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ABSTRACT 

In this thesis we develope a representation of both hardware 

and software based on general directed graphs. In a hardware graph 

arcs represent processors and nodes represent memory stores. In a 

software graph the arcs are process descriptions and the nodes are 

groups of data. Program execution is modelled as the binding 

together of elements of these two graphs, the set of bound elements 

characterizing the program state at a given time. Binding is 

regarded as a resource allocation process, and the method of 

selecting one from the set of binding alternatives as the alloca-

tion strategy. 

This modelling system was implemented as a program whose 

input consists of the two graph descriptions in sequential form. 

The program reconstructs the topology of the graphs within the 

computer memory using pointers, and proceeds to bind the two 

graphs until a terminal state is reached. During binding data 

is gathered using a set of performance measures. On completion 

statistics are calculated and a summary of the observations is 

produced. A log of the binding activity is also available. 

The latter part of the thesis is concerned with the appli-

cation of the modelling system to computer networks. The program 

was validated by modelling a simple store and forward network, 

and the results proved satisfactory at the ninety-five per cent 

confidence level. The system was then applied to a proposed 

linkage between computers in the United Kingdom and the Advanced 

Research Projects Agency computer network in the United States. 

The results of this application are described in the penultimate 

chapter. Finally conclusions drawn from the work are presented and 

possible extensions discussed. 
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NOTATION 

L , SIGMA 	Software graph 

Tr, PI 	Hardware graph 

Null processor 

C- 	Software subgraph 

S Arc of software graph, process 

P Arc of hardware graph, processor 

P
I 	Identity processor 

PO 
	Ideal processor 

s 	Quasi-distance on arc S 

gw 	Quantity of computation 

j(s) 	Computation density 

TO 	Time for P0  to execute S 

w Total computation of S 

u Scaling factor for processor power 

T 	Time for P to execute S 

r(pi s) 	Range of P at s on S 

r
0 
 (s) 	Quantal range at s on S 

	

.1) 0(u) 	Time for P
0  to execute r0 

 (s) 

L Loss 

	

i( s) 	Redundancy of Pi  at s 

n(0) 	Number of software functions for subgraph 

Number of times i th function is executed 

K Allocation procedure 

A 	Graph analysis procedure 

REP 	Repartition matrix 

REP[il j],t, i  Element of repartition matrix of node K 

Slgraph 	Software graph 
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Slarc 	Arc of software graph 

Slnode 	Node of software graph 

Plgraph 	Hardware graph 

Plarc 	Arc of hardware graph 

Plnode 	Node of hardware graph 

INarc 	Arc entering a node 

OUTarc 	Arc leaving a node 

, LAMBDA 	Size of initial arc data 

, BETA 	Cut generation time 

ACT 	Activity matrix of a node 

v 	Portion of tie duration due to store characteristic 

ut 	Utilization 

ef 	Efficiency 

f. 	Function i of Slarc 

t.
1 	

Time for processor to execute fi  

c. 	Cost of processor component j 

t.. 	Time component j in use during ji  ij 

ut. 	Utilization of processor during function i 

ef. 	Efficiency of processor during function i 

The notation above is that used in describing the SHAPE 

system. We have not included variable names from the SHAPE 

program, and these are defined when used in Chapter IV. Variables 

used to describe the systems modelled in validating and applying 

the SHAPE system only appear, and are defined, in Chapter V and VI 

respectively. 
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CHAPTER I 

INTRODUCTION 
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1.1 Background.  

One of the goals of computer designers and users in creating 

new equipment is increased computing power. Such a goal is not 

difficult to justify. If achieved it reduces the cost of current 

computing activity, or allows expansion at a lower price; a 

previously uneconomic solution to a problem may now seem more 

attractive; perhaps less frequently, a solution is made feasible 

on an acceptable time-scale. Intuitively computing power is not 

a difficult idea to grasp, but interpretations vary and are 

seldom precise. 

Computing power is usually described in relative terms. 

For example, twice the work done per day implies twice the 

computing power; alternatively, the same work done in half the 

time. In practice these need not be the same thing. Such 

relative comparisons tend to beg the question of what we really 

mean by computing power or computing work. It is worth 

emphasizing that computing power (in its normal intuitive sense) 

is very dependent on the task to be performed. In this sense 

it is dynamic, and not a function of hardware alone. 

Expansion of a computing facility by adding more equipment 

of the type already in use may be called lateral expansion. 

Replacement by differently designed, faster, or more appropriate 

equipment may be termed vertical expansion. It is said, and 

may generally be the case, that there is more computing power 

per unit cost in a large system than in a small one. 

Consequently, simply spending more for a larger system may well do 

as a first step to increased computing power per unit cost. 

Having reached some financial limit, a differently designed, or 

in some sense intrinsically more powerful machine, for the same 
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price is needed. 

Usually a mixture of these approaches is adopted. Another 

possibility is to design and build a new machine of the 

required power, though this is beyond the scope of most users. 

It is, howeverl part of a manufacturer's motivation. 

A counter-productive side-effect in increasingly powerful 

systems is the difficulty of using that power efficiently. 

Significant numbers of comparatively trivial tasks under-

utilize hardwareland difficulty in organizing work flow leads 

to high system overhead and idle time. At best only partial 

solutions to these problems have been found. 
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1.2 Computing power.  

Theoretical limits of computing power undoubtedly exist 

given the current state of physical science. Laws such as 

the uncertainty principle will limit switching speeds of 

stores, transmission speed of data, and packing density of 

information. If we consider the hypothetical situation arising 

when computer techhology reaches these limits, then only one 

strategy for achieving increased computer power remains. 

This is the organization of laterally expanding systems to 

process work in a parallel fashion. 

Such an approach makes the implicit assumption that a 

significant amount of computational work is amenable to 

parallel processing. Though we are very far from the 

absolute limits mentioned above, the situation has a 

practical analog in the problem of a real-time system which 

is already using the fastest appropriate computer available, 

and is still unable to meet the completion constraints for 

some task or set of subtasks. The only way to meet the constraints 

is to reorganize the task so that it is amenable to parallel 

processing and then execute it on a laterally expanded system. 

A visible trend in recent computer design is functional  

dispersal. This is based on the view that if too many functions 

are combined in one module, then much of it is idle, much of the 

time. Consequently, greater efficiency is obtained by having the 

functions in separate modules of appropriate cost and computing 

power. These are used when needed by the task and free for other 

work the rest of the time. The gain in efficiency presupposes 

enough different tasks in the system to ensure that individual 

module utilization is high. Attempts to meet this need have 
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recently led to pipeline design in some large computers. 

Elementary function dispersal is present in computing equip-

ment at the time of writing. Separation and concurrency of 

computation, I/O, telecommunications control, display regeneration, 

and so on, is evident in most third generation machines. Such 

function dispersal places increasing emphasis on the net-like 

aspects of computer facilities. Net representation of a computing 

facility can be applied at any level of detail, from computer 

networks, where the complete computer is the quantal object, to 

a single processor, where each logic subassembly is considered 

separately. 

Clearly a program organized for parallel processing can take 

advantage of function dispersal to minimize its total execution time, 

and to select the functional hardware best suited to its 

individual processes. This is potentially a means Of improving 

performance over a sequential version of the same task. Indeed, 

a sequential program may be regarded as one member of the class of 

parallel programs which achieve the same result. 
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1.3 Research aims and methods.  

We have mentioned above the problems of using powerful 

computer systems effectively. In this thesis we attempt to 

provide a framework for the solution of such problems. Some 

elements common to a wide range of computing processes are 

isolated and identified. From these a technique for modelling 

computational activity in complex computer systems is developed. 

It is hoped that the technique will prove useful both as an 

aid to problem definition, and as a practical tool in the 

solution of a problem once it has been defined. 

We have tried to introduce measures for aspects of the 

computational process which will be relevant in most circum-

stances and useful in evaluating the performance of systems 

under investigation. 

We view computational activity as a hardware to software 

allocation process. That is to say that a task is realized, 

or results produced, by the allocation of a task processor 

to a task description. The basic operation in this process 

is chosen to be the production of one dataset from another 

through the action of a processor. A complete task is then 

regarded as a number of such steps occurring sequentially or 

in parallel. 

The modelling technique uses directed graphs to represent 

software description and a hardware configuration. Execution 

of the former by the latter can then be modelled as a dynamic 

connection, or binding, of the two graphs. The system has 

been implemented in a high-level language (S1MULA 67) whose 

syntax provides features which correspond closely to the needs 

of such a modelling system. 
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Our goal has been to provide a system which can be used 

to evaluate and compare various combinations of hardware and 

software which perform a given task, and so provide a means 

of optimizing task performance both in existing and proposed 

computer systems. 
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1.4 Organization of subjects.  

The material which follows is organized into six chapters 

each dealing with one phase of the research that was carried 

out- In Chapter II there is a brief discussion of related work 

in the fields of modelling, allocation problems, computing and 

transmission networks, and performance measurement. 

In Chapter III we develope the concepts and theoretical 

considerations on which the modelling technique is based. 

We then describe the technique itself and show how it can be 

applied to computational processes. Chapter IV gives an account of 

the implementation of the technique on a CDC 6600 computer using 

the SIMULA 67 programming language. 

Chapter V contains the results of a validation of the 

system, using a small store and forward network as a test 

situation. In Chapter VI, we apply the system to a proposed 

network linkage between the U.K. and the ARPA (Advanced 

Research Projects Agency) computer network in the United 

States. We describe the way in which the modelling technique 

was used to investigate the performance of the linkage under 

various conditions and present the results obtained- 

Chapter VII discusses the conclusions which can be drawn 

from the research undertaken, and makes suggestions for further 

study. We have added four appendices for reference purposes. 

These are some remarks on SIMULA 67 and the CDC 6600, 

information required to use the implementation of the modelling 

system, a description of the limitations of the implementation 

and a bibliography. 
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1.5 Summary of results.  

We have designed a system, based on graphical representation, 

which is sufficiently general to model a large class of computational 

processes. This has required the identification of a set of basic 

functions which are necessary for such modelling, and a program 

incorporating them has been written. To create such a system we 

have had to isolate and define the operation of these functions 

in some depth, and as a result we believe the modelling system 

corresponds well with the underlying structure of computational 

activity. 

As necessary adjuncts we have produced computer input 

procedures which convert a sequential graph description to a 

topological replica within the computer, as well as a set of 

performance measures by which different model executions may be 

compared. 

The implementation has been validated using a model of a 

store and forward network, and the modelling technique was applied 

to a computer network link between Britain and the U.S. Results 

predicting the performance of the link under various conditions 

have been obtained, and hardware parameters for link operation 

estimated. 
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CHAPTER II 

REVIEW 
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2.1 Graph models of computation.  

In this section we give some of the history and bibliography 

of models of computational processes which use graph representations. 

In the following sections we deal with resource allocation in 

computer systems and the design of computer networks. The 

references quoted are to be found in Appendix I, which also 

contains a separate comprehensive bibliography of material related 

to computer networks. 

A number of researchers have produced graph models of 

computation. The use of graph representations is widespread in 

the literature of the theory of computation, and has also 

extended to modelling or describing processes which involve 

existing hardware or software systems. The utility of such 

descriptions can be seen, for example, in the short paper by 

K. A. Bartlett, R. A. Scantlebury and P. T. Wilkinson which 

gives an algorithm for the detection of errors during data 

transmission [BART 69]. Here the finite automata state diagram 

is used in the solution of a highly practical problem in computer 

communications. 

One of the earliest widely quoted models of computational 

activity is the one put forward by R. M. Karp and R. E. Miller 

in 1966 [KARP 66]. Their model is called a computation graph. 

This is a directed graph in which nodes denote operations and 

arcs denote storage elements where results are placed in first- 

in-first-out queues. Associated with each arc are four non- 

negative integers A 
P 
 , Up, W

P 
 and Tp  where Tp  > W . For an 

arc directed from node i to node j these parameters are 

interpreted as follows: A is the number of data words initially 

in the queues; U is the number of words added to the queue upon 
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completion of the operation associated with node k; and 

T is a threshhold giving the minimum queue length of the arc 

before the operation of node j is initiated. Karp and Miller 

show that computations represented by these graphs are 

deterministic. They also give a test to determine whether 

a computation terminates, and study properties of the data 

queues associated with the arcs, deriving conditions for the 

queue lengths to remain bounded. 

Another type of model, similar to those above but 

probably more oriented to hardware representation, is one in 

which a set of operations are connected to a memory as in 

Karp and Miller's model but the control is entirely local and 

is incorporated into the values stored in the memory. Each 

operation monitors the values in its domain locations and can 

apply whenever the values belong to a specified set. When an 

operation applies it replaces the values in its range locations 

as determined by the current domain values. Models of this 

type have been investigated by Luconi [LUCO 68] and Petri 

[PhaT 62]. Luconi considers schemata in which only a subset 

of the memory cells need contain unique sequences of values. 

Such schemata are called output functional and are realized by 

allowing- more than one determinate computation to nondeterminately 

"share" operations. Sufficient conditions for a schema to be 

determinate are given and synthesis procedures for output 

functional schemata are provided. 

E. Van Horn [VANH 66] has proposed an abstract model called 

machines for coordinated multiprocessing or MCMs. An MCM 

consists of a set of cells, a count matrix, and a scheduler 

to control operations. Each cell may behave either as a memory 
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(value) cell or as a computing (clerk) cell. In the latter 

case, a table of transactions is associated with the cell where 

each transaction may read and write cells or modify the count 

matrix. On the basis of the values in the cells and in the 

control matrix the scheduler determines which cells are 

enabled, i.e. can perform one transaction. The scheduler 

selects a subset of the enabled cells and directs them to 

perform their transaction. Van Horn has demonstrated that 

the action of the scheduler insures that the behaviour of 

any MOM is asynchronously reproducible. 

G. Estrin and R. Turn [ESTR 63B] and D. Martin [MART 66] 

have introduced a directed graph model for computer programs 

in which the vertices represent computational tasks and the 

arcs represent data dependency between nodes. In this model, 

the conditions for the initiation of the computation denoted 

by a vertex is expressed by writing a boolean expression in 

terms of boolean variables associated with the arcs incident 

into the node. A boolean variable associated with an arc is 

true when the data in that arc becomes available. A compu-

tation may be initiated when the boolean expression of the 

corresponding node, called the vertex input control, is true. 

There are three types of vertex input control: conjunctive, 

disjunctive and compound. Vertices with conjunctive input 

control may be initiated only when all input data are 

available. Vertices with disjunctive input control may be 

initiated only when precisely one set of input data (i.e. one 

arc) becomes available. The compound input control is a 

combination of the other two. Vertices also have output 

control which is used to specify the program flow from a 
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vertex to a subset of its immediate successors. A vertex 

with conjunctive output control simultaneously makes data 

available at all of the arcs incident out of the vertex. 

A vertex with disjunctive output control makes data available 

at precisely one of its output arcs. Thus vertices with 

disjunctive output control effectively perform data dependent 

decisions to control the program flow. The model can properly 

represent only cycle free graphs. It has been used primarily 

as a tool for the a priori assignment and sequencing of compu-

tation in parallel processor systems. This model, described 

below, has been developed in a sequence of research reports by 

Turn, Martin, J. L. Baer, D. P. Bovet, E. C. Russell, S. A. 

Volansky, and V. G. Cerf, working with Professor G. E. Estrin 

at the School of Engineering and Applied Science at U.C.L.A. 

Cyclic to acyclic graph transformations are the subject 

of [MART 67B] by Martin and Estrin, and other properties of 

the model are derived in[STR 63A, MART 67A, 67C, 69] by the 

same authors. Baer [BAER 68] has investigated the assignment 

of computations to processors by various scheduling techniques. 

Bovet [BOVE 68, 70A, 70B] has analyzed the model to determine 

profiles for memory allocation and Russell [RUSS 69] has used 

the model as a basis for the limited detection of parallelism 

and developed a system for the automatic generation of graph 

model descriptions, including attribute sets, from FORTRAN 

programs. Baer and Bovet have presented a method to test the 

legality of the initiation/termination conditions described 

by the graph model [BAER 70]. 

Volansky [VOLA 70] has further extended use of the model 

with an investigation of the detection and implementation of 
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parallelism in a multi-processor environment. Cerf [CERF 72] 

has considered the flow of program control which can be 

represented in the model, and determined condition for the 

proper termination of programs so modelled. 

The U.C.L.A. model has been further developed by 

J. Rodriguez [RODR 69] to study the determinacy of the execution 

of a program where the parallelism is shown. Further control 

is introduced on the arcs of the graph. These can be idle, 

enabled, disabled, and blocked, while nodes are classified by 

their computational functions (control, data modification, loop 

junction) and logic (AND, EOR, and OR). 

Other work on graph models of computation is that of 

H. Eisner [EISN 62], in which he has generalized the PERT 

network technique to take into account alternatives in per-

forming project phases. This was achieved by assigning 

probabilities to different arcs out of decision nodes. 

D. R. Slutz [SLUT 68] has extended the work of Karp and 

Miller. His models are called Flow Graph Schemata, and contain 

two structures. The first, called a data flow graph, indicates 

the paths of data flow and includes both operations to perform 

data transformations and memory cells to store intermediate 

results. The second is called a control graph and represents 

a mechanism to effect sequencing of operation activations. 

Using these structures Slutz has investigated the problems of 

determinacy and equivalence. 

Three papers of interest in the use of graphs for modelling 

systems of processes are those of D. :L. Parnas [PARN 69A], and 

of S. Crespi-Reghizzi and R. Morpurgo [CRES 70], and of Pfaltz 

[PFAL 72]- 
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Parnas deals in some depth with the simulation of simultaneous 

events and gives an algorithm for the derivation of an 

efficient sequential process equivalent to a given network 

of parallel processes, where the network has unconditional 

rules of immediate dependency, and no delayless loops. Crespi-

Reghizzi and Morpurgo present a language for representing 

graphs. The language uses linked lists to provide facilities 

such as addition and deletion of nodes and arcs, traversal of 

graphs, union, intersection, and so on. Pfaltz describes graph 

structures which allow the introduction of extra subsequences 

of arcs at nodes and other similar substitutions. 

The works referenced above are mostly attempts to model 

the behaviour of parallel computations. To insure determinate 

behaviour it is necessary to provide some mechanism that 

would disallow more than one operation to change the contents 

of a shared memory cell at one time. Such mechanisms are also 

present in current proposals for practical parallel and multi-

programmed computer systems. 

Dijkstra [DIJK 66] considers a method by which asyn-

chronous sequential processes may communicate 'harmoniously'. 

The processes are provided access to common integer variables 

called semaphores. The semaphores can be manipulated by means 

of two synchronizing primitives, the 'P' and 'V' operations 

which decrement and increment, respectively, the value of a 

semaphore by one. The P operation can be executed only when 

the current value of a semaphore is greater than zero. 

Thus the facility is available for one process to block another 

from entering a 'critical section' such as data accessible to 
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both. A number of interesting examples using semaphores are 

given. Dijkstra [DIJK 68] has incorporated semaphores into the 

design of a multiprogramming system and A. Habermann [HAKE 69] 

has provided a theoretical justification of the logical structure. 

Holt [HOLT 71] has discussed Habermann's work and shown that 

artificial deadlocks can occur when Habermann's methods are 

used, and that they do not necessarily eliminate cases of 

permanent blocking. Holt gives a solution for these situations. 

Hebalkar [HEBA 71] has extended Habermann's analysis with a 

graph model of process resource requirements and defined algo-

rithmic tests relevant to resource allocation with the intention 

of precluding deadlocks. 

The interested reader is referred to various other papers 

on aspects of graph models of computation: [BERN 66, ABLO 68, 

BRUN 71, CORN 70, IRAN 71, EARN 72, SHOS 69, LOWE 70, GILB 72, 

TESL 68, CONS 68, COHE 68, GONZ 69, DENN 68, KOTO 68]. 
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2.2 Models of Resource Allocation and Utilization in Computing Systems.  

Many of the models mentioned in the previous section have 

been used to investigate resource allocation strategies. In 

particular Bovet [BOVE 68] has examined memory allocation 

profiles using the U.C.L.A. model. P. J. Denning [DENN 68] 

has also used graph models when investigating multiprocessor 

assignment. 

The literature of resource allocation and utilization in 

computational systems is extensive. Much of it uses queueing 

theory to provide mean values for quantities of interest such 

as service times, waiting times, throughput rates and idle times. 

However, there is also a wide range of non-stochastic analyses. 

One of the earliest papers in this field is that of 

J. Heller [HELL 61] which deals with the scheduling of the tasks 

of a computational job among the processing units which can 

carry them out. Solutions are obtained for completion times 

of the tasks, and idle times of the processing units, and 

these are then extended to the concurrent execution of more 

than one job. 

G. K. Manacher [MANA 67] has provided a more extensive 

treatment of problems similar to that investigated by Heller. 

In this paper the assignment of tasks to processors is controlled 

by a task list, which orders all tasks according to servicing 

priority. A free processor is assigned to the highest priority 

task available. Two types of constraint are used, start- 

times and completion times. Tasks with start-times may not 

commence before those times, and tasks with completion times 

must terminate before them. Algorithms are developed to give 
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schedules which guarantee the execution of tasks within their 

deadlines, and allow the inclusion of non time-critical tasks 

in these schedules. 

T. C. Hu [HU 61] uses a graphical model to derive an 

algorithm for the optimum sequencing of the tasks of a job in 

two cases. The first case is to provide a schedule which 

satisfies a completion constraint on the whole job with a 

minimum of processors, and the second is to provide the 

schedule with the earliest completion time when the number 

of processors are fixed. 

The models described above have been greatly extended 

by the work of R. R. Muntz and E. G. Coffman [HUNT 69A, 69B, 

70]. The authors have used acyclic, directed graphs not 

unlike the U.C.L.A_ description to model computational 

activity, and have allowed preemption in task scheduling. 

Two important results are derived in DAUNT 70]. The first is 

the equivalence of Preemptive Scheduling and General Scheduling. 

Preemptive Scheduling is a scheduling discipline where a 

processor, instead of working continuously on a task once 

assigned to it, can be interrupted and assigned to another 

task. General Scheduling is a discipline where a fraction of 

a processor can be assigned to a task, and this fraction 

varied. The equivalence of these two disciplines is used in 

the implementation of the modelling system put forward in 

this thesis. 

The second result is the statement and proof of an algo- 

rithm for the optimal scheduling of free-structured computations. 
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Another paper concerned with scheduling in multiprocessor 

systems is that of J. L. Rosenfeld [ROSE 69]. In this paper, 

execution of a certain type of program by N identical processors 

is simulated, and it is shown that with proper programming the 

solution time approaches 1/N of the single processor solution 

time. 

Further results in this area of research can be found 

in: [BOWD 69, RAMA 72, SCHW 61, REIT 68, AOKI 63, KATZ 66, 

GOSD 66, GRAH 66]. 

The work described above is concerned mostly with scheduling 

to meet timing constraints. Another body of work deals with 

scheduling resources in a statistical demand environment, 

where it is the average behaviour of the system which is 

of interest. Typically this research has often centred on the 

response of time-sharing systems, and makes use of queuing theory 

in many of the results. A well known study of this type, augmented 

by simulation is that of A. L. Scherr [SCHE 67]. 

Detailed research has also been undertaken on the behaviour 

of specific devices. For example, the behaviour of the 

IBM 2314 disc is the subject of a paper by Abate, Dubner and 

Weinburg [ABAT 68], and drum scheduling has been investigated 

by Fuller [FULL 72]. Frank [FRAN 69] has also performed 

a more general study of disc usage in time sharing systems. 

Markovian models have been used to study computational 

systems and resource usage within them. An example is the 

paper by J. D. Foley [FOLE 67] on the University of Michigan 

executive system. The executive is considered to have nine 

states and transition probabilities between them are provided 
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from experimental observation of the Michigan system. Results 

are obtained for the fraction of time spent by the executive 

in any state, and the effect of changes to the system. 

Simulation has been a widely used tool in examining 

computer behaviour. In particular it is often used to see 

how well theoretical models predict the behaviour of real 

systems', and so determine their validity. In most cases 

the models have been of unique systems, for example [NIEL 66], 

and consequently the results have not been easily applicable to 

other situations. 

An example which suffers less than most from this 

disadvantage is B. Randall's paper [RAND 69] on storage 

fragmentation. Here external fragmentation is defined as the 

loss in storage utilization caused by the inability to make 

use of all available storage after it has been fragmented 

into a large number of separate blocks,and internal frag-

mentation is the loss of utilization caused by rounding up 

a request for storage rather than allocating only the exact 

number of words required. A number of simulation experiments 

are used to show that rounding up requests for storage, to 

reduce the number of different sizes of blocks co-existing in 

the storage, causes more loss of storage by increased internal 

fragmentation than is saved by decreased external fragmentation. 

A method of segment allocation and an accompanying technique 

for segment addressing which take advantage of this result 

are then derived. 

Space does not permit us to list the numerous papers which 

describe specific simulations, but more general discussions can 
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be found in: [ZEIG 72, HUTC 65, WEBE 64, NIEL 67, PARN 69B]. 

Some important results which are applicable to models of 

computation have been derived by G. F. Newell and W. J. Gordon 

in the area of queueing theory [NEWE 67A, 67B]. In the first of 

these papers closed queueing systems are considered. These 

are characterized by having N customers and M stages each with 

r. parallel exponential servers of the same mean service rate. 

Such closed systems are shown to be stochastically equivalent 

to open systems in which the number of customers cannot exceed 

N, and equilibrium equations for the joint probability distri-

bution of customers are derived. In the second paper closed 

cyclic queueing systems with restricted queue lengths are 

shown to be equivalent to open systems in which the number of 

customers is a random variable. The differential-difference 

equations for the time-dependent stochastic structure of the 

system are derived, and solutions given for a number of special 

cases. 

Queueing theory has been applied to time-sharing systems 

and related computing situations by L. Kleinrock in a number 

of papers: [KLEI 66, 67, 68, 70B, 71, 72]. In the first of 

these papers [KLEI 66] a group of processors is considered 

to act in sequence on subsets of data belonging to a problem. 

Such a chain of sequential processing machines (SPM) has been 

described in [AOKI 63]. Kleinrock shows that the system may be 

viewed as a cyclic queue, and gives results for the case of two 

sequential processing stages, where their intermediate buffer 

is of arbitrary size. Assuming exponentially distributed 

service times for timeslices of subset processing, the ratio of 
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expected time to process n subsets by the SPM system and a single 

processor is derived. An approximation is then derived for an 

SPM system with 2P  processors by applying the previous result to 

pairs of processors, each of which represents a pair of processors, 

p times. 

In [KLEI 67] time-shared computer systems are treated as 

queueing systems, where the time sharing effect is obtained 

by giving each request a timeslice Q of processor time and 

then requeueing it. Results are given for the expected time 

a request spends in the system by applying queueing theory to 

the case for which Q --> 0. These are extended to include 

systems in which requests belong to priority groups which 

determine the sine of their timeslice. 

In [KLEI 68] time-shared systems with M consoles are 

analysed and results given for the behaviour of the normalized 

average response time. Consoles are again serviced in a time- 

slicing fashion and after completion of a request, delay for 

an exponentially distributed think time before requesting 

service again. A definition of system saturation is given, 

and the original system is considered as a special case of 

the class of systems in which the Nth class consists of N 

processors with capacity 1/N of the original processor and 

serving M/N consoles each. 

Scheduling algorithms for time 	systems are the 

subject of [KLEI 70B], and further results for response time 

are given in [KLEI 71]. In [KLEI 72] the application of 

queueing theory as Q --> 0 is again used to provide results 

for the class of algorithms where the scheduling discipline 

may change as a function of the accumulated service. In 
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particular solutions are given for the average response time 

as a function of the service required by a request. 

Further results on aspects of time sharing are given in 

the following papers: [FIFE 66, LASS 69, LEWI 71, NAKA 71, 

NIEL 67, RAMA 72, RASC 70, SHEM 67, SKIT 66, STIM 69] which 

are only a selection of the large body of research in this 

field. 
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2.3 computer Networks.  

Perhaps the earliest attempt to interconnect a large 

number of computers was the SAGE (Semi-Automatic Ground 

Environment) air defence system[EVER 57, MART 69]. This 

system, developed by the military to collect, analyze and 

display radar data from sensors scattered over the continent, 

became operational in 1958 and has subsequently been improved. 

At about the same time the American Airlines SABRE Reservation 

System [PLUG 61, EVAN 67] was being developed on a commercial 

basis. Due to the success of this system, similar systems 

are now in use by other airlines, hotels, etc. The Ticketron 

real-time reservation system [DUBN 70] is one such example. 

The need by the military for improved data communications 

led to the development of the AUTODIN (Automatic Digital 

Network) Communications System in 1963 [HAMS 68, MILL 68]. 

This system utilized both line switching and message switching 

facilities and its design was influenced heavily by network 

survivability and vulnerability considerations. In contrast 

to military requirements for ultra-reliability, many 

commercial and experimental networks have relied upon simple 

interconnections or dial-up telephone lines for communications. 

Examples of such systems are the Chrysler Message Switching 

system [ISSA 68], the Rio Grande Railroad Message Switching 

Transportation System [DAY 68], the Control Data Corporation 

Cyber. et and Kronos Systems [GAIN 71], and the DATRAN (Data 

Transmission Company) common-carrier network [BINA 71, FISH 71, 

GAIN 71]. 

Several networks have been designed using a central 

store-and-forward message switch which reduces the network cost. 
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The network topology for this type of design takes the form 

of the classic Star network. Examples of such networks are 

the COINS (Community On-Line Intelligence Network System) and 

the Lawrence Radiation Laboratory OCTOPUS System. 

The Lawrence Radiation Laboratory network was called 

OCTOPUS due to its star-like topology. The central computer 

is a PDP-6 which serves as a store-and-forward switch between 

the large processors such as CDC 6600, 7600, and STAR, as well 

as the IBM Stretch and 360/91 computers. The central switch 

also provides access to the huge photo-store mass memory by 

any of the other machinesiand allows an evolutionary growth 

of the multi-computer complex since new computers can be 

connected to the system resources and can gradually be brought 

up to operational status. 

The third star network is the IBM computer network, 

NETWORK/440, which has several unusual features [MCKA 71A]. 

The central node was initially to be a medium size 360/50 

computer, but was later changed to be a partition in the large 

360/91, which serves not only as a store-and-forward switch, 

but also as a master operating system. The network consists 

of several IBM 360 computers and a Control Data 6600 computer, 

the latter being connected via a mall Honeywell DDP-516 

preprocessor. The non-IBM machine introduces a degree of 

generality into the network due to the considerable difference 

in the CDC and IEM architecture and data structures. 

In 1964 the Rand Corporation completed a comprehensive 

study, "On Distributed Communications" [BARA 64A, BOEH 64, 

SMIT 64], and a proposal for a distributed store-and-forward 
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message switched digital network. Although Rand's system 

was never implemented, their approach has influenced the 

design philosophy of some military networks and the ARPA 

Computer Network. During the study, Baran was responsible 

for the definition of a "packet" and for the "hot potato 

routing algorithm." 

In 1966 Lichtenberger [LICH 66] proposed a network of 

identical computers; however, this network was only partially 

implemented. Also in 1966, an experiment was conducted by 

interconnecting the TX-2 computer at the Lincoln Laboratory 

and the Q-32 computer at System Development Corporation to 

test the basic philosophy of a network connection. This 

experiment showed that resource sharing was possible between 

two computer systems. 

In 1967 the National Physical Laboratory (NPL) in 

England made a comprehensive proposal [DAVI 67] for a general 

purpose store-and-forward network. The NPL network was to be 

a store-and-forward network using interface computers and 

1.5 Mb/sec. transmission lines for the message switching net, 

with an expected network response time (the time from the 

receipt of a packet to the beginning of the output at the 

destination) of less than 100msec. Packets were defined as 

any multiple of 128 bit segments up to a maximum of 1024 bits. 

Details of the proposed network operation appeared a year 

later [BART 68, DAVI 68, SCAN 68, WILK 68]. To date, only 

one node has been implemented and can be described as a 

multiaccess computer system controlled by a time-sharing 

computer [BARB 69, SCAN 69, WILK 69]. The authors have so far 

concentrated on the local rather than trunk level. 
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A small experimental computer network is being 

developed at Carnegie Mellon University, consisting of two 

DEC PDP-10 computers, a pair of PDP-8 minicomputers, and 

a hybrid computer. All five computers are located together 

and since the communications costs are insignificant, 

experiments with completely connected nets as well as with 

more typical network interconnection topologies have been planned. 

In 1968 the Advanced Research Projects Agency released 

a Request for Quotation to construct a store-and-forward computer 

The contract was awarded to Bolt, Beranek and Newman, Inc. 

located in Cambridge, Massachusetts. The basic ARPA Network 

community consists of about 26 ARPA-sponsored research sites. 

Some of these sites have areas of specialization such as the 

graphics work at the University of Utah, picture processing at 

the University of Southern California, the man-machine interactive 

work at System Development Corporation, the text editing and 

information retrieval work at Stanford Research Institute and 

the network measurement and modelling work at UCLA. Other sites 

have specialized hardware capability such as the ILLIAC IV 

computer and the trillion bit laser memory. 

Figure 2-1 shows the configuration of the ARPA Computer 

Network. The various sites (HOSTS) are interconnected via a 

distributed message switching communication net consisting of 

IMPS (Interface Message Processors) and dedicated 50 kbit/sec. 

full duplex communication lines. Each site typically consists 

of one or more computers, called HOSTs, operating in a time- 

shared environment, but 
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range in siTs flom a TIP (a, terminal IMP) to the ILLIAC IV. 

Two series of papers presented at Spring Joint Computer 

Conferences [CARR 70, CROC 72, FRAN 70, FRAN 72, HEAR 70, 

KLEI 70A1  URNS 1'2, ROBE 709  ROBE 12, THOM 72] discuss the 

design, performance and operational aspects of the network. 

The problems of message delay, nodal storage requirements 

and the network routing strategy are some of the more 

interesting aspects of such a network from a modelling, 

analysis and operational viewpoint. Once the node 

locations are given, the .Retwork topology is influenced by 

the required system relielility, by projected user traffic 

requirements, nodal processing speeds, and total dollar cost 

allowed for the construotion. of the neThaork. Then a protocol 

for passing messages between the nodes must be chosen and the 

nodal processing programs designed. 

Another problem is the specification. of an operating 

system communication protocol which allows for the establishment 

of a connection between. HOST computers [CARR 70]. This task is 

handled by the NOP (Network Control Process) which is 

generally a part of a HOST 's executive program. Progresses 

located within a. HOST communicate with the network through the NCP. 

Finally, a. higher level of protocol is needed when a high 

degree of Interaction. is required between a user and a 

particular subsystem in a. foreign HOST. This requires the 

development of i7'!terpress commu:nel.caion techniques; for 

example, file transfer techniques, communication between 

dissimilar graphics sjations, remote job entry, and inter 

active terminals. 



In the assessment of performance of a general store-and-

forward computer-communication network, it is necessary to 

examine the assignment of channel capacities, the effect of 

queue discipline, choice of the message routing procedures, 

nodal processing delays, nodal storage requirements, and the 

design of the network topology. A network performance 

measure is required to determine how various choices of the 

above parameters affect performance. 

There are basically two classes of performance measures. 

The first class does not relate in any simple way to individual 

messages in the network, but rather to the performance of 

particular components that compose the network. Examples of 

such performance measures are: average channel utilization, 

nodal storage utilization, and channel error rates. Many of 

these performance measures can be computed analytically. The 

second class of performance measures relates more directly to 

individual messages. An example of such a performance measure 

is the average message delay. This provides a measure of syStem 

response which may be directly observed and which can be 

estimated. L. Kleinrock has investigated the minimization of this 

measure under various constraints in [KLEI 64]. Amongst other 

results the use of an "independence assumption" was shown to allow 

analytic solution for the optimal channel capacities in store-and-

forward communication nets. A further description of this work 

is given in Chapter V. 

One of the problems of current design is the application of 

general theories to the analysis and design of store-and-forward 

computer-communication networks. 
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Four main problems in these networks are construction of models 

to predict message delay, message routing strategies, channel 

capacity assignments, and topological design of networks. 

All these are dealt with to greater or lesser degree in 

[KLEI 64]. This work is further developed in [KLEI 69A and 69B] 

in which exact and approximate analysis, simulation, and 

measurement are compared to obtain results for networks of 

the ARPA type. The discussion is carried further in [KLEI 70A] 

and [FULT 71, 72]. 

Routing procedures have been investigated from various 

approaches. Prosser [PROS 62A], Kleinrock [KLEI 64], 

Shapiro [SNAP 66] and Benes [BENE 66] have examined the effect 

of random routing procedures on message delay. Their conclusions 

were that random routing techniques are highly inefficient in 

terms of message delay, but are relatively unaffected by small 

perturbations in traffic intensity or network structure- 

Boehm and Baran [BOER 64] and Smith [SMIT 64], Boehm and Mobley 

[BOEH 66], Kahn and Teitelman [TEIT 69] and Kleinrock [KLEI 70A] 

have examined some stochastic computing techniques. Deterministic 

routing procedures have been investigated by Prosser [PROS 62B], 

Boehm and Mobley [BOEH 66], and Kleinrock [KLEI 69A]. Their 

approaches have been slightly different. Prosser gave an approxi-

mate analysis of directory procedures which showed an increase 

in efficiency and amount of data transfer as compared to random 

routing, but at the expense of maintaining the directory. 

Kleinrock has computed average message delay as a function of 

traffic intensity for a fixed network topology and fixed routing 

procedures. Boehm and Mobley considered the problem of 
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computing a fixed routing procedure from estimates of network delay. 

The topological design of ARPA-like computer-communication 

networks has been attacked by the Network Analysis Corporation 

[FRAN 70, NAC 70A-B, NAC 71A-B]. Their procedure is derived 

from a natural gas pipeline study [FRAN 69]. In their 

procedure, both the network topology and channel capacity 

assignments are varied during the optimization, while the routing 

procedure is essentially held fixed it is deterministic for a 

given network topology). Since this problem defies a precise 

solution, their results must be viewed as giving good, but not 

necessarily optimal, network realitations. 

Implicit in the optimal design of a network is the 

network performance function. For most network design problems 

average message delay has been selected because it is 

mathematically tractable, because it represents the global 

performance of such networks, and because it can be measured. 

Meister, Mueller and Rudin DIETS 72] considered a slightly 

different performance measure: a weighted sum of powers of the 

average message delay in each channel. From this performance 

measure, they are able to obtain a channel capacity assignment 

for fixed routing which reduces the variation in delay from 

channel to channel at the expense of only a moderate increase 

in average message delay. This technique reduces the delay 

markedly on lightly utilized channels where, as the authors state, 

the user would be very much aware of this decrease when using the 

network. 

Measurement of the behaviour of the ARPA network is the 

subject of [COLE 71]. A measurement collection system is 
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described and implemented, and data accumulated by observing 

normal and artificially generated traffic is analysed. 

J. F. Zeigler [ZEIG 71] has investigated nodal blocking in 

ARPA-like networks with the aid of a two-state Markov process 

model. Results for the fraction of blocked nodes in a network 

are given, and developed for "clumps" of adjacent blocked nodes. 

A further effort in computer networks based on the ALOHA 

system [ABRA 70] is the current examination of satellite 

communications as a means of extending the ARPA network. 

Their use, particularly in broadcast mode, is the subject of 

a series of ARPANET Satellite System Notes. In Note 12 

[ASSN 72] L. Kleinrock and S. S. Llam derive expressions for 

channel efficiency and expected number of retransmissions. 

In the system analysed simultaneous, or overlapping, broad- 

casting is regarded as failure of transmission for both 

messages, which are retransmitted after a stochastic delay. 

A study is currently taking place of methods 

of providing a computer network for a number of Canadian Universities. 

A first stage in the study is described in [DENTE 72A and 72B] 

by J. DeMercado. These reports deal with the synthesis of 

minimum cost networks in which either simultaneous or time- 

shared transmission occurs. 

Some interesting papers on computer networks are to be 

found in the proceedings of the ACM/IEEE Second Symposium on 

Problems in the Optimization of Data Communication Systems, 

October, 1971. The ARPA network is the subject of two papers. 

The first is by G. D. Cole,which is materially similar to 

[COLE 71]1  and the second is by R. E. Kahn and W. R. Crowther 
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on flow control [KAHN 71A]. In this paper the authors describe 

the various types of storage deadlock which can occur in the 

ARPA network and present the precautions which were taken 

against such occurences. 

There are also two papers on the NPL network in the 

proceedings. The first also deals with congestion and proposes 

an "isorithmic" solution [OAVI 71]- That is to say that 

there should be a fixed number of packets in the network at 

all times, whether or not they carry data. The second paper 

describes various levels of protocols to be used in the NPL 

network for computer-to-computer communication, [SCAN 71]- 

A description of Tymshare Inc.'s TYMNET system and its 

history is given in [BEER 71], while reliability in centralized 

networks is the subject of [HANS 71]. Two papers in the 

proceedings deal with distinct loop-type networks. In [HAYE 

71] results are given for mean message delay and other 

characteristics, and confirmed by simulation. In [SPRA 71] 

loops consisting of a central processor and a number of termi-

nals are analysed and parameters obtained for the variation in 

terminal message delay with terminal loop position. Error 

control is the subject of [TRAF 71], which deals with computer-

to-computer links involving transmission via satellite. 

Current developments in the design and operation of 

computer networks are described in a number of papers presented 

at the First International Conference on Computer Communica-

tions, 1972. In [ANSL 72] methods of data transmission used 

by the British Overseas Airways Corporation are surveyed, and in 

[BARBY72] an outline is given of a project for a European 
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network initially linking research establishments in France, 

Italy, Switzerland and the United Kingdom. Methods of 

operation and maintenance in the ARPA network are the subject 

of [MCKE 72]. In this paper the detection and diagnosis of 

network faults by the HOST computer at the Network Control 

Centre are described. The Centre has the function of 

receiving IMP situation reports, determining the actual state 

of the network, and initiating repair activity when appropriate. 

In [WHIT 72] V. Kevin Moore Whitney has compared various 

algorithms which have been used to obtain (heuristically) 

least cost network topologies. The same networks are sub-

mitted for solution by each algorithm and resultant topologies 

compared. The comparisons are shown to be remarkably 

consistent, and demonstrate some advantages of the Steepest 

Ascent Hill Climbing (SAHC) algorithm. 

The operation of a network under conditions of saturation 

is discussed in [DESP 72], and network characteristics for such 

operations are presented. The performance of satellites for 

network data transmission is described in [HUST 72] and figures 

for both performance objectives and measured performance are 

given. Data management in networks is the subject of [FARB 72 

and BOOT 72] in which the problems of safeguarding, accessing 

and updating dispersed data by equally dispersed users are 

discussed. Finally a survey of EUropean network development 

is given in [KIRS 72] which describes current ventures by 

universities, research establishments, post offices, together 

with those of some industrial and commercial concerns. In view 

of the extensive material available, we have added a section on 

computer network design to the bibliography in Appendix I. 
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CHAPTER III 

THEORY 
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3.1 Graphical representation of hardware and software.  

For the sake of descriptive convenience in the material 

below we define the terms team and net as follows: a team is 

defined as a set of interdependent cooperating programs 

executing concurrently in real time to perform some well-

defined function. A net is any collection of hardware modules, 

i.e. processors, memories, peripherals, I/O controllers, 

message switchers, connected by data channels. A net can of 

course be one computer or many, and generally exhibits the 

properties of hardware-sharing, function dispersal, and 

concnrrency of operation. 

A team can be represented as a directed graph,E , whose 

arcs represent the execution of individual sub-programs, and 

whose nodes represent events where the subprograms interact. 

Such interaction may be simultaneous completion or initiation 

of subprograms, or communication of information between two or 

more subprograms. Processing within an arc is considered 

logically independent of that within other arcs. That is to 

say that all interaction between subprograms which is implicit 

in the intrinsic logic of the overall task occurs only at the 

nodes. This does not imply that the arcs themselves are 

purely sequential prOgrams; further, there may be interaction 

between them because of hardware allocation constraints in the 

net. 

The word processor will be used in the following to denote 

any hardware module which performs a transformation and/or 

movement of data. This includes devices such as I/O controllers, 

multiplexors, regenerators, and so on. In this sense a processor 

need not possess the fuL set of functions of a general purpose 
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computer. Consequently not all procesiors will be able to 

execute all programs. A processor P can be regarded as a 

hardware operator on data. Each arc of a team 1 is a subprogram 

S executed by some hardware module of the net on which I 
executes. We define regular execution of a team to be execution 

where hardware allocation only changes at the nodes of 

Running programs to completion is regular execution, hardware 

sharing is not. Transmission of data, without any transformation, 

may be regarded as processing by an identity processor PI. 

Storage of data for a period of time can be regarded as processing 

by the null processor 1. 

We now consider an aspect of modelling which might be 

termed focusing. In constructing any model, a decision must be 

made as to what level of detail the model will reach. The 

situation is analogous to choosing the degree of magnification 

appropriate when using a microscope. Too small a magnification 

may not show the process of interest, too large a magnification 

may make it impossible to view the entire process or obscure 

it with irrelevant detail. For convenience the level of 

detail a model reaches will be called its depth. When the 

depth of a model is chosen, this is in effect a decision to 

treat all objects below that level as black box or quantal 

ones (if not, then there would be a further level of detail 

below the chosen depth, which is a contradiction in terms). 

However this choice is imposed by the model builder; objects 

at the model depth are of course structured in reality. 

Consequently the choice of model depth is in effect a decision 

to ignore (or a cut-off point for) the appropriate fine structure. 
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In terms of the foregoing, we suggest that graphical 

representation of a team can be used for modelling computer 

activity at any depth from the execution of a single machine 

instruction (which can be regarded as a team of microprograms) 

to considering entire computers as quantal objects. If we have 

a graph E.. representing some task performed by a team, we are 

implicitly deciding to treat the members of the team (arcs of 

I ) as black box processes, since we stipulate that logical 

interaction between the members occurs only at nodes of . 

That is to say, we are interested in the change in system state 

caused by the execution of an arc, but not concerned with the 

interactions occurring within the execution of an arc. 

We can of course include this level of interaction if 

desired, by replacing each arc S of E by a subgraph d of 

processes, at the next (convenient) level of detail down, which 

perform the function previously represented by the single arc S. 

We use the word subgraph here to mean a graph representing the 

structure of a single arc of another graph (at a higher level) 

rather than in the normal graph theoretic meaning of a subset 

of graph elements. 

It may be that certain arcs of 	are of critical interest. 

In this case a more detailed picture may be obtained by 

replacing only the arcs concerned by subgraphs, while leaving 

the rest of E as before. Thus the graphical representation is 

recursive in the sense that any arc may be replaced by a 

subgraph. If the graph / and its attributes are considered as 

a named data structure, then the name of an arc of E may be an 

element, or the name of a further data structure, i.e. a 

subgraph. If we envisage a procedure A performing analysis, 
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or other processing, of / then an individual arc of E may 

undergo the same analysis by recursive call to A, if the structure 

of the appropriate subgraph is available. 

The progress of a team towards completion can be regarded 

as the execution of arcs of E by processors allotted to them 

by a control algorithm. The time taken to execute an arc will 

depend on the computing power of the allotted hardware relative 

to the subtask represented by the arc, and also on whether the 

execution is regular. Changing the control algorithm is the 

equivalent of varying the allocation strategy of the model, 

but not its structure. Finally, by representation as a team, 

a control algorithm is itself amenable to the same modelling. 

Normal Critical Path concepts apply here, in determining 

overall execution time for a team, and in detection of a 

critical path. A cost function can be associated with the net 

resources, such as processors and memories, allotted to arcs. 

Slack time represents the time between an arc S completing 

execution, and the interaction of its results with the rest of 

the team. This is effectively storage of such results until 

all arcs which interact with S at its terminal node have completed. 

Thus slack time has an associated cost for information storage. 

Overall Completion time for E can be decreased by allocation 

of more powerful processors on critical arcs. This clearly 

raises the cost unless overhead and idle time created by such 

action are nonexistent. 

We now develope the idea of hardware/software correspondence. 

This is based on the following premise: any function that can be 

done by software can also be done by hardware, and vice versa. 
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We add the proviso that obviously there must always be some 

quantal level of hardware present, else the function would never 

be physically executed. This is equivalent to saying that all 

computing activity is performed by a combination of hardware 

and software, and that the partition of the task between them 

is an arbitrary one; further, that this partitioning can be 

made at any level or part of the function, by building 

appropriate hardware. An extreme case is the performance of 

some task entirely by special purpose hardware, which is 

equivalent to reducing the software element to a single 

instruction. We suggest that the distinction between hardware 

and software is an artificial and fluid one. Consequently, 

in developing a model of computing activity we are concerned 

that it should take into account various possible hardware/ 

software decompositions of the activity. 

We now propose a graphical representation of a net, and 

consider under what circumstances it may be regarded as the 

dual of the team representation outlined above. A graph 11 

will be considered a model of a net in the following way. 

Each node of 1r will correspond to a storage element of the net. 

Each arc will represent a possible data flow through a 

processor P between such storage elements. We make the remark 

that a processor P may be able to connect itself across more 

than one pair of nodes. Thus there will be an arc in It for 
every possible connection that P can make between a pair of 

memory elements, but at any instant there will be a flow on 

only one of these arcs. If P is PI, the identity processor, 

then no transformation on the data flow will occur. 
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In the graph 1T traversal of an arc P may be regarded as 
the execution of some program by the processor P, taking input 

data and status from the initial node (memory element) and 

producing output data and status at the terminal node. Regular 

execution on an arc P of the graph if occurs if the program 
being executed by P remains attached to the arc for the period 

of time necessary for it to run to completion. For example 

paging is not regular execution. The previous remarks on model 

depth and the recursive properties of graphical representation 

apply equally to the graph IT, except that in this case a 
subgraph p represents, not subprograms, but sub-processors; 

the subgraph p must have the functional capability previously 

represented by the arc P. 

We can regard the graph 1r as operating in some environ-

ment from which programs are selected, attached to arcs at the 

initial node, and detached later at the terminal node, then to 

return to the environment which acts as a source and sink. 

A team operates in an analogous fashion except that in the case 

of a team the environment is a source and sink of processors. 

We see that in the case of a team the environment provides net 

elements, and in the case of a net it provides team elements. 

The process of attachment and detachment may be regarded as a 

control algorithm whose properties are symmetric between these 

two activities. In both cases arc traversal represents the 

execution of some stage of an overall task. We now define a 

particular graph Tr in relation to a team represented by a 

graph r . In the graph T  there is an arc P for each member 
(arc S) of the team, which represents the processor drawn from 
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the environment of / to execute that member. 

The arc P has as its initial node a memory element 

containing all data and status information needed by the member 

S to commence execution. The terminal node of the arc P is 

a memory element which will contain all output and status in-

formation produced by the team member S, after it has completed 

execution. Under these conditions it is quite clear that the 

graphs 11 and E are isomorphic. The graph IT
T 
 which exactly 

corresponds to the hardware needs of the team 	is its hardware 

dual. A team". which exactly uses the net iT is the software 

dual of that net. The isomorphic graphs 1r and E may be 

considered as a mapping of a computing function between two 

spaces which could be called hardware space and software space. 

At any given instant the state of the computing activity 

represented by IT and 	can be characterized as follows. Any 

arc in either graph which has a member of its environment 

attached to it is termed active. The point on the active arc 

S of 	which has been reached by the processor P in its 

traversal, at the instant under consideration, is called the 

contact point of the arc P on S. The location of the contact 

point is an indication of how much of the process represented 

by arcs P and S has been completed. The point on the active arc 

P of It reached by S is called the contact point of S on P. 

Its location represents the amount of the processor's allocated 

resources which have been used by the program S. 

At any moment the only interaction taking place between 

hardware and software is at the contact points of the graphs 2: 
and 11-  
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The remainders of the graphs are not in contact. The state of 

the computing activity is determined by the set of contact points. 

The performance of some task can be regarded as a traversal of 

both graphs by a set of contact points. This set can be thought 

of as a cut on the graphs, with past activity on one side and 

future activity on the other. Clearly not all ofir and I. need 
to coexist at any moment, since all that is necessary for 

completion of the computing process is the existence of the 

parts of the graphs immediately required by the cut. 
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3.2 Recursive structure of SIGMA and PI graphs.  

This section provides a recursive description of the Tr and 

I graphs described above. Two types of recursion arise in 

connection with increasing the information stored in such 

graphs. The first is that the addition of nodes and arcs to an 

existing graph, where the nodes and arcs are of the same type 

as those already there, produces a new graph. The second is 

the replacement of an arc by a subgraph. The nodes and arcs 

of the subgraph need not have the same properties as those of 

the parent graph. This fact is indicated in the representation 

by entering the subgraph with a special type of arc name a 

down-arc, and leaving by an arc named an up-arc. The subgraph 

has no other topological connection with its parent, and is 

said to be one level of detail deeper, (down level and up level 

will be used interchangeably for down-arc and up-arc). The 

nodes at each end of a down or up-arc can be regarded as 

different views of the same event or information. In fact up-

arc and down-arc are analogous to the block delimiters begin  

and end in ALGOL. 

The highest level of the graph is level one. This level 

is regarded as being entered by a down-arc from level zero, which 

is the universe in which the system being represented is embedded. 

This may be shown as a single node at level zero. An example 

of how a graph might appear viewed at levels zero through 

three is shown in Fig. 3-4. In fact the levels can be regarded 

as horizontal planes containing graphs with a down or up-arc 

being a vertical line connecting superposed nodes in adjacent 

planes. This is shown in Fig. 3-5. 
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Level n + 1 holds the fine structure of arc (a,b) 

Fig. -5-5 Planar representation of fine structure.  

62 



These types of graphs can be represented as list 

structures inside a computer, each node being a variable length 

table containing the data attributes of the node, followed by 

a variable number of pointers to other nodes (these are of 

course the arcs), each pointer being followed by the data 

attributes of the arc. Fine structure can be inserted or 

deleted by linking or delinking sublists at the appropriate 

level (up and down level pointers would be recognizably,tagged). 

An example is shown in Fig. 3-6. 

In a L graph there can be more than one down-arc 

pointing to the initial node of a subgraph, and corresponding 

to each of these, an up-arc to the appropriate terminal node 

in the higher level graph- In this situation the subgraph 

corresponds to a procedure or subroutine, and each down-arc- 

up-arc pair corresponds to a call on the procedure. Clearly 

when such a subgraph is activated during graph traversal, the 

controlling algorithm must retain records of the activations 

in order to return the cut to he upper level via the correct 

up-arc, as is indeed the case with a real procedure or 

subroutine call. 

Furthermore if an arc S of F invokes I itself as the subgraph 

of S we have a recursive situation since the activation will 

continue down through an indefinite number of levels until an 

escape path through E , not including S, is activated. Such 
a / graph can represent a procedure which recursively calls 

itself. In this case the control algorithm will be required 

to produce and order the dynamically generated down-arcs and 

uparcs. This is shown in Fig. 3-7. 
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A recursive definition of these types of graphs is provided 

below. A slightly modified Backus Naur form has been used, 

which uses set operators and substitutes a connection operator 

for the sequencing implicit in expressions such as <a><b>. 

<deep graph>::=<down-arc>.<process graph>.<up-arc> 

<process graph>::=<initial node>•<<edge>set>-<graph>•<<edge>set> 

-<terminal node>l<initial node>-<edge> 

-<terminal node>l<node> 

<graph> : : =<<node> set> •<<e dge> set>-<graph> I<<node> set> 

<edge>::=<deep graph>l<arc> 

<<element>set>::=<<element>set>U<element>l<element> 

<U>::=<set union operator> 

<->::=<Many-to-many connection operator> 
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3.3 Execution of a process by a processor. 

This section developes some functions which we suggest 

provide a description of the processing of a single element 

S of a team r . We shall presuppose the intuitive idea of 
computing power, and some measure of progress through a 

program. Such a measure of progress may be thought of as a 

quasi-distance s. 

We approach the subject from the point of view of efficiency. 

Efficient use of a piece of hardware over a period of time, 

is the continuous use, over that period, of all externally 

visible functions of the hardware. For example, if a 

processor has the ability to perform twenty types of 

operations and is used by a program which involves only five, 

then three quarters of the hardware is idle while the program 

is executing. Inefficiency is the execution of a program by 

hardware of a greater computing power than that required by 

the program. 

We now define an ideal processor Po  for a given program 

S. P
0 
 has the property that its hardware varies in such a way 

that at any given point in the program, Po  consists of only 

that hardware needed for the program to advance at that point. 

This is equivalent to saying that the computing power of Po  

varies along the arc S in such a way that Po  is completely 

efficient at all states s of the arc S (by stage we mean the 

quasi-distance s). 

We define the computing power of Po  on S to be a function 

p0  (si
ll), not necessarily scalar, at any stage s; u is a 

parameter which determines the relative speed of the processor 
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concerned. Thus processors P
1
(u) and P

2
(2u) are identical in 

structure but all components of P
2 

work twice as fast as those 

of P
1
. Suppose P

0 
 operates for a small time St at stage s 

and advances through S by 8s. We then define the amount of 

computation done as 

6w = po(s,u) St 

and the computation density as 

i(s) = iSw/c5s = p0(s,u) At/ ds 

The 6 notation here does not indicate the infinitesimals of 

calculus, but very small quantum jumps, which may be regarded 

as a step-wise approximation to such infinitesimals. The 

reason for this is that we are considering digital computers 

with discrete machine states. Because of their binary structure, 

transitions in such machines will have a quantal nature. 

Consequently the functions we shall deal with map onto integer, 

rather than real, spaces, and the processes involved may be 

regarded as atomic, or discrete, in their behaviour. In what 

follows the integration sign will be regarded as the analog 

in such spaces of the real integration operator. 

We can now define the time taken by Po  to execute S as 

j(s) 	 To  _ 	
ds 

,p0
(s,u) 

and the total computation done on the arc S as 

W = j(s)ds = p N(ft ds 0 \s, up--- ds 
S  a 	a 

We now suggest that any processor P other than Po  will have a 
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p-function, p(s,u) which describes the computing power of P at 

stage s of the program S. This p-function is an expression of 

the hardware present which can be applied to the execution of 

S at the stage s. Hardware which cannot be used at this stage 

cannot contribute to the instantanebus computing power of P at 

s on S. We can now say that if, 

p(s,u) < p0(s,u) 
	

P cannot execute at s, 

P(slu) = p0(s,u) 
	

P executes completely efficiently, 

P(siu) > p0(s,u) 
	

P executes faster than P
0 
 but not efficiently. 

The last inequality indicates faster execution by P of stage s, 

else we would have extra hardware in operation producing no 

detectable differences from the behaviour of P0. In the latter 

situation we cannot say that P has greater computing power than 

P0. Furthermore, if P executes stage s faster than P0, its 

hardware must differ from that of P
0 
 and cannot therefore be 

efficient in the way defined above. In general, if p(s,u).)po(s,u) 

for s E (alb), then the time T for P to execute S will be less 

than T0, and P will execute inefficiently. We can see that for 

the class of processors with the same u, no processor can execute 

S more slowly than P0. A program is strictly sequential if T=To  

for all P such that p(s,u) > p0(s,u) on s E (alb). 

For the time being, we shall define the range r(p,$) of a 

processor P at stage s as the distance through which P can advance 

along S, without the intervention of some controlling algorithm. 

Since p0(s,u) defines the minimum power to progress along S it 

also defines the minimum or quantal range r0(s). If the time 

taken by Po  to make the quantal transition from s to s + r0(s) 

is
0
(u), we can write, 

j(s) r0(s) = p0(s,u) 110(u) 
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If s = s
0 
 and the succeeding quantal stages are s

1, s22  s3, 

and so on, then we can picture the range of a processor Pi  as 

in the Fig. 3-9. The distance between points si  and si+1  

represents the time 1 0  (s.,s.+1  ) for P0  to advance from stage 1  

s. to stage s. . The distance from point s. to s. represents 
1+1 	 1 

the  
j 

tos.l to advance to that stage. For example, the processor Pi, 

shown above, has a range r(p1,s0) = (so, 	 and and takes a time 

)11(s0,s2) to reach s2  from so. Since P1  is more powerful than P0, 

11(s0,s2) <Y10(s0,61) 	0(s1ls2) 

We can envisage a whole series of processors, or 'power levels', 

P1, P2, P3, . . . which correspond to the quantal stages sl, 52, 

s31  . . . The relations between them can be expressed as follows: 

r(po,$) = 

r(plis) = 

r(p2,$) = 

(solsi) 

(s0ls2) 

(s0,s3) 

o( so s ) 

II ( so s 2 ) 	o(  ' s2) 	rl o ( so ' s ) 

2 ( so ' s3)  < 110 621'3)  + 11 ( s0, s2) 

until, 

r(pi,$) = (s01  Is. 1 1+ ) ° 11.1(s0  Is. ) < 110(si,si+1)  + 11i-1(601  +1 

Each processor P. 	is more powerful thanP., but less 
1+1 	1 

efficient over its range. When we say that Pi  > p0  we mean that 

thereissomehardwareofP.which is not needed immediately at 1 

s for the next quantal stage, but that will allow P to reach 

s+r(Pi,$) in a timelqi 
such that, 

S-Fr(p1,6) 

< 10 ds 
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s+r(p , s) j  

J 
If 	 . = 

fs 
)10 ds for all j < 1_, 

then we say that 'S is strictly sequential from s over the range 

r(pils). 

TheextrahardwarewhichallowsP
i 
 toreachsi-r(P

i
„s ) 

sooner than P0, will be termed redundant hardware. The redundancy 

of P. at s is 

0(. 1(s) = pi(s,u) 

177171)  

IfP.PossesseshardwareextratothatofPi,r(p.J
,$) = r(p.1,$)  

and ill.=n—thentheextrahardwareinP.is termed superfluous. 1j 	'1 	 J 

For a processor P with range r at s we can write, 

s+r 
j(s) ds = w(sis+r) < p(s,u) 11(s,s+r) 

equality occurring only if P is Po. The loss L is a Measure of 

the inefficiency of P over the range r which gives rise to the 

above inequality. 

s+r 
\ p(siu) - po(s.u) at  

s+r 

= 	((.(s) - 1) at ;-7 ds 

The expressions derived above represent an attempt to 

characterize the traversal of an arc S by a processor P. The 

concept of function dispersal is automatically dealt with, since 

if the hardware of P is oriented towards a function S then p(s,u) 

will tend to p0(s,u). How closely p(s,u) approaches p0(s,u) may 

be regarded as a measure of function dispersal. 

L = 
as ds 

p0(s,u) 
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We use these expressions to suggest that there are two 

distinct measures which characterize processor usage during 

arc execution. The first of these we call utilization. 

This is the proportion of the processor which takes part in 

the arc execution; that is, the proportion which is not 

superfluous. Naturally such a measure implies some means of 

quantifying the proportion, and we shall pursue this topic 

in the next section. 

The second measure we propose to call efficiency. 

At any point s on the arc, or any instant in time, the efficiency 

is the proportion of the utilization which would be required 

by an ideal processor executing at that point; that is, the 

efficiency is the inverse of the redundancy. We can extend 

these definitions to cover sections or periods of arc 

execution. In this case the utilization consists of all 

elements of the processor required by the section; the 

efficiency will be the distance or time integral of the 

proportion of this utilization which is in use. 

Multi-programming, or hardware sharing, can also be 

represented, since from the point of view of an arc S, 

a period when its processor is executing on some other arc may 

be regarded as having = 0 for that time. In fact pure storage 

and/or waiting time can be represented by dummy arcs with p = 0 

for all s. Such an arc may nevertheless require memory elements 

and hence still represents a use of net facilities. 

In its most general form an arc is a store (M) to store 

(N) transfer via a processor (P). Conventional execution can be 

shown as an arc with 1,41=N and P > P0; - storage, as an arc with 
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MEE and P = 0; and data transfer as an arc with MAN and 

P = P
I1  the rate of transmission being purely a function of u. 
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3.4 Allocation of a processor to a process.  

This section deals with the problem of allocating one of 

a number of processors to a software task (process), and the 

derivation of some measures by which such allocations can be 

judged. The situation under consideration is the behaviour of 

a processor P when allocated to execute the software task 

represented by an arc S of a team graph E. 

The execution of any software task is regarded as a 

chain of stages. Each stage is such that the processor can 

execute it as a single indivisible operation. That is to say 

that the processor can provide a hardware realization of the 

stages so that once the stage is initiated it will achieve its 

terminal state without further intervention. On completion of 

a stage the processor must be reconfigured to become a realization 

of the next stage. Thus the execution of an arc S will be a 

sequence of hardware realizations of stages of S, with each 

stage requiring a reconfiguration of P. The part of P 

responsible for the realization of software stages, i.e. 

reconfiguration, will be called the controller. (See Fig. 3-10) 

It is clear that the division of S into stages will depend 

on P. The arc S is a description of a task to be performed, 

without reference to the processor allocated to it, i.e. machine 

independent. S * P is the division of S into stages realizable 

by P, and is therefore machine dependent. The division will 

obviously be different for different processors, with only the 

initial and terminal nodes (a and b) remaining the same. This 

is the mechanism by which allocation of P to S makes S machine 

dependent. 

76 



Single arc of 5: representing a software task. 

S 
a 	 0b 

Chain of stages representing the realization of the task by P. 

S 4f- P 
a 

stage 	reconfiguration 

Fig. 3-10 Division of S when P is allocated. 
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It was stated earlier that a stage is executed as a single 

indivisible operation. What is meant here is that this is the 

case as long as we are working at the level of the subgraph 

of which S is an arc. It is not meant to deny the existence 

of a fine structure for S, which could be examined by the insertion 

of subgraphs at a lower level of detail. 

The controller mentioned above may be regarded as a 

hardware program, whose input data is an instruction stream 

which acts on the rest of the processor as if it were a data 

structure. The controller may in turn be regarded as a 

realization of the manufactured processor, initiated by the 

ON/OFF switch of the computer. Reconfiguration of the controller 

(equivalent to changing the meaning of the instruction stream) 

is not general, but is possible on some machines where it is 

called micro-programming, and usually requires manual intervention. 

Micro-programming under program control would clearly 

require another level of hardware controlling the reconfiguration 

of the controller. This level would need its own instructions, 

which could possibly be provided by the expedient of an escape 

code in the insturction stream. (See Fig. 3-11) 

Whenever it is possible to allocate one of a group of 

processors to a process, it is desirable to make the "best" 

choice. The agent of the choice may be an operating system, 

systems analyst, or any other entity controlling the execution 

of software tasks. The criteria by which the goodness of an 

allocation is judged may vary from situation to situation, 

and in relative importance. For the purposes of investigating 

team execution on a net, an attempt is made below to develop 

criteria and procedures for evaluating processor allocations. 
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We do not claim that these are the only or the best possible 

criteria and procedures, but that they represent an interim 

solution, which allows the main investigation to go forward. 

We will characterize the processing requirements of 

arcs in a subgraph ar by a number n (dr) of realizable software 

functions. The number and nature of these functions will be 

arbitrary except that they will be constant over 	and 

sufficient (from the point of view of the entity controlling 

the allocation) to characterize all the software tasks which 

occur in(r. 

Any processor P which is to be evaluated as a potential 

executioner of S will have associated with it data on its 

characteristics with respect to each of the software functions 

used in the description of or. (See Fig. 3-12) 

The behaviour of P in executing a particular function will 

be characterized by the measures listed in Fig. 3-13. 

In addition two derived measures from the previous section 

will be used. These are the efficiency (Ef) and utilization (Ut). 

In terms of the measures defined they will be taken as 

B.  

Ef = 11 t.
j/T.B. 

j=1 

and, 

Ut = B./Bp 
 

We will not make use of Measures 3), 5), 7) in our initial allocation 

algorithm. It is remarked however that the time taken for a 

transfer of data between two sets of store cells will be an 

increasing function of the complexity of the gating pattern of 
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1) Tine (Ti) for P to execute the i th function. The unit of 

time will be taken as the time for P to transmit data between 

two store cells, when not limited by their speeds. This 

corresponds to the U parameter of the previous section. 

2) The total number of store cells in P which can be used 

during data transformation (B ). This is a constant for 

the processor. 

3) The total number of data paths in P which can be used 

during data transformation OD ). This is a constant for 

the processor. 

4) The number of store cells required to realize the function (Bi). 

5) The number of data paths required to realize the function (P ). 

6) The time t. that a store cell j is in use during the realization 

of the function. 

7) The time tj  that a data path j is in use during the realization 

of the function. 

8) The cost of the processor P per unit of time (C p). 

Fig. 3-13 Measures cbaracterizin function execution. 
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the pattern of the transfer. Thus the more complex the 

transformation occuring during transfer, the longer the sets of 

store cells will be in use. Consequently such complexity will 

affect the value of t. to some extent. This perturbation of the 

t will be regarded as a sufficient interim measure. 

The allocation of a processor P to an arc S of a subgraph 

described in terms of n (cr) software functions will be 

characterized as follows. Suppose that the i th function must 

be executed 01  . times. Then the total time to execute the arc is 

T(S) .L 
i=1 

and the total cost is C T(S). The average efficiency is 

B. 
n  

1: Ef.0.T.r Ø.T. = y-  7-  (t.0./13) 	0.T. 3.1;1 	J 	1 	. 
1.1 

From the definition of utilization we can say that the 

utilization for complete arc execution will be the union of the 

function utilizations. By this we mean that if a component of 

the processor takes part in the execution of a function it there-

fore takes part in the execution of the arc. Consequently we say 

arc utilization = B(S)/Bp, where B(S) is U B. 
i-1 

i 
=1 

As this last measure is somewhat unwieldy we may use Max (Bi) 

or Average (Bi) at times. 

These measures will be calculated by a matching procedure. 

This will check that the processor P can in fact perform the 

task S, i.e. that for all functions for which (6 is non-zero, 
1 

Ti  and B. exist. In the case where simultaneous or overlapping 

demands for a function may be made by a process (or processes) 
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from P, a version of the matching procedure could be provided 

which would simulate the execution of the stages of S. The 

order of execution would be a function of a statistical 

distribution to be specified by parameters in the procedure 

call. This version would be used to derive measures similar 

to the above in hardware sharing situations. The choice of a 

processor can now be made using the following criteria:- 

1) that P can in fact execute S 

2) that T(S) satisfies any time constraint on S 

3) that T(S) is minimized 

4) that average efficiency be maximized 

5) that arc utilization be maximized 

6) that a cost function involving the above and also the total 

cost be minimized. 
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3.5 The hardware allocation roblem in team execution.  

This section deals with the manner in which hardware 

can. be allocated to the various elements of a team, 

allowing it to progress to completion. We make the preliminary 

remark that there is no loss of generality in considering one 

team. If there are several teams within the same computing 

system, there is then an implicit graph at a level above, whose 

elements are the individual teams. Occurrence within the same 

net implies an interaction, if not a logical one then at least 

one of hardware requirement, between the several teams. Such 

an interaction and its associated controlling mechanism will 

appear as a process which can be described by the /1-graph 

representation, and has the original teams as components, which 

in turn will be sub-levels of this graph. Analysis of this 

graph would then include analysis of the individual teams 

implicitly. 

We now define the cut zone to be the set of arcs of E on 

which there are contact points, together with their initial and 

terminal nodes. We also add an extra chain to the graph named 

the idle path. This is essentially a dummy process which 

requires all unallocated hardware. We can picture the 

horizontal direction within /: as a time axis, in which case 

progress occurs as the cut moves from left to right across L.. 

We have stipulated that all reconfiguration (reallocation of 

hardware to software) takes place only at a node, and 

consequently there will be a node on the idle path for, and 

vertically below, every node in t. There will be a contact 

point on the idle path lying between the nodes corresponding 
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to the most recent reconfiguration and the next one. This 

represents execution of the null program by all unused hardware 

of the net. Thus we can see that all hardware of the net is 

allocated in the cut zone, and conversely that an inventory of 

hardware across the zone will yield a sum equal to the total 

resources of the net, and will be constant in time. 

The problem we wish to solve is how we arrived at an 

existing allocation in the cut zone, and how the cut will advance. 

The state of the cut zone is a direct result of the application 

of some allocation procedure at the preceding nodes of E . 
Thus a clear subproblem is how the state of the cut zone will 

alter as the cut crosses a node, and an allocation procedure K 

is applied. Analysis of successive applications of K at all the 

nodes in turn as the cut progresses through them, should provide 

a prediction of how the team r will execute under K with 

constraints 1T (the nature of the available hardware, i.e. the 

net 7r, is a parameter for K. 

The following general comments may be made about K. The 

aim of the allocation procedure is to execute the team at least 

cost within some time constraints. These constraints may be 

the execution of the team as a whole within some time T, or the 

requirement that the cut reach certain nodes by certain times 

T.. We assume that there will be a cost function associated 

with the elements of Tr , which may be a function of economic 

cost, or of computing power (the p-functions mentioned 

previously). It is highly probably that K will have to deal with 

a priority structure when making its hardware allocations, 

since priority demands are not generally equivalent to completion 
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constraints. For example, requiring an arc to be executed as 

soon as possible is not a time constraint, and must be expressed 

in terms of a priority. The question also arises as to the 

distance ahead in ): over which K will attempt to optimize 

its allocation. The minimal case is to consider only the cut 

zone, while at the other end of the spectrum an attempt can be 

made to optimize over a complete subgraph. This distance ahead 

will be termed the horizon of K. For reasons which will appear 

later, some of the data attributes or structure of E within 

the horizon may not be known at the time that K makes an 

allocation. Thus there must be facilities in K to perform a 

partial optimization with whatever data is available. In 

passing it may be noted that for a simple enumerative optimizing 

technique the computation performed by K goes up exponentially 

with the distance of the horizon. 

There are two situations in which we can expect to use K. 

The first is as a part of the controlling mechanism of a real 

computer system. The second is the analysis of some given 

graph to determine its behaviour when executed on IT under K. 

The difference between these two situations are significant 

enough to warrant mention. In predictive use the potentially 

available horizon of K will probably be large, as data will 

be given for the whole graph at the beginning of the analysis. 

In control use there is likely to be much less data, a smaller 

horizon, and the description of the part of L within the 

horizon is likely to be incomplete. If the state of the cut 

zone proves unsatisfactory on some application of K, e.g. 

failure to meet some constraint becomes inevitable, then in 
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predictive use K can notify the analysis procedure A which 

may back trackithroughE , reparameterizing and restructuring 

as far as necessary to correct the problem. This action is of 

course impossible in control use, and some means of escape 

must be provided when there is no allocation which will 

produce further progress through,: . Furthermore, in control 

use /1 is being continuously created, both by input to the real 

system, and by the results of current processing. 

We now consider what takes place as the cut crosses node K. 

Firstly it is necessary to deal with the memory associated with 

node k. This can be characterized by an n x m matrix, where 

m is the number of arcs (i,k) entering the node, and n is the 

number of arcs (k,j) leaving. We then have P .. as the amount 
lj 

of memory of node k containing data produced by (i,k) and used 

by (k,j). 

The total memory of node k used by arc (k,j) will be written 

as U 	1
k . T1r 	ilk  

=1 ri ij. Consequently an arc (k,j) will use a N j 

processor P
kj for a time Tkj and will need an amount of memory 

for this period equal to 14  j 	We shall leave aside the 

question of scratch memory for the time being, except to comment 

that it will be considered together with the allocation of Pk  .$ J 

rather than t.) j  . and ki
j 
k. This is appropriate, since firstly 1  

scratch memory may be reasonably considered as an extension of 

a processor, and secondly because the amount needed tends to 

vary with the processor allocated rather than the initial and 

final data sets. 

In a CPM type representation nodes represent a strict 

logical dependence, i.e. all OUTarcs (outward arcs) require 
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m = 3 

Node table k. 
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Fig. 3-15 Memory matrix for a node k.  
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all INarcs (inward arcs). The case where some OUTarcs require only 

certain of the INarcs is dealt with by the introduction of dummy arcs 

which specify logical dependence. An example is shown in Fig. 3-16. 

Here, e requires al  b and c, but d requires only a and b, so that 

a dummy arc (i,j) is introduced showing the logical relationship. 

This sort of treatment is equivalent to specifying pij  > 0 for 

all i,j. For Z,-graphs we shall not make this restriction and 

will deal with logical dependence by means of the node table. 

If (k,j) is independent of (i,k) this will be indicated by 

writing P i j = O. 

When the cut crosses node k all processors Pik  become 

available; all initial nodes of the arcs (i,k) leave the cut 

zone, all final nodes of the arcs (k,j) enter it; processors 

Pki  and memories r j . are allocated; and all memories P
k  become 

available. 

It is possible that the arcs (i,k) are not synchronized 

to end at the same time. Furthermore this may remain unknown 

until as late as the allocation of the last arc (i,k). Such 

situations will be dealt with by the introduction of a dummy 

arc and node for all but the last process/processes to end. 

These represent storage (P = 0) of output data sets until all 

INarcs complete. An example is shown in Fig. 3-16. Clearly 

NLil uk uk 
ik - ii - Vland Pik  = 

For the storage arc (1,k) we have 	that aFtii, that is to 

say that they denote the same piece of physical memory. The 

dummy node 1 allows the freeing of Pik and any scratch memory 

associated with it, and also of flk, at time t1 
instead of tk. 

The introduction of such a storage arc may be done as part of 
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	0 

CPM logical dependency 

Dummy arc handling early completion of (i,k) 

Dummy arc handling delay in allocating (k,j) 

Fig. 3-16 Use of dummy arcs. 
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some analysis, or by K itself as part of its:optimizing 

technique. Depending on cost function it may or may not be 

desirable to synchronize completion times of the INarcs (ilk). 

For a particular application of K it will not in general be 

possible to calculate the completion times of all nodes in 

the cut zone. A sufficient, though not a necessary, condition 

for the completion time of a given node to be calculable 

is that the cut has passed all its predecessor nodes. 

A similar procedure to the above can be followed if K 

cannot find a processor to allocate to some arc (k,j). This 

is to create a dummy node between k and j scheduled for the 

time of the next node on the idle path, and a dummy arc 

representing storage of the input data set until that time. Again 

1 	1 
Pkl = 0 and Pki  = t/j  = til  and Ks. Nl 

When we consider several levels within the E-graph the 

analysis becomes more complex. Firstly to reconfigure/ 

reallocate at a level up from the one we are considering means 

scanning back to the last down-level and forward to the 

corresponding up-level, and reallocating for the subgraph. The 

allocated resource itself has a described fine structure so 

that we still have a non-trivial problem at the sublevel. 

Traversal of a contact point at level n is the equivalent 

of traversal of cr. by a cut, and the allocation analysis, at 

level n + 1. 

There is clearly a larger overhead in reconfiguring at 

the upper level, since this is not just a reallocation on the 

Cr cut at level n + 1, but a change of total resource across 

it by reallocation at level n, and possible introduction of a 

93 



level n problem. 

levels n and n + 1. 

 

reallocation 

at level n. 

Fig. 5-17 Reallocation on more than one level. 
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dummy node at that level to allow this. Moreover a wider area 

of E is now affected. 

A general scheme of predictive analysis might be as follows. 

A graph analysis algorithm A applies K to successive nodes of 

, and accumulates the resulting information concerning 

completion times, loss, redundancy, superfluity, efficiency, 

and so on, throughout E. This will then provide a picture 

of how /: will execute on ir under K. Improvement of such 

execution may be possible by modification of K, alteration of 

the net 17% or restructuring of /I. The necessary changes will 

be determined by A after, and in some cases during, its pass 

through E. The process can then be repeated until some desired 

characteristic is achieved. An important procedure will be the 

arc analysis procedure S, which evaluates the execution of a 

single arc with a particular processor. This arc procedure 

may be regarded as the escape condition (in a recursive sense) 

of A. Consequently for a subgraph cr inserted in place of 

an arc (al b), K will call S for each processor allocation it 

considers with parameters (al b). S(a,b) will then find a 

down-level indication and consequently call A(cr). Only when 

A(6) returns, can S(al b) complete and A(E) progress. 

Overhead at a node may be regarded as the amount of com- 

putation performed by K at that node. Consequently overhead 

will exist at all levels of E. In the case described above 

there will be two distinct overheads associated with node a. 

At the upper level, that of allOcating resources to the OUTarcs 

of a, and at the sublevel, that of all the node allocations (calls 

to K) within 0 (by A( 6)). At the highest level the allocation 

procedure becomes the attachment of E to some net Inr. 
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3.6 Properties of nodes in SIGMA and PI graphs.  

A way of matching the arcs of team and net graphs has been 

described above. This matching forms part of the overall 

process of binding a 11- graph and a Tr-graph. Binding 

establishes a correspondence between datasets and stores, 

processes and processors, in order to execute the function 

described as a E-graph. 

A matrix representation of dataset requirements and 

repartitioning has been put forward. It is clear that each arc 

has an initial and terminal dataset. The initial dataset may 

be comprised of data from several sources, and the final one 

may supply data to several succeeding arcs. The logical 

dependence of one arc on another is equivalent to one arc 

requiring at least a part of the data produced by another as 

a part of its own initial dataset. 

It is this logical dependence and interaction which a 

node represents, and which determines the arcs entering and 

leaving that node. With the above modelling it is therefore 

a truism to state that an arc has only one initial and only 

one final dataset, since by definition they contain all data 

required and produced by the arc. The initial dataset of 

an _ OUTarc is the product of repartitioning the datasets of 

at least some of the INarcs, and once created can be 

considered as a unit. A consequence of the repartitioning 

requirement is that the datasets must reside in the same 

storage medium. Otherwise repartition produces an initial 

dataset comprised of data on several storage media which 

conflicts with the model of arc execution developed so far. 
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This leads us to specify that an arc has only one 

terminal and one initial dataset, and that each dataset 

resides in only one store. In fact no loss of generality 

is involved since a process which uses data from more than 

one store can always be represented as a E-graph of arcs 

for which the above is true. 

The assumption that interaction between processes takes 

place only at a node is equivalent to the independence of 

arcs. This independence leads us to require that the data-

sets of an arc are disjoint from those of other arcs. For 

example, if the terminal datasets of two arcs are not 

disjoint then the values of the data are not determined, 

since one arc may overwrite or alter a datum produced by the 

other. Further if the initial and terminal datasets are 

bound to the same area of physical storage the indeterminacy 

extends to initial datasets. This problem has been dealt 

with in real computer systems by an interlock on store areas 

preventing simultaneous writing by several processors. Read-

only storage is of course not subject to a logical limitation 

of this type. Dijkstra provides a software version of this 

interlock by the use of P and V operators. Any computation 

where two or more processes ostensibly access the same dataset 

must in fact contain some interlock to ensure determinacy of 

the results. This can be modelled with a E-graph adhering 

to the criteria developed above. 

It may be briefly mentioned that all data produced by a 

process is used in repartitioning. Data which was not used 

would be lost to the task in so far as no process would use 
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OUTARCS (kij) j = 1, n n = 5 

INARCS 
(i,k) 

i = 1, m 

m 4 

6 18 17 22 35 39 

10 85o 200 4o0 100 700 

12 600 400 400 

31 900 500 

24 300 200 400 

REP; [1, 0] = nodenumber of i th inarc's initial node. 

REP-  [0, j] = nodenumber of j th Outarc's terminal node. 

REP [O, 0] may be used to hold the nodenumber of this node. 

j] amount of data produced by i th inarc which is 

used by j th outarc. 

Fig. 3-18 Repartition matrix REP. of a node.  
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it, the execution of the task would not be affected, and the 

corresponding storage would be discarded after repartition. 

Thus there would be no point in producing it. This is a way 

of saying that the row sum of the repartition matrix is equal 

to the size of the dataset produced by the INarc corresponding 

to that row. 

We can now describe the way in which binding occurs. 

We have a task whose cut has reached a node N and an OUTarc S 

whose terminal node is N'. The node N is attached to a store 

M in a Tr-graph. The OUTarcs of M represent processors P 

which may read from M and produce datasets in stores M'. When 

all the non-zero REP (i,j), where j is the column of REP for 

OUTarc SI  have been produced, we must choose one of the Ps 

and allocate it to S. In general we can choose only from 

the subset of the Ps which can execute S. 

This subset in turn determines which M' we can use for 

the terminal dataset of S. Thus the particular software 

functions required by S constrain our choice of P and M'. 

Further we must reject any M' which cannot contain the datasets 

of N', since they may all be required simultaneously. However, 

we need not require that the chosen M' be empty. This is 

because the presence of data in M' only has the effect of 

delaying execution of S. On the other hafid the existence of 

such a delay may make the choice of M' non-optimal. We can 

see that in fact the first INarc of a node to be attached to 

a processor will also determine the store to which the node 

is bound. 
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Subset from which 
P, M' combination 
is chosen. 

1) N is already bound to M. 

2) S is ready to go (all parts of initial dataset produced). 

3) The functions required by S resrtict us to only some of the Ps. 

4) The total memory required at N' restricts us to only those 

Ps with M's of sufficient size. 

5) Choose a particular P and its M' from the subset produced 

by steps 3) and 4). 

Fig. 3-19 Binding of an arc S and its terminal node N'. 
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When the cut reaches a node then all the OUTarcs and their 

terminal nodes will undergo binding as above, and it is in 

this way that the computation progresses. We make the 

following comments about possible binding situations. 

It is possible to have more than one arc between a pair of 

nodes N and N'. This represents two or more processes using 

data produced by one group of source arcs, and providing data 

for a single group of successors. The hardware dual is the 

existence in a net of more than one processor which reads from 

M and writes to M'. 

It is also possible to have arcs with the same node as 

initial and terminal node. This represents an arc producing 

data required in its own initial node. This construction will 

be used later in this section. The hardware dual is a processor 

which reads from, and writes to, M. 

If none of the processors P which are OUTarcs from M can 

execute the arc S, we can say that the program has failed. 

The failure is of the "impossible function" type, for example 

trying to rewind a card reader. This type of error arises 

because of faulty program specification, or a faulty allocation 

at some earlier stage. Such an allocation may have a variety 

of causes. 

If the choice subsets described earlier are disjoint, 

then the allocation problem is greatly simplified because no 

processor is suitable for more than one OUTarc of N, i.e. 

there is no competition between the OUTarcs of N for any processor. 

If the store M' has a smaller capacity than that required 

by the group of datasets of N', the team cannot be executed as 
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it stands at this point. However this may be circumvented 

(either automatically or by redesign) by reorganizing the 

I-graph at this point into a number of nodes of sufficiently 

small requirements. This is strongly analogous to the paging/ 

segmenting techniques used to solve this problem in actual 

computer systems. 

We suggest that an important criterion for the logical 

consistency of a program is that two (or more) arcs should not 

specify the same terminal node N' when their arc functions 

imply different terminal stores M'. 

The rest of this section deals with loops and branching 

statements in programs. We will deal first with the 

representation of branching, since the description of a loop 

is trivial if an adequate versions of the former is available. 

Branching statements will be represented as arcs which have 

the same node as initial and terminal node. This has been 

mentioned as a possible construction above. The essential 

aspect of branching is the performance of a test on a dataset 

(possibly consisting of only one bit) and the choice of some 

course of action from several as a result of the test. 

Clearly branching in its canonical form does not transform 

a dataset, though branching may be combined with transformation 

on a level macroscopic to the testing mechanism. 

We shall allow that an arc representing a test will need 

only one of the parts of its initial dataset present to be 

initiatedl 'and that only one of the parts of its terminal data-

set will be produced as a result of this initiative. 

This terminal part will be logically the same as the initial 
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Fig. 3-20 Branching arcs.  
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Fig. 3-21 122.p representation.  
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part which enabled the test. A delay may or may not be 

associated with the test, and in general this type of arc 

will be similar in all respects to an arc with distinct 

initial and terminal nodes. 

A test will thus provide a part of the initial dataset of 

one of a subset of the OUTarcs of the node at which the test 

occurs. This OUTarc is the arc which will be executed (if 

possible) in the particular realization of theE-graph 

during which the test is made. Consequently we will provide 

a means of disabling the remaining OUTarcs of the subset, 

since they must not be executed unless re-enabled by some 

subsequent application of the test. Such a mechanism also 

allows us to distinguish between arcs whose initial datasets 

are disabled and those which are merely waiting for their 

production. 

Thus all possible branches will be represented in the 

1E -graph, but a particular realization will bind a unique 
selection of these while disabling the rest. This is 

equivalent to saying that for any given execution of a 

program only one of the possible paths through it will be 

taken. 

The hardware dual of this situation is the ability of 

a processor P to write to several stores M'. Clearly when 

P is allocated to a process S, because the process has only 

one terminal dataset, which resides in one store, the other 

possible configurations of P will not be used. All possible 

configurations will be represented in the corresponding 

-rr- graph as arcs between M and the stores M' to which P can 
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write. Only one will be used in any particular realization 

of S on the -ff.-graph, and the rest will be disabled for the 

period of realization. 

In an actual computer system the choice made during any 

particular realization of a E-graph will be data dependent. 

Where an analysis is being carried out we have a number of 

mechanisms available for making the choice. Random choice, 

irrespective of which initial part enabled the test, random 

choice dependent on the initial part, and either independent 

or dependent presetting of the terminal part to be chosen prior 

to the analysis, are possible methods. 

Loops can be represented by the use of a test arc as follows. 

The initial parts to the test are the first entry to the loop 

and a subsequent entry. The terminal parts are the exit from 

the loop or the body of the loop (i.e. a sequence of nodes and 

arcs which leads back to the subsequent entry). Loops which 

are a sequential representation of an inherently parallel 

computation can be represented by their parallel form. Loops 

which are iterated a given number of times will use the loop 

counter as the datum for the parts of the initial dataset of 

the test arc. 

Finally we suggest that the REP matrix bears a strong kinship 

to the precedence matrix for the INarcs and OUTarcs of its node. 

As an example of the use of loops, Fig. 3-22 gives the REP 

matrix for one process of the two process interlock algorithm 

below. The algorithm is described more fully in Cooperating  

Sequential Processes by Dijkstra. 
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"begin integer cl, c2, turn; 

c1:= 1; c2:= 1; turn:= 1; 

parbegin  

process 1: begin A1:c1:= 0; 

Li: if c2 = 0 then 

begin if turn = 1 then goto Ll 

cl:= 1; 

Bl: if turn = 2 then goto BI 

goto Al 

end; 

critical section 1; 

turn:= 2t cl:= 1; 

remainder of cycle 1; goto Al 

end; 

process 2: begin A2: c2:= 0; 

L2: if cl = 0 then 

begin if turn = 2 then goto L2; 

c2:= 1; 

B2: if turn = 1 then zoto, B2 

goto A2 

end; 

critical section 2; 

turn:= 1; c2:= 1; 

remainder of cycle 2; goto A2 

end 

parend, 

end". 
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main cycle 1 -------- 

c1 := 0 

(c4 

■ cl 

c2 

c2 

c2 	c2 
= 0 	= 1 

turn 

turn 

turn 
A 1 

turn 
= 1 

c2 

turn 

turn turn 
= 2 

, . 
/ 2 

main cycle 1, c1 := 1, turn := 2, critical sectiodm 	 

Fig. 3-22 R-matrix for ro cess one of Dilcstra's interlock algorithm. 
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3.7 Data dependence and reentrance. 

There are two ways in which data can influence the processing 

required by a program. These are by the size of a dataset, and 

by the value of a data item. For example, an input operation 

may be repeated until a special character is detected. In this 

case the amount of processing is clearly dependent on the size 

of the dataset for which the special character is a terminator. 

Where alternative paths through a program exist the choice 

of path, and therefore the processing done, usually takes the 

form of testing the value of a program variable. In fact 

dataset size and variable value can often be expressions of 

the same thing. If the input operation above is counted then 

the value of the count will express the size of the input data- 

set. This count may be used in another part of the program to 

control the size of an output dataset, or to select a program 

path. 

That is to say that any run of a program is provided with 

the values of the data for the run, and the size. The size 

may appear explicitly as a particular value, or implicitly as 

a delimiter. It is more general to say that the structure of 

the data influences the processing performed by a program. 

Currently, however, there are no widely implemented processing 

units which can operate directly on the structure as well as 

the value of data. Nor are there storage media capable of 

directly expressing any structure except linear sequential 

strings (of bits or characters). 

Because of this much of the structure of a dataset is 

expressed as additional values within the linear sequential 
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mold, e.g. pointers, cross-references, subdelimiters, and so 

on. The structure then influences the processing which occurs 

by selecting the program path according to these additional values. 

In the context of contemporary processors and storage 

media there is therefore no loss of generality in describing 

the factors which affect the processing of a particular run 

as dataset size and value. 

In a r-graph (Slgraph; node called Slnode) the data 

dependency of the OUTarcs of a node on its INarcs is specified 

in the repartition matrix of the node. That is to say that 

REP [i,j] gives the proportion of the terminal dataset 

of INarc i that is required by OUTarc j. These proportions 

apply to incoming datasets of unit size, e.g. one record or 

character. The actual size of the terminal dataset will be 

determined by a run-time attribute of INarcAi. 

If D. is the total size, then 

D. X. j 51 REP [ilj] 

The total size of the initial dataset E. of OUTarc j will now be, 

j  = 	Ai  REP [ilj] 

This will in turn determine the actual size of the terminal 

dataset of OUTarc j, when it is executed. The factor X has 

no effect on the characteristics of arc execution such as 

utilization and efficiency. It is regarded as simply multiplying 

the amount of storage required to hold datasets, and the time 

required to process them. Consequently all Plarc-Slarc matching 

procedures, and comparison of the matches will be independent 

of the values of X. Execution times will be X times those 
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for SIarcs operating on unit datasets, and this clearly must 

have an effect on overall subgraph execution. 

It is often the case that a dataset is left unchanged by 

a process using it. In such a case the dataset is still 

available for other processes, and still useful since its 

contents remain known. If the dataset is unaltered by a 

process, then it may be used concurrently by another. This 

type of data is called read-only and is often encountered in 

programming systems. On the other hand data which is altered 

by a process is left undefined on completion, and furthermore 

cannot be used concurrently by another process since the contents 

are unreliable. We call this data read-write data. 

We would like a Slgraph to include differentiation between 

read-write and read-only datasets. This can be done by the 

sign of the REP matrix element which represents the dataset. 

If REP [i,j] > 0, then the dataset is read-write, and if 

REP [i,j] < 0, then the dataset is read-only. The current 

status of a Slnode's datasets is held in a separate matrix ACT 

of identical dimension to REP. If ACT [i,j] = 0, the dataset 

represented by REP [ilj] is inactive; if ACT [i,j] > 0, the 

dataset is active. ACT is called the activity matrix of the 

Slnode. 

With the introduction of read-only data it becomes clear 

that a necessary corollary is some means of deactivating data-

sets, else a read-only dataset, once activated must remain so. 

We now extend the properties of a Slarc to include a function 

zero ( a Slarc is an arc of a 1:-graph and is defined by 

functions one to n where n is a parameter of the graph). This 

function, PHI [0], is specified, like the rest, by the 
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modeller. If PHI [0] > 0, then the terminal datasets of the 

Slarc are to be activated, and if PHI [D] < 0, they are 

deactivated. We define PHI [D] = 0 as taking no action 

concerning the terminal datasets, and such an arc will thus 

bring the allocator to the terminal node without affecting it. 

In this it is the modeller's equivalent to an allocator 

generated delay arc. Where PHI[0] is non-zero it is anticipated 

that the numerical value may be used to define other subclasses 

of terminal action. 

Read-write/read-only datasets and activation/deactivation 

SIarcs are logically complementary and allow alternative data-

set action at both initial and terminal nodes to be specified 

within a Slgraph. 

The selection of alternative program paths according to 

the value of program variables cannot be accurately modelled 

short of duplicating program execution with real data. To 

correctly imitate the run-time choices, all variable values 

involved in them would have to be derived, by the same 

algorithms as used in the program, from the same data. Clearly 

one might just as well execute the program under investigation 

with some run-time monitoring to record all values and choices. 

Neither is such an effort particularly rewarding, since the 

results are relevant to only one run. Instead, we make the 

assumption, in common with most simulation models, that for 

sufficiently large numbers of runs the values of variables 

used in choosing program paths will be drawn from recognizable 

probability distributions. 

This allows us to dispense with knowledge of the actual 

data values of a program run. At each point of choice we use 
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the estimated characteristics of the probability distribution 

to perform the choice by random drawing. In a SIGMA graph 

such choices are called IFloops (an arc with the same initial 

and terminal node). 

An IFloop is regarded as having its initial datasets in 

column j of the repartition matrix, and producing terminal data 

in row i of the same matrix, and will be activated by only one 

of the elements of column j instead of all. On completion it 

will activate only one of the elements of row i, instead of all. 

The IFloop can choose the element to be activated by one 

of several random drawing methods. The method to be used is 

part of the data which describes the IFloop. Because of the 

relation between dataset size and variable value, we include 

the facility for an IFloop to choose the value of X by similar 

methods. 

Since A has a multiplicative effect on execution time, 

this is also equivalent to random drawing of the execution time 

of an IFloop. For completeness this too is included in the 

facilities provided in an IFloop, which can now be seen to 

provide an adequate means of expressing and emulating the data 

dependent aspects of subgraph execution. 

We now turn to reentrance, which can be regarded as falling' 

within the scope of a discussion on data dependence. Reentrance 

is the property of a hardware-software system which allows it 

to sustain concurrent executions of the same program. 

We will call each such execution a transaction. A trans-

action is distinguished (and identified) by its data. If we 

assign a unique integer to each transaction as it is created, 
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then this integer will form part of the data, albeit only a 

read-only datum. In a Slgraph the arcs may execute in 

parallel. If the arcs are treated as representing reentrant 

programs, then we may have more than one transaction per arc. 

A set of active arc executions in a subgraph are logically 

related if the are historically descended from the same 

activation of the initial node of the subgraph. Such a set 

has been called a cut, or cut zone, previously. Being 

descended from one activation of the initial node, the 

members of a cut represent a single realization of the task 

represented by the subgraph. That is to say the cut represents 

one transaction executing the arc whose structure is represented 

by the subgraph. 

If more than one transaction is executing this higher 

level arc, then there will be a cut active in the subgraph 

for each transaction. If the executions of these transactions 

are to retain the qualities of reentrance, then their datasets 

must remain distinct and must not combine (by repartitioning 

at a node) to activate any arc, since such an arc would belong 

to both cuts, which would in consequence no longer be logically 

distinct. 

Thus we can see that reentrant execution of a subgraph 

requires logical independence of each active cut. Since the 

execution of individual arcs is already logically independent, 

even with one cut, the requirement is that the datasets used 

in repartitioning at any Slnode shall always belong to the 

same cut. In practice this demands that each cut carry its 

own status information about each of its active nodes. 



We call this type of execution completely reentrant (mode 3). 

It is possible to derive some more limited modes of graph 

binding as follows. If we introduce the condition that no cut 

may activate an arc until the previous cut has completed it, 

we are effectively introducing a first in first out discipline 

within the subgraph. This is equivalent to requiring that 

transactions at the upper level should always maintain the 

same ordering (namely that in which they were generated). 

We call this type of execution sequentially reentrant (mode 2). 

It can be realized by requiring the executing allocator to 

adhere to the condition stated above, and to queue (FIFO) 

terminal datasets at their terminal nodes in the event of any 

element of a prior one still being active at that node. That 

is to say an incoming transaction on arc i will be queued 

(i,e. will continue to require storage) until all REP Eilj] 

are inactive (all prior transactions on OUTarcs j completed). 

The first transactions of each INarc queue will be used to 

reactivate the node as soon as it has become inactive. 

If we now eliminate the possibility of queueing datasets, 

we restrict the execution even further. We now require that 

not only will there be at most one execution of an arc taking 

place at any given time, but also that there will be only one 

realization of a dataset at any time. That is to say that 

successive transactions on an arc read from and write to the 

same dataset (i.e. there will be only one store image of the 

dataset at any time). This type of execution demands that an 

arc may not be activated by a transaction if the terminal 

dataset still has any active components produced by a previous 
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activation (mode 1). This restriction must be made since a 

process may access its initial and terminal datasets at any 

time while it is active. 

Since transactions now use the same datasets, their 

behaviour now corresponds to that of cooperating sequential 

processes as described by Dijkstra. This is so because arc 

execution is a critical section with respect to the arc's 

initial and terminal datasets. The interlocking of arc 

access to datasets is performed by the allocator. 

Thus though more than one cut may be initiated, all are 

subject to the same interaction constraints as those which 

operate between the members of a single cut. For this reason 

we call this type of execution non-reentrant. 

We now consider some aspects of simultaneous allocation. 

It is sometimes required that two processes commence execution 

simultaneously. A typical case is that where one process times 

the other. Clearly the initial data of both processes must.,:be 

present before either is allocated. This is equivalent to 

viewing the two processes as the subgraph of a Slarc whose 

initial data is their combined initial data. This Slarc is 

then subject to the normal condition that all its initial 

datasets must be present (active) before it may execute. 

Furthermore the arcs which produce these datasets must be 

INarcs to its initial Slnode. Consequently we see that, without 

loss of generality, when two processes are to be allocated 

simultaneously their initial datasets must appear in the same 

column of a Slnode REP matrix. This column corresponds to the 

Slarc whose subgraph is formed by the two processes. 
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For convenience we develope a shorthand description of the 

situation which dispenses with the necessity for a subgraph. 

We describe both processes by Slares which appear in the OUTarc 

chain of the Slncde, and add a further row to its REP matrix. 

The zero element of the column becomes the arc specifier for 

the first Slarc, and the last element of the column (which is 

an element of the new row) becomes the arc specifier of the 

second Slarc. 

In order to perform a simultaneous allocation the allocator 

acts as follows. When the column j becomes ready the allocator 

attempts to allocate the first OUTarc (specifier is REP [01j]. 

If REP [m t 1, j], 	Inarcs) is non-zero this indicates 

that there is a second OUTarc to be allocated simultaneously. 

The allocator will attempt to allocate this arc as well. If 

both allocations succeed then two ties (bound process-processor 

pairs) will be activated and simultaneous allocation is 

achieved. If one arc is allocated successfully and the 

other is not, the hardware resources for the first are reserved 

until the second arc can be allocated as well. In meantime it 

is marked as a delayed arc. Reservation is accomplished as 

follows. If the successfully allocated Slarc requires a 

fraction u of the processor P which was chosen, then a 

variable which represents the current usage of P is increased 

by u, u itself being recorded in a similar variable (SFRAC) 

of the Slarc. Thus u is unavailable for allocation to other 

SIarcs. Terminal storage, if it is required, is also allocated 

in the terminal Plnode of the Plarc. These terms denote a node 

and arc of a Plgraph. 
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When the allocator returns to the column and is able to 

allocate hardware resources to the second Slarc successfully, 

it initiates ties for both SIarcs. Each tie will then release 

its resources on terminating. When a processor is reserved, 

an identifying attribute is recorded in the element of REP 

which specifies the OTJTarc. This allows the allocator to 

know which processor, and consequently which store, was 

reserved, on a subsequent scan of the Slnode. 

This record of reservation is a special case of the fact 

that whenever a Slarc specified by REP [p,j], (p = 0 or m + 1), 

is allocated, the processor state identifier (SEQF) is recorded 

in ACT [p,j]. This means that ACT [p,j] always contains the 

identifier of the last processor to be allocated to the 

corresponding Slarc, and this facility is used for error 

handling and disabling of hardware, as well as simultaneous 

allocation. The delayed, status of an arc j can be shown by 

setting ACT [p,j] negative. It is clear that by the provision 

of further arc specifiers per column simultaneous allocation 

of more than two processes can be described and executed using 

the method outlined above. 

The ACT matrix separates the descriptive aspect of the 

Slgraph, from the binding time information. This is particularly 

helpful when we consider the implementation of mode 3 binding. 

Here binding is completely reentrant, so that each cut which 

traverses the Slgraph must carry all its status information 

with it. This can be achieved by allowing each cut to carry 

its own set of ACT matrices for nodes at which it is active. 

Since every completing tie activates the allocator which 
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generated it we now have the means of completely separating 

binding information from graph description, which is the essence 

of mode 3 binding. The effect is to make the Slgraph itself 

into read-only data for the allocator. 
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The ACT matrix also provides the counter function for DOloops 

(again helping to separate Slgraph description from dynamic 

variables). When a DOloop is activated it searches for 

the row i of the REP matrix for which it is the INarc. The 

condition for this is that SEW equals REP [0,i]. If column 

j provided the initial data of the DOloop, then ACT [i,j] is 

used as the DOloop counter. 

When the DOloop is activated it checks ACT [i,j] for zero. 

If if is zero the DOloop assumes that this is a first iteration 

and sets ACT [i.j] to the number of iterations required 

(spedified in one of the parameters of the DOloop description). 

At the end of each iteration ACT [i,j] is decremented by one, 

and tested for zero. While it is positive the column of the 

first non-zero REP element in row i is chosen as IFCOL. When 

ACT [i,j] is zero after the decrement, then the column of the 

second non-zero REP element is chosen. If ACT [i,j] is negative 

this is regarded as a non-fatal error and IFCOL is set to -1. 

This signals the allocator not to activate any dataset, and 

effectively extinguishes the DOloop. 

An example of the deliberate use of the last case occurs 

when a deactivation arc operates on the terminal row of the 

DOloop. In this case ACT [i,j] will be set to zero, and so 

the subsequent DOloop decrement will bring it to -1. Consequently 

the DOloop will be extinguished by the deactivation arc. 

Such a deactivation, followed within one iteration time by 

an activation, presents a problem in reentrance. The second 

activation will find ACT [i,j] = 0 and set it to n, where n 

is the number of required iterations. The first DOloop will 
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now never find ACT [i,j] = -1 and so will not extinguish itself. 

Instead it too will decrement ACT [i,j] and continue to iterate. 

Now we have two DOloops iterating concurrently and, of course, 

decrementing ACT [i,j] twice as fast. The number of concurrent 

DOloops can build up to n in this way. The reentrance rules 

described previously would normally prevent this happening. 

While the first DOloop was active the second one would be 

queued (in mode 2) or not allocated (in mode 1) because ACT [i,j] 

would be detected as non-zero, thus showing the existence of 

an already active OUTarc j. The deactivating of row i sets ACT 

Eilji to zero and effectively hides the existence of an active 

OUTarc. 

It is clear that this problem extends to any case where one 

or more of the initial datasets of an active OUTarc are 

deactivated and then reactivated while the OUTarc is still 

active. To ensure behaviour appropriate to the execution mode 

we introduce a further check for ties which activate (rather 

than deactivate) their terminal datasets. The check is on the 

attribute SFRAC of SIarcs corresponding to the columns j 

containing the terminal datasets REP [i,j] of the tie. 

If SFRAC > 0 the Slarc is known to be allocated and executing 

(SFRAC holds the processor fraction allocated) and consequently 

the reentrance rules can then be applied. For SIarcs which 

use no processor functions we require that SFRAC be set to 1 

on allocation. 

We now make some comments on error handling. By error we 

mean a hardware error, i.e. a malfunction of some part of the 

Plgraph. A tietected software error implies a different path 
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through the Slgraph from the point at which it was detected. 

A software error whose detection is not modelled in the Slgraph 

is a wrong result from the human point of view, but not from 

the algorithmic one. 

A hardware error occurs during the execution of a tie. 

Typically it will be modelled by an IFloop which chooses the 

error path or the normal path by drawing from a statistical 

distribution. Errors which are not detected or not acted upon 

obviously do not concern us. When a tie is initiated there 

must be a subsequent moment at which it is decided whether 

the tie completed normally or in error. There is usually a finite 

time limit on this moment. The decision can only be finally 

taken by the initiator of the tie, since it is only the 

initiator who has the ability to directly reinitiate the tie, 

or go on to the next tie, or transaction. Furthermore an 

error can be of the type which renders the recipient unaware 

that a tie was ever initiated. That is to say that the only 

location where a record of tie initiation and the data for 

its reinitiation can be relied upon to exist, is at its 

initial Slnode. 

The error decision can be made in one of two ways. The 

return of an acknowledgment allows a decision depending on 

whether the acknowledgment was a good or bad one. If no 

acknowledgment is returned the arrival of the time limit 

allows a decision to be made depending on whether the expiry 

implies an error or a normal termination to the process. In 

either case we require that the decision shall correspond to 

the activation of one of two datasets in the initial Slnode 
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of the tie. This Slnode is the only place where there can be 

certainty of the decision being taken at all, and where there 

can be certainty of the retention of the initial datasets of 

the tie. 

We do not concern ourselves with the dataset which 

represents normal termination since this is clearly only a 

matter of the deactivation of the initial data and/or the 

extinction of the process arising from the dataset. In the 

event that the dataset corresponding to error termination:is 

activated there are usually two possible procedures. The process 

which was in error can be repeated (tie reinitiated), or the 

corresponding hardware made unavailable for future allocations. 

Reinitiation can be modelled using normal Slgraph 

facilities. Suppose REP [1,j] represents the initial tie data 

and REP [2,j] is a ready flag, then on completion of the tie 

j, REP Elgii will remain active (read-only dataset) and REP [2,j] 

will be deactivated. On normal completion the initial data 

will be deactivated and REP [20] activated. In the case 

of error termination the initial data will remain active 

and REP [2,j] will be activated, thus making OUTarc j ready 

again, and so the tie will be repeated. 

A common method of treating errors is a fixed number of 

repetitions followed by disabling the hardware involved. The 

disablement is for a finite period whereupon the hardware is 

enabled and execution attempted again. In the SIgraph' we 

provide a general facility for enabling and disabling hardware, 

i.e. one which can be used for other reasons besides error 

handling, in the form of two corresponding IFloops. 
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The first disables the hardware last allocated to the Slarc specified 

in a parameter (a) of the loop. It does this by a similar method 

to that used for reservation of hardware. The IFloop searches the 

Slnode for the arc specifier REP [p,j] corresponding to a and 

extracts the value of the processor attribute SEQF from ACT [p,j]. 

The processor must be an OUTarc of the Plnode to which the Slnode 

is tied, if the initial tie data has been retained. Otherwise 

the Plnode can be reached through a Plgraph node index. 

In either case the Plarc is found and its inuse fraction 

is incremented by 1. This has the effect of making the 

processor unavailable for further allocation irrespective of 

the fraction currently allocated and its subsequent release. 

The attribute SEW of the processor (which completely identifies 

it) is now placed in ACT [p,k] where REP [p,k] is the arc 

specifier for the disabling IFloop. The attribute SFRAC 

of the IFloop is set to one as usual for a Slarc which 

requires no processor. The tie which originally executed in 

error can now be reinitiated or deactivated as required. 

If it is desired to make the processor available again 

after a delay, the disabling IFloop can be given the appropriate 

duration, and its tie can alter its associated processor from 

null to the disabled processor. On complbtion the allocator 

will release the disabled processor as part of its normal 

completion procedure since SFRAC of the :disabling IFloop has 

been set to one and the tie now has an attached processor. 

Alternatively the IFloop may be given a zero duration and 

its completion allowed to initiate a delay loop. This loop 
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can then initiate the second type of IFloop mentioned, namely 

an enabling loop. The enabling IFloop operates in a similar 

manner to the disabling IFloop, except that it subtracts one 

from the inuse fraction of the processor. The processor itself 

is obtained in an identical manner to that used by the disabling 

IFloop. It is clear the OUTarc specifier in an enalbing IFloop 

can refer to a disabling IFloop, so that the former can release 

the last processor disabled by the latter. 

The duration of a tie will depend on the physical 

characteristics of the stores in which its initial and terminal 

datasets reside. We introduce a function V to represent this 

perturbation of tie duration. Clearly for normal stores p, V 

will be a function of the quantity of data being processed by 

the tie, so we write that the tie duration will be 

t * A + V (A, pi) + V (X* E, p2) 

where E is the sum of the terminal REP elements, and t is the 

processing time per unit data, as provided by the allocator. 

A subset of store characteristics provided by Plgraph description 

might be delay, latency, block size, and block time. The delay 

is, for example, the average seek time during disc access. 

The latency is the rotational period of a disc or drum. The 

block size is the quantity of data moved in one transfer, and 

the block time is the time to move it. 

The function V can be defined to suit the modeller, and we 

would choose the following as a default. One drawing from the 

uniform distribution between zero and delay, plus m drawings 

from the uniform distribution between zero and latency (where 

m is the number of blocks), plus m times the block time, i.e. 
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V (X) = m * block time + uniform (0, delay) + z; 

where for i 1 step 1 until m do 

z : z + uniform (0 latency); 

m is defined as the snallest integer greater thanVblock size. 

An example of the use of the facilities above is the way 

in which splitting the leading character from a message is 

modelled. We achieve the desired effect by simultaneous 

allocation of two IFloops, the first one resetting LAMBDA to 

LAMBDA minus one, the second one setting LAMBDA to one. 

The total memory requirement is exactly equal to the initial 

memory present and no account need be taken of the range of 

LAMBDA values. 

Finally we mention a possible extension of Slgraph 

facilities. This is the addition of further variables which 

propagate with the cut. Such variables might be carried by 

ties. At each node a new value is generated for an outgoing 

tie from the values carried by its inarc ties. Values are set 

by IFloops and may or may not be altered by the node algorithm. 

The reason for propagating the values of these variables is 

either the collection of cut statistics or the fact that their 

values may be used to control the binding of the cut at 

locations, or under circumstances, specified by the modeller. 

An example occurs in modelling a message switching network, 

where a variable which might well be propagated would be the 

node number of the message destination. This would be operated 

on by a routing algorithm at each node and the result would 

determine the transmission line which would be allocated 

(i.e. binding is controlled by the result). 
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The method used for the LAMBDA variable can be extended 

indefinitely simply by the addition of carrier variables to the 

tie definition, and the addition of an appropriate node algo-

rithm to produce the outgoing value. 

In a general sense such variables represent the inclusion 

in the model of the variables of the real system. The reason 

for inclusion is that their values determine the behaviour of 

the real system sufficiently strongly to render the model 

inaccurate or even useless without them. If all variables are 

included then we end up with a replica rather than a model of 

the real system. Without them the model may not fulfil its 

purpose. The choice of variables to be included must therefore 

rest with the modeller. His judgment should be confirmed by 

a positive validation of the model. 
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CHAPTER IV 

IMPLEMENTATION 

128 



4.1 General Criteria.  

In the previous chapter we have described a system for 

modelling computational activity. This system was implemented 

as a program in the SIMULA language on a Control Data 6600 

computer. The name of the program is SHAPE, which is an acronym 

standing for Software Hardware Allocation and Performance 

Evaluator. A brief introduction to SIMULA appears in Appendix II. 

An equal emphasis was placed on the modelling of software 

and hardware to improve the evaluation of real performance. 

Furthermore, the basic interchangeability of hardware and software 

pointed the way to modelling and descriptive systems which were 

applicable to both, and minimised their differences. 

Because software and hardware are regarded as similar and 

complementary, a correspondence occurs between the two. Basically 

this is the correspondence of store and dataset; processor and 

process, alternative connection and branching statements, parallel 

connection and concurrent processes, and so on. Wherever possible 

in the SHAPE system a single structure is used to model both 

hardware and software. The differences between them appear as 

different interpretations rather than changes in the structure. 

For example the graphical representation is used throughout, 

the software interpretation being called a Slgraph, and the 

hardware one a Plgraph. This had led to nodes representing stores/ 

datasets and arcs representing processor/processes. This seems 

a more useful graph model than earlier ones which have used the 

arcs only as a visual expression of the precedence relationships 

between computations. In these previous models the nodes were 

used to represent the computations, thus leaving the modeller with 
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no remaining structure to which datasets could be naturally ascribed. 

In the SHAPE system precedence relations are treated more explicitly 

from the point of view of data dependency, so that the computations 

which transform datasets are an inherent representation of these 

relations. A further consequence of the SHAPE interpretation of 

nodes and arcs is a simple expression of the binding situation at 

any moment by means of a cut across the graphs. 

The SI and PI graphs used in SHAPE are of a general kind. 

There is no planarity restriction, arcs are allowed to have the 

same initial and terminal nodes, and multiple arcs between a pair 

of nodes are also permitted. The model has been provided with a 

recursive capability in order to allow areas of special importance 

to be investigated in greater detail, the submodel remaining embedded 

in the main structure as a subgraph. 

In SHAPE, processor is used to denote any data-transforming 

piece of hardware, rather than a general purpose computer or Von 

Neuman machine. The reason for this is that it allows us to take 

into account specialized or restricted progessors, and the great 

variety of special function hardware units which exist today, such 

as display controllers, multiplexors, disc controllers, etc. 

These must be modelled since they represent a dispersal of the 

intelligence and computing power of a utility, and can also be 

of considerable significance when overall performance is being 

considered. 

A fundamental problem which arises in modelling a program is 

the representation of both the static and dynamic behaviour of the 

program. A static model of the program is one which shows the 

program as it might be written on paper, that is to say with all 
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paths, possibilities, and branches present. The dynamic model 

represents one particular execution of the program. A particular 

execution is obviously one where at each point of choice in the 

static model the choice has been made. Thus the dynamic model 

consists of a selection of the actions available in the static 

model. 

In the case of SHAPE, a Slgraph shows all the possible 

computations which may take place during realization of the 

task represented by the graph. As the task is realized, as a 

binding of the Slgraph to a Plgraph, unselected alternatives are 

disabled. On completion the bound graph which remains gives us 

the dynamic model of that particular execution. 

From this point of view branching statements are an online 

control device for programs, which allows the selection of 

alternatives to be postponed until the actual execution, and 

automates the process of selection (it is possible to imagine a 

very primitive program which referred the predicate data of every 

IF statement to the computer operator, who, flowchart in hand, 

would make the decision and then reactivate the machine at the 

appropriate instruction sequence). 

Any attempt to model the execution of a task, and analyse 

the performance of that execution, must be able to handle this 

transition from static to dynamic representation. Some previous 

models have used branbhing probabilities, mean execution times, 

and so on to provide statistical results for overall execution 

measures. SHAPE allows for the use of these methods and also 

some others which are more data dependent, as well as making the 

insertion of predetermined decisions particularly easy. 
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The representation of IF statements was influenced by the fact 

that one of their more important functions is in the programming 

of loops. In SHAPE the loop entries and exits are handled by IF-

type operations and the structure of these operations has been 

oriented to making loop representation as convenient as possible. 

In the model as it stands today nearly all binding and allo-

cation takes place as the cut crosses a node in the Slgraph. 

It is when this happens that nodes enter and leave the cut zone, 

nodes are bound to stores, and processors allocated to arcs. 

Consequently this is the area of prime interest in modelling the 

mechanisms which ensure continuing execution of the task. 

It is intended that the SHAPE system will allow the trial 

of alternative binding strategies, and that the binding problems 

will be formulated in such a way that these strategies (that is 

to say the mechanisms mentioned above) can be easily inserted and 

removed. The problem is essentially that of optimizing the choice 

of m out of n processors to be allocated to m processes subject to 

various constraints (of course there may be fewer processors than 

processes as well). The optimization may be done for this choice 

alone, over the cut zone, or beyond the cut zone. 

A recent result demonstrates the equivalence of preemptive 

scheduling and fractional allocation, [MUNT 70]. This leads us 

to expand the range of choice from integral allocations to 

fractional ones. The rationale for this is that optimization 

with fractional allocation seems far more amenable to solution 

than the corresponding situation with preemption. 

The intention of the SHAPE system is to provide an evaluation 

of program realization for alternative allocation strategies, or 

to compare the behaviour of different realizations. 
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The main components of the SHAPE program consist of the g•aph 

input procedures, the allocator, and the procedures for matching 

and binding a Plarc to a Slarc. The binding of two graphs occurs 

in simulated time. A time scale is generated for each pair of 

graphs, so that where a pair of bound arcs have subgraphs these 

are bound in their own independent timescale, while that of the 

upper level is unaffected. This mechanism is used by the 

matching procedure to derive the time required for a Plarc to 

execute a Slarc when both have subgraphs. 

A pair of bound arcs is called a tie. A tie is created by 

the allocator and exists for the duration calculated bytthe 

matching procedure. On terminating it activates the allocator 

which releases resources previously associated with the tie, and 

then creates ties for any processes now ready and able to execute. 

The SHAPE program does not include -all aspects of the model 

described in the previous chapter. This is due partly to limita- 

tions in the compiler and associated software (see Appendix III) 

and partly to insufficient time for programming a full implementation. 

The points of difference are described as they arise below. 

In the following sections we describe the graph input 

procedures and the the operation of the allocator. After this 

we give a more detailed treatment of ties and IFloops, and then 

deriVe measures for hardware and software performance. 
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4.2 Graph input.  

This section describes the way in which SI and PI graphs are 

input from a sequential storage medium such as cards or magnetic 

tape, to a random access medium such as core store. Such input 

is necessary because binding of the two graphs as performed in the 

SHAPE system, required the graphs to be in their topologically 

linked form. 

In this form each node consists of a block of data about 

the node and a pointer to a chain of arcs. Each arc consists of 

a block of data about the arc and points to the next arc in the 

chain, and the terminal node of the arc; the initial node of all 

arcs in the chain is the one at the head of the chain, by 

definition. 

The blocks of storage for the elements (arcs and nodes) of 

the graph may be situated anywhere in the available core store, 

and are linked by the pointers described above. The linkage so 

formed duplicates the topology of the graph. Clearly such a 

linkage can only exist in a random access type of storage medium, 

so that we have to provide a sequential form of the graphs for 

storage on sequential media. Such storage is desirable since 

we cannot keep the graphs permanently in core store, and private 

discs are not always available. 

A normal SHAPE run will therefore be to input a SI and a 

PI graph from a sequential storage medium, set up the topological 

linkage, then perform the binding of the graphs, and output the 

results. 

We shall now describe the topologically linked form of the 

SI and Plgraphs, starting with the structures common to both. 
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Both nodes and arcs have an attribute called POINTER. In the case 

of an arc this points to the next arc on the chain, and in the 

case of a node to the first arc on the chain. The arcs on a 

chain are called the OUTarcs of the node which heads the chain. 

Each node possesses three integer attributes besides its pointer. 

These are its node-number, the number of its INarcs, and the 

number of its OUTarcs (NODENUM, INARCS, OUTARCS). 

Each arc has three other pointers besides that to the 

next arc. The first (NEXTNODE) points to the block of storage 

used to hold the data for the arc's terminal node, and the other 

two (FIRSTNODE, DX) are used when a subgraph exists for this arc. 

The first of these points to the first node of the subgraph, and 

the second points to the index for the subgraph. An index holds 

a double entry for each node in a subgraph. The entry consists of 

the node number, and its address in core store. Entries are ranked 

in order of increasing node number. An index also has its own 

length and that of the arc data vectors as attributes. An arc has 

one numerical attribute, SEQF. Entier (SEQF) is the node number 

of the arc's terminal node, and the fractional part of SEQF 

distinguishes between several arcs which have the same initial 

and terminal nodes. For example if there were three arcs between 

nodes 4 and 7, their respective values for SEQF might be 7.1, 

7.2, 7.3. 

The whole graph is referenced by a special arc called a 

graph header. In the graph header FIRSTNODE points to the first 

node of the graph and DX to its index. The graph header has two 

additional attributes which are the name of the graph, and its 

TYPE (SI or PI). The structure described so far is common to 

both types of graph. 
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In SHAPE we use SIMULA class definitions to provide arcs, 

nodes, indexes, graph headers, as shown in Fig. 4-1. Node and 

arc linkage is shown in Fig. 4-2. Where several arcs have the same 

fine structure only one subgraph is necessary and all the arcs will 

point to its first node and index. A subgraph linkage is 

illustrated in Fig. 4-3. 

We now describe the data associated with nodes and arcs 

in SI and PI graphs, which depends on the type of graph. 

A Plnode (representing a store element) has the following attributes: 

cost, latency, block size, blocks per track, and capacity. These 

are held in an array MU together with a random number seed for use 

in the generation of latency times. The run-time variables 

TOTUSE, FSTUSE, LSTUSE, INUSE2  MOX, MUT, ME:ti t  and MIT are used 

for gathering statistics during binding. 

A Slnode has as input data the repartition matrix (REP) 

described previously. In SHAPE the activity matrix (ACT) has 

not been implemented. Instead the allocator treats all datasets 

as read-write data (REP [il j] initially positive), and the sign 

of REP [i2j] is used during binding to indicate its activity 

(negative for active, positive for inactive). Consequently all REP 

elements input to a SHAPE run are positive. One other data item of 

a Slnode is the variable PNID which gives the node number of a 

a node in a Plgraph. If PNID is non-zero, then the Slnode will 

be tied to the specified Plnode during binding. 

Binding time attributes are column vectors Q, LAM, BET, QD, 

QT, QS. During semi-reentrant binding for each row of the 

repartition matrix, the corresponding element of Q is the initial 

pointer to a queue of completed ties which have that row as their 
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class element (pointer) ; 

ref (element) pointer ;; 

element 	class are (neNtnode, firstnode, dx, segf); 

ref (node) nextnocie r  firstnode; 

ref Iindx) (17; 

real secif;; 

element 	class node (nodenum, snares, outarcs); 

Anteger,  nodenum, snares, outares ;; 

arc 	class graph (graphname, type); 

value graphname; 

text graphname; 

integer type; 

class indx (indxl, adle); 

integer  indxl, adle; 

begin 

arm number [0:1ndx11 ; 

ref (element) arraz address [0:indxl] 

number [0) :=1; 

number [indxl] :=Indx1 

end; 

Fig. 4-1 Node and Are Class Definitions. 
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terminal data. The variables LAM [i] and al [i] always contain 

the values of lambda and beta for the current activation Of row i. 

QD, QT, QS are used for the collection of software statistics and 

are described in greater detail below. 

The input data of a Slarc consists of two arrays PHI and 

I. PHI is the function frequency vector and has n elements 

where n is the number of software functions which characterize 

the graph. PHI [i] is the frequency of the i th function in the 

Slarc. N is also called the arc data length (equal to attribute 

ADLE of the graph index). 

IFF is an array that has zero elements unless the Slarc is 

an IFloop. In this case IFF contains a random number seed, two 

ifcodes and their four parameters. A binding-time attribute of a 

Slarc is SFRAC, which is used to hold the fraction devoted to 

this Slarc of the currently allocated processor. The array STARC 

is used to accumulate software statistics as well as providing 

a counter for use by IFloops. 

A Plarc has as input data the processor performance array 

PSI which consists of three vectors each with n elements. The 

first vector gives the times taken by the processor to perform 

the n software functions characterizing the graph, and the 

second and third give the processor utilisation and efficiency 

for these functions. Other data attributes are the physical 

identifying number of the processor (ID) and the cost per unit 

time of using the processor. The attribute ID is required since 

many arcs in a Plgraph can refer to the same physical processor, 

which has the capability of reading from and writing to many 

memories. The runtime variable Pt.PAC provides the fraction 

1Lto 



of the processor which is currently allocated, and six other 

variables are used for statistical purposes. SIMULA class 

definitions for the node and arc data structures are given in 

Fig. 4-4, and 4-5. 

On a sequential medium SI and Plgraphs are stored as 

sequences of card images. Each element of the graph (node or 

arc) consists of a set of cards. The first card of the set 

uses columns one to twenty to define the element in the 

topology of the graph. The rest all have columns one to 

twenty blank. All fields consist of ten columns, and a card 

may have up to seven fields. 

The first twenty columns mentioned above are the first 

two fields of the card. A node has its node number in field 

on and field two is blank. An arc has the node numbers of its 

initial and terminal nodes in fields one and two. If an arc has 

a subgraph the remaining fields of its first card (arc card) contain 

information about the subgraph. This consists of the numbers of the 

first and last nodes, the number of elements in the function 

vectors (arc width)9  the number of nodes in the graph (graph 

size), and a factor which determines the size of the index 

relative to the number of nodes (GFACTOR). A graph header card 

also has this information about its graph. 

If an arc has a subgraph, then the data cards for the 

subgraph immediately follow the set of cards for the arc. 

A graph header card has the name of the graph and its type in 

fields one and two. The card image formats are shown in Appendix 

IV, together with detailed description of all array usage. 
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node 	class pincp‘..le ;mu“ 

real Rrray 

be 

real totuse, fstuse, lstuse, muse, max, 

mut, mef, mit; 

ref (sinode) pstie 

integer u; 

u := mu C4 

end; 

node 	class sinode (rept  pnid); 

value rep; 

real array rep; 

inteer pnid 
begin 

ref (transaction) Lutz q [0: inarcs1 ; 
MIMOMO■Vms 

real rr 	lam, bet CO: inarcs) , 

qd, qt, qs CO: mares, 1:43 ; 

ref (pinode) sptie; 

intsgRE active; 

end; 

' 4 NDU  rig 4- fi: 



arc 	class siarc (phi, iffy; 

real array phi, 1ff; 

begin 

real array store [0:7) 

real sfrac; 

integer ug; 

ug := iff CO]; 

end; 

arc 	class piarc (psi, psid); 

real array, psi, psid; 

begin  

real array phicap Co: psi [0, 1) 3; 

real putpr, putrnx, putav, pefpr, pefmx, pefav, 

pfrac; 

end; 

Fig. 4-5 Arc Class Definitions.  
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The sets of cards for the graph elements are ordered 

as follows. Each node is followed by all its OUTarcs. 

The nodes may come in any order. The first card of the 

deck should be the graph header card, which provides 

information required by the input routines. 

The type of a graph is an integer which gives the 

number of function vectors which appear in the arc data. 

Consequently a Slgraph is of type 1 and the Plgraphs currently 

used are of type 3. 

The graphs are input by a set of procedures in the 

way described below. Firstly, the graph header is read, 

and an object of this type is generated. Then a procedure 

called SUBGIN is executed using some of the information 

from the graph header. These actions are performed by 

procedure GIN. The procedure GIN has one parameter (G) 

which references the graph header after GIN has been called 

to input a graph. The procedure SUBGIN inputs a subgraph. 

The highest level of a graph is regarded as being a 

subgraph of the graph header. 

SUBGIN sets up the index for the subgraph being 

input. The number of entries is the size of the graph 

(number of nodes) times GFACTOR. Also set up is a scratch 

array for arc data. After this the procedure INNODE 

is called a number of times equal to the graph size. 

When the first node is found, it is linked to the arc 
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( or graph header) which heads the subgraph. This arc 

also has a pointer to the index for the subgraph. 

The procedure INNODE creates a node of the 

appropriate type and enters its data. An entry is created 

in the index for this node which gives its number and 

address. The procedure INARC is then called a number 

of times equal to the number of OUTARCS of the node. 

The procedure INARC reads in the data for oner:arcc 

and then creates an arc object. The pointer from the 

arc to its terminal node is created by searching the 

index for that node number and thus accessing its 

address. If the terminal node has not yet been read 

in from the sequential file no entry will be found. 

In such a case a plug is created in the free space 

area of the index. The plug consists of the node 

number in question and the address of the arc requiring 

its address. When this node is read in, the procedure 

which enters it in the index also satisfies all the 

plugs requiring its address (see Fig. 4-6). 
The arcs are chained as follows. Each call of 

INARC has a pointer to the arc created by the previous 

call as one of its parameters (in the case of the first 

call, by INNODE, this pointer points to the node at the 

head of the chain). This allows the linkage to be 

established from the previous to the currently created arc. 

After linking, the pointer is updated to point to 
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Node 

Arc 

Number 
	

Address 

Nodect + 1 zero f  

Node number , 

..._1-\.. 

/-•-• .cv-1,1%.  

Node number  

Indxl-plugct zero 

Nodect + 1 

Indxl - 
Plugct 

if nodect + 1 = indxl - plugct then 

indexfull := true; 

comment nodes are held in ascending order by 

node number; 

Fig. 4-6 Index usage for graph input.  
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the current arc, and so is ready for the next call, 

if any. The end of the chain is indicated by a null 

pointer. 

If INARC finds that subgraph information occurs 

in the arc card, then a call to SUBGIN is made. This 

call will then input the subgraph which follows the 

data cards of the arc. In this way the process of 

subgraph input operates recursively. 

Several arcs may have the same subgraph. In this 

case only one need be followed by the subgraph card 

deck, and the others may give the initial and terminal 

node numbers of this arc. Such a provision leads to 

a plugging mechanism for subgraphs similar to the one 

for nodes described above. 

In this way the input procedures of the SHAPE 

system creates a topologically linked data structure 

of the type described earlier from a sequential file 

of card images. A list of procedures used is given in 

Appendix IV. It is often the case that several nodes or 

arcs have identical data. To allow the modeller to 

specify such replication compactly, rather than having 

to repeat the complete data each tithe, some facilities 

for data replication are included in the graph input 

formats. 

If a node Q has identical data to a previous node P 
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then the nodenumber of P appears on the first card 

of the node Q description, after the number of OUTarcs. 

The rest of the data is then dispensed with, and 

picked up from node P by the graph input routines. 

In fact only one copy of such data is kept, and 

this is referenced by all the nodes to which it 

applies. For all arcs the parameter SPIV is held 

separately on the second card of the arc data. 

The IFloop parameters are held on the third card. 

For arcs (r,$) which have the same data as arc 

(p,q) the nodenumbers of p, and q, and SERF of 

the arc (p,q) can be placed after SEQF on the 

second card of the data of arc (r,$). If this 

is so, no data follows, and the graph input routines 

link the arc (r,$) with the data of arc (p,q). 

Each run of the SHAPE program is controlled 

by a run card which is the first data to be input. 

The card contains the following items: the 

number of graphs for this run (one or two), 

the binding mode, the debug parameter, codes 

specifying the type of hardware and software 

statistics required, and the binding time limit 

if any. The run card parameters are described 

in Appendix IV. 
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The facility for data replication is also 

used to provide a mechanism for interlocking 

the various states of a single physical processor. 

An interlock is needed primarily for allocation, 

so that the fraction of the processor allocated 

is always known by referencing a single variable, 

and can be altered by only one process at a time. 

To achieve this, all states (PIARCS) of a 

single physical processor have an attribute 

PSID which is a one dimensional array. There is 

only one copy of this array, and it is this 

which is accessed irrespective of which Plarc 

is being dealt with. The zero element of the 

array holds the fraction of the physical 

processor currently allocated, and thus an 

automatic interlock is provided. The remaining 

elements of the array are used for statiStical 

purposes. 

A procedure called TOPSCAN is also 

provided for use with the graph input routines. 

This procedure performs a topological scan 

through the graph listing the linkages which 

it finds. Its purpose is to check that the 

graph input routines have functioned correctly 
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before binding is initiated. 
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4.3 The allocator.  

The current version of the SHAPE system performs binding of 

SI and Plgraphs using a SIMULA object of class allocator. The 

allocator has been constructed as a class definition since it is 

regarded as controlling the execution of a single cut or connection 

between the two graphs. Use of the class definition allows the 

generation of more than one allocator, the retention of local data 

describing the condition of its cut by each allocator, and the 

convenient use of SIMULA simulation facilities. 

The execution rule (or block) of the allocator is prefixed 

by the predefined class SIMULATION, so that each allocator generated 

is effectively an independent simulation (system of quasi-parallel 

processes). In what follows some knowledge of the programming 

language SIMULA is assumed. 

Within the execution rule a process of class tie is 

defined. This process is used to represent the allocation of a 

process (arcnof a Slgraph, not simulation process) to a processor 

for a given period of time. During this period the process and 

processor are said to be tied. 

When a tie is completed the allocator is called to free 

resources, update the cut status and initiate ready processes by 

binding to appropriate resources. An allocator operates only for 

one subgraph. When an arc is found which itself has a subgraph, 

the procedure which matches processes to processors generates a new 

allocator to provide the results of the matching. 

In a real computer system binding is done either by hardware 

or software. If by software then this software requires at least 

intermittent use of system hardware. 

151 



Thus in the real system the resource allocation (binding) 

mechanism itself requires some of the resources it allocates. 

The one exception is the case when the hardware involved is 

special purpose hardware which cannot be used for any other 

activity. This case will be termed free resource allocation 

for obvious reasons (the resource allocation hardware is of 

course only free from the point of view of the allocator, for 

its purchased it is a resource permanently assigned to the 

allocator which is treated as another process). Where the 

resource allocation mechanism uses only a very small proportion 

of the resources it allocates, then it may be thought of as free. 

In a real system resource allocation is performed, for 

example by various procedures in the operating system by the 

control unit of the central processor (this is very low level), 

by the control elements in a multi-plexor, and so on. These are 

the real analogs of the SHAPE allocator. 

We note that different levels of task execution have 

different allocation mechanisms. This is reflected in the 

SHAPE system by generation of a new allocator when a subgraph 

is encountered. The allocator in the SHAPE system is a super-

visory algorithm which advances task execution, as represented 

by the binding of SI to PI graphs, by reallocation of resources 

as various elements of the task terminate. 

The allocator of the SHAPE system corresponds to the 

algorithm K, and the procedure match to;the procedure S, which 

are described in the previous chapter. The general structure 

of the allocator is shown in Fig. 4-7. 
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^4 

class 	allocator (parameters); 

simulation begin  

process class tie (params); 

begin hold (duration of tie); 

activate allocator after current; 

end; 

release resources of completed arc; 

update cut status; 

determine number of arcs ready to proceed; 

for s:=1 stop 1 until number ready do 

begin 

fpr p:=1 stop 1 until processors available do 

begin 

match (s,p); 

if better match then save (s,p); 

end; 

activate new tie (s, best p); 

allocateresource's; 

end; 

end; 

procedure 	match (s,p); 

begin 

if sasubgraph then activate new allocator 

else simple match; 

provide analysis of matching; 

end; 

-Fig. 4-7 Outline of class allocator.  
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This outline shows that the binding process is recursive in 

that it can deal with subgraphs nested to an arbitrary depth. In 

the SHAPE programming system a cut is represented by the set of 

all ties in the sequencing set of the corresponding allocator's 

simulation system. 

Referring back to the previous chapter, we note that a cut 

consists of all arcs of a Slgraph which are currently being 

executed together with their initial and terminal nodes, and all 

elements of a Plgraph which are tied to these arcs and nodes. 

Each object of class tie represents the execution of a Slarc, and 

includes a pointer to this Slarc and the Plarc tied to it by the 

allocator. Each tie also has pointers to the initial and terminal 

nodes of its Slarc and Plarc. In this way the set of ties 

corresponds to the set of active arcs and their nodes, i.e. to 

the cut zone. 

When a Slarc completes its execution the elements of the 

terminal nodes' repartition matrix which represent its output 

datasets are marked as active (set negative). The allocator then 

examines the updated matrix to see whether any of the OUTarcs now 

have all their initial datasets active. If this is the case such 

an arc is ready to proceed. 

The actions and constraints involved in binding such an arc 

fall into two categories. The first category is the constraints, 

and consequently decisions, which can be derived directly from the 

nature of the SHAPE model. 

The second category consists of decisions made between 

alternatives equally acceptable from the point of view of the model. 

The algorithms which make these dec4sions taken together form a 
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resource allocation strategy. For the prototype SHAPE system to 

operate some such strategy was required, and in fact was provided 

as a minimal set of simple rules. It should be emphasized that 

these rules are arbitrary, can be changed at willland thus provide 

opportunities for investigating different strategies of resource 

allocation. 

We shall now examine the detailed operation of the prototype 

allocator. The allocator parameters are shown in Fig. 4-8. 
These enable the initial conditions to be set up and the datasets 

of the first Slnode to be activated by the first call of the 

allocator. We shall now follow a typical iteration commencing 

after a tie has terminated. 

The allocator has six reference variables which point to 

the Plarc and Slarc of the tie which has just completed, and to 

the initial and terminal nodes of these arcs. 

P 	- Plarc 

PIN - initial node of Plarc 

PINN - terminal node of Plarc 

S 	- Slarc 

SIN - initial node of Slarc 

SINN - terminal node of Slarc 

These pointers are set by the execution rule of the tie, just 

before it terminates, using an inspect statement. In this way the 

allocator is aware of the elements of the completed tie on entry. 

The allocator uses a number of Boolean variables to give 

information about the tie, and later on in activating new ones. 

These are as follows. 
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Class allocator (fpn, fsn, pdx, sdx, t, gutmx, gutav); 

f pn - pointer to first node of Plgraph. 

fsn pointer to first node of Slgraph. 

pdx - pointer to'index of Plgraph. 

sdx - pointer to index of SIgraph. 

t - eventually holds total time to execute graph. 

gutmx, gutav - performance measurement variables. 

Fig. 4-8 Allocator Parameters.  

4 
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PERT 	- true if no Plgraph, Slgraph evaluated as an activity graph 

with arc duration given by sum of elements of vector PHI. 

FERST 	- true if allocator called to first node of graph. 

Condition is PIN = = SIN = = none. 

LARST 	- true if allocator called to a terminal node. Condition 

is that the terminal Slnode indicator of the first OUTarc 

be zero, i.e. SINN - REP [0,1] = 0 

IPH 	- true if tie was an IFloop. This is a tie whose initial 

and terminal nodes are the same. The condition is 

SIN = = SINN and S = / = none. 

DLAY 	- true if tie was a delay loop. This is an arc which is 

used when the allocator finds a ready arc at a Slnode, 

but cannot bind it because there are no resources 

available. In this case a delay is activated to ensure 

that the allocator is called to this node at some future 

time to attempt to bind the ready arc again. The delay 

loop is like an IFloop, but not tied to any Plarc, and 

has no Slarc. The condition is SIN = = SINN and S = = none. 

complete - set true if initial Slnode has no active datasets 

(ACTIVITY = 0) after tie terminates 

The first part of the allocator deals with the freeing of resources 

used by, the completed tie. The repartition matrix (REP) of the 

initial Slnode (SIN) is accessed, and the column for this Slarc 

(S) is found. The zeroth element of the column (REP [0, j]) is 

the terminal node indicator,and by this the column can be 

identified. The indicator value is the same as the sequence 

fraction of the Slarc. 
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Having found the column in the repartition matrix of the 

initial node which corresponds to the completed Slarc, the 

allocator proceeds to deactivate the datasets shown in the column 

as active (all if a normal OUTarc, one if an IFloop). At the 

same time the number deactivated is counted and their size 

(amount of memory required) is summed. 

After this the active count for this Slnode is deTremented 

by the number deactivated, and the amount of memory in use in 

the tied Plnode is decreased by the sum of the dataset sizes. 

Each Slnode has a reference variable SPTIE which points to the 

store (Plnode) in which the datasets of the Slnode are resident. 

When there are no datasets active SPTIE has the value none, 

and the Slnode is not tied. If the active count falls to zero, 

then the allocator sets SPTIE :- none. 

The allocator now deals with the processor (Plarc) to be 

freed. Since a processor may transfer information between more 

than one pair of stores, we allow each such state to be 

represented as a separate Plarc in a Plgraph. These states all 

represent the same physical processor however, and so it is con-

venient, for resource allocation purposes, to know what fraction 

of a processor is in use, as a sum over all states. Each 

processor is given an identifying integer (ID) which stays 

constant over its states, i.e. every Plarc representing a state 

of a processor will have the same value for ID. This is held 

in an array PSID which is common to all states of the processor. 

This array is made common by declaring the corresponding 

variable as accessible by reference rather than value during 

Plarc generation by the graph input procedures. The first 

element of the array PSID contains the sum over all states 
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of the processor fraction currently allocated. The remaining 

elements are used for measurement purposes. 

The attribute SFRAC of the tied Slarc gives the fraction 

of the processor which was allocated to this Slarc. The allocator 

will subtract this from the particular PFRAC attribute accessed 

by the method described above,and also set SFRAC to zero. 

For a discussion of fractional allocation see section 4.4. 

At this stage the allocator accesses the repartition matrix 

of the Slarc's terminal node and searches for the row which 

describes the terminal datasets of the Slarc. The zeroth element 

of each row (REP [i10] is the initial node indicator. The 

indicator value is the node number of the initial Slnode of the 

INarc, plus the sequence fraction of the Slarc, minus the node 

number of the terminal Slnode. 

The terminal datasets (non-zero elements of the row) are 

activated by making them negative. If the completed Slarc was 

an IFloop then only one element is activated. The column in which 

this element occurs is given by the allocator's local variable 

IFCOL. IFCOL is preset by the tie before it calls the allocator. 

We can provide for more than one Slarc to activate the same 

row of a REP matrix by noticing that the allocator, when 

searching for the correct row of the REP matrix to activate, 

tries to match the INarc specifier to the following expression, 

SEQF SNN + SN 

where SNN is the terminal nodenumber, SN is the initial node 

number, and SEQF is the sequence fraction of the incoming arc. 

Row i is selected as representing the terminal datasets of the 

Marc if 
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REP [i10] = SEQF - SNN + SN 

We usually require that entier (SEQF) = SNN, and that entier 

(REP [1_0]) = SNN, in which case SN is the official initial node 

for row i. However it is clear from the above expression, that 

if we wish to activate the row i by an INarc from some other 

(unofficial) node, we can do so as long as SEQF + SN has the same 

value as before. That is to say that row i of the REP matrix can 

be activated by an INarc from any Slnode in the Slgraph so long 

as the value of SEQF of the INarc is suitably chosen. An example 

is shown in Fig. 4-9. 

When the stores (Plnodes) which hold the datasets of the 

initial and terminal nodes of the Slarc are different, storage 

allocated to the initial Slnode is released. Storage allocated 

to the terminal Slnode is not, since the terminal datasets of 

the Slarc must continue to exist, being the initial datasets of 

subsequent arcs. 

When the stores are the same (this occurs if the Slarc 

is an IFloop, or if the initial and terminal Slnodes have been 

allocated to the same store) the allocated storages of the 

initial and terminal nodes are regarded as being superimposed. 

Thus storage is only released if the initial allocation is 

larger than the terminal requirement. 

This last is an allocation strategy and not a constraint 

of the model. It was chosen since it corresponds to the 

strategy followed by most operating systems. For example, when 

storage is allocated for execution of a FORTRAN program, terminal 

variables, i.e. ones which are used to hold results and have no 

initial value, are included in the initial allocation. If these 

results are to be preserved for a subsequent execution phase, 
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Node 3 is the official origin node for row one of Node 7. 

Fig. 4-9 Multiple INarcs.  
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then only excess storage is discarded on completion of the program. 

SHAPE does not require a model to contain a terminal node. 

If part of the cut is extinguished (for example by the terminal data- 

set of a Slarc having only zero elements), then the cut need not 

terminate if new active datasets are being generated elsewhere. 

It is possible to generate a fixed number of these using a 

DOloop, but a more flexible alternative was provided for SHAPE. 

This was the possibility of indefinite generation of active 

datasets, and termination of binding when a given time limit 

(variable from one run of the SHAPE program to the next) was 

exceeded. 

An additional feature is provided in SHAPE, namely 

multiple termination. A terminal node is one which has an 

OUTarc to node zero. This OUTarc is notional since node zero 

does not actually exist, and is represented by a column of the 

REP matrix which has its OUTarc specifier equal to zero. 

Clearly such a column can exist in more than one node of the 

Slgraph, thus allowing for the representation of more than one 

binding termination. When such a column becomes ready (all 

datasets active) it is immediately deactivated to represent the 

instantaneous execution of the OUTarc to node zero. 

If there are then active ties still present, the cut is 

not considered to have terminated. That is, the presence of 

the ties implies there is further binding to be performed, 

and the allocator continues with this as usual. The same 

column may become ready again, at a later stage of binding, 

and the termination procedure repeated. This repetition will 

continue so long as active ties remain in the system, and is 

called multiple termination. 
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In SHAPE non-reentrant and semi-reentrant binding (modes 1 

and 2) have been implemented. Completely reentrant binding is 

described in the preceding chapter, as are the differences 

between modes 1 and 2. From the point of view of the allocator 

there are two important distinctions, firstly that in mode 2 a 

ready Slarc may be allocated even if one or more of its terminal 

datasets is still active, and secondly that a completing tie may 

find a terminal dataset active, in which case it is queued. 

If such a tie is queued, it is called a transaction and has 

three main attributes, LAMBDA, BETA, and IFCOL. These are the 

LAMBDA, BETA and IFCOL of the completing tie. Transactions are 

chained and the head of the chain for each INarc of a REP matrix 

is pointed to by the corresponding member of a reference array 

Q, whose dimension is equal to the number of INarcs. The chains 

are processed on a FIFO basis. 

The methods of queueing and reactivating the REP matrix 

by bringing in queued transactions are governed by the principle 

of keeping successive cuts distinct and allowing no interaction 

between them. Sequence is maintained by FIFO queueing, and 

separation by ensuring that a transaction is brought into a 

REP matrix only when the columns containing the elements it will 

activate are all inactive. An example is shown in Fig. 4-10. 

When a tie terminates in mode 2, as it deactivates its 

initial datasets it also scans the rows of the REP matrix which 

contain those datasets. If it finds that such a row has no active 

datasets and there is a queued transaction for the row, it will 

bring in the transaction. 
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Fig. 4-10 Transaction entry to REP matrix. 
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Suppose column two in Fig. 4-10 completes, then datasets a and e 

will be deactivated, and rows two and three scanned for activity. 

If datasets b and c are inactive the row is available for a queued 

transaction. If Q[2] is not null, the transaction at the head of 

the chain will be brought into the REP matrix. That is to say that 

datasets a, b, and c will be activated and the transaction values 

for LAMBDA and BETA will be inserted in the array elements LAMBDA 

[2]/  and Bh_LA [2]. If IFCOL is greater than zero, then only the 

dataset for that column is activated, e.g. if IFCOL of Q [2] 

is equal to 6 then dataset c only,will be activated. In such a 

case the row scan does not require a and b to be inactive. 

Separation of successive cuts is ensured, since we know that 

all the columns of the REP matrix affected by bringing in a 

transaction belonging to cut n 1 have completed execution in 

cut n. Other columns may still be executing in cut n, but 

cannot interact with cut n+ 1 since they have no elements in 

common with the activated row, e.g. any of datasets e, d, m, f, 

r, h, k, may still be active when a transaction is brought in 

on row two. Similarly, should a tie whose INarc terminal 

datasets are represented by row two, find any of a, b, c, active 

on its termination,it will be placed in the queue defined by Q [2]. 

The number of datasets which are currently active in a REP 

matrix is called its activity. In mode two the activity includes 

the number of transactions queued at the node. If queues only 

are considered, activity is equivalent to queue size. If the 

REP matrix has only one element per row, the row is analogous 

to the server of the corresponding queue. When the activity at 

a Slnode falls to zero there can be no storage requirement, and 
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consequently the Slnode is freed from the Plnode to which it was 

bound. This allows a subsequent reactivation of the node to bind 

it to any acceptable Plnode. 

Finally we add a postscript to reentrance restrictions 

where IFloops are involved. When an arc is allocated in mode 1, 

the allocation is allowed only if its terminal datasets are 

inactive. However, if any terminal dataset belongs to a column 

which is an IFloop, a further restriction becomes logically 

necessary. The aim of both restrictions is to prevent a Slarc 

being allocated while any columns of its terminal node which 

contain its terminal datasets are active. This ensures non-

reentrant execution. As long as the column is not an IFloop, 

the first restriction is sufficient . If it is an IFloop, we 

bring in the further restriction that no dataset of the column 

may be active, as otherwise the IFloop might still be active due to 

a dataset in another row to the terminal row of the arc being 

allocated. Similarly in mode 2, a terminating tie is queued if 

it would otherwise activate a dataset in the column of an 

already active IFloop. With this rule sane illegal side 

effects are also avoided which can arise when the IFloop is a 

DOloop. This ends the section of the allocator which deals 

with the freeing of resources. 

We now describe the section of the allocator concerned 

with activating new SIarcs. Having processed a completed tie, 

the allocator examines the terminal Slnode of the tie to see 

whether the activation of the terminal datasets provides any OUTarc 

of the Slnode with a complete set of active initial datasets. 
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Effectively this means scanning the repartition matrix to 

see whether any\column has all its non-zero elements negative. 

If the column represents an IFloop, it is sufficient to find 

one negative element. During the scan, whenever an OUTarc is 

found to be ready, an attempt is made to allocate a processor 

to it, and to allocate any storage required by its terminal node. 

For each OUTarc (column of REP) the Boolean variables TIED, 

POSSIBLE, NOPE, PCAN and IPPH , are used. These are initially set 

to false. If the OUTarc has the same terminal and initial node, 

then IPPH is true. The SHAPE system includes SIarcs which require 

no processor. Since matching of Plarc to Slarc is based on the 

function vector PHI of the SIarc, we allow arcs to have all 

elements of PHI equal to zero. We interpret this as a state- 

ment that the Slarc requires no hardware functions, therefore 

no processor. Such SIarcs are allocated as usual, except that 

they are not bound to any processor. Clearly they are of zero 

duration, and hardware dependent only for terminal dataset 

storage. In every way they are treated as regular SIarcs, and pro- 

vide a convenient method of treating aspects of a model which are 

time or logic, rather than hardware, dependent. If such a Slarc 

is found by the allocator scan, the variable NOPE is set true. 

If the OUTarc can be executed (this is determined during the 

attempt to allocate resources to it), then POSSIBLE is set to 

true. If the OUTarc's terminal node is tied to a store, then 

TIED is set to true. If the Slarc is not only executable, but 

the appropriate resources are available, then PCAN is set true. 

If LARST is true and a ready OUTarc is found, this signifies 

that all the datasets of the last node have been completed. 
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Consequently the graph (or subgraph) is complete, and the 

allocator exits to its own completion procedure. 

On finding a ready OUTarc the allocator attempts to allocate 

the resources it requires, and activate it, as follows. 

First the allocator searches down the chain of Siarcs from 

the node under consideration to reach the data block for the 

ready arc. This block holds a pointer to the terminal node of 

the arc, which is read to the variable SINN. The variables SIN 

and S already hold pointers to the Slnode being scanned and the 

ready arc respectively. The variable PIN holds a pointer to the 

store to which the Slnode is tied. 

At this point we enter the hardware allocation loop of 

the allocator. This loop is traversed for each ready OUTarc 

found in the scan. For a processor (PIarc) to be able to 

execute the ready arc it must be able to read from the store 

to which the Slarc's initial node is tied, since it is in this 

store that the SIarc's initial datasets reside. That is to 

say we must restrict ourselves to OUTarcs of this store. 

The allocator accesses the terminal Slnode's repartition 

matrix and calculates the quantity of storage required by the 

Slarc. In the case of an IFloop the storage required is the 

size of the largest dataset which could be selected by the 

IFloop. A restriction introduced here is that the size of the 

largest dataset may not be greater than the size of the initial 

dataset. This is not a constraint of the model; the reason is 

that an IFloop is regarded as performing a test on its initial 

dataset, and consequently choosing an alternative rather than 

creating any new data. 
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For generality the implementation provides for the case where an 

IFloop has its first IFCODE (this code governs the selection of 

the IFloop's terminal dataset) set to zero. This condition is 

interpreted as meaning that though the Slarc has the same initial 

and terminal nodes, it is to be treated as a normal Slarc and all 

the datasets of its terminal row are activated. 

The SHAPE implementation has the property that a Slarc which 

is active and allocated (tied to a Plarc and executing) is auto-

matically protected from further (erroneous) allocation. 

This could occur since all elements in its column of the REP 

matrix of its initial node remain negative while the tie executes. 

Should the allocator scan such a column it would appear ready and 

consequently a Candidate for allocation. However, on completing 

a tie the allocator scans only columns which contain a dataset 

activated by the completion of the tie. Such a column could not 

have been previously ready (and also, therefore, not previously 

allocated) since at least one of its elements was inactive. 

This ensures that any OUTarc allocated by the allocator has 

become ready on that call of the allocator and is therefore not 

already allocated. The exception to this is the case of delayed 

columns, but these are known to be unallocated since their OUTarc 

specifier is set negative. In brief, if a terminating tie 

activates row i of its terminal REP matrix, then the allocator 

scans only columns j for which REP [i,j] < 0, and columns which 

have been marked as delayed in the manner described below. 

The allocator now chains down the OUTarcs of the initial 

Plnode performing the following tests. If the ready arc's 

terminal node is tied to a store, a check is made that this is 
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also the terminal store of the Plarc. If not, the Plarc is not 

considered. 

If the terminal Slnode is not tied, the Plarc's terminal 

store is checked to see that its capacity is sufficient to 

provide the maximum storage the Slnode may require. This 

restriction is not a constraint of the model; it is an 

allocation strategy aimed at preventing system deadlocks. If 

the restriction is not satisfied, then the Plarc is not 

considered. 

If the Slarc is an IFloop, then the Plarc's terminal store 

must be the same as the initial one, since all datasets of a 

Slnode must reside in free same store. The model provides the 

facility to specify that a Slnode be tied to a specific store 

of a Plgraph. Each Slnode has an attribute PNID. If this is 

non-zero, the allocator will only tie the Slnode to a Plnode 

whose node number is equal to PNID. As each node must be 

uniquely numbered, there will only be one such node in any 

graph. Use of this facility requires that the Slgraph be 

used with Plgraphs known to have appropriately numbered nodes, 

decreasing the independence of the team description. 

If all the above tests have been successfully negotiated, 

the allocator will now proceed to assess the performance of the 

processor in executing the Slarc we have been dealing with. 

This it does by calling procedure MATCH. Procedure MATCH requires 

pointers to the two arcs, and the length of the performance 

vectors, as parameters. 

It provides in return the time the processor will take to 

execute the Slarc, together with certain measures of performance of 

such an execution. 
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If the processor is incapable of executing this Slarc, MATCH returns 

a negative value for the execution time. 

MATCH derives its results from the software function 

frequency vector of the Slarc (PHI [i]), and the three performance 

vectors (PSI [1,1], PSI [1,2], PSI [113]) which give the time used 

the utilization, and the efficiency in execution of the i th function. 

If MATCH finds that the Slarc has a subgraph then it checks 

that the Plarc being matched also has one. If not, an error is 

logged. Otherwise MATCH generates a new allocator to bind the two 

subgraphs, and thus provide the required performance measures. 

Control passes to this allocator and remains there until this 

sub-simulation is completed. MATCH then extracts the results it 

needs and exits back to the original allocator. 

Here we check the time provided by procedure MATCH. 

If positive, the Boolean variable POSSIBLE is set to true. 

The allocator then checks that the processor's terminal store 

has sufficient storage available to accomodate the terminal 

datasets of the Slarc. It also checks that the processor or 

a fraction thereof is set free to be allocated. If both these 

conditions are satisfied, PCAN is set to true and the allocator 

proceeds to compare the performance measures of this processor 

with the best found to date. If the comparison is favourable 

the new processor replaces the old as the best choice for this 

SIarc. 

At present the comparison is made on the time taken to 

execute the Slarc. The reasons for this strategy (again 

such a choice is not a constraint of the model) are as follows. 
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The performance measures currently in use are not definitive. 

One of the purposes of the prototype system is to examine their 

validity. Their use in allocation decisions would distort the 

behaviour of the system and therefore severly interfere with any 

such assessment. The choice of execution time as an allocation 

criterion is prompted by its frequent appearance (sometimes 

implicit) in existing systems, and by its widespread use as 

the variabletto be optimized in theoretical treatments of 

processor allocation. 

The algorithm used for obtaining an OUTarc LAMBDA 

from the LAMBDA values of its INarcs makes the new LAMBDA 

equal to the scalar product of the OUTarcs REP matrix column 

and the LAMBDA vector, that is, 

INARCS 
Xj  = E REP Ci,j1A i  

i=1 

This means that the LAMBDA value of a tie now gives the total 

amount of data being processed by the tie. This allows the 

modeller to specify the quantitative aspects of data 

repartitioning, and to incorporate absolute quantities as well 

as relative ones. 

The derivation of an OUTarc BETA from the BETA values of 

its INarcs will depend on the interpretation given to the 

variable BETA. This was introduced as a modelling aid for the 

collection of cut statistics. It is expected to be used mainly 

to record generation times for cuts or parts of cuts, and so the 

following algorithm wa3chosen as being the most useful for such 

recording. 

(3,j : = Max [e 	] i j  pi  
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where e.. = 1 if REP [i,j] 0 and zero if REP [i,j] = 0 

With this algorithm cut age is regarded as being the age of the 

youngest cut member, in the event that more than one age is 

produced, and allows BETA to record the most recent value 

produced by a Slgraph specified change. 

The duration of a tie is now LAMBDA * T where T is the 

execution time of the Slarc per unit data. This is the T provided 

by the procedure MATCH, and is adjusted to reflect the fraction 

of processor allocated to the tie. 

The allocator performs the steps outlined above for each 

Plarc on the chain of OUTarcs of the initial Plnode. On reaching 

the end of the chain the best choice, whose address and 

characteristics have been saved, is allocated to the Slarc. 

This is done by setting the attribute PSID [0] of the 

Plarc to the previous fractional allocation plus the fraction 

currently being allocated. Any storage required for the 

terminal datasets of the Slarc is allocated and the change 

recorded. Finally an object of class tie is generated, with 

an execution time derived from that provided by procedure MATCH. 

The allocator may arrive at the end of a chain of PIarcs 

without finding one which it can allocate to a ready Slarc. 

This can occur for two reasons. The first is that no processor 

was found which was able (this includes terminal store suitability) 

to execute the Slarc. The class of circumstances which lead to 

this situation correspond to what are usually called run-time 

errors. Such errors may sometimes imply a logical error in the 

Slgraph being executed, for example, a missing job control card, 

or they may imply that the graph cannot be executed on the given 
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Plgraph, i.e. configurational limitations. An example of the latter 

might be the generation of more data by a program than could be 

accomodated on a physical storage device. In these cases the 

allocator ceases to bind the two graphs and takes an error exit. 

The allocator has a number of tests which check for error condi- 

tions throughout the iteration. When an error exit is taken, 

an error code is output which identifies the condition which has 

arisen. A list of error codes and their meanings is given in 

Appendix IV. 

The second reason for not allocating resources to a ready 

Plarc is that all resources are in use. In such cases the arc is 

marked as ready by setting its terminal node indicator (REP DDI A) 

negative, and a delay is generated for this node. The delay is 

a type of Slarc which does not require hardware but ensures that 

the allocator is recalled to the desired node at a later time, 

when resources are again free. When the allocator returns to a 

'node due to a delay arc, it performs no freeing of resources, 

but scans the zeroth elements of the columns of the matrix REP 

to find delayed ready OUTarcs. It then attempts to activate 

these OUTarcs in the normal way.\ There is never more than one 

delay associated with .a Sinode, and this propagates as long as 

delayed SIarcs remain unallocated. 

Delays are scheduled by the allocator to reactivate when 

resources become available. If no such occurrences are found 

in the list of future events, then a deadlock situation has 

arisen, and the allocator terminates binding with an error 

message. 
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Every call of the allocator checks whether the system time 

has exceeded the binding time limit, and if so halts binding and 

exits to the statistic processing procedures which operate on the 

data accumulated duting the run. 

A debugging option has been included in the SHAPE 

implementation to output extensive tracing information during 

each iteration of the allocator. In particular all software to 

hardware matchings (successful and unsuccessful) are output, 

together with the appropriate reasons. 

For further details the reader is referred to listings 

of the SHAPE program in INDRA Note 286. 
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4.4 Ties and IFloops.  

We now discuss some aspects of the SHAPE implementation which 

are not explicitly prescribed by the modelling system presented 

in the previous chapter. The first of these if the representation 

in a directed graph of processors which can read from and write to 

more than one store. Such a processor would seemingly require 

a Plarc with several initial and terminal nodes. Below we argue 

that this is a misleading picture of the situation, and put 

forward a description using the Plgraph as currently defined. 

In the implementation itself this method is compressed by the 

use of a processor state for each potential configuration. 

The next aspect of the SHAPE program dealt with is its 

ability to represent preemptive scheduling. An arc at any 

level of a Slgraph is the indivisible process at that level. 

Consequently the question must arise as to how the implementation 

will model a preemptive event occuring during arc execution 

without violating that property. By the introduction of 

fractional allocation, and using the results of Muntz, DAUNT 70] 

we argue that allocator variation of the fraction is equivalent 

to preemptive scheduling. The latter part of this section then 

deals with branching arcs, called IFloops in the implementation. 

Within the simulation block of class allocator a process is 

defined with the name TIE. This process has a duration equal to 

the product of a time TIM and the tie's datasize LAMBDA. Both 

variables are parameters of the process and have values provided 

by the allocator which activates the tie. If the Slarc of the 

tie is an IFloop, then either parameter may be changed by the 

tie itself. 
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When the tie terminates it sets pointers in the data area of 

of the allocator (which is global to the-tie) to reference the 

initial and terminal nodes of the Slarc and Plaro which constitute 

the tie. Pointers are also set to reference the arcs themselves. 

The tie then reactivates the allocator, terminating itself in the 

process. 

The Plarc which is allocated to a Slarc to form a tie may 

represent one state of the processor involved. In the SHAPE 

system, a Plarc is used to describe each possible configuration 

of a processor. These PIarcs are referred to as states of the 

processor, since they all refer to the same physical processor. 

This is not a fundamental attribute of the Plgraph 

method, but a shorthand for the basic, but more unwieldy 

representation of such processors. A processor which can read 

from and write to more than one store does so by having a data 

path (in some sense separate) to each store. For any given 

configuration only one pair of data paths is in use. Both read 

and write data paths use storage internal to the processor 

(usually one or more registers), and data transformation occurs 

when the processor proper operates on this internal storage. 

We can represent each data path by a Plarc, internal 

storage by a Plnode and the processor by a loop at this node. 

Thus a one to one correspondence is retained between hardware 

items and Plgraph elements. We use the many state representation 

as a shorthand in situations where more detail is not required, so 

reducing the processing required, for a run. An illustration of 

the two representations is shown in Fig. 4-11. 
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Fig. 4-11 Four state representation of a processor.  
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In the SHAPE system a task may be allocated a fraction of a 

processor as well as a complete one. In a real system it is not 

usual to find true fractional allocation. Where it does occur, 

closer examination reveals it to be unitary allocation of sub-

assemblies of the processor, or preemptive allocation invisible 

to the allocatee (preemptive allocation usually occurs in its 

most elementary form, namely time-slicing). 

We use various results of [MUNT 70] to justify the use of 

fractional allocation to protray preemptive scheduling in the 

SHAPE system. In their paper Basic Scheduling (BS) discipline 

is defined as one in which once a processor is assigned to a 

task it must work continuously on this task until it has been 

completed. If processors can be interrupted before a task is 

completed and reassigned to a new task, the discipline is called 

Preemptive Scheduling (PS). 

An alternative variation of the BS discipline is to allow 

fractional allocation of a processor to a task. If the 

fraction assigned is w then it is considered to increase the 

computation time of the task by a factor of 1/w. If the 

fraction allocated to a task is allowed to change during its 

execution the discipline is called General Scheduling (GS). 

[MUNT 70] shows that a General Scheduling discipline 

is equivalent to a Preemptive Scheduling discipline. As remarked 

above, real systems usually use some form of PS. The 

reallocation of resources can only occur when an individual task 

completes. It need not occur if completion does not make any 

other task ready. That is to say that task completion is a 

necessary but not sufficient condition for reallocation. 
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(unless we include return of the resource to the idle chain, in 

which case completion is also sufficient). 

The allocator of a real (preemptive) system is either alerted 

to the completion of a task by the setting of flags, or is auto-

matically activated by an interrupt. The essential purpose of 

the interrupt mechanism is in fact to activate the system allo-

cator (interrupt identification and housekeeping) which preempts 

resources (the processor) for a higher priority task (interrupt 

handling). Handling the interrupt may itself generate new tasks 

which are generally of lesser priority. Such tasks compete for 

resources with those already in the system, without preemptive 

priority, i.e. are added to tables or queues. 

The SHAPE allocator is able to duplicate the behaviour 

described above. A completing task (tie) sets allocator 

variables with identifying information before activating it. 

The allocator will then update the status of the tie's terminal 

datasets, free resources used, and has the capability to preempt 

a processor for a higher priority task which is now ready. 

Such preemption can be achieved by altering the existing 

fractional allocations of the processor to provide the necessary 

resource. When a task completes, the freed processor fraction 

may be allocated amongst other tasks already tied to the processor, 

because these are chained (the chain starting with the attribute 

PSTIE for each Plarc) and consequently available to the activated 

allocator. 

From the above remarks we see that the SHAPE allocator can 

meet the requirements of a scheduler for a General Scheduling 

discipline, since it is able to allocate a fraction of a processor, 
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and to vary this fraction when the system chapges state. From the 

equivalence of a CS and PS we contend that the SHAPE allocator can 

adequately represent preemptive scheduling, and can also duplicate 

its dynamic behaviour. 

In the SHAPE system an IFloop is a Slarc which has the same 

initial and terminal node. Such an arc is allowed to perform 

some functions which are not made available to arcs with different 

initial and terminal nodes, and we now describe these functions. 

An IFloop description consists of six real numbers which 

are stored in an array called IFF, at run time. There are two 

IFcodes, and each IFcode has two parameters, say A and B. If 

both IFcodes are zero then no special action is taken when the 

IFloop is activated. The array IFF is an attribute of all 

SIarcs, but we make the restriction that only an IFloop may 

have non-zero IFcodes. 

This restriction excludes arcs with different initial and 

terminal nodes from executing IFloop functions. The restriction 

is arbitrary and has been made only to test the hypothesis that 

modelling computational activity does not require IFloop 

functions to be available on other arcs. 

At present all IFloop functions are executed as soon as 

the IFloop is activated. There is then a delay of duration 

T * LAMBDA before the IFloop terminates and activates its 

terminal dataset(s); T is the arc execution time per unit data, 

and LAMBDA is the data size. 

The first IFcode (IFCODEONE) controls the choice of terminal 

datasets to be activated. If IFCODEONE equals zero, then all 

the terminal datasets are activated, otherwise a choice is made. 
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IFloop 

a=0, b=50 

if codeone = 1 

The incoming arc activates 

dataset u. This is 

sufficient to initiate 

execution of the IFloop. 

It chosses to activate 

dataset v, reinitiating 

its own execution, until 

the counter reaches 50. 

It then chooses dataset 

w, activating the outarc. 

entry 	t 	On entry the dataset t is 

activated and initiates 

o- 
It 

IFloop 
execute process p. On 

activates dataset u which 

executes the IFloop again. 

This has the effect of 

executing process p fifty 

times before exiting 

through dataset w. 

Fig. 4-12 DOloop examples.  

from process pp  
execution of the IFloop. 

This will choose to acti-

vate dataset v and so 

a=o, b=50 

to process 	

exit 
completion process p 
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The method of choice depends on the value of IFCODEONE (which is 

an integer between 0 and 7). If IFCODEONE equals one then the 

IFloop behaves as a DOloop, i.e. it adds one to a counter held 

in array element STARC [0], and activates the first dataset in 

its terminal row. As soon as the counter equals parameter B, the 

second dataset is chosen for chosen for activation, and the 

counter is reset to the value of parameter A. Use of DOloops is 

shown in Fig. 4-12. 

If IFCODEONE equals two then a random choice is made between 

the first and second datasets of the row, with probability of 

choosing the second equal to parameter A. 

If IFCODEONE equals three then the k th dataset of the row 

is activated, k being a random integer between A and B. 

IFCODEONE equal to four is used for setting the BETA 

parameter of the IFloop to its termination time. All terminal 

datasets are activated as in the case IFCODEONE equal to zero. 

BETA, like LAMBDA, is a variable which propagates with the cut, 

and is currently used to retain the cut creation time. Its age 

is then available at any stage of its history. 

The second IFcodel  IFCODETWO, is concerned with providing 

new values for T or LAMBDA. If it is positive T is set to the 

new value, if negative then LAMBDA is reset. The new value itself 

is chosen by a method corresponding to the numeric value of 

IFCODETWO (an integer 1 to 7). If IFCODETWO equals zero then 

no action is taken and both T and LAMBDA are left as provided by 

the allocator. If either is reset, this alters the duration of 

the IFloop appropriately. IFCODETWO has its own pair of parameters 

in the array IFF, which we will again call A and B. 
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If IFCODETWO equals one then the new value used is a linear 

function of the old one, namely A times the previous value plus B. 

If IFCODETWO equals two then a random choice is made between 

retaining the old value and replacing it by B. The probability of 

replacement is A. 

If IFCODETWO equals three then the new value is a random 

integer between A and B. 

If IFCODETWO equals four, then the new value is a random 

real number between A and B. 

If IFCODETWO equals five the new value is randomly chosen 

from a normal distribution of mean A and variance B/1.96. If 

the new value is greater than B it is set to B, which removes 

the five per cent tail of the distribution. 

IF IFCODETWO equals six the new value is randomly chosen 

from a negative exponential distribution of mean 1/A. Should the 

chosen value exceed B, it is set to B. If however 11..is zero, then 

this rule is not applied. 

If IFCODETWO equals seven the new value is randomly chosen 

from a Poisson distribution of mean A. The new value is set to 

B if it exceeds B, and B is greater than zero. 

Should an IFcode be out of range, or a specified dataset 

not found in the terminal row, then the IFloop passes a signal 

to the allocator not to activate any terminal datasets. This 

effectively extinguishes the IFloop passes a signal to the 

allocator not to activate any terminal datasets. This 

effectively extinguishes the IFloop since no further actikity 

occurs (apart from deactivation of its initial dataset). 

This facility may be used deliberately to terminate an 

unwanted process if desired, since it does not cause the 
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allocator to halt the binding of the two graphs. 

A further facility implemented in the SHAPE program 

compensates for the absence of mode 3 binding. This allows 

an IFloop to deactivate its own initial dataset immediately 

after activation. Since this dataset is the only indication 

in the graph structure that an IFloop is executing, the effect 

is to allow several reentrant executions of the IFloop to 

occur concurrently. The facility is involved by changing the 

sign of IFCODEONE; making it negative. 

The actions taken according to the numerical values 

of the IFcodes are summarized in Fig. 4-13. 

185 



if code 
value dataset activated 

0 all 
 

1 if counter < b then first: counter + 1 
else second counter:= a 

2 random choice - prob (first) = 1-a 
prob (second) = a 

3 k th where k:= random integer (a,b) 

4 all: beta := termination time 

5 illegal 

6 illegal 
 

7 illegal 

if code 
value new value for lambda or beta 

0 no action 

1 newval:= a * oldval + b 

2 prob (newval:= oldval) = 1 - 
prob (newval:= b) = a 

a 

3 newval:= random integer (a,b) 

4 newval:= random real (a,b) 

5 newval:= normal (a,b/1096) 
 

if b > 0 then newval 	b 

6 newval:= negexp (a) 
if b.> 0 then newval .,. b 

7 newval:= poisson (a) 
if b > 0 then newval.f.', b 

Fig. 4-13 Summary of IF code actions.  
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45 Hardware measurements.  

In this section we develope performance measures for hardware 

usage during computation. The purpose of a measure is to distinguish 

quantitatively if possible, between alternative courses of action. 

Performance arising from a particular course of action is judged 

good or bad by criteria expressed in terms of measures. For a 

measure to show different alternatives without bias, its 

derivation and operation should be independent of them; its value 

is then an accurate reflection of the alternatives. 

The modelling system described in Chapter III is recursive. 

We argue below that measures used in it should also be capable of 

recursive application. Among the aims of the system is the 

comparison of different software graphs executing on the same 

hardware and vice versa, as well as the investigation of 

alternative allocation strategies. Consequently we require that 

any measures used in the SHAPE system are independent of allocation 

strategy and graph features which can be varied by the modeller. 

Our choice of performance measures attempts to satisfy these 

conditions. We concentrate on two elements underlying many 

existing measurement systems, and which were first put forward in 

Chapter III. To recap briefly, two measures for the performance 

of a processor P in executing an arc S were used. These were the 

utilization (ut) and efficiency (ef). Utilization may be thought 

of as that fraction of the processor whidlis needed by the task 

S, i.e. 1 - ut is the fraction which is never used. Efficiency is 

the weighted average fraction of the utilization which is is use 

during the execution of S. 
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We regard a processor P to be made up of n components 

weighted with a cost function c. for the j th component. The 

processor can perform any of m functions Ti  in time ti. When a 

particular function is being performed not all components are 

used. The fraction (weighted by the cost function c_.) used is 

the utilization ut for the function f.. Each component is in 

use for a time t.. 	 I 
< t., that is to say that the utilized components 

ij  

may not be in use for all of the time taken to perform the function 

f
11 	 1 —Theefficiencyef.inperformingfunctionf.is the weighted 

fractional time in use of those components which are utilized. 

This then leads to the following definitions. 

C =)E c. 

ut.
1 
 = 5" c. sign (t. .) 	

J 
c. = y_ 	ijV 

	

c. sign (t 	C -:- 	1J 	•  

ef. = 	c.t.. / t.Lcsign (t ) 	c.t 	/ ut.t.0 
J 1j 	1 	j 	ij 	• J 1J 	1 1 

An example of the use of these definitions is shown in Fig. 4-14. 

Since the Slgraph model is structured recursively, as is the 

SHAPE allocator, it is clear that we would like some form of 

performance measure which was also defined in a recursive fashion. 

Such definition would allow statistics to be uniformly derived at 

any level of the model, irrespective of the depth at which the 

SHAPE run was executing. Using the measures utilization and 

efficiency, we would like relations between levels k and k+1 of 

the type, 

ef
k 

= f (ef
k+1 

 ut
k+1
) 

uu
k 
 = g (efk+12 Utk+11 
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-not used 
by 

function 

of ut 

uti  

ut2  

ut3  

time function 01 02 03 • • on mix 

fl tl $1 til t12  ti3 • 	• ' • tin 

t21 t22 t23 	• 

t31 	• 

f2 012  

efl 

ef2  

ef3 f3 03 t3  

t2 

• • • • • 

• 

• 

• • • • 

• • • • 

• . t ut.  tm  tmi . f m  

Processor P has thirteen components. 

Components one to nine are used by function f. 
9 	14 

ut = 21 01 E j=1 	j=1 

of = 2 citii/11  Q j  

Fig. 4-14 Processor  utilization and tMsLeasy/. 
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The reason that utilization can be less than one is the 

existence of a minimal unit of allocation in most of the systems 

under discussion. That is to say that a certain unit, or amount, 

of the resources available must be allocated, or none at all. 

In such a situation, if a task is to be executed, then the allocated 

resource will generally exceed the task requirement (it is 

infrequent for the requirement to be an exact multiple of the 

allocation unit). In the case of a processor it is clear that it 

is possible to allocate only the whole processor at any given time. 

Since few tasks require the complete range of functions which the 

processor can perform, there will be unused components in most 

task executions. 

If we apply this point, of view to a Slgraph of many levels, 

we see that there will be a minimal unit of allocation at each 

level, determined by the resources which can be described at that 

level. When resources are allocated for an arc at level k - 1, 

which has a subgraph at level k, not all components of the resource 

may be needed in executing the subgraph. The components will be 

described by the k th level of the Plgraph on which execution is 

taking place. If we assign a cost c. to the j th component at the 

k level then the utilization at level k - 1 will be the sum of the 

c. for components used during the execution, divided by the sum of 

c. for all components belonging to the unit allocated at level 

k - 1. That is to say, 

utk-1  = E c. sign (t.)/t c. 

where t. is the time for which the j th component was in use. 
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Following a similar line of reasoning, we can say that the 

efficiency at level k - 1 will be the fractional usage of those 

components actually used in executing the subgraph at level k. 

We use the words fractional usage to denote fractional usage in 

both component space, and time. That is to say, if the processing 

unitc.spendsatotaltimet.allocated to arc a, its utilization 
ja 

during such allocation is utja 
 
. If we sum over components and arcs 

of the k-level subgraph, we get 

efk-1  =  c 11t . utk. / tk-1  1: c . sign (t .) 
j  j a  ja ja 

= 	c.t. ut / tk-1utk-lCk-1  
j a  J Ja ja 

where t
k-1 is the time taken to execute the subgraph at level k. 

At the lowest level of a Plgraph we are, by definition, 

unaware of the fine structure of the processing units being 

allocated at that level, and of the task being executed. Without 

this knowledge we can at most know the time for which an individual 

componentisueed(t.). This does not affect the derivation of 

ut
k 
 . for the arc (task). 

Assuming that the graph model is constructed to a depth at 

which the addition of further levels (greater depth) will not 

affect the results being sought we can take the 	 be one at 
ja 

the deepest level. That is to say, that the omission of a fine 

structure (i.e. subgraph) on the part of the modeller implies 

that the ut. are negligibly different to one (negligibly in the 
ja 

sense that taking ut
ja 

= 1 introduces a negligible error in the 

behaviour being investigated). This action can at most affect 

efk-l; efk-2  is calculated using utk-1  which is unchanged. 
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Taking ut
ja = 1 we get 

	t. ut.
a  = 
	and consequently 

ja j  a 

efk-1 = c.t / tk-1u tk-iCk-1  
J 

which agrees with the earlier expression for efi  where, it should 

now be clear, this approximation was implicitly made. 

In the SHAPE system we use a mix of functions fi  to 

characterize an arc. This is a shorthand for describing  an arc 

as a chain of arcs with the arc representing  function fi  being  

repeated 0 times. 

We are now concerned to derive suitable formulae for ut and 

ef of an arc as characterized in the SHAPE system. Applying  results 

for utk-1 and efk-1 where level k is a chain as mentioned above, 

we get, 

utch 	c. sign (I, 0.t)/ C 
j 3 	1  ij 

since component c. will be utilized if any of the products 0.t.. i 

is non-zero, and 

efch =r- c .t../E 95.t. 	. sign (E 0.t..) 
i j jij 	j  

using  the deepest level approximation. This is appropriate since 

the chain-mix analysis is only performed when no fine structure is 

given for the arc. The expression simplifies to, 

efch =E 0.t.ut.ef./ utchE 0.t a 	a 	a  i  

In the SHAPE characterization the quantities 0.a_,  t., ut. and ef. 

are given as input data. Clearly the problem is to find an 

expression for utch without knowing the c and t.. (i.e. without 
J 	1J 

knowing  the fine structure of the processing  unit). 
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At the time of writing it does not seem possible to obtain such 

an expression without making further assumptions. The validity 

of any assumption will depend on the context in which the model is 

being used. We now put forward three possibilities. Firstly 

utch =Max(ut.sign(. (f1 ))  

This might seem appropriate when the components used by the fi  tend 

to be subsets of the set used by fm  where utm  = Max (uti). 

Secondly we suggest 

utch  =E t .ut /z 0. t . . 

which is the expected utilization during execution of the chain. 

Thirdly we present a possible derivation if it is assumed that at 

the deepest level all ci are equal (to one, with no loss of 

generality). Such an assumption can be made when the components 

are identical, or when the uti  and efi  data which has been 

provided reflects such a situation. In this case we can say, 

ProhM.=0)=1-ut.for all j, 

Prob (c. not used in chain execution) 

= IT (1 .- ut.) for i such that 91i. 	0. 

= 'TF (1 	ut. sign (0i)) 

'Prob (c. is used) = 1 -Tr (1 - ut. sign (01)) 

and consequently, 

utch =1-7(1-ut.sign (0i)) 
i 

We call these three possible approximations to ut
ch: 

utmx, utav, utpr respectively. 
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They give rise to three possible values for ef
ch 

depending on 

which one is used in the expression. These will be called efmx, 

efav and efpr respectively. 

We can show the operation of these three definitions by 

a numerical example. Suppose an arc requires one execution of 

each of two functions 01  and 02. If 01  and 02 have durations 

of 1 and 3, and utilizations of 0.9 and 0.5 respectively, then 

we can see that 

utmx = 0.9 

utav = 0.6 

utpr = 0.95 

If a set of functions required by a Slarc can be ordered 

such that each function includes its predecessors, then clearly 

utmx is the appropriate measure. For example, the first function 

may be the no operation function of a central processor which 

simply advandes to the next instruction; the second may be a 

register transfer; the third a register transfer with an 

airthmetic operation. Each of these requires the components of 

the processor used by its predecessors. 

The second measure, utav, is a statistic which corresponds 

to the expected value of the utilization during arc execution. 

This is not necessarily a value which could actually arise in 

arc execution, but provides the time weighted average of such 

values. 

If the set of functions of a Slarc is such that they)use 

groups of processor elements which are effectively independent, 

that is to say as if chosen at random, then utpr will be the 

most suitable measure. 
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gutav = 

crg 
utcurrent (t)dt/ C * T 

g g 0 

The current SHAPE system is designed to produce all these 

statistics. To summarize, for each allocation we get, 

time : = 	0.• t. 

utpr : = 1 - 1T(1 - uti  sign (0i)) 

titan : =): 0,

• t

iuti  / time 
i 

utmx : = Max (ut sign (0.)) 

efpr : 	0.t.ut.ef./ utpr * time 
i i 1 1 1 

efav : =11 0.• t.ut.ef./ utav * time 
1 i 1 1 

efmx : 	0.• t.ut.ef./ utmx * time 
1 1 1 1 

Extending these ideas to deriving appropriate measures 

for a subgraph (i.e. for the arc of which the subgraph represents 

the fine structure) we introduce a new variable, utcurrent (t). 

This is the weighted sum of component in use at time t during 

execution of the subgraph. If C is the total sum of components 

available and Tg  is the time taken to execute the subgraph, then 

we have, 

gutpr =E 
J 
 c. sign (t.)/ Cg  

gutmx = Max 	(utcurrent (t))/ Cg  
0<t<T 

g 

It is of course not necessary to make approximations in 

the case of a subgraph, the expression gutpr is the correct one 

from the point of view of the previous derivations. 
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The measures gutmx and gutav are included in order to provide 

consistency at the level above the subgraph, in which there may be 

arcs without a fine structure. Thus the gutpr, gutmx and gutav of 

level k provide the values of utpr, utmx and utav for the arc at 

level k - 1 whose fine structure is represented by the subgraph. 

In determining the efficiency we use the three types of arc 

utilization to provide 

gefpr .r L c• .t. utpr. / gutpr * C * T 

	

j a J Ja 	Ja 	g 	g 

gefmx = 	: c• .t. utmx. / gutpr * C * T 

	

j a  j ja 	ja 	g 	g 

	

gefaV = V I: c• t Ja 
	Ja 

j a / gutpr * C * Ts  
j a J 

gutpr is used throughout in the denominator, since it correctly 

represents utk-1 and means that the numerators are being compared 

to a common standard. 

In order to provide these statistics for a subgraph the SHAPE 

system maintains a running sum, for each processor, of the three 

expressions, 

utpr * t a a  

UtinX
a 
* t

a 

utav t 
a 
* 
a 

This allows as a byproduct, the production of statistics for each 

processor of the type described above. For completeness a running 

maximum of utmx
a 

is held, and also a cumulative function frequency 

vector s6 [1:n]. 0  [i] holds the total number of times the processor 

has executed function f.. This allows us to define, 
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putpr = 1 - iT (1 - uti  sign (Vi)) 

putmx = Max (utmx
a
) 

a 

putav = 	t
a 

utav
a/ 

 T
g a 

pefpr = ): r/f.t.ut.ef./  putpr * Tg  i  1 1 1 1 

pefmx = /: 0.t.
1
ut.
1ef.1/ putmx * Tg  1  

pefav = 	 ef 0.t.ut../  putav * T 1 1 	1 i 

In addition, for historical reasons we keep a running  total of 

t
a 

allowing  us to define, 

ptime = 2: t
a
/T
g a 

We now apply the arguments above to memory elements. If we 

regard a processor as made up of memory elements and data paths, 

the expressions arrived at above apply to the data paths (as 

processing elements of weight c.). Suppose each memory element 

is assigned a weight m. and is in use for a time t., we can say 

for function i, 

ut.
1  = r j  

m. sign (t..)/): m. ij   

and, M = 2: m. 
and so, ef. = E m .t. ./ t.Emj  , sign (t..) ij   

.tm.t../ ut.t.M ij   

This expression, like that derived for data path components 

in a processor, implicitly assumes that the utilization of memory 

at the level m. is one. Where the m. are memory components in a 

subgraph we say, 

J 
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utinci
-1 
0 

m
. sign (t.)

/, Mk-1 
7 j 

where tj  is the time for which the memory (or store) was in use. 

A store is in use when all or part of it is allocated to the 

initial or terminal datasets of an active arc, or to the storage 

of an initial dataset of an arc which is not yet active. 

The question now arises of what expression to use for ut.. 

We shall use mu.(t) to denote the level of usage of element mj  

at time t. That is to say that mu.(t) is in some unit of memory 

measurement, so that 

0 < mu.(t) < maxmu. 

where maxmu. is the capacity of m.. We use the product ,t. ut. 
JP JP 

as an expression for the usage of mj  over the execution of the 

subgraph, since a summation over arc executions will not include 

dataset waiting times, and a memory can hold data for many active 

and inactive arcs at any given time. t. is the length of the 
JP period p inwmchnru.

J

(t) > o andut.=max
DnuJkoi rnamru..

J s
o that 

JP  

%7 ef -1  =Em.
J 
 IE t

jPJ  
ut. P/ t

k-1 
 Lm. sign(t') 

m   

	

i P 	j 

L10Lm. 
= 	

p 	

k -1 
utm

k -lmk -1 .7.  t. ut. / t 
J 	JP JP J 

Since memory is a homogeneous  resource we can say that the 

union of all parts of the memory used during a given interval is 

equal to the maximum usage in that interval (this assumes a memory 

compaction mechanism which uses negligible resources). Since the 

union of used components in task execution is the utilization for 

that task, this allows us to write, 
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utj 
	

Max 	(mu.(t))/ maxmu. .p  = 
P 	P 

where 	and and T are the starting and ending times of period p 

respectively, so that, 

ut. = Max (ut. 
JP)  p 

Usingthisexpressionforut.in the equation for efk-1  gives 

us consistency with the equivalent expression for processing unit 

usage. Following through for the efficiency of memory m. we get, 

T 
ef. = 	g  mu.(t)dt/ ut.

J
T 
g
maxmu. 

0 

If we stipulate that the component weights m. and c. are in 

the same units then we are able to combine processing unit and 

memory unit usage as follows: 

Total resources allocated = Ck-1 + Mk-1  

Total resources utilized = Ck-1utk-1 + Mk-1utk-1 c 	 m 

Total resource usage 	= Ck-1  utk-1  efk-1  + Mk-1  ut ei c c 	m k-1  m 

dropping the superscript, we have, 

Overall utilization U = (C ut
c + M utm

)/ (C + M) 

Overall efficiency E = (C utcefc  + M utmefm)/ (C utc  + M utm) 

= (C ut 
c  efc 

 + M ut m m ef )/ (u(C + M)) 

In the SHAPE system the data on processor characteristics 

for each of the n functions at any level is assumed to consist 

of the values of U and E for each function. 

It can be seen, by examining the expressions aoove, that 

utilization is independent of idle time in task execution. 

In fact the utilization will reflect how well the allocation 

mechanism for a task (subgraph), and its choice of allocatable 
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entities, is suited to the task in hafid. The efficiency expressions 

tend to be an expression of resource usage (and therefore of idle 

time) of allocation units, and components within these units, for 

a sequence of allocations. 
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4.6 Software measurement.  

We describe below the types of statistics which are produced 

by the SHAPE system concerning Slgraph binding. These fall into 

three categories, statistics for nodes, arcs, and cut(s). 

Node statistics are held in three two-dimensional arrays, 

QD, QT, QS, all of dimension [0: INARCS, 1:4]. The zero row 

holds overall statistics for the node, while if binding takes place 

in semi-reentrant mode, the other rows contain statistics for the 

transaction queues of the corresponding rows of the REP matrix. 

For the node as a whole we keep statistics of the amount 

of active data associated with the node in QD [0,j], j = 1,4. 

These are the time integral of the associated data, and its 

maximum value. In array QT [0,j], j = 1,4 we retain the number 

of activations of the node, the sum of their durations, and the 

minimum and maximum duration. In QS 	j = 1,4 we hold the time 

integral of the node activity and its maximum value. Node 

activity is the number of currently active elements of the REP 

matrix plus the number of queued transactions, if any. 

Similar statistics are kept for the individual INarc queues 

if binding is semi-reentrant. Node activation becomes queue 

activation, i.e. the number of transactions which enter the queue 

is counted. Duration becomes queue waiting time. In order to 

record this item transactions possess a scratch variable which 

is set to current system time on entry into the queue; on exit 

the waiting time is current time minus the scratch value. 

Activity becomes queue size and is recorded as for the whole 

node. The usage of arrays AD, AT, and QS is shown in Fig. 4-15. 
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QT tOj 
time integral of  
node data 

last time changed 

current associated 
data 

max 
associated data 

activation 
counter 

sum of 
activation times 

min 
activation times 

k 
max 	. 
activation times 

time integral of 
node activity 

last time changed 

current activity 

max activity 

. 	, 

QD [i3 
	

QT 
	

QS [13 

1 
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3 

time integral of 
Q data 

last time changed 

current 
associated data 

max 
Associated data 

transaction 
counter 

sum of 
waiting times 

min 
waiting times 

max 
waiting times 

time integral of 
Q size 

dead time 

current Q size 

flax Q size 

Fig. 4-15 Node Statistics in arrays QD, sT, Qs.  
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However, if the INarc specifier of the row, REP [i10] is 

negative the corresponding rows of QD, QT, and QS are not used 

for queue statistics but to accumulate counts, sums, maxima 

and minima of the LAMBDA and BETA factors of the incoming arc 

activations. 

These are cut statistics, and may be collected at any node. 

If the node is the terminal node of the Slgraph, then the values 

collected will reflect the values of LAMBDA and BETA associated 

with the cut on its completion. At other nodes they will reflect 

intermediate stages of the cut history. BETA is a variable which 

records a time value and propagates with the cut. When one of the 

OUTarcs of a Slnode is allocated, the value of BETA given to the 

tie is equal to the largest BETA associated with the INarcs which 

provided the initial data of the OUTarc. At the moment BETA is 

set to the current time when a cut is generated. On completion of 

the binding which this cut represents BETA will still have this 

value (unless deliberately reset by an IFloop) and thus provides 

the age of the cut. At nodes other than the terminal one BETA 

can be used to provide the cut age at an intermediate point of 

its history. In semi-reentrant mode, LAMBDA and BETA values of 

ties are retained in transaction attributes TL and TB when the 

ties are queued. A use for the BETA factor occurs when a cut 

represents the transmission of a message in a switching network. 

In this case the cut age is the overall transmission time from 

source to destination. Array usage for cut statistics is shown in 

Fig. 4-16. 

The following statistics are recorded for SIarcs in array 

STARC [1:6], namely the number of times the arc was allocated, 

the sum of the execution times and utilizations, and the maximum 
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sum of squares 
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sum of squares 
of lambdas 
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4 

Arrays QD, QT, QS are used in this way when REP &,0)<:0 

Fig. 4-16 Cut statistics.  
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and minimum execution time and utilization. This is shown in Fig. 

1+-17. 

On graph completion in addition to the above statistics, 

the fraction of time (activity) for which nodes and arcs were 

active is printed. Averages are also printed for arc execution 

time, node activity, queue size, associated data, and in all cases 

these are averages over the whole graph time rather than the 

active time of the elements concerned. If the second type of 

average is required it can be obtained from division by element 

activity. 

The items described above have been implemented as being 

a simple but sufficient and useful set of statistics for present 

use with the SHAPE system. 
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Fig. 4-17 Arc statistics in array STARC.  



CHAPTER V 

VALIDATION 
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5.1 The choice of validation. 

For any system which attempts to model a large class of 

computational processes there must be many candidates for the role 

of validation. In choosing a model it is advantageious to select 

the simplest one which still tests all the facilities of the 

modelling system. In our case a further consideration was the 

type of problem the system would be applied to after its 

validation. A validation based on a related problem would have 

the double advantage of ensuring the adequacy of the system for 

the subsequent work, and providing relevant experience in this 

area of its use. 

One of the most stimulating of current developments has been 

the research and construction of computer netwroks. The initial 

problems have been the very basic ones of implementing suitable 

communication systems between the node computers, and their 

clusters of terminal users. Once such communications are 

implemented the connected user can access not only the facilities 

available at his own node computer, but those throughout the 

network. For this reason such networks have been called resource 

sharing networks. 

Computer networks have also been constructed for other 

reasons. Message switching systems make the solution of the 

communication problem their prime objective. Real-time networks 

(of which military and airline ones are the best examples) have 

been implemented to conduct operations beyond the capabiIty of 

a single computer. 

This leads us to expand the remarks in Chapter I which 

assert that at any given time there must be tasks which require 
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a degree of computing power that can only be provided through 

parallelism. Real-time networks have been a response to such 

tasks. It is to be anticipated that as the operational difficulties 

of resource sharing networks are solved their facilities will not 

only be shared but also used cooperatively in the solution of 

computational problems of a new order of magnitude. 

The common prerequisite of computer networks has been a 

communications system between the nodes. A very frequent solution 

has been store and forward transmission of messages as a series of 

packets. This has been the choice of the implementors of the 

Advanced Projects Research Agency (ARPA) and National Physical 

Laboratory (NPL) networks. 

The intended application of the SHAPE system was to an 

extension of the ARPA network to Norway and London. For this 

reason the validation test chosen was the modelling of a small 

store and forward communication system. This model provides 

tests of the major functions of the SHAPE system. The creation 

of messages (i.e. the traffic) to give particular distributions 

of frequency and length uses IFloop facilities for random 

numbers generation, and delay, and dataset size setting. The 

dispatch of messages to their destinations requires the 

allocation of processors (the transmission channels) and memory 

along the route. Accumlation of messages at intermediate nodes 

uses the queueing ability of mode two binding. Measurement 

facilities are used to derive the validation test statistic, and 

so on. 

In the following sections of this chapter we discuss the 

store and forward system to be modelled, present the model itself, 
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and derive the test statistic. Lastly, the results from a number 

of computer runs of the model are given and examined for confirma-

tion of validity. 
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5.2 Store and forward networks.  

In a circuit-switched network of communication channels two 

subscribers who wish to exchange information must first establish 

a circuit or path, between their terminal equipments. This path 

is static once established and remains in existence for the 

duration of the dialogue. The channels which make up the path 

are consequently dedicated for this period. Telephone systems 

are an example of circuit-switched networks. 

A store-and-forward network transmits information between 

subbcribers without establishing a fixed path between them, and 

without dedicating channels for the duration of the dialogue. 

This is achieved by formatting information as messages with an 

address or destination. A message is then transmitted along the 

route to its destination, with one channel being allocated at 

a time. Channels transmit between exchanges or nodes which are 

able to store messages and usually have several incoming and 

outgoing channels. When a message arrives at a node the outgoing 

channel is selected using the message destination, and routing 

information possessed by the node. If the channel is free the 

message is transmitted immediately, otherwise it is stored at 

the node and forwarded later, giving rise to the name for these 

networks. The routing may be fixed or vary with conditions 

in the network. An example of this type of network is the postal 

service. For this reason the phrase packet-switched network 

is sometimes used. 

The nature of computer-to-terminal, or computer-to-computer, 

dialogue makes store-and-forward communications a more economic 

choice for computer networks than circuit-switching. 
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The dialogue typically has long pauses while a terminal user 

prepares his next input or a computer produces a reply. 

Nevertheless a high data rate is required when transmission does 

occur in order to provide good response times in interactive 

systems. Such usage inevitably incurs a high overhead in idle 

time when channels are dedicated, as is the case with a circuit-

switched network. In contrast store-and-forward networks are, 

an attempt to ensure that messages use the minimum channel 

capacity which is required for delivery. However, the storage 

facilities and the necessity of routing procedures now introduce 

a new coverhead which must in turn be assessed. 

The type of store-and-forward network which is used for 

this validation is that treated by Kleinrock in his book 

Communication Nets. This class of network is characterized by 

the folloWing properties. 

Each node in the network may be both a source and a sink 

of messages. The channels and nodes are assumed to be noiseless 

and reliable. Delays at nodes due to routing procedures and 

other housekeeping operations are assumed to be negligible. 

Messages are considered to have only one destination and must 

reach it to leave the network. This implies unlimited storage 

capacity at the nodes. Messages may not be transmitted out of 

a node until they have been completely received. Messages are 

generated at a node with exponentially distributed interarrival 

times, i.e. their generation is a Poisson process. Message 

length is also assumed to be exponentially distributed, and 

both processes are considered stationary with respect to time. 
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The first five of these properties are not unrealistic. The 

last three represent reasonable assumptions of great mathematical 

usefulness, and Kleinrock refers to telephone traffic data which 

supports their plausibility. The performance measure of this 

type of network is the average message delay. This is the mean 

over all messages of the total time spent in the network by a 

message. For ease of reference we use the same notation as 

Kleinrock, which is summarized below. 

jk = average number of messages entering network per second 

with origin j and destination k. 

= average number of messages entering i th channel per second. 

1/IJjk  = average length of messages which have origin j and 

destination k, in bits. 

C. 	= capacity of i th channel, bits/second. 

= total arrival rate of messages from external sources. 

= total arrival rate of messages to channels within the net. 

= average path length over all messages. 

1/1j  = average message length from all sources. 

C 	= sum of all channel capacities in the net. 

p 	= network load, i.e. ratio of average arrival rate of bits 

into the net from external sources to total capacity of net. 

Z
jk = average message delay for messages with origin j and desti-

nation k. 
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Ti  = average delay for a message passing through channel 1., 

queueing plus transmission time. 

T 	= average message delay. 

The definitions lead to the relations, 

 n = X  4 

1/1.) = L Vjk/( Pjk) 

C = L,Ci 

• = E. . ic jk 
J, 

p = )//(., C) 

x = 

T = E U jk  ZikA = E Tin( 
jlk 

The average message delay is the performance measure to be 

optimized, and Kleinrock has derived analytic results for the 

allocation of channel capacities which achieves the optimal delay. 

Firstly he shows that for the class of nodes with N outgoing 

channela of capacity C/N (the total capacity C is a constant) the 

average message delay is a minimum when N = 1. This result is 

used to develope the optimal channel assignment for a net of N 

independent nodes each with a single output channel. The assign-

ment (subject to the constraint that the sum of the channel 

capacities is constant) 
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which minimizes the message delay averaged over the set of N nodes 

is given by, 

Ci  = Xi/ri  + 	_ E 
J.1 

Using this assignment gives, 

pi )J\i/Ni 	,/NJ/ 

	

N / 	 
T = CE jNi/NK) 2/C(1-p) 

i=1 

Finally, for the general case of an interconnected net, with 

	

=1.) for all 	the optimal channel assignment is given by: 

C. =X./‘■) + C(1-7p)517 
j=1 

This gives, 

( 
T = 'i.17 	f.-.  Ik/A. i 1 

2  1JC(1 ZITO , 
1=- 1 

The assignment can be interpreted as follows. Each channel is 

first apportioned just enough capacity to satisfy its average 

required flow of /\i/N bits/sec. After this the capacity is, 

C - 1: Xi/iJ = C(1 -p) 
i=1 

which is then distributed amongst the channels in proportion to 

the square root capacity assignment. It is this last case which 

we have chosen for the validation of the SHAPE program. A model 

of an interconnected net is described using the SHAPE system and 

the channel capacities are calculated as shown above. The mean 

message delay is then measured and compared with the calculated 

value of T, using given confidence limits. For detailed back-

ground to this subject the reader is referred to [KLEI 64]. 
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5.3 The validation model.  

The model used is a simple one from the first part of Kleinrock's 

book. It describes the hypothetical message flow between five 

cities of the United States. The topology of the network is shown 

in Fig. 5-1. The traffic matrix is based on a conjecture of Zipf 

thattheflowbetweentwocitiesofpopulationP.and Pj  a distance 

Djk apart is given by 

W.jk =c4PjP /b. k jk 

where 04 is a constant of proportionality. This leads to the 

proportional traffic matrix given in Fig. 5-2. Kleinrock chooses 

the total capacity to be equal to the total proportional network 

traffic (38.33) and Id= 10. The routing procedure is fixed and 

consists of the set of shortest routes. This leads to the mean 

path length 

n =X/X = 1.31 

The routing is shown in Fig. 5-3. Variable values for individual 

links of the network are shown in Fig. 5-4, the total link traffic 

N being 50.23. From the individual channel delays and the 

traffic matrix, we can calculate the delay for each type of 

message, and these are given in Fig. 5-5. Using the intermediate 

results that, 

ccizpvErK = 1.39286 

EX/2 = 11.95698 

p = 0.1 

We find that the average message delay 

T = 0.0447767 
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Chicago 

Denver 

Los 
Angeles 

The channels shown are full duplex, so that total 

channel capa-Aty in the net is 38.33. 

Fig. 5-1. Validtlon  Network. 
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CH 
	

HO 
	

iJ 

- 9.34 0.935 0.610 2.94 

9.34 - 0.820 0.628 2.40 

0.935 0.820 - 0.131 0.608 

0.610 0.628 0.131 - 0.753 

2.94 2.40 0.608 0.753 - 

Total Traffic r = 38.33 
Mean message length 1/1J = 0.1 

Fig. 5-2. Proportional Traffic Matrix.  
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Link 
	

xi 
	c i 
	Ti  

NY/CH 9.950 3.15436 5.38858 0.0227605 0.185578 

NY/HO 3.875 1.96850 3.12934 0.0364718 0.319556 

CH/DE 3.638 1.90735 3.02046 0.0376411 0.331074 

CA/HO 0.820 0.90554 1.34329 0.0792839 0.744441 

HO/DE 0.131 0.36194 0.51723 0.1933610 1.933371 

HO/LA 3.548 1.88361 2.97840 0.0381155 0.335750 

LA/DE 3.153 1.77567 2.78856 0.0404325 0.358608 

Total link traffic 	= 50.23 

Fig. 5.-4. Link Traffic, Delay, and Capacity.  
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Z NY CH 
	

HO 
	

DE 
	

LA 

- 0.0227605 0.0364718 0.0604016 0.0745873 

- 0.0792839 0.0376411 0.0780736 

- 0.1983610 0.0381155 

- 0.0404323 

The matrix elements Z
jk 
 give thn delay for messages 

with origin j and destination k. 

Fig. 5-5. Message Delay Matrix Z.  
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The top right and bottom left halves of the traffic matrix 

define two identical and non-interacting systems. Consequently 

it is only necessary to model one of them, and we in fact choose 

the top right system. This system is shown in Fig. 5-6 with 

node numbers assigned to the cities. The topologies of the 

Slgraph and Plgraph are shown in Fig. 5-7, but without the 

IFloops of the Slgraph. Nodes of the Slgraph, examples of its 

arcs, and examples of the Plgraph data are shown in Figs. 5-8, 

5-9, 5-10 and 5-11 respectively. 

Node one generates messages to four destinations, namely 

nodes two to five. The generation of each is caused by an 

INarc of the node (e.g. that entering the row with arc specifier 

1.21). Termination of the INarc activates two matrix elements. 

The first of these reactivates the INarc itself for a delay 

drawn from a negative exponential distribution, while the second 

activates a further arc (e.g. that of column with specifier 1.22) 

which draws a value for the dataset size from a similar distri-

bution. This second arc has a zero duration. 

The dataset size is effectively equivalent to_the message 

length in our model, since the function which is executed by 

SIarcs between two Slnodes is the transmission of one bit between 

them. Such SIarcs have a non-zero element in their function 

vector, and so must be tied to PIarcs capable of executing the 

function. These PIarcs represent the communication channels of 

the network, and their function vectors give the time required to 

transmit one bit from the initial to the terminal node, i.e. the 

inverse of the channel capacity. The nodes of the Plgraph there-

fore correspond to the storage available for messages at each of 

the five cities. 
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HO 

Fig. 5-6. Directed Semi-Network.  
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PXgraph 

Sigraph (loops and node 0 not shown) 

Fig. 5-7. Slgraph and Plgraph topologies.  
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O1 1.21 1.22 2.20 1.31 1.32 3.30 1.41'1.42 2.401.51'1.52 3.50 

1.21 1 1 

1.22 1 

1.31 1 1 

1.32 

1.41 

1 

1 1 

1.42 

1.51 

1.52 

1 

1 1 

1 

2.31 2.32 3.30 2.41 2.42 

V 

4.40 2.51 2.52 4.50 4.10 2.20 

2.31 

2.32 

2.41 

1 1 

1 

1 1 

2.42 

2.51 

1 

1 1 

2.52 

-141.40 
1 

1 

-4.1.20 

2.20 

1 

Fig.5.8. Nodes 1 and 2 of model SIgraph. 
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3 

3.41  

3.42 

3151 

3.52 

1.50 

3.30 

3.41 3.42 4.40 3.51 3.52 5.50 5.10 3.30 

1 1 

1 

1 1 

1 

1 

1 

.1 

5 

0 4.51 4.52 5.50 5.20 4.40 

4.51 1 1 

4.52 1 

2.50 1. 

2.10 1 

2.40 1 

3.40 1 

4.40 

5 

5.50 
1 

	

Ho -3.50 
	1 

	

-4.20 
	1 

1 

5.50 

Fig. 5-9. Nodes 3,41.....and 5 of the model.ADE:222h.  
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Transmission arc 

1 	2 
2.20 
0 	0 0 0 0 0 
1 
0 
0 
0 

Generator delay are 

1 	1 
1.21 
4 	6 0 

jk 
 0 0 

0 
0 
0 
0 

Generator message length arc 

1.22 
0 -6 0 F 0 0 
0 
0 
0 
0 

Termination arc  

5 	5 
5.50 
0 0 0 0 0 0 
0 
0 
0 
0 

Fig. 5-10. Ixample am, data of the Slgraph.  
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Plgraph nodes  

1 	0 2 

1 120 0 0 0 0 0 

Plgraph arcs 

1 	2 

2 

11 0 

1/Ca 1 

-1 -1 

-1 -1 

-1 -1 

Fig. 5-11. Example node and arc data of the Plgraph.  
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We have used the SHAPE facility for specifying that a Sinode 

be tied to a particular Plnode to ensure that messages are generated 

in the correct store. The fixed linkage between the Slnodes and 

Plnodes is required since the Slgraph contains the routing pattern 

of the network. As each message is generated the current time 

is recorded in the BETA variable of the generating tie. This is 

then propagated with the message until its destination node is 

reached. Here cut statistics collection is involved by setting 

the incoming arc specifier negative. This has the effect of 

measuring the message delay which is accumulated in scratch 

variables as described in Chapter IV. After this the message 

is destroyed by the use of an IFloop whose terminal row has only 

zero elements. 

The distribution used for the delay between generation of 

successive messages with the same destination is negative 

exponential so that the generation is a Poisson process. The 

mean of this distribution then determines the average rate of 

message generation for this destination. In the model these 

means are taken from the proportional traffic matrix. Similarly 

the message length is generated using drawings from a negative 

exponential distribution of mean 1/1J (=10). In order to 

approximate unlimited storage at the Plnodes, we have given 

each one a capacity of ten to the power twenty. 

The model as a whole is started by activating the terminal 

datasets of each generator arc. After this initial activation 

the generation proceeds automatically as described above. 

The initial activation is produced by null arcs from node zero. 

This is possible since the SHAPE system allows activation of the 

same REP-matrix row by arcs from different Sinodes. 
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In the run card for the model we specify node zero as the initial 

node and consequently graph binding commences with the activation 

of the row of the node which has a zero INarc specifier. 

The run then continues until the time limit specified on 

the run card is reached. The seed of each random drawing 

stream is taken from the arc data, so that different runs can be 

produced by altering the seeds. Details of the data, and seeds 

of individual runsican be found in INDRA note 285, Institute of 

Computer Science, 1973. 
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5.4 The statistical test.  

We have ten distinct message types in the validation model, 

each with a theoretically calculated mean message delay of zi  

where i is the message type. We shall call the delay for the 

jthmessageoftypeil x..l and the number of these messages n.. ij 

If we now consider the variables, 

3C1‹ 	3C- 1.3 

then these have a theoretical mean of zero for every message 

type. Because all the ten groups of the xk have the same mean, 

we can combine their variables by simple addition so that, 

Ns2  =L 

where N = 	n. . 

2 i and s is the variance of all the xk  taken together. This allows 

us to apply a t-test to the whole sample of the xk. The hypothesis 

for the test is then that 

xk  = 0 

The advantage of treating the data in this way is that we have now 

developed a single test which utilizes all the observations 

produced during a run of the model. We now derive the statistic t 

as follows. 

t= 3ck  -N 
s/ N-1 

where, in this case, P= 0. Also we can write:- 

s2 _( xk  1.- 2 	 2) 
- 	- N xk  / (N-1) 

so that, 

t = (N-1) 	)cc  - N 7,2 

231 



Now, 

( 

	

xic  = i 	i  x j-nizi  

= 1 ):n.(7. - z.) 7 i  i a. 	I 

and, 
2 "V 
Xk = 	(X

ij  
.. - z.)2  13 	1 

 = 	x. - 	z. t x. + )L 	2 

i
ij 

	

	i 	ij 
j 

— 	 2 = ]E x. - 	n z.x. + 	n. z. 

	

1.3 	. 	
37 

1 1 	a-7 1 1 
ij 	1 	1 

2 = 	x. 	n.z.(2x. - z.) 
ij 1j  

also, 

(n.-1) = 51 (x. . - 7.)2  

	

1 1 	. 13 1 

= 7'7-  ) + n.x. • • 1 1 

2 
= E x2  .. - n.x. . 

In the model runs N > > 30 so that the t - distribution is 

very close to the normal distribution. That is to say we use 

the bottom row of the table in Fig. 5-12. For this case the 

probability that it! > 1.96 is 0.05. Thus if we get such a value 

from a run we reject the hypothesis that xn  = 0 with 95% confidence. 

Otherwise we accept the hypothesis. 

We can obtain 95% confidence limits for the true meanp.  

of the xk  by writing 
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Pig. 	5-12. 	?ALOIS Or t COBRZSPONDINO TO Orr= PIOSABILATUSI • 

Degrees 
of 

freedom n 

Probability of a deviation greater than t Probability of a deviation greater than 

.005 .01 .025 .05 .1 .15 	1  .2 .25 .3 .35 .4 .45 

1 63.657 31.821 12.706 6.314 3.078 1.963 1.376 1.000 . .727 .510 .325 .158 
2 9.025 6.965 4.303 2.920 1.886 1.388 1.061 .816 .617 .445 .289 .142 
3 5.841 4.541 3.182 2.353 1.638 1.250 .978 .765 .584 .424 .277 .137 
4 4.604 3.747 2.776 2.132 1.533 1:190' .941 .741' .569 .414 .271 .134 
5 4.032 3.365 2.571 2.015 1.476 1.156 .920 .727 .559 .408 .267 .132 

8 3.707 3.143 2.447 1.943 1.440 1.134 .006 .718 .553 .404 .265 .131 

7 3.499 2.998 2.365 1.895 1.415 1.119 .896, .711 .549 .402 .263 .130 

8 3.355 2.896 2.306 1.880 1.397 1.108 .889 .706 • .546 .399 .262 .130 

'9 3.250 2.821 2.262 1.833 1.383 1.100 .883 .703 .543 .398 .261 .129 

10 3.169 2.764 2.228 1.812 1.372 1.093 .879 .700 .542 .397 .260 .129 

OJ 	
11 

%..A 12 
3.106 
3.055 

2.718 
2.681 

2.201 
2.179 

1.796 
1.782 

1.363, 
1.356 

1.088 
1.083 

.876 

.873 
.697 
.695 

.540 

.539 
.396 
.395 

.260 

.259 
.129 
.128 

\A 	
13 3.012 2.650 2.160 1.771 1.350 1.079 .870 .694 .538 .394 .259 .128 

14 2.977 2.624 2.145 1.761 1.345 1.076 .868 .692 .537 .393 .258 .128 

15 2.947 2.602 2.131 1.753 1.341 1.074 .866 .691 .536 .393 .258 .128 

16 2.921 2.583 2.120 1.746 1.337 1.071. .865 .690 .535 .392 .258 .128 

17 2.893 2.567 2.110 1.740 1.333 1.069 .863 .689 .534 .392 .257 .128 

18 2.878 2.552 2.101. 1.734 1.330 1.067 .882 .688 .534 .392 ..257 .127 

19 2.861 2.539 2.093 1.729 1.328 1.066 .881 .688 .533 .391 .257 .127 

20 2.845 2.523 2.086 1.725 1.325 1.064 .880 .687 .533 .391 .257 .127 

21 2.831 2.518 2.080 1.721 1.323 1.083 .859 .686 .632 .391 .257 .127 
22 2.819 2.503 2.074 1.717 1.321 1.061 .858 .688 .532 .390 .258 .127 
23 2.807 2.500 2.069 1.714 1.319 1.060 .858 .685 .532 .390 .256 .127 

24 2.797 2.492 2.064 1.711 1.318 1.059. .857 .885 .531 .390 .256 .127 

25 2.787 2.485 2.060 1.708 1.318 1.058 .858 .684 .531 .390 .258 .127 
• 

26 2.779 2.479 2.056 1.708 1.315 1.058 .858 .684 .531 .390 .256 .127 
27 2.771 2.473 2.052 1.703 1.314' 1.057 .855 .684 .531 .389 .258 .127 

28 2.763 2.487 2.048 1.701 1.313 1.056' .855 .683 .530 .389 .250 .127 

29 2.756 2.462 2.045 1.690 1.311 LOW .854 .683 .530 .389 .258 .127 

30 2.750 2.457 2.042 1.897 1.310 1.055 .854 .633 .530 .389 .256 .127 

co 2.576 2.320 1.060 1.645 1.282 1.036 .642 .874 .524 .385 .253 .126 

The probability of a deviation numerically greater than 8 Is twice thei 
probability given at the had of the table 

• This table is reproduaod from "Statistical Methods for Rower sit Worker.? with rho 
ersaurgZifiriosi 01 the 	Prolog 8.4 Fisher, and the pubiloloon, Margo. 



p. 7,„ I 1.96 s/ N-1 

— 	 —2 + 
= xic  - 1.96 	- 1 )7_3c. 	Nxk /(N-1 ) 

This allows us to examine the range ofp which falls within 

the confidence limits of every run. 
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5.5 Validation results.  

Altogether eight runs of the model were executed, the last of 

these having an order of magnitude longer run time. Each run 

produced the normal SHAPE statistics, as described earlier. 

The cut statistics were used to calculate the t-test values 

as described in section 5.4. For each message type the terminal 

node's row corresponding to the message arrival INarc was tagged 

(the INarc specifier set negative) for cut statistics accumulation. 

Consequently for each message type the cut statistics COUNT, AVGDUR, 

and DURVAR (corresponding to n., x3. 	3.., and E. x.
2  
.) were output. 

From these the t. Value for the run can be calculated and 

these are given in Fig. 5-13. In all the runs the t Value fell 

within the acceptance limits at the 95% confidence level (Itl< 1.96). 

If we had observed a run which gave a value of t outside these 

limits we should be forced to reject the null hypothesis H0 
 that 

xk  =0 

The t values shown in Fig. 5-13 allow us to accept it. This is 

equivalent to accepting the hypothesis that the mean message 

delay observed in the model is equal to 

T = o.o447767 

from the derivation of 7k. Consequently we consider the runs 

described as constituting a validation of the SHAPE model. 

The confidence limits of xk  can be written as 

—  
xk -+ L 

and we have given xk  and L for each run in Fig. 5-13. 

Since we accepted Ho  for each run the value zero lies within the 

confidence limits of every run. We have plotted these limits in 

Fig. 5-15, and shown the interval (a,b) common to all of them. 
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t ik x 10
-3 L x 10-3  

RUN 1 0.9036 0.7257 1.5740 

RUN 2 -0.7993 -0.8514 2.0877 

RUN 3 0.1156 0.0933 1.5809 

RUN 4 -1.0713 -1.1047 2.0212 

RUN 5 0.5919 0.6949 2.3013  

RUN 6 -1.0364 -1.1365 2.1493 

RUN 7 -1.5115 -1.5652 2.0297 

RUN 8* 0.9515 0.3500 0.7209 

MEAN -0.3492 

*long run 

Fig. 5-13. Values for t-test and  
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/nAGE  ' 
i..__ NY/CH NY/HO CR/HO NY/OE 

. 

CH/DB HO/DE 

. 

NY/LA 

1 

-HO/LA CH/LA 

. 	, 

DE/LA 

7 .02276 .03647 .07928 .06040 .03764 .19836 .07459 .03812 .07807 .04043 

EIX 1 42239 .03623 .07831 .06468 .03379 .23200 .07954 .03653 .07791 .04200 

RUN 2 .02242 .03618 .07958 .05125 .03429 .19990 .07225 .03756 .08000 .03516 

RUN 3 .02359 .03631 .07738 .06186 .03594 .23590 .07871 -  .03674 .06957 .04228 

SUN 4 .02329 .03536 .06920 .05837 .03342 .19250 .07427 .03549 .07398 .03927 

RUN 5  .02299 .03561 .06863 .05944 .03599 .20050 .08553 .03878 .07191 .04251 

RUN 6 .02204 .03301 .07187 .05046 .03364 .17340 .07607 .03337 .08085 .03881 

RUN 7 02333 
, 	, 

.04011 .08070 .05401 .03247 .16.980 .060791: .0j421 .07396 .04250 

RUN 8* .02238 .03558 .08051. .06118 .03723 .17550 .07770 .03695 .07948 .04152 

1 MEAN .02280 .03605 .07576 	_ .05766 	-I.03460 	_ .19744 	_ .07648 .03620 	_ .07596 .04051 

*long run 

Fig. 5-14. Mean Message Delay by Message type for eight runs.  





The relative smallness of a and b further supports the null hypothesis. 

• In Fig. 5-14 we have given the observed mean message delay for 

each type of message. These show a correspondence with the 

theoretically expected values which is closest for the most 

frequent messages. We have also shown the mean over the eight runs 

for each type. 

Using the delay and the COUNT for each message type we can 

calculate the overall observed mean message delay. 

T = AVGDUR. x: COUNT./ COUNT. 
. 

However, since the message lengths are drawn in a random fashion, 

the average observed message length is usually slightly different 

from 0.1 for each type. In consequence the mean message trans-

mission time will differ from the expected valye. This is a 

component of the mean message delay and so perturbs the delay 

from what it would have been if the average length of each message 

type was 0.1. 

If the queueing time is not large compared with its trans-

mission time we can make a first order correction for this 

effect by normalizing the mean delay of each type of message 

with respect to its mean length, giving 

T
m 
= E COUNT, x AVGDUR. x  0.1 	): COUNT 

AVGLAM. 	i 

A similar problem occurs because the number of messages of each 

type generated during a run will differ from the theoretically 

expected number (which we will call ECOUNTi). We can again make 

acorrectionforthisbyusingECOUNT.instead of COUNT. in the 

above expression giving a mean delay 

T
n 
= : ECOUNT

i 
x AVGDUR x  0.1 	IIECOUNT. 

AVGLAM. i 1  
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We give values for T, Tm  and Tn  in Fig. 5-16. The last 

run of the model had a considerably longer run time than the 

others. In this run the values of T and xk  were much closer to 

the expected values, and the confidence interval smaller. 

This demonstrates the convergence towards expected values with 

longer run time and supports the claim to validity based on 

the t-test results. 
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T x 102  Tm x 10 Tn x 101  

RUN 1 4.506 4.437 4.486 

RUN 2 4.313 4.541 4.631 
RUN 3 4.492 4.431 4.428 
BUN 4 4.370 4.650 4.644 
RUN 5 4.588 4.538 4.492 
RUN 6 4.508 4.576 4.429 

RUN 7 4.325 4.528 4.529 

RUN 8* 4.489 4.517 4.542 

MEAN 4.449 4.527 4.523 

*long run 

Fig. 5-16. Mean Message Delay.  
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CHAPTER VI 

APPLICATION 
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6.1 A UK link to the ARPA network.  

This chapter deals with the application of the SHAPE system 

to a particular design problem, namely the behaviour of a linkage 

between computers in the United Kingdom and the ARPA network. 

The choice of an example from the field of computer networking 

is a natural consequence of our belief that this is the direction 

which the mainstream of computing will take in the future. 

In Chapter I we suggested that the search for greater computing 

power must sooner or later require coordination of dispersed 

facilities in order to solve problems too large for a single 

computer to undertake. The ARPA netwrok is certainly a first 

step towards this goal, since it provides both communication 

between computers and user access to all resources available in 

the network. Its extension to the United Kingdom via Oslo is 

therefore of great interest to us. Application of the SHAPE 

system to this link is also particularly attractive since we 

have been closely associated with the research team working 

on this project. The association has given us an intimate 

knowledge of the design and operation of the ARPA network and 

its extension to the UK. 

In the sections which follow we describe and analyse the 

characteristics of the link. A model is constructed with the 

SHAPE system and used to observe the behaviour of the link under 

various conditions. 

The ARPA network provides store and forward communications 

between the set of computers shown in Fig. 6-1. The computers 

located at the various nodes are drawn from a variety of 

manufacturers, and most are incompatible both in hardware and 
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software. The network has to provide communications for this set 

of machines, and allow effective use to be made of them from any 

point in the network. 

An underlying constraint placed on the design of the network 

was that its operating procedures would not interfere in any 

significant way with the operation of the existing facilities 

which were to be connected. Consequently the message handling 

tasks are carried out in a dedicated Interface Message Processor 

(IMP) situated at the site of the computer to be connected (HOST). 

In most cases the communications channels are 50 kilobit per 

second full duplex telephone lines and these run between IMPS. 

An IMP modified to directly support terminals is called a TIP. 

In order to provide reliability there are at least two paths 

through the network for every origin-destination pair. A 24 bit 

cyclic checksum is provided for each block of data, and the IMP 

is a ruggedized computer with a mean time between failures of 

10,000 hours. TIPS, however, are not currently ruggedized. 

Messages which flow between HOSTs are broken up into packets, each 

of maximum size approximately 1,000 bits. There can be up to 

eight packets in a message, which is assembled and disassembled 

by the IMPs. The packets make their way individually through 

the IMP network where appropriate routing procedures direct the 

traffic flow. 

A positive acknowledgment is expected within a given time 

period for each inter-IMP packet transmission. In the absence 

of an acknowledgment the transmitting IMP will repeat the trans-

mission (perhaps over the same channel or over a suitable 

alternative). This process is repeated a number of times after 

which the communication channel is regarded as unavailable. 
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Absence of an acknowledgment may indicate, for example, that the 

message contained errors on receipt or that no more buffer space 

is available in the receiving IMP. 

There may be up to 64 dialogues occuring at any one HOST. 

The dialogues take place along two logical communications 

channels called links. A HOST will send a message along the 

outward link of a dialogue and then await a Request For Next 

Message (RFNM) on the inward link. 

In those cases where a user is making more or less direct 

use of a remote software system, the network is intended to provide 

a total round-trip delay which does not exceed the human short term 

memory span of one to two seconds. In the design of the network 

it was also considered desirable that the response should be 

comparable, if possible, to using a remote display console over 

a private voice grade line where a 50 character line of text can be 

sent in 0.2 seconds. 

The linkage to Europe consists of a telecommunications channel 

between a TIP in the United States and one in Oslo, which is in 

turn connected to a TIP in London. The Oslo TIP will have at least 

one HOST and the London one will have a PDP9 computer as a pseudo-

HOST. It is intended to interface two other computers in the UK to 

the network via the PDP9, which is situated at the Institute of 

Computer Science. These are a CDC 6400 computer at the University 

of London Computing Centre, and an IBM 360/195 at the Rutherford 

High Energy Laboratory. Each computer is expected to support 

a cluster of interactive users, as well as performing some file 

transmers. The configuration is shown if Fig. 6-1. Delivery of 

the TIPs is currently scheduled for the third quarter of 1973, 
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and the link is expected to be operational by the end of the year. 

The transatlantic channel will be via satellite. 
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6.2 Analysis of the link.  

In this section we discuss the detailed structure and operation 

of the link, and so extract the features we wish to include in the 

model. One of our main concerns is the average response time as 

seen by a European interactive user of the ARPA network. This 

is partly made up of the message transmission delays introduced 

by the link channels. The structure of the link is shown in 

Fig. 6-2. The capacity of channel i is C. full duplex and the 

number of interactive users at the terminal node is N.. 
1 

The ARPA network is designed to give a mean message delay, 

of 0.2 seconds. Satellite transmission on channel 1 gives 

a propagation delay of approximately 0.25 seconds. If the remote 

HOST in the United States gives an immediate reply (e.g. an echo) 

to a user message, then the average response time as seen by a 

European user will be 

R = 0.9 + 2T
a 
+K 

where T
a 
is the average delay in the link subnet for a sample of 

messages of mean length a, and K is the sum of the time for a 

teletype to transmit carriage return to its node plus the time for 

the first character of the reply to reach the teletype from its 

node. Response time is therefore the interval between the user 

typing carriage return, and the first character of his reply 

being printed. K is approximately 0.2 seconds if the teletype 

line operates at 110 bits per second so that 

P = 1.1 + 2T
a 

This suggests that a reasonable design range for Ta  would be 

0.1 to 0.8 seconds, making R between 1.3 (good) and 2.7 (tolerable) 

seconds. 
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TIP USA . . . 

C2 
Norway. . . TIP HOST 

N6 N
5 

TIP 

C 

4) 
	 N 
	o3 	0 

UK 	. . • 

CI  is the capacity of channel 1 (full-duplex). 

N1 is the number of interactive users in a cluster. 

Fig. 6-2. UK-ARPANET Linkage.  
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We define a as the mean length of user messages in the subnet. 

Inter-TIP acknowledgments (ACK) and requests from the destination 

for the next message from a user (RFNM) are 150 bits long. 

A message originating in Clusters 5 or 6 will be transmitted to 

the PDP9 (node 4). Here the PDP9, behaving as a HOST, will 

introduce the message into the ARPA network. When the message 

is successfully received at its destination a RFNM will be trans-

mitted to the PDP9. This in turn must request the next message 

from the node which produced the original one. In this way there 

will be RFNM-like traffic on channels 5 and 6. We estimate that 

these pseudo-RFNMs will have a length of 100 bits. 

Since the users are interactive we can say that, with very 

few exceptions, the length of a. user message will be less than 

1,000 bits. Consequently they will be transmitted as single 

packets within the ARPA network. Each packet carries a total 

overhead of 150 bits, so that on channels 1 and 3 a user message 

will have length a + 150. 

We now consider the traffic pattern in the subnet, that is 

to say the number of messages per second between each cluster 

and the US TIP. We have assumed that the quantity of traffic 

moving between nodes of the subnet itself will be negligible. 

On the basis of current knowledge, the best estimates for the 

average number of active users at the nodes are N2  = 6, N3  . 12, 

N
4 

= N
5 
 = N

6 
 = 4. These figures determine the proportional 

traffic. The total volume of messages (assuming all users to 

exhibit similar behaviour) depends on the number of messages 

per second (L) that a user will generate. In what follows we 

deal with the case L = 1/30, although in the model L is a variable 

parameter. 
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When an interactive user sends a message to the US, he will 

normally be taking part in a dialogue with a remote computer. 

Consequently his message will give rise to a message from this 

computer in reply. Therefore we expect the traffic pattern 

inward to be symmetrical with that outward from the US. In that 

case the numbers of RFNMs and messages per second travelling 

inwards will be the same. Similarly, on channels 1 and 3 there 

will be ACKs travelling inward for each outward bound message and 

RFNM. For example, if the subnet generates 30 L messages per second 

to the US, we would also expect 30 L RFNMs and 60 L ACKs inward 

persecondonchannel1.IfL.is the number of packets (messages, 

RFNMs and ACKs) inwards per second on channel i, then these are 

tabulated in Fig. 6-3. 

On channels 1 and 3 for each message (length a + 150) we 

have a RFNM and two ACKs each of length 150 bits so that the 

average length is (a + 600)/4 bits. On channels 2, 4, 5 and 6 

for each message (length a) we have a RFNM of 100 bits, so that 

the average packet length is (a + 100)/2 bits. We define the 

channel loading P. as the average number of bits per second 

transmitted on the channel divided by its capacity. 

P. = avg. packet length x L./C. 

We define T. to be the mean message delay, on channel i. 

As in Kleinrock's treatment [KLEI 70A] we regard Ti  as having two 

main components. The first is the mean message transmission time, 

namely mean message length divided by channel capacity. The second 

component is the mean waiting time for a message. This is derived 

from the true total loading of the channel, i.e. including ACKs 

anclUNDis.Ifill.ands.are the mean message and packet lengths 

respectively we can write, 
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Channel Li  Li  (L = 1/30) 

1 120 L 4 

2 12 L 2/5 

3 96 L 16/5 

4 24 L 4/5 

5 8 L 4/15 

6 8 L 4/i5 

Fig. 6-3. Traffic on each channel of the subnet.  
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= s. x L./C. 1 1 1 

T. = m./C. 	s./C. x P./(1-R.) 
11+iii 

These variables are tabulated for the case L = 1/30 in Fig. 6-4. 

We can calculate the mean user message delay in the subnet when 

the messages have mean length a from 

T
a 
= (30T1  + 6T2  + 24T3  + 12T4  + 4T5  + 4T6)/30 

If all the C. are variable this gives us a six dimensional solution 

space, or five dimensional if the Ci  have a constant sum. While a 

solution is feasible it may require a considerable computation. 

In the case we are considering, four of the six channels already 

have fixed capacities allocated. C
5 
 andC

6 
 are 2.4 Kb, and C

2 
and 

C
4 are 50 Kb. This leaves C1 

and C
3 

to take on one of the following 

possible values, namely 4.8, 7.2, 9.6 or 50 Kb. We now choose 

a hypothetical mean message length for the purposes of investigation. 

It has been observed that the mean message length of actual traffic 

in the ARPA network is close to 600 bits. Without foreknowledge 

it seems most probably that European traffic will be similar, 

and so we take this value as our starting point. If a = 600, 

we cancalculateTa fromtheT.,and these results are summarized 

in Fig. 6-5. They show that all available combinations of C1  and 

C
3 

fall within the design range advanced above, but that the 

good response case requires values of 50 Kb for each. 

The square root channel capacity assignment which is optimal 

for regular store and forward networks, can be instructively 

applied to the case we are considering when all the C. are allowed 

to vary. The square root assignment is optimal so long as the 

packet traffic on each channel has the same mean length. 
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Channel P1  

1 (a + 600)/C1  

2 (a + 100)/5C2  

3 4(a + 600)/5C3  

4 2(a + 100)/5C4  

5 2(a + 100)/15C5  

6 2(a + 100)/15C6  

Channel Ti 

1 (a + 150)/C1  + i(a + 600) P1/(1-P1)C1  

2 a / C2  + i(a + 100) P2/(1-P2)C2  

3 (a + 150)/C3  + i(a + 600) P3/(1-P3) C3  

4 a / C4  + i(a = 100) P4/(1-P4)C4  

.5 a / c5  + 4(a + 100) P5/(1-P5)C5  

6 a / C6  + 4(a + 100) P6/(1-P6)C6  

Fig. 6-4. Values of Ti  and Pi for L = 1/30. 
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C1  C3  4.8 7.2 9.6 50 

4.8 .37 .33 .30 
7.2 .33 .27 .25 
9.6 .29 .25 .21 .17 

50 
r 
.15 .10 

Fig. 6-5. Values of T
600  for various 

combinations of C1  and C3. 
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Examining the average packet lengths we see that when a = 400 all 

of them are equal to 250 bits. 

Consequently we can get some idea of the channel capacities 

which would be required for a mean message length of 600 bits by 

applying square root assignment to the network for messages of 

average length 400 bits (mean packet length 250 bits). If a is 

the mean message length in the subnet we.define b as the corre-

sponding mean packet length, giving 

b = (2a + 875)/6.7 

This is plotted in Fig. 6-6. We calculate the mean path length 

n as the average path length of all packet journeys, weighted by 

number of packets. This gives us 

n = (4x8L + 4x8L + 3x8L + 2><24L + 1><48L + 1x60L)/168L 

= 67442 

The network loading is P = 168/30C when L = 1/30, giving 

172 = 6790/3c 

If we define S as the sum of the L., S = L. . 

then we can use the following of Kleinrock's results: 

Tb  = n ( 1Li/S) 2b/ C(1-7P) 

C. = bL. + C ( 1-7P) ic./ZriTi  

This allows us to write 

or 

T, = 67 Tb 
	42 

. 1210 . b/(C - 6700/3) 
268 

C = 250 (268L 6o5/84TO 

and 

C. = 250 (L. + 605 	. 	1 	- L./L) 
84><35 	Tb  
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For any Tb  we have a corresponding value of C and consequently 

of the C.. From these we can calculate T
a 

using the equations 

of Fig. 6-4. We have tabulated these values in Figs. 6-7 and 6-8. 

A graph of Tb  and T
a 
against is shown in Fig. 6-9. 

From these values we can see that if T
a 

is to fall in the 

range 0.1 to 0.8 seconds when a = 400 the corresponding values 

ofTb,Cl andC.are as shown below. We may also notice that as 

C becomes large the ratio Ta/Tb   approaches a constant (approx. 3.6) 

as we would expect. 

0.1 < T
a 

< 0.8 

0.03 < Tb  < 0.24 

62.4 Kb < C < 9.75 Kb 

19.8 Kb < C1  < 3.35 Kb 

6.0 Kb < C2  < 0.84 Kb 

17.6 Kb < C
3  

< 2.90 Kb 

8.7 Kb < C4  < 1.26 Kb 

4.9 Kb < C
5  

0.67 Kb 

4.9 Kb < C6  < 0.67 Kb 

We can see from these figures that a. = 400 we will get at 

least acceptable response as long as all the C. have values 

greater than those shown in the right hand column. In the case 

being considered C2  and C4  may have values up to 50 Kb which is 

certainly adequate. C5 and C6 
are 2.4 Kb which is sufficient for 

acceptable response, though not enough for good response. This lack 

can of course be compensated for by increasing C1  and C3  above 

their left hand column figures. We see that C, and C3  should be 

of comparable size, with C
1 

slightly greater than C3. 

While the ranges for the Ci  are based on a = 400 we can make 

some estimate of the capacities required to give the same response 
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TB TA 	- -- CT 
.1000E-01 .3635E01 .1826E+06 
.2000E-.01 .7229E-01 .9243E+05 
.3000E--01 .1078E+00 .6237E+05 

. .4000E•-01 .1430E+00 .4733E+05 
.5000E--01 .1779E+00 .3831E+05 
.6000E01 .2124E+00 .3230E+05 
.7000E...01 .2465E+00 .2800E+05 
.8000E•01 .2804E+00 .2478E+05 
.9000E-01 .3139E+00 .2228E+05 
.1000E+00 .3472E+00 .2027E+05 
.1/00E+00 .3802E+00 .1863E+05 
.1200E+00 .4129E+00 .1727E+05 
.1300E+00 .4454E+00 .1611E+05 
.1400E+00 .4776E+00 .1512E+05 
.1500E+00 .5095E+00 .1426E+05 
.1600E+00 .5413E+00 .1351E+05 
.1700E+00 .5727E+00 .1284E+05 
.1800E+00 .6040E+00 .1226E+05 
.1900E+00 .6351E+00 .1173E+05 
.2000E+00 .6660E+00 .1125E+05 
.2100E+00 .6966E+00 .1082E+05 
.2200E+00 .7271E+00 .1043E+05 
.2300E+00 -.7574E+00 .1008E+05 
.2400E+00 .7875E+00 .9750E+04 
.2590E+00 .8174E+00 .9449E+04 
.2600E+00 .8472E+00 .9171E+04 
.2700E+00 .8768E+00 .8914E+04 
.2800E+00 .9062E+00 .8676E+04 
.2900E+00 .9355E+00 .8454E+04 
.3000E+00 .9646E+00 .8246E+04 

Fig. 6-7. Values of Ta 	C for various Tb. 
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C1 C2 C3 C4 C5 C6 
`65741E+05 *1794E+05 .5127E+05 .2569E+05 61463E+05 .1463E+05 - 
.2921E+05 *9020E+04 62604E+05 *1295E+05 *7349E+04 .7349E+04 
.1983E+05 *6047E+04 .1762E+05• 68697E+04 .4921E+04 *4921E+04 
.1510E+05 04560E+04 6/342E+05 .6573E+04 .3708E+04 .3708E+04 
.1228E+05 .3668E+04 .1089E+05 ' .5298E+04 62979E+04 .2979E+04 
*1040E+05 .3073E+04 49212E+04 *4449E+04 02494E+04 .2494E+04 
.9059E+04 02649E+04 08010E+04 03842E+04 62147E+04 .2147E+04 
*8052E+04 .2330E+04 .7109E+04 43387E+04 .1887E+04 .1887E+04 

. .7268E+04 .2082E+04 06400E+04 .3032E+04 .1685E+04 .1685E+04 
.5641E+04 .1884E+04 .5847E+04 .2749E+04 ./523E+04 61523E+04  
06128E+04 *1722E+04 45308E+04 *2517E+04 41391E+04 01391E+04 
.5701E+04 01587E:r04 05006E+04 .2324E+04 41280E+04 .1280E+04 
.5339+04 41472E+04 64682E+04 42161E+04 61187E+04 01187E+04 
45330E+04 .1374E+04 44405E+04 42021E+04 *1107E+04 *1107E+04 
.4761E+04 .1289E+04 .4165E+04 .1899E+04 41037E+04 41037E+04 
.4526E+04 0/215E+04 03954E+04 .1793E+04 .9768E+03 .9768E+03 
.4318E+04 .1149E+04 03769E+04 .1700E+04 69232E+03-  .9232E+03 
.4/34E+04 .1091E+04 .3604E+04 .1616E+04 .8756E+03 .8756E+03 
.3969E+04 .1039E+04 .3456E+04 *1542E+04 .8330E+03 .8330E+03 
.3821E+04 .9920E+03 .3323E+04 *1475E+04 *7947E+03 67947E+03 
.3686E+04 .9495E+03 *3203E+04 *1414E+04 .7600E+93 67600E+03 
.3564E+04 .9109E+03 .3094E+04 .1359E+04 .7285E+03 .7285E+03 
.3453E+04 .8756E+03 .2994E+04 .1308E+04 .6997E+03 .6997E+03 

.03351E+04 .8433E+03 .2903E+04 .1262E+04 .6733E+03 .6733E+03 
;03257E+04 .8136E+03 .2819E+04 .1220E+04 .6491E+03 .6491E+03 
.3170E+04 .7861E+03 .2741E+04 .1180E+04 .6267E+03 .6267E+03 
'.3089E+04 .7607E+03 .2669E+04 .1144E+04 .6059E+03 .6059E+03 
.3015E+04 .7371E+03 .2603E+04 .1110E+04 .5867E+03 .5867E+03 

. 4,2945E+04 .7152E+03 . .2540E+04 . .1079E+04 .5687E+03 .5687E+03 
.2880E+04 .6947E+03 .2482E+04 .1050E+04 .5520E+03 .5520E+03 

Fig. 6-8. Values of Ci corresponding to Tb  shown in Fig. 6-7. 
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times for a = 600. The estimate would be an increase of not more 

than 50 per cent, since if a increases from 400 to 600 then b 

increases from 25Q to 310, and we would not expect too severe a 

perturbation from the regular store and forward situation to which 

Kleinrock's equations apply. A fifty per cent increase in the C. 

would ensure that mean packet transmission times, and therefore 

queueing delays, were no larger than in the original situation. 

If C2  and C4  are 50 Kb, well above what is required for 

optimal assignment in the sense of minimizing the total C required 

for a given response time, then T2  and T4  will be very small indeed. 

Consequently other Ci  may be assigned smaller than the optimal 

values but still be sufficient to achieve the required mean message 

response over the subnet. 

The relative importance of these factors can be seen from the 

fact that in the subnet under consideration C
1 
and C

3 
must be 

50 Kb to give a response T
a 
of 0.1 seconds (see Fig. 6-5). This 

is well over the 50 per cent increase which might have been 

expected if C5  and C6  were 7.35 Kb (1.5 x 4.9 Kb). In these last 

few pages we have tried to show that even where the square root 

capacity assignment is not strictly applicable, its use as an 

approximation can provide insight into the factors affecting a 

subnet. 
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6.3 The link model.  

This section describes the model of the subnet that was 

developed using the SHAPE system. We shall deal with the hardware 

and software graphs and give reasons for the structure of each. 

Finally we examine how the model parameters can be varied. 

The hardware graph is shown in Fig. 6-10. It contains a 

node for each of the computers involved in the subnet. These 

nodes were initially given a very large storage capacity (9'10 bits) 

to be effectively infinite. We use x'k to mean x times 10 to the 

power k. The remaining node data was set to zero, since its 

effects were not required for the investigation undertaken. 

Each full duplex communication channel was represented by two 

logically and physically distinct PIarcs, running in opposite 

directions between the nodes at the ends of the channel. 

By physically distinct we mean that each Plarc can be separately 

and simultaneously allocated, as required by the full duplex 

nature of the channel. This is achieved by giving each Plarc 

a distinct processor number. Only one set of function character-

istics was defined in the PIarcs. This was the transmit function. 

The execution time corresponds to the time for the channel to 

transmit one bit, and utilization and efficiency were set to one 

since the channel must be allocated as a unit, and then transmits 

at a fixed rate. Typical data is shown in Fig. 6-11. Each line 

corresponds to a data card, and the formats are described in 

Appendix IV. The software graph has a set of nodes dealing with 

traffic from each terminal cluster, and one set which represents 

the flow of ACKs and RFNMs. The group of packets which corresponds 

to activity in cluster i is called stream i, so that the behaviour 
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Fig. 6-10. Hardware graph of subnet.  
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Plnode data : 3 inarcs and 3 outarcs, capacity is 9'10 bits. 

40 	3 	3 

9110 0. 	0 	0 	0 	0 

Plarc data: processor number is 45, channel capacity is 

2.4K = (1/4.167'-4) bits per second, utilization and 

efficiency are 1, functions 2,3,4 not specified. 

40 50 

50 

45 	100 

4.167'-4 	1 	1 

-1 	-1 	-1 

-1 	-1 	-1 

-1 	-1 	-1 

Fig. 6-11. Typical data for  hardware graph.  
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of each stream is modelled by arcs between its set of nodes. 

Since most of the ACK and RFNM handling is the same for all five 

streams, this is modelled within a common set of nodes which we 

may call stream zero. We show the graph structure for streams 

zero, five, three and seven in Figs. 6-121  13, 142  15, 16 and the 

initialization node (1) in Fig. 6-17. Streams six and four have 

the same structures as streams five and three respectively. 

It would have been possible to combine the activity of all 

streams at a Plnode in a single corresponding Slnode. However, 

this type of node would have been very large, with a high proportion 

of zero elements. The method we have chosen uses much less storage 

for the REP matrix elements. As well as this it is a good deal 

clearer, and more flexible. 

The separate modelling of the streams arises as follows. 

One of the characteristics we wished the model to include was that 

the flow of messages would be circular. That is to say that a 

message leaves its cluster, travels through the subnet to the 

US TIP, is transformed into a reply, returns to the cluster where 

there is a delay corresponding to the user's think time, and 

recommences the cycle. This is in effect a cycle of queues, some 

in common, for each stream and leads to a fixed number of customers 

within the system once it has been activated. This model corresponds 

more closely to the real situation in which a number of interactive 

users participate in dialogues with remote computers. Usually a 

user will not send a message until he receives a reply to the 

previous one, often because his next action depends on the reply. 

Consequently, if response worsens the effect is to decrease the 

number of messages generated per second. 
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This would not be the case if the more usual procedure of independent 

generation of messages was adopted. 

In order to correctly represent cyclic message generation we 

must ensure that a reply returns to the same cluster which produced 

the corresponding message. This means that the outgoing reply streams, 

as well as the incoming messages, must be kept separate, for if 

they became intermingled and were activating the same dataset in a 

Slnode, we would have no means of knowing the originating cluster, 

and therefore no way to route them to that cluster. The use of 

a separate set of nodes for each stream does not have any effect 

on the number of arc executions, but does mean that very similar 

data is replicated in each stream. 

One of the conclusions which emerge from the application is 

that we could specify a much more compact model (without separate 

stream data) if the SHAPE system provided for more variables than 

LAMBDA and BETA to be carried by a cut. In that case such a 

variable might show cluster of origin and be used as a routing 

indicator for the returning reply. 

We now follow the progress of a typical message from cluster 

five through the subnet. The user think time is represented by 

a delay arc (95.2) at Slnode 95. This uses the IFloop facility 

for setting BETA to the arc termination time (IFCODEONE = 4). 

In fact IFCODEONE is set to -4 so that the delays can execute 

concurrently. On completion 	a value of LAMBDA is chosen 

(arc 95.3). The distribution is a negative exponential one, and 

any value drawn which is greater than 1,000 is truncated to that 

size. This is done to conform to the ARPANET limit on packet size. 

For this truncated distribution to have a mean (MU) of 600 bits, 
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we must select the correct mean (LAMBDA) of the exponential 

distribution. This is derived as follows. The probability density 

function of the exponential distribution is, 

p.d.f. = -Xx  xe  

If the truncation level is k (= 1,000) we can write 

oo 
= 	x X e X xdx + k S e- xdx

lk 0 

ck  -Xx 	- X x co 
= 1-xe 

x]kk 
 + 	e 	dx + k[-e 	]k  

0 

- k = -ke 	1 	XxkX 
+ [- — e 	0 + ke

-kX 

(1 - e-Xk)/X 

Values of LAMBDA for various MU are tabulated in Figs. 6-18, 19. 

Having chosen a value for the message length, the packet is 

transmitted to Slnode 45. Slnode 95 was tied to Plnode 50 by 

having the appropriate field in its data set to this value. 

Slnodes 45, 35, 25, 15 are similarly tied to Plnodes 40,30, 20, 

10. At Slnode 45 the message is queued if necessary and then 

transmitted to Slnode 35. Here the message length is increased 

by 150 bits (its ARPANET overhead) by arc 35.4. The message is 

again queued if necessary and transmitted to Slnode 25. Here it 

activates two elements in the row marked 35. One (of magnitude 

one) queues the message for further transmission to Slnode 15, 

and the second (of negligible size E ) acts via a no operation 

(NOP) arc to initiate transmission of an ACK from Slnode 20 to 

Slnode 30. 

Since the outgoing LAMBDA is the product of the incoming 

arc and the REP element activated, the NOP has a LAMBDA which is 
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SOLUTION OF MU 

MU 

2 	(1, 	EXPt-LAmDA*K))/LAmDA FOR K = 

LAMDA 	1/LAMDA 

100 ,0099995 100.0 
110 .0090899 110.0 
120 .0083313 120.0 
130 .0076888 130.1 
140 .007137? 140,1 
150 .0066581 150,2 
160 .0062378 160.3 
170 .0058657 170.5 
180 .0055336 00.7 
190 .0052351 191.0 
200 .0049651 201.4 
210 .0047194 211.9 
220 .0044947 222.5 
230 .0042881 233.2 
240 .0040974 244.1 
250 .0039207 255.1 
260 .0037563 266.2 
270 .0036028 277.6 
280 .0034591 289.1 
290 .0033241 300.8 
300 .0031971 312.8 
310 .0030771 325.0 
320 .0029637 337.4 
330 .0028561 350.1 
340 .0027539 363.1 
350 .0026566 376.4 
360 .0025639 390.0 
370 .0024753 404.0 
380 .0023906 418.3 
390 .0023094 433.0 
400 .0022116 448.1 
410 .0021569 463.6 
420 .0020850 479.6 
430 .0020158 496.1 
440 .0019491 513.1 
450 .0018847 530.6 
460 .0018226 548.7 
470 .0017625 567.4 
480 .0017044 586.7 
490 .0016482 606.7 
500 .0015936 627.5 
510 .0015407 649,0 
520 .0014894 671.4 
530 .0014396 694,7 
540 .0013911 718.8 
550 .0013440 744.0 
560 .0012981 770.3 
570 .0012535 797.8 
580 .0012100 326.4 
590 .0011676 856,4 

Fig. 6-18. Means of truncI2i1:128ative exponential  
distributions. 

1000 
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SOLUTION OF MU = (1. 	EXP(-LAMDA#K))/LAMDA FOR K = 1000 

MU LAMDA InAmook 

600 .0011263 887.9 
610 .0010859 920.9 
620 .0010465 955.5 
630 .0010080 992.0 
640 .0009704 1030.5 
650 .0009337 1071.0 
660 .0008977 1113.9 
670 .0008626 1159.3 
680 .0008282 1207.5 
690 .0007944 1258.7 
700 .0007614 1313.3 
710 .0007291 1371.6 
720 .0006974 1434.0 
730 .0006663 1500.9 
740 .0006358 1572.9 
750 .0006059 1650.5 
760 .0005765 1734.6 
770 .0005477 1825.9 
780 •0005193 1925.5 
790 .0004915 2034.4 
800 .0004642 2154.2 
810 •0004374 2286.5 
820 .0004110 2433.4 
830 .0003850 2597.4 
840 .0003595 2781.9 
850 .0003343 2990.9 
860 .0003096 3229.7 
870 .0002853 3505.0 
880 .0002614 3826.2 
890 .0002378 4205.6 
900 .0002146 4660.8 
910 .0001917 5217.0 
920 .0001691 5912.0 
930 .0001469 6805.5 
940 .0001251 7996.6 
950 .0001053 9500.0 
960 •0001042 9600.0 
970 .0001031 9700.0 
980 .0001020 9800.0 
990 •0001010 9900.0 
1000 .0001000 10000.0 

Fig. 6-19. Means of truncated nefiative  exponential 
distributions (continued).  
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very small and variable. Consequently we need an arc (20.2) in 

Slnode 20 to set the ACK size to 150 bits. This is then trans- 

mitted to Slnode 30 where it is destroyed since the terminal dataset 

elements are all zero. 

The message arrives at Slnode 15 which is its final destination. 

Here it initiates transmission of an ACK from Slnode 10 to Slnode 

20, in the same way as outlined above. Additionally a RFNM is 

immediately transmitted back to the originating node, followed by 

the reply which is simply the message with a new length. This is 

chosen in the same way as the original one. Both these are trans- 

mitted to Slnode 25 using the same arc. Here ACKs are generated, 

and the packets forwarded to Slnode 35. 

At this point the packets leave the ARPANET so that the 

message is reduced in length by 150 bits, and the RFNM is changed 

to 100 bits. They are both transmitted to Slnode 45 and on to 

Slnode 55. Here the RFNM is separated from the reply using a 

DOloop which completes on every second activation (arc 55.1). 

The RFNMs are destroyed by arc 55.3 and the messages are used to 

create ingoing RFNMs of length 100 bits, as well as activating 

a new think period in Slnode 95 (after reduction of LAMBDA to 1 

by arc 95.1). 

The ingoing RFNM is transmitted to Slnode 45 and forwarded 

to Slnode 30. Here its length is changed to 150 (RFNM length in 

the ARPANE2) and it is transmitted to SInode 20, where it generates 

an ACK and is forwarded to SInode 10. Here the RFNM is turned 

into its own ACK by returning it to SInode 20 along the ACK trans- 

mission arc. 
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The other streams exhibit the same basic pattern with some 

snail variations. The whole graph is initially activated by NOP 

arcs from Slnode 1 which go to think time dataset of each stream. 

The number of times these are activated corresponds to the number 

of terminals in the cluster, and the activations are produced by 

appropriate DOloops at Slnode 1. 

The parameters of the model can be altered for each stream 

individually. In each one the think time for a user can be 

changed by altering the mean delay in, for example, arc 95.2. 

Similarly the mean message length can be reset, and need not be 

the same for messages as replies. The number of users active in 

a cluster can be altered by changing the DOloop limits in the 

initializing node. 

It is very easy to convert the model from cyclic message 

generation to independent generation as a series of Poisson events. 

Firstly it is necessary to change the REP matrix element of the 

reply receiving node which activates the think time node from 1 to 

0 (for example in Slnode 55 we would alter the element at the 

intersection of row 55.2 and column 95). Then the think time 

delay is made to propagate itself by having it activated each 

time a message length is chosen (for example in Slnode 95 we alter 

the element at the intersection of row 95.3 and column 95.1 from 

zero to one). A Poisson series of events is obtained by setting 

IFCODEONE positive in arc 95.2. This ensures that successive message 

generations take place at intervals drawn from a negative exponential 

distribution. 

We have outlined a few elementary ways in which the model can 

be altered, and many more are possible. For example the next 

section includes a description of the addition of a background 
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of file transfer traffic to the model described above. 
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6.4 Results.  

In this section we present the results obtained by executing 

the link model with various parameter values. The mean user think 

period delay was initially set to thirty seconds. The number of 

terminals activated in each cluster was as described in the 

previous analysis. This gives a total of thirty active terminals, 

so that the subnet generates approximately one message per second. 

Three possible values were considered for C1  (4.8, 9.6 and 

50 Kb)*and in each case C
3 
was made equal to C. The response 

observed at each terminal was recorded and statistics accumulated 

by setting an INarc specifier negative in the reply receiving 

node for each stream (e.g. -55.2 for stream five). The mean 

response at node i is 2Ti, as defined earlier. Consequently an 

execution of the SHAPE model gives us the variables required to 

calculate T
a, the mean message delay in the subnet. 

To examine the effects of increased loading the mean think 

period was decreased, thus increasing the overall message 

generation rate. A series of execution runs was performed for 

each of the three channel capacities considered, in which the 

load on the subnet was gradually increased. The results of each 

series are calculated in Figs. 6-20, 21, 22. The first five 

columns give the observed response times of the clusters and the 

last two give Ta  calculated with observed and expected numbers 

of messages generated during the run. 

The first series run was that with C
1 

= C
3 
= C = 9.6 Kb. 

For each value of the mean think time P at least three runs were 

performed. In order that they should provide independent results 

* Kb stands for kilobits/sec. 
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CYCLIC MESSAGE GENERATION WITH C m 4.8 AND UNLIMITED MEMORY 

THINK RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE NORMALIZO 

	

PERIOD 	UK TIP NORW TIP 	PDP9 CDC 6600 	I8M 360 NET MEAN NET MEAN 

	

30.0 	0.7157 	0.4027 	0.7923 	1.1980 	1.1430 	0.3805 	0.3911 
30.0 0.7200 0.4137 0.7827 1.2480 . 1.050 0.3939 0,3978 

	

30.0 	0.7423 	0.4099 	0.8026 	1.2410 	1.1950 	0.4020 	0,4041 

	

26.0 	0.7572 	0.4245 	0.8762 	1.2060 	1.1620 	0.4118 	0,4089 

	

26.0 	0.7344 	0.4156 	0,9163 	1.2290 	1.1640 	0.4126 	0,4077 

	

2240 	0.7922 	0.4523 	0.8563 	1.2350 	1.2140 	0.4348 	0.4225 

	

18.0 	0.7540 	0.4420 	0.0961 	1.3200 	1.2140 	0.4366 	0,4214 

	

140 	0.9092 	0.5205 	0.8925 	1.3580 	1.3330 	0.4711 	0.4701 

	

10e0 	0.9632 	0.6019 	1.1240 	1.4060 	1.3450 	0.5001 	0,5079 co _.1 

	

6.0 	1.6300 	0.9692 	1,2900 	1.9690 	1,6420 	0.7158 	0.7427 

	

6.0 	1.1030 	0.8048 	0.9993 	1.7600 	1.4600 	0.5983 	0,5763 

	

3.0 	1.4660 	1.2170 	1.0380 	2.3260 	1.8680 	0.7173 	0.7478 

	

3.0 	2.4770 	1.2940 	1.7220 	2.2170 	1,9700 	0,9539 	0,9971 

	

3.0 	5.0560 	1.8270 	2.0900 	2.9160 	3.0480 	1.5552 	1,5890 

	

1c0 	5.2490 	1.8000 	2.2160 	2.7540 	2.8190 	1.5583 	1.5901 

	

1.0 	2.3010 	1.9130 	2.1850 	3.5'060 	3.2030 	1.2164 	1,2098 

	

1.0 	5.3940 	3.6030 	2.9210 	3.3130 	3.4210 	1.8858 	1,9865 

	

1.0 	7.5980 	4.2790 	3.0480 	3.4560 	3.3780 	2.2043 	2,3133 

Fig. 6-20. Subnet  response when C = 4.8. 
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CYCLIC MESSAGE GENERATION WITH C ■ 9.6 

	

THINK 	RESPONSE 	RESPONSE 	RESPONSE 

	

PERIOD 	UK TIP 	NORW TIP 	PUP9 

AND UNLIMITED MEMORY 

RESPONSE 	RESPONSE 
CDC 6600 	I8M 360 

30.0 0.3577 0.2150 0.4291 0.8247 0.8282 
30.0 0.3529 0.1971 0.4093 0.8575 0.8283 
30.0 0.3450 0.2073 0.3928 0.7935 0.7737 
30.0 0.3414 0.2004 0.4238 0.8262 0.7623 
30.0 0.3462 0.2090 0,3894 0.8558 0.8265 
26.0 0.3524 0.2210 0.4052 0.8605 0.8065 
26.0 0.3518 0.1993 0.4045 0.8350 0.8462 
26.0 0.3562 0.2022 0.4158 0.8(89 0.8197 
22.0 0.3479 0.2022 0,4216 0.8364 0.8236 
22.0 0.3538 0.2229 0,4094 0.8376 0.8320 
22.0 0.3423 0.2131 0.4099 0.8726 0.8296 
18.0 0.3535 0.2086 0.4179 0.8689 0.8455 
18.0 0.3527 0.2254 0.4041 0.9259 0.8503 
18.0 0.3504 0.2053 0.4009 0.8705 0.8195 
14.0 0.3759 0.2168 0.4126 0.8524 0.8632 
14.0 0.3690 0.2242 0.4226 0.9590 0.8812 
14.0 0.3702 0.2160 0.4283 0.8535 0.8712 
10.0 0.3806 0.2367 0.4362 0.9020 0.8850 
10.0 0.3737 0.2146 0.4444 0.9175 0.8806 
10.0 0,4089 0.2507 0.4487 0.8978 0.8401 
6.0 0.4089 0.2402 0.4916 1.1220 0.8448 
6.0 0.4259 0.2297 0,5074 0.9140 0,8959 
6.0 0.4754 0.2547 0.5124 0.9042 0.8599 
3.0 0.6727 0.4374 0.6380 1.1090 1.1300 
3.0 0.7050 0.5338 0.6243 1.1550 0,9725 
3.0 0.6849 0.4259 0.6630 1.1810 1.1610 
3.0 1.0800 0.4457 0.6865 1.2330 1.2010 
3.0 
1.0 
1.0 
1.0 

1.0690 
0.9013 
1.7420 

0.6008 
0.7309 
0.8612 

0,8276 
0.9235 
1.4550 

1.3540 
1.8010 
1.8560 

1.3080 
1.4690 
1.68 1 0 

1.0 
2.5820 
3.8480 

1.3890 
1.8400 

1.1410 
1.3700 

1.8760 
1.6190 

1.7490 
1.6070 

RESPONSE NORMALIZE) 
NET MEAN NET MEAN 

	

0.2195 	0.2309 

	

0.2168 	0.2290 

0 	
0.2196 

	

0.2200 	0.2217 

	

0.2197 	0,2273  
0.2311 0.2297 

	

0.2389 	0.2283 

	

0.2259 	0.2313 

	

0.2263 	0,2273  

	

0.2202 	0.2305 

	

0.2349 	0,2293 

	

0.2412 	0.2321 

	

0.2410 	0.2367 

	

0.2224 	0,2285 

	

0.2379 	0.2368 

	

0.2465 	0,2447 

	

0.2360 	0.2372 

	

0.2382 	0.2451 

	

0.2410 	0.2426 

	

0.2512 	0.2502 

	

0.2564 	0.2636 

	

0.2546 	0,2581 

	

0.2625 	0.2686 

	

0.3500 	0,3623 

	

0.3510 	0,3726 

	

0.3631 	063708 

	

0.4460 	0.4570 

	

0.4999 	0.4980 
0,5063 g:m: 
0479N1 0.8876 

	

1.0830 	1.1065 



CYCLIC MESSAGE GENERATION WITH C = 50 

	

THINK 	RESPONSE 	RESPONSE 	RESPONSE 

	

PERIOD 	UK TIP 	NORW TIP 	PDP9 

AND UNLIMITED MEMORY 

RESPONSE 	RESPONSE 
CDC 6600 	IBM 360 

RESPONSE NORMALIID 
NET MEAN 	NET MEAN 

30.0.  0.06586 0.05601 0.09723 0.5773 0.5479 0.0912 0.0995 
30.0 0.06529 0.05527 0.09765 0.5609 0.5368 0.0880 0,0475 
30.0 0.06478 0.05685 0.09761 0.5534 0.5356 0,0900 0.0970 
30,0 0,06567 0.05499 0.09921 0.5748 0.5469 0.0944 06 0992 
26.0 0.06513 0.05532 0.09694 0.5722 0.5635 0.1029 0,0998 
26.0 0.06529 0,05557 0.09944 0.5781 0.5550 0.1122 0,0998 
22.0 0,06501 0.05454 0.09477 0.5778 0.5775 0.0973 0,1006 
18.0 0.06556 0.05531 0.09787 0;6142 0.5704 0.1188 0,1027 
14.0 0.06547 0.05554 0.10050 0,5631 0.5284 0.0834 0,0966 
10.0 0.06571 0.05687 0.09636 0.5821 0.5866 0.0994 0,1007 
6.0 0.06658 0.05575 0.09845 0.6451 0.5773 0.1088 0,1025 
3.0 0.06948 0,05798 0.10240 0.6041 0.5936 0.0880 0,0485 
1.0 0.09042 0.07496 0.12560 0.7775 0.6426 0.0848 0.1042 

Fig. 6-22. Subnet  response when C = 50. 



rather than being duplicate runs, all random number seeds were 

altered for each run. This is more satisfactory statistically, 

than running the model for different durations with the same set 

of seeds. For heavier loading the model took longer to reach 

a steady state, and provide convergent results. The two values 

of P where this had a significant effect were P = 3.0 and P = 1.0. 

In these cases more than three runs were made, and they appear 

in order of increasing duration. For P = 3.0 the value of T
a 

in the final run was 0.4999 secs with double the original run 

time. We would expect the steady state to be between 0.5 and 

0.6 seconds. The result was not pursued further since the runs 

of that duration were already consuming considerable computer 

time, and the loading was at the limit of the range we were 

considering, namely one order of magnitude greater than the 

starting estimate. 

The runs with P = 1.0 were executed to obtain an indication 

of behaviour for loading with P less than 3.0 There is little 

convergence apparent in the results, and we can see that the 

response time is considerably greater than the think time. Under 

these circumstances the cyclic nature of the model plays an 

important part by preventing message generation until responses 

are received. In contrast we can see that with P = 3.0 all 

responses are still less than half the think time. We conclude 

that with C = 9.6 and P = 340 we are approximately an order of 

magnitude from a load which causes the subnet to explode. 

A similar set of runs was executed with C
1 

= C
3 
 = 4.8 and 

it can be seen that the response time for P = 39 is a good deal 

longer, and that rapid deterioration begins at a larger value 
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of P (6.0) than with C = 9.6 Kb. Setting C1  = C
3 
= C = 50 Kb gives 

us the results in Fig. 6-22 which show that in this case there is 

little or no variation of response time in the range of loads we 

have examined. We note in passing that the results agree well 

with the values of T
a 
calculated earlier for P = 30 and shown in 

Fig. 6-5. 

After these runs the model was altered to give non-cyclic 

generation of messages. The method of doing this has been described 

at the end of the previous section, and allows a message generation 

node to operate independently of the subsequent fate of its messages. 

The results are shown in Fig. 6-23. For the lower loadings mean 

response time is not significantly different from the cyclic case. 

However, for the runs P = 6.0 and P = 10.0 we see that T
a 
is 

slightly greater than for the cyclic case. The fact that this 

difference does not increase in the runs for P = 3.0 and P = 1.0 

we attribute to insufficient run-time to reach a steady state. 

We would expect that in a steady state, with comparable loads on the 

subnet, the non-cyclic case would produce more messages per second, 

and consequently longer response time. 

The question of comparable load is effectively that of the 

rates at which the five independent generators should produce 

messages. For the runs in Fig. 6-23 we derived mean delays as 

follows. If r. is the mean response observed for cluster i when 

the think time delay is P, we can say that the mean cycle time for 

a message in the i th cluster is 

Cycle i = P + r. 

No. of messages/sec in i th cluster = ni/(P + r.) 
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IHINK 
PERIOD 

MESSAGE GENERATION WITH C s 

	

RESPONSE 	RESPONSE 	RESPUNSE 
U 	TIP 	NORW TIP 	POP9 

9.6 

RESPONSE 
COC 6600 

RESPONSE 
I8M 360 

RESPONSE NORMALIZO 
NET MEAN 	NET MEAN 

3060 0e3649 002084 0.4305 0.8767 0.8026 0,2304 0,2345 
77!6»0 0t36G5 0.2006 0.4008 0.8423 0,8344 0.2285 0,2307 
'i'.20 0J354 0,2107 0.4314 0.8371 0.8218 0.2300 0.2315 
1860 0.3631 0,2177 0,4085 0.8452 0.8511 0.2308 0,2347 
1441 0.3782 0.2206 0,4073 0.8475 0.7961 0,2333 0,2344 
'1040 0,4000 0.2389 0,4633 0.9106 0.9198 0.2589 002568 

0 0.5139 043250 0,5377 1.0040 0.9684 0.2990 1,3036 
6.0 0.4965 0.3129 0.4825 0.9923 0.8603 0.2792 
3.0 088306 0.4873 0.6889 1.2050 1.3740 0.4458 0,47:27 
3.0 0,8407 003868 0.5718 1.1800 1,2120 0.403 C,4044 
1.0 1.0100 0.5171 1,0870 1.5610 1.:2740 0.5195 ),5:52 
1.0 2,936U 1.4500 1.3770 1.7510 :.3430 (.39271 1,0309 

Fig. 6-23. ii2p=aillaan2y9tton of mesa25222.  



	

1 rini 
	ni Mean message delay = -2-  

	

p+r
i 	

p+r. 
i 

For each value of P in the set of runs, the terminals of cluster i 

weresettogenerate-OP-Fr.)messages per second. 

A further series of runs was undertaken which gave results for 

T
a for various mean message lengths (cyclic generation). These are 

shown in Fig. 6-24. The runs were for values of P = 3 and P = 33 

and covered the range 300 to 900 bits for each. The purpose of 

these runs was to examine how sensitive T
a 
is to variations in a. 

For P = 3D we can see that there is a smooth increase, and that 

even with a very high (900) mean message length the vallle of Ta  

falls within the design range set previously. For P = 3 the 

results suffer from insufficient runtime for the higher message 

lengths. The sets of computer runs so far described are to be 

found in INDRA Notes 287 to 291 inclusive. The tabulated results 

are shown in graphical form in Figs. 6-25, 26. 

We can see that for purely interactive traffic at the level 

estimated (P = 30), all three values of C would be sufficient. 

If C = 50 Kb the response time will be good (Ta  = 0.1) for this 

level of loading or more. If C = 9.6 Kb, the response time is 

still fairly good (Ta  = 0.22), and remains within the desired limits 

for loads up to an order of magnitude larger. For C = 4.8 Kb the 

value of T
a 

is about a half of the acceptable limit, and the load 

increase available is less than an order of magnitude. From these 

results we recommend that for operation with interactive traffic, 

the most appropriate values of C
1 
and C

3 
in the subnet would be 

9.6 Kb. 

We now discuss the addition of a background of file transfer 

traffic to the model. This type of traffic consists of full ARPA 
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CYCLIC MESSAGE GENERATION WITH BLOCK LENGTH VARIATION, C s 9.6, P x 3 AND 30 

BLOCK THINK RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE NORMALIZD 

	

LENGITS PERIOD 	UK TIP NORW TIP 	PDP9 CDC 6600 	IBM 360 NET MEAN NET MEAN 

300 	3.0 	0.3343 	0.2224 	0.3142 	0.6765 	0.5825 	0.1858 	0.1906 
400 	3.0 	0.5705 	0.3306 	0,5934 	0.8322 	0.9552 	0.2988 	0.3006 
500 	3.0 	0.6470 	0.4133 	0.6124 	1.1760 	1.0560 	0.3479 	0,3520 
700 	3.0 	1.1980 	0.7290 	0,8710 	1.5090 	1.5560 	0.5524 	0.5644 
800 	3.0 	1.2960 	0.7968 	1.0980 	1.6430 	1.6300 	0.6140 	0,6201 

co N) 	900 	3.0 	1.2390 	0.7213 	0.9239 	1.8400 	1.6990 	0.5905 	0,6008 
co 	300 	30.0 	0.2211 	0.1472 	0.2271 	0.4799 	0,4504 	0.1318 	0,1359 

400 	30.0 	0.2734 	0.1806 	0.2897 	0.5,97 	0.6334 	0.1698 	0.1725 
500 	30.0 	0.3143 	0.1822 	0,3273 	0.7879 	0.8431 	0.2100 	0.2107 
700 	30.0 	0.4081 	0.2560 	0,4292 	0;9344 	1.1000 	0.2665 	0,2700 
800 	30.0 	0.4424 	0.2736 	0.4755 	1.2420 	1.1500 	0.2945 	0,3049 
900 	30.0 	0.4869 	0.2956 	0,5300 	1.2430 	1.2320 	0.3229 	0.3252 

Fig. 6-24. Variation of response with 2Loket  length.  







messages, that is to say eight packets each of 1,000 bits. In order 

to provide this background we have introduced a separate generating 

node for each stream (for example node 85 for stream 5). This node 

generates eight-packet messages at intervals drawn from a negative 

exponential distribution. We show the structure of the node in 

Fig. 6-27. 

Since the traffic is a background it is sufficient to generate 

only the inward bound blocks, and examine the effect on inward 

interactive traffic. By arguments from the symmetry of the traffic 

inward and outward, we include a RFNM for each block and inward 

ACKs corresponding to those of the blocks themselves. The addition 

of the inward traffic is to stream zero, and the modified stream 

is shown in Fig. 6-28. The message generation is initialized 

by an extension to node one which gives the block traffic the 

same proportional pattern as the interactive. Of course 

this need not be the case in actual operation, but without 

foreknowledge it is the most reasonable estimate. The extended 

node one is shown in Fig. 6-29. 

The average interactive message delay is observed by 

measuring the mean elapsed age of the messages from each 

stream as they reach the US TIP. As before, Ta  is calculated 

from these values weighted by cluster size. 

Several runs were executed with background traffic, but 

we have not included the results since the number of message 

trips completed within the run limits was insufficient to 

provide meaningful statistics. The amount of computer time 

required to produce significant results would not have been 

available without special arrangements and consequently longer 

runs were not attempted. 
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Finally a number of runs were made with the original model 

to examine the effect of varying C
1 

and C
3 

when the load was 

held constant. All possible combinations of the values 4.8, 

7.2, 9.6 and 50 Kb for the channels C
1 
and C

3 
were run with a 

load on the network produced by setting P = 30. We show the 

values of T
a obtained in tabular form in Figs. 6-30, 31 and in 

graphical form in Fig. 6-32. The Ta  are calculated using 

expected numbers of messages. 

It is clear from the structure of the link that if one of 

C
1 
 and C

3 
is to be increased in order to reduce the value of T

a 

then the greater reduction is obtained by increasing Cl. 

The degree of this advantage is shown in Fig. 6-31. In Fig. 6-30 

we can see that an increase in C
1 

or C
3 

benefits most those 

terminal clusters in whose message paths the channel is the most 

significant component. The results show that if a particular 

message delay is to be obtained, then the sum of C
1 
and C

3 
is 

least when they are approximately equal. Assuming that channel 

cost is related to capacity, enhancement divided equally between 

channels one and three will provide the greatest improvement in 

performance for a specific cost. 
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CHANNEL 
ONE 

CHANNEL 
THREE 

RESPONSE 
UK TIP 

RESPONSE 
NORW TIP 

RESPONSE 
PDP 9 

RESPONSE 
CDC 6600 

RESPONSE 
IRK 360 

RESPONSE 
NET MEAN 

4.8 4.8 0.72o0 0.4137 0.7827 1.248o 1.1750 0.3977 
4.8 7.2 0.6133 0.3935 0.7348 1.1460 1.0810 0.3595 
4.8 9.6 0.5636 0.4040 0.6783 1.0380 1.0300 0.3362 
4.8 50.0 0.4345 0.4081 0.5176 0.9386 o.8846 0.2838 

7.2 4.8 0.5987 0.2656 0.7001 1.1210 1.0510 0.3378 
7.2 7.2 0.4792 0.2703 0.5850 0.9739 0.9307 0.2888 
7.2 9.6 0.4249 0.2648 0.4929 0.9249 0.8927 0.2655 
7.2 50.0 0.3048 0.2789 0.3474 0.7811 0.7389 0.2133 

9.6 4.8 0.5362 0.21054 0.6398 1.0320 0.9805 0.3046 
9.6 7.2 0.4131 0.2069 0.4925 0.8912 0.8599 0.2529 
9.6 9.6 0.3462 0.2090 0.3894 0.8558 0.8265 0.2257 
9.6 50.0 0.2277 0.2131 0.2740 0.7193 0.6771 0.1782 

50.0 4.8 0.4108 0.0551 0.4778 0.9104 0.8538 0.2371 
90.0 7.2 0.2776 0.0554 0.3254 0.7709 0.7184 0.1820 
50.0 9.6 0.2033 0.0552 0.2487 0.6985 0.6595 0.1533 
50.0 5o.o 0.0653 0.0553 0.0977 0.5609 0.5368 0.0983 

Fig. 6-30 	Subnett... ra.!..se for various combinations of C  and C
3 

whop P 3).  



T
a 

c1 	3  4.8 7.2 9T6 50 

4.8 0.3977 0.3595 0.3362 0.2838 

7.2 0.3378 0.2888 0.2655 0.2133 

9.6 0.3046 0.2529 0.2257 0.1782 

50 0.2371 0.1820 0.1533 0.0983 

Fig. 6-31 Ta  for combinations of C1  and  C3  when P EJO.  
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CONCLUSION 

299 



7.1 Summary of research aims achieved.  

In the preceding chapters we have described research which 

attempted to provide a system for modelling computational activity 

and to demonstrate its practicality in a real situation. We now 

summarize the results and draw some conclusions. In the next 

section we make suggestions for further research. 

The SHAPE system uses directed graphs whose elements have 

associated numerical data in order to describe both the hardware 

and software of a computational process. This combination may 

be thought of as a type of notation which can not only perform a 

descriptive role, but is also capable of execution in the sense 

of enacting the computation described. We have found the notation 

useful in its own right as a means of clearly and unambiguously 

specifying hardware and software. Its graphical nature is 

particularly suited to the expression of parallelism in software 

and the hardware counterpart of parallelism, namely multi-processing. 

In the case of software the dependences of processes are expressed 

by the use of arcs and nodes. The interaction of processes via 

the data they produce is described by the repartition matrix 

associated with each node. 

It seems clear that a computation can be hardened or 

softened to an arbitrary degree, that is that the proportion 

expressed in hardware can vary from next to nothing to the entire 

computation. This point of view has led us to search for 

representations whose structure is applicable to hardware and 

software, and which maximize the number of aspects common to both. 

To some extent we have succeeded in this. The hardware and 

software representations are both graphical in form. 
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The nodes of Slgraphs and Plgraphs correspond to the software and 

hardware aspects of data. Similarly the arcs of each type of 

graph correspond to the software and hardware aspects of data 

transformation. 

Of course the correspondence is not as good as we would 

wish it to be. Nevertheless it has allowed us to developi, 

without undue difficulty, an algorithm which models the execution 

of a computation in fairly general terms. We have called the 

algorithm's action the binding of a Slgraph and Pigraph. This 

simple interpretation of computation is possible because of the 

correspondence between the two graphs. The algorithm is at the 

heart of the SHAPE implementation, in which it is called the 

allocator. 

Our use of nodes and arcs to model data and data trans-

formation has allowed us to give a simple and consistent 

account of data transmission and storage. Data transmission 

is treated as the operation of an identity processor since no 

alteration occurs, and data storage is equivalent to the 

operation of the null processor. The structure of the graphs 

is recursive, allowing a process to be modelled not only by an 

arc$  but also by a functionally equivalent subsidiary graph. 

This allows a model to span an arbitrary number of levels of 

detail. The griaphs can potentially model a recursive structure, 

and consequently the SHAPE implementation has the ability to 

bind the two graphs recursively. 

By implementing the modelling system, and using it in the 

context of a real design situation, we have tried to verify that 

it could be programmed, used, and provide accurate results. 
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A high level language, STMULA 67, was chosen for the implementation 

because of the need for list processing, class definition, simulation 

facilities, and recursion. Class definition was used to provide 

the elements of the system such as arcs and nodes, and their linkage 

in a graph model was reproduced within the computer with list 

processing primitives. The most convenient way to program the 

binding algorithm was through the use of simulation facilities, 

since an obvious fundamental property of a computation is that it 

advances with time. We did not succeed in implementing the full 

facilities of the system because of insufficient time and 

limitations in the software that was used. However, enough was 

completed to proceed with a validation of the SHAPE program. 

A store and forward network was chosen as the validation 

example for two reasons. Firstly, our knowledge of the subject 

was very detailed, and this helped to ensure an accurate model 

and thorough comprehension of the results. Secondly, the 

modelling experience was directly relevant to the intended 

application of the SHAPE system to the European linkage with the 

ARPA network. The results produced by the store and forward 

model did not require us to reject the validity of the SHAPE 

system at the ninety-five per cent confidence level. In fact 

a good agreement with theoretically expected results was obtained. 

We then turned to using the modelling system in a real 

design situation, namely the choice of channel capacities in two 

of the channels forming part of the European ARPANET. A model 

was successfully developed and used to predict mean interactive 

response times under various conditions. This work, and the 

design recommendations it led to, are delribed in the previous 
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chapter. In addition to their immediate utility, these results 

demonstrate the capacity of the SHAPE system to describe and model 

the opening of an application which is neither trivial nor artificial. 

Graphs have been used previously to describe programs, 

and to discover properties of programs so described, but no 

equivalent schemes were produced for hardware description. 

Our approach has been novel in the recognition of hardware 

software equivalence, which led us to provide a system of graphical 

description applicable to bothiand in the requirement that the 

descriptions should be directly usable for modelling computational 

activity. As a result the SHAPE system is original in its use 

of the same elements to provide both types of description, and 

in leading to a new view of computational activity, namely the 

binding together of a software and a hardware graph. 

Earlier the graph descriptions have been called a type of 

notation. This notation is not only descriptive but also 

executable in the same way as a high-level programming language. 

We believe that the SHAPE system is perhaps the first to provide 

an executable graphical notation for modelling computational 

activity, and the means for executing it. 
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7.2 Suggestions for further research.  

As is necessarily,  the case in research, we have not been able 
\ 

to attempt all we would have wished to, nor even achieve all we 

attempted. Our suggestions for further research inevitably stem 

from this situation. In working towards our main aims we have 

sometimes had to make a choice or accept an assumption without 

sufficiently deep investigation. These are also areas of 

potential research. 

For example, the correspondence between the elements of 

hardware and software graphs is not as good as it might be. 

In particular the IFloop, while adequate for modelling, does not 

correspond well with a Plarc whoseinitial and terminal nodes are 

the same. It might perhaps have been better to include the two 

IFcodes as normal software functions in the PHI vector. The choice 

of possible IFcode actions was not deeply investigated and could 

perhaps be rationalized. In addition, we would have liked to 

give more time to the representation of processors which can 

transfer data between more than one pair of stores. While their 

representation as a number of PIarcs with an allocation inter-

lock is well justified, further consideration might provide a 

more elegant model. 

An area which we have not touched upon at all, and which 

should be of some interest, is the investigation of a computation 

described by a Slgraph and Plgraph by analytical techniques rather 

than by actually binding the two graphs. Furthermore, while we 

have presented a model of the binding process, this has not 

included any techniques by which the binding algorithm might 

optimize some aspect of the computational process. 



For example, the algorithm might attempt to minimize the total 

binding time for the graph pair, either by complete optimization 

or by a sub-optimal technique such as limited look-ahead. 

In addition to these subjects, we would have wished to give more 

attention to the equivalence between preemptive and fractional 

allocation strategies. 

Turning now to the SHAPE program, we must make the comment 

that although the features of SIMULA 67 are very well suited 

to the implementation of the modelling system, the compiler 

and the programs it produces are also very inefficient. This had 

several undesired effects on our work. Firstly, it was not 

possible to implement the full set of modelling facilities. 

In particular, the ACT matrix attribute of a Slnode was not 

included, and consequently neither were the related functions 

of mode 3 binding and error modelling. Further work we would 

suggest in this area would be the creation of an efficient 

implementation that provided these facilities. 

In the SHAPE implementation the allocator binds a ready 

Slarc to the Plarc which minimizes the duration of the resulting 

tie. A useful feature which might be added to the system would 

be the insertion by the modeller of alternative binding strategies 

with his run-time data. Lastly, an aspect of the SHAPE program 

which is capable of improvement is the activation of ready 

SIarcs that are waiting for the Plgraph resources they need 

to become available. The existing method using delay arcs is 

primitive and not very efficient. 

Finally, it must be clear that one validation cannot be 

an exhaustive test of the SHAPE program, and one application 
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cannot confirm its utility in a wide range of computations. 

Consequently we would wish to see the modelling system used in 

other areas beside the one chosen for this thesis. Where 

theoretically expected results were known further validation 

would be possible, and where none were available such use would 

provide additional demonstrations of the system's wider 

applicability. 
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SIMULA 67 is a general purpose programming language which 

may be regarded as an extension of ALGOL 60. The language was 

defined by 0. J. Dahl and K. Nygaard of the Norwegian Computing 

Centre, Oslo. Its syntax is particularly suited to the definition 

and manipulation of classes, which can be data structures, execution 

rules, or a combination of both. The language provides for very 

easy definition of list-processing and simulation procedures. 

The treatment of simulation is based on the languages SD/MLA I 

and SOL. Below we give a brief summary of the features of 

SIMULA 67, which we will refer to as SIMULA. 

In the course of this research some corrections and additions 

were made to the STMULA compiler. The main addition was the 

provision of interactive execution of a SIMULA program. As well 

as data input and program at a terminal, file linkage prior to 

program execution, was possible by entering DATASET cards from the 

keyboard. 

Corrections to the compiler were made by normal software 

maintenance methods, namely fault isolation, fix writing and 

insertion. Where possible fixes provided by Control Data 

Corporation were used, including those for faults reported by 

users at other installations. The majority of faults required 

small amounts of corrective code, rather than major changes or 

extensions. The compiler was maintained by the author for the 

duration of the research described in this thesis. 

There are two main additions to the concepts presented 

in ALGOL 60. The first is that of program entities called objects; 

and the second is a new type of variable called a reference 

variable, which may point to objects. 
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A class definition is quite similar to a procedure definition. 

It consists of a class name, a number of formal parameters, and a 

class body or execution rule. A simple example is: 

class rectangle (al b); 

real 

begin  

real area; 

area : = a * b; 

end; 

A reference variable may point to objects of the class given 

when the variable is declared. For example: 

ref (rectangle) p;1  

Here p is declared to be a pointer which may only point to objects 

of the Glass rectangle. An object is an instance of its class 

declaration, and we can generate one using the SIMULA symbol new. 

new rectangle (5,6); 

This statement will create an object of the class rectangle with 

parameters equal to 5 and 6. If we write: 

p :- new rectangle (5,6); 

then p will point to this object ( :- is the symbol which means 

'points to'). The null object is a member of all classes so that 

we may always write: 

p :- none; 

irrespective of the class for which p has been declared a referen9e 

variable. We may pass the value of one reference variable to 

another by writing: 
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p 	q; 

after this statement p will point to the same object as q does. 

The main difference between a class and a procedure are that a 

class body may not alter the values of the actual parameters which 

correspond to its formal parameters, and that an object exists as 

long as some reference variable points to it. That is to say we 

may not write: 

class a (x); name x; real ; 

and further, an object will not disappear when its execution rule 

completes, unless there is no reference variable pointing to it. 

al b and area are called the attributes of an object of the class 

rectangle and we may access them via the reference variable p by 

writing p . attribute, for example: 

p :- rectangle (5,6); 

x := p.a ; 

y •= p.b ; 

z := p.area ; 

A shorthand for this is the inspect statement: 

inspect p do begin  

x := a ; 

y •= b 

z := area ; 

end; 
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Remote referencing can be concatenated indefinitely; 

i.e. if the class rectangle has a locally defined reference 

variable q which points to objects of class triangle, we may write: 

x := p.q.side ; 

where side is a local variable of an object of class triangle. 

Classes may be concatenated to form subclasses. For example 

the statements: 

class A (al b); real al b ;; 

A class B (x,y); real xiy ;; 

define a class B which is a subclass of A and having four 

attributes a, b, xi  y and no execution rule. A reference variable 

declared for class A may also point to any of its subclasses. 

For example: 

ref (A) p; 

p :- new B(1,2,3,4); 

If A and B have execution rules, then the body of class 

B may be inserted anywhere in that of class A using the symbol 

inner; for example: 

class A (a,b); 

real a,b; 

begin  

real ci d; 

C := a * b; 

inner; 

c := c + d; 

end; 
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A class B (x,y); 

real x,y; 

begin  

d := x * y; 

end; 

The statemtn p :- new B(112,314); will produce an object with 

execution rule: 

real a,b,x,y; 

begin  

real cl d; 

c := a * b; 

d := x * y; 

c := c + d; 

end; 

A class name, with or without an actual parameter list, may 

prefix an ordinary block. This makes the attributes and capabilities 

of the class available to the block. For example: 

class A; 

begin  

real procedure sqrt (z) 

real z; begin sqrt := z 0.5; end; 

A begin  

real x,y 

x := sqrt (y); 
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end; 

The above is a simplified explanation of the way in which 

classes and reference variables may be used- For more information 

see the SIMULA 67 Common Base Definition. The main incompatibilities 

of SIMULA with ALGOL 60 are: 

1. The own symbol is not permitted. 

2. The string symbol is replaced by a similar concept, text. 

3. Procedure parameter transmission by name must be specified 

using the symbol name- 

4. The input/output system is developed in terms of objects of 

class file and its subclasses. Users should refer to the 

Reference Manual for details. 

SIMULA 67 provides two predefined classes, SIMSEl and SIMULATION. 

These have no formal parameters, but define a number of procedures 

which allow a programmer to write a list-processing or simulation 

program more easily within a block prefixed by these class names. 

In fact SIMULATION is a subclass of amaa. This is so for two 

reasons. Firstly it allows the class SIMULATION to use list-

processing procedures from SlMSET when predefining simulation 

facilities; and secondly it allows the programmer to have access 

to those procedures inside a block prefixed by SIMULATION. 

The prefix SIMSET provides for simple manipulation of two-way 

of two-way lists. The following actions are possible using 

predefined procedures. 

1. Accessing the successor of a list member 

2. Accessing the predecessor of a list member 
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3. Inserting an object in a list before or after another one, or 

at the end of the list. 

4. Removing an object from a list. 

5. Creation of a list. 

6. Accessing the first and last objects in a list. 

7. Determining whether a list is empty. 

8. Determining the number of objects in a list. 

9. Removing all objects from a list, making it empty. 

The prefix SIMULATION allows the programmer to define 

processes (objects of class process) which are scheduled and 

executed within a predefined quasi-parallel system with its own 

time axis. This is done by maintaining a time-ordered event list 

(SQS) whose events are executed in sequence. Events are themselves 

objects which have two attributed (in addition to those required for 

list membership), namely: 

real eventtime; comment the time at which this event is scheduled 

to occur; 

ref (process) proc; comment a pointer to the process whose acti- 

vations or reactivation this event 

represents; 

Events may be created implicitly or explicitly by processes, 

which themselves can be generated or destroyed by object 

generation or completion and detachment. Processes may interact 

via global variables, automatic statistic gathering, or by altering 

the attributes of other processes through inspect statements. 

The following actions are possible using predefined procedures. 

1. Accessing the current system time. 

2. Referencing the currently active process, i.e. the process 
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executing the current event. 

3. 	Referencing the successor and predecessor of an event in the SQS. 

4- 	Waiting for a specified time before continuing execution of the 

process execution rule. 

5. Entering a queue. 

6. Halting execution of a process until activated by some other 

process. 

7- 	Directly scheduling an event, before or after another, or 

at a given time. 

8. Cancelling or rescheduling a scheduled event. 

9. Activating or reactivating a halted process. 

10. Accumulating the system time integral of a variable. 

11. Drawing of random numbers from various distributions. 

To illustrate the flexibility of SIMULA 67, we shall suppose 

that we have a recursively defined problem of the form: 

real procedure solution (data); 

real data; 

begin  

real nextdata; 

nextdata := function (data); 

if nextdata = simpledata then solution := simplesolution 

else solution := solution (nextdata); 

end; 

If the solution of the problem involves performing a simulation 

we can define: 

real procedure function (data); 

real data ; 

335 



simulation begin  

end; 

procedure function (nextdatal  partsolution); 

name partsolution; 

real nextdatal  partsolution; 

begin  

ref (G) x; 

if nextdata = simpledata then partsolution := simplesolution 

else begin  

x :- new G(nextdata, 0); 

partsolution := G.solution; 

end* 

end; 

A SIMULA 67 program may be executed on the CDC 6600 at ULCC 

suing the following control cards: 

J03( 	 

ATTACH(S1MULA, SIMULA) 

SIMULA (LOX) 

LIBRARY(L = SIMULALIB) 

LG0. 

RETURN(SIMULA) 

7/8/9 

SIMULA SOURCE PROGRAM 
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7/8/9 

DATA 

6/7/8/9 

The last two cards of the SIMULA source deck should be 'EOP' 

and FINIS, both punched in columns 10-14. 

Most programs can be compiled using 20,000 words (decimal) of 

store. However, for larger programs both compilation and 

execution speed can be increased by allowing more store. 

Files names used in a SIMULA program are related to SCOPE 

files by DATASEP cards, which are the first cards of the data 

record. 
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APPENDIX III 

SHAPE LLMITATIONS 
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For various reasons the SHAPE program does not provide all the 

features described in Chapter III. In this appendix we state the 

limitations and discuss briefly the reasons for them. Implementa-; 

tion of the modelling system was originally divided into two 

stages. In the first of these a simplified system was created, 

with dataset activity represented by giving negative signs to the 

appropriate REP matrix elements, rather than the provision of the 

ACT matrix. This course required that datasets were treated as 

read-write only (the negative sign indication for read-only having 

been preempted). 

Further consequences of the absence of the ACT matrix were a 

difference in the implementation of DOloops and the inability to 

perform simultaneous activation. The latter was caused by the 

absence of the top and bottom ACT column elements which we used 

to record a processor allocation (reservation in the case of 

simultaneous activation). This lack also precludes the implemen-

tation of the error handling methods described in Chapter III. 

Since read-only datasets were not available in stage one there 

was no necessity for deactivation SIarcs, which Must,e18o be 

provided when read-only datasets are implemented. 

The addition of these features was defined as the second 

stage of implementing the modelling system described in Chapter III, 

but this was not carried out because of various problems of 

implementation. The most serious of these was a deficiency of the 

loader in the SCOPE operating system at that time. This deficiency 

was a limit to the number of certain loader tables which could be 

processed by the loader for a single program. Unfortunately the 

SIMULA 67 compiler produces code in which these tables occur very 

frequently. 
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Consequently a large SIMULA 67 program will not load after 

compilation and the loader either aborts with a machine stop or 

enters an infinite loop. 

Since no diagnostic is issued identification of the fault 

took some time. It was found that the stage one implementation 

was slightly over the limit and steps were taken to reduce the 

number of the offending tables. This required the elimination of 

topological verification after graph input, and the use of only one 

set of statistics (hardware or software). In addition all calls 

to the run-time input-output system were changed to calls to an 

equivalent local procedure. 

These measures reduced the program size sufficiently to allow 

successful loading. However any further insertion of SIMULA 67 

statements had to be balanced by deletions elsewhere. Implementa-

tion of stage two could not have been accomodated within the 

program size required for successful loading. 

A way out of this problem is the use of code procedures 

within a SIMULA 67 program. This is a call to a procedure which 

is separately compiled, and linked to the main program at load 

time. Various portions of the SHAPE program, notably the graph 

input procedures, could then be compiled separately, and linked 

to a much reduced main program by the loader, thus overcoming the 

limits imposed on any single program. Code procedures are part 

of the SIMULA 67 language and described in detail in the manual 

for the CDC 6600 version. However they have not been implemented 

in the compiler at the time of writing. 

Other problems in the compiler, while not insurmountable, 

considerably slowed down SHAPE implementation. 
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One of these was a residue of program stop instructions which had 

been used by the compiler writers for trapping purposes. When these 

occurred during compilation or execution of SHAPE, elimination of 

the statement responsible strangely resembled a process of trial 

and error. The lack of interactive facilities in the compiler 

and run-time system increased the time spent in debugging SHAPE 

when this was already in short supply. Circumvention cf the 

compiler bugs revealed in this process required extra statements 

in some cases, eating into the allowable program size. EXamples 

are the use of a bad approximation for the generation of random 

Poisson numbers, incorrect comparison of positive and negative 

zero, and failure to recognize compressed card images. 

The decision to forego stage two was also influenced by 

considerations of resource availability. Any STMULA program 

requires a run-time acratch area for the storage of 

dynamically created and destroyed class objects. This area 

is provided by the storage between the end of the program and 

the field length limit. When all the free space has been used 

the run-time system calls a procedure named the garbage collector 

which eliminates all defunct objects and compacts the remainder, 

so providing a new free space area. The smaller the overall 

scratch area, the more frequently the garbage collector must be 

called to clean it up. Since the garbage collector processing 

is not negligible a trade-off developes between core storage 

available and CPU time required for any given program run. 

Furthermore as a program grows in size, in order to maintain 

the scratch area the field length must increase by the same 

amount. To provide an adequate scratch space for the stage one 

implementation between 50 K and 60 K of core storage is required. 
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As the field length is dropped from 60 K, increasing quantities of 

CPU time are devoted to garbage collection. Jobs run at University 

of London Computing Centre are categorized by resource usage. 

A J9 category job may use up to 50 K of memory and up to 120 secs 

of CPU time, and a J12 job is allowed 60 k and 1200 secs. 

respectively. 

Consequently a SHAPE run with medium sized graphs will 

almost certainly be a J12 job. This is the largest job which 

receives a regular turnround at the Centre. If more store or CPU 

time is required the job is categorized as J15 and run as and when 

there is spare capacity available. Production runs should therefore 

be kept within the J12 limits if at all possible, to ensure regular 

turnround. Within these limits it is doubtful if adequate scratch 

storage would remain after expansion of the SHAPE program to 

include stage two facilities. The full implementation would there-

fore have to be run as a J15 job except with the simplest models. 

In some models the value of the results is related to the 

length of run. For such cases the runs must have adequate CPU time 

available, so that if requested memory is reduced from J1? to J9 

limits, the garbage collection trade-off increases the CPU time 

required and returns the job to the J12 category. This resource 

availability situation provided a further reason to use the stage 

one implementation. Even in this case because J12 jobs are the 

largest to receive regular service, they also have the slowest 

turnround time. 

Most SlMULA 67 programs will use the run-time system a good 

deal, especially if any list-processing or simulation is performed, 

which is the case with SHAPE. 
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Therefore the CPU time used is greatly affected by the efficiency 

of the run-time system in executing its various functions. 

Its areas of weakness are the input-output procedures, block entry 

and closure, and the processing of goto statements. 

The code produced by the compiler is split into 512 word 

segments for no apparent reason- The segments do not correspond 

to the user program, and jumps across segment boundaries are 

very slow (requiring a call to a segment control routine in the 

run-time system). If a program loop crosses a segment boundary 

degredation can be severe. The loop control itself is slow and 

does not take advantage of the simple case where the step is one. 

For these reasons a good deal of CPU time is required by SlMULA 67 

programs. 

In the paragraphs above we have tried to summarize the reason 

for which the full graphical modelling system was not implemented, 

and also some of the factors which slowed down the development of 

the restricted system- 

The validation model was a simple one and consisted of a 

small number of modelling elements- The observation of interest 

was message delay and the validation runs were in the J12 category 

of resource usage, which allowed the generation of approximately 

2,000 messages. 

The model of the ARPA network link was also run as a J12 

category job, and typically this run-time would generate between 

250 and 300 round trips (message and response cycles). When 

considering alternative models of the link we were at pains to 

keep the memory requirement to a minimum. The implementation 

has only two variables which travel with the cut, namely LAMBDA 

and BETA. 
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If a further variable of this type were available it could be used 

to provide a message routing indicator. If the variable held the 

node number of the destination node for the message, then an IFloop 

whose outcome was a function of the variable value would be 

equivalent to a routing algorithm- The existence of these two 

facilities would be of great benefit, since it would be possible 

for messages with differenct destinations to use the same REP 

matrix elements on common sections of their routes. While leaving 

the CPU time almost unchanged, this would greatly reduce the 

memory required by the model. 

Without these features it was necessary to provide separate 

matrix elements for messages with different destinations. Within 

this constraint we reduced the memory requirement by providing 

separate nodes for each route, so keeping the number of REP 

matrix elements much smaller than would be the case if the 

separate route elements were placed in a single REP matrix. 

The CPU time required by a model is approximately proportional 

to the number of Slarc executions, and so to the number of SIarcs. 

These were kept to the minimum compatible with retaining the 

structure of the link activity. 

In general penalties in resource usage were incurred because 

of the absence of the second stage implementation, or because of 

inefficiencies in the SIMULA 67 run-time system. Where possible 

these were alleviated by judicious manipulation of model 

structure. 
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APPENDIX IV 

SHAPE USER INFOIMATION 

34,5 
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FROCESSOR 
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CARD FORMATS FOR GRAPH INPUT 

CARD COL 1 
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NODENUMSER NODENUMBERFIRSTNODE LASTNODE 
k 

ARC WIDTH GRAPH 
SIZE 

GFACTuR NUMBER OF 
PROCESSORS 

SEQ FRAC.iDATANODE1 DATANODE2 DATAS6QF?s 
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ID 	COST 

PSI[1 i 	PSI[1,2] PSI[1,31 
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DATA REPLICATION 

If a node (or arc) has identical data to some other then 

DATANODE (or DATANODEI, DATANODE2, DATASEQF) describe the other 

node (or arc) and the data is replicated automatically by 

graph input, so that there is no need to append the data again. 

The same occurs with a subgraph in which case replication is indi-

cated by setting size = 0 and then FIRSTNODE, LASTNODE, GFAC give 

NODENUMBERI and SEQF of the arc which heads the subgraph to be 

replicated. The following rules apply. 

1) The DATANODE must precede a replica on the source file. 

2) Data arc must precede a replica on the source file. 

3) When data and replica subgraph arcs are OUTarcs of the same 

node, then the data subgraph must precede the replica. 

MULTIPLE INARCS  

For extra INarcs to a particular row of REP matrix set 

SEQF := REP[i10] + final NODENUMBER - initial NODENUMBER. 

Arc specifier at initial node equals SEQF. 
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INDEX USAGE 

NUMBER 
	

ADDRESS 

NODECT + 1 NONE 

NODE NUMBER 

cAf\AA. 	
_ix\  A  

0 

=EJECT + 1 

INDXL 
PLUGCT 

INDXL 

ry 	v7 	 . 	 v- 	il- A,,,AJ 	d 
V\ 6, 	pRiv- , nr \Nviv,„,1/4/ 	• 	\ ,V 

NODEVUZBER 

INDXL-PLUGCT NONE 

If nodeot + 1 = indxl 	ptugct then indexfull := true ; 

comment nodes are held in ascending order by node numbers  

indxl is the length of the thx, 

on creRtior 	aPd number rindxl] := indxl, 

on completion or 	ph t,:r. 	number andx1) := pno; 
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RUN CONTROL 

The SHAPE program expects to find sequential input on two files 

named sippli and PIGRAPH. SHAPE. prints logging information on 

file LOGGER and statistics on file STATS. Any SCOPE files may be 

used as long as their file names are equated to the expected ones 

using DATASET cards. These must be the first cards read on the 

standard input file INPUT. For example, 

DATASET, SIGRAPH = HENRY 

DATASET, PIGRAPH = XYAB 

DATASET, LOGGER = P 

DATASET, STATS = OUTPUT 

DATASET, END 

These cards are followed by a run control card whose format is 

shown above. The parameters can be set as follows. 

GNO 	- Number of graphs for this run j may be 1 or 2 

MODE - binding mode may be 

1 = non-reentrant 

2 = semi-reentrant 

3 = completely reentrant 

DEBUG - Debug parameter, if non-zero theh extra logging 

information is output. 

PICODE - code showing hardware statistics required, is an octal digit, 

i.e. 0 - 7, treated as three bits. 

BIT 1 - low order bit set for memory statistics 

BIT 2 - middle bit set for processor statistics 

BIT 3 - high order bit set for processor state statistics 

SICODE -code showing software statistics required, is an octal 

digit, i.e. 0 - 7, treated as three bits 

351 



BIT 1 - low order bit set for node statistics 

BIT 2 - middle bit set for arc statistics 

BIT 3 - high order bit set for cut statistics 

SIMLIM - Default binding time limit 

MAXREAL -value to which all program maxima are to be preset 
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GRAPH INPUT PROCEDURES 

gin(g) 	g - pointer to object of class graph, null if graph 

input failure. 

subgin (y, type, fstn, lstn,adl, size gfac) 

y - pointer to object of class graph, provided by gin. 

type - type of graph, usually 1 or 3- 

fstn - node number of first node ingraph. 

lstn - node number of last node in graph. 

adl - length of arc data vectors. 

size- number of nodes in graph. 

gfac - factor to derive index capacity. 

Innode (x, type, adl, data, nodes) 

x - pointer to current node. 

type - as above. 

adl - as above. 

data - scratch array for arc data created by subgin. 

nodes - pointer to index created by subgin. 

inarc (x, type, adl, data, nodes, inn) 

x - pointer to previous arc. 

type - as above. 

adl - as above. 

data - as above. 

nodes - as above. 

inn - node number of node at head of chain. 

find (n, e, ind) - address of node with number n. 

ind - pointer to index to be searched 

e - number of entry in index 
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plug (n, a, ind) - true if successfully completed. 

n - node number of plug. 

a - address of arc requiring node address. 

ind - as above 

putelem (n, a, ind) - true if element successfully entered in index. 

n - node number 

a - address of element 

ind - as above 

ERROR CODES  

Code Error 

11 	REP matrix of initial Slnode contains no OUTarc specifier 

for Slarc of completed tie. 

12 	REP matrix of terminal Slnode contains no INarc specifier 

for Slarc of completed tie. 

14 	Terminal node dataset found to be negative while activating 

terminal row in mode 1. 

21 	Memory muse less than zero after memory change. 

22' 	Memory muse greater than capacity after memory change. 

31 	No Slarc found in OUTarc chain to match ready column in 

current REP matrix- 

32 	REP matrix of final node of ready Slarc contains no row 

for this Slarc - INarc specifier not found. 

40 	No Plarc found to execute ready Slarc. 

41 	Terminal store too snail to hold max. requirement of 

terminal node. 

42 	Terminal store nodenumber not that required by terminal 

Slnode of ready arc. 

43 	Terminal store not that to which terminal Slnode of Slarc 

already tied. 
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44 	Terminal store not the same as initial when Slarc is a loop. 

45 	Time for arc to execute less than zero. 

46 	Not enough storage free in terminal Plnode. 

47 	Available process fraction is zero. 

50 	Arc time less than zero in PERT mode. 

60 	One or more terminal datasets of ready IFloop exceed 

current initial one. 

70 	No active initial dataset found for IFloop readied by 

completing tie. 

80 	No next event, system resources deadlocked. 

81' 	Arc data rector lengths not matching in SI and Plgraph. 

82 	No next event but final node still active. 

83 	Binding time limit exceeded. 

91 	PSID[0] less than zero after release of allocated processor 

fraction. 

92 	PSID[0] greater than one after allocation of processor 

fraction. 
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PINODE RUN-TIME VARIABLES  

inuse - current quantity of storage in use. 

totuse - time integral of inuse. 

mit 	- cumulative total of time inuse is non-zero. 

mut 	- maximum observed value of inuse. 

mef 	- sum over all periods in which inuse was non-zero of the 

product of period length and maxuse of that period. 

The variables above are used to produce the following statistics 

for each Plnode. 

activity 	- mit/gt 

utilization - mut/capacity 

efficiency - totuse/(mut * gt) 

To derive expressions for overall graph storage utilization and 

efficiency, we use the sums over all Plnodes of cost, cost of 

Plnodes with non-zero time used, products of cost and mef/capacity 

These are accumulated in totmem, gutmu, and gefmu respectively. 

Statistics output are then 

gutmu = gutmu/totmem 

gefmu = gefmu/(gutmu * gt) 
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