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ABSTRACT 

This thesis presents calculations of some properties 

of dilute alloys containing transition-metal impurities. 

Simple-metal transition-metal alloys are described 

by the orthogonal Anderson Hamiltonian and the problem for 

the d electron spectral density is solved in the "single 

pole dominance" approximation for the transverse suscept-

ibility, assuming that the most important contribution to 

the d electron self-energy comes from the scattering by 

the spin fluctuations. 	We find this spectral density to 

have all the features associated by various theories with 

localised magnetic and non-magnetic states in metals. 

The electrical resistivity of dilute alloys due to localised 

spin fluctuations is shown to be given by a universal 

function of the temperature, p(T/TK), where TK  is the 

characteristic temperature of the system. 	The resistivity 

is finite at T = 0, then decreases as T2, T, 1nT and 1/T, 

in agreement with the experimental data. 	Calculation of 

the low temperature thermoelectric power, in the same 

approximation, explains the anomalous behaviour of the TEP 

observed in the aluminium-based 3d-alloys. 

In alloys in which both solvent and solute are tran-

sition metals, the relevant part of the impurity electronic 

structure is similar to that of the host. 	Such a system 

is described by the non-orthogonal Anderson Hamiltonian 

which in the case of isoelectronic alloys reduces to that 

of Wolff. 	Using this model we show that the electrical 



resistivity due to scattering of conduction electrons 

from localized spin fluctuations is again given by a uni- 

versal function of temperature. 	Resistivity is zero at 

T = 0, then increases as T2, T and 1nT, tending finally to 

the unitarity limit. 	Above the characteristic temperature 

TK, the impurity behaves as if it had a well defined 

moment. 	This calculation accounts well for the unusual 

temperature dependence of the resistivity observed in Rh Fe 

and several similar dilute alloys. 
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1. 

INTRODUCTION 

In general an isolated atom will have its spin and- 

angular momentum determined by Hund's rule. 	But what 

about an isolated paramagnetic impurity in the metallic 

host? 
	

Does it have a "magnetic moment"? 	Experimentally, 

there are several ways of answering this question. 

Susceptibility measurements provide direct evidence 

about the existence or non-existence of a local moment. 

In the case of "yes moment" systems a strongly temperature 

dependent, Curie like susceptibility is observed, 

- 
2peff 

 1T 

characteristic of an assembly of isolated paramagnetic 

ions. 	The measured effective local magnetic moment is 

close to its free ion value, as seen for example in Au Mn 

and Cu Mn alloys. 	In the opposite case, the susceptibility 

is temperature independent, Pauli like, indicating that the 

magnetic moment of the impurity is completely lost in the 

metallic environment. 

Equally, the response of the conduction electrons to 

an applied external electric field provides information 

about the magnetic character of the impurity. 	As known 

for a long time, the anomalous transport coefficients of 

some dilute alloys are related to the existence of a local 

moment at the impurity site. 	Kondo (1964) showed that the 

exchange scattering of the conduction electrons on the 
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localised spin accounts for the deep minimum in the total 

resistivity of some alloys. 	On the other hand, the main 

effect of the non-magnetic impurity is to increase the 

residual resistivity. 

However, careful experimental analysis (Caplin and 

Rizzuto, 1968; Narath, 1972; Rizzuto, 1974; Griner, 1973) 

has shown that for most of the systems, the notion "magnetic" 

or "non-magnetic" is only a relative one. 	There are a 

number of alloys with only weakly temperature dependent 

Curie-Weiss susceptibility 

X - 	 
T + 6 

where 6 is of the order of a few hundred degrees, and alloys 

in which the enhanced Pauli like susceptibility is associated 

with the weak resistance minimum. 	Equally, if one looks 

at some of the alloys in a broad temperature range, it 

appears that one and the same alloy behaves as "magnetic" 

or "non-magnetic" depending on whether the temperature is 

below or above a certain characteristic temperature. 

The theoretical framework in which the behaviour of 

such systems is usually studied is given by the Friedel- 

Anderson model. 	The problem of local moment formation has 

been solved by Friedel (1958) and Anderson (1961) in terms 

of a self-consistent polarisation of a virtual bound state, 

representing the impurity; the Hartree-Fock approximation 

gives the criterion according to which the impurity will 

or will not retain its moment in a given host. 



3. 

Friedel-Anderson Theory. 

Consider a transition metal impurity dissolved in a 

simple metal host. 	The conduction band of the host has 

an s-like character while the valence electrons of the 

impurity are s- and d-like. 	Due to the great band width 

of the conduction states, the energies of the impurity 

valence electrons will be, in general, above the bottom of 

the conduction band (Friedel, 1958; Friedel and Daniel, 

1965). 	This means that the energy levels of the d-states 

will be broadened due to the mixing with the conduction 

states. 	If mixing is not too large, the perturbed d- 

electrons will still remain localized and a "virtual bound 

state" will be formed, which looks rather similar to the 

atomic d-state. 	Because the electrons in such a state 

are at least as localized as in a free atom (Anderson, 1968), 

one expects the exchange and correlation forces to play 

an important role. 	In certain situations this can give 

rise to the lifting of the spin degeneracy of the virtual 

state, i.e. the up- and down-spin virtual bound states will 

have differend energies. 	If, eventually, the virtual 

.states are not too far away from the Fermi surface, the 

number of up and down-spin electrons will be different and 

a localized magnetic moment results (Friedel and Blandin, 

1959; Daniel and Friedel, 1965). 	The condition for the 

spin splitting to occur is given by 
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where U is the exchange energy of local electrons and 

n(s) is the number of local states at the Fermi level. 

At temperatures close to T = 0, the transport 

properties of dilute alloys are determined by the phase 

shifts of conduction eledtrons due to their scattering on 

the virtual state. 

In the case of the residual resistivities of Al-3d 

alloys, the agreement with the experimental data is rather 

remarkable (Fig. 1, Ch. III), while in the case of 

"magnetic" Cu based alloys the agreements is less good but 

we still see how the splitting of the virtual bound state 

is reflected in the residual resistivities as we move 

through the transition series. 

The appropriate Hamiltonian to study the described 

physical situation is the Anderson Hamiltonian (Anderson, 

1961) 

H = Hos  + Hod 
+ Hsd + Hdd 	 (1) 

In the standard notation 

= 
HosEk 

c
k 

a
ka 

a
ka os 

m+ in 
a H

od 
= in Ed ada da 

+ m 
H
sd 

=
km Vkd 

a
k 

a
d 
+ cc. 

m+ m m+ 
H
dd 

= U E
m ada 

a
da 

a
d-a 

a
d-a 

m+ m 
a
m+ 

an + (U-3) E
Dqn 

a
da ada n-a n-a 



5. 

Indices m and n denote the various d orbitals and U and 

J are Coulomb and exchange integrals between pairs of 

localized electrons. 	(Differences between the matrix 

elements Umm  , and Jmm  are neglected because they are 

small compared to the width of the virtual bound state; 

for the same reason the crystal field splitting of the 

d-level is neglected.) 	V
kd 

is the matrix element of the 

one-body s-d scattering potential. 

The condition for the appearance of a local moment 

is obtained by calculating the average occupation, 

<n
m
da > , of the spin up and down local levels. 	(Obviously, 

if
m
(<nm

di- 
> - <nm  > # 0, the system will have a moment.) 

The self-consistency condition is given by 

<n
m
da > = f de n

d
m 
a
(e) 
	

(2) 

where nm
da
(e) is the local density, defined as 

n
da(e) = - —Im G

m
da(6) 
	

(3) 

and G' is the matrix element of the d-electrons Green 

function. 

For a given set of parameters (U,J,E11:11, , etc.), a 

local moment will exist if the ground state energy of the 

system is at its minimum and the equation 

m , 
m
k<nm > - <n>) = M (4) 

has a solution for M # 0, where M is the total moment of 



6. 

the local state. 	Equation (4) answers, in principle, the 

question about the existence of an impurity moment in the 

metallic host. 	In the Hartree-Fock approximation one 

obtains the condition 

U + 4J 

 

(5) 

 

(E
d 	cF)2 

	
42 

which in the symmetrical case reads 

 

> 1 
TrA 

 

(5 1) 

where A is the width of the virtual bound state. 

However, for the equality sign in the expression (5) 

equation (4) gives the sharp boundary between the magnetic 

and non-magnetic states, i.e. it defines the critical line 

between the "yes" and "no moment" regions in parameter 

space. 	Such a result, quite similar to what one finds 

when studying phase-transitions in extended systems (Stoner-

Wolhfarth magnetism, for example), is not acceptable in a 

local system. 	It is hard to believe that one particle 	in 

some 10
23 

could cause the phase transition (time-reversal 

symmetry being destroyed). 	One already expects on the 

basis of the classical theory (Landau and Lifshitz, 1963), 

that in a finite system the fluctuations will destroy the 

possibility of a sharp transition. 

Also, in the case of the Hartree-Fock magnetic impurity 

one can envisage a rather paradokical situation in which 
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the magnetic moment will be quenched at temperatures of 

the order of the splitting between the up-spin and down-

spin virtual states. 

LSF Concept. 

To avoid these difficulties and to explain the above 

mentioned experimental data (in particular, "magnetic" 

behaviour above some characteristic temperature and 

"non-magnetic" below) one has to find a better approxi-

mation for the Anderson Hamiltonian than Hartree-Fock. 

Much of the theoretical work in this respect, in the past 

few years, has been done along the lines of the localised 

spin fluctuation (LSF) theory. 	Both the magnetic - non- 

magnetic transition and the "loss" of magnetic properties 

at sufficiently low temperatures are explained assuming 

that the behaviour of the system is dominated by the 

fluctuations of the local spin. 	The impurity is charac- 

terised by the lifetime T of the LSF, and if T is greater 

than the life-time of the thermal fluctuations, the system 

can show magnetic properties without necessarily having to 

sustain an infinitely long-lived magnetic moment, as 

predicted by the Hartree-Fock theory. 

To introduce the localised spin fluctuations in the 

Anderson model, we first look at the magnetic properties 

of the Anderson Hamiltonian in the U=0 limit. 	In what 

follows we restrict our discussion to the case of the non-

degenerate d-orbital, so that the Hamiltonian (1) reads 



8, 

H = 	s a
+ 

a + E (V 	a
+ 

a + V
w 

a
+ 
 aka) ka k aka ka 	ka kd ka da 	kd da ka 

+ Undtnd+  

If we assume that there is no correlation (U=0) 

between d-electrons of opposite spin, this Hamiltonian 

can be diagonalised exactly; all the Hartree-Fock results 

discussed in the previous section become rigorous in this 

limit. 	The d-electrons Green function is given by 

G°d(w n) 
1  

w
n 

± iA (6)  

which means that the lifetime of a d-electron of a given 

spin is of the order of A-1. 

The rate of change from one spin to the other is 

related to the susceptibility by 

X(wm) =kB
TE

n  G
°
d
(w

m 
 +w

n
) G°(w 

n
) , 

d  (7)  

from which it easily follows that the static susceptibility 

is given by 

41(0) 	841'Ci 	 (8) 

where 8 = l/k
B
T and Ip'(z) is derivative of the digamma 

function (Abramovitz and Stegun, 1965). 	In the T 	0 limit 

o, 
Xd0) tends to a constant while for T 4 co it behaves as 1/T. 

Thus, for U=0, the static susceptibility varies from Pauli-

like to Curie-like, with the change in regime occurring at 

a temperature of the order of L. 

What is expected to happen if a non-zero correlation 

term appears? 
	

The new term in the Hamiltonian is Unn
(14, 



• 	
9. 

and therefore the doubly occupancy of the d-orbital will 

be reduced on the average. 	A d-electron of a given spin 

tends to surround itself by a hole of the opposite spin: 

the lifetime of a given spin state will increase with 

increasing U. 	An alternative way of looking at such a 

state is to say that the impurity has got a magnetic moment 

which is of a finite lifetime 2(1:> A-1). 

The static susceptibility of such a system is given 

by the same expression as eq. (8) (Rivier, 1968) but with 

A-1  replaced by T; the transition temperature between the 

two regimes is shifted from h/k
B to T

K, where the charac-

teristic temperature T
K 

is defined by 

k
B
T
K 

= T-1  

For temperatures below TK  the system is essentially non-

magnetic, while above TK  it behaves as if the impurity had 

a well defined permanent spin. 	Thus, when the lifetime 

of the thermal fluctuations in the conduction band becomes 

shorter than ZnT >> TK), the conduction electrons can be 

spin-flip scattered on the impurity, which gives rise to 

.the logarithmic temperature dependence of the resistivity. 

, Such a definition of the characteristic temperature 

T
K agrees well with the experimental and theoretical values 

of T
K deduced from the transport and thermodynamical 

properties of the dilute alloys. 	The transition between 

the "magnetic" and "non-magnetic" regime is smooth, as it 

should be in a system involving a limited number of degrees 
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of freedom. 

In a formal way, the localised spin fluctuations 

were introduced in the Anderson model by analogy with the 

critical fluctuations in the theory of nearly ferromagnetic 

metals (Berk and Schrieffer, 1966; Doniach and Engelsberg, 

1966). 	The idea was to start with the Anderson Hamiltonian 

(assuming the ground state of the system to be non-magnetic) 

and evaluate quantities such as susceptibility, partition 

function, etc., by means of many-body techniques. 

In the "random phase approximation" the fluctuation 

corrections to the d-electron self-energy have been calcu-

lated by Rivier and Zuckermann (1968) and in the RRPA by 

Suhl (1967), Levine and Suhl (1968) and Hamann (1969). 

Their aim was to solve simultaneously the set of equations 

for Gd,  E
d 

and x 

1 
G
d
(i

n
) 

 

i e
n ± is - d 

1 Ed(i n) = T EB Gd(i m)xd(i em + a ) 

and 

Xd" cn)  

Xo 

where 

1 - U xo 

X o  



• 11. 

and B and F denote the summation over Bose and Fermi 

frequencies. 

Although in this approach the Hartree-Fock divergen-

cies have been removed and a smooth transition between 

U << TrA and U >> TrA has been obtained, difficulties still 

remained in the magnetic (U >> 7A) limit. 	For example 

the flattening out of the susceptibility occurred at a 

temperature which is exponentially lower than that which 

is expected on the basis of Kondo theory. 	In addition, 

Beal-Monod and Mills (1970) have shown that for U = TrA 

vertex corrections which were not included in the theory 

of the above authors are at least as important as the self-

energy corrections. 

To circumvent these difficulties, another type of 

spin fluctuation was introduced by Hamann (1969a) and 

Schrieffer et al. (1969 and 1970). 	They calculate the 

partition function and susceptibility of the Anderson 

model using so called functional integral methods. 

(Review of various FI approaches to the Anderson model 

is given by Hassing and Esterling, 1973 and Morandi arid 

Ratto, 1974). 	In this method the partition function of 

the system with two-body interactions (Unn) is replaced 

by a Gaussian average of the partition function for a 

system of particles interacting only with time varying 

external field (which couples to the system in the appro- 

priate manner). 	The average is over all possible 

fictitious external fields and is expressed as a functional 
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integral (Stratonovich, 1958; Hubbard, 1959). 

The FI methods enable one to treat the Anderson model 

for all values of U/TrL within a single approximation, but 

presently neither in the U/TrA >> 1 nor in the U = TrA case 

do the FI results agree completely with certain well known 

limits obtained on the basis of the less sophisticated 

treatments (Hassing and Esterling, 1973; Morandi and Ratto, 

1974). 

Thus, although in the last few years considerable 

progress has been made in understanding the behaviour of 

dilute alloys, the relationship between experimentally 

determined properties (e.g. "simple power laws" or "spin 

fluctuation temperature", Star, 1971; Rizzuto, 1974) and 

parameters of fundamental Hamiltonians such as of Anderson 

'or Wolff, is still not quite established. 

In this respect, we believe that it would be of 

interest to look at a dilute alloy assuming that the tran-

sition metal impurity has got a magnetic moment which is of 

finite lifetime T and calculate the properties of such a 

system, leaving the question of the exact relation between 

the LSF lifetime and parameters U, A and Ed 
open. 

Formulating the problem in field-theoretical language, it 
can be shown that the auxiliary field propagators have 
physical significance as higher order correlation functions 
of the original system (Sherrington, 1971). 	In the case 
of the Anderson Hamiltonian, the one-body auxiliary field 
propagator gives the frequency dependent local suscept-
ibility. 
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CHAPTER 1  

EFFECTS OF THE LOCALISED SPIN FLUCTUATIONS ON THE DENSITY 

OF STATES OF DILUTE ALLOYS  

1.1 Single Pole Dominance Approximation 

The LSF theory, discussed in the previous chapter, 

predicts the local susceptibility of the form 

Xd 	
TK + ie 

 

(1) 

where T
K 

is a function of the parameters of the Anderson 

Hamiltonian and c some constant which depends on the 

particular model and approximation used to calculate Xd. 

For example, in the RPA of the Anderson model one has 

c = 21111/7, for the non-degenerate d-level and c = 

for (2.4.+1) - fold degenerate level. 	The static suscept- 

ibility, when calculated in the RRPA,(Hamann, 1969))  varies 

from Pauli like to Curie-Weiss like as U goes from zero to 

infinity (retaining the finite value at T=O) so that the 

divergency in the local susceptibility is removed and a 

smooth transition from the magnetic to the non-magnetic 

state is obtained. 	However, the calculated values of Xd 

are not in any agreement with the experimental data: 

calculated Curie constant is of the order of (U/A)2, while 

experimentally it is of the order of one. 	What is even 

worse, in the VA -+ co limit, RRPA values of TK  do not agree 

with the Kondo temperature obtained by the Schrieffer-Wolff 
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T
K  is (2) 
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transformation and the standard formula 

, T
K 

= TF exp(- P1 ) 
F 

On the other hand, apart from the fact that experi- 

mentally established properties of dilute alloys vary 

smoothly with the local correlation energy (Rizzuto, Babic 

and Steward, 1973), the impurity NMR data show expression 

(1) for Xd  to be valid not just in the "non-magnetic" 

but in the "magnetic" regime as well (Narath, 1972;.  

Narath and Weaver, 1969). 

In this sense it is tempting to try and keep the 

expression (1) for the local susceptibility not as an 

ultimate goal of the fully renormalised theory but rather 

as a starting point of a phenomenological theory. 	Thus 

we calculate properties of a dilute alloy assuming the 

local dynamical susceptibility to be given by equation (1) 

and define the LSF propagator as 

with T
K 

chosen as a phenomenological parameter and assume, 

following Suhl (1967), that the most important contribution 

to the d-electrons' self-energy Ed  comes from the scattering 

by the spin fluctuations (Rivier, 1968; Hamann, 1969). 

In other words, we write for the self-energy 

-iE
d (3) 
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where as before, =---3= is the d-electrons Green function. 

Equations (2) and (3) form what we call the "single pole 

dominance" approximation. 

In what follows we calculate, in the above defined 

"single pole dominance" approximation, some of the proper-

ties of a dilute alloy described by the Anderson Hamil- 

tonian. 	We stress again that the validity of the cal- 

culations should not be connected to that of the RPA 

applied to the Anderson model but rather to that of the 

expression (1) for the local susceptibility. 	We believe 

that our results will remain the same within the frame of 

any approximation leading to such a susceptibility. 

In the next section we derive first an expression 

for the d-electrons' spectral density and then look at the 

density of states as a function of temperature and parameters 

T 	E
d 
and A. 	In the last section of this chapter we 

calculate the change in the excess specific heat of the 

alloy due to the presence of the local spin fluctuations. 

1.2 Spectral Density of Local Electrons 

By definition, the spectral density A(c) is obtained 

from the Green function by 

A(c) = - —Im G (c) 

and G
d 
(c) is determined by the Dyson equation 

Gd(e) 	c - E
d 

± 	- E
d 

1 

(4)  

(5)  
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Within the "single pole dominance" approximation we have 

for Ed(e) (Rivier, 1968) 

iEd(icn) = kBT EB  xd(iem) Gd(iem  + ien) 	(3') 

where sum over B goes over all the Bose frequences 

En  = 2nirikBT. 	Here, we restrict our discussion to the 

unrenormalized theory only, i.e. we replace Gd(E) in the 

equation (3') with ed(E), believing that results obtained 

in such a way will give a physical insight in the modifi-

cations of the virtual bound state due to electron-hole 

correlations. 

To 	calculate 

analytical continuation 

_imaginary on the real 

1968): 

E(z) 	= 	A2  

Gd for real frequencies we make the 

of 	the expression 	(3') 	from the 

axes and obtain the integral 	(Rivier, 

dx 	x 	1 

e3;(7 - 	1 	m  2 x2 	x + z - E4± is 
d 

+ 	I 	dx 	A 1 
6+ 	1 	+(x-E 2 	A 2  M + 1(z -x) (5b) 

where M = k BTK is 	the inverse of 	the LSF life-time, and 

8 = 1/kBT is 	the 	inverse of the absolute temperature. 

Evaluating this 	integral (mathematical 	details are 

given in the appendix I) we have for E
d(e) 

E
d
(e) = L2(I + I + I ) 

1 	2 	3 
( 5 c) 
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where 

1 
I = 

1 

  

c - Ed 	i(M + A) 	M$ 

I 
2 

- Ed  ± iA 

 

- Ed  ± i(A+M)1 te - Ed  ± i(A-M).1 

A$ - (c-Ed  )$ 	M$ 

4c i4)(1  + 21 + 
	

1)(1 +_).} 

27 	27 

   

1 	MO + 	+ 271-1:) + 
A7Mi 3 	t (c - Ed) + i(ATM)i le - Ed  - 

AS 	. 
E
d
$ 

+ 1  77-r  ) AO 	
Ed $ 

(I 	2w  - 1727—) 

c 	Ed  f i M+ iA 	c- Ed 	i M - iA 

In equation (5c) symbol 4)(x) denotes the digamma function 

(Abramovitz and Stegun, (1965). 

Using equation (5) we can discuss the spectral density as 

a function of energy, temperature and parameters M, Ed  and 

A. 	We have for the Im Gd(c) 

- Im d
(c) = 

(A Im E
d
) 

  

(c-Ed
-Re Ed

)2  + (A Im Ed 
 

2 (6) 

from which A(t) is easily obtained. 	The local density of 

states is obviously equal to the spectral density and in 

the next section we show that the d-electrons' density 

of states, n
d 
 (c), is drastically changed with respect to 

its Hartree-Fock form, but it contains all the features 



18. 

associated by different theories with localised magnetic 

and non-magnetic states in metals. 

1.3 Low Temperature Limit of the d-Electrons' Density of  

States  

For temperatures close to zero we can greatly simplify 

expression (3') for E
d
(6) and write n

d(e) in terms of usual 

analytical functions. 

Let us first discuss the case M = A , i.e. the truly 

non-magnetic regime. 	Recalling that kBT << A for any 

physical temperature and using the asymptotic expansion for 

*-functions 

Ip(x) 	ln(x) when x 

E
d can be written as 

1 	A - i(e-Ed)] (A-1e) 

e - Ed 
+ 2ip 	A(A+i  E

d
) 

+ 
	1 	

Qn 
	A - i(e-Ed)] (A-i Ed  ) 

e - Ed 
	A(A-ie) 

The LSF contribution to the self-energy is such that nd(e) 

is to a very good approximation Lorentzian of the width A, 

i.e. one recovers for the density of states the Hartree- 

Fock non-magnetic solution (Anderson, 1961). 	The position 

of the virtual bound state with respect to the Fermi level 

is fixed by the number of d-electrons which it has to 

accomodate. 
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The situation is different in the case when M << A. 

Neglecting everywhere M against A and using the asymptotic 

form of V-functions we can write E
d 

as 

Re E 
A 2 (c-Ed1 

to 
A2 4. (e _Ed)2 

 

A 3  
4- 

    

( e _
Ed)

2 	A2 	 M 2 	 -Ed)2  + A2  

d  

A 
(m24.e2)

d)2 	A2] 
Im E

d 	2 	  
1 

(e-Ed
)2 + A2 M2(A2+E2) 

e - E 

f -1 e 	-1 tg -M  + tg 

A2(e_E) 

tg 	tg
-1  

	

-1 
E
d 	

e - E 

	

A 	 A 
d  

(e-Ed)2  + A 2  

 

At the Fermi level (E = 0) one has: 

---- --,- 
/A2  + E2

d 	
A3 	E A2 E

d 	 -1 d Re E
d(e = 0) = 	

kn 	 4 	 tg 
A 2 + E ta, 
	

M 	A 2  + E 2 	A 

1m E
d(e = 0) ..., 0 

and the density of states at the Fermi level can be written 

as 

1 n
d
(0) - 

Ed  + A2 

where the renormalised shift Ed 
is defined as 

+ Re E d 

A 

(9)  

(10)  

(7)  

(8)  
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From the equations (9) and (10) it follows that the 

envelope of the Fermi level density of states is at its 

maximum in the symmetrical case (Ed
• =E

d
=0). 	Keeping A tIle 

same and changing M and Ed, i.e. changing impurity in the 

given host, we see that nd(0) decreases with increasing 

Ed in approximatively the same fashion as in the case of 

a non-magnetic virtual bound state. 	Now, it would be 

extremely nice if Ed  corresponded to the effective position 

of the virtual level as determined by the Friedel sum rule. 

However, in this unrenormalized theory it is Ed  rather than 

Ed which gives the effective position. 

In the case of the symmetrical Anderson Hamiltonian, 

we can find an useful approximate expression for the Green 

function Gd and the density of states, valid in the energy 

-region close to the Fermi level. 	From equation (7) we 

obtain, expanding E
d 

for small e and T = 0, 

Re Ed  = eng -AR 

and 
	

E
d = 0 + 0 (e2) 

It follows that G
d(e) can be written as 

G (6) = G
eff 	M 	1  • 

A e + iM 

and n
d
(e) as 

1 
nd
(e) =  

nA 

M 
• (12) 

£2 + m2 

 

Up to logarithmic accuracy, i.e.. M/A << I ln(M/01 
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The density of states, close to the Fermi level, is given 

by 	narrow Lorentzian of width M, i.e. it is proportional 

to the inverse of the LSF life-time. 

1.4 Temperature Dependence of nd(e) 

To obtain the general structure of the density of 

states at finite temperatures and for any values of Ed, M 

and A, we have substituted expression (3) for 	in the 

expression (6) and made the numerical analysis. 	Properties 

of n
d
(e) can be summarised as follows: 

(i) For M << A, nd(e) has two broad peaks of width A, 

stable relative to the Fermi level and only weakly 

temperature dependent. 	They can be recognised as 

the Friedel-Anderson (Hartree-Fock) part of the 

density of states. 

(ii) In addition, there is a narrow peak (width M) placed 

at the Fermi level which decreases rapidly with 

increasing temperature and disappears above TK. 

The Fermi level density of states follows succes-

sively T2, T and ln(T) temperature dependence. 

Mathematically, this rapid change of n
d
(e) for small values 

of its argument comes from the fact that the reduced 

temperature scale is defined by T = (T/TK). 	Also, we 

notice from the asymptotic behaviour of g,-functions, that 

the initial quadratic energy dependence of nd(e) is followed 

by logarithmic energy dependence (e < M). 	The width, r, 

of the narrow peak follows the same temperature dependence 

as the inverse of the density of states at the Fermi level, 
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i.e. one has (for kBT << M) from eqs. (6), (7) and (8), 

Tr- 9 

 kBT 

2 
r(T) 	1,4 11 + 	, m 

(13)  

so that for e << M one can replace nd(e) by an effective 

temperature dependent Lorentzian 

eff 
(6) = 	

(T)  
dA 2 E + A2 

where r(T) is the effective temperature dependent width 

and rT=0=M. 	We repeat that at zero temperature the 

envelope of the many-body peak (for different impurities, 

i.e. different E
d) has approximately a Lorentzian shape, 

which has been associated by Friedel with the density of 

"states around the 3d-impurity in non-magnetic alloys. 

Above TK, the envelope of - —
1  Im(G

d)e=0 coincides with the 

density of states itself, so that one recovers the doubly 

peaked form, associated in the Hartree-Fock picture with 

the magnetic virtual bound state. 	The doubly peaked resi- 

dual resistance of gold and copper based alloys (direct 

measure of the density of states at the Fermi level) is in 

fact measured above the respective Kondo temperatures of 

these alloys. 

Splitting between two broad peaks increases with the 

decreasing M (i.e. T
K
). 	However, we have not been able 

to obtain the quantitative relation between the splitting 

and T
K in the limit M/t - 0. 	rn the opposite limit the 

splitting disappears and one recovers the simple Lorentzian 

(14)  
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density of states of width A. 	In this limit the impurity 

is truly non-magnetic for any temperature smaller than 

the degeneracy temperature of the local Fermi gas, T 	= A. 
deg 

In figures (1) and (2) we plotted the density of 

states as a function of energy and temperature for two 

different sets of parameters: 

fig. (1); 5/A = 0, M/A = 0.07, 

fig. (2); yA = -0.3, M/L = 0.005 

In physical terms this would correspond to systems like 

Al Mn and Cu Fe. 	(E
d 

is chosen in such a way that the 

number of electrons in the virtual state is 5 and 6.5 

respectively). 

Finally, we mention that in order to give a plausible 

explanation of a number of experimentally observed proper-

ties of dilute alloys, Griner and Zawadowski (1972) proposed 

that the d-electrons density of states should have basically 

the same form as our function n
d
(c). 	Similarly, Schweitzer 

et al. (1972) postulated in their "heuristic treatment of 

the Anderson Hamiltonian" a spectral density of the same 

type as the one obtained here in the single pole dominance 

.approximation. 	On the other hand, Larsen (1973) calculated 

the transport properties of a "magnetic" alloy starting 

from the Kondo Hamiltonian and in order to avoid the diver-

gency of the scattering matrix at T=0, he assumed that the 

spectral density of a local spin has a finite temperature 

dependent width. 	The actual form -of his spectral density 

is exactly the same as narrow many-body peak obtained here 
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The spectral density of the virtual bound state Im Gd(w) 

at various temperatures, with parameters corresponding to 

Al Mn. 



Figure 2 

10 

   

  

.5 

  

.1 

-10 	 -5 
	

0 	 5 	 U 63 

The spectral density of the virtual bound state Im Gd(w)  
with parameters -corresponding to Cu Fe, at T=0. 
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on the basis of the Anderson Hamiltonian. 	In this sense 

we believe that the spectral density given by equations 

(4) and (6) demonstrates that there is no basic difference 

between Kondo and LSF description of the localised 

"magnetic" state of spin 1/2. 

1.5 Discussion of the Experimental Data Related to Densit 

Of States  

Direct evidence about the structure of the broad re-

sonance and its position with respect to the Fermi level 

comes from optical and photo emission data. 

Experiments of these kinds enable one to study elec-

tronic properties of an alloy over an energy range of 

several eV. 

In the case of the optical absorption one usually 

studies the imaginary part of the dielectric constant e 2 

which is proportional to 

e2(w) 	J nf(w l)n (w'-w)dw' 

Here, ni(w) and nf(w) are the densities of the initial and 

final electronic states. 	The presence of the virtual bound 

state is going to modify the interband transitions so that 

one expects the absorption peaks at energies Ed. 

Using the method due to Kj011erstrgm (1969), it is 

possible to relate the results of the optical experiments 

to the parameters of the Anderson model. 	In the case of 

a non-magnetic alloy one has (KjgllerstrOm, 1969) 
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w2  V2  -1 Ed + w Ae (w) 
 (41) 
	

5 	
PL 	

w2) (tg  
w 	 A 

+ tg 
(15) 

where Ae is the difference in the imaginary part of t e 
2 

dielectric function between the dilute alloy and pure 

metal at frequency w, C is the concentration of impurities, 

w the plasma frequency of the metal, wd  an oscillator 

strength for interband transition from the impurity and 

Ed, V and A the usual parameters of the Anderson model. 

The shape of Ae is thus determined by Ed  and A, while the 
2 

amplitude contains two terms, one due to conduction electron 

resonant potential scattering proportional to V2  and the 

other due to interband transition proportional to w . 

Fig. (3) shows the results of the measurements by 

Callender and Schnetterly (1972) on low concentration Az.  Pd 

alloys. 	One sees a pronounced peak at about 2.4 eV, whose 

position is independent of the concentration, suggesting 

that one is dealing with the single impurity effect. 	Such 

structure of the density of states is in accord with the 

non-magnetic character of palladium in silver, i.e. with 

the unsplit virtual bound state. 	Using eq. (15), the 

estimates of the parameters Ed  and A give: Ed  = -1.9 eV 

and A = 0.24 eV. 	These results agree quite well with 

the earlier measurements on more concentrated alloys 

(Myers et al. 1968) and Ed  = -1.6 eV, A = 0.18 eV given by 

Kjollerstrom (1969). 	A negative value of Ed, i.e. virtual 

bound state bellow the Fermi level, is expected for Pd which 
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Figure 3: The optical absorption as a function of energy 

for different concentration of Pd in Ag. 

(Callender and Schnatterly, 1973).  

10 
Ag Mn 
	 Ag 

10% Mn 

15% Mn 

41'f")11 
Jo 

40% Mn 

1 	2 	3 	4 	5 6 eV 

Figure 4: The optical absorption as a function of energy 

in the case of Au Mn. 	(Myers et al., 1968) 
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has a nearly filled d-shell. 

Evaluating the scattering potential V2  from the 

amplitude of the expression (15) and using an estimated 

value for the conduction electrons density of states, 

p(WF) = 0.23 (eV)-1, the width of the virtual bound state 

is about A = it V2  p(wF) = 0.45 eV; almost a factor of 

2 larger than A estimated from the shape of eq. (17). 

This discrepancy is not really unexpected since eq. (17) 

was derived assuming that only the resonant (e=2) phase- 

shifts are different from zero. 	However, one knows that 

in order to get the quantitative agreement with the experi-

mental data, d-phase shifts only are not sufficient. 

s- and p- phase shifts have to be taken into account as 

well, as can be seen from the example of residual resis-

.tivities or thermopower of dilute alloys (see Chapter 3). 

We notice that in such a way the conduction electron's 

phase shifts are becoming almost uniquely determined. 

(The strongest condition upon the phase shifts is the 

Friedel sum rule). 	It would be interesting to see whether 

it is possible to find unique a set of phase shifts which 

would give a good agreement between this simple one-electron 

theory and experiments, as different as e.g. optical ab-

sorption and thermopower measurements. 

In the case of the magnetic impurities one expects 

to see a doubly-peaked structure in the absorption spectra 

corresponding to the spin-split virtual bound state. 

Figure (4) shows two peaks obseryed in the interband absorp- 
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tion in the Ag Mn alloys. 	Estimating the parameters 

of the virtual bound state (Griner, 1973) one has 

approximately: Ed  = 0, A = 0.5 eV and (U + 4J) = 5 eV. 

These values are consistent with the magnetic character of 

the manganese in silver and with the Friedel-Anderson 

condition.  (U + 4J)/IT A> 1. 	A similar spin split virtual 

bound state is observed in Au Mn and Cu Mn alloys. 	The 

splitting energy is about 5 eV, suggesting that U + 4J as 

an intra-atomic property of the impurity is independent of 

the host. 

A detailed description of the optical and photo-

emission properties of dilute alloys and the values of the 

parameters of the Anderson model deduced from those 

properties is given in the review paper by G. Griner (1973). 

In the case of the aluminium based alloys the experi-

mental situation, as regards the optical properties, is 

still not quite clear. 	However, the existing Al Mn data 

provide an interesting example. 	Measuring the optical 

reflectivity of several Al Mn alloys, Beaglehole and Will 

(1973) observed some extra absorption due to the interband 

transitions from the manganese d-states, spread over several 

eV. 	The total intensity is that of about five d-electrons, 

placed symmetrically below and above the Fermi level, but 

no doubly peaked structure in the local density of states 

is observed. 	(We notice that the optical experiments 

cannot give any information about the electronic structure 

close to the Fermi level, because of "Drude" absorption. 

However, strong energy variation of the density of states 
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close to the,Fermi level will show up in rapid temperature 

variations of the transport and thermal properties.) 

Beagleholes result is hard to understand in the same 

Hartree-Fock picture which we used to explain the data on 

systems like Au Mn or Al Pd. 	If, on one hand, we assume 

that nd(e) is a simple Lorentzian placed at E (and of the 

width-A), the optical data would suggest that A is extremely 

large (few eV). 	On the other hand, from the specific heat 

or the transport properties one would conclude that, close 

to eF' the density of states is well represented by a very 

narrow Lorentzian (of width = 0.1 eV) symmetrical with 

respect to the Fermi level. 	Thus, most of the d-electrons 

should not be observable in the optical measurements. 

In order to reconcile these two experimental obser-

vations, i.e. that 

(i) there is a narrow peak in the density of states 

close to e F' 

(ii) most of the d-electrons are far away from CF, Gruner 

and Zawadowski (1972) suggested that the density of 

states should have basically the same form as 

function n
d(e) obtained here in the "single pole 

dominance" approximation ((eq. 6) and fig. 1). 

1.6 Remark on the Specific Heat Due to the LSF  

In this section we discuss the LSF contribution to 

the electronic part of the specific heat of a simple-metal 

transition-metal alloy. 	We show that in the zero temperature 
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limit this contribution gives rise to a linear behaviour 

and that it is only the width of the narrow peak in the 

spectral density (inverse of the LSF temperature) which 

enters the expression for the specific heat. 

At low temperatures the specific heat of a metal can 

be expressed by 

C(T) = I T + a T3 	 (16) 

where the linear and cubic terms describe the electron 

and phonon contributions respectively. 	Since we are 

interested in the low temperature properties (T < D) the 

higher order terms have been neglected. 

In general, when the transition metal impurity is 

added to the host one can expect that it will not just 

change the coefficients of the two terms in the expression 

(1) but also give rise to new "magnetic" terms which, though 

electronic in nature,- can be non-linear in temperature. 

However, it is often difficult to single those terms out 

because of different spurious contributions to the specific 

heat coming, e.g. from phonons or concentration effects 

(Rizzuto, 1974). 	Thus we shall primarily be concerned 

with the increase in the linear term, Ay/c, due to the 

interactions between electrons and isolated impurity. 

The Hartree-Fock approximation of the Anderson Hamil-

tonian (Klein and Heeger, 1966) gives in the zero temperature 

limit Ay/c simply proportional to the density of local 

states at the Fermi level. 	One has 



3 . 

s2k2  
AY 	

3B 	
a 

	 Ea P d(eF) 

(17) 

and this expression works satisfactorily for alloys in 

which the LSF effects can be neglected. 	However, in 

systems like Cu Fe or Al Mn one finds by/c to be greatly 

enhanced over the values predicted by the Hartree-Fock 

theory. 	Measurements by Aoki and Otsuka (1969) give 

Ay/c = 0.44 (mJ/mol K2) for Al Mn and Ay/c = 0.3 (mJ/mol K2) 

for Al Cr, which would imply that the width of the virtual 

bound state is one order of magnitude smaller than what 

is expected on the basis of the Friedel-Anderson theory. 

To obtain the contribution to the electronic specific 

heat due to the spin fluctuations, we follow a method of 

Abrikosov, Gorkov and Dzyaloshinskii (1964, § 19.5). 	We 

calculate the entropy of an interacting Fermi liquid at 

non-zero temperature from which the coefficient by/c is 

simply given by 

LE = asl 
'2=0 
	 (18) 

In what follows, we outline the main steps of the calcu-

lation. 

The starting point is the observation that the know-

ledge of the total number of particles in a system enables 

one to determine the entropy, from the thermodynamic 

relation 

(19) 
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where N(p, T) is the total number of particles at a given 

chemical potential p and temperature T. 	In the case of 

the Anderson Hamiltonian we have (at finite temperatures) 

N(p,T) = 2TkB  En  G(en) 	
(20) 

and the notation is the same as in Chapter 1. 

Since we are concerned mostly with the low tem-

perature properties (low with respect to the degeneracy 

temperature of the local Fermi gas) we expand N(p,T) up to 

terms linear in T and obtain the difference 

N(p,T) - N(p,O) 	, 

3 
p 

N(p,T) - N(p,O) = -2Tk
B  En 3 

2.n G(0, 

(terms independent of temperature) 

(21)  

Differentiating with respect to temperature (with 

constant u) and comparing it with the expression (4) we 

have the entropy 

9 S = -2 Ty TkB  En  to G(en) (22)  

Evaluating the sum over imaginary frequencies in a standard 

way, we obtain for Ay/c 

72  k2  Ay 	- B 	1 	1 3 	R 
3 EG  — Im —T— TT  Gda  

Gda 
(23)  
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where G
R 
a
(w) is the Fourier transform of the retarded 

d 

local Green function evaluated at zero temperature. 

Here we would like to point out that the above 

derivation of the specific heat enhancement should be 

equally valid in the case of an alloy described by the 

Wolff Hamiltonian. 	The only difference is that in the 

final expression (eq. 23) one replaces the d-electron Green.  

function G
R 
(0 by a local function G

R 
a 	

which, in the 

	

da 	 O 

Wolff model, describes an electron localised at the impurity 

site R.=0, rather than an electron in a well defined angular 

state (42=2 in our case). 

Going back to the Anderson model we recall first that 

Gd
a 

is given by eq. (4) with positive sign in front of A, 

i .e. 

	

G
R 	1  

	

d 	w - Ed  + ip - E d  

and secondly, if we assume that it is the scattering on 

spin fluctuations which gives the most important contri-

bution to the self-energy Ed , we can write an approximate 

expression for Gda  which is valid in the zero temperature 

limit and for energies close to EF. 	We have from 

equation (11) 

M  1  
G = 
d 	A (I) + iM 

so that finally we obtain Ay/c (for 2R+1 times degenerate 
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level) 

211-2  k2  (22, + 1) 
L/ - 	 

3 
	

Tr M 
	

(24) 

The low temperature specific heat depends linearly 

on temperature and we notice that it is not the Hartree-

Fock width A which enters the expression (24) but rather 

it is M, the width of the narrow peak in the density of 

states which develops at the Fermi level as the result of 

the interactions between local electron and spin fluctuations 

(Hargita and Coradi, 1969; Caroli et al., 1969). 

From the data of Aoki and Otsuka (1969) we obtain 

M=0.17 (eV) and M=0.28 (eV) for Al Mn and Al Cr respectively, 

values which are consistent with M determined from different 

kinds of experiments (e.g. T2  dependence of the resistivity). 

At higher temperatures we were not able to calculate 

the LSF contribution in a rigorous way. 	However, if we 

assume that the main effect comes from the temperature 

dependence of the spectral density, we can speculate that 

equations (23) and (24) are still valid at T # 0 but with 

M replaced by the effective width r(T). 	From equation (13) 

we would then have 

kD  T2] 
NT) 	M [1 	¶ 

22 
	"
M 
 ) 

and the specific heat would deviate from the linear law as 

2ff2kT  r 1 I. 	
Tr 2  RT 2  ] 

V 
C =  	(R) 3 

(25) 

Finally, we want to mention some preliminary results for 
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the specific heat obtained following the method suggested 

by Kj011erstrOm, Scalapino and Schrieffer (1966). 	They 

derive an expression for the ground state energy of the 

Anderson Hamiltonian, 

F 

E(T) = - 	J de f(e) Imi(c - iA) Gd(e + 16)1 

from which the specific heat is obtained as 

DE 
Cv - DT 

However, we notice that the expression (26) for the ground 

state energy is not convergent, even in the case of a 

truly "non-magnetic" virtual bound state, hence one has to 

introduce a cutoff in the energy integration before making 

- the derivative with respect to temperature. 	(Derivation 

of equations (57) and (61) in paper by Kj011erstrOm et al. 

is incorrect since operations TT  de and Ide TT  are not 

commutable in general). 

Choosing the cutoff energy of the order of A and 

substituting for G
d(e) in equation (26) our expression 

(5), we have evaluated C
V  numerically. 	The result of the 

calculation is shown in Figure (5). 

For temperatures below 0.1 T (T = 27 T/T
K) numerical 

values agree well with those obtained from equation (24). 

At higher temperatures, the specific heat exhibits the 

characteristic "hump" with maximum at about 3T, but for 

temperatures large enough, we ob-tain the unphysical result 

(26)  

(27)  
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The specific heat obtained from the equation (26) in the text, 

.plotted as a function Of the .reduced temperature T = 2w T/T
K
. 
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that the specific heat becomes negative. 	Also, at 

present, we are not certain bow the effect of choosing 

different cutoffs will influence the shape of the specific 

heat curves. 

Appendix A 

We have to evaluate the expression 

where 

I = 	b(E) 
1 	 E 2 4- LI2 

 

1 

 

  

. z 

4 
and 	I 	= 	f(e) 	  

2 	 Z-- Ea)2 4- 2 	5.(z 

and where b(E) and f(c) are Bose and Fermi functions 

b ( ) 

f(e) - 
	1  

et  — 1 

Integrals of such a form are often encountered when dealing 

with the finite temperature Green functions, i.e. when 

evaluating sums over Bose and Fermi imaginary frequencies. 

To evaluate I we expand the meromorphic functions 

b(e) and f(s) in the series around their simple poles 

(Lavrentiev and Chabat, 1972, p. 433), 



b (e) 	= 
1 	1 

- 2 .4'  t# 

1 
2 

where 

f (e) 	= 
2 + X

n 

and X 	ti 
n 	

2n+ 1 
/4  
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In such a way we can write for I 

I = A + B + C 

where 

00  
A = -  

2 	d t (1 - 2  ) 	 E a 
E.2 + L:2 e- Ed  + z - 

- 
( E - E)

2 
+&

2 Li 7- i(z -E ) 

uz 	 

	

2 _2 	
2 E + 	E — Ed) 	T_ i(z _E.) 

2 2 2 2 + Y E 	E— E z 16 n=1 

Using Jordan's lemma we can calculate A, B and C making 

the contour integration along the real axis and semicircle 

in the upper (or lower) half-plane. 	From the theory of 

residues we then have for A 

_0° 

B = 



- z 

1 
+ 1  1 {7. + 	2.7 	I'  

2 

:: T iz  
2.-4; 
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A 
A - 

±(L, +p)) 116  

To evaluate B (and C) we decompose the integral as follows 

B 1 
4 

isi 
cl E 	 1  — 	1  

2 . Ed - z + i A .7. im Z, A 	,_ + X2 	-...., 	 .... _ ib 	E- z + ii,.. n=u 	n 

- 4 

       

— z 	iL -F 111 n=0 
 E + xn2  + ±,43 	- z 	11: 

Using now Jordan's lemma we have for the integral in the 

first term 

L 

     

     

2n+1 
A 11 	

LE 

 

A ° + M + iz 

 

  

and an analogous expression for the second integral. 

Comparing this with the definition of the u,-functions 

(Abramovitz and Stegun, 1965) 

 

1 	1  
1 z 	n + 1 / 

 

where y is the Euler's constant, we obtain for B 

B + 1 

 

• -I.-, ,a 	-- 
J2 
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and in exactly the same way 

   

 

z E 16 

 

`fro+ f- ) 

 

z — E ci -± i( LS+ LIU z — F., a ± i( P — 11 

Summing A, B and C we obtain equation (5c) in the text. 
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CHAPTER 2  

TEMPERATURE DEPENDENCE OF THE RESISTIVITY DUE TO THE  

LOCALISED SPIN FLUCTUATIONS IN SIMPLE-METAL TRANSITION-

METAL ALLOYS  

2.1 Introduction 

In this chapter we want to discuss the effect of 

localised spin fluctuations on the resistivity of simple- 

metal transition-metal alloys. 	We start with some 

experimental considerations. 	It was observed by Caplin 

and Rizzuto (1968) that systems like Al Mn exhibit a small 

minimum in the total resistivity. 	The initial decrease 

of the resistivity is quadratic in temperature up to about 

50K and after about 80K it becomes linear (BabiC et al., 

1971). 	Similar temperature variation (but with the 

characteristic temperature ranging between 1K and 1000K) 

was later found in several different systems in which the 

transition-metal or rare earth impurity is dissolved in a 

simple-metal host. 	Compiling the data on a great number 

of such alloys Rizzuto, Babic and Stewart (1973) have shown 

that the resistivity can be described by the "universal" 

curve which has T2, T and ln(T) functional dependence and 

eventually reaches the high temperature plateau. 	In 

particular, they produced the evidence that in quite a few 

systems the extension of the log(T) term over several 

decades in temperature was due to interactions between 

impurity atoms. 
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Theoretically, the T2  decrease in the resistivity 

was explained by Rivier and Zuckermann (1968) on the basis 

of the RPA approximation of the Anderson Hamiltonian. 

The main points in their derivation were: 

(i) the temperature variation of the resistivity 

is due to the scattering of local electrons on 

the spin fluctuations; 

(ii) the LSF propagator is defined by the expression 

(1), Ch. 1. 

In what follows we extend their calculations to higher 

temperatures and show that the resistivity obtained in such 

a way has all the features mentioned in connection with 

experiment (Rivier and Zlatid% 1972). 

However, as explained in the previous chapter, we 

. do not calculate the LSF lifetime directly from the Anderson 

Hamiltonian but consider it as a phenomenological parameter 

which determines the characteristic temperature of the 

system. 	We notice that for a given temperature range one 

goes smoothly from "magnetic" to "non-magnetic" behaviour 

as T is varied. 

In the next section we first set up the Boltzmann 

equatiori for the conduction electrons in the presence of 

Ni  impurities and derive an expression for the relaxation 

time in terms of d-electrons' Green function. 	Using the 

expression for Gd(w) derived in the Chapter 1, we discuss 

the temperature dependence of the resistivity as a function 

of the LSF lifetime and parameters Ed  and A of the Anderson 

model. 	Eventually, we compare our results with the 
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experimental data. 

2.2 The Relaxation Time  

In the presence of electrical field the electrical 

current is given by the expression 

= 2e 
( d3pv f(p) 

(271,E)2  

where f(p, r) is the non-equilibrium distribution function, 

y is the velocity of the conduction electrons and the 

integration is performed over all momentum space. 

Due to the collisions with the impurity atoms 

(this is assumed to be the only process through which the 

electrons can relax) the distribution function f(p) is 

changing in time. 	Its rate of change is given by the 

kinetic equation 

df 
at 

= I(f) (2) 

where I(f) is the collision integral which has to be cal-

culated. 

If V(r) is the perturbation potential acting on the 

conduction electron due to the presence of all the impurities, 

with local potential v(r) 

V(r) = E. v(r- 	), 
1 	. 	.1 R. 

and V 
PP
, is its matrix element (in the unit volume), the 

collision integral can be written as 

I(f) = 	1Vpp,,fig {f(P)(1-f(P I )) 	f(P')(1-f(p))} 

d 3p'  x (ep-ep')  (2m4)3  (3) 
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The first term describes the process in which the electron 

is scattered from the state p into p' while the second 
e•O 

describes the transition from p' into p. 

In the dilute alloy, with Ni  impurities placed at 

random, we can replace IV 
PP
j2  by the square of the average 

local potential Iv PPj2;  thus, we can deal formally with 

the one impurity problem (Edwards, 1958; Abrikosov et al., 

1964). 	We see how it happens in the following. 

If the matrix element of the conduction electron 

Bloch function is given by 

, e1 	u 
2 	P 

where u 
2
(r) is a periodic function, the matrix element 

V , can be written as 
22 

V= I dV e-1(P-P)  
EP 

up  (N) up  (r)
1  

2:. v(r-R.) 

	

lvPP 112 	e  -i(P-P')111. „ - 

where the sum goes over all the impurity atoms (placed at 

R.) in the unit volume. 

The average potential IV PP,I2  is given by 

	

1v 	
' 

1 2  = N.
1 
 Iv PP12 

PP  

since we have the relation 

2:e- i(P-P')(R.-R.) - Ni  8.. 
» 	-1 

The momentum integration in equation (3) can be written in 

a standard way as f j  cis . • • • d 3 p 	= 	. • • . u E.  
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and we notice that 

2   
(27f03 	

dS 	
P(c) 

where the integration goes over the surfaces of constant 

energy, c(p) = const and p(c) is the density of states of 

	

the conduction electrons. 	In such a way the collision 

integral becomes 

	

I(f) = 27 Ni  f v(p ,) 	vpp ,1 2  {f(p') - f(p)} " 
(4)  

Next, we introduce the function fl(p) 

f = f - f 
1 	0 

which measures the deviations of the distribution function 

from its equilibrium value, and the quantity W PP
'  

W 	, 	= 2  N. lv 	;1 2  p(c) 
PP 	i pp 

which is related to the conduction electrons' scattering 

cross section 
do-- 
dct ' 

c- 	27- v 	1
2 	

) c1.2 'Hy 

One has 

W 	
v Ni do 

PP
, 
	2 	d2 

For the isotropic scattering process the integration over 

d-S.  in equation (4) can be transformed to an integration 

over solid angle and we obtain for I(f) the usual result 

(5)  
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dO 
I(f) = 	— W(6) if(p i) - f(p)1 

47r 

(6) 

When the applied electrical field E is small, and this is 

the case in any experimental situation, the deviations of 

the distribution function from its equilibrium value 

should be linear in E. 	At the same time one knows that 
OAP 

f(p) should be a scalar so that the obvious ansatz for the 

form of f
1  is 

f (p) = pE n(E) = pE n(e) cos(p, E) 
1 

where n(E) is a function of energy. 

Substituting this in equation (6) and performing the 

- integration over 0, we obtain for the collision integral 

(Mott and Jones, 1936, Ch. VII, §8) 

r(p) = - f (p) f W(e) (1-cos e 

Defining the relaxation time as 

or 

ch2 = f W(6)(1 - cos e) 

N. v 1 	f du „ 	d2 = 	ki - cos) -- 2 	d2 	471.  

one can write the kinetic equation as 

df 	3f  
+ v.V f + eE.V f = - f-fo dt 	at 	r 	p 

dcZ 
Trir 

(8) 
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Thus, the knowledge of the scattering amplitude of the 

conduction electrons enables us to find the relaxation 

time T (equation (7)) and solve, in principle, the 

kinetic equation. 	Since in the resistivity (conductivity) 

experiments the applied electrical field is usually small 

the current is in a stationary state and the transport 

equation reads 

of  
eE 	- 	f-f 

or 
f 

 
= - eE v 

0 

The total current, 	given by equation 	(1), can now be 

expressed 

j 	= 

through 

2e2f  

the relaxation time as 

41) v 	(vE) 	T 	(- 	p 	(e) 	de 172T  

Integrating over the angle and assuming that the field is 

parallel to the z - axis, we obtain for the conductivity 

2e2  
a = 3 vF  p(ep f dc( — )T(E) De 

(9) 

Using the optical theorem we can relate the con-

duction electrons transport relaxation time to their 

scattering matrix (T-matrix). 	From the optical theorem 

we have 

x 	 2 
total = 
	Im T 

PP 
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where T 
PP

, is the matrix element of the T-matrix which 

can be written as 

TPP = 47rE(2Z+1)TPe. (cos 0) . 

In the Friedel Anderson model, only the k=2 spherical com-

ponent is different from zero and it can be obtained from 

the d-electrons' Green function as 

T = VG
d
V. 

2 
(10) 

Thus, the relaxation time can be written as 

1 	2(2k+1)Ni V2  Im Gd(c) 
T 	11 

G was calculated in the previous section and we shall 

use those results to discuss the resistivity of some simple-

metal transition-metal alloys. 

2.3 Residual Resistivity 

We first look at the increase in the residual resis-

tivity of a dilute alloy due to the presence of c-atomic % 

of impurities. 	At T=0 we have for Lp(0), from equations 

(9) and (11), 

2  
A p(0) - 

10mV   Im G d(cF) x 100 

Defining the resonant (9=2) phase shift of the con-

duction electrons (due to their scattering on the 3-d 

impurity) as 

tg S 	= 
2 

Im T2 

Re T2 

e2  -T1 (12) 
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where T2 is the scattering matrix given by equation (10), 

we can rewrite the expression (12) in a well known form 

(Friedel and Daniel, 1964) 

p(0) = c p sin 82 
	 (13) 

In eq. (10) c is the concentration of the impurities and 

p is a constant which in real metals depends on the 

dnesity of states and the band structure of the host. 

(In the free electron model pp  = (m/5 e2 -7rP) = (111/5 e2kF). 

This result for Ap is in systematic agreement with 

the experimental data, as can be seen in figure (1), Ch. 3 

and in the discussion thereafter. 	(See also Rizzuto, 1973). 

The maximum value of tip/c is obtained in the case when the 

virtual bound state is symmetrical with respect to the 

Fermi level (E
d = 0) and the corresponding phase shift is 

82 = Tr/2. 	This value, which defines the upper limit in 

the scattering power of the impurity for a given channel 

= 2, in our case), is called the unitarity limit. 

2.4 Resistivity at Finite Temperatures  

Discussing the finite temperature resistivity, we 

. start from the systems for which the LSF life time is of 

the order of A-1, i.e. with the "truly" non-magnetic 

systems. 	The local Green function has a simple Hartree- 

Fock form and Im G
d 
is equal to 

A 
- Im G

d 
 = 



proportional to 

	

(1 
	Im E

d 

A 

	

Im E
d 2 	

E-12- 	Re Ed  , 
(1 - 	) 	(1 + 	 2 	E 	

2 

d 

1 
(e) 

(14a) 

• 48. 

From equation (9) we obtain for the resistance 

	

A 0) 

	l- 

 3 

7r 

‘. 

2 ,kBT 
p(T) = 	

0 

2  

) 

which is a constant for any physical temperature (TA  = 105k). 

Examples of systems which behave in this way are 

AI V, Al Co or AI Ni (Krsnik et al., 1973). 

Increasing the LSF lifetime (so that it becomes 

much longer than the characteristic time defined by the 

width of the virtual bound state) we expect the effect of 

the local spin fluctuations to show up. 	The contribution 

of the LSF to the d-electron self-energy, Ed, was calculated 

in the previous chapter. 	Neglecting everywhere M with 

respect to A, we write for Ed  

i(e — Ed) 
1 	7 	 118 [ ma  + 	(1+ 	 ,3) (1 + -27)j- - E d  =A2 27r 

e - Ed- 

iA 	
+i E

d  , 
IP (2+ 2R 	

4 	1 	
(ji 	13, 	cc)} 

M±ie 

(C-Ed)2+A2 	e-E + iA 27 

(14) 

We recall that 11)(e) is digamma function, M the inverse of 

the LSF lifetime and that the transport relaxation time is 

Equation (9), (11) and (14a) determine the LSF part of the 

resistivity of a dilute alloy. 
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Before discussing the concrete form of this 

resistivity, we notice (1.0-4-  ezi 

The structure of equation (14) enables one to 

define the reduced temperature and energy 

= 2ff y 

= 	27r kBTk 

so that the LSF resistivity becomes a universal 

function of T/TK. 

(ii) In the case of a system for which the resonant 

phase shift is (32 = ¶/2 at zero temperature, the 

effect of the LSF is to decrease the scattering 

cross section, i.e. to give rise to a minimum in 

the total resistivity. 

We now proceed with the evaluation of the resistivity. 

Neglecting the Fermi window integration we replace 

(- 3f/90 by a delta function. 	The fact that all the dy- 

namics of the scattering has been expressed in the equation 

(14), justifies this commonplace approximation in our case. 

The error made at low temperatures will be evaluated below 

and it will be shown that the main effect of the energy 

integration is to reduce the characteristic temperature, 

when it is defined as coefficient of the T2  term in the 

resistivity. 

With these assumptions we obtain for the resistivity 

(in the case of the virtual bound state which is symmetrical 

with respect to the Fermi level) 

T 

and 
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Ap(T) = Ap(0) 1 

 

1-2kn2 4. 	1/2, 	+ 2 4)(2 	- 2 q)(t) 	(15) 

This "universal" curve is plotted in figure (1) as a 

function of the reduced temperature T and is normalized 

to one at T = 0. 

Three main temperature behaviours can be distinguished: 

(1.) 	Below 0.4 T the resistivity is a parabola 

Ap(T) = Ap(0)[ (16) 

with the characteristic temperature 62  = (2/w2) T2. 

Quadratic temperature dependence of the resistivity 

is a typical low temperature behaviour of a normal 

Fermi liquid when the electron-electron inter-

action gives a dominant contribution to the scatter- 

ing amplitude of conduction electrons. 	(See e.g. 

Abrikosov, 1972). 

To estimate the effect of the Fermi window inte-

gration we make use of the approximate expression 

for the relaxation time T(E, T), which is valid at 

low temperatures. 	From equation (11)(and equation 

(11), Ch. 1) we have 

M T-1 	T7.2 = C v- A 
T) 

 

s2 + r(T)2 	(17) 

where r(T) is the effective width introduced in the 

previous chapter. 	Making the Sommerfeld expansion 

we obtain for the resistivity the same expression 

as given by equation (16), but with 0 replaced by 
1 



Figure 1 

10 

.1 

The resistivity as a function of reduced temperature 

I = 2u T/TK. 	Thin lines represent the three regions dis- 

cussed in the'text: 	parabolic,' linear and logarithmic. 

Dots are the experimental points for Al Mn (Rizzuto, 1974). 
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6  , 	.
1
//i. 	Measurements of the low tem- 

p 	P 

perature resistivity determine the phenomeno-

logical pharameter Tk, one has T
k 

= 7 8P . 

(ii) In a second region, T c (0.9, 2.1) the resis- 

tivity is linear 

AP(T) = a(1 - TT3-) 	(18) 2   

with a = 1.074(0) and 82  = 2.83 ep  (or 02  = 

2.1 81 ). 	Linear temperature dependence is indeed 

expected when the conduction electrons are 

scattered by the Bose-like particles. 	Similarly 

to the scattering of conduction electrons on 

phonons, where the resistivity becomes linear at 

T = D/271- , in the case of the LSF the linearity 

sets in at about T = T
K/27r. 

This follows from the fact that both Debye and LSF 

temperatures can be associated with an effective 

cutoff in the spectrum of the quasi-particles 

(Doniach, 1967).*  

(iii) At temperatures above TK(6 < I < 10), the resis-

tivity exhibits the logarithmic dependence characte-

ristic of magnetic impurities 

Ap(T) = A - B Zn T 	(19) 

where A = 0.757 and B = 0.565. 	Such a temperature 

dependence is relatively simple to understand in 

In the case of the localised spin fluctautions the life-
time of the quasi-particles coincides with the cutoff in 
the LSF spectrum, while in the case of phonons, T

ph 
and 0

D are not simply related (Abrikosov et al., 1964). p  
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the framework of the LSF theory, using a reason-

ing suggested by Rivier and Zuckermann (1968) 

as a possible explanation of the Kondo resistivity: 

when the temperature is higher then TK  the lifetime 

of conduction electrons becomes shorter than the 

lifetime of the spin fluctuations; the conduction 

electron does not have time to see that the mag-

netization on the impurity is ephemeral before 

losing the memory of its own spin. 	Hence, the 

logarithmic resistivity is characteristic of the 

scattering by targets having an internal structure 

(spin up and down) (Anderson, 1968). 

Before making any comparison with the experimental 

data we want to look at the dependence of the resistivity 

on the position of the virtual bound state with respect to 

the Fermi level, i.e. we want to look at p(T) as a function 

of Ed . 	To simplify the calculations, we assume first that 

M « A and k
B
T << M. 	Real and imaginary part of the self- 

energy Ed  (equation 14), which enter expression (14a) for 

the relaxation time T, can be written (at E = cF) as 

Z 1411 	bt 	.1 '7" 	 Li) 
2 -a 	— , 	tro 

ik 2 2 + 	 a 

and 
	 E, 

a 	Z. 	_ 5- ir + ip ( -j-_ + La \ - 	tr(i  + i.,„,-, 	( 20)  
82 	 0 '2 Lla 	1  ‘ 	Zir i 	 27r if Eg +46` 
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1.0 
Ed = 0 

.0) 	= 0.6" 

Ed= 1•S 

0) Ed = 
CO Ea = 3 .O  

41. 

Figure 2 

The resistivity as a function of the position 

of the virtual bound state (E ) plotted versus 

reduced. temperature I. 
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Using the approximative expression for ip-functions 

(Abramovitz and Stegun, 1965) valid at low temperatures 

(Ma» 1) 

MO 	7 	MS 	1 	27 2 
*(1 + 2ir!=+ kn 	- 	(,17)2rr 	12 

kn 
D 
T 

8( --)4 

we obtain, up to logarithmic accuracy i.e. ln(M/A) << 1, 

1 
" Im E

d 
- 1 + 	

A2 2 	
(

k
B
T
)2 

A 	 E2 + A2 2 * 	M ' 

and 

Re E
d 	A 	2 	kBT 2 

d 	E 	
'7 

1 + E 	Cd C d - (
17) j 

2 + A2

27 

 (21 ) 

where 

A2 	VE2. + AL 
C d = 1 	 kn 

E
d 

+ A2 

 

 

Let us discuss two limiting cases: 

If E
d 
<< A we see from equations (14a) and (21) that 

the main effect of increasing Ed is to decrease residual 

resistivity and to slow down the temperature variations of 

p(T). 	But all the features of p(T) mentioned previously, 

inlconnection with eq. (15), remain basically unchanged. 

In the opposite limit, Ed >> A, we can neglect the 

first term in the denominator of eq. (14a), which results 

in a drastic change of the resistivity as a function of 

temperature. 	We have 

p(T) - 
A - Im E

d 

(E
d 
+ Re E )2 
	

(22) 
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which is, in the low temperature limit, a quadratic function 

of temperature with a positive coefficient of T2. 

In Figure (2) we have shown some of the results for 

the temperature dependence of the resistivity as a function 

of Ed, obtained by the computer analysis of equations (9) 

and (14a). 

We notice, however, that in the situation in which 

E >> A the present treatment which completely neglects the 

electron-electron and hole-hole correlation, is susceptible 

to the criticism of Schrieffer and.  Mattis (1965). 	It is 

unlikely, in the case when the virtual bound state is 

either completely full or completely empty, that the elec-

tron-hole correlation gives the most dominant contribution 

to the self-energy Ed. 	For this reason we compare our 

. results with the experimental data only for the systems 

in which the virtual bound state is nearly half-full, i.e. 

Ed close to zero. 

2.5 Comparison with Experiment and Conclusion 

Recently, there have been a lot of experimental 

efforts to determine accurately the single impurity con-

tribution.to the resistivity of dilute alloys, eliminating 

spurious effects like those due to phonon scattering or 

interactions between the impurities. 	Systematic presen- 

tation of experimental data, for a number of bulk properties, 

on alloys where the "isolated" transirion metal atom is 

dissolved in a simple metal host is given in the review 

paper by C. Rizzuto (1974). 	Typical temperature dependence 
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of the systems we are concerned with is shown in Figures 

(3) and (4) (Rizzuto, 1974), and it can be summarized as 

follows. 

At lowest temepratures a T2  temperature variations 

is observed of the form 

P(T) = Apo 11 - ( 	)21 
p 

which defines the experimental "scaling" temperature 8p. 

As shown by Rizzuto (1974), Op  agrees very well with the 

characteristic temperature ex  obtained from the Curie-Weiss 

plot of the susceptibility. 	Resistivity varies as T2  up 

to about 0.1 8p , then has an extended linear region between 

about 0.1 to 0.8 e and then varies as ln(T) between about 

8p  and 6 8p.  

Recalling that theoretically Op  is defined as TK/Tr 

we see, from the discussion following equation (15) in the 

preceding section, that the agreement between theory and 

experiment is excellent in the parabolic and linear resis- 

tivity regions. 	In Figure (1), the experimental data 

for Al Mn and Al Cr are fitted to the calculated curve 

-(eq. 15), by choosing k
B
TK 

= 0.13 eV for Al Mn and k
B
TK = 

0.26 eV for Al Cr. 

Above 8 the agreement between theory and experiment 

is less good: theoretically we would expect from eq. (15) 

logarithmic temperature dependence between about 3 8 and 

6 8p , while experimentally it is observed between 8 and 

6 8p. 	However, we notice that "most systems where T2. 



Figure 3 

Al Cr 
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°■c,A1 C r 

mac 
%■..x  

-%"-A 
Al Mn „Ls  

I  
500 	 1000 

1.0 

0.5 

The values of the impurity resistivity normalised to the 

zero-temperature value against temperature for Al Mn (x) 

and Al Cr (o) alloys. 	The data on Al Cr can be scaled 

to those on Al Mn by using the temperature scale divided 

by two (e). 
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variations has been observed also have 0 values in the 

temperature region where the phonon contribution is diffi-

cult to subtract accurately so that a detailed knowledge 

of the resistivity behaviour at and across 8p  is still 

limited" (Rizzuto, 1974). 	Theoretically, discrepancies 

at higher temperatures might be due to the fact that we 

are completely neglecting all the potential scattering 

from the impurity atoms and also that we are using the un-

renormalised theory. 

With respect to Figure (2), we mention that the 

Fermi window integration increase largely the temperature 

interval in which the resistivity behaves logarithmically, 

pushing it at the same time to lower temperatures. 

In conclusion; we have shown in this chapter that 

the resistivity of a dilute alloy due to scattering of 

conduction electrons on localised spin fluctuations is 

given by a universal function of temperature. 	The resis- 

tivity is at the unitarity limit at T=0 and decreases with 

increasing temperature, successively as T2, T, ln(T) and 

1/T. 	Theoretical results agree rather well with the 

experimental data and, in particular, they enable one to 

explain in the unified picture behaviour of systems as 

different as Cu Fe and Al Mn: the scaling temperature being 

defined by the life-time of the spin fluctuations. 
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CHAPTER 3 

LOW TEMPERATURE THERMOELECTRIC POWER OF DILUTE Al-3d ALLOYS  

3.1 Introduction 

In this chapter we shall use the results obtained 

so far to calculate the low temperature thermoelectric 

power of aluminium-based transition-metal alloys. 

These alloys have been measured at low concentrations 

by Boato and Vig (1967) and more recently, at higher con- 

centrations, by Vuci.C., Cooper and BabiC (1973). 	It is 

observed that at low temperatures (T -3- 0) the thermopower 

(TEP) has the usual T3  term due to the phonon-drag in the 

host, which is the same for all the aluminium alloys. 

In addition, there is a linear term which varies signifi-

cantly as one moves through the 3d-series and which is 

experimentally determined (Boato and Vig, 1967) from the 

plot of the TEP divided by temperature against T2; i.e. 

plotting S/T vs. T2. 

Looking at the absolute value of the zero-temperature 

slope IdS/dTI of the TEP (i.e. at the coefficient of the 

linear part) as a function of the atomic number one observes: 

(i) 	IdS/dTI of Al Ti and Al V is an order of magnitude 

smaller than of any other 3d-alloy; 

IdS/dTI is at its maximum for Al Mn; 

(iii) a change in sign of dS/dT takes place between Ti 

and V. 	The corresponding behaviour of the residual 

resistivities is given by the function which has 
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its maximum at Cr and then decreases slowly 

(and asymmetrically) as one goes towards the ends 

of the 3d-series. 

The aluminium based transition metal alloys are 

thought to be a classical example of a system which should 

be analysed in terms of the Friedel-Anderson virtual bound 

state, (v.b.s.) (Friedel, 1958; Anderson, 1961). 	Indeed, 

the change in the residual resistivity fits nicely with 

the concept of the v.b.s. moving across the Fermi level, 

i.e. with the resonant scattering of conduction electrons 

on the d-like extra orbital, due to the impurity. 	Reason- 

ing along the same lines one would expect the slope of the 

TEP to be proportional to the derivative of the residual 

resistivity as a function of the atomic number, i.e. 

- changing sign between Al Cr and Al Mn, and reaching the 

maximum (minimum) at Al V (Al Fe). 	The observed behaviour 

however, is rather different (see Figure 1 or Table 1). 

Here we present a simple explanation of these low 

temperature TEP data, on the basis of the localised spin 

fluctuations (LSF) or "single pole dominance" approximation 

of the Anderson model (Suhl, 1967; Rivier and Zuckermann, 

1968). 	The virtual bound state is still a useful concept 

to start with but one has to go beyond the Hartree-Fock 

approximation. 

We show that the asymmetry in the zero-temperature 

slope of the TEP is due, on the one hand to simple poten-

tial scattering (this gives rise to non-resonant phase- 
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shifts different from zero), and on the other hand to the 

presence of the long-lived local magnetic fluctuations 

which take place in certain simple metal-transition metal 

alloys. 	These fluctuations, when present, give rise to 

a "giant" slope in the TEP. 	A measure of their relative 

importance is given by the quantity TA where T is the 

life-time of the LSF and A is the width of the v.b.s. in 

the usual Friedel-Anderson sense. 	When T = A-1  the LSF 

approximation, as we shall see later, is identical to the 

Hartree-Fock approximation, whereas if T >> A-1  the dynamics 

of localised spin fluctuations has to be taken explicitly 

into account. 

Simple potential scattering will be included in our 

treatment in a standard way. 	We express the conduction 

electron cross section as a function of the phase shifts, 

and keep the non-resonant (2. 0 2) terms in addition to the 

resonant ones throughout the calculations. 	(Usually, the 

non-resonant phase shifts are neglected in the discussions 

of the Anderson model). 

That the potential scattering is of the considerable 

importance for Al 3d-alloys can be shown in several ways. 

Comparing the relevant parts of the electronic configuration 

of the host and the impurity one sees that for the metallic 

aluminium this configuration reads 3s23p1 , whereas for the 

3d-impurity (with the exception of Cr) we have 3dn4s2. 	(n 

equals 2 to 8 as one goes from Ti to Ni. 	This indicates 

that part of the screening is due to p-electrons. 
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The Knight shift measurements on the series of 

liquid aluminium-3d dilute alloys (Flynn et al., 1967) 

interpreted on the basis of the Friedel-Blandin theory, 

indicates that the p-phase shift is between n = -7r/3 

and n = -7/6 and its absolute value increases as one 
1 

goes from Ni to Ti. 

Eventually, the asymmetry in the residual resistivity, 

p o, can be simply explained assuming non-resonant phase 

shifts different from zero (G. Grilner, private communi-

cation) and using the expression (Friedel, 1958) 

Apo 
= C E2, 

 sin2 (n
k-1 - 

n ) 
	

(1) 

In calculating the TEP (and residual resistivity) 

we have assumed the following choice of phase shifts, con-

- sistent with the facts mentioned above and with the Friedel 

sum rule. 	The p-phase shift is equal to n = -71/6 for Cr, 
1 

Mn, Fe, Co and Ni and 11  = -7/3 for V and Ti. 	The s-phase 

shift (2,=0) is assumed to be zero for all the impurities 

except Cr, which alone in the 3d-transition series has an 

incomplete s-shell (3d54s1) and for which we put no  = 

The residual resistivity, calculated with this choice 

of phase shifts, is shown in Figure (1). 

The plan of the chapter is as follows: in the next 

section we rederive the Friedel expression for the TEP in 

The phase shift analysis and the Friedel sum rule, which 
we are using together with eq. (1), have been demonstrated 
to be valid in the case of many-body interactions by 
Langer and Ambegaokar, 1961. 



Figure 1 

The!residual resistivity of. Al -3d alloys normalised 

to Al Mn value. 

0 	experimental data;   calculated values; 

as due to virtual bound state; 

---- effect of the non-resonant phase shift (S
1 
 = -Tr/6 

throughout the series). 



• 61. 

terms of phase shifts; in the following section the 

resonant (k = 2) phase shift is calculated using the LSE 

approximation of the Anderson model; eventually, the 

results of the calculation are compared with the experi-

mental data. 

3.2 Expression for TEP in Terms of Phase Shifts  

As in the case of the resistivity (Chapter 2), we 

calculate the thermoelectric power, expressing it as a 

function of the relaxation time T(6), and then relate 

T(e) to the scattering cross section ac/ac (or T-matrix). 

At low temperatures the TEP can be written as (Mott and 

Jones, 1936) 

2 k,T 

S 
	 1-v— 2.n t(e) 

3 lel 	e = eF 

and, from the Boltzmann equation, we have for the relaxation 

time 

1 
N. 	v 
1 Da 

(1 
j 

- 	
an 

T(e) 2 
-0 cos 	6) 	7, Tr  

where, as before Ni  is 	the number of impurities per unit 

volume and v is the velocity of 	the conduction electrons. 

Expressing Da/32 in terms of 	conduction electrons phase 

shifts (Messiah, 1958; Ch. X) 

Da 	1 
=I E Q  (2k + 1) ein't  sin Tit  Pt(cos 0) 1 2  

k2 
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and integrating over 0 we obtain 

S - 
72 k2  T 	3 sin(2n 

2 
 ) - 2 sin2  (n 

1  -
n 
2.
) 	ari 

3 
sin2(n -n ) + 2 sin2(n -n ) + 3 sin2(n ).a e l  o 1 	1 2 	2 	E=C

F 

(2)  

which relates TEP to the phase shifts (Daniel and Friedel, 

1964) and which is completely analogous to the Friedel 

expression for the residual resistivity given by eq. (1). 

In eq. (2), it is assumed that only 2, = 0, k = 1 

and k = 2 phase shifts are different from zero, and the 

whole expression is evaluated at the Fermi level. 	The 

resonant (n ) phase shift can be obtained from the T-matrix 
2 

for the scattering of the conduction electrons on the 3d 

impurity in aluminium, as by definition 

n = tg-1 
Im Tk  
Re Tk  (3)  

where T is the matrix element of the scattering matrix 

in the angular momentum representation. 

3.3. Calculation of the Resonant Part of the T-Matrix 

As before, we assume that as far as the transport 

properties and the formation of local moments is concerned, 

the aluminium based-transition metal alloys are well des- 

cribed by the orthogonal Anderson Hamiltonian. 	The con- 

duction electron's T-matrix is then given by 

(4)  T
2 
 (e) = V2 G

d 
 (e) 
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where V is the matrix element for the mixing of the con-

duction electrons with the localised d-states, and G
d(e) 

is the d-electrons Green function. 

We calculate G
d
(e) in the LSF approximation by 

assuming first that the scattering of an electron-hole 

pair of opposite spin is the only many-body contribution 

to the self-energy Ed(e). 	(Among others, we are neg- 

lecting the electron-electron correlation as discussed by 

Schrieffer and Mattis, (1965), mainly on the ground that 

in the low-density, low temperature limit, where this type 

of correlation is important to obtain the correct magnetic 

behaviour, most of the alloys we are concerned with 

(i.e. Al Ti, Al V, etc.) are non-magnetic already, even 

in the Hartree-Fock approximation). 

Secondly, in calculating the d-electron self-energy 

E
d
(e) = k

B
T E

n 
1(ie 

n 
 ) G°

d
(i

n 
+ e) 	

(5) 

we assume that the electron-hole T-matrix is well approxi-

mated by the expression F(e) = -i7rA2/(M-ie) where M = kBTK  

is the inverse of the LSF life-time T (Rivier, 1968; 

.Lederer and Mills, 1967) and Gd(e) = (e - Ed± iA)-1  is the 

bare d-electron Green's function. 	However, in contra- 

distinction to the earlier LSF theories where T had been 

calculated in the RPA approximation, M is here taken to be 

a phenomenological parameter. 

The transverse susceptibility.. has clearly the same ana-
lytical properties as those of r(e). 
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Within these approximations it is straightforward to 

evaluate first E
d 
(E) (Rivier, 1968) and then the Green's 

function G
d which is determined by the Dyson equation 

Gd  = (e - Ed  + iA - Ed)-1. 	This approximation was dis- 

cussed in Chapter 1 and here we recall only some of the 

results for the spectral density Aft.) relevant for the 

calculations (A(e) = -Im Gd 	1T1 2). 

In the case when M = A, (i.e. for all the alloys 

except Al Mn and Al Cr), A(e) is a simple Lorenzian of 

width A and therefore the LSF approximation is here equiva-

lent to the non-magnetic Hartree-Fock approximation of 

the Anderson model. 	All the physical properties are easily 

obtained using Friedel's analysis, i.e. assuming that the 

conduction electrons are scattered on a simple v.b.s. of 

- the width A (A = 1.2 eV). 

On the other hand, when A >> M >> kT, A(E) is a 

triply peaked function symmetrical around the Fermi level, 

with two broad side-peaks of the width A, and a very narrow, 

temperature dependent peak of width r(T) « A, at the Fermi 

level. (r(T) 	M as T 	0) 

To obtain r , in the situations in which the LSF 
2 

contributions are important, we write from (3) and (4) 

D 	= 	
A — Im Ed  tg  

2 	Ed - e - Re Ed 
(6) 

where the full expression for E
d(E) is given in Chapter 1 

(eq. 5). 

For the symmetrical Anderson Hamiltonian (Ed  = 0) 
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at low temperatures and for M << A, this is equal to 

(up to logarithmic accuracy, i.e. A/M >> kn A/M >> 1) 

n
2 
 = tg -1  

In the same way we get for an  /E 
2 

an 
_2_ I 	__1 
a6 

e 	eF 

taking the zero of energy at the Fermi level. 

We see that for Al Mn and Al Cr (for which Ed  = 0), 

n
2 
 goes through the resonance at the Fermi level; i.e. it 

7 
is equal to -f at e = eF. 	However, an /De instead of being 

2 

equal to 1/A at e = Cr, as in the Friedel theory, is here 

enhanced to 1/M. 	The residual resistivity is unaffected 

by LSF. 

Before turning to the evaluation of the TEP, from 

eq. (2), we remark that same results can be obtained from 

a very simple physical picture. 	As already mentioned, 

at low temperatures and for energies close to eF, A(e) is 

a very narrow Lorentzian of width F(T). 	In fact for 

T << T
k 

and e << M << A, the Green's function has an 

approximate form, G
d
(e) = G

eff
( ), 

Geff(e) - M 	1  

d 	 A e + ir(T) (7) 

and the scattering matrix can be approximated by an effective 

= V2G
e  

T-matrix, Teff 	d
ff
(e).  Because at low temperatures, 

the only contribution to the transport properties comes 

from the conduction electrons with energies close to the 
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Fermi level, we see that it is possible to replace the 

resonant scattering on a. d-orbital in the presence of the 

many-body effects (i.e. scattering from a v.b.s. with an 

internal structure: spin up or down) by equivalent scatter-

ing on a single but temperature dependant v.b.s. of an 

effective width r(T). 	Repeating the standard Friedel 

procedure and replacing everywhere A by r(T), all our 

results are easily obtained. 

3.4 Comparison with Experiment and Conclusion 

We are in the position now to evaluate the linear 

part of the TEP of the Al-3d alloys. 	Resonant phase 

shifts are calculated along the lines indicated in the 

previous section, with the numerical values of the enhance-

.ment factor M/A determined from the low temperature 

(parabolic) part of the resistivity. 

Using eq. (2), which gives the TEP in terms of phase 

shifts, we calculate S/T which is plotted in Fig. (2) 

together with the existing experimental data. 	Dotted line 

represents the Hartree-Fock result, with only the resonant 

(9„ = 2) phase shift different from zero. 	Addition of one 

single non-resonant phase shift, equal for all the impurities, 

gives rise to an asymmetry in the TEP curve (broken line 

in fig. (2)). 	The final Hartree-Fock result for S/T of 

the Al-3d alloys is shown by the full line in Fig. (2). 

We have chosen the parabolic part of the resistivity to 
evaluate the parameter M (M = kgTK) because the low tempera-
ture resistivity measurements seem to determine most accurate-
ly the single impurity effects in aluminium based alloys 
(Rizzuto, 1974; Grilner, 1973). 



• 67. 

The effect of the localised spin fluctuations, when present, 

is indicated with crosses below the H-F line. 	Values of 

the parameters used in this paper to calculate the TEP 

are shown in Table 1. 	We have taken A = 1.2 eV. 

The residual resistivity, calculated from eq. (1) 

with the phase shifts chosen as above, is shown in Figure 1. 

The overall agreement between the experimental and the 

theoretical data is rather satisfactory, both for the low 

temperature thermopower and the residual resistivity. 

The discrepancy in Al Fe can probably be ascribed to a 

LSF contribution T-1 /lx = 0.45 first noticed by GrUner (1972). 

(The ordinate scale in this paper should be shifted by one 

order of magnitude.) 	It is clear, however, that this 

enhancement is far too small to be seen in the resistivity 

- measurements. 	We notice: 

(i) S/T values of Al Mn and Al Cr are largely enhanced 

due to the LSF and S/T is at its maximum for Al Mn. 

(ii) Even in the case when there are no LSF effects, 

the curve of S/T is asymmetric due to the potential 

scattering of conduction electrons on impurity 

atoms. 

(iii) The change in sign of S/T as a function of the 

atomic number takes place between Ti and V. 

At this point we would like to emphasise again that 

the choice of the particular values of the non-resonant 

phase shifts is non-essential for the understanding of the 
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Zero-temperature slope, S/T, of the thermopower plotted as 

a function of the atomic number of the impurity for Al-3d 

alloys. 

0 	experimental data; 

theory, when LSF effects are not included; 

effect of LSF; 

as due to a virtual bound state alone; 

effect of the non-resonant phase shift 

throughout the series). 

(6
1 
 = -7r/6 
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Table 1 

Ti 	V 	Cr 	Mn 	Fe 	Co 	Ni 

Electronic structure 
of the impurity 

3d 2 4 s 2 	3d34s2 	3d54s1 	3d54s2 	3d6 4s2 	3d74s2 	3d84s2  

Number of electrons 
screened by R= 2 
phase shifts 

3 4 5 5 6 7 8 

Values of the non- 
resonant 	(2. 	= 	1) 
phase 	shift 

-n/3 -r/3 -w/6 -w/6 -r/6 -w/6 -w/6 

po  experimental 
values 	(#) 
(p0 	cm/at %) 

6.5 7.5 8.5 7.8 6.0 3.5 2.0 

p 	computed values 
normalised to Al Mn 
(un 	cm/at 	7.) 

7.1 7.5 8.6 7.8 6.3 4.2 2.1 

T-1  /A 	determined from 
sf' 

the T2 	term in 
the 	resist. 

1 1 0.30 0.12 

(0.45)**  

1 1 

S/T experimental 	low 
temperature values 
(p V/K2) 

x 

+0.001 

x 

-0.001 

x 

-0.01 

x 

-0.06 

x 

-0.04 

+ 

-0.022 

4- 

-0.018 

S/T calculated low 
temperature' values 

(1.1 	V/K2) 
+0.004 -0.001 .-0.022 -0.062 

(-0.04)**  

-0.018 -0.023 -0.018 

x
Boato and Vig,1967 

-F' 
Valc, Cooper and Babic; 1973 

/Gru"ner, 1973 

** possible enhancement ( see text ) 
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general features of the TEP of al-3d alloys. 	The only 

important thing is that the non-resonant phase shifts are 

different from zero, i.e. that there is a simple potential 

scattering in addition to the resonant scattering. 	(This 

resembles once again, the situation one has in the Kondo 

effect; exchange scattering alone is not sufficient to 

explain the anomalous TEP of the Kondo alloys. (Suhl and 

Wong, 1967; Kondo, 1969). 

However, in order to have an asymmetrical residual 

resistivity, the correct sign for the thermopower and obey 

the NMR result (that the potential scattering increases as 

one goes from Ni to Ti), we have associated different 

values of the non-resonant phase shifts with the left-hand 

side and the right-hand side of the 3d series, within the 

constraint imposed by the Friedel sum rule. 

In conclusion, we have calculated the low temperature 

thermoelectric power of aluminium-based transition-metal 

alloys and shown that the experimental data can be under-

stood on the basis of the LSF approximation of the'Anderson 

model. 	There are two essential points in our calculations: 

• CO the self-energy of local d-electron can be modified 

due to presence of the long-lived local magnetic 

fluctuations. 	Hence, the effective width of the 

virtual bound state can become much smaller than in 

the Hartree-Fock approximation of the Friedel-

Anderson theory. 
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(ii 	in addition to the resonant scattering, the 

conduction electrons also undergo potential scatter-

ing, which means that the non-resonant phase shifts 

are going to be different from zero. 

Both of these points have been well known to the 

experimentalists: Boato and Vig (1967) came to the con-

clusion that the width of the v.b.s. in aluminium is much 

smaller for the impurities in the middle of the 3d-series 

than at the end of the series, while the importance of the 

non-resonant phase shifts for the understanding of TEP in 

Al-3d alloys was stressed by G. Grliner and J. Cooper 

(private communications). 
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CHAPTER 4  

TEMPERATURE DEPENDENCE OF THE RESISTIVITY DUE TO THE  

LOCALISED SPIN FLUCTUATIONS IN TRANSITION-METAL TRANSITION-

METAL ALLOYS  

4.1 Introduction 

In this chapter we shall apply the concept of the 

localised spin fluctuations to alloys in which both solvent 

and solute are transition metals. 	Since the work of 

Matthias et al. (1960) and Clogston et al. (1962) on the 

formation of local moments, transition-metal transition-

metal alloys have often been the subject of interest in 

metal physics and have stimulated a lot of experimental 

and theoretical investigations. 	Here, our attention will 

be confined to the resistivity properties, since they 

provide clearest evidence and need for the LSF approach. 

Experimental data (Coles, 1963; Coles et al., 1964) showed 

a variety of behaviours including deep resistivity minima 

for Mo Fe, constant impurity resistivities for Nb Fe or 

Ru Fe and anomalous low temperature decreases in resistivity 

. of Rh Fe: 	More detailed investigations of ternary alloys 

of (Nbx  Mbl-x) Fe (Sarachik et al., 1964) revealed that the 

resistivity minima are strongly correlated with the appearance 

of a local moment on the iron atoms, detected from the 

susceptibility measurements, and could be nicely explained 

in the frame of the s-d model. 
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Resistance anomalies with positive temperature 

coefficients were subsequently found in Ir Fe (Sarachik, 

1968), Pd Ni (Schindler and Rice, 1967), Rh Mn, Rh Co 

(Coles et al., 1971), Pt Co, Pt Fe (Loram et al., 1972) 

and several alloys and compounds of actinides (Brodsky, 

1971; 1974). 	It emerged that in all these systems the 

resistivity behaves in a more or less similar fashion; it 

increases rapidly with increasing temperature up to a 

certain characteristic temperature T
K' above which it starts 

to flatten out, eventually reaching the high temperature 

plateau. 	At the same time the impurity susceptibility 

changes from temperature independent to Curie-Weiss be-

haviour with a negative eic_w  of the order of TK  (Knapp, 

1967; Loram et al., 1972). 

In an early attempt to explain the resistivity data 

of these alloys they were considered as Rondo systems in 

which the conduction electrons are coupled ferromagnetically 

to the impurity moment (J > 0), so that the coefficient of 

the logarithmic term in the Rondo expression for the resis- 

tivity becomes positive (Rondo, 1964). 	However, the 

application of the Kondo model to these alloys is hard to 

reconcile with the already mentioned susceptibility behaviour 

which indicates a decrease of the effective impurity moment 

as T 	0. 

Another attempt to obtain a resistivity which would 

decrease with decreasing temperature in the framework of 

the s-d model was due to Fisher"(1967), Kondo (1968) and 
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Nagaoka (1968). 	In calculations valid above TK 
they 

find that the presence of non-magnetic potential scattering 

from the magnetic impurity gives rise to an extra factor 

in the coefficient of the logarithmic term which is 

proportional to sin 2 n2 (eF). 	Then if the potential 

scattering is strong enough, i4e. the phase shift n (EF) 2 
is larger than 7/4, the sign of the Kondo resistivity 

effect will be reversed. 	However, a rather fundamental 

objection to the application of this mechanism to explain 

the behaviour of above mentioned alloys arises from the 

small magnitude of their residual resistivities. 	If the 

phase shift n (e,) is large, the residual resistivity which 
2 r 

is proportional to sin2n(e
F) should be large as well. 	In 

fact, just the opposite is found: residual resistivities of 

Rh Fe or Ir Fe, for example, are one order of magnitude smaller 

than in normal Kondo systems (Nagasawa, 1970). 	The reason 

for such a small amount of potential scattering is that in all 

these alloys the electronic structure of solute and solvent is 

rather similar. 	As a rule, in all the systems in which the 

Rh Fe -like anomaly is observed, both the impurity (3d-metal) 

and the host (4d or 5d-metal) belong to the same or neighbour- 

- ing coluMns of the periodic table. 	This situation is exactly 

the opposite of what one has in normal-metal transition- 

metal alloys. 	There, the relevant part of the impurity 

electronic structure has a d-like character while the band 

electrons are s- or p- like. 	As shown by Rivier and 

Zitkova (1971), in the former case the localised state can 

be expressed as a linear combination of the host electronic 
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states, while in the latter case they are orthogonal to 

each other. 	If a dilute alloy is described by the non- 

orthogonal Anderson Hamiltonian, we could, in principle, 

deal with the intermediate situations. 	However, because 

of the similarity between the impurity and the host, we 

shall assume that the Wolff Hamiltonian with zero potential 

scattering is a sufficiently good representation of these 

particular transition-metal transition-metal alloys. 

4.2 Lederer and Mills Two Band Model  

The first explanation of the properties of the above 

mentioned alloys in terms of localised spin fluctuations 

was given by Lederer and Mills (1968) in their discussion 

of the low temperature resistivity of dilute Pd Ni. 	They 

start from the observation that although an isolated Ni ion 

is non-magnetic in Pd, if the Ni concentration exceeds 2%, 

the Ni sites acquire a moment and the spins order ferro- 

magnetically. 	Thus, one should expect to find the low- 

frequency fluctuations in the spin density to be enhanced 

in the vicinity of the impurity cell, compared to their 

amplitude far from the impurity. 

To calculate the transport properties of such a system 

they assumed that the electrical current is carried by the 

s-electrons of Pd, while the principal low temperature con-

tribution to the transport relaxation rate comes from the 

scattering of the s-electrons by the already described spin 

density fluctuations in the d-band. 	The Hamiltonian which 
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corresponds to this process is given by 

Hs-d = -
s-dkk' 

a
ka 

a
av 

a
k
,
v 

d
oa 

a
ay 

d
yo 

where a
ka 

is the conduction electron creation operator, 

d
+ 
	

+ 
= (l/N) E d

ka 
is the d-electron Wannier creation Oct 

k 
operator at the impurity site and J

s-d 
is an effective 

electron-LSF coupling constant. 

The electrical resistivity produced by inelastic 

collisions of s-electrons with spin fluctuations can be 

obtained by applying the standard variational procedure to 

the Boltzmann equation (Ziman, 1960). 	Kaiser and Doniach 

(1970) showed that p(T) can be written as 

1 p(T) 	T 	fk(1-fk t) Wk.+k 1(zk-ck I) k,k" 

where f
k is the Fermi distribution function and Wk-41' is  

the scattering rate from filled conduction state of energy 

E into empty state c
k 	If the coupling constant J

s-d 

is small the transition probability 
Wk4k, 

 in the Born 

approximation is 

- J2 	S 	(c) 
Wk--›-k 1 	s-d kk' (3)  

where 
Si(c) 

 is the d-spin density correlation function k, k 

so that applying the fluctuation-dissipation theorem we can 

write 

W 	J2-d n(e) 	xk  +- k  ,(E) s,  

( 1 ) 

(2) 

(4)  



76. 

Here, x: k r(e) is the local response function of the 

d-electron spin density operator (Kittel, 1964) which was 

calculated by Lederer and Mills (1968) in the RPA. 	The 

essential point in the theory is that in the case of an 

alloy where the 3d-impurity is dissolved in the exchange 

enhanced host, average of Y k' over all the k-states may 

be reasonably well approximated by a Lorentzian response 

(Kaiser and Doniach, 1970]; Lederer, 1970) 

Im x(c) = 	E 

T2 + e2  

From equations (2) and (5) it follows that one can define 

the reduced temperature and energy variables, T = T/TK  and 

= e/T
K' 

such that the resistivity becomes a universal 

function of T (Kaiser and Doniach, 1970; Kaiser, 1971). 

Performing the calculations one finally obtains 

1  f de 	 P(T) 	T 	(.06 _ 	ee.E) 	+ E2 	(6) 

The low temperature limit of this expression is given by 

(Lederer and Mills, 1968) 

,T N  
P(T) = Po  -5.  kyi 2 , (7) 

and it is in agreement with experiments. 	At higher tem- 

peratures, p(T) becomes linear in T but for the enhancement 

factor T
K 

independent of T the resistivity never saturates, 

nor even decreases below the linear law. 	In order to 

obtain the saturation one has to -assume that T
K is extremely 

(5) 
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large, on one hand, and that it is temperature dependent, 

on the other hand. 	Yet, it is not at all clear that the 

assumptions which were made to arrive at expression (6) 

will hold in this situation. 	The temperature dependence 

of T
K is an ad'hoc assumption which can be justified if 

one assumes the temperature dependent band susceptibility 

(which would involve another parameter, the paramagnon 

lifetime). 	Moreover, numerical results of Jullien, Beal- 

Monod and Cociblin (1973) show that in the Kaiser and 

Doniach theory the saturation limit is practically never 

reached unless the local degeneracy temperature is of the 

order of the conduction electron degeneracy temperature 

(paramagnon temperature). 	This would mean that the 

saturation effect would not be observable in practice, in 

contradiction with the experimental data on Rh Fe (Rusby, 

1974) which saturate at about 30K. 

4.3 Spin Fluctuations in One Band Model  

We propose here a different model to describe the 

transport properties of a system in which both solute and 

solvent are transition metals. 	First, we assume that in 

an alloy like Rh Fe or Ir Fe the hybridisation between s-

and d-electrons is sufficiently strong to allow the trans-

port properties to be discussed in terms of one electron 
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* 
band only . 	Second, we suppose that the appropriate 

Hamiltonian to deal with the above mentioned systems is 

the Wolff Hamiltonian (Wolf, 1969), which reads 

H = H
o + H. 1 (8)  

where H describes the condustion band and H.
1  is the inter- 

action part due to the presence of the impurity. 

Explicitly, we write Hi  as 

H.
1 
 = W E a

ou  
4-  a 

ou 
 + Un

(1)4.
n 

cr 

a
+ 
u 	

+ 	+ . 
where n 	= ou 	o aou , aoa  = (1/1Th Ek 

ak 
 is the creation 

operator for 'the localised electron and a
k 

is the creation 

operator for the conduction band. 	As before, N is the 

number of atoms in unit volume, W is the one-body scatter- 

- ing potential and U is the extra Coulomb repulsion between 

electrons of the opposite spin which takes place in the 

impurity cell. 

Similar assumption was made by Larkin and Melnikov (1971) 
in their paper on the properties of magnetic impurities in 
nearly magnetic hosts. 	They assumed that the effect of 
alloying is to introduce a well defined spin in the exchange 
enhanced conduction band of the host and then studied such 
a system using the modified s-d model. 	They demonstrate 
that the effective s-d coupling is greatly modified due to 
the interactions between the impurity spin and the spin 
fluctuations (paramagnons, as defined by Doniach and Engels- 
berg, 1966). 	In these circumstances the Rondo effect may 
qualitatively differ from that in normal metals. 	In par- 
ticular, for T > Tx  in this model the impurity resistivity 
and the effective magnetic moment decrease with the decreas- 
ing temperature for any value of Js-d. 	However, for T < T 
the resistivity does not approach zero in a simple power 
fashion as is observed experimentally (Abrikosov and Migdal, 
1970). 

(9)  
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Following Lederer and Mills (1967) we argue that 

the effect of adding the 3d-impurity to the 4d or 5d host 

results in an increase of the amplitude of the local spin 

fluctuations at the impurity site. 	This is a fairly 

physical assumption because one should expect the large 

long-lived spin fluctuations to occur in order to smooth 

out the magnetic transition, i.e. to prevent a second 

order phase transition from taking place in a local 

system. 

In this sense we assume, as in the case of the 

Anderson model discussed in the previous chapters, that 

the dominant contribution to the conduction electron self-

energy comes from the scattering on the LSF which takes 

place at the impurity site. 	Defining the LSF propagator 

xo  as before, we assume that the electron-hole resonance 

(repeated scattering of an electron-hole pair of opposite 

spin) forms the most important Bose-like excitations in 

the system (Suhl, 1967; Rivier and Zuckermann, 1968; 

Hamann, 1969). 	Thus we write the self-energy as 

- o 
(10) 

where 
	

is the LSF propagator and 	is 

the conduction electron Green function in the presence of 

the perturbation. 
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Here, we would like to point out that in contrast 

to Lederer and Mills (1968) and Kaiser and Doniach (1970), 

who calculated the resistivity by applying the variational 

procedure to the Boltzmann equation, we calculate the 

conductivity, i.e. we calculate the self-energy of a local 

electron and relate it to the transport relaxation time 

(Abrikosov, et al., 1964). 	As discussed in 

Ch. 3, in the multiple scattering approximation we can 

write for T(e) 

1 = 
ni  TI  

where T1 is the scattering matrix for the single impurity 

and which, in the case of the Wolff Hamiltonian, can be 

written in terms of the self-energy E0  as 

W + E 
 

In equation (12), G0(c) is the bare (U = 0) local Green 

function defined by 

G (e) = E 0 	
k e - Ek + i

s 
 

1 
	

( 1 3 ) 

and W the simple potential scattering defined above. 

To calculate
o we define first the Green function 

G
1(e) which enables one to get rid of the one-body potential 

W (Messiah, 1958; Ch. XIX): 

G
1(e) 	

1  
1 - WG

o
(6) 

and which we assume is Lorentzian in form: 

G1(6) - 	 
e - Eo + i r 

1 

T - 
1 	1 - Go(W + Eo) (12) 

(14)  

(15)  
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For simplicity, we shall put W = 0, so that E0  represents 

the centre of the host band of width r and the density of 

states p(e) 

1 

 

- E0)2 	r2 (16) 

Although this assumption is strictly valid only for equi-

valent alloys, we believe that the extremely low residual 

resistivity of all the systems we are concerned with 

indicates that this will be a reasonably good approximation 

in the general case. 	The full Green function (U ¢ 0) is 

determined by the Dyson equation 

1 
G(e) = 

Gil  - E0(e) 	 (17) 

and with the above assumptions we can write for the self-

energy Eo  

- i E
o
(E) 	= kBT E x (ic n  ) G(iEn  + c) 	(18) 

n 

To evaluate expression (18) for Eo  we assume the following: 

(i) the LSF propagator is sufficiently well approximated 

by a function with only one simple pole close to the 

the real axis, i.e. 

Xo(e) 	M + i e 
	 (19) 

(ii) we restrict the calculations to the unrenormalised 

theory and replace G(c) in expression (18) by Go(c). 

Clearly, (i) and (ii) represents the same approximation as 

that made by Lederer and Mills (1967) and Rivier and Zucker- 
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mann (1968) and which we discussed at some length in Ch. 2. 

The LSF temperature is defined as kBTK  = M. 	Making the 

analytical continuation we replace the summation over the 

imaginary frequencies with an integral over...the real axes 

noticing that the expression (18) is formally the same as 

expression (3') for Ed  in Ch. 2, if E0  is replaced by Ed  

and r- by A. 

4.4 Temperature Dependence of the Resistivity in One Band 

Model  

In such a way, and with all the integrals being 

evaluated in Ch. 2 (Appendix I), we obtain an explicit 

expression for Eo(s) (hence for T1 and T(E)) in terms of 

parameters M, Eo, r and as a function of temperature and 

. energy. 	As before, the conductivity is obtained from 

(eq. 9 , Ch. 2) 

2 p vF F  a = 2
e 	

de (- —9e ) I" (c) 3 (20) 

where vF  is the Fermi velocity, pF  is the density of con-

duction electrons at the Fermi level and f(e) is the Fermi 

function.. 	Evaluating this expression we put Eo  = 0 and 

neglect the Fermi window integration putting (-of/De) = 

SW. 	Finally, we can write the resistivity as 

P(T) = Po  { 1 
1  

M8 	 .} 
1  + 	*( I 	7,7) 	*(1 	

M8 
 

(21) 



Figure 1 

10 
to 

.5 

.1 

The normalised resistivity as a function of the reduced tem- 

perature T = 27r T/TK. 	The curve is a plot of equation (21). 

o 	measurements of Rusby (1974) for Rh Fe (TK  = 15 K); 

x 	measurements of Sarachik (1968) for Ir Fe 

(TK  = 225 K). 

• 
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where 1p(e) is the digamma function. 	If we denote by 

R(T) the resistivity which was obtained in the Anderson 

model assuming that the spin fluctuations take place 

just in the impurity d-orbital and define reduced resis-

tivity p = pip°, we have the simple relation 

(71(T) = 1 - R(T) 	 (22) 

The essential difference between the present problem 

and that treated in Ch. 2 lies in the coupling between 

the conduction electrons and the LSF. 	Here the conduction 

electron is dragged into the LSF by its own kinetic energy; 

the scattering mechanisms at the impurity, potential W and 

LSF Eo add up in series. 
	In Ch. 2 the conduction electron 

had to scatter into the extra d orbital before seeing the 

LSF (represented by the self-energy Ed) which modulates 

the resonant scattering pseudopotential from 

V2  
e - E

d 

to (Rivier, 1968) 

v 2  
6 - E

d 
 - E

d  

to yield the familiar expression for the scattering matrix 

(Anderson, 1961) 

T (e ) - 
e - Ed - Ed 

- V2G
o 

instead of eq. (12). 	Since the effective scattering 

V 2  

potential due to the LSF, E
d 
 or Eo, increases with increasing 
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temperature following the thermal increase in the number 

of LSF, the scattering cross section and hence the resis-

tivity, increases with temperature towards the unitarity 

limit (corresponding to T(c) = - 00(0-1  or a phase shift 

d = 7/2 at the Fermi level). 	In the case treated in 

Ch. I, the resonant phase shift is already 7/2 at T = 0, 

so that the additional scattering by the LSF cannot but 

decrease the resistivity. 

Next we notice that, as in Ch. 2, the resistivity 

(eq. 21) is a universal function of T/TK. 	As long as the 

dominant contribution to the resistivity of a dilute alloy 

comes from the scattering by the localised spin fluctuations, 

the temperature dependence of the resistivity will have 

the same functional form, no matter how different the 

_systems might appear. 	The illustration of this univer- 

sality is given by the resistivities of Rh Fe and Ir Fe 

which scale to the same curve (Figure 1) if we plot them 

as a function of the reduced temperature T = 27(T/T
K
) and 

chose TK  = 15K for Rh Fe and TK  = 225K for Ir Fe. 

The characteristic temperature separates two different 

regimes. 	Below TK, the impurity appears to be non-magnetic, 

while above T
K one cannot distinguish between the LSF and 

the permanent moment at the impurity site, because the life-

time of thermal fluctuations becomes shorter than the 

characteristic time of the magnetic fluctuations on the 

impurity site. 

Let us now discuss the temperature dependence of the 
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resistivity given by the equation (21). 	We distinguish 

the following temperature regimes: 

(I) 	Below 0.4 7 the resistivity is parabolic 

7 
72  

(;(T) = 	( T 
T 
 )2  

which is the characteristic behaviour of a normal 

Fermi liquid when the dominant contribution to 

the scattering matrix comes from the electron-

electron interactions. 
TK 

(ii) At temperatures of the order of T = 0.9 77, , the 

resistivity becomes linear in T. 	We have 

p(T) = y(T - 0) 	 (24) 

with y = (1.12/Tdand 0 = (0.2 TK/7). 	Again 

linear temperature dependence is expected when 

the conduction electrons are scattered on Bose 

like particles. 

(iii) Above the spin fluctuation temperature, the resis-

tivity becomes logarithmic 

= c + B e/h( ) 	(25) 
TK 

where c = 0.68 and B = 0.24. 	As discussed in the 

previous chapter, such temperature dependence is 

indicative of a target with an internal structure 

(spin up and down, Anderson, 1968). 	Above T
K the 

LSF-impurity behaves like a well defined spin, 

although the effective coupling constant J between 

the impurity "spin" and the conduction electron spin 

K (23) 
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(if it is possible to define J at all by a 

Schrieffer-Wolff (1966) transformation) is enor-

mous in an alloy described by the Wolff Hamiltonian 

(the Wannier orbital of the impurity is right at 

the Fermi surface). 

(iv) Finally, for T...zwo resistivity approaches ,a constant 

value as 1/T 

P 	
1 (T) 	- 2 Tr 

T
IC] 
T 

We recognise this constant as a maximum in the 

scattering power of the target on which the con-

duction electron is scattered and by analogy with 

the LSF in the Al Mn we say that the resistivity is 

at the unitarity limit. 	For Coles alloys we can 

show that this limit is the same as the Yosida limit 

(Kasuya, 1956; Yosida, 1957; Friedel and de Gennes, 

1958) by the following argument. 

Yosida limit is defined as the high temperature con-

stant part of the resistivity which is due to the scatter-

ing of conduction electrons on an assembly of random spins. 

In the two band model and for the conduction electrons only 

weakly coupled to the local spin (small J), it is obtained 

as a result of the lowest order perturbation theory (Born 

approximation). 	For large coupling constant, this approxi- 

mation ceases to be valid and the scattering matrix has 

to be calculated by more sophisticated methods (Abrikosov, 

1965; Suhl, 1965; Nagaoka, 1967; Bloomfield and Hamann, 

(26) 
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1967). 
	One obtains that for high temperatures the re- 

sistivity approaches the unitarity limit, rather than the 

value given by the simple perturbation theory. 	(See 

e.g. Kondo 1969, equations (19.1), (19.2), and (22.8). 

Since the present single band model could be regarded as 

containing the impurity spins and conduction electrons 

with an extremely large coupling constant J, the Yosida 

limit is the same as the unitarity limit. 

The presence of a high temperature plateau in 

addition to the logarithmic dependence of the resistivity 

is a further indication that, above TK, the LSF describe 

a true spin in the sea of the conduction electrons. 	The 

fact that .4 is not far from the unitarity limit in Rh Fe 

was first emphasised by Anderson (1968), summarizing a 

paper by Geballe et al. (1966). 

Although in Coles alloys we can explain the replace-

ment of the Yosida limit by a unique, spin independent, 

high temperature limit (unitarity limit), this remains a 

puzzle in general; in the case of the Anderson model we 

have seen that the resistivity tends to zero as T 	w, 

regardless of Ed  (see Fig. (2 )). 	In the case of the Wolff 

model it is easy to show that F -4- 1/r as T 	co, regardless 

of W. 	This clearly does not correspond to the experimental 

data for the Kondo alloys. 	We should recall here that 

this theory includes s-wave scattering only and is non- 

renormalised; therefore it is weak in the E 	00 limit, 

which is just the situation we encounter when T 	00. 
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Before comparing our results with the experimental 

data we want to make a comment on the specific heat of 

Coles alloys. 	We are concerned with the low temperature 

contribution to the electronic specific heat due to the 

localised spin fluctuations. 	As in Ch. 2, we calculate 

the entropy of the local interacting Fermi gas from which 

the impurity part of the specific heat is simply obtained 

as 
dS 

Cv = T( ) dT 

Carrying out the same procedure as in Ch. 2, we obtain for 

cv  

72  a  E 1  Im GR
-1 dGo cv  - 

3 	6 71. 	0 	ae 
(28)  

-where G
o(e) is the Fourier transform of the local Green 

function evaluated at zero temperature. 	Using for G:(e) 

expression (17) we obtain 

cv 
27 kBT 

 

3TK  

 

(29)  

The dependence of CV  on the inverse of the spin fluctuation 

temperature is a characteristic feature of the local en-

hancement and it is in sharp contrast with the uniform 

enhancement theory (Berk and Schrieffer, 1966; Doniach 

and Engelsberg, 1966). 

4.5 Comparison with Experiment and Conclusion  

In analysing experimental data, we assume that the 

(27) 
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impurity part of the resistivity is simply given by 

p
imp 
 (T) = p(T) + '

potential 

= n  'alloy 	ghost 

and that the small potential scattering which is due to 

impurity atoms does not contribute to the temperature 

dependence of the resistivity, i.e. that p 	= 
potential 

 

pimp(0). 	Linear variations of pimp (T) with concentration 

support our assumption that for dilute alloys the addition 

of impurities does not significantly change the electron-

phonon resistivity. 

In Figure (1) the low concentration resistivity data 

on Rh Fe and Ir Fe are compared with the theoretical curve 

(eq. 21). 	The LSF temperature TK  is chosen to be TK  = 15K 

for Rh Fe and TK = 225K for Ir Fe. 	These values are about - 

eight times those extracted from the low temperature 

regimes by Kaiser and Doniach (1970) but agree with those 

derived from the susceptibility measurements of Waszink 

(1965) and of Knapp and Sarachik (1969). 

Apart from Rh Fe and Ir Fe the logarithmic behaviour 

of the resistivity has been suggested as the best possible 

fit to the Pt Fe measurements of Loram et al. (1972), with 

T
K = 2kor higher. 

Parabolic and linear low temperature regimes have 

been seen in various systems: Rh Co (Coles et al., 1971), 

Rh Mn (Coles et al., 1971), Pd Ni (Schindler and Rice, 1967), 

but in most of these cases the resistivity was measured 
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Resistivity data on various Rh Fe alloys against temperature 

(Rusby, 1974). 	The concentration effects tend to decrease 

the LSF temperature and push the onset. of the logarithmic 

part of the resistivity towards lower temperatures. 

Dashed lines are the theoretical curves (equation 21). 
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only over limited temperature range so that it is diffi-

cult to determine the characteristic temperature accurately. 

Also, in analysing the experimental data one has 

to be sure that they correspond to the single impurity 

limit. 	We notice that the interaction effects tend to 

decrease the LSF temperature, as can be seen in Rusby's 

data on the resistivity of several Rh Fe alloys (Figure 2). 

As the iron concentration increases, the coefficient of 

the T2  term also increases and the onset of the linear 

region is depressed towards lower temperatures, until at 

about 0.6% iron the magnetic order sets in. 

In conclusion, we have shown in this chapter that 

the resistivity of "Coles" alloys can be described by a 

model involving a single band of host electrons scattered 

- by localised spin fluctuations. 	A single band is probably 

a good representation of the electronic states in Rh and 

Ir (Loram and Grassie, 1972). 

The resistivity is given by the universal function 

of temperature which is zero at T = 0 and increases with 

increasing temperature, successively as T2, T, ln(T) and 

1/T towards the unitarity limit. 

The nature of the spin fluctuations is the same for 

"Kondo" alloys (Chapter 2) and "Coles" alloys. 	The resis- 

tivity is initially an increasing or decreasing function 

of temperature depending on the affinity between impurity 

and host. A given alloy lies between the orthogonal and 

overcomplete limit of the representationihost conduction 

states, impurity localised states) the two limits being 

described by the Anderson and Wolff Hamiltonian, respectively. 
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