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ABSTRACT

In this thesis we develope a representation of both hardware
and software based on general directed graphs. In a hardware graph
arcs represent processors and nodes represent memory stores. In a
software graph the arcs are process descriptions and the nodes are
groups of data. Program execution is modelled as the binding
together of elements of these two graphs, the set of bound elements
characterizing the program state at a given time. Binding is
regarded as a resource allocation process, and the method of
selecting one from the set of binding alternatives as the alloca-
tion strategy-

This modelling system was implemented as a program whose
input consists of the two graph descriptions in sequential form.
The program reconstructs the topology of the graphs within the
computer memory using pointers, and proceeds to bind the two
graphs until a terminal state is reached. During binding data
is gathered using a set of performance measures. On completion
statistics are calculated and a summary of the observations is
produced. A log of the binding activity is also available.

The latter part of the thesis is concerned with the appli-
cation of the modelling system to computer networks. The program
was validated by modelling a simple store and forward network,
and the results proved satisfactory at the ninety-five per cent
confidence level. The system was then applied to a proposed
linkage between computers in the United Kingdom and the Advanced
Research Projects Agency computer network in the United States.

The results of this application are described in the penultimate
chapter. Finally conclusions drawn from the work are presented and
possible extensions discussed-
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NOTATION

Z s SIGMA Software graph

TT, PI Hardware graph

qg Null processor

¢ Software subgraph

S Arc of software graph, process

P Arc of hardware graph, processor
PI Identity processor

RD Ideal processor

s Quasi-distance on arc S

Sw Quantity of computation

j(s) Computation density

To Time for Po to execute §

W Total computation of S

u Scaling factor for processor power
T Time for P to execute S

r(pys) Range of P at s on S

ro(s) Quantal range at s on S
'7 o(u) Time for P, to execute ro(s)

L Loss

O(i(S) Redundancy of P, at s

n( <) Number of software functions for subgraph
¢i Number of times i th function is executed
K Allocation procedure

A Graph analysis procédure

REP Repartition matrix

REP[i,jJ.rk

i Element of repartition matrix of node K

SIgraph Software graph
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SIarc Arc of software graph

SInode Node of software graph

PIgraph Hardware graph

Plarc Arc of hardware graph

PInode Node of hardware graph

INarc Arc entering a node

QUTarc Arc leaving a node

,A s LAMBDA Size of initial arc data

G} » BETA Cut generation time

ACT Activity matrix of a node

v Portion of tie duration due to store characteristic
ut Utilization

ef Bfficiency

fi Function i of SIarc

ti Time for processor to execute fi
c'j Cost of processor component j

Time component j in use during ji

1]
uti Utilization of processor during function i
efi Efficiency of processor during function i

The notation above is that used in describing the SHAPE
system. We have not included variable names from the SHAPE
program, and these are defined when used in Chapter IV. Variables
used to describe the systems modelled in validating and applying
the SHAPE system only appear, and are defined, in Chapter V and VI

respectively.
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CHAPTER I

INTRODUCTION
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1.1 Background.

One of the goals of computer designers and users in creating
new equipment is increased computing power. Such a goal is not
difficult to justify. If achieved it reduces the cost of current
computing activity, or allows expansion at a lower price; a
previously uneconomic solution to a problem may now seem more
attractive; perhaps less frequently, a solution is made feasible
on an acceptable time~scale. Intuitively computing power is not
a difficult idea to‘grasp, but interpretations vary and are
seldom precise.

Computing power is usually described in relative terms..
For example, twice the work done per day implies twice the
computing power; alternatively, the same work done in half the
time. In practice these need not be the same thing. Such
relative comparisons tend to beg the question of what we really
mean by computing power or computing work. It is worth
emphasizing that computing power (in its normal intuitive sense)
is very dependent on the task to be performed. In this sense
it is dynamic,y and not a function of hardware alone-

Expansion of a computing facility by adding more equipment
of the type already in use may be called lateral expansion.
Replacement by differently designed, faster, or more appropriate
equipment may be termed vertical expansion. It is said, and
may generally be the casey that there is more computing powér
per unit cost in a large system than in a small one.
Consequently, simply spending more for a larger system may well do
as a first step to increased computing power per unit cost.
Having reached some finanecial limit, é differently designed, or

in some sense intrinsically more powerful machine, for the same
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price is needed.

Usually a mixture of these approaches is adopted. Another
possibility is to design and build a new machine of the
required power, though this is beyond the scope of most users.
It isy howeverypart of a manufacturer's motivation.

A counter-productive side-effect in increasingly powerful
systéms is the difficulty of using that power efficiently.
Significant numbers of comparatively trivial tasks under-
utilize hardwareyand difficulty in organizing work flow leads
to high system overhead and idle time. At best only partial

solutions to these problems have been found.
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1.2 Computing power.

Theoretical limits of computing power undoubtedly exist
given the current state of physical science. Laws such as
the uncertainty principle will limit switching speeds of
storesy transmission speed of data, and packing density of
information. If we consider the hypothetical situation arising
when computer tecénology reaches these limits, then only one
strategy for achieving increased computer power remains.

This 1s the organization of laterally expanding systems to
process work in a parallel fashion.

Such an approach makes the implicit assumption that a
significant amount of computational work is amenable to
parallel processing. Though we are very far from the
absolute limits mentioned above, the situation has a
practical analog in the problem of a real-time system which
is already using the fastest appropriate computer available,
and is still unable to meet the completion constraints for
some task or set of subtasks. The only way to meet the constraints
is tofreorganize the task so that it is amenable to parallel
processing and then execute it on a laterally expanded system.

A visible trend in recent computer design is functional
dispersal. This is based on the view that if too many functions
are ccmbined in one moduley then much of it is idle, much of the
time. Consequently, greater efficiency is obtained by having the
funcrions in separate modules of appropriate cost and computing
power. These are used when needed by the task and free for other
work the rest of the time. The gain in efficiency presupposes
enough different tacks in the system to ensure that individual

module utilization is high. Attempts to meet this need have
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recently led to pipeline design in some large computers.

Elementary function dispersal is present in computing equip-
ment at the time of writing. Separation and concurrency of
computation, I/0, telecommunications control, display regeneration,
and so ony 1s evident in most third generation machines. Such
function dispersal places increasing emphasis on the net-like
aspects of computer facilities. Net representation of a computing
facility can be applied at any level of detail,y from computer
networks, where the complete computer is the quantal object, to
a single processor, where each logic subassembly is considered
separately.

Clearly a program organized for parallel processing can take
advantage of function d;spersal to minimize its total. execution time,
and to select the functional hardware best suited to its
individual processes. This is potentially a means of improving
performance over a sequential version of the same task. Indeed,

a sequential program may be regarded as one member of the class of

parallel programs which achieve the same result.
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1.3 Research aims and methods.

We have mentioned above the problems of using powerful
computer systems effectively. 1In this thesis we attempt to
provide a framework for the solution of such problems. Some
elements common to a wide range of computing processes are
isolated and identified. From these a technique for modelling
computational activity in complex computer systems is developed.
It is hoped that the technique will prove useful both as an
aid to problem definition, and as a practical tool in the
solution of a problem once it has been defined.

We have tried to introduce measures for aspects of the
computational process which will be relevant in most circum-
stances and useful in evaluating the performance of systems
under investigation.

We view computational activity as a hardware to software
allocation process. That is to say that a task is realized,
or results producedy by the allocatien of a task processor
to a task description. The basic operation in this process
1s chosen to be the production of one dataset from another
through the action of a processor. A complete task is then
regarded as a number of such steps occurring sequentially or
in parallel.

The modelling technique uses directed graphs to represent
software description and a hardware configuration. Execution
of the former by the latter can then be modelled as a dynamic
connection, or binding, of the two graphs. The system has
been implemented in a high-level language (SIMULA 67) whose
syntax provides features which correspond closely to the needs

of such a modelling system.
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Qur goal has been to provide a system which can be used
to evaluate and compare various combinations of hardware and
software which perform a given task, and so provide a means
of optimizing task performance both in existing and proposed

computer systems.
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1.4 Organization of subjects.

The material which follows is organized into six chapters
each dealing with one phase of the research that was carried
out. In Chapter II there is a brilef discussion of related work
in the fields of modelling, allocation problems, computing and
transmission networks, and performance measurement.

In Chapter IITI we develope the concepts and theoretical
considerations on which the modelling technique is based.

We then describe the technique itself and show how it can be
applied to computational processes. Chapter IV gives an account of
the implementation of the technique on a CDC 6600 computer using
the SIMULA 67 programming language.

Chapter V contains the results of a validation of the
system, using a amall store and forward network as a test
situation. In Chapter VI, we apply the system to a proposed
network linkage between the U.K. and the ARPA (Advanced
Research Projects Agency) computer network in the United
States. We describe the way in which the modelling technique
was used to investigate the performance of the linkage under
various conditions and present the results obtained.

Chapter VII discusses the conclusions which can be drawn
from the research undertaken, and makes suggestions for further
study. We have added four appendices for reference purposes.
These are some remarks on SIMULA 67 and the CDC 6600,
information required to use the implementation of the modelling
systemy, a description of the limitations of the implementation

and a bibliography.
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1.5 Summary of results.

We have designed a system, based 6n graphical representation,
which is sufficiently general to model a large class of computational
processes. This has required the identification of a set of basic
functions which are necessary for such modelling, and a program
incorporating them has been written. To create such a system we
have had to isolate and define the operation of these functions
in some depth, and as a result we believe the modelling system
corresponds well with the underlying structure of computational
activity.

As necessary adjuncts we have produced computer input
procedures which convert a sequential graph description to a
topological replica within the computery, as well as a set of
performance measures by which different model executions may be
compared.-

The implementation has been validated using a model of a
store and forward network, and the modelling technique was applied
to a computer network link between Britain and the U.S5. Results
predicting the performance of the link under various conditions
have been obtained, and hardware parameters for link operation

estimated.
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CHAPTER II

REVIEW
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2.1 Graph models of computation.

In this section we give some of the history and bibliography
of models of computational processes which use graph representations.
In the following sections we deal with resource allocation in
computer systems and the design of computer networks. The
references quoted are to be found in Appendix I, which also
contains a separate comprehensive bibliography of material related
to computer networks.

A number of researchers have produced graph models of
computation. The use of graph representations is widespread in
the literature of the theory of computation, and has also
extended to modelling or describing processes which involve
existing hardware or software systems. The utility of such
descriptions can be seen, for example, in the short paper by
K. A. Bartlett, R. A. Scantlebury and P. T. Wilkinson which
gives an algorithm for the detection of errors during data
transmission [BART 69]. Here the finite automata state diagram
is used in the solution of a highly practical problem in computer
comunications.

One of the earliest widely quoted models of computational
activity is the one put forward by R. M. Karp and R. E. Miller
in 1966 [KARP 66]. Their model is called a computation graph.
This 1s a directed graph in which nodes denote operations and
arcs denote storage elements where results are placed in first-
in-first-out queues. Associated with each arc are four non-
negative integers AP, UP, Wp and Tp where TP > WP. For an
arc directed from node 1 to node ] these parameters are
interpreted as follows: Ap is the number of data words initially

in the queues; UP is the number of words added to the queue upon
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completion of the operation associated with node k; and
Tp is a threshhold giving the minimum queue length of the arc
before the operation of node j is initiated. KXarp and Miller
show that computations represented by these graphs are
deterministic. They also give a test to determine whether
a computation temminates, and study properties of the data
queues associated with the arcsy deriving conditions for the
queue lengths to remain bounded.

Another type of model, similar to those above but
pfobably more oriented to hardware representations is one in
which a set of operations are connected to a memory as in
Karp and Miller's model but the control is entirely local and
is incorporated into the values stored in the memory. Each
operation monitors the values in its domain locations and can
apply whenever the values belong to a specified set. When an
operation applies it replaces the values in its range locations
as determined by the current domain values. Models of this
type have been investigated by Luconi [LUCO 68] and Petri
[PETR 62]. Luconi considers schemata in which only a subset
of the memory cells need contain unique sequences of values.
Such schemata are called output functional and are realized by
allowing more than one determinate computation to nondeterminately
"share'" operations. Sufficient conditions for a schema to be
determinate are given and synthesis procedures for output
functional schemata are provided.

E. Van Horn [VANH 66] has propésed an abstract model called
machines for coordinated multiprocessing or MCMs. An MCM
consists of a set of cellsy a count matrix, and a scheduler

to control operations. Each cell may behave either as a memory
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(value) cell or as a computing (clerk) cell. In the latter
casey, a table of transactions is associated with the cell where
each transaction may read and write cells or modify the count
matrix. On the basis of the values in the cells and in the
control matrix the scheduler determines which cells are
enabledy, i.e. can perform one transaction. The scheduler
selects a subset of the enabled cells and directs them to
perform their transaction. Van Horn has demonstrated that
the action of the scheduler insures that the behaviour of
any MCM is asynchronously reproducible.

G. Estrin and R. Turn [ESTR 63B] and D. Martin [MART 66]
have introduced a directed graph model for computer programs
in which the vertices represent computational tasks and the
arcs represent data dependency between nodes. In this model,
the conditions for the initiation of the computation denoted
by a vertex is expressed by writing a boolean expression in
terms of boolean variables associated with the arcs incident
into the node. A boolean variable associated with an arc is
true when the data in that arc becomes available. A compu-
tation may be initiated when the boolean expression of the
corresponding nodey called the vertex input control, is true.
There are three types of vertex input control: conjunctive,
disjunctive and compound. Vertices with conjunctive input
control may be initiated only when all input data are
available. Vertices with disjunctive input control may be
initiated only when precisely one set of input data (i.e. one
arc) becomes available. The compound input control is a
combination of the other two. Vertices also have output

control which is used to specify the program flow from a
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vertex to a subset of its immediate successors. A vertex
with conjunctive output control simultaneously makes data
available at all of the arcs incident out of the vertex.
A vertex with disjunctive output control makes data available
at precisely one of its output arcs. Thus vertices with
disjunctive output control effectively perform data dependent
decisions to control the program flow. The model can properly
represent only cycle free graphs. It has been used primarily
as a tool for the a priori assigmment and sequencing of compu-
tation in parallel processor systems. This model, described
belows has been developed in a sequence of research reports by
Turns Marting J. L. Baer, D. P. Bovet, E. C. Russell, S. A.
Volansky, and V. G. Cerf, working with Professor G. E. Estrin
at the School of Engineering and Applied Science at U.C.L.A.

Cyclic to acyclic graph transformations are the subject
of [MART 67B] by Martin and Estrin, and other properties of
the model are derived in [ESTR 63A, MART 674, 67C, 69] by the
same authors. Baer [BAER 68] has investigated the assigmment
of computations to processors by various scheduling techniques.
Bovet [BOVE 68, 704, 70B] has analyzed the model to determine
profiles for memory allocation and Russell [RUSS 69] has used
the model as a basis for the limited detection of parallelism
and developed a system for the automatic generation of graph
model descriptions, including attribute setsy from FORTRAN
programs. Baer and Bovet have presented a method to test the
legality of the initiation/termination conditions described
by the graph model [BAER 70].

Volansky [VOLA 70] has further extended use of the model

with an investigation of the detection and implementation of
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parallelism in a multi-processor environment. Cerf [CERF 72]
has considered the flow of program control which can be
represented in the model, and determined condition for the
proper termination of programs so modelled.

The U.C.L.A. model has been further developed by
J. Rodriguez [RODR 69] to study the determinacy of the execution
of a program where the parallelism is shown. TFurther control
is introduced on the arcs of the graph. These can be idle,
enabledy, disabled, and blocked, while nodes are classified by
their computational functions (control, data modification, loop
junction) and logic (AND, EOR, and OR).

Other work on graph models of computation is that of
H. Eisner [EISN 62], in which he has generalized the PERT
network technique to take into account alternatives in per-
forming project phases. This was achieved by assigning
probabilities to different arcs out of decision nodes.

D. R. Slutz [SLUT 68] has extended the work of Karp and
Miller. His models are called Flow Graph Schemata, and contain
two structures. The first, called a data flow graph, indicates
the paths of data flow and includes both operations to perform
data transformations and memory cells to store intermediate
results. The second is called a control graph and represents
a mechaniam to effect sequencing of operation activations.
Using these structures Slutz has investigated the problems of
determinacy and eguivalence.

Three papers of interest in the use of graphs for modelling
systems of processes are those of D. L. Parnas [PARN 69A], and
of S. Crespi-Reghizzi and R. Morpurgo [CRES 70], and of Pfaltz

[PFAL 72].
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Parnas deals in some depth with the simulation of simultaneous
events and gives an algorithm for the derivation of an
efficient sequential process equivalent to a given network

of parallel processes, where thé network has unconditional
rules of immediate dependency, and no delayless loops. Crespi-
Reghizzi and Morpurgo present a language for representing
graphs. The language uses linked lists to provide facilities
such as addition and deletion of nodes and arcs, traversal of
graphs, union, intersection, and so on. Pfaltz describes graph
structures which allow the introduction of extra subsequences
of arcs at nodes and other similar substitutions.

The works referenced above are mostly attempts to model
the behaviour of parallel computations. To insure determinate
behaviour it is necessary to provide some mechanism that
would disallow more than one operation to change the contents
of a shared memory cell at one time. Such mechanisms are also
present in current proposals for practical parallel and multi-
programmed computer systems.

Dijkstra [DIJK 66] considers a method by which asyn-
chronous sequential processes may communicate 'hammoniously'.
The processes are provided access to common integer variables
called semaphores. The semaphores can be manipulated by means
of two synchronizing primitives, the 'P' and 'V' operations
which decrement and increment, respectively, the value of a
semaphore by one. The P operation can be executed only when
the current value of a semaphore is greater than zero.

Thus the facility is available for one process to block another

from entering a 'critical section' such as data accessible to
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both. A number of interesting examples using semaphores are
given. Dijkstra [DIJK 68] has incorporated semaphores into the
design of a multiprogramming system and A. Habermann [HABE 69]
has provided a theoretical justification of the logical structure.
Holt [HOLT 71] has discussed Habermann's work and shown that
artificial deadlocks can accur when Habermann's methods are
used, and that they do not necessarily eliminate cases of
pennanént blocking. Holt gives a solution for these situations.
Hebalkar [HEBA 71] has extended Habermann's analysis with a
graph model of process resource requirements and defined aigo—
rithmic tests relevant to resource allocation with the intention
of precluding deadlocks.

The interested reader is referred to various other papers
on aspects of graph models of computation: [BERN 66, ABLO 68,
BRUN 71, CORN 70, IRAN 71, EARN 72, SHOS 69, LOWE 70, GILB 72,

TESL 68, CONS 68, COHE 68, GONZ 69, DENN 68, KOTO 68].
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2.2 Models of Resource Allocation and Utilization in Computing Systems.

Many of the models mentioned in the previous section have
been used to investigate resource allocation strategies. 1In
particular Bovet [BOVE 68] has examined memory allocation
profiles using the U.C.L.A. model. P. J. Denning [DENN 68]
has also used graph models when investigating multiprocessor
assigmment.

The literature of resource allocation and utilization in
computational systems is extensive. Much of it uses queueing
theory to provide mean values for quantities of interest such
as service times, waiting times, throughput rates and idle times.
Howevery there is also a wide range of non-stochastic analyses.

One of the earliest papers in this field is that of
J. Heller [HELL 61] which deals with the scheduling of the tasks
of a computational job among the processing units which can
carry them out. Solutidns are obtained for completion times
of the tasksy, and idle times of the processing units, and
these are then extended to the concurrent execution of more
than one job.

G. K. Manacher [MANA 67] has provided a more extensive
treatment of problems similar to that investigated by Heller.

In this paper the assigmment of tasks to processors is controlled
by a task list, which orders all tasks according to servicing
priority. A free processor is assigned to the highest priority
task available. Two types of constraint are used, start-

times and completion times. Tasks with start-times may not
commence before those times, and tasks with complefion times

must terminidte before them. Algorithms are developed to give
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schedules which guarantee the execution of tasks within their
deadlines, and allow the inclusion of non time-critical tasks
in these schedules.

T. C. Hu [HU 61] uses a graphical model to derive an
algoritim for the optimum sequencing of the tasks of a job in
two céses. The first case is to provide a schedule which
satisfies a completion constraint on the whole job with a
minimum of processors, and the second is to provide the
schedule with the earliest completion time when the number
of processors are fixed.

The models described above have been greatly extended
by the work of R. R. Muntz and E. G. Coffman [MUNT 69A, 69B,
70]. The authors have used acyclicy directed graphs not
unlike the U.C.L.A. description to model computational
activity, and have allowed preemption in task scheduling.
Two important results are derived in [MUNT 70]. The first is
the equivalence of Preemptive Scheduling and General Scheduling.
Preemptive Scheduling is a scheduling discipline where a
processor, instead of working continuously on a task once
assigned to it, can be interrupted and assigned to another
task. General Scheduling is a discipline where a fraction of
a processor can be assigned to a task, and this fraction
varied. The equivalence of these two disciplines is used in
the implementation of the modelling system put forward in
this thesis.

The second result is the statement and proof of an algo-

rithm for the optimal scheduling of free-structured computations.



Another paper concerned with scheduling in multiprocessor
systems is that of J. L. Rosenfeld [ROSE 69]. In this paper,
execution of a certain type of program by N identical processors
is simulatedy, and it is shown that with proper programming the
solution time approaches 1/N of the single processor solution
time.

Further results in this area of research can be found
in: [BOWD 69, RAMA 72, SCHW 61, REIT 68, AOKI 63, KATZ 66,

GOSD 66, GRAH 66].

The work described above is concerned mostly with scheduling
to meet timing constraints. Another body of work deals with
scheduling resources in a statistical demand enviromment,
where 1t is the average behaviour of the system which is
of interest. Typically this research has often centred on the
response of time-~sharing systems, and makes use of queuing theory
in many of the results. A well known study of this type, augmented
by simulation is that of A. L. Scherr [SCHE 67].

Detailed research has also been undertaken on the behaviour
of specific devices. For example, the behaviour of the
IRM 2314 disc is the subject of a paper by Abate, Dubner and
Weinburg [ABAT 68], and drum scheduling has been investigated
by Fuller [FULL 72]. Frank [FRAN 69] has also performed
a more general study of disc usage in time sharing systems.

Markovian models have been used to study computational
systems and resource usage within them. An example is the
paper by J. D. Foley [FOLE 67] on the University of Michigan
executive system. The executive is considered to have nine

states and transition probabilities between them are provided
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from experimental observation of the Michigan system. Results

are obtained for the fraction of time spent by the executive

in any stsatey and the effect of changes to the system.
Simulation has been a widely used tool in examining

computer behavicur. In particular it is often used to see

how well theoretical models predict the behaviour of real

systemsy, and so determine their validity. In most cases

the models have been of unique systems, for example [NIEL 66],

and consequently the results have not been easily applicable to

other situations.

An example which suffers less than most from this
disadvantage is B. Randall's paper [RAND 69] on storage
fragmentation. Here external fragmentation is defined as the
loss in storage utilization caused by the inability to make
use of all avallable storage after it has been fragmented
into a large number of separate blocksyand internal frag-
mentation is the loss of utilization caused by rounding up
a request for storage rather than allocating only the exact
nunber of words required. A number of simulation experiménts
are used to show that rounding up requests for storage, to
reduce the number of different sizes of blocks co-existing in
the storage, causes more loss of storage by increased internal
fragmentation than is saved by decreased external fragmentation.
A method of segment allocation and an accompanying technique
for segment addressing which take advantage of this result
are then derived.

Space does not permit us to list the numerous papers which

describe specific simulations, but more general discussions can
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be found in: [ZEIG 72, HUTC 65, WEBE 64, NIEL 67, PARN 69B].
Some important results which are applicable to models of
caomputation have been derived by G. F. Newell and W. J. Gordon
in the area of gueueing theory [NEWE 674, 67B]. In the first of
these papers closed queueing systems are considered. These
are characterized by having N customers and M stages each with
rs parallel exponential servers of the same mean service rate.
Such closed systems are shown to be stochastically equivalent
t§ open systems in which the number of customers cannot exceed
Ny and equilibrium equations for the joint probability distri-
bution of customers are derived. In the second paper closed
cyclic queueing systems with restricted queue lengths are
shown to be equivalent to open systems in which the number of
customers is a random variable. The differential-difference
equations for the time-dependent stochastic structure of the
system are derived, and solutions given for a number of sﬁecial
cases.
Queueing theory has been applied to time-sharing systems
and related computing situations by L. Kleinrock in a number
of papers: [KLEI 66, 67, 68, 70By 71, 72]. In the first of
these papers [KLEI 66] a group of processors is considered
to act in sequence on subsets of data belonging to a problem.
Such a chain of sequential processing machines (SPM) has been
described in [AOKI 63]. Kleinrock shows that the system may be
viewed as a cyclic queue, and gives results for the case of two
sequential processing stagesy where their intemmediate buffer
is of arbitrary size. Assuming exponentially distributed

service times for timeslices of subset processing, the ratio of
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expected time to process n subsets by the SPM system and a single
processor is derived. An approximation is then derived for an

SPM gystem with 2P processors by applying the previous result to
pairs of processorsy each of which represents a pair of processors,
p times.

In [KLEI 67] time-shared computer systems are treated as
queueing systems, where the time sharing effect is obtained
by giving each reguest a timeslice Q of processor time and
then requeueing it. Results are given for the expected time
a request spends in the system by applying queueing theory to
the case for which @ --> 0. These are extended to include
systems in which requests belong to priority groups which
determine the size of their timeslice.

In [KLET 68] time-shared systems with M consoles are
analysed and results given for the behaviour of the normalized
average response time. Consoles are again serviced in a time-
slicing fashion and after completion of a request, delay for
an exponentially distributed think time before requesting
service again. A definition of system saturation is given,
and the original system is considered as a special case of
the class of systems in which the Nth class consists of N
processors with capacity 1/N of the original processor and
serving M/N consoles each.

Scheduling algorithms for time-shared systems are the
subject of [KLEI 70B], and further results for response time
are given in [KLEI 71]. 1In [KLEI 72] the application of
queteing theory as @ --> O is again used to provide results
for the class of algorithms where the scheduling discipline

may change as a function of the accumulated service. In
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particular solutions are given for the average response time
a3 a function of the service required by a request.

Further results on aspects of time sharing are given in
the following papers: [FIFE 664 LASS 69, LEWI 71, NAKA 71,
NIEL 67, RAMA 72, RASC 70, SHEM 67, SMIT 66, STIM 69] which
are only a selection of the large body of research in this

field.
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2.3 Computer Networks.

Perhaps the earliest attempt to interconnect a large
number of computers was the SAGE (Semi-Automatic Ground
Enviromnment) air defence system[EVER 57, MART 69]. This
systemy developed by the military to collect, analyze and
display radar data from sensors scattered over the continent,
became operational in 1958 and has subsequently been improved.
At about the same time the American Airlines SABRE Reservation
System [PLUG 61, EVAN 67] was being developed on a commercial
basis. Due to the success of this system, similar systems
are now in use by other airlines, hotelsy etc. The Ticketron
real-time reservation system [DUBN 70] is one such example.

The need by the military for improved data communications
led to the development of the AUTODIN (Automatic Digital
Network) Communications System in 1963 [HAMS 68, MILL 68].
This system utilized both line switching and message switching
facilities and its design was influenced heavily by network
survivability and vulnerability considerations. In contrast
to military requirements for ultra-reliability, many
commercial and experimental networks have relied upon simple
interconnections or dial-up telephone lines for communications.
Examples of such sysfems are the Chrysler Message Switching
system [ISSA 68], the Rio Grande Railroad Message Switching
Transportation System [DAY 68], the Control Data Corporation
Cyberret and Kronos Systems [GAIN 71], and the DATRAN (Data
Transmission Company) common-carrier network [BINA 71, FISH 71,
GAIN 71].

Several networks have been designed using a central

store-and-forward message switch which reduces the network cost.
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The network topology for this type of design takes the form
of the classic Star network. IExamples of such networks are
the COINS (Community On-Line Intelligence Network System) and
the Lawrence Radiation Laboratory OCTOFUS System.

The Lawrence Radiation Laboratory network was called
OCTOPUS due to its star-like topology. The central computer
is a PDP-6 which serves as a store-and-forward switch between
the large processors such as CDC 6600, 7600, and STAR, as well
as the IBM Stretch and 360/91 computers. The central switch
also provides access to the huge photo-store mass memory by
any of the other machinesgand allows an evolutionary growth
of the multi-computer complex since new computers can be
connected to the system resources and can gradually be brought
up to operational status.

The third star network is the IEM computer network,
NETWORK/L440, which has several unusual features [MCKA 71A].
The central node was initially to be a medium size 360/50
computery, but was later changed to be a partition in the large
360/91s which serves not only as a store-and-forward switch,
but also as a master operating system. The network consists
of several IBM 360 computers and a Control Data 6600 computer,
the latter being connected via a small Honeywell DDP-516
preprocessor. The non-IBEM machine introduces a degree of
generality into the network due to the considerable difference
in the CDC and IBM architecture and data structures.

In 1964 the Rsnd Corporation completed a comprehensive
study, "On Distributed Communications' [BARA 64A, BOEH 6k,

SMIT 647], and a proposal for a distributed store-and-forward

37



message switched digital network. Although Rand's system
was never implemented, thelr approach has influenced the
design philosophy of some military networks and the ARPA
Computer Network. During the study, Baran was responsible
for the definition of a "packet" and for the "hot potato
routing algorithm."

In 1966 Lichtenberger [LICHk66] proposed a network of
identical computers; however, this network was only partially
implemented. Also in 1966, an experiment was conducted by
interconnecting the TX-2 computer at the Lincoln Laboratory
and the Q-32 computer at System Development Corporation to
test the basic philosophy of a network connection. This
experiment showed that resource sharing was possible between
two computer systems.

In 1967 the National Physical Laboratory (NPL) in
England made a comprehensive proposal [DAVI 67] for a general
purpése store-and-forward network. The NPL network was to be
a store-and-forward network using interface computers and
1.5 Mb/sec. transmission lines for the message switching net,
with an expected network response time (the time from the
receipt of a packet to the beginning of the output at the
destination) of less than 100msec. Packets were defined as
any multiple of 128 bit segments up to a maximum of 1024 bits.
Details of the proposed network operation appeared a year
later [BART 68, DAVI 68, SCAN 68, WILK 68]. To date, only
one node has been implemented and can be described as a
multiaccess computer system controlled by a time-sharing
computer [BARB 69, SCAN 69, WILK 69]. The authors have so far

concentrated on the local rather than trunk level.-
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A amall experimental computer network is being
developed at Carnsgie Mellon University, consisting of two
DEC PDP-10 computers, a pair of PDP-8 minicomputers, and
a hybrid computer. All five computers are located together
and since the communications costs are insignificant,
experiments with completely connected nets as well as with
more typical network interconnection topologies have been planned.

| In 1968 the Advanced Research Projects Agency released
a Request for Quotation to construct a store-and-forward computer
The contract was awarded to Bolt, Beranek and Newman, Inc.
located in Cambridge, Massachusetts. The basic ARPA Network
community consists of about 26 ARPA-sponsored research sites.
Some of these sites have areas of specialization such as the
graphics work at the University of Utahy picture processing at
the University of Southern California, the man-machine interactive
work at System Development Corporation, the text editing and
information retrieval work at Stanford Research Institute and
the network measurement and modelling work at UCLA. Other sites
have specialiged hardware capability such as the ILLIAC IV
camputer and the trillion bit laser memory.

Figure 2-1 shows the configuration of the ARPA Computer
Network. The various sites (HOSTS) are interconnected via a
distributed message switching communication net consisting of
TMPs (Interface Message Processors) and dedicated 50 kbit/sec.
full duplex communication lines. Each site typically consists
of one or more computers, called HOSTsy operating in a time-

shared environment, but
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In the assessment of performance of a general store-and-
forward computer-communication network, it is necessary to
examine the assigmnment of channel capacities, the effect of
gqueue discipline, choice of the message routing procedures,
nodal processing delays, nodal storage requirements, and the
design of the network topology. A network performance
measure is required to determine how various choices of the
above parameters affect performance-

There are basically two classes of performance measures.
The first class does not relate in any simple way to individual
messages in the network, but rather to the performance of
particular components that compose the network. Examples of
such performance measures are: average channel utilization,
nodal storage utilization, and channel error rates. Many of
these performance measures can be computed analytically. The
second class of performance measures relates more directly to
individual messages. An example of such a performance measure

is the average message delay. This provides a measure of system

response which may be directly observed and which can be
estimated. L. Kleinrock has investigated the minimization of this
measure under various constraints in [KLEI 64]. Amongst other
results the use of an "independence assumption" was shown to allow
analytic solution for the optimal channel capacities in store-and-
forward communication nets. A further description of this work
is given in Chapter V.

One of the problems of current design is the application of
general theories to the analysis and design of store-and-forward

computer-communication networks.
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Four main problems in these networks are construction of models
to predict message delay, message routing strategies, channel
capacity assignments, and topological design of networks.

All these are dealt with to greater or lesser degree in
[KLEL 64]. This work is further developed in [KLEI 69A and 69B]
in which exact and approximate analysis, simulation, and
measurement are compared to obtain results for networks of
the ARPA type. The discussion is carried further in [KLEI 70A]
and [FULT 71, 72].

Routing procedures have been investigated from various
approaches. Prosser [PROS 62A], Kleinrock [KLEI 64],

Shapiro [SHAP 66] and Benes [BENE 66] have examined the effect

of random routing procedures on message delay. Their conclusions
were that random routing techniques are highly inefficient in
terms of message delay, but are relatively unaffected by small
perturbations in traffic intensity or network structure.

Boelm and Baran [BOEH 64] and Smith [SMIT 64], Boehm and Mobley
[BOEH 66], Kahn and Teitelman [TEIT 69] and Kleinrock [KLEI 70A]
have examined some stochastic computing techniques. Deterministic
routing procedures have been investigated by Prosser [PROS 62B],
Boelm and Mobley [BOEH 66], and Kleinrock [KLEI 69A]. Their
approaches have been slightly different. Prosser gave an approxi-
mate analysis of directory procedures which showed an increase

in efficiency and amount of data transfer as compared to random
routing, but at the expense of maintaining the directory.
Kleinrock has computed average message deiay as a function of
traffic intensity for a fixed network topology and fixed routing

procedures. Boehm and Mobley considered the problem of
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computing a fixed routing procedure from estimates of network delay.

The topological design of ARPA-like computer-communication
networks has been attacked by the Network Analysis Corporation
[FRAN 70, NAC 70A-B, NAC 71A-B]. Their procedure is derived
from a natural gas pipeline study [FRAN 69]. In their
procedure, both the network topology and channel capacity
assignments are varied during the optimization, while the routing
procedure is essentially held fixed (it is deterministic for a
given network topology). Since this problem defies a precise
solutiony their results must be viewed as giving good, but not
necessarily optimal, network readtizations.

Implicit in the optimal design of a network is the
network performance function. For most network design problems
average message delay has been selected because it is
mathematically tractabley, because it represents the global
performance of such networks, and because it can be measured.
Meistery Mueller and Rudin [MEIS 72] considered a slightly
different performance measure: a weighted sum of powers of the
average message delay in each channel. From this performance
measure, they are able to obtain a channel capacity assignment
for fixed routing which réﬁuces the variation in delay from
channel to channel at the expense of only a moderate increase
in average message delay. This technique reduces the delay
markedly on lightly utilized channels where, as the authors state,
the user would be very mucﬁ aware of this decrease when using the
network.

Measurement of the behaviour of the ARPA network is the

subject of [COLE 71]. A measurement collection system is
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described and implementedy and data accumulated by observing
normal and artificially generated traffic is analysed.
J. F. Zeigler [ZEIG 71] has investigated nodal blocking in
ARPA-1ike networks with the aid of a two-state Markov process
model. Results for the fraction of blocked nodes in a network
are given, and developed for '"clumps'' of adjacent blocked nodes.

A further effort in computer networks based on the ALOHA
system [ABRA 70] is the current examination of satellite
communications as a means of extending the ARPA network.
Their usey particularly in broadcast modey is the subject of
a series of ARPANET Satellite System Notes. In Note 12
[ASSN 72] L. Kleinrock and S. S. Llam derive expressions for
channel efficiency and expected number of retransmissions.
In the system analysed simultaneous, or overlapping, broad-
casting is regarded as failure of transmission for both
messagesy which are retransmitted after é stochastic delay.

A study is currently taking place of methods
of providing a computer network for a number of Canadian Universities.
A first stage in the study is described in [DEME 72A and 72B]
by J. DeMercado. These reports deal with the synthesis of
minimum cost networks in which either simultaneous or time-
shared transmission occurs.r |
Some interesting papers on computer networks are to be

found in the proceedings of the ACM/IEEE Second Symposium on
Problems in the Optimization of Data Communication Systems,
Octobery, 1971. The ARPA network is the subject of two papers.
The first is by G. D. Coleywhich is materially similar to

[COLE 71], and the second is by R. E. Kahn and W. R. Crowther
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on flow control [KAHN 71A]. In this paper the authors describe
the various types of storage deadlock which can octur in the
ARPA network and presént the precautions which were taken
against such occurences.

There are also two papers on the NPL network in the
pfoceedings. The first also deals with congestion and proposes
an "isorithmic" solution [OAVI 71]. That is to say that
there should be a fixed number of packets in the network at
all timesy whether or not they carry data. The second paper
describes various levels of protocols to be used in the NPL
network for computer-to-computer commimication, [SCAN 71].

A description of Tymshare Inc.'s TYMNET system and its
history is given in [BEER 71], while reliability in centralized
networks is the subject of [HANS 71]. Two papers in the
proceedings deal with distinct loop-type networks. In [HAYE
71] results are given for mean message delay and other
characteristics, and confirmed by simulation. In [SPRA 71]
loops consisting of a central processor and a number of temmi-
nals are analysed and parameters obtained for the variation in
terminal message delay with terminal loop position. Error
control is the subject of [TRAF 71], which deals with computer-
to~-computer links involving transmission via satellite.

Current developments in the design and operation of
computer networks are described in a number of papers presented
at the First International Conference on Computer Communica-
tions, 1972. In [ANSL 72] methods of data transmission used
by the British Overseas Airways Corporation are surveyed, and in

[BARR' 72] an outline is given of a project for a European
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network initially linking research establishments in Franée,
Italy, Switzerland and the United Kingdom. Methods of
operation and maintenance in the ARPA network are the subject
of MCKE 72]. In this paper the detection and diagnosis of
network faults by the HOST computer at the Network Control
Centre are described. The Centre has the function of

receiving IMP situation reports, determining the actual state
of the network, and initiating repair activity when appropriate.

In [WHIT 72] V. Kevin Moore Whitney has compared various
algoritims which have been used to obtain (heuristically)
least cost network topologies. The same networks are sub-
mitted for solution by each algoritlm and resultant topologies
compared. The comparisons are shown to be remarkably
consistent, and demonstrate some ddvantages of the Steepest
Ascent Hill Climbing (SAHC) algoritim.

The operation of a network under conditions of saturation
is discussed in [DESP 72], and network characteristics for such
operations are presented. The performance of satellites for
network data transmission is described in [HUST 72] and figures
for both performance objectives and measured performance are
given. Data management in networks is the subject of [FARB 72
and BOOT 72] in which the problems of safeguarding, accessing
and updating dispersed data by equally dispersed users are
discussed. Finally a survey of European network development
is given in [KIRS 72] which describes current ventures by
universities, research establislments, post officesy together
with those of some industrial and commercial concerns. In view
of the extensive material available, we have added a section on

computer network design to the bibliography in Appendix I.
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CHAPTER IIT

THEORY



3.1 Graphical representation of hardware and software.

For the sake of descriptive convenience in the material

below we define the terms team and net as follows: a team is

defined as a set of interdependent cooperating programs
executing concurrently in real time to perform some well-
defined function. A net is any collection of hardware modules,
i.e. processors, memories, peripherals, 1/0 controllers,
message switchers, connected by data channels. A net can of
course be one computer or many, and generally exhibits the
properties of hardware-sharing, function dispersal, and
concnrrency of operation.

A team can be represented as a directed graph'Z s Whose
arcs represent the execution of individual sub-programs, énd
whose nodes represent events where the subprograms interact.
Such interaction may be simultaneous completion or initiation
of subprograms, or communication of information between two or
more subprograms. FProcessing within an arc is considered
logically independent of that within other arcs. That is to
say that all interaction between subprograms which is implicit
in the intrinsic logic of the overall task occurs only at the
nodes. This does not imply that the arcs themselves are
purely sequential programs; further, there may be interaction
between them because of hardware allocation constraints in the
net.

The word processor will be used in the fqllowing to denote
any hardware module which performs a transformation and/or
movement of data. This includes devices such as I/0 controllers,
multiplexorsy regenerators, and so on. In this sense a processor

need not possess the full set of functions of a general purpose
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computer. Consequently not all processors will be able to

execute all programs. A processor P can be regarded as a
hardware operator on data. Each arc of a team Z is a subprogram
S executed by some hardware module of the net on which Z
executes. We define regular execution of a team to be execution
where hardware allocation only changes at the nodes of Z -
Running programs to completion is regular execution, hardware
sharing is not. Transmission of data, without any transformation,
may be regarded as processing by an identity processor PI.

Storage of data for a period of time can be regarded as processing
by the null processor @

We now consider an aspect of modelling which might be
termed focusing. In constructing any model, a decision must be
made as to what level of detail the model will reach., The
situation is analogous to choosing the degree of magnification
appropriate when using a microscope. Too small a magnification
may not show the process of interest, too large a magnification
may make it impossible to view the entire process or obscure
it with irrelevant detail. For convenience the level of
detail a model reaches will be called its depth. When the
depth of a model is choseny this is in effect a decision to
treat all objects below that level as black box or quantal
ones (if not, then there would be a further level of detail
below the chosen depth, which is a contradiction in terms).
However this choice is imposed by the model builder; objects
at the model depth are of course structured in reality.
Consequently the choice of model depth is in effect a decision

to ignore (or a cut-off point for) the appropriate fine structure.



In terms of the foregoing, we suggest that graphical
representation of a team can be used for modelling computer
activity at any depth from the execution of a single machine
instruction (which can be regarded as a team of microprograms)
to considering entire computers as quantal objects. If we have
a graph Z_ representing some task performed by a team, we are
implicitly deciding to treat the members of the team (arcs of
Z ) as black box processes, since we stipulate that logical
interaction between the members occurs only at nodes of 2 -
That is to say, we are interested in the change in system state
caused by the execution of an arc, but not concerned with the
interactions occurring within the execution of an arc.

We can of course include this level of interaction if
desired, by replacing each arc S of X by a subgraph o of
processesy, at the next (convenient) level of detail down, which
perform the function previously represented by the single arc S.
We use the word subgraph here to mean a graph representing the
structure of a single arc of another graph (at a higher level)
rather than in the normal graph theoretic meaning of a subset
of graph elements.

It may be that certain arcs of Z: are of critical interest.
In this case a more detailed picture may be obtained by
replacing only the arcs concerned by subgraphs, while leaving
the rest of Z as before. Thus the graphical representation is
recursive in the sense that any arc may be replaced by a
subgraph. If the graph Z and its attributes are considered as
a named data structure, then the name of an arc of Z may be an
element, or the name of a further data structure, i.e. a

subgraph. If we envisage a procedure A performing analysis,
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or other processing, of { s then an individual arc of Z may
undergo the same analysis by recursive call to A, if the structure
of the appropriate subgraph is available.
The progress of a team towards completion can be regarded
as the execution of arcs of 2 by processors allotted to them
by a control algorithm. The time taken to execute an arc will
depend on the computing power of the allotted hardware relative
to the subtask represented by the arc, and also on whether the .::
execution is regular. Changing the control algorithm is the
equivalent of varying the allocation strategy of the model,
but not its structure. Finally, by representation as a team,
a control algorithm is itself amenable to the same modelling.
Normal Critical Path concepts apply herey, in determining
overall execution time for a team, and in detection of a
critical 'path. A cost function can be associated with the net
resources, such as processors and memories, allotted to arcs.
Slack time represents the time between an arc S completing
execution, and the interaction of its results with the rest of
the team. This is effectively storage of such results until
all arcs which interact with S at its terminal node have completed.
Thus slack time has an associated cost for information storage.
Overall Completion time for z can be decreased by allocation
of more powerful processors on critical arcs. This clearly
raises the cost unless overhead and idle time created by such
action are nonexistent.
We now develope the idea of hardware/software correspondence.
This is based on the following premise: any function that can be

done by software can also be done by hardware, and vice versa.
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We add the proviso that obviously there must always be some
quantal level of hardware present, else the function would never
be physically executed. This is equivalent to saying that all
computing activity is performed by a combination of hardware
and software, and that the partition of the task between them
is an arbitrary one; further, that this partitioning can be
made at any level or part of the function, by building
appropriate hardware. An extreme case is the performance of
some task entirely by special purpose hardware, which is
equivalent to reducing the software element to a single
ingtruction. We suggest that the distinction between hardware
and software is an artificial and fluid one. Consequently,

in developing a model of computing activity we are concerned
that it should take into account various possible hardware/
software decompositions of the activity.

We now propose a graphical representation of a nety and
consider under what circumstances it may be regarded as the
dual of the team representation outlined above. A graph T
will be considered a model of a net in the following way.

Each node of W will correspond to a storage element of the net.
Each arc will represent a possible data flow through a
processor P between such storage elements. We make the remark
that a processor P may be able to connect itself across more
than one pair of nodes. Thus there will be an arc infT[ for
every possible connection that P can make between a pair of
memory elementsy but at any instant there will be a flow on
only one of these arcs. If P is PI, the identity processor,

then no transformation on the data flow will occur.
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In the graph M traversal of an arc P may be regarded as
the execution of some program by the processor P, taking input
data and status from the initial node (memory element) and
producing output data and status at the terminal node. Regular
execution on an arc P of the graph W occurs if the program
being executed by P remains attached.to the arc for the period
of time necessary for it to run to completion. For example
paging is not regular execution. The previous remarks on model
depth and the recursive properties of graphical representation
apply equally to the graph TI 3 except that in this case a
subgraph p represents, not subprograms, but sub-processors;
the subgraph p must have the functional capability previously
represented by the arc P.

We can regard the graph || as operating in some environ-
ment from which programs are selected, attached to arcs at the
initial node, and detached later at the terminal node, then to
return to the enviromment which acts as a source and sink.

A team operates in an analogous fashion except that in the case
of a team the enviromment is a source and sink of processors.
We see that in the case of a team the enviromment provides ﬁet
elementsy and in the case of a net it provides team elements.
The process of attaclment and detachment may be regarded as a
control algorithm whose properties are symmetric between these
two activities. In both cases arc traversal represents the
execution of some stage of an overall task. We now define a
particular graph T in relation to a team represented by a
graph z:. In the grapthr there is an arc P for each member

(arc S) of the team, which represents the processor drawn from
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the enviromment of Z; to execute that member.

The arc P has as its initial node a memory element
containing all data and status information needed by the member
S to commence execution. The = terminal node of the arc P is
a memory element which will contain all output and status in-
formation produced by the team member S, after it has completed
execution. Under these conditions it is quite clear that the
graphs M and [, are isomorphic. The graph'Tr which exactly
corresponds to the hardware needs of the teanlz: is its hardware
dual. A team z_ which exactly uses the net M is the software
dual of that net. The isomorphic graphs T and Z: may be
considered as a mapping of a computing function between two

spaces which could be called hardware space and software space.

At any given instant the state of the computing activity
represented by‘Tr and Z' can be characterized as follows. Any
arc in either graph which has a member of its environment
attached to it is termed active. The point on the active arc
S of Z; which has been reached by the processor P in its
traversal, at the instant under consideration, is called the

contact point of the arc P on S. The location of the contact

point is an indication of how much of the process represented
by arcs P and S has been completed. The point on the active arc
P of W reached by S is called the contact point of S on P.
Its location represents the amount of the processor's allocated
resources which have heen used by the program S.

At any moment the only interaction taking place between

hardware and software is at the contact points of the graphs [

and 1r .
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The remainders of the graphs are not in contact. The state of
the computing activity is determined by the set of contact points.
The performance of some task can be regarded as a traversal of
both graphs by a set of contact points. This set can be thought
of as a cut on the graphs, with past activity on one side and
future activity on the other- Clearly not all of T and 2 need
to coexist at any moment, since all that is necessary for
completion of the computing process is the existence of the

parts of the graphs immediately required by the cut.
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3.2 Recursive structure of SIGMA and PI graphs.

This section provides a recursive description of the T and
z graphs described above. Two types of recursion arise in
connection with increasing the information stored in such
graphse The first is that the addition of nodes and arcs to an
existing graphy where the nodes and arcs are of the same type
as those already there, produces a new graph. The second is
the replacement of an arc by a subgraph. The nodes and arcs
of the subgraph need not have the same properties as those of
the parent graph. This fact is indicated in the representation
by entering the subgraph with a special type of arc name a
down-arcy and leaving by an arc named an up-arc. The subgfaph
has no other topological connection with its parent, and is
said to be one level of detail deeper, (down level and up level
will be used interchangeably for down-arc and up-arc). The
nodes at each end of a down or up-arc can be regarded as
different views of the same event or information. In fact up-
arc and down-arc are analogous to the block delimiters begin
and end in ALGOL.

The highest level of the graph is level one. This level
is regarded as being entered by a down-arc from level zero, which
ig the universe in which the system being represented is embedded.
This may be shown as a single node at level zero. An exaﬁple
of how a graph might appear viewed at levels zero through
three is shown in Fig. 3-4. In fact the levels can be regarded
as horizontal planes containing graphs with a down or up-arc
being a vertical line connecting superposed nodes in adjacent

planes. This is shown in Fig. 3-5.
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Level n + 1 holds the fine structure of arc (a,b)
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These types of graphs can be represented as list
structures inside a computer, each node being a variable length
table containing the data attributes of the node, followed by
a variable number of pointers to other nodes (these are of
course the arcs), each pointer being followed by the data
attributes of the arc. Fine structure can be inserted or
deleted by linking or delinking sublists at the appropriate
level (up and down level pointers would be recognizablyptagged).
An example is shown in Fig. 3-6.

In a I: graph there can be more than one down-arc
pointing to the initial node of a subgraph, and corresponding
to each of thesey an up-arc to the appropriate terminal node
in the higher level graph- In this situation the subgraph
corresponds to a procedure or subroutiney and each down-arc-
up-arc pair corresponds to a call on the procedure. Clearly
when such a subgraph is activated during graph traversal, the
controlling algorithm must retain records of the activations
in order to return the cut to the upper level via the correct
up-arcy as is indeed the case with a real procedure or
subroutine call.

Furthermore if an arc S of‘Z invokes 2: itself as the subgraph
of S we have a recursive situation since the activation will
continue down through an indefinite number of levels until an
escape path through Z s not including Sy is activated. Such
a z: graph can represent a procedure which recursively calls
itself. In this case the control algorithm will be required
to produce and order the dynamically generated down-arcs and

uparcs. This is shown in Fig. 3=7.

63



-,
e,

.
-
POINTERS ™o ‘

from
other
nodes

L lenglh of 6odc | /"
data sttributes g
of this ncds

b

_/ re

arc

data

length of nocds

data attrioutes
of this node

oy
4
H

arc
arc data ;
|
) .
) | arc iwwﬂ
/,.-——4 arc ! arc data i
/i arc dsta ! ‘
1 R / arc " 3 \"\\
1 - \ arc data S
- \ 4
yd
\
~ \
sdown level
4 N\
/*’ Y up level
N
~
\
~ AN
- N
~
~
Sublist of nodes N
representing ihe \
fine strucbure of i ! S \
Arc fa,bi { § {
H i %
! t ;
; P '
i S
‘ : ! .-
| i
i {
; i
é
f
& v can be linked in oo shown by the dotted lines,
and the up ond down level pointers mist be tagged in the
node tables in which they occcur.
Filg.. 36 Iist structure representa

Lo showing subgraphe




Graph

—
Fig. 2-7 Pecursive call of I by itself.




A recursive definition of these types of graphs is provided

below. A slightly modified Backus Naur form has been used,

which uses set operators and substitutes a connection operator

for the sequencing implicit in expressions such as <a><b>.

<deep graph>::=<down=-arc>+<process graph>*<up-arc>

<process graph>:!::=<initial node>*<<Ledge>set><graph>-<Ledge>set>

‘<terminal node>l<initial node><<edge>

*<terminal node>l<node>

<graph>: :=<<node>set> <<edge>set> <Lgraph> |<<node>set>

<edge>::=<deep graph>l<arc>

<element>set>: i=<<element>set>UCel ement> <element>

<U>::=<set union operator>

<">:i=many-to-many connection operator>

66



3.3 Ixecution of a process by a processor.

This section developes some functions which we suggest
provide a description of the processing of a single element
S of a team z:. We shall presuppose the intuitive idea of
computing power, and some measure of progress through a
program. Such a measure of progress may be thought of as a
quasi-distance s.

We approach the subject from the point of view of efficiency-
Efficient use of a piece of hardware over a period of time,
is the continuous usey over that period, of all externally
visible_functions of the hardware. For example, if a
processor has the ability to perform twenty types of
operations and is used by a program which involves only five,
then three quarters of the hardware is idle while the program
is executing. Inefficiency is the execution of a program by
hardware of a greater computing power than that required by
the program.

We now define an ideal processor P

0 for a given program

S. Pb has the property that its hardware varies in such a way

that at any given point in the program, P

0 consists of only

that hardware needed for the program to advance at that point.
This is equivalent to saying that the computing power of PO

varies along the arc S in such a way that is completely

0

efficient at all states s of the arc S (by stage we mean the
quasi-distance s).

We define the computing power of P. on S to be a function

0
p~(syu)y not necessarily scalar, at any stage s; u is a
0 y

parameter which determines the relative speed of the processor
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concerned. Thus processors P1(u) and P2(2u) are identical in
structure but all components of P2 work twice as fast as those

of P1- Suppose P, operates for a amall time &t at stage s
and advances through S by &s. We then define the amount of

computation done as

8w = p,(syu) &t
and the computation density as

j(s) = &w/Ss = po(s,u) 8t/ &s
The & notation here does not indicate the infinitesimals of
calculusy but very small quantum jumps, which may be regarded
as a step-wlse approximation to such infinitesimals. The
reason for this is that we are considering digital computers
with discrete machine states. Because of their binary structure,
transitions in such machines will have a quantal nature.
Consequently the functions we shall deal with map onto integer,
rather than real, spaces, and the processes involved may be
regarded as atomic, or discrete, in their behaviour. In what
follows the integration sign will be regarded as the analog
in such spaces of the real integration operator.

We can now define the time taken by PO to execute S as
b

T = i(s)
0 k%;TE:ET_ ds

and the total computation done on the arc S as
b b

. 3
W= j(s)ds = po(s,u):;E ds
a a

We now suggest that any processor P other than PO will have a
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p-function, p(ssu) which describes the computing power of P at
stage s of the program S. This p-function is an expression of
the hardware present which can be applied to the execution of

S at the stage s. Hardware which cannot be used at this stage
cannot contribute to the instantaneous computing power of P at

s on 8. We can now say that if,

p(syu) < po(s,u) P cannot execute at s,
p(syu) = po(s,u) P executes completely efficiently,
p(seu) > po(s,u) P executes faster than P, but not efficiently.

The last inequality indicates faster execution by P of stage s,
else we would have extra hardware in operation producing no
detectable differences from the behaviour of Fb. In the latter.
situation we cannot say that P has greater computing power than
RD' Furthermore, if P executes stage s faster than PO' its
hardware must differ from that of RD’ and cannot therefore be
efficient in the way defined above. In general, if p(s,u)}po(s,u)
for s € (ayb),y then the time T for P to execute S will be less
than qo, and P will execute inefficiently. We can see that for
the class of processors with the same u, no processor can execute
S more slowly than RD' A program is strictly sequential if TQTb
for all P such that p(ssu) 3 po(s,u) on s € (ayb).

For the time being, we shall define the range r(pys) of a
processor P at stage s as the distance through which P can advance
along S, without the intervention of some controlling algoritim.
Since po(s,u) defines the minimum power to progress along S it
also defines the minimum or quantal range ro(s). If the time
taken by P, to make the quantal tramsition from s to s + qo(s)

is Y\O(u), we can write,

j(s) ro(s) = po(s,u) no(u)
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If s = ﬁg and the succeeding quantal stages are Sq9 5o 53,

and so onsy then we can picture the range of a processor Pi as

in the Fig. 3-9. The distance between points sy and si+1

represents the time ']O(si,si+1) for RD to advance from stage

=N to stage S; 41" The distance from point S; to sj represents
the time ‘](sfsj) taken by a processor P, whose range at S5 is
to Sj’ to advance to that stage. For example, the processor P1,
shown above, has a range r(pq,so) = (ﬁg’ 52) and takes a time

n1(so,s2) to reach s, from s.. Since P1 is more powerful than RD’

2 0]
nq(soas2) <no(so,s,1) +“O(s1’52)
We can envisage a whole series of processorsy or 'power levels',

P

Pq’ P2, z1 e - which correspond to the quantal stages Sq1 S
53, - -« - The relations between them can be expressed as follows:
r(po.S) = (SO’S’I) qo(so’sq)
r(pq,s) = (50,82) “1(50’52) <‘]O(sq,s2) +,]O(SO’S1)
r(p2’s) = (SO’SB) q2(50’83) <"O(S2i53) +'\1(SO,S2)
until,
r(p;2s) = (5508, ) ;“i(so’siﬂ) < Mplsgasyy ) +Th_(spesy)

Each processor Pi is more powerful thanji, but less

+1
efficient over its range. When we say that pi > P, we mean that
there is some hardware of Pi which is not needed immediately at

s for the next quantal stage, but that will allow P to reach

s + r(pi,s) in a time‘r'i such that,

s+r(p1ys)

y].<S N, ds

1
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s+r(pj,s)

If T\j = ’\O ds for all j < i,
s
then we say that S is strictly sequential from s over the range

r(Pi’S>-

The extra hardware which allows Pi to reach s + r(pi,s)
sooner than RO’ will be termed redundant hardware. The redundancy
of P, at s is

i
c*i(s) = pi(s,u)
Poz S,u)
If Pj possesses hardware extra to that of Pi’ r(pj,s) = r(pi,s)
and')j =V]i.then the extra hardware in Pj is termed superfluous.

For a processor P with range r at s we can write,

St+r
ES j(s) ds = w(syst+r) < p(syu) Y\(S,s+r)

equality occurting only if P is RO' The loss L is a measure of

the inefficiency of P over the range r which gives rise to the

above inequality.

S+T
p(syu) - po(s°u) dt

ds
as
s po(s,u)

S+r
Ss (;(i(s) - 1) %% ds

The expressions derived above represent an attempt to
characterize the traversal of an arc S by a processor P. The
concept of function dispersal is automatically dealt withy since
if the hardware of P is oriented towards a function S then p(syu)
will tend to pb(S,u). How closely p(syu) approaches po(s,u) may

be regarded as a measure of function dispersal.
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We use these expressions to suggest that there are two
distinct measures which characterize processor usage during
arc execution. The first of these we call utilization.
This is the proportion of the processor which takes part in
the arc execution; that is, the proportion which is not
superfluous. Naturally such a measure implies some means of
gquantifying the proportion, and we shall pursue this topic
in the next section.

The second measure we propose to call efficiency.
At any point s on the arcy or any instant in time, the efficiency
is the propertion of the utilization which would be required
by an ideal processor executing at that point; that is, the
efficiency is the inverse of the redundancy. We can extend
these definitions to cover sections or periods of arc
execution. In this case the utilization consists of all
elements of the processor required by the section; the
efficiency will be the distance or time integral of the
proportion of this utilization which is in use.

Multi=-programming, or hardware sharing, can also be
representedy since from the point of view of an arc S,
a period when its processor is executing on some other arc may
be regarded as having = O for that time. In fact pure storage
and/or waiting time can be represented by dummy arcs with p = 0
for all s. Such an arc may nevertheless require memory elements
and hence still represents a use of net facilities.

In its most general form an arc is a store (M) to store
(N) transfer via a processor (P). Conventional execution can be

shown as an arc with MEN and P > PO; storagey as an arc with
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MZN and P = O; and data transfer as an arc with M,’(EN and

P = PI’ the rate of transmission being purely a function of u.
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3.4 Allocation of a processor to a process.

This section deals with the problem of allocating one of
z number of processors to a software task (processj, and the
derivation of some measures by which such allocations can be
judged. The situation under consideration is the behaviour of
a processor P when allocated to execute the software task
represented by an arc S of a team graph Z .

The execution of any software task is regarded as a
chain of stages. Each stage is such that the processor can
execute it as a single indivisible operation. That is to say
that the processor can provide a hardware realization of the
stages so that once the stage is initiated it will achieve its
terminal state without further intervention. On completion of
a stage the processor must be reconfigured to become a realization
of the next stage. Thus the execution of an arc S will be a
sequence of hardware realizations of stages of S, with each
stage requiring a reconfiguration of P. The part of P
responsible for the realization of software stagesy i.e.
reconfiguration; will be called the controller. (See Fig. 3-10)

It is clear that the division of S into stages will depend
on P. The arc S is a description of a task to be performed,
withcout reference to the processor allocated to ity i.e. machine
independent. S « P is the division of S into stages realizable
by Py and is therefore machine dependent. The division will
obviously be different for different processors, with only the
initial and terminal nodes (a and b) remaining the same. This
is the mechanism by which allocation of P to S makes S machine

dependent.
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It was stated earlier that a stage is executed as a single
indivisible operation. What is meant here is that this is the
case as long as we are working at the level of the subgraph
of which S is an arc. It is not meant to deny the existence
of a fine structure for S, which could be examined by the insertion
of subgraphs at a lower level of detail.

The controller mentioned above may be regarded as a
hardware program, whose input data is an instruction stream
which acts on the rest of the processor as if it were a data
structure. The controller may in turn be regarded as a
realization of the manufactured processor, initiated by the
JON/OFF switch of the computer. Reconfiguration of the controller
(equivalent to changing the meaning of the instructién stream)
is not general, but is possible on some machines where it is
called micro-programming, and usually requires manual intervention.

Micro~programming under program control would clearly
require another level of hardware controlling the reconfiguration
of the controller. This level would need its own instructions,
which could possibly be provided by the expedient of an escape
code in the insturction stream. (See Fig. 3-11)

Whenever it is possible to allocate one of a group of
processors to a process, it is desirable to make the '"best"
choice. The agent of the choice may be an operating system,
systems analysty or any other entity controlling the execution
of software tasks. The criteria by which the goodness of an
allocation is judged may vary from situation to situation,
and in relative importance. TFor the purposes of investigating
team execution on a net, an attempt is made below to develop-

criteria and procedures for evaluating processor allocations.
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We do not claim that these are the only or the best possible
criteria and procedures, but that they represent an interim
solutions which allows the main investigation to go forward.

We will cheracterize the processing requirements of
arcs in a subgraph & by a number n (& ) of realizable software
functiors. The number and nature of these functions will be
arbitrary except that they will be constant over ¢, and
sufficient (from the point of view of the entity controlling
the allocation) to characterize all the software tasks which
occur in O~ .

Any processor P which is to be evaluated as a potential
executioner of § will have associated with it data on its
characteristics with respect to each of the software functions
used in the description of & . (See Fig. 3-12)

The behaviour of P in executing a particular function will
be characterized by the measures listed in Fig. 3-13.

In addition two derived measures from the previous section
will be used. These are the efficiency (Ef) and utilization (Ut).

In terms of the measures defined they will be taken as

B.
J
Ef = X: tj/TiBi
J=1
and,
Ut = B, /Bp

We will not make use of Measures 3)y 5)g 7) in our initial allocation
algorithm. It is remarked however that the time taken for a
transfer of data between two sets of store cells will be an

increasing function of the complexity of the gating pattern of
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Fig. =12 Necessary correspondence between data for P and S.
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1)

2)

3)

L)
5)
6)

Time (Ti) for P to execute the i th function. The unit of

time will be taken as the time for P to transmit data between
two store cells, when not limited by their speeds. This
corresponds to the U parameter of the previous section,

The totﬁl number of store cells in P which can be used

during data transformation (Bﬁ)' This is a constant for

the processor.

The total number of data peths in P which can be used

during data transtormation (Dp). This is a constant for

the processor.

The number of store cells required to realize the function (Bi)'
The nuwber of dats paths required to realize the function (qg).
The time tj that a store cell j is in use during the reslization
of the function.

The time tj that a data path j is in use during the realization
of the function.

The cost of the processor P per unit of time (cp).

Fig, 3-1% Measures chbaracterizing function execution.
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the pattern of the transfer. Thus the more complex the
transformation occuring during transfery, the longer the sets of
store cells will be in use. Consequently such complexity will
affect the value of tj to some extent. This perturbation of the
tj will be regarded as a sufficient interim measure.

The allocation of a processor P to an arc S of a subgraph
described in terms of n (O7) software functions will be
characterized as follows. Suppose that the i th function must

be executed ¢i times. Then the total time to execute the arc is
n
T(8) = 212.1 .9,

and the total cost is CPT(S). The average efficiency is

n n n i
.Z EfiniTi Y- inT E /3 E QfT
1= i=1

From the definition of utilization we can say that the
utilization for complete arc execution will be the union of the
function utilizations. By this we mean that if a component of

the processor takes part in the execution of a function it there-

fore takes part in the execution of the arc. Consequently we say

arc utiiization = B(S)/B s where B(8) is 3 B
i=1
As this last measure is somewhat unwieldy we may use Max (Bi)
or Average (Bi) at times.
These measures will be calculated by a matching procedure.
This will check that the processor P can in fact perform the
task Sy i.e. that for all functions for which ¢i is non-zero,

Ti and Bi exist. In the case where simultaneous or overlapping

demands for a function may be made by a process (or processes)
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from Py a version of the matching procedure could be provided
which would simulate the execution of the stages of S. The
order of execution would be a function of a statistical
distribution to be specified by parameters in the procedure
call. This version would be used to derive measures similar
to the above in hardware sharing situations. The choice of a
processor can now be made using the following criteria:-

1) that P can in fact execute S

2) that T(S) satisfies any time constraint on S

3) that T(S) is minimized

L) that average efficiency be maximized

5) that arc utilization be maximized

6) that a cost function involving the above and also the‘total

cost be minimized.
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3.5 The hardware allocation problem in team execution.

This section deals with the manner in which hardware

can be allocated to the various elements of a team,

zillowing it to progress to completion. We make the preliminary
remark that there is no loss of generality in considering one
team. If there are several teams within the same computing
systemy there is then an implicit graph at a level above, whose
elements are the individual teams. Occurrence within the same
net implies an interaction, if not a logical one then at least
one of hardware reqguirementy between the several teams. Such
an interaction and its associated controlling mechanism will
appear as a process which can be described by the 2:=graph
representation, and has the original teams as components, which
in turn will be sub-levels of this graph. Analysis of this
graph would then include analysis of the individual teams
impiicitly.

We now define the cut mone to be the set of arcs of Z: on
which there are contact pointsy together with their initial and
terminal nodes. We also add an extra chain to the graph named
the idle path. This is essentially a dummy process which
requires all unallocated hardware. We can picture the
horizontal direction within [; as a time axisy in which case
progress occurs as the cut moves from left to right acrosssz:.
We have stipulated that all reconfiguration (reallocation of
hardware to software) takes place only at a node, and
consequently there will be a node on the idle path for, and
vertically belowy every node in S:. There will be a contact

point on the idie path lying between the nodes corresponding
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to the most recent reconfiguration and the next one. This
rapresents execution of the null program by all unused hardware
of the net. Thus we can see that all hardware of the net is
allocated in the cut zone, and conversely that an inventory of
hardware across the mone will yield a sum equal to the total
resources of the net, and will be constant in time.

The problem we wigh to solve is how we arrived at an
existing allocation in the cut zone, and how the cut will advance.
The state of the cut zone is a direct result of the application
of some allocation procedure at the preceding nodes of Z .

Thus a clear subproblem is how the state of the cut zone will
alter as the cut crosses a nodey and an allocation procedure K
is applied. Analysis of successive applications of K at all the
nodes in turn ss the cut progresses through them, should provide
a prediction of how the team : will execute under K with
constraints M (the nature of the available hardware, i.e. the
net T, is a parameter for K.

The following general comments may be made about K. The
aim of the allocation procedure is to execute the team at least
cost within scme time constraints. These constraints may be
the execution of the team as a whole within some time Ty or the
requirement that the cut reach certain nodes by certain times
Ti. We assume that there will be a cost function associlated
with the elements of T , which may be a function of economic
costy or of computing power (the p-functions mentioned
previously). It is highly probably that K will have to deal with
a priority =tructure when msking its hardware allocations,

since priority demands are not generally equivalent to completion
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constraints. For example, requiring an arc to be executed as
soon as possible is not a time constraint, and must be expressed
in terms of a priority. The question also arises as to the
distance ahead in ). over which K will attempt to optimize
its allocation. The minimal case is to consider only the cut
zone, while at the other end of the spectrum an attempt can be
made to optimize over a complete subgraph. This distance ahead
will be termed the horizon of K. For reasons which will appear
iater, some of the data attributes or structure of L. within
the horizon may not be known at the time that K makes an
allocation. Thus there must be facilities in K to perform a
partial optimization with whatever data is available. In
passing it may be noted that for a simple enumerative optimizing
technique the computation performed by K goes up exponentially
with the distance of the horizon.

There are two situations in which we can expect to use K.
The first is as a part of the controlling mechanism of a real
computer system. The second is the analysis of some givan]i
graph to determine its behaviour when executed on T under K.
The difference between these two situations are significant
enough to warrant mention. In predictive use the potentially
available horizon of K will probably be large, as data will
be given for the whole graph at the beginning of the analysis.
In control use there is likely to be much less datay a smaller
horizony and the description of the part of Z. within the
horizon is likely to be incomplete. If the state of the cut
zone proves unsatisfactory on some application of K, e.g.

failure to meet some constraint becomes inevitabley then in
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predictive use K can notify the analysis procedure A which

may back trabklthroughf: s reparameterizing and restructuring
as far as necessary to correct the problem. This action is of
course impossible in control usey and some means of escape

must be provided when there is no allocation which will

produce further progress throughz . Furthermore, in control
use 5: is being continuously created, both by input to the real
systemy and by the results of current processing.

We now consider what takes place as the cut crosses node K.
Firstly it is necessary to deal with the memory associated with
node k. This can be characterized by an n =< m matrix, where
m is the number of arcs (i,k) entering the nodey and n is the
number of arcs (k,j) leaving. We then have F’?j as the amount
of memory of node k containing data produced by (i,k) and used
by (ky3).

The total memory of node k used by arc (k,j) will be written
as 'J}; = zn.l:,l ‘Jl;j. Consequently an arc (k,j) will use a
processor ij for a time Tkj and will need an amount of memory
for this period equal to h’? + f’i. We shall leave aside the
question of scratch memory for the time being, except to comment
that it will be consideréd together with the allocation of ij,
rather than M ? and rli. This is appropriate, since firstly
scratch memory may be reasonably considered as an extension of
é Processory, and secondly because the amount needed tends to
vary with the processor allocated rather than the initial and
final data sets.

In a CPM type representation nodes represent a strict

logical dependence, i.e. all OUTarcs (outward arcs) require
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all INarcs (inward arcs). The case where some OUTarcs require only
certain of the INarcs is dealt with by the introduction of dummy arcs
which specify logical dependence. An example is shown in Fige. 2-16.
Herey & requires a, b and ¢y but d requires only a and by so that
a dummy arc (i,j) is introduced showing the logical relationship.
This sort of treatment is equivalent to specifying l,ij > 0 for
all iyj. For z:ngraphs we shall not make this restriction and
will deal with logical dependence by means of the node table.
If (kyj) is independent of (i,k) this will be indicated by
writing ’J?J = 0.

When the cut crosses node k{all processors Pik become
available; all initial nodes of the arcs (i,k) leave the cut
zone, all final nodes of the arcs (k,j) enter it; processors
ij and memories r’§ are allocated; and all memories ﬁ’i become
available.

It is possible that the arcs (i,k) are not synchronized
to end at the same time. Furthermore this may remain unknown
until as late as the allocation of the last arc (isk). Such
situations will be dealt with by the introduction of a dummy
arc and node for all but the last process/processes to end.
These represent storage (P = @) of output data sets until all
INarcs complete. An example is shown in Fig. 3-16. Clearly

1 k k

VikEFiE’JlandPlksﬁ.

For the storage arc (l,k) we have fji E?’J?, that is to
say that they denote the same piece of physical memory. The
dummy node 1 allows the freeing of Pik and any scratch memory
associated with ity and also of }Ji, at time tl instead of tk.

The introduction of such a storage arc may be done as part of
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Fig, 3-16 Use of dummy arcs.
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some analysiss or by K itself as part of its-optimizing
technique. Depending on cost function it may or may not be
desirable to synchronize completion times of the INarcs (i,k).
For a particular application of K it will not in general be
possible to calculate the completion times of all nodes in

the cut zone. A sufficienty though not a necessary, condition
for the completion time of a given node to be calculable

is that the cut has passed all its predecessor nodes.

A similar procedure to the above can be followed if K
cannot find a processor to allocate to some arc (kyj). This
is to create a dummy node between k and j scheduléd for the
time of the next node on the idle path, and a dummy arc
representing storage of the input data set until that time. Again

1 k k 1 k
Pq =¥ and ij=Vj=P1andFk‘='Pl

When we consider several levels within the Z-graph the
analysis becomes more complex. Firstly to reconfigure/
reallocate at a level up from the one we are considering means
scamming back to the last down-level and forward to the
corresponding up-level, and reallocating for the subgraph. The
allocated resource itself has a described fine structure so
that we still have a non=trivial problem at the sublevel.

Traversal of a contact point at level n is the equivalent
of traversal of € by a cut, and the allocation analysis, at
level n + 1.

There is clearly a larger overhead in reconfiguring at
the upper level, since this is not just a reallocation on the
¢ cut at level n + 1, but a change of total resource across

it by reallocation at level n, and possible introduction of a
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dummy node at that level to allow this. Moreover a wider area
of [ is now affected.

A general scheme of predictive analysis might be as follows.
A graph analysis algorithm A applies K to successive nodes of
Z. y and accumulates the resulting information concerning
completion times, lossy redundancy, superfluity, efficiency,
and so ons throughout i « This will then provide a picture
of how [ will execute on W wunder K. Improvement of such
execution may be possible by modification of K, alteration of
the net Tr, or restructuring of Y . The necessary changes will
be determmined by A aftery and in some cases during, its pass
through [ . The process can then be repeated until some desired
characteristic is achieved. An important procedure will be the
arc analysis procedure S, which evaluates the execution of a
single arc with a particular processor. This arc procedure
may be regarded as the escape condition (in a recursive sense)
of A. Consequently for a subgraph O inserted in place of
an arc (a,b)y K will call S for each processor allocation it
considers with parameters (a,b). S(a,b) will then find a
down~level indication and consequently call A(C ). Only when
A(®) returns, can S(a,b) complete and ACL) Progress.

Overhead at a node may be regarded as the amount of com-
putation performed by K at that node. Consequently overhead
will exist at all levels of Z . In the case described above
there will be two distincf overheads associated with node a.

At the upper level, that of ali‘o\cating resources to the OUTarcs
of ay and at the sublevel, that \bf all the node allocations (calls
to K) within & (by A(¢)). At the highest level fhe allocation

procedure becomes the attachment of Z to some net Tr.
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3.6 Properties of nodes in SIGMA and PI graphs.

A way of matching the arcs of team and net graphs has Been
described above. This matching forms part of the overall
process of binding a z-graph and a Tr-graph. Binding
establishes a correspondence between datasets and stores,
processes and processorsy in order to execute the function
described as a z-graph.

A matrix representation of dataset requirements and
repartitioning has been put forward. It is clear that each arc
has an initial and terminal dataset. The initial dataset may
be comprised of data from several sources, and the :final one
may supply data to several succeeding arcs. The logical
dependence of one arc on another is equivalent to one arc
requiring at least a part of the data produced by another as
a part of its own initial dataset.

It is this logical dependence and interaction which a
node represents, and which determines the arcs entering and
leaving that node. With the above modelling it is therefore
a truiem to state that an arc has only one initisal and only
one final dataset, since by definition they contain all data
required and produced by the arc. The initial dataset of
an . . OUTarc is the product of repartitioning the datasets of
at least some of the INarcs, and once created can be
considered as a unit. A consequence of the repartitioning
requirement is that the datasets must reside in the same
storage medium. Otherwise repartition produces an initial
dataset comprised of data on several storage media which

conflicts with the model of arc execution developed so far.
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This leads us to specify that an arc has only one
terminal and one initial dataset, and that each dataset
resides in only one store. In fact no loss of generality
is involved since a process which uses data from more than
one store can always be represented as a Z:-graph of ares
for which the above is true.

The assumption that interaction between processes takes
place only at a node is equivalent to the independence of
arcs. This independence leads us to require that the data=-
sets of an arc are disjoint from those of other arcs. TFor
exampley if the terminal datasets of two arcs are not
disjoint then the values of the data are not determined,
since one arc may overwrite or. alter a datum produced by the
other. Further if the initial and terminal datasets are
bound to the same area of physical storage the indeterminacy
extends to initial datasets. This problem has been dealt
with in real computer systems by an interlock on store areas
preventing simultaneous writing by several processors. Read-
only storage is of course not subject to a logical limitation
of this type. Dijkstra provides a software version of this
interlock by the use of P and V operators. Any computation
where two or more processes ostensibly access the same dataset
must in fact contain some interlock to ensure determinacy of
the results. This can be modeiled with a z:—graph adhering
to the criteria developed above.

It may be briefly mentioned that all data produced by a
process is used in repartitioning. Data which was not used

would be lost to the task in so far as no process would use
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REP’[O, j] = nodenumber of j th outarc's terminal node.

REP [0,
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Tig. 18

0] may be used to hold the nodenumber of this node.

used by J th outarc.

Repartition matrix REP of s hode.
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ity the execution of the task would not be affectedy and the
corresponding storage would be discarded after repartition.
Thus there would be no point in producing it. This is a way
of saying that the row sum of the repartition matrix is equal
to the size of the dataset produced by the INarc corresponding
to that row.

We can now describe the way in which binding occurs.

We have a task whose cut has reached a node N and an ©UTarc S
whose terminal node is N'. The node N is attached to a store
M in a TT-graph. The OUTarcs of M represent processors P
which may read from M and produce datasets in stores M'. When
all the non-zero REP (i,j), where j is the column of REP for
OUTarc S, have been produced, we must choose one of the Ps
and allocate it to S. In general we can choosge only from

the subset of the Ps which can execute S.

This subset in turn determines which M' we can use for
the terminal dataset of S. Thus the particular software
functions required by S constrain our choice of P and M'.
Further we must reject any M' which cannot contain the datasets
of N'y since they may all be required simultaneously. However,
we need not require that the chosen M' be empty. This is
because the presence of data in M' only has the effect of
delaying execution of S. On the other hard the existence of
such a delay may make the choice of M' non-optimal. We can
gee that in fact the first INarc of a node to be attached to
a processor will also determine the store to which the node

is bound.
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1) N is aiready bound to M.
2) S is ready to go (all parts of initial dataset produced).
3) The functions required by S resrtict us to only some of the Ps.
4) The total memory required at N' restricts us to only those
Ps with M's of sufficient size.
5) Choose a particular P and its'M‘ from the subset produced

by steps 3) and 4).

Fig. 319 Binding of an arc S and its terminal node N'.
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When the cut reaches a node then all the OUTarcs and their
terminal nodes will undergo binding as above, and it is in
this way that the computation progresses. We make the
following comments about possible binding situationse.

It is possible to have more than one arc between a palr of
nodes N and N'. This represents two or more processes using
data produced by one group of source arcsy and providing data
for a single group of successors. The hardware dual is the
existence in a net of more than one processor which reads from
M and writes to M'.

It is also possible to have arcs with the same node as
initial and terminal node. This represents an arc producing
data required in its own initial node. This construction will
be used later in this section. The hardware dual is a processor
which reads fromy, and writes to, M.

If none of the processors P which are OUTarcs from M can
execute the arc S, we can say that the program has failed.
The failure is of the "impossible function'" type, for example
trying to rewind a card reader. This type of error arises
because of faulty program specification, or a faulty allocation
at some earlier stage. Such an allocation may have a variety
of causes.

If the choice subsets described earlier are disjoint,
then the allocation problem is greatly simplified because no
processor is suitable for more than one OUTarc of Ny i.e.
there is no competition between the OUTarcs of N for any processor.

If the store M' has a amaller capacity than that required

by the group of datasets of N'y the team cannot be executed as
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it stands at this point. However this may be circumvented
(either automatically or by redesign) by reorganizing the
5:-graph at this point into a number of nodes of sufficlently
small regquirements. This is strongly analogous to the paging/
segmenting techniques used to solve this problem in actual
computer systems.

We suggest that an important criterion for the logical
consistency of a program is that two (or more) arcs should.not
specify the same terminal node N' when their arc functions
imply different terminal stores M'.

The rest of this section deals with loops and branching
statements in programs. We will deal first with the
representation of branching, since the description of a loop
is trivial if an adequate versions of the fommer is available.

Branching statements will be represented as arcs which have
the same node as initial and terminal node. This has been
mentioned as a possible construction above. The essential
aspect of branching is the performance of a test on a dataset
(possibly consisting of only one bit) and the choice of some
course of action from several as a result of the test.

Clearly branching in its canonical form does not transfomm
a dataset, though branching may be combined with transformation
on a level macroscopic to the testing mechaniam.

We ghall allow that an arc representing a test will need
only one of the parts of its initial dataset present to be
initiated, and that only one of the parts of its terminal data-
set will be produced as a result of this initiative.

This terminal part will be logically the same as the initial
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part which enabled the test. A delay may or may not be
associated with the testy and in general this type of arc
will be similar in all respects to an arc with distinct
initial and terminal nodes.

A test will thus provide a part of the initial dataset of
one of a subset of the OUTarcs of the node at which the test
occurs. This OUTarc is the arc which will be executed (if
possible) in the particular realization of the E-graph
during which the test is made. Consequently we will provide
a means of disabling the remaining OUTarcs of the subset,
since they must not be executed unless re-enabled by some
subsequent application of the test. Such a mechanism also
allows us to distinguish between arcs whose initial datasets
are disabled and those which are merely waiting for their
production.-

Thus all possible branches will be represented in the
EZ-graph, but a particular realization will bind a unigue
selection of these while disabling the rest. This is
equivalent to saying that for any given execution of a
program only one of the possible paths through it will be
taken.

The hardware dual of this situation is the ability of
a processor P to write to several stores M'. Clearly when
P is allocated to a process S, because the process has only
one terminal dataset, which resides in one storey the other
possible configurations of P will not be used. All possible
configurations will be represented in the corresponding

TT-graph as arcs between M and the stores M' to which P can
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write. Only one will be used in any particular realization
of S on the'"ngraph, and the rest will be disabled for the
period of realization.

In an actual computer system the cholce made during any
particular realization of a z:—graph will be data dependent.
Where an analysis is being carried out we have a number of
mechaniams available for making the choice. Random choicey
irrespective of which initial part enabled the test, random
choice dependent on the initial part, and either independent
or dependent presetting of the terminal part to be chosen prior
to the analysisy are possible methods.

Loops can be represented by the use of a test arc as follows.
The initial parts to the test are the first entry to the loop
and a subsequent entry. The terminal parts are the exit from
the loop or the body of the loop (i.e. a sequence of nodes and
arcs which leads back to the subsequent entry). Loops which
are a sequential representation of an inherently parallel
computation can be represented by their parallel form. Loops
which are iterated a given number of times will use the loop
counter as the datum for the parts of the initial dataset of
the test arc.

Finally we suggest that the REP matrix bears a strong kinship
to the precedence matrix for the INarcs and OUTarcs of its node.

As an example of the use of loops, Fig. 3-22 gives the REP
matrix for one process of the two process interlock algorithm
below. The algorithm is described more fully in Cooperating

Sequential Processes by Dijkstra.
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"bepin integer ¢1, ¢c2, turns

cli= 13 ¢c2:= 1; turni= 1;
parbegin
process 1: begin Al:icl1i= O3
L1: if ¢2 = O then
begin 1if turn = 1 then goto L
cli= 13
B1: if turn = 2 then goto B1
goto A1
end;
critical section 13
turn:= 25 cli= 13
remainder of cycle 1; goto A1
end;
process 2: begin A2: c2:= 03
L2: if ¢1 = O then

begin if turn

2 then goto L2;
c2:= 13
B2: if turn = 1 then goto B2
goto A2
end;
critical section 2;
turn:= 1; c2:= 1;
remainder of cycle 2; goto A2
end
arend

end''.
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Fig. 3-22 R-matrix for process one of Dijkstra's interlock algorithm.




3.7 Data dependence and reentrance.

There are two ways in which data can influence the processing
required by a program. These are by the size of a dataset, and
by the value of a data item. For example, an input operation
may be repeated until a special character is detected. In this
case the amount of processing is clearly dependent on the size
of the dataset for which the special character is a terminator.

Where alternative paths through a program exist the choice
of path, and therefore the processing done, usually takes the
form of testing the value of a program variable. In fact
dataset size and variable value can often be expressions of
the same thing. If the input operation above is counted then
the value of the count will express the size of the input data-
set. This count may be used in another part of the program to
control the size of an output dataset, or to select a program
path.

That is to say that any run of a program is provided with
the values of the data for the runy, and the size. The size
may appear explicitly as a particular value, or implic¢itly as
a delimiter. It is more general to say that the structure of
the data influences the processing performed by a program.
Currently, however, there are no widely implemented processing
units which can operate directly on the structure as well as
the value of data. Nor are there storage media capable of
directly expressing any structure except linear sequential
strings (of bits or characters).

Because of this much of the structure of a dataset is

expressed as additional values within the linear sequential
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moldy e.g. pointers, cross-referencesy subdelimiters, and so
on. The structure then influences the processing which occurs
by selecting the program path according to these additional values.

In the context of contemporary processors and storage
media there is therefore no loss of generality in describing
the factors which affect the processing of a particular run
as dataset size and value.

In a ¥ -graph (SIgraph; node called SInode) the data
dependency of the OUTarcs of a node on its INarcs is specified
in the repartition matrix of the node. That is to say that
REP [i,j] gives the proportion of the terminal dataset
of INarc i that is required by OUTarc j. These proportions
apply to incoming datasets of unit sizey e.g. one record or
character. The actual size of the terminal dataset will be
determined by a run-time attribute of INarc i, Ai'

If Di is the total size, then
Di = )\i %REP [ia.j]

The total size of the initial dataset Ej of OUTarc j will now be,
A; = Zi)\i REP [i,3]

This will in turn determmine the actual size of the terminal
dataset of OUTarc j, when it is executed. The factor A has
no effect on the characteristics of arc execution such as
utilization and efficiency. It is regarded as simply multiplying
the smount of storage required to hold datasets, and the time
required to process them. Consequently all Plarc-SIarc matching
procedures, and comparison of the matches will be independent

of the values of )\. Execution times will be % times those
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for Slarcs operating on unit datasets, and this clearly must
have an effect on overall subgraph execution.

It is often the case that a dataset is left unchanged by
a process using it. In such a case the dataset is still
available for other processesy and still useful since its
contents remain known. If the dataset is unaltered by a
processy then it may be used concurrently by another. This
type of data is called read-only and is often encountered in
programming systems. On the other hand data which is altered
by a process is left undefined on completiony and furthermore
cannot be used concurrently by another process since the contents
are unreliable. We call this data read-write data.

We would like a SIgraph to include differentiation between
read-write and read-only datasets. This can be done by the
sign of the REP matrix element which represents the dataset.

If REP [i,j] > O, then the dataset is read-write, and if

REP [i,j] < 0Oy then the dataset is read-only. The current
status of a SInode's datasets is held in a separate matrix ACT
of identical dimension to REP. If ACT [i,3j] = d, the dataset
represented by REP [i,j] is inactive; if ACT [i,jl > O, the
dataset is active. ACT is called the activity matrix of the
SInode.

With the introduction of read-only data it becomes clear
that a necessary corollary is some means of deactivating data-
setsy else a read-only datasety once activated, must remain so.
We now extend the properties of a Slarc to include a function
zero ( a SIarc is an arc of a‘]:—graph and is defined by
functions one to n where n is a parameter of the graph). This

function, PHI [0], is specified, like the rest, by the
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modelier. If PHI [0] > O, then the terminal datasets of the
SIlarc are to be activated, and if PHI [0] < 0, they are
deactivated. We define PHI [0] = O as taking no action
concerning the terminal datasets, and such an arc will thus
bring the allocator to the terminal node without affecting it.

In this it is the modeller's equivalent to an allocator
generated delay arc. Where PHI[O] is non-zero it is anticipated
that the numerical value may be used to define other subclasses
of terminal action.

Read-write/read~only datasets and activation/deactivation
SIarcs are logically complementary and allow alternative data-
set action at both initial and terminal nodes to be specified
within a SIgraph.

The selection of alternative program paths according to
the value of program variables cannot be accurately modelled
short of duplicating program execution with real data. To
correctly imitate the run-time choices, all variable values
involved in them would have to be derivedy by the same
algoritlms as used in the program, from the same data. Clearly
one might just as well execule the program under investigation
with some run-time monitoring to record all values and choices.
Neither is such an effort particularly rewarding, since the
results are relevant to only one run. Instead, we make the
assumption, in common with most simulation models, that for
sufficiently large numbers of runs the values of variables
used in choosing program paths will be drawn from recognizable
probability distributions.

This allows us to dispense with knowledge of the actual

data values of a program run. At each point of choice we use
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the estimated characteristics of the probability distribution
to perform the choice by random drawing. In a SIGMA graph
such choices are called IFloops (an arc with the same initial
and terminal node).

An TFloop is regarded as having its initial datasets in
column j of the repartition matrix, and producing terminal data
in row 1 of the same matrix, and will be activated by only one
of the elements of column j instead of all. On completion it
will activate only one of the elements of row i, instead of all.

The IFloop can choose the element to be activated by one
of several random drawing methods. The method to be used is
part of the data which describes the IFloop. Because of the
relation between dataset size and variable value, we include
the facility for an IFloop to choose the value of A by similar
methods.

Since,k has a multiplicative effect on execution time,
this is also equivalent to random drawing of the execution time
of an IFloop. For completeness this too is included in the
facilities provided in an IFloop, which can now be seen to
provide an adequate means of expressing and emulating the data
dependent aspects of subgraph execution.

We now turn to reentrance, which can be regarded as falling:
within the scope of a discussion on data dependence. Reentrance
is the property of a hardware-software system which allows it
to sustain concurrent executions of the same program.

We will call each such execution a transacgtion. A trans-
action is distinguished (and identified) by its data. If we

assign a unique integer to each transaction as it is created,
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then this integer will fomm part of the data, albeit only a
read-only datum. In a SIgraph the arcs may execute in
parallel. If the arcs are treated as representing reentrant
programs, then we may have more than one transaction per arc.

A set of active arc executions in a subgraph are logically
related if the are historically descended from the same
activation of the initial node of the subgraph. Such a set
has been called a cut, or cut zone, previously. Being
descended from one activation of the initial riode, the
members of a cut represent a single realization of the task
represented by the subgraph. That is to say the cut represents
one transaction executing the arc whose structure is represented
by the subgraph.

If more than one transaction is executing this higher
level arc, then there will be a cut active in the subgraph
for each transaction. If the executions of these transactions
are to retain the qualities of reentrance, then their datasets
must remain distinct and must not combine (by repartitioning
at a node) to activate any arc, since such an arc would belong
to both cuts, which would in consequence no longer be logically
distinct.

Thus we can see that reentrant execution of a subgraph
requires logical independence of each active cut. Since the
execution of individual arcs is already logically independent,
even with one cut, the requirement is that the datasets used
in repartitioning at any SInode shall slways belong to the
same cut. In practice this demands that each cut carry its

own status information about each of its active nodes.
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We call this type of execution completely reentrant (mode 3).

It is possible to derive some more limited modes of graph
binding as follows. If we introduce the condition that no cut
may activate an arc until the previous cut has completed it,
we are effectively introducing a first in first out discipline
within the subgraph. This is equivalent to requiring that
transactions at the upper level should always maintain the
same ordering (namely that in which they were generated).

We call this type of execution sequentially reentrant (mode 2).
It can be realigzed by requiring the executing allocator to
adhere to the condition stated above, and to queue (FIFO)
terminal datasets at their terminal nodes in the event of any
element of a prior one still being active at that node. That
is to say an incoming transaction on arc i will be queued

(iye. will continue to require storage) until all REP [i,j]
are inactive (all prior transactions on OUTarcs j completed).
The first transactions of each INarc queue will be used to
reactivate the node as soon as it has become inactive.

If we now eliminate the possibility of queueing datasets,
we restrict the execution even further. We now require that
not only will there be at most one execution of an arc taking
place at any given time, but also that there will be only one
realization of a dataset at any time. That is to say that
successive transactions on an arc read from and write to the
same dataset (i.e. there will be only one store image of the
dataset at any time). This type of execution demands that an
arc may not be activated by a transaction if the terminal

dataset still has any active components produced by a previous
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activation (mode 1). This restriction must be made since a
process may access its initial and terminal datasets at any
time while it is active.

Since transactions now use the same datasets, their
behaviour now corresponds to that of cooperating sequential
Processes as described by Dijkstra. This is so because arc
execution is a critical section with respect to the arc's
initial and terminal datasets. The interlocking of arc
access to datasets is performed by the allocator.

Thus though more than one cut may be initiated, all are
subject to the same interaction constraints as those which
operate between the members of a single cut. For this reason
we call this type of execution non-reentrant.

We now consider some aspects of simultaneous allocation.
It is sometimes required that two processes commence execution
simultaneously. A typical case is that where one process times
the other. Clearly the initial data of both processes must:be
present before either is allocated. This is equivalent to
viewing the two processes as the subgraph of a Slarc whose
initial data is their combined initial data. This Slarc is
then subject to the normal condition that all its initial
datasets must be present (active) before it may execute.

Furthermore the arcs which produce these datasets must be
INarcs to its initial SInode. Consequently we see that, without
loss of generality, when two processes are to be allocated
simultaneously their initial datasets must appear in the same
colimn of a SInode REP matrix. This column corresponds to the

SIarc whose subgraph is formed by the two processes.
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For convenience we develope a shorthand description of the
situation which dispenses with the necessity for a subgraph.

We describe both processes by Slarcs which appear in the OUTarc
chain of the SIncdey and add a further row to its REP matrix.
The mero element of the column hecomes the arc specifier for
the first SIarc, and the last element of the column (which is
an element of the new row) becomes the arc specifier of the
second Slarc.

In order to perform a simultaneous allocation the allocator
acts as follows. When the column j becomes ready the allocator
attempts to allocate the first OUTarc (specifier is REP [043].

If REP [m + 1y jly (n Inarcs) is non-zero this indicates
that there is a second OUTarc to be allocated simultaneously.
The allocator will attempt to allocate this arc as well. If
both allocations succeed then two ties (bound process-processor
pairs) will be activated and simultaneous allocation is
achieved. If one arc is allocated successfully and the
other is not,y the hardware resources for the first are reserved
until the second arc can be allocated as well. In meantime it
is marked as a delayed arc. Reservation is accomplished as
follows. If the successfully allocated SIlarc requires a
fraction u of the processor P which was chosen, then a
variakle which represents the current usage of P is increased
by uy u itself being recorded in a similar variable (SFRAC)
of the SIarc. Thus u is unavailable for allocation to other
Slarcs. Terminal storage, if it is required, is also allocated
in the terminal PInode of the PIarc. These terms denote = node

and arc of a PIgraph.
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When the allocator returns to the column and is able to
allocate hardware resources to the second Slarc successfully,
it initiates ties for both Slarcs. Eth tie will then release
its resources on terminating. When a processor 1s reserved,
an identifying attribute is recorded in the element of REP
which specifies the OUTarc. This allows the allocator to
know which processor, and consequently which store, was
reserved, on a subsequent scan of the SInode.

This record of reservation is a special case of the fact
that whenever a STarc specified by REP [pyjly (p =0 orm + 1),
is allocated, the processor state identifier (SEQF) is recorded
in ACT [pyjl- This means that ACT [p,j] always contains the
identifier of the last processor to be allocated to the
corresponding Slarcy and this facility is used for error
handling and disabling of hardware, as well as simultaneous
allocation. The delayed status of an arc j can be shown by
setting ACT [pyj] negative. It is clear that by the provision
of further arc specifiers per column simultaneous allocation
of more than two processes can be described and executed using
the method outlined above.

The ACT matrix separates the descriptive aspect of the
SIgraphy from the binding time information. This is particularly
helpful when we consider the implementation of mode 3 binding.
Here binding is completely reentrant, so that each cut which
traverses the SIgraph must carry =il its status information
with it. This can be achieved by allowing each cut to carry
its own set of ACT matrices for nodes at which it is active.

Since every completing tie sctivates the allocator which
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generated it we now have the means of completely separating
binding information from graph description, which is the essence
of mode 3 binding. The effect is to make the SIgraph itself

into read-only data for the allocator.
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The ACT matrix also provides the counter function for DOloops
(again helping to separate SIgraph description from dynamic
Variables). When a DOloop is activated it searches for
the row i of the REP matrix for which it is the INarc. The
condition for this is that SEQF equals REP [b,i]. If column
j provided the initial data of the DOloop, then ACT [i,j] is
used as the DOloop coun#er.

When the DOloop is activated it checks ACT [i,j] for zero.
If if is zero the DOloop assumes that this is a first iteration
and sets ACT [i.j] to the number of iterations required
(specified in one of the parameters of the DOloop description).
At the end of each iteration ACT [i,j] is decremented by one,
and tested for zero. While it is positive the column of the
first non-zero REP element in row i is chosen as IFCOL. When
ACT [i,j] is zero after the decrement, then the column of the
second non-zero REP element is chosen. If ACT [i,j] is negative
this is regarded as a non-fatal error and IFCOL is set to =1.
This signals the allocator not to activate any dataset, and
effectively extinguishes the DOloop.

An‘example of the deliberate use of the last case occurs
when a deactivation arc operates on the terminal row of the
DOloop. In this case ACT [i,j] will be set to zero, and so
the subsequent DOloop decrement will bring it to =1. Consequently
the DOloop will be extinguished by the deactivation arc.

Such a deactivation, followed within one iteration time by
an activation, presents a problem in reentrance. The second
activation will find ACT [i,j] = O and set it to n, where n

is the number of required iterations. The first DOloop will
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now never find ACT [i,j] = -1 and so will not extinguish itself.
Instead it too will decrement ACT [i,j] and continue to iterate.
Now we have two DOloops iterating concurrently and, of course,
decrementing ACT [i,j] twice as fast. The number of concurrent
DOloops can build up to n in this way. The reentrance rules
described previously would normally prevent this happening.
While the first DOloop was active the second one would be
queued (in mode 2) or not allocated (in mode 1) because ACT [i,j]
would be detected as non-zero, thus showing the existence of

an already active OUTarc j. The deactivating of row i sets ACT
[iyj] to zero and effectively hides the existence of an active
OUTarc.

It is clear that this problem extends to any case where one
or more of the initial datasets of an active OUTarc are
deactivated and then reactivated while the OUTarc is still
active. To ensure behaviour appropriate to the e#ecution mode
we introduce a further check for ties which activate (rather
than deactivate) their terminal datasets. The check is on the
attribute SFRAC of SIarcs corresponding to the columns j
containing the terminal datasets REP [i,j] of the tie.

If SFRAC > 0 the SIarc is known to be allocated and executing
(SFRAC holds the processor fraction allocated) and consequently
the reentrance rules can then be applied. For Slarcs which
use no pmoceséor functions we require that SFRAC be set to 1

on allocation.

We now make some comments on error handling. By error we
mean a hardware error, i.e. a malfunction of some part of the

PIgraph. A .detected software error implies a different path
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through the SIgraph from the point at which it was detected.

A software error whose detection is not modelled in the SIgraph
is a wrong result from the human point of view, but not from
the algoritimic one.

A hardware error occurs during the execution of a tie.
Typically it will be modelled by an IFloop which chooses the
error path or the nomal path by drawing from a statistical
distribution. Errors which are not detected or not acted upon
obviously do not concern us. When a tie is initiated there
must be a subsequent moment at which it is decided whether
the tie completed normally or in error. There is usually a finite
time 1limit on this moment. The decision can only be finally
taken by the initiator of the tie, since it is only the
initiator who has the ability to directly reinitiate the tie,
or go on to the next tie, or transaction. Furthemmore an
error can be of the type which renders the recipient unaware
that a tie was ever initiated. That is to say that the only
location where a record of tie initiation and the data for
its reinitiation can be relied upon to exist, is at its
initial SInode.

Theverror decision can be made in one of two ways. The
return of an acknowledgment allows a decision depending on
whether the acknowledgment was a good or bad one. If no
acknowiedgment is returned the arrival of the time limit
allows a decision to be made depending on whether the expiry
implies an error or a nomal termination to the process. In
elther case we require that the decision shall correspond to

the activation of one of two datasets in the initial SInode
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of the tie. This SInode is the only place where there can be
certainty of the decision being taken at all, and where there
can be certainty of the retention of the initial datasets of
the tie. \

We do not concern ourselves with the dataset which
represents normal termination since this is clearly only a
matter of the deactivation of the initial data and/or the
extinction of the process arising from the dataset. In the
évent that the dataset corresponding to error termination’is
activated there are usually two possible procedures. The process
which was in error can be repeated (tie reinitiated), or the
corresponding hardware made unavailable for future allocations.

Reinitiation can be modelled using normal SIgraph
facilities. Suppose REP [1,j] represents the initial tie data
and REP [2,3j] is a ready flag, then on\comple'bion of the tie
j» REP [1,3] will remain active (read-only dataset) and REP [2,3]
will be deactivated. On normal completion the initial data
will be deactivated and REP [2,j] activated. In the case
of error termmination the initial data will remain active
and REP [2,j] will be activated, thus making OUTarc j ready
again, and so the tie will be repeated.

A common method of treating errors is a fixed number of
repetitions followed by disabling the hardware involved. The
disablement is for a finite period whereupon the hardware is
enabled and execution attempted again. In the SIgraph’ we
provide a general facility for enabling and disabling hardware,
i.e. one which can be used for other reasons besides error

handling, in the form of two corresponding IFloops.
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The first disables the hardware last allocated to the SIarc specified
in a parameter (a) of the loop. It does this by a similar method
to that used for reservation of hardware. The IFloop searches the
SInode for the arc specifier REP [p,j] corresponding to a and
extracts the value of the processor attribute SEQF from ACT [p,jl.
The processor must be an OUTarc of the PInode to which the SInode
is tied, if the initial tie data has been retained. Otherwise
the PInode can be reached through a Plgraph node index.
In either case the PIlarc is found and its inuse fraction
is incremented by 1. This has the effect of making the
processor unavailable for further allocation irrespective of
the fraction currently allocated and its subsequent release.
The attribute SERQF of the processor (which completely identifies
it) is now placed in ACT [p,k] where REP [p,k] is the arc
specifier for the disabling IFloop. The attribute SFRAC
of the IFloop is set to one as usual for a Slarc which
requires no processor. The tie which originally executed in
error can now be reinitiated or deactivated as required.
If it is desired to make the processor available again
after a delay, the disabling IFloop can be given the appropriate
duration, and its tie can alter its associated processor from
null to the disabled processor. On complétion the allocator
will release the disabled processor as part of its normal
completion procedure since SFRAC of the  disabling IFloop has
been set to one and the tie now has an attached processor.
Alternatively the IFloop may be given a zero duration and

its completion allowed to initiate a delay loop. This loop
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can then initiate the second type of IFloop mentioned, namely
an enabling loop. The enabling IFloop operates in a similar
manner to the disabling IFloop, except that it subtracts one
from the inuse fraction of the processor. The processor itself
is obtained in an identical manner to that used by the disabling
IFloop. It is clear the OUTarc specifier in an enalbing IFloop
can refer to a disabling IFloop, so that the former can release
the last processor disabled by the latter.

The duration of a tie will depend on the physical
characteristics of the stores in which its initial and terminal
datasets reside. We introduce a function ¥ to represent this
perturbation of tie duration. Clearly for normal stores py, V
will be a function of the quantity of data béing processed by
the tiey, so we write that the tie duration will be

tx A +V (A, p)+V (NsE, p)
where E is the sum of the terminal REP elements, and t is the
processing time per unit data, as provided by the allocator.
A subset of store characteristics provided by PIgraph description
might be delay, latencys block sizs and block time. The delay
is, for example, the average seek time during disc access.
The latency is the rotational period of a disc or drum. The
block size is the quantity of data moved in one transfer, and
the block time is the time to move it.

The function V can be defined to suit the modeller, and we
would choose the following as a default. One drawing from the
uniform distribution between zero and delay, plus m drawings
from the uniform distribution between zero and latency (where

m is the number of blocks), plus m times the block time, i.e.
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v (k\) : =m » block time + uniform (0, delay) + z;

where for i : 1 step 1 until m do

z ¢ z + uniform (0, latency);
m is defined as the gamallest integer greater than >\/block size.

An example of the use of the facilities above is the way
in which splitting the leading character from a message is
modelled. We achieve the desired effect by simultaneous
allocation of two IFloops, the first one resetting LAMBDA to
LAMBDA minus one, the second one setting LAMBDA to one.

The total memory requirement is exactly equal to the initial
memory present and no account need be taken of the range of
LAMBDA values.

Finally we mention a possible extension of Slgraph
facilities. This iz the addition of further variables which
propagate with the cut. Such variables might be carried by
ties. At each node a new value is generated for an outgoing
tie from the values carried by its inarc ties. Values are set
by IFloops and may or may not be altered by the node algoritlm.
The reason for propagating the values of these variables is
either the collection of cut statistics or the fact that their
values may be used to control the binding of the cut at
locations, or under circumstances, specified by the modéller.
An example occurs in modelling a message switching network,
where a variable which might well be propagated would be the
node number of the message destination. This would be operated
on by a routing algoritlm at each node and the result would
determine the transmission line which would be allocated

(i.e. binding is controlled by the result).
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The method used for the LAMBDA variable can be extended
indefinitely simply by the addition of carrier variables to the
tie definition, and the addition of an appropriate node algo-
rithm to produce the outgoing value.

In a general sense such variables represent the inclusion
in the model of the variables of the real system. The reason
for inclusion is that their values determine the behaviour of
the real system sufficiently strongly to render the model
inaccurate or even useless without them. If all variables are
included then we end up with a replica rather than a model of
the real system. Without them the model may not fulfil its
purpose. The choice of variables to be included must therefore
rest with the modeller. His judgment should be confirmed by

a positive validation of the model.
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CHAPTER IV

IMPLEMENTATTION
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4.1 General Criteria.

In the previous chapter we have described a system for
modelling computational activity. This system was implemented
as a program in the SIMULA language on a Control Data 6600
computer. The name of the program is SHAPE, which is an acronym
standing for Software Hardware Allocation and Performance
Evaluator. A brief introduction to SIMULA appears in Appendix II.

An equal emphasis was placed on the modelling of software
and hardware to improve the evaluation of real performance.
Furthemmore, the basic interchangeability of hardware and software
pointed the way to modelling and descriptive syFtems which were
applicable to both, and minimised their differences.

Because software and hardware are regarded as similar and
complementary, a correspondence occurs between the two. Basically
this is the correspondence of store and dataset; processor énd
process, alternative connection and branching statements, parallel
connection and concurrent processes, and so on. Wherever possible
in the SHAPE system a single structure is used to model both
hardware and software. The differences between them appear as
different interpretations rather than changes in the structure.

For example the graphical representation is used throughout,
the software interpretation being called a SIgraphy and the
hardware one a PIgraph. This had led to nodes representing stores/
datasets and arcs representing processor/processes. This seems
a more useful graph model than earlier ones which have used the
arcs only as a visual expression of the precedence relationships
between computations. In these previous models the nodes were

used to represent the computations, thus leaving the modelleF with
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no remaining structure to which datasets could be naturally asqribed.
In the SHAPE system precedence relations are treated more explicitly
from the point of view of data dependency, so that the computations
which transform datasets are an inherent representation of these
relations. A further consequence of the SHAPE interpretation of
nodes and arcs is a simple expression of the binding situation at
any moment by means of a cut across the graphs.

The ST and PI graphs used in SHAPE are of a general kind.

There is no planarity restriction, arcs are allowed to have the

same initial and terminal nodes, and multiple arcs between a pair

of nodes are also permitted. The model has been provided with a
recursive capability in order to allow areas of special importance

to be investigated in greater detail, the sutmodel remaining embedded
in the main structure as a subgraph.

In SHAPE, processor is used to denote any data-transforming

plece of hardware, rather than a general purpose computer or Von
Neuman machine. The reason for this is that it allows us to take
into account specialized or restricted progessors, and the great
variety of special function hardware units which exist today, such
as display controllers, multiplexors, disc controllers, etc.
These must be modelled since they represent a dispersal of the
intelligence and ccomputing power of a utility, and can also be
of considerable significance when overall performance is being
considered.

A fundamental problem which arises in modelling a program is
the representation of both the static and dynamic behaviour of the
program. A static model of the program is one which shows the

program as it might be written on paper, that is to say with all

120



paths, possibilities, and branches present. The dynamic model
represents one particular execution of the program. A particular
execution is obviously one where at each point of choice in the
static model the chéice has been made. Thus the dynamic model
consists of a selection of the actions available in the static
model.

In the case of SHAPE, a SIgraph shows all the possible
computations which may take place during realization of the
task represented by the graph. As the task is realizedy as a
binding of the SIgraph to a PIgraph, unselected alternatives are
disabled. On completion the bound graph which remains gives us
the dynamic model of that particular execution.

From this point of view branching statements are an online
control device for programsy which sllows the selection of
alternatives to be postponed until the actual execution, and
automates the process of selection (it is possible to imagine a
very primitive program which referred the predicate data of every
IF statement to the computer operator, who, flowchart in hand,
would make the decision and then reactivate the machine at the
appropriate instruction sequence).

Any attempt to model the execution of a task, and analyse
the performance of that execution, must be able to handle this
transition from static to dynamic representation. Some previous
models have used branching probabilities, mean execution times,
and so on to provide statistical results for overall execution
measures. SHAPE gllows for the use of these methods and also
some others which are more data dependent, as well as making the

insertion of predetermined decisions particularly easy.
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The representation of IF statements was influenced by the fact
that one of their more important functions is in the programming
of loops. In SHAPE the loop entries and exits are handled by IF-
type operations and the structure of these operations has been
oriented to making loop representation as convenient as possible.

In the model as it stands today nearly all binding and allo-
cation takes place as the cut crosses a node in the SIgraph.

It is when this happens that nodes enter and leave the cut zone,
nodes are bound to stores, and processors allocated to arcs.
Consequently this is the area of prime interest in modelling the
mechaniams which ensure continuing execution of the task.

It is intended that the SHAPE system will allow the trial
of alternative binding strategies, and that the binding problems
will be formulated in such a way that these strategies (that is
to say the mechanisms mentioned above) can be easily inserted and
removed. The problem is essentially that of optimizing the choice
of m out of n processors to be allocated to m processes subject to
various constraints (of course there may be fewer processors than
processes as well). The optimization may be done for this choice
aloney over the cut zone, or beyond the cut zone.

A recent result demonstrates the equivalence of preemptive
scheduling and fractional allocation, [MUNT 70]. This leads us
to expand the range of choice from integral allocations to
fractional ones. The rationale for this is that optimization
with fractional allocation seems far more amenable to solution
than the corresponding situation with preemption.

The intention of the SHAPE system is to provide an evaluation
of program realization for alternative allocation strategies, or

to compare the behaviour of different realizations.
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The main components of the SHAPE program consist of the gaph
input procedures, the allocator,; and the procedures for matching
and binding a PIarc to a SIarc. The binding of two graphs occurs
in simulated time. A time scale is generated for each pair of
graphsy, so that where a pair of bound arcs have subgraphs these
are bound in their own independent timescaley while that of the
upper level is unaffected. This mechanism is used by the
matching procedure to derive the time required for a PIarc to
execute a SIarc when both have subgraphs.

A pair of bound arcs is called a tie. A tie is created by
the allocator and exists for the duration calculated byi the
matching procedure. On terminating it activates the allocator
which releases resources previously associated with the t?e, and
then creates ties for any processes now ready and able to execute.

The SHAPE program does not include -all aspects of the model
described in the previous chapter. This is due partly to limita-
tions in the compiler and associated software (see Appendix ITI)
and partly to insufficient time for programming a full implementation.
The points of difference are described as they arise below.

In the following sections we dezcribe the graph input
procedures and then the operation of the allocator. After this
we give a more detailed treatment of ties and IFloopsy, and then

derive measurss for hardware and software performance.
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k.2 Graph input.

This section describes the way in which SI and PI graphs are
input from a sequential storage medium such as cards or magnetic
tape, to a random access medium such as core store. Such input
is necessary because binding of the two graphs as performed in the
SHAPE system, required the graphs to be in their topologically
linked form.

In this form each node consists of a block of data about
the node and a pointer to a chain of arcs. Each arc consists of
a block of data about the arc and points to the next arc in the
chainy and the terminal node of the arc; the initial node of all
arcs in the chain is the one at the head of the chain, by
definition.

The blocks of storage for the elements (arcs and nodes) of
the graph may be situated anywhere in the available core store,
and are linked by the pointers described above. The linkage so
formed duplicates the topology of the graph. Clearly such a
linkage can only exist in a random access type of storage medium,
so that we have to provide a sequential form of the graphs for
storage on sequential media. Such storage is desirable since
we cannot keep the graphs permanently in core store, and private
discs are not always available.

A normal SHAPE run will therefore be to input a SI and a
PT graph from a sequential storage medium, set up the topological
linkage, then perform the binding of the graphs, and output the
results.

We shall now describe the topologically linked form of the

SI and PIgraphs, starting with the structures common to both.
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Both nodes and arcs have an attribute called POINTER. In the case
of an arc thiz points to the next arc on the chain, and in the
case of a node to the first src on the chain. The arcs on a
chain are called the OUTarcs of the node which heads the chain.
Fach node possesses three integer attributes besides its pointer.
These are its node-~number, the number of its INarcs, and the
number of its OUTarcs (NODENUM, INARCS, OUTARCS).

Each arc has three other pointers besides that to the
next zrc. The first (NEXTNODE) points to the block of storage
used to hold the data for the arc's terminal node, and the other
two (FIRSINODE, DX) ars used when a subgraph exists for this arc.
The first of these points to the first node of the subgraph, and
the second points to the index for the subgraph. An index holds
a double entry for each node in a subgraph. The entry consists of
the node numbery and its address in core store. Entries are ranked
in order of increasing node number. An index also has its own
length and that of the arc data vectors as attributes. An arc has
one numerical attribute, SEQF. Entier (SEQF) is the node number
of the arc's temminal node, and the fractional part of SEQF
distinguishes between several arcs which have the same initial
and terminal nodes. For example if there were three arcs between
nodes 4 and 7, their respective values for SEQF might be 7.1,
7e2y o3

The whole graph is referenced by a specisl arc called a
graph headsr. In the graph header FIRSTNODE points to the first
node of the graph and DX to its index. The graph header has two
additional attributes which are the name of the graph, and its
TYPE (ST or PI). The structure described so far is common to

both types of graph.
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In SHAPE we use SIMULA class definitions to provide arcs,
nodesy indexesy graph headersy as shown in Fig. 4=1. Node and
arc linkage is shown in Fig. 4-2. Where several arcs have the same
fine structure only ons subgraph is necessary and all the arcs will
point to its first necde and index. A subgraph linkage is
illustrated in Fig. L4=3.

We now describe the data associated with nodes and arcs
in S8I and PI graphs, which depends on the type of graph.
A PInode (representing a store element) has the following attributes:
costy latency, block size, blocks per track, and capacity. These
are held in an array MU together with a random number seed for use
in the generation of latendy times. The run-time variables
TOTUSE, FSTUSE; LSTUSE, INUSE, MOX, MUT, MEF, and MIT are used
for gathering statistics during binding.

A SInode has as input data the repartition matrix (REP)
described previously. In SHAPE the activity matrix (ACT) has
not been implemented. Instead the allocator treats all datasets
as read-write data (REP [i,j] initially positive), and the sign
of REP [i,j] is used during binding to indicate its activity
(negative for active, positive for inactive). Consequently all REP
elements input to a SHAPE run are positive. One other data item of
a SInode is the variable PNID which gives the node number of a
a node in a PIgraph. If PNID is non=-zero, then the SInode will
be tied to the specified PInode during binding.

Binding time attributas are column vectors Q, LAM, BET, QD,

QT, QS. During semi-reentran®t binding for each row of the
repartition matrix, the corresponding element of Q is the initial

pointer to a queue of completed ties which have that row as their
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class element {pointer) ;
ref (element) pointer ;;

element 6lass arc {nextnode, firstnode, dx, seqf);
ref (node) nextnode, firstnode;

ref Iindz) dr:

element class node (nodenum, inarcs, outarcs);

integer nndenum, inarcs, outarcs j;:

arc class graph (graphname, type);
value grapghname;

text graphname;

integer type;

class indx (indxl, =adle);
integer indxl, adle;

begin
integer array number {O:lndxl] H

ref (element) array address CO:indxl] 3
aumber [0 :=1;
number [1ndxl] t=indxl

end;

Fig. 4~1 Node and Arc Class Definitions.
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terminal data. The variatles LAM [i] and BET [i] always contain
the values of lsmbda and bets for the current activation of row i.
QDy QTy QS are used for the collection of software statistics and
are descrikted in greater detail below.

The input data of a SIarc consists of two arrays PHI and
IFF. PHI is the function frequency vector and has n elements
where n is the number of software functions which characterize
the graph. PHI [i] is the frequency of the i th function in the
SIarc. N is also called the arc data length (equal to attribute
ADLE of the graph index).

IFF is an array that has zero elements unless the Slarc is
an IFloop. In this case IFF containz a random number seed, two
ifcodes and their four parameters. A binding-time attribute of a
SIarc is SFRAC, which is used to hold the fraction devoted to
this SIarc of the currently allocated processor. The array STARC
is used to accumulate software statistics as well as providing
a counter for use by IFloops.

A PIarc has as input data the processor performance array
PSI which consists of three vectors each with n elements. The
first vector giwves the times taken by the processor to perform
the n software functions charactsrizing the graph, and the
second and third give the processor utilization and efficiency
for thesge functions. Other data attributes are the physical
identifying number of the processor (ID) and the cost per unit
time of using the proceszor. The atiribute ID is required since
many arcs in a PIgraph can refer to the same physical processor,
which has the capsbility of resding from and writing to many

" memories. The run-time variable PFRAC provides the fraction
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of the processor which is currently allocated, and six other
variables are used for statistical purposes. SIMULA class
definitions for the node and arc data structures are given in
Fig. b-l, and L-5.

On a sequential medium SI and Plgraphs are stored as
sequences of card images. Each element of the graph (node or
arc) consists of a set of cards. The first card of the set
uses columns one to twenty to define the element in the
topology of the graph. The rest all have columns one to
twenty blank. All fields consist of ten columns, and a card
may have up to seven fields.

The first twenty columns mentioned above are the first
two fields of the card. A node has its node number in field
ong and field two is blank. An arc has the node numbers of its
initial and terminal nodss in fields one and two. If an arc has
a subgraph the remaining fields of its first card (arc card) contain
information about the subgraph. This consists of the numbers of the
first and last nodes, the number of elements in the function
vectors (arc width)y the number of nodes in the graph (graph
size), and a factor which detemmines the size of the index
relative to the number of nodes (GFACTOR). A graph header card
also has this information about its graph.

If an arc has a subgraph, then the data cards for the
subgraph immediately follow the set of cards for the arc.
A graph header card has the name of the graph and its type in
fields one and two. The card image formats are shown in Appendix

IV, together with detailed description of all array usage.
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arc class siarc (phi, 1iff);

real array phi, iff;

begin

real array store [0:7] ;

real sfrac;

integer ug;
ug := 1rt {0

end;

arc class plarc (psi, psid);

real array psil, psid;

begin
real array bvhican [0: psi [o, 1] ];

real putpr, putmx, putav, pefpr, pefmx, pefav,
pfrac;

end;

Fig. 4-5 Arc Class Definitions.

143



The sets of cards for the graph elements are ordered
as follows. Each node is followed by all its OUTarcs.

The nodes may come in any order, The first card of the
deck should be the graph header card, which provides
information required by the input routines,

The type of a graph is an integer which gives the
number of function vectors which appear in the arc data.
Consequently a SIgraph is of type 1 and the Plgraphs currently
used are of type 3.

The graphs are input by a set of procedures in the
way described below. Firstly, the graph header is read,
and an object of this type is generated. Then a procedure
called SUBGIN is executed using some of the information
from the graph header. These actions are performed by
procedure GIN, The procedure GIN has one parameter (@)
which references the graph header after GIN has been called
to input a graph. The procedure SUBGIN inputs a subgraph.
The highest level of a graph is regarded as being a
subgraph of the graph header.

SUBGIN sets up the index for the subgraph being
input., The number of entries is the size of the graph
(number of node@Ltimes GFACTOR, Also set up is a scratch
array for arc data, After this the procedure INNODE
is called a number of times equal to the graph size.

When the first node is found, it is linked to the arc
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( or graph header) which heads the subgraph: This arc
also has a pointer to the index for the subgrapﬁ;

The procedure INNODE creates a node of the
appropriate type and enters its data. An entry is created
in the index for this node which gives its number and
address, The procedure INARC is then called a number
of times equal to the number of OUTARCS of the node:

The procedure INARC reads in the data for onecarcc
and then creates an arc object. The pointer from the
arc to its terminal node is created by searching the
index for that node number and thus accessing its
address, If the terminal node has not yet been read
in from the sequential file no entry will be found.

In such a case a plug is created in the free space

area of the index, The plug consists of the node
number in question and the address of the arc requiring
its address, When this node is read in, the procedure
which enters it in the index also satisfies all the
plugs requiring its address (see Fig. 4-6).

The arcs are chained as follows; Each call of
INARC has a pointer to the arc created by the previous
call as one of its parameters (in the case of the first
call, by INNODE, this pointer points to the node at the
head of the chain), This allows the linkage to be
established from the previous to the currently created arc;

After linking, the pointer is updated to point to
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comment nodes are held in ascending order by

node number;

- Fig. 4-6 Index usage for graph input.
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the current arc, and so is ready for the next call,
if any., The end of the chain is indicated by a null
pointer,

If INARC finds that subgraph information occurs
in the arc card, then a call to SUBGIN is made'.” This
call will then input the subgraph which follows the
data cards of the arc, In this way the process of
subgraph input operates recursively;

Several arcs may have the same subgraph, In this
case only one need be followed by the subgraph card
deck, and the others may give the initial and terminal
node numbers of this arc, ©Such a provision leads to
a plugging mechanism for subgraphs similar to the one
for nodes described above,

In this way the input procedures of the SHAPE
system creates a topologically linked data structure
of the type described earlier from a sequential file
of card images, A list of procedures used is given in
Appendix IV, It is often the case that several nodes or
arcs have identical data; To allow the modeller to
specify such replication compactly, rather than having
to repeat the complete data each time, some facilities
for data replication are included in the graph input
formats,

If a node Q has identical data to a previous node P
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then the nodenumber of P appears on the first card

of the node Q description, after the number of OUTarcs.

The rest of the data is then dispensed with, and

picked up from node P by the graph input routines:

In fact only one copy of such data is kept, and

this is referenced by all the nodes to which it

applies, For all arcs the parameter SHQF is held o .. .

separately on the second card of the arc data;

The IFloop parameters are held on the third card,

For arcs (r,s) which have the same data as arc

(p,q) the nodenumbers of p, and q, and SEQF of

the arc (p,q) can be placed after SEQF on the

second card of the data of arc (r,s). If this

is so, no data follows, and the graph input routines

link the arc (r,s) with the data of arc (p,q).:
Each run of the SHAPE program is controlled

by a run card which is the first data to be input;

The card contains the following items: the

number of graphs for this run (one or two),

the binding mode, the debug parameter, codes

specifying the type of hardware and software

statistics required, and the binding time limit

if any. The run card parameters are described

in Appendix IV,
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The facility for data replication is also
used to provide a mechanism for interlocking
the various states of a single physical processor,
An interlock is needed primarily for allocation;
so that the fraction of the processor allocated
is always known by referencing a single variable,
and can be altered by only one process at a timé;
To achieve this, all states (PIARCS) of a
single physical processor have an attribute
PSID which is a one dimensional array. There is
only one copy of this array, and it is this
which is accessed irrespective of which Plarc
is being dealt with, The zero element of the
array holds the fraction of the physical
processor currently allocated, and thus an
automatic interlock is provided., The remaining
elements of the array are used for statistical
purposes,

A procedure calted TOPSCAN is also
provided for use with the graph input routines:
This procedure performs a topological scan
through the graph listing the linkages which
it finds, Its purpose is to check that the

graph input routines have functioned correctly
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before binding is initiated,
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L.3 The allocator.

The current version of the SHAPE system performs binding of
SI and PIgraphs using a SIMULA object of class allocator. The
allocator has been constructed as a class definition since it is
regarded as controlling the execution of a single cut or comnection
between the two graphs. Use of the class definition allows the
generation of more than one allocator, the retention of local data
describing the condition of its cut by each allocator, and the
conventent use of SIMULA simulation facilities.

The execution rule (or block) of the allocator is prefixed
by the predefined class SIMULATION, so that each allocator generated
is effectively an independent simulation (system of quasi-parallel
processes). In what follows some knowledge of the programming
language SIMULA is assumed.

Within the execution rule a process of class tie is
defined. This process is used to represent the allocation of a
process (arcoof a SIgraph, not simulation process) to a processor
for a given period of time. During this period the process and
processor are sald to be tied.

When a tie is completed the allocator is called to free
resources, update the cut status and initiate ready processes by
binding to appropriate resources. An allocator operates only for
one subgraph. When an arc is found which itself has a subgraph,
the procedure which matches processes to processors generates a new
allocator to provide the results of the matching.

In a real computer system binding is done either by hardware
or software. If by software then this software requires at least

intermittent use of system hardware.
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Thus in the real system the resource allocation (binding)
mechanism itself requires some of the resources it allocates.
The one exception is the case when the hardware involved is
special purpose hardware which cannot be used for any other
activity. This case will be termed free resource allocation
for obvious reasons (the resource allocation hardware is of
course only free from the point of view of the allocatory for
its purchased it is a resource permanently assigned to the
allocator which is treated as another process). Where the
resource allocation mechanism uses only a very small proportion
of the resources it allocates, then it may be thought of as free.

In a real system resource allocation is performed, for
example by various procedures in the operating system by the
control unit of the central processor (this is very low level),
by the control elements in a multi-plexor, and so on. These are
the real analogs of the SHAPE allocator.

We note that different levels of task execution have
different allocation mechanisms. This is reflected in the
SHAPE system by generation of a new allocator when a subgraph
is encountered. The allocator in the SHAPE system is a super-
visory algoritlm which advances task execution, as represented
by the binding of SI to PI graphs, by reallocation of resources
as various elements of the task terminate.

The allocator of the SHAPE system corresponds to the
algoritim K, and the procedure match to:the procedure S, which
are described in the previous chapter. The general structure

of the allocator is shown in Fig. 4=7.
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~8

class allocator (parameters); T
simulation begin |
process class tie (params);
bezin hold (duration of tie)s
activate allocator after current;
_ end;
release resources of completed arc;
"update cut status;

determine number of arcs ready to proceed;

for s:=1 stop 1 until number ready do

-
O
H

g

=1 stop 1 until processors available do

‘match (s,p);
igybétter match then save (s,p);

end ;

activate new tie (s, best p);

allocate [resources;

end;
end;
Qrocedure match (s,p);
| bezin

it s= subgreph then activate new allocator

else simple matchy

provide analysis of matching;

end;

Fige. 4-7 outline of class allocator.
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This outline shows that the binding process is recursive in
that it can deal with subgraphs nested to an arbitrary depth. In
the SHAPE programming system a cut is represented by the set of
all ties in the sequencing set of the corresponding allocator's
simulation system.

Referring back to the previous chapter, we note that a cut
consists of all arcs of a SIgraph which are currently being
executed together with their initial and temminal nodes, and all
elements of a PIgraph which are tied to these arcs and nodes.

Each object of class tie represents the execution of a Siarc, and
includes a pointer to this SIarc and the Plarc tied to it by the
allocator. ZEach tie also has pointers to the initial and terminal
nodes of its Slarc and Plarc. In this way the set of ties
corresponds to the set of active arcs and their nodes, i.e. to

the cut zone.

When a SIarc completes its execution the elements of the
terminal nodes' repartition matrix which represent its output
datasets are marked as active (set negative). The allocator then
examines the updated matrix to see whether any of the OUTarcs now
have all their initial datasets active. If this is the case such
an arc is ready to proceed.

The actions and constraints involved in binding such an arc
fall into two categories. The first category is the constraints,
and consequently decisions, which can be derived directly from the
nature of the SHAPE model.

The second category consists of decisions made between
alternatives equally acceptable from the point of view of the model.

The algorithms which make these decisions taken together form a
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resource allocation strategy. For the prototype SHAPE system to
operate some such strategy was required, and in fact was provided
as a minimal set of simple rules. It should be emphasized that
these rules are arbitrary, can be changed at will,and thus provide
opportunities for investigating different strategies of resource
allocation.

We shall now examine the detailed operation of the prototype
allocator. The allocator parameters are shown in Fig. 4-8.
These enable the initial conditions to be set up and the datasets
of the first SInode to be activated by the first call of the
allocator. We shall now follow a typical iteration commencing
after a tie has terminated.

The alloc?tor has six reference variables which point to
the Plarc and SIarc of the tie which has just completed, and to
the initial and terminal nodes of these arcs.

P Plarc

PIN

initial node of Plarc
PINN - terminal node of Plarc

S Slarc

SIN = initial node of Slarc

SINN - terminal node of SIarc

These pointers are set by the execution rule of the tie, just

.before it terminates, using an inspect statement. In this way the

allocator is aware of the elements of the completed tie on entry.
The allocator uses a number of Boolean variables to give

information about the tiey and later on in activating new ones.

These are as follows.
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first
first
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4

fsn, pdx, sdx, t, gutmx, gutav);

node of PIgraph.
node of SIgraph.
of PIgraph.
of SIgraph.

total time to execute grapn.

gutmx, gutav - performance measurement variables,

Fig. 48

Allocator Parasmeters.
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PERT -
FERST -
LARST -
IPH -

DLAY -

complete -

true if no Plgraph, SIgraph evaluated as an activity graph
with arc duration given by sum of elements of vector PHI.
true if allocator called to first node of graph.

Condition is PIN = = SIN = = none.

true if allocator called to a terminal node. Condition

is that the terminal SInode indicator of the first OUTarc
be zeroy, i.e. SINN - REP [0,1] =0

true if tie was an IFloop. This is a tie whose initial
and terminal nodes are the same. The condition is

SIN = = SINN and S = / = none.

true if tie was a delay loop. This is an arc which is
used when the allocator finds a ready arc at a SInode,

but cannot bind it because there are no resources
available. In this case a delay is activated to ensure
that the allocator is called to this node at some future
time to attempt to bind the ready\arc again. The delay
loop is like an IFloop, but not tied to any PIlarc, and

has no SIarc. The condition is SIN = = SINN and S = = none.
set true if initial SInode has no active datasets

(ACTIVITY = 0) after tie terminates

The first part of the allocator deals with the freeing of resources

used by the completed tie. The repartition matrix (REP) of the

initial SInode (SIN) is accessed, and the column for this SIarc

(8) is found. The zeroth element of the column (REP [0, j]) is

the terminal node indicatoryand by this the column can be

identified.

The indicator value is the same as the sequence

fraction of the SIarc.
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Having found the column in the repartition matrix of the
initial node which corresponds to the completed SIarc, the
allocator proceeds to deactivate the datasets shown in the column
as active (all if a normal OUTarc, one if an IFloop). At the
same time the number deactivated is counted and their size
(amount of memory required) is summed.

After this the active count for this SInode is de?remented
by\the number deactivated, and the amount of memory in use in
the tied PInode is decreased by the sum of the dataset sizes.
Each SInode has a reference variable SPTIE which points to the
store (PInode) in which the datasets of the SInode are resident.
When there are no datasets active SPTIE has the value none,
and the SInode is not tied. If the active count falls to zero,
then the allocator sets SPTIE :- none.

The allocator now deals with the processor (PIarc) to be
freed. Since a processor may transfer information between more
than one pair of stores, we allow each such state to be
represented as a separate Plarc in a PIgraph. These states all
represent the same physical processor howevery and so it is con-
venient, for resource allocation purposes, to know what fraction
of a processor is in usey as a sum over all states. Bach
processor is given an identifying integer (ID) which stays
constant over its states, i.e. every Plarc representing a state
of a processor will have the same value for ID. This is held
in an array PSID which is common to all states of the processor.
This array is made common by declaring the corresponding
variable as accessible by reference rather than value during
Plarc generation by the graph input procedures. The first

element of the array PSID contains the sum over all states
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of the processor fraction currently allocated. The remaining
elements are used for measurement purposes.

The attribute SFRAC of the tied SIarc gives the fraction
of the processor which was allocated to this Slarc. The allocator
will subtract this from the particular PFRAC attribute accessed
by the method described aboveyand also set SFRAC to zero.

For a discussion of fractional allocation see section 4.k.

At this stage the allocator accesses the repartition matrix
of the Slarc's terminal node and searches for the row which
describes the terminal datasets of the SIarc. The zeroth element
of each row (REP [i1,0] is the initial node indicator. The
indicator value is the node number of the initial SInode of the
INarc, plus the sequence fraction of the SIarc, minus the node
number of the terminal SInode.

The terminal datasets (non-zero elements of the row) are
activated by making them negative. If the completed Slarc was
an IFloop then only one element is activated. The column in which
this element occurs is given by the allocator's local variable
IFCOL. IFCOL is preset by the tie before it calls the allocator.

We can provide for more than one Slarc to activate the same
row of a REP matrix by\noticing that the allocatory when
searching for the correct row of the REP matrix to activate,
tries to match the INarc specifier to the following expression,

SEQF - SNN + SN
where SNN is the terminal nodenumbery SN is the initial node
numbery and SEQF is the sequence fraction of the incoming arc.
Row i is selected as representing the terminal datasets of the

INarc if
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REP [1,0] = SEQF - SNN + SN
We usually require that entier (SEQF) = SNN, and that entier
(REP [1,0]) = SNN, in which case SN is the official initial node
for row i. However it is clear from the above expression, that
if we wish to activate the row i by an INarc from some other
(unofficial) node, we can do so as long as SEQF + SN has the same
value as before. That is to say that row i of the REP matrix can
be activated by an INarc from any SInode in the SIgraph so long
as the value of SEQF of the INarc is suitably chosen. An example
is shown in Fig. 4-9.

When the stores (PInodes) which hold the datasets of the
initial and terminal nodes of the SIlarc are different, storage
allocated to the initial SInode is released. Storage allocated
to the terminal SInode is not, since the terminal datasets of
the SIarc must continue to existy being the initial datasets of
subsequent arcs.

When the stores are the same (this occurs if the SIarc
is an IFloopy or if the initial and terminal SInodes have been
allocated to the same store) the allocated storages of the
initial and terminal nodes are regarded as being superimposed.
Thus storage is only released if the initial allocatilon is
larger than the terminal requirement.

This last is an allocation strategy and not a constraint
of the model. It was chosen since it corresponds to the
strategy followed by\most operating systems. For example, when
storage is allocated for execution of a FORTRAN program, terminal
variables, i.e. ones which are used to hold results and have no.
initial value, are ine¢luded in the initial allocqtion. If these

results are to be preserved for a subsequent execution phase,
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Node 3

Node 7

seqf = 7.1

3.1

Node 4

6.1

seqf = 6.1.

Node 3 is the official origin node for row one of Node 7.

Fig. 4-9 Multiple INarcs.
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then only excess storage is discarded on completion of the program.

SHAPE d0es not require a model to contain a terminal node.
If part of the cut is extinguished (for example by the terminal data-
set of a SIarc having only zero elements), then the cut need not
terminate if new active datasets are being generated elsewhere.
It is possible to generate a fixed number of these using a
DOloop, bu? a more flexible alternative was provided for SHAPE.
This was the possibility of indefinite generation of agtive
datasets, and termination of binding when a given time limit
(variable from one run of the SHAPE program to the next) was
exceeded.

An additional feature is provided in SHAPE, namely
multiple temination. A terminal node is one which has an
OUTarc to node zero. This OUTarc is notional since node zero
does not actually existy and is represented by a column of the
REP matrix which has its OUTarc specifier equal to zero.
Clearly such a column can ekxist in more than one node of the
SIgraph, thus allowing for the representation of more than one
binding termination. When such a column becomes ready (all
datasets active) it is immédiately deactivated to represent the
instantaneous execution of the OUTarc to node zero.

If there are then active ties still present, the cut is
not considered to have terminated. That iss the presence of
the ties implies there is further binding to be performed,
and the allocator continues with this as usual. The same
column may become ready again, at a later stage of binding,
and the termination procedure repeated. This repetition will
continue so long as active ties remain in the system, and is

called multiple termination.
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In SHAPE non-reentrant and semi-reentrant binding (modes 1
and 2) have been implemented. Completely reentrant binding is
described in the preceding chapter, as are the differences
between modes 1 and 2. From the point of view of the allocator
there are two important distinctions, firstly that in mode 2 a
ready Slarc may be allocated even if one or more of its terminal
datasets is still active, and secondly that a completing tie may
find a terminal dataset active, in which case it is queued.

If such a tie is queued, it is called a transaction and has
three main attributes, LAMBDA, BETA, and IFCOL. These are the
LAMBDA, BETA and IFCOL of the completing tie. Transactions are
chained and the head of the chain for each INarc of a REP matrix
is pointed to by the corresponding member of a reference array
Qy whose dimension is equal to the number of INarcs. The chains
are processed on a FIFO basis.

The methods of queueing and reactivating the REP matrix
by bringing in queued transactions are governed by the principle
of keeping successive cuts distinct and allowing no interaction
between them. Sequence is maintained by FIFO queueing, and
separation by ensuring that a transaction is brought into a
REP matrix only when the columns containing the elements it will
activate are all inactive. An example is shown in Fig. 4-=10.

When a tie terminates in mode 2, as it deactivates its
initial datasets it also scans the rows of the REP matrix which
contain those datasets. If it finds that such a row has no active
datasets and there is a queued transaction for the row, it will

bring in the transaction.
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Transaction at head of Q[ZI activates datasets a,b, and c.

Fig. 4-10 Transaction entry to REP matrix.
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Suppose column two in Fig. 4=10 completes, then datasets a and e

will be deactivated, and rows twc and three scanned for activity.

If datasets b and ¢ are inactive the row is avaiiable for a queued

transaction. If Q[2] is not null, the transaction at the head of

the chain will be brought into the REP matrix. That is to say that

datasets ay, by and ¢ will be activated and the transaction values

for LAMBDA and BETA will be inserted in the array elements LAMBDA

[21 and BETA [2]. If IFCOL is greater than zmero, then only the

dataset for that column is activated, e.g. if IFCOL of Q [2]

is equal to 6 then dataset ¢ only ,will be activated. In such a

case the row scan does not require a and b to be inactive.
Separation of successive cuts is ensured, since we know that

all the columns of the REP matrix affected by bringing in a

transaction belonging to cut n + 1 have completed execution in

cut n. Other columns may still be executing in cut n, but

cannot interact with cut n+ 1 since they have no elements in

common with the activated rowy ec.g. any of datasets e, dy, my T,

ry hy ky may still be active when a transaction is brought in

on row two. Similarly, should a tie whose INarc terminal

datasets are represented by row two, find any of a, b, ¢, active

on its termination,it will be placed in the queue defined by Q [2].
The number of datasets which are currently active in a REP

matrix is called its activity. In mode two the activity includes

the number of transactions queued at the node. If queues only

are considered, activity is equivalent to queue size. If the

REP matrix has only one element per rowy, the row is analogous

to the server of the corresponding queue. When the activity at

a SInode falls to zero thsre can be no storage requirements and



consequently the SInode is freed from the PInode to which it was
bound. This allows a subsequent reactivation of the node to bind
it to any acceptable PInode.

Finally we add a postscript to reentrance restrictions
where IFloops are involved. When an arc is allocated in mode 1,
the allocation is allowed only if its terminal datasets are
inactive. However, if any temminal dataset belongs to a column
which is an IFloopy a further restriction becomes logically
necessary. The aim of both restrictions is to prevent a Slarc
being allocated while any columns of its temminal node which
contain its temminal datasets are active. This ensures non-
reentrant execution. As long as the column is not an IFloop,
the first restriction is sufficient . If it is an IFloop, we
bring in the further restriction that no dataset of the column
may be active, as otherwise the IFloop might still be active due to
a dataset in another row to the terminal row of the arc being
allocated. Similarly in mode 24y a terminating tie is queued if
it would otherwise activate a dataset in the column of an
already active ITFloop. With this rule same illegal side
effects are also avoided which can arise when the IFloop is a
DOloop. This ends the section of the allocator which deals
with the freeing of resources.

We now describe the section of the allocator concermed
with activating new Slarcs. Having processed a completed tie,
the allocator examines the terminal SInode of the tie to see
whether the activation of the terminal datasets provides any OUTarc

of the SInode with a complete set of active initial datasets.
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Effectively this means scanning the repartition matrix to
see whether any\column has a1l its non-zero elements negative.
If the column represents an IFloop; it is sufficient to find
one negative element. During the scan, whenever an OUTarc is
found to be ready, an attempt is made to allocate a processor
to ity and to allocate any storage required by its terminal node.
For each OUTarc (column of REP) the Boolean variables TIED,
POSSIBLE, NOPE, PCAN and IPPH are used. These are initially set
to false. If the OUTa?c has the same terminal and initial node,
then IPPH is true. The SHAPE system includes SIarcs which require
no processor. Since matching of PIlarc to SIarc is based on the
function vector PHI of the Slarcy we allow arcs to have all
elements of PHI equal to mero. We interpret this as a state-
ment that the STarc regquires no hardware functions, therefore
no processor. Such Slarcs are allocated as usual,y except that
they are not bound to any processor. Clearly they are of zero
duraticn, and hardware dependent only for terminal dataset
storage. In every way they are treated as regular Slarcs, and pro-
vide a convenient method of treating aspeéts of a model which are
time or logicy rather than hardware,>dependent. If such a Slarc
is found by the allocator scan, the variable NOPE is set true.
If the OUTarc can be executed (this is determmined during the
attempt to allocate resources to it), then POSSIBLE is set to
true. If the OUTarc's terminal node is tied to a store, then
TIED is set to true. If the SIarc is net only executable, but
the appropriate resources are availabley, then PCAN is set true.
If LARST is true and a ready OUTarc is found, this signifies

that all the datasets of the last node have been completed.



Consequently the graph (or subgraph) is complete, and the
allocator exits to its own complietion procedure.

On finding a ready OUTarc the allocator attempts to allocate
the resources it requires, and activat: it, as follows.

First the allocator searches down the chain of SIarcs from

the node under consideration to reach the data block for the
ready arc. This block holds = pointer to the terminal node of
the arc, which is read to the variable SINN. The variables SIN
and S already hold pointers to the SInode being scanned and the
ready arc respectively. The varisble PIN holds a pointer to the
store to which the SInode is tied.

At this point we enter the hardware allocation loop of
the allocator. This loop is traversed for each ready OUTarc
found in the scan. For a processor (PIlarc) to be able to
execute the ready arc it must be able to read from the store
to which the SIlarc's initial rode is tied, since it is in this
store that the Slarc's initial datasets reside. That is to
say we must restriet ourselves to OUlarcs of this store.

The allocator accesses the tefminal SInode's repartition
matrix and calculates the quantity of storage required by the
SIarc. In the case of an IFloop the storage required is the
size of the largest dataset which could be selected by the
IFloop. A restriction introduced here is that the size of the
largest dataset may not be greater than the size of the initial
dataset. This is not a constraint of the model; the reason is
that an IFloop is regarded as performing a test on its initial
dataset, and consequently choosing an alternative rather than

creating any new data.
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For generality the implementation provides for the case where an
IFloop has its first IFCODE (this code governs the selection of
the IFloop's terminal dataset) set to zero. This condition is
interpreted as meaning that though the SIarc has the seme initial
and terminal nodes, it is to be treated as a nomal Slarc and all
the datasets of its terminal row are activated.

The SHAPE implementation has the property that a SIarc which
is active and allocated (tied to a PIarc and executing) is autoe
matically protected from further (erroneous) allocation.

This could occur since all elements in its column of the REP
matrix of its initial node remain negative while the tie executes.
Should the allocator scan such a column it would appear ready and
consequently a candidate for allocation. However, on completing
a tie the allocator scans only columns which contain a dataset
activated by the completion of the tie. Such a column could not
have been previously ready (and also, therefore, not previously
allocated) since at least one of its elements was inactive.

This ensures that any OUTarc allocated by the allocator has
become ready on that call of the allocator and is therefore not
already allocated. The exception to this is the case of delayed
columns, but these are known to be unallocated since theilr QUTarc
specifier is set negative. In brief, if a termminating tie
activates row i of its terminal REP matrix, then the allocator
scans only columns j for which REP [i,j] < O, and columns which
have been marked as delayed in the manner described below.

The allocator now chaing down the OUTarcs of the initial
PInode performing the following tests. If the ready arc's

terminal node is tied to a store, a check is made that this is

169



also the terminal store of the Plarc. If noty the Plarc is not
considered.

If the terminal SInode is not tiedy the PIarc's terminal
store 1s checked to see that its capacity is sufficient to
provide the maximum storage the SInode may require. This
restriction is not a constraint of the model; it is an
allocation strategy aimed at preventing system deadlocks. 1f
the restriction is not satisflied, then the Plarc is not
considered.

If the SIarc is an IFloopy then the Plarc's terminal store
must be the same as the initial one, since all datasets of a
SInode must reside in the same store. The model provides the
facility to specify that a SInode be tied to a specific store
of a PIgraph. Each SInode has an attribute PNID. If this is
non-zero, the allocator will only tie the SInode to a Pinode
whose node number is equal to PNID. As each node must be
uniquely numbered, there will only be one such node in any
graph. Use of this facility requires that the SIgraph be
used with PIgraphs known to have appropriately numbered nodes,
decreasing the independence of the team description.

If all the above tests have been successfully negotiated,
the allocator will now proceed to assess the performance of the
processor in executing the SIarc we have been dealing with.

This it does by calling procedure MATCH. Procedure MATCH requires
pointers to the two arcs, and the length of the performance:
vectors, as parameters.

It provides in return the time the processor will take to
execute the Slarc, together with certain measures of performance of

such an execution.
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If the processor is incapable of executing this STarc, MATCH returns
a negative value for the execution time.

MATCH derives its results from the software function
frequency vector of the SIarc (PHI [i]), and the three performance
vectors (PSI [i,1], PSI [i,2], PSI [iy3]) which give the time used
the utilization, and the efficiency in execution of the i th function.

If MATCH finds that the SIarc has a subgraph then it checks
that the PIarc being matched also has one. If not, an error is
logged. Otherwise MATCH generates a new allocator to bind the two
subgraphs, and thus provide the required performance measures.
Control passes to this allocator and remains there until this
sub-simulation is completed. MATCH then extracts the results it
needs and exits back to the original allocator.

Here we check the time provided by procedure MATCH.
If positive, the Boolean variable POSSIELE is set to true.
The allocator then checks that the processor's temminal store
has sufficient storage available to accomodate the terminal
datasets of the SIarc. It also checks that the processor or
a fraction thereof is set free to be allocated. If both these
conditions are satisfied, PCAN is set to true and the allocator
proceeds to compare the performance measures of this processor
with the best found to date. If the comparison is favourable
the new processor replaces the old as the best choice for this
SIarc.

At present the comparison is made on the time taken to
exegute the SIarc. The reasons for this strategy (again

such a choice is not a constraint of the model) are as follows.
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The performance measures currently in use are not definitive.
One of the purposes of the prototype system is to examine their
validity. Their use in allocation decisions would distort the
behaviour of the system and therefore severly interfere with any
such assesament. The choice of execution time as an allocation
criterion is prompted by its frequent appearance (sometimes
implicit) in existing systems, and by its widespread use as
the variabletto be optimized in theoretical treatments of
processor allocation.

The algorithm used for obtaining an OUTarc LAMEDA
from the LAMBDA values of its INarcs makes the new LAMBDA
equal to the scalar product of the OUTarcs REP matrix column

and the LAMBDA vectory that is,
INARCS

Z REP [lsJ]A

1=1
This means that the LAMBDA value of a tie now gives the total
amount of data being processed by the tie. This allows the
modeller to specify the guantitative aspects of data
repartitioning, and to incorporate absolute quantities as well
as relative ones.

The derivation of an OUTarc BETA from the BETA values of
its INares will depend on the interpretation given to the
variable BETA., This was introduced as a modelling aid for the
collection of cut statistics. It is expected to be used mainly
to record generation times for cuts or parts of cuts, and so the
following algorithm wss chosen as being the most useful for such

recording.

(3j D= Max [e (3 1
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where &4 = 1 if REP [i,3] # O and zero if REP [i,j] .-.d

With this algoritim cut age is regarded as being the age of the
youngest cut member, in the event that more than one age is
produced, and allows BETA to record the most recent value
produced by a SIgraph specified change.

The duration of a tie is now LAMBDA * T where T is the
execution time of the SIarc per unit data. This is the T provided
by the procedure MATCH, and is adjusted to reflect thg fraction
of processor allocated to the tie.

The allocator performs the steps outlined above for each
PTarc on the chain of OUTarcs of the initial PInode. On reaching
the end of the chain the best choice, whoge address and
characteristics have been saved, is allocated to the SIarc.

This is done by setting the attribute PSID [0] of the
PIarc to the previous fractional allocation plus the fraction
currently being allocated. Any storage required for the.
terminal datasets of the SIarc is allocated and the change
recorded. Finally an object of class tie is generated, with
an execution time derived from that provided by procedure MATCH.

The allocator may arrive at the end of a chain of Plarcs
without finding one which it can allocate to a ready Slarc.

This can occur for two reasons. The first is that no processor
was found which was able (this includes temminal store suitability)
to execute the SIarc. The class of circumstances which lead to
this situation correspond to what are usually called run-time
errors. Such errors may sometimes imply a logical error in the
SIgraph being executed, for example, a missing job control card,

or they may imply that the graph cannot be executed on the given
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PIgraphy, i.e. configurational limitations. An example of the latter
might be the generation of more data by a program than could be
accomodated on a physical storage device. In these cases the
allocator ceases to bind the two graphs and takes an error exit.

The allocator has a number of tests which check for error condi-
tions throughout the iteration. When an error exit is taken,

an error code is output which identifies the condition which has
arisen. A list of error codes and theéir ' meanings is given in
Appendix IV.

The second reason for not allocating resources to a ready
PTarc is that all resources are in use. In such cases the arc is
marked as ready by setting its temminal node indicator (REP [0,3])
negative, and a delay is generated for this node. The delay is
a type of STarc which does not require hardware but ensures that
the allocator is recalled to the desired node at a later time,
when resources are again free. When the allocator returns to a

"node due to a delay arc, it performs no freeing of resources,
but scans the zeroth elements of the columns of the matrix REP
to find delayed ready OUTarcs. It then attempts to activate
these OUTarcs in the nomal way. There 1s never more than one
delay associated with a SInodey and this propagates as long as
delay?d STarcs remain unallocated.

Delays are scheduled by the allocator to reactivate when
resources %ecome available. If no such occurrences are found
in the list of future events, then a deadlock situation has
arisen, and the allocator terminates binding with an error

message.
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Every call of the allocator checks whether the system time
has exceeded the binding time limit, and if so halts binding and
exits to the statistic processing procedures which operate on the
data accumulated during the run.

A debugging option has been included in the SHAPE
implementation to output extensive tracing information during
each iteration of the allocator. In particular all software to
hardware matchings (successful and unsuccessful) are output,
together with the appropriate reasons.

For further details the reader is referred to listings

of the SHAPE program in INDRA Note 286.
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L. Ties and IFloops.

We now discuss some aspects of the SHAPE impleméﬁtation which
are not explicitly prescribed by the modelling system presented
in the previous chapter. The first of these if the representation
in a directed graph of processors which can read from and write to
more than one store. Such a processor would seemingly require
a Plarc with several initial and terminal nodes. Below we argue
that this is a misleading picture of the situation, and put
forward a description using the PIgraph as currently defined.
In the implementation itself this method is compressed by the
use of a processor state for each potential configuration.

The next aspect of the SHAPE program dealt withvis its
ability to represent preemptive scheduling. An arc at any
level of a Slgraph is the indivisible process at that level.
Consequently the question must arise as to how the implementation
will model a preemptive event occuring during arc execution
without violating that property. By the introduction of
fractional allocation, and using the results of Muntz [MUNT 70]
we argue that allocator variation of the fraction is equivalent
to preemptive scheduling. The latter part of this section then
deals with branching arcs, called IFloops in the implementation.

Within the simulation block of class allocator a process is
defined with the name TIE. This process has a duration equal to
the product of a time TIM and the tie's datasize LAMBDA. Both
variables are parameters of the process and have values provided
by the allocator which activates the tie. If the SIarc of the
tie is an IFloop, then either parameter may be changed by the

tie itself.
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When the tie terminates it sets pointers in the data area of
of the allocator (which is global to the tie) to reference the
initial and terminal nodes of the SIarc and Plarc which constifute
the tie. Pointers are also set to reference the arcs themselves.
The tie then reactivates the allocator, terminating itself in the
process.

The Plarc which is allocated to a SIarc to ferm a tie may
represent one state of the processor involved. In the SHAPE
systemy a Plarc is used to describe each possible configuration
of a processor. These Plarcs are referred to as states of the
processor, since they all refer to the same physical processor.

This is not a fundamental attribute of the PIgraph
method, but a shorthand for the basic, but more unwieldy
representation of such processors. A processor which can read
from and write to more than one store does so by having a data
path (in some sense separate) to each store. For any given
configuration only one pair of data paths is in use. Both read
and write data paths use storage internal to the processor
(usually one or more registers), and data transformation occurs
when the processor proper operates on this internal sborage.

We can represent each data path by a PIlarc, internal
storage by a PInode and the processor by a loop at this node.
Thus a one to one correspondence is retained between hardware
items and PIgraph elements. We use the mapy state representation
as a shorthand in situations where more detail is not required, so
reducing the processing requiredy for a run. An illustration of

the two representations is shown in Fig. 4=11.
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In the SHAPE system a task may be allocated a fraction of a
processor as well as a complete one. In a real system it is not
usual to find true fractional allocation. Where it does occur,
closer examination reveals it to be unitary allocation of sub-
assemblies of the processor, or preemptive allocation invisible
to the allocatee (preemptive allocation usually occurs in its
most elementary form, namely time-slicing).

We use various results of [MUNT 70] to justify the use of
fractional allocation to protray preemptive scheduling in the
SHAPE system. In their paper Basic Scheduling (BS) discipline
is defined as one in which once a processorvis assigned to a
task it must work continuously on this task until it has been
completed. If processors can be interrupted before a task is
completed and reassigned to a new task, the discipline is called
Preemptive Scheduling (PS). |

An alternative variation of the BS discipline is to allow
fractional allocation of a processof to a task. If the
fraction assigned is w then it 1s considered to increase the
computation time of the task by a factor of 1/w. If the
fraction allocated to a task is allowed to change during its
execution the discipline is called General Scheduling (GS).

[MUNT 70] shows that a General Scheduling discipline
is equivalent to a Preemptive Scheduling discipline. As remarked
above, real systems usually use some form of PS. The
reallocation of resources can only occur when an individual task
completes. It need not occur if completion does not make any
other task ready. That is to say that task completion is a

necessary but not sufficient condition for reallocation.
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(unless we include return of the resource to the idle chain, in
which case completion is also sufficient).

The allocator of a real (preemptive) system is either alerted
to the completion of a task by the setting of flags, or is auto=-
matically activated by an interrupt. The essential purpose of
the interrupt mechanism is in fact to activate the system allo=-
cator (interrupt identification and housekeeping) which preempts
resources (the processor) for a higher priority task (interrupt
handling). Handling the interrupt may itself generate new tasks
which are generally of lesser priority. Such tasks compete for
resources with those already in the system, without preemptive
priority, i.e. are added to tables or queues.

The SHAPE allocator is able to duplicate the behaviour
described above. A completing task (tie) sets allocator
variables with identifying information before activating it.

The allocator will then update the status of the tie's terminal
datasets, free resources usedy, and has the capability to preempt
a processor for a higher priority task which is now ready.

Such preemption can be achieved by altering the existing
fractional allocations of the processor to provide the necessary
resource. When a task completes, the freed processor fraction
may be allocated amongst other tasks already tied to the processor,
because these are chained (the chain starting with the attribute
PSTIE for each PIarc) and consequently available to the activated
allocator.

From the above remarks we see that the SHAPE allocator can
meet the requirements of a scheduler for a General Scheduling

discipline, since it is able to allocate a fraction of a processor,
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and to vary this fraction when the system changes state. From the

equivalence of a GS and PS we contend that the SHAPE allocator can

adequately represent preemptive scheduling, and can also duplicate

its dynamic behaviour.
In the SHAPE system an IFloop is a SIarc which has the same

initial and terminal node. Such an arc is allowed to perform

some functions which are not made available to arcs with different

initial and terminal nodes, and we now describe these functions.

An IFloop description consists of six real numbers which
are stored in an array called IFF, at run time. There are two
IFcodesy and each IFcode has two parameters, say A and B. 1If
both IFcodes are zero then no special action is taken when the
IFloop is activated. The array IFF.is an attribute of all
Slarcsy, but we make the restriction that only an IFloop may
have non-zero IFcodes.

This restriction excludes arcs with different initial and
terminal nodes from executirg IFloop functions. The restriction
is arbitrary and has been made only to test the hypothesis that
modelling computational activity does not require IFloop
functions to be available on other arcs.

At present all IFloop functions are executed as soon as
the IFloop is activated. There is then a delay of duration
T x LAMBDA before the IFloop terminates and activates its
terminal dataset(s); T is the arc execution time per unit data,
and LAMBDA is the data size.

The first IFcode (IFCODEONE) controls the choice of terminal
datasets to be activated. If IFCODEONE equals zero, then all

the terminal datasets are activated, otherwise a choice is made.

181



S u
> v w
IFloop . J
=0, b=50
ifcodeone = 1 *&
entry - t

from process u
P P,

d v w

IFloop J

a=0, b=50 exit

to proocess

Pig. 4-12 DQloop examples,

182

The 1nccming arc activates
dataset u. This 1is
sufficlent to iniltiate
execution of the IFloop.
It chosses to activate
dataset v, reinlitiating
its own execution, until
the counter reaches 50.

It then c¢hooses dataset

w, activating the outarc.

On entry the dataset t 1is
activated and initiates
execution of the IFloop.
This will choose to acti-
vate dataset v and so
execute process p. On
completion process p
activates dataset u which
executes the IFloop again,
This has the effect of
executing process p fifty
times before exlting

through dataset w.



The method of choice depends on the value of IFCODEONE (which is
an integer between O and 7). If IFCODEONE equals one then the
IFloop behaves as a DOloopy i.e. it adds one to a counter held
in array element STARC [0], and activates the first dataset in
its terminal row. As soon as the counter equals parameter B, the
second dataset is chosen for chosen for activation, and the
counter is reset to the value of parameter A. Use of DOloops is
shown in Fig. 4-12.

If IFCODEONE equals two then a random choice is made between
the first and second datasets of the row, with probability of
choosing the second equal to parameter A.

If TFCODEONE equals three then the k th dataset of the row
is activated, k being a random integer between A and B.

IFCODEONE equal to four is used for setting the BETA
parameter of the IFloop to its termination time. A1l terminal
datasets are activated as in the case IFCODEONE equal to zero.
BETA, like LAMBDA, is a variable which propagates with the cut,
and is currently used to retain the cut creation time. Its age
is then available at any stage of its history.

The second IFcode, IFCODETWO, is concerned with providing
new values fof T or LAMBDA. If it is positive T is set to the
new value, if negativé then LAMBDA is reset. The new value itself
is chosen by a method corresponding to the numeric value of
IFCODETWO (an (integer 1 to 7). If IFCODETWO equals zero then
no action is taken and both T and LAMBDA are left as provided by
the allocator. If either is reset,y this alters the duration of
the IFloop appropriately. IFCODETWO has its own pair of parameters

in the array IFF, which we will again call A and B.
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If IFCODETWO equals one then the new value used is a linear

function of the old one, namely A times the previous value pllis B.
If IFCODETWO equals two then a random choice is made between
retaining the old value and replacing it by B. The probability of
replacement is A.

If IFCODETWO equals three then the new value is a random
integer between A and B.

If TFCODETWO equals foury then the ﬁew value is a random
real number between A and B.

If TFCODETWO equals five the new value is randomly chosen
from a normal distribution of mean A and variance B/1.96. If
the new value is greater than B it is set to B, which removes
the five per cent tail of the distribution.

IF IFCODETWO equals six the new value is randomly chosen |
from a negative exponential distribution of mean 1/A. Should the
chosen value exceed By it is set to B. If however B is zero, then
this rule is not applied.

If IFCODETWO equals seven the new value is randomly chosen
from a Poisson distribution of mean A. The new value is set to
B if it exceeds By and B is greater than zero.

Should an IFcode be out of range, or a specified dataset
not found in the terminal row, then the IFloop passes a signal
to the allocator not to activate any terminal datasets. This
effectively extinguishes the IFloop passes a signal to the
allocator not to activate any terminal datasets. This
effectively extinguishes the IFloop since no further activity
occurs (apart from deactivation of its initial dataset).

This facllity may. be used deliberately to terminate an

unwanted process if desired, since it does not cause the
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allocator to halt the binding of the two graphs.

A further facility implemented in the SHAPE program
compensates for the absence of mode 3 binding. This allows
an IFloop to deactivate its own initial dataset immediately
after activation. Since this dataset is the only indication
in the graph structure that an IFloop is executing, the effect
is to allow several reentrant executions of the IFloop to
occur concurrently. The facility is involved by changing the
sign of IFCODEONE, making it negative.

The actions taken according to the numerical values

of the IFcodes are summarized in Fig. 4-13.
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]

ifcode _
value dataset activated
0 all
1 if counter < b then first: counter + 1
else second counter:= a
2 random choice -~ prob (first) = l-a
prob (second) = a
3 k th where k:= random integer (a,b)
4 all: beta := termination time
5 illegal
6 illegal
14 1llegal
ifcode
value new value for lanmbda or beta
O no action
1 newval:= a % oldval % b
2 prob (newval:= oldval) = 1 - a
prob (newval:= b) = a
newval:= random integer (a,b)
4 newval:= random real (a,b)
5 newval:= normal (a,b/1s96)
if >0 then newval & b
6 newval := negexp (a)
if > 0 thén newval & b
7 newval:= poisson (a)
if b> 0 then newval & b

Fig. 4-13 Summary of IFcode actions.
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L75 Hardware measurements.

In this section we develope performance measures for hardware
usage during computation. The purpose of a measure is to distinguish
quantitatively if possible, between alternative courses of action.
Performance arising from a particular course of action is judged
good or bad by criteria expressed in terms of measures. For a
measure to show different alternatives without bias, its
derivation and operation should be independent of them; its value
is then an accurate reflection of the alternatives.

The modelling system described in Chapter III is recursive.
We argue below that measures used in it should also be capable of
recursive application. Among the aims of the system is the
comparison of different software graphs executing on the same
hardware and vice versa, as well as the investigation of
alternative allocation strategies. Consequently we require that
any measures Used in the SHAPE system are independent of allocation
strategy and graph features which can be varied by the modeller.

Our choice of performance measures attempts to satisfy these
conditions. We concentrate'on two elements underlying many
existing measurement systems, and which were first put forward in
Chapter III. To recap briefly, two measures for the performance
of a processor P in executing an arc S were used. These were the
utilization (ut) and efficiency (ef). Utilization may be thought
of as that fraction of the processor whid is needed by the task
Sy i.e. 1 = ut is the fraction which is never used. Efficiency is
the weighted average fraction of the utilization which is is uge

during the execution of S.
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We regard a processor P to be made up of n components
weighted with a cost function cj for the j th component. The
processor can perform any of m functions Ti in time ti. When a
particular function is being performed not all componenﬁs are
used. The fraction (weighted by the cost function cj) used is
the utilization uti for the function fi' Each component is in
use for a time tij < ti, that is to say that the utilized components
may not be in use for all of the time taken to perform the function
fi' The efficiency efi in performing function fi is the weighted

fractional time in use of those components which are utilized.

This then leads to the following definitions.

C:ZC.
3 J

ut

%cj sign (tij) /gcj = %cj sign (tij)/ o

ef, = [J ¢ 5ts 5 / ti)j_cj sign (tij) =§ ¢t, s / ut,t.C
An example of the use of these definitions is shown in Fig. 4-1k.
Since the SIgraph model is structured recursively, as is the
SHAPE allocator, it is clear that we would like some form of
performance measure which was also defined in a recursive fashion.
Such definition would allow statistics to be uniformly derived at
any level of the model,y irrespective of the depth at which the
SHAPE run was executing. Using the measures utilization and
efficiencyy, we would like relations between levels k and k+1 of

the type,

efk = f (e fk+’| k+1

wt = g (efT, ity
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Processor P has thirteen components.

Components one to nine are used by function f.

ut

9 14
Jél °J/Z- °

=

.'Jél °3% /ng "

el

function | mix | time | ¢y c2 c3 . . e Cpn |ut Jef
1 #1 £ty t11 t12 tlB . o e typ juty efl
f2 g2 | t2 | ®a1 %22 t23 o« |utz[efe
f3 d3 tB t31 . . ut3 ef3
fm dm tm tml . . . . . tm utm efm

Pig. 4-14 Processor utilization and efficiency.
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The reason that utilization can be less than one is the
existence of a minimal unit of allocation in most of the systems
under discussion. That is to say that a certain unit, or amount,
of the resources available must be allocated, or none at all.

In such a situation, if a task is to be executed, then the allocated
resource will generally exceed the task requirement (it is
infrequent for the requirement to be an exact multiple of the
allocation unit). In the case of a processor it is clear that it

is possible to allocate only the whole processor at any given time.
Since few tasks require the complete range of functions which the
processor can perfonm, there will be unused components in most

task executions.

If we apply this point of view to a SIgraph of many levels,
we see that there will be a minimal unit of allocation at each
level, determined by the resources which can be described at that
level. When resources are allocated for an arc at level k - 1,
which has a subgraph at level k, not all components of the resource
may be needed in executing the subgraph. The components will be
described by the k th level of the Plgraph on which execution is
taking place. If we assign a cost cj to the j th component at the
k level then the utilization at level k = 1 will be the sum of the
cj for components used during the execution, divided by the sum of
cj for all components belonging to the unit allocated at level
k - 1. That is to say,

mb1=Zc.ﬁm(tV20.

where tj is the time for which the j th component was in use.
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Following a similar line of reasoning, we can say that the
efficiency at level k = 1 will be the fractional usage of those
components actually used in executing the subgraph at level k.

We use the words fractional usage to denote fractional usage in

both component spaces and time. That is to sayy if the processing
unit cj spends a total time tja allocated to arc a, its utilization
during such allocation is'ﬁtja. If we sum over components and arcs

of the k-level subgraph, we get

-1 X k=1 .
efk = E c'j g tjautja /t E o, sign <tj)

{ oty g, / B ut e
a

where tk_1 is the time taken to execute the subgraph at level k.

At the lowest level of a Plgraph we arey by definition,
unaware of the fine structure of the processing units being
allocated at that level, and of the task being executed. Without
this knowledge we can at most know the time for which an individual
component is used <tj)' This does not affeet the derivation of
w1 for the arc (task).

Assuming that the graph model is constructed to a depth at
which the addition of further levels (greater depth) will not
affect the results being sought we can take the ut?a to be one at
the deepest level. That is to say, that the omission of a fine
structure (i.e. subgraph) on the part of the modeller implies
that the ut?a are negligibly different to one (negligibly in the
sense that taking ut?a = 1 introduces a negligible error in the

behaviour being investigated). This action can at most affect

efk-1; efk-2 is calculated using utk_1 which is unchanged.
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. k k
T = Lut, =+t t1
aking utja 1 we get z; tJau ja EJ and consequently

efk_1 =Z c.t. / tk_qutk_qu_q
3 J J

which agrees with the earlier expression for efi where, it should
now be clear, this approximation was implicitly made.

In the SHAPE system we use a mix of functions fi to
characterize an arc. This is a shorthand for describing an arc
as a chain of arcs with the arc representing function fi being
repeated ¢i times.

We are now concerned to derive suitable formulae for ut and

ef of an arc as characterized in the SHAPE system. Applying results

for a7 and efk_q where level k is a chain as mentioned above,
we get,
wt =Y o, sign L gt )/ 0
3 J i 1T 1d

since component cj will be utilized if any of the products ¢itij

is non-zero, and

ofCh =S;-¢ii: Cjtij/5£'¢iti§: T sign (i: ¢itij)
1 13 1 3 i

using the deepest level approximation. This is appropriate since
the chain-mix analysis is only performed when no fine structure is

given for the arc. The expression simplifies to,

. .¢ch ch
of _Zi g t,ut ef / ut g inti

In the SHAPE characterization the quantities ;Zi, tis ut, and ef,
are given as input data. Clearly the problem is to find an
expression for ut®® without knowing the F and tij (i.e. without

knowing the fine structure of the processing unit).
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At the time of writing it does not seem possible to obtain such
an expression without making further assumptions. The validity
of any assumption will depend on the context in which the model is
being used. We now put forward three possibilities. Firstly

ut®™ = Max (ut, sign (8,))

1

This might seem appropriate when the components used by the fi tend
to be subsets of the set used by f where ut =Max (ut,).

Secondly we suggest

ch
ut =£i gt ut, /Zi gt

which is the expected utilization during execution of the chain.
Thirdly we present a possible derivation if it is assumed that at
the deepest level all c, are equal (to one, with no loss of
generality). Such an assumption can be made when the components
are identical, or when the uti and efi data which has been
provided reflects such a situation. In this case we can say,
Prob -{t,, =0} =1 - ut, for all j,

1]

Prob {cj not used in chain execution}

ma - uti) for i such that Q’i £ 0.
i

‘ni‘ (1 - ut, sign (Q!i))

" Prob {cj is used} =1 -T (1 = ut, sign (¢i))
1

and consequently,

ut®? = 1 L ut, sign (ﬂi))
i

We call these three possible approximations to utCh:

utmx, utav, utpr respectively.
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They give rise to three possible values for efCh, depending on
which one is used in the expression. These will be called efmmx,
efav and efpr respectively.

We can show the operation of these three definitions by
a numerical example. Suppose an arc requires one execution of
each of two functions ¢1 and ¢2. If ﬂq and ¢2 have durations
of 1 and 3y and utilizations of 0.9 and 0.5 respectively, then

we can see that

utmx = 0.9
utav = 0.6
utpr = 0.95

If a set of functions required by a Slarc can be ordered
such that each function includes its predecessors, then clearly
utmx is the appropriate measure. For exampley the first function
may be the no operation fuﬁction of a central processor which
simply advandes to the next instruction; the second may be a
register transfer; the third a register transfer with an
airtimetic operation. Each of these requires the components of
the processor used by its predecessors.

The second measure, utav, is a statistic which corresponds
to the expected value of the utilization during arc execution.
This is not necessarily a value which could actually arise in
arc execution, but provides the time weighted average of such
values.

If the set of functions of a SIarc is such that they‘use
groups of processor elements which are effectively independent,
that is to say as if chosen at random, then utpr will be the

most suitable measure.
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The current SHAPE system is designed to produce all these

statistics. To summarize, for each allocation we get,

time : =) gt
i

utpr ¢ =1 - (1 - ut, sign (¢i))
i

utav @

Z Q’itiuti / time

i

utmx : = Max (ut sign (¢i))
i i

efpr : =Z Q'itiutiefi/ utpr * time
i

efav : =[ p'itiutiefi/ utav s+ time
i

efmx =[ Q’itiutiefi/ utmx , time
i

Fxtending these ideas to deriving appropriate measures
for a subgraph (i.e. for the arc of which the subgraph represents
the fine structure) we introduce a new variabley, utcurrent (t).
This is the weighted sum of component in use at time t during
execution of the subgraph. If Cg is the total sum of components
available and Tg is the time taken to execute the subgraph, then

we have,

gutpr =} c. sign (t.)/ C
3 J J g

gutmx = Max (utcurrent (t))/ C
O<t<T, &

T

gutav

g
S utcurrent (t)dt/ C =« T
b g 8

It is of course not necessary to make approximations in
the case of a subgraph, the expression gutpr is the correct one

from the point of view of the previous derivations.
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The measures gutmx and gutav are included in order to provide
consistency at the level above the subgraph, in which there may be
arcs without a fine structure. Thus the gutpr, gutmx and gutav of
level k provide the values of utpr, utmx and utav for the arc at
level k -= 1 whose fine structure is represented by the subgraph.
In determining the efficiency we use the three types of arc

utilization to provide

efpr = c.t. utpr. tpr C » T
o J )—a J Ja P Ja/ gutpr » g g

efmx = c.t, utmx, utpr C x T

{QE‘faV = j E c.t. utav. gutpr * C « T
,j a J Ja Ja/ g g

gutpr is used throughout in the denominator, since it correctly
represents utk_q, and means that the numerators are being compared
to a common standard.

In order to provide these statistiecs for a subgraph the SHAPE
system maintains a running sum, for each processory of the three

eXpressions,

utpra.*ta

utimx *t
a a

utav « ¢
a a

This allows as a byproduct, the production of statistics for each
processor of the type described above. For completeness a rumning
maximum of utmxa is held, and also a cumulative function frequency
vector @ [1:n]. @ [i] holds the total number of times the processor

has executed function fi. This allows us to define,
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putpr = 1 —'Tr(1 - ut; sign (ﬁi))
i
putmx = Max (utmxa)
a

putav = g ta utava/ Tg

pefpr = )2 ¢itiutiefi/ putpr « Tg
pefmx = z% ¢itiutiefi/ putmx Tg
pefav = ) gitsut;ef,/ putav » T

i
In addition, for historical reasons we keep a running total of
ta, allowing us to define,

time = t /T
P [aa/g

We now apply the arguments above to memory elements. If we
regard a processor as made up of memory elements and data paths,
the expressions arrived at above apply to the data paths (as
processing elements of weight cj). Suppose each memory element
is assigned a weight mj and is in use for a time tj, we can say

for function i,

ut, = %mj sign (tij)/zj m

and,M:Zm.
T

and so, ef, = E}xnjtij/ tiz:mj sign (tij).
J

=Y m.t../ ut.t.M
T s i

This expression, like that derived for data path components
in a processor, implicitly assumes that the utilization of memory
at the level mj is one. Where the mj are memory components in a

subgraph we say,
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ut =5- m, sign (£.)/ Vil
m E J J

where tj is the time for which the memory (or store) was in use.
A store 1s in use when all or part of it is allocated to the
initial or terminal datasets of an active arc, or to the storage
of an initial dataset of an arc which is not yet active.

The question now arises of what expression to use for utj.
We shall use muj(t) to denote the level of usage of element m,
at time t. That is to say that muj(t) ig in some unit of memory
measurementy so that

0g mu (t) Sjmamuj

where maxmu, is the capacity of m.. We use the product z:t. ut .,
J J D Jp Jp
as an expression for the usage of mj over the execution of the
subgraph, since a summation over arc executions will not include
dataset walting timesy and a memory can hold data for many active

and inactive arcs at any given time. tjp is the length of the

period p in which muj(t) > 0 and utjp = max [muj(t)] mada £0 that

-1 _ k-1 . ‘
ef:{n —ij I tjputjp/ ¥ Z_ m s:Lgn(_tj)
J p J
_ k-1 k=1 k=1
_I;ij[p tjputjp/ t ut M

Since memory is a liomogeneous resource we can say that the
union of all parts of the memory used during a given interval is
equal to the maximum usage in that interval (this assumes a memory
compaction mechanism which uses negligible resources). Since the
union of used components in task execution ig the utilization for

that tasky this allows us to write,
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Max  (mu.(t))/ maxmu,
ut. = J
T Fers
where 't% and Tp are the starting and ending times of period p

respectively, so that,

ut. = Max (ut. )
J D Jp

Using this expression for u'tj in the equation for efk-1 gives
us consistency with the equivalent expression for processing unit

usage. Following through for the efficiency of memory mj we get,

T
ef, =( & mu.(t)at/ ut.T maxmu.
J J J 8 J
0

If we stipulate that the component weights mj and ¢, are in
the same units then we are able to combine processing unit and

memory unit usage as follows:

Ck—1 + Mk-1

Ck—ﬂutk-1 + Mk—1utk-1
c m

Total resources allocated

Total resources utilized

Total resource usage = Ck"1v1'l',l;"1ei_‘lé-,l + Mk-,lut;-,lefz-1

dropping the superscyript, we have,
Overall utilization U = (C utc + M utm)/ (c +M)

Overall efficiency E

(c u‘tcefC + M utmefm)/ (c utc + M utm)

(c ut ef_ +M utmefm)/ (u(C + M))

In the SHAPE system the data on processor characteristics
for each of the n functions at any level is assumed to consist
of the values of U and E for each function.

It can be seeny, by examining the expressions aocove, that
utilization is independent of idle time in task execution.

In fact the utilization will reflect how well the allocation

mechanism for a task (subgraph), and its choice of allocatable
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entitiesy is suited to the task in hand. The efficiency expressions
tend to be an expression of resource usage (and therefore of idle
time) of allocation units, and components within these units, for

a sequence of allocations.
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L.6 Software measurement.

We describe below the types of statistics which are produced
by the SHAPE system concerning SIgraph binding. These fall into
three categories, statistics for nodes, arcs, and cut(s).

Node statistics are held in three two-dimensional arrays,
QDy QTy QS, all of dimension [0: INARCS, 1:4]. The zero row
holds overall statistics for the node, while if binding takes place
in semi-reentrant mode, the other rows contain statistics for the
transaction queues of the corresponding rows of the REP matrix.

For the node as a whole we keep statistics of the amount
of active data associated with the node in QD [043]y j = 1.4«
These are the time integral of the associated data, and its
maximum value. In array QT [0,3]y J = 1,4 we retain the number
of activations of the node, the sum of their durationsy and the
minimum and maximum duration. In QS [0yj]y J = 144 we hold the time
integral of the node activity and its maximum value. Node
activity is the number of currently active elements of the REP
matrix plus the number of queued transactions, if any.

Similar statistics are kept for the individual INarc queues
if binding is semi-reentrant. Node activation becomes queue
activationy i.e. the number of transactions which enter the queue
is counted. Duration becomes gqueue waiting time. In order to
record this item transactions possess a scratch variable which
is set to current system time on entry into the queue; on exit
the waiting time is current time minus the scratch value.
Activity becomes queue size and is recorded as for the whole

node. The usage of arrays AD, AT, and QS is shown in Fig. 4=15.
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esfo]

time integral of activation time integral of
node data counter node activity
last time changed | {sum of last time changed

activation times

current associated
data

min
activation times

current aoglvlty

max
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max .
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e [1}
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es (1]

time integral of transaction time integral of
Q data counter Q size
last time changed sum of

walting times

read time

current
assoclated data

min
waiting times

Furrent Q slze

max
Assocliated data

max
walting times

tax Q slzd

FPig. 4-15 Node Statistics in arrays QD, QT, QS.
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Howevery, if the INarc specifier of the row, REP [i,0] is
negative the corresponding rows of D, QT, and QS are not used
for queue statistics but to accumulate counts, sums, maxima
and minima of the LAMBDA and BETA factors of the incoming arc
activations.

These are cut statistics, and may be collected at any node.
If the node is the terminal node of the SIgraph, then the values
collected will reflect the values of LAMBDA and BETA associated
with the cut on its completion. At other nodes they will reflect
intermediate stages of the cut history. BETA is a variable which
records a time value and propagates with the cut. When one of the
OUTarcs of a SInode is allocated, the value of BETA given to the
tie is equal to the largest BETA associated with the INarcs which
provided the initial data of the OUTarc. At the moment BETA is
set to the current time when a cut is generated. On completion of
the binding which this cut represents BETA will still have this
value (unless deliberately reset by an IFloop) and thus provides
the age of the cut. At nodes other than the terminal one BETA
can be used to provide the cut age at an intermediate point of
its history. In semi-reentrant mode, LAMBDA and BETA values of
ties are retained in transaction attributes TL and TB when the
ties are queued. A use for the BETA factor occurs when a cut
represents the transmission of a message in a switching network.
In this case the cut age is the overall transmission time from
source to destination. Array usage for cut statistics is shown in
Fig. L-16.

The following statistics are recorded for SIarcs in array
STARC [1:6], namely the number of times the arc was allocated,

the sum of the execution times and utilizations, and the maximum
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- QD. (1] ar 1] a8 [1]

1 Jcut counter | [out counter

2 |sum of lambdas sum of betas

3 |min " " min " " sum of squares

of bvetas
4 {max ® . max " " sum of sqﬁarea

of lambdag

Arrays QD, QT, QS are used in this way when REP [}.Q]<LO

Fig. 4-16 Cut statistics.
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and minimum execution time and utilization. This is shown in Fig.
L7,

On graph completion in addition to the above statistics,
the fraction of time (activity) for which nodes and arcs were
active is printed. Averages are also printed for arc execution
time, node activity, queue size, assodiated data, and in all cases
these are averages over the whole graph time rather than the
active time of the elements concerned. If the second type of
average is required it can be obtained from division by element
activity.

The items described above have been implemented as being
a simple but sufficient and useful set of statistics for present

use with the SHAPE system.
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STARC

1 execution count

2 sum of execution times
3 max " "
b |min " "

5 sum of utilizations

6 max " "

7 min " "

Fig. 4-17 Arc statistics in array STARC.
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CHAPTER V

VALIDATION
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5.1 The choice of validation.

For any system which attempts to model a large class of
computational processes there must be many candidates for the role
of validation. In choosing a model 1t is advantageious to select
the simplest one which still tests all the facilities of the
modelling system. In our case a further consideration was the
type of problem the system would be applied to after its
validation. A validation based on a related problem would have
the double advantage of ensuring the adequacy of the system for
the subsequent work, and providing relevant experience in this
area of its use.
¢ One of the most stimulating of current developments has been
the research and construction of computer netwroks. The initial
problems have been the very basic ones of implementing suitable
communication systems between the node computers, and their
clusters of terminal users. Once such communications are
implemented the connected user can access not only the facilities
available at his own node computer, but those throughout the
network. For this reason such networks have been called resource
sharing networks.

Computer networks have also been constructed for other
reasons. Message switching systems make the solution of the
communication problem their prime objective. Real-time networks
(of which military and airline ones are the best examples) have
been implemented to conduct operations beyond the capability of
a single computer.

This leads us to expand the remarks in Chapter I which

assert that at any given time there must be tasks which require
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a degree of computing power that can only be provided through
parallelism. Real-time networks have been a response to such
tasks. It is to be anticipated that as the operational difficulties
of resource sharing networks are solved their facilities will not
only be shared but also used cooperatively in the solution of
camputational problems of a new order of magnitude.

The common prerequisite of computer networks has been a
communications system between the nodes. A very frequent solution
has been séore and forward tranasmission of messages as a series of
packets. This has been the choice of the implementors of the
Advanced Projects Research Agency (ARPA) and National Physical
Laboratory (NPL) networks.

The intended application of the SHAPE system was to an
extension of the ARPA network to Norway and London. For this
reason the validation test chosen was the modelling of a samall
store and forward communication system. This model provides
tests of the major functions of the SHAPE system. The creation
of messages (i.e. the traffic) to give particular distributions
of frequency and length uses IFloop facilities for random
numbers generation, and delay, and dataset size setting. The
dispatch of messages to their destinations requires the
allocation of processors (the transmission channels) and memory
along the route. Accumlation of messages at intermediate nodes
uses the queueing ability of mode two binding. Measurement
facilities are used to derive the validation test statistic, and
S0 on.

In the following sections of this chapter we discuss the

store and forward system to be modelled, present the model itself,

209



and derive the test statistic. Lastly, the results from a number
of computer runs of the model are given and examined for confirma-

tion of validity.
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5.2 Store and forward networks.

In a circuit-switched network of communication channels two
subscribers who wish to exchange information must first establish
a circuit or path, between their temminal equipments. This path
is static once established and remains in existence for the
duration of the dialogue. The channels which make up the path
are consequently dedicated for this period. Telephone systems
are an example of circuit-switched networks.

A store-and-forward network transmits information between

subscribers without establishing a fixed path between them, and
without dedicating channels for the duration of the dlalogue.
This is achieved by fommatting information as messages with an
address or destination. A message is then transmitted along the
route to its destination, with one channel being allocated at

a time. Channéls tranamit between exchanges or nodes which are
able to store messages and usually have several incoming and
outgoing channels. When a message arrives at a node the outgoing
channel is selected using the message destination, and routing
information possessed by the node. If the channel is free the
message 1s tranemitted immediately, otherwise it is stored at

the node and forwarded later, giving rise to the name for these
networks. The routing may be fixed or vary with conditions

in the network. An example of this type of network is the postal
service. TFor this reason the phrase packet-switched network

is sometimes used.

The nature of computer-to-temminal, or computer-to-computer,
dialogue makes store-and-forward communications a more economic

choice for computer networks than circuit-switching.
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The dialogue typically has long pauses while a terminal user
prepares his next inpuf or a computer produces a reply.
Nevertheless a high data rate is required when transmission does
occur in order to provide good response times in interactive
systems. Such usage inevitably incurs a high overhead in idle
time when channels are dedicated, as is the case with a circuit-
switched network. In contrast store-and-forward networks are.
an attempt to ensure that messages use the minimum channel
capacity which is required for delivery. However, the storage
facilities and the necessity of routing procedures now introduce
a new coverhead which must in turn be assessed.

The type of store-and-forward network which is used for
this validation is that treated by Kleinrock in his book

Communication Nets. This class of network is characterized by

the following properties.

Each node in the network may be both a source and a sink
of messages. The channels and nodes are assumed to be noiseless
and reliable. Delays at nodes due to routing procedures and
other housekeeping operations are assumed to be negligible.
Messages are considered to have only one destination and must
reach it to leave the network. This implies unlimited storage
capacity at the nodes. Messages may not be transmitted out of
a node until they have been completely received. Messages are
generated at a node with exponentially distributed interarrival
timesy i.e. their generation is a Poisson process. Message
length is also assumed to be exponentially distributed, and

both processes are considered stationary with respect to time.
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The first five of these properties are not unrealistic. The
last three represent reasonable assumptions of great mathematical
usefulnessy and Kleinrock refers to telephone traffic data which
supports their plausibility. The performance measure of this
type of network is the average message delay. This is the mean
over all messages of the total time spent in the network by a
message. For ease of reference we use the same notation as

Kleinrock, which is summarized below.

ik = average number of messages entering network per second

with origin j and destination k.
X. = average number of messages entering i th channel per second.

1/‘ij = average length of messages which have origin j and

destination ky in bits.
C. = capacity of i th channel, bits/second.

total arrival rate of messages from external sources.

> <
[

= total arrival rate of messages to channels within the net.

n = average path length over all messages.

1/&, = average message length from all sources.

C = sum of all channel capacities in the net.

e = network loady i.e. ratio of average arrival rate of bits
into the net from external sources to total capacity of net.

ij = average message delay for messages with origin j and desti-

nation k.
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T, = average delay for a message passing through channel i,

queueing plus tranamission time.
T = average message delay.

The definitions lead to the relations,

Y,

¥
h = jz'k Kjk/( ¥ ij)

C = Lci
h a‘?kxjk

=¥/(po)
A= Z')\i

T= jgc Xjk 23 /¥ = ‘L-;}‘i /Y

The average message delay is the performance measure to be
optimized, and Kleinrock has derived analytic results for the
allocation of channel capacities which achieves the optimal delay.

Firstly he shows that for the class of nodes with N outgoing
channels of capacity C/N (the total capacity C is a constant) the
average message delay is a minimum when N = 1. This result is
used to develope the optimal channel assigmment for a net of N
independent nodes each with a single output channel. The assign-
ment (subject to the constraint that the sum of the channel

capacities is constant)
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which minimizes the message delay averaged over the set of N nodes

is given by,
N N
c, =)‘i/f"i + {c - J; )\j/ Nj) /Xi/[\'i /;,Z‘q >\j/ M

Using this assignment gives,

T = iq,/)\i/x‘di>2 C(1-p)

Finally, for the general case of an interconnected net, with

})i =\J for all i, the optimal channel assigmment is given by:
_ N
C. =>\i/‘\) + C(1-np)y Ai jg'\‘/ )\j

This gives,

T=n (§‘1,//\i//\i) 2 N C(1-ap)

The assigmment can be interpreted as follows- Each channel is
first apportioned just enough capacity to satisfy its average

required flow of Ai/rj bits/sec. After this the capacity is,

C -

™M=

Ai/r) = C(1-p)
1

which is then distributed amongst the channels in proportion to
the square root capacity assigmment. It is this last case which
we have chosen for the validation of the SHAPE program. A model
of an interconnected net is described using the SHAPE system and
the channel capacities are calculated as shown above. The mean
message delay is then measured and compared with the calculated
value of Ty using given confidence limits. For detailed back-

ground to this subject the reader is referred to [KLEI 64].
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5.3 The validation model.

The model used is a simple one from the first part of Kleinrock's
book. It descriﬁes the hypothetical message flow between five
cities of the United States. The topology of the network is shown
in Fig. 5-=1. The traffic matrix is based on a conjecture of Zipf
that the flow between two cities of population Pi and Pj a distance
Djk apart is given by

Kjk =°<Pij/Djk
where ¢ is a constant of proportionality. This leads to the
proportional traffic matrix given in Fig. 5-2. Kleinrock chooses
the total capacity to be equal to the total proportional network
traffic (38.33) and M = 10. The routing procedure is fixed and
consists of the set of shortest routes. This leads to the mean
path length

n =AY = 1.3
The routing is shown in Fig. 5-3. Variable values for individual
links of the network are shown in Fig. 5-4, the total link traffic
% being 50.23. TFrom the individual channel delays and the
traffic matrix, we can calculate the delay for each type of
message, and these are given in Fig. 5-5. Using the intermediate

results that,

c(1-mp)/L | N = 1.39286
Z\P\:/z = 11.95698

p =Oo/|
We find that the average message delay

T = 0.0447767
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New York

Chicago

Los
Angeles
Houston

The channels shown are full duplex, so that total

channel capa~ity in the net is 38.33.

Fig. 5-1. Valid=tion Network.,
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NY
CH
HO
DE
LA

Fig,

NY CH 20 DE LA

- 9.3+ 0.935  0.610 1 2.9%
9,34 - |o.820 0.628 2.40
0.935 0.8;6m““”””‘"-. 0.131 0.608———“
0,610 0.623 0.131 __ ) o~753 i
2,94 [2.ko 0.608 0.753 -
Total Traffic § = 38.33

Mean message length 14U = 0.1

5-2.

Proportional Traffilc Matrix.
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Link N1 \fST; ! Ty 1/c1
NY/CH 9.950 | 3.15436 | 5.38858 | 0.0227605 | 0.185578
NY/HO 3.875 | 1.96850 | 3.1293% | 0.0364718 | 0.319556
CH/DE 3.638 | 1.90735 | 3.02046 | 0.0376411 | 0.331074
CH/HO 0.820 | 0.90554 | 1.34329 | 0.0792839 | 0.744441
HO/DE 0.131 | 0.36194 | 0.51723 | 0.1933610 | 1.933371
HO/LA 3.548 | 1.88361 | 2.97340 | 0.0381155 | 0.335750
LA/DE 3.153 |1.77567 | 2.78856 | 0.0404325 | 0.358608
Total 1ink traffic = 50.23

Fls . 5-4 .

Link Trafflc, Delay, and Capacity.
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Z NY CH HO DE LA

NY | - 0.0227605 0.0364718 0.0604016 0.0745873
CH - 0.0792839 0.0376411 0.0780736
HO - 0.1983610 0.0381155
DE - 0.0404325
LA -

The matrlix elements Z give the delay for messages

Jk
with origin J and destination k.

Plg. §-5. Message Delay Matrix 2.
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The top right and bottom left halves of the traffic matrix
define two identical and non-interacting systems. Consequently
it is only necessary to model one of them, and we in fact choose
the top right system. This system is shown in Fig. 5-6 with
node numbers assigned to the cities. The topologies of the
SIgraph and PIgraph are shown in Fig. 5-7, but without the
IFloops of the SIgraph. Nodes of the SIgraph, examples of its
arcs, and examples of the PIgraph data are shown in Figs. 5-8,
5-9y 5-10 and 5-11 respectively.

Node one generates messages to four destinations, namely
nodes two to five. The generation of each is caused by an
INarc of the node (e.g. that entering the row with arc specifier
1.21). Termination of the INarc activates two matrix elements.
The first of these reactivates the INarc itself for a delay
drawn from a negative exponential distribution, while the second
activates a further arc (e.g. that of column with specifier 1.22)
which draws a value for the dataset size from a similar distri-
bution. This second arc has a zero duration.

The dataset size is effectively equivalent to:the message
length in our model, since the function which is executed by
SIarcs between two SInodes is the transmission of one bit between
them. Such SIarcs have a non-zero element in their function
vector, and so must be tied to Plarcs capable of executing the
function. These Plarcs represent the communication channels of
the network, and their function vectors give the time required to
transmit one bit from the initial to the terminal node, i.e. the.
inverse of the channel capacity. The nodes of the PIgraph there-
fore correspond to the storage available for messages at each of

the five cities.
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PO

Fig. 5=6.

HO (3)

Directed Semi-Network.
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sigraph (loops and node 0 not shown)

Pig. 5-7. Slgraph and Plgraph topologiles.
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1.21

1,22

1.31

1,32

1.41°

1.42

.

2.40

1.51

1.52

3.50

3.30

2.31

2.32

3.30

2.41

2.42

L.,4o

2'51

L.50

4.10

2.

20

~»1.40

- =-»1.20

2.20

0

'Fig. 5-8. Nodes 1 and 2 of model Sigraph.
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e
L. 4o
5 5
(3 |5.50
- -3.10 1
—» -3.50 1
- -4.20 1
- -4.50 1
5.50 |

Fig. 5-9. Nodes 3,4, and 5 of the model SIgraph.
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Transmission arc

1 2

Generator delay arc

1 1

Generator message length arc

1 1

5 5

Pig. 5-10. BRBxample arc.. data of the SIgraph.
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PIgraph nodes

1 0 2
120 o 0 0 0 0

Plgravh arcs

1 2
2
11 0
gy 1
-1 -1
-1 -1
-1 -1

Pig. 5-11. Example node and arc data of the PIgraph.
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We have used the SHAPE facility for specifying that a SInode
be tied to a particular PInode to ensure that messages are generated
in the correct store. The fixed linkage between the SInodes and
PInodes is required since the SIgraph contains the routing pattern
of the network. As each message is generated the current time
is recorded in the BETA variable of the generating tie. This is
then propagated with the message until its destination node is
reached. Here cut statistics collection is involved by setting
the incoming arc specifier negative. This has the effect of
measuring the message delay which is accumulated in scratch
variables as described in Chapter IV. After this the message
is destroyed by the use of an IFloop whose terminal row has only
zero elements.

The distribution used for the delay between generation of
successive messages with the same destination is negative
exponential so that the generation is a Poisson process. The
mean of this distribution then determines the average rate of
message generation for this destination. In the model these
means are taken from the proportional traffic matrix. Similarly
the message length is generated using drawings from a negative
exponential distribution of mean 1/NM (=10). In order to
approximate unlimited storage at the PInodes, we have given
each one a capacity of ten to the power twenty.

The model as a whole is started by activating the termminal
datasets of each generator arc. After this initial activation
the generation proceeds automatically as described above.

The initial activation is produced by null arcs from node zero.
This is possible since the SHAPE system allows activation of the

same REP-matrix row by arcs from different SInodes.
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In the run card for the model we specify node zero as the initial
node and consequently graph binding commences with the activation
of the row of the node which has a zero INarc specifier.

The run then continues until the time 1limit specified on
the run card is reached. The seed of each random drawing
stream is taken from the arc data, so that different runs can be
produced by altering the seeds. Details of the data, and seeds
of individual runs,can be found in INDRA note 285, Institute of

Computer Science, 1973.
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5.4 The statistical test.

We have ten distinct message types in the validation model,
each with a theoretically calculated mean message delay of Z
where i is the message type. We shall call the delay for the
J th message of type i, xij’ and the number of these messages n, .
If we now consider the variables,
S B |
then these have a theoretical mean of zero for every message
type. Because all the ten groups of the X have the same mean,

we can combine their variables by simple addition so that,
N82 ::Z_ X}E{
i
where N = E% n,

and 52 is the variance of all the xk taken together. This allows
us to apply a t-test to the whole sample of the x - The hypothesis
for the test is then that

X = 0
The advantage of treating the data in this way is that we have now
developed a single test which utilizes all the observations
produced during a run of the model. We now derive the statistic t
as follows.

t=x -pN

s/ =1

where, in this casey, M= 0. Also we can write:-

2 (T2 - v -xke)/ (1)

so that,

t = (N-1)x, xﬁ S
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NOW'

A
1}
TN

n

uM »
e
L'l
l—’:j
N

N

= 1{ n (;1 - z.)
N i
andg 2
2.y 2
- X i3 (xij - z.)
= Z_ xij - 2% Ziz. xij + ‘)_ nizi2
ij J €
N 2 - 2
= i xij - 22 nizix:.L + anizi
1] 1 1
2 —
= Z Xij —2 niZi(EXi - Zl)
ij 1
also,
£ (-1 = )% ey s = %)
5 _ 2
= Z (x7. - 2x. .xi) + n.X.
3 ij i iTi

Z 2 —
= X.. - n.X,
3 4l i%4

In the model runs N > > %0 so that the t - distribution is
very close to the normal distribution. That is to say we use
the bottom row of the table in Fig. 5-12. For this case the
probability that [t|l > 1.96 is 0.05. Thus if we get such a value
from a run we reject the hypothesis that §£ = 0 with 95% confidence.
Otherwise we accept the hypothesis.

We can obtain 95% confidence limits for the true meanffj-

of the X, by writing
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Fig. H-12, Vaiuzs or ¢t CorrzsronniNg 7o Given Promasrumes® .

Degrees Probability of & deviation greater than ¢ ' Probobility of a deviation greater than ¢
el ;
froedomn o5 I oor | owoes | o5 | o | oas | 2 25 3 35 | .4
1 63.657 | 31.821 | 12706 | 6.314 [ 3.078 | 1.083 | 1.378 1.000 . 727 .510 .325
2 9.925 6.065 4.303 | 2.020 | 1.886 | 1.386 | "1.061 818 617 .445 289
3 5.841 4.511 3.182 | 2.353 | 1.638 | 1.250 .978 .765 584 424 277
- 4 4.604 3.747 2.776 | 2.132 | 1.533 | 1.190° 041 74y 569 414 271
5 4.032 3.365 2.571 | 2.015 | 1.476 | 1.166 .920 727 550 .408 .267
8 3.707 3.143 2447 | 1.043 | 1.440 | 1.134 .008 718 .553 ,404 .265
7 3.499 2.998 2.365 | 1.895 | 1.415 | 1.119 896 711 .549 402 263
8 3.355 2806 | 2306 | 1.860 | 1.397 | 1.108 .889 706 | - .546 .300 .262
9 3.250 2.821 2262 | 1.833 | 1.383 | 1.100 .883 .703 543 .398 .261
10 - 3.169 2.764 2.228 1.812 1.372 1.093 .879 700 542 397 260
11 3.106 oms | 2201 | 1.796 | 1.363.| 1.088 876 697 .540 396 260
12 3.055 2.681 2.179 1.782 1.336 1.083 873 695 .539 395 259
13 3.012 2.650 2.160 | 1.771 | -1.350 | 1.070 870 694 .538 394 250
14 2,077 2.624 2.145 | 1.761 | 1.345 | 1.076 868 692 .537 303 258
15 2,047 2.602 2131 | 1.753 | 1.341 | 1.074 866 691 .636 393 258
16 2.921 2.583 2,120 | 1.746 | 1.337 | t.071. .865 .690 535 .392 258
17 2,898 2.567 | 2.110 | 1.740 | 1.333 | 1.069 .863 .689 534 392 257
18 2.878 2.552 2.101. | 1.73¢ | 1.330 | 1.067 .862 | .ess 534 .392 257
19 2.861 2.539 2.003 | 1.720 | 1.328 | 1.068 861 688 .533 .391 257
20 | 2.8 2.523 | 2.088 | 1.725 | 1.325 | 1.064 .860 687 .533 .391 257
21 2.831 2.518.) 2080 | 1.721 | 1.323 | 1.083 859 .688 .532 391 257
22 2.819 | 2.508 2.074 | 1.117 | 1.321 | 1.061 .858 .688 532 ,390 258
23 2.807 2.500 2.069 | 1.714 | 1.319 | 1.060 .858 .685 532 ,390 256
24 2.797 2.492 2.084 | 1.711 | 1.318 | 1.050 .857 .885 31 .390 256
25 2.787 2.485 2.060 | 1.708 | 1.316 | 1.058 .856 .884 .531 .390 256
28 2.779 2479 | 2.05 | 1.706 | 1.315 | 1.058 .856 .684 531 .390 258
27 2.1 2.473 2.052 | 1.708 | 1.314 | 1.057 .855 .684 531 .389 258
28 2.763 2.487 2.048 | 1.701 | 1.313 | 1.056° | .885 .683 530 .389 250
29 2.756 2.462 ¢ 2.045 | 1.600 | 1.311 | 1.058 .854 ,683 .530 .389 256
30 2.750 2.457 2.042 | 1.607 | 1.310 | 1.055 .654 .683 .830 .389 256
0 2.578 2.320 1.060 | 1.645 | 1.282 | 1.036 842 .674 524 ,385 .353

" The probability of a devistion numerically greater than ¢ is twice the:

probability glven at the head of the table. '
f “Siatistical Methods for Ressarsh Workers,” with th
g (Bl el T sk i
v Y



Ik):Ek ¥ 1.96 s/ ./ N-1

5
=% % 1.9 /Xxi_ NEK/(N_*I)

This allows us to examine the range of,} which falls within

the confidence limits of every run.
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5.5 Validation results.

Altogether eight runs of the model were executedy, the last of
these having an order of magnitude longer run time. Each run
produced the normal SHAPE statisticsy as described earlier.

The cut statistics were used to calculate the t-test values

as described in section S.4. For each message type the terminal
node's row corresponding to the message arrival INarc was tagged
(the INarc specifier set negative) for cut statistics accumulation.
Consequently for each message type the cut statistics COUNT, AVGDUR,

and DURVAR (corresponding to n, Ei, and 2: Xij) were output.
J

From these the t:¥atue for the run can be calculated and
these are given in Fig. 5-13. In all the runs the t value fell
within the acceptance limits at the 95% confidence level (ltl< 1.96).
If we had observed a run which gave a value of t outside these

limits we should be forced to reject the null hypothesis Hb that

%{:O

The t values shown in Fig. 5«13 allow us to accept it. This is
equivalent to accepting the hypothesis that the mean message
delay observed in the model is équal to

T = o.okh7767
from the derivation of §£. Consequently we consider the runs
described as constituting a validation of the SHAPE model.

The confidence limits of §£ can be written as

ek
and we have given §£ and L for each run in Fig. 5-13.

Since we accepted Hb for each run the value zero lies within the
confidence limits of every run. We have plotted these limits in

Fig. 5-15, and shown the interval (asb) common to all of them.
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t X, x 107 L x 1073

RUN 1 | 0.9036 | 0.7257 [L.5740
RUN 2 |-0.7993 |-0.8514 [P.0877
BUN 3 | 0.1156 | 0.0933 [1.5809
RUN & |-1.0713 [-1.1047 [.0212
RUN 5 | 0.5919 | 0.69%49 P.3013
RUN 6 |-1.0364 |-1.1365 p.1493
RUN 7 |-1.5115 |-1.5652 R.0297
RUN 8% | 0.9515 | 0.3500 p.7209
MEAN -0.3492

#long run

Pig. 5-13. Values for t-test and Ek.
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Lee

MESSAGE

TYPE NY/CH NY/HO CH/HO NY/OE CH/DB HO/DE NY/LA | EHO/LA CH/LA DE/LA
Z, .02276 [.03647 |.07928 | .06040 | .0376% | .19836 | .07459 | .03812 [.07807 | .04043
20K 1 <02239 [.03623 |.07831 | .06468 | .03379 | .23200 | .0795% | .03653 |.07791 | .04200
RUN 2 .02242 |[,03618 |.07958 | .05125 | .03429 | .19990 | .07225 | .03756 |.08000 | .03516
RUN 3 .02359 |.03631 |.07738 | .06186 | .0359% | .23990 | .0787% | .0367# | .06957 | .o4228
BUN &4 .02329 |.03536 |.06920 | .05837 | .03342 | .19250 | .07427 | .03549 |.07398 | .03927
RUN 5 .02299 |.03561 |.06863 | .0594%4% | .03599 | .20050 | .08553 [ .03878 |.07191 | .04251
RUN 6 02204 .63301 .07187 | .05046 | .03364 | .17340 | .07607 | .03337 | .08085 | .03881
RUN 7 .02333 }.04011 | .08070 | .05401 | .03247 | 16980 | .08779 | .0342% | .07396 | .04230
'RUN 8% .02238 [.03558 | .08051. | .06118 | .03723 | .17550 | .07770 | .03695 | .07948 | .04152
MEAN .02280 |[.03605 | .07576 .osﬁ%é 1 +03460 | 19744 | 07648 | .03620 | .07596 | .04051
*#long run
Pig. 5-14., Mean Message Delay by Message type for eight runs.
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The relative smallness of a and b further supports the null hypothesis.
In Fig. 5-14 we have given the observed mean message delay for
each type of message. These show a correspondence with the
theoretically expected values which is closest for the most
frequent messages. We have also shown the mean over the eight runs
for each type.
Using the delay and the COUNT for each message type we can
calculate the overall observed mean message delay.

T = L AVGDUR, = COUNT,/) COUNT,
i 1 1 i 1

However, since the message lengths are drawn in a random fashion,
the average observed message length is usually slightly different
from 0.1 for each type- In consequence the mean message trans-
mission time will differ from the expected valye. This is a
component of the mean message delay and so perturbs the delay
from what it would have been if the average length of each message
type was 0.1.

If the queveing time is not large compared with its trans-
mission time we can make a first order correction for this
effect by normalizing the mean delay of each type of message

with respect to its mean length, giving

T =) COUNT., = AVGDUR, = 0.1 } COUNT
mog * towverar, | 4 *

A similar problem occurs because the number of messages of each
type generated during a run will differ from the theoretically
expected mumber (which we will call ECOUNT,). We can again make
a correction for this by using ECOUNTi instead of COUNTi in the
above expression giving a mean delay

T =) BCOUNT,  AVGDUR = _ 0.1 __ [} BOOUNT

i AVGLAMi i
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We give values for T, T, and T in Fig. 5-16. The last
run of the model had a considerably longer run time than the
others. In this run the values of T and Ek were much closer to
the expected values, and the confidence interval amaller.

This demonstrates the convergence towards expected values with
longer run time and supports the claim to validity based on

the t-test results.
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T x 10| T, x 107§ 1, x 10°

RUN 1 | 4.506 4,437 486
RUN 2 4.313 4,541 4,631
RUN 3 4,592 4,431 4,428
RUN 4 4.370 4,650 h, 644
RUN 5 4,588 4,538 b.492
RUN 6 4,508 4.576 4,429
RUN 7 4.325 4,528 4,529
RUN 8% | 4,489 4,512 4,542
MEAN 4 .44 4,527 4.523
*long run

Fig. 5-16. Mean Message Delay.




CHAPTER VI

APPLICATION
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6.1 A UK 1link to the ARPA network.

This chapter deals with the application of the SHAPE system
to a particular design problem, namely the behaviour of a linkage
between computers in the United Kingdom and the ARPA network.
The choice of an example from the field of computer networking
is a natural consequence of our belief that this is the direction
which the mainstream of computing will take in the future.

In Chapter I we suggested that the search for greater computing
power must sooner or later require coordination of dispersed
facilities in order to solve problems too large for a single
computer to undertake. The ARPA netwrok is certainly a first
step towards this goal, since it provides both communication
between computers and user access to all resources available in
the network. Its extension to the United Kingdom via Oslo is
therefore of great interest to us. Application of the SHAPE
system to this link is also particularly attractive since we
have been closely associated with the research team working

on this project. The association has given us an intimate
knowledge of the design and operation of the ARPA network and
its extension to the UK.

In the sections which follow we describe and analyse the
characteristics of the link. A model is constructed with the
SHAPE system and used to observe the behaviour of the link under
various conditions.

The ARPA network provides store and forward communications
between the set of computers shown in Fig. 6-1. The computers
located at the various nodes are drawn from a variety of

manufacturers, and most are incompatible both in hardware and
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software. The network has t¢ provide communications for this set
of machines, and allow effective use to be made of them from any
point in the network.

An underlying constraint placed on the design of the network
was that its operating procedures would not interfere in any
significant way with the operation of the existing facilities
which were to be comnected. Consequently the message handling
tasks are carried out in a dedicated Interface Message Processor
(IMP) situated at the site of the computer to be connected (HOST).
In most cases the communications channels are 50 kilobit per
second full duplex telephone lines and these run between IMPs.

An TMP modified to directly support terminals is called a TIP.

In order to provide reliability there are at least two paths
through the network for every origin-destination pair. A 24 bit
cyclic checksum is provided for each block of data, and the IMP
is a ruggedized computer with a mean time between failures of
104000 hours. TIPsy however, are not currently ruggedized.
Messages which flow between HOSTs are broken up into packets, each
of maximum size approximately 1,000 bits. There can be up to
eight packets in a message, which is assembled and disassembled
by]the IMPs. The packets make their way individually through
the IMP network where appropriate routing procedures direct the
traffic flow.

A positive acknowledgment is expected within a given time
period for each inter-IMP packet transmission. In the absence
of an acknowledgment the transmitting IMP will repeat the trans-
mission (perhaps over the same channel or over a suitable
alternative). This process is repeated a number of times after

which the communication chamnel is regarded ss unavailable.
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Absence of an acknowledgment may indicate, for example, that the
message contained errors on receipt or that no more buffer space
is available in the receiving IMP.

There may be up to 6% dialogues occuring at aé&rone HOST.
The dialogues take place along two logical communications
channels called links. A HOST will send a message along the
outward link of a dialogue and then await a Request For Next
Message (RFNM) on the inward link.

In those cases where a user is making more or less direct
use of a remote software s¥stem, the network is intended *to provide
a total round-trip delay which does not exceed the human short term
memory span of one to two seconds. In the design of the network
it was also considered desirable that the response should be
comparabley if possible, to using a remote display console over
a private voice grade line where a 50 character line of text can be
sent in 0.2 seconds.

The linkage to Europe consists of a telecommunications channel
between a TIP in the United States and one in Oslo, which is in
turn connected to a TIP in London. The Oslo TIP will have at least
one HOST and the London one will have a PDP9 computer as a pseudo-
HOST. It is intended to interface two other computers in the UK to
the network via the PDP9, which is situated at the Institute of
Computer Science. These are s CDC 6L00 computer at the University
of London Computing Centre, and an IBM 360/195 at the Rutherford
High Energy Laboratory. Each computer is expected to support
a cluster of interactive users, as well as performing some file
tranamers. The configuration is showm if Fig. 6-1. Delivery of

the TIPs is currently scheduled for the third quarter of 1973,
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and the link is expected to be operationasl by the end of the year.

The transatlantic channel will be via satellite.

2L



6.2 Analysis of the link.

In this section we discuss the detalled structure and operation
of the link, and so extract the features we wish to include in the
model. One of our main concerns is the average response time as
seen by a Buropean interactive user of the ARPA network. This
is partly made up of the message transmission delays introduced
by the link channels. The structure of the link is shown in
Fig. 6-2. The capacity of channel i is Ci full duplex and the
number of interactive users at the terminal node is Ni'

The ARPA network is designed to give a mean message delayI
of 0.2 seconds. Satellite transmission on channel 1 gives
a propagation delay of approximately 0.25 seconds. If the remote
HOST in the United States gives an immediate reply (e.g. an echo)
to a user message, then the average response time as seen by a
European user will be

R =0.9 + ZTa + K
where Ta is the average delay in the link subnet for a sample of
messages of mean length a, and K is the sum of the time for a
teletype to tranamit carriage return to its node plus the time for
the first character of the reply to reach the teletype from its
node. Response time is therefore the interval between the user
typing carriage return, and the first character of his reply
being printed. K is approximately 0.2 seconds if the teletype
line operates at 110 bits per second so that

R=1.1+ 2T
a

This suggests that a reasonable design range for Ta would be
0.1 to 0.8 seconds, making R between 1.3 (good) and 2.7 (tolerable)

seconds.
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We define a as the mean length of user messages in the subnet.
Inter-TIP acknowledgments (ACK) and requests from the destination
for the next message from a user (RFNM) are 150 bits long.

A message originating in Clusters 5 or 6 will be transmitted to
the PDP9 (node 4). Here the PDP9, behaving as a HOST, will
introduce the message into the ARPA network. When the message

is successiully received at its destination a RFIM will be trans-
mitted to the PDP9. This in turn must request the next message
from the node which produced the original one. In this way there
will be RFNM-like traffic on channels 5 and 6. We estimate that
these pseudo-RFNMg will have a length of 100 bits.

Since the users are interactive we can say that, with very
few exceptions, the length of a user message will be less than
1,000 bits. Consequently they will be transmitted as single
packets within the ARPA network. Each packet carries a total
overhead of 150 bits, so that on channels 1 and 3% a user message
will have length a + 150.

We now consider the traffic pattern in the subnet, that is
to say the number of messages per second between each cluster
and the US TIP. We have assumed that the quantity of traffic
moving between nodes of the subnet itself will be negligible.

On the basis of current knowlasdge, the best estimates for the

average number of active users at the nodes are N2 = 6, N_ = 12,

3
N4 =N_ = N6 = 4. These figures determine the proportional

5
traffic. The total volume of messages (assuming all users to
exhibit similar behaviour) depends on the number of messages
per second (L) that a user will generate. In what follows we

deal with the case L = 1/%0, although in the model L is a variable

parameter.
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When an interactive user sends a message to the US, he will
normally be taking part in a dialogue with a remote computer.
Consequently his message will give rise to a message from this
computer in reply. Therefore we expect the traffic pattern
inward to be symmetrical with that outward from the US. In that
case the numbers of RFNMs and messages per second travelling
inwards will be the same. Similarly, on channels 1 and 3 there
will be ACKs travelling inward for each outward bound message and
RFNM. For example, if the subnet generates 20 L messages per second
to the USy we would also expect 20 L RFNMs and 60 L ACKs inward
per second on channel 1. If Li is the number of packets (messages,
RFNMs and ACKs) inwards per second on channel i, then these are
tabulated in Fig. 6-3%.

On channels 1 and 3 for each message (length a + 150) we
have a RFNM and two ACKs each of length 150 bits so that the
average length is (a + 600)/4 bits. On chammnels 2, 4, 5 and 6
for each message (length a) we have a RFNM of 100 bits, so that
the average packet length is (a + 100)/2 bits. We define the
channel loading Pi as the average number of bits per second
transmitted on the channel divided by its capacity.

P, = avg. packet length x Li/Ci

We define Ti to be the mean message delay.oﬁ channel 1.
As in Kleinrock's treatment [KLEI 70A] we regard T, as having two
main components. The first is the mean message tranamission time,
namely mean message length divided by channel capacity. The second
component is the mean waiting time for a message. This is derived
from the true total loading of the channel, i.e. including ACKs
and RFNMs. If m. and s; are the mean message and packet lengths

respectively we can write,
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Channel Ly L, (L =1/30)

1 120 L 3

2 12 L 2/5
3 96 L 16/5
b 24 L 4/5
5 8 L 4/15
6 8 L 4/15

Pig. 6-3. Traffic on each channel of the subnet,
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5 Li/Ci

H
i

mi/'ci . si/'ci < Pi/(1-Pi)

These variables are tabulated for the case L = 1/30 in Fig. 6-4.
We can calculate the mean user message delay in the subnet when

the messages have mean length a from

T = (30T1 + 6T2 + 24T

: L
a + 12T4 + 4T

+ 4T6)/33

3 5

If all the Ci are variable this gives us a six dimensional solution
spacey or five dimensiongl if the Ci have a constant sum. While a
solution is feasible it may require a considerable computation.

In the case we are considering, four of the six channels already
have fixed capacities allocated. C and G are 2.4 Kby and C_, and

5 2

C4 are 50 Kb. This leaves Cq and C_, to take on one of the following

3
possible values, namely 4.8, 7.2, 9.6 or 50 Kb. We now choose

a hypothetical mean message length for the purposes of investigation.
It has been observed that the mean message length of actual traffic
in the ARPA network is close to 600 bits. Without foreknowledge

it seems most probably that European traffic will be similar,

and so we take this value as our starting point. If a = 600,

we can calculate Ta from the Ti, and these results are summarized

in Fig. 6-5. They show that all available combinations of C_ and

1
C, fall within the design range advanced above, but that the

3
good response case requires values of 50 Kb for each.
The square root channel capacity assignment which is optimal
for regular store and forward networks, can be instructively
applied to the case we are considering when all the Ci are allowed

to vary. The square root assigmment is optimal so long as the

packet traffic on each channel has the same mean length.
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Channel _i_
1 (a + 600)/C1
2 (a + 100)/5C,
3 b(a + 600)/503
b 2(a + 100)/5C,
5 2(a + 100)/15C5
6 2(a + 100)/1506
Channel El_
(a + 150)/01 + 3(a + 600) Pl/(l-Pi)C1
a/ c, + 3(a + 100) P2/(1-P2)c2
(a + 150)/c3 + 2(a + 600) P3/(1-P3) c3
a /¢, + 3(a = 100) Pu/(l-Pu)cu
a / c5 + 3(a + 100) P5/(1-P'5)C5
a / C6 + %(a + 100) Pé/(l-P%)cé

Fig. 6-4. Values of T1 and P1 for L = 1/30.
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9.6 29 «25 .21 .17

50 .15 .10

Fig. 6-5, Values of T600 for various

combinations of C1 and Cj'
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Examining the average packet lengths we see that when a = 400 all
of them are equal to 250 bits.

Consequently we can get some idea of the channel capacities
which would be required for a mean message length of 600 bits by
applying square root assigmment to the network for messages of
average length 400 bits (mean packet length 250 bits). If a is
the mean message length in the subnet we' define b as the corre-
sponding mean packet length, giving

b = (2a + 875)/6.7
This is plotted in Fig. 6-6. We calculate the mean path length
n as the average path length of all packet journeysy weighted by
number of packets. This gives us
(bx8L + L4<8L + 3<8L + 2<24L + 1>A48L + 1<60L)/168L
67/42

n

The network loading is P = 168/20C when L = 1/%0, giving
nP = 6700/3C
If we define S as the sum of the L., S =) L,

i
then we can use the following of Kleinrock's results:

L =1 9 /Li/S)Eb/ C(1-nP)
C, = bL, + C(1-nP) \/fi—/Z/-L_i

This allows us to write

T

T, =67 . 1270 . b/(C - 6700/3%)

Lo 268

or
C = 250 (268L + 605/8L+Tb)

and

C. =25 (L. + 605 1 -Ji /)
1 1 EE:EE_ Tb 1
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For any T, we have a corresponding value of C and consequently

b

of the Ci' From these we can calculate Ta using the equations
of Fig. 6-L4. We have tabulated these values in Figs. 6-7 and 6-8.

A graph of T. and Ta against is shown in Fig. 6-9.

b

From these values we can see that if Ta is to fall in the
range 0.1 to 0.8 seconds when a = 40O the corresponding values

of Tb’ C, and Ci are as shown below. We may also notice that as

11
C becomes large the ratio Ta/Tb approaches a constant (approx. 3.6)

as we would expect.

0.1 < T < 0.8

0.03 < T, < 0.24
2.4 Kb ¢ C < 9.75 Kb
19.8 Kb < C, < 3.35 Kb
6.0 Kb < C, < 0.84 Kb
17.6 Kb < C; < 2.90 Kb
8.7Kb < C, < 1.26 Kb
k.9 Kb < Cg < 0.67 Kb

4.9 Kb <« 06 <,O'67 Kb
We can see from these figures that a = LOO we will get at
least acceptable response as long as all the Ci have values
greater than those shown in the right hand column. In the case

being considered C., and Cq may have values up to 50 Kb which is

2

certainly adequate. C_ and C6 are 2.4 Kb which is sufficient for

5

acceptable response, though not enough for good response. This lack

can of course be compensated for by increasing C, and C_ above

1 3

their left hand column figures. We see that C,7 and C3 should be

of comparable size, with C, =lightly greater than C

1 3"

While the ranges for the Ci are based on a = 400 we can make

somp estimate of the capacities required to give the same respounse
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times for a = 600. The estimate would be an increase of not more
than 50 per cent, since if a increases from HOd to 600 then b
increases from 25Q\to 3104 and we would not expect too severe a
perturbation from the regular store and forward situation to which
Kleinrock's equations apply. A fifty per cent increase %n the Ci
would ensufe that mean packet transmission times, and therefore
queueing delays, were no larger than in thg original situation.

1t C2 and CL+ are 50 Kb, well above what is required for

optimal assigmnment in the sense of minimizing the total C required

for a given response time, then T_. and Tq will be very small indeed.

2
Consequently other Ci may be assiéned amaller than the optimal
values but still be sufficient to achieve the required mean message
response over the gsubnet.

The relative importance of these factors can be seen from the
fact that in the subnet under consideration C1 and C3 must be
50 Kb to give a response Ta of 0.1 seconds (see Fig. 6~5). This
is well over the 50 per cent increase which might have been

expected if C. and Oy were 7.35 Kb (1.5 %< 4.9 Kb). In these last

5
few pages we have tried to show that even where the square root
capacity assigmment is not strictly applicable, its use as an

approximation can provide insight into the factors affecting a

subnet.
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6.3 The link model.

This section describes the model of the subnet that was
developed using the SHAPE system+ We shall deal with the hardware
and software graphs and give reasons for the structure of each.
Finally we examine how the model parameters can bé varied.

The hardware graph is shown in Fig. 6-10. It contains a
node for each of the computers involved in the subnet. These
nodes were initially given a very,large storage capacity (9'10 bits)
to be effectively infinite. We use x'k to mean x times 10 to the
power k. The remaining node data was set to zero; since.its
effects were not required for the investigation undertaken.

Each full duplex communication channel was represented by two
logically and physically distinct Plarcss running in opposite
directions between the nodes at the ends of the channel.

By physically distinct we mean that each PIarc can be separately
and simultaneously allocatedy as required by fhe full duplex
nature of the channel. This is achieved by giving each Plarc

a distinet processor number. Only one set of function character=-
istics was defined in the Plarcs. This was the transmit function.
The execution time corresponds to the time for the chammel to
transmit one bit, and utilization and efficiency were set to one
since the channel must be a;located as a unit, and then tranamits
at a fixed rate. Typical déta is shown in Fig. 6-11. Each'line
corresponds to a data card, and the formats are described in
Appendix IV. The software graph has a set of nodes dealing with
traffic from each temminal cluster, and one set which represents
the flow of ACKs and RFMMs. The group of packets which corresponds

to activity in cluster i is called stream i, so that the behaviour
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Fig. 6-10. Hardware graph of subnet.
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PInode data : 3 inarcs and 3 outarcs, capaclity is 9'10 bits.

4o 3 3

9'10 O 0 0 0 0
Plarc data: processor number 1is 45, channel capacity 1is
2.4K = (1/4,167'-4) bits per second, utilization and

efficiency are 1, functions 2,3,4 not specified.

40 50
50
45 100
h.o167'-4 1 1
-1 -1 -1
-1 -1 -1
-1 -1 -1

Piz. 6-11, Typlcal data for hardware graph.

265



of each stream is modelled by arcs between its set of nodes.
Since most of the ACK and RFNM handling is the same for all five
streams, this is modelled within a common set of nodes which we
may call stream zero. We show the graph structure for streams
zeroy five, three and seven in Figs. 6-124 13, 14, 15, 16 and the
initialization node (1) in Fig. 6-17. Streams six and four have
the same structures as streams five and three respectively.

It would have been possible to combine the activity of all
streams at a PInode in a single corresponding SInode. However,
this type of node would have been very large, with a high proportion
of zero elements. The method we have chosen uses much less storage
for the REP matrix elements. As well as this it is a good deal
clearery and more flexible.

The separate modelling of the streams arises as follows.

One of the characteristics we wished the model to include was that
the flow of messages would be circular. That is to say that a
message leaves its cluster, travels through the subnet to the

US TIP, is transformed into a reply, returns to the cluster where
there is a delay corresponding to the user's think time, and
recommences the cycle. This is in effect a cycle of queuesy, some
in common, for each stream and leads to a fixed number of customers
within the system once it has been activated. This model corresponds
more closely to the real situation in which a number of interactive
users participate in dialogues with remote computers. Usually a
user will not send a message until he receives a reply to the
previous oney often because his next action depends on the reply.
Consequently, if response worsens the effect is to decrease the

number of messages generated per second.
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This would not be the case if the more usual procedure of independent
generation of messages was adopted.

In order to correctly represent cyclic message generation we
must ensure that a reply returns to the same cluster which produced
the corresponding message. This means that the outgoing reply streams,
as well as the incoming messages, must be kept separate, for if
they became intermingled and were activating the same dataset in a
SInodey we would have no means of knowing the originating cluster,
and therefore no way to route them to that cluster. The use of
a separate set of nodes for each stream does not have any effect
on the number of grc executions, but does mean that very similar
data i1s replicated in each stream.

One of the conclusions which emerge from the application is
that we could specify a much more compact model (without separate
stream data) if the SHAPE system provided for more variables than
LAMBDA and BETA to be carried by a cut. In that case such a
variable might show cluster of origin and be used as a routing
indicator for the returning reply.

We now follow the progress of a typical message from cluster
five through the subnet. The user think time is represented by
a delay arc (95.2) at SInode 95. This uses the IFloop facility
for setting BETA to the arc termination time (IFCODEONE = k).

In fact IFCODEONE is set to -4 so that the delays can execute
concurrently. On completion a value of LAMEDA is chosen

(arc 95.3). The distribution is a negative exponential one, and
any value drawn which i1s greater than 1,000 is truncated to that
size. This is done to conform to the ARPANET limit on packet size.

-

For this truncated distribution to have a mean (MU) of 600 bits,
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we must select the correct mean (LAMBDA) of the exponential
distribution. This is derived as follows. The probability density
function of the exponential distribution is,

-Ax
P.d.f. = Xe

If the truncation level is k (= 1,000) we can write

kx e'-AX + an_}\X
S A dx kgk)\ dx

b
- ,f-xe-“]g; N gz Mgy k[-e-xx]:o
- kN [ i— e~ Xx]g « ke

= (1 - ‘>‘k)/>\

Values of LAMBDA for various MU are tabulated in Figs. 6-18, 19.

Having chosen a value for the message length, the packet is
transmitted to SInode 45. SInode 95 was tied to PInode 50 by
having the appropriate field in its data :set to this value.
SInodes 45, 35y 25, 15 are similarly tied to PInodes 40,70, 20,
10. At SInode 45 the message is queued if necessary and then
transmitted to SInode 35. Here the message length is increased
by 150 bits (its ARPANET overhead) by arc 35.4. The message is
again queued if necessary and transmitted to SInode 25. Here it
activates two elements in the row marked 35. One (of magnitude
one) queues the message for further transmission to SInode 15,
and the second (of negligible size é ) acts via a no operation
(NOP) arc to initiate transmission of an ACK from SInode 20 to
SInode #0.

Since the outgoing LAMBDA is the product of the incoming

arc and the REP element activated, the NOP has a LAMBDA which is

274



SOLUTION OF MU = (1, = EXP(=LAMDA%K))/LAMDA FOR K = 1000

MU LAMDA 1/LAMDA

100 . 0099995 100.0
110 « 0090899 110.0
120 20083313 1200
130 .0076888 o 130,1
140 «0071372 140,1
150 , 0066581 150,2
160 . 0062378 160,3
170 0058657 170,5
180 . 0055336 180,7
190 0052351 191,0
200 « 0049651 201,4
210 «0067194 211,9
220 00044947 222.5
230 «0042881 233.2
240 0040974 244,.1
250 «0039207 255.1
260 20037563 266,2
270 0036028 277,.6
280 «003459) 289,.1
290 00033241 300.8
300 «0031971 312.8
310 «0030771 32540
320 .0029637 337.4
330 « 0028561 350.1
340 0027539 363,1
3590 0026566 37644
360 . 0025639 390,0
370 20024753 404,40
380 0023906 418,3
390 « 0023094 433,0
400 20022316 448,1
410 .0021569 463,6
420 . 0020850 479,6
430 .0020158 496,1
440 «001949] 513.1
450 «0018847 53046
460 .0018226 S48,7
470 0017625 5674
480 0017044 586,7
490 20016482 606,7
500 « 0015936 627.5
510 «0015407 649,0
520 e 0014894 671.4
530 00014396 694,7
540 «0013911 718,.8
550 ¢0013440 T4440
560 .0012981 770.3
570 « 0012535 797.8
580 20012100 82644
590 00011676 85644

Fig. 6-18, Means of truncated negative exponential
distributions,
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SOLUTION OF MU = (1. = EXP(=LAMDA®K))/LAMDA FOR K = 1p00

MU LAMDA 1/LAMDA

600 «0011263 887.9
610 +0010859 9209
620 «0010465 95545
630 « 0010080 9920
640 «0009704 10305
650 e 0009337 1071.0
660 20008977 1113.9
670 « 0008626 11593
680 20008282 120795
4690 « 0007944 12587
700 « 0007614 13133
710 +0007291 13716
720 + 0006974 1643400
730 + 0006661 . 15609
T40 « 0006358 157249
750 « 0006059 16505
760 « 0005765 17346
770 s 0005477 182%+9
780 + 0005193 _ 19255
790 + 0004915 20344
800 + 0004642 21542
810 »0004374 22865
820 «0004110 243344
830 +00038%0 259744
840 «+0003595 2781.9
850 +0003343 299049
860 + 0003096 3229.7
870 « 0002853 35050
880 + 0002614 38262
890 «0002378 420546
300 «0002146 46560.8
910 «0001917 52170
920 +0001691 59120
930 e 0001469 68055
940 «0001251 79966
950 «0001053 _ 95000
960 «0001042 - 96000
970 «0001031) 97000
980 +0001020 98000
9990 «0001010Q 99000
1000 , + 0001000 100000

Fig. 6-19. Means of truncated negative exponential
distributions (continued).
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very small and variable. Consequently we need an arc (20.2) in
SInode 20 to set the ACK size to 150 bits. This is then trans-
mitted to SInode %0 where it is destroyed since the terminal dataset
elements are all zero.

The message arrives at SIncde 15 which is its final destination.
Here it initiates transmission of an ACK from SInode 10 to SInode
20, in the same way as outlined above. Additionally a RFNM is
immediately transmitted back to the originating nodey followed by
the reply which is simply the message with a new length. This is
chosen in the same way as the original one. Both these are trans-
mitted to SInode 25 using the same arc. Here ACKs are generated,
and the packels forwarded to SInode 35.

At this point the packets leave the ARPANET so that the
message is reduced in length by 150 bits, and the RFNM is changed
to 100 bits. They are both transmitted to SInode 45 and on to
SInode 55. Here the RFNM is separated from the reply using a
DOloop which completes on every second activation (arc 55.1).

The RFNMs are destroyed by arc 55.3 and the messages are used to
create ingoing RFNMs of length 100 bits, as well as activating
a new think period in SInode 95 (after reduction of LAMEDA to 1
by arc 95.1).

The ingoing RFMM is transmitted to SInode 45 and forwarded
to SInode 0. Here its length is changed to 150 (RFMM length in
the ARPANET) and it is transmitted to SInode 20, where it generates
an ACK and is forwarded to SInode 10. Here the RFNM is turned
into its own ACK by returning it to SInode 20 slong the ACK trans-

mission arc.
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The other streams exhibit the same basic pattern with some
amall variations. The whole graph is initially activated by NOP
arcs from SInode 1 which go to think time dataset of each stream.
The number of times these are activated corresponds to the number
of terminals in the cluster, and the activations are produced by
appropriate DOloops at SInode 1.

ThF parameters of the model can be altered for each stream
individually. In each one the think time for a user can be
changed by altering the mean delay in, for example, arc 95.2.
Similarly the mean message length can be reset, and need not be
the same for messages as replies. The number of users active in
a cluster can be altered by changing the DOloop limits in the
initializing node.

It is very easy to convert the model from cyclic message
generation to independent generation as a series of Poisson events.
Firstly it is necessary to change the REP matrix element of the
reply receiving node which activates the think time node from 1 to
0 (for example in SInode 55 we would alter the element at the
intersection of row 55.2 and column 95). Then the think time
delay is made to propagate itself by having it activated each
time a message length is chosen (for example in SInode 95 we alter
the element at the intersection of row 95.3 and column 95.1 from
zero to one). A Poisson series of events is obtained by setting
IFCODEONE positive in arc 95.2. This ensures that successive message
generations take place at intervals drawn from a negative exponential
distribution.

We have outlined a few elementary ways in which the model can
be altered, and many more are possible. TFor example the next

section includes a description of the addition of a background
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of file transfer traffic to the model described above.



6.4 Results.

In this section we present the results obtained by executing
the link model with various parameter values. The mean user think
period delay was initially set to thirty seconds. The number of
terminals activated in each cluster was as described in the
previous analysis. This gives a total of thirty active terminals,
50 that the subnet generates approximately one message per second.

Three possible values were considered for 01 (4.8, 9.6 and

50 Kb)*and in each case C. was made equal to 01. The response

3
observed at each terminal was recorded and statistics accumulated
by setting an INarc gpecifier negative in the reply receiving
node for each stream (e.g. -55.2 for stream five). The mean
response at node 1 is 2Ti, as defined earlier. Consequently an
execution of the SHAPE model gives us the variables required to
calculate Ta' the mean message delay in the subnet.

To examine the effects of increased loading the mean think
period was decreased, thus increasing the overall message
generation rate. A series of execution runs was performed for
each of the three channel capacities consideredy in which the
load on the subnet was gradually increased. The results of each
series are calculated in Figs. 6-20, 21, 22. The first five
columns give the observed response times of the clusters and the
last two give Ta calculated with observed and expected numbers
of messages generated during the run.

The first series run was that with 01 = C3 =C = 9.6 Kb.

For each value of the mean think time P at least three runs were

performed. In order that they should provide independent results

* Kb stands for kilobits/sec.
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CYCLIC MESSAGE GENERATION WITH C = 4.8 AND UNLIMITED MEMORY

THINK
PERIOD

30.0
30.0
30.0
2640
26.0
22.0
1840
14,0

Figl 6"’20.

RESPONSE
UK TIP

07157
0.7200
0e7423
0.7572
0.7344
0.7922
047540
0.9092
0.9632
1.6300
1.1030
1.4660
2.4770
5.0560
5.,2490
2.,3010
53940
7.5980

RESPONSE
NORw TIP

064027
0.4137
0.6099
04245
0.4156
044523
0+4420
0.5205
0.6019
0,9692
0.8048
1.2170
142940
1.8270
1.8000
19130
3.6030
442790

RESPONSE
PDP9

047923
0.7827
0,8026
0.8762
0,9163
0,8563
0.8961
0.8925
1.1240
1,2900
0,9993
1.0380
1.7220
2,0900
2,2160
2,1850
2,9210
3,0480

RESPONSE
COC 6600

1.1980
l.2480
12410
1.2060
1&2290
1.2350
1.3200
1.3580
1:4060
19690
1.7600
2.3260
2.2170
2+9160
2:7560
3.5960
3.3130
3.4560

Subnet response when C = 4,8,

RESPONSE
I8M 360

_1-1@30
11750
1,1950
1.1620
141640
l1.2140
1.21640
1,3330
13450
l1.64290
1.4600
1.8680
1,9700
3,0480
28190
3,2030
3.4210
3.3?80

RESPONSE NORMALIZD

NET MEAN

03805
003939
0+4020
0e4118
D.4126
0+6348
004366
De4711
05001
07158
05983
07173
09939
1.5552
1.5583
1.2164
1.8858
2020643

NET MEAN

0,3911
0,3978
0,4041
0,4089
0.,4077
0,4225
0,4214
0,4701
0,5079
00,7427
0,5763
0, 7478
0,9971
1,58%90
1.5901
1,2098
1,9865
2,3133
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CYCLIC MESSAGE GENERATION WITH C = 9.6 AND UNLIMITED MEMORY

THINK
PERIOD

3040
30.0
30.0
300
30.0
26.0
26,0
£6.0
220
2240
22.0
18.0
18.0
1840
1440
14,0
14,0
100

—
(]
L J
=

10,0

=i~ wWwwwoe oo
s e

COO0OO0OODODOODDOD

RESPONSE
UK TIP

03577
043529
043450
063414
0.3462
003524
0.3518
03562
03479
0.3538
0e3423
03535
03527
043504
043759
03690
0.3702
03806
0.3737
0+.4089
0.4089
0.4259
0e4754
0.6727
07050
06849
1.0800
10690
069013
167420
2.5820
3.8480

RESPONSE
NORW TIP

042150
041971
062073
0.2004
02090
0.2210
01993
0.2022
0.2022
0.2229
0.2131
0.2086
0.2254
0.2053
02158
0e2242
02160
02367
0.2146
0.2507
0e2402
0.2297
02547
0.4374
05338
0+4259
0e4457
0.6008
07309
0.8612
1438990
1.8400

RESPONSE
PDPY

044291

0.4093
0.3928
0.4238
0.3894
0,4052
0.4045
0.4158
0.,4216
0.4094
0.4099
0.4179
0.404]
0.4009
0e4126
0.,4226
0,4283
0.,4362
0.4444
0.4487
0.4916
0,5074
0.5124%
0.6380
0.6243
0,6630
0.6865
0.8276
0.?235
1.4550
lo1410
1.3700

RESPONSE RESPONSE

COC 6600

08247
0.8575
07935
0.8262
048558
0.8605
048350
0.8/89
048364
048376
048726
0.8689
009259
0.8705
08524
0.9590
0.8535
049020
09179
0.8978
1.1220
09140
0.9042
1,1090
11550
1.1810
142330
1.35%40
1.8010
1.8560
148760
1.61990

IaM 360

0.8282
0.8283
07737
0.7623
08265
08065
0.8462
0.8197
0.8236
0.8320
0.8296
0.8455
0.8503
0.8195
08632
0.8812
0.8712
0.B8850
0.8806
0.8401
0.8448
0,8959
0.8599
11300
09725
11610
1.2010
1.3080
1.4690
1.6810
1.7490
1,6070

RESPONSE NORMALIZD

NET MEAN

02195
02168
01990
02200
02197
02311
02389
0.2259
De2263
De2202
02349
De2412
De24]10
0e2224
02379
02465
0¢2360
0.2382
02410
02512
D«2564
0.2546
042625
0.3500
0+3510
03631
De4660
064999
D«5290
"DeT31lN
0.8876
1.0830

NET MEAN

0.2309
0,2290
0.,2196
0.2217
0,2273
0.2297
0.2283
0.,2313
0,2273
0,2305
0,2293
0.2321
042367
0,2285
0,2368
0.2447
0,2372
0.245)
0.,2426
0.,2502
0,2636
0,2581
0,2686
0,3623
0,3726
0,3708
0,4570
0,4980
0,5063
0,7374
0,9183
1.1065



CYCLIC MESSAGE GENERATION WITH C = 50

THINK
PERIOD

300

30,0
3040
3060
26.0
26.0
2240
18.0
14,0
10,0

6.0

3.0

le0

Figo 6-220

RESPONSE RESPONSE RESPUNSE RESPONSE
UK TIP NORW TIP PDPY CDC 6600
0.06586  0,05601 0009723 045773
0,06529 0,05527 0.09765 0.5609
0.06478  0,05685 0,09761 05534
0,06567 0,05499  0,09921 0,5748
0.06513  0,05532 0.09694 045722
0.06529  0,05557 0.09944 0.5781
0,06501  0.,05454 0.09477 0.5778
0,06556  0.,05531 0.09787 0.6142
0.06547  0,05554  0,1005¢ 0,5631
0.06571 0,05687 0.09636 0.5821
0.06658  0,05575  0.09845 0.645]
0.06948  0,05798 010240 0.6041
0.09042 0407496 012560 0.7775
Subnet response when C = 50,

AND UNLIMITED MEMORY

RESPONSE
IBM 360

05479
0.5368
05356
05469
0.5635
05550
0.5775
0.5704
0.5284
0,5866
0.5773
0.59386
0e6426

RESPONSE NORMALIZD

NET MEAN

040912
0.0880
00900
Ds0944
0«1029
01122
00973
0.1188
0.,0834
00,0994
0.1088
0.0880
0.0848

NET MEAN

0.0995
0,097%
0,0970
0,0992
0,0998
0,0998
0,1006
0,1027
0,0966
0,1007
0,1028
0,0985
0,1047



rather than being duplicate runs, all random number seeds were
altered for each run. This is more satisfactory statistically,
than running the model for different durations with the same set
of seeds. For heavier loading the model took longer to reach

a steady state, and provide convergent results. The two values
of P where this had a significant effect were P = 3.0 and P = 1.0.
In these cases more than three runs were made, and they appear
in order of increasing duration. For P = 3.0 the value of Ta

in the final run was 0.4999 secs with double the original run
time. We would expect the steady state to be between 0.5 and
0.6 seconds. The result was not pursued further since the runs
of that duration were already consuming considerablé computer
time, and the loading was at the limit of the range we were
considering, namely one order of magnitude greater than the
starting estimate.

The runs with P = 1.0 were executed to obtain an indication
of behaviour for loading with P less than 3.0 There is little
convergence apparent in the results, and we can see that the
response time is considerably greater than the think time. Under
these circumstances the eyeclic nature of the model plays an
important part by preventing message generation until responses
are received. In contrast we can see that with P = 3.0 all
responses are still less than half the think time. We conclude
that with C = 9.6 and P = 3 we are approximately an order of
magnitude from a load which causes the subnet to explode.

A‘similar set of runs was executed with C1 = C3 = 4.8 and
it can be seen that the response time for P = 30 is a good deal

longer, and that rapid deterioration begins at a larger value
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of P (6.0) than with C = 9.6 Kb. Setting C, =C;=C =50 Kb gives

3
us the results in Fig. 6-22 which show that in this case there is
little or no variation of response time in the range of loads we
have examined. We note in passing that the results agree well

with the values of Ta calculated earlier for P = 0 and shown in
Fig. 6-5.

After these runs the model was altered to give non-cyclic
generation of messages. The method of doing this has been described
at the end of the previous section, and allows a message generation
node to operate independently of the subsequent fate of its messages.
The results are shown in Fig. 6~23. TFor the lower loadings mean
response time is not significantly different from the cyclic case.
However, for the runs P = 6.0 and P = 10.0 we see that Ta is
slightly greater than for the cyclic case. The fact that this
difference does not increase in the runs for P = 3.0 and P = 1.0
we attribute to insufficient run-time to reach a steady state.

We would expect that in a steady state, with comparable loads on the
' subnet, the non-cyclic case would produce more messages per second,
and consequently longer response time.

The question of comparable load is effectively that of the
rates at which the five independent generators should produce
messages. For the runs in Fig. 6-23 we derived mean delays as
follows. If . is the mean response observed for cluster i when
the think time delay is Py we can say that the mean cycle time for
a message in the i th cluster is

Cycge i="P + ro

No. of messages/sec in i th cluster = ni/(P + ri)
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NON=CYTLIE MESSAGE GENERATION WITH C 3 9,6

THINK RESPONSE RESPCNSE RESPUNSE RESPONSE RESPONSE RESPONSE NORMALIZD

FERIOD UK TI® NORW TIP POPY  COC 6600 I8M 360 NET MEAN NET HWEAN
3060 0:3649 02088 0.4305 0.8767 08026 002304 02345
56,0 0:3605 0:2008 0,4008 0.8423 0,8364 02285 0,2307
2260 0,355% 002107 0.%4314 0.8371 0.B218 042300 0.2315
18:90 0.3631 Ga2177 0,4085 0.8452 0.8511 0.2308 0,2347
160 0.3782 0.2206 0,4073 0.8475 0.7961 02333 0.,2344
108 04000 0,2389 0.4633 09106 0.9158 02589 0,25568

640 Ne3189 0.3250 0,5377 1.0040 0.,9684 02990 0. 30356
&l Do &ISD 63129 0,4825 0,9923 0.8603 062792 - 1,345
3,0 08300 0.%873 0.6889 1.2050 13740 De%458 0,6327
3.0 0.8407 G.3368 0.,5718 1¢1800 1.212¢ 04037 - 2,450463%
140 1:6100 03171 1,0870 145610 1,274 05095 1.5152
1.0 Pa9350 16%500 103770 357513 23830 $.9271 3;0309

Fig. 6-23. Nocne-cyzlic generation of messages,




r.n n.

Mean message delay = % ivi i
+r. +T.
Py Ty

For each value of P in the set of runs, the teminals of cluster i
were set to generate 1/(P + ri) messages per second.

A further series of runs was undertaken which gave results for
Ta for various mean message lengths (cyclic generation). These are
shown in Fig. 6-24. The runs were for values of P = 3 and P = %0
and covered the range %00 to 900 bits for each. The purpose of
these runs was to examine how sensitive Ta is to variations in a.
For P = 20 we can see that there is a smooth increase, and that
even with a very high (900) mean message length the valye of Ta
falls within the design range set previously. For P = 3 the
results suffer from insufficient runtime for the higher message
lengths. The sets of computer runs so far described are to be
found in INDRA Notes 287 to 291 inclusive. The tabulated results
are shown in graphical form in Figs. 6-25, 26.

We can see that for purely interactive traffic at the level
estimated (P = 20), all three values of C would be sufficient.
If C = 50 Kb the response time will be good (Ta = 0.1) for this
level of loading or more. If C = 9.6 Kb, the response time is
still fairly good (Ta = 0.22), and remains within the desired limits
for loads up to an order of magnitude larger. For C = 4.8 Kb the
value of Ta is about a half of the acceptable limit, and the load
increase avallable is less than an order of magnitude. From these
results we recommend that for operation with interactive traffic,
the most appropriate values of C1 and 03 in the subnet would be
9.6 Kb.

We now discuss the addition of a background of file transfer

traffic to the model. This type of traffic consists of full ARPA
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CYCLIC MESSAGE GENERATION WITH BLOCK LENGTH VARIATION, C = 9e69 P = 3 AND 30

BLOCK  THINK RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE NORMALIZD

LENGTH PERIOD UK TIP NORW TIP PDP9 CDC 6600 IBM 360 NET MEAN NET MEAN

300 3.0 03343 02224 0.3142 0,6765 0.5825 0.1858 0.1906

k00 3.0 0.5705 0+3306 0.,5934 0.,8322 0.9552 0.2988 0.300¢6

500 3.0 0.6470 0.4133 0.,6124 1.1760 1,0560 0.3479 0,3520

700 3.0 1.,1980 0+7290 0,8710 1.5090 1.5560 045524 0.,5644

800 3.0 12960 0.7968 1,0980 1.6430 1.6300 0+6140 0,6201

) 900 3.0 1.2390 0.7213 0.9239 1.8400 1.6990 0+5905 0,6008
& 300 3040 0.2211 0.1472 0,2271 0.4799 0,4504 0.1318 0,1359
koo 30.0 0.2734 0.,1806 0,2897 0.5797 0.6334 01698 0,1725

500 30.0 0.3143 0.1822 0,3273 0.7879 0.8431 042100 0,2107

700 30.0 0.4081 02560 0,4292 0.9344 1,1000 02665 0,2700
800 30.0 0eb42 0.2736 0.4755 1.2420 1.1500 02945 0,3049
300 3040 0.4869 0.2956 0,5300 142430 1.2320 043229 0,3252

Fig. 6-24, Variation of response with packet length.
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messagesy that is to say eight packets each of 1,000 bits. In order
to provide this background we have introduced a separate generating
node for each stream (for example node 85 for stream 5). This node
generates eight-packet messages at intervals drawn from a negative
exponential distribution. We show the structure of the node in

Fig. 6-27.

Since the traffic is a background it is sufficient to generate
only the inward bound blocks, and examine the effect on inward
interactive traffic. By arguments from the symmetry of the traffic
inward and outward, we include a RFNM for each block and inward
ACKs corresponding to those of the blocks themselves. The addition
of the inward traffic is to stream zero, and the modified stream
is shown in Fig. 6-28. The message generation is initialized
by an extension to node one which gives the block traffic the
same proportional pattern as the interactive. Of course
this need not be the case in actual operation, but without
foreknowledge it is the most reasonable estimate. Thelextended
node one is shown in Fig. 6-29.

The average interactive message delay is observed by
measuring the mean elapsed age of the messages from each
stream as they reach the US TIP. As before, Ta is calculated
from these values weighted by cluster size.

Several runs were exXecuted with background traffic, but
we have not included the results since the number of message
trips completed within the run limits was insufficient to
provide meaningful statistics. The amount of computer time
regquired to produce significant results would not have been
available without special arrangements and consequently longer
runs were not attempted.

291



R I..._.p.l 41. i R i
LR IS e ! :

: ’ ANNE B \ P t

et PO PR S ' : {

., - £ P o ERTR N

- Lt - i D

........

r
s
?
I
_§_._____~_~._ SR
: .'.‘] -1 ?-. ) 'A‘
e —— e
1 T
]
P i
I A
i
T
4

.

1
i

L G—E{)‘Eﬁ

TR DU U

—fen

S S
1
. )

wl
|
A
e
TRAL
1
ﬁ&
S R

1
b

| : i B : .
B s S L..‘.‘_..~1‘..— .

1

|

i

lr : .
3

A

|

MG ROUND
D |
z
| |

}
p A
{

ol
|
i
|
|
.___i’»..., -
. ) i R
2.
{

N
B
|
|
|
t

NEGERR | Oenlay | |

f
i
i
|
{
T
I|~
i
1
|
1

ocw L 1
C Noe

. {- : ! <
. t H '
-— JOR SO R N (R -d . - a
N 3
i .




5, ‘

SIS F S
e
A C G-AouND,

L
o 04

!

ERO | Wi

T

S

PAVIENGES PSR S

0 ..L,U“_,._ A

AL
!
t

p2d

A=
%,‘
™
3

9

L

s
=

VB LL o




ol ——

]
'

o iige v

]
PRI SRPU

&l

1

B e T S LT o SISy SR P

[REDE SRR S

116 | #5198 kg

(I
readl T

N i|'=t€.ii Ly

— e

S [0 1] 9

i.

‘
, ‘
[ JR,
V
}
!
: saeo
i 3
’ i

e L g 9
H B

O

I

T DUNPPRUUUI ¢

R
et

! 1
R S
. . i
| ; {
i i ;
i
}
B F—
4
H
(R

R S




Finally a number of runs were made with the original model
to examine the effect of varying C,| and C3 when the load was
held constant. All possible combinations of the values 4.8,
7.2y 9.6 and 50 Kb for the chammels C,| and C3 were run with a
load on the network produced by setting P = 3. We show the
values of Ta obtained in tabular form in Figs. 6=%0, 31 and in
graphical form in Fig. 6-32. The Ta are calculated using
expected numbers of messages.

It is clear from the structure of the link that if one of
Cq”and C3 is to be increased in order to reduce the value of Ta’
then the greater reduction is obtained by increasing Cq.

The degree of this advantage is shown in Fig. 6-31. In Fig. 6-%0
we can see that an increase in C,| or C3 benefits most those
terminal clusters in whose message paths the channel is the most
significant component. The results show that if a particular
message delay is to be obtained, then the sum of 01 and C3 is
least when they are approximately equal. Assuming that channel
cost is related to capacity, enhancement divided equally between

chamels one and three will provide the greatest improvement in

performance for a specific cost.
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CHANNEL. RESPONSE  RESPONSE
THREE UK TIP NORW TIP

4.8 0.7200 0.4137

7.2 0.6133 0.3935
9.6 0.56% 0.hoko
50.0 0.47%hs5 0.4084

k.8 0.5987 0.2656

7.2 0.4792 0.2703
9.6 0.4249 0.2648
50.0 0.%048 0.2789
5.8 0.5362 0.205h
7.2 0.4934 0.2069
9.6 0.3462 0.2090
50.0 0.2277 0.2131
.8 0.4408 0.0551
7.2 0.2776 0.0554
9.6 0.2033 0.0552
50.0 0.0653%" 0.0553

RESPONSE
PDP 9

0.7827
0.7348
0.6783
0.5176

0.7001
0.5850
0.4929
0. 3474

0.6398
0.33%4
0.27h0

0.4778

0.325%
0.2487

0.0977

RESPONSE
CIC 6600

1.2480
1.1460
1.0380
0.9386

1.1210
0.9739
0.9249
0.7811

1.0320
0.8912
0.8558
0.7193

0.9104

0.7209
0.6985
0.5609

RESPONSE
IM 360

1.1750
1 .0810
1.0300
0.8846

1 00510
0.9207
0.8927
0.7389

0.9805
0.8599
0.8265
0.6771

0.8528
0.718%
0.65%95
0.5368

RESPONSE
NET MEAN

0.3977
0.3595
0+3362
0.2838

0.3378
0.2888
0.2655
0.2133

0.30h6
0.2529
0.2257
0.1782

0.237M1
0.1820
0.1533
0.0983

Subnet . responm=e for various combinations of 01 and c;;Yh‘“ P =7,



03
c, 4.8 7.2 9¢6 50 B
4.8 | 0.3977 | 0.3595 | 0.3362 | 0.2838
7.2 | 0.3378 | 0.2888 | 0.2655 | 0.2133
9.6 | 0.7046 | 0.2529 | 0.2257 | 0.1782
50 0.2371 | 0.1820 | 0.1533 | 0.0983

Fig. 6~31 T for combinations of C, and C_ when P = %0,
- 1 P s
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CHAPTER VII

CONCLUSION



7.1 Summary of research aims achieved.

In the preceding chapters we have described research which
attempted to provide a system for modelling computational activity
and to demonstrate its practicality in a real situation. We now
summarize the results and draw some conclusions. In the next
section we make suggestions for further research.

The SHAPE system uses directed graphs whose elements have
associated numerical data in order to describe both the hardware
and software of a computational process. This combination may
be thought of as a type of notation which can not only perform a
descriptive role, but is also capable of execution in the sense
of enacting the computation described. We have found the notation
useful in its own right as a means of clearly and unambiguously
specifying hardware and software. Its graphical nature is
particularly suited to the expression of parallelism in software
and the hardware counterpart of paralleliam, namely multi-processing.
In the case of software the dependences of processes are expressed
by the use of arcs and nodes. The interaction of processes via
the data they produce is described by the repartition matrix
associlated with each node.

It seems clear that a computation can be hardened or
softened to an arbitrary degree, that is that the proportion
expressed in hardware can vary from next to nothing to the entire
computation. This point of view has led us to search for
representations whose structure is applicable to hardware and
software, and which maximize the number of aspects common to both.
To some extent we have succeeded in this. The hardware and

software representations are both graphical in form.
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The nodes of SIgraphs and PIgraphs correspond to the software and
hardware aspects of data. Similarly the arcs of each type of
graph correspond to the software and hardware agpects of data
transformation.

Of course the correspondence is not as good as we would
wish it to be. Nevertheless it has allowed us to developy,
without undue difficulty, an algoritim which models the execution
of a computation in fairly general terms. We have called the
algorithm's action the binding of a SIgraph and Pigraph. This
simple interpretation of computation is possible because of the
correspondence between the two graphs. The algorithm is at the
heart of the SHAPE implementation, in which it is called the
allocator.

Our use of nodes and arcs to model data and data trans-
formation has allowed us to give a simple and consistent
account of data transmission and storage. Data transmission
is treated as the operation of an identity processor since no
alteration occursy and data storage is equivalent to the
operation of the null processor. The structure of the graphs
is recursive, allowing a process to be modelled not only by an
arcy but also by a functionally equivalent subsidiary graph.
This allows a model to span an arbitrary number of 1evels of
detail. The graphs can potentially model a recursive structure,
and consequently the SHAPE implementation has the ability to
bind the two graphs recursively.

By implementing the modelling system, and using it in the
context of a real design situation, we have tried to verify that

it could be programmed, used, and provide accurate results.
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A high level language, SIMULA 67, was chosen for the implementation
because of the need for list processing, class definition, simulation
facilities, and recursion. Class definition was used to provide
the elements of the system such as arcs and nodes, and their linkage
in a graph model was reproduced within the computer with list
processing primitives. The most convenient way to program the
binding algorithm was through the use of simulation facilities,
since an obvious fundamental property of a computation is that it
advanﬁes with time. We did not succeed in implementing the full
facilities of the system because of insufficient time and
limitations in the software that was used. However, enough was
completed to proceed with a validation of the SHAPE program.

A store and forward network was chosen as the validation
example for two reasons. Firstly, our knowledge of the subject
was very detailed, and this helped to ensure an accurate model
and thorough comprehension of the results. Secondly, the
modelling experience was directly relevant to the intended
application of the SHATPE s¥stem to the European linkage with the
ARPA network. The results produced by the store and forward
model did not require us to reject the validity of the SHAPE
system at the ninety-five per cent confidence level. In fact
a good agreement with theoretically expected results was obtained.

We then turned to using the modelling system in a real
design situation, namely the choice of channel capacities in two
of the channels forming part of the European ARPANET. A model
was successfully developed and used to predict mean interactive
response times under various conditions. This work, and the

design recommendations it led to, are desﬁribed in the previous
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chapter. In addition tp their immediate utility, these results
demonstrate the capacity of the SHAPE system to describe and model
the opening of an application which is neither trivial nor artificial.

Graphs have been used previously to describe programs,
and to discover properties of programs so described, but no
equivalent schemes were produced for hardware description.

Our approach has been novel in the recognition of hardware
software equivalence, which led us to provide a system of graphical
description applicable to bothyand in the requirement that the
descriptions should be directly usable for modelling computational
activity. As a result the SHAPE system is original in its use
of the same elements to provide both types of description, and
in leading to a new view of computational activity, namely the
binding together of a software and a hardware graph.

Barlier the graph descriptions have been called a type of
notation. This notation is not only descriptive but also
executable in the same way as a high-level programming language.

We believe that the SHAPE system is perhaps the first to provide
an executable graphical notation for modelling computational

activity, and the means for executing it.
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7.2 Suggestions for further research.

As is necessarily\the case in research, we have not been able
to attempt all we would have wished to, nor even achieve all we
attempted. Our suggestions for further research inevitably stem
from this situation. In working towards our main aims we have
sometimes had to make a choice or accept an assumption without
sufficiently deep investigation. These are also areas of
potential research.

For example, the correspondence between the elements of
hardware and software graphs is not as good as it might be.

In particular the IFloop, while adequate for modelling, does not
correspond well with a PIlarc whose mnitial and terminal nodes are
the same. It might perhaps have been better to include the two
IFcodes as normal software functions in the PHI vector. The choice
of possible IFcode actions was not deeply investigated and could
perhaps be rationalized. In addition, we would have liked to
give more time to the representation of processors which can
transfer data between more than one pair of stores. While their
representation as a number of Plarcs with an allocation inter-
lock is well justified, further consideration might provide a
more elegant model.

An area which we have not touched upon at all, and which
should be of some interest, is the investigation of a computation
described by a SIgraph and Plgraph by analytical techniques rather
than by actually binding the two graphs. Furthermore, while we
have presented a model of the binding process, this has not
included any techniques by which the binding algorithm might

optimize some aspect of the computational process.
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For example, the algorithm might attempt to minimize the total
binding time for the graph pair, either by complete optimization
or by a sub-optimal technique such as limited look-ahead.

In addition to these subjectsy we would have wished to give more
attention to the equivalence between preemptive and fractional
allocation strategies.

Turning now to the SHAPE program, we must make the comment
that although the features of SIMULA 67 are very well suited
to the implementation of the modelling system, the compiler
and the programs it produces are also very inefficient. This had
several undesired effects on our work. Firstly, it was not
possible to implement the full set of modelling facilities.

In particular, the ACT matrix attribute of a SInode was not
included, and consequently neither were the related functions
of mode % binding and error modelling. TFurther work we would
suggest in this area would be the creation of an efficient
implementation that provided these facilities.

In the SHAPE implementation the allocator binds a ready
Slarc to the Plarc which minimizes the duration of the rFsulting
ties A useful feature which might be added to the system would
be the insertion by the modeller of alternative binding strategies
with his run-time data. Lastly, an aspect of the SHAPE program
which is capable of improvement is the activation of ready
SIlarcs that are waiting for the PIgraph resources they need
to become available. The existing method using delay arcs is
primitive and not very efficient.

Finally, it must be clear that one validation cannot be

an exhaustive test of the SHAPE program, and one application
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cannot confirm its utility in a wide range of computations.
Consequently we would wish to see the modelling system used in
other areas beside the one chosen for this thesis. Where
theoretically expected results were known further validation
would be possible, and where none were available such use would
provide additional demonstrations of the system's wider

applicability.
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SIMULA 67 is a general purpose programming language which
may be regarded as an extension of ALGOL €0. The language was
defined by O. J. Dahl and K. Nygaard of the Norwegian Computing
Centrey Oslo. Its synFax is particularly suited to the definition
and manipulation of classes, which can be data structures, execution
rulesy or a combination of both. The language provides for very
easy|definition of list~processing and simulation procedures.

The treatment of simulation is based on the languages SIMULA I
and SOL. Below we give a brief summary of the features of
SIMULA 67, which we will refer to as SIMULA.

In the course of this research some corrections and additions
were made to the SIMULA compiler. The main addition was the
provision of interactive execution of a SIMULA program. As well
as data input and program at a terminal, file linkage prior to
program execution was possible by entering DATASET cards from the
keyboard.

Corrections to the compiler were made by normal software
maintenance methods, namely fault isolation, fix writing and
insertion. Where possible fixes provided by Control Data
Corporation were used, including those for faults reported by
users at other installations. The majority of faults required
small amounts of corrective code, rather than major changes or
extensions. The compiler was maintained by the author for the
duration of the research described in this thesis.

There are two main additions to the concepts presented
in ALGOL 60. The first is that of program entities called objects;
and the second is a new type of variable called a reference

variable, which may‘point to objects.
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A class definition is quite similar to a procedure definition.
It consists of a class namey a number of formal parameters, and a

class body or execution rule. A simple example is:

class rectangle (a,b);

real

begin

real area;

area : = a * b;

end;

A reference variable may point to objects of the class given
when the variable is declared. For example:
ref (rectangle) p3)
Here p is declared to be a pointer which may only point to objects
of the ?lass rectangle. An object is an instance of its class
declaration, and we can generate one using the SIMULA symbol new.
new rectangle (546);
This statement will create an object of the class rectangle with
parameters equal to 5 and 6. If we write:
p :- new rectangle (5,6);
then p will point to this object ( := is the symbol which means
'points to'). The null object is a member of all classes so that
we may always write:
P :- none;
irrespective of the class for which p has been declared a referenqe

variable. We may pass the value of one reference variable to

another by writing:

329



b =43

after this statement p will point to the same object as q does.
The main difference between a class and a procedure are that a
class body may Fot alter the values of the actual parameters which
correspond to its formal parameters, and that an object exists as
long as some reference variable points to it. That is to say we
may not write:

class a (x); name x; real ;

and further, an object will not disappear when its execution rule
completesy, unless there is no reference variable pointing to it.

ayb and area are called the attributes of an object of the class

rectangle and we may access them via the reference variable p by

writing p . attribute, for example:

P :- rectangle (5,6);

X =p¢a;
y i=p.b ;
Z 1= P.area ;

A shorthand for this is the inspect statement:

inspect p do begin

X = a

~e

g
i}
o’
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Remote referencing can be concatenated indefinitely;
i.e. if the class rectangle has a locally defined reference
variable q which points to objects of class triangle, we may write:
X = Pe.Je.side ;
where side is a local variable of an object of class triangle.
Classes may be concatenated to form subclasses. For example
the statements:
class A (a,b); real a,b ;3
A class B (X,y); real X,y ;3
define a class B which is a subclass of A and having four
attributes ay by X, ¥ and no execution rule. A reference variable
declared for class A may also point to any of its subclasses.
For example:
ref (A) p;
p - new B(1,2,3,4);
If A and B have execution rules, then the bodylof class
B may be inserted anywhere in that of class A using the symbol
inner; for example:
class A (ayb);

real ayb;

begin

real c4d;

C :=a  b;
inner;
¢ i=c + d;

end;
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A class B (%,¥);

real Xo¥;

begin

The statemtn p := new B(1424344); will produce an object with
execution rule:

real asbyXyy;

o

i

®

*
=

end;

A class name, with or without an actual parameter list, may
prefix an ordinary block. This makes the attributes and capabilities
of the class available to the block. For example:
class Aj

real procedure sqrt (z)

real z; begin sqrt := z 0.5; end;

A begin

real X ¥

x := sqrt (y);
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The above is a simplified explanation of the way in which
classes and reference variables may be used- For more information
see the SIMULA 67 Common Base Definition. The main incompatibilities
of SIMULA with ALGOL 60 are:

1. The own symbol is not permitted.

2. The string symbol is replaced by a similar concept, text.

3. Procedure parameter tranamission by name must be specified
using the symbol name.

L. The input/output system is developed in terms of objects of
class file and its subclasses. Users should refer to the
Reference Manual for details.

SIMULA 67 provides two predefined classes, SIMSET and SIMULATION.
These have no formal parameters, but define a number of procedures
which allow a programmer to write a list-processing or simulation
program more easily within a block prefixed by these class names-
In fact SIMULATION is a subclass of SIMSET. This is so for two
reasons. Firstly it allows the class SIMULATION to use list-
processing procedures from SIMSET when predefining simulation
facilities; and secondly it allows the programmer to have access
to those procedures inside a block prefixed by SIMULATION.

The prefix SIMSET provides for simple manipulation of two-way
of two-way lists. The following actions are possible using
predefined procedures.

1. Accessing the successor of a list member

2. Accessing the predecessor of a list member
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3. Inserting an object in a list before or after another one, or
at the end of the list.

4. Removing an object from a list.

5. Creation of a list.

6. Accessing the first and last objects in a list.

7« Determining whether a list is empty.

8. Determining the number of objects in a list.

9. Removing all objects from a list, making it empty.

The prefix SIMULATION allows the programmer to define
processes (objects of class process) which are scheduled and
executed within a predefined quasi-parallel system with its own
time axis. This is done by maintaining a time-ordered event list
(SQS) whose events are executed in sequence. Events are themselves
objects which have two attributed (in addition to those required for
list membership), namely:
real eventtime; comment the time at which this event is scheduled

to occurs
ref (process) proc; comment a pointer to the process whose acti-
vations or reactivation this event
represents;

Events may be created implicitly or explicitly by processes,
which themselves can be generated or destroyed by object
generation or completion and detachment. Processes may, interact
via global variables, automatic statistic gathering, or by altering
the attributes of other processes through inspect statements.

The following actions are possible using predefined procedures.
1 Accessing the current system time.

2. Referencing the currently active processy i.e. the process
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executing the current event.
3. Referencing the successor and predecessor of an event in the SQS.
L. Waiting for a specified time before continuing execution of the
process execution rule.
5. Entering a queue.
6. Halting execution of a process until activated by some other
processe.
7 Directly scheduling an event, before or after another, or
at a given time.
8. Cancelling or rescheduling a scheduled event.
9. Activating or reactivating a halted process.
10« Accumulating the system time integral of a variable.
11« Drawing of random numbers from various distributions.
To illustrate the flexibility of SIMULA 67, we shall suppose
that we have a recursively defined problem of the form:

real procedure solution (data);

real data;
real nextdata;
nextdata := function (data);
if nextdata = simpledata then solution := simplesolution
else solution := solution (nextdata);

end;

If the solution of the problem involves performing a simulation
we can define:

real procedure function (data);

real data ;
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simulation begin

-

end;
procedure function (nextdata, partsolution);
name partsolution;
real nextdata, partsolution;
ref (G) x;

if nextdata = simpledata then partsolution := simplesolution

else begin
x :- new G(nextdata, 0);

partsolution := G.solution;
£nd;
end;
A SIMULA 67 program may be executed on the CDC 6600 at ULCC

suing the following control cards:
CIPB(eeiaanaaaa)

ATTACH(SIMULA, SIMULA)

SIMULA (L,X)

LIBRARY(L = SIMULALIB)

LGZ.

RETURN(SIMULA)

7/8/9

SIMULA SOURCE PROGRAM
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7/8/9

DATA

6/7/8/9

The last two cards of the SIMULA source deck should be 'EOP'
and FINIS, both punched in columns 10-1k&.

Most programs can be compiled using 20,000 words (decimal) of
store. However, for larger programs both compilation and
executlon speed can be increased by allowing more store.

Files names used in a SIMULA program are related to SCOPE
files by DATASET cards, which are the first cards of the data

record.
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SHAPE LIMITATIONS
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For various reasons the SHAPE program does not provide all the
features described in Chapter III. In this appendix we state the
limitations and discuss briefly the reasons for them. Implementa~ ;
tion of the modelling system was originally divided into two
stages. In the first of these a simplified system was created,
with dataset activity represented by giving negative signs to the
appropriate REP matrix elementsy rather than the provision of the
ACT matrix. This course required that datasets were treated as
read-write only (the negative sign indication for read-only having
been preempted).

Further consequences of the absence of the ACT matrix were a
difference in the implementation of DOloops and the inability to
perform simultaneous activation. The latter was caused by the
absence of the top and bottom ACT column elements which we used
to record a processor allocation (reservation in the case of
simultaneous activation)- This lack also precludes the implemen-
tation of the error handling methods described in Chapter III.
Since read-only datasets were not available in stage one there
was no necessity for deactivation Slarcs, which must;also be
provided when read-only datasets are implemented.

o The addition of these features was defined as the second

stage of implementing the modelling system described in Chapter III,
but this was not carried out because of various problems of
implementation. The most serious of these was a deficiency of the
loader in the SCOPE operating system at that time. This deficiency
was a limit to the number of certain locader tables which could be
processed by the loader for a single program. Unfortunately the
SIMULA 67 compiler produces code in which these tables occur very

frequently.
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Consequently a large SIMULA 67 program will not load after
compilation and the loader either aborts with a machine stop or
enters an infinite loop.

Since no diagnostic is issued identification of the fault
took some time. It was found that the stage one implementation
was slightly over the limit and steps were taken to reduce the
number of the offending tables. This required the elimination of
topological verification after graph input, and the use of only one
set of statistics (hardware or software). In addition all calls
to the run-time input-output system were changed to calls to an
equivalent local procedure.

These measures reduced the program size sufficiently to allow
successful loading. However any further insertion of SIMULA 67
statements had to be balanced by deletions elsewhere. Implementa-
tion of stage two could not have been accomodated within the
program size required for successful loading.

A way out of this problem is the use of code procedures
within a SIMULA 67 prdgram. This is a call to a procedure which
is separately compiled, and linked to the main program at load
time. Various portions of the SHAPE program, notably the graph
input procedures, could then be compiled separately, and linked
to a much reduced main program by the loader, thus overqoming the
limits imposed on any single program. Code procedures are part
of the SIMULA 67 language and described in detail in the manual
for the CDC 6600 version. However they have not been implemented
in the compiler at the time of writing.

Other problems in the compiler, while not insurmountable,

considerably slowed down SHAPE implementation.
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One of these was a residue of program stop instructions which had
been used by the compiler writers for trapping purposes. When these
occurred during compilation or execution of SHAPE, elimination of
the statement responsible strangely resembled a process of trial
and error. The lack of interactive facilities in the compiler
and run-time system increased the time spent in debuggiﬁg SHAPE
when this was already in short supply. Circumvention of the
compiler bugs revealed in this process required extra statements
in some cases, eating into the allowable program size. Examples
are the use of a bad approximation for the generation of random
Poisson numbers,.incorrect comparison of positive and negative
zeroy and failure to recognize compressed card images.

The decision to forego stage two was also influenced by
considerations of resource availability. Any SIMULA program
reguires a run-time acratch area for the storage of
dynamically created and destroyed class objects. This area
is provided by the storage between the end of the program and
the field length limit. When all the free space has been used
the run-time system calls a procedure named the garbage collector
which eliminates all defunct objects and compacts the remainder,
so providing a new free space area. The amaller the overall
scratch area, the more frequently the garbage collector must be
called to clean it up. Since the garbage collector processing
is not negligible a trade-off developes between core storage
available and CPU time required for any given program run.
Furthermore as a program grows in size, in order to maintain
the scratch area the field length must increase by the same
amount. To provide an adéquate scratch space for the stage one

implementation between 50 K and 60 K of core storage is required.

3h



As the field length is dropped from 60 K, increasing quantities of
CPU time are devoted to garbage collection. Jobs run at University
of London Computing Centre are categorized by resource usage.
A J9 category job may use up to 50 K of memory and up to 120 secs
of CPU time, and a J12 job is allowed 60 k and 1200 secs.
respectively.

Consequently a SHAPE run with medium sized graphs will
almost certainly be a J12 job. This is the largest job which
receives a regular turnround at the Centre. If more store or CPU '
time is required the job is categorized as J15 and run as and when
there is spare capacity available. Production runs should therefore
be kept within the J12 limits if at all possibley to ensure regular
turnround. Within these limits it is doubtful if adequate scratch
storage would remain after expansion of the SHAPE program to
include stage two facilities. The full implementation would there-
fore have to be run as a J15 job except with the simplest models. .

In some models the value of the results is related to the
length of run. For such cases the runs must have adequate CPU time
availabley so that if requested memory is reduced from J12 to J9
limits, the garbage collection trade-off increases the CPU time
required and returns the job to the J12 category. This resource
availability situation provided a further reason to use the stage
one implementation. Even in this case because J12 jobs are the
largest to receive regular service, they also have the slowest
turnround time.

Most SIMULA 67 programs will use the run-time system a good
deal, especially if any list-processing or simulation is performed,

which is the case with SHAPE.
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Therefore the CPU time used is greatly affected by the efficiency
of the run-time system in executing its various functions.

Its areas of weakness are the input-output procedures, block entry
and closure, and the processing of goto statements.

The code produced by the compiler is split into 512 word
segments for no apparent reason. The segments do not correspond
to theé user program, and jumps across segment boundaries are
very slow (requiring a call to a segment control routine in the
run-time system). If a program loop crosses a segment boundary
degredation can be severe. The loop control itself is slow and
does not take advantage of the simple case where the step is one.
For these reasons a good deal of CPU time is required by SIMULA 67
programs.

In the paragraphs above we have tried to summarige the reason
for which the full graphical modelling system was not implemented,
and also some of the factors which slowed down the development of
the restricted system.

The validation model was a simple one and consisted of a
small number of modelling elements- The observation of interest
was message delay and the validation runs were in the J12 category
of resource usage, which allowed the generation of approximately
24000 messages.

The model of the ARPA network link was also run as a J12
category joby and typically this run-time would generate between
250 and %00 round trips (message and response cycles). When
considering alternative models of the link we were at pains to
keep the memory requirement to a minimum. The implementation
has only two variables which travel with the cut, namely LAMBDA

and BETA.

343



If a further variable of this type were available it could be used
to provide a message routing indicator. If the variable held the
node number of the destination node for the message, then an IFloop
whose outcome was a function of the variable value would be
equivalent to a routing algoritim. The existence of these two
facilities would be of great benefit, since it would be possible
for messages with differenct destinations to use the same REP
matrix elements on common sections of their routes. While leaving
the CPU time almost unchanged, this would greatly reduce the
memory required by the model-

Without these features it was necessary to provide separate
matrix elements for messages with different destinations. Within
this constraint we reduced the memory requirement by providing
separate nodes for each route, so keeping the number of REP
matrix elements much smaller than would be the case if the
separate route elements were placed in a single REP matrix.

The CPU time required by a model is approximately proportional
to the number of SIarc executions, and so to the number of Slarcs.
These were kept to the minimum compatible with retaining the
structure of the link activity.

In general penalties in resource usage were incurred because
of the absence of the second stage implementation, or because of
inefficiencies in the SIMULA 67 run-time system. Where possible
these were alleviated by judicious manipulation of model

structure.

3l



APPENDIX IV

SHAPE USER INFORMATION
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CA:d FOHMATS FOX GRAPH INPUT

CARD COL

——— W ——————

RUN

GRAFH
HEADER

SIHODS

PINOUDE

1

61

31 41 51 1
GNC MODE DEBUG PICODE SICODE | STMLIM MAXREAL
| GRAPHNAME | TYPE FIRST NODE| LAST NOSH ARC WIDTH | GRAPH |G ¥ACTCR | NUMBER OF
; SIZE PROCESSURS|
NODENUMEEN | INARCS OUTARCS | {DATANODE} A
] PINODE OUTARCL | OUTABC2 |OUTARC3 |OUTARCH OUTAKRCS

INARCL REP[1,3] R®P[1,2) | rEP[1,30 . . . .
. - I . N — R 2

INARC2 REP(2,1] . . o . .
NODENUMBES INARCS OUTARCS | IDATANODE}

CAPACITY BLOCK LATENCY | SE&D BLOCKS/ COST
SIZE TRACK




CARD FORMATS FOR GRAPH INPUT

SIARC

CARD COL 1 11 21 31 41 51 61 71
NODENUMBER MODENUMBER ?-FIBST LAST NODE|ARC WIDTE | CGRAPH IGFACTOR  |NUMBER oF |
NODE SIZE PROCESSORS
SEQ FRAC. {‘DATANODEi DATANODE?2 DAT.;SEQF:g'
— i IFCCDEL IFCODE2 Al A2 Bl $2
—~ ps1 (1]

LA

PHI(2]




I
-

)

3
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CARD FORMATS FOR GRAPH INPUT

GABD COL 1 11 21 31 41 51 61 71
¥ j . g
NODERUMBER ' NODENUMBER %’"IRSTNODE LASTNODE | ARC WIDTH| GRAFH GFACTUR [NUMBER OF
< SIZE PROCESSORS

SEQ FRAC.{DATANODEl DATANODEZ DATASmQF§

S SESSSNSS

1D cosT
. —
ps1[1,1] | Pszl1,2] | ps1l1,3]
- U U SR
ps1f2,1l | psiiz,2] .
rs1{3,1] . .

Items in hrackets § g are optional.

A node must have 1ts outarcs lmmedintely following itz own dats; nodes can ap.ear in any
order. If an arc has a gubgraph 1ts parameters fol'ow the unode numbers on the are card .

The subkraph then follows the data of the arc,



DATA REPLICATION

If a node.(or arc) has identical data to some other then
DATANODE (or DATANODE1, DATANODE2, DATASEQF) describe the other
node (or arc) and the data is replicated automatically by
graph input, so that there is no need to append the data again.
The same occurs with a subgraph in which case replication is indi-
cated by setting size = O and then FIRSTNODE, LASINODE, GFAC give
NODENUMBER1 and SEQF of the arc which heads the subgraph to be
replicated. The following rules apply.

1) The DATANODE must precede a replica on the source file.
2) Data arc must precede a replica on the source file.
3) When data and replica subgraph arcs are OUTarcs of the same

node,y, then the data subgraph must precede the replica.

MULTIPLE INARCS

For extra INarcs to a particular row of REP matrix set
SEQF := REP[i,0] + final NODENUMBER - initial NODENUMBER.

Arc specifier at initial node equals SEQF.
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INDEX USAGE

NUMBER ADDRESS

0 { NODECT + 1 IONE

NUDE NUMBER

NODE

NCDECT + 1

INDXL, -
PLUGCT

NODENUMBER r”““‘\\\ﬁh ARC
INDXL INDXL-PLUGCT| NONE

If nodect + 1 = indxl - plugct then indexfull := true ;
comment nodes are held in ascending order by node number,
indxl 1s the lengih of the inlzx,

on creatlon auaiér [ 94 1= 1 arnd number [indxl] &= indxl,

on comoletion of loreph iro.s nunber Cindxl] 1= pPno;



RUN CONTROL

The SHAPE program expects to find sequential input on two files
named SIGRABH and PIGRAPH. SHAPE prints logging information on
file LOGGER and statistics on file STATS. Any SCOPE files may be
used as long as their file names are equated to the expected omes
using DATASET cards. These must be the first cards read on the
standard input file INPUT. For example,

DATASET, SIGRAPH = HENRY

DATASET, PIGRAPH = XYAB

DATASET, LOGGER = P

DATASET, STATS = OUTPUT

DATASET, END

These cards are followed by a run control card whose format is
shown above. The parameters can be set as follows.

GNO - Number of graphs for this run j may be 1 or 2

MODE - binding mode may be

1 = non-reentrant
2 = semi-reentrant
3 = completely reentrant

DEBUG - Debug parameter, if non-zero then extra logging
information is output.
PICODE - code showing hardware statistics required, is an octal digit,
i.ee O = 7y treated as three bits.
BIT 1 - low order bit set for memory statistics
BIT 2 - middle bit set for processor statistics
BIT 2 - high order bit set for processor state statistics
SICODE -code showing software statistics required, is an octal

digity le.e. O - 74 treated as three bits
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BIT 1 - low order bit set for node statistics

BIT 2 - middle bit set for arc statistics

BIT 3 - high order bit set for cut statistics
SIMLIM - Default binding time limit

MAXREAL -value to which all program maxima are to be preset
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GRAPH INPUT PROCEDURES

gin(g) g - pointer to object of class graph, null if graph
input failure.

subgin (y, type, fstn, lstn,adl, size gfac)
¥y - pointer to object of class graph, provided by gin.
type -~ type of graph, usually 1 or 3.
fstn - node number of first node ingraph.
lstn - node number of last node in graph.
adl - length of arc data vectors.
size - number of nodes in graph.
gfac = factor to derive index capacity.

immode (x, type, adl, data, nodes)
X = pointer to current node.
type -~ as above.
adl - as above.
data - scratch array for arc data created by subgin.
nodes - pointer to index created by subgin.

inarc (x, type, adly data, nodes, inn)

‘ X - pointer to previous arc.

type - as above.
adl - as above-
data - as above.
nodes - as above.
inn - node number of node at head of chain.

find (n, ey ind) - address of node with number n.
ind - pointer to index to be searched

e - number of entry in index
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plug (ny ay ind) - true if successfully completed.

n - node number of plug.
a - address of arc requiring node address.

ind - as above

putelem (ny, a, ind) - true if element successfully entered in index.

n - node number
a - address of element

ind -~ as above

ERROR CODES

Code

Error

11

12

1%

21

22

1

32

I

Lo

b3

REP matrix of initial SInode contains no OUTarc specifier
for SIarc of completed tie.

REP matrix of terminal SInode contains no INarc specifier
for SIarc of completed tie.

Terminal node dataset found to be negative while activating
terminal row in mode 1.

Memory inuse less than zero after memory change.

Memory inuse greater than capacity after memory change.-
No SIarc found in OUTarc chain to match ready column in
current REP matrix.

REP matrix of final node of ready SIarc contains no row
for this SIarc -~ INarc specifier not found.

No PIarc found to execute ready SIarc.

Terminal store too small to hold max. requirement of
terminal node.

Terminal store nodenumber not that required by terminal
SInode of ready arc.

Terminal store not that to which terminal SInode of SIarc
already tied.
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iy
L5
46
b7
50

70

80

817

82
83

91

92

Terminal store not the same as initial when Slarc is a loop.
Time for arc to execute less than zero.

Not enough storage free in terminal PInode.

Available process fraction is zero.

Arc time less than zero in PERT mode.

One or more terminal datasets of ready IFloop exceed
current initial one.

No active initial dataset found for IFloop readied by
completing tie.

No next event, system resources deadlocked.

Arc data rector lengths not matching in ST and PIgraph.

No next event but final node still active.

Binding time limit exceeded.

PSID[O] less than zero after release of allocated processor
fraction.

PSID[O] greater than one after allocation of processor

fraction.
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ARRAY USAGE
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AndAY USAGE

PSID (0 : adl + 3]
0 pfraoc
1 ][1
2 'Qz

adl ) adl

adl+1 14

adl+2 pcost
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PINODE RUN-TIME VARIABLES

inuse - current quantity of storage in use.

totuse - time integral of inuse.

mit - cumitlative total of time inuse is non-zero.

mut - - maximum observed value of inuse.

mef - sum over all periods in which inuse was non-zero of the

product of period length and maxuse of that period.

The variables above are used to produce the following statistics
for each PInode.

activity - mit/gt

utilization - mut/capacity

efficiency - totuse/(mut x gt)

To derive expressions for overall graph storage utilization and
efficiency, we use the sums over all PInodes of cost, cost of
PInodes with non-zero time used, products of cost and mef/capacity
These are accumulated in totmem, gutmu, and gefmu respectively.
Statistics output are then

gutmu = gutmu/totmem

gefmu = gefmu/(gutmu « gt)
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