier transform would be hopelessly distorted by term-

ination effects. Perfect normalisation of experimental data must not 

be expected since correction factors such as for Compton scattering and 

multiple scattering are essentially approximations of the true scattering 

behaviour. 

The interference function is in some ways more useful since it is 

the properties of this function which govern the resulting RDF and it 

has the advantage of being relatively free from error. 
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CHAPTER FOUR 

Experimental Results 

4.1 The WAXD from Amorphous Atactic Polystyrene  

Flat diffractometer samples were cut from 3mm thick sheets of commer-

cially available injection moulded atactic polystyrene (East Anglia Chemicals 

Ltd.). 	Typical specimen dimensions were 2cm x 12cm x 0.3cm. 	Fig.4.1 shows 

the uncorrected experimental diffracted X—ray intensity obtained for such 
1° "as received" sheets using  CuKcc radiation (40KV, 40mA, -17  divergence and 

receiving  slits). All subsequent data collected using  CuKa was obtained 

using  these machine settings. Two very distinct halos were detected at 

29-- 100  and 20 -- 190  while very much weaker ones were found at 2e-- 41° 
and 20--- 800. 	The Bragg  spacings corresponding  to the maxima of these 

peaks were as follows: 

29 
	

10
o 	

190 	410 
	

800  

d—spacing  (21) 	8.85 	4.67 	2.20 	1.20 

Table 4.1 	The Bragg  spacings for atactic polystyrene. 

Fig.4.2 shows the normalised corrected intensity together with the 

theoretical independent scattering  curve. As required these two intensities 

converged at large diffraction angles where no interference effects were 

present. The resulting  interference function that was obtained is shown 

in Fig.4.3. 

It was explained in Chapter III that the incoherent Compton scattering  

emitted by the specimen was modified by the graphite monochromator in the 

diffracted beam. 	The correction required to the theoretical Compton scatt- 

ering  was estimated from the shape of the 001 Gold peak when the monochromator 

was set on a white portion of the X—ray spectrum. 	It was found that after 
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Fig.4.1 The uncorrected experimental diffracted X-ray intensity for 

an "as received" sheet of atactic polystyrene (CuKo( radiation). 
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isation together total theoretical independent scattering curve (includes 

double scattering and Compton intensities). 
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Fig.4.3 The interference function for "as received" atactic polystyrene. 
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this correction was applied, only slight modification to the tail of the 

Compton curve was necessary to successfully normalise all subsequent data. 

Thus all the interference functions presented in this chapter were effect-

ively obtained using the same Compton correction. 

Table 4.2 gives the details of the interference function for atactic 

polystyrene: 

Peak 
s  01-1)  

Intensity (e.u.) 

d-spacing a) 

1 2 3 4 
0.7 1.35 3.0 5.35 
2 497 55 11 

9.0 4.65 2.10 1.18 

Table 4.2 Details of the interference function for atactic 

polystyrene (CulCoc ). 

The peaks in the interference function were measured at the centre of a 

line drawn horizontally through each peak at half its maximum height. 

Fig.4.4 shows the reduced electronic radial distribution function 

obtained for atactic polystyrene. The peaks in the RDF appeared consid-

erably distorted suggesting that they were composed of two or more single 

	

peaks. 	The radial density function (Fig.4.5) emphasised this distortion: 

Peak 	r (.) 	4-Kr( CH - Q0) 	r (X) 	47Cr2( e(r) - Q0 ) 

	

1 	1.0 	117 	 1.4 	140 

	

2 	—2.3 	—40 	—2.3 	—25 

	

3 	5.5 	66 	5.6 	35o 

	

4 	10.3 	35 	10.35 	365 

	

5 	14.9 	7 	14.85 	110 

	

6 	19.6 	4 	19.6 	90 

Table 4.3 Details of the radial distribution and radial density 

functions of atactic polystyrene (CuKo(). 
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Fig.4.4 Reduced electronic radial distribution function for 

atactic polystyrene. 

Fig.4.5 Radial density function for atactic polystyrene. 
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It is to be expected that the first two peaks in the RDF of this polymer 

would be of approximately the same size and occur at --1.5R (spacing between 

carbon atoms chemically bonded to nearest neighbours) and at --2.5R (spacing 

between second nearest neighbour carbon atoms). However Fig.4.4 shows the 

first peak at 1.0k with only a small contribution at --2.3R for the second. 

As explained above, the r4;3R region of the RDF is extremely sensitive to 

normalisation error and is dependent on the quality of the diffraction data 

at high s (which is poor). Fig.4.6 shows the interference function for the 

same polystyrene diffraction data which has been purposely incorrectly nor- 

malised. 	In the RDF (Fig.4.7) a large peak at r = 0.7k was found together 

with sharp peaks at r = 1.4R and r = 2.3k. The peak at r = 0.7R was ob-

viously spurious and typical of faulty normalisation. In Fig.4.8 the RDF 

for the purposely incorrect normalisation is compared with that for the best 

normalisation which was obtained. Apart from a distinct ripple which ex-

tended throughout the transform, the two functions were remarkably similar. 

It was concluded therefore that although the RDF in the range r4 3R was 

extremely sensitive to normalisation error and could be badly distorted in 

this region, the range r ,3R which contained all the structural information 

was remarkably insensitive and considerable confidence could thus be placed 

in the transform in this region. 

To assist in comparing these distribution functions with those of other 

workers, the reduced atomic distribution function for atactic polystyrene was 

also generated. Fig.4.9 shows that the interference function s(I/ Ef2  - 1) 

required here is far more sensitive to the normalisation process than the 

electronic form. 	In Chapter II it was stated that division of the inter- 

ference function by Zf2 meant that the RDF was deconvoluted with the 

distribution function of an average atom. The atomic distribution function 

obtained in this way (Fig.4.10) has peaks corresponding to vectors between 

atom centres. 	Fig.4.10 clearly shows that all peaks have been drastically 

"sharpened" including the spurious normalisation ripple that is present. 

The accentuation of this ripple effectively obliterated the RDF at ri!1-14. 

However the function clearly shows the required peaks at 	1.5R and 2.5R. 

Table 4.4 compares the peaks at Fig.4.10 with those of the RDF for quenched 
atactic polystyrene obtained by Wecker, Davidson and Cohen

52. 



Fig.4.6 The interference function for the same polystyrene diffraction data which has 

been incorrectly normalised (incorrect cut off applied to the Compton scattering profile). 
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Fig.4.7 Reduced electronic radial distribution function 

for incorrectly normalised atactic polystyrene. 
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Fig.4.8 Comparison of the RDFs of the correctly and incorrectly normalised data for atactic polystyrene. 



Fig.4.9 The interference function s(I/ Ef2  — 1) used to generate the atomic radial 

distribution function for atactic polystyrene. 
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Fig.4.10 Reduced atomic radial distribution function for 

"as received" atactic polystyrene. 	This function has been 

deconvoluted by the electronic distribution function for an 

"average" atom. 
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Peak 

Fig.4.10 

r (X) 4wr( t(r)  - eo) r (X)  

Wecker et al.52 

4'r(  e_(r)  - 	eo )  

1 1.45 0.60 1.51 2.10 

2 2.50 0.74 2.53 1.68 

3 5.00 0.46 5.05 0.657 
4 6.25 0.26 6.11 0.265 

5 --10.25 --0.24 10.1 0.175 

6 _14.7 --0.06 14.7 0.0393 

Table 4.4 Comparison of the atomic distribution functions for atactic 

polystyrene of Fig.4.10 with that of Wecker, Davidson and 

Cohen 

The close agreement obtained between these two sets of independently obtained 

data demonstrated the accuracy of this analysis and the reliability of the 

derived functions. 

4.2 The WAXD from Amorphous Isotactic Polystyrene 

A specimen of amorphous isotactic polystyrene prepared by rapidly 

quenching the material from above its crystal melting temperature was also 

investigated. The Bragg spacings corresponding to the intensity maxima of 

the uncorrected experimental scattering were as follows: 

20 	
90 

18° 	430 	83°  

d-spacing (X) 	9.83 4.93 	2.10 	1.16 

Table 4.5 The Bragg spacings for amorphous isotactic polystyrene 

(CuKcc ). 

The interference function for isotactic polystyrene (Fig.4.11) differed 

from that of the atactic material in that the peaks were of different inten- 
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The interference function for amorphous isotactic polystyrene. Fig.4.11 
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sities and had slightly different s values: 

Peak 

s  (r1) 

Intensity (e.u.) 

d-spacing (I) 

1 2 3 4 

0.65 1.33 3.05 —5.3 
65 560 60 -2 

9.67 4.72 2.06 1.19 

Table 4.6 Details of the interference function for amorphous 

isotactic polystyrene (CuK0C). 

The normalisation achieved here was poorer than for atactic polystyrene 

and this was reflected in the RDF below 3R. The RDF for the isotactic 

sample exhibited consistently longer spacings than the atactic material. 

Peak r (R) 4-ir( t(r) - 	('o ) L\r = ri  - ra 
1 1.15 174 0.15 

2 5.65 60 0.15 

3 10.80 34 0.5 

4 15.2 5 0.3 

5 22.0 3 2.4 

Table 4.7 Details of the radial distribution function of amorphous 

isotactic polystyrene (CuK0C). 	The difference Ar in 

the peak positions between isotactic and atactic poly-

styrene is also shown. 

It is likely that each peak in the RDF is composed of both intra- and 

inter-molecular spacings. 	A shift in either or both of these contribu- 

tions could produce an overall shift in the position of the observed 

peaks. 	Longer intra-spacings may be expected here if, for example, the 

isotactic chains were straighter or they had a very different molecular 

conformation to that of the atactic material. 	Similarly longer inter- 

spacing may also arise due to a different chain conformation (cross-

section). 
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Fig.4.12 Reduced electronic radial distribution function for amorphous 

isotactic polystyrene. 
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Fig.4.13 Comparison of the RDFs for atactic and amorphous isotactic polystyrene. 
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4.3 The WARD from Atactic Polymethyl Methacrylate 

Flat diffractometer samples were cut from 2mm thick sheets of commer-

cially available polymethyl methacrylate PMMA ("Perspex", I.C.I. Ltd.). 

Fig.4.14 shows the uncorrected scattering intensity obtained for such "as 

received" sheets using CuKo radiation. Distinct halos were observed at 

2()--13.5°, 2E)--30°  and 2e-41.5° together with a very weak halo at 
20-88°. The Bragg spacings corresponding to these halos were as follows: 

2e 13.5°  30°  41.5°  88°  
d-spacing (X) 6.56 2.98 2.18 1.11 

Table 4.8 The Bragg spacings for atactic polymethyl methacrylate 

(CuKo(). 

Fig.4.15 shows the normalised corrected intensity together with the 

theoretical independent intensity. 	The interference function (Fig.4.16) 

had the following properties: 

Peak 1 2 3 4 

s (X-1) 1.0 2.2 2.95 5.7 
Intensity (e.u.) 261 83 70 25 

d-spacing (X) 6.29 2.85 2.14 1.10 

Table 4.9 Details of the interference function for atactic polymethyl 

methacrylate (CuKo(). 

Fig.4.17 shows the reduced electronic radial distribution function for 

atactic PMMA. Unlike the distribution functions for amorphous polystyrene, 

the peaks here appeared to be constructed of single components and the region 

r4g3X was relatively free of spurious normalisation effects. The radial 

density function is reproduced in Fig.4.18. 
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Fig.4.14 Uncorrected experimental scattering intensity for "as received" 

atactic polymethyl methacrylate (CuKa radiation). 
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Fig.4.15 The normalised intensity corrected for absorption and polar-

isation together with the total theoretical independent scattering curve. 



Fig.4.16 The interference function for "as received" atactic polymethyl methacrylate. 
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Fig.4.17 Reduced electronic radial distribution function for "as 

received" atactic polymethyl methacrylate. 

RADIAL DISTANCE r(A) 

Fig.4.18 Reduced radial density function for "as received" atactic 

polymethyl methacrylate. 
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Peak 	r (a) 	47cr( L(r) - eo) 	r (1) 	47;r2( (L(r) - eo)  

1 1.1 60 1.2 70 

2 2.55 46 2.6 120 

3 6.9 59 6.9 410 

4 9.0 20 9.0 180 

5 14.7 6 14.8 ,,90 

6 ---21.6 4 -- 21.6 ,,30 

Table 4.10 Details of the radial distribution and radial density 

functions of atactic polymethyl methacrylate (CuKoC). 

The effect on the RDF of changing the X-ray wavelength was also invest- 

igated. 	Fig.4.19 shows the reduced electronic radial distribution for 

atactic PMNA using MoKx radiation (X = 0.7107X). By using MoKoc radia-

tion the 

Peak 	r (X) 	47r( e.  Jr) - Co) 

1 1.4 60 

2 2.6 61 

3 7.0 44 

4 9.2 22 
5 --15.7 --4 

6 —21.2 —1 

Table 4.11 	Details of the radial distribution function of atactic 

polymethyl methacrylate (MoKoc). 

s range was doubled (smax 17) and any omission of structural information 

would be clearly seen. No significant differences were observed between 

the RDFs for these two radiations and it was therefore concluded that ter-

mination errors were small and that the majority of systematic errors occurr-

ing in the distribution functions arose from faulty normalisation. 
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Fig.4.19 Reduced electronic radial distribution function for atactic 

polymethyl methacrylate obtained using MoKO radiation. 
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A copper target was preferred to facilitate computing and to reduce 

the size of the detected X-ray background due to inefficient shielding. 

4.4 The Effect of Temperature and Annealing Time on the WAXD from 

Atactic PMMA 

The WAXD from atactic PMMA was investigated as a function of temper-

ature in the range 20°C to 200°C. The two strongest diffraction halos at 

6.3. and 2.01 were monitored as the specimen was heated in vacuo from room 

temperature, through the glass transition temperature Tg  to 200°C. The 

specimen was then gradually cooled back to room temperature. Bowing of 

the specimen as it expanded was prevented by clamping it at one end only 

and allowing it to move over a flat copper block. 	It is well known from 

dilatometry experiments that the volume expansion of a glassy polymer such 

as PMMA exhibits a sharp discontinuity at the characteristic temperature 

Tg. Fig.4.20 shows how the Bragg spacings of the two halos varied as the 

temperature was cycled. 	Tg  for the commercial PMMA (I.C.I. Ltd.) used 

in this investigation was between 100 and 105°C and at about this temper- 

ature the d spacing of the first halo began to increase steadily. 	The 

second peak however appeared to exhibit no such variation (note however 

that the accuracy in measuring d = )■/(2sinE)) decreased as e increased). 
Thus it was concluded that the first halo (--6.32.) in atactic PMMA was at 

least in part intermolecular in origin while the second peak (2.01) was 

predominantly intramolecular. 

When atactic PMMA was annealed for long periods at a constant temper-

ature just below Tg  a significant increase in the intensity of the first 

two peaks was obtained. Fig.4.21 shows the interference function obtained 

for an atactic PMMA sample which had been annealed for 16 weeks at 90°C: 

Peak 1 2 3 4 
s 0.98 2.18 2.95 5.7 
Intensity 345 100 68 24 

d-spacing 6.41 2.88 2.14 1.10 

'annealed 
1.32 1.21 0.97 0.96 

unannealed 

Table 4.12 The interference function for annealed atactic PMMA. 
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Fig.4.20 The variation in the Bragg spacings of the first two halos 

of atactic PflMA as the temperature was first increased (f) to 200
o
C 

and the n o ccreased (i) again to room temperature. 



Fig.4.21 The interference function for an atactic PMMA sample which had been annealed for 16 weeks at 9000. 
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RADIAL DISTANCE 	r (1) 

Fig.4.22 Reduced electronic radial distribution function for an 

atactic PMMA sample annealed for 16 weeks at 90°C. 
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Several workers have shown that the annealing of some glassy polymers 

including PMMA at temperatures close to Tg  has produced slight (0.05%) 
69 

density increases in these polymers. 	The large percentage increase in the 

intensities of the first two peaks of the interference function could arise 

from an improvement in chain alignment on a microscale (intermolecular 

contributions) and/or a straightening of chains or perhaps a more regular 

atomic arrangement along the chains (intramolecular contribution). Thus 

the WAXD from annealed atactic PMMA was consistent with the suggestion that 

annealing glassy polymers close to Tg  leads to an improvement in local seg-

mental ordering. Fig.4.22 shows the reduced radial distribution function 

for the annealed atactic PMMA: 

Peak r 	(R.) C(r) - e0 ) 

1 1.1 94 
2 2.55 56 

3 6.93 6o 

4 9.0 24 (2 components) 

5 15.0 5 
6 21.9 4 

Table 4.13 Details of the reduced radial distribution function 

for atactic PMMA annealed for 16 weeks at 90°C. 

The RDF was remarkably similar to that for the "as received" material 

except that the fourth peak was now clearly composed of two components : 

one centred at ^-8.6R, the other at --9.1R. 

4.5 The WAXD from Orientated Atactic Polystyrene 

Preferential molecular orientation as revealed by X-ray diffraction 

was induced in atactic polystyrene by extruding the polymer from a dye 

under load at 85°C. Fig.4.23 summarises the experimental details while 

Plate 4.2 shows a typical X-ray pinhole transmission pattern obtained for 

the orientated material. Flat sheets of the extruded polymer were mounted 



specimen 
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Fig.4.23a Extrusion dye used to orientate atactic polystyrene sheet. 

- - ----.77 7.e&W.MT.//,zel7e2,41- 	 

Fig.4.23b Side and end elevations of the dye during the extrusion of 

a sheet specimen. 
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into the diffractometer in the conventional manner and the intensity profile 

along the equator (zero layer line) was recorded. 	To obtain the intensity 

profile along the meridian the extruded sheets were cut into strips perpen-

dicular to the flow direction and reformed into a block so that the fibre 

axis of each strip was vertical. Fig.4.24 shows this specimen procedure. 
The intensity curves were corrected for polarisation and absorption and 

then normalised to the total theoretical independent scattering. 	In the 

case of the equatorial scattering the Krogh-Moe
64 

scaling factor had to be 

modified to 

Rmax 

R( 	f 2 132 
Inc)  

0 
Rmax 

R I(R,O)dR 

0 

to account for statistical cylindrical symmetry. 

In the diffraction from a well orientated fibre the intensity distribu-

tion along the meridian usually contains information largely about the 

internal structure of the molecules whereas the distribution along the 

equator contains information largely regarding the mutual disposition of 

these molecules. Thus studying how the diffraction pattern changes when 

the polymer is orientated should give valuable clues as to how the diff- 

racted intensity from the unorientated material is formed. 	In particular 

it should be possible to estimate the relative importance of intra- and 

inter-molecular contributions to the pattern. 

Plate 4.1 shows the pinhole X-ray pattern obtained for atactic poly-

styrene while Plate 4.2 shows the pattern after the polymer had been 

orientated. Considerable equatorial and meridional arcing occurred 

for the orientated material. These photographs supported Kilian and 

Boueke's51 conclusion that the inner halo of unorientated polystyrene 

(8.85k) arises due to intermolecular interferences. Also the outer 
halo in Plate 4.2 appeared quite oval in shape suggesting that it may 

be composed of both inter- and intra-molecular components. This 
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Fig.4.24 The method used to prepare 

a meridional diffractometer specimen. 

Sections were sawn from the tensile 

bar or extruded sheet and strips cut 

in this perpendicular to the flow 

direction. 	These strips were then 

reformed into a block such that the 

fibre axis of each sheet was vertical. 

The block was held together by a thin 

sheet of plastic cemented to the rear 

of each strip. 



Plate 4.1 	Pinhole transmission X-ray pattern from unorientated atactic 

polystyrene. Nickel-filtered Cuka radiation. 

t Fiore 
Axis 

Plate 4.2 Pinhole transmission X-ray pattern from orientated atactic 

polystyrene. The sample was orientated by extrusion from a dye at 
o 

85C ( < T ) resulting in a draw ratio of 4 : 1. 
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was confirmed when quantitative measurements were performed on the 

diffractometer. The diffracted intensity measured along the meridian is 

shown in Fig.4.25. The Bragg spacings corresponding to the peak maxima 

were as follows: 

20 
	

10
o 	

20
o 	

40.5° 	80°  

d-spacing 8.85 4.44 2.23 1.20 

Table 4.14 The Bragg spacings for the meridional scattering 

from orientated polystyrene (CuKa ). 

Fig.4.26 shows the meridianal interference function for orientated atactic 

polystyrene: 

Peak 

s (R-1)  

Intensity (e.u.) 

d-spacing (2.) 

I orientated 

1 

-90 

9.66 

-45 

2 

1.43 

320 

4.40 

0.64 

3 

3.0 

20 

2.10 

0.36 

4 

,..5.25 
5 

1.20 

0.45 Iunorientated 

Table 4.15 The interference function for the meridional scattering 

from orientated atactic polystyrene. 

The intensity of each peak in the interference function had been consider-

ably reduced, in particular the first peak was hardly detectable and the 

second peak had shifted to s = 1.43. 

Fig.4.27 shows the scattering that was detected along the equator 

(zero order layer line). 	The Bragg spacings corresponding to the intensity 

maxima were as follows: 

2 0 	10° 	18.5° 	40°  

d-spacings (X) 	8.85 	4.80 	2.25 

Table 4.16 The Bragg spacings for the equatorial scattering from 

orientated polystyrene (CuKoc). 
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Fig.4.25 The uncorrected experimental scattering intensity measured 

along the meridian of an orientated atactic polystyrene sample (CuKoL). 
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Fig.4.27 The uncorrected experimental scattering intensity measured 

along the equator of an orientated atactic polystyrene sample (Cul(m). 
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Fig.4.26 The meridional interference function for orientated atactic polystyrene. 

 



.1004 
Fig.4.28 The equatorial interference function for orientated atactic polystyrene. 
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Fig.4.28 shows the interference function obtained for the equatorial 

scattering: 

Peak 1 2 3 4 

s (r1)  0.75 1.35 3.0 ,-5.0 

Intensity (e.u.) 240 682 83 -30 

d-spacing (2.) 8.38 4.65 2.10 1.26 

'orientated 120 1.37 1.5 -2.73 
Iunorientated 

Table 4.17 The interference function for the equatorial scattering 

from orientated polystyrene. 

The first peak in the interference function had shifted to s = 0.75 and 

increased in intensity one hundredfold, confirming that it was exclusively 

intermolecular in nature. The second and third peaks in the function had 

also increased in intensity but had not shifted noticeably in s. 

Thus it would appear from a simple comparison of the interference func-

tions that intermolecular effects dominate the diffraction from amorphous 

polystyrene. 	However, the cross-section of the polystyrene molecule could 

be sufficient to allow significant intramolecular effects to be present even 

in the equatorial scattering from a perfectly orientated fibre. 

Fig.4.29 shows the distribution function H3(z) - H3(0)  for the merid- 

ional scattering. 	In a perfectly orientated fibre this one dimensional 

function represents the distribution of atoms within the polymer molecules, 

projected onto the principal axis z. 

Peak = 3 

	

r (5) 	H (z) - H3(o)  

1 	0.80 	-45 
3.53 

2 	4.33 	25 

3 	9.00 	13 	
4.67 

 

4 	13.40 	3 	
4.40 

5 	18.05 	2 	
4.65 

6 	22.55 	0.5 
4.50 

 

Table 4.18 Details of the distribution function H
3
(z) for orientated 

atactic polystyrene. 	H
3
(z) is a line distribution of the 

atoms within the polymer molecule in projection on the 

principal axis (assuming perfect orientation). 
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Fig.4.29 	The distribution function H
3
(z) — H3(0) for the meridional 

scattering from orientated atactic polystyrene. 
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H
3(z) had the characteristics of a distribution function for a one 

dimensional lattice with distortions of the second kind. The peaks were 

approximately equally spaced with an average separation of 4.56X, and 

damped away uniformly to zero within the distance re-1..z2d, after which all 

distances became equally probable. 

Fig.4.30 shows the one dimensional cylindrical distribution function 

zc(r) - zav for the equatorial scattering. This function represents the 

electron density projection in the basal plane of an array with statist-

ical cylindrical symmetry. 

Peak r (R) zc(r) - zav 

1 5.20 32 
4.65 

2 9.85 45 
3 _14.5 - -10 4.65  
4 —20 -, -5 5.5 

Table 4.19 Details of the cylindrical distribution function 

zc(r) - zav for orientated atactic polystyrene. 

A long wavelength component was clearly evident in this function. 	It was 

not certain whether this wave was spurious or not; if it were not it should 

be possible to detect in the interference function the intensity component 

giving rise to it. The two waves are connected by the zero order Bessel 

function Jo(rs), which peaks at rs values of 0, 7.02, 13.32, 19.70, etc. 

The long wavelength component in zc(r) peaked at rzO, 10.5 and --24. 

This would mean that a component peaking at sz=0.6 should be seen in the 

interference function. Although this is not evident in Fig.4.28 it will 

be shown in Chapter V that such a component may well be present. 

However Fig.4.31 shows the radial distribution function that was 

obtained by using the equatorial interference function of Fig.4.28. 	In 

using this function we have assumed that the interference function had 

spherical symmetry (interatomic vectors averaged over all possible orienta-

tions). 



Fig.4 .30 Cylindrical distribution function zc(r) 	zav  for the 

equatorial scattering from orientated atactic polystyrene. 

4Xt. etrl - eo) 
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Fig.4.31 	Radial distribution function obtained for the equatorial 

scattering from orientated atactic polystyrene. 	(Spherical symmetry 

has been assumed). 
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Peak 	r (R) 	4.7zr( t(r) 	eo ) 

1 0.9 271 

2 5.7 5o 
3 10.45 46 
4 15.0 --4 
5 19.8 --4 
6 ---24.6 —1 

Table 4.20 Details of radial distribution function for the 

equatorial scattering from orientated atactic 

polystyrene. 	(Spherical symmetry has been 

assumed). 

The general features of the cylindrical distribution ze(r) were also 

evident in the RDF, but no corresponding long wave component was present. 

The long wavelength component may have arisen from the numerical 

transformation process and it was therefore considered safest not to 

interpret this component in terms of physical effects. 

4.6 The WAXD from Orientated Atactic Polymethyl Methacrylate 

Preferential molecular orientation was induced in atactic PMMA by 

cold drawing tensile specimens at 85°C. At 85°C it was found that PMMA 

could be drawn fairly easily 2 : 1. Plate 4.4 shows the typical orienta-
tion that was obtained. Equatorial and meridional diffractometer samples 

were prepared in identical fashion to those of polystyrene (Fig.4.24). 

The orientation obtained was inferior to that of the polystyrene samples 

but considerable arcing was produced. The inner halo at --6.29R was 

clearly oval in shape indicating the presence of both equatorial and merid-

ional components. The very much fainter ring at 2.85X showed slight merid-

ional arcing. 

These observations were confirmed quantitatively using the diffract-

ometer. Fig.4.32 shows the X-ray scattering detected along the meridian 



Plate 4.3 Pinhole transmission X—ray pattern from unorientated atactic 

poly(methyl methacrylate). 	Nickel—filtered Cuka radiation. 

Fiore 
Axis 

Plate 4.4 	Pinhole transmission X—ray pattern from orientated atactic 

poly(methyl methacrylate). 	The sample was orientated oy stretching 

2 : 1 at 85°C ( < r ). 
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Fig.4.32 The uncorrected experimental scattering intensity measured 

along the meridian for orientated atactic PMMA (CuKo( ). 
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Fig.4.34a The uncorrected experimental scattering intensity measured 

along the equator of an orientated atactic FNMA specimen (CUKIX). 



Fig.4.33 The meridional interference function for orientated atactic PMMA. 
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of an orientated PMMA specimen. The Bragg spacings corresponding to the 

intensity maxima were as follows: 

28 

d-spacing (X) 

15°  29.5°  41.5°  90°  

5.91 3.03 2.18 1.09 

Table 4.21 The Bragg spacings for the meridional scattering 

from orientated atactic PMMA (CuKolt). 

Fig.4.33 shows the meridional interference function for orientated atactic 
PMMA: 

Peak 
s  (x-1) 

Intensity (e.u.) 

d-spacing (X) 

'orientated 

1 

1.15 
100 

5.46 

0.38 

2 
2.13 
185 

2.95 

2.23 

3 

2.95 
69 

2.14 

0.99 

4 
-4.45 

-15 

1.41 

- 

5 
-- 5.75 

10 

1.09 

0.40 Iunorientated 

Table 4.22 Details of the interference function for the meridional 

scattering from orientated atactic PMMA. 

The second peak (2.95) had more than doubled in intensity whilst a peak 

at -,-1.41X was detected which was absent from the interference functions 

of all other samples. 

Fig.4.34 shows the interference function for the equatorial scattering: 

Peak 	1 	2 	3 	4 

s (X-1) 	0.98 	2.25 	2.95 	5.75 
Intensity (e.u.) 	395 	15 	70 	30 
d-spacing (X) 	6.40 	2.79 	2.15 	1.09 

'orientated 

Table 4.23 Details of the interference function for the equatorial 

scattering from orientated atactic PMMA. 

1.51 	0.18 	1.00 	0.60 Iunorientated 
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Fig.4.34 The equatorial interference function for orientated atactic PMMA. 
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Thus it was concluded that the first peak in unorientated PMMA (6.29k) 

was constructed of two components: an intramolecular peak centred at 

--5.4d and a more intense intermolecular peak centred at ---6.402.. The 

second peak in unorientated PMMA (2.85a) was constructed predominantly of 

an intramolecular peak at --2.958 in the orientated material and the third 

peak (--.2.14 in unorientated PMMA) was composed of equal amounts of intra-

and inter-molecular effects. 

Fig.4.35 shows the distribution function H3(z) - H3(0)  for the merid- 

ional scattering of orientated PMMA: 

Peak 	r 	H3(z) - H3(0) 

1 	0.70 	-44 
2 	3.10 	-25 

3 	5.95 	23 

4 	8.85 	-1 

5 	11.10 	1 
6 	12.75 	2.5 

7 	15.10 	1 

Ar = c 

2.40 

2.85 

2.90 

2.25 

1.65 

2.35 

Table 4.24 
	

Details of the distribution function H
3
(z) for 

orientated atactic PMMA. 

Unlike the case of atactic polystyrene1 H3(z) for PMMA did not resemble 

the kind of distribution function obtained for pure paracrystalline distor- 

tions. 	The main feature of H
3
(z) was a large peak at 5.95X. 	All oscilla- 

tions damped away within the range rm  T.t.1.18X. 

The one dimensional cylindrical distribution zc(r) was also calculated 

and is reproduced in Fig.4.36. 

Peak 	r (a) zc(r) - zav 

1 0.7 100 

2 2.35 26 

3 6.8 38 

4 -- 8 -.12 

5 11 4 
6 21.4 14 

Table 4.25 Details of the cylindrical distribution function zc(r) 
for orientated atactic PMMA. 
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Fig.4.35 The distribution function H3(z) — H3(0) for the meridional 

scattering from orientated atactic PENA. 
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Fig.4.36 Cylindrical distribution function zc(r) - zav  for the equatorial 

scattering from orientated atactic PMMA. 

Fig.4.37 Radial distribution function obtained for the equatorial scatt- 

ering from orientated atactic FNMA. 	(Spherical symmetry . has been assumed). 
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As with polystyrene, this function may contain spurious details so a radial 

distribution function was also generated from the equatorial interference 

function (Fig.4.37). 

Peak r r( e(r) - co) 

1 1.3 64 

2 2.5 102 

3 7.0 42 

4 --8.7 28 

5 14.7 9 

6 --21.8 5 

Table 4.26 Details of the radial distribution function gen-

erated from the equatorial interference function 

for orientated PMMA (spherical symmetry assumed). 

4.7 The Equilibrium Swelling of PMMA by Methyl Alcohol  

Initial test specimens were cut from 1.5mm PMMA sheet, cleaned and 

weighed on a microbalance and then placed in flasks containing methyl 

alcohol. 	The specimens were kept at constant temperature (20°C or 60°C) 

for between two days and six months. Periodically the specimens were 

removed from their flasks, dried with tissue paper and weighed on a micro-

balance. The volume fraction V of the polymer in the PMMA/alcohol mix-

ture was calculated as 

vp = (wp/ ep) / (WA/ eA wp/ep) 

where W
A 
and W are the weight of alcohol in the swollen mixture and the 

original weight of the PMMA respectively. 	Q_A  and e_ are the density 

of the alcohol at the test temperature and the density of the PMMA. 

Equilibrium Swelling at 60°C  

From the weight measurements it was found that equilibrium swelling 

occurred in the PMMA/methanol system in about two days. Equilibrium 
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volume fractions of between 0.60 and 0.64 were obtained and after equil-

ibrium swelling had been achieved the PMMA specimens were found to be 
70 

quite rubbery. Andrews et al. have observed that for all the alcohols, 

Tg  was increasingly depressed with increased swelling, and have estimated 

that for PMMA/methanol with VP  = 0.6, T was approximately 15°C. 

At this point the specimens were removed from their flasks, dried 

and then placed in stoppered containers at room temperature. The weight 

of each specimen was then monitored at regular intervals. Fig.4.38 shows 

the typical desorption isotherm obtained. After an initial rapid rate of 

weight loss (from VP  = 0.61 to VP  = 0.72 in three hours) the rate decreased 

so that after fifty hours the specimen still contained 10% by weight of 

methanol (V --0.86). 	The decrease in the rate could be attributed to 

a) classical diffusion behaviour (Fick's Law: Particle flux 

proportional to concentration gradient). 

b) a "skin" of glassy unswollen polymer that formed on the 

specimen's surfaces after a period of a couple of hours 

(for Vp  = 0.7; Tg--30°C). 

Volume and density measurements were performed on a carefully machined 

PMMA block whose surface dimensions were accurately known. Table 4.27 

shows the results before and after equilibrium swelling in methanol. Upon 

removal from methanol at 60°C the specimen was found to have increased in 

volume by approximately 52% while only increasing in weight by 38%. This 

represented a density decrease of approximately 10%. The swollen sample 

had only slightly inferior optical properties to the original unswollen 

polymer suggesting that the observed density decrease was not due to the 

presence of small voids in the material. 

Mean Volume Mean Weight 

cm3 	gm 
(± 0.005) 	(± 0.0005) 

Density 

gm/cm3  
(± 0.01) 

V Ratio of surface 
dimensions 

Before 
swelling 	2.976 3.5444 1.19 1.00 1 : 1.34 : 2.76 

Immediately 
after swelling 4.537 4.885o 1.08 0.64 1 : 1.25 : 2.51 

After 4 days 
at room temp. 	3.605 4.1602 1.15 0.80 1 : 1.25 : 2.54 

Table 4.27 Estimates of the density of a PMMA specimen before and 

after swelling to equilibrium in Methyl Alcohol at 60°C 

(Average of five readings). 
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Fig.4.38 Desorption isotherm for a 0.15cm sheet of atactic PMMA after swelling in methanol at 60°C. 
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The ratios of the surface dimensions showed that strains induced in 

the formation of the sheet from which the block was cut were relaxed upon 

swelling (the percentage increase in the dimension corresponding to the 

sheet thickness was the largest). 	Strain relaxation was also observed 

in PMMA specimens which had been previously orientated by stretching 2 : 1 

at 85°C. 	Identical swelling characteristics to those described above were 

observed with the polymer fully recovering its pre—stretched dimensions. 

Fig.4.39 shows the uncorrected WAXD pattern observed for a 0.35cm 

sheet of PMMA swollen to equilibrium in methanol at 60°C. Upon removal 

from the methanol the specimen was immediately mounted in the diffract-

ometer at room temperature. The scan time required was approximately 

35 hours. The Bragg spacings corresponding to the observed halos were 

as follows: 

29 14.5°  30°  41° 
 89°  

d—spacing (X) 6.11 2.98 2.20 1.10 

Table 4.28 The Bragg spacings for PMMA swollen in methanol at 60°C. 

The most striking feature of this pattern was the reduction in the intensity 

of the first halo and its shift to a smaller d—spacing. The experimental 

intensity was normalised in the usual manner with due regard for the inclu-

sion of methanol molecules (38% by weight) in the calculation ofLj  f2 
  for 

the sample. No attempt was made to remove the intensity arising from inter- 

ference effects between the atoms in each methanol molecule. 	The interfer- 

ence function (Fig.4.40) had the following properties: 

Peak 

s (p1) 

Intensity (e.u.) 

d—spacing (2.) 

I
swollen 

1 

1.1 

63 

5.71 

0.24 

2 

2.18 

72 

2.88 

0.87 

3 

2.95 

50 

2.14 

0.72 

4 

5.70 

43 
1.10 

1.72 I
unswollen 

Table 4.29 The interference function for atactic PMMA swollen to 

equilibrium in methanol at 60°C then examined in air 

at room temperature. 
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Fig.4.39 The uncorrected experimental scattering intensity for an atactic 

PMMA sample swollen to equilibrium in methanol at 60°C and then examined in 

the diffractometer at room temperature in air. 



S 

Fig.4.40 The interference function for atactic PMMA swollen to equilibrium in methanol at 60°C then 

examined in air at room temperature. 
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Comparison of these peaks with those of "as received", and orientated 

atactic PMMA (Fig.4.41 and 4.42) suggested that the scattering from swollen 

PMMA was predominantly intramolecular in nature. 

Fig.4.43 shows the reduced electronic radial distribution function 

for the PMMA/methanol system 

Peak 	r (X) 	4-xr( C(r)  - Q0) 

1 1.25 -1 

2 2.65 8 

3 3.5 -27 

4 4.70 -41 

5 6.73 53 

6 9.15 14 

7 --15.2 3 

Table 4.30 Details of the radial distribution function for 

atactic PMMA swollen to equilibrium in methanol 

at 6000. 

When the swollen PMMA was removed from the diffractometer and baked for 

several days in an oven at 4 10000 it was found that the sample regained 

its original weight and that the WAXD pattern was identical to that of the 

pre-swollen polymer. 

Swelling at Room Temperature  

At this lower temperature it was found that the time for sorption was con-

siderably increased: equilibrium swelling by methanol took approximately 

one month (V = 0.77). 	This volume fraction depressed T to approximately 

35
0C and thus the specimens were not rubbery at room temperature. Accurate 

measurements of weight and volume of the PMMA/methanol system yielded a 

density of 1.16 (weight increase --- 8%, volume increase --12%). 	When the 

PMMA/methanol sample was removed finally from its flask and dried, it ini-

tially lost weight rapidly (VP  = 0.77 to VP = 0.80 within one hour). How-

ever as with PMMA/methanol at 60°C the rate decreased and after 50 hours V 

was of the order of 0.87. Fig.4 .44 shows the uncorrected experimental 

intensity observed. 
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Fig.4.41 	Comparison of the first peak in the interference functions 

of untreated, swollen and orientated atactic PMMA. 
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functions of untreated, swollen and orientated atactic PMMA. 
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RADIAL DISTANCE r 
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Fig.4.43 Reduced electronic radial distribution function for an atactic 

PMMA sample swollen to equilibrium in methanol at 60°C and examined in 

air at room temperature. 
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Fig.4.44 The uncorrected experimental scattering intensity for an atactic 

PMMA sample swollen in methanol at room temperature and then examined in 

air (Cul<tx). 
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Fig.4.45 A typical experimental scattering curve for an atactic poly-

styrene/acetone gum. 
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29 

d—spacing (R) 

I 
swollen 

13.5° 
6.56 

0.72 

300  

2.98 

0.63 

41° 
2.20 

0.78 

87°  

1.12 

—1 
unswollen 

Table 4.31 The Bragg spacings for atactic PMMA swollen in 

methanol at room temperature. 

The first three peaks were reduced in intensity but no significant shift-

ing in s was observed. 

4.8 The WAXD from Atactic Polystyrene Dissolved in Acetone 

No suitable organic liquid was found that would swell uncrosslinked 

polystyrene to the extent that alcohol swelled PMMA. However acetone was 

found to dissolve the polymer into a sticky gum and this was used to invest-

igate the effect of solvent on the 8.858 intermolecular peak of atactic 

polystyrene. 

Three millimetre thick sheets of atactic polystyrene were immersed in 

a flask containing excess amounts of acetone at room temperature. After 

a period of about 30 minutes the swollen gum was removed from the flask 

and stretched over a rectangular wire frame and mounted into the diffract-

ometer. Fig.4.45 shows the typical WAXD pattern observed. The intensity 
quite closely resembled that of the uncorrected meridional scattering of 

orientated polystyrene. Unfortunately the specimen quickly (--60 sec) 

developed a skin of dry polymer over its surfaces which rendered it quite 

rubbery and tended to pull it into a ball. Thus these results were not 

considered suitable for detailed analysis. 

Fig.4.46 shows how the profile of the 8.858 peak changed with the 

time for which the specimen was out of the solvent. 	These plots show 

clearly that the intermolpcular peak was all but absent from the scatter-

ing when the gum was first removed, but within a few minutes this quickly 

returned as the dry skin formed. The residue of the peak was shifted to 

a longer Bragg spacing (8.85---). 10.408) but this was difficult to inter-
pret since the peak must be superimposed on the tails of others. 
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4.9 Concluding Remarks  

One dimensional radial and cylindrical distribution functions have 

been generated from the wide-angle X-ray diffraction detected from atactic 

polystyrene and atactic polymethyl methacrylate. With the exception of 

H
3
(z) for orientated polystyrene none of these distribution functions 

exhibited the characteristics described in Chapter 2 for arrays with para-

crystalline distortion. However, in the remaining chapter an attempt is 

made to demonstrate that the diffraction effects observed do not preclude 

the presence of paracrystalline order, and that not all of these para-

crystalline effects could be explained by the periodicity inherent in each 

chain. On this basis it is suggested that the swelling of PMMA by methanol 

results in the destruction of interchain ordering. The discussion centres 

on the separation of the interference functions into intra- and inter-

molecular scattering contributions. 
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CHAPTER FIVE 

DISCUSSION OF THE RESULTS 

5.1 Radial Distribution Functions 

This work has high—lighted the problems associated with the generation 

of radial distribution functions. 	In particular the effects of data term- 

ination and normalisation have been investigated and the latter has been 

shown to be of paramount importance in obtaining error free RDFs. The 

close similarity between the atomic RDFs for quenched atactic polystyrene 
, obtained by Wecker, Davidson and Cohen52  (Fig.1.14) and Fig.4.10 for a diff- 

erent commercial sample of the same polymer demonstrated the reliability of 

the method and the similarity of the two samples on a microscale. 

The electronic radial density function obtained for "as received" 

atactic PMMA (Fig.4.18) was also remarkably similar to that obtained by 
Bjornhaug et al.

50 
(Fig.1.10) using X—ray films. 	It appears that the 

electronic form of the RDF is to be preferred since the atomic RDF emphasises 

the presence of residual normalisation ripple which can lead to a seriously 

distorted transform. 	It is felt that this is what occurred in the atomic 

RDFs of polycarbonate obtained by Wignall and Longmann54. 

The RDF of atactic polystyrene (Fig.4.4) differed significantly from 

that of amorphous isotactic polystyrene (Fig.4.12) in that the spacings in 

the isotactic material were consistently longer. 	Wecker, Davidson and 

Cohen
52 

observed similar differences in their atomic RDFs of quenched atactic 

and quenched isotactic polystyrene, although the shifts in the peak positions 

were smaller and the peak at r --5 shifted to a shorter spacing in the iso-

tactic sample (see Table 1.4). An exactly similar effect was observed when 

amorphous isotactic polystyrene was annealed below Tg  (Table 1.4). 	Wecker, 

Davidson and Cohen showed that annealing isotactic polystyrene below Tg  

resulted in -- 1% increase in the sample density. 	Thus to explain the effects 

described, the RDFs of polystyrene must be dominated by intramolecular effects, 

and from the results of Wecker, Davidson and Cohen it appears that their peak 
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at r --5X was predominantly intermolecular in nature. In the electronic 

RDF we obtained for amorphous isotactic polystyrene no shift to a shorter 

spacing was observed in the third peak (r a) corresponding to their 52. 

peak. This may be due to the increased breadth of the peaks in the elec-

tronic form of the RDF which could mask small changes in peak positions. 

Similar annealing effects were observed in the atactic PMMA sample: 

annealing produced 0.3A shifts to longer spacings for the fifth and sixth 

peaks in the RDF. However the effect of annealing was most marked in the 

interference function (Fig.4.21). 

To obtain much more information from the interference and radial dis-

tribution functions, we must estimate more clearly the nature of the peaks 

in these functions i.e. distinguish between intra- and inter-molecular 

contributions. 	To do this we have investigated two effects: 

1) the effect of temperature on the WAXD 

2) the effect of molecular orientation on the WAXD 

The combined knowledge of these two effects is a powerful tool which enables 

us to separate intra- and inter-molecular components. Pure intra-diffrac-

tion should yield direct information about any preferred chain conformation 

of the polymer molecules in the amorphous state. 	Pure inter-diffraction 

should yield information about any preferred arrangement of chain packing 

in the orientated state. 	The minute increases in density (---0.05%) which 71,72 

have been reported for these polymers after orientation suggest that any 

packing arrangement that is present in the orientated material is in fact 

also present in unorientated material. 	The extruding and drawing processes 

may have the effect of only aligning any ordered regions so that the scatter-

ing is concentrated at the meridian or the equator. 
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5.2 Atactic Polystyrene  

Table 5.1 summarises the relevant results of past work on the character 

of the diffraction halos of atactic polystyrene: 

Author First Remarks Second 
Halo Halo 

Polymerisation 
Katz42 

(X-ray) 
10X ring. Suggested 

as interchain 
4.8k 

Krimm46  8.84 4.67a 
(X-ray) 

Kilian & Boueke
51 

(X-ray) 
8.8R Temperature 

dependent 
4.6k 

Yeh14 9X 4.78 
(Electron) 

Remarks 

Ratio of intensity 
of second to first 
decreased with 
increased temp. 

Temperature 
independent 

Increased to 6.38k 
on cross-linking 

Table 5.1 Summary of the past work on the diffraction halos of atactic 

polystyrene. 

That the first halo of atactic polystyrene arises from intermolecular 

effects has been clearly demonstrated by its strong equatorial arcing and 

temperature dependence. 	The origin of the second halo has not been so 

clearly demonstrated. Clues as to the origin of the remaining halos may 

be obtained from a study of the orientated polymer. 

5.3 Orientated Atactic Polystyrene 

Meridional Scattering 

In an orientated polymer whose molecules have a perfectly periodic internal 

structure (i.e. isotactic or syndiotactic molecules) the X-ray diffraction 
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Fig.5.1 The conformation of the isotactic polystyrene macromolecule 

in the crystalline state (side and end views).55  

2A 

a 

1.2-4 

• • 

II frill ill 	Tli 	TT I'll in it in in in tit 	,..z 
b 

Fig.5.2 a) The conformation of the independent structural unit of 

isotactic polystyrene
55  b) arrow diagram of the projection of atom 

density on the principal axis calculated using a). 
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pattern contains a system of layer lines arising from interferences between 

the scattering elements regularly spaced along the chain. 	If the orienta- 

ted chains possess paracrystalline distortions the whole molecule still 

scatters X-rays but mutual interference effects occur only between a few 

nearest-neighbour groups at each point in the chain. Disorder inherent 

in the chain (e.g. atactic chains) or flexures in the molecules about the 

principal axis are the kinds of distortion which result in the loss of 

meridional reflections. 

The meridional interference function for orientated atactic poly-

styrene (Fig.4.26) resembled quite closely the type of interference function 

expected for a one dimensional lattice with distortions of the second kind. 

The distribution function H
3
(z) (Fig.4.29) was also characteristic of such 

an array and had a period c = 4.4R and a radius of interaction rM  = 25R. 

This would mean that the number of nearest neighbours in the lattice con-

tributing to give mutual interference effects would be of the order of 

It is likely that the atactic polystyrene molecules have some form of dis-

torted helical conformation which may be similar to that of isotactic poly- 

styrene in its crystalline state (Fig.5.1). 	The phenyl ring predominates 

in the structure of the isotactic polystyrene repeat unit. 	The size of 

the phenyl rings prevents the isotactic chain from adopting a planar zig-

zag conformation since this would produce too little separation between 

them. 	The spacings between the rings are increased by rotations about 

chain bonds resulting in a helix with three monomer units in each turn and 

6.658 between equivalent phenyls (this is called a 3/1 helix). 

Fig.5.2 shows an arrow diagram of the projection of the atom density 

of such a chain on the principal axis z. This projection has a strong 

period of approximately 2.2k and arises from the regular spacings of the 

C1, C3 and C7 
atoms along the chain. 	The syndiotactic molecule (Fig.5.3) 

which has a planar zig-zag conformation has a very similar z-axis projec- 

tion with a phenyl repeat of 5.2R. 	Atactic molecules could be considered 

as isotactic molecules which have a number of syndiotactic linkages occurr-

ing throughout their length which would disrupt the periodicity of the helix. 
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Yig.5.3 A syndiotactic polystyrene sequence52. 

II 

Fig.5.4a Chain molecules with their scattering units arranged on 

continuous helices: i) 5/1; ii) 7/2. 
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Fig.5.4b Diffraction pattern from perfectly orientated helical polymer 

molecules. 	Reflections on the meridian z, arise from the c' projections; 

c) if the molecules are imperfectly orientated other reflections which arise 

from c and C may be brought onto the meridian and thus detected in 111(z). 
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Therefore we might clearly expect H
3
(z) which is a distribution function 

of the atoms in a molecule projected onto the z-axis, to have a distinct 

period of —2.22. even in an atactic polystyrene molecule. 	However, if 

the molecules are not perfectly orientated, H
3
(z) will probably contain 

the true repeat distances as well as the projected ones. 	This is shown 

schematically in Fig.5.4. 	Fig.5.4a shows a chain molecule as a set of 

discrete points arranged on a continuous helix. Such a system can be 

specified by the following periodic components along the principal axis z: 

the projection c' on the axis of the distance between adjacent points 

(2.2k here), the pitch C of the continuous helix and the true repeat dist-

ance c of the discontinuous one. A discontinuous helix gives layer lines 

having indices n whose repeat distance is C* = 1/C and also additional ones 

of repeat distance c* = 1/C. 	The intensity along each layer line is gov- 

erned by one or more Bessel functions which gives the diffraction pattern 

its characteristic cross shape (Fig.5.4b). 	Only J0  is finite at the 

origin and this occurs on layer lines which correspond to the repeat dist- 

ance c' (i.e. —2.A in our case). 	If the molecules are not perfectly 

orientated, Fig.5.4c shows that other "reflections" may be detected along 

the meridian. Thus the measured period of 4.4 found in H
3
(z) may arise 

from a helix repeat such as c or C. 	Calculation has shown that the first 

peak in J1  for the first layer line is very close to the meridian so that 

only slight misorientation would be required to produce the effect described 

in Fig.5.4c. 

The 4.4 period of H
3
(z) appears to exclude the 3/1 helical conforma-

tion of crystalline isotactic polystyrene and the planar zig-zag conforma-

tion of syndiotactic polystyrene. Bunn73 has shown that on the basis of 

idealised bond distances and angles we may expect characteristic identity 

periods to be observed for a number of single-bonded carbon-chain conforma- 

tions. 	Five of these conformations are shown in Fig.5.5. 	The TGT5 con- 

formation (2/1 helix) has the required identity repeat of 4.4k and would 

therefore appear to be the most likely candidate for the overall chain 

conformation of atactic polystyrene. 

Thus it was concluded that the observed meridional scattering from 

orientated atactic polystyrene contained a large paracrystalline component 
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1><I 

 

><>‹a 
T3G T36 G4 	 (7 )3 	TG7g 	(TG)2(2Y1)2 

Fig.5.5 Five chain conformations based on the T (trans), G (left gauche), 

and a (right gauche) staggered bond orientations. The three basic bond 

sequences T, G and G, are the only ones permitted by the principle of 

staggered bonds for single—bonded carbon chains73. 

Fig.5.6 	The possible composition of the meridional interference function 

for orientated atactic polystyrene. 	The lonE wave component arises from 

the 2.A period inherent in each chain. 	The other component arises due 

to imperfect orientation of the molecules and contains information auout 

true repeat distanceL3. 
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due to the true repeat distances along the chains which concealed the 

presence of the projected 2.2k period. 	This is shown schematically in 

Fig.5.6. 	It is suggested that the molecules have predominantly a 2/1 

helical conformation which gives rise to the observed 4.42. repeat. 

The Equatorial Scattering  

The interference function for the equatorial scattering from orientated 

polystyrene (Fig.4.28) unlike the meridional scattering did not resemble 

the type expected for an array with paracrystalline distortions. 	Fig.5.7 

shows however that this function can be separated into two components. 

The high frequency component peaks at s = 0.6, 1.2, 1.8, 2.4, 3.0, etc. 

and corresponds to the 8.85 ring which has been shown to be intermolecular 

in nature. The low frequency component is of greater intensity and peaks 

at s = 1.5, 3.0, etc. and corresponds to part of the second halo. 	Kilian 

and Boueke51 have shown that the second halo of the unorientated  material 

(4.a) is roughly independent of temperature (Fig.1.7). 	These studies 

have shown that this halo is composed of two elements which upon orienta- 

tion concentrate at the meridian (4.4) or at the equator (4.65k). 	Thus 

it is concluded that the low frequency component of the equatorial scatter-

ing is intramolecular and must arise from electron-electron vectors across 

one molecule since the equatorial scattering describes the electron density 

projected onto the basal plane. 	Fig.5.8 shows the projection on the basal 

(001) plane of the electron density of a single repeat of the 3/1 isotactic 
molecule. 	Possible vectors which could give rise to the intramolecular 

scattering observed are also shown. 	It is highly likely that very similar 

vectors would be found in the projections of other molecular conformations 

of polystyrene. 

Thus the interference function of the equatorial scattering from orien-

tated atactic polystyrene appears to contain two components: one intra-

component which arises not because the material is imperfectly orientated 

but because the molecules are sufficiently large in cross-section to allow 

intra-spacing to occur in the basal projection; and an inter-component which 

alone contains the information regarding the molecular packing in the materi-

al. This inter-component may well exhibit paracrystalline characteristics 

and Fig.5.7 shows that it may have a period of a* — 0.6r1  which requires 
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Fig.5.7 	Possible composition of the equatorial interference functibn 

for orientated atactic polystyrene. 	The long wave component is intra- 

molecular and arises not because the material is imperfectly orientated 

but because the molecules are sufficiently large in cross-section to 

allow intra-spacings to occur in the basal projection. 	The other com- 

ponent is intermolecular and contains information regarding the molecular 

packing. 
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that the distribution function for such distortions has a period of 

a ,---10.5X. 	Table 5.3 shows the Bragg spacings which correspond to the 

peaks in this function. 

0.6 1.2 1.8 2.4 3.0 

10.5 5.2 3.5 2.6 2.1 

s  (271) 

d—spacing (JO 

Table 5.2 The Bragg spacings of the peaks in the proposed 

pure intermolecular interference function of 

orientated polystyrene (Fig.5.7). 

The molecular conformation is also important in considering the 

equatorial scattering since each conformation has a different cross— 

section (Fig.5.5). 	The crystal structure of isotactic polystyrene is 

well known so let us start by assuming that the atactic or amorphous iso-

tactic molecules have the 3/1 helix conformation of this structure (Fig.5.9). 

From Fig.5.8 it can be seen that the electron projection on the basal plane 

of the isotactic molecule has greatest density at its centre due to the 

carbon backbone. 	It is to be expected therefore that the most prominent 

interatomic vectors in the material would arise from the regular packing 

of the backbones. 

An important feature of the molecular packing in the isotactic crystal 

is the presence of enantiamorphic pairs. 	Such pairing requires that the 

molecules have longitudinal register (hydrogen bonding) and separates the 

backbones by distances of --7.4X. 	This ensures that in the crystal the 

110 planes are --10.9X apart. 	We have to ask whether the molecules in 

orientated atactic polystyrene have highly developed enantiamorphic pairs 

so that the packing approximates to a distorted isotactic polystyrene 

crystal lattice which then produces psuedo 110 "reflections". 	Or are the 

molecules not in pairs but packed so that the carbon backbones are spaced 

at --10.5X? 

In a polymer in which the molecules are totally aperiodic, the chains 

are highly unlikely to have longitudinal register and may exhibit contin- 

uous shift with respect to each other. 	Here the mutual disposition of 
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Pig.5.8 Projection on (001) of the electron density of a single 

repeat of the isotactic molecule. Contours are drawn at 0.5eA2  

the broken line is the 2eA2  level (from Natta, Corradini and Bassi55) 

Possible vectors giving rise to the intramolecular scattering are shown. 

lo.5 X 

Fig.5.10 shows the molecules in the (001) projection spaced so that their 

carbon backbones are 
	

10.5k apart. 	Rotation of one molecule with respect 

to the other is required to bring the molecules to their approximate van 

der Waals spacings. 
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?ig.5.9 Projection on (001) of the structure of isotactic poly- 
55\ 

styrene for the .tic space group (from Natta, Corradini and Bassi ). 
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Fic.5.9 	Projection on (001) of the structure of isotactic poly- 

styrene for the leo space croup (from Natta, Corradini and Fiassi55) 
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these molecules is most probably governed by the weak van der Waals forces. 

Fig.5.10 shows that if the molecules in the 001 projection of the isotactic 

crystal are spaced so that their backbones are ^-10.52. apart, then they 

are further apart than their van der Waals radii would allow. 	If, how- 

ever, the molecules were rotated so that a phenyl group directly separates 

the backbones then the carbon atoms in adjacent phenyl groups would be 

correctly spaced. 	Fig.5.11 shows a packing model which has this inter- 

locking arrangement. That the paracrystalline lattice (see overlay of 

Fig.5.11) has an average translation vector of --10.58 ensures that the 

distribution function or self-convolution of this lattice has a period of 

--10.52. also. 

A very important requirement of any model of the amorphous state of 

a polymer is that it should predict its density correctly. 	It is shown 

in Table 1.1 that the density of amorphous isotactic polystyrene is -- 95% 

that of the crystalline material. 	From the unit cell of isotactic poly- 

styrene we have for the density of lattice points: 

6  
2 	o = 0.0144 lattice points per square Angstrom 

21.9 sin60 

From the primitive unit cell of the interlocking model of Fig.5.9 

1  
C 	2 	o 

10.5 sin60 
_ 0.0105 lattice points per square Angstrom 

i.e. only 73% of the crystalline density. 

Therefore this "interlocking" model with the chains behaving like 

solid rods (continuous shift) held together by van der Waals attraction 

at an average spacing of 10.5X, appears too inefficient a packing scheme 

to predict the macroscopic density observed. 

If however the molecules were to have a 2/1 helical conformation in 

the glassy state, the chain cross-section may have the general form shown 

in Fig.5.12. 	Such a shape may allow the molecules to pack in the manner 

shown in Fig.5.13. 	Such packing could well produce two average transla- 
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Fig.5.11 Hexagonal packing model for polystyrene molecules spaced 

at the approximate van der iliaals distances. 
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Fig.5.11 	Hexagonal packing model for polystyrene molecules spaced 

at the approximate van der Uaal,- distances. 
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Fig.5.12 A sketch of the probable average cross—section of an atactic 

polystyrene molecule in a distorted 2/1 helix conformation. 

Fig.5.13 A sketch of a possible packing model for polystyrene molecules 

in 2/1 helices. 	This packing arrangement has two average translations 

a and b which could easily be 	and 	In the X—ray diffraction 

pattern a 5a peak would be masked by considerable intramolecular scatter-
ing (see. Fig.5.7). 
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Fig.5.14 	Possible composition of the diffraction halos of unorientated 

atactio polystyrene. 
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tion vectors of --52. and --10X. 	Such a lattice could also yield a density 

as high as that of the isotactic crystal. 

Further work is obviously required on this point but the results dis-

cussed here appear to be consistent with the proposal that atactic poly-

styrene molecules in the orientated state at least, are packed together in 

such a manner as to produce an array which possesses a fair degree of para-

crystalline order. 

5.4 Unorientated Polystyrene 

On the assumption outlined in section 5.1 that the extrusion process 

did not drastically alter the microstructure of the unorientated atactic 

polystyrene, the following scheme for the construction of the diffraction 

halos is proposed: 

1) First halo (A) 	: pure equatorial (interchain) 

2) Second halo (4.65X) : two separate equatorial components (one inter-
and the other intra-molecular) plus a meridional 
contribution (intra-molecular) 

3) Third halo (2.1X) 	: similar to second halo 

This is shown schematically in Fig.5.14. 

5.5 Atactic Polymethyl Methacrylate 

The temperature experiments described in section 4.4 have shown that 
the first peak in the WAXD from unorientated PMMA (6.568) is at least in 

part intermolecular in nature whilst the second peak (2.98X) must be pre-

dominantly intramolecular. 

Meridional Scatter! 

Stereo-regular PMMA has been prepared in both isotactic and syndiotactic 

forms but to date the molecular conformation or crystal structure of either 

has yet to be settled. 	Fig.5.15 shows the 5/1 helical conformation which 

has recently been proposed for crystalline isotactic PMMA. An approximate 

period of — 2.2X, would be seen in the projection of this molecule on the 
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(0 ) Model 	 ;b) ;,.lode! 

Fig.5.15 Two possible models for the molecular conformation of isotactic 

PMMA. Model 1 has been found to be more reasonable from far infra—red 
N spectroscopy measurements (Tadokoro et al.)74  • 

Fit.5.16 	Possible composition of the meridional interference function 

for orientated atactic PNMA. 
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principal axis due to the repetition of the ester side groups. 	A similar 

period would probably be expected in the syndiotactic molecule. 	Fig.5.16 

shows how using this repeat the observed interference function could be 

constructed. 	The second component has a period of 	1.0 (a---6.32.) 
and may have paracrystalline characteristics, although H3(z) for this 
polymer (Fig.4.35) did not resemble a paracrystalline lattice so clearly 

as did polystyrene. 	The orientation obtained here was inferior to that 

obtained for polystyrene and would therefore probably contain information 

about true identity repeats in the molecule. The 5/1 conformation of 

crystalline isotactic FNMA would appear to be excluded on this basis. 

Fig.5.5 shows that the simpler 3/1 helix could give an identity period 

very close to 6.A. 

Equatorial Scattering 

From our experience with polystyrene, it is to be expected that the equato-

rial scattering from PMMA contains a component due to intramolecular effects 

within the projected cross-section of each molecule on the basal plane. 

Fig.5.17 shows how the equatorial interference function may be constructed 

of two components: one intramolecular which peaks at s = 1, 2, 3, etc. 
and the other intermolecular which has a period of a* —0.8 

5.6 Unorientated PMMA 

If it is assumed that no change in the microstructure of the polymer 

occurs on orientation the following scheme for construction of the diffrac-

tion halos in unorientated PMMA may be obtained: 

1) First halo (6.29a) 

	

	: three components: one intermolecular (equator), 
one intramolecular (meridian) and the other 
probably intramolecular (equator). 

2) Second halo (2.85) : two main contributions: one meridional (intra-
molecular), the other equatorial (probably 
intramolecular). 

3) Third halo (2.14) 	: all four components. 
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This is shown schematically in Fig.5.18. 	It has been assumed in this 

construction that the larger component of the equatorial scattering is 

intramolecular since experiment has shown that the second halo is roughly 

independent of temperature. 	This construction is consistent with the 

temperature observations of section 4.4. 	The effects of annealing PMMA 

below Tg  and of swelling PMMA in methanol are now discussed in terms of 

Fig.5.18. 

5.7 The Effect of Annealing Atactic PMMA Below T 

Increases of -0.5% in the macroscopic density of PMMA have been 
reported for this polymer when samples have been annealed below T for 

og  long periods
69
. When our atactic samples were annealed at --90 C for 

sixteen weeks the intensities of the first and second halos were seen to 

increase and both shifted to longer d-spacings. 	The increase in macro- 

scopic density must reflect an increase and/or improvement in the exist- 

ing order within the sample. 	This leads to an increase and possible 

shift in the intermolecular scattering which has the effect of shifting 

the observed halos to longer d-spacings. 	To investigate whether the 

intermolecular scattering in fact shifts to shorter d-spacings upon 

annealing (possible improvement of existing ordering), experiments must 

be performed on previously orientated specimens which are constrained 

from recovering or by annealing specimens which are then drawn. 

5.8 The Effect of Swelling Atactic PMMA in Methanol  

The swelling of atactic PMMA in methanol at an elevated temperature 

has been shown to result in a substantial decrease in the sample density. 

The scattered intensity from such a sample closely resembled that of the 

meridional scattering from the orientated material which appears to be 

pure intramolecular in nature. 	Thus it is suggested that in swelling 

PMMA in methanol at 60°C, the intermolecular ordering is largely destroyed. 

It is envisaged that methanol molecules force their way between parallel 

packed polymer segments and "lubricate" the chains. This has the effect 

of lowering the macroscopic density and depressing Tg  below the swelling 



162 

2 3 4 

s 	-.Zf 
INTRAMOLECUL A R 

INTERMOLECULAR 

a 

Fig.5.17 Possible composition for the equatorial interference function 

for orientated atactic PMMA. 

(I '2 f z) 
EQUATOR (INTER) 

EQUATOR (INTRA) 

MERIDIAN (INTRA) 
MERIDIAN (INTRA) 

3 

FiE.5.18 	Possible composition of the diffraction halos of unorientated PNLA. 



183 

temperature. 	In swelling PMMA at room temperature the samples were not 

rubbery and although the halos were decreased in intensity no significant 

peak shift was observed. 	This suggests that swelling at this temperature 

does not result in the total destruction of interchain ordering. 

The observation that the density decreases on swelling contradicts 

the suggestion that the solvent molecules swell only disordered regions 

and leave ordered ones intact since this should lead to an increase in 

the macroscopic density. 

Thus we conclude that swelling PMMA in methanol at 60°C results in 

the destruction of some or all of the interchain ordering present in the 

unswollen state and since the swollen polymer has the physical character-

istics of a rubber its chain molecules may well closely resemble the 

statistical random coil of the high elasticity theory. 

5.9 Concluding Remarks  

This work has revealed the complexity of the diffraction effects 

which are obtained from two common non-crystallisable synthetic polymers. 

Both have been shown to possess considerable intramolecular ordering in 

their orientated states as well as at least one component which undoubt-

edly arises from interchain ordering. 

The equatorial and meridional interference functions have been shown 

to be consistent with a scheme in which the functions can be constructed 

from a number of paracrystalline components of both intra and inter- 

molecular effects. 	That the interference functions are so composed has 

in the main prevented detailed use of the radial and cylindrical distribu- 

tion functions which have been generated. 	It was hoped that orientation 

of the samples would separate the scattering into purely intramolecular 

scattering on the meridian and purely intermolecular scattering on the 

equator so that the peaks in the distribution functions could be unambig- 

uously identified. 	However, it has been shown that even perfect orienta- 

tion of the polymers in question would not eliminate intra-effects from 

the equator. 
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The distribution functions H
3
(z) for orientated polystyrene and 

polymethyl methacrylate are probably the first of their kind to be 

generated for polymer molecules in their amorphous state. 	In the case 

of polystyrene, this function has shown that the chains have a highly 

developed paracrystalline nature which appears to require that they are 

arranged in simple 2/1 helices. 	This would have interesting implica- 

tions for amorphous isotactic polystyrene which crystallises by forming 

enantiamorphic pairs. Are the molecules in the amorphous state in 3/1 

helices which have to diffuse through the material in search of an anti-

parallel partner, or are they packed in 2/1 helices which upon crystallisa-

tion unwind to 3/1 conformations and find partners with relatively little 

diffusion? 

5.10 Suggestions for Future Work 

A few immediate areas of interest are:- 

1) Improved molecular orientation would obviously be useful particularly 

in the case of the intramolecular scattering. 	The determination of 

the correct preferred molecular conformation is central to these 

structure studies. Also orientation experiments would be useful in 

studying annealing and possibly swelling since the meridional and 

equatorial scattering could be investigated separately. 

2) Three dimensional molecular building kits should be used to construct 

probable structures so that these can be discussed more critically. 

3) Annealing and swelling experiments should be performed on polystyrene 

since the first intermolecular halo is well separated from the rest 

of the scattering. 
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APPENDIX 	A 

A Fortran IV Programme to Generate Radial Distribution Functions  

This programme was written to operate on the CDC 6400 computer at Imperial 

College. Part One was used separately to first correct and then normalise 

the experimental data. Part Two was then attached to perform the required 

Fourier transformation. 

A.1 	Part One : Data Correction and Normalisation 

Data for the experimental X-ray intensity, scattering factor for hydrogen 

and for the double scattering function Q are initially read into the pro-

gramme. The scattering factors for carbon and oxygen are generated using 

Hajdu's analytic functions as are the Compton intensities (the Compton 

intensity for hydrogen is neglected). 

The experimental intensity is corrected for polarisation and coherent 

and incoherent absorption. Using the Newton divided-difference polynomial 

(see section A.3), this corrected intensity is then converted to the 

s = (4-K/X)sine scale by interpolating at equal s intervals of 0.05. 

The intensity curve is then extrapolated by eye to zero intensity at s = O. 

Optimum normalisation is obtained by using both methods described in Chap- 

ter III. 	The Compton intensity profile is adjusted so that the two methods 

yield normalisation constants which are to within 1% of each other and no 

peak close to r = 0 is detected in the RDF. 

A.2 	Part Two : The Fourier Transformation 

The radial and cylindrical distribution functions are calculated at r inter-

vals of 0.1R and displayed in table form. The Numerical integration is 

performed using Simpson's Rule. The radial functions needed approximately 

20 seconds of computer time while the cylindrical functions required upwards 

of 300 seconds. 
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A.3 	Interpolation with Finite Divided-Differences  

Newton's fundamental formula for nth-degree interpolation can be written as 

f(x) = Pn(x) + Rn(x) 

where f(x) is the true function, Pn(x) the approximating polynomial and 

Rn(x) an error or remainder term. The n
th
-degree divided-difference inter-

polating polynomial Pn(x) has the form 

Pn(x) = f[xj + (x - xo L  )frx xo  + 	+ (x - xn-1  )f[x x 1, 	 n, n-1, "", xo 

where x, xi 	xn are (n + 1) discrete base points and 

f[xo] = 	f(xo) 

fix1, xoI 	f(x1) 	f(xo)  

fix x f[xn, x 	xj - 
f[xn-1, x  n, n-1, 	x 	 • •• o] 	 1  

are the zero, first, 	 nth order finite divided differences. 

The corresponding remainder term Rn(x) is given by 

n 

Rn(x) [ 	 I (X Xdf[X x

n, 

x
n-1, 	 xoi  

i=0 

x1  xo  

A great advantage of this method of interpolating is that the (n + 1) discrete 

base points need not be equally spaced. 
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Szl= (S PLO 	/ 	U''.3,141F.,i 
FC (I)=1 	EXP 	.....S)+1.52F0'"EXP(-1.0.0750' SS) 

1 	+0.3173" EXP i-20.3260'SS)+2.3965."'EXP(-30.7790;. SS) —r.1.1c196 

I 	+3.0566' El XF (-12,3320'SS) + 1,0743 E.XP(-25. b5-03'''sF) 40, 4.34e.  
2 CONTINUE 

00 /4 I-=1 341 
5SSr-SPLOT (I) / (4.6' 3.1.4181 
1,C, (I )= (6, C— (F(.; (I) 	P) 	OP' 	 (-1.'343i'SSS) 

/ 	.---EXF (-7.3(317' S.SS.;) )) 
COM= 	(EC (1.) 	?) / 3.0) (1.0-0.39334-  (EXPt —1.2843*SSS) 

1 	—EXP( —32.6820" 	) . 
4 CON) I N': 

• IC=0 

13 N=200 
IF (IC.EC(1) N=7 
IF (IC. EC..') GO 10 73 
IF (Ir.E.3) N=11 • 

C 	 X ANC 'Y APE 11-E INTERPOLATION ARRAYS 	 
UO 1 I=1,N 
IF 1N-.L07) CO T0 F 
IF (N.E0.11) GO TO 20 
X(I):-TTH(1) 
N'ti)=LR1I) 
GO 10 1 

20 X(I)=SH(I) 
N11)=-Hii) 
GO -10 1. 

5 XLI)=OTTF1I) 
N:1)=Q(I) 

1 CONYINUE 

AND FF111.  01410E0 UIFFERENOES 	 
1-=12 
IF tIC.E0.1) fr,=6 
IF 1N-- L(1,11) 
CALL 01- AL' 
IF (1PLA.:L.NE.0.1) 1;.1.1._ EXIT 
H11=14-1 
Li0 6 5=1,:.:M1 
L=I 
IF (1.GT.r) L=M 

6 CONTINUF 
X(Fu ANL,  10FG, Ct LL UN FNEFIT 10 	ERPOLit TE.0*• • 

IF (N.-EG, 200) LT=1. 
iF (N.EC..2tib) h'T=161 

IF (N.EQ.7) L1=1 
IF (NcE0,7) frT=:341 
IF tN,t.0,11; LT-1 
IF (r.E0.11) r.T=252 
00 56 
IF (N E0,200) XnF.G=X1 7 H(T) 
IF (N.E0.7) ›AFG=T1OCI) 
IF t*!.EO.i1) XAC:=FLOT(I) 

IF (1,G:...72) TOIC.,=1 
IF (TC.'-,E.1) IO-FCm3 
'TINTEC=E 1 E44(X,1'.IP..LF,N,M,I0FG,XARG,TPWL,N) 
Ii= 11+1 
IF (r E0-7) JJ=JJ-i1 -
IFits;.E0.?00) 
	0604.4—Or 	LE .:t-,/:+1 TER:ING -.INTENSITY 	 
IF .(N.E0.7) l'OAT(JJ)--Y.Lt.4PCSO 
IF (N ,Q(114 LL=LL41 
IF 	E0, 11) FH(LL) = 'TINTEF 

56 CONTINUE 
C 

73 I.C.1-=ICf-1 
IF (F., 	7.) GO I0 13 



* 	 , 	.1. 4 4 	• „ i ifx.4 	 •4-3,—, 	k 4.k 
G 	 GALGULAIFO 	ANkLYT1C FITTING... ..  
C 

	

	CUt•.F.—00t-.1'A. L‘N `-C11.T:i EKING GiALCI-.1._ UT ED FCOM P'NkLY1 -1(' FIii 	tor7. 	 

00 3 T=1/341 
COMP ( I) -=Lici-'7. 	I) fat's- CO 	) 
IF (I.L.E.252) 	11):nCht' (FG(1)'"I'2) +61,1' (FO(I) -77 2) +.riN4  (FH (I) " P) 
IF 	250) SGF::•., ti)=6Nk (FNI)" 2) +uNii.  (F0 (I) • /2) 

3 Geri- 11'AP' 
TCR(1) 
Tt (2)=5f:L.0 
TC-R(3)=1506:O 
TCP(4)=37'00,  0 -  
T0R(5) =6CL 0 .(1 
TCF.'cl6)6L-.00„r 
TCF. (7)=1206 	0 
TCP.:(8;=-16500, 
7r,Rt 	=2130L . 0 
TCR(1)=- 27.1.i0C .11 

4****,..4 	 4,44-44fti-4-z;-4-*4-0.44444.4 ,..4+4-41-4**i 1-VtAtitoitg 

C 
	NeFt-jiListITION 	 

C 
v-,,,-.4:4474.tft 	 +44," 	 4,4,1: ;444-Jr4417-;eft444 .4:4- 4-444, 4, 4: 

GG= P. 75 
XVA=6 024 
)0-.D=0 . 4 
XtiC=0.2 
GO=1. 

Oi1—ti.10,=THE0f,'.ETIGAL/EYPER1hENTAL INTENSIT`r 
TFAC=0 .0 • 
FE:IA(1

)
1=0.0 

IINC (1=0, 0 
00 70 I=21 161 
TF tI.LE.109) PER=1.0—XMA 4 SFLOT(I) 
IF (I.E0.10‘;1) 	FEE 
IF (1‘ LT 10S) FER=FFcR.—Xi%E",  (PLOT (I)—:PLOT (10'3)) 
IF II, 	14C;) 

 
• 

1F (I.CT.14L) PE-A.=FFEc—XtiC 4  (SFLOI 	 14t))) 
TING% 	CL.t1P (I)* FEF 

- 7G EEIA (1_ )=(::-GFF (T)+ -Flrt (T)+GOA'f)CAi (I) Y/TCk (I) 

	

t-F11-C.:0 	'W—Ki,CC.1-1-- 	 uE EOLATIOr 	 
Mt' =1 
DO 2i 	161 
SI.=SPL01 (I) 	2 
L=T-1'14- 4-1 

21 WU =`,.-- .. -4 10R (1) 4 EY.P( —TFAL 4  SS). 
K=1 
NE:P=162—i' t- 
OtL=0: U5/3. CI 
GILL S i  
00 22 I= I. r 161 
L-L=SPLOI (I) 	2 
L=I—V +.1 
11S(1) =',.)7,FS (1) +71NC(1)+GO*DSCAT(I) 

22 UtL)=-SS` i tS (I) 
K=2 	 - 
Ntte=172—i.  
0EL=t1.05/3.0 
CALL 
kt-i0-=11. 9 
)(hK=C1- Rf' (2)-2, 0' PI-40k (3. 1416'''',  2) 4 2) /TERK(1) 
00 15 1.1. 161 

15 SC.Fsii.: z---TCN(I) -t" 
I+F COHERENI 

00 23 1=1,i61 
23 Grif-i(I)=-SCr, iI) 	 —GC:0 0S7,A (I) ck-44.-i. 	 ..4-1■41-4-4t ,Ixt 4-1* 	1.-4r-44, 4.44. ,,, ,7 

C 	 • 	 I tei.: 1 NI EkFF-_,ENCE FUND IO N 	 
 a r. 	4,-* 	J-= 	4 ■-.444 	.k 	'1 1 	 lit. ,?-1! 	Av- 

DO 74 1=-1 / 1F-A. 

24 ST(I)---"SPLOT (1) /*IIF (I) 
1,■RIT.t t6,3 0 0 e 	GC 

• 00 6C 1=1/161 
WRITE (6,101) SFLOTT 	 TTS(I) SCF (I) TIF (1) /, ST TT) , 

• 1 	 I TINC(I) 
60 CORI I r40..'7. 

WRiTE. (615000) XVK 
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C 

C***4444-44-44 44-4.-*44.44.4-44+44;4'-?-4, 4Jr af.4441 1,4-4-4-4;41VY4-ilt4.44f-41#*4-k-44, 4F4-4, 11.:4-1,tA0*4 

f':(1)(1.0 
CO e) 1=e7 3131 

e K(1)=i--c(1...-1)+0.1 
00 25 1=1,3[1 
00 26 J=1,161 

26 L (.1 )=-S1 (J) 	(RI 	SFLO1 (J) 
K=3 
NUM=161 
0E1.74.05/3.0 
GALL SIMF- 
ROF1(1)=TERfrf3P2.,C/3,1416 

25 R0F2(7)=P.(I)0F1(I) 
DO 61 1=1,151 
WRITL(62.102) R(1),RLF1(i),ROF2(I),R(147150),ROF1(I4.150) tc.GF2(7+15P) 

61 0. Tr.lJt 
102 F0R.M14T (1H 	16F20.3) 

C**44-r4'44-4+44*4-. 	44.4•444.11-444-.41:4-444.,Z444-44-4.444c144. 	 4 4- ■- 4- 

e,ace 	 FOk iNP't 	OUIFLI 
- • 100 FORMAT (18(12F6,0/),11(12F6c0/),13F6c,3/7F7.2/7F7.2/) 

3000 FOPAT 	 = 
101 FORAT 	;2F7.2 7 4F12.3,F12.61F12.3) 

-5000 FORMAI (lh 	 FAUTUn = 1 F12,6) 
STOP 
ENO 

SURROL1TNE SI -vP 

COMMON R(3n3),PUF1(303),k0F2(303),F,(17)IFP(401),SH(1.3),TINC(4111) 
00risILN GCH(411.),,:.FIkt4J1).00(401),0(10).0SCAT ( 401).FCt4]1),Fn ( 4111) COF:mCW ::A,FSt4Gli f  i.J.(4C1),OUIF(10),Y1"10(401),k(401),1Ts(401) 
COt.1VuN X(207)0t207)!LT(22),XTTF(401),1TH(23A,(209),ONTu(251) 
C04.1-0t Sf- LOI t 4C1)!TC(41J1),TvE,LEt2G7112), ( NR(401),IPLO1(20-;.) 
COMMON K.LEL.N(W4TER ( 10),U(401),XTTM(251),T0f10(123)10(134; 
CUtqlON 11F(131,Li(163) 

AJE=U.0 
U0=t111:! 
NUM1=NUF,-1 
00 36 J7-2INLI-1 
P.)=J 
PJH=PJ/2.0 
JH=J/2 

IF (X.JiliksPJH) GO 10 32 
it;,:=UE+U(J) 
GO TO 30 

32  (U=U04-(J) 
30 CONITO:. 

TLKM(K)z(U(11+U(NOP)+4.1P'UE4-240 L101''OEL 
RETUF...N 
ENO 

PART TWO— TI-E FOUP1ER TPANSFORV, ATION 04000 



195 

C 

SURULITIU.E EJTALLF (X,N,TALLE,NvMpIRUEL,K) 
C 
C 	DIAELE CLI,•-PUTES THE FINITE DI VIDEO DIFFERENCES OF Y (1) .. st(N) FO" 
C 	ALL 0FUEFS r-', OP LEES ANU• STOkES THEN- IN THE LOwE ,P TRIANGtei LA F.  
C 	coRTICN IF 1FE FIFST N ',".;OLUtnNs nF THE FIRST• N— i FrikiS,' CF TH,- 	11Tc... 1? 
C 	Tr ELE. FrN iNCONSISTENT Llt-,,Gwv,ENTS. TO.Ii..L=1. 0 uii EXI1. 0.THER k4.1 F. • 
C 	TRUE L=0.r: ON EXIT. 

DINEN - Iuu.4 X (N) 7  )' (N) y TABLE (K,K) 

.....CHrf7K FOF,  AF(Ut-  ENT CCiNSISTEN0 	 
IF (M.Li .M) GO TO 2 
TPUOL=1.0 
F.EIURN 

	cALCULkTE FIk<1 ORDER DIFFERENCE 	 
2 Nv1=N—.1_ 

(00 3 I=1,NM1. 
3 TAPLE(1,1)=(Y(I+1)—_1(1))/(Xl1+1) — X(I)) 

IF (M.LE.1) CO TO 6 

......CALCULATE HIGHER ORDER DIFFERENCES 	 
CU 6 J=2IT 
00 5 I=J,W/A. 
ISU=I+i—J 

5 1i.2..LECI,J) 	LE(I, J-1) —TAF LEI1.7.1,J-1) if (X (1+1)—X ITS('EJ) 

6 IFOPL.--,  il. 
RETURN 
EMI 

C 
C 	FNc. 	ASSL"ES THAT X (1) ...X (M) ARE Ll ASCEMDlisG ORUEK 'A: Mb F1 ST 
C 	SGAN;) 11-11-  X VECTOR TO OE TET,  OI NE WHICH ELEMENT IS NEAf; ST ( .7,E.1 
C 	THE INTFEFOLAI ION AF G(.t1ENT 1 ;eAR.G. YE.E.  I OCC +1 F. 0 ''F. POT M1 	NFEI '70 
C 	Rje, I FL i. V4 LimI TUN t".F 1 H -  DI ViDc G CIF F.-_ kt-  MC E P:JL 'y MuMD' L OF 1.-j; GPE C 	IDECti Al' F 1 FE N C;-  NT -.ED AE OU) 1 HE CHUSEN :LET:ENT PITH ThE t -7-  GESi C 	WITNG 1:- E SYS7E1F1 rAX. IT IS ASSIP-:Eu lAT THE FIEST ti OT1I6F0 
C 	DIFFEFENLES HAVE E-F.M COMPUTED 2Y THE E.LE3i:OCIINE CITABLE giln APE C 	ALPELY 3t3  IhE M1it71X i- E.L.E.... YoX IS GH,- KrC :) INSTRE TE4T Ll. 
C 	kE OUir- t D EASE POINTS 1: -< 	A VAILA '-:-LE, ANo THE INTEF, FLA_Au T TALLJE  IS C 	COMPUT FU USING NE:S1E0 P:JLINUVI!ll EV. LUATIuN. 11E INTET, ROL ANT TS 
C 	RFTEJ NED AS THE VALUE OF THE FUNCTION . 	FOk 1 NCON71'.:1 EN4 A:- r;1)MEN7 F 
C 	1FUPL.-- 1.0 ON E X IT 	01 hi:7 mW1S, , 1 RuE.L=0. 0 ON .EXIT-. 0L-;FNSIu1 X (i) 0 (V) 9 7 Vfl_E (KIK) 

C 	 CHECK ECR ARGUMENT INCONSISTENCY...,. 
IF (10Eu.LE.fr) GO 10 2  
TRUEL=1.0 
FNEWT=0.0 
FETUEN 

C 
C 	 L., 1E I VI i:F, P( Li 6fi 	VALL'E N't 

	

	 X-1, 10 C3) 
(1117-r.7.LE.1 ) (-0 Tr 13 

I0EGM1=IrEG-1 
1:0 12 I,  I t  II.JE(:,E1 
1St! B1= 	T 

I E — T 
12 YEST=`t. E.S1 4  A4kr..;•-.X (ISULD +TAC LECIUF:1-1.ISUE,21 
13 hOfE. I:'MAY—IC'EL • 

T RtYL2Lz 0, 0 
FNF-A1-=`' 	(X4FC-- X tlS1) ) 	(IStIE1) 

FUNCYION FNEW1 (X,Y,It3LE,N,M,IDEGOARG,tRU3LIK) 

C 
C 	IMS(E THAT kLL 	DIFFLF:NOES ARE IM TAEL..... 

IF (t- AX.C.IC:7.C) :)=IDLC+1 
IF (M'X.I-T.N) I.LX=N 

C 
C c EDE OH X VECTOk FOR ELEN NT .Gt. 

2  DO 4 I=1,t;  
4 IF 	.Yf.RD.LE.X LI) ) CO TO 5 
5 MAX=I+10FG/ 2 

EIVL) 
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A.5 	Index of Array and Variable Names 

AC1 	Coherent absorption correction 

ACM1 	Incoherent absorption correction 

BETA 	Firstnormalisationp 	
2 	

I Inc expt 

CC 	Compton scattering intensity for independent C atom 

CK 	q = 0.04852Q (3C'h2 - 4D x3) for C atom 

CM 	2p +LF 

CN 	Number of C atoms in the monomer unit 

CO 	Compton scattering intensity for independent 0 atom 

COH 	Coherently diffracted intensity Icoh  

COMP 	Compton intensity for the unit of composition 

CR 	Experimental intensity corrected for absorption and 
polarisation (2e scale) 

CT 	Uncorrected experimental intensity (input data) 

DEL 
	

h/3 where h is the interval used in Simpson's method of 
numerical integration 

DSC 
	zo2v 	A.

J
u.
J
iml) for double scattering equation 

DSCAT 	Double scattering intensity 

DTABLE 	Subprogramme to compute finite divided-differences 

FC 	Atomic scattering factor for C atom 

FH 	Atomic scattering factor for H atom 

FNEWT 	Subprogramme to determine the interpolant value YINTER 

FO 	Atomic scattering factor for 0 atom 

GC 	Fraction of theoretical Compton intensity used to obtain 
best normalisation 

H 	Atomic scattering factor for H atom (input data) 

HK 	q = 0.04852 Q(3C N2  - 4D >s) for H atom 

HN 	Number of H atoms in the monomer unit 
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IDEG 	Degree of the divided-difference interpolating polynomial 

M 	Order of the divided-differences of TABLE 

MI 	Parameter used to approximate TINC 

N 	Number of elements in the array to be interpolated 

NI 	Parameter used to approximate TINC 

OK 	q = 0.04852 C.(3C 7.2  - 4D )3) for 0 atom 

ON 	Number of 0 atoms in the monomer unit 

PC 	Polarisation correction 

PK 	q parameter for the unit of composition 

Q(b,q1 9 'IA) Double scattering function data 

QTTH 	29 for input values of Q 

R 	Radial distance in Angstroms 

RADF 	Degrees/radians conversion factor 

RDF1 	Reduced radial distribution function 

RDF2 	Reduced radial density function 

RHO 	Macroscopic sample density 

SCR 	Normalised experimental intensity corrected for absorption 
and polarisation 

SOPS 	 fo  E.1 .2 for the unit of composition 

SH 	s for input values of H 

SIMP 	Subprogramme to perform numerical integration by Simpson's Rule 

SPLOT 	s = - 2= sine 
)• 

ST 	s(I _ 	f2) 

Specimen thickness 

TABLE 	Finite divided-difference table 

TALPHA 	2e where e is the Bragg angle of the monochromator 

TCR 	Experimental intensity corrected for polarisation and 
absorption (s scale) 
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TERM 	Simpson's formula 

TIF 	Interference function I - yl f
2 

TINC 	Compton intensity corrected for monochromator cut off 

TTH 	Diffraction angle 29 
--, 2 

TTS 	)Ljf + Id.s. + I comp 

U 	General function used in subroutine SIMP 

V 	Linear absorption coefficient y 

1o W1 	Beam height (A) at sample (for -6- divergence slit) 

W2 	Beam height (A) at sample (for 1°  divergence slit) 

X 	General function used in DTABLE and FNEWT 

XARG 	Interpolation argument 

XMA 	Parameter used to approximate TINC 

XMB 	Parameter used to approximate TINC 

XMC 	Parameter used to approximate TINC 

XMK 	Second Normalisation Parameter (Krogh-Moe) 

XTTH 	s values corresponding to TTH values 

Y 	General function used in DTABLE and FNEWT 

YINTER 	Interpolated value 

Z 	211Z.2 for the unit of composition 




