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Abstracts  

Part 1 	Dynamical symmetry breaking of massless 

Yang-Mills theory 

We investigate dynamical symmetry breaking 

D.S.B. of massless Yang-Mills theory in the context of SU(2). 

Within the approximation scheme we are using, we possibly 

find dimensional transmutation. More precisely, this massless 

theory with only one coupling constant g acquires a massive 

spectrum spontaneously provided the eigenequation for g2 

has a positive solution. The generated mass decouples from 

the theory and has become a dimensional parameter, i.e. taking 

place of the previous dimensionless parameter g which is now 

subject to constraint. 

Part 2 	Phenomenological applications and Renormalisation 

of scaling theory 

We explore the scaling behaviours of inclusive 

and exclusive processes alike using two approaches: (1) 

Quark model fits in well with phenomenology and the idea of 

anomalous dimension which, besides its phenomenological 

significance, is more linked with renormalisation. (2) 

Operator product expansion gives generalised scaling rules 
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on a model-free basis. We also add a few remarks on the 

scaling rules of renormalised theories. 

Part 3 	A joint paper on Conformal invariance and 

Helicity conservation 

By reformulating conformal invariance in terms 

of differential operators acting directly on helicity states 

we are able to establish the restrictions placed by this 

invariance on the helicity amplitudes for the scattering of 

four particles of arbitrary spins. The result is helicity 

conservation in the form 11 -f-A 2=)+3+ 	except for exceptional 

amplitudes 	, which survive, subject, however, to a 

differential constraint. It is conjectured that traces of 

these restrictions will survive in hadron physics at fixed 

angle and high energy if indeed the underlying dynamics is 

asymptotically free. 
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Overall Introduction. 

It is well known that symmetry principles, 

whether they are of the kinds corresponding to space-time 

transformations or they are of a more intrinsic nature 

connecting seemingly unrelated aspects, always provide us, 

in as much as orders and classifications, the best possible 

understanding of nature's laws on the deepest levels. 

Of prime significance is, perhaps, gauge symmetry, 

a symmetry that requires invariance under 'rotations' 

performed independently at each point of space-time. These 

'rotations', instead of connecting states of different spatial 

orientations, group particles of the same mass values into 
(I) 	(2) 

families. The bold attempt of Salam and Weinberg to put 

photon and W particles into the same family using a gauge 

symmetry group is very attractive: in this way the two kinds 

of interactions, the elctromagnetic and weak interactions, 

become unified. But how did they answer the mystery about 

(3) 
their big difference in masses? They used Higg's mechanism: 

the use of Higg's scalar particles in the Lagrangian in 

order to induce spontaneous symmetry breaking. The photon 

corresponds,in their models, to the unbroken gauge subgroup 

U(1) of electromagnetism and hence has mass zero, while 

the W particles, associated with broken gauge symmetries, 

pick up large masses from the symmetry-breaking. 
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With the understanding of the power of the 

spontaneous symmetry breaking, recent efforts have been 

centred around extending Higg's pioneering work on 

spontaneous mass generation. It is conceivable that these 

Higg's scalar particles, though sufficient to induce symmetry 

breakdown, may not be of primary significance. It should 

be possible that spontaneous symmetry breakdown can occur 

in the absence of these scalar particles, for instance, 

as effects of higher order processes involving virtual 

Goldstone bosons. In this mood, models on dynamical broken 

gauge symmetries flourish. We shall discuss in part one 

how the simplest non-abelian gauge theory consisting only 

of pure.massless Yang-Mills fields can acquire mass via 

t4) 
the Goldstone mechanism. The result is encouraging. 

It supports our belief that in the near future we should be 

able to develope a more general formalism to deal with 

spontaneous symmetry breaking theories, some method that 

can work for general fields and give the familiar features 

of spontaneous symmetry breaking in scalar field theories. 

There are other symmetries we like to discuss 

too, the scale and conformal invariances. In constrast to 

the previous case of breaking the gauge symmetry to generate 

mass, we work in the assumption of strict scale and conformal 

invariances, the symme-tries- that require.  zero mass. Presumably 

this requirement is approximately fulfilled in high energy 
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scattering phenomena and it should be rewarding to be 

able to identify the underlying principle to the diverse 

and seemingly complex data. Again, symmetry is the answer 

to the corresponding power rules and 'scaling rules' in 

the high energy regions for the exclusive and inclusive 

processes. It is the scale symmetry. To our surprise, 

though, this invariance, giving general predictions consistent 

with the phenomenological data, seems to indicate that 

high energy interactions proceed via the basic entities 

which are asymptotically free. 

The last part is concerned with conformal 

invariance, where we work with massless fields. It can 

be easily obtained, based on the auxiliary represenation 

(s,6) 	(o,$) of the Lorentz group for spin s , massless 

fields, that the representation of the Lorentz transformations 

on helicity states of massless particles is given in terms 

of the rotation angles of Wigner rotations. By considering 

the mathematical properties of the generalised spinors in 

(s,o) 	(o,$) , it is interesting that we can extend the 

helicity representation of the Lorentz group to the Conformal 

group. With the use of this helicity formalism, conformal 

symmetry has its own prediction for the helicity rules in 

high energy scatterings. Hopefully these can be verified 

by the experiments in the future. 
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Part 1 	Dynamical symmetry breaking of massless 

Yang-Mills theory 

Abstract 

We investigate dynamical symmetry breaking 

D.S.B. of massless Yang-Mills theory in the context 

of SU(2). Within the approximation scheme we are using, 

we possibly find dimensional transmutation. More 

precisely, this massless theory with only one coupling 

constant_g acquires a massive spectrum spontaneously 

provided the eigenequation for gZ has a positive solution. 

The generated mass decouples from the theory and has 

become a dimensional parameter, i.e. taking place of 

the previous dimensionless parameter g which is now 

subject to constraint. 
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Introduction  

(I) 
Quite sometime ago it was realized that a 

Lagrangian can admit a symmetry which is not a symmetry 

of its physical Hilbert space. This happens, for instance, 

when we have symmetry violating vacuum expectation values, 

or, symmetry violating n points Green's functions. Then, 

invariably as a result, massless excitations ( Goldstone 

bosons ) occur which, on combination with massless vector 

gauge fields, produce massive vector meson particles. Thus 

symmetry breaking theory provides us a mechanism for generating 

massive spectrum. 

Previous investigations of spontaneous symmetry 

breaking theories have been centred around scalar fields. 

a)  
Higgs, Kibble

a) 
 and others introduced mass term of canonical 

scalar fields 4  of wrong sign into the Lagrangian for 

ot) to develope non-vanishing vacuum expectation value. 
(3) 

Jona-Lasinio developed effective potential method in which 

the minima of the effective potential give the true vacuum 

states of the theory. This method is especially suitable 

for scalar fields theories, as examplified by Coleman and 

('F) 
Weinberg: They go beyond tree approximations and show, 

on inclusion of one loop corrections to the effective 

potential, that spontaneous symmetry breakdown can occur 

as a consequence of radiative corrections, i.e. of a 

dynamical nature. 
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In order to progress from the scalar field theories, 

we investigate spontaneous symmetry breakdown due to 

symmetry violating n points Green's functions which 

specificly arise from Goldstone mechanism of a dynamical 

origin, i.e. in the absence of sclar fields in the 

Lagrangian. Approach along this line is involved with 

finding symmetry breaking solutions to the various integral 

equations in the theory and usually one thus needs to 

use judicious approximations. In the investigation presented 

in below, we mainly model the argument for this simplest 

(5) 
non abelian case after the abelian case by Jackiw and Johnson; 

We explicitly introduce Goldstone boson couplings to the 

Yang-Mills particles so that they produce a massless pole 

in the Yang-Mills polarisation tensor IT/y. This in turn 

generates k2$ 0 pole in the Yang-Mills propagator and 

consequently mass for the Yang-Mills particles. 

The presentation is again parallel to the abelian 

case. In section (1) we write down the Ward identity for 

the generating functional and then derive from it the Ward 

identities for the Yang-Mills propagator and the Yang-Mills 

three points vertex. The latter Ward identity is used 

to show the relationship between this vertex and the symmetry 

breaking solutions to the self energy. In section (2), and 

more in appendix (2), we display the various Dyson equations 

and Bethe-Salpeter equations. These equations essentially 

govern the behaviours of the coupling functions of the 
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Goldstone bosons to the Yang-Mills particles and to the 

ghosts. In section (3) we develope the criteria for 

decoupling of these massless excitations from the physical 

S matrix. It turns out to be a satisfied requirement on 

as 
the residue of the massless pole in 7t1  . We consider 

some examples showing that the number of oldstone bosons 

equal to the number of Yang-Mills particles which have 

obtained mass through this symmetry breaking scheme. In 

section (4) we consider explicitly an approximation and 

compute for a non-trivial solution. We find that the mass 

value in fact decouples from the theory. In the conclusion 

we further comment on the mass value and extend our consideration 

to the mass ratios for theories which contain many fields. 

Appendix (1) gives the various notations and the 

Feynman rules which are employed in the four sections. 

Appendix (2) displays the Bethe-Salpeter equations. 

Appendix (3) gives the coefficients in the constraint 

equation on S and g2 
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(1) 	Ward Identities. 

When we are considering massless Yang-Mills gauge 

theories, we have Ward identities as a consequence of gauge 

invariance of the Lagrangian. As result, the Ward identities 

one obtains usually depend on the gauge conditions, which 

should be so chosen as consistent with the second quantisation. 
(6) 

In light cone gauge using a light like four vectors to, 

and 17 -e= 0 , we have considerably simplified Ward identities. 
ULA  

This is because there are no ghosts in this gauge. The 

drawback, however, is that loop integrations in momentum space 

sometimes lead to unmanageable ( at present ) divergences: 

of the kind like Jac-4a where a is Feynmann parameter. In 

the covariant gauge -atoq= ° 	, the Ward identities become 

involv'ed with ghost entities. We adopt this gauge in the 

text, as we only need the Ward identities for the Yang-Mills 

two points and three points functions, which are still quite 

simple. The Ward identity for the Yang-Mills two points 

function is used later to derive the form for the propagator 

Dal5  Pv 	and to show how the Schwinger mechanism works. The 

Ward identity for the Yang-Mills three points function "['rya  
°- 

illustrates explicitly the relation between its pole structure 

and the isotopic symmetry of the polarisation tensor 	 A, . 

Let us derive the Ward identity of the generating 
CO 

functional a la Lee and Zinn-Justin. The gauge transformation 

ape." 

is 
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where 
	

is reducible representation of the generators 

and sa  is space time dependent parameter of the Lie group. 

with Fact')::: ad  spefifying the gauge condition and etc( 

independent of 4);  and 9 
With these definitions we can begin with the generating 

functional 

ex  iD im] rz: fret (1)3 def iv! • Bxr g(co 2 3; 	(Pi  Ti 	(f) 

(7) 	• 	 / eb) 
as defined by Lee and Zinn-Justin. Here:: 50)46 

4 
I -1""' 

	

and the term - 2f cx 	is a weight function.Also, 

	

Fa 	 do, det M 

can be simplified by using -the-technique-of Faddeev and Popov 

i.e. by introducing ghost fields. This is best reviewed 
(S) 

by G. 't Hooft. 

This generating functional is independent of aiy. . Now 

let Xot = gcv.: cSF( . Assuming Ed(1))  °let/44s independent of 
Cl) a a  , which is in fact proved by Lee and Zinn-Justin, we 

have 

ex? i two-1] -a ivcr) 	f qj clef M exr i E s( 4)) - F2.4 (AT;  : vf 
2 A 	I 	-a • = rd473 stet M PIT irs(1)- -21Foc  +Yii;]r- F +I 4̀  

0. 

Also, as a(1,Pa,(=*-aciVaFq  and 
-a Fok 

9c(P ft( fir M-13 	E'DthTi ip jt M  

4). 	3  ch 	 cP.4 4  Ai 3E11-11(5y FF  

e that we not  

(2) 
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Thus we have the Ward identity for the generating functional, 

J cl (1)] 'A et M 	i Cs( 4)) —A 	(Pi  JI 	Fck+Tirrii! cp +A:.] Em-1]k. 0.  

Putting it back in terms of W(J), we have 
(3) (i`--g5-)+ 	th+4)111-1(÷?--D7)Jgck  ex!) EtAlm3= 0 

where we have included the arguments of For  and M. This 

equation gives rise to all the other Ward identities of the 
lt  Xx•-•):)„.  

fully connected Green's functions W 
	

• 

gauge 	
a FG( 	ci)

3  this equation becomes frk 	 cc  f 	 v 	C ; 	 3 er 	x--))en 

	

'DP 	(1)  4  3) CI 3 Ty ( 	 oip-i  9 	Pajci.?(y) 	 1 Pay 
pa' 	IA  where CT (1,j;i)is the ghost propagator satisfying 

t-lax  apt  i dikA  Cc( 	:5‘?--r4  j e PC :L>3 r27.) V ie( Y*1) 	6) 3-„o) 
which is actually eqn.(2) in this gauge. 

Now we can derive the Ward identities for the Yang*Mills 

two points and three points functions. The general rule is 

to use appropriate differentiations of eqn.(3) and then put 

the external sources equal to zero. This thus gives the Ward 

identities of the fully connected Green's functions -DIAPII'XIV2- )()s 

.,X$X3.•`•X-rt 
which is usually denoted as w 	. To obtain the 

Ward identities of the proper ( one_particle.irreducible.) 

	

' 	
x0(2.-04, 

vertices 	one can use the expressions of w 
•q2.-971. 

in terms of T , i.e. 

I1i X0(2."• h.  .... 
all 'trees' with n exterx9n5e1 vertices pith 

	

, branches 	• vertices 

In the specific 



19 

We can easily deduce that the longitudinal part of 

A 
JI) 
,
P
d

r  the vector propagator 	;, is unrenormalised by applying c) --- 
ay(s) 

 

to eqn.(h) and using eqn.(5). Thus 

- 
L 	

k V JO' 	- Kp- 
,q(1  

That is, .Pdmv 	can be put in the form 

41`  

This will be used later to illustrate the Schvinger mechanism. 

In the abelian case using fermion field the proper vertex 

-T44 function. is  (1.1'40associated with J5 satisfies a Ward identity 
. 	 5 

ifreq+19+?)= 	
5 Ecp+v -i- ztp))) J 

with 	2:4) 	the self energy of the fermion,i.e.012,19-11) 

has a pole at q = 0 when the self energy has a symmetry 

breaking part. This is obvious because 

L)"1--,0Z-T7(12,/;+?).7-1t1)5) I(P)}. 
It is interesting that in pure massless Yang-Mills case 

the same kind of relation holds between the symmetry of the 

self energy and the singularity structure of the three Yang-

Mills vertex. This is best seen in the light cone gauge. The 

vertex function satisfies a Ward identity 

12  JP   k T76/3  (h p, r) 	E„el t ) 	- D 1(  ) v  
PV  

where 	:DP, 	is Yang-Mills two points Green's function in 

this gauge. As a check, one notes that this equation should 

be satisfied by the respective bare quantities. 

The corresponding identity in covariant gauge becomes 

involved with ghost entities. Nonetheless the conclusion 
(9) 

should be fairly the same. It is shown in this gauge that 

this Ward identity can be simplified to result 
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I.l m K 0 
k T aR9  tk,p,r) cc r a  Ittp)jrlj 

Vr 	 PO" 
with IND) polarisation tensor and (r) .T.;€ e . 

c(I3  
This explicitly shows that when ir ' has a global symmetry 

„tt

pCT-  
dp i/ 

breaking solution)  r 	has a pole at k = 0 and vice versa. 

However, this vertex can still have a pole at k = 0 with 

unbroken global symmetry. More precisely, massless poles 
2 

with k = 0 and k 0 0 can exist in theltYang-MilLs':thir:Oe 

points vertex independently of the symmetry nature of the 

self energy solution. 

In fact, we can go beyond this. Because of the more 

varieties of elementary vertices in the massless. Yang-Mills 

theory, viz. three Yang-Mills vertex, four Yang-Mills 

vertex, one Yang-MillSand two ghosts vertex, it is quite 

conceivable that one could have symmetry breaking and dynamical 

generation of mass with 	= 0 . That is, massless 

p e 
poles need not exist in TIAvr at all for Schwinger mechanism 
to work. We shall give the formula for the pole part of 
„dp) 
)Ltv cr 	in the next section and this point can then become 

more transparent. 

Here Yang-Mills means Yang-Mills particle. 
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(2) 	Schwinger mechanism and Dyson equations. 

We will now write down the explicit form for the 

Yang-Mills propagator .1)", 	. This is essential because 

the Yang-Mills particle mass is the location of the pole 

in 	JO 
	

This choice of definition for mass is 

preferred, because it is gauge invariant. For instance, 

the other definition of mass as the value of inverse 

propagator at zero momentum is, in general, not gauge 

invariant. These two definitions coincide for first order 

calculations, but they differ when we go to higher order 

effects. 

In external J, the complete Yang-Mills propagator 

can be written in terms of the polarisation tensor 1-4v 
DiAl 0(4;  = 1%4%P ((1) +1043 cta313V4).4, (x-3) wpd,19,,,(3, 3 ; n 4,,1( 5, TT) 

, 6 -1 
where i5 is the bare propagator. By applying(D) to the 

left and (1)fl  to the right of this integral equation, 

we have et 	, 	0 —1 7rPv cio =--i [3) do]pv 	r clo1 ' 

lev 	a P 
Ti

/0
cie ( k) = 	/ 	k—t to 	--- 	k I.  7r ( ic2) . 

Hence, the inverse of 

L 	

eqn.(6) gives 

r do, 	 r k, 	'<Li +  ktnt icz)V+ 	 (7) 

 kx 	 Jae 

d(3 

This together with the fact that the longitudinal part 

of ])),L6)  13.= 0 	is unrenormalised imply that 71 is 
7=0 

ag 

transverse, 

(6) 
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Let us look at its transverse part. When eti(k4) 

has a k
2

= 0 pole with non vanishing residue, say R, 
2 

the previous k = 0 pole in 	-vpy 	is then evaded. !:oreover, 

ap using the approximation where only the pole term of 7( fit) 

is kept, we find that the Yang-Mills particle acquires 

a mass /4 with 

ittz 	R . 

This mass formula will be used very often later. This 

mass generating mechanism, i.e. a seemingly massless 

particle acquires a mass because the vacuum polarisation 

tensor has a pole at zero momentum transfer, is called 

Schwinger mechanism. 

The now familiar Higgs mechanism provides a special 

realisation of the Schwinger mechanism. In those examples 

a canonical scalar field, already included in the Lagrangian, 

has a non-vanishing vacuum expectation value. This vacuum 

expectation value thus gives rise to tadpole contributions 

to 	VIP which produce a pole. Here we aim to make 

such a pole occur for purely dynamical reason, i.e. in 

the absence of these canonical scalar fields. In other 

words, we are more interested in a dynamical symmetry 

breaking scheme: Dynamics gives rise to a zero mass bound 

excitation which at the end decouples from the physical 

S matrix and gives mass to the Yang-Mills particles. 

In order to explore- such a posbibility, we first 

look at the Dyson equations which relate the various 



dp 
The Dyson equation for 754v  , also Green's functions. 

4"b 

e 
71 y ( '4) 7) T) 
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similarly for other two points Green's functions, is 

obtained by taking 7-yf of the Schwinger functional 
T=0 

equation for the Yang-Mills field coupled to its external 

source J, where the Schwinger equations are derived by 

applying stationary action principle to the generating 

functional. The Dyson equation for 7rittv  , after taking 

variation gt
/- 	1.):7
and 2- of equation (1), is diagrammatically 

where we have included the tadpole diagrams. At J = 0, 

these tadpole diagrams in fact do not contribute. This 

is because <A140)>/i....0= 0, which can be easily seen by 

putting J = 0 in the Ward identity for the generating 

functional. 
ap 

Thus from here we see that a pole in 7/4 V  can 

arise from a massless intermediate state which couples 

to two Yang-Mills particles, three Yang-Mills particles 

or to two ghosts. That is, this massless excitation 

( usually called Goldstone boson ) must have nontrivial 

couplings like 
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We denote these coupling functions with suppressed 

indices as P2  , P3  , P9  respectively. 

Analogously we can write down the Dyson equation 

for the three Yang—Mills proper vertex 

This is interesting because we can read from it the pole 

part of this vertex. 

Let us introduce A 	with the meaning0. 

Also let us use for the Goldstone boson propagator 3) .(10 ap 
dah 

where the factor da b can be chosen to suit 
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our interests. For instance, for a global symmetric 

theory, we can simply use 	d -all • On the other 

hand, we can assume that there are only two Croldstone 

bosons and use CIAL—
ab- 

 cr cr * This latter thus 
3 b3 

corresponds to a broken global symmetry theory. 

Thus, the pole part in this proper vertex is 

given by 

bfi kl  
= [ Aae, ki4  + ( le)] C—; eicii,/k 2  ) Plvr  (P,Y) 

One thus observes the explicit appearance of P2  in this 

residue. 

Also, the pole part in 75Py  can be easily written 

down. It follows from using the definition equation for 

?tell°. at each end of the polarisation tensor. Thus, 

7'4(1 	= -ibk k + OW)] -°-(-ak[ b illotOaeq. ack 
jkly puce 	 le* 

Hence, we can write, because of its transversality, 
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7[ = -t [Kg - 	)  4°1."  .0 	•
k L 

t higher order terms. 

On substituting this formula without its higher order 

terms into equation (7) , we can give the mass formula 

for the Yang-Mills particle. It is 

114 '74  '"otk aab )131). 

Thus, we see that we can have dynamical generation of 

mass provided 
	

)1'00 * 0 	However, this condition is 

not sufficient for a massless pole in the proper three 

Yang-Mills vertex. As it should be clear from above, 

this also requires nontrivial Pz  solution. That is, 

massless poles need not exist in 	-TA 	at all for 
PI)  /' 

Schwinger mechanism to work as we have mentioned before. 

We give the other Dyson equations and the derived 

Bethe-Salpeter equations in appendix (3) . Any non-

trivial solutions for the (oldstone boson coupling 

functions should be made consistent with them. Before 

doing the actual computation, let us look at another 

problem_in the following section. 



jth 
I + r 
Reg Lj 

A„ R„ 	 rj 

••••• 
fowls, 
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(3) 
	

Decoupling of CToldstone boson poles from S matrix 

In this section we will develope the criteria for 

decoupling of these massless poles (Goldstone boson poles ) 

from the physical S matrix. This is essential because 

these massless excitations, though responsible for the whole 

D.S.B. scheme, do not correspond to physical particles. In 

order to fulfil this requirement, thus we need to look for 

complete cancelation of pole diagrams. 

The first step is to decompose the full on mass 

shell amplitude A into three parts 

(a) part which is regular i.e. pole free, and 1 particle 

irreducible. 

(b) part which contains those diagrams with massless poles 

say, at q2 = 0 . 

$p 
(c) part which contains those reducible diagrams with 	0) 

v 
That is, in diagrams they are 

The next step'is to take a diagram from part (b) 

and choose a corresponding diagram from part (c). Two 

corresponding diagrams are those diagrams which become 
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each other upon replacing a massless Groldstone boson 

pole with a Yang-Mills propagator, or vice versa. For 

instance, we can consider the following two diagrams: 

Pi 

(10 a.) 

JAI p) 
A. j+i 

The amplitudefor the first diagram is easy to 

tt- 
compute. It is fl Dab Pj 

The amplitude for the second diagram, however, 

takes more analysis. First we note that its vertex Aitt  

and similarly for the other vertex contains a regular 

part and a pole part at q2 = o . The pole part arises 

as results from such diagrams like 

A
Itt I Thus, A4, = im- 	 AA4,  Re, 	r" Pole 

and we can write 

h4  
A-14.1  ( poke 7- 	F D to, a b Z‘t . 

1.14  
Now before substituting this form for 141+1  into the 

amplitude which is ti! 1  ,D v  dp , we note that 1+ 1)  pv A
1.1 

 

we need only retain the 411, term in the Yang.-Mills 
c1/3 , 

propagator -ALipv 	. This is because the on mass 

shell vertices are transverse and cancel with the 	kv 
,c1(3 

term in 	.1) )49 	• Hence, we write the amplitude for this 

diagram as 



29 

Att 

r-* rn-a) ) ( A j÷, )14 

However, as the pole part in A+1 . 	contracts with the 

rightmost vertex and cancels it, we are left with 

( ;#11;e3 r z.÷-;27.„72)] 

= (Ali o); r.z"---:---'2 - ziE( A,j+4e3 	(A44-1 ;alle ]  

	

3 	* Vr(r 
)4 
	  ( A • 	+ ( A- r 	 ,,) r) 	Re3 	7 ,-() J pote 

= C Aiti) 	 . ) 

	

R 

 r el 	7 r(t 
j(R4+' R 	io 	- 

. .6, 
Tr(t) vike 

The last line results because 

( (2 	Ai+, 	— 	Ai" ),,,,e  Q., 
and 4t, contracts with (A. 	and cancels it. 

Jfl t he   
Thus, the two corresponding amplitudes, 

equations 0.00and (3.00, show that the pole part of the 

second diagram cancels with the first diagram provided 

4 
Daa, 	t Z af t trr(g)»jc( 	D14 fib r" 	Dab (   

2 
for q = 0 . Here 	Dacj is the CToldstone boson propagator. 

2 
We specify the region of interest : q = 0 , where these 

massless poles dominate the S matrix. 

The L.H.S. of the above condition, seemingly 

2 
containing double q = 0 pole because 5)act'appears twice, 
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in fact after cancelation with q2 in the numerator is 

a single q2 = 0 pole. We remove the pole coupling functions 

and then the equivalent condition becomes 

A , [ 	rZ 
cyk 	 >vat ) ,(15  fib 	b 

Multiplying this with an on the left and (3/9 on the 
Ca 

right, we have 	
1-  

rACP p At d  
It is more convenient to use matrix notation here. Its 

4 V.I. 4 7, tiC(1) A-1  = 	= —a= L 6 L • 

2 
Hence, what this requires at q = 0 is 

L 	t e lrinla I nd 	Ada t̀ ab Abp 
which, thus, is in fact a requirement on the residue of 

the massless pole in 7() . This is indeed what we have 

obtained on computing the pole part of 7t(t) in the previous 

section. 

Thus, we have completed our proof for the above 

two diagrams that the pole part of the corresponding 

one particle reducible diagram cancels with the pole diagram. 

We can perform the same argument to every pole diagram in 

part (b) and clearly we conclude that the on mass shell 

Green's functions are free from massless poles. 

Though the above argument is independent of the 

specific values for 	A 	and 	4 	, it is clear from 

the mass formula, equation (9) , that the mass value for 

the Yang-Mills particle depends crucially on them. Let 

inverse, with suppressed indices, is 
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us investigate this point more carefully. Of course, 

the value for Ado is explicitly dependent on the kind 

of the pole coupling functions and the number of the 

Goldstone bosons in the theory. For instance, we can 

consider the following two cases in SU(2) : 

Case a) 	Suppose that we have two Goldstone bosons and 

thus we can choose 

dab (Ca. b 	eras gb3 
Acto, cPc E Q  a 3  

where we use English (Greek) letters for the Goldstone 

boson (Yang-Mills particle) isotopic spin indices. 

It is then found 

be 	S 	c ap 	dp al 133- 

That is, instead of a massless Yang-Mills triplet before, 

we obtain two massive Yang-Mills particles and one Yang.. 

Mills particle remains massless. 

Case b) 	Suppose instead that we have an isotriplet of 

Goldstone bosons. We can accordingly assign 

Gab = 1-03 

N.( a co cla Q. 

The mass formula will then give 

ti  g DC 	 oft3 

Thus, the Yang-Mills fields obtain a common mass. That 

is, the local isotopic symmetry is broken but the global 

symmetry in this case is preserved. 

These two cases thus show that the number of Goldstone 
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bosons is equal to the number of Yang-Mills particles 

which have obtained mass through the symmetry breaking 

scheme. This is in fact not peculiar to SU(2). Feinberg 
0) 

et al showed that this is a phenomenon common to all other 

symmetries. 

In the above two examples, we have also verified 

that they satisfy the lowest order Bethe-Salpeter equations 

so far as isotopic symmetry is concerned. 
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(4) 	Goldstone boson pole coupling functions and 

approximations 

As we have noted before that the generated mass 

-.1  
is given by the mass formula Map = Actek ot 4b A0  and 

6.0( 	pao 

we will in this section compute for non-trivial solutions 

for these pole coupling functions. As solving them exactly 

is a formidable task, in below we will limit ourselves to 

consider an approximation, viz. p3 = 0 and p,= 0 . These 

pole coupling functions, however, as shown in the appendix 

(2), are clearly self coupled. Thus our solution should 

be viewed as an approximation taking P3  and P.9  as higher 

orders in the coupling constant g and hence neglected. 

We find that taking P3  = 0 is an appealing idea, 

because this coupling function involving three Yang-Mills 

particles and the Goldstone boson pole should be very complex 
(I) 	(1) 

if nontrivial. Both Feinberg et al and Zan Smith use this 

same idea to reduce the computation labour. However, 

(P) 
subsequently Feinberg et al try to break local symmetry and 

(9) 
use a symmetry function for Pa. While Jan Smith considers 

a global symmetry theory, similar to our work in below, 

his more general scheme involves more divergences than 

here. Though he also argues that the approximation as 

mentioned above is plausible, our direct approach shows, 

besides a consistent solution, that in this massless theory 

with only one coupling constant the generated mass value 
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in fact decouples from the theory. We will consider 

this more in detail in below. 

In this specific approximation, we have a 

simple integral equation of the form 

SP2.1).Di< with suppressed indicezto 

That is, similar to the previous abelian case, we also 

use one coupling function to characterize the theory. 

The kernel here, in its lowest order, is given by 

	 = 	.C+1•+X 

where the first two diagrams on R.H.S. when substituted 

in equation (11) will give the same contribution because 

of Bose statistics. 

Before solving for P2, it is interesting to 

look at the isotopic symmetry of the theory. We can, 

for instance, choose one of the following three choices: 

(1) 	p 	E 	C T Ad3 
	d3 .)(s,

r 
	, with 

( Td3) 	=J 	S;04  ;iv  . 
313 	P4  cr 	z 

3' 
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That is, there are two Groldstone bosons and the coupling  

function is symmetric in p,e . It is convenient to denote 

coupling  function of this form as P2m.  . 

(2) aa3 Eap - 

This is an alternate case also with two 1-oldstone bosons. 

Only that the coupling  function is antisymmetric in fl e . 
Thus we denote coupling  function of this kind as P 2 p,ei 
(3) R 	Ee&p. 

This case corresponds to an isotriplet of Goldstone bosons. 

The coupling  function is totally antisymmetric in A, e  and V . 

We denote this as P impdq • 

It is easy to verify that all three kinds of them 

satisfy the lowest order Bethe-Salpeter equations. But 

we will discard consideration of P2[Ar)for the following  

reason. We are mainly interested in those solutions of 

P 2 
which when coupled to one vector meson can give non- 

trivial X cLa  	Now for a solution like P,113,6  , every 

diagram in 

with amplitude P z ip  T}  Igor E 
r

, 	will have a 

corresponding  diagram with amplitude Pal 	TiVpir  E p. ' 
and thus the two add up to zero. Similar argument applies 

to 

 

• 

 



Hence in this case the main contribution will come from 

which is essentially P3' the coupling function we think 

of neglecting. 

The other two coupling functions, Pl. t:~I~J and 

~ t a, P> PJ in lowes tor d e r, i. e . considering only 

g i v e ).~ ~ oC to.. r:J'3 tv.' prE, rJ f1 Y tIC f Col ~ 3 

and .Ao(~ DC fo..p'f f~rol c:(, ~o( respecti vely. 

These are the two examples used previously to calculate 

the mass values. We should notice, however, that as the 

residue for the three Yang-Mills vertex has a factor 
C\~y 

~f'~ (~> -1>-k) , we cannot arrange a pole in thi s vert ex 

at k = 0 while insisting an anti symmetric function for 

This is because Bose statistics would require 

0. r PI V] 9 ) == P 0. r i. p J <. Z ' 1') 
P;z.r~. t p~ 0 2~J-" . 

and this obviously cannot be satisfied for q = -p . 
o.r I.JlJ t ad1) ~] 

Nonetheless, P"f''' (p,-p-k) or Plj-\" (p,-p-k) need not 

vanish for k
2 = 0, i.e. a k

2
= 0 pole can exist 

vertex. 

in this 

r 4, f' J>1 
Thus, in below, we will furtherly use P';i"v 

to calculate its contribution to ~O(a • 

The solution we have in mind for equation (11) 

in its lowest order is a solution which asymptotically 

behaves as 

36 
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C4,8,YJ 
pi); 	E Ecifiel 	kv )+19,9,(f:- kr)] Eq32.1 4 ckti J 

i.e. a simple power function in momentum. 

It is clear that we should expect some constraint on this 

power cr , in order for P to resurge after the operations 

indicated on the R.H.S. of equation (11). There we use 

the lowest order approximations for the kernel and the 

propagator which is chosen as elsewhere in Feynman gauge. 

The integration is then performed by continuing to Euclidean 

momenta. Indeed for consistency, we obtain, on matching 

thep 1' and q terms on both sides, the following two 
P 9 	Jp9 

conditions: 

Eo+ bCt, j+ Fn 

C cu. + Ed+ 13 C12:1 + 	= 6 
(12) 

En.4hFil,C12,Ea,Cz3Fn are where the coefficients Co, 

polynomials in c  and g
2. They are given in the appendix 

(3). Eliminating b , we have a condition equation on 41,7 

as we have envisioned before 

CV (C/2 I.  Ell 4  Fit ) -2" ( I "" C2.2)(I Fit 	) 	(Ii) 
Now g2  , of course, should be'positive. Also, in order• 

for this solution to vanish for asymptotic momentum, we 

require 	1 . Moreover, S.  will be shown limited to 

a certain range of values. This, thus, makes the above 

equation a more stringent condition on g
2 
 . 

Naively, we would think that we can proceed now 

to calculate the generated mass in this approximation. 
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In fact this cannot be done. If we look at the mass formula 

again, which is 

[VIZ  = 	d 
c(p 	

A ack ab Np to. 

It is clear that in our case here we can use 

K 	Fck et, 	and dab  = ffkb  , without any loss of 

generality. Thus we have 

and then we imagine that we can calculate A Ka  upon taking 
a 

ka. 1 k:.-0 
of equation (1) which is, in this approximation, 

where 

caqm rr' 	Pyrii 
X 0( a  kAt  OC 	Plv  ( L k-Y) D tr) 9.?1,,efk  01 r 

	

cct,13. v3 	ca,p, ?).7 
FlvT 	= pavt 	(k-r,r) 

	

A,, 1 	L )  

	

k) 	C 914v 	riz 	k 
. y • 

Clearly, X,c, is proportional to P2  . Moreover, as the 

L.H.S.of this equation has dimension +2, it is convenient 

to write 

2,c/  
X 	12, k c M Ea  	It‘ 	kj)49-Trt. crt.) 	Pe' 21.4 	 M z  

To our surprise, upon substituting this into the above, 

the value 1%1 decouples from the equation. This happens 

when we change the variable of integration , from r to 

a 
rM . The resulting equation, after applying -7; 	to it, 

6tsiktO 
is 

3,,,3- Lc, 	—ie32 	fe E—Jrr  r y 	2.133-r r6.3 -  

E )  ,( y, t f rv 2  Y Jo . YT
/ 	 Itfol 

Kr.1 	• 

This integration can be performed after Wick's rotation. 
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The result is that, for convergence of integration, 

must be limited to the range of value f4 Y. 3 , 

and c is then given by 

C 
671.  3 

r s i i (2.- 	n J / C2-b C2--  C5 ÷ 13

with b previously given by equation (12) . 

Thus, we have failed to calculate the generated 

mass. Instead we have obtained one more condition on 

the value of 1 , which is now required to be I .44 3 
for the existence of a solution for P2 of the form 

111.9J 
P2iut, tig,k) °C rEa  3D-1) 1› -k

P 
 kv)t-b3 

v 
 tpl- V))EL,54-1-t 251J, 

P 9  

We will give further comment on the mass value 

in the conclusion: The reason behind the decoupling 

of it and why it is not a sad point in this theory. 

Before ending this section, we like to stress that 

we have found the above mentioned solution. It should 

work, provided that the constraint equation on cr and 

g
2, equation (13) , can be fulfilled with all their 

other positivity conditions. 
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Conclusion  

In this simplest massless non- abelian case 

we have found the following conclusion. For spontaneous 

symmetry breakdown in this model to occur as effects 

involving higher-order processes involving virtual Goldstone 

bosons, the coupling constant g becomes constraint to 

satisfy certain conditions and the resulting mass for the 

Yang-Mills particles cannot be computed. 

We can view our result here in connection with 

that from massless scalar electrodynamics. It is found 

in that theory with two free parameters e and X 

spontaneous symmetry breakdown can occur as effects of 

higher-order processes involving virtual photons. After 

symmetry breakdown the theory still possesses two parameters, 

and <CID> , the vacuum expectation value,of the 

scalar fields. That is, A becomes related to e 	and 

the generated mass dependent on <cia) in a trivial way 

governed by dimensional analysis is also not .computable. 

Hence we note the similarity between these two cases: 

after spontaneous symmetry breakdown a dimekisionless 

parameter is traded for a dimensional one, the phenomenon 

of dimensional transmutation. 

There is another aspect that we like to stress on. 

It is found by Feinberg et al that the number of particles 
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that have acquired mass in this dynamical symmetry breakdown 

scheme is equal to the number of Goldstone bosons in the 

theory. If we recall a general feature of spontaneously- 

broken gauge models where Higgs phenomenon occurs, i.e. 

where the driving mechanism for the instability of the 

theories is a non-vanishing vacuum expectation value, the 

number of the would-be Goldstone bosons is equal to the 

number of broken degrees of freedom. However, these Goldstone 

bosons disappear-and consequently the vector mesons corresponding 

to the broken symmetry generators acquire mass. That is, 

irrespective to the driving mechanism for the symmetry 

breaking the number of Goldstone bosons is equal to the 

number of vector particles that have acquired masses. 

These two aspects, dimensional transmutation and 

the one above, suggest a strong possibility: in the future 

we should be able to develope a more general formalism 

to deal with spontaneous symmetry breaking theories, some 

method that can work for general fields and give the above 

and other familiar features of spontaneous symmetry breaking 

in scalar field theories. 

Before ending it may be interesting to point out 

that in theories consisting of many massless fields but 

with only one coupling constant the mass ratios are necessarily 

independent of the coupling strength g. This follows from 

dimensional analysis and renormalisation: The generated mass 
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M for each particle via spontaneous symmetry breaking 

should be independent of )4 , the point of renormalisation, 

while from dimension analysis it can be put in the form 

(1=jLk1(1) . Hence we have am/a/A= 0 and this consequently 

leads to 	eXpr-f--1—  
p
431 , where we have introducede(PE)4 

and C is constant of integration. Hence the mass ratios 

are just constant ratios and are independent of the coupling 

strength. 
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Appendix (1) 

Notations and Feynman rules -for massless Yang-Mills fields 

(1) 	Yotations 

  

solid line representing Yang-Mills 

particle 

wavy line representing ghost particle SMAA.A.W.A.A. 

1110 •INION* 
	

thick solid line representing massless 

bound state ( Goldstone boson ) 

K, proper kernel of appropriate 

 

amplitudes 

zwesurie P, proper Croldstone amplitude 

A, connected amplitude 

A', proper connected amplitude 
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Feynman rules for massless Yang-Mills fields 

Propagators: 	each propagator has an additional 

factor y(2.704i . 

(i) Yang-Mills propagator 

k 

tg,14) 	(16,1) 

d(' ic ., kt, 
(k) =k2-1E f 1)41, >`. 	E  

where A = 1 , 0 for Landau, Feynman gauge respectively. 

(ii) Ghost propagator 

k 

p 
c 	 e` ft  7,0  — k „ 

(iii) Goldstone boson propagator 

dab = 	E  

where the choice of °lab= Si,• 0,1 	or = cro, -cc" S1,3  

depends if one is interested to conserve or break the 

global symmetry. 
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(b) 	Elementary vertices: 	each vertex has an additional 

factor (z 104  ; 

(i) Three Yang-Mills particles vertex 

°WA 

 

133=-i Eder E vr Z Pp.+ 5),4-c 	 k)r] 

(ii) Four Yang-Mills particles vertex 

2-  B4 7:.-9Ekty 1,r(5" r 9tAr 9vr - gper 9Y•c] 
- 9 Ekta Eta/ r 9)..t. 3 y r  9).0 3ar 
-91 E1,de 1..firt.  3t, 	- ,9po-9vT] 

(iii) Two ghosts and Yang—Mills particle vertex 

ao.= 	Ecifi ?i.k • 
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Appendix (2) 

Dyson equations and Bethe~Salpeter equatioDG 

(i) We give the Dyson equations diagraffimatically for 

the following vertices 

(a) Three Yang-Mills particles vertex 

~ =-< + t--<@f@ -~~ 

-tt -@F{j<~: + ~--RY+t~ 
(b) Yang-Mills particle and two ghosts vertex 

-< = -< --<rL +-i~ 
+t~ 

(c) Four Yang-Mills particles vertex 



(ii) We give the derived Bethe-Salpetcr equations 

for the following GOldstone boson coupling functions. 

Diagrammatically, they are 

( a) Goldstone boson and two Yang-Mills particles 

coupling function 

(b) Goldstone boson and three Yang-Mills particles 

coupling function 

( c ) Goldstone boson and two ghosts coupling function 
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Appendix  (3) 

The coefficients for the constraint equation on (c and g 

In the_telf consistency computation of P 	9 

equation (11), the integration is performed by continuing 

to Euclidean space and using addition of denominators 

method, namely, 

-r 	r  
1r Pt. = jEir i 

A l  .1  10-  Tfii)(R^1)!  

01'0 	C;fliAir 

with R =Mr. . 
i % 

In order to present the results from this 

integration, it is convenient to introduce the following 

definitions: 

r 	r 	
4 Y(ct -0! 

ot (d)E j  

	

r 	c't  
ot- 

C(6,1) --1-1-7(1, ) 	7=-:  f 	dc'—a) (1— c() 	 roe  (5-1-3 

(1-o0t 1 0/ )  31) 	) 	I  _ 7t cry- 	de( 	Id  ( fit z.) 

and similarly, 

Ta( otipv) 	 jr ce r( -0  ! rev  
Er a+ oco-oo 4,2d  

'k. 

	

) J±15 	if ct 	0-.0 0- 00  
C as+ 3, " I ! 

(i-cog0-0( 

	

(E)11.) ( 3)"  
=p 

-
,- 

i(AC( 	
er 	

Tot cr+1.,pv) 
! 

where n, d, and (rare real numbers 

1,13 
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The above definitions are used to give the results from 

the first two diagrams in the ]:P:11(:1. For the contribution 

from the last diagram, it helps to make the following similar 

definitions: 

crin) 	= (pa - 

g(111.) -1--.49  t 

4„5- 

icic( 	, cl—ciftior(i+3) 

ifl 

S oto( ut

oc 
s,(1—d)Lia(c1+3)9) 

F(& -) Ei EC et-100 

F(d)%) E Et d-1,11.) . 

As said in the text, for Pz  to resurge after the 

integration operation, we arrive at -two c-oridiion'eeqUationrs. 

Now, with the help of the above definitions, we can give 

the coefficients of these equations. They are 

GI = 92 CC Ca/i "4-• 2.0 (C113)1. 'eta) ÷ 4 E(Cfil) '-'2/(C1) ÷5D ( C D )3 

CI = 542[— C(cip1) 	2e(ciii) 1Xt1)+  al(cy) 

31EECct,I)+ a E 	g(co 4Z(eco- POO -5F(a)1)] 

= 5 t  L.- Rao- gt6t) + 2_E1(c1,1) Tcco t F(d/1)J 
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C2.1 = 92  Esc 40)-20C ( 4 ) 2J -f-20C(Ch3)-10 Ej(c1.) t ito r4d,o] 

.9 2E- 0 	t 2_0 e_-(d)I) - 2i1)(00 + 4ED Cd, 

c-(d)i)- z.C(01,23-za:(a)1 

Fir = -2-3L E 3 R(d)-  Z ig(cf,i)] 

F.= a32-Fta). 
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Part 11 	Phenomenological applications and 

renormalisation of scaling theory 

Abstract 

We explore the scaling behaviours of 

inclusive and exclusive processes alike using two 

approaches : (1) Quark model fits in well with 

phenomenology and the idea of anomalous dimension, 

which, besides its phenomenological significance, 

is more linked with renormalisation. (2) Operator 

product expansion gives generalised scaling rules 

on a model free basis. We also add a few remarks 

on the scaling rules of renormalised theories. 
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Introduction  

Scale invariance has a rich relation to many 

theoretical investigations. As an asymptotic high energy 

symmetry of scattering amplitudes, it leads to the phenomenon 

0) 
of helicity conservation. Group theorists can connect its 

algebra with improved stress energy tensor to construct 

(2) 
stress energy tensor algebra. Or, using ideas similar to 

P.C.A.C. , we can concern ourselves with the soft theorems 

(2) 
of dilatons. The phenomenological use of it, in fact, has 

been known for sometime. We often use simple power rules 

to describe form factors. The most well known example is, 

perhaps, the dipole fitting for nucleon form factors. 

With the recent discovery of a simple phenomenological 

(3) 
scaling rule for the more complex inclusive processes, it 

is thus desirable, and it is also our aim here, to describe 

the scaling rules for exclusive and inclusive processes 

in the same theory, or using the same tools. Naturally, we 

begin with the principle of scale invariance. We find that 

its predictions for exclusive processes, implemented with 

the idea of anaomalous dimensions
N
,
) 
 are quite successful. It 

shows that we can reach a consistent assignment of anomalous 

dimensions to the hadron fields. This assignment is in fact 

very agreeable with quark assignments. Thus motivated, we 

try for a quark description of the inclusive processes. The 

simplest approach is to use quark canonical anticommutator 
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and quark descriptions of currents. Surprisingly this - 

suffices to give the correct scaling behaviour for the 

inclusive processes, and, moreover, the two structure 

functions become related in quark model. 

In order to do without any specific model, we 
(5) 

employ Operator Product expansions to the same aims, using 

the minimum amount of assumptions except its built-in 

scale invariance concept. We find that this approach is 

able to give the correct generalised scaling rules for both 

kinds of processes. It also has the advantage to identify 

the powers to the dimensions of the various operators. 

We can compare this result with the other results using the 

additional assumption of conformal invariance. 

We give at the end the renormalisation group 

(6) 
equation, which is the replacement of the naive scaling 

rule in renormalised theories. We also touch on the relation 

between the dimensions of the coupling constants and the 

renormalisability of the theories. 
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(1 ) 
	

Scaling rule and exclusive processes 

Before we formulate from the n-points Green's 

function the scaling rule for exclusive processes in which 

the numbers of incoming and outgoing particles are aforehand 

defined, let us mention briefly that some results from 

naive scale invariance can naturally arise from dimensional 

arguments using the fact that in a massless theory the 

dimensionless dynamical quantities become functions of 

dimensionless ratios of the available kinematic variables. 

In accordance with this idea we can deduce that the annihilation 

process of elctron gives 	6 	= constant, as E  is the only 

available kinematic variable, while inelastic scattering of 

electron with its two independent kinematic variables 

V 	and gives r= . z  f(Vie) . That is, we 

can find out in this simple way the rate of decrease of the 

scattering cross section with energy. However, unfortunately, 

not all of these predictions are fulfilled, i.e. somehow 

naive scale invariance is broken. There are many ways to 

treat broken scale invariance theories. In the below we 

00 
will consider mainly how anomalous dimension, the difference 

of the scale dimension from its canonical value, can implement 

the naive scaling rule and fit in well with the phenomenological 

world. 
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Let us thus begin with the scaling rule for 

the n-points Green's function. This is easily obtained 

from using an operator of ei+ 	for each participating 

particle in the Green's function and assuming scale 

invariance. The scaling equation is 

Elt(a -4) + 4 -:c10. 	 p 	) = 0 

where for convenience we consider n similar particles each 

of which has a scale dimension d and where 

Aci(  (.2.7r) 	 p:  )4- (t, 	 e 
j= 	h 0) an-i) — 	co 	CYO 	<0 IT(4,01(  ? -• • (130(01  )) I > ) 	• 

The extra 4 in this equation comes from commuting the dilation 

operator*-1- 	) with the momentum conserving delta-- 

function. 

We can obtain the corresponding equation for 

one particle irreducible Green's function after amputation 

of external legs, 

04.0 	ra) rov-1),  

Hence in accordance with this equation, q,, is required to 

be a homogeneous function in momentum of order 4—nc(. 
Thus, according to scale invariance M function 

should behave like 

1
1P- 24(1) ti 
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where d i  is the scale dimension of the i participating 
particle. Taking into account of the contribution from 

the final state phase space which is SEL111)-i-   cS-4(Mflaf-I)r id 
-s- 

we have 

-zda) dcr/da 	Ws) s4 	S 

Hence; 
2  - 	Hi - dal dt ,■1  g 	S 

This is the power rule predicted from scale invariance. 

We can now compare this power rule with the 

phenomenological world, bearing in mind the the scale 

dimension can assume a _value different from its canonical 

dimension. The data which can be used_for this purpose 

u) 
are compiled by Brodsky et al for some 4 particles exclusive 
processes.and parametrised at fixed c. m. angle as 

ci 	oc. 	s m. 	
The values of 	it 	for _these _ 

processes are 

Photon + Baryon 	Meson + Baryon : 

11(PN 	71-÷14 ) = 7.3 ± 0.4 
Meson + Baryon 	Meson + Baryon : 

wt. KLP  	1(P ) = 8.5 ± 1.4 
pvt (RI) -+ h°) = if- 1,4 

11-ZP --> TIt  ) = 8 . 1 ± 1 .4 
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Baryon + Baryon ----> Baryon + Baryon : 

-->PF)=10+2.0 

These are based on the experiment done by R. Anderson et alon  

on large angle high energy photoproduction of single pion 

from liquid hydrogen at an energy range 4.0 - 7.5 Gev., and 
c?) 

the experiment done by G. Brandenberg et al on No- 
backward scattering in the momentum interval 1.0 - 7.5 Gev/c . 

A number of experimenters has contributed to the measurements 

of the energy power rule of the proton-proton scattering. 

It is best to read the paper by R. Blankenbecler et al 
(10) 

for references to these protonproton experiments. 

When we take these powers to be their closest 

integral values, 7, 8, 8, 8, 10 respectively, we find out 

that they correspond to an assignment of scale dimensions 

of 3 to the hadrons and of 2 to the mesons. Surely, we can 

turn the logics backwards and say that we have a consistent 

assignment of scale dimensions and it gives quite good 

experimental predictions. Whether it is actually very good 

we have to wait for more data to tell. But this assignment 

is interesting in a peculiar way. These numbers 3 and 2 

are exactly the minimal numbers of quark components in the 

baryons and mesons. It seems to suggest that high energy 

interactions proceed via the basic entities. We shall 

see in fact in the next section that quark description also 

works for inclusive processes. 
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(2) 	Scaling rule and inclusive processes 

It is very interesting that the recent data for 
(3) 

inclusive processes exhibit one very astounding feature. 

It is, to a good approximation,'a large fraction of the 

data can be expressed as two functions of only one variable: 

the ratio of energy loss to the square of the momentum 

variable. This simple behaviour is usually called Scaling. 

Furthermore, present measurements do not exclude the possibility 

that we might only need one function of one variable to 

describe the complex inclusive processes. In this section 

we will find out how the quark model accounts for this amazing 

phenomenon. 

Let us begin with the kinematics and the matrix element. 

For instance, let us consider the following process: 
IN 

Lepton + Hadron 

Lepton + anything 

t 

The kinematics variables are 

= initial ( final ) momenta of lepton, 

hadron. The invariant variables are 



6o 

2 
El ? 722- 	 with 	/71  • 

As it is familiar in one photon exchange picture, the 

matrix element is given by 

= 009," ) 	e276z1")<'necoll r > 

where 
	

110) are helicity indices, final state, 

and local current operator respectively. 

Hence, the differential cross section is, after summing over 

all final hadron states and averaging initial spins, 

OL ZIA V Vit4  

where Ipv corresponds to the lepton part, and 

	

leiCI)= 	
--( Vt.  Ltz IT (t)Tv(°) 	>, 

We can, in fact, write 

cefx 
\VP L1)sE )= j -trz• 	ET,AP , 	p, > 	) 

This is because 

	

19L 
e 
	

<1'2-11-, 	;N.) I tz = !Tyco I it> 

• < I 3f4 	>,(Zr) 3 E  0)2:-  "". ) 

and vanishes as in laboratory frame EI,I=M1410<tA Nand 

no baryon state exists with mass less than the nucleon mass. 

Also, we can put it in terms of two invariant functions 

	

10 a n d 14./2! ) ) 	the other invariant functions being 

eliminated because of current conservation condition and 

the hermiticy of the current operators, 
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( bay — b•93L.) -) lA)1(E1)0  
The differential cross section is 

d4G 	016- 
ci.sTctv 	44.--7—:clE  1)m ()Li  [ tAiLt/ 1, + 2  fttK. 	VIA fit) ) 

where 
	oc. e/ct=1/137 = fine structure constant, 

( d-a'ct 
)mott  = rocIA. itE s-;h4-f-  (cost201-1 	j 

E, a are the energy and scattering angle of the lepton in 
the laboratory frame. 

The scaling behaviour of inclusive processes 

are usually encompassed in the statement that 

W I te)v) = wi (co 	tAILt 1', )1) = Kcco) 	(5) 

where (A):7-61/1V is a dimensionless quantity. That is, this 

single variable suffices to describe the structure functions 

which would be expected to depend on both the variables 

t

2. 
and 	) . Though this was hard to imagine before it 

was borne out by the recent data, there is a very naive 

argument to account for it using scale transformation of 

the current operators. If we recall that 

1-1")(1)  > 	AlA1) > 
Li (A) T (x) UM) = Tit:tx) 17' A?' Ti,,C AA ) 

14A 

(4) 
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Then 

kAipv(6,P = SSL  I 2.7L< 	T),(x) J;(0) I 

_ f c(4-1 e-'tx<1,2,(U11-134(A) 	Tv(0) 	kz> 
- 	e t'(4 A-112,1ii.,(x)T1)(0i11-110e.> Ir 

= 

Thus, 141)414.2)?) should be dimensionless, and this again 

leads to the fact that the structure functions can be 

put in terms of a dimensionless quantity, Lt.)=C3( /V, in the 

form 

Wite, = 141 040 	A2 j_? 2) 0 = kla (c4). 

Now, in order to see how quark model accounts 

for the scaling  behaviour for inclusive processes, we first 

of all will derive the current commutation relation from 

the quark anticommutation relation and the representation 

of the currents in terms of quark fields. They are 

74:1 (j) = f ci eX)( ar,),(0 16, (z) = 3-14s.vi .00 

Li  

1 ?-1(X)  0-q )i= Sta. ( 11) = - 	er  dfrcal -V2) t (X-100] 



where 

On using 

we can obtain 

A X3 	 kg + — 

1))4 	 F 	cP/ 11'1) 
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rT M))  _T q.!  Y  (4j= - 	1132 ) (L)) 	I E..
ot 	

E. 

where 

s pur , er 	„our,- 

Ts s. Eft 	x) 	.01‘tx) 	(4-3. 	(1—‘27! )113  VA)  

and similarly for Ts-,g.ti.C.X.,X1). 

Here c pvpri 
1 3 E 	3-5-J,  EA.  (X,X)) + Ts-s, E.11.  (xiic) 

2. - 	e 	- 	0 v t 9  pirr rt) - 	) pi 41) (x)J 

00 
This formula is also derived by Gellmann and Fritsh for 

the general SU(3) currents. 
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We can now sandwich this commutator between equal momenta 

proton states. We have 

<ID I ETZ.11.(/)) J-Et4.(1-)1(13 

=4ji 	 Etsd  Itsz) ) 5)49116-  <1 I 	XA))110 > 

=7L.4.71. ‘a rCISO )) Si ga)) S.-9e(i<13100-(31°)1 > , s s 

The last line is because of translation invariande. The 

bilocal operator 0.(X )X), introduced above, is proportional 

to T6-) E.p.i.(1.,)t.) — T6,E.11(Xdt) and hence is analytic at 3 = 0. 

That is, the expression Dp(E(30 )6(31)) gives the leading 

singularity of the current commutator between equal momenta 

states. We can thus write 

41 E.  TE.,1,00, -3-E.m.('c)]( 

-111_7cp  ( 	ci5) s a 	
h7 less singular terms. 

Now we should compute for its fourier transform. In its 
) 

computation we need to make use of a lemma: 

Eatt ‘006 )(11(g'i- 1,)2-)= £cV) S(/ 2-1-2-3°V) dor  +tit 10  

This lemma is true, because 

L.H.S. = Eatflp01))6\--q-05P2) for positive po 
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Eq000-1--spo2 )61-uetfo 

=E(e.p+si)2.)(s-q2t242•1) on neglecting 	term 

= vel  _ Ja:)cr(et÷ay.E ) 

too cry ÷q, 	on recalling VE-:. 

On introducing the fourier transform of arfra) , 

Act) = sejc(t .P 	• act s act •  

we can now give the fourier transform of the matrix element 

of the current commutator. It is 

"Pr 
./v i 
	6j9 16 A CO te Pr  to Att-4)) . 

This expression, compared with equation (4) which defines 

the structure functionsV/0.9,f) and M(P, 9), gives 

9.1" wz(v,e)  Wo, z ) 	o NA/10,r) cc coluo )  
M:, 

Thus, obviously we have the scaling phenomenon 

(g )1) = W. (43) , 9 t42,tei  NO= 

Moreover, surprisingly the two structure functions become 

correlated in quark model. This extra prediction of the 
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quark model can be interpreted in the following way. 

From above it should be noticed that W),..0, is 

proportional to the imaginary part of forward (virtual) 

photon-nucleon scattering, which, by the optical theorem, 

is proportional to the total cross section for photon on 

nucleon. Hence, we can view the inelastic electron scattering 

	

I ?, -t 	--> H a 	o PAS . Now as in terms of the processes 

the incident photon is a virtual particle, it can have any 

energy, mass and polarisation. In contrast to real photon 

processes which are characterized by 671. , the virtual photon 

processes have 6"
T 

and ( 	, the cross sections corresponding 

to transversely and longitudinally polarised photons. The 

() 
relations

3 
 between the structure functions V4, kniz  and these 

cross sections can be easily worked out. They are 

WI = 10-7. 

vAL 	kv  	6-T  .4_ 6-s  ) 

where i< 	is an unimportant constant factor. 

Thus, the relation given by Quark model 

	

t 	V 1  WO-11)6)  = 0  

M 1A4 ( 	) 	t 

amounts to predicting that 	= 0 as 	. Recent 

experimental data indicate a reasonably low value R. (53/6-/- 
0.18when the invariant mass W for the final hadron 
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states 	2 ' ev  . This result is also given by the parton 
(ii) 

model. It is interesting that it comes out simply from the 

quark anticommutation relation. When we work out the generalised 

scaling rules in the operator product expansion method, it 

seems that this result 6; = 0 	as -t ---> OD 
	

is lost. 
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(3) 	Operator product expansions 

The basic assumption of operator product expansiori
:5) 

at short distance is that, to a certain accuracy, we can 

represent an operator product A(x)B(y) in an expansion of 

the form 

Aco Bop =T.  C it(x-p 

with the c functions ctt.  (x-y) containing all the singularities 

as x 	On applying scale transformation to this expansion 

and using linear independence of the local operators Olt(y), 

we can easily deduce that 

4 dot  
C It (etY-4) = Cc 	 Cm  (t-ti) . 

This is on the assumption of scale invariance and the fact 

that each operator has a scale dimension d . 

The application of operator product expansion 
00 

to inclusive processes was well worked out by Frishman. 

Let us reproduce it here to illustrate the principles. We 

will later apply the same techniques to derive the power 

rules for exclusive processes. 

For the inclusive processes, let us write down 

the leading term, the term with the leading singularity as 

x ->0, in the current commutator 
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r 	tx). 	( o).1 = Cat) 5,0  (x)0 + • - • 

where F o(x,0) is a bilocal operator which is analytic 

at x=0. The form of it is irrelevant. However, for easy 

comparison with the previous definitions of the structure 

functions, we write 

< H E 1)4( ), Tv  co )3 11) > = CCX.) < 131 Fey (1)0)11) > 

A 
= 	CZc4(t) P T f,(t•X) + 	)1 	

2-) /a z  3 C1 00 ft(t*X) porT 	.1•A 	)49  

with 	
(X) ( -7(.1 + 	_ 	46- AfG )Cii  

)-4‘)  fitr = -Tic; Z Z 5,Lo iocr - 	)) sr 	(r).,3 of 

-3„,c))143() -114 r ye - PT 5H  al-1 31-1: 

and it can be easily seen from dimensional arguments that 

c12., = ci, + 

Of course, we need the fourier transform of this expression 

in order to obtain the structure functions. Thus, let us 

introduce 

ftt..1) = S 	(A) e' 

and hence we have 



70 

tti,v) „lt; 	 4.g. 	Ec-x2:t- 6 (1)°(i  

i )(0)̀ 4] fi 

Now we will make use of some mathematical properties: 

a 	(-11+ E-;104-  (-X1-1.6 Aedd] 

c 22c11.4  l'""')   Et V+i -p(— co 
2  chK 

-2 	TO 	iek) 07(k 2)(0;c4-2., 
r(-00  71-0(  

and also a lemma: 

a 0 +V))0)s-cci-st)2) ---- 6(0 crq -L-f-2s" v 	lov fie po  . 

(This lemma is proved in the previous section). Then we find 

out that 

WiCe; Ai I dA  PA)  E tl)tArIN4)6/  MY)  (A-€6)] rk-w3 	tz 	) (7) 

where ti.)51(..1/ /V as before. From here it becomes apparent 

"Lel  that VU;(?) V)•V is a dimensionless function which is dependent 

only on the ratio of energy loss to momentum transfer. Thus, 

we have obtained some generalised scaling rules for the 

inclusive processes. The advantage of this approach is that 

we did not make any assumptions about the nature of the bilocal 

operator F).)(x,0). Consequently the results here are model 

independent. If we wish to relate these to the Bjorken scaling, 

i.e. ins,( ,V) and Vigliz 

we have to assign di = -2 and da  -1. This assignment in turn 

indicates that the currents maintain their natural dimensions +3. 

C') 

(p)) are dimensionless functions of (-0 



71 

If we look at the current algebra commutation relations, 

we also see that the currents should have dimensions +3 even 

in presence of interactions. 

Let us now use the same approach to deal with 

exclusive processes. To be specific, let us use the same 

techniques to derive in below the decreasing power rules of 

the electromagnetic form factors of nucleons. 

Let us first consider the vertex N÷ e) 	P4 vtr 

This semi-amplitude is described by 

1,„<12 f jeti e; t1T(Titopip(0))10›=fri (Aitv,c0)+Ii.,••• 

Now as before let us write 

41;1 1T(Tp..(1)1P(0))(0 > 	CICV)fi(frli )+ () C2LPfz(t'V 

where 

C;(11) 	(-112-+ ie(V) 
di 	

= 	,2. 

If we take the fourier transform of this expression, we 

can easily obtain that 

W(V, (4) = IIK 11V e
1
"ct(c.pf1C13 .1i) 

= 	c(A eig.1 (A)eiA(1")c,r ())  

= Imff ey 04A ei`?"1))"J 3(A) c,(y) 

where 	is is the fourier transform of fi(h) 
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We can use the mathematical property: 

disc clot-tio) -c (Ii t# ID) - ( 13 -10) 

and hence we obtain, aside some unimportant constant factor, 

— 1(A ) - e+Ap) - it (E+ Apo °l 2 -2 
 

fax (A) scb-e-xto 	t2 1) 

On introducing t) and using the same lemma as before, we 

have 
coo 	 -41-1 dit z_t  

y 	MAW) eq CAVA) 0(EO) (k-Cti ))E(V÷Atlim  ).[X-cd1 	(C1 ) 

with 	I 	CO V> 0 in physical region. 

This does not give us the power rule yet, but we are not 

very far from it. Now we assume that g(X) is a regular 

function and the integral vanishes at infinity. Then we can 

write, on changing variable A = 	'3  

V 
40.1 , 

w v, to) 	cii■ 104 	& ( A ) (X ) 	a)1/4 

and, on expanding g(>,), 

—(41 4-2. 1  c4+2. 	a 
tA/(1),W) ol.  (1— (4) 

for some power k and for GO close to 1. This is true when 

we neglect higher powers in ( 1-(4). 
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In order to obtain the power rule for form factors from 

Webt.ty) , it is necessary to put it back in terms of the 

energy variable s and the four momentum transfer 1. This 

can be done by observing that 

/.4)  = 1 _ akp 

= (-11)* t)/o.v) 

t 1 v f gl-)/(21) 

= s /(2.v) 	for large 1 

Hence, 

W(9, co) 	Z1)
--1(

(s) 

for large 	and (.4.) close to 1. 

But 

= 	Fr4 	CT CO 

where FN(Z) is the nucleon form factor and (1(S)  is the 

two points Green's function. Also, we can assume that the 
dm-2. 

formula (A(S)/v (S) 	for large s is valid up to s close to M . 

Then we are able to eliminate the unknown value k in 

equation (9) and obtain the power rule for the form factor: 

FN(12) iv CO -(4N  1. 
	

(1o) 

We can observe from here that the power of decrease is not 

determined by the dimension of the nucleon field alone. It 



is also determined by di  , which can be computed by counting 

dimensions in the expansion, eqn.(8). Upon taking 

dim < 13 I 1 ,(0)1 0= 1 , we have 
dr 

—  
• 

Hence, we conclude that the decreasing power law of the 

nutleon form factor is given as 

- 	) 
‘Fr,t(4z) N (%1) 

We can compare this result with that obtained by 
CI 2.) 

Migdal using conformal invariance, 

..(d -1 ) 
Fiq tr) " (11 ) 14 z  

That is, the two results are the same if we make an additional 

assumption that 	0/3  = 3 	, which was in fact used by 

Migdal in his conformal invariant expansion to 413/1P(0)1 0). 

It is interesting that we have obtained the above result 

from using scale invariance alone. For a discussion about 

incorporating conformal invariance into operator product 

(13) 
expansions one should refer to the work of Ferrara et al. 

We shall now turn our attention to a description of the scaling 

rules in the renormalised theories. 
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(4) 	Renormalisation 

In order to complete our study of scale invariance, 
('j 

we shall rederive the renormalisation group equation in 

below, which, replacing the naive scaling rule, describes 

the behaviour of the renormalised Green's functions upon 

scaling the momenta. Before doing this, we will first 

show how the parameters change with J.(. , the point of 

renormalisation. The approach that we will employ is that 
(1.1) 

of G. 't Hooft, only slightly modified with effective use 

of 147)17 on the various equations. In this method, namely, 

dimensional regularisation method, the bare quantities 

( 	t, 6 ) are expanded in terms of the n-4 poles and 

the renormalised quantities ( gR' ' , M ) which are chosen 
R R 

to be dimensionless and analytic in the dimension of space 

and time n . Their expansions take the forms 

n 	14-4'
CO 	

C. 1) UB 	= 	(11-4)v 

-1  
c°  03v ( 	)  

tlap 	4= (1(0
s-'71 	

01) 

From these expansions we can consider the following. 

scaling behaviours. 

(a) 	Scaling behaviours of parameters 

In order to find out the scaling behaviour of gR, 

let us differentiate equation (11) with 1,4 3 	. Introducing 
Fs a. 
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)1,X. 	x 	,we have 

0,1rz (t-4)  x.c(' y(hzitt) 	 (6 „, 1-‘--11?+ a 4),,k') (11-09-1 = at- 	en-4) 	at, 

Now as g 	M are analytic in n, so 	a MR 	 Thus ap , 
D R 
	 (13) 

before matching poles in equation (13), it is convenient 

to write 

= 9R(A-4)+ c, 

for some quantity a. This quantity a is, in fact, determined 

upon matching the first order pole. It is 

a =Q, t &.191,9R 

Hence, we obtain 

a a  
U R.12:j-TR ) (--k 

which describes the variation of gR  withp  . 

Also, we have a recurrence relation between the residue e7y 

and its next residue 41.1 

( 216) 0 	a fa )--pet a 14+1 	-)ka)4  - 	YIN -A eJI/e 	t 	PI-13 	( It )  R 

Similarly, we can derive the scaling behaviour of 

M R  on differentiating equation (12) with IAA.— and using 

equation (14). The result is 
	(9)A. 

Mk= —(tik+ 514 61 ) 
	

(17) 

for the scaling behaviour of M. The recurrence relation 

(14) 

CI 
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among (i3v  and its next residue Byti 

9R6 ,9k = pii,( +9/431,58)+60,z(N aqj a)-a 
The difference in forms of equation (15) and (17) 

arises from the different dimensions of their bare parameters. 

We can see this more clearly in a theory with many parameters 

-( 
A 	. Suppose that each of them has a dimension 

	

= 	(it- 4)+ 9.  

and an expansion 

	

= 	+ 	Lo  (A)/(n-4/ 

We can do similar work as above and obtain for the scaling 

Nit 

	

behaviour of A , 

	rt 	kcit 	.() 	k 

r 	X = 	c -t- 11 o( A (7,,  / 

and the recurrence relation between the successive residues 

kk 	 3 	(2.0) „k, 	"f  Cht , A 	( j.&C)P A  ) C  Ij  Al  

Obviously, we can recover the equations for M ot by putting 

= 0 , 	= 1 . The case for giz,  corresponds to CA= — 1 , 

p = 0 . 
From these equations, we conclude that the scaling 

behaviour.of a renormalised parameter is given completely 

by the residue of its first order pole. In fact, because 

of the recurrence relations, the residues of the higher order 

s.) 
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poles are determined by the lowers, i.e. we have a pole 
(04) 

algorithm. 

It is also interesting to make the following 

observations. 

(a) 	We can employ equation (15) to describe gg  in 4 tiksou. 
Suppose that we expand al  in power series in giv  i.e. 

a 	+ an giz + 13 

We then have 

PSAIR --=-Q12.110 ci4). 
0) 

The value of 11 is given by G.'t Hooft. It is 

= 

If we write )..41=-.7.(1+ E.) and 37 cct.k =- 	, then the scaling 

behaviour of g is given by 

(z. t) 

It is also well known that we can do renormalisation 

by the momentum cut off method. The coupling parameter gk  in 

(4) 
that method is shown to depend on the cut-off momenta k as 

Eg:j(iliz)][..an c ah: + 0(j,: 
2. 2. , 	0 

Again, introducing / =c1+2G,K , we have 

dok Ide = E9/ (2na).7 	0(7;( ) . 	 2.2-) 
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Hence, the two renormalisation methods give the 

same scaling behaviour, up to and including second order 

in glz  , for giz.  in [}4  theory, ( noting that gg  = g if: L(.1from 

their definitions ) 

Op/ 	We can also consider the simplest solutions 

, 
for the residues Li)

k 	 k 
of the parameter A. . For instance, 

we can have, from solving the recurrence relations, 

constant solutions where 

C lc  y./.1 = 0 

(i)  

= 6-i/14/Q(513 C' 

(ii) linear solutions where  

• when 4= 0 or 	At= 0. 

, when oCk0 0 and A0 0. 

Here dk),( 	are constant coefficients which must v 

vanish when o( 	d 

(iii) solutions which involve the minimum number of 

parameters when permissible. For instance, we can 

choose 
Ckv_ 	 , when fi = 0 . 

= 0A1) Al( 
	

, when 	0 0 . 

For example, it is possible to choose the renormalised 

coupling constant gR  , the renormalised M R  , and the 

renormalised wave function in the following way: 

17.k clp‘ 

• 



80 

a-t• 
i k z  = 

P/1 
(9  ) n 	= r 37̀  

ri 	-a 	z = J-10 ) IL= ihie3er. ( OR) 	 r 

That is, they are chosen to depend only on girz. This 

choice is called mass independent renormalisation 

and is very convenient to illustrate the scaling 

behaviour of the Green's function. 

(b) 	Scaling behaviour of Green's functions. 

We can easily derive this with the above mentioned 

renormalisation method, mass independent renormalisation method. 

First, let the 1 points renormalised Green's function be 

defined as 

T'R(fi.9R.MIa,A ) 	.01%,.% 714. 1z(I), JR(A)) 	(n),),4, 

n• 

where 1"0,5R(K),MR(h)V-512) can be obtained from the unrenormalised 

Green's function "ri 0,,3 (1 ),116 own) by a suitable factor. 
U (3 

That is 

-711z (1',1/41.(11),  Mik(t),/A,n) = Z1  3(0)  Trutg,, 513  ('t), MB(7))11) 

L 
with ZY (CPIaf 4)1z) . If we differentiate this equation with 

respect to)A , and then put n=4, we have 

-,'ITAI-fixeci mR+  P 54-  ealo tIR 	( JR)  I TR = 
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Also, from dimensional argument, we have another equation 

for -rR  , 

k + /AL' MR 3  - (I) TR = a. a K 	4).A 	a mit  

where A-  gives the appropriate dimension of rR in mass. 
a Eliminating)", - from these two equations, we have 
cv-k 

I Kir< -le(30-hz+ CI+ irvi0 Mk  2tio- (S.  + er( 30] TR  C 10, 	) tr. 0 . 

This equation thus describes the behaviour of r Oct ) ) upon 

resealing the momenta by a factor k 

In this equation, well known as the renormalisation 

group equation, we can see the following points1 

(1) 
	

The explicit appearance of the cV<Mg..  term 

indicates clearly that the CTreen's functions should have 

correlated asymptotic dependence on momentum and coupling 

parameter, 

(ii) If we look at the part other than the linear 

differential operators in this equation, there is a term 

ei49Oin addition to the usual dimension S-  . Thus, here 

we have an explicit reason for anomalous dimension. It 

arises from renormalisation of fields. 

(iii) In gauge theories, we should include a gauge 

dependent term in the above equation. This is necessary 

because, in gauge theory, the two points Green's function 

is given, in terms of the gauge parameter d and the self 

energy 7(  le) , as 
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v - 	, 	k4 	) 	1 	, (20  AA,  
irckzi+

k 

As the 	of 	term has no explicit dependence on the 

coupling parameter g , we must include variation of a'  R   

to accompany scaling of momenta. The only exception is 

when i = 0 , that is, except unitary gauge. 

There are many uses of the renormalisation 

group equation. The most widely used application is to 

improve calculations from perturbation theories. However, 

as this willtake- us away from the scope of scale invariance, 

we will consider in below another connected aspect: the 

relation of the dimension and the renormalizability of a 

theory. 

It is usually assumed that the renormalizability 

of a theory depends on the dimension of the coupling constant. 

It is said that when the dimension of the coupling constant 

is greater than, equal, less than, zero the theory is 

correspondingly super-renormalisable, renormalisable, and 

non-renormalisable. However, this is not necessarily true. 
07  

The first counter example we know of is scalar Q.E.D., where, 

to renormalise the theory a term 
	has to be introduced 

into the Lagrangian. Also, recently we find that upon taking 

out the anomalous magnetic moment term from the Lagrangian 

of pure massless Yang-Mills theory the theory then becomes 

unrenormalisable. Thus it appears that, besides the dimension 
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requirements, sometimes we need to add some new interaction 

terms to the Lagrangian in order to make it renormalisable. 
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Conclusion  

We shall now summarize the various conclusions 

from these sections. 

When allowing the scale dimensions to assume 

values different from their canonical values, we are able 

to arrive at a consistent assignment of dimensions to 

the various hadronic fields and give the correct power 

rules for those exclusive fixed angle high energy processes 

with available data. 	The scale dimensions for baryons 

and mesons are found to be 3 and 2 respectively, which are 

exactly the minimal numbers of quark components in these 

hadrons. This has the interesting suggestion that in high 

energy region where scale symmetry becomes an exact symmetry 

the hadrons decompose into their basic entities, quarks. 

The quark description of inclusive processes is also pleasing. 

It gives 'scaling': as V,- 	OD ,V4(p),Vilbecome 

non-trivial functions of the dimensionless ratio wr..-.-r/21) 
only, rather than functions of both 9 and 	as 'would-be' 

the case. Moreover, it gives a relation between WI and 

VV1  , which corresponds td 6-3=00s-VolO.These results are 

also obtained by others using complex parton models. It 

is surprising that they come out simply from the quark 

anticommutation relation. 
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When we describe these scaling phenomena using 

operator product expansions, we use the same simple form 

of singular function CM) 	for both kinds of processes. 

This approach involves the minimum amount of assumption: 

the assumption of scale invariance. It has the advantage 

to identify the powers to the dimensions of the operators. 

It shows that Bjorken scaling corresponds to requiring 

the dimension of the current equal to 3. Interestingly 

enough, this is also the only additional assumption we 

need to make in order to give the same result for the 

nucleon form factor power rule as from conformal invariance 

where this assumption is used. 

The last section on renormalisation reveals that 

the existence of anomalous dimension is connected with 

renormalisation of fields. As the latter depends, in general, 

on the coupling strength, we have reasons to believe that 

scale dimension becomes a dynamical entity in renormalised 

field theories. 
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Part 111 	A joint paper on Conformal invariance 

and helicity conservation 

Abstract 

By reformulating conformal invariance 

in terms of differential operators acting directly on 

helicity states we are able to establish the restrictions 

placed by this invariance on the helicity amplitudes 

for the scattering of four particles of arbitrary spins. 

The result is helicity conservation in the form 

+ 2■2. 	)% 3 + 	except for exceptional amplitudes 

x , which survive, subject, however, to a 

differential constraint. It is conjectured that traces 

of these restrictions will survive in hadron physics at 

fixed angle and high energy if indeed the underlying 

dynamics is asymptotically free. 
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I. Introduction. 

The phenomenon of (s-channel) helicity conservation, which seems 

(1) 
to be experimentally verified' in TrN scattering and pc)  photoproduction, 

can be connected up with a number of different theoretical considerations. 

At the NN vertex the Dirac-type coupling of the Pomeron necessary for 

helicity conservation can be related by a chain of ideas including 

f-dominance of the Pomeronc2)an.d exchange degeneracy(3)to the approximate 

vanishing of the nucleon isoscalar magnetic moment. Alternatively the 

required minimal coupling of tensor mesons can be derived from tensor 

dominance of the matrix elements of the stress-tensor' ). 

The above considerations apply to the Regge region of large s and fixed 

t. 	In the fixed angle regime, where, however, the helicity structure has 

not yet been experimentally explored, different theoretical considerations 

turn out again to be connected with helicity conservation. 

These considerations arise from conformal invariance, which Gross and 

and Wej
5)
have shown to imply (in the massless limit) helicity conservation 

for scalar-spinor and scalar-vector scattering. The relationship between 

the two was probed a little further by the present authorOusing the 

method of Gross and Wess to investigate spinor-spinor scattering, where it 

was found that the double-helicity-flip amplitude T, T , y 	was not 

constrained to vanish by conformal invariance. 

The purpose of the present paper is to identify the precise connection 

between helicity conservation and conformal invariance hinted at in these 

special cases. To do this we recast the formalism so that the infinitesimal 

conformal generators are represented by differential operators acting 

directly on helicity states (Sec. 2). 	In the following Section these are 

applied to the four-particle scattering amplitude. 	The spinless case is 

treated first, and it is shown (c.f. ref. 5) that Lorentz and scale invariance 

are sufficient to guarantee conformal invariance. For particles with spin 

we model the treatment on the spinless case, and find that extra restrictions 
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on the helicity amplitudes are now required to satisfy conformal 

invariance. The final result is helicity conservation in the form 

A
l 

X
2 

= X
3 A1, 

with the exception of the possibility of double 

helicity flip: TA,x;_ik, x O 0. 

These results are derived under the assumption of strict conformal 

invariance for massless particles with canonical dimensions. In the 

last Section we touch on the modifications which might be expected when 

the high-energy behaviour is governed by equations of the Callan-Symanzik 

type rather than by strict conformal invariance. 

The Appendix sets out the (unresolved) problem of deducing the 

spin 1 Fock-space conformal operators from the auxiliary operators in 

the usual A rather than F basis. 
Pv 

II.Helicity Formalism for Conformal Operators  

Differential operators which represent the infinitesimal generators 

of the conformal group and act on the auxiliary space(? offields transforming 

according to simple representations of the Lorentz group have been written 

down by many authors(5'8'9). The momentum-space version of these operators 

has been used by Gross and Wess(51  uo obtain the restrictions of conformal 

invariance on the form of the M-function in some simple cases, where the 

results turned out to imply helicity conservation (See, however, ref. 6). 

In order to investigate the connection in more generality it would 

clearly be advantageous to recast the formalism so that the conformal 

generators were represented instead by operators acting on the physical 

space of helicity states or creation and annihilation operators: this 

is the purpose of the present Section. 

In x-space the auxiliary operators referred to above take the form(9)  

m = i(x 	-xa) + E 
Pv 	v 	N) 11 	uv 

d = i(d + x.a) 

(1)  

(2)  
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k = i(2xd + 2x x.a - x

2 
a) + 2x' E uv 

where E
Pv 
 is the spin matrix of the particular representation chosen 

(e.g. 2 a 	for a Dirac field), d is the (canonical) scale dimension 

of the field and a = a/ax11 . 	The above operators represent the 

infinitesimal generators of Lorentz transformations, dilations and special 

conformal transformations, to which they respectively correspond, in the 

sense that 

D(x), Muv 	P 
j= m 

v 
 4)(x) etc. 

The form of the operators which act on creation or annihilation operators 

may be found from these by applying the auxiliary operators to free fields, 

which are expanded in the usual way in terms of (massless) momentum 

eigenfunctions: 

(d2) 	(x) 	(X)) e-IP'x 	b 	(1) 1.1 	(E) e 	) (4) +(x)(X) 	il"x  qia(x) = 	E (a 	(2) ua 	(2 

Here (dam) E d32/(2103, and we have used a generalized Dirac notation, the 

suffix a representing the collection of auxiliary group labels. Because 

of the mass-shell constraint, the energy E is not an independent variable: 

ambiguity can be avoided by working at xo  = 0. It is then also convenient 

to deal with the space and time components of the above operators separately. 

Working, for example, with rotations, one finds that 

(q2)  
m..lj [( play  (x) = -ip.x 	-  pe al)  +iE..-3(u(x)(2)a(x)()) 

where now a. = a/a Pj.. 

The generalized spinor, however, transforms according to the Wigner 

rotation. 	That is 

l(p.D. - PA.) + 	11")(1) = Wig u") ) 
1 J 	1 

(3) 

(5) 



m. = - i E. - W. 
01 	1 	1' 

W. - 	A 	t 1 

where 
c3i(p) 

1 +p3 

where 

Eiji  + c..(p) w.. _x ij3 	'A  
ij 1 + 93  

for states defined by rotation from a canonical state with momentum 

aligned along the third axis. Here p3  is the third component of the 
A 	A 	 A 

unit three-vector p.  and c..(p) E eijk  pk. 	Equation (5) can be derived lj 

by finding the Wigner rotation corresponding to a rotation about each 

of the three axes in turn and can be verified for the spin 1 case by 

explicit differentiation of the Dirac spinor 

^ 	^ u(x)(1) = 	+ 2iy
5
x)(1 +A G.') X(A) 0(1 + 93)) 	(7) 

The result is that the transformed field p  can again be cast in the 

form (4), with a transformed annihilation operator 

[a(p), M. 	= m. a(a), 
lj 	ij 

where 

m.. = 	i(p.3. - p.a.) + W. 
13 	1 	J 1 	ij (8) 

Similarly the boost operator m. turns out to be 
of 

937  

(6) 

by virtue of the relation 

1 	/ E_ i E D. + E 
oj.ju

(A)  (p) = - W. u(X) ‘22 

For the dilation operator, now specifying the auxiliary representation 

for spin s to be (0,$) + (s,0), we have 

d = - i (1 +2.0 	 (12) 

by virtue of the relation 



p.3 um (1) = s 	 (d - 1) um(E) 
	

(13) 

"0. 

The form of the operators ko  and ki  representing the special 

conformal transformations then follows from (3) after some algebra 

involving repeated use of eqns. (9), (11) and (13) and the property 

s Ekk  u(X)(1) = i X lam Eom 
u(A)(1) 

characteristic of the representation (0,$) + (s,0). 

Displaying these together with the operators already found we have 

m.. 	
1 

= - i(p.D
j 
 - p.3.) + W.. 	 (15) lj 	j 1 	ij 

m. = - iED. - W. 	 (16) of 	1 	1 

d = - i(1 + 2..a) 	 (17) 

2s2 

o k = - E D2  + 2i WA + 
E(l+p

3
) 

2s2 S. 
k. = 2D. 2,a 	p.a2  — 2i W

ik  3 - 	
13 

k 	A 
E(l+p3) 

As may easily be verified these differential operators obey the 

commutation relations of their corresponding generators(9) The 

operators which act on the creation operators are the complex conjugates 

of these: i.e. 

1 -* 
CG, a+ j = g a+, 

where G is any of the conformal generators and g the corresponding differential 

operator. 

III. Restrictions on T-Matrix  

Under the assumption of strict invariance under conformal transformations 

we can evaluate the quantity out̀ P3P4!Gip-1 P  2>
in by commuting 

	A 	 (18) 

(19) 
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the conformal generator G either through the creation operators a
+
(21)a

+
(22) 

or through the annihilation operators a(p3)a(p4) to act on the vacuum, 

which it annihilates. 

Thus 	<17)  P' IGIP P › 	= (g 	g ) 	<p p, 1p p 2 ›. 
out 3 4 	1 2 in 	1 	2 out 3 	1 in 

= (g3 + g )out<133PIP1 P2  >- in' 
where gr  is the appropriate differential operator for particle "r". 

The restriction on the S-matrix is thus 

(.Eg - 	) S 
. 	-* 

r out r 	{X} = 0 
	

(20) 

To find the restriction on the T-matrix we still have to commute 

the conformal operators through the momentum-conserving 6-function: as 

in ref. 5 all the operators commute except for the dilation operator d, 

which picks up an extra !i. The structure of the resulting equations 

is best explored by first of all considering the spinless case and then 

taking into account the additional parts of the operators which occur 

for particles with spin. 

(a) Spinless Case. 

The equations to be satisfied by the T-matrix are 

(Mij + M!.)T = 0 	(Rotation eqn.) 
	

(21) 

+ B!)T = 0 	(Boost eqn.) 
	

(22) 

(D + D')T = 0 	(Dilation eqn.) 
	

(23) 

KoT = K' T 	(Conformal K
o
) 
	

(24) 

K.T = K! T 	(Conformal K.) 
	

(25) 

1 where,with P = E1  +22,2,=2(2.1  --- -0),theinitialoperators M.j 
 etc. are 

a 
M
i 
 = (P. 	P 	+ ( 	a 	a ) 

aP. 	j aP. 	qi 	. 	qj aq.' j 
C1J 	1 

(26) 



B. = 
(E1 + E) a  + 	-E ) 1 	1 2 DP. 	1 2 D 

	

1 	
qi 

3 	3 D=P. .51,- 
9. 

	

2 	2 
K =-2E( 	 + 2: 
0 	2 h .]1), 	-1- 32 

K. = 	3  (P 	+ 0 	+ 2 a  a. 	- 2q. 2 2- (30) 
i = -- n:). -- * al Ta.-"DP 	da 

and similarly for the final operators M!
j 
 etc., with a +al = 2(23 - 24). 

What we aim to show, c.f. ref. 5 , is that once Lorentz and dilation 

invariance are satisfied (eqns. (21) - (23)), conformal invariance 

(eqns. (24) - (25)) follows automatically. 

For K
o 
we multiply eqns. (21), (22) and (23) by 1-(M.. - M!.), 

(B. - B!) and (D - D') respectively, and add, resulting in the equation 

r(Ml.j)2  4- B
2  4- D9T = 

L  

This is in fact the K
o 
equation, since by explicit calculation 

2(M..)
2  + B2+ D2  = - 2EK

o' 
	 ( 32 ) 

and similarly for Kit°. 

Again, from eqns. (21) - (23) we can derive the equation 

M..} + 	D}] T = 	 T, • 
J JI 

which is just the K. equation, by virtue of the relation 

{B., M..} + {B., D} = 2EK., 
J JI 

and a similar relation for K! 
1 

Hence, in the spinless case, conformal invariance imposes no 

further restrictions once Lorentz and scale invariance are satisfied. 

(b) Particles with Spin 

The dilation operator is unchanged, but the Lorentz operators are 

94 

(27)  

(28)  

(29)  

T 
	

(31) 

(33)  

(34)  
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augmented by their spin parts, according to 

)  M.. 	M.. - iW.. 	iW..(2 ) 	 (35) 
13 	lj 	ij - 

	
lj 

B.B. + iWP-)  + iWc2), 	 (36) 
i 	1 

and the conformal operators are similarly augmented, to give the 

full operators, which we will denote bycZ,JI ..,45 . JX lj 	o' i 

respectively. For simplicity we take the third axis normal to the 

scattering  plane. 

The analogue of eqn. (31) is then 

Dvtip2 0,2 	
.1 T{A} 
	(37) 

where now, however, 

i
.)2 +422 = - 2EU + (X

1
+A
2
)2 
	

(38 ) 

Thus the conformal --X6 eq
uation is satisfied provided that 

(A1 + 2)
2 

= (k
3 
+)

2
, 
	 (39) 

which is the first restriction of conformal invariance. This equality 

is equivalent to conservation of the first Casimir operator of the 

conformal group, as can be seen by comparison with the work of Castell(lo.) 

However, note that this condition is automatically satisfied for the 

elastic scattering of a spin s particle off a spinless particle, so that 

wemustlooktotheconformall.e.equation to provide the constraint of 

helicity conservation in this case. 

The analogue of eqn. (33) is 

[ff ji + {03. ,,a) }] ,r{x} 	[ 1 	 T
{X} 
	(no) 

but now 

a  
gbi,J1ji } + f(Bi b). = 2EN+2(Al+A2)EiEcji(q) T:.+(A14-A2)(53i4-(Al-X2)qi  (11 
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ThusconformalXinvariance holds provided that 

a j (x1+X2)PEe,ii(q)3q
- +(A14-X2 )63i+(A1-A.2 )qi's  iTfxj= -(A3-1-X4)[ 	]'T{A}T

{x} 
(42)  

However, the angular momentum equation can be cast in the form 

[LEE..(q) 	
f 
kX +A )6 . 	(X -X );..] T 1= 	E 	:If T 

	
(43) 

ji 	3q. . 	1 2 31 	1 2 	fA/ qj  

and hence the necessary condition is 

. a  

(A1+x2-A3-x4)LE€ii(q)- 7.7 +(A11.2'2)63i 	0 
(144) 

We must distinguish between several possible cases. 

(i) If Al  + X2  = x3  + x4  the equation is identically satisfied. 

(ii) If Al  + A2  0 A3  + x4  and A l 0 X
2 

or X
3 

0 x
4' 

we can multiply eqn. (44) 

by qi, or its equivalent by q!, to give T{A}=  0. 

(iii) If Al  + A2  0 x3  + x4  but X i  = X2, X 3  = x4, we are left with a 

differential condition on 
T{A}, 

which does not constrain it to 

vanish. 

Thus the restriction of conformal invariance is helicity conservation 

in the form X
1 

+ X
2 

= X
3 

+ X
4 

except for the special case TA 
 

where the amplitude survives subject to a differential constraint. A 

particular example of this phenomenon was found previously using  the 

(6 
M-function formalism for the case of spinor-spinor scattering (6)  

IV. Outlook. 

The above results were all derived under the assumption of strict 

conformal invariance for massless particles with canonical dimensions. 

The high-energy behaviour of, for example, fixed angle pp scattering, 

where it might have been thought that the masses could have been neglected 

and the invariance relevant, shows that, at the very least, anomalous 

dimensions(11) are required for hadron scattering. The problem can in 
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fact be attacked on two levels, with the tools of equationSof the Callan-

Symanzik type(12). At the more fundamental level it appears likely that 

the interactions of the basic entities are asymptotically free
(13)  

, in 

which case the above equations do reduce to conformal invariance with 

canonical dimensions. At the more phenomenological level of the 

interactions of (composite) hadrons their behaviour may then be deduced 

from the interactions of the basic constituents. This programme has 

been developed for scale invariance by Brodsky and Farrar
(3.4)

and in fact 

corresponds to the introduction of an anomalous dimension for hadrons 

equal to the number of quarks minus one, in agreement with the pheno-

menological observations of Theis
(11) 

It is our hope that the extension 

of this programme to conformal invariant interactions of the constituents 

will lead to comparably simple modifications for hadrons of the helicity 

rules we have established above. 



98 

Appendix 

In the main body of the paper we have used fields transforming 

according to the (0,$) + (s,0) representation of the Lorentz group 

to deduce the form of the conformal operators that act on helicity 

states. However, spin 1 particles are commonly described by vector 

fields transforming according to the ( ,i) representation, which 

generally leads to no inconsistency provided that gauge invariance 

is imposed on the amplitudes. 	It is therefore of some interest to 

see how the above arguments have to be modified when the vector 

representation is used: in fact it turns out that the conformal 

operator acting in auxiliary space has to be modified by the addition 

of a non-gauge term. 

Explicit expressions for the vector spin-matrix and radiation-

gauge polarization vector are 

(E pa )
AP 

= i(g
PA g011 - g PP g(TA ) 
	(Al) 

and 

E(h) 	
,. /11 (h) . 	(a) - 	1 	(S.j 	j 

- p.p. - ih E..kpj) . 	(A2) 
1 	ij 	Ej 

1 + p 

where we are now using h for the helicity label and E(h)  is a 

standard third-axis polarization vector. 

Under rotations the polarization vector transforms in the 

standard way (c.f. eq. (5)): 

[- i(pA. 	p.D.)6km  4. (E..)kmj 
(h) 

(R) = W.. E
(h)(E) 

1 	j  1 	13 	m 	13 t 
(A3) 

However, under boosts there is an extra gauge term compared with 

the corresponding eq. (11), viz. 

[- iE3.g4  4-(E 	P 	( 13 	(h) ,
2) kA4) oj) 	

2) , = - W. E(h) (2) + . 	E. 	l 
J X 	E

X 

j 

3 

This latter term may, however, be ignored, because of gauge invariance. 
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The relation given in eq. (13) between the spin s and the canonical 

dimension d is no longer true, since in the vector representation we 

have d = s = 1. 	Eq. (13) is replaced by 

E 	(2) = 0 (h) 
	

(A5) 

Working out the conformal ko 
operator in a similar manner to 

before we find an extra gauge term, which again can be ignored, 

compared with eq. (18): 

(2)a(2)N  
- e( x(2)a(1)) 2i(Eok)A akk 2E 

x(1) [7  E a2  2iW.D + 	2  A 	I 
]a(p) + P7 2..ki(E)a(2)) (A6) 

Ekl + p3) 

Working out the conformal ki  operator, however, we find an extra non-

gauge term compared with eq. (19): 

m 	Era(E)a(R) 
[(4 1 	2.  

a. + 2 a I - Pi  D2)  it,m 	2i(Eik)-; ak  - 	— 	 2E 

E (2.) 	 2(5. 
3 

= k2E [2 aiR'a  - Pi
a2 

- 2iWikak 	
1 
	-18-(2) 	)P  7Ta(2) (Al) E(11-p
3 
 ) 

The difference from the previous cases is that this is not the 

spatial part of a four-vector equation: we cannot make the replacement 

R. A. The last term must therefore either be removed or supplemented 

with a time-like part by a modification for the vector case of the original 

auxiliary group conformal operator. That such a modification is necessary 

is also clear from the form of this operator, which does not preserve 

the Lorentz gauge condition. 

That is, for a vector field A (x), satisfying a.A = 0, we have 

[(2ix 	i(2x x.3 - x2a ))gPG  + 2iX9(gPpga  - gapgPaA a(x) v  

_ 4i A (x) 	0, 	 (A8) 
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in contrast to the effect of the Lorentz operator, which, as 

eqs. (A3), (A4) in fact show, does preserve the gauge condition: 

3 [i(x 3 	x 8 )gPa 	i(gPga  - gPga)]A (x) = 0 
P 	uv 	vp 	pv 	pvo (A9) 

The problem must be regarded as unresolved, however, as long 

as we do not have a deeper understanding of the form the modifications 

must take which goes beyond the fact that such modifications must be 

made in order to preserve gauge invariance. 
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Addendum  

It is interesting that the helicity formulations 

of the Lorentz operators fcr massless particles find another 

application, namely, for investigating these particles in 

the vacuum. It is clear from four momentum conservation 

that each of the particles in the vacuum must be massless 

and have vanishing momentum. We hope, from this formulation, 

-66 find out if they can:be spin particles. 

Upon recalling the rotation operators 

- h - 	a ) Wij 
	 (i5) 

and the boost operators_ 

1•4 0; 	ED; - 

E3i($)  
It $3  

*$ 
we have translation invariant equation 

7. 1)
(i) 

 
p, 

rotation invariant equation. 
0) 

E 	Mii < 	•-• 	vj„)? = 0 

where 

( a ) 

(so) 

and the boost equation 

E 	moi  I< 	• • o0,0= 0 
(ii

where 0)1/4(10—  atiOis vacuum expectation value of n annihilation 

operators of massless particles of helicity 	and momentum p . 
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To find out their implications, let us consider 

the following cases separately. 

( a) 	When n = 1 , from translation equation we see 

immediately that 

Ifrt 	( 	= 0 . 

That is, <13),(1;0> =. O , unless p= 0. 

Also, from rotation equation ( M IZ  ) , we have 

X < CkinI)> = 0 

That is, <ax(p) = 0 , unless X = 0. 

Hence we conclude that there can be no single massless 

particle in the vacuum unless it is a scalar particle and 

its four momenta are Zero. 

(b) 	When n = 2 , it is convenient to choose 

.1) 1) 	)= 	—1P11 • 0 ) 

We do not putPP" = 0 until the end because helicity states 

for p 	0 are not well defined. 

From M 13  equation we have 

()1-- 	< a)  (p1 )axz(1),07 = 0 - 

From M 	equation we have 
(I) (I)4_(2) (2.) 

L-it.)) 	 p c) + Xi 4.  Ai] 	(19) a 	= 0 x, 	X2. 
From M 01  equation we have 

(1) 	rt-) E 	4. t 	)- Act X 2. ]< CWI),) e4A110 > = 0 . 
0-)  

But E = E = ( 	, these equations imply 

( —1 E")c)(11)  + At 	< aX,(1)1 ) aA L(1)4 ) 	= 6  
and 
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Putting E = 0 now, we deduce that 

<aArt ), a tc1),) >= o 

unless p
1' 2  = 0 and )4 = X= 0 . 

That is, there cannot be two massless particles in the vacuum 

unless they are scalar particles and have zero four momenta. 

(c) 	When n = 3 or more, we cannot reach similar conclusions 

as above. That is, we cannot exclude the possibility of having 

three or more spin particles of pft  = 0 in the vacuum. 

Altogether, we should have expected the above results 

from angular momentum conservation principle. The above 

formulation, however, helps us to see these results from the 

first principle, i.e. directly from Lorentz invariance. 
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