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Abstracts

Part 1 Dynamical symmetry breaking of massless

Yang-Mills theory

We investigate dynamical symmefry breaking
D.S.B. of massless Yang~Mills theory in the context of SU(2).
Within the approximation scheme we are using, we possibly
find dimensional transmutation. More precisely, this massless
théory with only one coupling constant g acquires a massive
spectrum spontaneously provided the eigenequation for gz
has a positivé solution. The generated mass decouples from
the theory and has become a dimensional parameter, i.e. taking

place of the previous dimensionless parameter g which is now

'subject to constraint.

Part 2 Phenomenological applications and Renormalisation

of scaling theory

We explore the scaling behaviours of inclusive
and exclusive processes alike using two approaches: (1)
Quark model fits in well with phenomenology and the idea of
anomalous dimension which, besides its phenomenological
significance, is more linked with renormalisation. (2)

Operator product expansion gives generalised scaling rules



on a model-~free basgis. We also add a few remarks on the

scaling rules of renormalised theories.

Part 3 A joint paper on Conformal invariance and

Helicity conservation

By reformulating conformal invariance in terms
of differential operators acting directly on helicity states
we are able to establish the restrictions placed by this
invariance on the helicity amplitudes for the scatteriﬁg of
four particles of arbitrary spins. The result is helicity
conservation in the form A +Ay;=X;+ )\, except for exceptional
amplitudes ihkrﬂfl’ Whigh survive, subject, however, to a
differential constraint. It is conjectured that traces of
these restrictions will survive in hadron physics at fixed

angle and high energy if indeed the underlying dynamics is

asynptotically free.



Table of Contents

Abstracts.......

s 8 e 0 o

Table of Contents.....

Preface....cc...

s 6 o o o o

Acknowledgements......

Overall Introduction..

Part 1 - Dynamical symmetry breaking

(1)
(2)

(3)

(4)

App.1l
App.2

App.3

massless Yang-Mills theory..

Introduction..

* * e 0 00

Ward ITdentities..eeeeeeee.enn

Schwinger mechanism and

Dyson equationsS......oeeuvuee.

Decoupling of Goldstone boson poles

from S matrix....ceeoveeonvenss

.

Goldstone boson pole coupling functions

and approximations...........

Conclusion.......

Notations and Feynman rules for

massless Yang-Mills fields.......

Dyson equations and Bethe-Salpeter

equations....

The coefficients for the constraint

equation on

References......

and

DA ]

e 0 0 8 ® o s o

Page

(o) = N

-3

12

13

16

21

27

33
Lo

43

L6

L8
51



Part 11 -

(1)
(2)
(3)
(%)

Part 111-

(1)
(2)

(3)
(%)

Phenomenological applications and

renormalisation of scaling theory

Introduction.se s vt i it crenosonnnenses

Scaling rule and exclusive proces
Scaling rule and inclusive proces
Operator product expansions......
Renormalisation......cuoceeiuvceeoosn
Conclusion....eeeerieeenonnreneen
References......oiiieierennnnnons
A joint paper on Conformal invari
and helicity conservation......;.
Introduction. ... ov i nnnn
Helicity formalism for Conformal
OPEratorS.e e ieerereenoesosnscnnes
Restrictions on T-Matrix.........
Outlook... it ieivniearsonnonenns
Appendix..i. oo inneonsnnveonersas
Addendum.......0vou... e s e

ReferencesS . v e eenrcenerrnnccoeens

SsesS..

ses.

L

52
53
25
29
68
75
8L
86

87
88

89
92
96
98
101

1ok



Preface

The work described in this thesis was carried out
under the supervision of Prof. T.W.B. Kibble bhetween October
1972 and June 1975 in the Department of Physies, Imperial
College, University of London.

Except where otherwise stated, the material contained
herein is original and has not been previously presented for
a degree in this or any other University.

The first part on dynamical symmetry breaking was
carried out in the expert guidance of Prof. T.W.B. Kibble.
The second part on the application of scale invariance and
renormalisation was a continued investigation of this symmetry
after my first study year with Dr. H.F. Jones, whose kind
permission to include here a joint paper co-authored with him
is greatly appreciated.

I wish to express my sincere appreciation to the staffs
of the theoretical group, for their warmth, friendliness and
their contridbutions to the facilities and the wvaluable atmosphere

here in Imperial College.which I have enjoyed greatly.



Acknowledgements

I wish to express my gratitude to Prof. T.W.B.
Kibble, for his great kindness, many wise advices and his
criticél reading of the thesis.

I am very grateful to my mother and Lai, for
their understanding, encouragements and substantial assistances

without which I could not have completed my study here.



Overall Introduction.

It is well known that symmetry principles,
whether they are of the kinds corresponding to space-time
transformations or they are of a more intrinsic nature
connecting seemingly unrelated aspects, always provide us,
in as much as orders and clagsifications, the best possible
understanding of nature's laws on the deepest levels.

Of prime significance is, perhaps, gauge symmetry,
a symmetry that requires invariance under 'rotations'
performed independently at each point of space-time. These
'rotations', instead of connecting states of different spatialr
orientations, graup particles of the same mass values into
families. The bold attempt of Salam?gnd Weinberg)to put
photdn and W particles into the same family using a gauge
symmetry group is very attractive: in this way the two kinds
of interactions, the elctromagnetic and weak interactions,
become unified. But how did they answer the mystery about
their big difference in masses? They used Higg's mechanimn?)
the use of Higg's scalar particles in the Lagrangian in
order to induce sﬁontaneous symmetry breaking. The photon
corresponds,in their models, to the unbroken gauge subgroup
U(1l) of electromagnetism and hence has mass zero, while

the W particles, associated with broken gauge symmetries,

pick up large masses from the symmetry-breaking.



With the understanding of the power of. the
spontaneous symmetry breaking, recent efforts have been
centred around extending Higg's pioneering work on
spontaneous mass generation., It is conceivable that these
Higg's scalar particles, though sufficient to induce symmetry
breakdown, ma& not be of primary significance. It should
be possible that spontaneous symmetry breakdown can occur
in the absence of these scalar particles, for instance,
as effects of higher order processes involving virtual
Goldstone bosons. In this mood, models on dynamical broken
gauge symmetries flourish. We shall discuss in part one
how the simplest non-abelian gauge theory consisting only
of pure massless Yang-Mills fields can acquire. mass via
the Goldstone mechanismfﬂ The result is encouraging.

It supports our belief that in the near future we should be

able to develope a more general formalism to deal with

spontaneous symmetry breaking theories, some method that

can work for general fields and give the familiar features

of spontaneous symmetry breaking in scalar field theories.
Tﬁere are other symmetries we like to discuss

too, the scale and conformal invariances. In constrast to

the previous case of bréaking the gauge symmetry to generate

mass, we work in the assumption of strict scale and conformal

invariances, the symmetries that require zero mass. Presumably

this requirement is approximately fulfilled in high energy
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scattering phenomena and it should be rewarding to be
able to identify the underlying principle to the diverse
and seemingly complex data. Again, symmetry is the answer
to the corresponding power rules and.'scaling rules' in
the high energy regions for the exclusive and inclusive
processes., It is the scale symmetry. To our surprise,
though, this invariance, giving general predictions consistent
with the phenomenological data, seems to indicate that
high energy interactions proceed via the basie entities
which are asymptotically free.

The last part is concerned with conformal
invariance, where we work with massless fields. It can
be easily obtained, based on the auxiliary represenation
(s,0) + (0o,s) of the Lorentz group for spin s , massless
fields, that the representation_of the Lorentz transformations
on helicity states of massless particles is given in terms
of the rotation angles of Wigner rotations. By considering
the mathematical properties of the generalised spinors in
(s,0) + (0,8) , it is interesting that we can extend the
helicity representation of the Lorentz group to the Conformal
group. With the use of this helicity formalism, conformal
symmetry has its own prediction for the helicity rules in
high energy scatterings. Hopefully these can be verified

by the experiments in the future.
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Part 1 Dynamical symmetry breaking of massless

Yang-Mills theory

Abstract

We investigate dynamical symmetry breaking
D.S.B. of massless Yang-Mills theory in the context
of SU(2). Within the approximation scheme we are using,
we possibly find dimensional transmutation. More
precisely, this massless theory with only one coupling
constant g acquires a massive ‘speétrum spontaneously
provided the eigenequation for gahas a positive solution.
The generated mass decouples from the theory and has
become a dimensional parameter, i1.e. +taking place of
the previous dimensionless parameter g which is now

subject to constraint.

12
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Introduction

()
Quite sometime ago it was realized that a

Lagrangian can admit a symmetry which is not a symmetry

of its physical Hilbert space. This happens, for instance,
when we have symmetry violating vacuum expectation values,

or, symmetry violating n points Green's functions. Then,
invariably as a result, massless excitations ( Goldstone

bosons ) occur which, on combination with massless vector

gauge fields, produce massive vector meson particles. Thus
symmetry breaking theory provides us a mechanism for generating
massive spectrum.

Previous investigations of spontaneous. symmetry
breaking theories have been centred around scalar fields.
Higgg? Kibblémand others introduced mass term of canonical
scalar fields 4) of wrong sign into the Lagrangian for

<P to develope non-vanishing vacuum expectation value.
Jona—Lasiniéggeveloped effective potential method in which
the minima of the effective potential give the true vacuum
states of the thecry. This method is especially suitable
for scalar fields theories, as exanmplified by Coleman and
Weinberg: They go beyond tree approximations and show,
on inclusion of one loop corrections to the effective
potential, that spontaneous symmetry breakdown can occur
as a consequence of radiative corrections, i.e. of a

dynamical nature.
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In order to progress from the scalar field theories,
we investigate spontaneous symmetry breakdown due to
symmetry violating n points &Green's functions which
specificly arise from Goldstone mechanism of a dynamical
origin, i.e. in the absence of sclar fields in the
Lagrangian. Approach along this line is involved with
finding symmetry breaking solutions to the wvarious integral
equations in the theory and usually one thus needs to
use judicious approximations. In the investigation presented
in below, we mainly model the argument for this simplest
non abelian case after the abelian case by Jackiw and Johnsoéﬁ)
We explicitly introduce Goldstone boson couplings to the
Yang-Mills particles so that they produce a massless pole
in the Yang~Mills polarisation tensor nﬁf. This in turn
generates kz# 0 pole in the Yang~Mills propagator and
consequently mass for the Yang-Mills particies.

The presentation is again parallel to the abelian
case. In section (1) we write down the Ward identity for
the generating functional and then derive from it the Ward
identities for the Yang-Mills propagator and the Yang~Mills
three points vertex. The latter Ward identity is used
to show the relationship between this vertex and the symmetry
breaking solutions to the self energy. In section (2), and
more in appendix (2), we display the various Dyson equations
and Bethe-Salpeter equations. These equations essentially

govern the behaviours of the coupling functions of the
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Goldstone bosons to the Yang-Mills particles and to the
ghosts. In section (3) we develope the criteria for
decoupling of these massless excitations from the physical
S matrix. It turns out to be a satisfied requirement on
the residue of the massless pole in ?;E. We consider
some examples showing that the number of Goldstone bosons
equal to the number of Yang-Mills particles which have
obtained mass through this symmetry breaking scheme. In
section (4) we consider explicitly an approximation and
compute for a non-trivial solution. We find that the mass
value in fact decouples from the theory. In the conclusion
we further comment on‘the mass value and extend our consideration
to the mass ratios for theories which contain many fields.
Appendix (1) gives the various notations and the
Feynman rules which are employed in the four sections.
Appendix (2) displays the Bethe-Salpeter equations.
Appendix (3) gives the coefficients in the constraint

equation on Y and g%
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(1) Ward Identities.

When we are considering massless Yang-Mills gauge.
theories, we have Ward identities as a consequence of gauge
invariance of the Lagrangian. As result, the Ward identities
one obtains usually depend on the gauge conditions, which
should be so chosen as consistent with the second quantisation,
In light cone gaugé&using a light like four vectors ’q#
and'%p-ﬁﬂz 0 , we have considerably simplified Ward identities.
This is because there are no ghosts in this gauge. The
drawback, however, is that loop integrations in momentum space
sometimes lead to unmanageable ( at present ) divergences:
of the kind like jaLdO( » where A is Feynmann parameter. 1In
the covariant gauge T%LRM= 0 » the Ward identities become
involved with ghost entities. We adopt this gauge in the
text, as we only need the Ward identities for the Yang-Mills
two points and three points functions, which are still quite
simple. The Ward identity for the Yang-Mills two points
function is used later to derive the form for the propagator
:D;Q and to show how the Schwinger mechanism works. The
Ward identity for the Yang~Mills three points function 17:52

illustrates explicitly the relation between its pole structure

o
and the isotopic symmetry of the polarisation tensor T Q.

).l
Let us derive the Ward identity of the generating
(%
functional a la Lee and Zinn-Justin. The gauge transformation

is

] :
¢ = P+ [qu’i N Aoi(:"?«'
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where .ﬁ]

and..gd is space time dependent parameter of the Lie group.

is reducible representation of the generators

Also let ’
M _ dFx 3‘13 QFo{ CP
Ag »a““cp‘ @”‘ aqb
with F(P)=a, specifying the gauge condition and &4
' o
independent of ¢; and 9

With these definitions we can begin with the generating

functional

exp i[W(m] = [[dpldet™ - .Exp:IscCP)- ;’F T+ ¢ 71 W)

(‘l)
as defined by Lee and Zinn-Justin. Hére: SKP) J~d X - Ltéﬂ

2
and the term -i,le o is a weight function.Also, [dq’] thM

can be simplified by.usihg‘the"techniqpe“of Faddeev and Popov
i.e. by introducing ghost fields. This is best reviewed

3
by G. 't Hooft.

This generating functional is independent of Gy - Now

let )\dzgap{:t SFO(((P). Assuming L[dé] detM; s independent of

a)
G, , vhich is in fact proved by Lee and Zinn-Justin, we

have

exp ilw(m] GW(T) ,aaadf[dqﬂ det M exp 5[5(43)*;'-{, E2+ 47 ]

= [Tdd] det M ox? .-;:ucp)-;?&z +4.3.] [w%.pdg;-algi]
= O,

Also, as a@faﬁfa‘p‘/aa and .
“1q Fa -
90“’: Md/ng ‘](g [gqy :;’][M Jﬁy )
we note that

"(‘_2__@!" = a¢l’ [-M"IJ

R AR T
B - ST T AT @
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Thus we have the Ward identity for the generating functional

f[dd:‘]de’cM e*fhtwb) -LF, +J'cp 1} { —-;: +3’t? 4, +A ] [M—'Jé’o{

Putting it back in terms of W(J) we have

{'%&(‘BT ,ITP'3T+A5][M (,?T ﬂ*}equ[WCﬂJ o

where we have included the arguments of Fol and M. This

equation gives rise to all the other Ward identities of the

Y
fully connected Green's functions \\! “. In the specific

gauge Fo(——a‘ACP , this equation becomes
3 -
2 lexpiW(T)=0. (%)
{3 ’af*é‘ﬁ,*#d:f:rwtacf -i9Ceip 5 € g

where G)' {1,3)—- Yis the ghost propagator satlsfylng

[- a, EP + '3 d CdPP 'aj'ﬂ(x)] G (1’3133-) de54(¥ P 5)
which is actually eqn.(2) in this gauge.

Now we can derive the Ward identities for the Yang-Mills
two points and three points functions. The general rule is
to use appropriate differentiations of eqn.(3) and then put
the extérnal sources equal to zero. This thus gives the Ward

n
identities of the fully connected Green's functions ?W/ax;a 209Xy

x -nx
which is usually denoted as W > " 15 obtain €he

Ward identities of the proper’ (- one. particle: iAI.‘r'edﬁ.lﬁible'.)
9 g .t xx cux
vertices TR In one can use the expressions of W Y2
y&‘]l"'yh
T

in terms of ,. 1.2

x‘x ucx :
W 2 o= Z all 'trees!' with n externax"l vertices K,lth

vertlcesT @ ' branches W=
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We can easily deduce that the longitudinal part of
the vector propagator J)g is unrenormalised by applyingd

Z&J“S)I
to egn.(4) and using eqn.(5). Thus

: hy
’(f,‘/* k,,DNclo = J;P .

That is, D;S can be put in the form f 8
2 d
'Dpck)_—\[(ﬁv kk D(qk k" e d ]
This will be used later to illustrate the Scawinger mechanism.
In the abelian case using fermion field the proper vertex
functionﬂi}”(lpﬁp@ associated with T;u satisfies a Ward identity
8T (h pr =10 S(P+ ) + Zp*]
with Z(’k) the self energy of the fermion, ie. T;'u(h 19-!-2)
has a pole at g = 0 when the self ener.g,y has a symmetry °
breaking part. This is obvious beéause
L;m?_)ofﬂ 7', pre)=i{s®, TP}
It is interesting that in pure massless Yang-Mills case.
the same kind of relation holds between the symmetry of the
self energy and the singularity structure of the three Yang-

Mills vertex., This is best seen in the light cone gauge. The

vertex function satisfies a Ward identity

Y
kp ),w@”r,fv r)= d/‘ié"{b(})] -[D “’)]}LV}

where :Df‘ is Yang-Mills two points Green's function in
this gauge. As a check, one notes that this equation should

be satisfied by the respective bare gqguantities.

The corresponding identity in covariant gauge becomes
involved with ghost entities. Nonetheless the conclusion
should be fairly the same. It is showr&q)in this gauge that

this Ward identity can be simplified to result
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Lim g KT Chpr) & LT, mepI]

with T(p) polarisation tensor and (T"')ﬁy = 'Eo(/gt"
This explicitly shows that when #ﬁg has a global symmetry
breaking solution, Tﬁﬁ: has a pole at k = 0 and vice versa.
However, this vertex can still have a pole at k = 0 with
unbroken global symmetry. More precisely, massless poles

2

with kX = 0 and k # 0 can exist in .the:Yang-Mills thrae-
points vertex independently of the symmetry nature of the
self energy solution.
In fact, we can go beyond this. Because of the more
varieties of elementary vertices in the massless Yang-Mills
%
theory, viz. three Yang~Mills vertex, four Yang-Mills
vertex, one Yang-MillSand two ghosts vertex, it is quite
conceivable that one could have symmetry breaking and dynamicsal
generation of mass with j::]Z}"‘ =0 ; That is, massless
poles need not exist in Tﬁv( at all for Schwinger mechanism
to work. We shall give the formula for the pole part of
oY . . .
M in the next section and this point can then become

more transparent.

* Here Yang-~Mills means Yang-Mills particle.
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(2) Schwinger mechanism and Dyson equations.

We will now write down the explicit form for the

Dié

Yang-Mills propagator ,ﬁ“ . This 1s essential because
the Yang-Mills particle mass is the location of the pole
B
in I%y . This choice of definition for mass is
preferred, because it is gauge invariant. For instance,
the other definition of mass as the value of inverse
p?opagator at zero momentum is, in general, not gauge
invariant. These two definitions coincide for first order
calculations, but. they differ when we go to higher order

effects.
In external J, the complete Yang-Mills propagator

can be written in terms of the polarisation tensor Tﬁe ’
o o df ¢ 4, ogd' o dB 2t BBy,
‘D}*g (64370 = D otx-y> +{a343 Dy (x 3)7t/h,v,(3,3,T)DW,(j;'jJ)

o -t
where T 1is the bare propagator. By applying(D) to the
-1 )
left and (D) to the right of this integral equation,

we have ' o

ol T R (- B 8 (6)
- i {- .
T[/wclo n[D(k)])w-r [D k)]jn,
This together with the fact that the longitudinal part

£ Do ; normalised imply that Tho|_ 1
o w 3= p is unre ma ply a v ﬁols
transverse, ¢ k
o _ Y
Tfpftk)— -l[j}m‘ I

Hence, the inverse of eqn.(6) gives

1Kk k2

2 . -1 B
:D;ftk)':—i{[f]}w— %L:Y] LI+ klﬂ(ka)]dgf%ﬁ } . &)
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Let us look at its transverse part. When TCdFLkz)
has a k2= 0 pole with non vanishing residue, say'R,

o

the previous kX = 0 pole in PP“ is then evaded. MNoreover,
using the approximation where only the pole term of deck”
is kept, we find that the Yang~Mills particle acquires
a mass /A with

)4z:°~R.
This mass formula will be used very often later. This
mass generating mechanism, i.e. a seemingly massless
particle acquires a mass because the vacuum polarisation
tensor has a pole at zero momentum transfer, is called
Schwinger mechanismn.

The now familiar Higgs mechanism provides a special
realisation of the Schwinger mechanism. In those examples
a canonical scalar field, already included in the Lagrangian,
has a non-vanishing vacuum expectation value. This vacuum
expectation value thus gives rise to tadpole contributions
to 7 wnicn produce a pole. Here we aim to make
such a pole occur for purely dynamical reason, i.e. in
the absénce of these canonical scalar fields. In other
words, we are more interested in a dynamical symmetry
breaking scheme; Dynamics gives rise to a zero mass bound
excitation which at the end decouples from the physical
S matrix and gives mass to the Yang-=Mills particles.

In order to explore such a possibility, we first

look at the Dyson equations which relate the various
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o
Green's functions. The Dyson equation for ﬂ;g ,

similarly for other two points Green's functions, is

also

obtained by taking -gj I=of the Schwinger functional
equation for the Yang-Mills field coupled to its external
source J, where the Schwinger equations are derived by
applying stationary action principle to the generating
functional. The Dyson equation for 75:5 , after taking

%%} of equation (l), is diagrammatically

S
>0,
w K2

ol
variation &%Nand

flf(’b‘bT) ="i'

+
o~

ul"

where we have included the tadpole diagrams. At J = 0,
these tadpole diagrams in fact do not contribute. This
is because <A/‘*(°)>’T=o=°’ which can be easily seen by
putting J = 0 in the Ward identity for the generating

functional.
S €

can
}4\1

arise from a massless intermediate state which couples

Thus from here we see that a pole in

to two Yang=-Mills particles, three Yang-Mills particles
or to two ghosts. That is, this massless excitation
( usually called Goldstone boson ) must have nontrivial

couplings like



2k

~

P2 )——%E) Py '

We denote these coupling functions with suppressed

indices as Pz ’ P3 ) P9 respectively.
Analogously we can write down the Dyson equation

for the three Yang-Mills proper vertex
—o( = < ++~<@T - =]
’ 5 +1+-Co—

< +iAO+

This is interesting because we can read from it the pole

part of this vertex.

Let us introduce Aua with the meaning
= Lim fi—%--«ﬁgﬁ@-*‘-’“ ] @)
Mok PR 6

Also let us use for the Goldstone boson propagator .Ih$(k)

iel
1Cab where the factor dhb can be chosen to suit

-
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our interests. For instance, for a global symmetric

theory, we can simply use dab" E&h . On the other

hand, we can assume that there are only two Goldstone
bosons and use Qb_.S' 3 b3 This latter thus
corresponds to a broken global symmetry theory.

Thus, the pole part in this proper vertex is

given by

> l =d k P ;v
N - -E d),..
?Ole / r ")

= Dok + O] c=idy, /6 P wztl”)

One thus observes the explicit appearance of P2 in this

residue.
Also, the pole part in /de can be easily written
down. It follows from using the definition eguation for
Ad& at each end of the polarisation tensor. Thus,
<P i 5] Zab[ Ak, +OCR
= ~iPga ku + OUD ] + O3],
ﬂYlFoLe aa M k"[ ﬂb y

Hence, we can write, because of its transversality,
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1+ higher order terms.

On substituting this formula without its higher order
terms into equation (7) , we can give the mass formula
for the Yang-Mills particle. It is
Mjﬁ = D Aoy Mg (1)

Thus, we see that we can have dynamical generation of
mass provided 7\0(&-?5" o . However, this condition is
not sufficient for a massless pole in the proper three
Yang-Mills vertex. As it should be clear from above,
this also requires nontrivial P, solution. That is,
massless poles need not exist in T;ﬁ?é at all for
Schwinger mechanism to work as we have mentioned before,.

We give the other Dyson equations and thé derived
Bethe-Salpeter equations in appendix (3) . Any non-
trivial solutions for the Goldstone boson coupling
functions should be made consistent with them. Before

doing the actual computation, let us look at another

problem.in the following section,
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(3) Decoupling of Goldstone boson poles from S matrix

In this section we will develope the criteria for
decoupling of these massless poles {( Goldstone boson poles )
from the physical S matrix. This is essential because
these massless excltations, though responsible for the whole
D.S.B. scheme, do not correspond to physical particles. 1In
order to fulfil this requirement, thus we need to look for
complete cancelation of pole diagrams.»

The first step is to decompose the full on mass
shell amplitude A, into three parts :

(a) part which is regular i.e. pole free, and 1 particle
irreducible.

(p) part which contains those diagrams with massless poles
say, at q?= o .

(¢) part which contains those reducible diagrams with %ﬁft?)

That is, in diagrams they are

+deh TV
ORI -
) Reg 'Jd ’I\l
A Rw [ Pd Ain AJ-H

The next step is to take a diagram from part (b)
and choose a corresponding diagram from part (c). Two

corresponding diagrams are those diagrams which become
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each other upon replacing a massless (toldstone boson
pole with a Yang-Mills propagator, or vice versa. For

instance, we can consider the following two diagrams:

I A, A

Jti

The amplitude for the first diagram is easy to

a b 1o0a
compute. It is P; Dab PJ . (50e)
The amplitude for the second diagram, however,

takes more analysis. First we note that its vertex A}”

and similarly for the other vertex contains a regular

part and a pole part at q?= o . The pole part arises

as results from such diagrams like

Koo lo . * P |

M
Thus, A; 1+ Reg 1+

1+ Pole

and we can write

M A
Kior loore = B Daw Pt T

}Q
Now before substituting this form for HAjsy into the
: . . AT < B
amplitude which is AH1:QMv AJ+| , we note that

we need only retain the ka term in the Yang~Mills
of
propagator :?Nv . This is because the on mass
shell vertices are transverse and cancel with the kﬂky
o
term in va . Hence, we write the amplitude for this

diagram as
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(a.ﬂ) ( ) CA )™

""—'—'----—-—‘-

?*Z 99
. M .

However, as the pole part in Ai+t contracts with the

rightmost vertex and cancels it, we are left with

(B"Hf;eg [ ?’»4_? 7!'(? )J (A
— M
B (A’“j;es 77+ ntf )J [<Ajs Rej (A dpoge ]

M

Aiped ~i Y . ~i ]
i R"ff [9‘7*7‘1:(7‘)} <AJ*')993* (AH")H f?“ﬁr(g‘)] (AJ"")PoLe

-l

= (A [W)] ( "“)'32? (”n\) [f*f (z‘:l(uﬂ&é eb)

The last line results because

M M
(Aﬂ-l) = ( Hi-ﬂ) - ( Aiﬂ)pole
and A,.ﬂ contracts with (%‘H)‘;ole and cancels it.

Thus, the two corresponding amplitudes,
equations {(1¢a)and (lOk), show that the pole part of the

second diagram cancels with the first diagram provided

[ )\MIZ/(Z ertzn] P Dbb 2 =P qu?

2
for @ = 0 . Here Dac.' is the {7oldstone boson propagator.
2
We specify the region of interest : q = 0 , where these
massless poles dominate the S matrix.

The L.H.S. of the above condition, seemingly

containing double g = 0O pole because Dga’ appears twice,
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in fact after cancelation with q?in the numerator is
a single q?= 0 pole. We remove the pole coupling functions

and then the equlvalent condition becomes

Daa’ Ay l 71+ EK(ZZ)] “f b D Kb = Dap
Multiplying this with (D ) on the left and Cl_) o On the
right, we have ?L
’\oLc.[ A I'*‘ZIUZ)

It is more convenient to use matrix notation here. Its

] g = (D)o .

inverse, with suppressed indices, is o
T LS T ~1 -
xl[ZI-iZf((g)]A ='D-—'z'—,:.
2L
Hence, what this requires at g = 0 is
- 2 L 2 -
[oztomgdl, lpn, = Maa dab Aog

which, thus, is in fact a requirement on the residue of

the massless pole in W(Zz) . This is indeed what we have
obtained on computing the pole part of 'ﬂlf€) in the previous
section.

Thus, we have completed our proof for the above
two_diagrams that the pole part of the corresponding
one particle reducible diagram cancels with the pole diagram.
We can perform the same argument to every pole diagram in
part (b) and clearly we conclude that the on mass shell
Green's functions are free from massless poles.

Though the above argﬁment is independent of the
specific values for A and d , it is clear from

the mass formula, equation (9) , that the mass value for

the Yang-Mills particle depends crucially on them. Let
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us investigate this point more carefully. Of course,
the value for Aaa is explicitly dependent on the kind
of the pole coupling functions and the number of the
Goldstone bosons in the theory. For instance, we can
consider the following two cases in SU(E)
Case a) Suppose that we have two Goldstone bosons and
thus we can choose
dop = Sab = Sag gba
Mo = Eq43
where we use English (Greek) letters for the Goldstone
boson (YangeMills particle) isotopic spin indices.
It is then found
M:‘P 53 {"'P— c);; Sﬁg_,
That is, instead of a massless Yang-Mills triplet before,
we obtain two massive Yang-Mills particles and one Yang«
Mills particle remains massless.
Case b) Suppose instead that we have an isotriplet of
Goldstone bosons. We can accordingly assign
Aab = S;b
Adﬂcn d;a.
The mass formula will then give
Mis < dug.
Thus, the Yang~Mills fields obtain a common mass. That
is, the local iSOtopiq symmetry is broken but the global
symmetry in this case is preserved.

These two cases thus show that the number of Goldstone
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bosons is equal to the number of Yang~Mills particles
which have obtained mass through the symmetry breaking
scheme. This is in fact not peculiar to SU(2). Feinberg

@

et al showed that this is a phenomenon common to all other

symmetries.
In the above two examples, we have also verified
that they satisfy the lowest order Bethe-Salpeter equations

so far as isotopic symmetry is concerned.
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(W) Goldstone boson pole coupling functions and
approximations
As we have noted before that the generatec mass

is given by the mass formula M:ﬁ = )\aa"(ab A/Sb and

.kﬂ( Aot OkD) =;-.P;°: +-'€P;j - P?j:
we will in this section compute for non-trivial solutions
for these pole coupling functions. As solving them exactly
is a formidable task, in below we will limit ourselves to
consider an approximation, viz. 33= 0 and P3= 0 . These
pole coupling functions, however, as shown in the appendix
(2), are clearly self coupled. Thus our solutidn should
be viewed as an approximation taking ?3 and P3 as higher
orders 1in the coupling constant g and heﬁce neglected.

We find that taking Py = 0 is an appealing idea,

because this coupling function involving three Yang~Mills

particles and the Goldstone boson pole should be very complex

(L8 (q9)
if non«trivial. Both Feinberg et al and Jan Smith use this
same idea to reduce the computation labour. However,

(9)
subsequently Feinberg et al try to break local symmetry and

&)
use a symmetry function for P While Jan Smith considers

2
a global symmetry theory, similar to our work in below,
his more general scheme involves more divergences than
here. Though he also argues that the approximation as
mentioned above is plausible, our direct approach shows,

besides a consistent solution, that in this massless theory

with only one coupling constant the generated mass value
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in fact decouples from the theory. We will consider
this more in detail in below.
In this specific approximation, we have a

simple integral egquation of the form

R
k B -
P;, = IP;D.DK with suppressed indicegyy

That is, similar to the previous abelian case, we also
use one coupling function to characterize the theory.:

The kernel here, in its lowest order, is given by

M= +I +¥X

where the first two diagrams on R.H.S. when substituted
in equation (11) will give the same contribution because
of Bose statistics.

Before solving for PZ’ it is interesting to
look at the isotopic symmetry of the theory. We can,

for instance, choose one of the following three choices:

o3 _
oL &aa3(T J with

e

(1) P,

(T, = &,

A p dar T Jpu dsv = 2 859
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That is, there are two Goldstone bosons and the coupling
function is symmetric in F,? . It is convenient to denote
coupling function of this form as Plfﬁf} .

(2) o Eaas Ea(zw-

This is an alternate case also with two Goldstone bosons.
Only that the coupling function is antisymmetrie in fﬂ&’ .
Thus we denote coupling function of this kind as PZIA&H .
(3) R = ‘c—a;v.

This case corresponds tq an isotriplet of Goldstone bosons.
The coupling function is totally antisymmetric ing@Q, ﬁ’and Y
We denote this as Pzﬂhﬁﬁd‘

It is easy to verify that all thrée kinds of them
satisfy the lowest order Bethe~Salpeter eguations. But
we will discard consideration of PZ{&V}for the following
reason. We are mainly interested in those solutions of
P2 which when coupled to one vector meson can give non-
trivial Ad& . DNow for a solution like ﬂfﬂV}’ every

diagram in

r v
with amplitude PZ{F»P} Torpy Ed{,',,- will have a
corresponding diagram with amplitude Em” T?Y,'Bﬂ' Eol/g’))' .
and thus the two add up to zero. Similar argument applies

to




Hence in this case the main contribution will come from

K=

which is essentially P the coupling function we think

33
of neglecting.
The other two coupling functions, ﬂcf;,” and

R[mﬁﬁﬂ in lowest order, i.e. considering only

——

and }‘c(a.w EQ/!V;}QW L gy respectively.

These are the two examples used previously to calculate

the mass values. We should notice, however, that as the

residue for the three Yang-Mills vertex has a factor
agy

P2 »(P,“f‘k) , we cannot arrange a pole in this vertex
at k = 0 while insisting an antisymmetric function for

PZ' This is because Bose statistics would require
at,?,)"] at’op]
Pz)w . (P) Z)'— sz)a (Z"P)
and this obviously cannot be satisfied for q = -p .
alAr] a5 ¥]
Pz).n) (p,-p-k) or szuv
2
vanish for k?= 0O, i.e. a k = 0 pole can exist in this

r“;F; Pl
vertex. Thus, in below, we will furtherly use P%ﬁﬂ

Nonetheless, (p,-p-k) need not

to calculate its contribution to Ad&‘
The solution we have in mind for equation (11)
in its lowest order is a solution which asymptotically

behaves as

36



37
cq, 'rJ 2 T - -
PEpbo Lo Tl - b k0, BRI p Y% k5]

i.e., a simple ©power function in momentum.

It is clear that we should expect some constraint on this
power "] , in order for Pz to resurge after the operations
indicated on the R.H.S. of eguation (11). There we use

the lowest order approximations for the kernel and the
propagator which is chosen as elsewhere in Feynman gauge.
The integration is then performed by continuing to Euclidean
momenta. Indeed for consistency, we obtain, on matching
thehjh and jﬂvterms on both sides, the following two

conditions:

[CCu+EN+ b(oy ]+ Fy =1

()

[(C\l"' Eu)+ LC:.;] + Flz = b
where the coefficients Cu, En.czl,Fu, C‘,,E;;,C;;)F,; are
polynomials in 5-and gz. They are given in the appendix
(3). Eliminatingb , We have a condition equation on d
as we have envisioned before

Gy (Cat Byt Fr)= (-G (1= Fy~ Gy~ Epy) (13)
Now gz , of course, should be positive. Also, in order:

for this solution to vanish for asymptotic momentum, we
require S~7 ] . Moreover, § will be shown limited to
a certain range of values. This, thus, makes the above
equation a more stringent condition on g

Naively, we would think that we can proceed now

to calculate the generated mass in this approximation.
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In fact this cannot be done. If we look at the mass formula
again, which is

Mzﬁ = Agaday 7*{39:'
It is clear that in our case here we can use
lo{& ot a R and do.b = g«b , without any loss of
generality. Thus we have

dya M

and then we imagine that we can calculate Aiq upon taking

I of equation (8) which is, in this approximation,
'akg' k=o
Yol

> 13 ;YJ
he P:M o = P::f Ck-r,r)
where v
’\}.,‘» { + }9\__4 /(v } .

D}uv(k) =-i{|:j),v— K= ]k:.__Mz LY

Clearly, Ada is proportional to Fé . Moreover, as the

L.H.S.of this equation has dimension +2, it is convenient

to ertf IL_J-
:;f (Pk)'CMEQ{n’[{)A’ /4'4" )‘y M’- [L.ﬁ._'_)-l*( J

To our surprise, upon substituting this into the above,
the value Pq decouples from the equation. This happens
when we change the variable of integration , from r to
rM . The resulting equation, after applyingé%?l to it,
is
3}“5‘ 3&& =-icj eﬂ&*ygafy-j'[ j‘fo‘r jvo‘r 2’33'5" W
[ P+ ey 2 Juo Yy v, T oL 3")’ dr

This integration can be performed after Wick's rotation.



The result is that, for convergence of integration,

§ must be limited to the range of value 1} ¢ 54:3

2

and ¢ 1s then given by

39

c:é—sfsin(z-f)nj/fzbu—& +1] )
with b previously given by equation (12) .
Thus, we have failed to calculate the generated
mass. Instead we have obtained one more condition on
the value of & , which is now required to be | <J’<-3
for the existence of a solution for P2 of the form
a,p.Y
Pff gp,lo « L€ ; ST D, .../(ﬂkvnbgﬂqﬁ K>] [qf)‘ﬁck‘;‘fj,

We will give further comment on the mass value
in the conclusion: The reason behind the decoupling
of it and why it is not a sad point in this theory.
Before ending this section, we like to stress that
we have found the above mentioned solution. It should
work, provided that the constraint equation on J and
gz, equation (13) , can be fulfilled with all their

other positivity conditions.
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Conclusion

In this simplest massless non- abelian case
we have found the following conclusion. For spontaneous
symmetry breakdown in this model to occur as effects
involving higher-order processes involving virtual Goldstone
bosons, the coupling constant g becomes constraint to
satisfy cértain conditions and the resulting mass for the
Yang-Mills particles cannot be computed.

We can view our result here in connection with
that from massless scalar electrodynamics. It is found
in that theory with two free parameters Q"and A
spontaneous symmetry breakdown can occur as effects of
higher-order processes involving virtual photons. After
symmetry breakdown the theory still possesses two parameters,

e and <Cb) » the vacuum expectation value-of the

scalar fields. That is, ) becomes related to e and
the generated mass dependent on <<p> in a trivial way
governed by dimensioﬁal analysis is also not-computable.
Hence we note the similarity between these two cases:
after spontaneous symmetry breakdown a dimesusionless -
parameter is traded for a dimensional one, the phenomenon
of dimensional transmutation.

There is another aspect that we like to stress on.

It is found by Feinberg et al that the number of particles
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that have acquired mass in this dynamical symmetry breakdown
scheme is equal to the number of Goldstone bosons in the
theory. If we recall a general feature of spontaneously-
broken gauge models where Xiggs phenomenon occurs, i.e.
where the driving mechanism for the instability of the
theories is a non-vanishing vacuum expectation value, the
number of the would-be Goldstone bosons is egual to the
number of broken degrees of freedom. However, these Goldstone
bosons disappear-and consequently the vector mesons corresponding
to the broken symmetry generators acguire mass. That is,
irrespective to the driving mechanism for the symmetry
breaking the number of Goldstone bosons is equal to the
number of wvector particles that have acquired masses.

These two aspects, dimensional transmutation and
the one above, suggest a strong possibility: in the future
we should be able to develope a more general formalism
to deal with spontaneous symmetry breaking theories, sone
method that can work for general fields and give the above
and other familiar features of spontaneous symmetry breaking
in scalar field theories.

Before ending it may be interesting to point out
that in theories consisting of many massless fields but
with only one coupling constant the mass ratios are necessarily
independent of the coupling strength g. This follows from

dimensional analysis and renormalisation: The generated mass
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M for sach particle via spontaneous symmetry breaking

should be independent of p , the point of renormalisation,
while from dimension analysis it can be put in the form

M= }'\{'(3) . Hence we have QM/B/X = 0 and this conseguently
leads to -,F..cex])[ F{T)U(j] , Where we have introducedﬁ(j)z}&%—}
and ¢ is constant of integration. Hence the mass ratios

are just constant ratios and are independent of the coupling

strength.
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Appendix (1)

Notations and Feynman rules for massless Yang-Mills fields

(1) Yeotations
_— solid line representing Yang-Mills
particle
AAAAMAAAMNA wavy line representing ghost particle
b )

thick solid line representing massless

bound state ( Goldstone boson )

EZZZ::EZZZ‘ K, proper kernel of appropriate

amplitudes
“"-QZ P, precper (oldstone amplitude
CD ' A, connected amplitude

@@ A', proper connected amplitude
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(2) Feynman rules for massless Yang-Mills fields

(a) Propagators: each propagator has an additicnal

factor 1/(171')4|° .

(i) Yang~Mills propagator
k
Lo, p00 (fv
I k. k
S o _ Py~ N _#__f.]
D}(\) (’()-— k;_ia [ }A\’ kl_.'-i
where A =1, 0 for Landau, Feynman gauge respectively.
(i1) Ghost propagator
k
YAAAAAAAAAAAAA

o &
Sxp

k=i €

G =

(iii) Goldstone boson propagator

L S
a b

dab
Doy = =5,

wvhere the choice of dab= 5;‘, or = J:\b -J;.s ‘be

depends if one is interested to conserve or break the

global symmetry.
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(b) Elementary vertices: each vertex has an additiocnal

‘ 4
factor (zﬂ? :

(i) Three Yang-Mills particles vertex

P

By=-ig Edé*v L9vr (Z"f’}*"‘ Iz k'f),,*j%(}- k)]

B, he
(ii) Four Yang-Mills particles vertex
o) 1 ‘N
By=-9 ekupéld’tf[ 9,“1: ve 0‘9\)1—‘.]
By P ~9 thap L Gz 9y, - G Jae 1
’ ' "9 Ehar 2‘*/“[ vize - 3}«0*3\)1']
(ii1) Two ghosts and Yang-Mills pérticle vertex
o A

Bl;1= "‘i_g Eo(/za) 7/& .
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Appendix (2)

Dyson equations and Bethe~Salpeter equations

(i)

We give the Dyson equations diagrammatically for

the following vertices

(a)

(p)

(e)

— =< + 3 O - — TR

Three Yang~Mills particles vertex

b O - LY

Yang~Mills particle and two ghosts vertex

// ol i /I ~AAMWA,
) +3 /
VAN AAAAMA

ﬁ"{ /1( o

Four Yang~Mills particles vertex

X

e = —& + 5 —O— -

77
+t — O 4 +-—~@@r

BN
|

N
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(id) We give the derived Bethe-Salpeter eguations
for the following Goldstone boscn coupling functions.

Diagrammatically, they are

(a) Goldstone boson and twec Yang-~Mills particles

coupling function

—U =4~ -~ + t — O

(v) Goldstone boson and three Yang=Mills particles

coupling function

“ 4 ~OBE - —OHE ++ ~CT=

(e) Goldstone boson and two ghosts coupling function

AN
>
>
p

11

)

> | 6@
lz‘ ' A";K;_W -%M-"Z e N




Appendix (3)
The coefficients for the constraint equation on § anc g‘

EQ)/SJ YJ
In the.self consisteney computation of F%V”

b
equation (11), the integration is performed by continuing
to Euclidesn space and using addition of denominators

method, hamely,

7
v g S(1-FAi I(R-1)!
A =Jtndﬁ' TEIR [ 3418

with R = Jr.
v
In order to present the results from this

integration, it is convenient to introduce the following

definitions:

4
- d yid-n!
J m
[ _ ot (t=ol)” (1-ol)
C&m) —x 73,)“-_-](1« R T (543D
) m
=o{) (I-ol)
§m) —— Sl (d+2)
Dém) G [ det = T
and similarly, “
| d-nly,r,
T (cp0) = | A ED by

[r ol(1- 001,2]0‘
o (i- o() (I-c()
C(S'n)qn)g-jd

T (3+3, V)
é‘ n

~ (- ({-o

D(S,%)h;,—zjolo( - ){! ) Ty (542, pV)

( F)

wvhere n, 4, and Jare real numbers.
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The above definitions are used to give the results from

the first ftwc diagrems in the kerncl. For the contritution
from the last diagram, it helps to mzke the following simiiar

definitions:

+d

o
(1+9)!

140

X n
- AV
g () I (8+3, pV)

Fld,n) = E(d-1,n)

ECdn) —(-}};33;. = [d« U=o0) T (843D

B8 m) v _
EL )In) (?72); :jolo(

Edm = Ecd-t,m) .

As said in the text, for P2 to resurge after the
integration operation, we arrive at two condition “équations.
Now, with the help of the above definitions, we can give

the coefficients of these equations. They are
Cu = gz[_'c(am) +2C(d,3)+ Cdy + 45(0',!)*3@(00 +5D (e 1)]
Cia= G2[-clein) = Cd + 2€ el + Da) + 2 D(eh1) ]
Ey=3 [E@D+2E(d,30+ E(V+ 4Eld,0 -~ Fed)-5F (]

E, =9 [- B~ Eld)+2E(chD + F(eb + 2 F(d,)]
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C2y = 9° [5ccd,1)~20¢ (d,2) +20€(ch3)~[o e +40Cyelyy]

Ca= g°[-10 Etat) + 20 Eel) = 2D(A) + 4D 1)
ey~ 2¢ceh2) -2 2ed)]

Fi=-23*L3F(-2Fd,n]

Fo= §9°Frd)
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Part 11 Phenomenological applications and

renormalisation of scaling theory

Abstract

We explore the scaling behaviours of
inclusive and exclusive processes alike using two
approaches : (1) Quark model fits in well with
phenomenology and the idea of anomalous dimension,
which, besides its phenomenological significance,
is more linked with renormalisation. (2) Operator
product expansion gives generalised scaling rules
on a model free basis. We also add a few remarks

on the scaling rules of renormalised theories.

52
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Introduction

Scale invariance has a rich relation to many
theoretical investigations. As an asymptotic high energy
symmetry of scattering amplitudes, it leads to the phenomenon
of helicity conservatioé? Group theorists can connect its
algebra with improved stress energy tensor to construct
stress énergy tensor algebr;%) Or, using ideas similar to
P.C.A.C. , we can concern ourselves with the soft theorems
of dilaton;?) The phenomenological use of it, in fact, has
been known for sometime. We often use simple power rules

to describe form factors. The most well known example is,

perhaps, the dipole fitting for nucleon form factors.

With the recent discovery of a simple phenomenological

, 3)
scaling rule for the more complex inclusive processes, it

is thus desirable, and it is also our aim here, to describe
the scaling rules for exclusive and inclusive processes

in the same theory, or using the same tools. Naturally, we
begin with the principle of scale invariance. We find that
its predictions for exclusive processes, implemented with
the idea of anaomalous dimension;?)are guite successful. It
shows that we can reach a consistent assignment of anomalous
dimensions to the hadron fields. This assignment is in fact
very agreeable with quark assignments. Thus motivated, we

try for & guark description of the inclusive processes. The

simplest approach is to use quark canonical anticommutator
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and quark descriptions of currents. Surprisingly this
suffices to give the correct scaling behaviour for the
inclusive processes, and, moreover, the two structure
functions become related in quark model..

In order to do without any specific model, we
employ Operator Product expansionésgo the same aims, using
the minimum amount of assumptions except its built-in
scale invariance concept. We find that this appreach is
able to give the correct generalised scaling rules for both
kinds of processes. It also has the advantage to identify
the powers to the dimensions of the various operators.

We can compare this result with the other results using the
additional assumption of conformal invariance.

We give at the end the renormalisation group
equatio;f)which is the replacement of the naive scaling
rule in renormalised theories. We also touch on the relation

between the dimensions of the coupling constants and the

renormalisability of the theories.
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(1) Scaling rule and exclusive processes

Before we formulate from the n-points Green's

function the scaling rule for execlusive processes in which
the numbers of incoming and outgoing particles are aforehand
defined, let us mention briefly that some results from
naive scale invariance can naturally arise from dimensional
arguments using the fact that in a massless theory the
dimensionless dynamical gquantities hecome functions of
dimensionless ratios of the available kinematic variables.
In accordance with this idea we can deduce that the annihilation
process of elctron gives & = constant, as'z is the only
avallable kinematic variable, while inelastic scattering of
electron with its two independent kinematiec variables

Vv and T gives 6::-2!-15'(\!/22) . That is, we
can find out in this simple way the rate of decrease of the
scattering cross section with energy. However, unfortunately,
not all of these predictions are fulfilled, i.e. somehow
naive scale invariance is broken. There are many ways to
treat broken scale invariance theories. In the below we
will consider mainly how anomalous dimensioﬁ?)the difference
of the scale dimension from its canonical value, can implement
the naive scaling rule gnd fit in well with the phenomenological

world.
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Let us thus begin with the scaling rule for
the n~points Green's function. This is easily obtained
from using an operator of &+ FM'%P for each participating
particle in the Green's function and assuming scale

invariance. The scaling equation is

[ntd-4)+4 -5 p a10“] Gnbus ™ Py =

where for convenience we consider n similar particles each

of which has a scale dimension 4 and where

1 ZhisXis

(2m) J(E l’,))q’(ﬁ“ ?(M)) J-d (l) e <OITL¢'({IQ".¢(1('\)D|O>‘

The extra 4 in this equation comes from comnuting the dilation
operator 2@ + ?ﬂ-%‘) with the momentum conserving delta-
function.

We can obtain the corre5pondigg equation for
one particle irreducible Green's function after amputation

of external legs,

'[!{- “hoA- iﬁuah ]Er q’cn }’(h:)

Hence in accordance with this equation, ak is required to
be a homogeneous function in momentum of order #4-No .

Thus, according to scale invariance M function
should behave like

M N’$4—5¢b
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wvhere d; is the scale dimension of the i participating
particle. Taking into account of the contribution from
the final state phase space which is Snf‘_;éf_ gh(zh-zhn)
we have i ¥

L - A, N_;_"Z
de/d2 ~ (1fs)s %> s

Hence,
Z'EQhSM‘l

[

dr/dt ~ ¢

This is the power rule predicted from scale invariance.
We can now compare this power rule with the
phenomenoclogical world, bearing in mind the the scale

dimension can assume a .value different from its canonical

dimension. The data which can be used.for this purpose
(¥)]
are compiled by Brodsky et al for some 4 particles exclusive

processes.and parametrised at fixed c¢. m. angle as
d(_}‘/o(ioc, ]/Sm . The values of m for these _

processes arec

Photon + Baryon ——3 Meson + Baryon

MmN —> wtNy =73 X 0.4

Meson + Baryon ———> Meson + Baryon

]

m P —> KP) =8.5 1 Lg
M KPP — 1'% = 7.¢ 1 L4
m (P —>n'sy= 8.1 Ly

i
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Baryon + Baryon -~—> Baryon + Baryon
MmMUPP > PPl=1ot 2.0

These are based on the experiment done by R. Anderson et afg)

on large angle high energy photoproduction of single pion

from ligquid hydrogen at an energy range 4.0 - 7.5 Gev., and
P o o

the experiment done by G. Brandenberg et al on kﬁ_P —> PF&

5ackward scaftering in the momentum interval 1.0 - 7.5 Gev/c

A number of experimenters has contributed to the measurementg

of the energy power rule of the proton-proton scattering.

It is best to read the paper by R. lankenbeclér et al(w)

for references to these prpton;proton eXxperiments.

When we take these powers to be their closest
integral values, T, 8, 8, 8, 10 respectively, we find out
that they correspond to an assignmext of scale dimensions
of 3 to the hadrons and of 2 to the mesons. Surely, we can
turn the logics backwards and say that we have a consistent
assignment of scale dimensions and it gives quite good
experimental predictions. Whether it is actually very good
we have to wait for more data to tell. But this assignment
is interesting in a peculiar way. These numbers 3 and 2
are exactly the minimal numbers of quark components in the
baryons and mesons, It seems to suggest that high energy
interactions proceed via the basic entities. We shall

see in fact in the next section that quark description also

works for inclusive processes.
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(2) Scaling rule and inclusive processes

It is very interesting that the recent data for
inclusive processeéathibit one very astounding feature.
It is, to a good approximation, a large fraction of the
data can be expfessed as two functions of only one variable:
the ratio of energy loss to the sqﬁare of the momentum
variable. This simple behaviour is usually called Scaling.
Furthermofe, present measurements do not exclude the possibility
that we might only need one function of one variable to
describe the complék inclusive processes. In this section
vwe will find out how the quark model accounts for this amazing
phenomenon.

Let us begin with the kinematics and the matrix element.

For instance, let us consider the following process:

f\'&!\)
Lepton + Hadron - e
e(h) o

———> Lepton + anything i
’
4 (b))
+ 5
PR
The kinematics variables are
7
h (ﬁ;),‘?l(pj ) = initial ( final ) momenta of lepton,

hadron. The invariant variables are
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2
- — T . - B ’
VEQ b, R=-f7  witn FER-p
As it is familiar in one photon exchange picture, the

matrix element is given by
M= 5(10,', 2) ))’“ i) ( e7a‘)<m(ﬂo> [P., 6>

, .
where X, X\, (, <h[,]}b) are helicity indices, final state,
and local current operator respectively.

Hence, the differential cross section is, after summing over

all final hadron states and averaging initial spins,

oL l,uv W/..v

where va corresponds to the lepton part, and

y ~i9-2 -
W= [Sr e O ehl T Rw 1p,> .

We can, in fact, write

by o |
W)= [Sx e E pl e, B 01> @)

This is because
—f 7
jd:fe ¢ (Pl Toulp > = Z4h [T >
LnlTol b >er)® S -4,-2 ).

and vanishes as in laboratory frame En=r4N-Z:<P1Nand
no baryon state exists with mass less than the nucleon mass.
Also, we can put it in terms of two invariant functions

] 2
VMlz,q)andMAf?,V) , the other invariant functions being
eliminated because of current conservation condition and

the hermiticy of the current operators,
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Wit h8) = 5 Ch” g)g b, - lgy)wz(g)v)

? )
“(3 -_&*___”_.)W,(g,v)

The differential cross sectlon is

Ao () DWaginr 2 tan & wie 5w

dndE’  “da'dE Mott
vhere oL = e’/ci‘: ‘/‘37 = fine structure constant,
d'e - 2 L - 40 ty E .- 2@
(d-fl'dE')Mottz [ /L4E sin €)1 [ cos -z-cwzmsm 5],

E, & are the energy and scattering angle of the lepton in
the laboratory frame.
The scaling behaviour of inclusive proceéses

are usually encompassed in the statement that

WD W = Wy (), YWalgy) = Wace) (5)

where uﬁf&ﬂﬁv is a dimensionless quantity. That is, this
single variable suffices to describe the structure functions
which would be expected to deperid on both the variables

zz and 'y . Though this was hard to iﬁagine before it
was borne out by the recent data, there is a very naive
argument to account for it using scale transformation of

the current operators. If we recall that

LENE > = AlpD>

UM T0 U = T00 = AT (A%
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Then

WN(@,Z’) = J‘ 0‘)_';1 e—i Z-x< P;'J}.(I)J;“’){ f:. >

b, 1o ~! ~f -
={4Xe T o ud T Ul p.>
~
_rdf singx -
- —5-;8 <A PIIJ}‘(I)T\)(U),A ?L)

i

W (N, 078

Thus, %\,(f?,,?) should be dimensionless, and this again
leads to the fact that the gstructure functions can be

2
put in terms of a dimensionless quantity, CO==Q/Qv, in the

form

W.Lzz, V) = Wtw) v\,\/l(zz,v)= WACTRE

Now, in order to see how quark model accounts
for the scaling behaviour for inclusive processes, we firsf
of all will derive the current commutation relation from
the quark anticommutation relation and the representation

of the currents in terms of gquark fields. = They are

""'}" - 7] . N = N
Jp 0= Z)da)( ¥ AC')d{i Zﬁ 0 = J-E.m.(x)

b I} - - / \Y 2 - v ?
Jpr X = 70O Ap) gy 26",’“ = Tp M. 00)

{ft(ao, _0,(7 )} = Sw (2-y) = -2W VI/UO_D/, [5((1-3)1) & x4, ]
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where

On using

we can obtain

.M Y ; .

[T Ten0]=-2m3, Lo 2al L]
where

A A TN T

- - Az |
Teg om0 = & % T (3L 08 A

and similarly for T;'E‘M‘Lx,x’x

Here

v J- J ’

MYpd _ :
5 [ng.m.u’x’) "‘JJ;E‘M,(X;I)]

+ %(_-'?'(x_) y’ur/arvg(x') - Z—(,ll) ‘P/‘J’IDWVZ(’OJ} ,

(i)
This formula is also derived by Gellmann and Fritsh‘for

the general SU(3) currents.
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We can now sandwich this commutator between equal momenta

proton states. We have

<4 [jéfmoru, IE?,M,(’U’](/P >
= L3e0 8659 ST L1 0p (15] >

=-“%TBP(2(3°)) cr(gl)) 5-“1400'(?‘06(3)0){7)) ; &EJ("J(.,_

The last line is because of translation invariance. The
bilocal operator Oo_(x,xl) , introduced above,l is proportional
! 7 ) . =
to j@E-M.(x’)L)—TG',E.M_(X’){‘) and hence is analytic at g = 0.
. . 2 6 2 . .
That is, the expression P(ECJ‘,) (3)) gives the leading
gsingularity of the current commutator between equal momenta

states. We can thus write

LPICTL, 0, Th O 1 b

hvPs
=E';;Bp(£(5o)ﬁjl))5 a(&j);‘; less singular terms.

Now we should compute for its fourier transform. In its

()
computation we need to make use of a lemma:

6C(Z'f Sp)y) &(fo@"}= £CY) J(Zlﬂ-fv) for +ve P" .

This lemma is true, because

L.H.S. = &((Z-&‘S’?;)omé\((?ﬂ;f) for positive 790
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= EQub 3R+ S

=E(Z'i>+fflz)&zz+7‘fz'?°) on neglecting faterm

£GP - Z,,)M“fw

= 6(1)) J(gz.f-;_f\)) on recalling V;-:Z-‘{S .

On introducing the fourier transform of a(‘p.g) ,
15 ($-3)
A = (e S atprdep3),

we can now give the fourier transform of the matrix element

of the current commutator. It is
-~ K MPT + w
5 577G o * e At
This expression, compared with equation (4) which defines

the structure functions W;L\),‘zt) and Waly, zz) , gives

W, 0, Z)+LM= o, \)W,_(\),ZZ) o« WAHW) |
g° M

Thus, obviously we have the scaling phenomenon

W, 182,\)) = W, (W), vb\}zczz,v)z We(w ).

Moreover, surprisingly the two structure functions become

correlated in gquark model. This extra prediction of the
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quark model can be interpreted in the following way.

From above it should be noticed that Wuv is
proportional to the imaginary part of forward (virtual)
photon-~nucleon scattering, which, by the optical theoren,
is proportional to the total cross section for photon on
nucleon. Hence, we can view the inelastic electron scattering
in terms of the processes ' P’ + N —> Hacrons ., Now as
the incident photon is a virtual particle, it can have any
energy, mass and polarisation. In contrast to real photon

processes which are characterized bdy 6:[' , the virtual photon

processes have O'T and G‘S , the cross sections corresponding
to transversely and longitudinally polarised photons. The

) . (3) : . '
relations between the structure functions WI, Wz and these

cross sections can be easily worked out. They are
W,= K65
w. =K (6«0 )
Z?"i’vz T S
where K is an unimportant constant factor.

Thus, the relation given by Quark model

2
v Watv, 7))
2

2
W9t = = 0
(AR
A
2
amounts to predicting that 0'S=0 as -2—700 . Recent

experimental data indicate a reasonably low value R: @/fT

2 0.8 vwhen the invariant mass W for the final hadron
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states 2 2 Qev - This result is also given by the parton

(n
model. It is interesting that it comes out simply from the
gquark anticommutation relation. When we work out the generalised

scaling rules in the operator product expansion method, it

E
seems that this result 0\5 =0 as -—Z — o is lost.



68

(3) Operator product expansions

: . . s
The basic assumption of operator product expans1of )
at short distance is that, to a certain accuracy, we can
represent an operator product A(x)B(y) in an expansion of

the form

ACOBLP = = C,L(x-j) On 4>

with the c¢ functions c (x-y) containing all the singularities
as X =>»y. On applying scale transformation to this expansion
and using linear independence of the local operators 0,(y),

we can easily deduce that

Can (.ax’ala) = C';dh_dﬁ + Cy (XY
This is on the assumption of scale invariance and the fact
that each operator has a scale diménsion a .

The application of operator product expansion
to inclusive processes was well worked out by Frishmanf“)
Let us reproduce it here to illustrate the principles. We
will later apply the same techniques to derive the power
rules for exclusive processes,

For the inclusive processes, let us write down

the leading term, the term with the leading singularity as

x =>0, in the current commutator
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[J}J’Q Jy(02] = €0 F}m (0) + *--

where Epy(x,o) is a bilocal operator which is analytic
at x=0. The form of it is irrelevant. However, for easy

comparison with the previous definitions of the structure

functions, we write

<P TR0, T T[> = €L Bl Fy G105 >

=t, p G 1},0 ff,qv-x) +1C3) - 3/8° 7 qeo fip)
with . . d:
C; (1_)-3(-—7{2‘+;e)lo)d'—(~)tz‘-lé7(¢.) ‘
= ! - -
‘t)uvpo-=’-ﬁ[25,wgp;6 jﬂ)&;)’&‘r 50-/4‘;\)‘)/’
2 2 {
*35\)3}.43(: "3/“-3»,0& _jvo-jﬂ‘oa Ja-i
and it can be easily seen from dimensional érguments that

d, = d, + |

Of course, we need the fourier transform of this expression
in order to obtain the structure functions. Thus, let us

introduce

Fp0 = o 900 éixr'x

and hence we have
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gl T P Pl U L
W,(z,v)=;§jolx e ) INGEEIED)
HGESTEF A RN EY ) . 6>
Now we will make use of some mathematical properties:

ik

o .
fat e p ity - (ie x0T
T 2dty —d-2 L de2
=5 —i—‘(‘*—% [k +ieks) o = ¢~k*-ieky 1
2dt8

3 -cl-
= -2 L £CL°) &(kz)(kz) z\
T Tl -1)

and also a lemma:

E((Z+§@S)o) g((‘ZJrﬁ:)z) = £(») I(Zl-ufv_) for twe 19,, :

(This lemma is proved in the previous section). Then we find

out that

_d‘-—-l —d'—l
Wi($59) & [dr J00 EHAMOE [EM (A-@d] [A-w] (2D L

where Q)E(Q}GJ’ as before. From here it becomes apparent

that VV:(31>U)-9&22 a dimensionless function which is dependent
only on the ratio of energy loss to momentum transfer. Thus,

we have obtained some generalised scaling rules for the
inclusive processes. The advantage of this approach is that

we did not make any assumptions about the nature of the hilocal
operator FPv(x,O). Consequently the results here are model
independent. If we wish to relate these to the Bjorken scaling,
i.e. Mh(g;» and'?“A(ZiV) are dimensionless functions of 3 |

we have to assign d

| = ~2 and dz=‘-l. This assignment in turn

indicates that the currents maintain their natural dimensions +3.
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If wve look at the current algebra commutation relations,
we also see that the currents should have dimensions +3 even
in presence of interactions.

Let us now use the same approach to deal with
exclusive processes. To be specific, let us use the same
techniques to derive in below the decreasing power rules of
the electromagnetic form factors of nucleons.

Let us first consider the vertex N+? — Nuy

This semi-amplitude is described by

Tt bl fa%y e T Tegapyonior = fWow + 7.

Now as before let us write

LB T(TpP) o>~ hc.u‘j))(,(p-g)-f RatPf Py @)

where

. d; .
GUPE (-Yriely) | =12,

If we take the fourier transform of this expression, we

can easily obtain that
9.
W, w) = IMS duy e g tjc‘up{.(?'ﬂ)

9. IAUBY)
Tn(f o aa 8700 €T,

"

T f[ 0% ol BREALLE g0n ey

where a(X) is the fourier transform of ﬂ(bﬂ).
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We can use the mathematical property:

cl d -
elisc (’Pz'f‘l‘o) e (1)?.*‘0) - (bl"'o)d

and hence we obtain, aside some unimportant constant factor,

2z . -,
W) = Ton (A GO (= (FEAP = i g+ ApIY

"zfdxjm €0, t M pod s(z"n)\?.g) [(212'\7”8 j'ol..—z,

On introducing @ and using the same lemma as before, we
have

d 00 ~d-2
y ‘n\,\/(v,m ocf dA G 8(£0v) (A-w ))E(W)\M,’; el @)
<o

with [« &£00 ,¥Y>0 in physical region.

This does not give us the power rule yet, but we are not
very far from it. Now we assume that g(})) is a regﬁlar
function and the integral vanishes at infinity. Then we can

/
write, on changing variable A = A- @ |

d+1 00 -d,—l
v W, w) & j AN G+ ) BNy dn
|-
and, on expanding g(X),
o 42 —d,+k-2
v oWw ot (-w)
for some power k and for & close to 1. This is true when

we neglect higher powers in ( 1-@).
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In order to obtain the power rule for form factors from
LVLW‘O)’ it is necessary to put it back in terms of the
energy variable s and the four momentum transfer‘%.

This
can be done by observing that

|- | — Q",(w)
= (vt ZL)/(IV)
~ (M::,f n)-f-gt)/(zv)

S/zv)

1

1
for large -2 .

Hence,

ko —dtk-z
va’ OO) ~ (tz)'k(g) dyt

T
for large —z and €0 close to 1.
But

W= T Ful O G

2
where FN(Z ) is the nucleon form factor and QU$) is the

two points Green's function. Also, we can assume that the
-2

Ay
formula GﬂS)ﬂl (9 for large s is valid up to s close to M

Then we are able to eliminate the unknown value k in

equation (9) and obtain the power rule for the form factor:
L3 l“(dN"'dt)
FN(%) N LZ ) . (10)

We can observe from here that the power of decrease is not

determined by the dimension of the nucleon field glone. It
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is also determined by(ﬁ , which can be computed by counting

dimensions in the expansion, eqn.{(8). Upon taking
dim(?l\f(o)lb)-'-'-! , we have
d i
=7

Hence, we conclude that the decreasing power law of the

nuctleon form facltor is given as

We can compare this result with that obtained by

12)
Migdal using conformal invariance,

3

T
Folh ~ (4 " 27

That is, the two results are the same if we make an additional
assumption that d: =3 , which was in fact used by

Migdal in his conformal invariant expansion to (};)4%0)[0),
It is interesting that we have obtained the atove result

from using scale invariance alone. For a discussion about
incorporating conformal invariance into operator product
expansions one should refer to the work of Ferrara et alfg)

We shall now turn our attention to a description of the scaling

rules in the renormalised theories.
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(4) Renormalisation

In order to complete our study of scale invariance,
we shall rederive the renormalisation group equatioégin
below, which, replacing the naive scaling rule, describes
the behaviour of the renormalised Green's functions upon
scaling the momenta...Before doing this, we will first
show how the parameters change with/M_ , the point of
renormalisation. The approach that we will employ is that
of G. 't Hoofé?oonly slightly modified with effective use
of }Aé%: on the various equations. In this method, namely,
dimensional regularisation method, the bare quantities
( gb,¢?8, MB ) are expanded in terms of the n-4 poles and
the renormalised quantities gR, @k, MR ) which are chosen

to be dimensionless and analytic in the dimension of space

and time n . Their expansions take the forms

_— % (v (Mp, )
Je 1 ot & (n-py

- 0 @v(MR, 3&)

1]

A1)

M = Ma+ = . (2)
Ja R™ S n-myY (
From these expansions we can consider the fbllowing. e
scaling behaviours,

(a) Scaling behaviours of parameters

In order to find out the scaling behaviour of g _,

R
let us differentiate equation (11) with }4%%— . Introducing

}.\,
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- 22Uy
CTPX =z ~—— .,we have

s b &
L 0y(Mr,R) _ Id
fein-wr+ T2 = s et 2 Z oy (Goph S *avj’“‘a)«)

(13)
Now as g _, MR are analytic in n, so are)A%Tf )*BSR Thus

R

before matching poles in equation (13), it is convenient

to write

}4,3_;3& = Jeln-40+ &

for some quantity a. ' This quantity a is, in fact, determined
upon matching the first order pole. ‘It is
a= Q@+ dgQ,q, ()

Hence, we obtain
3 -9 39
MR dr = j&ajR)al | us)

which describes the variation of gR'with}4 .
Also, we have a recurrence relation between the residue C?v

and its next residue CGf[,

aw—l Gy, mq (ﬂ%«m) + a”;jg(‘jk a‘ajle+ G )+5,Qavﬂ,§R (16)

Similarly, we can derive the scaling behaviour of
b&R on differentiating equation (12) with)xg~ and using

equation (14). The result is
3J
MEoMe == (Mg + T35, 81 an

for the scaling behaviour of N[R' The recurrence relation



7

among @, and its next residue Bvﬂ

3K<BM*.7& =B, MP.( MR*ﬂR@lﬂg) +03$3R(5RQIJ5R' ao- B . g

The difference in forms of equation (}5) and (}7)
arises from the different dimensions of their bare parameters.
We can see this more clearly in a theofy with many parameters

k

A . Suppose that each of them has a dimension

k

k
D=« (m-4)+/?/<

and an expansion
3

- k
*B)KD = 3 2C /o

We can do similar work as above and obtain for the scaling

f
behaviour of )

k pk 94k
ﬂ&}\x - F )\ o« 1 2 1,A ' (
and the recurrence relation between the successive residues
/ ok PRI
'“k(ﬁc _/’,kc.”k = z‘:-[*"({’\ Gl * SRR YCy ] (20)

Obviously, we can recover the equations for MR‘by putting

o

g

The case for g, corresponds toth=-1 ,

I
=)
T
i
l._l

R

i
(=]

From these equations, we conclude that the scaling
behaviour' of a renormalised parameter is given completely
by the residue of its first order pole. In fact, because

of the recurrence relations, the residues of the higher order
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poles are determined oy the lowers, i.e. we have a pole
(14)
algorithm,
It is also interesting to make the following
observations.

’
(a) We can employ equation (15) to describe 8o in ¢ﬂ‘tkeqy‘

Suppose that we expand Cilin.power series in gK, i.e.

- Z 3
as’ﬁi!3R+aozgR+a[33R+"'
We then have
3 - 2 3
)*‘5):3:2 =-Q,, 9+ 00p>.

us
The value of an is given by G.'t Hooft. It is

-3
On = o7

Jg ¢ 2

If we write ﬂ’:}x(l-f- £) and —;—Ié},\za , then the scaling

behaviour of g is given by

3
o\jg = 1637(1 \71;* Ogs). (2D

It is also well known that we can do renormalisation

by the momentum cut off method. The coupling parameter g, in

@ k
that method is shown to depend on the cut-off momenta k as

8w = 9t L9 /0m» 1L L 71OT + O3
2
Again, introducing k ==(‘+2£)Lz, we have

dﬁk/d£=[7/(2nz)]j£+ O3 ). (22)



Hence, the two renormalisation methods give the

same scaling behaviour, up to and including second order

in 8p > for 8 in CV*theory, ( noting that gg = gliqifrom

their definitions )

(v

We can also consider the simplest solutions

k k
for the residues Cu of the parameter X. . For instance,

we can have, from solving the recurrence relations,

(i)

(iii)

constant solutions where

k
o

0 ,. when dL= 0 or ﬁ;= 0.
\Y)
("ﬂk/ 0‘1‘) Cl , when djp# 0 and /gksé 0.

linear solutions where

Cyk = % dﬁ) ,\ﬂ

Here ¢d5‘1 are constant coefficients which must
j

! k

vanish when & # o .

solutions which involve the minimum number of

parameters when permissible. TFor instance, we can
choose L |
C€= fp(A:) s When /)’A= 0
= $fooak ,wnen gk .

For example, it is possible to choose the renormalised
coupling constant gR , the renormalised MR , and the

renormalised wave function in the following way:

/*%}f = p J(R>
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}Aé-r\jn MB )"&rthM J)M(SRJ
}Aa}«lht¢8/¢le) )‘*3/&1“2!- (j,z) E-—mi‘eger

That is, they are chosen to depend only on ng "This
choice 1is called mass independent renormalisation
and is very convenient to illustrate the scaling

behaviour of the Green's function.

(v) Scaling behaviour of Green's functions.
We can easily derive this with the above mentioned
(16)
renormalisation method, mass independent renormalisation method.

First, let the L points renormalised Qreen's function be

defined as
T'R(fl 3’2 MR }A) ﬁnm R(?’ 3R(?l) MR(T{ /4,')'1.)

where T'(ﬁ 52(“) M () ﬂ,'YL)can be obtained from the unrenormalised
Green's function Tu(@lﬂﬂ(n),Mﬁ(ﬂ))ﬂ) by a suitable factor.

That is

T (8, Jetm, Mytws,pa, ) = Zy (g Tl J (), Mg, ™)

with Zy=(4k/¢g). If we differentiate this equation with

respect to)A , and then put n=4, we have

2 )
% e g 107 BURYST. A SR MeS, 1 (G Te = 0
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Also, from dimensional argument, we have another equation
for T’R s
B, w2 2 _JyTe=0.
where éf gives the appropriate dimension of Tk in mass.
ALY
3P
3 3 2 -

EKE_R"F@R)'S:'TR*' G+ YM(jg)) MR&MR— 3+ l)r(gg)]T,';C k?’; 3;{, Mg ,)=0.

Eliminating,fA from these two equations, we have

This equation thus describes'the behaviour of T’R(k'h) upon
rescaling the momenta by a factor K .

In this equation, well known as the renormalisation
group equation, we can see the following points:
(1) The explicit appearance of the 9/83K term
indicates clearly.that the Green's functions should have
correlated asymptotic dependence on momentum and coupling
parameter,
(ii) If we look at the part other than the linear
differential operators in this equation, there is a term
%ij)in addition to the usual dimension 5- .  Thus, here
we have an explicit reason for anomalous dimension. It
arises from renormalisation of fields.
(1id) In gauge theories, we should include a gauge
dependent term in the above equation. This is necessary
because, in gauge theory, the two points Green‘s function
is given, in terms of the gauge parameter &I and the self

energy T(kYH , as
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kpkv { ~ Je ke,
Do = Cho = =) Tt e

~
As the o term has no explicit dependence on the
~

coupling paranmeter gR , we must include variation of

to accompany scaling of momenta. The only exception is

when &f = 0 , that is, except unitary gauge.

There are many uses of thé renormalisation
group equation. The most widely used application is to
improve calculations from perturbation theories. However,
as this will.take-us éway from the scope of scale invariance,
we will consider in below another connected aspect: the
relation of the dimension and the renormalizability of a
theory.

It is usually assumed that the renormalizébiiity
of a theory depends on the dimension of the coupling constant.
It is said that when the dimension of the coupling constant
is greater than, equal, less than, zero the theory is
correspondingly super-renormalisable, renormalisable, and
non-renormalisable. However, this is not necessarily true.
The first counter example we know of is scalar Q.E.ﬁ¥? where,
to renormalise the theory a term ¢# has to be introduced
into the Lagrangian. Also, recently we find that upon taking
out the anomalous magnetic moment term from the Lagrangian

of pure nmassless Yang-Mills theory the theory then becomes

unrenormalisable. Thus it appears that, besides the dimension
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requirements, sometimes we need to add some new interaction

terms to the Lagrangian in order to make it renormalisable.
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Conclusion

We shall now summarize the various conclusions

from these sections.

When allowing the scale dimensions to assume

values different from their canonﬁcal values, we are able
to arrive at a consistent assignment of dimensions to
the various hadronic fields and give the correct power
rules for those exclusive fixed angle high energy processes
with available data. The scale dimensions for baryons
and mesons are found to be 3 and 2 respectively, which are
exactly the minimal numbers of quark components in these
hadrons. This has the interesting sﬁggestion that in high
énergy region where scale symmetry becomes an exact symmetry
the hadrons decompose into their basic entities, quarks.
The quark description of inclusive processes is also pleasing.
It gives 'scaling': as V)—ZE; o, WJZ’;V)'vh));(ziv)become
non~trivial functions of the dimensionless ratio u3=-gﬁ/zv
only, rather than functions of both ¥ and gz as 'would-~-be'
the casé. Moreover, it gives a relation between VJ; and

W, , which corresponds to @:Oos-g;mo_These results are
also obtained by others using complex parton models. It
is surprising that they come out simply from the quark

anticommutation relation.
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When we describe these scaling phenomena using
operator product expansions, we use the same simple form
of singular function C;(Y) for both kinds of processes.
This approach involves the minimum amount of assumption:
the assumption of scale invariance. It has the advantage
to identify the powers to the dimensions of the operators.
It shows that Bjorken scaling corresponds to requiring
the dimension of the current equal to 3. Interestingly
enough, this is also the only additional assumption we
néed fo make in order to gi&e the same result for the
nucleon form factor power rule as from conformdl invariance
wheré this assumption is used.

The last section on renormalisation reveals that
thé existence of anomalous dimension is connected with
repormalisation of fields. As the latter depends, in general,
on the coupling strength, we have reasons to believe that
scale dimension becomes a dynamical entity in renormalised

field theories.
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Part 111 A joint paper on Conformal invariance

and helicity conservation

Abstract
By reformulating conformal invariance

in terms of differential operators acting directly on
helicity states we are able to establish the restrictions
placed by this invariance on the helicity amplitudes

for the scattéring of four particles of arbitrary spins.
The result is helicity conservation in the form

Nyt Ao = M + Ay except for exceptional amplitudes
T;A;ﬁh‘A » which survive, subject, however, to a
differential constraint. It is conjectured that traces
of these restrictions will survive in hadron physics at
fixed angle and high energy if indeed the underlying

dynamics is asymptotically free.
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I. Introduction.

The phenomenon of (s-channel) helicity conservation, which seems
to be experimentally verifiedﬁlgn m scattering and 0° photoproduction,
can be connected up with a number of different theoretical considerations.
At the NN vertex the Dirac-type coupling of the Pomeron necessary for
helicity conservation can be related by a chain of ideas including
f-dominance of the Pomeron( 2)a.nd exchange degeneracy(3)to the approximate
vanishing of the nucleon isoscalar magnetic moment. Alternatively the
required minimal coupling of tensor mesons can be derived from tensor
dominance of the matrix elements of the stress—tensoéu).

The above considerations apply to the Regge region of large s and fixed
t. In the fixed angle regime, where, however, the helicity structure has
not yet been experimentally explored, different theoretical considerations
turn out again to be connected with helicity conservation.

These considerations arise from conférmal invariance, which Gross and
and WeséS)have shown to imply (in the massless limit) helicity conservation
for scalar-spinor and scalar-vector scattering. The relationship between
the two was probed a little further by the present authoré6)using the
method of Groés and Wess to investigate spinor-spinor scattering, where it

1, 1 1 was not
y2372s%72

was found that the double-helicity-flip amplitude T%
constrained to vanish by conformal invariance.

The purpose of the present paper is to identify the precise connection
between helicity conservation and conformal inﬁariance hinted at in these
special cases. To do this we recast the formalism so that the infinitesimal
conformal generators are represented by differential operators acting
directly on helicity states (Sec. 2). In the following Section these are
applied to the four-particle scattering amplitude. The spinless case is
treated first, and it is shown (c.f. ref. 5) that Lorentz and scale invariance
are sufficient to guarantee conformal invariance. For particles with spin

we model the treatment on the spinless case, and find that extra restrictions
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on the helicity amplitudes are now required to satisfy conformal
invariance. The final result is helicity conservation in the form
kl + Ag = A3 + Ah, with the exception of the possibility of double
helicity flip: T A3 3_7\# 0.

These results are derived under the assumption of strict conformal
invariance for massless particles with canonical dimensions. In the
last Section we touch on the modifications which might be expected when
the high-energy behaviour is governed by equations of the Callan-Symanzik
type rather than by strict vonformal invariance.

The Appendix sets out the (unresolved) problem of deducing the

spin 1 Fock-space conformal operators from the auxiliary operators in

the usual Au rather than Fuv basis.

II.Helicity Formalism for Conformal Operators

Differential operators which represent the infinitesimal generators
of the conformal group and act on the auxiliary space(TLf fields transforming
according to simple representations of the Lorentz group have been written
down by many authors(5’8’9). The momentum~space version of these operators
has been used by Gross and Wess(sko obtain the restrictions of conformal
invariance on the form of the M-function in some simple cases, where the
results turned out to imply helicity conservation (See, however, ref..6).

In order to investigate the connection in more generality it would
clearly be advantageous to recast the formalism so that the conformal
generators were represented instead by operators acting on the physical
space of helicity states or creation and annihilation operators: +this
is the purpose of the present Section.

In x-space the auxiliary operators referred to above take the fomn(9)

muv = 1(xu3V - xvau) + Euv (1)

d=1i(d + x.3) (2)
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k =i(2x d + 2x x.3 - x2 3 ) + 2x” 1 (3)
u u n u uv

where Zuv is the spin matrix of the particular representation chosen

(e.g. 3 Sy for a Dirac field), d is the (canonical) scale dimension

of the field and au = a/axP. The above operators represent the
infinitesimal generators of Lorentz transformations, dilations and special
conformal transformations, to which they respectively correspond, in the

sense that
[xp(x), Muv] =, Pp(x) ete.

The form of the operators which act on creation or annihilation operators
may be found from these by applying the auxiliary operators to free fields,
which are expanded in the usual way in terms of (massless) momentum

eigenfunctions:
(ap) : )
wa(x) = J‘ _e_ﬁ‘_ 5 (a()\)(P_) ui)\) (P_) e-lP-X + b+()\)(P_) u(i)x) (P_) elP-X) (’-I-)
A

Here (dp) = dBQ/(Qﬂ)3, and we have used a generalized Dirac notation, the

suffix o representing the collection of auxiliary group labels. Because

of the mass-shell constraint, the energy E is not an independent variable:

ambiguity can be avoided by working at X, = 0. It is then also convenient

to deal with the space and time components of the above operators separately.
Working, for example, with rotations, one finds that

(QR) .
RICREEE L El CXMEXREE 351N (e o))

+ e s &>
where now 3. = 3/3p..
dJ d
The generalized spinor, however, transforms according to the Wigner

rotation. That is

o) =w.. v (p) (5)

. (x
L- i(psd; = p;0;) + Zij] u ij
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where

( o)
W.. =2 “ij3 " > (6)

ij 1+ P3

for states defined by rotation from a canonical state with momentum
aligned along the third axis. Here p3 is the third component of the
unit three-vector i_and eij(g) = £ sk pk Equatlon (5) can be derived
by finding the Wigner rotation corresponding to a rotation about each
of the three axes in turn and can be verified for the spin 3 case by

explicit differentiation of the Dirac spinor

Rl

u(x)(P_

) = B+ 2y 00 1 g k) BT ()

The result is that the transformed field y can again be cast in the
form (4), with a transformed annihilation operator

[alp), Mij] = m, a(p),
where

~

.. = ~ 1(p.3. ~ p.3.) + W..
m, . 1(p13J pJBl) i3 (8)

Similarly the boost operator m_. turns out to be

-~

o = - 1Ed =W, (9)
where ~
A e .(p)
wi = '—'—31—42—'_' 3 (10)
4+
1 p3

by virtue of the relation
) () (%)
-iE3,+ I .]|u ) = - W, u” 11
L PRI G 5 (p) (11)
For the dilation operator, now specifying the auxiliary representation
" for spin s to be (0,s) + (s,0), we have

~

d=-1i(1+p.3) (12)

by virtue of the relation
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() () = 6 u®

23 u = s ™ () = (a- 1) M) (13)

~

The form of the operators ko and ki representing the special
conformal transformations then follows from (3) after some algebra

involving repeated use of eans. (9), (11) and (13) and the property

sz, vV =-ia e, 1 Vi) (14)

characteristic of the representation (0,s) + (s,0).

Displaying these together with the operators already found we have

mig = - 1(piBj - Pj"’i) W (15)
. = - iEd, - W, (16)
[0k} 1 1
d =~ i(1 + p.3) (17)
- ; 2
ko=—E_a_2+21E._§_+'——g§7:— (18)
E(1+p,)
3 2
- 5 2s 613
k; = 25; p.d - pg3° - 20 W3 - —= (19)
E(l+p3)

As may easily be verified,these differential operators obey the
commutation relations of their corresponding generators(g) The

operators which act on the creation operators are the complex conjugates

of these: 1i.e.

[e, == 2",

where G is any of the conformal generators and g the corresponding differential

operator.

IIT. Restrictions on T-Matrix

Under the assumption of strict invariance under conformal transformations

we can evaluate the quantity out<p3ph‘G|plp2>in by commuting
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the conformal generator G either through the creation operators a+(pi)a+(

22)

or through the annihilation coperators a(p3)a(ph) to act on the vacuum,

which it annihilates.

~* &
Thus out<p3phlG]plp2>in = (gl * g2)ou.t<p3phlplp2>in

(g3 + gb,)ou.t<p3phlplp2>in’
where g is the appropriate differential operator for particle "r".

The restriction on the S-matrix is thus

~¥®

(ig &y = ofit gr) S{k} =0 (20)

To find the restriction on the T-matrix we still have to commute
the conformal operators through the momentum-conserving S§-function: as
in ref. 5 all the operators commute except for the dilation operator &,
which picks up an extra 4i. The structure of the resulting equations
is best explored by first of all considering the spinless case and then
taking into account the additional parts of the operators which occur
for particles with spin.

(a) Spinless Case.

The equations to be satisfied by the T-matrix are

(MiJ; + Mij)T =0 (Rotation eqn.) (21)
(Bi + Bi)T =0 (Boost eqn.) (22)
(D +DY)T =0 (Dilation egn.) (23)
KT =K T (Conformal KO) (2h)
KiT = K{ T (Conformal Ki) (25)

where,with P = p, + Bys 4 = %(Ei - 22), the initial operators Mij etc. are

= 9 _ 5 9 d )
M:5 ™ (P 3P, P,j 3Pi) + (q 3 - q ———aqi) (26)
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_ 3 1w _ _9_
B, = (El + EQ) 5 2(E1 Ez) a; (27)
_p O, 3 -
D = P. 53 + -g"B_g_ (28)
2 g2
K, = - oF( 5+ Ew——) (29)
aP dq
_ 3 a_ 3_ AN N 3_3_
K, =2 3P (E- p 4 8_(1) te 3q; = P 29; 3P 3g (30)

and similarly for the final operators Mij etc., with g + g' = ‘15_(3_3 - Eﬁ)°
What we aim to show, c¢.f. ref. 5 , is that once Lorentz and dilation
invariance are satisfied (eqns. (21) —}(23)), conformal invariance
(egns. (24) -~ (25)) follows automatically.
For K  we multiply egns. (21), (22) and (23) by %(Mij - Mij),
(Bi - Bi) and (D - D') respectively, and add, resulting in the equation
[t )% + F e pi)r =T 1 ¢ (31)

This is in fact the Ko equation, since by explicit calculation

1. )2 + B+ D° = - 2EK 5 : (32)

and similarly for Ké,
Again, from eqns. (21) - (23) we can derive the equation

1
[{Bj’ MJ.i} + {8, D}] = [ 1, (33)
which is just the Ki equation, by virtue of the relation

{B., M..} + {B., D} = 2EK., (34)
J Ji 1 1

and a similar relation for Ki

Hence, in the spinless case, conformal invariance imposes no
further restrictions once Lorentz and scale invariance are satisfied.
(b) Particles with Spin

The dilation operator is unchanged, but the Lorentz operators are
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augmented by their spin parts, according to

M.. > M,. - iwg%)- iwge.) (35)
1) 1] l,] 1J

B, >~ B. + iwgl) + iwge), (36)
1 1 1 1

and the conformal operators are similarly augmented, to give the
full operators, which we will denote bysb “T(ij’dai’ j%o’ 1<i
respectively. For simplicity we take the third axis normal to the

scattering plane.

The analogue of eqn. (31) is then
2 - '
[%(ﬂij)2+ @& +2°] Ta) L 1T | (37)
where now, however,
1 2 52 2 _ 2
QGlij) +B° +A° = - 2Ejio + (A1+A2) (38)
Thus the conformalbe equation is satisfied provided that

(A, +2A . (39)

which is the first restriction of conformal invariance. This equality
is equivalent to conservation of the first Casimir operator of the
conformal group, as can be seen by comparlson with the work of Castell(lo)
However, note that this condition is automatically satisfied for the
elastic scattering of a spin s particle off a spinless particle, so that
we must look to the conformal.ﬁg equation to provide the constraint of

helicity conservation in this case.

The analogue of egn. (33) is
[{@j,ﬂji} + 8,21, = [ 1 Ty, (40)
but now

{(Bj } + 8,,D} = 2EK, +2(A1+A2)[ (q) J+(>\ A )6 +(A l--)\e)q ]
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Thus conformal.ig invariance holds provided that

. ~ 3 ~ .
(A y8,) JEeji(q)g—de +(>\l+l2)63i+(}\l—}\2)qi]T{>\}= -Gt ] () (42)

However, the angular momentum equation can be cast in the form

2 : __§__. - o = - t
[1E€ji(q) B + (gag)egs + (4 A2)‘1i] T [ 1ty 83
and hence the necessary condition is

(A1+A2—x3—xh)[iEsji(a)—£; *“1“2)531 +(xl-x2);i]T“}= 0 (4h)
We must distinguish between several possible cases.

(i) It A FA, = Ay + \), the equation is identically satisfied.

(ii) 1f Ay +'l2 # l3 +4) and A, # A, or Ag # X)» We can multiply eqn. (44)
by q;, or its equivalent by qi, to give T{A}= 0.

(iii) If AL F A #A3 Ay butd, =X , A5 =4y, We are left with a
differential condition on T{l}’ which does not constrain it to
vanish.

Thus the restriction of conformal invariance is helicity conservation

in the form A * l2 = A, + Ah except for the special case T

3 AsAs=A,=A?
where the amplitude survives subject to a differential constraint. A
particular example of this phenomenon was found previously using the

M-function formalism for the case of spinor-spinor scattering .

IV. Qutlook.

The above results were all derived under the assumption of strict
conformal invariance for massless particles with canonical diménsions.
The high-energy behaviour of, for example, fixed angle pp scattering,
where it might have been thought that the masses could have been neglected
and the invariance relevant, shows that, at the very least, anomalous

(11)

dimensions are required for hadron scattering. The problem can in
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fact be attacked on two levels, with the tools of equationsof the Callan-
Symanzik type(lz). At the more fundamental level it appears likely that
the interactions of the basic entities are asymptotically free(l% in
which case the above equations do reduce to conformal invariance with
canonical dimensions. At the more phenomenological level of the
interactions of (composite) hadrons their behaviour may then be deduced
from the interactions of the basic constituents. This programme has
been developed for scale invariance by Brodsky and Farra;lhgnd in fact
corresponds to the introduction of an anomalous dimension for hadrons
equal to the number of quarks minus one, in agreement with the pheno-
menological observations of Theis . It is our hope that the extension
of this programme to conformal invariant interactions of the constituents

will lead to comparably simple modifications for hadrons of the helicity

rules we have established above.



98

Appendix

In the main body of the paper we have used fields transforming
according to the (0,s) + (s,0) representation of the Lorentz group
to deduce the form of the conformal operators that act on helicity
~states.  However, spin 1 particles are commonly described by vect?r
fields transforming according to the (%,%) representation, which
8enerally leads to no inconsistency provided that gauge invariance
is imposed on the amplitudes. It is therefore of some interest to
see how the above arguments have to be modifie& when the vector
representation is used: in fact 1t turns out that the conformal
operator acting in auxiliary space has to be modified by the addition
of a non-gauge term.

Explicit expressions for the vector spin-matrix and radiation-

gauge polarization vector are

(EW)Ml = i(gp}\gcu - gpugck) (A1)
and

(n) 1 ~on . “vy.(h)

£ (p) = -——7~'(6ij - p;P; - ih sij(p))Ej (a2)

1+ p3
(n)

where we are now using h for the helicity label and Ej is a
standard third-axis polarization vector.
Under rotations the polarization vector transforms in the

standard way (c.f. eq. (5)):

[- i(piBJ. - P;9;)8, + (zij)m]afnh) (p) =W, . E(h)(p_) (A3)

1] %
However, under boosts there is an extra gauge term compared with
the corresponding eq. (11), viz.
Y p,(h) (n) A (n)
- 1E3. +(Z . = - W, + 1= £,
[ izl v 0 Je™ @ = - e @)+ 1260 @)

This latter term may, however, be ignored, because of gauge invariance.
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The relation given in eq. (13) between the spin s and the canonical
dimension d is no longer true, since in the vector representation we

have d = s = 1, Eq. (13) is replaced by

22 Eﬁlh) (p) =0 (a5)

Working out the conformal ko operator in a similar manner to
before we find an extra gauge term, which again can be ignored,
compared with eq. (18):

£ (plalp)
- 3 2P(5, (plalp)) - 2i(z )V ak(_g_r)

13 (p) 1Y
A 2 . 2 A
= ~-E 3 2iW.» + —=——— la(p) + = 3.(e(plalp)) (a6)
o I + 21 E(l+p3) laP. +E2____RaP.

Working out the conformal ki operator, however, we find an extra non-

gauge term compared with eq. (19):

£ (plalp)
[(hai +2p.3 3; ~ b, f) 8, = 2i(zik)’{; ak] (_Lé_ﬁ_____)
£,(p) 26,
= X _ 2 . _ %%3 ) .
= Tor [2 9.;p-3 ~ P:3 21V, 8, E(l+1;3)]a(2) gi(E)E—% a(p) (A7)

The difference from the previous cases is that-this is not the
spatial part of a four-vector equation: we cannot make the replacement
£ > X The last term must therefore either be removed or supplemented
with a time-like part by a modification for the vector case of the original
auxiliary group conformal operator. That such a modification is necessary
is also clear from the form of this operator, which does not preserve
the Lorentz gauge éondition.

That is, for a vector field Au(x), satisfying 9.A = 0, we have

. . 2 po . V, p O o
+ 3 - + -
ap[:(21xu 1(2xux X au))g 2ix (gug\J gugv)lAG(x)

= - ki Au(X) # 0, (a8)
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in contrast to the effect of the Lorentz operator, which, as

eqs. (A3), (Al) in fact show, does preserve the gauge condition:

ap[i(xuav - x,2 )% + ilgle - gﬁgg)]Aa(x) =0 (49)

The problem must be regarded as unresolved, however, as long
as we do not have a deeper understanding oflthe form the modifications
must take which goes beyond the fact that such modifications must be

made in order to preserve gauge invariance.
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Addendum

It is interesting that the helicity formulations
of the Lorentez opérators fcr massless particles find another
application, namely, for investigating these particles in
the vacuum. It is clear from four momentum conservation
that each of the particles in the vacuum must be massless
and have vanishing momentum. We hope, from this formulation,
to find out if they can be spin particles.,

Upon recalling the rotation cperators

Mii = =ik m p 30 W (5)

and the boost operators.

Mpi =-1EQ;-W, (16)
where | }\Eai(’i)
' Wi = > (10)
b3

"
iy - ~
l*‘bg
we have translation invariant equation

0y
C };1’}* T<a, by - a,(hy7 =o

R (6)

()
rotation invariant eguation,
) —
[ = Mi1<ohy - 6,(p7=0
() } ’
and the boost equation

u) —
L X Mpl< G thd - Gy lpad7=0

where 40%(h)“‘ﬁkb)>is vacuum expectation value of n annihilation
w

operators of massless particles of helicity %; and momentum p .
i
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Te find out their implications, let us consider
the following cases separately,
(a) When n = 1 , from translation equation we see
immediately that
blatprr=0.
That is, <a)\(']))>: O , unless p/u= 0.
Also, from rotation equation ( M, ) , we have
AL G UP> = 0.
That is, 4(1}(?3)7: 0 , unless A\ = 0.
Hence we conclude that there can be no single massless
particle in the vacuum unless it is a scalar particle and
its four momenta are zero.
(v) When n = 2 , it is convenient to choose
B2 = (0, 1.1,0), B, = (0.=1hl, 0)
We do not put p}*= 0 until the end because helicity states
for p = 0 are not well defined.
From MI3 equation we have
(M2 L&, DD a,\z(pzv =0-
From MIZ equation we have
["'LP(L)S(‘”* b;zvc):v_,_ X+ A< ahtt;,) a)\“)l) Y=0.
From M, equation we have

. () ) L) (t2) _
LicE 9, E9, )= At K a,\‘q’.) c‘/\g’z)7 = 0.
)
But Em= Ea= [pll , these equations imply
(=i V0 4 A,) <O Gy (PY Y =0
and

M= Ay
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Putting E = 0 now, we deduce that

(o, P, At D=0

unless %4= 0 and N =AgF C .

That is, there cannot be two massless particles in the vacuum
unless they are scalar particles and have zero four momenta.
(e) When n = 3 of more, we cannot reach similar conclusions
as above. Theat is, we cannot exclude the possibility of having

three or more spin particles of p

=

0 in the wvacuum.

Altogether, we should have expected the above results
from angular momentum conservation principle. The above
formulation, however, helps us to see these results from the

first principle, i.e. directly from Lerentz invariance.
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