
A SYSTEM FOR THE SIMULATION OF

HARDWARE TO SOFTWARE ALLOCATION

AND PERFORMANCE EVALUATION

JOHN WIELGOSZ

ABSTRACT

In this thesis we develope a representation of both hardware

and software based on general directed graphs. In a hardware graph

arcs represent processors and nodes represent memory stores. In a

software graph the arcs are process descriptions and the nodes are

groups of data. Program execution is modelled as the binding

together of elements of these two graphs, the set of bound elements

characterizing the program state at a given time. Binding is

regarded as a resource allocation process, and the method of

selecting one from the set of binding alternatives as the alloca-

tion strategy.

This modelling system was implemented as a program whose

input consists of the two graph descriptions in sequential form.

The program reconstructs the topology of the graphs within the

computer memory using pointers, and proceeds to bind the two

graphs until a terminal state is reached. During binding data

is gathered using a set of performance measures. On completion

statistics are calculated and a summary of the observations is

produced. A log of the binding activity is also available.

The latter part of the thesis is concerned with the appli-

cation of the modelling system to computer networks. The program

was validated by modelling a simple store and forward network,

and the results proved satisfactory at the ninety-five per cent

confidence level. The system was then applied to a proposed

linkage between computers in the United Kingdom and the Advanced

Research Projects Agency computer network in the United States.

The results of this application are described in the penultimate

chapter. Finally conclusions drawn from the work are presented and

possible extensions discussed.

2

ACKNOWLEDGMENTS

I wish to express my thanks to Professor Peter T. Kirstein

for his guidance, patience, and friendship during the course of

this research. My gratitude also goes to all the members of staff,

both academic and secretarial, at the Institute of Computer

Science who have been most generous with their time and help.

I have been greatly aided by the service and facilities made

available to me at the University of London Computing Centre,

and by the cooperation of Control Data Corporation. Finally I

would like to thank my wife for her unfailing encouragement and

help while this work was carried out.

3

CONTENTS

Page

Figures 	 6

Notation 	 10

Chapter I 	Introduction

1.1 Background 	 13

1.2 Computing power 	 15

1.3 Research aims and methods 	 17

1.4 Organization of subjects 	 19

1.5 Summary of results 	 20

Chapter II Review

2.1 Graph models 	 22

2.2 Models of resource allocation and utilization

in computing systems 	 29

2.3 Computer networks 	 36

Chapter III Theory

3.1 Graphical representation of hardware and

software 	 49

3.2 Recursive structure of SIGMA and Plgraphs 	60

3.3 Execution of a process by a processor 	67

3.4 Allocation of a processor to a process 	76

3.5 The hardware allocation problem in team

execution 	 85

3.6 Properties of nodes in SIGMA and Plgraphs 	96

3.7 Data dependence and reentrance 	109

Chapter IV Implementation

4.1 General criteria 	 129

4.2 Graph input 	 134

4

Page

4.3 The allocator
	 151

4.4 Ties and IFloops
	 176

4.5 Hardware measurement
	

187

4.6 Software measurement
	

201

Chapter V 	Validation

5.1 The choice of validation
	 208

5.2 Store and forward networks
	

211

5.3 The validation model
	

216

5.4 The statistical test
	

231

5.5 Validation results
	

235

Chapter VI Application

6.1 A UK link to the ARPA network
	

243

6.2 Analysis of the link
	 248

6.3 The link model
	 263

6.4 Results
	 280

Chapter VII Conclusion

7.1 Summary of research aims achieved
	

300

7.2 Suggestions for further research 	.304

Appendix I Bibliography
	

307

Appendix II SIMULA 67
	

327

Appendix III SHAPE limitations
	 338

Appendix IV SHAPE user information
	 345

5

FIGURES

Page

2-1 	The ARPA computer network as of May, 1972
	

40

3-1 Relationship of graph and subgraph
	

52

3-2 Contact between arcs s and P 	 57

3_3 Correspondence between software and hardware

representations 	 58

3-4 Structure of a graph at more than one level 	61

3-5 Planar representation of fine structure 	62

3-6 List structure representation showing subgraphs 	64

3_7 Recursive call of SIGMA by itself 	65

3-8 Execution of an arc S by Processor Po 	69

5-9 2angeofalorocessorP.at s0
 on S 	72

3-10 Division of S when P is allocated 	 77

3-11 Microprogramming under program control 	79

3-12 Necessary correspondence between data for P and S 	81

3-13 Measures characterizing function execution 	82

3-14 Software graph showing cut zone 	 86

3-15 Memory matrix for a node k 	 90

3-16 Use of dummy arcs 	 92

3-17 Reallocation on more than one level 	94

3-18 Repartition Matrix R of a node 	 98

3-19 Binding of an arc S and its terminal node N' 	100

3-20 Branching arcs 	 103

3-21 Loop representation 	 104

3-22 R-matrix for process one of Dijkstra's interlock

algorithm 	 108

6

Page
4-1 Node and arc class definition 137

4-2 Node and arc linkage 138

4-3 Subgraph linkage 139

4-4 Node class definitions 142

4-5 Arc class definitions 143

4-6 Index usage for graph input 146

4-7 Outline of class allocator 153

4-8 Allocator parameters 156

4-9 Multiple INarcs 161

4-10 Transaction entry to REP matrix 164

4-11 Four state representation of a processor 178

4-12 DOloop examples 182

4-13 Summary of IFcode actions 186

4-14 Processor utilization and efficiency 189

4-15 Node statistics in arrays QD, QT, QS 202

4-16 Cut statistics 204

4-17 Arc statistics in array STARC 206

5-1 Validation network 217

5-2 Proportional traffic matrix 218

5-3 Message routing 219

5-4 Link traffic, delay and capacity 220

5-5 Message delay matrix Z 221

5-6 Directed semi-network 223

5-7 Slgraph and Plgraph topologies 224

5-8 Nodes 1 and 2 of model Slgraph 225

5-9 Nodes 3, 4, and 5 of the model Slgraph 225

5-10 Example arc data of the Slgraph 227

5-11 Example node and arc data of the Plgraph 228

7

Page
5-12 Values of t corresponding to given probabilities 233

5-13 Values for t-test and 7k 236

5-14 Mean message delay by message type for eight runs 237

5-15 Confidence limits for xk x 10-3 238

5-16 Mean message delay 241

6-1' Tentative ARPA network, logical map, May 1973 244

6-2 UK-ARPANET linkage 249

6-3 Traffic on each channel of the subnet 252

6-4 Values of T. and P
i

for L = 1/30 1
254

6-5 Values of T600 for various combinations of C1
 and C

3
255

6-6 Graph of mean message length against mean packet

length in subnet 257

6-7 Values of Ta
and C for various Tb

259

6-8 Values of C. corresponding to Tb
shown in Fig. 6-7 260

6-9 Graph of Ta and Tb against C 261

6-10 Hardware graph of subnet 264

6-11 Typical data for hardware graph 265

6-12 Stream zero 267

6-13 Stream five: nodes 15, 25, 35 268

6-14 Stream five: nodes 45,55,95 269

6-15 Stream three 270

6-16 Stream seven 271

6-17 Initialization node one 272

6-18 Means of truncated negative exponential distributions 275

6-19 Means of truncated negative exponential distributions

(continued) 276

6-20 Subnet response when C = 4.8 281

8

6-21 Subnet response when C = 9.6 282

6-22 Subnet response when C = 50 283

6-23 Non-cyclic generation of messages 286

6-24 Variation of response with packet length 288

6-25 Graphs of response against think period for

C = 4.8, 9.6, 50 Kb 289

6-26 Variation of response with block length 290

6-27 Background traffic generation 292

6-28 Stream zero with background 293

6-29 Initialization node one including background 294

6-30 Subnet response for various combinations of

C
1
 and C

3
when P = 30 296

6-31 T
a for various combinations of C1

 and C
3

when P = 30 297

6-32 Variation of T
a

with c
3

for various C
1

298

9

NOTATION

L , SIGMA 	Software graph

Tr, PI 	Hardware graph

Null processor

C- 	Software subgraph

S Arc of software graph, process

P Arc of hardware graph, processor

P
I 	Identity processor

PO
	Ideal processor

s 	Quasi-distance on arc S

gw 	Quantity of computation

j(s) 	Computation density

TO 	Time for P0 to execute S

w Total computation of S

u Scaling factor for processor power

T 	Time for P to execute S

r(pi s) 	Range of P at s on S

r
0
 (s) 	Quantal range at s on S

	

.1) 0(u) 	Time for P
0 to execute r0

 (s)

L Loss

	

i(s) 	Redundancy of Pi at s

n(0) 	Number of software functions for subgraph

Number of times i th function is executed

K Allocation procedure

A 	Graph analysis procedure

REP 	Repartition matrix

REP[il j],t, i Element of repartition matrix of node K

Slgraph 	Software graph

10

Slarc 	Arc of software graph

Slnode 	Node of software graph

Plgraph 	Hardware graph

Plarc 	Arc of hardware graph

Plnode 	Node of hardware graph

INarc 	Arc entering a node

OUTarc 	Arc leaving a node

, LAMBDA 	Size of initial arc data

, BETA 	Cut generation time

ACT 	Activity matrix of a node

v 	Portion of tie duration due to store characteristic

ut 	Utilization

ef 	Efficiency

f. 	Function i of Slarc

t.
1 	

Time for processor to execute fi

c. 	Cost of processor component j

t.. 	Time component j in use during ji ij

ut. 	Utilization of processor during function i

ef. 	Efficiency of processor during function i

The notation above is that used in describing the SHAPE

system. We have not included variable names from the SHAPE

program, and these are defined when used in Chapter IV. Variables

used to describe the systems modelled in validating and applying

the SHAPE system only appear, and are defined, in Chapter V and VI

respectively.

11

CHAPTER I

INTRODUCTION

1'2

1.1 Background.

One of the goals of computer designers and users in creating

new equipment is increased computing power. Such a goal is not

difficult to justify. If achieved it reduces the cost of current

computing activity, or allows expansion at a lower price; a

previously uneconomic solution to a problem may now seem more

attractive; perhaps less frequently, a solution is made feasible

on an acceptable time-scale. Intuitively computing power is not

a difficult idea to grasp, but interpretations vary and are

seldom precise.

Computing power is usually described in relative terms.

For example, twice the work done per day implies twice the

computing power; alternatively, the same work done in half the

time. In practice these need not be the same thing. Such

relative comparisons tend to beg the question of what we really

mean by computing power or computing work. It is worth

emphasizing that computing power (in its normal intuitive sense)

is very dependent on the task to be performed. In this sense

it is dynamic, and not a function of hardware alone.

Expansion of a computing facility by adding more equipment

of the type already in use may be called lateral expansion.

Replacement by differently designed, faster, or more appropriate

equipment may be termed vertical expansion. It is said, and

may generally be the case, that there is more computing power

per unit cost in a large system than in a small one.

Consequently, simply spending more for a larger system may well do

as a first step to increased computing power per unit cost.

Having reached some financial limit, a differently designed, or

in some sense intrinsically more powerful machine, for the same

1'3

price is needed.

Usually a mixture of these approaches is adopted. Another

possibility is to design and build a new machine of the

required power, though this is beyond the scope of most users.

It is, howeverl part of a manufacturer's motivation.

A counter-productive side-effect in increasingly powerful

systems is the difficulty of using that power efficiently.

Significant numbers of comparatively trivial tasks under-

utilize hardwareland difficulty in organizing work flow leads

to high system overhead and idle time. At best only partial

solutions to these problems have been found.

14

1.2 Computing power.

Theoretical limits of computing power undoubtedly exist

given the current state of physical science. Laws such as

the uncertainty principle will limit switching speeds of

stores, transmission speed of data, and packing density of

information. If we consider the hypothetical situation arising

when computer techhology reaches these limits, then only one

strategy for achieving increased computer power remains.

This is the organization of laterally expanding systems to

process work in a parallel fashion.

Such an approach makes the implicit assumption that a

significant amount of computational work is amenable to

parallel processing. Though we are very far from the

absolute limits mentioned above, the situation has a

practical analog in the problem of a real-time system which

is already using the fastest appropriate computer available,

and is still unable to meet the completion constraints for

some task or set of subtasks. The only way to meet the constraints

is to reorganize the task so that it is amenable to parallel

processing and then execute it on a laterally expanded system.

A visible trend in recent computer design is functional

dispersal. This is based on the view that if too many functions

are combined in one module, then much of it is idle, much of the

time. Consequently, greater efficiency is obtained by having the

functions in separate modules of appropriate cost and computing

power. These are used when needed by the task and free for other

work the rest of the time. The gain in efficiency presupposes

enough different tasks in the system to ensure that individual

module utilization is high. Attempts to meet this need have

15

recently led to pipeline design in some large computers.

Elementary function dispersal is present in computing equip-

ment at the time of writing. Separation and concurrency of

computation, I/O, telecommunications control, display regeneration,

and so on, is evident in most third generation machines. Such

function dispersal places increasing emphasis on the net-like

aspects of computer facilities. Net representation of a computing

facility can be applied at any level of detail, from computer

networks, where the complete computer is the quantal object, to

a single processor, where each logic subassembly is considered

separately.

Clearly a program organized for parallel processing can take

advantage of function dispersal to minimize its total execution time,

and to select the functional hardware best suited to its

individual processes. This is potentially a means Of improving

performance over a sequential version of the same task. Indeed,

a sequential program may be regarded as one member of the class of

parallel programs which achieve the same result.

-16

1.3 Research aims and methods.

We have mentioned above the problems of using powerful

computer systems effectively. In this thesis we attempt to

provide a framework for the solution of such problems. Some

elements common to a wide range of computing processes are

isolated and identified. From these a technique for modelling

computational activity in complex computer systems is developed.

It is hoped that the technique will prove useful both as an

aid to problem definition, and as a practical tool in the

solution of a problem once it has been defined.

We have tried to introduce measures for aspects of the

computational process which will be relevant in most circum-

stances and useful in evaluating the performance of systems

under investigation.

We view computational activity as a hardware to software

allocation process. That is to say that a task is realized,

or results produced, by the allocation of a task processor

to a task description. The basic operation in this process

is chosen to be the production of one dataset from another

through the action of a processor. A complete task is then

regarded as a number of such steps occurring sequentially or

in parallel.

The modelling technique uses directed graphs to represent

software description and a hardware configuration. Execution

of the former by the latter can then be modelled as a dynamic

connection, or binding, of the two graphs. The system has

been implemented in a high-level language (S1MULA 67) whose

syntax provides features which correspond closely to the needs

of such a modelling system.

17

Our goal has been to provide a system which can be used

to evaluate and compare various combinations of hardware and

software which perform a given task, and so provide a means

of optimizing task performance both in existing and proposed

computer systems.

18

1.4 Organization of subjects.

The material which follows is organized into six chapters

each dealing with one phase of the research that was carried

out- In Chapter II there is a brief discussion of related work

in the fields of modelling, allocation problems, computing and

transmission networks, and performance measurement.

In Chapter III we develope the concepts and theoretical

considerations on which the modelling technique is based.

We then describe the technique itself and show how it can be

applied to computational processes. Chapter IV gives an account of

the implementation of the technique on a CDC 6600 computer using

the SIMULA 67 programming language.

Chapter V contains the results of a validation of the

system, using a small store and forward network as a test

situation. In Chapter VI, we apply the system to a proposed

network linkage between the U.K. and the ARPA (Advanced

Research Projects Agency) computer network in the United

States. We describe the way in which the modelling technique

was used to investigate the performance of the linkage under

various conditions and present the results obtained-

Chapter VII discusses the conclusions which can be drawn

from the research undertaken, and makes suggestions for further

study. We have added four appendices for reference purposes.

These are some remarks on SIMULA 67 and the CDC 6600,

information required to use the implementation of the modelling

system, a description of the limitations of the implementation

and a bibliography.

19

1.5 Summary of results.

We have designed a system, based on graphical representation,

which is sufficiently general to model a large class of computational

processes. This has required the identification of a set of basic

functions which are necessary for such modelling, and a program

incorporating them has been written. To create such a system we

have had to isolate and define the operation of these functions

in some depth, and as a result we believe the modelling system

corresponds well with the underlying structure of computational

activity.

As necessary adjuncts we have produced computer input

procedures which convert a sequential graph description to a

topological replica within the computer, as well as a set of

performance measures by which different model executions may be

compared.

The implementation has been validated using a model of a

store and forward network, and the modelling technique was applied

to a computer network link between Britain and the U.S. Results

predicting the performance of the link under various conditions

have been obtained, and hardware parameters for link operation

estimated.

20

CHAPTER II

REVIEW

21

2.1 Graph models of computation.

In this section we give some of the history and bibliography

of models of computational processes which use graph representations.

In the following sections we deal with resource allocation in

computer systems and the design of computer networks. The

references quoted are to be found in Appendix I, which also

contains a separate comprehensive bibliography of material related

to computer networks.

A number of researchers have produced graph models of

computation. The use of graph representations is widespread in

the literature of the theory of computation, and has also

extended to modelling or describing processes which involve

existing hardware or software systems. The utility of such

descriptions can be seen, for example, in the short paper by

K. A. Bartlett, R. A. Scantlebury and P. T. Wilkinson which

gives an algorithm for the detection of errors during data

transmission [BART 69]. Here the finite automata state diagram

is used in the solution of a highly practical problem in computer

communications.

One of the earliest widely quoted models of computational

activity is the one put forward by R. M. Karp and R. E. Miller

in 1966 [KARP 66]. Their model is called a computation graph.

This is a directed graph in which nodes denote operations and

arcs denote storage elements where results are placed in first-

in-first-out queues. Associated with each arc are four non-

negative integers A
P
 , Up, W

P
 and Tp where Tp > W . For an

arc directed from node i to node j these parameters are

interpreted as follows: A is the number of data words initially

in the queues; U is the number of words added to the queue upon

22

completion of the operation associated with node k; and

T is a threshhold giving the minimum queue length of the arc

before the operation of node j is initiated. Karp and Miller

show that computations represented by these graphs are

deterministic. They also give a test to determine whether

a computation terminates, and study properties of the data

queues associated with the arcs, deriving conditions for the

queue lengths to remain bounded.

Another type of model, similar to those above but

probably more oriented to hardware representation, is one in

which a set of operations are connected to a memory as in

Karp and Miller's model but the control is entirely local and

is incorporated into the values stored in the memory. Each

operation monitors the values in its domain locations and can

apply whenever the values belong to a specified set. When an

operation applies it replaces the values in its range locations

as determined by the current domain values. Models of this

type have been investigated by Luconi [LUCO 68] and Petri

[PhaT 62]. Luconi considers schemata in which only a subset

of the memory cells need contain unique sequences of values.

Such schemata are called output functional and are realized by

allowing- more than one determinate computation to nondeterminately

"share" operations. Sufficient conditions for a schema to be

determinate are given and synthesis procedures for output

functional schemata are provided.

E. Van Horn [VANH 66] has proposed an abstract model called

machines for coordinated multiprocessing or MCMs. An MCM

consists of a set of cells, a count matrix, and a scheduler

to control operations. Each cell may behave either as a memory

23

(value) cell or as a computing (clerk) cell. In the latter

case, a table of transactions is associated with the cell where

each transaction may read and write cells or modify the count

matrix. On the basis of the values in the cells and in the

control matrix the scheduler determines which cells are

enabled, i.e. can perform one transaction. The scheduler

selects a subset of the enabled cells and directs them to

perform their transaction. Van Horn has demonstrated that

the action of the scheduler insures that the behaviour of

any MOM is asynchronously reproducible.

G. Estrin and R. Turn [ESTR 63B] and D. Martin [MART 66]

have introduced a directed graph model for computer programs

in which the vertices represent computational tasks and the

arcs represent data dependency between nodes. In this model,

the conditions for the initiation of the computation denoted

by a vertex is expressed by writing a boolean expression in

terms of boolean variables associated with the arcs incident

into the node. A boolean variable associated with an arc is

true when the data in that arc becomes available. A compu-

tation may be initiated when the boolean expression of the

corresponding node, called the vertex input control, is true.

There are three types of vertex input control: conjunctive,

disjunctive and compound. Vertices with conjunctive input

control may be initiated only when all input data are

available. Vertices with disjunctive input control may be

initiated only when precisely one set of input data (i.e. one

arc) becomes available. The compound input control is a

combination of the other two. Vertices also have output

control which is used to specify the program flow from a

24

vertex to a subset of its immediate successors. A vertex

with conjunctive output control simultaneously makes data

available at all of the arcs incident out of the vertex.

A vertex with disjunctive output control makes data available

at precisely one of its output arcs. Thus vertices with

disjunctive output control effectively perform data dependent

decisions to control the program flow. The model can properly

represent only cycle free graphs. It has been used primarily

as a tool for the a priori assignment and sequencing of compu-

tation in parallel processor systems. This model, described

below, has been developed in a sequence of research reports by

Turn, Martin, J. L. Baer, D. P. Bovet, E. C. Russell, S. A.

Volansky, and V. G. Cerf, working with Professor G. E. Estrin

at the School of Engineering and Applied Science at U.C.L.A.

Cyclic to acyclic graph transformations are the subject

of [MART 67B] by Martin and Estrin, and other properties of

the model are derived in[STR 63A, MART 67A, 67C, 69] by the

same authors. Baer [BAER 68] has investigated the assignment

of computations to processors by various scheduling techniques.

Bovet [BOVE 68, 70A, 70B] has analyzed the model to determine

profiles for memory allocation and Russell [RUSS 69] has used

the model as a basis for the limited detection of parallelism

and developed a system for the automatic generation of graph

model descriptions, including attribute sets, from FORTRAN

programs. Baer and Bovet have presented a method to test the

legality of the initiation/termination conditions described

by the graph model [BAER 70].

Volansky [VOLA 70] has further extended use of the model

with an investigation of the detection and implementation of

25

parallelism in a multi-processor environment. Cerf [CERF 72]

has considered the flow of program control which can be

represented in the model, and determined condition for the

proper termination of programs so modelled.

The U.C.L.A. model has been further developed by

J. Rodriguez [RODR 69] to study the determinacy of the execution

of a program where the parallelism is shown. Further control

is introduced on the arcs of the graph. These can be idle,

enabled, disabled, and blocked, while nodes are classified by

their computational functions (control, data modification, loop

junction) and logic (AND, EOR, and OR).

Other work on graph models of computation is that of

H. Eisner [EISN 62], in which he has generalized the PERT

network technique to take into account alternatives in per-

forming project phases. This was achieved by assigning

probabilities to different arcs out of decision nodes.

D. R. Slutz [SLUT 68] has extended the work of Karp and

Miller. His models are called Flow Graph Schemata, and contain

two structures. The first, called a data flow graph, indicates

the paths of data flow and includes both operations to perform

data transformations and memory cells to store intermediate

results. The second is called a control graph and represents

a mechanism to effect sequencing of operation activations.

Using these structures Slutz has investigated the problems of

determinacy and equivalence.

Three papers of interest in the use of graphs for modelling

systems of processes are those of D. :L. Parnas [PARN 69A], and

of S. Crespi-Reghizzi and R. Morpurgo [CRES 70], and of Pfaltz

[PFAL 72]-

26

Parnas deals in some depth with the simulation of simultaneous

events and gives an algorithm for the derivation of an

efficient sequential process equivalent to a given network

of parallel processes, where the network has unconditional

rules of immediate dependency, and no delayless loops. Crespi-

Reghizzi and Morpurgo present a language for representing

graphs. The language uses linked lists to provide facilities

such as addition and deletion of nodes and arcs, traversal of

graphs, union, intersection, and so on. Pfaltz describes graph

structures which allow the introduction of extra subsequences

of arcs at nodes and other similar substitutions.

The works referenced above are mostly attempts to model

the behaviour of parallel computations. To insure determinate

behaviour it is necessary to provide some mechanism that

would disallow more than one operation to change the contents

of a shared memory cell at one time. Such mechanisms are also

present in current proposals for practical parallel and multi-

programmed computer systems.

Dijkstra [DIJK 66] considers a method by which asyn-

chronous sequential processes may communicate 'harmoniously'.

The processes are provided access to common integer variables

called semaphores. The semaphores can be manipulated by means

of two synchronizing primitives, the 'P' and 'V' operations

which decrement and increment, respectively, the value of a

semaphore by one. The P operation can be executed only when

the current value of a semaphore is greater than zero.

Thus the facility is available for one process to block another

from entering a 'critical section' such as data accessible to

27

both. A number of interesting examples using semaphores are

given. Dijkstra [DIJK 68] has incorporated semaphores into the

design of a multiprogramming system and A. Habermann [HAKE 69]

has provided a theoretical justification of the logical structure.

Holt [HOLT 71] has discussed Habermann's work and shown that

artificial deadlocks can occur when Habermann's methods are

used, and that they do not necessarily eliminate cases of

permanent blocking. Holt gives a solution for these situations.

Hebalkar [HEBA 71] has extended Habermann's analysis with a

graph model of process resource requirements and defined algo-

rithmic tests relevant to resource allocation with the intention

of precluding deadlocks.

The interested reader is referred to various other papers

on aspects of graph models of computation: [BERN 66, ABLO 68,

BRUN 71, CORN 70, IRAN 71, EARN 72, SHOS 69, LOWE 70, GILB 72,

TESL 68, CONS 68, COHE 68, GONZ 69, DENN 68, KOTO 68].

28

2.2 Models of Resource Allocation and Utilization in Computing Systems.

Many of the models mentioned in the previous section have

been used to investigate resource allocation strategies. In

particular Bovet [BOVE 68] has examined memory allocation

profiles using the U.C.L.A. model. P. J. Denning [DENN 68]

has also used graph models when investigating multiprocessor

assignment.

The literature of resource allocation and utilization in

computational systems is extensive. Much of it uses queueing

theory to provide mean values for quantities of interest such

as service times, waiting times, throughput rates and idle times.

However, there is also a wide range of non-stochastic analyses.

One of the earliest papers in this field is that of

J. Heller [HELL 61] which deals with the scheduling of the tasks

of a computational job among the processing units which can

carry them out. Solutions are obtained for completion times

of the tasks, and idle times of the processing units, and

these are then extended to the concurrent execution of more

than one job.

G. K. Manacher [MANA 67] has provided a more extensive

treatment of problems similar to that investigated by Heller.

In this paper the assignment of tasks to processors is controlled

by a task list, which orders all tasks according to servicing

priority. A free processor is assigned to the highest priority

task available. Two types of constraint are used, start-

times and completion times. Tasks with start-times may not

commence before those times, and tasks with completion times

must terminate before them. Algorithms are developed to give

29

schedules which guarantee the execution of tasks within their

deadlines, and allow the inclusion of non time-critical tasks

in these schedules.

T. C. Hu [HU 61] uses a graphical model to derive an

algorithm for the optimum sequencing of the tasks of a job in

two cases. The first case is to provide a schedule which

satisfies a completion constraint on the whole job with a

minimum of processors, and the second is to provide the

schedule with the earliest completion time when the number

of processors are fixed.

The models described above have been greatly extended

by the work of R. R. Muntz and E. G. Coffman [HUNT 69A, 69B,

70]. The authors have used acyclic, directed graphs not

unlike the U.C.L.A_ description to model computational

activity, and have allowed preemption in task scheduling.

Two important results are derived in DAUNT 70]. The first is

the equivalence of Preemptive Scheduling and General Scheduling.

Preemptive Scheduling is a scheduling discipline where a

processor, instead of working continuously on a task once

assigned to it, can be interrupted and assigned to another

task. General Scheduling is a discipline where a fraction of

a processor can be assigned to a task, and this fraction

varied. The equivalence of these two disciplines is used in

the implementation of the modelling system put forward in

this thesis.

The second result is the statement and proof of an algo-

rithm for the optimal scheduling of free-structured computations.

30

Another paper concerned with scheduling in multiprocessor

systems is that of J. L. Rosenfeld [ROSE 69]. In this paper,

execution of a certain type of program by N identical processors

is simulated, and it is shown that with proper programming the

solution time approaches 1/N of the single processor solution

time.

Further results in this area of research can be found

in: [BOWD 69, RAMA 72, SCHW 61, REIT 68, AOKI 63, KATZ 66,

GOSD 66, GRAH 66].

The work described above is concerned mostly with scheduling

to meet timing constraints. Another body of work deals with

scheduling resources in a statistical demand environment,

where it is the average behaviour of the system which is

of interest. Typically this research has often centred on the

response of time-sharing systems, and makes use of queuing theory

in many of the results. A well known study of this type, augmented

by simulation is that of A. L. Scherr [SCHE 67].

Detailed research has also been undertaken on the behaviour

of specific devices. For example, the behaviour of the

IBM 2314 disc is the subject of a paper by Abate, Dubner and

Weinburg [ABAT 68], and drum scheduling has been investigated

by Fuller [FULL 72]. Frank [FRAN 69] has also performed

a more general study of disc usage in time sharing systems.

Markovian models have been used to study computational

systems and resource usage within them. An example is the

paper by J. D. Foley [FOLE 67] on the University of Michigan

executive system. The executive is considered to have nine

states and transition probabilities between them are provided

31

from experimental observation of the Michigan system. Results

are obtained for the fraction of time spent by the executive

in any state, and the effect of changes to the system.

Simulation has been a widely used tool in examining

computer behaviour. In particular it is often used to see

how well theoretical models predict the behaviour of real

systems', and so determine their validity. In most cases

the models have been of unique systems, for example [NIEL 66],

and consequently the results have not been easily applicable to

other situations.

An example which suffers less than most from this

disadvantage is B. Randall's paper [RAND 69] on storage

fragmentation. Here external fragmentation is defined as the

loss in storage utilization caused by the inability to make

use of all available storage after it has been fragmented

into a large number of separate blocks,and internal frag-

mentation is the loss of utilization caused by rounding up

a request for storage rather than allocating only the exact

number of words required. A number of simulation experiments

are used to show that rounding up requests for storage, to

reduce the number of different sizes of blocks co-existing in

the storage, causes more loss of storage by increased internal

fragmentation than is saved by decreased external fragmentation.

A method of segment allocation and an accompanying technique

for segment addressing which take advantage of this result

are then derived.

Space does not permit us to list the numerous papers which

describe specific simulations, but more general discussions can

32

be found in: [ZEIG 72, HUTC 65, WEBE 64, NIEL 67, PARN 69B].

Some important results which are applicable to models of

computation have been derived by G. F. Newell and W. J. Gordon

in the area of queueing theory [NEWE 67A, 67B]. In the first of

these papers closed queueing systems are considered. These

are characterized by having N customers and M stages each with

r. parallel exponential servers of the same mean service rate.

Such closed systems are shown to be stochastically equivalent

to open systems in which the number of customers cannot exceed

N, and equilibrium equations for the joint probability distri-

bution of customers are derived. In the second paper closed

cyclic queueing systems with restricted queue lengths are

shown to be equivalent to open systems in which the number of

customers is a random variable. The differential-difference

equations for the time-dependent stochastic structure of the

system are derived, and solutions given for a number of special

cases.

Queueing theory has been applied to time-sharing systems

and related computing situations by L. Kleinrock in a number

of papers: [KLEI 66, 67, 68, 70B, 71, 72]. In the first of

these papers [KLEI 66] a group of processors is considered

to act in sequence on subsets of data belonging to a problem.

Such a chain of sequential processing machines (SPM) has been

described in [AOKI 63]. Kleinrock shows that the system may be

viewed as a cyclic queue, and gives results for the case of two

sequential processing stages, where their intermediate buffer

is of arbitrary size. Assuming exponentially distributed

service times for timeslices of subset processing, the ratio of

33

expected time to process n subsets by the SPM system and a single

processor is derived. An approximation is then derived for an

SPM system with 2P processors by applying the previous result to

pairs of processors, each of which represents a pair of processors,

p times.

In [KLEI 67] time-shared computer systems are treated as

queueing systems, where the time sharing effect is obtained

by giving each request a timeslice Q of processor time and

then requeueing it. Results are given for the expected time

a request spends in the system by applying queueing theory to

the case for which Q --> 0. These are extended to include

systems in which requests belong to priority groups which

determine the sine of their timeslice.

In [KLEI 68] time-shared systems with M consoles are

analysed and results given for the behaviour of the normalized

average response time. Consoles are again serviced in a time-

slicing fashion and after completion of a request, delay for

an exponentially distributed think time before requesting

service again. A definition of system saturation is given,

and the original system is considered as a special case of

the class of systems in which the Nth class consists of N

processors with capacity 1/N of the original processor and

serving M/N consoles each.

Scheduling algorithms for time 	systems are the

subject of [KLEI 70B], and further results for response time

are given in [KLEI 71]. In [KLEI 72] the application of

queueing theory as Q --> 0 is again used to provide results

for the class of algorithms where the scheduling discipline

may change as a function of the accumulated service. In

34

particular solutions are given for the average response time

as a function of the service required by a request.

Further results on aspects of time sharing are given in

the following papers: [FIFE 66, LASS 69, LEWI 71, NAKA 71,

NIEL 67, RAMA 72, RASC 70, SHEM 67, SKIT 66, STIM 69] which

are only a selection of the large body of research in this

field.

35

2.3 computer Networks.

Perhaps the earliest attempt to interconnect a large

number of computers was the SAGE (Semi-Automatic Ground

Environment) air defence system[EVER 57, MART 69]. This

system, developed by the military to collect, analyze and

display radar data from sensors scattered over the continent,

became operational in 1958 and has subsequently been improved.

At about the same time the American Airlines SABRE Reservation

System [PLUG 61, EVAN 67] was being developed on a commercial

basis. Due to the success of this system, similar systems

are now in use by other airlines, hotels, etc. The Ticketron

real-time reservation system [DUBN 70] is one such example.

The need by the military for improved data communications

led to the development of the AUTODIN (Automatic Digital

Network) Communications System in 1963 [HAMS 68, MILL 68].

This system utilized both line switching and message switching

facilities and its design was influenced heavily by network

survivability and vulnerability considerations. In contrast

to military requirements for ultra-reliability, many

commercial and experimental networks have relied upon simple

interconnections or dial-up telephone lines for communications.

Examples of such systems are the Chrysler Message Switching

system [ISSA 68], the Rio Grande Railroad Message Switching

Transportation System [DAY 68], the Control Data Corporation

Cyber. et and Kronos Systems [GAIN 71], and the DATRAN (Data

Transmission Company) common-carrier network [BINA 71, FISH 71,

GAIN 71].

Several networks have been designed using a central

store-and-forward message switch which reduces the network cost.

36

The network topology for this type of design takes the form

of the classic Star network. Examples of such networks are

the COINS (Community On-Line Intelligence Network System) and

the Lawrence Radiation Laboratory OCTOPUS System.

The Lawrence Radiation Laboratory network was called

OCTOPUS due to its star-like topology. The central computer

is a PDP-6 which serves as a store-and-forward switch between

the large processors such as CDC 6600, 7600, and STAR, as well

as the IBM Stretch and 360/91 computers. The central switch

also provides access to the huge photo-store mass memory by

any of the other machinesiand allows an evolutionary growth

of the multi-computer complex since new computers can be

connected to the system resources and can gradually be brought

up to operational status.

The third star network is the IBM computer network,

NETWORK/440, which has several unusual features [MCKA 71A].

The central node was initially to be a medium size 360/50

computer, but was later changed to be a partition in the large

360/91, which serves not only as a store-and-forward switch,

but also as a master operating system. The network consists

of several IBM 360 computers and a Control Data 6600 computer,

the latter being connected via a mall Honeywell DDP-516

preprocessor. The non-IBM machine introduces a degree of

generality into the network due to the considerable difference

in the CDC and IEM architecture and data structures.

In 1964 the Rand Corporation completed a comprehensive

study, "On Distributed Communications" [BARA 64A, BOEH 64,

SMIT 64], and a proposal for a distributed store-and-forward

37

message switched digital network. Although Rand's system

was never implemented, their approach has influenced the

design philosophy of some military networks and the ARPA

Computer Network. During the study, Baran was responsible

for the definition of a "packet" and for the "hot potato

routing algorithm."

In 1966 Lichtenberger [LICH 66] proposed a network of

identical computers; however, this network was only partially

implemented. Also in 1966, an experiment was conducted by

interconnecting the TX-2 computer at the Lincoln Laboratory

and the Q-32 computer at System Development Corporation to

test the basic philosophy of a network connection. This

experiment showed that resource sharing was possible between

two computer systems.

In 1967 the National Physical Laboratory (NPL) in

England made a comprehensive proposal [DAVI 67] for a general

purpose store-and-forward network. The NPL network was to be

a store-and-forward network using interface computers and

1.5 Mb/sec. transmission lines for the message switching net,

with an expected network response time (the time from the

receipt of a packet to the beginning of the output at the

destination) of less than 100msec. Packets were defined as

any multiple of 128 bit segments up to a maximum of 1024 bits.

Details of the proposed network operation appeared a year

later [BART 68, DAVI 68, SCAN 68, WILK 68]. To date, only

one node has been implemented and can be described as a

multiaccess computer system controlled by a time-sharing

computer [BARB 69, SCAN 69, WILK 69]. The authors have so far

concentrated on the local rather than trunk level.

38

A small experimental computer network is being

developed at Carnegie Mellon University, consisting of two

DEC PDP-10 computers, a pair of PDP-8 minicomputers, and

a hybrid computer. All five computers are located together

and since the communications costs are insignificant,

experiments with completely connected nets as well as with

more typical network interconnection topologies have been planned.

In 1968 the Advanced Research Projects Agency released

a Request for Quotation to construct a store-and-forward computer

The contract was awarded to Bolt, Beranek and Newman, Inc.

located in Cambridge, Massachusetts. The basic ARPA Network

community consists of about 26 ARPA-sponsored research sites.

Some of these sites have areas of specialization such as the

graphics work at the University of Utah, picture processing at

the University of Southern California, the man-machine interactive

work at System Development Corporation, the text editing and

information retrieval work at Stanford Research Institute and

the network measurement and modelling work at UCLA. Other sites

have specialized hardware capability such as the ILLIAC IV

computer and the trillion bit laser memory.

Figure 2-1 shows the configuration of the ARPA Computer

Network. The various sites (HOSTS) are interconnected via a

distributed message switching communication net consisting of

IMPS (Interface Message Processors) and dedicated 50 kbit/sec.

full duplex communication lines. Each site typically consists

of one or more computers, called HOSTs, operating in a time-

shared environment, but

39

PDP-10 UTAH

MITRE

NOM
r — —1

r - - TIP" --- — — — — — — --
1

	
1.— —

. GWC

PDP-10

CARNEGIE

IMP PDP-10

370/155

DDP-516
PDP-10

Ti?

I LLIAC IV

UCLA

SIGMA-7 	IMP 	

UNIVAC
418111

RAND TINKER

P 	316
IMP

PDP-10
BEIM 	 HARVARD

IMP 	 TIP

NBS

PDP-10

MICRO
PDP-1 PDP-11

[DOTTED LINES INDICATE Kr.OVIN PLANS]

LINCOLN RADC

ETAC

	I TIP

Figure 2-1 	The ARPA Computer Network as of Nay 1972.

range in siTs flom a TIP (a, terminal IMP) to the ILLIAC IV.

Two series of papers presented at Spring Joint Computer

Conferences [CARR 70, CROC 72, FRAN 70, FRAN 72, HEAR 70,

KLEI 70A1 URNS 1'2, ROBE 709 ROBE 12, THOM 72] discuss the

design, performance and operational aspects of the network.

The problems of message delay, nodal storage requirements

and the network routing strategy are some of the more

interesting aspects of such a network from a modelling,

analysis and operational viewpoint. Once the node

locations are given, the .Retwork topology is influenced by

the required system relielility, by projected user traffic

requirements, nodal processing speeds, and total dollar cost

allowed for the construotion. of the neThaork. Then a protocol

for passing messages between the nodes must be chosen and the

nodal processing programs designed.

Another problem is the specification. of an operating

system communication protocol which allows for the establishment

of a connection between. HOST computers [CARR 70]. This task is

handled by the NOP (Network Control Process) which is

generally a part of a HOST 's executive program. Progresses

located within a. HOST communicate with the network through the NCP.

Finally, a. higher level of protocol is needed when a high

degree of Interaction. is required between a user and a

particular subsystem in a. foreign HOST. This requires the

development of i7'!terpress commu:nel.caion techniques; for

example, file transfer techniques, communication between

dissimilar graphics sjations, remote job entry, and inter

active terminals.

In the assessment of performance of a general store-and-

forward computer-communication network, it is necessary to

examine the assignment of channel capacities, the effect of

queue discipline, choice of the message routing procedures,

nodal processing delays, nodal storage requirements, and the

design of the network topology. A network performance

measure is required to determine how various choices of the

above parameters affect performance.

There are basically two classes of performance measures.

The first class does not relate in any simple way to individual

messages in the network, but rather to the performance of

particular components that compose the network. Examples of

such performance measures are: average channel utilization,

nodal storage utilization, and channel error rates. Many of

these performance measures can be computed analytically. The

second class of performance measures relates more directly to

individual messages. An example of such a performance measure

is the average message delay. This provides a measure of syStem

response which may be directly observed and which can be

estimated. L. Kleinrock has investigated the minimization of this

measure under various constraints in [KLEI 64]. Amongst other

results the use of an "independence assumption" was shown to allow

analytic solution for the optimal channel capacities in store-and-

forward communication nets. A further description of this work

is given in Chapter V.

One of the problems of current design is the application of

general theories to the analysis and design of store-and-forward

computer-communication networks.

42

Four main problems in these networks are construction of models

to predict message delay, message routing strategies, channel

capacity assignments, and topological design of networks.

All these are dealt with to greater or lesser degree in

[KLEI 64]. This work is further developed in [KLEI 69A and 69B]

in which exact and approximate analysis, simulation, and

measurement are compared to obtain results for networks of

the ARPA type. The discussion is carried further in [KLEI 70A]

and [FULT 71, 72].

Routing procedures have been investigated from various

approaches. Prosser [PROS 62A], Kleinrock [KLEI 64],

Shapiro [SNAP 66] and Benes [BENE 66] have examined the effect

of random routing procedures on message delay. Their conclusions

were that random routing techniques are highly inefficient in

terms of message delay, but are relatively unaffected by small

perturbations in traffic intensity or network structure-

Boehm and Baran [BOER 64] and Smith [SMIT 64], Boehm and Mobley

[BOEH 66], Kahn and Teitelman [TEIT 69] and Kleinrock [KLEI 70A]

have examined some stochastic computing techniques. Deterministic

routing procedures have been investigated by Prosser [PROS 62B],

Boehm and Mobley [BOEH 66], and Kleinrock [KLEI 69A]. Their

approaches have been slightly different. Prosser gave an approxi-

mate analysis of directory procedures which showed an increase

in efficiency and amount of data transfer as compared to random

routing, but at the expense of maintaining the directory.

Kleinrock has computed average message delay as a function of

traffic intensity for a fixed network topology and fixed routing

procedures. Boehm and Mobley considered the problem of

43

computing a fixed routing procedure from estimates of network delay.

The topological design of ARPA-like computer-communication

networks has been attacked by the Network Analysis Corporation

[FRAN 70, NAC 70A-B, NAC 71A-B]. Their procedure is derived

from a natural gas pipeline study [FRAN 69]. In their

procedure, both the network topology and channel capacity

assignments are varied during the optimization, while the routing

procedure is essentially held fixed it is deterministic for a

given network topology). Since this problem defies a precise

solution, their results must be viewed as giving good, but not

necessarily optimal, network realitations.

Implicit in the optimal design of a network is the

network performance function. For most network design problems

average message delay has been selected because it is

mathematically tractable, because it represents the global

performance of such networks, and because it can be measured.

Meister, Mueller and Rudin DIETS 72] considered a slightly

different performance measure: a weighted sum of powers of the

average message delay in each channel. From this performance

measure, they are able to obtain a channel capacity assignment

for fixed routing which reduces the variation in delay from

channel to channel at the expense of only a moderate increase

in average message delay. This technique reduces the delay

markedly on lightly utilized channels where, as the authors state,

the user would be very much aware of this decrease when using the

network.

Measurement of the behaviour of the ARPA network is the

subject of [COLE 71]. A measurement collection system is

44

described and implemented, and data accumulated by observing

normal and artificially generated traffic is analysed.

J. F. Zeigler [ZEIG 71] has investigated nodal blocking in

ARPA-like networks with the aid of a two-state Markov process

model. Results for the fraction of blocked nodes in a network

are given, and developed for "clumps" of adjacent blocked nodes.

A further effort in computer networks based on the ALOHA

system [ABRA 70] is the current examination of satellite

communications as a means of extending the ARPA network.

Their use, particularly in broadcast mode, is the subject of

a series of ARPANET Satellite System Notes. In Note 12

[ASSN 72] L. Kleinrock and S. S. Llam derive expressions for

channel efficiency and expected number of retransmissions.

In the system analysed simultaneous, or overlapping, broad-

casting is regarded as failure of transmission for both

messages, which are retransmitted after a stochastic delay.

A study is currently taking place of methods

of providing a computer network for a number of Canadian Universities.

A first stage in the study is described in [DENTE 72A and 72B]

by J. DeMercado. These reports deal with the synthesis of

minimum cost networks in which either simultaneous or time-

shared transmission occurs.

Some interesting papers on computer networks are to be

found in the proceedings of the ACM/IEEE Second Symposium on

Problems in the Optimization of Data Communication Systems,

October, 1971. The ARPA network is the subject of two papers.

The first is by G. D. Cole,which is materially similar to

[COLE 71]1 and the second is by R. E. Kahn and W. R. Crowther

45

on flow control [KAHN 71A]. In this paper the authors describe

the various types of storage deadlock which can occur in the

ARPA network and present the precautions which were taken

against such occurences.

There are also two papers on the NPL network in the

proceedings. The first also deals with congestion and proposes

an "isorithmic" solution [OAVI 71]- That is to say that

there should be a fixed number of packets in the network at

all times, whether or not they carry data. The second paper

describes various levels of protocols to be used in the NPL

network for computer-to-computer communication, [SCAN 71]-

A description of Tymshare Inc.'s TYMNET system and its

history is given in [BEER 71], while reliability in centralized

networks is the subject of [HANS 71]. Two papers in the

proceedings deal with distinct loop-type networks. In [HAYE

71] results are given for mean message delay and other

characteristics, and confirmed by simulation. In [SPRA 71]

loops consisting of a central processor and a number of termi-

nals are analysed and parameters obtained for the variation in

terminal message delay with terminal loop position. Error

control is the subject of [TRAF 71], which deals with computer-

to-computer links involving transmission via satellite.

Current developments in the design and operation of

computer networks are described in a number of papers presented

at the First International Conference on Computer Communica-

tions, 1972. In [ANSL 72] methods of data transmission used

by the British Overseas Airways Corporation are surveyed, and in

[BARBY72] an outline is given of a project for a European

46

network initially linking research establishments in France,

Italy, Switzerland and the United Kingdom. Methods of

operation and maintenance in the ARPA network are the subject

of [MCKE 72]. In this paper the detection and diagnosis of

network faults by the HOST computer at the Network Control

Centre are described. The Centre has the function of

receiving IMP situation reports, determining the actual state

of the network, and initiating repair activity when appropriate.

In [WHIT 72] V. Kevin Moore Whitney has compared various

algorithms which have been used to obtain (heuristically)

least cost network topologies. The same networks are sub-

mitted for solution by each algorithm and resultant topologies

compared. The comparisons are shown to be remarkably

consistent, and demonstrate some advantages of the Steepest

Ascent Hill Climbing (SAHC) algorithm.

The operation of a network under conditions of saturation

is discussed in [DESP 72], and network characteristics for such

operations are presented. The performance of satellites for

network data transmission is described in [HUST 72] and figures

for both performance objectives and measured performance are

given. Data management in networks is the subject of [FARB 72

and BOOT 72] in which the problems of safeguarding, accessing

and updating dispersed data by equally dispersed users are

discussed. Finally a survey of EUropean network development

is given in [KIRS 72] which describes current ventures by

universities, research establishments, post offices, together

with those of some industrial and commercial concerns. In view

of the extensive material available, we have added a section on

computer network design to the bibliography in Appendix I.

1+7

CHAPTER III

THEORY

48

3.1 Graphical representation of hardware and software.

For the sake of descriptive convenience in the material

below we define the terms team and net as follows: a team is

defined as a set of interdependent cooperating programs

executing concurrently in real time to perform some well-

defined function. A net is any collection of hardware modules,

i.e. processors, memories, peripherals, I/O controllers,

message switchers, connected by data channels. A net can of

course be one computer or many, and generally exhibits the

properties of hardware-sharing, function dispersal, and

concnrrency of operation.

A team can be represented as a directed graph,E , whose

arcs represent the execution of individual sub-programs, and

whose nodes represent events where the subprograms interact.

Such interaction may be simultaneous completion or initiation

of subprograms, or communication of information between two or

more subprograms. Processing within an arc is considered

logically independent of that within other arcs. That is to

say that all interaction between subprograms which is implicit

in the intrinsic logic of the overall task occurs only at the

nodes. This does not imply that the arcs themselves are

purely sequential prOgrams; further, there may be interaction

between them because of hardware allocation constraints in the

net.

The word processor will be used in the following to denote

any hardware module which performs a transformation and/or

movement of data. This includes devices such as I/O controllers,

multiplexors, regenerators, and so on. In this sense a processor

need not possess the fuL set of functions of a general purpose

49

computer. Consequently not all procesiors will be able to

execute all programs. A processor P can be regarded as a

hardware operator on data. Each arc of a team 1 is a subprogram

S executed by some hardware module of the net on which I
executes. We define regular execution of a team to be execution

where hardware allocation only changes at the nodes of

Running programs to completion is regular execution, hardware

sharing is not. Transmission of data, without any transformation,

may be regarded as processing by an identity processor PI.

Storage of data for a period of time can be regarded as processing

by the null processor 1.

We now consider an aspect of modelling which might be

termed focusing. In constructing any model, a decision must be

made as to what level of detail the model will reach. The

situation is analogous to choosing the degree of magnification

appropriate when using a microscope. Too small a magnification

may not show the process of interest, too large a magnification

may make it impossible to view the entire process or obscure

it with irrelevant detail. For convenience the level of

detail a model reaches will be called its depth. When the

depth of a model is chosen, this is in effect a decision to

treat all objects below that level as black box or quantal

ones (if not, then there would be a further level of detail

below the chosen depth, which is a contradiction in terms).

However this choice is imposed by the model builder; objects

at the model depth are of course structured in reality.

Consequently the choice of model depth is in effect a decision

to ignore (or a cut-off point for) the appropriate fine structure.

50

In terms of the foregoing, we suggest that graphical

representation of a team can be used for modelling computer

activity at any depth from the execution of a single machine

instruction (which can be regarded as a team of microprograms)

to considering entire computers as quantal objects. If we have

a graph E.. representing some task performed by a team, we are

implicitly deciding to treat the members of the team (arcs of

I) as black box processes, since we stipulate that logical

interaction between the members occurs only at nodes of .

That is to say, we are interested in the change in system state

caused by the execution of an arc, but not concerned with the

interactions occurring within the execution of an arc.

We can of course include this level of interaction if

desired, by replacing each arc S of E by a subgraph d of

processes, at the next (convenient) level of detail down, which

perform the function previously represented by the single arc S.

We use the word subgraph here to mean a graph representing the

structure of a single arc of another graph (at a higher level)

rather than in the normal graph theoretic meaning of a subset

of graph elements.

It may be that certain arcs of 	are of critical interest.

In this case a more detailed picture may be obtained by

replacing only the arcs concerned by subgraphs, while leaving

the rest of E as before. Thus the graphical representation is

recursive in the sense that any arc may be replaced by a

subgraph. If the graph / and its attributes are considered as

a named data structure, then the name of an arc of E may be an

element, or the name of a further data structure, i.e. a

subgraph. If we envisage a procedure A performing analysis,

51

a.------ °-......,,, 	/ / ---,,, / 1 ... 	/. •,,,

Graph L

arc S

or other processing, of / then an individual arc of E may

undergo the same analysis by recursive call to A, if the structure

of the appropriate subgraph is available.

The progress of a team towards completion can be regarded

as the execution of arcs of E by processors allotted to them

by a control algorithm. The time taken to execute an arc will

depend on the computing power of the allotted hardware relative

to the subtask represented by the arc, and also on whether the

execution is regular. Changing the control algorithm is the

equivalent of varying the allocation strategy of the model,

but not its structure. Finally, by representation as a team,

a control algorithm is itself amenable to the same modelling.

Normal Critical Path concepts apply here, in determining

overall execution time for a team, and in detection of a

critical path. A cost function can be associated with the net

resources, such as processors and memories, allotted to arcs.

Slack time represents the time between an arc S completing

execution, and the interaction of its results with the rest of

the team. This is effectively storage of such results until

all arcs which interact with S at its terminal node have completed.

Thus slack time has an associated cost for information storage.

Overall Completion time for E can be decreased by allocation

of more powerful processors on critical arcs. This clearly

raises the cost unless overhead and idle time created by such

action are nonexistent.

We now develope the idea of hardware/software correspondence.

This is based on the following premise: any function that can be

done by software can also be done by hardware, and vice versa.

53

We add the proviso that obviously there must always be some

quantal level of hardware present, else the function would never

be physically executed. This is equivalent to saying that all

computing activity is performed by a combination of hardware

and software, and that the partition of the task between them

is an arbitrary one; further, that this partitioning can be

made at any level or part of the function, by building

appropriate hardware. An extreme case is the performance of

some task entirely by special purpose hardware, which is

equivalent to reducing the software element to a single

instruction. We suggest that the distinction between hardware

and software is an artificial and fluid one. Consequently,

in developing a model of computing activity we are concerned

that it should take into account various possible hardware/

software decompositions of the activity.

We now propose a graphical representation of a net, and

consider under what circumstances it may be regarded as the

dual of the team representation outlined above. A graph 11

will be considered a model of a net in the following way.

Each node of 1r will correspond to a storage element of the net.

Each arc will represent a possible data flow through a

processor P between such storage elements. We make the remark

that a processor P may be able to connect itself across more

than one pair of nodes. Thus there will be an arc in It for
every possible connection that P can make between a pair of

memory elements, but at any instant there will be a flow on

only one of these arcs. If P is PI, the identity processor,

then no transformation on the data flow will occur.

51+

In the graph 1T traversal of an arc P may be regarded as
the execution of some program by the processor P, taking input

data and status from the initial node (memory element) and

producing output data and status at the terminal node. Regular

execution on an arc P of the graph if occurs if the program
being executed by P remains attached to the arc for the period

of time necessary for it to run to completion. For example

paging is not regular execution. The previous remarks on model

depth and the recursive properties of graphical representation

apply equally to the graph IT, except that in this case a
subgraph p represents, not subprograms, but sub-processors;

the subgraph p must have the functional capability previously

represented by the arc P.

We can regard the graph 1r as operating in some environ-

ment from which programs are selected, attached to arcs at the

initial node, and detached later at the terminal node, then to

return to the environment which acts as a source and sink.

A team operates in an analogous fashion except that in the case

of a team the environment is a source and sink of processors.

We see that in the case of a team the environment provides net

elements, and in the case of a net it provides team elements.

The process of attachment and detachment may be regarded as a

control algorithm whose properties are symmetric between these

two activities. In both cases arc traversal represents the

execution of some stage of an overall task. We now define a

particular graph Tr in relation to a team represented by a

graph r . In the graph T there is an arc P for each member
(arc S) of the team, which represents the processor drawn from

55

the environment of / to execute that member.

The arc P has as its initial node a memory element

containing all data and status information needed by the member

S to commence execution. The terminal node of the arc P is

a memory element which will contain all output and status in-

formation produced by the team member S, after it has completed

execution. Under these conditions it is quite clear that the

graphs 11 and E are isomorphic. The graph IT
T
 which exactly

corresponds to the hardware needs of the team 	is its hardware

dual. A team". which exactly uses the net iT is the software

dual of that net. The isomorphic graphs 1r and E may be

considered as a mapping of a computing function between two

spaces which could be called hardware space and software space.

At any given instant the state of the computing activity

represented by IT and 	can be characterized as follows. Any

arc in either graph which has a member of its environment

attached to it is termed active. The point on the active arc

S of 	which has been reached by the processor P in its

traversal, at the instant under consideration, is called the

contact point of the arc P on S. The location of the contact

point is an indication of how much of the process represented

by arcs P and S has been completed. The point on the active arc

P of It reached by S is called the contact point of S on P.

Its location represents the amount of the processor's allocated

resources which have been used by the program S.

At any moment the only interaction taking place between

hardware and software is at the contact points of the graphs 2:
and 11-

56

1
1

\

1

1

Arc S

terminal dataset

contact point
of P on S

initial
dataset

1
contact point

of S on P 	store
which
holds

terminal
dataset

store which holds
initial dataset
	

Arc P

3-2 Contact between arcs S and P.

Team

Contact
Point

Arc S

Past 	Future

Arc P

Past 	Future

Net

Contact
Point

The Cut

Environment of Processors

Arc S represents a program

of a team.

Nodes represent events where

programs begin, end, and

exchange information.

Processors from the

environment are attached to

and detached from programs

at nodes.

The Cut

Environment of Processes

Arc P represents a processor

of a net.

Nodes represent memory

elements which receive,

provide, and transfer

information. Programs from

the environment are attached

to and detached from

processors at nodes.

Fig. 3-3 Correspondence between software and hardware

representations.

58

The remainders of the graphs are not in contact. The state of

the computing activity is determined by the set of contact points.

The performance of some task can be regarded as a traversal of

both graphs by a set of contact points. This set can be thought

of as a cut on the graphs, with past activity on one side and

future activity on the other. Clearly not all ofir and I. need
to coexist at any moment, since all that is necessary for

completion of the computing process is the existence of the

parts of the graphs immediately required by the cut.

59

3.2 Recursive structure of SIGMA and PI graphs.

This section provides a recursive description of the Tr and

I graphs described above. Two types of recursion arise in

connection with increasing the information stored in such

graphs. The first is that the addition of nodes and arcs to an

existing graph, where the nodes and arcs are of the same type

as those already there, produces a new graph. The second is

the replacement of an arc by a subgraph. The nodes and arcs

of the subgraph need not have the same properties as those of

the parent graph. This fact is indicated in the representation

by entering the subgraph with a special type of arc name a

down-arc, and leaving by an arc named an up-arc. The subgraph

has no other topological connection with its parent, and is

said to be one level of detail deeper, (down level and up level

will be used interchangeably for down-arc and up-arc). The

nodes at each end of a down or up-arc can be regarded as

different views of the same event or information. In fact up-

arc and down-arc are analogous to the block delimiters begin

and end in ALGOL.

The highest level of the graph is level one. This level

is regarded as being entered by a down-arc from level zero, which

is the universe in which the system being represented is embedded.

This may be shown as a single node at level zero. An example

of how a graph might appear viewed at levels zero through

three is shown in Fig. 3-4. In fact the levels can be regarded

as horizontal planes containing graphs with a down or up-arc

being a vertical line connecting superposed nodes in adjacent

planes. This is shown in Fig. 3-5.

60

level n

level n + 1

Level n + 1 holds the fine structure of arc (a,b)

Fig. -5-5 Planar representation of fine structure.

62

These types of graphs can be represented as list

structures inside a computer, each node being a variable length

table containing the data attributes of the node, followed by

a variable number of pointers to other nodes (these are of

course the arcs), each pointer being followed by the data

attributes of the arc. Fine structure can be inserted or

deleted by linking or delinking sublists at the appropriate

level (up and down level pointers would be recognizably,tagged).

An example is shown in Fig. 3-6.

In a L graph there can be more than one down-arc

pointing to the initial node of a subgraph, and corresponding

to each of these, an up-arc to the appropriate terminal node

in the higher level graph- In this situation the subgraph

corresponds to a procedure or subroutine, and each down-arc-

up-arc pair corresponds to a call on the procedure. Clearly

when such a subgraph is activated during graph traversal, the

controlling algorithm must retain records of the activations

in order to return the cut to he upper level via the correct

up-arc, as is indeed the case with a real procedure or

subroutine call.

Furthermore if an arc S of F invokes I itself as the subgraph

of S we have a recursive situation since the activation will

continue down through an indefinite number of levels until an

escape path through E , not including S, is activated. Such
a / graph can represent a procedure which recursively calls

itself. In this case the control algorithm will be required

to produce and order the dynamically generated down-arcs and

uparcs. This is shown in Fig. 3-7.

63

POINTERS
from
other 	data attribute;
nodes 	of this node

b
lengt,..,
ata attributes 1
of this node

or

ac
arc data

arc
arc data

7
/down level

/
up level
\

Sub1jst of nodes
revresenting the
fine =.;tructure of
arc (a,b

Tt.2, 	can be linked in 	oholm by tha dotted lines,
ar.1 the up and down level pointens mu6t be tagged in the
KYJde ta],eci in which they occur

&-,:l.wcture representation ,showiasubz12.0.

Graph

Fig. 3-7 Pecureive call of L.11..ltself.

1

A recursive definition of these types of graphs is provided

below. A slightly modified Backus Naur form has been used,

which uses set operators and substitutes a connection operator

for the sequencing implicit in expressions such as <a>.

<deep graph>::=<down-arc>.<process graph>.<up-arc>

<process graph>::=<initial node>•<<edge>set>-<graph>•<<edge>set>

-<terminal node>l<initial node>-<edge>

-<terminal node>l<node>

<graph> : : =<<node> set> •<<e dge> set>-<graph> I<<node> set>

<edge>::=<deep graph>l<arc>

<<element>set>::=<<element>set>U<element>l<element>

<U>::=<set union operator>

<->::=<Many-to-many connection operator>

66

3.3 Execution of a process by a processor.

This section developes some functions which we suggest

provide a description of the processing of a single element

S of a team r . We shall presuppose the intuitive idea of
computing power, and some measure of progress through a

program. Such a measure of progress may be thought of as a

quasi-distance s.

We approach the subject from the point of view of efficiency.

Efficient use of a piece of hardware over a period of time,

is the continuous use, over that period, of all externally

visible functions of the hardware. For example, if a

processor has the ability to perform twenty types of

operations and is used by a program which involves only five,

then three quarters of the hardware is idle while the program

is executing. Inefficiency is the execution of a program by

hardware of a greater computing power than that required by

the program.

We now define an ideal processor Po for a given program

S. P
0
 has the property that its hardware varies in such a way

that at any given point in the program, Po consists of only

that hardware needed for the program to advance at that point.

This is equivalent to saying that the computing power of Po

varies along the arc S in such a way that Po is completely

efficient at all states s of the arc S (by stage we mean the

quasi-distance s).

We define the computing power of Po on S to be a function

p0 (si
ll), not necessarily scalar, at any stage s; u is a

parameter which determines the relative speed of the processor

67

concerned. Thus processors P
1
(u) and P

2
(2u) are identical in

structure but all components of P
2

work twice as fast as those

of P
1
. Suppose P

0
 operates for a small time St at stage s

and advances through S by 8s. We then define the amount of

computation done as

6w = po(s,u) St

and the computation density as

i(s) = iSw/c5s = p0(s,u) At/ ds

The 6 notation here does not indicate the infinitesimals of

calculus, but very small quantum jumps, which may be regarded

as a step-wise approximation to such infinitesimals. The

reason for this is that we are considering digital computers

with discrete machine states. Because of their binary structure,

transitions in such machines will have a quantal nature.

Consequently the functions we shall deal with map onto integer,

rather than real, spaces, and the processes involved may be

regarded as atomic, or discrete, in their behaviour. In what

follows the integration sign will be regarded as the analog

in such spaces of the real integration operator.

We can now define the time taken by Po to execute S as

j(s) 	 To _ 	
ds

,p0
(s,u)

and the total computation done on the arc S as

W = j(s)ds = p N(ft ds 0 \s, up--- ds
S a 	a

We now suggest that any processor P other than Po will have a

68

Po

E,

F-1g. 3-8 Exec11.t:ion pf an arc S by "Processor P

p-function, p(s,u) which describes the computing power of P at

stage s of the program S. This p-function is an expression of

the hardware present which can be applied to the execution of

S at the stage s. Hardware which cannot be used at this stage

cannot contribute to the instantanebus computing power of P at

s on S. We can now say that if,

p(s,u) < p0(s,u)
	

P cannot execute at s,

P(slu) = p0(s,u)
	

P executes completely efficiently,

P(siu) > p0(s,u)
	

P executes faster than P
0
 but not efficiently.

The last inequality indicates faster execution by P of stage s,

else we would have extra hardware in operation producing no

detectable differences from the behaviour of P0. In the latter

situation we cannot say that P has greater computing power than

P0. Furthermore, if P executes stage s faster than P0, its

hardware must differ from that of P
0
 and cannot therefore be

efficient in the way defined above. In general, if p(s,u).)po(s,u)

for s E (alb), then the time T for P to execute S will be less

than T0, and P will execute inefficiently. We can see that for

the class of processors with the same u, no processor can execute

S more slowly than P0. A program is strictly sequential if T=To

for all P such that p(s,u) > p0(s,u) on s E (alb).

For the time being, we shall define the range r(p,$) of a

processor P at stage s as the distance through which P can advance

along S, without the intervention of some controlling algorithm.

Since p0(s,u) defines the minimum power to progress along S it

also defines the minimum or quantal range r0(s). If the time

taken by Po to make the quantal transition from s to s + r0(s)

is
0
(u), we can write,

j(s) r0(s) = p0(s,u) 110(u)

70

If s = s
0
 and the succeeding quantal stages are s

1, s22 s3,

and so on, then we can picture the range of a processor Pi as

in the Fig. 3-9. The distance between points si and si+1

represents the time 1 0 (s.,s.+1) for P0 to advance from stage 1

s. to stage s. . The distance from point s. to s. represents
1+1 	 1

the
j

tos.l to advance to that stage. For example, the processor Pi,

shown above, has a range r(p1,s0) = (so, 	 and and takes a time

)11(s0,s2) to reach s2 from so. Since P1 is more powerful than P0,

11(s0,s2) <Y10(s0,61) 	0(s1ls2)

We can envisage a whole series of processors, or 'power levels',

P1, P2, P3, . . . which correspond to the quantal stages sl, 52,

s31 . . . The relations between them can be expressed as follows:

r(po,$) =

r(plis) =

r(p2,$) =

(solsi)

(s0ls2)

(s0,s3)

o(so s)

II (so s 2) 	o(' s2) 	rl o (so ' s)

2 (so ' s3) < 110 621'3) + 11 (s0, s2)

until,

r(pi,$) = (s01 Is. 1 1+) ° 11.1(s0 Is.) < 110(si,si+1) + 11i-1(601 +1

Each processor P. 	is more powerful thanP., but less
1+1 	1

efficient over its range. When we say that Pi > p0 we mean that

thereissomehardwareofP.which is not needed immediately at 1

s for the next quantal stage, but that will allow P to reach

s+r(Pi,$) in a timelqi
such that,

S-Fr(p1,6)

< 10 ds

71

F.g ;-9 Pil- E2p of a nro,-e"csor P. at s on S. r

s+r(p , s) j

J
If 	 . =

fs
)10 ds for all j < 1_,

then we say that 'S is strictly sequential from s over the range

r(pils).

TheextrahardwarewhichallowsP
i
 toreachsi-r(P

i
„s)

sooner than P0, will be termed redundant hardware. The redundancy

of P. at s is

0(. 1(s) = pi(s,u)

177171)

IfP.PossesseshardwareextratothatofPi,r(p.J
,$) = r(p.1,$)

and ill.=n—thentheextrahardwareinP.is termed superfluous. 1j 	'1 	 J

For a processor P with range r at s we can write,

s+r
j(s) ds = w(sis+r) < p(s,u) 11(s,s+r)

equality occurring only if P is Po. The loss L is a Measure of

the inefficiency of P over the range r which gives rise to the

above inequality.

s+r
\ p(siu) - po(s.u) at

s+r

= 	((.(s) - 1) at ;-7 ds

The expressions derived above represent an attempt to

characterize the traversal of an arc S by a processor P. The

concept of function dispersal is automatically dealt with, since

if the hardware of P is oriented towards a function S then p(s,u)

will tend to p0(s,u). How closely p(s,u) approaches p0(s,u) may

be regarded as a measure of function dispersal.

L =
as ds

p0(s,u)

73

We use these expressions to suggest that there are two

distinct measures which characterize processor usage during

arc execution. The first of these we call utilization.

This is the proportion of the processor which takes part in

the arc execution; that is, the proportion which is not

superfluous. Naturally such a measure implies some means of

quantifying the proportion, and we shall pursue this topic

in the next section.

The second measure we propose to call efficiency.

At any point s on the arc, or any instant in time, the efficiency

is the proportion of the utilization which would be required

by an ideal processor executing at that point; that is, the

efficiency is the inverse of the redundancy. We can extend

these definitions to cover sections or periods of arc

execution. In this case the utilization consists of all

elements of the processor required by the section; the

efficiency will be the distance or time integral of the

proportion of this utilization which is in use.

Multi-programming, or hardware sharing, can also be

represented, since from the point of view of an arc S,

a period when its processor is executing on some other arc may

be regarded as having = 0 for that time. In fact pure storage

and/or waiting time can be represented by dummy arcs with p = 0

for all s. Such an arc may nevertheless require memory elements

and hence still represents a use of net facilities.

In its most general form an arc is a store (M) to store

(N) transfer via a processor (P). Conventional execution can be

shown as an arc with 1,41=N and P > P0; - storage, as an arc with

71+

MEE and P = 0; and data transfer as an arc with MAN and

P = P
I1 the rate of transmission being purely a function of u.

75

3.4 Allocation of a processor to a process.

This section deals with the problem of allocating one of

a number of processors to a software task (process), and the

derivation of some measures by which such allocations can be

judged. The situation under consideration is the behaviour of

a processor P when allocated to execute the software task

represented by an arc S of a team graph E.

The execution of any software task is regarded as a

chain of stages. Each stage is such that the processor can

execute it as a single indivisible operation. That is to say

that the processor can provide a hardware realization of the

stages so that once the stage is initiated it will achieve its

terminal state without further intervention. On completion of

a stage the processor must be reconfigured to become a realization

of the next stage. Thus the execution of an arc S will be a

sequence of hardware realizations of stages of S, with each

stage requiring a reconfiguration of P. The part of P

responsible for the realization of software stages, i.e.

reconfiguration, will be called the controller. (See Fig. 3-10)

It is clear that the division of S into stages will depend

on P. The arc S is a description of a task to be performed,

without reference to the processor allocated to it, i.e. machine

independent. S * P is the division of S into stages realizable

by P, and is therefore machine dependent. The division will

obviously be different for different processors, with only the

initial and terminal nodes (a and b) remaining the same. This

is the mechanism by which allocation of P to S makes S machine

dependent.

76

Single arc of 5: representing a software task.

S
a 	 0b

Chain of stages representing the realization of the task by P.

S 4f- P
a

stage 	reconfiguration

Fig. 3-10 Division of S when P is allocated.

7?

It was stated earlier that a stage is executed as a single

indivisible operation. What is meant here is that this is the

case as long as we are working at the level of the subgraph

of which S is an arc. It is not meant to deny the existence

of a fine structure for S, which could be examined by the insertion

of subgraphs at a lower level of detail.

The controller mentioned above may be regarded as a

hardware program, whose input data is an instruction stream

which acts on the rest of the processor as if it were a data

structure. The controller may in turn be regarded as a

realization of the manufactured processor, initiated by the

ON/OFF switch of the computer. Reconfiguration of the controller

(equivalent to changing the meaning of the instruction stream)

is not general, but is possible on some machines where it is

called micro-programming, and usually requires manual intervention.

Micro-programming under program control would clearly

require another level of hardware controlling the reconfiguration

of the controller. This level would need its own instructions,

which could possibly be provided by the expedient of an escape

code in the insturction stream. (See Fig. 3-11)

Whenever it is possible to allocate one of a group of

processors to a process, it is desirable to make the "best"

choice. The agent of the choice may be an operating system,

systems analyst, or any other entity controlling the execution

of software tasks. The criteria by which the goodness of an

allocation is judged may vary from situation to situation,

and in relative importance. For the purposes of investigating

team execution on a net, an attempt is made below to develop

criteria and procedures for evaluating processor allocations.

78

AA controls B

xxxx
xxxx
xxxx
xxxx
escape
YYYYY
YYYYY

return
xxxx 	 B controls C
xxxx

escape
YYYYY
Tan
YYYYY
return
xxxx
itXxx
xxxx

	 CC processes
Initial data 	 data

!A; x 	normt.41 i. nstructions Terminal data

yyyyy - mic:r.oprogramming instructions

Fig. 3-11 !icroammruiaundeF.....moiram control.

79

We do not claim that these are the only or the best possible

criteria and procedures, but that they represent an interim

solution, which allows the main investigation to go forward.

We will characterize the processing requirements of

arcs in a subgraph ar by a number n (dr) of realizable software

functions. The number and nature of these functions will be

arbitrary except that they will be constant over 	and

sufficient (from the point of view of the entity controlling

the allocation) to characterize all the software tasks which

occur in(r.

Any processor P which is to be evaluated as a potential

executioner of S will have associated with it data on its

characteristics with respect to each of the software functions

used in the description of or. (See Fig. 3-12)

The behaviour of P in executing a particular function will

be characterized by the measures listed in Fig. 3-13.

In addition two derived measures from the previous section

will be used. These are the efficiency (Ef) and utilization (Ut).

In terms of the measures defined they will be taken as

B.

Ef = 11 t.
j/T.B.

j=1

and,

Ut = B./Bp

We will not make use of Measures 3), 5), 7) in our initial allocation

algorithm. It is remarked however that the time taken for a

transfer of data between two sets of store cells will be an

increasing function of the complexity of the gating pattern of

8o

Data for S 	 Data for P

Arbitrary no.
n(cr) of types
of function.

No. of stages
of this type

characteristics
of P

for this function

Fig • 3-12 yeaaEial_carres22ndence between data for P and S.

1) Tine (Ti) for P to execute the i th function. The unit of

time will be taken as the time for P to transmit data between

two store cells, when not limited by their speeds. This

corresponds to the U parameter of the previous section.

2) The total number of store cells in P which can be used

during data transformation (B). This is a constant for

the processor.

3) The total number of data paths in P which can be used

during data transformation OD). This is a constant for

the processor.

4) The number of store cells required to realize the function (Bi).

5) The number of data paths required to realize the function (P).

6) The time t. that a store cell j is in use during the realization

of the function.

7) The time tj that a data path j is in use during the realization

of the function.

8) The cost of the processor P per unit of time (C p).

Fig. 3-13 Measures cbaracterizin function execution.

82

the pattern of the transfer. Thus the more complex the

transformation occuring during transfer, the longer the sets of

store cells will be in use. Consequently such complexity will

affect the value of t. to some extent. This perturbation of the

t will be regarded as a sufficient interim measure.

The allocation of a processor P to an arc S of a subgraph

described in terms of n (cr) software functions will be

characterized as follows. Suppose that the i th function must

be executed 01 . times. Then the total time to execute the arc is

T(S) .L
i=1

and the total cost is C T(S). The average efficiency is

B.
n

1: Ef.0.T.r Ø.T. = y- 7- (t.0./13) 	0.T. 3.1;1 	J 	1 	.
1.1

From the definition of utilization we can say that the

utilization for complete arc execution will be the union of the

function utilizations. By this we mean that if a component of

the processor takes part in the execution of a function it there-

fore takes part in the execution of the arc. Consequently we say

arc utilization = B(S)/Bp, where B(S) is U B.
i-1

i
=1

As this last measure is somewhat unwieldy we may use Max (Bi)

or Average (Bi) at times.

These measures will be calculated by a matching procedure.

This will check that the processor P can in fact perform the

task S, i.e. that for all functions for which (6 is non-zero,
1

Ti and B. exist. In the case where simultaneous or overlapping

demands for a function may be made by a process (or processes)

83

from P, a version of the matching procedure could be provided

which would simulate the execution of the stages of S. The

order of execution would be a function of a statistical

distribution to be specified by parameters in the procedure

call. This version would be used to derive measures similar

to the above in hardware sharing situations. The choice of a

processor can now be made using the following criteria:-

1) that P can in fact execute S

2) that T(S) satisfies any time constraint on S

3) that T(S) is minimized

4) that average efficiency be maximized

5) that arc utilization be maximized

6) that a cost function involving the above and also the total

cost be minimized.

84

3.5 The hardware allocation roblem in team execution.

This section deals with the manner in which hardware

can. be allocated to the various elements of a team,

allowing it to progress to completion. We make the preliminary

remark that there is no loss of generality in considering one

team. If there are several teams within the same computing

system, there is then an implicit graph at a level above, whose

elements are the individual teams. Occurrence within the same

net implies an interaction, if not a logical one then at least

one of hardware requirement, between the several teams. Such

an interaction and its associated controlling mechanism will

appear as a process which can be described by the /1-graph

representation, and has the original teams as components, which

in turn will be sub-levels of this graph. Analysis of this

graph would then include analysis of the individual teams

implicitly.

We now define the cut zone to be the set of arcs of E on

which there are contact points, together with their initial and

terminal nodes. We also add an extra chain to the graph named

the idle path. This is essentially a dummy process which

requires all unallocated hardware. We can picture the

horizontal direction within /: as a time axis, in which case

progress occurs as the cut moves from left to right across L..

We have stipulated that all reconfiguration (reallocation of

hardware to software) takes place only at a node, and

consequently there will be a node on the idle path for, and

vertically below, every node in t. There will be a contact

point on the idle path lying between the nodes corresponding

85

- node not bound tO1T-grath

if node in cut zone

- contact point

ig_f.)-flEamELIaLalatina cut zone.

86

to the most recent reconfiguration and the next one. This

represents execution of the null program by all unused hardware

of the net. Thus we can see that all hardware of the net is

allocated in the cut zone, and conversely that an inventory of

hardware across the zone will yield a sum equal to the total

resources of the net, and will be constant in time.

The problem we wish to solve is how we arrived at an

existing allocation in the cut zone, and how the cut will advance.

The state of the cut zone is a direct result of the application

of some allocation procedure at the preceding nodes of E .
Thus a clear subproblem is how the state of the cut zone will

alter as the cut crosses a node, and an allocation procedure K

is applied. Analysis of successive applications of K at all the

nodes in turn as the cut progresses through them, should provide

a prediction of how the team r will execute under K with

constraints 1T (the nature of the available hardware, i.e. the

net 7r, is a parameter for K.

The following general comments may be made about K. The

aim of the allocation procedure is to execute the team at least

cost within some time constraints. These constraints may be

the execution of the team as a whole within some time T, or the

requirement that the cut reach certain nodes by certain times

T.. We assume that there will be a cost function associated

with the elements of Tr , which may be a function of economic

cost, or of computing power (the p-functions mentioned

previously). It is highly probably that K will have to deal with

a priority structure when making its hardware allocations,

since priority demands are not generally equivalent to completion

87

constraints. For example, requiring an arc to be executed as

soon as possible is not a time constraint, and must be expressed

in terms of a priority. The question also arises as to the

distance ahead in): over which K will attempt to optimize

its allocation. The minimal case is to consider only the cut

zone, while at the other end of the spectrum an attempt can be

made to optimize over a complete subgraph. This distance ahead

will be termed the horizon of K. For reasons which will appear

later, some of the data attributes or structure of E within

the horizon may not be known at the time that K makes an

allocation. Thus there must be facilities in K to perform a

partial optimization with whatever data is available. In

passing it may be noted that for a simple enumerative optimizing

technique the computation performed by K goes up exponentially

with the distance of the horizon.

There are two situations in which we can expect to use K.

The first is as a part of the controlling mechanism of a real

computer system. The second is the analysis of some given

graph to determine its behaviour when executed on IT under K.

The difference between these two situations are significant

enough to warrant mention. In predictive use the potentially

available horizon of K will probably be large, as data will

be given for the whole graph at the beginning of the analysis.

In control use there is likely to be much less data, a smaller

horizon, and the description of the part of L within the

horizon is likely to be incomplete. If the state of the cut

zone proves unsatisfactory on some application of K, e.g.

failure to meet some constraint becomes inevitable, then in

88

predictive use K can notify the analysis procedure A which

may back trackithroughE , reparameterizing and restructuring

as far as necessary to correct the problem. This action is of

course impossible in control use, and some means of escape

must be provided when there is no allocation which will

produce further progress through,: . Furthermore, in control

use /1 is being continuously created, both by input to the real

system, and by the results of current processing.

We now consider what takes place as the cut crosses node K.

Firstly it is necessary to deal with the memory associated with

node k. This can be characterized by an n x m matrix, where

m is the number of arcs (i,k) entering the node, and n is the

number of arcs (k,j) leaving. We then have P .. as the amount
lj

of memory of node k containing data produced by (i,k) and used

by (k,j).

The total memory of node k used by arc (k,j) will be written

as U 	1
k . T1r 	ilk

=1 ri ij. Consequently an arc (k,j) will use a N j

processor P
kj for a time Tkj and will need an amount of memory

for this period equal to 14 j 	We shall leave aside the

question of scratch memory for the time being, except to comment

that it will be considered together with the allocation of Pk .$ J

rather than t.) j . and ki
j
k. This is appropriate, since firstly 1

scratch memory may be reasonably considered as an extension of

a processor, and secondly because the amount needed tends to

vary with the processor allocated rather than the initial and

final data sets.

In a CPM type representation nodes represent a strict

logical dependence, i.e. all OUTarcs (outward arcs) require

89

Inarcs (i lk)

i =

m = 3

Node table k.

Memory

element /41
i j

Outarcs (k,j)

j =1,n n = 4

Fig. 3-15 Memory matrix for a node k.

9C)

all INarcs (inward arcs). The case where some OUTarcs require only

certain of the INarcs is dealt with by the introduction of dummy arcs

which specify logical dependence. An example is shown in Fig. 3-16.

Here, e requires al b and c, but d requires only a and b, so that

a dummy arc (i,j) is introduced showing the logical relationship.

This sort of treatment is equivalent to specifying pij > 0 for

all i,j. For Z,-graphs we shall not make this restriction and

will deal with logical dependence by means of the node table.

If (k,j) is independent of (i,k) this will be indicated by

writing P i j = O.

When the cut crosses node k all processors Pik become

available; all initial nodes of the arcs (i,k) leave the cut

zone, all final nodes of the arcs (k,j) enter it; processors

Pki and memories r j . are allocated; and all memories P
k become

available.

It is possible that the arcs (i,k) are not synchronized

to end at the same time. Furthermore this may remain unknown

until as late as the allocation of the last arc (i,k). Such

situations will be dealt with by the introduction of a dummy

arc and node for all but the last process/processes to end.

These represent storage (P = 0) of output data sets until all

INarcs complete. An example is shown in Fig. 3-16. Clearly

NLil uk uk
ik - ii - Vland Pik =

For the storage arc (1,k) we have 	that aFtii, that is to

say that they denote the same piece of physical memory. The

dummy node 1 allows the freeing of Pik and any scratch memory

associated with it, and also of flk, at time t1
instead of tk.

The introduction of such a storage arc may be done as part of

91

	0

CPM logical dependency

Dummy arc handling early completion of (i,k)

Dummy arc handling delay in allocating (k,j)

Fig. 3-16 Use of dummy arcs.

92

some analysis, or by K itself as part of its:optimizing

technique. Depending on cost function it may or may not be

desirable to synchronize completion times of the INarcs (ilk).

For a particular application of K it will not in general be

possible to calculate the completion times of all nodes in

the cut zone. A sufficient, though not a necessary, condition

for the completion time of a given node to be calculable

is that the cut has passed all its predecessor nodes.

A similar procedure to the above can be followed if K

cannot find a processor to allocate to some arc (k,j). This

is to create a dummy node between k and j scheduled for the

time of the next node on the idle path, and a dummy arc

representing storage of the input data set until that time. Again

1 	1
Pkl = 0 and Pki = t/j = til and Ks. Nl

When we consider several levels within the E-graph the

analysis becomes more complex. Firstly to reconfigure/

reallocate at a level up from the one we are considering means

scanning back to the last down-level and forward to the

corresponding up-level, and reallocating for the subgraph. The

allocated resource itself has a described fine structure so

that we still have a non-trivial problem at the sublevel.

Traversal of a contact point at level n is the equivalent

of traversal of cr. by a cut, and the allocation analysis, at

level n + 1.

There is clearly a larger overhead in reconfiguring at

the upper level, since this is not just a reallocation on the

Cr cut at level n + 1, but a change of total resource across

it by reallocation at level n, and possible introduction of a

93

level n problem.

levels n and n + 1.

reallocation

at level n.

Fig. 5-17 Reallocation on more than one level.

9!4.

dummy node at that level to allow this. Moreover a wider area

of E is now affected.

A general scheme of predictive analysis might be as follows.

A graph analysis algorithm A applies K to successive nodes of

, and accumulates the resulting information concerning

completion times, loss, redundancy, superfluity, efficiency,

and so on, throughout E. This will then provide a picture

of how /: will execute on ir under K. Improvement of such

execution may be possible by modification of K, alteration of

the net 17% or restructuring of /I. The necessary changes will

be determined by A after, and in some cases during, its pass

through E. The process can then be repeated until some desired

characteristic is achieved. An important procedure will be the

arc analysis procedure S, which evaluates the execution of a

single arc with a particular processor. This arc procedure

may be regarded as the escape condition (in a recursive sense)

of A. Consequently for a subgraph cr inserted in place of

an arc (al b), K will call S for each processor allocation it

considers with parameters (al b). S(a,b) will then find a

down-level indication and consequently call A(cr). Only when

A(6) returns, can S(al b) complete and A(E) progress.

Overhead at a node may be regarded as the amount of com-

putation performed by K at that node. Consequently overhead

will exist at all levels of E. In the case described above

there will be two distinct overheads associated with node a.

At the upper level, that of allOcating resources to the OUTarcs

of a, and at the sublevel, that of all the node allocations (calls

to K) within 0 (by A(6)). At the highest level the allocation

procedure becomes the attachment of E to some net Inr.

95

3.6 Properties of nodes in SIGMA and PI graphs.

A way of matching the arcs of team and net graphs has been

described above. This matching forms part of the overall

process of binding a 11- graph and a Tr-graph. Binding

establishes a correspondence between datasets and stores,

processes and processors, in order to execute the function

described as a E-graph.

A matrix representation of dataset requirements and

repartitioning has been put forward. It is clear that each arc

has an initial and terminal dataset. The initial dataset may

be comprised of data from several sources, and the final one

may supply data to several succeeding arcs. The logical

dependence of one arc on another is equivalent to one arc

requiring at least a part of the data produced by another as

a part of its own initial dataset.

It is this logical dependence and interaction which a

node represents, and which determines the arcs entering and

leaving that node. With the above modelling it is therefore

a truism to state that an arc has only one initial and only

one final dataset, since by definition they contain all data

required and produced by the arc. The initial dataset of

an _ OUTarc is the product of repartitioning the datasets of

at least some of the INarcs, and once created can be

considered as a unit. A consequence of the repartitioning

requirement is that the datasets must reside in the same

storage medium. Otherwise repartition produces an initial

dataset comprised of data on several storage media which

conflicts with the model of arc execution developed so far.

96

This leads us to specify that an arc has only one

terminal and one initial dataset, and that each dataset

resides in only one store. In fact no loss of generality

is involved since a process which uses data from more than

one store can always be represented as a E-graph of arcs

for which the above is true.

The assumption that interaction between processes takes

place only at a node is equivalent to the independence of

arcs. This independence leads us to require that the data-

sets of an arc are disjoint from those of other arcs. For

example, if the terminal datasets of two arcs are not

disjoint then the values of the data are not determined,

since one arc may overwrite or alter a datum produced by the

other. Further if the initial and terminal datasets are

bound to the same area of physical storage the indeterminacy

extends to initial datasets. This problem has been dealt

with in real computer systems by an interlock on store areas

preventing simultaneous writing by several processors. Read-

only storage is of course not subject to a logical limitation

of this type. Dijkstra provides a software version of this

interlock by the use of P and V operators. Any computation

where two or more processes ostensibly access the same dataset

must in fact contain some interlock to ensure determinacy of

the results. This can be modelled with a E-graph adhering

to the criteria developed above.

It may be briefly mentioned that all data produced by a

process is used in repartitioning. Data which was not used

would be lost to the task in so far as no process would use

97

OUTARCS (kij) j = 1, n n = 5

INARCS
(i,k)

i = 1, m

m 4

6 18 17 22 35 39

10 85o 200 4o0 100 700

12 600 400 400

31 900 500

24 300 200 400

REP; [1, 0] = nodenumber of i th inarc's initial node.

REP- [0, j] = nodenumber of j th Outarc's terminal node.

REP [O, 0] may be used to hold the nodenumber of this node.

j] amount of data produced by i th inarc which is

used by j th outarc.

Fig. 3-18 Repartition matrix REP. of a node.

98

it, the execution of the task would not be affected, and the

corresponding storage would be discarded after repartition.

Thus there would be no point in producing it. This is a way

of saying that the row sum of the repartition matrix is equal

to the size of the dataset produced by the INarc corresponding

to that row.

We can now describe the way in which binding occurs.

We have a task whose cut has reached a node N and an OUTarc S

whose terminal node is N'. The node N is attached to a store

M in a Tr-graph. The OUTarcs of M represent processors P

which may read from M and produce datasets in stores M'. When

all the non-zero REP (i,j), where j is the column of REP for

OUTarc SI have been produced, we must choose one of the Ps

and allocate it to S. In general we can choose only from

the subset of the Ps which can execute S.

This subset in turn determines which M' we can use for

the terminal dataset of S. Thus the particular software

functions required by S constrain our choice of P and M'.

Further we must reject any M' which cannot contain the datasets

of N', since they may all be required simultaneously. However,

we need not require that the chosen M' be empty. This is

because the presence of data in M' only has the effect of

delaying execution of S. On the other hafid the existence of

such a delay may make the choice of M' non-optimal. We can

see that in fact the first INarc of a node to be attached to

a processor will also determine the store to which the node

is bound.

99

Subset from which
P, M' combination
is chosen.

1) N is already bound to M.

2) S is ready to go (all parts of initial dataset produced).

3) The functions required by S resrtict us to only some of the Ps.

4) The total memory required at N' restricts us to only those

Ps with M's of sufficient size.

5) Choose a particular P and its M' from the subset produced

by steps 3) and 4).

Fig. 3-19 Binding of an arc S and its terminal node N'.

100

When the cut reaches a node then all the OUTarcs and their

terminal nodes will undergo binding as above, and it is in

this way that the computation progresses. We make the

following comments about possible binding situations.

It is possible to have more than one arc between a pair of

nodes N and N'. This represents two or more processes using

data produced by one group of source arcs, and providing data

for a single group of successors. The hardware dual is the

existence in a net of more than one processor which reads from

M and writes to M'.

It is also possible to have arcs with the same node as

initial and terminal node. This represents an arc producing

data required in its own initial node. This construction will

be used later in this section. The hardware dual is a processor

which reads from, and writes to, M.

If none of the processors P which are OUTarcs from M can

execute the arc S, we can say that the program has failed.

The failure is of the "impossible function" type, for example

trying to rewind a card reader. This type of error arises

because of faulty program specification, or a faulty allocation

at some earlier stage. Such an allocation may have a variety

of causes.

If the choice subsets described earlier are disjoint,

then the allocation problem is greatly simplified because no

processor is suitable for more than one OUTarc of N, i.e.

there is no competition between the OUTarcs of N for any processor.

If the store M' has a smaller capacity than that required

by the group of datasets of N', the team cannot be executed as

101

it stands at this point. However this may be circumvented

(either automatically or by redesign) by reorganizing the

I-graph at this point into a number of nodes of sufficiently

small requirements. This is strongly analogous to the paging/

segmenting techniques used to solve this problem in actual

computer systems.

We suggest that an important criterion for the logical

consistency of a program is that two (or more) arcs should not

specify the same terminal node N' when their arc functions

imply different terminal stores M'.

The rest of this section deals with loops and branching

statements in programs. We will deal first with the

representation of branching, since the description of a loop

is trivial if an adequate versions of the former is available.

Branching statements will be represented as arcs which have

the same node as initial and terminal node. This has been

mentioned as a possible construction above. The essential

aspect of branching is the performance of a test on a dataset

(possibly consisting of only one bit) and the choice of some

course of action from several as a result of the test.

Clearly branching in its canonical form does not transform

a dataset, though branching may be combined with transformation

on a level macroscopic to the testing mechanism.

We shall allow that an arc representing a test will need

only one of the parts of its initial dataset present to be

initiatedl 'and that only one of the parts of its terminal data-

set will be produced as a result of this initiative.

This terminal part will be logically the same as the initial

102

Ofe

One initial part,
two possible brr,iii±e,

In

12

	12; In

	■•••■•••••••/,......../

'rest
Out 	 ut

Two Initial parts,
two possible branches.

Two initial parts,
one possible branch.

In

Test 	

Out Out

Test

One initial part,
one possible branch.
(trivial case)

Fig. 3-20 Branching arcs.
103

Inloop

w/A

Test

V
Loop Out

Fig. 3-21 122.p representation.

104

part which enabled the test. A delay may or may not be

associated with the test, and in general this type of arc

will be similar in all respects to an arc with distinct

initial and terminal nodes.

A test will thus provide a part of the initial dataset of

one of a subset of the OUTarcs of the node at which the test

occurs. This OUTarc is the arc which will be executed (if

possible) in the particular realization of theE-graph

during which the test is made. Consequently we will provide

a means of disabling the remaining OUTarcs of the subset,

since they must not be executed unless re-enabled by some

subsequent application of the test. Such a mechanism also

allows us to distinguish between arcs whose initial datasets

are disabled and those which are merely waiting for their

production.

Thus all possible branches will be represented in the

1E -graph, but a particular realization will bind a unique
selection of these while disabling the rest. This is

equivalent to saying that for any given execution of a

program only one of the possible paths through it will be

taken.

The hardware dual of this situation is the ability of

a processor P to write to several stores M'. Clearly when

P is allocated to a process S, because the process has only

one terminal dataset, which resides in one store, the other

possible configurations of P will not be used. All possible

configurations will be represented in the corresponding

-rr- graph as arcs between M and the stores M' to which P can

105

write. Only one will be used in any particular realization

of S on the -ff.-graph, and the rest will be disabled for the

period of realization.

In an actual computer system the choice made during any

particular realization of a E-graph will be data dependent.

Where an analysis is being carried out we have a number of

mechanisms available for making the choice. Random choice,

irrespective of which initial part enabled the test, random

choice dependent on the initial part, and either independent

or dependent presetting of the terminal part to be chosen prior

to the analysis, are possible methods.

Loops can be represented by the use of a test arc as follows.

The initial parts to the test are the first entry to the loop

and a subsequent entry. The terminal parts are the exit from

the loop or the body of the loop (i.e. a sequence of nodes and

arcs which leads back to the subsequent entry). Loops which

are a sequential representation of an inherently parallel

computation can be represented by their parallel form. Loops

which are iterated a given number of times will use the loop

counter as the datum for the parts of the initial dataset of

the test arc.

Finally we suggest that the REP matrix bears a strong kinship

to the precedence matrix for the INarcs and OUTarcs of its node.

As an example of the use of loops, Fig. 3-22 gives the REP

matrix for one process of the two process interlock algorithm

below. The algorithm is described more fully in Cooperating

Sequential Processes by Dijkstra.

io6

"begin integer cl, c2, turn;

c1:= 1; c2:= 1; turn:= 1;

parbegin

process 1: begin A1:c1:= 0;

Li: if c2 = 0 then

begin if turn = 1 then goto Ll

cl:= 1;

Bl: if turn = 2 then goto BI

goto Al

end;

critical section 1;

turn:= 2t cl:= 1;

remainder of cycle 1; goto Al

end;

process 2: begin A2: c2:= 0;

L2: if cl = 0 then

begin if turn = 2 then goto L2;

c2:= 1;

B2: if turn = 1 then zoto, B2

goto A2

end;

critical section 2;

turn:= 1; c2:= 1;

remainder of cycle 2; goto A2

end

parend,

end".

107

main cycle 1 --------

c1 := 0

(c4

■ cl

c2

c2

c2 	c2
= 0 	= 1

turn

turn

turn
A 1

turn
= 1

c2

turn

turn turn
= 2

, .
/ 2

main cycle 1, c1 := 1, turn := 2, critical sectiodm 	

Fig. 3-22 R-matrix for ro cess one of Dilcstra's interlock algorithm.

io8

3.7 Data dependence and reentrance.

There are two ways in which data can influence the processing

required by a program. These are by the size of a dataset, and

by the value of a data item. For example, an input operation

may be repeated until a special character is detected. In this

case the amount of processing is clearly dependent on the size

of the dataset for which the special character is a terminator.

Where alternative paths through a program exist the choice

of path, and therefore the processing done, usually takes the

form of testing the value of a program variable. In fact

dataset size and variable value can often be expressions of

the same thing. If the input operation above is counted then

the value of the count will express the size of the input data-

set. This count may be used in another part of the program to

control the size of an output dataset, or to select a program

path.

That is to say that any run of a program is provided with

the values of the data for the run, and the size. The size

may appear explicitly as a particular value, or implicitly as

a delimiter. It is more general to say that the structure of

the data influences the processing performed by a program.

Currently, however, there are no widely implemented processing

units which can operate directly on the structure as well as

the value of data. Nor are there storage media capable of

directly expressing any structure except linear sequential

strings (of bits or characters).

Because of this much of the structure of a dataset is

expressed as additional values within the linear sequential

109

mold, e.g. pointers, cross-references, subdelimiters, and so

on. The structure then influences the processing which occurs

by selecting the program path according to these additional values.

In the context of contemporary processors and storage

media there is therefore no loss of generality in describing

the factors which affect the processing of a particular run

as dataset size and value.

In a r-graph (Slgraph; node called Slnode) the data

dependency of the OUTarcs of a node on its INarcs is specified

in the repartition matrix of the node. That is to say that

REP [i,j] gives the proportion of the terminal dataset

of INarc i that is required by OUTarc j. These proportions

apply to incoming datasets of unit size, e.g. one record or

character. The actual size of the terminal dataset will be

determined by a run-time attribute of INarcAi.

If D. is the total size, then

D. X. j 51 REP [ilj]

The total size of the initial dataset E. of OUTarc j will now be,

j = 	Ai REP [ilj]

This will in turn determine the actual size of the terminal

dataset of OUTarc j, when it is executed. The factor X has

no effect on the characteristics of arc execution such as

utilization and efficiency. It is regarded as simply multiplying

the amount of storage required to hold datasets, and the time

required to process them. Consequently all Plarc-Slarc matching

procedures, and comparison of the matches will be independent

of the values of X. Execution times will be X times those

110

for SIarcs operating on unit datasets, and this clearly must

have an effect on overall subgraph execution.

It is often the case that a dataset is left unchanged by

a process using it. In such a case the dataset is still

available for other processes, and still useful since its

contents remain known. If the dataset is unaltered by a

process, then it may be used concurrently by another. This

type of data is called read-only and is often encountered in

programming systems. On the other hand data which is altered

by a process is left undefined on completion, and furthermore

cannot be used concurrently by another process since the contents

are unreliable. We call this data read-write data.

We would like a Slgraph to include differentiation between

read-write and read-only datasets. This can be done by the

sign of the REP matrix element which represents the dataset.

If REP [i,j] > 0, then the dataset is read-write, and if

REP [i,j] < 0, then the dataset is read-only. The current

status of a Slnode's datasets is held in a separate matrix ACT

of identical dimension to REP. If ACT [i,j] = 0, the dataset

represented by REP [ilj] is inactive; if ACT [i,j] > 0, the

dataset is active. ACT is called the activity matrix of the

Slnode.

With the introduction of read-only data it becomes clear

that a necessary corollary is some means of deactivating data-

sets, else a read-only dataset, once activated must remain so.

We now extend the properties of a Slarc to include a function

zero (a Slarc is an arc of a 1:-graph and is defined by

functions one to n where n is a parameter of the graph). This

function, PHI [0], is specified, like the rest, by the

111

modeller. If PHI [0] > 0, then the terminal datasets of the

Slarc are to be activated, and if PHI [D] < 0, they are

deactivated. We define PHI [D] = 0 as taking no action

concerning the terminal datasets, and such an arc will thus

bring the allocator to the terminal node without affecting it.

In this it is the modeller's equivalent to an allocator

generated delay arc. Where PHI[0] is non-zero it is anticipated

that the numerical value may be used to define other subclasses

of terminal action.

Read-write/read-only datasets and activation/deactivation

SIarcs are logically complementary and allow alternative data-

set action at both initial and terminal nodes to be specified

within a Slgraph.

The selection of alternative program paths according to

the value of program variables cannot be accurately modelled

short of duplicating program execution with real data. To

correctly imitate the run-time choices, all variable values

involved in them would have to be derived, by the same

algorithms as used in the program, from the same data. Clearly

one might just as well execute the program under investigation

with some run-time monitoring to record all values and choices.

Neither is such an effort particularly rewarding, since the

results are relevant to only one run. Instead, we make the

assumption, in common with most simulation models, that for

sufficiently large numbers of runs the values of variables

used in choosing program paths will be drawn from recognizable

probability distributions.

This allows us to dispense with knowledge of the actual

data values of a program run. At each point of choice we use

112

the estimated characteristics of the probability distribution

to perform the choice by random drawing. In a SIGMA graph

such choices are called IFloops (an arc with the same initial

and terminal node).

An IFloop is regarded as having its initial datasets in

column j of the repartition matrix, and producing terminal data

in row i of the same matrix, and will be activated by only one

of the elements of column j instead of all. On completion it

will activate only one of the elements of row i, instead of all.

The IFloop can choose the element to be activated by one

of several random drawing methods. The method to be used is

part of the data which describes the IFloop. Because of the

relation between dataset size and variable value, we include

the facility for an IFloop to choose the value of X by similar

methods.

Since A has a multiplicative effect on execution time,

this is also equivalent to random drawing of the execution time

of an IFloop. For completeness this too is included in the

facilities provided in an IFloop, which can now be seen to

provide an adequate means of expressing and emulating the data

dependent aspects of subgraph execution.

We now turn to reentrance, which can be regarded as falling'

within the scope of a discussion on data dependence. Reentrance

is the property of a hardware-software system which allows it

to sustain concurrent executions of the same program.

We will call each such execution a transaction. A trans-

action is distinguished (and identified) by its data. If we

assign a unique integer to each transaction as it is created,

113

then this integer will form part of the data, albeit only a

read-only datum. In a Slgraph the arcs may execute in

parallel. If the arcs are treated as representing reentrant

programs, then we may have more than one transaction per arc.

A set of active arc executions in a subgraph are logically

related if the are historically descended from the same

activation of the initial node of the subgraph. Such a set

has been called a cut, or cut zone, previously. Being

descended from one activation of the initial node, the

members of a cut represent a single realization of the task

represented by the subgraph. That is to say the cut represents

one transaction executing the arc whose structure is represented

by the subgraph.

If more than one transaction is executing this higher

level arc, then there will be a cut active in the subgraph

for each transaction. If the executions of these transactions

are to retain the qualities of reentrance, then their datasets

must remain distinct and must not combine (by repartitioning

at a node) to activate any arc, since such an arc would belong

to both cuts, which would in consequence no longer be logically

distinct.

Thus we can see that reentrant execution of a subgraph

requires logical independence of each active cut. Since the

execution of individual arcs is already logically independent,

even with one cut, the requirement is that the datasets used

in repartitioning at any Slnode shall always belong to the

same cut. In practice this demands that each cut carry its

own status information about each of its active nodes.

We call this type of execution completely reentrant (mode 3).

It is possible to derive some more limited modes of graph

binding as follows. If we introduce the condition that no cut

may activate an arc until the previous cut has completed it,

we are effectively introducing a first in first out discipline

within the subgraph. This is equivalent to requiring that

transactions at the upper level should always maintain the

same ordering (namely that in which they were generated).

We call this type of execution sequentially reentrant (mode 2).

It can be realized by requiring the executing allocator to

adhere to the condition stated above, and to queue (FIFO)

terminal datasets at their terminal nodes in the event of any

element of a prior one still being active at that node. That

is to say an incoming transaction on arc i will be queued

(i,e. will continue to require storage) until all REP Eilj]

are inactive (all prior transactions on OUTarcs j completed).

The first transactions of each INarc queue will be used to

reactivate the node as soon as it has become inactive.

If we now eliminate the possibility of queueing datasets,

we restrict the execution even further. We now require that

not only will there be at most one execution of an arc taking

place at any given time, but also that there will be only one

realization of a dataset at any time. That is to say that

successive transactions on an arc read from and write to the

same dataset (i.e. there will be only one store image of the

dataset at any time). This type of execution demands that an

arc may not be activated by a transaction if the terminal

dataset still has any active components produced by a previous

115

activation (mode 1). This restriction must be made since a

process may access its initial and terminal datasets at any

time while it is active.

Since transactions now use the same datasets, their

behaviour now corresponds to that of cooperating sequential

processes as described by Dijkstra. This is so because arc

execution is a critical section with respect to the arc's

initial and terminal datasets. The interlocking of arc

access to datasets is performed by the allocator.

Thus though more than one cut may be initiated, all are

subject to the same interaction constraints as those which

operate between the members of a single cut. For this reason

we call this type of execution non-reentrant.

We now consider some aspects of simultaneous allocation.

It is sometimes required that two processes commence execution

simultaneously. A typical case is that where one process times

the other. Clearly the initial data of both processes must.,:be

present before either is allocated. This is equivalent to

viewing the two processes as the subgraph of a Slarc whose

initial data is their combined initial data. This Slarc is

then subject to the normal condition that all its initial

datasets must be present (active) before it may execute.

Furthermore the arcs which produce these datasets must be

INarcs to its initial Slnode. Consequently we see that, without

loss of generality, when two processes are to be allocated

simultaneously their initial datasets must appear in the same

column of a Slnode REP matrix. This column corresponds to the

Slarc whose subgraph is formed by the two processes.

116

For convenience we develope a shorthand description of the

situation which dispenses with the necessity for a subgraph.

We describe both processes by Slares which appear in the OUTarc

chain of the Slncde, and add a further row to its REP matrix.

The zero element of the column becomes the arc specifier for

the first Slarc, and the last element of the column (which is

an element of the new row) becomes the arc specifier of the

second Slarc.

In order to perform a simultaneous allocation the allocator

acts as follows. When the column j becomes ready the allocator

attempts to allocate the first OUTarc (specifier is REP [01j].

If REP [m t 1, j], 	Inarcs) is non-zero this indicates

that there is a second OUTarc to be allocated simultaneously.

The allocator will attempt to allocate this arc as well. If

both allocations succeed then two ties (bound process-processor

pairs) will be activated and simultaneous allocation is

achieved. If one arc is allocated successfully and the

other is not, the hardware resources for the first are reserved

until the second arc can be allocated as well. In meantime it

is marked as a delayed arc. Reservation is accomplished as

follows. If the successfully allocated Slarc requires a

fraction u of the processor P which was chosen, then a

variable which represents the current usage of P is increased

by u, u itself being recorded in a similar variable (SFRAC)

of the Slarc. Thus u is unavailable for allocation to other

SIarcs. Terminal storage, if it is required, is also allocated

in the terminal Plnode of the Plarc. These terms denote a node

and arc of a Plgraph.

117

When the allocator returns to the column and is able to

allocate hardware resources to the second Slarc successfully,

it initiates ties for both SIarcs. Each tie will then release

its resources on terminating. When a processor is reserved,

an identifying attribute is recorded in the element of REP

which specifies the OTJTarc. This allows the allocator to

know which processor, and consequently which store, was

reserved, on a subsequent scan of the Slnode.

This record of reservation is a special case of the fact

that whenever a Slarc specified by REP [p,j], (p = 0 or m + 1),

is allocated, the processor state identifier (SEQF) is recorded

in ACT [p,j]. This means that ACT [p,j] always contains the

identifier of the last processor to be allocated to the

corresponding Slarc, and this facility is used for error

handling and disabling of hardware, as well as simultaneous

allocation. The delayed, status of an arc j can be shown by

setting ACT [p,j] negative. It is clear that by the provision

of further arc specifiers per column simultaneous allocation

of more than two processes can be described and executed using

the method outlined above.

The ACT matrix separates the descriptive aspect of the

Slgraph, from the binding time information. This is particularly

helpful when we consider the implementation of mode 3 binding.

Here binding is completely reentrant, so that each cut which

traverses the Slgraph must carry all its status information

with it. This can be achieved by allowing each cut to carry

its own set of ACT matrices for nodes at which it is active.

Since every completing tie activates the allocator which

118

generated it we now have the means of completely separating

binding information from graph description, which is the essence

of mode 3 binding. The effect is to make the Slgraph itself

into read-only data for the allocator.

119

The ACT matrix also provides the counter function for DOloops

(again helping to separate Slgraph description from dynamic

variables). When a DOloop is activated it searches for

the row i of the REP matrix for which it is the INarc. The

condition for this is that SEW equals REP [0,i]. If column

j provided the initial data of the DOloop, then ACT [i,j] is

used as the DOloop counter.

When the DOloop is activated it checks ACT [i,j] for zero.

If if is zero the DOloop assumes that this is a first iteration

and sets ACT [i.j] to the number of iterations required

(spedified in one of the parameters of the DOloop description).

At the end of each iteration ACT [i,j] is decremented by one,

and tested for zero. While it is positive the column of the

first non-zero REP element in row i is chosen as IFCOL. When

ACT [i,j] is zero after the decrement, then the column of the

second non-zero REP element is chosen. If ACT [i,j] is negative

this is regarded as a non-fatal error and IFCOL is set to -1.

This signals the allocator not to activate any dataset, and

effectively extinguishes the DOloop.

An example of the deliberate use of the last case occurs

when a deactivation arc operates on the terminal row of the

DOloop. In this case ACT [i,j] will be set to zero, and so

the subsequent DOloop decrement will bring it to -1. Consequently

the DOloop will be extinguished by the deactivation arc.

Such a deactivation, followed within one iteration time by

an activation, presents a problem in reentrance. The second

activation will find ACT [i,j] = 0 and set it to n, where n

is the number of required iterations. The first DOloop will

120

now never find ACT [i,j] = -1 and so will not extinguish itself.

Instead it too will decrement ACT [i,j] and continue to iterate.

Now we have two DOloops iterating concurrently and, of course,

decrementing ACT [i,j] twice as fast. The number of concurrent

DOloops can build up to n in this way. The reentrance rules

described previously would normally prevent this happening.

While the first DOloop was active the second one would be

queued (in mode 2) or not allocated (in mode 1) because ACT [i,j]

would be detected as non-zero, thus showing the existence of

an already active OUTarc j. The deactivating of row i sets ACT

Eilji to zero and effectively hides the existence of an active

OUTarc.

It is clear that this problem extends to any case where one

or more of the initial datasets of an active OUTarc are

deactivated and then reactivated while the OUTarc is still

active. To ensure behaviour appropriate to the execution mode

we introduce a further check for ties which activate (rather

than deactivate) their terminal datasets. The check is on the

attribute SFRAC of SIarcs corresponding to the columns j

containing the terminal datasets REP [i,j] of the tie.

If SFRAC > 0 the Slarc is known to be allocated and executing

(SFRAC holds the processor fraction allocated) and consequently

the reentrance rules can then be applied. For SIarcs which

use no processor functions we require that SFRAC be set to 1

on allocation.

We now make some comments on error handling. By error we

mean a hardware error, i.e. a malfunction of some part of the

Plgraph. A tietected software error implies a different path

121

through the Slgraph from the point at which it was detected.

A software error whose detection is not modelled in the Slgraph

is a wrong result from the human point of view, but not from

the algorithmic one.

A hardware error occurs during the execution of a tie.

Typically it will be modelled by an IFloop which chooses the

error path or the normal path by drawing from a statistical

distribution. Errors which are not detected or not acted upon

obviously do not concern us. When a tie is initiated there

must be a subsequent moment at which it is decided whether

the tie completed normally or in error. There is usually a finite

time limit on this moment. The decision can only be finally

taken by the initiator of the tie, since it is only the

initiator who has the ability to directly reinitiate the tie,

or go on to the next tie, or transaction. Furthermore an

error can be of the type which renders the recipient unaware

that a tie was ever initiated. That is to say that the only

location where a record of tie initiation and the data for

its reinitiation can be relied upon to exist, is at its

initial Slnode.

The error decision can be made in one of two ways. The

return of an acknowledgment allows a decision depending on

whether the acknowledgment was a good or bad one. If no

acknowledgment is returned the arrival of the time limit

allows a decision to be made depending on whether the expiry

implies an error or a normal termination to the process. In

either case we require that the decision shall correspond to

the activation of one of two datasets in the initial Slnode

122

of the tie. This Slnode is the only place where there can be

certainty of the decision being taken at all, and where there

can be certainty of the retention of the initial datasets of

the tie.

We do not concern ourselves with the dataset which

represents normal termination since this is clearly only a

matter of the deactivation of the initial data and/or the

extinction of the process arising from the dataset. In the

event that the dataset corresponding to error termination:is

activated there are usually two possible procedures. The process

which was in error can be repeated (tie reinitiated), or the

corresponding hardware made unavailable for future allocations.

Reinitiation can be modelled using normal Slgraph

facilities. Suppose REP [1,j] represents the initial tie data

and REP [2,j] is a ready flag, then on completion of the tie

j, REP Elgii will remain active (read-only dataset) and REP [2,j]

will be deactivated. On normal completion the initial data

will be deactivated and REP [20] activated. In the case

of error termination the initial data will remain active

and REP [2,j] will be activated, thus making OUTarc j ready

again, and so the tie will be repeated.

A common method of treating errors is a fixed number of

repetitions followed by disabling the hardware involved. The

disablement is for a finite period whereupon the hardware is

enabled and execution attempted again. In the SIgraph' we

provide a general facility for enabling and disabling hardware,

i.e. one which can be used for other reasons besides error

handling, in the form of two corresponding IFloops.

123

The first disables the hardware last allocated to the Slarc specified

in a parameter (a) of the loop. It does this by a similar method

to that used for reservation of hardware. The IFloop searches the

Slnode for the arc specifier REP [p,j] corresponding to a and

extracts the value of the processor attribute SEQF from ACT [p,j].

The processor must be an OUTarc of the Plnode to which the Slnode

is tied, if the initial tie data has been retained. Otherwise

the Plnode can be reached through a Plgraph node index.

In either case the Plarc is found and its inuse fraction

is incremented by 1. This has the effect of making the

processor unavailable for further allocation irrespective of

the fraction currently allocated and its subsequent release.

The attribute SEW of the processor (which completely identifies

it) is now placed in ACT [p,k] where REP [p,k] is the arc

specifier for the disabling IFloop. The attribute SFRAC

of the IFloop is set to one as usual for a Slarc which

requires no processor. The tie which originally executed in

error can now be reinitiated or deactivated as required.

If it is desired to make the processor available again

after a delay, the disabling IFloop can be given the appropriate

duration, and its tie can alter its associated processor from

null to the disabled processor. On complbtion the allocator

will release the disabled processor as part of its normal

completion procedure since SFRAC of the :disabling IFloop has

been set to one and the tie now has an attached processor.

Alternatively the IFloop may be given a zero duration and

its completion allowed to initiate a delay loop. This loop

124

can then initiate the second type of IFloop mentioned, namely

an enabling loop. The enabling IFloop operates in a similar

manner to the disabling IFloop, except that it subtracts one

from the inuse fraction of the processor. The processor itself

is obtained in an identical manner to that used by the disabling

IFloop. It is clear the OUTarc specifier in an enalbing IFloop

can refer to a disabling IFloop, so that the former can release

the last processor disabled by the latter.

The duration of a tie will depend on the physical

characteristics of the stores in which its initial and terminal

datasets reside. We introduce a function V to represent this

perturbation of tie duration. Clearly for normal stores p, V

will be a function of the quantity of data being processed by

the tie, so we write that the tie duration will be

t * A + V (A, pi) + V (X* E, p2)

where E is the sum of the terminal REP elements, and t is the

processing time per unit data, as provided by the allocator.

A subset of store characteristics provided by Plgraph description

might be delay, latency, block size, and block time. The delay

is, for example, the average seek time during disc access.

The latency is the rotational period of a disc or drum. The

block size is the quantity of data moved in one transfer, and

the block time is the time to move it.

The function V can be defined to suit the modeller, and we

would choose the following as a default. One drawing from the

uniform distribution between zero and delay, plus m drawings

from the uniform distribution between zero and latency (where

m is the number of blocks), plus m times the block time, i.e.

125

V (X) = m * block time + uniform (0, delay) + z;

where for i 1 step 1 until m do

z : z + uniform (0 latency);

m is defined as the snallest integer greater thanVblock size.

An example of the use of the facilities above is the way

in which splitting the leading character from a message is

modelled. We achieve the desired effect by simultaneous

allocation of two IFloops, the first one resetting LAMBDA to

LAMBDA minus one, the second one setting LAMBDA to one.

The total memory requirement is exactly equal to the initial

memory present and no account need be taken of the range of

LAMBDA values.

Finally we mention a possible extension of Slgraph

facilities. This is the addition of further variables which

propagate with the cut. Such variables might be carried by

ties. At each node a new value is generated for an outgoing

tie from the values carried by its inarc ties. Values are set

by IFloops and may or may not be altered by the node algorithm.

The reason for propagating the values of these variables is

either the collection of cut statistics or the fact that their

values may be used to control the binding of the cut at

locations, or under circumstances, specified by the modeller.

An example occurs in modelling a message switching network,

where a variable which might well be propagated would be the

node number of the message destination. This would be operated

on by a routing algorithm at each node and the result would

determine the transmission line which would be allocated

(i.e. binding is controlled by the result).

126

The method used for the LAMBDA variable can be extended

indefinitely simply by the addition of carrier variables to the

tie definition, and the addition of an appropriate node algo-

rithm to produce the outgoing value.

In a general sense such variables represent the inclusion

in the model of the variables of the real system. The reason

for inclusion is that their values determine the behaviour of

the real system sufficiently strongly to render the model

inaccurate or even useless without them. If all variables are

included then we end up with a replica rather than a model of

the real system. Without them the model may not fulfil its

purpose. The choice of variables to be included must therefore

rest with the modeller. His judgment should be confirmed by

a positive validation of the model.

127

CHAPTER IV

IMPLEMENTATION

128

4.1 General Criteria.

In the previous chapter we have described a system for

modelling computational activity. This system was implemented

as a program in the SIMULA language on a Control Data 6600

computer. The name of the program is SHAPE, which is an acronym

standing for Software Hardware Allocation and Performance

Evaluator. A brief introduction to SIMULA appears in Appendix II.

An equal emphasis was placed on the modelling of software

and hardware to improve the evaluation of real performance.

Furthermore, the basic interchangeability of hardware and software

pointed the way to modelling and descriptive systems which were

applicable to both, and minimised their differences.

Because software and hardware are regarded as similar and

complementary, a correspondence occurs between the two. Basically

this is the correspondence of store and dataset; processor and

process, alternative connection and branching statements, parallel

connection and concurrent processes, and so on. Wherever possible

in the SHAPE system a single structure is used to model both

hardware and software. The differences between them appear as

different interpretations rather than changes in the structure.

For example the graphical representation is used throughout,

the software interpretation being called a Slgraph, and the

hardware one a Plgraph. This had led to nodes representing stores/

datasets and arcs representing processor/processes. This seems

a more useful graph model than earlier ones which have used the

arcs only as a visual expression of the precedence relationships

between computations. In these previous models the nodes were

used to represent the computations, thus leaving the modeller with

129

no remaining structure to which datasets could be naturally ascribed.

In the SHAPE system precedence relations are treated more explicitly

from the point of view of data dependency, so that the computations

which transform datasets are an inherent representation of these

relations. A further consequence of the SHAPE interpretation of

nodes and arcs is a simple expression of the binding situation at

any moment by means of a cut across the graphs.

The SI and PI graphs used in SHAPE are of a general kind.

There is no planarity restriction, arcs are allowed to have the

same initial and terminal nodes, and multiple arcs between a pair

of nodes are also permitted. The model has been provided with a

recursive capability in order to allow areas of special importance

to be investigated in greater detail, the submodel remaining embedded

in the main structure as a subgraph.

In SHAPE, processor is used to denote any data-transforming

piece of hardware, rather than a general purpose computer or Von

Neuman machine. The reason for this is that it allows us to take

into account specialized or restricted progessors, and the great

variety of special function hardware units which exist today, such

as display controllers, multiplexors, disc controllers, etc.

These must be modelled since they represent a dispersal of the

intelligence and computing power of a utility, and can also be

of considerable significance when overall performance is being

considered.

A fundamental problem which arises in modelling a program is

the representation of both the static and dynamic behaviour of the

program. A static model of the program is one which shows the

program as it might be written on paper, that is to say with all

130

paths, possibilities, and branches present. The dynamic model

represents one particular execution of the program. A particular

execution is obviously one where at each point of choice in the

static model the choice has been made. Thus the dynamic model

consists of a selection of the actions available in the static

model.

In the case of SHAPE, a Slgraph shows all the possible

computations which may take place during realization of the

task represented by the graph. As the task is realized, as a

binding of the Slgraph to a Plgraph, unselected alternatives are

disabled. On completion the bound graph which remains gives us

the dynamic model of that particular execution.

From this point of view branching statements are an online

control device for programs, which allows the selection of

alternatives to be postponed until the actual execution, and

automates the process of selection (it is possible to imagine a

very primitive program which referred the predicate data of every

IF statement to the computer operator, who, flowchart in hand,

would make the decision and then reactivate the machine at the

appropriate instruction sequence).

Any attempt to model the execution of a task, and analyse

the performance of that execution, must be able to handle this

transition from static to dynamic representation. Some previous

models have used branbhing probabilities, mean execution times,

and so on to provide statistical results for overall execution

measures. SHAPE allows for the use of these methods and also

some others which are more data dependent, as well as making the

insertion of predetermined decisions particularly easy.

131

The representation of IF statements was influenced by the fact

that one of their more important functions is in the programming

of loops. In SHAPE the loop entries and exits are handled by IF-

type operations and the structure of these operations has been

oriented to making loop representation as convenient as possible.

In the model as it stands today nearly all binding and allo-

cation takes place as the cut crosses a node in the Slgraph.

It is when this happens that nodes enter and leave the cut zone,

nodes are bound to stores, and processors allocated to arcs.

Consequently this is the area of prime interest in modelling the

mechanisms which ensure continuing execution of the task.

It is intended that the SHAPE system will allow the trial

of alternative binding strategies, and that the binding problems

will be formulated in such a way that these strategies (that is

to say the mechanisms mentioned above) can be easily inserted and

removed. The problem is essentially that of optimizing the choice

of m out of n processors to be allocated to m processes subject to

various constraints (of course there may be fewer processors than

processes as well). The optimization may be done for this choice

alone, over the cut zone, or beyond the cut zone.

A recent result demonstrates the equivalence of preemptive

scheduling and fractional allocation, [MUNT 70]. This leads us

to expand the range of choice from integral allocations to

fractional ones. The rationale for this is that optimization

with fractional allocation seems far more amenable to solution

than the corresponding situation with preemption.

The intention of the SHAPE system is to provide an evaluation

of program realization for alternative allocation strategies, or

to compare the behaviour of different realizations.

132

The main components of the SHAPE program consist of the g•aph

input procedures, the allocator, and the procedures for matching

and binding a Plarc to a Slarc. The binding of two graphs occurs

in simulated time. A time scale is generated for each pair of

graphs, so that where a pair of bound arcs have subgraphs these

are bound in their own independent timescale, while that of the

upper level is unaffected. This mechanism is used by the

matching procedure to derive the time required for a Plarc to

execute a Slarc when both have subgraphs.

A pair of bound arcs is called a tie. A tie is created by

the allocator and exists for the duration calculated bytthe

matching procedure. On terminating it activates the allocator

which releases resources previously associated with the tie, and

then creates ties for any processes now ready and able to execute.

The SHAPE program does not include -all aspects of the model

described in the previous chapter. This is due partly to limita-

tions in the compiler and associated software (see Appendix III)

and partly to insufficient time for programming a full implementation.

The points of difference are described as they arise below.

In the following sections we describe the graph input

procedures and the the operation of the allocator. After this

we give a more detailed treatment of ties and IFloops, and then

deriVe measures for hardware and software performance.

133

4.2 Graph input.

This section describes the way in which SI and PI graphs are

input from a sequential storage medium such as cards or magnetic

tape, to a random access medium such as core store. Such input

is necessary because binding of the two graphs as performed in the

SHAPE system, required the graphs to be in their topologically

linked form.

In this form each node consists of a block of data about

the node and a pointer to a chain of arcs. Each arc consists of

a block of data about the arc and points to the next arc in the

chain, and the terminal node of the arc; the initial node of all

arcs in the chain is the one at the head of the chain, by

definition.

The blocks of storage for the elements (arcs and nodes) of

the graph may be situated anywhere in the available core store,

and are linked by the pointers described above. The linkage so

formed duplicates the topology of the graph. Clearly such a

linkage can only exist in a random access type of storage medium,

so that we have to provide a sequential form of the graphs for

storage on sequential media. Such storage is desirable since

we cannot keep the graphs permanently in core store, and private

discs are not always available.

A normal SHAPE run will therefore be to input a SI and a

PI graph from a sequential storage medium, set up the topological

linkage, then perform the binding of the graphs, and output the

results.

We shall now describe the topologically linked form of the

SI and Plgraphs, starting with the structures common to both.

134

Both nodes and arcs have an attribute called POINTER. In the case

of an arc this points to the next arc on the chain, and in the

case of a node to the first arc on the chain. The arcs on a

chain are called the OUTarcs of the node which heads the chain.

Each node possesses three integer attributes besides its pointer.

These are its node-number, the number of its INarcs, and the

number of its OUTarcs (NODENUM, INARCS, OUTARCS).

Each arc has three other pointers besides that to the

next arc. The first (NEXTNODE) points to the block of storage

used to hold the data for the arc's terminal node, and the other

two (FIRSTNODE, DX) are used when a subgraph exists for this arc.

The first of these points to the first node of the subgraph, and

the second points to the index for the subgraph. An index holds

a double entry for each node in a subgraph. The entry consists of

the node number, and its address in core store. Entries are ranked

in order of increasing node number. An index also has its own

length and that of the arc data vectors as attributes. An arc has

one numerical attribute, SEQF. Entier (SEQF) is the node number

of the arc's terminal node, and the fractional part of SEQF

distinguishes between several arcs which have the same initial

and terminal nodes. For example if there were three arcs between

nodes 4 and 7, their respective values for SEQF might be 7.1,

7.2, 7.3.

The whole graph is referenced by a special arc called a

graph header. In the graph header FIRSTNODE points to the first

node of the graph and DX to its index. The graph header has two

additional attributes which are the name of the graph, and its

TYPE (SI or PI). The structure described so far is common to

both types of graph.

135

In SHAPE we use SIMULA class definitions to provide arcs,

nodes, indexes, graph headers, as shown in Fig. 4-1. Node and

arc linkage is shown in Fig. 4-2. Where several arcs have the same

fine structure only one subgraph is necessary and all the arcs will

point to its first node and index. A subgraph linkage is

illustrated in Fig. 4-3.

We now describe the data associated with nodes and arcs

in SI and PI graphs, which depends on the type of graph.

A Plnode (representing a store element) has the following attributes:

cost, latency, block size, blocks per track, and capacity. These

are held in an array MU together with a random number seed for use

in the generation of latency times. The run-time variables

TOTUSE, FSTUSE, LSTUSE, INUSE2 MOX, MUT, ME:ti t and MIT are used

for gathering statistics during binding.

A Slnode has as input data the repartition matrix (REP)

described previously. In SHAPE the activity matrix (ACT) has

not been implemented. Instead the allocator treats all datasets

as read-write data (REP [il j] initially positive), and the sign

of REP [i2j] is used during binding to indicate its activity

(negative for active, positive for inactive). Consequently all REP

elements input to a SHAPE run are positive. One other data item of

a Slnode is the variable PNID which gives the node number of a

a node in a Plgraph. If PNID is non-zero, then the Slnode will

be tied to the specified Plnode during binding.

Binding time attributes are column vectors Q, LAM, BET, QD,

QT, QS. During semi-reentrant binding for each row of the

repartition matrix, the corresponding element of Q is the initial

pointer to a queue of completed ties which have that row as their

136

class element (pointer) ;

ref (element) pointer ;;

element 	class are (neNtnode, firstnode, dx, segf);

ref (node) nextnocie r firstnode;

ref Iindx) (17;

real secif;;

element 	class node (nodenum, snares, outarcs);

Anteger, nodenum, snares, outares ;;

arc 	class graph (graphname, type);

value graphname;

text graphname;

integer type;

class indx (indxl, adle);

integer indxl, adle;

begin

arm number [0:1ndx11 ;

ref (element) arraz address [0:indxl]

number [0) :=1;

number [indxl] :=Indx1

end;

Fig. 4-1 Node and Are Class Definitions.

1 Y7

Node
Pointer 	 Arc

Pointer
Nextnode
Firstnod
Dx
Seqf

Data
Arc
Pointer
Nextnode
Firstnode
Dx
Seqf

Data

)11

Node

Pointer

Nodenumber

mares

Outares

Data

Node
pointer
Nodenumber
narcs
Outarcs

Data

F16. 4-2 Node and arc linkamt.

Arc

Nextnoi .

rode
Pointer
Nodenumber
Inarcs
Outares

Data

to rest of
subgraph

Fig. 4-3 Subsraph Linkatt,

139

terminal data. The variables LAM [i] and al [i] always contain

the values of lambda and beta for the current activation Of row i.

QD, QT, QS are used for the collection of software statistics and

are described in greater detail below.

The input data of a Slarc consists of two arrays PHI and

I. PHI is the function frequency vector and has n elements

where n is the number of software functions which characterize

the graph. PHI [i] is the frequency of the i th function in the

Slarc. N is also called the arc data length (equal to attribute

ADLE of the graph index).

IFF is an array that has zero elements unless the Slarc is

an IFloop. In this case IFF contains a random number seed, two

ifcodes and their four parameters. A binding-time attribute of a

Slarc is SFRAC, which is used to hold the fraction devoted to

this Slarc of the currently allocated processor. The array STARC

is used to accumulate software statistics as well as providing

a counter for use by IFloops.

A Plarc has as input data the processor performance array

PSI which consists of three vectors each with n elements. The

first vector gives the times taken by the processor to perform

the n software functions characterizing the graph, and the

second and third give the processor utilisation and efficiency

for these functions. Other data attributes are the physical

identifying number of the processor (ID) and the cost per unit

time of using the processor. The attribute ID is required since

many arcs in a Plgraph can refer to the same physical processor,

which has the capability of reading from and writing to many

memories. The runtime variable Pt.PAC provides the fraction

1Lto

of the processor which is currently allocated, and six other

variables are used for statistical purposes. SIMULA class

definitions for the node and arc data structures are given in

Fig. 4-4, and 4-5.

On a sequential medium SI and Plgraphs are stored as

sequences of card images. Each element of the graph (node or

arc) consists of a set of cards. The first card of the set

uses columns one to twenty to define the element in the

topology of the graph. The rest all have columns one to

twenty blank. All fields consist of ten columns, and a card

may have up to seven fields.

The first twenty columns mentioned above are the first

two fields of the card. A node has its node number in field

on and field two is blank. An arc has the node numbers of its

initial and terminal nodes in fields one and two. If an arc has

a subgraph the remaining fields of its first card (arc card) contain

information about the subgraph. This consists of the numbers of the

first and last nodes, the number of elements in the function

vectors (arc width)9 the number of nodes in the graph (graph

size), and a factor which determines the size of the index

relative to the number of nodes (GFACTOR). A graph header card

also has this information about its graph.

If an arc has a subgraph, then the data cards for the

subgraph immediately follow the set of cards for the arc.

A graph header card has the name of the graph and its type in

fields one and two. The card image formats are shown in Appendix

IV, together with detailed description of all array usage.

141

node 	class pincp‘..le ;mu“

real Rrray

be

real totuse, fstuse, lstuse, muse, max,

mut, mef, mit;

ref (sinode) pstie

integer u;

u := mu C4

end;

node 	class sinode (rept pnid);

value rep;

real array rep;

inteer pnid
begin

ref (transaction) Lutz q [0: inarcs1 ;
MIMOMO■Vms

real rr 	lam, bet CO: inarcs) ,

qd, qt, qs CO: mares, 1:43 ;

ref (pinode) sptie;

intsgRE active;

end;

' 4 NDU rig 4- fi:

arc 	class siarc (phi, iffy;

real array phi, 1ff;

begin

real array store [0:7)

real sfrac;

integer ug;

ug := iff CO];

end;

arc 	class piarc (psi, psid);

real array, psi, psid;

begin

real array phicap Co: psi [0, 1) 3;

real putpr, putrnx, putav, pefpr, pefmx, pefav,

pfrac;

end;

Fig. 4-5 Arc Class Definitions.

143

The sets of cards for the graph elements are ordered

as follows. Each node is followed by all its OUTarcs.

The nodes may come in any order. The first card of the

deck should be the graph header card, which provides

information required by the input routines.

The type of a graph is an integer which gives the

number of function vectors which appear in the arc data.

Consequently a Slgraph is of type 1 and the Plgraphs currently

used are of type 3.

The graphs are input by a set of procedures in the

way described below. Firstly, the graph header is read,

and an object of this type is generated. Then a procedure

called SUBGIN is executed using some of the information

from the graph header. These actions are performed by

procedure GIN. The procedure GIN has one parameter (G)

which references the graph header after GIN has been called

to input a graph. The procedure SUBGIN inputs a subgraph.

The highest level of a graph is regarded as being a

subgraph of the graph header.

SUBGIN sets up the index for the subgraph being

input. The number of entries is the size of the graph

(number of nodes) times GFACTOR. Also set up is a scratch

array for arc data. After this the procedure INNODE

is called a number of times equal to the graph size.

When the first node is found, it is linked to the arc

144

(or graph header) which heads the subgraph. This arc

also has a pointer to the index for the subgraph.

The procedure INNODE creates a node of the

appropriate type and enters its data. An entry is created

in the index for this node which gives its number and

address. The procedure INARC is then called a number

of times equal to the number of OUTARCS of the node.

The procedure INARC reads in the data for oner:arcc

and then creates an arc object. The pointer from the

arc to its terminal node is created by searching the

index for that node number and thus accessing its

address. If the terminal node has not yet been read

in from the sequential file no entry will be found.

In such a case a plug is created in the free space

area of the index. The plug consists of the node

number in question and the address of the arc requiring

its address. When this node is read in, the procedure

which enters it in the index also satisfies all the

plugs requiring its address (see Fig. 4-6).
The arcs are chained as follows. Each call of

INARC has a pointer to the arc created by the previous

call as one of its parameters (in the case of the first

call, by INNODE, this pointer points to the node at the

head of the chain). This allows the linkage to be

established from the previous to the currently created arc.

After linking, the pointer is updated to point to

145

Node

Arc

Number
	

Address

Nodect + 1 zero f

Node number ,

..._1-\..

/-•-• .cv-1,1%.

Node number

Indxl-plugct zero

Nodect + 1

Indxl -
Plugct

if nodect + 1 = indxl - plugct then

indexfull := true;

comment nodes are held in ascending order by

node number;

Fig. 4-6 Index usage for graph input.

146

the current arc, and so is ready for the next call,

if any. The end of the chain is indicated by a null

pointer.

If INARC finds that subgraph information occurs

in the arc card, then a call to SUBGIN is made. This

call will then input the subgraph which follows the

data cards of the arc. In this way the process of

subgraph input operates recursively.

Several arcs may have the same subgraph. In this

case only one need be followed by the subgraph card

deck, and the others may give the initial and terminal

node numbers of this arc. Such a provision leads to

a plugging mechanism for subgraphs similar to the one

for nodes described above.

In this way the input procedures of the SHAPE

system creates a topologically linked data structure

of the type described earlier from a sequential file

of card images. A list of procedures used is given in

Appendix IV. It is often the case that several nodes or

arcs have identical data. To allow the modeller to

specify such replication compactly, rather than having

to repeat the complete data each tithe, some facilities

for data replication are included in the graph input

formats.

If a node Q has identical data to a previous node P

147

then the nodenumber of P appears on the first card

of the node Q description, after the number of OUTarcs.

The rest of the data is then dispensed with, and

picked up from node P by the graph input routines.

In fact only one copy of such data is kept, and

this is referenced by all the nodes to which it

applies. For all arcs the parameter SPIV is held

separately on the second card of the arc data.

The IFloop parameters are held on the third card.

For arcs (r,$) which have the same data as arc

(p,q) the nodenumbers of p, and q, and SERF of

the arc (p,q) can be placed after SEQF on the

second card of the data of arc (r,$). If this

is so, no data follows, and the graph input routines

link the arc (r,$) with the data of arc (p,q).

Each run of the SHAPE program is controlled

by a run card which is the first data to be input.

The card contains the following items: the

number of graphs for this run (one or two),

the binding mode, the debug parameter, codes

specifying the type of hardware and software

statistics required, and the binding time limit

if any. The run card parameters are described

in Appendix IV.

148

The facility for data replication is also

used to provide a mechanism for interlocking

the various states of a single physical processor.

An interlock is needed primarily for allocation,

so that the fraction of the processor allocated

is always known by referencing a single variable,

and can be altered by only one process at a time.

To achieve this, all states (PIARCS) of a

single physical processor have an attribute

PSID which is a one dimensional array. There is

only one copy of this array, and it is this

which is accessed irrespective of which Plarc

is being dealt with. The zero element of the

array holds the fraction of the physical

processor currently allocated, and thus an

automatic interlock is provided. The remaining

elements of the array are used for statiStical

purposes.

A procedure called TOPSCAN is also

provided for use with the graph input routines.

This procedure performs a topological scan

through the graph listing the linkages which

it finds. Its purpose is to check that the

graph input routines have functioned correctly

149

before binding is initiated.

150

4.3 The allocator.

The current version of the SHAPE system performs binding of

SI and Plgraphs using a SIMULA object of class allocator. The

allocator has been constructed as a class definition since it is

regarded as controlling the execution of a single cut or connection

between the two graphs. Use of the class definition allows the

generation of more than one allocator, the retention of local data

describing the condition of its cut by each allocator, and the

convenient use of SIMULA simulation facilities.

The execution rule (or block) of the allocator is prefixed

by the predefined class SIMULATION, so that each allocator generated

is effectively an independent simulation (system of quasi-parallel

processes). In what follows some knowledge of the programming

language SIMULA is assumed.

Within the execution rule a process of class tie is

defined. This process is used to represent the allocation of a

process (arcnof a Slgraph, not simulation process) to a processor

for a given period of time. During this period the process and

processor are said to be tied.

When a tie is completed the allocator is called to free

resources, update the cut status and initiate ready processes by

binding to appropriate resources. An allocator operates only for

one subgraph. When an arc is found which itself has a subgraph,

the procedure which matches processes to processors generates a new

allocator to provide the results of the matching.

In a real computer system binding is done either by hardware

or software. If by software then this software requires at least

intermittent use of system hardware.

151

Thus in the real system the resource allocation (binding)

mechanism itself requires some of the resources it allocates.

The one exception is the case when the hardware involved is

special purpose hardware which cannot be used for any other

activity. This case will be termed free resource allocation

for obvious reasons (the resource allocation hardware is of

course only free from the point of view of the allocator, for

its purchased it is a resource permanently assigned to the

allocator which is treated as another process). Where the

resource allocation mechanism uses only a very small proportion

of the resources it allocates, then it may be thought of as free.

In a real system resource allocation is performed, for

example by various procedures in the operating system by the

control unit of the central processor (this is very low level),

by the control elements in a multi-plexor, and so on. These are

the real analogs of the SHAPE allocator.

We note that different levels of task execution have

different allocation mechanisms. This is reflected in the

SHAPE system by generation of a new allocator when a subgraph

is encountered. The allocator in the SHAPE system is a super-

visory algorithm which advances task execution, as represented

by the binding of SI to PI graphs, by reallocation of resources

as various elements of the task terminate.

The allocator of the SHAPE system corresponds to the

algorithm K, and the procedure match to;the procedure S, which

are described in the previous chapter. The general structure

of the allocator is shown in Fig. 4-7.

152

^4

class 	allocator (parameters);

simulation begin

process class tie (params);

begin hold (duration of tie);

activate allocator after current;

end;

release resources of completed arc;

update cut status;

determine number of arcs ready to proceed;

for s:=1 stop 1 until number ready do

begin

fpr p:=1 stop 1 until processors available do

begin

match (s,p);

if better match then save (s,p);

end;

activate new tie (s, best p);

allocateresource's;

end;

end;

procedure 	match (s,p);

begin

if sasubgraph then activate new allocator

else simple match;

provide analysis of matching;

end;

-Fig. 4-7 Outline of class allocator.

153

This outline shows that the binding process is recursive in

that it can deal with subgraphs nested to an arbitrary depth. In

the SHAPE programming system a cut is represented by the set of

all ties in the sequencing set of the corresponding allocator's

simulation system.

Referring back to the previous chapter, we note that a cut

consists of all arcs of a Slgraph which are currently being

executed together with their initial and terminal nodes, and all

elements of a Plgraph which are tied to these arcs and nodes.

Each object of class tie represents the execution of a Slarc, and

includes a pointer to this Slarc and the Plarc tied to it by the

allocator. Each tie also has pointers to the initial and terminal

nodes of its Slarc and Plarc. In this way the set of ties

corresponds to the set of active arcs and their nodes, i.e. to

the cut zone.

When a Slarc completes its execution the elements of the

terminal nodes' repartition matrix which represent its output

datasets are marked as active (set negative). The allocator then

examines the updated matrix to see whether any of the OUTarcs now

have all their initial datasets active. If this is the case such

an arc is ready to proceed.

The actions and constraints involved in binding such an arc

fall into two categories. The first category is the constraints,

and consequently decisions, which can be derived directly from the

nature of the SHAPE model.

The second category consists of decisions made between

alternatives equally acceptable from the point of view of the model.

The algorithms which make these dec4sions taken together form a

151+

resource allocation strategy. For the prototype SHAPE system to

operate some such strategy was required, and in fact was provided

as a minimal set of simple rules. It should be emphasized that

these rules are arbitrary, can be changed at willland thus provide

opportunities for investigating different strategies of resource

allocation.

We shall now examine the detailed operation of the prototype

allocator. The allocator parameters are shown in Fig. 4-8.
These enable the initial conditions to be set up and the datasets

of the first Slnode to be activated by the first call of the

allocator. We shall now follow a typical iteration commencing

after a tie has terminated.

The allocator has six reference variables which point to

the Plarc and Slarc of the tie which has just completed, and to

the initial and terminal nodes of these arcs.

P 	- Plarc

PIN - initial node of Plarc

PINN - terminal node of Plarc

S 	- Slarc

SIN - initial node of Slarc

SINN - terminal node of Slarc

These pointers are set by the execution rule of the tie, just

before it terminates, using an inspect statement. In this way the

allocator is aware of the elements of the completed tie on entry.

The allocator uses a number of Boolean variables to give

information about the tie, and later on in activating new ones.

These are as follows.

155

Class allocator (fpn, fsn, pdx, sdx, t, gutmx, gutav);

f pn - pointer to first node of Plgraph.

fsn pointer to first node of Slgraph.

pdx - pointer to'index of Plgraph.

sdx - pointer to index of SIgraph.

t - eventually holds total time to execute graph.

gutmx, gutav - performance measurement variables.

Fig. 4-8 Allocator Parameters.

4

156

PERT 	- true if no Plgraph, Slgraph evaluated as an activity graph

with arc duration given by sum of elements of vector PHI.

FERST 	- true if allocator called to first node of graph.

Condition is PIN = = SIN = = none.

LARST 	- true if allocator called to a terminal node. Condition

is that the terminal Slnode indicator of the first OUTarc

be zero, i.e. SINN - REP [0,1] = 0

IPH 	- true if tie was an IFloop. This is a tie whose initial

and terminal nodes are the same. The condition is

SIN = = SINN and S = / = none.

DLAY 	- true if tie was a delay loop. This is an arc which is

used when the allocator finds a ready arc at a Slnode,

but cannot bind it because there are no resources

available. In this case a delay is activated to ensure

that the allocator is called to this node at some future

time to attempt to bind the ready arc again. The delay

loop is like an IFloop, but not tied to any Plarc, and

has no Slarc. The condition is SIN = = SINN and S = = none.

complete - set true if initial Slnode has no active datasets

(ACTIVITY = 0) after tie terminates

The first part of the allocator deals with the freeing of resources

used by, the completed tie. The repartition matrix (REP) of the

initial Slnode (SIN) is accessed, and the column for this Slarc

(S) is found. The zeroth element of the column (REP [0, j]) is

the terminal node indicator,and by this the column can be

identified. The indicator value is the same as the sequence

fraction of the Slarc.

157

Having found the column in the repartition matrix of the

initial node which corresponds to the completed Slarc, the

allocator proceeds to deactivate the datasets shown in the column

as active (all if a normal OUTarc, one if an IFloop). At the

same time the number deactivated is counted and their size

(amount of memory required) is summed.

After this the active count for this Slnode is deTremented

by the number deactivated, and the amount of memory in use in

the tied Plnode is decreased by the sum of the dataset sizes.

Each Slnode has a reference variable SPTIE which points to the

store (Plnode) in which the datasets of the Slnode are resident.

When there are no datasets active SPTIE has the value none,

and the Slnode is not tied. If the active count falls to zero,

then the allocator sets SPTIE :- none.

The allocator now deals with the processor (Plarc) to be

freed. Since a processor may transfer information between more

than one pair of stores, we allow each such state to be

represented as a separate Plarc in a Plgraph. These states all

represent the same physical processor however, and so it is con-

venient, for resource allocation purposes, to know what fraction

of a processor is in use, as a sum over all states. Each

processor is given an identifying integer (ID) which stays

constant over its states, i.e. every Plarc representing a state

of a processor will have the same value for ID. This is held

in an array PSID which is common to all states of the processor.

This array is made common by declaring the corresponding

variable as accessible by reference rather than value during

Plarc generation by the graph input procedures. The first

element of the array PSID contains the sum over all states

158

of the processor fraction currently allocated. The remaining

elements are used for measurement purposes.

The attribute SFRAC of the tied Slarc gives the fraction

of the processor which was allocated to this Slarc. The allocator

will subtract this from the particular PFRAC attribute accessed

by the method described above,and also set SFRAC to zero.

For a discussion of fractional allocation see section 4.4.

At this stage the allocator accesses the repartition matrix

of the Slarc's terminal node and searches for the row which

describes the terminal datasets of the Slarc. The zeroth element

of each row (REP [i10] is the initial node indicator. The

indicator value is the node number of the initial Slnode of the

INarc, plus the sequence fraction of the Slarc, minus the node

number of the terminal Slnode.

The terminal datasets (non-zero elements of the row) are

activated by making them negative. If the completed Slarc was

an IFloop then only one element is activated. The column in which

this element occurs is given by the allocator's local variable

IFCOL. IFCOL is preset by the tie before it calls the allocator.

We can provide for more than one Slarc to activate the same

row of a REP matrix by noticing that the allocator, when

searching for the correct row of the REP matrix to activate,

tries to match the INarc specifier to the following expression,

SEQF SNN + SN

where SNN is the terminal nodenumber, SN is the initial node

number, and SEQF is the sequence fraction of the incoming arc.

Row i is selected as representing the terminal datasets of the

Marc if

159

REP [i10] = SEQF - SNN + SN

We usually require that entier (SEQF) = SNN, and that entier

(REP [1_0]) = SNN, in which case SN is the official initial node

for row i. However it is clear from the above expression, that

if we wish to activate the row i by an INarc from some other

(unofficial) node, we can do so as long as SEQF + SN has the same

value as before. That is to say that row i of the REP matrix can

be activated by an INarc from any Slnode in the Slgraph so long

as the value of SEQF of the INarc is suitably chosen. An example

is shown in Fig. 4-9.

When the stores (Plnodes) which hold the datasets of the

initial and terminal nodes of the Slarc are different, storage

allocated to the initial Slnode is released. Storage allocated

to the terminal Slnode is not, since the terminal datasets of

the Slarc must continue to exist, being the initial datasets of

subsequent arcs.

When the stores are the same (this occurs if the Slarc

is an IFloop, or if the initial and terminal Slnodes have been

allocated to the same store) the allocated storages of the

initial and terminal nodes are regarded as being superimposed.

Thus storage is only released if the initial allocation is

larger than the terminal requirement.

This last is an allocation strategy and not a constraint

of the model. It was chosen since it corresponds to the

strategy followed by most operating systems. For example, when

storage is allocated for execution of a FORTRAN program, terminal

variables, i.e. ones which are used to hold results and have no

initial value, are included in the initial allocation. If these

results are to be preserved for a subsequent execution phase,

i6o

Node 3

7.1.

Node 7

self = 7.1

Node 4

6.1

	 3.1

seqf = 6.1.

Node 3 is the official origin node for row one of Node 7.

Fig. 4-9 Multiple INarcs.

161

then only excess storage is discarded on completion of the program.

SHAPE does not require a model to contain a terminal node.

If part of the cut is extinguished (for example by the terminal data-

set of a Slarc having only zero elements), then the cut need not

terminate if new active datasets are being generated elsewhere.

It is possible to generate a fixed number of these using a

DOloop, but a more flexible alternative was provided for SHAPE.

This was the possibility of indefinite generation of active

datasets, and termination of binding when a given time limit

(variable from one run of the SHAPE program to the next) was

exceeded.

An additional feature is provided in SHAPE, namely

multiple termination. A terminal node is one which has an

OUTarc to node zero. This OUTarc is notional since node zero

does not actually exist, and is represented by a column of the

REP matrix which has its OUTarc specifier equal to zero.

Clearly such a column can exist in more than one node of the

Slgraph, thus allowing for the representation of more than one

binding termination. When such a column becomes ready (all

datasets active) it is immediately deactivated to represent the

instantaneous execution of the OUTarc to node zero.

If there are then active ties still present, the cut is

not considered to have terminated. That is, the presence of

the ties implies there is further binding to be performed,

and the allocator continues with this as usual. The same

column may become ready again, at a later stage of binding,

and the termination procedure repeated. This repetition will

continue so long as active ties remain in the system, and is

called multiple termination.

162

In SHAPE non-reentrant and semi-reentrant binding (modes 1

and 2) have been implemented. Completely reentrant binding is

described in the preceding chapter, as are the differences

between modes 1 and 2. From the point of view of the allocator

there are two important distinctions, firstly that in mode 2 a

ready Slarc may be allocated even if one or more of its terminal

datasets is still active, and secondly that a completing tie may

find a terminal dataset active, in which case it is queued.

If such a tie is queued, it is called a transaction and has

three main attributes, LAMBDA, BETA, and IFCOL. These are the

LAMBDA, BETA and IFCOL of the completing tie. Transactions are

chained and the head of the chain for each INarc of a REP matrix

is pointed to by the corresponding member of a reference array

Q, whose dimension is equal to the number of INarcs. The chains

are processed on a FIFO basis.

The methods of queueing and reactivating the REP matrix

by bringing in queued transactions are governed by the principle

of keeping successive cuts distinct and allowing no interaction

between them. Sequence is maintained by FIFO queueing, and

separation by ensuring that a transaction is brought into a

REP matrix only when the columns containing the elements it will

activate are all inactive. An example is shown in Fig. 4-10.

When a tie terminates in mode 2, as it deactivates its

initial datasets it also scans the rows of the REP matrix which

contain those datasets. If it finds that such a row has no active

datasets and there is a queued transaction for the row, it will

bring in the transaction.

163

•■■■■■■1

transaction
chain

1 2 3 4 5 6

1 M 11,

a b c

d. e f h

- .
i j k

1

2

3

4

REP

Transaction at head of Q[2] activates datasets a,b, and c.

Fig. 4-10 Transaction entry to REP matrix.

164

Suppose column two in Fig. 4-10 completes, then datasets a and e

will be deactivated, and rows two and three scanned for activity.

If datasets b and c are inactive the row is available for a queued

transaction. If Q[2] is not null, the transaction at the head of

the chain will be brought into the REP matrix. That is to say that

datasets a, b, and c will be activated and the transaction values

for LAMBDA and BETA will be inserted in the array elements LAMBDA

[2]/ and Bh_LA [2]. If IFCOL is greater than zero, then only the

dataset for that column is activated, e.g. if IFCOL of Q [2]

is equal to 6 then dataset c only,will be activated. In such a

case the row scan does not require a and b to be inactive.

Separation of successive cuts is ensured, since we know that

all the columns of the REP matrix affected by bringing in a

transaction belonging to cut n 1 have completed execution in

cut n. Other columns may still be executing in cut n, but

cannot interact with cut n+ 1 since they have no elements in

common with the activated row, e.g. any of datasets e, d, m, f,

r, h, k, may still be active when a transaction is brought in

on row two. Similarly, should a tie whose INarc terminal

datasets are represented by row two, find any of a, b, c, active

on its termination,it will be placed in the queue defined by Q [2].

The number of datasets which are currently active in a REP

matrix is called its activity. In mode two the activity includes

the number of transactions queued at the node. If queues only

are considered, activity is equivalent to queue size. If the

REP matrix has only one element per row, the row is analogous

to the server of the corresponding queue. When the activity at

a Slnode falls to zero there can be no storage requirement, and

165

consequently the Slnode is freed from the Plnode to which it was

bound. This allows a subsequent reactivation of the node to bind

it to any acceptable Plnode.

Finally we add a postscript to reentrance restrictions

where IFloops are involved. When an arc is allocated in mode 1,

the allocation is allowed only if its terminal datasets are

inactive. However, if any terminal dataset belongs to a column

which is an IFloop, a further restriction becomes logically

necessary. The aim of both restrictions is to prevent a Slarc

being allocated while any columns of its terminal node which

contain its terminal datasets are active. This ensures non-

reentrant execution. As long as the column is not an IFloop,

the first restriction is sufficient . If it is an IFloop, we

bring in the further restriction that no dataset of the column

may be active, as otherwise the IFloop might still be active due to

a dataset in another row to the terminal row of the arc being

allocated. Similarly in mode 2, a terminating tie is queued if

it would otherwise activate a dataset in the column of an

already active IFloop. With this rule sane illegal side

effects are also avoided which can arise when the IFloop is a

DOloop. This ends the section of the allocator which deals

with the freeing of resources.

We now describe the section of the allocator concerned

with activating new SIarcs. Having processed a completed tie,

the allocator examines the terminal Slnode of the tie to see

whether the activation of the terminal datasets provides any OUTarc

of the Slnode with a complete set of active initial datasets.

166

Effectively this means scanning the repartition matrix to

see whether any\column has all its non-zero elements negative.

If the column represents an IFloop, it is sufficient to find

one negative element. During the scan, whenever an OUTarc is

found to be ready, an attempt is made to allocate a processor

to it, and to allocate any storage required by its terminal node.

For each OUTarc (column of REP) the Boolean variables TIED,

POSSIBLE, NOPE, PCAN and IPPH , are used. These are initially set

to false. If the OUTarc has the same terminal and initial node,

then IPPH is true. The SHAPE system includes SIarcs which require

no processor. Since matching of Plarc to Slarc is based on the

function vector PHI of the SIarc, we allow arcs to have all

elements of PHI equal to zero. We interpret this as a state-

ment that the Slarc requires no hardware functions, therefore

no processor. Such SIarcs are allocated as usual, except that

they are not bound to any processor. Clearly they are of zero

duration, and hardware dependent only for terminal dataset

storage. In every way they are treated as regular SIarcs, and pro-

vide a convenient method of treating aspects of a model which are

time or logic, rather than hardware, dependent. If such a Slarc

is found by the allocator scan, the variable NOPE is set true.

If the OUTarc can be executed (this is determined during the

attempt to allocate resources to it), then POSSIBLE is set to

true. If the OUTarc's terminal node is tied to a store, then

TIED is set to true. If the Slarc is not only executable, but

the appropriate resources are available, then PCAN is set true.

If LARST is true and a ready OUTarc is found, this signifies

that all the datasets of the last node have been completed.

67

Consequently the graph (or subgraph) is complete, and the

allocator exits to its own completion procedure.

On finding a ready OUTarc the allocator attempts to allocate

the resources it requires, and activate it, as follows.

First the allocator searches down the chain of Siarcs from

the node under consideration to reach the data block for the

ready arc. This block holds a pointer to the terminal node of

the arc, which is read to the variable SINN. The variables SIN

and S already hold pointers to the Slnode being scanned and the

ready arc respectively. The variable PIN holds a pointer to the

store to which the Slnode is tied.

At this point we enter the hardware allocation loop of

the allocator. This loop is traversed for each ready OUTarc

found in the scan. For a processor (PIarc) to be able to

execute the ready arc it must be able to read from the store

to which the Slarc's initial node is tied, since it is in this

store that the SIarc's initial datasets reside. That is to

say we must restrict ourselves to OUTarcs of this store.

The allocator accesses the terminal Slnode's repartition

matrix and calculates the quantity of storage required by the

Slarc. In the case of an IFloop the storage required is the

size of the largest dataset which could be selected by the

IFloop. A restriction introduced here is that the size of the

largest dataset may not be greater than the size of the initial

dataset. This is not a constraint of the model; the reason is

that an IFloop is regarded as performing a test on its initial

dataset, and consequently choosing an alternative rather than

creating any new data.

168

For generality the implementation provides for the case where an

IFloop has its first IFCODE (this code governs the selection of

the IFloop's terminal dataset) set to zero. This condition is

interpreted as meaning that though the Slarc has the same initial

and terminal nodes, it is to be treated as a normal Slarc and all

the datasets of its terminal row are activated.

The SHAPE implementation has the property that a Slarc which

is active and allocated (tied to a Plarc and executing) is auto-

matically protected from further (erroneous) allocation.

This could occur since all elements in its column of the REP

matrix of its initial node remain negative while the tie executes.

Should the allocator scan such a column it would appear ready and

consequently a Candidate for allocation. However, on completing

a tie the allocator scans only columns which contain a dataset

activated by the completion of the tie. Such a column could not

have been previously ready (and also, therefore, not previously

allocated) since at least one of its elements was inactive.

This ensures that any OUTarc allocated by the allocator has

become ready on that call of the allocator and is therefore not

already allocated. The exception to this is the case of delayed

columns, but these are known to be unallocated since their OUTarc

specifier is set negative. In brief, if a terminating tie

activates row i of its terminal REP matrix, then the allocator

scans only columns j for which REP [i,j] < 0, and columns which

have been marked as delayed in the manner described below.

The allocator now chains down the OUTarcs of the initial

Plnode performing the following tests. If the ready arc's

terminal node is tied to a store, a check is made that this is

169

also the terminal store of the Plarc. If not, the Plarc is not

considered.

If the terminal Slnode is not tied, the Plarc's terminal

store is checked to see that its capacity is sufficient to

provide the maximum storage the Slnode may require. This

restriction is not a constraint of the model; it is an

allocation strategy aimed at preventing system deadlocks. If

the restriction is not satisfied, then the Plarc is not

considered.

If the Slarc is an IFloop, then the Plarc's terminal store

must be the same as the initial one, since all datasets of a

Slnode must reside in free same store. The model provides the

facility to specify that a Slnode be tied to a specific store

of a Plgraph. Each Slnode has an attribute PNID. If this is

non-zero, the allocator will only tie the Slnode to a Plnode

whose node number is equal to PNID. As each node must be

uniquely numbered, there will only be one such node in any

graph. Use of this facility requires that the Slgraph be

used with Plgraphs known to have appropriately numbered nodes,

decreasing the independence of the team description.

If all the above tests have been successfully negotiated,

the allocator will now proceed to assess the performance of the

processor in executing the Slarc we have been dealing with.

This it does by calling procedure MATCH. Procedure MATCH requires

pointers to the two arcs, and the length of the performance

vectors, as parameters.

It provides in return the time the processor will take to

execute the Slarc, together with certain measures of performance of

such an execution.

170

If the processor is incapable of executing this Slarc, MATCH returns

a negative value for the execution time.

MATCH derives its results from the software function

frequency vector of the Slarc (PHI [i]), and the three performance

vectors (PSI [1,1], PSI [1,2], PSI [113]) which give the time used

the utilization, and the efficiency in execution of the i th function.

If MATCH finds that the Slarc has a subgraph then it checks

that the Plarc being matched also has one. If not, an error is

logged. Otherwise MATCH generates a new allocator to bind the two

subgraphs, and thus provide the required performance measures.

Control passes to this allocator and remains there until this

sub-simulation is completed. MATCH then extracts the results it

needs and exits back to the original allocator.

Here we check the time provided by procedure MATCH.

If positive, the Boolean variable POSSIBLE is set to true.

The allocator then checks that the processor's terminal store

has sufficient storage available to accomodate the terminal

datasets of the Slarc. It also checks that the processor or

a fraction thereof is set free to be allocated. If both these

conditions are satisfied, PCAN is set to true and the allocator

proceeds to compare the performance measures of this processor

with the best found to date. If the comparison is favourable

the new processor replaces the old as the best choice for this

SIarc.

At present the comparison is made on the time taken to

execute the Slarc. The reasons for this strategy (again

such a choice is not a constraint of the model) are as follows.

171

The performance measures currently in use are not definitive.

One of the purposes of the prototype system is to examine their

validity. Their use in allocation decisions would distort the

behaviour of the system and therefore severly interfere with any

such assessment. The choice of execution time as an allocation

criterion is prompted by its frequent appearance (sometimes

implicit) in existing systems, and by its widespread use as

the variabletto be optimized in theoretical treatments of

processor allocation.

The algorithm used for obtaining an OUTarc LAMBDA

from the LAMBDA values of its INarcs makes the new LAMBDA

equal to the scalar product of the OUTarcs REP matrix column

and the LAMBDA vector, that is,

INARCS
Xj = E REP Ci,j1A i

i=1

This means that the LAMBDA value of a tie now gives the total

amount of data being processed by the tie. This allows the

modeller to specify the quantitative aspects of data

repartitioning, and to incorporate absolute quantities as well

as relative ones.

The derivation of an OUTarc BETA from the BETA values of

its INarcs will depend on the interpretation given to the

variable BETA. This was introduced as a modelling aid for the

collection of cut statistics. It is expected to be used mainly

to record generation times for cuts or parts of cuts, and so the

following algorithm wa3chosen as being the most useful for such

recording.

(3,j : = Max [e] i j pi

172

where e.. = 1 if REP [i,j] 0 and zero if REP [i,j] = 0

With this algorithm cut age is regarded as being the age of the

youngest cut member, in the event that more than one age is

produced, and allows BETA to record the most recent value

produced by a Slgraph specified change.

The duration of a tie is now LAMBDA * T where T is the

execution time of the Slarc per unit data. This is the T provided

by the procedure MATCH, and is adjusted to reflect the fraction

of processor allocated to the tie.

The allocator performs the steps outlined above for each

Plarc on the chain of OUTarcs of the initial Plnode. On reaching

the end of the chain the best choice, whose address and

characteristics have been saved, is allocated to the Slarc.

This is done by setting the attribute PSID [0] of the

Plarc to the previous fractional allocation plus the fraction

currently being allocated. Any storage required for the

terminal datasets of the Slarc is allocated and the change

recorded. Finally an object of class tie is generated, with

an execution time derived from that provided by procedure MATCH.

The allocator may arrive at the end of a chain of PIarcs

without finding one which it can allocate to a ready Slarc.

This can occur for two reasons. The first is that no processor

was found which was able (this includes terminal store suitability)

to execute the Slarc. The class of circumstances which lead to

this situation correspond to what are usually called run-time

errors. Such errors may sometimes imply a logical error in the

Slgraph being executed, for example, a missing job control card,

or they may imply that the graph cannot be executed on the given

173

Plgraph, i.e. configurational limitations. An example of the latter

might be the generation of more data by a program than could be

accomodated on a physical storage device. In these cases the

allocator ceases to bind the two graphs and takes an error exit.

The allocator has a number of tests which check for error condi-

tions throughout the iteration. When an error exit is taken,

an error code is output which identifies the condition which has

arisen. A list of error codes and their meanings is given in

Appendix IV.

The second reason for not allocating resources to a ready

Plarc is that all resources are in use. In such cases the arc is

marked as ready by setting its terminal node indicator (REP DDI A)

negative, and a delay is generated for this node. The delay is

a type of Slarc which does not require hardware but ensures that

the allocator is recalled to the desired node at a later time,

when resources are again free. When the allocator returns to a

'node due to a delay arc, it performs no freeing of resources,

but scans the zeroth elements of the columns of the matrix REP

to find delayed ready OUTarcs. It then attempts to activate

these OUTarcs in the normal way.\ There is never more than one

delay associated with .a Sinode, and this propagates as long as

delayed SIarcs remain unallocated.

Delays are scheduled by the allocator to reactivate when

resources become available. If no such occurrences are found

in the list of future events, then a deadlock situation has

arisen, and the allocator terminates binding with an error

message.

174

Every call of the allocator checks whether the system time

has exceeded the binding time limit, and if so halts binding and

exits to the statistic processing procedures which operate on the

data accumulated duting the run.

A debugging option has been included in the SHAPE

implementation to output extensive tracing information during

each iteration of the allocator. In particular all software to

hardware matchings (successful and unsuccessful) are output,

together with the appropriate reasons.

For further details the reader is referred to listings

of the SHAPE program in INDRA Note 286.

175

4.4 Ties and IFloops.

We now discuss some aspects of the SHAPE implementation which

are not explicitly prescribed by the modelling system presented

in the previous chapter. The first of these if the representation

in a directed graph of processors which can read from and write to

more than one store. Such a processor would seemingly require

a Plarc with several initial and terminal nodes. Below we argue

that this is a misleading picture of the situation, and put

forward a description using the Plgraph as currently defined.

In the implementation itself this method is compressed by the

use of a processor state for each potential configuration.

The next aspect of the SHAPE program dealt with is its

ability to represent preemptive scheduling. An arc at any

level of a Slgraph is the indivisible process at that level.

Consequently the question must arise as to how the implementation

will model a preemptive event occuring during arc execution

without violating that property. By the introduction of

fractional allocation, and using the results of Muntz, DAUNT 70]

we argue that allocator variation of the fraction is equivalent

to preemptive scheduling. The latter part of this section then

deals with branching arcs, called IFloops in the implementation.

Within the simulation block of class allocator a process is

defined with the name TIE. This process has a duration equal to

the product of a time TIM and the tie's datasize LAMBDA. Both

variables are parameters of the process and have values provided

by the allocator which activates the tie. If the Slarc of the

tie is an IFloop, then either parameter may be changed by the

tie itself.

176

When the tie terminates it sets pointers in the data area of

of the allocator (which is global to the-tie) to reference the

initial and terminal nodes of the Slarc and Plaro which constitute

the tie. Pointers are also set to reference the arcs themselves.

The tie then reactivates the allocator, terminating itself in the

process.

The Plarc which is allocated to a Slarc to form a tie may

represent one state of the processor involved. In the SHAPE

system, a Plarc is used to describe each possible configuration

of a processor. These PIarcs are referred to as states of the

processor, since they all refer to the same physical processor.

This is not a fundamental attribute of the Plgraph

method, but a shorthand for the basic, but more unwieldy

representation of such processors. A processor which can read

from and write to more than one store does so by having a data

path (in some sense separate) to each store. For any given

configuration only one pair of data paths is in use. Both read

and write data paths use storage internal to the processor

(usually one or more registers), and data transformation occurs

when the processor proper operates on this internal storage.

We can represent each data path by a Plarc, internal

storage by a Plnode and the processor by a loop at this node.

Thus a one to one correspondence is retained between hardware

items and Plgraph elements. We use the many state representation

as a shorthand in situations where more detail is not required, so

reducing the processing required, for a run. An illustration of

the two representations is shown in Fig. 4-11.

177

Multi-state

One-to-one
M1 	M2

internal
storage

Fig. 4-11 Four state representation of a processor.

• 1'78

In the SHAPE system a task may be allocated a fraction of a

processor as well as a complete one. In a real system it is not

usual to find true fractional allocation. Where it does occur,

closer examination reveals it to be unitary allocation of sub-

assemblies of the processor, or preemptive allocation invisible

to the allocatee (preemptive allocation usually occurs in its

most elementary form, namely time-slicing).

We use various results of [MUNT 70] to justify the use of

fractional allocation to protray preemptive scheduling in the

SHAPE system. In their paper Basic Scheduling (BS) discipline

is defined as one in which once a processor is assigned to a

task it must work continuously on this task until it has been

completed. If processors can be interrupted before a task is

completed and reassigned to a new task, the discipline is called

Preemptive Scheduling (PS).

An alternative variation of the BS discipline is to allow

fractional allocation of a processor to a task. If the

fraction assigned is w then it is considered to increase the

computation time of the task by a factor of 1/w. If the

fraction allocated to a task is allowed to change during its

execution the discipline is called General Scheduling (GS).

[MUNT 70] shows that a General Scheduling discipline

is equivalent to a Preemptive Scheduling discipline. As remarked

above, real systems usually use some form of PS. The

reallocation of resources can only occur when an individual task

completes. It need not occur if completion does not make any

other task ready. That is to say that task completion is a

necessary but not sufficient condition for reallocation.

179

(unless we include return of the resource to the idle chain, in

which case completion is also sufficient).

The allocator of a real (preemptive) system is either alerted

to the completion of a task by the setting of flags, or is auto-

matically activated by an interrupt. The essential purpose of

the interrupt mechanism is in fact to activate the system allo-

cator (interrupt identification and housekeeping) which preempts

resources (the processor) for a higher priority task (interrupt

handling). Handling the interrupt may itself generate new tasks

which are generally of lesser priority. Such tasks compete for

resources with those already in the system, without preemptive

priority, i.e. are added to tables or queues.

The SHAPE allocator is able to duplicate the behaviour

described above. A completing task (tie) sets allocator

variables with identifying information before activating it.

The allocator will then update the status of the tie's terminal

datasets, free resources used, and has the capability to preempt

a processor for a higher priority task which is now ready.

Such preemption can be achieved by altering the existing

fractional allocations of the processor to provide the necessary

resource. When a task completes, the freed processor fraction

may be allocated amongst other tasks already tied to the processor,

because these are chained (the chain starting with the attribute

PSTIE for each Plarc) and consequently available to the activated

allocator.

From the above remarks we see that the SHAPE allocator can

meet the requirements of a scheduler for a General Scheduling

discipline, since it is able to allocate a fraction of a processor,

i8o

and to vary this fraction when the system chapges state. From the

equivalence of a CS and PS we contend that the SHAPE allocator can

adequately represent preemptive scheduling, and can also duplicate

its dynamic behaviour.

In the SHAPE system an IFloop is a Slarc which has the same

initial and terminal node. Such an arc is allowed to perform

some functions which are not made available to arcs with different

initial and terminal nodes, and we now describe these functions.

An IFloop description consists of six real numbers which

are stored in an array called IFF, at run time. There are two

IFcodes, and each IFcode has two parameters, say A and B. If

both IFcodes are zero then no special action is taken when the

IFloop is activated. The array IFF is an attribute of all

SIarcs, but we make the restriction that only an IFloop may

have non-zero IFcodes.

This restriction excludes arcs with different initial and

terminal nodes from executing IFloop functions. The restriction

is arbitrary and has been made only to test the hypothesis that

modelling computational activity does not require IFloop

functions to be available on other arcs.

At present all IFloop functions are executed as soon as

the IFloop is activated. There is then a delay of duration

T * LAMBDA before the IFloop terminates and activates its

terminal dataset(s); T is the arc execution time per unit data,

and LAMBDA is the data size.

The first IFcode (IFCODEONE) controls the choice of terminal

datasets to be activated. If IFCODEONE equals zero, then all

the terminal datasets are activated, otherwise a choice is made.

181

IFloop

a=0, b=50

if codeone = 1

The incoming arc activates

dataset u. This is

sufficient to initiate

execution of the IFloop.

It chosses to activate

dataset v, reinitiating

its own execution, until

the counter reaches 50.

It then chooses dataset

w, activating the outarc.

entry 	t 	On entry the dataset t is

activated and initiates

o-
It

IFloop
execute process p. On

activates dataset u which

executes the IFloop again.

This has the effect of

executing process p fifty

times before exiting

through dataset w.

Fig. 4-12 DOloop examples.

from process pp
execution of the IFloop.

This will choose to acti-

vate dataset v and so

a=o, b=50

to process 	

exit
completion process p

182

The method of choice depends on the value of IFCODEONE (which is

an integer between 0 and 7). If IFCODEONE equals one then the

IFloop behaves as a DOloop, i.e. it adds one to a counter held

in array element STARC [0], and activates the first dataset in

its terminal row. As soon as the counter equals parameter B, the

second dataset is chosen for chosen for activation, and the

counter is reset to the value of parameter A. Use of DOloops is

shown in Fig. 4-12.

If IFCODEONE equals two then a random choice is made between

the first and second datasets of the row, with probability of

choosing the second equal to parameter A.

If IFCODEONE equals three then the k th dataset of the row

is activated, k being a random integer between A and B.

IFCODEONE equal to four is used for setting the BETA

parameter of the IFloop to its termination time. All terminal

datasets are activated as in the case IFCODEONE equal to zero.

BETA, like LAMBDA, is a variable which propagates with the cut,

and is currently used to retain the cut creation time. Its age

is then available at any stage of its history.

The second IFcodel IFCODETWO, is concerned with providing

new values for T or LAMBDA. If it is positive T is set to the

new value, if negative then LAMBDA is reset. The new value itself

is chosen by a method corresponding to the numeric value of

IFCODETWO (an integer 1 to 7). If IFCODETWO equals zero then

no action is taken and both T and LAMBDA are left as provided by

the allocator. If either is reset, this alters the duration of

the IFloop appropriately. IFCODETWO has its own pair of parameters

in the array IFF, which we will again call A and B.

183

If IFCODETWO equals one then the new value used is a linear

function of the old one, namely A times the previous value plus B.

If IFCODETWO equals two then a random choice is made between

retaining the old value and replacing it by B. The probability of

replacement is A.

If IFCODETWO equals three then the new value is a random

integer between A and B.

If IFCODETWO equals four, then the new value is a random

real number between A and B.

If IFCODETWO equals five the new value is randomly chosen

from a normal distribution of mean A and variance B/1.96. If

the new value is greater than B it is set to B, which removes

the five per cent tail of the distribution.

IF IFCODETWO equals six the new value is randomly chosen

from a negative exponential distribution of mean 1/A. Should the

chosen value exceed B, it is set to B. If however 11..is zero, then

this rule is not applied.

If IFCODETWO equals seven the new value is randomly chosen

from a Poisson distribution of mean A. The new value is set to

B if it exceeds B, and B is greater than zero.

Should an IFcode be out of range, or a specified dataset

not found in the terminal row, then the IFloop passes a signal

to the allocator not to activate any terminal datasets. This

effectively extinguishes the IFloop passes a signal to the

allocator not to activate any terminal datasets. This

effectively extinguishes the IFloop since no further actikity

occurs (apart from deactivation of its initial dataset).

This facility may be used deliberately to terminate an

unwanted process if desired, since it does not cause the

184

allocator to halt the binding of the two graphs.

A further facility implemented in the SHAPE program

compensates for the absence of mode 3 binding. This allows

an IFloop to deactivate its own initial dataset immediately

after activation. Since this dataset is the only indication

in the graph structure that an IFloop is executing, the effect

is to allow several reentrant executions of the IFloop to

occur concurrently. The facility is involved by changing the

sign of IFCODEONE; making it negative.

The actions taken according to the numerical values

of the IFcodes are summarized in Fig. 4-13.

185

if code
value dataset activated

0 all

1 if counter < b then first: counter + 1
else second counter:= a

2 random choice - prob (first) = 1-a
prob (second) = a

3 k th where k:= random integer (a,b)

4 all: beta := termination time

5 illegal

6 illegal

7 illegal

if code
value new value for lambda or beta

0 no action

1 newval:= a * oldval + b

2 prob (newval:= oldval) = 1 -
prob (newval:= b) = a

a

3 newval:= random integer (a,b)

4 newval:= random real (a,b)

5 newval:= normal (a,b/1096)

if b > 0 then newval 	b

6 newval:= negexp (a)
if b.> 0 then newval .,. b

7 newval:= poisson (a)
if b > 0 then newval.f.', b

Fig. 4-13 Summary of IF code actions.

186

45 Hardware measurements.

In this section we develope performance measures for hardware

usage during computation. The purpose of a measure is to distinguish

quantitatively if possible, between alternative courses of action.

Performance arising from a particular course of action is judged

good or bad by criteria expressed in terms of measures. For a

measure to show different alternatives without bias, its

derivation and operation should be independent of them; its value

is then an accurate reflection of the alternatives.

The modelling system described in Chapter III is recursive.

We argue below that measures used in it should also be capable of

recursive application. Among the aims of the system is the

comparison of different software graphs executing on the same

hardware and vice versa, as well as the investigation of

alternative allocation strategies. Consequently we require that

any measures used in the SHAPE system are independent of allocation

strategy and graph features which can be varied by the modeller.

Our choice of performance measures attempts to satisfy these

conditions. We concentrate on two elements underlying many

existing measurement systems, and which were first put forward in

Chapter III. To recap briefly, two measures for the performance

of a processor P in executing an arc S were used. These were the

utilization (ut) and efficiency (ef). Utilization may be thought

of as that fraction of the processor whidlis needed by the task

S, i.e. 1 - ut is the fraction which is never used. Efficiency is

the weighted average fraction of the utilization which is is use

during the execution of S.

187

We regard a processor P to be made up of n components

weighted with a cost function c. for the j th component. The

processor can perform any of m functions Ti in time ti. When a

particular function is being performed not all components are

used. The fraction (weighted by the cost function c_.) used is

the utilization ut for the function f.. Each component is in

use for a time t.. 	 I
< t., that is to say that the utilized components

ij

may not be in use for all of the time taken to perform the function

f
11 	 1 —Theefficiencyef.inperformingfunctionf.is the weighted

fractional time in use of those components which are utilized.

This then leads to the following definitions.

C =)E c.

ut.
1
 = 5" c. sign (t. .) 	

J
c. = y_ 	ijV

	

c. sign (t 	C -:- 	1J 	•

ef. = 	c.t.. / t.Lcsign (t) 	c.t 	/ ut.t.0
J 1j 	1 	j 	ij 	• J 1J 	1 1

An example of the use of these definitions is shown in Fig. 4-14.

Since the Slgraph model is structured recursively, as is the

SHAPE allocator, it is clear that we would like some form of

performance measure which was also defined in a recursive fashion.

Such definition would allow statistics to be uniformly derived at

any level of the model, irrespective of the depth at which the

SHAPE run was executing. Using the measures utilization and

efficiency, we would like relations between levels k and k+1 of

the type,

ef
k

= f (ef
k+1

 ut
k+1
)

uu
k
 = g (efk+12 Utk+11

188

,

-not used
by

function

of ut

uti

ut2

ut3

time function 01 02 03 • • on mix

fl tl $1 til t12 ti3 • 	• ' • tin

t21 t22 t23 	•

t31 	•

f2 012

efl

ef2

ef3 f3 03 t3

t2

• • • • •

•

•

• • • •

• • • •

• . t ut. tm tmi . f m

Processor P has thirteen components.

Components one to nine are used by function f.
9 	14

ut = 21 01 E j=1 	j=1

of = 2 citii/11 Q j

Fig. 4-14 Processor utilization and tMsLeasy/.

189

The reason that utilization can be less than one is the

existence of a minimal unit of allocation in most of the systems

under discussion. That is to say that a certain unit, or amount,

of the resources available must be allocated, or none at all.

In such a situation, if a task is to be executed, then the allocated

resource will generally exceed the task requirement (it is

infrequent for the requirement to be an exact multiple of the

allocation unit). In the case of a processor it is clear that it

is possible to allocate only the whole processor at any given time.

Since few tasks require the complete range of functions which the

processor can perform, there will be unused components in most

task executions.

If we apply this point, of view to a Slgraph of many levels,

we see that there will be a minimal unit of allocation at each

level, determined by the resources which can be described at that

level. When resources are allocated for an arc at level k - 1,

which has a subgraph at level k, not all components of the resource

may be needed in executing the subgraph. The components will be

described by the k th level of the Plgraph on which execution is

taking place. If we assign a cost c. to the j th component at the

k level then the utilization at level k - 1 will be the sum of the

c. for components used during the execution, divided by the sum of

c. for all components belonging to the unit allocated at level

k - 1. That is to say,

utk-1 = E c. sign (t.)/t c.

where t. is the time for which the j th component was in use.

190

Following a similar line of reasoning, we can say that the

efficiency at level k - 1 will be the fractional usage of those

components actually used in executing the subgraph at level k.

We use the words fractional usage to denote fractional usage in

both component space, and time. That is to say, if the processing

unitc.spendsatotaltimet.allocated to arc a, its utilization
ja

during such allocation is utja

. If we sum over components and arcs

of the k-level subgraph, we get

efk-1 = c 11t . utk. / tk-1 1: c . sign (t .)
j j a ja ja

= 	c.t. ut / tk-1utk-lCk-1
j a J Ja ja

where t
k-1 is the time taken to execute the subgraph at level k.

At the lowest level of a Plgraph we are, by definition,

unaware of the fine structure of the processing units being

allocated at that level, and of the task being executed. Without

this knowledge we can at most know the time for which an individual

componentisueed(t.). This does not affect the derivation of

ut
k
 . for the arc (task).

Assuming that the graph model is constructed to a depth at

which the addition of further levels (greater depth) will not

affect the results being sought we can take the 	 be one at
ja

the deepest level. That is to say, that the omission of a fine

structure (i.e. subgraph) on the part of the modeller implies

that the ut. are negligibly different to one (negligibly in the
ja

sense that taking ut
ja

= 1 introduces a negligible error in the

behaviour being investigated). This action can at most affect

efk-l; efk-2 is calculated using utk-1 which is unchanged.

191

Taking ut
ja = 1 we get

	t. ut.
a =
	and consequently

ja j a

efk-1 = c.t / tk-1u tk-iCk-1
J

which agrees with the earlier expression for efi where, it should

now be clear, this approximation was implicitly made.

In the SHAPE system we use a mix of functions fi to

characterize an arc. This is a shorthand for describing an arc

as a chain of arcs with the arc representing function fi being

repeated 0 times.

We are now concerned to derive suitable formulae for ut and

ef of an arc as characterized in the SHAPE system. Applying results

for utk-1 and efk-1 where level k is a chain as mentioned above,

we get,

utch 	c. sign (I, 0.t)/ C
j 3 	1 ij

since component c. will be utilized if any of the products 0.t.. i

is non-zero, and

efch =r- c .t../E 95.t. 	. sign (E 0.t..)
i j jij 	j

using the deepest level approximation. This is appropriate since

the chain-mix analysis is only performed when no fine structure is

given for the arc. The expression simplifies to,

efch =E 0.t.ut.ef./ utchE 0.t a 	a 	a i

In the SHAPE characterization the quantities 0.a_, t., ut. and ef.

are given as input data. Clearly the problem is to find an

expression for utch without knowing the c and t.. (i.e. without
J 	1J

knowing the fine structure of the processing unit).

192

At the time of writing it does not seem possible to obtain such

an expression without making further assumptions. The validity

of any assumption will depend on the context in which the model is

being used. We now put forward three possibilities. Firstly

utch =Max(ut.sign(. (f1))

This might seem appropriate when the components used by the fi tend

to be subsets of the set used by fm where utm = Max (uti).

Secondly we suggest

utch =E t .ut /z 0. t . .

which is the expected utilization during execution of the chain.

Thirdly we present a possible derivation if it is assumed that at

the deepest level all ci are equal (to one, with no loss of

generality). Such an assumption can be made when the components

are identical, or when the uti and efi data which has been

provided reflects such a situation. In this case we can say,

ProhM.=0)=1-ut.for all j,

Prob (c. not used in chain execution)

= IT (1 .- ut.) for i such that 91i. 	0.

= 'TF (1 	ut. sign (0i))

'Prob (c. is used) = 1 -Tr (1 - ut. sign (01))

and consequently,

utch =1-7(1-ut.sign (0i))
i

We call these three possible approximations to ut
ch:

utmx, utav, utpr respectively.

193

They give rise to three possible values for ef
ch

depending on

which one is used in the expression. These will be called efmx,

efav and efpr respectively.

We can show the operation of these three definitions by

a numerical example. Suppose an arc requires one execution of

each of two functions 01 and 02. If 01 and 02 have durations

of 1 and 3, and utilizations of 0.9 and 0.5 respectively, then

we can see that

utmx = 0.9

utav = 0.6

utpr = 0.95

If a set of functions required by a Slarc can be ordered

such that each function includes its predecessors, then clearly

utmx is the appropriate measure. For example, the first function

may be the no operation function of a central processor which

simply advandes to the next instruction; the second may be a

register transfer; the third a register transfer with an

airthmetic operation. Each of these requires the components of

the processor used by its predecessors.

The second measure, utav, is a statistic which corresponds

to the expected value of the utilization during arc execution.

This is not necessarily a value which could actually arise in

arc execution, but provides the time weighted average of such

values.

If the set of functions of a Slarc is such that they)use

groups of processor elements which are effectively independent,

that is to say as if chosen at random, then utpr will be the

most suitable measure.

191+

gutav =

crg
utcurrent (t)dt/ C * T

g g 0

The current SHAPE system is designed to produce all these

statistics. To summarize, for each allocation we get,

time : = 	0.• t.

utpr : = 1 - 1T(1 - uti sign (0i))

titan : =): 0,

• t

iuti / time
i

utmx : = Max (ut sign (0.))

efpr : 	0.t.ut.ef./ utpr * time
i i 1 1 1

efav : =11 0.• t.ut.ef./ utav * time
1 i 1 1

efmx : 	0.• t.ut.ef./ utmx * time
1 1 1 1

Extending these ideas to deriving appropriate measures

for a subgraph (i.e. for the arc of which the subgraph represents

the fine structure) we introduce a new variable, utcurrent (t).

This is the weighted sum of component in use at time t during

execution of the subgraph. If C is the total sum of components

available and Tg is the time taken to execute the subgraph, then

we have,

gutpr =E
J
 c. sign (t.)/ Cg

gutmx = Max 	(utcurrent (t))/ Cg
0<t<T

g

It is of course not necessary to make approximations in

the case of a subgraph, the expression gutpr is the correct one

from the point of view of the previous derivations.

195

The measures gutmx and gutav are included in order to provide

consistency at the level above the subgraph, in which there may be

arcs without a fine structure. Thus the gutpr, gutmx and gutav of

level k provide the values of utpr, utmx and utav for the arc at

level k - 1 whose fine structure is represented by the subgraph.

In determining the efficiency we use the three types of arc

utilization to provide

gefpr .r L c• .t. utpr. / gutpr * C * T

	

j a J Ja 	Ja 	g 	g

gefmx = 	: c• .t. utmx. / gutpr * C * T

	

j a j ja 	ja 	g 	g

	

gefaV = V I: c• t Ja
	Ja

j a / gutpr * C * Ts
j a J

gutpr is used throughout in the denominator, since it correctly

represents utk-1 and means that the numerators are being compared

to a common standard.

In order to provide these statistics for a subgraph the SHAPE

system maintains a running sum, for each processor, of the three

expressions,

utpr * t a a

UtinX
a
* t

a

utav t
a
*
a

This allows as a byproduct, the production of statistics for each

processor of the type described above. For completeness a running

maximum of utmx
a

is held, and also a cumulative function frequency

vector s6 [1:n]. 0 [i] holds the total number of times the processor

has executed function f.. This allows us to define,

196

putpr = 1 - iT (1 - uti sign (Vi))

putmx = Max (utmx
a
)

a

putav = 	t
a

utav
a/

 T
g a

pefpr =): r/f.t.ut.ef./ putpr * Tg i 1 1 1 1

pefmx = /: 0.t.
1
ut.
1ef.1/ putmx * Tg 1

pefav = 	 ef 0.t.ut../ putav * T 1 1 	1 i

In addition, for historical reasons we keep a running total of

t
a

allowing us to define,

ptime = 2: t
a
/T
g a

We now apply the arguments above to memory elements. If we

regard a processor as made up of memory elements and data paths,

the expressions arrived at above apply to the data paths (as

processing elements of weight c.). Suppose each memory element

is assigned a weight m. and is in use for a time t., we can say

for function i,

ut.
1 = r j

m. sign (t..)/): m. ij

and, M = 2: m.
and so, ef. = E m .t. ./ t.Emj , sign (t..) ij

.tm.t../ ut.t.M ij

This expression, like that derived for data path components

in a processor, implicitly assumes that the utilization of memory

at the level m. is one. Where the m. are memory components in a

subgraph we say,

J

197

utinci
-1
0

m
. sign (t.)

/, Mk-1
7 j

where tj is the time for which the memory (or store) was in use.

A store is in use when all or part of it is allocated to the

initial or terminal datasets of an active arc, or to the storage

of an initial dataset of an arc which is not yet active.

The question now arises of what expression to use for ut..

We shall use mu.(t) to denote the level of usage of element mj

at time t. That is to say that mu.(t) is in some unit of memory

measurement, so that

0 < mu.(t) < maxmu.

where maxmu. is the capacity of m.. We use the product ,t. ut.
JP JP

as an expression for the usage of mj over the execution of the

subgraph, since a summation over arc executions will not include

dataset waiting times, and a memory can hold data for many active

and inactive arcs at any given time. t. is the length of the
JP period p inwmchnru.

J

(t) > o andut.=max
DnuJkoi rnamru..

J s
o that

JP

%7 ef -1 =Em.
J
 IE t

jPJ
ut. P/ t

k-1
 Lm. sign(t')

m

	

i P 	j

L10Lm.
= 	

p 	

k -1
utm

k -lmk -1 .7. t. ut. / t
J 	JP JP J

Since memory is a homogeneous resource we can say that the

union of all parts of the memory used during a given interval is

equal to the maximum usage in that interval (this assumes a memory

compaction mechanism which uses negligible resources). Since the

union of used components in task execution is the utilization for

that task, this allows us to write,

198

utj
	

Max 	(mu.(t))/ maxmu. .p =
P 	P

where 	and and T are the starting and ending times of period p

respectively, so that,

ut. = Max (ut.
JP) p

Usingthisexpressionforut.in the equation for efk-1 gives

us consistency with the equivalent expression for processing unit

usage. Following through for the efficiency of memory m. we get,

T
ef. = 	g mu.(t)dt/ ut.

J
T
g
maxmu.

0

If we stipulate that the component weights m. and c. are in

the same units then we are able to combine processing unit and

memory unit usage as follows:

Total resources allocated = Ck-1 + Mk-1

Total resources utilized = Ck-1utk-1 + Mk-1utk-1 c 	 m

Total resource usage 	= Ck-1 utk-1 efk-1 + Mk-1 ut ei c c 	m k-1 m

dropping the superscript, we have,

Overall utilization U = (C ut
c + M utm

)/ (C + M)

Overall efficiency E = (C utcefc + M utmefm)/ (C utc + M utm)

= (C ut
c efc

 + M ut m m ef)/ (u(C + M))

In the SHAPE system the data on processor characteristics

for each of the n functions at any level is assumed to consist

of the values of U and E for each function.

It can be seen, by examining the expressions aoove, that

utilization is independent of idle time in task execution.

In fact the utilization will reflect how well the allocation

mechanism for a task (subgraph), and its choice of allocatable

199

entities, is suited to the task in hafid. The efficiency expressions

tend to be an expression of resource usage (and therefore of idle

time) of allocation units, and components within these units, for

a sequence of allocations.

200

4.6 Software measurement.

We describe below the types of statistics which are produced

by the SHAPE system concerning Slgraph binding. These fall into

three categories, statistics for nodes, arcs, and cut(s).

Node statistics are held in three two-dimensional arrays,

QD, QT, QS, all of dimension [0: INARCS, 1:4]. The zero row

holds overall statistics for the node, while if binding takes place

in semi-reentrant mode, the other rows contain statistics for the

transaction queues of the corresponding rows of the REP matrix.

For the node as a whole we keep statistics of the amount

of active data associated with the node in QD [0,j], j = 1,4.

These are the time integral of the associated data, and its

maximum value. In array QT [0,j], j = 1,4 we retain the number

of activations of the node, the sum of their durations, and the

minimum and maximum duration. In QS 	j = 1,4 we hold the time

integral of the node activity and its maximum value. Node

activity is the number of currently active elements of the REP

matrix plus the number of queued transactions, if any.

Similar statistics are kept for the individual INarc queues

if binding is semi-reentrant. Node activation becomes queue

activation, i.e. the number of transactions which enter the queue

is counted. Duration becomes queue waiting time. In order to

record this item transactions possess a scratch variable which

is set to current system time on entry into the queue; on exit

the waiting time is current time minus the scratch value.

Activity becomes queue size and is recorded as for the whole

node. The usage of arrays AD, AT, and QS is shown in Fig. 4-15.

201

QT tOj
time integral of
node data

last time changed

current associated
data

max
associated data

activation
counter

sum of
activation times

min
activation times

k
max 	.
activation times

time integral of
node activity

last time changed

current activity

max activity

. 	,

QD [i3
	

QT
	

QS [13

1

2

3

time integral of
Q data

last time changed

current
associated data

max
Associated data

transaction
counter

sum of
waiting times

min
waiting times

max
waiting times

time integral of
Q size

dead time

current Q size

flax Q size

Fig. 4-15 Node Statistics in arrays QD, sT, Qs.

232

However, if the INarc specifier of the row, REP [i10] is

negative the corresponding rows of QD, QT, and QS are not used

for queue statistics but to accumulate counts, sums, maxima

and minima of the LAMBDA and BETA factors of the incoming arc

activations.

These are cut statistics, and may be collected at any node.

If the node is the terminal node of the Slgraph, then the values

collected will reflect the values of LAMBDA and BETA associated

with the cut on its completion. At other nodes they will reflect

intermediate stages of the cut history. BETA is a variable which

records a time value and propagates with the cut. When one of the

OUTarcs of a Slnode is allocated, the value of BETA given to the

tie is equal to the largest BETA associated with the INarcs which

provided the initial data of the OUTarc. At the moment BETA is

set to the current time when a cut is generated. On completion of

the binding which this cut represents BETA will still have this

value (unless deliberately reset by an IFloop) and thus provides

the age of the cut. At nodes other than the terminal one BETA

can be used to provide the cut age at an intermediate point of

its history. In semi-reentrant mode, LAMBDA and BETA values of

ties are retained in transaction attributes TL and TB when the

ties are queued. A use for the BETA factor occurs when a cut

represents the transmission of a message in a switching network.

In this case the cut age is the overall transmission time from

source to destination. Array usage for cut statistics is shown in

Fig. 4-16.

The following statistics are recorded for SIarcs in array

STARC [1:6], namely the number of times the arc was allocated,

the sum of the execution times and utilizations, and the maximum

203

1

2

QD C13
,

out counter

sum of lambdas

min " «

max " «

QT [13

out counter

sum of betas

min " «

max " «

QS E.13

sum of squares
of betas

sum of squares
of lambdas

3

4

Arrays QD, QT, QS are used in this way when REP &,0)<:0

Fig. 4-16 Cut statistics.

204

and minimum execution time and utilization. This is shown in Fig.

1+-17.

On graph completion in addition to the above statistics,

the fraction of time (activity) for which nodes and arcs were

active is printed. Averages are also printed for arc execution

time, node activity, queue size, associated data, and in all cases

these are averages over the whole graph time rather than the

active time of the elements concerned. If the second type of

average is required it can be obtained from division by element

activity.

The items described above have been implemented as being

a simple but sufficient and useful set of statistics for present

use with the SHAPE system.

205

STARC

execution count

sum of execution times

max " “

min " “

sum of utilizations

max " It

min
6

" "

1

2

3

4

5

6

7

Fig. 4-17 Arc statistics in array STARC.

CHAPTER V

VALIDATION

207

5.1 The choice of validation.

For any system which attempts to model a large class of

computational processes there must be many candidates for the role

of validation. In choosing a model it is advantageious to select

the simplest one which still tests all the facilities of the

modelling system. In our case a further consideration was the

type of problem the system would be applied to after its

validation. A validation based on a related problem would have

the double advantage of ensuring the adequacy of the system for

the subsequent work, and providing relevant experience in this

area of its use.

One of the most stimulating of current developments has been

the research and construction of computer netwroks. The initial

problems have been the very basic ones of implementing suitable

communication systems between the node computers, and their

clusters of terminal users. Once such communications are

implemented the connected user can access not only the facilities

available at his own node computer, but those throughout the

network. For this reason such networks have been called resource

sharing networks.

Computer networks have also been constructed for other

reasons. Message switching systems make the solution of the

communication problem their prime objective. Real-time networks

(of which military and airline ones are the best examples) have

been implemented to conduct operations beyond the capabiIty of

a single computer.

This leads us to expand the remarks in Chapter I which

assert that at any given time there must be tasks which require

208

a degree of computing power that can only be provided through

parallelism. Real-time networks have been a response to such

tasks. It is to be anticipated that as the operational difficulties

of resource sharing networks are solved their facilities will not

only be shared but also used cooperatively in the solution of

computational problems of a new order of magnitude.

The common prerequisite of computer networks has been a

communications system between the nodes. A very frequent solution

has been store and forward transmission of messages as a series of

packets. This has been the choice of the implementors of the

Advanced Projects Research Agency (ARPA) and National Physical

Laboratory (NPL) networks.

The intended application of the SHAPE system was to an

extension of the ARPA network to Norway and London. For this

reason the validation test chosen was the modelling of a small

store and forward communication system. This model provides

tests of the major functions of the SHAPE system. The creation

of messages (i.e. the traffic) to give particular distributions

of frequency and length uses IFloop facilities for random

numbers generation, and delay, and dataset size setting. The

dispatch of messages to their destinations requires the

allocation of processors (the transmission channels) and memory

along the route. Accumlation of messages at intermediate nodes

uses the queueing ability of mode two binding. Measurement

facilities are used to derive the validation test statistic, and

so on.

In the following sections of this chapter we discuss the

store and forward system to be modelled, present the model itself,

209

and derive the test statistic. Lastly, the results from a number

of computer runs of the model are given and examined for confirma-

tion of validity.

210

5.2 Store and forward networks.

In a circuit-switched network of communication channels two

subscribers who wish to exchange information must first establish

a circuit or path, between their terminal equipments. This path

is static once established and remains in existence for the

duration of the dialogue. The channels which make up the path

are consequently dedicated for this period. Telephone systems

are an example of circuit-switched networks.

A store-and-forward network transmits information between

subbcribers without establishing a fixed path between them, and

without dedicating channels for the duration of the dialogue.

This is achieved by formatting information as messages with an

address or destination. A message is then transmitted along the

route to its destination, with one channel being allocated at

a time. Channels transmit between exchanges or nodes which are

able to store messages and usually have several incoming and

outgoing channels. When a message arrives at a node the outgoing

channel is selected using the message destination, and routing

information possessed by the node. If the channel is free the

message is transmitted immediately, otherwise it is stored at

the node and forwarded later, giving rise to the name for these

networks. The routing may be fixed or vary with conditions

in the network. An example of this type of network is the postal

service. For this reason the phrase packet-switched network

is sometimes used.

The nature of computer-to-terminal, or computer-to-computer,

dialogue makes store-and-forward communications a more economic

choice for computer networks than circuit-switching.

211

The dialogue typically has long pauses while a terminal user

prepares his next input or a computer produces a reply.

Nevertheless a high data rate is required when transmission does

occur in order to provide good response times in interactive

systems. Such usage inevitably incurs a high overhead in idle

time when channels are dedicated, as is the case with a circuit-

switched network. In contrast store-and-forward networks are,

an attempt to ensure that messages use the minimum channel

capacity which is required for delivery. However, the storage

facilities and the necessity of routing procedures now introduce

a new coverhead which must in turn be assessed.

The type of store-and-forward network which is used for

this validation is that treated by Kleinrock in his book

Communication Nets. This class of network is characterized by

the folloWing properties.

Each node in the network may be both a source and a sink

of messages. The channels and nodes are assumed to be noiseless

and reliable. Delays at nodes due to routing procedures and

other housekeeping operations are assumed to be negligible.

Messages are considered to have only one destination and must

reach it to leave the network. This implies unlimited storage

capacity at the nodes. Messages may not be transmitted out of

a node until they have been completely received. Messages are

generated at a node with exponentially distributed interarrival

times, i.e. their generation is a Poisson process. Message

length is also assumed to be exponentially distributed, and

both processes are considered stationary with respect to time.

212

The first five of these properties are not unrealistic. The

last three represent reasonable assumptions of great mathematical

usefulness, and Kleinrock refers to telephone traffic data which

supports their plausibility. The performance measure of this

type of network is the average message delay. This is the mean

over all messages of the total time spent in the network by a

message. For ease of reference we use the same notation as

Kleinrock, which is summarized below.

jk = average number of messages entering network per second

with origin j and destination k.

= average number of messages entering i th channel per second.

1/IJjk = average length of messages which have origin j and

destination k, in bits.

C. 	= capacity of i th channel, bits/second.

= total arrival rate of messages from external sources.

= total arrival rate of messages to channels within the net.

= average path length over all messages.

1/1j = average message length from all sources.

C 	= sum of all channel capacities in the net.

p 	= network load, i.e. ratio of average arrival rate of bits

into the net from external sources to total capacity of net.

Z
jk = average message delay for messages with origin j and desti-

nation k.

213

Ti = average delay for a message passing through channel 1.,

queueing plus transmission time.

T 	= average message delay.

The definitions lead to the relations,

 n = X 4

1/1.) = L Vjk/(Pjk)

C = L,Ci

• = E. . ic jk
J,

p =)//(., C)

x =

T = E U jk ZikA = E Tin(
jlk

The average message delay is the performance measure to be

optimized, and Kleinrock has derived analytic results for the

allocation of channel capacities which achieves the optimal delay.

Firstly he shows that for the class of nodes with N outgoing

channela of capacity C/N (the total capacity C is a constant) the

average message delay is a minimum when N = 1. This result is

used to develope the optimal channel assignment for a net of N

independent nodes each with a single output channel. The assign-

ment (subject to the constraint that the sum of the channel

capacities is constant)

214

which minimizes the message delay averaged over the set of N nodes

is given by,

Ci = Xi/ri + 	_ E
J.1

Using this assignment gives,

pi)J\i/Ni 	,/NJ/

	

N / 	
T = CE jNi/NK) 2/C(1-p)

i=1

Finally, for the general case of an interconnected net, with

	

=1.) for all 	the optimal channel assignment is given by:

C. =X./‘■) + C(1-7p)517
j=1

This gives,

(
T = 'i.17 	f.-. Ik/A. i 1

2 1JC(1 ZITO ,
1=- 1

The assignment can be interpreted as follows. Each channel is

first apportioned just enough capacity to satisfy its average

required flow of /\i/N bits/sec. After this the capacity is,

C - 1: Xi/iJ = C(1 -p)
i=1

which is then distributed amongst the channels in proportion to

the square root capacity assignment. It is this last case which

we have chosen for the validation of the SHAPE program. A model

of an interconnected net is described using the SHAPE system and

the channel capacities are calculated as shown above. The mean

message delay is then measured and compared with the calculated

value of T, using given confidence limits. For detailed back-

ground to this subject the reader is referred to [KLEI 64].

215

5.3 The validation model.

The model used is a simple one from the first part of Kleinrock's

book. It describes the hypothetical message flow between five

cities of the United States. The topology of the network is shown

in Fig. 5-1. The traffic matrix is based on a conjecture of Zipf

thattheflowbetweentwocitiesofpopulationP.and Pj a distance

Djk apart is given by

W.jk =c4PjP /b. k jk

where 04 is a constant of proportionality. This leads to the

proportional traffic matrix given in Fig. 5-2. Kleinrock chooses

the total capacity to be equal to the total proportional network

traffic (38.33) and Id= 10. The routing procedure is fixed and

consists of the set of shortest routes. This leads to the mean

path length

n =X/X = 1.31

The routing is shown in Fig. 5-3. Variable values for individual

links of the network are shown in Fig. 5-4, the total link traffic

N being 50.23. From the individual channel delays and the

traffic matrix, we can calculate the delay for each type of

message, and these are given in Fig. 5-5. Using the intermediate

results that,

ccizpvErK = 1.39286

EX/2 = 11.95698

p = 0.1

We find that the average message delay

T = 0.0447767

216

Chicago

Denver

Los
Angeles

The channels shown are full duplex, so that total

channel capa-Aty in the net is 38.33.

Fig. 5-1. Validtlon Network.

217

NY
	

CH
	

HO
	

iJ

- 9.34 0.935 0.610 2.94

9.34 - 0.820 0.628 2.40

0.935 0.820 - 0.131 0.608

0.610 0.628 0.131 - 0.753

2.94 2.40 0.608 0.753 -

Total Traffic r = 38.33
Mean message length 1/1J = 0.1

Fig. 5-2. Proportional Traffic Matrix.

NY

CH

HO

DE

LA

2'18

NY
	

HO
	

DE;

- i i I 	2-CH 2-Ho
,

1 - 1
t

i 	1
2-DE

1 1 - i 1 1
-1

2-CH 	I

2-HOi 1 2- 	_ DE 1 1 1 -

Key 1
	

path length is 	routing direst

" two, routIng nrou,gh X

ne!,1h pnth length 7 = 31

Fl, 	 MOS:,-;Avr1 rcut1nR

NY

CH

HO

DE

LA

Link
	

xi
	c i
	Ti

NY/CH 9.950 3.15436 5.38858 0.0227605 0.185578

NY/HO 3.875 1.96850 3.12934 0.0364718 0.319556

CH/DE 3.638 1.90735 3.02046 0.0376411 0.331074

CA/HO 0.820 0.90554 1.34329 0.0792839 0.744441

HO/DE 0.131 0.36194 0.51723 0.1933610 1.933371

HO/LA 3.548 1.88361 2.97840 0.0381155 0.335750

LA/DE 3.153 1.77567 2.78856 0.0404325 0.358608

Total link traffic 	= 50.23

Fig. 5.-4. Link Traffic, Delay, and Capacity.

220

Z NY CH
	

HO
	

DE
	

LA

- 0.0227605 0.0364718 0.0604016 0.0745873

- 0.0792839 0.0376411 0.0780736

- 0.1983610 0.0381155

- 0.0404323

The matrix elements Z
jk
 give thn delay for messages

with origin j and destination k.

Fig. 5-5. Message Delay Matrix Z.

NY

CH

HO

DE

LA

221

The top right and bottom left halves of the traffic matrix

define two identical and non-interacting systems. Consequently

it is only necessary to model one of them, and we in fact choose

the top right system. This system is shown in Fig. 5-6 with

node numbers assigned to the cities. The topologies of the

Slgraph and Plgraph are shown in Fig. 5-7, but without the

IFloops of the Slgraph. Nodes of the Slgraph, examples of its

arcs, and examples of the Plgraph data are shown in Figs. 5-8,

5-9, 5-10 and 5-11 respectively.

Node one generates messages to four destinations, namely

nodes two to five. The generation of each is caused by an

INarc of the node (e.g. that entering the row with arc specifier

1.21). Termination of the INarc activates two matrix elements.

The first of these reactivates the INarc itself for a delay

drawn from a negative exponential distribution, while the second

activates a further arc (e.g. that of column with specifier 1.22)

which draws a value for the dataset size from a similar distri-

bution. This second arc has a zero duration.

The dataset size is effectively equivalent to_the message

length in our model, since the function which is executed by

SIarcs between two Slnodes is the transmission of one bit between

them. Such SIarcs have a non-zero element in their function

vector, and so must be tied to PIarcs capable of executing the

function. These PIarcs represent the communication channels of

the network, and their function vectors give the time required to

transmit one bit from the initial to the terminal node, i.e. the

inverse of the channel capacity. The nodes of the Plgraph there-

fore correspond to the storage available for messages at each of

the five cities.

222

HO

Fig. 5-6. Directed Semi-Network.

223

PXgraph

Sigraph (loops and node 0 not shown)

Fig. 5-7. Slgraph and Plgraph topologies.

224

-4

O1 1.21 1.22 2.20 1.31 1.32 3.30 1.41'1.42 2.401.51'1.52 3.50

1.21 1 1

1.22 1

1.31 1 1

1.32

1.41

1

1 1

1.42

1.51

1.52

1

1 1

1

2.31 2.32 3.30 2.41 2.42

V

4.40 2.51 2.52 4.50 4.10 2.20

2.31

2.32

2.41

1 1

1

1 1

2.42

2.51

1

1 1

2.52

-141.40
1

1

-4.1.20

2.20

1

Fig.5.8. Nodes 1 and 2 of model SIgraph.

225

3

3.41

3.42

3151

3.52

1.50

3.30

3.41 3.42 4.40 3.51 3.52 5.50 5.10 3.30

1 1

1

1 1

1

1

1

.1

5

0 4.51 4.52 5.50 5.20 4.40

4.51 1 1

4.52 1

2.50 1.

2.10 1

2.40 1

3.40 1

4.40

5

5.50
1

	

Ho -3.50
	1

	

-4.20
	1

1

5.50

Fig. 5-9. Nodes 3,41.....and 5 of the model.ADE:222h.

226

Transmission arc

1 	2
2.20
0 	0 0 0 0 0
1
0
0
0

Generator delay are

1 	1
1.21
4 	6 0

jk
 0 0

0
0
0
0

Generator message length arc

1.22
0 -6 0 F 0 0
0
0
0
0

Termination arc

5 	5
5.50
0 0 0 0 0 0
0
0
0
0

Fig. 5-10. Ixample am, data of the Slgraph.

227

Plgraph nodes

1 	0 2

1 120 0 0 0 0 0

Plgraph arcs

1 	2

2

11 0

1/Ca 1

-1 -1

-1 -1

-1 -1

Fig. 5-11. Example node and arc data of the Plgraph.

228

We have used the SHAPE facility for specifying that a Sinode

be tied to a particular Plnode to ensure that messages are generated

in the correct store. The fixed linkage between the Slnodes and

Plnodes is required since the Slgraph contains the routing pattern

of the network. As each message is generated the current time

is recorded in the BETA variable of the generating tie. This is

then propagated with the message until its destination node is

reached. Here cut statistics collection is involved by setting

the incoming arc specifier negative. This has the effect of

measuring the message delay which is accumulated in scratch

variables as described in Chapter IV. After this the message

is destroyed by the use of an IFloop whose terminal row has only

zero elements.

The distribution used for the delay between generation of

successive messages with the same destination is negative

exponential so that the generation is a Poisson process. The

mean of this distribution then determines the average rate of

message generation for this destination. In the model these

means are taken from the proportional traffic matrix. Similarly

the message length is generated using drawings from a negative

exponential distribution of mean 1/1J (=10). In order to

approximate unlimited storage at the Plnodes, we have given

each one a capacity of ten to the power twenty.

The model as a whole is started by activating the terminal

datasets of each generator arc. After this initial activation

the generation proceeds automatically as described above.

The initial activation is produced by null arcs from node zero.

This is possible since the SHAPE system allows activation of the

same REP-matrix row by arcs from different Sinodes.

229

In the run card for the model we specify node zero as the initial

node and consequently graph binding commences with the activation

of the row of the node which has a zero INarc specifier.

The run then continues until the time limit specified on

the run card is reached. The seed of each random drawing

stream is taken from the arc data, so that different runs can be

produced by altering the seeds. Details of the data, and seeds

of individual runsican be found in INDRA note 285, Institute of

Computer Science, 1973.

230

5.4 The statistical test.

We have ten distinct message types in the validation model,

each with a theoretically calculated mean message delay of zi

where i is the message type. We shall call the delay for the

jthmessageoftypeil x..l and the number of these messages n.. ij

If we now consider the variables,

3C1‹ 	3C- 1.3

then these have a theoretical mean of zero for every message

type. Because all the ten groups of the xk have the same mean,

we can combine their variables by simple addition so that,

Ns2 =L

where N = 	n. .

2 i and s is the variance of all the xk taken together. This allows

us to apply a t-test to the whole sample of the xk. The hypothesis

for the test is then that

xk = 0

The advantage of treating the data in this way is that we have now

developed a single test which utilizes all the observations

produced during a run of the model. We now derive the statistic t

as follows.

t= 3ck -N
s/ N-1

where, in this case, P= 0. Also we can write:-

s2 _(xk 1.- 2 	 2)
- 	- N xk / (N-1)

so that,

t = (N-1))cc - N 7,2

231

Now,

(

	

xic = i 	i x j-nizi

= 1):n.(7. - z.) 7 i i a. 	I

and,
2 "V
Xk = 	(X

ij
.. - z.)2 13 	1

 = 	x. - 	z. t x. +)L 	2

i
ij

	

	i 	ij
j

— 	 2 =]E x. - 	n z.x. + 	n. z.

	

1.3 	. 	
37

1 1 	a-7 1 1
ij 	1 	1

2 = 	x. 	n.z.(2x. - z.)
ij 1j

also,

(n.-1) = 51 (x. . - 7.)2

	

1 1 	. 13 1

= 7'7-) + n.x. • • 1 1

2
= E x2 .. - n.x. .

In the model runs N > > 30 so that the t - distribution is

very close to the normal distribution. That is to say we use

the bottom row of the table in Fig. 5-12. For this case the

probability that it! > 1.96 is 0.05. Thus if we get such a value

from a run we reject the hypothesis that xn = 0 with 95% confidence.

Otherwise we accept the hypothesis.

We can obtain 95% confidence limits for the true meanp.

of the xk by writing

232

Pig. 	5-12. 	?ALOIS Or t COBRZSPONDINO TO Orr= PIOSABILATUSI •

Degrees
of

freedom n

Probability of a deviation greater than t Probability of a deviation greater than

.005 .01 .025 .05 .1 .15 	1 .2 .25 .3 .35 .4 .45

1 63.657 31.821 12.706 6.314 3.078 1.963 1.376 1.000 . .727 .510 .325 .158
2 9.025 6.965 4.303 2.920 1.886 1.388 1.061 .816 .617 .445 .289 .142
3 5.841 4.541 3.182 2.353 1.638 1.250 .978 .765 .584 .424 .277 .137
4 4.604 3.747 2.776 2.132 1.533 1:190' .941 .741' .569 .414 .271 .134
5 4.032 3.365 2.571 2.015 1.476 1.156 .920 .727 .559 .408 .267 .132

8 3.707 3.143 2.447 1.943 1.440 1.134 .006 .718 .553 .404 .265 .131

7 3.499 2.998 2.365 1.895 1.415 1.119 .896, .711 .549 .402 .263 .130

8 3.355 2.896 2.306 1.880 1.397 1.108 .889 .706 • .546 .399 .262 .130

'9 3.250 2.821 2.262 1.833 1.383 1.100 .883 .703 .543 .398 .261 .129

10 3.169 2.764 2.228 1.812 1.372 1.093 .879 .700 .542 .397 .260 .129

OJ 	
11

%..A 12
3.106
3.055

2.718
2.681

2.201
2.179

1.796
1.782

1.363,
1.356

1.088
1.083

.876

.873
.697
.695

.540

.539
.396
.395

.260

.259
.129
.128

\A 	
13 3.012 2.650 2.160 1.771 1.350 1.079 .870 .694 .538 .394 .259 .128

14 2.977 2.624 2.145 1.761 1.345 1.076 .868 .692 .537 .393 .258 .128

15 2.947 2.602 2.131 1.753 1.341 1.074 .866 .691 .536 .393 .258 .128

16 2.921 2.583 2.120 1.746 1.337 1.071. .865 .690 .535 .392 .258 .128

17 2.893 2.567 2.110 1.740 1.333 1.069 .863 .689 .534 .392 .257 .128

18 2.878 2.552 2.101. 1.734 1.330 1.067 .882 .688 .534 .392 ..257 .127

19 2.861 2.539 2.093 1.729 1.328 1.066 .881 .688 .533 .391 .257 .127

20 2.845 2.523 2.086 1.725 1.325 1.064 .880 .687 .533 .391 .257 .127

21 2.831 2.518 2.080 1.721 1.323 1.083 .859 .686 .632 .391 .257 .127
22 2.819 2.503 2.074 1.717 1.321 1.061 .858 .688 .532 .390 .258 .127
23 2.807 2.500 2.069 1.714 1.319 1.060 .858 .685 .532 .390 .256 .127

24 2.797 2.492 2.064 1.711 1.318 1.059. .857 .885 .531 .390 .256 .127

25 2.787 2.485 2.060 1.708 1.318 1.058 .858 .684 .531 .390 .258 .127
•

26 2.779 2.479 2.056 1.708 1.315 1.058 .858 .684 .531 .390 .256 .127
27 2.771 2.473 2.052 1.703 1.314' 1.057 .855 .684 .531 .389 .258 .127

28 2.763 2.487 2.048 1.701 1.313 1.056' .855 .683 .530 .389 .250 .127

29 2.756 2.462 2.045 1.690 1.311 LOW .854 .683 .530 .389 .258 .127

30 2.750 2.457 2.042 1.897 1.310 1.055 .854 .633 .530 .389 .256 .127

co 2.576 2.320 1.060 1.645 1.282 1.036 .642 .874 .524 .385 .253 .126

The probability of a deviation numerically greater than 8 Is twice thei
probability given at the had of the table

• This table is reproduaod from "Statistical Methods for Rower sit Worker.? with rho
ersaurgZifiriosi 01 the 	Prolog 8.4 Fisher, and the pubiloloon, Margo.

p. 7,„ I 1.96 s/ N-1

— 	 —2 +
= xic - 1.96 	- 1)7_3c. 	Nxk /(N-1)

This allows us to examine the range ofp which falls within

the confidence limits of every run.

234

5.5 Validation results.

Altogether eight runs of the model were executed, the last of

these having an order of magnitude longer run time. Each run

produced the normal SHAPE statistics, as described earlier.

The cut statistics were used to calculate the t-test values

as described in section 5.4. For each message type the terminal

node's row corresponding to the message arrival INarc was tagged

(the INarc specifier set negative) for cut statistics accumulation.

Consequently for each message type the cut statistics COUNT, AVGDUR,

and DURVAR (corresponding to n., x3. 	3.., and E. x.
2
.) were output.

From these the t. Value for the run can be calculated and

these are given in Fig. 5-13. In all the runs the t Value fell

within the acceptance limits at the 95% confidence level (Itl< 1.96).

If we had observed a run which gave a value of t outside these

limits we should be forced to reject the null hypothesis H0
 that

xk =0

The t values shown in Fig. 5-13 allow us to accept it. This is

equivalent to accepting the hypothesis that the mean message

delay observed in the model is equal to

T = o.o447767

from the derivation of 7k. Consequently we consider the runs

described as constituting a validation of the SHAPE model.

The confidence limits of xk can be written as

—
xk -+ L

and we have given xk and L for each run in Fig. 5-13.

Since we accepted Ho for each run the value zero lies within the

confidence limits of every run. We have plotted these limits in

Fig. 5-15, and shown the interval (a,b) common to all of them.

235

t ik x 10
-3 L x 10-3

RUN 1 0.9036 0.7257 1.5740

RUN 2 -0.7993 -0.8514 2.0877

RUN 3 0.1156 0.0933 1.5809

RUN 4 -1.0713 -1.1047 2.0212

RUN 5 0.5919 0.6949 2.3013

RUN 6 -1.0364 -1.1365 2.1493

RUN 7 -1.5115 -1.5652 2.0297

RUN 8* 0.9515 0.3500 0.7209

MEAN -0.3492

*long run

Fig. 5-13. Values for t-test and

236

/nAGE '
i..__ NY/CH NY/HO CR/HO NY/OE

.

CH/DB HO/DE

.

NY/LA

1

-HO/LA CH/LA

. 	,

DE/LA

7 .02276 .03647 .07928 .06040 .03764 .19836 .07459 .03812 .07807 .04043

EIX 1 42239 .03623 .07831 .06468 .03379 .23200 .07954 .03653 .07791 .04200

RUN 2 .02242 .03618 .07958 .05125 .03429 .19990 .07225 .03756 .08000 .03516

RUN 3 .02359 .03631 .07738 .06186 .03594 .23590 .07871 - .03674 .06957 .04228

SUN 4 .02329 .03536 .06920 .05837 .03342 .19250 .07427 .03549 .07398 .03927

RUN 5 .02299 .03561 .06863 .05944 .03599 .20050 .08553 .03878 .07191 .04251

RUN 6 .02204 .03301 .07187 .05046 .03364 .17340 .07607 .03337 .08085 .03881

RUN 7 02333
, 	,

.04011 .08070 .05401 .03247 .16.980 .060791: .0j421 .07396 .04250

RUN 8* .02238 .03558 .08051. .06118 .03723 .17550 .07770 .03695 .07948 .04152

1 MEAN .02280 .03605 .07576 	_ .05766 	-I.03460 	_ .19744 	_ .07648 .03620 	_ .07596 .04051

*long run

Fig. 5-14. Mean Message Delay by Message type for eight runs.

The relative smallness of a and b further supports the null hypothesis.

• In Fig. 5-14 we have given the observed mean message delay for

each type of message. These show a correspondence with the

theoretically expected values which is closest for the most

frequent messages. We have also shown the mean over the eight runs

for each type.

Using the delay and the COUNT for each message type we can

calculate the overall observed mean message delay.

T = AVGDUR. x: COUNT./ COUNT.
.

However, since the message lengths are drawn in a random fashion,

the average observed message length is usually slightly different

from 0.1 for each type. In consequence the mean message trans-

mission time will differ from the expected valye. This is a

component of the mean message delay and so perturbs the delay

from what it would have been if the average length of each message

type was 0.1.

If the queueing time is not large compared with its trans-

mission time we can make a first order correction for this

effect by normalizing the mean delay of each type of message

with respect to its mean length, giving

T
m
= E COUNT, x AVGDUR. x 0.1): COUNT

AVGLAM. 	i

A similar problem occurs because the number of messages of each

type generated during a run will differ from the theoretically

expected number (which we will call ECOUNTi). We can again make

acorrectionforthisbyusingECOUNT.instead of COUNT. in the

above expression giving a mean delay

T
n
= : ECOUNT

i
x AVGDUR x 0.1 	IIECOUNT.

AVGLAM. i 1

239

We give values for T, Tm and Tn in Fig. 5-16. The last

run of the model had a considerably longer run time than the

others. In this run the values of T and xk were much closer to

the expected values, and the confidence interval smaller.

This demonstrates the convergence towards expected values with

longer run time and supports the claim to validity based on

the t-test results.

240

T x 102 Tm x 10 Tn x 101

RUN 1 4.506 4.437 4.486

RUN 2 4.313 4.541 4.631
RUN 3 4.492 4.431 4.428
BUN 4 4.370 4.650 4.644
RUN 5 4.588 4.538 4.492
RUN 6 4.508 4.576 4.429

RUN 7 4.325 4.528 4.529

RUN 8* 4.489 4.517 4.542

MEAN 4.449 4.527 4.523

*long run

Fig. 5-16. Mean Message Delay.

241

CHAPTER VI

APPLICATION

242

6.1 A UK link to the ARPA network.

This chapter deals with the application of the SHAPE system

to a particular design problem, namely the behaviour of a linkage

between computers in the United Kingdom and the ARPA network.

The choice of an example from the field of computer networking

is a natural consequence of our belief that this is the direction

which the mainstream of computing will take in the future.

In Chapter I we suggested that the search for greater computing

power must sooner or later require coordination of dispersed

facilities in order to solve problems too large for a single

computer to undertake. The ARPA netwrok is certainly a first

step towards this goal, since it provides both communication

between computers and user access to all resources available in

the network. Its extension to the United Kingdom via Oslo is

therefore of great interest to us. Application of the SHAPE

system to this link is also particularly attractive since we

have been closely associated with the research team working

on this project. The association has given us an intimate

knowledge of the design and operation of the ARPA network and

its extension to the UK.

In the sections which follow we describe and analyse the

characteristics of the link. A model is constructed with the

SHAPE system and used to observe the behaviour of the link under

various conditions.

The ARPA network provides store and forward communications

between the set of computers shown in Fig. 6-1. The computers

located at the various nodes are drawn from a variety of

manufacturers, and most are incompatible both in hardware and

21+3

POP-11

03C PDP-11 POP-10

ILLINOIS

POP-15

(:EDP -10)

UTAH

IMP

7600
XEROX 	I 	LBL

oil, 1 	.11 516 PDP-1D

POP-10
BBN
TIP

H-645
MES

TIP 	360/67 POP-10

AMES
PDP-11 	IMP 	POP-10

ULCC

CCA

(4-10)
RHEL

HARVARD
POP-11 H-316

CHI
360/195

POP-10
LINCOLN POP-10 POP-11 	TIP

TINKER ETAC 360/67
4:- .360/75

UL ICS MITRE

PDP-15 	TIP SAAC 360/65 OSLO SCRL

ISI
IMP POP-10

(i1GMA-72)-- IMP

TIP

01°C
6600

POP-10

	

NOAA 	AFGWC

	

TIP 	TIP
SOC
IMP NORSAR

(60/91

NORWEGIAN
COMPUTING
CENTER 360/44 DOP-516

LICSD 370/145

Figure(-1 Tentative ARPA Network, Logical Map, May 1971. 06700)

UNIVAC
418 III

software. The network has to provide communications for this set

of machines, and allow effective use to be made of them from any

point in the network.

An underlying constraint placed on the design of the network

was that its operating procedures would not interfere in any

significant way with the operation of the existing facilities

which were to be connected. Consequently the message handling

tasks are carried out in a dedicated Interface Message Processor

(IMP) situated at the site of the computer to be connected (HOST).

In most cases the communications channels are 50 kilobit per

second full duplex telephone lines and these run between IMPS.

An IMP modified to directly support terminals is called a TIP.

In order to provide reliability there are at least two paths

through the network for every origin-destination pair. A 24 bit

cyclic checksum is provided for each block of data, and the IMP

is a ruggedized computer with a mean time between failures of

10,000 hours. TIPS, however, are not currently ruggedized.

Messages which flow between HOSTs are broken up into packets, each

of maximum size approximately 1,000 bits. There can be up to

eight packets in a message, which is assembled and disassembled

by the IMPs. The packets make their way individually through

the IMP network where appropriate routing procedures direct the

traffic flow.

A positive acknowledgment is expected within a given time

period for each inter-IMP packet transmission. In the absence

of an acknowledgment the transmitting IMP will repeat the trans-

mission (perhaps over the same channel or over a suitable

alternative). This process is repeated a number of times after

which the communication channel is regarded as unavailable.

245

Absence of an acknowledgment may indicate, for example, that the

message contained errors on receipt or that no more buffer space

is available in the receiving IMP.

There may be up to 64 dialogues occuring at any one HOST.

The dialogues take place along two logical communications

channels called links. A HOST will send a message along the

outward link of a dialogue and then await a Request For Next

Message (RFNM) on the inward link.

In those cases where a user is making more or less direct

use of a remote software system, the network is intended to provide

a total round-trip delay which does not exceed the human short term

memory span of one to two seconds. In the design of the network

it was also considered desirable that the response should be

comparable, if possible, to using a remote display console over

a private voice grade line where a 50 character line of text can be

sent in 0.2 seconds.

The linkage to Europe consists of a telecommunications channel

between a TIP in the United States and one in Oslo, which is in

turn connected to a TIP in London. The Oslo TIP will have at least

one HOST and the London one will have a PDP9 computer as a pseudo-

HOST. It is intended to interface two other computers in the UK to

the network via the PDP9, which is situated at the Institute of

Computer Science. These are a CDC 6400 computer at the University

of London Computing Centre, and an IBM 360/195 at the Rutherford

High Energy Laboratory. Each computer is expected to support

a cluster of interactive users, as well as performing some file

transmers. The configuration is shown if Fig. 6-1. Delivery of

the TIPs is currently scheduled for the third quarter of 1973,

246

and the link is expected to be operational by the end of the year.

The transatlantic channel will be via satellite.

247

6.2 Analysis of the link.

In this section we discuss the detailed structure and operation

of the link, and so extract the features we wish to include in the

model. One of our main concerns is the average response time as

seen by a European interactive user of the ARPA network. This

is partly made up of the message transmission delays introduced

by the link channels. The structure of the link is shown in

Fig. 6-2. The capacity of channel i is C. full duplex and the

number of interactive users at the terminal node is N..
1

The ARPA network is designed to give a mean message delay,

of 0.2 seconds. Satellite transmission on channel 1 gives

a propagation delay of approximately 0.25 seconds. If the remote

HOST in the United States gives an immediate reply (e.g. an echo)

to a user message, then the average response time as seen by a

European user will be

R = 0.9 + 2T
a
+K

where T
a
is the average delay in the link subnet for a sample of

messages of mean length a, and K is the sum of the time for a

teletype to transmit carriage return to its node plus the time for

the first character of the reply to reach the teletype from its

node. Response time is therefore the interval between the user

typing carriage return, and the first character of his reply

being printed. K is approximately 0.2 seconds if the teletype

line operates at 110 bits per second so that

P = 1.1 + 2T
a

This suggests that a reasonable design range for Ta would be

0.1 to 0.8 seconds, making R between 1.3 (good) and 2.7 (tolerable)

seconds.

248

TIP USA . . .

C2
Norway. . . TIP HOST

N6 N
5

TIP

C

4)
	 N
	o3 	0

UK 	. . •

CI is the capacity of channel 1 (full-duplex).

N1 is the number of interactive users in a cluster.

Fig. 6-2. UK-ARPANET Linkage.

249

We define a as the mean length of user messages in the subnet.

Inter-TIP acknowledgments (ACK) and requests from the destination

for the next message from a user (RFNM) are 150 bits long.

A message originating in Clusters 5 or 6 will be transmitted to

the PDP9 (node 4). Here the PDP9, behaving as a HOST, will

introduce the message into the ARPA network. When the message

is successfully received at its destination a RFNM will be trans-

mitted to the PDP9. This in turn must request the next message

from the node which produced the original one. In this way there

will be RFNM-like traffic on channels 5 and 6. We estimate that

these pseudo-RFNMs will have a length of 100 bits.

Since the users are interactive we can say that, with very

few exceptions, the length of a. user message will be less than

1,000 bits. Consequently they will be transmitted as single

packets within the ARPA network. Each packet carries a total

overhead of 150 bits, so that on channels 1 and 3 a user message

will have length a + 150.

We now consider the traffic pattern in the subnet, that is

to say the number of messages per second between each cluster

and the US TIP. We have assumed that the quantity of traffic

moving between nodes of the subnet itself will be negligible.

On the basis of current knowledge, the best estimates for the

average number of active users at the nodes are N2 = 6, N3 . 12,

N
4

= N
5
 = N

6
 = 4. These figures determine the proportional

traffic. The total volume of messages (assuming all users to

exhibit similar behaviour) depends on the number of messages

per second (L) that a user will generate. In what follows we

deal with the case L = 1/30, although in the model L is a variable

parameter.

250

When an interactive user sends a message to the US, he will

normally be taking part in a dialogue with a remote computer.

Consequently his message will give rise to a message from this

computer in reply. Therefore we expect the traffic pattern

inward to be symmetrical with that outward from the US. In that

case the numbers of RFNMs and messages per second travelling

inwards will be the same. Similarly, on channels 1 and 3 there

will be ACKs travelling inward for each outward bound message and

RFNM. For example, if the subnet generates 30 L messages per second

to the US, we would also expect 30 L RFNMs and 60 L ACKs inward

persecondonchannel1.IfL.is the number of packets (messages,

RFNMs and ACKs) inwards per second on channel i, then these are

tabulated in Fig. 6-3.

On channels 1 and 3 for each message (length a + 150) we

have a RFNM and two ACKs each of length 150 bits so that the

average length is (a + 600)/4 bits. On channels 2, 4, 5 and 6

for each message (length a) we have a RFNM of 100 bits, so that

the average packet length is (a + 100)/2 bits. We define the

channel loading P. as the average number of bits per second

transmitted on the channel divided by its capacity.

P. = avg. packet length x L./C.

We define T. to be the mean message delay, on channel i.

As in Kleinrock's treatment [KLEI 70A] we regard Ti as having two

main components. The first is the mean message transmission time,

namely mean message length divided by channel capacity. The second

component is the mean waiting time for a message. This is derived

from the true total loading of the channel, i.e. including ACKs

anclUNDis.Ifill.ands.are the mean message and packet lengths

respectively we can write,

251

Channel Li Li (L = 1/30)

1 120 L 4

2 12 L 2/5

3 96 L 16/5

4 24 L 4/5

5 8 L 4/15

6 8 L 4/i5

Fig. 6-3. Traffic on each channel of the subnet.

252

= s. x L./C. 1 1 1

T. = m./C. 	s./C. x P./(1-R.)
11+iii

These variables are tabulated for the case L = 1/30 in Fig. 6-4.

We can calculate the mean user message delay in the subnet when

the messages have mean length a from

T
a
= (30T1 + 6T2 + 24T3 + 12T4 + 4T5 + 4T6)/30

If all the C. are variable this gives us a six dimensional solution

space, or five dimensional if the Ci have a constant sum. While a

solution is feasible it may require a considerable computation.

In the case we are considering, four of the six channels already

have fixed capacities allocated. C
5
 andC

6
 are 2.4 Kb, and C

2
and

C
4 are 50 Kb. This leaves C1

and C
3

to take on one of the following

possible values, namely 4.8, 7.2, 9.6 or 50 Kb. We now choose

a hypothetical mean message length for the purposes of investigation.

It has been observed that the mean message length of actual traffic

in the ARPA network is close to 600 bits. Without foreknowledge

it seems most probably that European traffic will be similar,

and so we take this value as our starting point. If a = 600,

we cancalculateTa fromtheT.,and these results are summarized

in Fig. 6-5. They show that all available combinations of C1 and

C
3

fall within the design range advanced above, but that the

good response case requires values of 50 Kb for each.

The square root channel capacity assignment which is optimal

for regular store and forward networks, can be instructively

applied to the case we are considering when all the C. are allowed

to vary. The square root assignment is optimal so long as the

packet traffic on each channel has the same mean length.

253

Channel P1

1 (a + 600)/C1

2 (a + 100)/5C2

3 4(a + 600)/5C3

4 2(a + 100)/5C4

5 2(a + 100)/15C5

6 2(a + 100)/15C6

Channel Ti

1 (a + 150)/C1 + i(a + 600) P1/(1-P1)C1

2 a / C2 + i(a + 100) P2/(1-P2)C2

3 (a + 150)/C3 + i(a + 600) P3/(1-P3) C3

4 a / C4 + i(a = 100) P4/(1-P4)C4

.5 a / c5 + 4(a + 100) P5/(1-P5)C5

6 a / C6 + 4(a + 100) P6/(1-P6)C6

Fig. 6-4. Values of Ti and Pi for L = 1/30.

254

C1 C3 4.8 7.2 9.6 50

4.8 .37 .33 .30
7.2 .33 .27 .25
9.6 .29 .25 .21 .17

50
r
.15 .10

Fig. 6-5. Values of T
600 for various

combinations of C1 and C3.

255

Examining the average packet lengths we see that when a = 400 all

of them are equal to 250 bits.

Consequently we can get some idea of the channel capacities

which would be required for a mean message length of 600 bits by

applying square root assignment to the network for messages of

average length 400 bits (mean packet length 250 bits). If a is

the mean message length in the subnet we.define b as the corre-

sponding mean packet length, giving

b = (2a + 875)/6.7

This is plotted in Fig. 6-6. We calculate the mean path length

n as the average path length of all packet journeys, weighted by

number of packets. This gives us

n = (4x8L + 4x8L + 3x8L + 2><24L + 1><48L + 1x60L)/168L

= 67442

The network loading is P = 168/30C when L = 1/30, giving

172 = 6790/3c

If we define S as the sum of the L., S = L. .

then we can use the following of Kleinrock's results:

Tb = n (1Li/S) 2b/ C(1-7P)

C. = bL. + C (1-7P) ic./ZriTi

This allows us to write

or

T, = 67 Tb
	42

. 1210 . b/(C - 6700/3)
268

C = 250 (268L 6o5/84TO

and

C. = 250 (L. + 605 	. 	1 	- L./L)
84><35 	Tb

256

(“a624-t C> MEAN 	C-E

C.A.CE-.7 6-TH I nl S u

257

0 (1=,-,rs. 00 	 so-0

For any Tb we have a corresponding value of C and consequently

of the C.. From these we can calculate T
a

using the equations

of Fig. 6-4. We have tabulated these values in Figs. 6-7 and 6-8.

A graph of Tb and T
a
against is shown in Fig. 6-9.

From these values we can see that if T
a

is to fall in the

range 0.1 to 0.8 seconds when a = 400 the corresponding values

ofTb,Cl andC.are as shown below. We may also notice that as

C becomes large the ratio Ta/Tb approaches a constant (approx. 3.6)

as we would expect.

0.1 < T
a

< 0.8

0.03 < Tb < 0.24

62.4 Kb < C < 9.75 Kb

19.8 Kb < C1 < 3.35 Kb

6.0 Kb < C2 < 0.84 Kb

17.6 Kb < C
3

< 2.90 Kb

8.7 Kb < C4 < 1.26 Kb

4.9 Kb < C
5

0.67 Kb

4.9 Kb < C6 < 0.67 Kb

We can see from these figures that a. = 400 we will get at

least acceptable response as long as all the C. have values

greater than those shown in the right hand column. In the case

being considered C2 and C4 may have values up to 50 Kb which is

certainly adequate. C5 and C6
are 2.4 Kb which is sufficient for

acceptable response, though not enough for good response. This lack

can of course be compensated for by increasing C1 and C3 above

their left hand column figures. We see that C, and C3 should be

of comparable size, with C
1

slightly greater than C3.

While the ranges for the Ci are based on a = 400 we can make

some estimate of the capacities required to give the same response

258

TB TA 	- -- CT
.1000E-01 .3635E01 .1826E+06
.2000E-.01 .7229E-01 .9243E+05
.3000E--01 .1078E+00 .6237E+05

. .4000E•-01 .1430E+00 .4733E+05
.5000E--01 .1779E+00 .3831E+05
.6000E01 .2124E+00 .3230E+05
.7000E...01 .2465E+00 .2800E+05
.8000E•01 .2804E+00 .2478E+05
.9000E-01 .3139E+00 .2228E+05
.1000E+00 .3472E+00 .2027E+05
.1/00E+00 .3802E+00 .1863E+05
.1200E+00 .4129E+00 .1727E+05
.1300E+00 .4454E+00 .1611E+05
.1400E+00 .4776E+00 .1512E+05
.1500E+00 .5095E+00 .1426E+05
.1600E+00 .5413E+00 .1351E+05
.1700E+00 .5727E+00 .1284E+05
.1800E+00 .6040E+00 .1226E+05
.1900E+00 .6351E+00 .1173E+05
.2000E+00 .6660E+00 .1125E+05
.2100E+00 .6966E+00 .1082E+05
.2200E+00 .7271E+00 .1043E+05
.2300E+00 -.7574E+00 .1008E+05
.2400E+00 .7875E+00 .9750E+04
.2590E+00 .8174E+00 .9449E+04
.2600E+00 .8472E+00 .9171E+04
.2700E+00 .8768E+00 .8914E+04
.2800E+00 .9062E+00 .8676E+04
.2900E+00 .9355E+00 .8454E+04
.3000E+00 .9646E+00 .8246E+04

Fig. 6-7. Values of Ta 	C for various Tb.

259

C1 C2 C3 C4 C5 C6
`65741E+05 *1794E+05 .5127E+05 .2569E+05 61463E+05 .1463E+05 -
.2921E+05 *9020E+04 62604E+05 *1295E+05 *7349E+04 .7349E+04
.1983E+05 *6047E+04 .1762E+05• 68697E+04 .4921E+04 *4921E+04
.1510E+05 04560E+04 6/342E+05 .6573E+04 .3708E+04 .3708E+04
.1228E+05 .3668E+04 .1089E+05 ' .5298E+04 62979E+04 .2979E+04
*1040E+05 .3073E+04 49212E+04 *4449E+04 02494E+04 .2494E+04
.9059E+04 02649E+04 08010E+04 03842E+04 62147E+04 .2147E+04
*8052E+04 .2330E+04 .7109E+04 43387E+04 .1887E+04 .1887E+04

. .7268E+04 .2082E+04 06400E+04 .3032E+04 .1685E+04 .1685E+04
.5641E+04 .1884E+04 .5847E+04 .2749E+04 ./523E+04 61523E+04
06128E+04 *1722E+04 45308E+04 *2517E+04 41391E+04 01391E+04
.5701E+04 01587E:r04 05006E+04 .2324E+04 41280E+04 .1280E+04
.5339+04 41472E+04 64682E+04 42161E+04 61187E+04 01187E+04
45330E+04 .1374E+04 44405E+04 42021E+04 *1107E+04 *1107E+04
.4761E+04 .1289E+04 .4165E+04 .1899E+04 41037E+04 41037E+04
.4526E+04 0/215E+04 03954E+04 .1793E+04 .9768E+03 .9768E+03
.4318E+04 .1149E+04 03769E+04 .1700E+04 69232E+03- .9232E+03
.4/34E+04 .1091E+04 .3604E+04 .1616E+04 .8756E+03 .8756E+03
.3969E+04 .1039E+04 .3456E+04 *1542E+04 .8330E+03 .8330E+03
.3821E+04 .9920E+03 .3323E+04 *1475E+04 *7947E+03 67947E+03
.3686E+04 .9495E+03 *3203E+04 *1414E+04 .7600E+93 67600E+03
.3564E+04 .9109E+03 .3094E+04 .1359E+04 .7285E+03 .7285E+03
.3453E+04 .8756E+03 .2994E+04 .1308E+04 .6997E+03 .6997E+03

.03351E+04 .8433E+03 .2903E+04 .1262E+04 .6733E+03 .6733E+03
;03257E+04 .8136E+03 .2819E+04 .1220E+04 .6491E+03 .6491E+03
.3170E+04 .7861E+03 .2741E+04 .1180E+04 .6267E+03 .6267E+03
'.3089E+04 .7607E+03 .2669E+04 .1144E+04 .6059E+03 .6059E+03
.3015E+04 .7371E+03 .2603E+04 .1110E+04 .5867E+03 .5867E+03

. 4,2945E+04 .7152E+03 . .2540E+04 . .1079E+04 .5687E+03 .5687E+03
.2880E+04 .6947E+03 .2482E+04 .1050E+04 .5520E+03 .5520E+03

Fig. 6-8. Values of Ci corresponding to Tb shown in Fig. 6-7.

nwl

times for a = 600. The estimate would be an increase of not more

than 50 per cent, since if a increases from 400 to 600 then b

increases from 25Q to 310, and we would not expect too severe a

perturbation from the regular store and forward situation to which

Kleinrock's equations apply. A fifty per cent increase in the C.

would ensure that mean packet transmission times, and therefore

queueing delays, were no larger than in the original situation.

If C2 and C4 are 50 Kb, well above what is required for

optimal assignment in the sense of minimizing the total C required

for a given response time, then T2 and T4 will be very small indeed.

Consequently other Ci may be assigned smaller than the optimal

values but still be sufficient to achieve the required mean message

response over the subnet.

The relative importance of these factors can be seen from the

fact that in the subnet under consideration C
1
and C

3
must be

50 Kb to give a response T
a
of 0.1 seconds (see Fig. 6-5). This

is well over the 50 per cent increase which might have been

expected if C5 and C6 were 7.35 Kb (1.5 x 4.9 Kb). In these last

few pages we have tried to show that even where the square root

capacity assignment is not strictly applicable, its use as an

approximation can provide insight into the factors affecting a

subnet.

262

6.3 The link model.

This section describes the model of the subnet that was

developed using the SHAPE system. We shall deal with the hardware

and software graphs and give reasons for the structure of each.

Finally we examine how the model parameters can be varied.

The hardware graph is shown in Fig. 6-10. It contains a

node for each of the computers involved in the subnet. These

nodes were initially given a very large storage capacity (9'10 bits)

to be effectively infinite. We use x'k to mean x times 10 to the

power k. The remaining node data was set to zero, since its

effects were not required for the investigation undertaken.

Each full duplex communication channel was represented by two

logically and physically distinct PIarcs, running in opposite

directions between the nodes at the ends of the channel.

By physically distinct we mean that each Plarc can be separately

and simultaneously allocated, as required by the full duplex

nature of the channel. This is achieved by giving each Plarc

a distinct processor number. Only one set of function character-

istics was defined in the PIarcs. This was the transmit function.

The execution time corresponds to the time for the channel to

transmit one bit, and utilization and efficiency were set to one

since the channel must be allocated as a unit, and then transmits

at a fixed rate. Typical data is shown in Fig. 6-11. Each line

corresponds to a data card, and the formats are described in

Appendix IV. The software graph has a set of nodes dealing with

traffic from each terminal cluster, and one set which represents

the flow of ACKs and RFNMs. The group of packets which corresponds

to activity in cluster i is called stream i, so that the behaviour

263

Fig. 6-10. Hardware graph of subnet.

264

Plnode data : 3 inarcs and 3 outarcs, capacity is 9'10 bits.

40 	3 	3

9110 0. 	0 	0 	0 	0

Plarc data: processor number is 45, channel capacity is

2.4K = (1/4.167'-4) bits per second, utilization and

efficiency are 1, functions 2,3,4 not specified.

40 50

50

45 	100

4.167'-4 	1 	1

-1 	-1 	-1

-1 	-1 	-1

-1 	-1 	-1

Fig. 6-11. Typical data for hardware graph.

265

of each stream is modelled by arcs between its set of nodes.

Since most of the ACK and RFNM handling is the same for all five

streams, this is modelled within a common set of nodes which we

may call stream zero. We show the graph structure for streams

zero, five, three and seven in Figs. 6-121 13, 142 15, 16 and the

initialization node (1) in Fig. 6-17. Streams six and four have

the same structures as streams five and three respectively.

It would have been possible to combine the activity of all

streams at a Plnode in a single corresponding Slnode. However,

this type of node would have been very large, with a high proportion

of zero elements. The method we have chosen uses much less storage

for the REP matrix elements. As well as this it is a good deal

clearer, and more flexible.

The separate modelling of the streams arises as follows.

One of the characteristics we wished the model to include was that

the flow of messages would be circular. That is to say that a

message leaves its cluster, travels through the subnet to the

US TIP, is transformed into a reply, returns to the cluster where

there is a delay corresponding to the user's think time, and

recommences the cycle. This is in effect a cycle of queues, some

in common, for each stream and leads to a fixed number of customers

within the system once it has been activated. This model corresponds

more closely to the real situation in which a number of interactive

users participate in dialogues with remote computers. Usually a

user will not send a message until he receives a reply to the

previous one, often because his next action depends on the reply.

Consequently, if response worsens the effect is to decrease the

number of messages generated per second.

266

- ... ---. . ---
I?I=I,'.II .

....... ;.~ l t ~i'''' -...... • .) I ~, r,

269

VV F L I_ WA

This would not be the case if the more usual procedure of independent

generation of messages was adopted.

In order to correctly represent cyclic message generation we

must ensure that a reply returns to the same cluster which produced

the corresponding message. This means that the outgoing reply streams,

as well as the incoming messages, must be kept separate, for if

they became intermingled and were activating the same dataset in a

Slnode, we would have no means of knowing the originating cluster,

and therefore no way to route them to that cluster. The use of

a separate set of nodes for each stream does not have any effect

on the number of arc executions, but does mean that very similar

data is replicated in each stream.

One of the conclusions which emerge from the application is

that we could specify a much more compact model (without separate

stream data) if the SHAPE system provided for more variables than

LAMBDA and BETA to be carried by a cut. In that case such a

variable might show cluster of origin and be used as a routing

indicator for the returning reply.

We now follow the progress of a typical message from cluster

five through the subnet. The user think time is represented by

a delay arc (95.2) at Slnode 95. This uses the IFloop facility

for setting BETA to the arc termination time (IFCODEONE = 4).

In fact IFCODEONE is set to -4 so that the delays can execute

concurrently. On completion 	a value of LAMBDA is chosen

(arc 95.3). The distribution is a negative exponential one, and

any value drawn which is greater than 1,000 is truncated to that

size. This is done to conform to the ARPANET limit on packet size.

For this truncated distribution to have a mean (MU) of 600 bits,

273

we must select the correct mean (LAMBDA) of the exponential

distribution. This is derived as follows. The probability density

function of the exponential distribution is,

p.d.f. = -Xx xe

If the truncation level is k (= 1,000) we can write

oo
= 	x X e X xdx + k S e- xdx

lk 0

ck -Xx 	- X x co
= 1-xe

x]kk
 + 	e 	dx + k[-e]k

0

- k = -ke 	1 	XxkX
+ [- — e 	0 + ke

-kX

(1 - e-Xk)/X

Values of LAMBDA for various MU are tabulated in Figs. 6-18, 19.

Having chosen a value for the message length, the packet is

transmitted to Slnode 45. Slnode 95 was tied to Plnode 50 by

having the appropriate field in its data set to this value.

Slnodes 45, 35, 25, 15 are similarly tied to Plnodes 40,30, 20,

10. At Slnode 45 the message is queued if necessary and then

transmitted to Slnode 35. Here the message length is increased

by 150 bits (its ARPANET overhead) by arc 35.4. The message is

again queued if necessary and transmitted to Slnode 25. Here it

activates two elements in the row marked 35. One (of magnitude

one) queues the message for further transmission to Slnode 15,

and the second (of negligible size E) acts via a no operation

(NOP) arc to initiate transmission of an ACK from Slnode 20 to

Slnode 30.

Since the outgoing LAMBDA is the product of the incoming

arc and the REP element activated, the NOP has a LAMBDA which is

271+

SOLUTION OF MU

MU

2 	(1, 	EXPt-LAmDA*K))/LAmDA FOR K =

LAMDA 	1/LAMDA

100 ,0099995 100.0
110 .0090899 110.0
120 .0083313 120.0
130 .0076888 130.1
140 .007137? 140,1
150 .0066581 150,2
160 .0062378 160.3
170 .0058657 170.5
180 .0055336 00.7
190 .0052351 191.0
200 .0049651 201.4
210 .0047194 211.9
220 .0044947 222.5
230 .0042881 233.2
240 .0040974 244.1
250 .0039207 255.1
260 .0037563 266.2
270 .0036028 277.6
280 .0034591 289.1
290 .0033241 300.8
300 .0031971 312.8
310 .0030771 325.0
320 .0029637 337.4
330 .0028561 350.1
340 .0027539 363.1
350 .0026566 376.4
360 .0025639 390.0
370 .0024753 404.0
380 .0023906 418.3
390 .0023094 433.0
400 .0022116 448.1
410 .0021569 463.6
420 .0020850 479.6
430 .0020158 496.1
440 .0019491 513.1
450 .0018847 530.6
460 .0018226 548.7
470 .0017625 567.4
480 .0017044 586.7
490 .0016482 606.7
500 .0015936 627.5
510 .0015407 649,0
520 .0014894 671.4
530 .0014396 694,7
540 .0013911 718.8
550 .0013440 744.0
560 .0012981 770.3
570 .0012535 797.8
580 .0012100 326.4
590 .0011676 856,4

Fig. 6-18. Means of truncI2i1:128ative exponential
distributions.

1000

275

SOLUTION OF MU = (1. 	EXP(-LAMDA#K))/LAMDA FOR K = 1000

MU LAMDA InAmook

600 .0011263 887.9
610 .0010859 920.9
620 .0010465 955.5
630 .0010080 992.0
640 .0009704 1030.5
650 .0009337 1071.0
660 .0008977 1113.9
670 .0008626 1159.3
680 .0008282 1207.5
690 .0007944 1258.7
700 .0007614 1313.3
710 .0007291 1371.6
720 .0006974 1434.0
730 .0006663 1500.9
740 .0006358 1572.9
750 .0006059 1650.5
760 .0005765 1734.6
770 .0005477 1825.9
780 •0005193 1925.5
790 .0004915 2034.4
800 .0004642 2154.2
810 •0004374 2286.5
820 .0004110 2433.4
830 .0003850 2597.4
840 .0003595 2781.9
850 .0003343 2990.9
860 .0003096 3229.7
870 .0002853 3505.0
880 .0002614 3826.2
890 .0002378 4205.6
900 .0002146 4660.8
910 .0001917 5217.0
920 .0001691 5912.0
930 .0001469 6805.5
940 .0001251 7996.6
950 .0001053 9500.0
960 •0001042 9600.0
970 .0001031 9700.0
980 .0001020 9800.0
990 •0001010 9900.0
1000 .0001000 10000.0

Fig. 6-19. Means of truncated nefiative exponential
distributions (continued).

276

very small and variable. Consequently we need an arc (20.2) in

Slnode 20 to set the ACK size to 150 bits. This is then trans-

mitted to Slnode 30 where it is destroyed since the terminal dataset

elements are all zero.

The message arrives at Slnode 15 which is its final destination.

Here it initiates transmission of an ACK from Slnode 10 to Slnode

20, in the same way as outlined above. Additionally a RFNM is

immediately transmitted back to the originating node, followed by

the reply which is simply the message with a new length. This is

chosen in the same way as the original one. Both these are trans-

mitted to Slnode 25 using the same arc. Here ACKs are generated,

and the packets forwarded to Slnode 35.

At this point the packets leave the ARPANET so that the

message is reduced in length by 150 bits, and the RFNM is changed

to 100 bits. They are both transmitted to Slnode 45 and on to

Slnode 55. Here the RFNM is separated from the reply using a

DOloop which completes on every second activation (arc 55.1).

The RFNMs are destroyed by arc 55.3 and the messages are used to

create ingoing RFNMs of length 100 bits, as well as activating

a new think period in Slnode 95 (after reduction of LAMBDA to 1

by arc 95.1).

The ingoing RFNM is transmitted to Slnode 45 and forwarded

to Slnode 30. Here its length is changed to 150 (RFNM length in

the ARPANE2) and it is transmitted to SInode 20, where it generates

an ACK and is forwarded to SInode 10. Here the RFNM is turned

into its own ACK by returning it to SInode 20 along the ACK trans-

mission arc.

277

The other streams exhibit the same basic pattern with some

snail variations. The whole graph is initially activated by NOP

arcs from Slnode 1 which go to think time dataset of each stream.

The number of times these are activated corresponds to the number

of terminals in the cluster, and the activations are produced by

appropriate DOloops at Slnode 1.

The parameters of the model can be altered for each stream

individually. In each one the think time for a user can be

changed by altering the mean delay in, for example, arc 95.2.

Similarly the mean message length can be reset, and need not be

the same for messages as replies. The number of users active in

a cluster can be altered by changing the DOloop limits in the

initializing node.

It is very easy to convert the model from cyclic message

generation to independent generation as a series of Poisson events.

Firstly it is necessary to change the REP matrix element of the

reply receiving node which activates the think time node from 1 to

0 (for example in Slnode 55 we would alter the element at the

intersection of row 55.2 and column 95). Then the think time

delay is made to propagate itself by having it activated each

time a message length is chosen (for example in Slnode 95 we alter

the element at the intersection of row 95.3 and column 95.1 from

zero to one). A Poisson series of events is obtained by setting

IFCODEONE positive in arc 95.2. This ensures that successive message

generations take place at intervals drawn from a negative exponential

distribution.

We have outlined a few elementary ways in which the model can

be altered, and many more are possible. For example the next

section includes a description of the addition of a background

278

of file transfer traffic to the model described above.

279

6.4 Results.

In this section we present the results obtained by executing

the link model with various parameter values. The mean user think

period delay was initially set to thirty seconds. The number of

terminals activated in each cluster was as described in the

previous analysis. This gives a total of thirty active terminals,

so that the subnet generates approximately one message per second.

Three possible values were considered for C1 (4.8, 9.6 and

50 Kb)*and in each case C
3
was made equal to C. The response

observed at each terminal was recorded and statistics accumulated

by setting an INarc specifier negative in the reply receiving

node for each stream (e.g. -55.2 for stream five). The mean

response at node i is 2Ti, as defined earlier. Consequently an

execution of the SHAPE model gives us the variables required to

calculate T
a, the mean message delay in the subnet.

To examine the effects of increased loading the mean think

period was decreased, thus increasing the overall message

generation rate. A series of execution runs was performed for

each of the three channel capacities considered, in which the

load on the subnet was gradually increased. The results of each

series are calculated in Figs. 6-20, 21, 22. The first five

columns give the observed response times of the clusters and the

last two give Ta calculated with observed and expected numbers

of messages generated during the run.

The first series run was that with C
1

= C
3
= C = 9.6 Kb.

For each value of the mean think time P at least three runs were

performed. In order that they should provide independent results

* Kb stands for kilobits/sec.

2b0

CYCLIC MESSAGE GENERATION WITH C m 4.8 AND UNLIMITED MEMORY

THINK RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE NORMALIZO

	

PERIOD 	UK TIP NORW TIP 	PDP9 CDC 6600 	I8M 360 NET MEAN NET MEAN

	

30.0 	0.7157 	0.4027 	0.7923 	1.1980 	1.1430 	0.3805 	0.3911
30.0 0.7200 0.4137 0.7827 1.2480 . 1.050 0.3939 0,3978

	

30.0 	0.7423 	0.4099 	0.8026 	1.2410 	1.1950 	0.4020 	0,4041

	

26.0 	0.7572 	0.4245 	0.8762 	1.2060 	1.1620 	0.4118 	0,4089

	

26.0 	0.7344 	0.4156 	0,9163 	1.2290 	1.1640 	0.4126 	0,4077

	

2240 	0.7922 	0.4523 	0.8563 	1.2350 	1.2140 	0.4348 	0.4225

	

18.0 	0.7540 	0.4420 	0.0961 	1.3200 	1.2140 	0.4366 	0,4214

	

140 	0.9092 	0.5205 	0.8925 	1.3580 	1.3330 	0.4711 	0.4701

	

10e0 	0.9632 	0.6019 	1.1240 	1.4060 	1.3450 	0.5001 	0,5079 co _.1

	

6.0 	1.6300 	0.9692 	1,2900 	1.9690 	1,6420 	0.7158 	0.7427

	

6.0 	1.1030 	0.8048 	0.9993 	1.7600 	1.4600 	0.5983 	0,5763

	

3.0 	1.4660 	1.2170 	1.0380 	2.3260 	1.8680 	0.7173 	0.7478

	

3.0 	2.4770 	1.2940 	1.7220 	2.2170 	1,9700 	0,9539 	0,9971

	

3.0 	5.0560 	1.8270 	2.0900 	2.9160 	3.0480 	1.5552 	1,5890

	

1c0 	5.2490 	1.8000 	2.2160 	2.7540 	2.8190 	1.5583 	1.5901

	

1.0 	2.3010 	1.9130 	2.1850 	3.5'060 	3.2030 	1.2164 	1,2098

	

1.0 	5.3940 	3.6030 	2.9210 	3.3130 	3.4210 	1.8858 	1,9865

	

1.0 	7.5980 	4.2790 	3.0480 	3.4560 	3.3780 	2.2043 	2,3133

Fig. 6-20. Subnet response when C = 4.8.

N)

S
u

bn
e
t
 ra

s
p
on

s
e
 wh

en
 C

 =

CYCLIC MESSAGE GENERATION WITH C ■ 9.6

	

THINK 	RESPONSE 	RESPONSE 	RESPONSE

	

PERIOD 	UK TIP 	NORW TIP 	PUP9

AND UNLIMITED MEMORY

RESPONSE 	RESPONSE
CDC 6600 	I8M 360

30.0 0.3577 0.2150 0.4291 0.8247 0.8282
30.0 0.3529 0.1971 0.4093 0.8575 0.8283
30.0 0.3450 0.2073 0.3928 0.7935 0.7737
30.0 0.3414 0.2004 0.4238 0.8262 0.7623
30.0 0.3462 0.2090 0,3894 0.8558 0.8265
26.0 0.3524 0.2210 0.4052 0.8605 0.8065
26.0 0.3518 0.1993 0.4045 0.8350 0.8462
26.0 0.3562 0.2022 0.4158 0.8(89 0.8197
22.0 0.3479 0.2022 0,4216 0.8364 0.8236
22.0 0.3538 0.2229 0,4094 0.8376 0.8320
22.0 0.3423 0.2131 0.4099 0.8726 0.8296
18.0 0.3535 0.2086 0.4179 0.8689 0.8455
18.0 0.3527 0.2254 0.4041 0.9259 0.8503
18.0 0.3504 0.2053 0.4009 0.8705 0.8195
14.0 0.3759 0.2168 0.4126 0.8524 0.8632
14.0 0.3690 0.2242 0.4226 0.9590 0.8812
14.0 0.3702 0.2160 0.4283 0.8535 0.8712
10.0 0.3806 0.2367 0.4362 0.9020 0.8850
10.0 0.3737 0.2146 0.4444 0.9175 0.8806
10.0 0,4089 0.2507 0.4487 0.8978 0.8401
6.0 0.4089 0.2402 0.4916 1.1220 0.8448
6.0 0.4259 0.2297 0,5074 0.9140 0,8959
6.0 0.4754 0.2547 0.5124 0.9042 0.8599
3.0 0.6727 0.4374 0.6380 1.1090 1.1300
3.0 0.7050 0.5338 0.6243 1.1550 0,9725
3.0 0.6849 0.4259 0.6630 1.1810 1.1610
3.0 1.0800 0.4457 0.6865 1.2330 1.2010
3.0
1.0
1.0
1.0

1.0690
0.9013
1.7420

0.6008
0.7309
0.8612

0,8276
0.9235
1.4550

1.3540
1.8010
1.8560

1.3080
1.4690
1.68 1 0

1.0
2.5820
3.8480

1.3890
1.8400

1.1410
1.3700

1.8760
1.6190

1.7490
1.6070

RESPONSE NORMALIZE)
NET MEAN NET MEAN

	

0.2195 	0.2309

	

0.2168 	0.2290

0 	
0.2196

	

0.2200 	0.2217

	

0.2197 	0,2273
0.2311 0.2297

	

0.2389 	0.2283

	

0.2259 	0.2313

	

0.2263 	0,2273

	

0.2202 	0.2305

	

0.2349 	0,2293

	

0.2412 	0.2321

	

0.2410 	0.2367

	

0.2224 	0,2285

	

0.2379 	0.2368

	

0.2465 	0,2447

	

0.2360 	0.2372

	

0.2382 	0.2451

	

0.2410 	0.2426

	

0.2512 	0.2502

	

0.2564 	0.2636

	

0.2546 	0,2581

	

0.2625 	0.2686

	

0.3500 	0,3623

	

0.3510 	0,3726

	

0.3631 	063708

	

0.4460 	0.4570

	

0.4999 	0.4980
0,5063 g:m:
0479N1 0.8876

	

1.0830 	1.1065

CYCLIC MESSAGE GENERATION WITH C = 50

	

THINK 	RESPONSE 	RESPONSE 	RESPONSE

	

PERIOD 	UK TIP 	NORW TIP 	PDP9

AND UNLIMITED MEMORY

RESPONSE 	RESPONSE
CDC 6600 	IBM 360

RESPONSE NORMALIID
NET MEAN 	NET MEAN

30.0. 0.06586 0.05601 0.09723 0.5773 0.5479 0.0912 0.0995
30.0 0.06529 0.05527 0.09765 0.5609 0.5368 0.0880 0,0475
30.0 0.06478 0.05685 0.09761 0.5534 0.5356 0,0900 0.0970
30,0 0,06567 0.05499 0.09921 0.5748 0.5469 0.0944 06 0992
26.0 0.06513 0.05532 0.09694 0.5722 0.5635 0.1029 0,0998
26.0 0.06529 0,05557 0.09944 0.5781 0.5550 0.1122 0,0998
22.0 0,06501 0.05454 0.09477 0.5778 0.5775 0.0973 0,1006
18.0 0.06556 0.05531 0.09787 0;6142 0.5704 0.1188 0,1027
14.0 0.06547 0.05554 0.10050 0,5631 0.5284 0.0834 0,0966
10.0 0.06571 0.05687 0.09636 0.5821 0.5866 0.0994 0,1007
6.0 0.06658 0.05575 0.09845 0.6451 0.5773 0.1088 0,1025
3.0 0.06948 0,05798 0.10240 0.6041 0.5936 0.0880 0,0485
1.0 0.09042 0.07496 0.12560 0.7775 0.6426 0.0848 0.1042

Fig. 6-22. Subnet response when C = 50.

rather than being duplicate runs, all random number seeds were

altered for each run. This is more satisfactory statistically,

than running the model for different durations with the same set

of seeds. For heavier loading the model took longer to reach

a steady state, and provide convergent results. The two values

of P where this had a significant effect were P = 3.0 and P = 1.0.

In these cases more than three runs were made, and they appear

in order of increasing duration. For P = 3.0 the value of T
a

in the final run was 0.4999 secs with double the original run

time. We would expect the steady state to be between 0.5 and

0.6 seconds. The result was not pursued further since the runs

of that duration were already consuming considerable computer

time, and the loading was at the limit of the range we were

considering, namely one order of magnitude greater than the

starting estimate.

The runs with P = 1.0 were executed to obtain an indication

of behaviour for loading with P less than 3.0 There is little

convergence apparent in the results, and we can see that the

response time is considerably greater than the think time. Under

these circumstances the cyclic nature of the model plays an

important part by preventing message generation until responses

are received. In contrast we can see that with P = 3.0 all

responses are still less than half the think time. We conclude

that with C = 9.6 and P = 340 we are approximately an order of

magnitude from a load which causes the subnet to explode.

A similar set of runs was executed with C
1

= C
3
 = 4.8 and

it can be seen that the response time for P = 39 is a good deal

longer, and that rapid deterioration begins at a larger value

281+

of P (6.0) than with C = 9.6 Kb. Setting C1 = C
3
= C = 50 Kb gives

us the results in Fig. 6-22 which show that in this case there is

little or no variation of response time in the range of loads we

have examined. We note in passing that the results agree well

with the values of T
a
calculated earlier for P = 30 and shown in

Fig. 6-5.

After these runs the model was altered to give non-cyclic

generation of messages. The method of doing this has been described

at the end of the previous section, and allows a message generation

node to operate independently of the subsequent fate of its messages.

The results are shown in Fig. 6-23. For the lower loadings mean

response time is not significantly different from the cyclic case.

However, for the runs P = 6.0 and P = 10.0 we see that T
a
is

slightly greater than for the cyclic case. The fact that this

difference does not increase in the runs for P = 3.0 and P = 1.0

we attribute to insufficient run-time to reach a steady state.

We would expect that in a steady state, with comparable loads on the

subnet, the non-cyclic case would produce more messages per second,

and consequently longer response time.

The question of comparable load is effectively that of the

rates at which the five independent generators should produce

messages. For the runs in Fig. 6-23 we derived mean delays as

follows. If r. is the mean response observed for cluster i when

the think time delay is P, we can say that the mean cycle time for

a message in the i th cluster is

Cycle i = P + r.

No. of messages/sec in i th cluster = ni/(P + r.)

285

IHINK
PERIOD

MESSAGE GENERATION WITH C s

	

RESPONSE 	RESPONSE 	RESPUNSE
U 	TIP 	NORW TIP 	POP9

9.6

RESPONSE
COC 6600

RESPONSE
I8M 360

RESPONSE NORMALIZO
NET MEAN 	NET MEAN

3060 0e3649 002084 0.4305 0.8767 0.8026 0,2304 0,2345
77!6»0 0t36G5 0.2006 0.4008 0.8423 0,8344 0.2285 0,2307
'i'.20 0J354 0,2107 0.4314 0.8371 0.8218 0.2300 0.2315
1860 0.3631 0,2177 0,4085 0.8452 0.8511 0.2308 0,2347
1441 0.3782 0.2206 0,4073 0.8475 0.7961 0,2333 0,2344
'1040 0,4000 0.2389 0,4633 0.9106 0.9198 0.2589 002568

0 0.5139 043250 0,5377 1.0040 0.9684 0.2990 1,3036
6.0 0.4965 0.3129 0.4825 0.9923 0.8603 0.2792
3.0 088306 0.4873 0.6889 1.2050 1.3740 0.4458 0,47:27
3.0 0,8407 003868 0.5718 1.1800 1,2120 0.403 C,4044
1.0 1.0100 0.5171 1,0870 1.5610 1.:2740 0.5195),5:52
1.0 2,936U 1.4500 1.3770 1.7510 :.3430 (.39271 1,0309

Fig. 6-23. ii2p=aillaan2y9tton of mesa25222.

	

1 rini
	ni Mean message delay = -2-

	

p+r
i 	

p+r.
i

For each value of P in the set of runs, the terminals of cluster i

weresettogenerate-OP-Fr.)messages per second.

A further series of runs was undertaken which gave results for

T
a for various mean message lengths (cyclic generation). These are

shown in Fig. 6-24. The runs were for values of P = 3 and P = 33

and covered the range 300 to 900 bits for each. The purpose of

these runs was to examine how sensitive T
a
is to variations in a.

For P = 3D we can see that there is a smooth increase, and that

even with a very high (900) mean message length the vallle of Ta

falls within the design range set previously. For P = 3 the

results suffer from insufficient runtime for the higher message

lengths. The sets of computer runs so far described are to be

found in INDRA Notes 287 to 291 inclusive. The tabulated results

are shown in graphical form in Figs. 6-25, 26.

We can see that for purely interactive traffic at the level

estimated (P = 30), all three values of C would be sufficient.

If C = 50 Kb the response time will be good (Ta = 0.1) for this

level of loading or more. If C = 9.6 Kb, the response time is

still fairly good (Ta = 0.22), and remains within the desired limits

for loads up to an order of magnitude larger. For C = 4.8 Kb the

value of T
a

is about a half of the acceptable limit, and the load

increase available is less than an order of magnitude. From these

results we recommend that for operation with interactive traffic,

the most appropriate values of C
1
and C

3
in the subnet would be

9.6 Kb.

We now discuss the addition of a background of file transfer

traffic to the model. This type of traffic consists of full ARPA

287

CYCLIC MESSAGE GENERATION WITH BLOCK LENGTH VARIATION, C s 9.6, P x 3 AND 30

BLOCK THINK RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE NORMALIZD

	

LENGITS PERIOD 	UK TIP NORW TIP 	PDP9 CDC 6600 	IBM 360 NET MEAN NET MEAN

300 	3.0 	0.3343 	0.2224 	0.3142 	0.6765 	0.5825 	0.1858 	0.1906
400 	3.0 	0.5705 	0.3306 	0,5934 	0.8322 	0.9552 	0.2988 	0.3006
500 	3.0 	0.6470 	0.4133 	0.6124 	1.1760 	1.0560 	0.3479 	0,3520
700 	3.0 	1.1980 	0.7290 	0,8710 	1.5090 	1.5560 	0.5524 	0.5644
800 	3.0 	1.2960 	0.7968 	1.0980 	1.6430 	1.6300 	0.6140 	0,6201

co N) 	900 	3.0 	1.2390 	0.7213 	0.9239 	1.8400 	1.6990 	0.5905 	0,6008
co 	300 	30.0 	0.2211 	0.1472 	0.2271 	0.4799 	0,4504 	0.1318 	0,1359

400 	30.0 	0.2734 	0.1806 	0.2897 	0.5,97 	0.6334 	0.1698 	0.1725
500 	30.0 	0.3143 	0.1822 	0,3273 	0.7879 	0.8431 	0.2100 	0.2107
700 	30.0 	0.4081 	0.2560 	0,4292 	0;9344 	1.1000 	0.2665 	0,2700
800 	30.0 	0.4424 	0.2736 	0.4755 	1.2420 	1.1500 	0.2945 	0,3049
900 	30.0 	0.4869 	0.2956 	0,5300 	1.2430 	1.2320 	0.3229 	0.3252

Fig. 6-24. Variation of response with 2Loket length.

messages, that is to say eight packets each of 1,000 bits. In order

to provide this background we have introduced a separate generating

node for each stream (for example node 85 for stream 5). This node

generates eight-packet messages at intervals drawn from a negative

exponential distribution. We show the structure of the node in

Fig. 6-27.

Since the traffic is a background it is sufficient to generate

only the inward bound blocks, and examine the effect on inward

interactive traffic. By arguments from the symmetry of the traffic

inward and outward, we include a RFNM for each block and inward

ACKs corresponding to those of the blocks themselves. The addition

of the inward traffic is to stream zero, and the modified stream

is shown in Fig. 6-28. The message generation is initialized

by an extension to node one which gives the block traffic the

same proportional pattern as the interactive. Of course

this need not be the case in actual operation, but without

foreknowledge it is the most reasonable estimate. The extended

node one is shown in Fig. 6-29.

The average interactive message delay is observed by

measuring the mean elapsed age of the messages from each

stream as they reach the US TIP. As before, Ta is calculated

from these values weighted by cluster size.

Several runs were executed with background traffic, but

we have not included the results since the number of message

trips completed within the run limits was insufficient to

provide meaningful statistics. The amount of computer time

required to produce significant results would not have been

available without special arrangements and consequently longer

runs were not attempted.

291

'-'-r'; ' .. ~ .. , '-1·" .. --; ..

! I
! 1

. i .~ .

. , ,

~ . .
: j .'

- --_. -. ---:-.. ~--- "--
I

\
i "." .. - --- >-- ' -

! ,

Finally a number of runs were made with the original model

to examine the effect of varying C
1

and C
3

when the load was

held constant. All possible combinations of the values 4.8,

7.2, 9.6 and 50 Kb for the channels C
1
and C

3
were run with a

load on the network produced by setting P = 30. We show the

values of T
a obtained in tabular form in Figs. 6-30, 31 and in

graphical form in Fig. 6-32. The Ta are calculated using

expected numbers of messages.

It is clear from the structure of the link that if one of

C
1
 and C

3
is to be increased in order to reduce the value of T

a

then the greater reduction is obtained by increasing Cl.

The degree of this advantage is shown in Fig. 6-31. In Fig. 6-30

we can see that an increase in C
1

or C
3

benefits most those

terminal clusters in whose message paths the channel is the most

significant component. The results show that if a particular

message delay is to be obtained, then the sum of C
1
and C

3
is

least when they are approximately equal. Assuming that channel

cost is related to capacity, enhancement divided equally between

channels one and three will provide the greatest improvement in

performance for a specific cost.

295

CHANNEL
ONE

CHANNEL
THREE

RESPONSE
UK TIP

RESPONSE
NORW TIP

RESPONSE
PDP 9

RESPONSE
CDC 6600

RESPONSE
IRK 360

RESPONSE
NET MEAN

4.8 4.8 0.72o0 0.4137 0.7827 1.248o 1.1750 0.3977
4.8 7.2 0.6133 0.3935 0.7348 1.1460 1.0810 0.3595
4.8 9.6 0.5636 0.4040 0.6783 1.0380 1.0300 0.3362
4.8 50.0 0.4345 0.4081 0.5176 0.9386 o.8846 0.2838

7.2 4.8 0.5987 0.2656 0.7001 1.1210 1.0510 0.3378
7.2 7.2 0.4792 0.2703 0.5850 0.9739 0.9307 0.2888
7.2 9.6 0.4249 0.2648 0.4929 0.9249 0.8927 0.2655
7.2 50.0 0.3048 0.2789 0.3474 0.7811 0.7389 0.2133

9.6 4.8 0.5362 0.21054 0.6398 1.0320 0.9805 0.3046
9.6 7.2 0.4131 0.2069 0.4925 0.8912 0.8599 0.2529
9.6 9.6 0.3462 0.2090 0.3894 0.8558 0.8265 0.2257
9.6 50.0 0.2277 0.2131 0.2740 0.7193 0.6771 0.1782

50.0 4.8 0.4108 0.0551 0.4778 0.9104 0.8538 0.2371
90.0 7.2 0.2776 0.0554 0.3254 0.7709 0.7184 0.1820
50.0 9.6 0.2033 0.0552 0.2487 0.6985 0.6595 0.1533
50.0 5o.o 0.0653 0.0553 0.0977 0.5609 0.5368 0.0983

Fig. 6-30 	Subnett... ra.!..se for various combinations of C and C
3

whop P 3).

T
a

c1 	3 4.8 7.2 9T6 50

4.8 0.3977 0.3595 0.3362 0.2838

7.2 0.3378 0.2888 0.2655 0.2133

9.6 0.3046 0.2529 0.2257 0.1782

50 0.2371 0.1820 0.1533 0.0983

Fig. 6-31 Ta for combinations of C1 and C3 when P EJO.

297

CHAPTER VII

CONCLUSION

299

7.1 Summary of research aims achieved.

In the preceding chapters we have described research which

attempted to provide a system for modelling computational activity

and to demonstrate its practicality in a real situation. We now

summarize the results and draw some conclusions. In the next

section we make suggestions for further research.

The SHAPE system uses directed graphs whose elements have

associated numerical data in order to describe both the hardware

and software of a computational process. This combination may

be thought of as a type of notation which can not only perform a

descriptive role, but is also capable of execution in the sense

of enacting the computation described. We have found the notation

useful in its own right as a means of clearly and unambiguously

specifying hardware and software. Its graphical nature is

particularly suited to the expression of parallelism in software

and the hardware counterpart of parallelism, namely multi-processing.

In the case of software the dependences of processes are expressed

by the use of arcs and nodes. The interaction of processes via

the data they produce is described by the repartition matrix

associated with each node.

It seems clear that a computation can be hardened or

softened to an arbitrary degree, that is that the proportion

expressed in hardware can vary from next to nothing to the entire

computation. This point of view has led us to search for

representations whose structure is applicable to hardware and

software, and which maximize the number of aspects common to both.

To some extent we have succeeded in this. The hardware and

software representations are both graphical in form.

300

The nodes of Slgraphs and Plgraphs correspond to the software and

hardware aspects of data. Similarly the arcs of each type of

graph correspond to the software and hardware aspects of data

transformation.

Of course the correspondence is not as good as we would

wish it to be. Nevertheless it has allowed us to developi,

without undue difficulty, an algorithm which models the execution

of a computation in fairly general terms. We have called the

algorithm's action the binding of a Slgraph and Pigraph. This

simple interpretation of computation is possible because of the

correspondence between the two graphs. The algorithm is at the

heart of the SHAPE implementation, in which it is called the

allocator.

Our use of nodes and arcs to model data and data trans-

formation has allowed us to give a simple and consistent

account of data transmission and storage. Data transmission

is treated as the operation of an identity processor since no

alteration occurs, and data storage is equivalent to the

operation of the null processor. The structure of the graphs

is recursive, allowing a process to be modelled not only by an

arc$ but also by a functionally equivalent subsidiary graph.

This allows a model to span an arbitrary number of levels of

detail. The griaphs can potentially model a recursive structure,

and consequently the SHAPE implementation has the ability to

bind the two graphs recursively.

By implementing the modelling system, and using it in the

context of a real design situation, we have tried to verify that

it could be programmed, used, and provide accurate results.

301

A high level language, STMULA 67, was chosen for the implementation

because of the need for list processing, class definition, simulation

facilities, and recursion. Class definition was used to provide

the elements of the system such as arcs and nodes, and their linkage

in a graph model was reproduced within the computer with list

processing primitives. The most convenient way to program the

binding algorithm was through the use of simulation facilities,

since an obvious fundamental property of a computation is that it

advances with time. We did not succeed in implementing the full

facilities of the system because of insufficient time and

limitations in the software that was used. However, enough was

completed to proceed with a validation of the SHAPE program.

A store and forward network was chosen as the validation

example for two reasons. Firstly, our knowledge of the subject

was very detailed, and this helped to ensure an accurate model

and thorough comprehension of the results. Secondly, the

modelling experience was directly relevant to the intended

application of the SHAPE system to the European linkage with the

ARPA network. The results produced by the store and forward

model did not require us to reject the validity of the SHAPE

system at the ninety-five per cent confidence level. In fact

a good agreement with theoretically expected results was obtained.

We then turned to using the modelling system in a real

design situation, namely the choice of channel capacities in two

of the channels forming part of the European ARPANET. A model

was successfully developed and used to predict mean interactive

response times under various conditions. This work, and the

design recommendations it led to, are delribed in the previous

302

chapter. In addition to their immediate utility, these results

demonstrate the capacity of the SHAPE system to describe and model

the opening of an application which is neither trivial nor artificial.

Graphs have been used previously to describe programs,

and to discover properties of programs so described, but no

equivalent schemes were produced for hardware description.

Our approach has been novel in the recognition of hardware

software equivalence, which led us to provide a system of graphical

description applicable to bothiand in the requirement that the

descriptions should be directly usable for modelling computational

activity. As a result the SHAPE system is original in its use

of the same elements to provide both types of description, and

in leading to a new view of computational activity, namely the

binding together of a software and a hardware graph.

Earlier the graph descriptions have been called a type of

notation. This notation is not only descriptive but also

executable in the same way as a high-level programming language.

We believe that the SHAPE system is perhaps the first to provide

an executable graphical notation for modelling computational

activity, and the means for executing it.

303

7.2 Suggestions for further research.

As is necessarily, the case in research, we have not been able
\

to attempt all we would have wished to, nor even achieve all we

attempted. Our suggestions for further research inevitably stem

from this situation. In working towards our main aims we have

sometimes had to make a choice or accept an assumption without

sufficiently deep investigation. These are also areas of

potential research.

For example, the correspondence between the elements of

hardware and software graphs is not as good as it might be.

In particular the IFloop, while adequate for modelling, does not

correspond well with a Plarc whoseinitial and terminal nodes are

the same. It might perhaps have been better to include the two

IFcodes as normal software functions in the PHI vector. The choice

of possible IFcode actions was not deeply investigated and could

perhaps be rationalized. In addition, we would have liked to

give more time to the representation of processors which can

transfer data between more than one pair of stores. While their

representation as a number of PIarcs with an allocation inter-

lock is well justified, further consideration might provide a

more elegant model.

An area which we have not touched upon at all, and which

should be of some interest, is the investigation of a computation

described by a Slgraph and Plgraph by analytical techniques rather

than by actually binding the two graphs. Furthermore, while we

have presented a model of the binding process, this has not

included any techniques by which the binding algorithm might

optimize some aspect of the computational process.

For example, the algorithm might attempt to minimize the total

binding time for the graph pair, either by complete optimization

or by a sub-optimal technique such as limited look-ahead.

In addition to these subjects, we would have wished to give more

attention to the equivalence between preemptive and fractional

allocation strategies.

Turning now to the SHAPE program, we must make the comment

that although the features of SIMULA 67 are very well suited

to the implementation of the modelling system, the compiler

and the programs it produces are also very inefficient. This had

several undesired effects on our work. Firstly, it was not

possible to implement the full set of modelling facilities.

In particular, the ACT matrix attribute of a Slnode was not

included, and consequently neither were the related functions

of mode 3 binding and error modelling. Further work we would

suggest in this area would be the creation of an efficient

implementation that provided these facilities.

In the SHAPE implementation the allocator binds a ready

Slarc to the Plarc which minimizes the duration of the resulting

tie. A useful feature which might be added to the system would

be the insertion by the modeller of alternative binding strategies

with his run-time data. Lastly, an aspect of the SHAPE program

which is capable of improvement is the activation of ready

SIarcs that are waiting for the Plgraph resources they need

to become available. The existing method using delay arcs is

primitive and not very efficient.

Finally, it must be clear that one validation cannot be

an exhaustive test of the SHAPE program, and one application

395

cannot confirm its utility in a wide range of computations.

Consequently we would wish to see the modelling system used in

other areas beside the one chosen for this thesis. Where

theoretically expected results were known further validation

would be possible, and where none were available such use would

provide additional demonstrations of the system's wider

applicability.

3o6

APPENDIX I

BIBLIOGRAPHY

307

ABAT 68 Queuing Analysis of IBM 2314 Disc Storage Facility.
ABATE, DUBNER & WEINBERG. Journal of the ACM.
V01.15, No.4, 1968.

ABLO 68 Irreducible Decompositions of Transformation Graphs
by Assignment Techniques. ABLOW et'al.
IEEE Transactions on Electronic Computers. Vol.179
No.4, 1968.

ABRA 70 The ALOHA System Another Alternative for Computer
Communications. N. ABRAMSON. AFIPS Papers.
FJCC, 1970.

AOKI 63 A Probabilistic Analysis of Computing Load Assignment
in a Multiprocessor Computer System. AOKI, ESTRIN
& MANDELL. AFIPS Papers. FJCC, 1963.

BAER 68 Graph Models of Computations in Computer Systems.
BAER. Ph.D. thesis. Dept. of Ehg., U. of Cal.,
Los Angeles, 1968.

BAER 69 Bounds for Maximum Parallelism in a Bilogic Graph
Model of Computations. BAER & ESTRIN.
IEEE Trans. on Elec. Comp.. Vol.18, No.11, 1969.

BAER 70 Legality and Other Properties of Functional Programs.
BAER, BOVET & ESTRIN. Journal.. of the ACM. Vol.17,
No.3, 1970.

BART 68 Transmission Control in a Local Data Network.
BARTLETT. IFIP 68 Papers, 1968.

BART 69 A Note on Reliable Full-Duplex Transmission over
Half-Duplex Links. BARTLETT, SCANTLEBURY & WILKINSON.
Communications of the ACM. Vol.12, No.5, 1969.

BASK 69 A Modular Computer Sharing System. BASKIN et al.
Communications of the ACM. Vol.12, No.1J, 1969.

BERN 66 Analysis of Programs for Parallel Processing.
BERNSTEIN. IFEE Trans. on Elec. Comp. Vol.15,
No.5, 1966.

BLUM 67 A Machine Independent Theory of Complexity of
Recursive Fns. BLUM. Journal of the ACM. Vol.14,
No.2, 1967.

BOVE 68 Memory Allocation in Computer Systems. D. P. BOVET.
Ph.D. thesis. U.C.L.A., June 1968.

BOVE 70A A Dynamic Memory Allocation Algorithm. BOVET & ESTRIN.
IEEE Trans. on Elec. Comp. Vol.191 No.5, 1970.

BOVE 70B On Static Memory Allocation in Computer Systems.
BOVET & ESTRIN. IEEE Trans. on Elec. Comp. Vol.191
No.6, 1970.

308

BOWD 69 Priority Assignment in a Network of Computers. BOWDON.
IEEE Trans. on Elec. Comp. Vol.18, No.11, 1969.

BRUN 71 A Theory of Asynchronous Control Networks. BRUNO &
ALTMAN. I1ThTh Trans. on Elec. Comp. Vol.201 No.6, 1971.

BUDN 71 The Organization and Use of Parallel Memories. BUDNIK
& KUCK. IEEE Trans. on Elec. Comp. Vol.20, No. 12,
1971.

BURN 70 A Study of Interleaved Memory Systems. BURNETT &
COFFMAN. AFIPS Papers. SJCC, 1970.

CARR 70 HOST-HOST Communications Protocol in the ARPA Network.
CARR et al. AFIPS Papers, SJCC, 1970.

CERF 71 Measurement of Recursive Programs. V.G. CERF &
G. ESTRIN. IFIP 71 Papers, 1971.

CERF 72 Multiprocessors, Semaphores, and a Graph Model of
Computation. V.G. CERF. Ph.D. thesis. U.C.L.A.,
April, 1972.

CHEN 72 Memory Requirements in a Multiprocessing Environment.
CHEN & EPLEY. Journal of the ACM. Vol.191 No.1, 1972.

COFF 67 Bounds on Parallel-Processing of Queues with Multiple-
Phase Jobs. COFFMAN. Naval Research Logistics
Quarterly. Vol.14, No.3, 1967.

COFF 73 Waiting Time Distributions for Processor Sharing
Systems. COFFMAN, MUNTZ & TROTTER. Journal of the
ACM. Vol.17t No.1, 1970.

COHE- 68 A Parallel Process Definition and Control System.
COHEN. AFIPS Papers. FJCC, 1968.

COHL 64 A Bit-Access Computer in a Communications System.
COHLER & RUBINSTEIN. AFIPS Papers. FJCC, 1964.

COLE 71 Computer Network Measurements: Techniques & Experiments.
G.D. COLE. Ph.D. thesis. Dept. of Eng., U. of Cal.,
Los Angeles, October, 1971.

CONS 68 Control of Sequence and Parallelism in Modular
Programs. CONSTANTINE. AFIPS Papers. SJCC, 1968.

CORN 73 An Efficient Algorithm for Graph Isomorphism.
CORNELL & GOTLIEB. Journal of the ACM. Vol.171
No.1, 1970.

CRES 70 A Language for Treating Graphs. CRESPI-REGHIZZI &
MORPURGOL. Communications of the ACM. Vol.13, No.5,
1970.

309

DARR 69 Description, Simulation, and Automatic Implementation
of Digital Computer Processors. DARRINGER. Ph.D.
thesis, Dept. of Elec. Eng., Carnegie-Mellon U.,
Pittsburgh, May, 1969.

DAVI 68 The Principles of a Data Communications Network for
Computers and Remote Peripherals. DAVIES. IFIP 68
Papers, 1968.

DEME 72A The Synthesis of Computer-Communications Networks.
J. DEMERCADO & K. TOTH. Terrestial Planning Branch,
Dept. of Communications, Ottawa, May, 1972

DEAN 68 Resource Allocation in FUltiprocess Computer Systems. Ph.D.
P.J. DENNING. Dept. of Elec. Eng., M.I.T., May, 1968.

DENN 68 Programming Generality, Parallelism, and Computer
Architecture. DENNIS. IFIP 68 Papers, 1968.

DIJK 66 Cooperating Sequential Processes. E.W. DIJKSTRA.
Proceedings of the NATO Advanced Study Institute
Summer School on Programming Languages, Villard-de-
Lana, 1966. Academic Press.

DIJK 68 Structure of THE Multiprogramming System. DIJKSTRA.
Communications of the ACM. Vol.11, No.5, 1968.

DIJK 72 A Class of Allocation Strategies Inducing Bounded
Delays Only. DIJKSTRA. AFIPS Papers. SJCC, 1972.

DONN 69 Some Techniques for Using Pseudorandom Numbers in
Computer Simulation. DONELLY. Communications of the
ACM. Vol.12, No.7, 1969.

EARN 72 Analysis of Graphs by Ordering of Nodes. EARNEST,
BALKE, & ANDERSON.. Journal of the ACM. Vol.19,
No.1, 1972.

EISN 62 A Generalized Network Approach to the Planning and
Scheduling of a Research Project. H. EISNER.
Operations Research No.10, January-February, 1962.

ESTR 63A Parallel Procesging in a Restructurable Computer
System. ESTRIN et al. IEEE Transactions on
Electronic Computers. Vol.12, No.6, 1963.

ESTR 63B Automatic Assignment of Computations in a Variable
Structure Computer System. ESTRIN et al.
IEEF, Trans. on Elec. Comp. Vol.12, No.6, 1963.

ESTR 72 Modelling, Measurement, and Computer Power. G.
ESTRIN, R.R. MUNTZ, R. UZGALIS. AFIPS Papers.
SJCC, 1972.

310

FENI 69 An Analytic Model of Multiprogrammed Computing.
FENICHEL & GROSSMAN. AFIPS Papers. SJCC, 1969.

FIFE 66 An Optimization Model for Time-Sharing. FIFE.
AFIPS Papers. SjCC, 1966.

FOLE 67 A Markovian Model of the U. of Michigan Executive
System. FOLEY. Communications of the ACM.

1967.

FRAN 69 Analysis & Optimization of Disc Storage Devices for
Tine-Sharing; Computer Systems. FRANK. Journal of
the ACM. Vol.16, No.4, 1969.

FRAN 70 Topological Considerations in the Design of the ARPA
Computer Network. FRANK et al. AFIPS Papers.
SJCC, 1970.

FRAN 72 Computer Communication Network Design - Experience
Experience with Theory and Practice. H. FRANK,
R.E. KAHN, L. KLEINROCK. AFIPS Papers. SJCC, 1972.

FULL 72 An Optimal Drum Scheduling Algorithm. FULLER.
IEEE Trans. on Elec. Comp. Vol.21, No.11, 1972.

FULT 72 Adaptive Routing Techniques for Message Switching
Computer-Communication Network. G.L. F1JLTZ. Ph.D.
thesis. U.L.C.A. July, 1972.

GARN 68 Mathematical Models of Information. Systems.
H.L. GARNER. Michigan U., Ann Arbor. July, 1968.
U.S. Gov't R. & D. Reports. Vo1.68, pp. 65-66 (A)
AD 673 386 CFSTI.

GILB 72 Interference Between Communicating Parallel Processes.
GILBERT & CHANDLER. Communications of the ACM.
Vol.15, No.6, 1972.

GONZ 69 A Survey of Techniques for Recognizing Parallel
Processable Streams in Computer Programs.. GONZALES
& RAKAMOORTHY. AFIPS Papers. FJCC 1969.

GOSD 66 Explicit Parallel Processing Description and Control
in Programs for Multi and Uni-processor Computers.
GOSDEN. AFIPS Papers. FJCC, 1966.

GOTO 65 Memory Systems. GOTO. IFIP 65 Papers, 1965.

GRAH 66 Bounds for Certain Multiprocessing Anomalies.
R.L. GRAHAM. Bell Systems Tech. Journal. Vol.45,
pp. 1573-1581. November, 1966.

HARE 69 Prevention of System:Deadlocks. HABER4ANN.
Communications of the ACM. Vol.12, No.7, 1969.

HART 65 Classifications of Computations by Time and Memory
Requirements. HARTMANIS, LEWIS & STEARNS.
IFIP 65 Papers, 1965.

HEAR 73 The Interface Message Processor for the ARPA
Network. HEART et al. AFIPS Papers. SJCC, 197j.

HEBA 71 A Graph Model for Analysis of Deadlock Prevention
in Systems with Parallel Computations. P.G.
HEBALKAR. IFIP 71 Papers, 1971.

HELL 61 Sequencing Aspects of Multiprogramming. HELLER.
Journal of the ACM. Vol-8, No.3, 1961.

HELL 72 A Measure of Computational Work. HELLERMAN.
IEEE Transactions on Electronic Computers.
Vol.21, No.5, 1972.

HEKM 69 Generating Pseudorandom Numbers on a Two's
Complement Machine. HEMMERLE. Communications of
the ACM. Vol.12, No.7, 1969.

HOAR 69 An Axiomatic Basis for Computer Programming. HOARE.
Communications of the ACM. Vol.12, No-1,), 1969.

HOLT 71 Comments on Prevention of System Deadlocks. HOLT.
Communications of the ACM. Vol.14, No.1, 1971.

HOPC 68 Relations between Time & Tape Complexities.
HOPCRAFT & ULLMAN. Journal of the ACM. Vol.15,
No.3, 1968.

HU 61 Parallel Sequencing and Assembly Line Problems.
T.C. HU. Operations Research. Vol.% No.6,
November, 1961.

HUTC 65 Computer Systems Design and Analysis through
Simulation. HUTCHINSON & MAGUIRE. AFIPS Papers.
FJCC, 1965.

IRAN 71 On Network Linguistics and the Conversational Design
of Queuing Networks. IPANI & WALLACE..
Journal of the ACM. Vol.18, No.4, 1971.

KARP 66 Properties of a Model for Parallel Computations:
Determinacy, Termination, Queueing. KARP & MILLER.
SIAM Journal of Applied Mathematics. Vol.14,
pp. 1393-1411, November 1966.

312

KATZ 66 Simulation of a Multiprocessor Computer System. KATZ.
AFIPS Papers. SJCC, 1966.

KLEI 64 COMMUNICATION NETS. L. KLEINROCK. McGraw Hill, Inc.
1964.

KLEI 66 Sequential Processing Machines (S.P.M.) Arnlysed
with a Queueing Theory Model. KLEINROCK.
Journal of the ACM. Vol.13, No.2, 1966.

KLEI 67 Time Shared Systemsi A Theoretical Treatment.
KLEINROCK. Journal of the ACM. Vol.14, No.2, 1967.

KLEI 69A Comparison of Solution Methods for Computer Network
Models. KLEINROCK. Proceedings of the Computers and
Communications Conference, September, 1969.

KLEI 69B Models for Computer Networks. KLEINROCK. Proceedings
of the International Communications Conference, 1969.

KLEI 70A Analytic and Simulation Methods in Computer Network
Design. KLEINROCK. AFIPS Papers. SJCC, 1970.

KLEI 70B A Continuum of Time-Sharing Scheduling Algorithms.
KLEINROCK. AFIPS Papers. SJCC 1970.

KLEI 71 Tight Bounds on the Average Response Time for Time
Shared. Computer Systems. L. KLEINROCK, R.R. MUNTZ &
J. HSU. IFIP 71 Papers, 1971.

KLEI 72 Processor Sharing Queueing Models of Mixed Scheduling
Disciplines for Time-Shared Systems. KLEINROCK &
MUNTZ. Journal of the ACM. Vol.19, No.3, 1972.

KLEI 68 Certain Analytic Results for Time-Shared Processors.
KLEINROCK. IFIP 68 Papers, 1968.

KOTO 68 Transformation of Sequential Programs into Asynchronous
Parallel Programs. KOTOV & NARINYANI. IFIP 68 Papers,
1968.

LASS 69 Productivity of Multiprogrammed Computers. LASSER.
Communications of the ACM. Vol.12, No.12, 1969.

LEWI 71 A Cyclic-Queue Model of System Overhead in Multi-
Programmed Computer Systems. LEIWS & SHEDLER.
Journal of the ACM. Vol.18, No. 2, 1971.

LOWE 70 Automatic Sequentation of Cyclic Program Structures
Based on Connectivity of Processor Timing. LOWE.
Communications of the ACM. Vol. 13, No.1, 1970.

LUCO 68 Asynchronous Computational Structures. F.L. LUCONI.
Ph.D. thesis. M.I.T. January, 1968.

313

MANA 67 Production and Stabilization of Real-Time Task
Schedules. MANACHER. Journal of the ACM. Vol.14,
No.3, 1967..

MANN 73 Termination of Programs Represented as Interpreted
Graphs. MANNA. AFIPS Papers. SJCC, 1970.

MART 66 Automatic Assignment and Sequencing of Computations
on Parallel Processor. Systems. D.F. MARTIN. Ph.D.
thesis. Dept. of Eng., U. of Cal., Los Angeles, 1966.

MART 67A Experiments on Models of Computations and Systems.
MARTIN & ESTRIN. IT:n Trans. on Elec. Comp. Vol.16,
No.1, 1967.

MART 67B Models of Computational Systems - Cyclic to Acyclic
Graph Transformations. MARTIN & ESTRIN. I7FF, Trans.
on Elec. Comp. Vol.16, No.1, 1967.

MART 67C Models of Computations and Systems-Evaluation of
Vertex Probabilities in Graph Models of Computations.
MARTIN & ESTRIN. Journal of the ACM. V01.14,
No.2, 1967.

MART 69 Path Length Computations on Graph Models of Computa•-
tions. MARTIN & ESTRIN. TEE Trans. on Elec. Comp.
Vol. 18, No.6, 1969.

MORG 71 	Representation and Analysis of Computer Systems and
Processes. D.E. MORGAN. Ph.D. thesis. Dept. of
Comp. Sci., U. of Waterloo, June, 1971.

MUNT 69A Scheduling of Computations on Multiprocessor Systems:
the Preemptive Assignment Discipline. MUNTZ. Ph.D.
thesis. Princeton U., Princeton, April, 1969.

MUNT 69B Optimal Preemptive Scheduling on Two-Processor
Systems. MUNTZ & COY1MAN. IEEE Trans. on Elec. Comp.
V01.18, No.11, 1969.

MUNT 70 Preemptive Scheduling of real Time Tasks on Multi-
Processing Systems. MUNTZ & COFFMAN. Journal of the
ACM Vol.17, No.2, 1973.

NAKA 71 A Feedback Queueing Model for an Interactive Computer
System. G. NAKAMURA. AFIPS Papers. FJCC, 1971.

NEWE 67A Closed Queueing Systems with Exponential Servers.
G.F. NEWELL & W.J. GORDON. Operations Research No.
15, 1967.

NEWE 67B Cyclic Queueing Systems with Restricted Length
Queues. G.F. NEWELL & W.J._GORDON. Operations
Research No.15, 1967.

311+

NIEL 66 Analysis of General Purpose Computer Time-Sharing
Systems. NIELSON. Ph.D. thesis. Stanford Computa-
tion Center, Stanford U. 1966.

NIEL 67 An Approach to Simulation of Time-Sharing Systems.
NIELSON. AFIPS Papers. FJCC, 1967.

ORNS 72 The Terminal ThiP for the ARPA Network. S.M. ORNSTEIN,
F.E. HEART, W.R. CROWTHER, H.R. RISING, S.B. RUSSFJJ.,
A. MICHEL. AFIPS Papers. SJCC 1972.

PART 67 SODAS and a Methodology for System Design. PARNAS
& DARRINGER. AFIPS Papers. FJCC, 1967.

PARN 69A More on Simulation Languages and DesignYethodology
for Computer Systems. PARNAS. AFIPS Papers.
SJCC, 1969.

PARN 69B On Simulating Networks of Parallel Processes in which
Simultaneous Evemsr.ay Occur. PARNAS.
Communications of the ACM. Vol.12, No.9, 1969.

PETR 62 Kommunikation mit Automaten. C.A. PETRI. Schriften
des Reinisch-West falischen Inst. Instrumentelle
Math. and der UniversitUt Bonn, 1962.

PFAL 72 Graph Structures. PFALTZ. Journal of the ACM.
V01.19, No.2, 1972.

RAMA 72 Optimal Scheduling Strategies in a Multiprocessor
System. RAMAKOORTHY, CHANDY & GONZALEZ.
IEn Transactions on Electronic Computers. Vol.21,
No.2, 1972.

RkNE. 68 Dynamic Storage Allocation Systems. RANDALL. Communications
of the ACM. Vol. 11, No.5, 1968.

RAND 69 Note on Storage Fragmentation & Program Segmentation.
RANDALL. Communications of the ACM. Vo1.12, No.7,
1969.

RASC 73 A queueing Theory Study of Round Robin Scheduling of
Time Shared Computer Systems. RASCH. Journal of
the ACM. Vo1.17, No.1, 1973.

REIT 68 Scheduling Parallel Computations. REITER (ICS).
Journal of the ACM. Vol.15, No.4, 1968.

ROBE 70 Computer Network Development to Achieve Resource
Sharing. ROBERTS. AFIPS Papers. SJCC, 1970.

RODR 69 A Graph Model for Parallel Computations. RODRIGUEZ.
Ph.D. thesis. Electronic Systems Lab., Dept. of
Elec. Eng., V.I.T., Cambridge, Mass. September, 1969.

315

ROSE 69 A Case Study in Programming for Parallel Processors.
ROSENFELD. Communications of the ACK. Vol.12„
No.12, 1969.

RUSS 69A Automatic Program Analysis. RUSSELL. Ph.D. thesis.
U.C.L.A., 1969.

RUSS 69B Measurement Based Automatic Analysis of Fortran
Programs. RUSSELL & ESTRIN. AFIPS Papers.
SJCC, 1969.

SCAN 68 The Design of a Message Switching Centre for a Digital
Communications Network. SCANTLEBURY, WILKINSON &
BARTLETT. IFIP 68 Papers, 1968.

SCAR 68 The Basic Language Project. SCARROT & ILIFFE.
IFIP 68 Papers, 1968.

ShCE 67 An Analysis of Time-Shared Computer Systems.
A.L. SCHERR. M.I.T. Research Monograph No.36, 1967.

SCHW 61 An Automatic Sequencing Procedure with Applications
to Parallel Programming. SCHWARTZ. Journal of
the ACM. Vol.8, No.4, 1961.

SHIM 67 Some Mathematical Considerations of Time Shared
Systems' Scheduling Algorithms. SHEMER. Journal
of the ACM. Vol.14, No.2, 1967.

SHOS 69 Synchronization in a Parallel-Accessed Data Base.
SHOSHANI & BERNSTEIN. Communications of the ACM.
V01.12, No.11, 1969.

SLUT 68 The Flow Graph Schemata Model of Parallel Computa-
tion. D.R. SLUTZ. Dept. of Elec. Eng., M.I.T.,
September, 1968.

SMIT 66 An Analysis of Time-Sharing Computer Systems
Using Marko., Models. SMITH. AFIPS Papers. SJCC,
1966.

STEV 68 System Evaluation of the CDC 6600. STEVENS•
IFIP 68 Papers, 1968.

ST1M 69 Some Criteria for Time-Sharing Performance. ST1MLER.
Communications of the ACM. Vol.12, No.1, 1969.

STRE 70 An Analysis of the Instruction Execution Rate in
Certain Computer Structures. W.D. STRECKER. Ph.D.
thesis. Dept. of Comp. Sci., Carnegie-Mellon U.,
Pittsburgh, June, 1970.

316

TESL 68 A Language Design for Concurrent Processes. TESLER
& ENEA. AFIPS Papers. SJCC, 1968.

VANH 66 Computer Design for Asynchronously Reproducible
Multiprocessing. E.C. VAN HORN. Dept. of Elec.
Eng., M.I.T. Ph.D. thesis. November, 1966.

VOLA 70 Graph Model Analysis and Implementation of Computa-
tional Sequences. S.A. VOLANSKY. Ph.D. thesis.
Dept. of Eng., U. of Cal., Los Angeles, June 1970.

WALD 72 A System for Interprocess Communication in a
Resource Sharing Computer Network. WALDEN.
Communications of the ACM. Vol.15, No.4, 1972.

WALL 66 Markovian Models and Numerical Analysis of Computer
Systems Behaviour. WALLACE & ROSENBURG.. AFIPS
Papers. SJCC, 1966.

WEBE 64 UNISIM - A Simulation Program for Communications
Networks. WEBER & GIMPELSON. AFIPS Papers.
FJCC, 196f.

WILK 68 The Control Functions in a Local Data Network.
WILKINSON & SCANTLEBURY. IFIP 68 Papers, 1968.

WINO 67 On the Time Required to Perform Multiplication.
WINOGRAD. Journal of the AiCr. Vol.14, No.4, 1967.

ZEIG 71 Nodal Blocking in Large Networks. J.F. ZEIGLER.
Ph.D. thesis. U.C.L.A., October, 1971.

ZEIG 72 Towards a Formal Theory of Modelling and Simulation:
Structure Preserving Morphisms. ZEIGLER. Journal
of the ACM. Vol.19, No.4, 1972.

.317

Computer Network Design.

ABRA 73 The ALOHA System - Another Alternative for Computer
Communications. N. ABRAMSON. AFIPS Papers. FJCC, 1973.

ANSL 72 Implementation of International Data Exchange
Networks. N. G. ANSLOW & J. HANSCOTT. First Int.
Conf. on Computer Communications, 1972.

ASSN 72 Analytical Results for the ARPANET Satellite System
Model Including the Effects of the Retransmission
Delay Distribution. ARPANi Satellites System Note
12. L. KLEINRCCK & S.S. LAM. August, 1972.

SARA 64A On Distributed Communications: Introduction to
Distributed Communication Networks. P. BARAN.
The Rand Copporation, Memorandum, iii-3420-PR.
August, 1964.

BARB 69 Experience with the Use of the British Standard Inter-
face in Computer Peripherals and Communication Systems.
D.L.A. BARBER. ACM Symposium on Problems in the Optimi-
zation of Data Communication Systems, Pine Mountain,
Georgia, pp. 173-178. October, 1969.

BARB 72 The European Computer Project. D.L. BARBER. First
Int. Conf. on Computer Communications, 1972.

BART 68 Transmission Control in a Local Data Network. BART-
LETT. IFIP 68 Papers, 1968.

BEER 71 Tymnet - A Serendipitous Evolution. M.P. BEERS & N.
C. SULLIVAN. Proc. ACM /IEEE 2nd Symposium on Problems
in the Optimization of Data Comm. Systems. Oct., 1971.

69 On the Structure of a Heterogenous Computing System,
Controlled by a Large Digital Computer. V.I. BELYAROv-
BODIN & 1.l. TORGOV. Foreign Tech. Division, Wright-
Patterson AFB Rept. FTD-HT-23-1453-68, AD699640. Oct.'69.

BENZ; 66 Programming and Control Problems Arising from Optimal
Routing in Telephone Networks. V.E. BE S. B.S.T.J.
45: 1373-1438. November, 1966.

BENV 69 System Load Sharing Study. A.A. BENVENUTO et al.
The MITRE Corporation, Rept. MTR-5062. 1969.

BINA 71 Design Aspects of a Circuit Switching System for a
National Network. P.A. BINA. Proceedings of the Int.
Conf. on Communications, pp. 23.12-23.17. June, 1971.

BOSH 64 Digital Simulation of Hot Potato Routing in a Broad-
band Distributed Communication Network. S. BOEHM &
P. BARAN. Rand Corp., Memorandum RH-3133-PR. August,
1964.

318

BOEH 66 Adaptive Routing Techniques for Distributed Communi-
cation Systems. B.W. BOEiThl & R.L. MOBLEY. Rand Corp.
Memorandum W-4781-PR. 1966.

BOLT 71 	Interface iessage Processor: Specifications for the
Interconnection of a Host and an EKP. BOLT, BARANE(
& NEUMAN, Inc. Rept. 1822. February, 1971.

BOOT 72 The Use of Distributed Data Bases in Information
Networks. E.M. BOOTH. 1st Int.. Conf. on Computer
Communications, 1972.

BOWD 69 Priority Assignment in a Network of Computers. E.K.
BOWDEN, Sr. IEEE Trans. on Elec. Comp. Vol. c-18,
pp. 1021-1326. November, 1969.

CARR 73 HOST-HOST Communications Protocol in the ARPA Net-
work. CARR et al. AFIPS Papers, SJCC, 1970.

CO}E 73 Control of Data Processor Networks. I. COHEN. 197U
IEEE Int. Conf. on Communications. pp. 19.28-19.34, 1970.

COLE 71 Computer Network Measurements: Techniques and
Experiments. G.D. COLE. Ph.D. thesis. Univ. of Calif.
Los Angeles, California. 1971.

COX 70
	

General System Organisation of Multi-Processor Con-
figurations. P.R. COX. Software 70, Sheffield,
England. pp. 33-40. April, 1970.

CROC 72 Function Oriented Protocols for the ARPA Computer
Network. S.D. CROCKER, J. HEAFNER, J. METCALFE &
J. POSTED. AFIPS Papers, SJCC, 1972.

DAVI 67 A Digital Communication Network for Computers
Giving Rapid Response at Remote Terminals. D.W.
DAVIES, K.A. BARTLETT, R.A. SCANTLEBBRY & P.T.
WILKINSON. ACK Symposium on Operating System
Principles, Gatlinburg, 1967.

DAVI 63 The Principles of a Data Communications Network
for Computers and Remote Peripherals. DAVIES
IFIP 63 Papers, 1968.

DAVI 71

DAY 63

The Control of Congestion in Packet Switching
Networks. D.W. DAVIES. Proc. ACM/IFFY. 2nd
Symposium on Problems in the Optimization of Data
Comm. Systems. October, 1971.

Rio Grande Lessage Switching/Transportation System.
W.J. DAY. Proc. of the 23rd National ACM Conf.
pp. 3)7-323. 1968.

DRIB TiA The Synthesis of Computer-Communications Networks.
J. DEMiERCADO & K. TOTH. Terrestial Planning Branch,
Dept. of Communications, Ottawa. May, 1972.

319

DEME 72B The Canadian Universities Computers Network -
Topological Considerations. J. DEMERCADO et al.
1st Int. Conf. on Computer Communications, 1972.

DESP 72 A Packet Switching Network with Graceful Saturated
Operation. R.F. DESPRES. 1st Int. Conf. on Computer
Communications, 1972.

DOLL 69 Efficient Allocation of Resources in Centralized
Computer Communication Network Design. D.R. DOLL.
Ph.D. thesis. University of Michigan, Systems
Eng. Lab., Tech. Rept. 02641-1-T. June, 1969.

BUBN 70 TICKETRON - A Successfully Operating System without
an Operating System. H. DUBNER & J. ABATE. AFIPS
Conf. Proc., 36: 143-155, SJCC, 1970.

EVAN 67 Experience Gained from the American Airlines SABRE
System Control Program. J. EVANS. Proc. of the ACM
National Meeting, pp. 77-85. August, 1967.

EVER 57 SAGE: A Data Processing System for Air Defense.
R.R. EVERETT, C.A. ZRAKET & H.D. BANNINGTON. EJCC,
pp. 148-155. 1957.

FARB 71 The System Architecture of the Distributed Computer
System - An Informal Description. D.J. FARBER &
K.C. LARSON. Univ. of Calif., Irvine Tech. Rept.
No.11, September, 1971.

FARB 72 The Structure of a Distributed Computer System -
The Distributed File System. D.J. FARBER & F.R.
HEINRICH. 1st Int. Conf. on Computer Communications,
1972

FISH 71 	Introduction ho the DATRAN Switched Digital Network.
C.R. FISHER. Proc. of the Int. Conf. on Communica4
tions, pp. 23.1-23.3. June, 1971.

FRAN 69 Design of Economical Offshore Natural Gas Pipeline
Networks. 	.H. FRANK, B. ROTHFARB, D. KLEIIMAN &
K. STEIGLITZ. Office of EMergency Preparedness,
Rept. No. R-1. Washington, D.C. January, 1969.

FRAN 70A Topological Considerations in the Design of the
ARPA Network. H. FRANK, I.T. FRISCH & W.S. CHOU.
1970 Spring Joint Computer Conf. AFIPS Proc.
Vol.36, pp. 581-587, 1970.

FRAN 710B Optimal Design of Centrhlized Computer Networks.
H. FRANK, I, T. FRISCH, W, S. CHOU & R. VAN SLYKE.
Proc. 1970 IEEE International Communications Cont.
pp. 19.1-19.10. 1970.

320

FRAN 71 Optimal Design of Centralized Computer Networks.
h. FRANK, I.T. FRISCH, R. VAN SLYKE & W. S, CHOU.
Networks, Vol.1, No.1, pp. 43-57, 1971. (Same paper
as previous entry)

FRAN 72 Computer Communication Network Design - Experience
with Theory and Practice. H. FRANK, R.E. KAHN,
L. KLEINROCK. AFIPS Papers. SJCC, 1972.

FRED 71 A Computer Network Interface for OS/MVT. D. FREDERICKSEN
& R.W.RYNIKER. IEM Research Dept. RC3317. April, 1971.

FULT 71 Adaptive Routing Techniques for Store-and-Forward
Computer-Communication Networks. G.L. FULTZ & L.
KLEINROCK. Proc. of the Int. Conf. on Communications.
pp. 39.1-39.8. 1971.

FULT 72 Adaptive Routing Techniques for Message Switching
Computer-Communication Networks. G.L. FULTZ. Ph.D.
thesis. U.C.L.A. July, 19Y2.

GAIN 71 	The Emercence of National Networks. E.V. GAINS, Jr.
& J.M. TAPLIN. l'elecommunications. December, 1971.

GUND 63 Engineering Design and Implementation of a Multi-
Computer Data Processing System for a Navy Command
and Control Center. R.C. GUNDERSON & J.O. JOHNSON.
Proc. 7th Int. Convention on Military Electronics.
Western Periodicals, N. Hollywood, Calif. 1963.

HAMA 73 Distributed Computer Systems. R.Y. HAMAKER.
Telecommunications. Vol.4, pp. 25-3J, March, 197J.

HAMS 68 Communication System Engineering Handbook. M. HAMSHER
(Ed.). McGraw-Hill. 1968.

HANS 71 	Reliability Consicierations in Centralized Computer
Networks. E. HANSLER, G.K. MCAULIFFE, R.S. WILKOV.
Proc. ACM/IEEE 2nd Symposium on Problems in the
Optimization of Data Communications Systems. Oct. 1971.

HAVE 71 	Traffic and Delay in a Circular Data Network. J.F.
HAYES & D.N. SHERMAN. Proc. ACM/IFSS 2nd Symposium
on Problems in the Optimization of Data Comm. Systems.
October, 1971.

HEAR 7:.) The Interface Vlessage Processor for the ARTA Computer
Network. F.HEART1 R.KAHN, S. ORNSTEIN, W. CROWTHER &
D. WALDEN. 1973 Spring Joint Computer Conf. AFIPS
Proc. Vol.36, pp.551-567, 1973.

HOWE 71 Control Concepts of a Logical Network Machine. W.G.
HOWE & T.R. KIBLER. IY Research Rept. RC3331. April, 1971.

HUST 72 Current and Near Future Data Transmission via Satellites
of the Intelsat Network. 	1:USTED.,1st Int. Conf
on Comp. Communications, 1972.

321

ISSA 68 Chrysler Message Switching Today and Tomorrow.
L.R. ISAACS & D.C. BUZZVT,T,I. Proc. of the 23rd
National ACM Conf. pp. 321-327, 1968.

KAHN 71A Flow Control in a Resource-Sharing Computer Net-
work. R.E. KAHN & W.R. CROWTHER. Proc. ACM/IEEE
2nd Symposium on Problems in the Optimization of
Data Communication Systems. pp. 138-116. Oct., 1971.

KAHN 71B A Study of the ARPA Network Design and Performance.
R.E. KAHN & W.R. CROWTHER. Bolt, Beranek & Newman,
Inc., Cambridge, Mass. Rept. BBN-2161. August, 1971.

KIRS 72 On the Development of Computer and Data Networks in
Europe. P.T. K1RSTEIN. 1st Int. Conf. on Computer
Communications, 1972.

KLEI 64 Communication ets. L. KLEINROCK. McGraw-Hill, Inc.
1964.

KLEI 69A Comparison of Solution Methods for Computer Network
Models. KLEINROCK. Proc. of the Computers and
Communications Conf., September, 1969.

KLEI 69B Models for Computer Networks. KLEINROCK. Proc.
of the Int. Communications Conf., 1969.

KLEa 73... Analytic and Simulation Methods in Computer Network
Design. L. KLEINROCK. 197 Spring Joint Computer
Conf. AFIPS Proc. Vol.36, pp. 569-579. 1973.

LAWR 71 	A Proposed Computer Network for the Australia
National University. D.E. LAWRENCE. Computer
Centre, Australian National Univ., Canberra.
Rept. No.38. August, 1971.

LEIN 59 PILOT, A New Multiple Computer System. A.L. LEINER,
W.A. NOTE, 	SaITH & A. WEIN:0ERGER. Journal. of
the ACM. Vol.6, pp. 315-335. July, 1959.

LICH 66 	Tentative Specifications folo a Network of Time-
Shared. Computers. ARPA Document, M-7. Sept. 9, 1966.

MARI 66 Toward a Cooperative Network of Time-Shared Computers.
T. MARILi, & L.3. ROBERTS. 1966 Fall Joint Computer
Conference. AFIPS Proc. Vol.29, pp. 425-432, 1966.

YAW 69 Telecommunications and the Computer. J. MARTIN.
Prentice-Hail, Englewood Cliffs, N.J., 1969.

MCKA 71A Network/44J - II7V. Research Computer Sciences Lept.
Computer NetwOrk. D. B. MCKAY & D.P. KARP. IElv.
Research Rept. RC3431. July, 1971.

322

MCKJ 71B A Network/440 Protocol Concept. 2.13. CKrJ D7).R.
KARP. IEr ecoearch Rept. RG- 417:2, .July 1971.

rcx., 71C aploratory Research on Netting at IBM. 13.3.
MCK4-LY, D.P. KARP, J.W. MEYER & R.S. NAChBAR.
ISM Research Rept. RC486. June, 1971.

MCKE 72 The Network Control Centre for the ARPA Network.
A.A. MCKENZIE et al. 1st int. Conf. on Computer
Communications, 1972.

MEIS 71 Optimization of a New Model for Message Switching
Networks. MEISTER, MULLER & RUDIN. Proc. Int. Conf.
on Communications, 1971.

NETS 72 On the Optimization of Message-Switching Networks. B.
MEISTER, H.R. MUELLER & H.R. RUDIN, JR. IEEE Trans-
actions on Communications, COM-20(1):8-14, Feb., 1972.

MEND 71 	The Lawrence Radiation Laboratory Octopus. S.F.
MENDICINO. Lawrence Radiation Lab. Rept. UCRL-
75149. April, 1972.

MILL 6 	LCS Autodin Trunking Transmission Between Switching
Centers. J.Z. MILLAR. Invitational Workshop on
Networks of Computers, Proc. National Security
Avenc, Fort Feade, Maryland, NOC-68:221-22-.4.
October 14-18, 1968.

MIT 69 	An Experimental Computer Network. M.I.T. Lexin6ton
rarch, 1969.

!.AC ?)A Analysis and Optimization of Store-and-Forward
Computer Networks. N.A.G. 1st Semiannual Tech.
Rept. for the Project. Defense Documentation
Center. Alexandria, Va. June, 1970.

NAC 7Jh N.A.C. 2nd Semiannual Tech. Rept. for the Project:
Analysis and Optimization of Store-and-Forward
Computer Networks. Defense Documentation Center,
Alexandria, Va. December 1970.

NAC 71A 	N.a.6. 3rd Semiannual. Tech. Rept. for the Project:
Analysis and Optimization of Store-and-Forward
Computer Networks. Defense Documentation Center.
Alexandria, Va., June, 1971.

D-tC 	N.A.C. fourth Semiannual Te h. Rept, for the Project:
Analysis and Optimization of Store-and-Forward Computer
Networks. Defense Documentation Center. Alexandria,
Va. December, 1q71.

7'7)7

ORNS 72 The Terminal IMP for the ARPA Network. S.M.
ORNSTEIN, F.E. HEART, W.R. CROWTHER, H.K. RISING,
S.E. pussrl.L, A. MICHEL. AFIPS Papers. SJCC, 1972.

PATI 70 Coordination of Asynchronous Events. S.S. PATIL.
M.I.T. Project MAC Rept. MAC-TR-72. June, 1970.

PECK 69 The Implications of ADP Networking Standards for
Operations Research. P.L. PECK, MITRE Corp.,
McLean, Va., Rept. MTP333, AD696675, June 1969.

PLUG 61 Atheriean Airlines SABRE Electronic Reservations
System. W.R. PLUGGE & M.N.PERRY. Proceedings
WJCC, pp. 593-602. May, 1961.

PORT 	Comparison of Switched Data Networks on the Basis
of Waiting Times. E.PORT & F. CLOS. IBM Rept.
RZ 405, IBM Research Labs., Zurich.

PROS 62A Routing Procedures in Communication Networks -
Part I: Random Procedures. R.T. PROSSER. IRE
Transactions on Communication Systems. CS-10:
332-329. 1962.

PROS 62B Routing Procedures in Communication Networks -
Part II: Directory Procedures. IRE Transactions
on Communication Systems. R.T. PROSSER.
CS-10:329-335, 1962.

RAYM 71 A Queueing Theory Approach to Communications
Satellite Network Design. H.G. RAYMOND. Proc.
of Int. Conf. on Communications, 1971.

REDD 71 Computer Network Simulator. J.L. REDDING. Naval
Ship Research and Development Center Rept.
NSRDC 3650. September, 1971.

ROBE 70 Computer Network Development to Achieve Resource
Sharing. L.G. ROBERTS & B.D. WESSLER. 1970
Spring Joint Computer Conf. AFIPS Proc. Vol.36,
pp. 543-549. 1970.

ROBE 72 X1tensions of Packet Communication Technology to a
Hand-Held Personal Terminal. AFIPS 1972 Spring
Joint Computer Conference. L. ROBERTS. 1972.

RUSS 66 Communication and Systems Development intthe
C.S.I.R.O. (Commonwealth Scientific & Industrial
Research Organization) Network. J.J. RUSSFT,T. &
D.C. KNIGHT. Proc. 3rd Australian Computer Conf.
pp. 384-386. 1966.

324

RUTL 69 An Interactive Network of Time-Sharing Computers.
R.M. RUTLEDGE, A.L. VAREHAv L.C. VARIAN, A.H. WEIS,
S.F. SEROUSSI, J.W. MEYER, J.F. JAFFES & M.A.K.
ANGFU.. Proc. 24th National Conf. ACM Publication.
p.69, pp. 431-421 1969.

SCAN 68 The Design of a Message Switching Centre for a
Digital Communications Network. SCANTLEBURY,
WILKINSON & BARTLETT. IFIP 6SPapers, 1968.

SCAN 69 A Model for the Local Area of a Data Communication
Network: Objectives and Hardware Organization.
R.A. SCANTLEBURY. ACM Symposium on Problems in the
Optimization of Data Communication Systems, Pine
Mountain, Georgia. pp. 179-193. October, 1969.

SCAN 71 The Design of a Switching System to Allow Remote
Access to Computer Services by other Computers and
Terminal Devices. R.A. SCANTLEBURY & P. T. WILKINSON.
Proc. ACIR/IFFE 2nd Symposium on Problems in the
Optimization of Data Communications Systems.
October, 1971.

SHAP 66 Random Store and Forward Communication Networks.
S.D. SHAPIRO. Proceedings of the Polytechnic.Inst.
of Brooklyn Symposium on Generalized Networks.
Polytechnic Press, Brooklyn, New York. pp. 721-
733. 1966.

SHER 70 The Simulation of a Multi-Computer System. J.F.
SHERLOCK. IEEE Trans. Computers, Vol. C-19, pp.
1114-1117. November, 1970.

SHOS T) Sequencing Tasks in Multi-Process, Multiple Resource
Systems to Avoid Deadlocks. A. SHOSHANI & E.G.
COFFMAN. Proc. 11th Annual Symposium on Switching
abd Automata Theory. pp. 225-233. October, 1970.

SHIT 64 Determination of Path Lengths in a Distributed Net-
work. J. `.d. SMITH. Rand Corp., Memorandum, 1i-3578-
PR. August, 1964.

SPRA 71 Analysis of Loop Transmission Systems. J.D. SPRAGINS.
Proc. ACM/IEEE 2nd Symposium on Problems in the
Optimization of Data Communications Systems. Oct. 1971.

TEIT 69 A Network Simulation and Display Program. W. TEOTEL-
MAN & R.E. KAHN. Proc. of the 3rd Annual Princeton
Conf. on Information Sciences and Systems. March, 1969.

THOM 72 McRoss - A Multi-Computer Programming System.
R.H. THOMAS & D.A. HENDERSON. Spring Joint Computer
Conference, 1972.

325

•

TRAF 71 Data Transmission Network Computer-to-Computer
Study. P.J. TRAFTON, H.A. BLANK, & N.F. MCALLISTER.
Proc. AGM/I1fE17, 2nd Symposium on Problems in the
Optimization of Data Communications Systems.
October 1971.

WALD 72 A System for Interprocess Communication in a
Resource Sharing Computer Network. WALDEN.
Communications of the ACM. Vol-15, No.4, 1972.

WEIS 71 	Distributed Network Activity at IBM. A.H. WEIS.
IBM Research Report RC3392. June, 1971.

WHIT 72 Comparison of Network Topology Optimization Algo-
rithms. V. KEVIN MOORE WHITNEY. 1st int. Conf. on
Computer Communications, 1972.

WILK 68 The Control Functions in a Local Data Network.
WILKINSON & SCANTLEBURY. IFIP68Papers, 1968

WILK 69 A Model for the Local Area of a Data Communication
Network, Software Organization. P.T. WILKINSON.
ACM Symposium on Problems in the Optimization of
Data Communication Systems, Pine Mountain, Georgia.
pp. 152-172. October, 1969.

ZEIG 71 Modal Blocking in Large Networks. J.F. ZEIGLER.
Ph.D. thesis. U.C.L.A. October, 1971.

APPENDIX II

SIMULA 67

327

SIMULA 67 is a general purpose programming language which

may be regarded as an extension of ALGOL 60. The language was

defined by 0. J. Dahl and K. Nygaard of the Norwegian Computing

Centre, Oslo. Its syntax is particularly suited to the definition

and manipulation of classes, which can be data structures, execution

rules, or a combination of both. The language provides for very

easy definition of list-processing and simulation procedures.

The treatment of simulation is based on the languages SD/MLA I

and SOL. Below we give a brief summary of the features of

SIMULA 67, which we will refer to as SIMULA.

In the course of this research some corrections and additions

were made to the STMULA compiler. The main addition was the

provision of interactive execution of a SIMULA program. As well

as data input and program at a terminal, file linkage prior to

program execution, was possible by entering DATASET cards from the

keyboard.

Corrections to the compiler were made by normal software

maintenance methods, namely fault isolation, fix writing and

insertion. Where possible fixes provided by Control Data

Corporation were used, including those for faults reported by

users at other installations. The majority of faults required

small amounts of corrective code, rather than major changes or

extensions. The compiler was maintained by the author for the

duration of the research described in this thesis.

There are two main additions to the concepts presented

in ALGOL 60. The first is that of program entities called objects;

and the second is a new type of variable called a reference

variable, which may point to objects.

328

A class definition is quite similar to a procedure definition.

It consists of a class name, a number of formal parameters, and a

class body or execution rule. A simple example is:

class rectangle (al b);

real

begin

real area;

area : = a * b;

end;

A reference variable may point to objects of the class given

when the variable is declared. For example:

ref (rectangle) p;1

Here p is declared to be a pointer which may only point to objects

of the Glass rectangle. An object is an instance of its class

declaration, and we can generate one using the SIMULA symbol new.

new rectangle (5,6);

This statement will create an object of the class rectangle with

parameters equal to 5 and 6. If we write:

p :- new rectangle (5,6);

then p will point to this object (:- is the symbol which means

'points to'). The null object is a member of all classes so that

we may always write:

p :- none;

irrespective of the class for which p has been declared a referen9e

variable. We may pass the value of one reference variable to

another by writing:

329

p 	q;

after this statement p will point to the same object as q does.

The main difference between a class and a procedure are that a

class body may not alter the values of the actual parameters which

correspond to its formal parameters, and that an object exists as

long as some reference variable points to it. That is to say we

may not write:

class a (x); name x; real ;

and further, an object will not disappear when its execution rule

completes, unless there is no reference variable pointing to it.

al b and area are called the attributes of an object of the class

rectangle and we may access them via the reference variable p by

writing p . attribute, for example:

p :- rectangle (5,6);

x := p.a ;

y •= p.b ;

z := p.area ;

A shorthand for this is the inspect statement:

inspect p do begin

x := a ;

y •= b

z := area ;

end;

339

Remote referencing can be concatenated indefinitely;

i.e. if the class rectangle has a locally defined reference

variable q which points to objects of class triangle, we may write:

x := p.q.side ;

where side is a local variable of an object of class triangle.

Classes may be concatenated to form subclasses. For example

the statements:

class A (al b); real al b ;;

A class B (x,y); real xiy ;;

define a class B which is a subclass of A and having four

attributes a, b, xi y and no execution rule. A reference variable

declared for class A may also point to any of its subclasses.

For example:

ref (A) p;

p :- new B(1,2,3,4);

If A and B have execution rules, then the body of class

B may be inserted anywhere in that of class A using the symbol

inner; for example:

class A (a,b);

real a,b;

begin

real ci d;

C := a * b;

inner;

c := c + d;

end;

331

A class B (x,y);

real x,y;

begin

d := x * y;

end;

The statemtn p :- new B(112,314); will produce an object with

execution rule:

real a,b,x,y;

begin

real cl d;

c := a * b;

d := x * y;

c := c + d;

end;

A class name, with or without an actual parameter list, may

prefix an ordinary block. This makes the attributes and capabilities

of the class available to the block. For example:

class A;

begin

real procedure sqrt (z)

real z; begin sqrt := z 0.5; end;

A begin

real x,y

x := sqrt (y);

332

end;

The above is a simplified explanation of the way in which

classes and reference variables may be used- For more information

see the SIMULA 67 Common Base Definition. The main incompatibilities

of SIMULA with ALGOL 60 are:

1. The own symbol is not permitted.

2. The string symbol is replaced by a similar concept, text.

3. Procedure parameter transmission by name must be specified

using the symbol name-

4. The input/output system is developed in terms of objects of

class file and its subclasses. Users should refer to the

Reference Manual for details.

SIMULA 67 provides two predefined classes, SIMSEl and SIMULATION.

These have no formal parameters, but define a number of procedures

which allow a programmer to write a list-processing or simulation

program more easily within a block prefixed by these class names.

In fact SIMULATION is a subclass of amaa. This is so for two

reasons. Firstly it allows the class SIMULATION to use list-

processing procedures from SlMSET when predefining simulation

facilities; and secondly it allows the programmer to have access

to those procedures inside a block prefixed by SIMULATION.

The prefix SIMSET provides for simple manipulation of two-way

of two-way lists. The following actions are possible using

predefined procedures.

1. Accessing the successor of a list member

2. Accessing the predecessor of a list member

333

3. Inserting an object in a list before or after another one, or

at the end of the list.

4. Removing an object from a list.

5. Creation of a list.

6. Accessing the first and last objects in a list.

7. Determining whether a list is empty.

8. Determining the number of objects in a list.

9. Removing all objects from a list, making it empty.

The prefix SIMULATION allows the programmer to define

processes (objects of class process) which are scheduled and

executed within a predefined quasi-parallel system with its own

time axis. This is done by maintaining a time-ordered event list

(SQS) whose events are executed in sequence. Events are themselves

objects which have two attributed (in addition to those required for

list membership), namely:

real eventtime; comment the time at which this event is scheduled

to occur;

ref (process) proc; comment a pointer to the process whose acti-

vations or reactivation this event

represents;

Events may be created implicitly or explicitly by processes,

which themselves can be generated or destroyed by object

generation or completion and detachment. Processes may interact

via global variables, automatic statistic gathering, or by altering

the attributes of other processes through inspect statements.

The following actions are possible using predefined procedures.

1. Accessing the current system time.

2. Referencing the currently active process, i.e. the process

334

executing the current event.

3. 	Referencing the successor and predecessor of an event in the SQS.

4- 	Waiting for a specified time before continuing execution of the

process execution rule.

5. Entering a queue.

6. Halting execution of a process until activated by some other

process.

7- 	Directly scheduling an event, before or after another, or

at a given time.

8. Cancelling or rescheduling a scheduled event.

9. Activating or reactivating a halted process.

10. Accumulating the system time integral of a variable.

11. Drawing of random numbers from various distributions.

To illustrate the flexibility of SIMULA 67, we shall suppose

that we have a recursively defined problem of the form:

real procedure solution (data);

real data;

begin

real nextdata;

nextdata := function (data);

if nextdata = simpledata then solution := simplesolution

else solution := solution (nextdata);

end;

If the solution of the problem involves performing a simulation

we can define:

real procedure function (data);

real data ;

335

simulation begin

end;

procedure function (nextdatal partsolution);

name partsolution;

real nextdatal partsolution;

begin

ref (G) x;

if nextdata = simpledata then partsolution := simplesolution

else begin

x :- new G(nextdata, 0);

partsolution := G.solution;

end*

end;

A SIMULA 67 program may be executed on the CDC 6600 at ULCC

suing the following control cards:

J03(

ATTACH(S1MULA, SIMULA)

SIMULA (LOX)

LIBRARY(L = SIMULALIB)

LG0.

RETURN(SIMULA)

7/8/9

SIMULA SOURCE PROGRAM

336

7/8/9

DATA

6/7/8/9

The last two cards of the SIMULA source deck should be 'EOP'

and FINIS, both punched in columns 10-14.

Most programs can be compiled using 20,000 words (decimal) of

store. However, for larger programs both compilation and

execution speed can be increased by allowing more store.

Files names used in a SIMULA program are related to SCOPE

files by DATASEP cards, which are the first cards of the data

record.

337

APPENDIX III

SHAPE LLMITATIONS

338

For various reasons the SHAPE program does not provide all the

features described in Chapter III. In this appendix we state the

limitations and discuss briefly the reasons for them. Implementa-;

tion of the modelling system was originally divided into two

stages. In the first of these a simplified system was created,

with dataset activity represented by giving negative signs to the

appropriate REP matrix elements, rather than the provision of the

ACT matrix. This course required that datasets were treated as

read-write only (the negative sign indication for read-only having

been preempted).

Further consequences of the absence of the ACT matrix were a

difference in the implementation of DOloops and the inability to

perform simultaneous activation. The latter was caused by the

absence of the top and bottom ACT column elements which we used

to record a processor allocation (reservation in the case of

simultaneous activation). This lack also precludes the implemen-

tation of the error handling methods described in Chapter III.

Since read-only datasets were not available in stage one there

was no necessity for deactivation SIarcs, which Must,e18o be

provided when read-only datasets are implemented.

The addition of these features was defined as the second

stage of implementing the modelling system described in Chapter III,

but this was not carried out because of various problems of

implementation. The most serious of these was a deficiency of the

loader in the SCOPE operating system at that time. This deficiency

was a limit to the number of certain loader tables which could be

processed by the loader for a single program. Unfortunately the

SIMULA 67 compiler produces code in which these tables occur very

frequently.

339

Consequently a large SIMULA 67 program will not load after

compilation and the loader either aborts with a machine stop or

enters an infinite loop.

Since no diagnostic is issued identification of the fault

took some time. It was found that the stage one implementation

was slightly over the limit and steps were taken to reduce the

number of the offending tables. This required the elimination of

topological verification after graph input, and the use of only one

set of statistics (hardware or software). In addition all calls

to the run-time input-output system were changed to calls to an

equivalent local procedure.

These measures reduced the program size sufficiently to allow

successful loading. However any further insertion of SIMULA 67

statements had to be balanced by deletions elsewhere. Implementa-

tion of stage two could not have been accomodated within the

program size required for successful loading.

A way out of this problem is the use of code procedures

within a SIMULA 67 program. This is a call to a procedure which

is separately compiled, and linked to the main program at load

time. Various portions of the SHAPE program, notably the graph

input procedures, could then be compiled separately, and linked

to a much reduced main program by the loader, thus overcoming the

limits imposed on any single program. Code procedures are part

of the SIMULA 67 language and described in detail in the manual

for the CDC 6600 version. However they have not been implemented

in the compiler at the time of writing.

Other problems in the compiler, while not insurmountable,

considerably slowed down SHAPE implementation.

3140

One of these was a residue of program stop instructions which had

been used by the compiler writers for trapping purposes. When these

occurred during compilation or execution of SHAPE, elimination of

the statement responsible strangely resembled a process of trial

and error. The lack of interactive facilities in the compiler

and run-time system increased the time spent in debugging SHAPE

when this was already in short supply. Circumvention cf the

compiler bugs revealed in this process required extra statements

in some cases, eating into the allowable program size. EXamples

are the use of a bad approximation for the generation of random

Poisson numbers, incorrect comparison of positive and negative

zero, and failure to recognize compressed card images.

The decision to forego stage two was also influenced by

considerations of resource availability. Any STMULA program

requires a run-time acratch area for the storage of

dynamically created and destroyed class objects. This area

is provided by the storage between the end of the program and

the field length limit. When all the free space has been used

the run-time system calls a procedure named the garbage collector

which eliminates all defunct objects and compacts the remainder,

so providing a new free space area. The smaller the overall

scratch area, the more frequently the garbage collector must be

called to clean it up. Since the garbage collector processing

is not negligible a trade-off developes between core storage

available and CPU time required for any given program run.

Furthermore as a program grows in size, in order to maintain

the scratch area the field length must increase by the same

amount. To provide an adequate scratch space for the stage one

implementation between 50 K and 60 K of core storage is required.

341

As the field length is dropped from 60 K, increasing quantities of

CPU time are devoted to garbage collection. Jobs run at University

of London Computing Centre are categorized by resource usage.

A J9 category job may use up to 50 K of memory and up to 120 secs

of CPU time, and a J12 job is allowed 60 k and 1200 secs.

respectively.

Consequently a SHAPE run with medium sized graphs will

almost certainly be a J12 job. This is the largest job which

receives a regular turnround at the Centre. If more store or CPU

time is required the job is categorized as J15 and run as and when

there is spare capacity available. Production runs should therefore

be kept within the J12 limits if at all possible, to ensure regular

turnround. Within these limits it is doubtful if adequate scratch

storage would remain after expansion of the SHAPE program to

include stage two facilities. The full implementation would there-

fore have to be run as a J15 job except with the simplest models.

In some models the value of the results is related to the

length of run. For such cases the runs must have adequate CPU time

available, so that if requested memory is reduced from J1? to J9

limits, the garbage collection trade-off increases the CPU time

required and returns the job to the J12 category. This resource

availability situation provided a further reason to use the stage

one implementation. Even in this case because J12 jobs are the

largest to receive regular service, they also have the slowest

turnround time.

Most SlMULA 67 programs will use the run-time system a good

deal, especially if any list-processing or simulation is performed,

which is the case with SHAPE.

342

Therefore the CPU time used is greatly affected by the efficiency

of the run-time system in executing its various functions.

Its areas of weakness are the input-output procedures, block entry

and closure, and the processing of goto statements.

The code produced by the compiler is split into 512 word

segments for no apparent reason- The segments do not correspond

to the user program, and jumps across segment boundaries are

very slow (requiring a call to a segment control routine in the

run-time system). If a program loop crosses a segment boundary

degredation can be severe. The loop control itself is slow and

does not take advantage of the simple case where the step is one.

For these reasons a good deal of CPU time is required by SlMULA 67

programs.

In the paragraphs above we have tried to summarize the reason

for which the full graphical modelling system was not implemented,

and also some of the factors which slowed down the development of

the restricted system-

The validation model was a simple one and consisted of a

small number of modelling elements- The observation of interest

was message delay and the validation runs were in the J12 category

of resource usage, which allowed the generation of approximately

2,000 messages.

The model of the ARPA network link was also run as a J12

category job, and typically this run-time would generate between

250 and 300 round trips (message and response cycles). When

considering alternative models of the link we were at pains to

keep the memory requirement to a minimum. The implementation

has only two variables which travel with the cut, namely LAMBDA

and BETA.

343

If a further variable of this type were available it could be used

to provide a message routing indicator. If the variable held the

node number of the destination node for the message, then an IFloop

whose outcome was a function of the variable value would be

equivalent to a routing algorithm- The existence of these two

facilities would be of great benefit, since it would be possible

for messages with differenct destinations to use the same REP

matrix elements on common sections of their routes. While leaving

the CPU time almost unchanged, this would greatly reduce the

memory required by the model.

Without these features it was necessary to provide separate

matrix elements for messages with different destinations. Within

this constraint we reduced the memory requirement by providing

separate nodes for each route, so keeping the number of REP

matrix elements much smaller than would be the case if the

separate route elements were placed in a single REP matrix.

The CPU time required by a model is approximately proportional

to the number of Slarc executions, and so to the number of SIarcs.

These were kept to the minimum compatible with retaining the

structure of the link activity.

In general penalties in resource usage were incurred because

of the absence of the second stage implementation, or because of

inefficiencies in the SIMULA 67 run-time system. Where possible

these were alleviated by judicious manipulation of model

structure.

344

APPENDIX IV

SHAPE USER INFOIMATION

34,5

51 11 21 31 61 71

GNO MODE DEBUG PICODE SICODE SIMLIM MAXREAL

CARD COL 1

RUN

FORMATS FOR GRAPH INPUT .

G A J.-YR
HEADER 	GRAPHNME I TYPE

FIR3T NODE LA32 NODE Ai-iC WIDTH 	GRAPH
SIZE

G FACTOR NUMBER OF
PROCESSORS

SYNODS

PINODE

1._NoriENuivIE'21.? INA_RCS OUTARCS iDATANODE3

OUTARC 3

REP [1 33/

_
PINODE OUTARC1 OUTARC2 OUTARC 	4 	J. OUTARC5

• •
t 	

.

. 	.

INARC1 REP Cl , 1) REP 11 , 2) • 9

INARC2 REP C2 1 13 . • . 	.

.
•

•

•

a

•

.
e

a 	a

0 	 •

a 	•

• •

NO DENUMBEi 1 IN ARCS OUTARCS IDA PANG D3

CAPACITY BLOCK
SIZE

LATENCY SEED BLOCKS/
TRACK

COST

11
	

21
	

31
	

41
	

51
	61 	71

NODENUMBER NODENUMBER :FIRST
NODE

LAST NODE ARC WIDTH GRAPE
SIB;

GFACTOR NUMBER OF
FROCESSOR

:41

SEQ FRAC . OATANODE' DATA NODE2
‘(.

DATASEQF1

IFCCDEI IFCODE2 Al 	. A2 B1 B2

PHI L11

PHI [2]

.

CARD COL

SIARC

CARD FORMATS FOR GB.APH INPUT

CARD FORMATS FOR GRAPH INPUT

CARD COL 1
	 11 	21

	
31
	 51

	
61
	

71
r-

NODENUMSER NODENUMBERFIRSTNODE LASTNODE
k

ARC WIDTH GRAPH
SIZE

GFACTuR NUMBER OF
PROCESSORS

SEQ FRAC.iDATANODE1 DATANODE2 DATAS6QF?s
L 	_

ID 	COST

PSI[1 i 	PSI[1,2] PSI[1,31

PSIL2,13 PST [2,22 .

P s . t3 ell .

.

.
.
.

.

.

items in brackets 	are optional.

A node must have its outarcs immedi$itely following its own data; nodes can ap..ear in any
order. If an arc has a aubgraph its tea; arneters follow the node numbers on the arc card .
the subgraph then follows thP date of the arc.

DATA REPLICATION

If a node (or arc) has identical data to some other then

DATANODE (or DATANODEI, DATANODE2, DATASEQF) describe the other

node (or arc) and the data is replicated automatically by

graph input, so that there is no need to append the data again.

The same occurs with a subgraph in which case replication is indi-

cated by setting size = 0 and then FIRSTNODE, LASTNODE, GFAC give

NODENUMBERI and SEQF of the arc which heads the subgraph to be

replicated. The following rules apply.

1) The DATANODE must precede a replica on the source file.

2) Data arc must precede a replica on the source file.

3) When data and replica subgraph arcs are OUTarcs of the same

node, then the data subgraph must precede the replica.

MULTIPLE INARCS

For extra INarcs to a particular row of REP matrix set

SEQF := REP[i10] + final NODENUMBER - initial NODENUMBER.

Arc specifier at initial node equals SEQF.

349

INDEX USAGE

NUMBER
	

ADDRESS

NODECT + 1 NONE

NODE NUMBER

cAf\AA. 	
_ix\ A

0

=EJECT + 1

INDXL
PLUGCT

INDXL

ry 	v7 	 . 	 v- 	il- A,,,AJ 	d
V\ 6, 	pRiv- , nr \Nviv,„,1/4/ 	• 	\ ,V

NODEVUZBER

INDXL-PLUGCT NONE

If nodeot + 1 = indxl 	ptugct then indexfull := true ;

comment nodes are held in ascending order by node numbers

indxl is the length of the thx,

on creRtior 	aPd number rindxl] := indxl,

on completion or 	ph t,:r. 	number andx1) := pno;

3:0

RUN CONTROL

The SHAPE program expects to find sequential input on two files

named sippli and PIGRAPH. SHAPE. prints logging information on

file LOGGER and statistics on file STATS. Any SCOPE files may be

used as long as their file names are equated to the expected ones

using DATASET cards. These must be the first cards read on the

standard input file INPUT. For example,

DATASET, SIGRAPH = HENRY

DATASET, PIGRAPH = XYAB

DATASET, LOGGER = P

DATASET, STATS = OUTPUT

DATASET, END

These cards are followed by a run control card whose format is

shown above. The parameters can be set as follows.

GNO 	- Number of graphs for this run j may be 1 or 2

MODE - binding mode may be

1 = non-reentrant

2 = semi-reentrant

3 = completely reentrant

DEBUG - Debug parameter, if non-zero theh extra logging

information is output.

PICODE - code showing hardware statistics required, is an octal digit,

i.e. 0 - 7, treated as three bits.

BIT 1 - low order bit set for memory statistics

BIT 2 - middle bit set for processor statistics

BIT 3 - high order bit set for processor state statistics

SICODE -code showing software statistics required, is an octal

digit, i.e. 0 - 7, treated as three bits

351

BIT 1 - low order bit set for node statistics

BIT 2 - middle bit set for arc statistics

BIT 3 - high order bit set for cut statistics

SIMLIM - Default binding time limit

MAXREAL -value to which all program maxima are to be preset

352

GRAPH INPUT PROCEDURES

gin(g) 	g - pointer to object of class graph, null if graph

input failure.

subgin (y, type, fstn, lstn,adl, size gfac)

y - pointer to object of class graph, provided by gin.

type - type of graph, usually 1 or 3-

fstn - node number of first node ingraph.

lstn - node number of last node in graph.

adl - length of arc data vectors.

size- number of nodes in graph.

gfac - factor to derive index capacity.

Innode (x, type, adl, data, nodes)

x - pointer to current node.

type - as above.

adl - as above.

data - scratch array for arc data created by subgin.

nodes - pointer to index created by subgin.

inarc (x, type, adl, data, nodes, inn)

x - pointer to previous arc.

type - as above.

adl - as above.

data - as above.

nodes - as above.

inn - node number of node at head of chain.

find (n, e, ind) - address of node with number n.

ind - pointer to index to be searched

e - number of entry in index

353

plug (n, a, ind) - true if successfully completed.

n - node number of plug.

a - address of arc requiring node address.

ind - as above

putelem (n, a, ind) - true if element successfully entered in index.

n - node number

a - address of element

ind - as above

ERROR CODES

Code Error

11 	REP matrix of initial Slnode contains no OUTarc specifier

for Slarc of completed tie.

12 	REP matrix of terminal Slnode contains no INarc specifier

for Slarc of completed tie.

14 	Terminal node dataset found to be negative while activating

terminal row in mode 1.

21 	Memory muse less than zero after memory change.

22' 	Memory muse greater than capacity after memory change.

31 	No Slarc found in OUTarc chain to match ready column in

current REP matrix-

32 	REP matrix of final node of ready Slarc contains no row

for this Slarc - INarc specifier not found.

40 	No Plarc found to execute ready Slarc.

41 	Terminal store too snail to hold max. requirement of

terminal node.

42 	Terminal store nodenumber not that required by terminal

Slnode of ready arc.

43 	Terminal store not that to which terminal Slnode of Slarc

already tied.

354

44 	Terminal store not the same as initial when Slarc is a loop.

45 	Time for arc to execute less than zero.

46 	Not enough storage free in terminal Plnode.

47 	Available process fraction is zero.

50 	Arc time less than zero in PERT mode.

60 	One or more terminal datasets of ready IFloop exceed

current initial one.

70 	No active initial dataset found for IFloop readied by

completing tie.

80 	No next event, system resources deadlocked.

81' 	Arc data rector lengths not matching in SI and Plgraph.

82 	No next event but final node still active.

83 	Binding time limit exceeded.

91 	PSID[0] less than zero after release of allocated processor

fraction.

92 	PSID[0] greater than one after allocation of processor

fraction.

355

	

rl 	arc cos t;

c i

	

tl,-, 	Eln 4.

ci
1.

•

a

•

a

•

a dl 	- 	_ L

Fad]

01.

ad1

C)

1

2

I 	ARRAY U3 AGE

adlp 1: type PHI fp : ad1, 1: typel

MU Cl.

•

•

a

•

a

2 	 3 	 4 . 	5 	6

cAPACIT: 	I Bii,C.Y.T:If 2.1;0 LATENCY 	1 3.E 	 COST 'D 	BLOCKS/ i
I

ircodel

ifcode2

vx

wx

vy

Wy

E2

lad).

Id

pcost

AiiitAY USAGE

?SID CO : adl 23

0 	1pfrao

1

2

adl

ad1+1

adl+2

IFF CO: adi +

357

PINODE RUN-TIME VARIABLES

inuse - current quantity of storage in use.

totuse - time integral of inuse.

mit 	- cumulative total of time inuse is non-zero.

mut 	- maximum observed value of inuse.

mef 	- sum over all periods in which inuse was non-zero of the

product of period length and maxuse of that period.

The variables above are used to produce the following statistics

for each Plnode.

activity 	- mit/gt

utilization - mut/capacity

efficiency - totuse/(mut * gt)

To derive expressions for overall graph storage utilization and

efficiency, we use the sums over all Plnodes of cost, cost of

Plnodes with non-zero time used, products of cost and mef/capacity

These are accumulated in totmem, gutmu, and gefmu respectively.

Statistics output are then

gutmu = gutmu/totmem

gefmu = gefmu/(gutmu * gt)

358

