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ABSTRACT  

This thesis describes the development of an inelastic column 

analysis for isolated pin-ended columns having an axial load and biaxial 

end moments. The column cross-section may be comprised of any combinat-

ion of materials with known uniaxial stress-strain relationships. The 

analysis has been developed primarily for composite steel concrete 

columns but is, nevertheless, equally applicable to bare steel columns, 

reinforced concrete columns, concrete encased steel stanchions, or 

concrete-filled steel tubular columns. Two different methods of solution 

are presented. One is a general method based on the calculation of the 

actual deflected shape of the column and is applicable to columns loaded 

with any combination of end eccentricities. The other is a simpler 

method based on an assumed deflected shape of the column and is restrict-

ed in its application to cases with symmetrical biaxial bending. It is 

shown, however, that the loss in accuracy obtained with the simple method 

is less than about 6% compared with the more exact method for the range 

of problems to which it is applicable. In both methods torsional effects 

are ignored, a limitation which should not restrict their application to 

most practical cases. 

Experiments on nine full-scale concrete encased steel columns 

loaded biaxially in symmetrical bending are reported and used to check 

the accuracy of the two methods of analysis. The columns tested cover 

the practical range of column slenderness and it is believed they 

represent tha first such tests reported to date. The discrepancy between 

the observed and calculated strengths remains within an average of 5% 

with a standard deviation of 10%. The theory developed has been sub- 
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sequently used to check the accuracy of a previously proposed biaxial 

interaction formula currently being included in the draft specifications 

for composite buildings and bridges. In all cases, the results obtained 

by the formula have been found to be conservative. In the case of un-

symmetrical bending, the strength obtained by using the design formulas 

may be underestimated by as much as 25 - 43%. However, in view of its 

simplicity and its consistent conservativeness, it is retoinuiended that 

this interaction formula may be retained for design purposes for the 

immediate future. The analysis developed within this thesis can be used 

at a later stage to develop a more suitable design approach. 

To illustrate the flexibility of the theory in its application 

• 	
to various types of cross-sections, attention in the final part of this 

thesis is turned to the problem of the strength of stiffened steel plates 

in compression. The theory is used to examine various factors influenc-

ing the strength of such plates. Among these factors are initial deform-

ations in the panel, residual stresses due to welding, initial eccentricity 

of loading, and local plate buckling. It is shown that these factors 

can combine to lower the strength of practical stiffened plates by up to 

50% of that based on idealised column theory. The results are also used 

to suggest how a column approach can be adopted for the design of 

stiffened compression flanges in box girders. Such an approach has the 

advantage of being simple with an acceptable degree of accuracy for 

design when it is compared with the results predicted by the inelastic 

column theory developed within this thesis. 
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CHAPTER 1 

INTRODUCTION 

1.0 	GENERAL INTRODUCTION 

Research on the buckling strength of compression elements in 

engineering structures has progressed considerably since Euler(1), more 

than two hundred years ago, first treated the problem of an isolated 

column as one of instability rather than one of stable equilibrium with 

flexural stresses. The interest in the stability of compression 

elements has now diversified from straight columns to plate and shell 

elements and further to the stability of complete structures. Yet 

several aspects of the stability of an isolated column remain to be 

fully understood. A large amount of experimental and theoretical 

investigation is being carried out even at this stage primarily with 

the objective of obtaining simple yet reliable design rules for such 

elements. The voluminous work recently carried out to establish the so-

called European Column curves for structural steel sections can be cited 

as one outstanding example. The experimental and theoretical studies on 

stiffened plates in compression triggered off by the recent collapse of 

three box girder bridges within a short space of time, is another. As 

a result of the work carried out by Beer and Schulz(2) for the projected 

European code the designer can now predict the strength of axially loaded 

pin-ended metal columns with a certain degree of confidence. On the 

other hand the study of stiffened plates in compression, is relatively 

still in its infancy. As a simple approach, the experience gained 

in the study of the ultimate strength of columns is being extended to 
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the more complex problem of stiffened plates in compression. 

This thesis reflects this trend in that while it started out as an 

investigation of one of the remaining aspects of the strength of pin-

ended columns, namely that of biaxial bending of composite columns, the 

general theory so developed was subsequently used to investigate some 

of the fundamental parameters governing the behaviour of stiffened 

plates in compression. These seemingly different albeit very important 

problems represent only two of the many which may be studied with the 

theory developed within this thesis. 

1.1 	REVIEW OF COLUMN RESEARCH 

I 
	The problem of instability of compression elements is concerned 

with the investigation of conditions under which the structure ceases to 

be in a stable equilibrium between external forces and internal stress 

resultants. An added complication stems from the fact that the response 

of the structure is in general controlled by the material stress-strain 

relationship. Euler's formula(3) predicted the strength of slender 

columns very closely, but was soon found to be inadequate for shorter 

columns. The mathematical soundness of Euler's formula was confirmed by 

Lagrange(4), but it was found that the margin with which the formula 

overestimated the strength of short columns increased with diminishing 

slenderness. That this failure of the formula was due to the material 

elastic limit being attained before the theoretical stress required for 

buckling, was not recognised until 1845 when Lamarle(5) pointed out the 

lower limit of slenderness for the Euler formula to be valid. In 1889, 

Consid4re(6) and Engesser(7) presented, independently of each other, 

generalised forms of Euler's formula based on a variable modulus of 

0 
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elasticity, and covering the entire range of slenderness ratios. Much experi-

mental and theoretical work on axially as well as eccentrically loaded 

columns followed. It was only in 1947 that Shanley(8)  finally established 

that the tangent modulus load represented the maximum load under which an 

initially straight column will necessarily remain straight. In other 

words it represented the lower bound for the buckling load of such columns. 

Most practical columns, however, lack initial straightness and may have 

other imperfections as well. Notable amongst these are the locked-in 

residual stresses. Also, a practical column seldom has a perfectly 

concentric axial load. All these imperfections have a detrimental effect 

on the strength of the column. Ostenfeld(9), in 1898, made an attempt to 

derive design formulae for centrally and eccentrically loaded columns. 

His method was based on the first yield criterion. The first to consider 

the determination of the buckling load of eccentrically loaded columns as 

an instability problem was Kaman
(10) 

who, in 1910, gave a general and 

exact theory for the determination of the ultimate load of such columns 

loaded beyond the material elastic limit. Karmgn's theory was related to 

uniaxial eccentricities only and bending was assumed to be in the plane 

of the applied eccentricities. The importance of KArmgn's work lies in 

the fact that it has formed the basis of considerable research, including 

this thesis, on numerous aspects of column behaviour. Ros
(11) 

and 

Brunner gave a simplified theory assuming the deflected shape of the 

column in the form of a sine wave but based their computations upon the 

actual stress-strain diagram. A simple solution to KgrmAn's equations 

was given by Westergaard and Osgood(12)  who assumed the deflected shape of 

the column to be part of a cosine wave. The errors introduced by this 

assumption were found to be within practical acceptable limits. Jel'ek(13) 

• 
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employed a bilinear stress-strain curve for steel and showed that the 

results gave acceptable agreement with those obtained from real stress-

strain curves. 

Apart from imperfections, several other problems related to the 

0 

	

	stability of columns have been identified, for example lateral stability, 

lateral torsional stability and local stability of thin-walled cross-

sections. Following the works of Timoshenko(14), Bleich(15)  Winter(16) 

and others, Goodier(17) presented a solution of the problem of the stab-

ility of bars of thin-walled open sections under compression, bending and 

twisting. Goodier ts solution is applicable to elastic systems only. 

Although several solutions have been given for inelastic columns with 

uniaxially eccentric loads, few solutions are available for the general 

problem of an inelastic column under biaxially eccentric loading with or 

without torsion. KlOppel and Winkelmann(18) based their solution on 

polynomial expressions for the lateral displacements and satisfied 

equilibrium at a sufficient number of points to obtain the coefficients 

of the power series assumed. The first general solution may be said to 

have been given by Birnstiel and Michalos(19) based on a successive trial 

and correction procedure. The procedure was improved by Birnstiel, 

Harstead and Leu
(20) in that a systematic procedure for the correction 

of successive trial values was suggested. The results obtained showed a 

good agreement with experiments carried out by Harstead(21). The solut-

ion given by Sharma and Gaylord
(22) 

was obtained by assuming the deflect-

ed shape in the form of a sine wave for deflections along both the bend-

ing planes as well as for the twist of the section. Their approximation 

has been shown to be satisfactory. 
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The effect of restraints from connecting beams on biaxially loaded 

columns was first studied by Milner
(23)

. Milner's approach differs 

from others' in that Milner has constant end moments for increasing axial 

loads while most other studies assume moments increasing in the same 

• proportion as the axial load. Being a non-linear problem, the two loading 

paths inevitably produce different results. Restrained columns have also 

been studied by Baker, Horne and Heyman
(24) 

and recently by Wood
(25) 

Considerable work still needs to be done on the strength of a column form-

ing part of a framework as also on the inelastic stability of structural 

frames as a whole. 

Much of the work on columns has been concerned with bare steel 
♦.  

columns. Many steel columns in buildings are encased in concrete for fire 

protection. Some columns consist of steel tubes filled with concrete, 

particularly those used in buildings situated in earthquake zones. The 

introduction of concrete having material properties substantially differ-

ent from steel makes an exact analysis including composite action very 

difficult. The strength of encased columns has, until very recently, 

been estimated on the basis of empirical rules. It is now well established 

that consideration of composite action in composite structures leads to 

more competitive designs. 

The investigation of the ultimate strength of encased columns in 

particular, and composite columns in general, has understandably lagged 

behind that for bare steel sections. While the strength of composite 

columns with uniaxial bending and compression has been studied in some 

depth by Basu
(26,27,28) and others, little work has so far been reported 

on biaxial bending of composite columns with or without end restraints. 

Basu and Sommerville(28)  did extend Bresler's formula(29)  for short 
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reinforced concrete columns in biaxial bending and compression to slender 

composite columns, but no theoretical or experimental support was given. 

Need was therefore felt to devise an analytical method to predict the 

behaviour of composite columns in biaxial bending up to and possibly beyond 

a 
	 collapse. This was the original, and remained the main, objective of this 

thesis. Experimental verification was sought for the limited case of 

symmetrical end eccentricities at the two ends. The theoretical and 

experimental evidence so obtained was also aimed at examining the accuracy 

of the existing design method due to Basu and Sommerville, when applied to 

composite columns in biaxial bending. 

Columns are, of course, only parts of structural frames. Consider-

able research has been carried out on the behaviour of composite beams and 

slabs. The work of Yam
(30) at Imperial College may be cited as one of the 

many advanced studies on the subject. The ultimate aim of research on 

composite structures has been to obtain methods of design and analysis for 

frameworks composed of composite elements - beams, slabs, and columns. 

The present study may therefore be regarded as a preliminary step taken 

before the more complex problem of the inelastic behaviour of composite 

space-frames is tackled. 

• 
1.2 	HISTORICAL NOTE ON RESEARCH ON COMPOSITE COLUMNS 

Tests carried out by Burr(31)  in 1912 demonstrated that the 

surrounding concrete added appreciably to the strength of an encased 

stanchion. Most building codes, however, ignored the strengthening 

effect of concrete, even though several tests
(32,33,34,35) 

reported 

between 1912-1936 substantiated Burr's findings. These tests showed 

that for columns with low slenderness the load bearing capacity of the 

axially loaded composite column was safely predicted by summing the 

ar 
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individual strengths of steel cross-section and the effective concrete 

cross-section. The British Code for structural steel in buildings
(36) 

as revised in 1948 stipulated that an allowance could be made for the 

contribution of concrete, provided the increase in load carrying capacity 

m 
	thereby did not exceed 50% of the capacity of the bare steel column. In 

1956 Faber proposed design formulae
(37), applicable to encased stanchions, 

which gave load factors varying from 2.26 to 3.74 for the columns tested 

by him. It was shown, in the discussion(38)  to the same paper that the 

ACI Code 318 - 1956 formula
(39) gave load factors varying from 2.18 to 

3.64 for the same columns. The work of Faber was followed by that of 

Rizk(4°), Jones(41)  and Stevens
(42). Tests at the Building Research 

Establishment reported by Stevens, were performed on axially as well as 

eccentrically loaded specimens. On the basis of these tests, Stevens 

suggested formulas for the design of encased columns and compared them 

with the existing BS449
(36) formulas. In the revised BS449, 1959, the 

strength of a composite column was limited to an increase of 100% over 

the load bearing capacity of the bare steel column. 

No attempt had so far been reported to obtain the failure load 

of a composite column by rigorous analytical procedures. Bondale
(43) 

extended the 	Karmgm procedure for obtaining the inelastic buckling 

load of metal columns to concrete encased steel columns loaded eccentric-

ally about one axis. He also showed the applicability of the tangent-

modulus approach for obtaining the failure load of axially loaded encased 

sections. The good agreement observed between this approach and test 

results on columns in symmetrical bending showed that his fundamental 

assumption that the two materials acted compositely was substantially 

valid. Bondale further showed that the columns designed by existing 
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design rules had load factors against collapse varying from 2.4 to 5.0 

for failure about the minor axis. An "approximate" method was also 

proposed by Basu
(26), 

in which the deflected shape of the column was 

assumed to be part of a cosine wave. Subsequently, Basu and Hill(27) 

suggested a procedure to compute numerically the "exact" collapse load 

of composite columns with unequal end eccentricities, under uniaxial 

bending and compression. The results of numerical experiments using the 

"approximate" method were used by Basu and Sommerville
(28) 

in formulating 

a comprehensive ultimate load design method for both concrete encased 

steel sections and concrete-filled steel tubes. Expressions presented by 

Roderick and Rogers(44) based on trilinear concrete stress-strain curve, 

and bilinear steel stress-strain curve, can also be used in calculating 

the collapse load of encased columns. 

Rectangular or circular steel tubes filled with concrete have 

attracted the attention of investigators in recent years. Kliippel 

and Goder
(47) considered the buckling of axially loaded tubular sections. 

Rectangular and circular steel tubes filled with concrete were considered 

by Furlong
(45,46) 

who suggested empirical formulae for approximate design. 

With the construction of Almondsbury interchange(48), work was carried 

out at Imperial College to study such sections. Neogi, Sen and Chapman(49' 

50) confirmed that the procedures mentioned above for encased sections 

could be applied to these sections also, except in the case of axially 

loaded concrete-filled tubular sections of low slenderness, in which case 

the ultimate loads calculated will be conservative. The high column strength 

obtained in this latter case is due to the containment of the concrete by 

the surrounding steel shell when the filled tube is uniformly compressed, 

as the triaxially stressed concrete exhibits a much greater strength than 
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that of uncontained concrete. The enhancement of strength diminishes 

for increasing slenderness of the column, as also for increasing 

eccentricity of the load. 

An analytical procedure for computing the strength of such 

columns was proposed by Neogi
(51). He based his method on the previous 

work of Richart, Brandtzaeg and Brown
(52) on stocky spirally reinforced 

concrete columns. A more exact procedure was suggested by Sen
(53) 

wherein the effect of lateral stresses was incorporated in the expression 

for the increased longitudinal stress in concrete, which in turn was used 

for computing the failure load of the column. Knowles and Park
(54) 

suggested a criterion to determine whether triaxial effects would in a 

given case be significant or not. Guiax and Janss(55)  have recently 

proposed improved methods of calculating the triaxial effects in con-

centrically loaded circular tubes filled with concrete. 

Any analytical procedure for computing the buckling load of an 

eccentrically loaded composite column would require the determination of 

the moment-thrust-curvature relationship. Roderick and Rogers
(41) 

made 

an attempt to do this with the aid of linearised stress-strain relation-

ships both for concrete and steel. However, the numerical integration 

procedures adopted by Basu
(26), Neogi

(51) and Sen(53)  have the advantage 

of being general and more exact to the extent that the accuracy depends 

only on the fineness with which the cross-section is subdivided. The 

procedure facilitates the adoption of any stress-strain curve, polynomial 

or multilinear,making it possible to trace the stress-strain history of 

each element with a desired degree of accuracy. This approach has been 

extended by Gesund
(56) and Brettle and Taylor

(57) for column sections in 

biaxial bending by subdividing the section between parallel lines in two 
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orthogonal directions. It is presumed that such computations will be 

attempted only where a digital computer is available. The numerical 

integration procedures also lend themselves to simple modifications for • 

studying the effects of initial imperfections, unequal end eccentricit-

ies at top and bottom, long term loading, residual stresses in steel, 

and shrinkage of concrete. 

Most of the investigations so far have been confined to axial 

compression with or without uniaxial bending. In practice, columns 

rarely have a purely axial load, and are very frequently subjected to 

bending about two axes. Three-dimensional space structures are normally 

treated as an array of parallel two-dimensional planar structures with 

all the loads applied in the same plane. The columns in such frames are 

usually designed to resist bending moments in the plane of the frame. 

While columns designed in the past in this manner have proved satisfact-

ory, this does not represent the true loading condition in a space 

structure. In an actual structure, the columns are frequently subjected 

to bending moments acting in two orthogonal directions in addition to 

the axial load. Even when the moments are primarily in one plane the 

presence of geometrical imperfections may induce moments in the 

perpendicular plane. As observed, earlier solutions for the biaxial bend-

ing and compression of composite columns have been attempted only in a 

few instances. Sharpies
(58) obtained a solution for the lateral instab-

ility of composite columns with eccentric loading about the major axis 

based on a successive trial and correction procedure. Although essent-

ially a uniaxial bending approach this method can be applied approximately 

to cases where small moments are introduced about minor axis. 

Roderick(59)  has mentioned an approximate solution to the biaxial bending 

problem assuming that the deflections are confined to the plane of 
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bending. Such an assumption has the limitations in that it is very 

complicated to compute moment-thrust-curvature relations for an axis 

other than the principal axes of the section. Also, a lack of symmetry ,  

in the section would lead to considerable errors due to neglecting com-

ponents of moments in a plane perpendicular to the bending axis. A 

simple interaction formula for design which relates the biaxial strength 

of composite columns to the uniaxial strengths in the major and minor 

axis directions was suggested by Basu and Sommerville(28)  without any 

experimental or theoretical backing. 

1.3 	SUMMARY OF PREVIOUS WORK ON COMPOSITE COLUMNS AND ITS RELATION- 

SHIP TO THIS THESIS 

From the review of literature mentioned in the preceding sections 

it may be observed that no comprehensive theoretical approach on composite 

columns in biaxial bending has so far been attempted. Nor is there 

any related experimental work available. Substantial work has, 

however, been done on the problem of bare steel columns under general 

conditions of end loading, including biaxial bending. The problem of 

composite columns in uniaxial bending has also received comprehensive 

treatment in the work of Basu and others
(26
'
27
'
28). The formulations of 

Harstead, Birnstiel and Leu
(20) 

and Milner
(23) for the relatively exact 

solution of bare steel columns in biaxial bending and that of Sharma and 

Gaylord
(22) for an approximate solution of the same problem have all 

proved satisfactory. For this reason, the formulation of the problem of 

composite columns in biaxial bending was parallel to that of the three 

works on bare steel columns mentioned above with the simplification that 

twisting forces and deflections are ignored in view of the large torsional 
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rigidity of composite column cross-sections. The procedure for computing 

the basic moment-thrust-curvature relationship is an extension of Basuts(26) 

approach for composite columns in uaiaxial bending. Two solutions to 

the problem have been given, one based on the determination of the exact 

shape of the deflected column, and the other based on an assumed deflect-

ed shape. Both solutions are based on an iterative technique similar to 

the Newton-Raphson iteration formula and are believed to be the first such 

application. The computerised methods of analysis have been used to 

evaluate the applicability of the design rules due to Basu and 

Sommerville
(28) as applied to composite columns under general biaxial end 

eccentricities. 

1.4 	STIFFENED PLATES IN COMPRESSION 

Stiffened panel construction has been widely used in steel box 

girder bridges in recent times. It has been used for ship and aircraft 

plating for even longer. Following the collapse of the three steel box 

girder bridges in Milford Haven, Melbourne and Koblenz, much 

experimental and theoretical work has been undertaken to study various 

stability problems associated with stiffened panels in compression. A 

committee of enquiry was set up in Britain to examine the existing design 

rules and to put forward recommendations
(60) for the design of stiffened 

panels under compression among other components of steel box girders. 

An elastic solution to the problem of stiffened plates was given 

by Timoshenko(61)  in 1921 based on energy principles. Exact solutions 

were later given by Loshkin
(62) 

and Barbrd(63) for the elastic critical 

buckling of such plates. However, the ultimate load of a thin plate and 

stiffener combination may be considerably above.the load for local 

4 



24. 

buckling of the plate(64). The problem of finding the ultimate load is 

of course very distinct from that of finding the buckling load. Little 

is known about the inelastic behaviour of such plate elements, or for 

that matter, of the effect of residual stresses due to welding and of 

initial lack of imperfections on the ultimate strength of such panels. 

The distribution of residual stresses in welded plates, and their effect 

on the ultimate strength has been discussed by Dwight, Chin and 

Ratcliffe(65), Ratcliffe(66) and by Nishino, Ueda and Tall(67). Further 

experimental and theoretical work has been done by Vojta and Ostapenko(68) 

and by Dwight and Moxham(69  '70,71). Related work on box girder models has 

been carried out by Dowling, Chatterjee, Frieze and Moolani at Imperial 

College(72) 

On the basis of experimental evidence, Lundquist(73) obtained 

good results by including an effective portion of the sheet into the 

cross-section of the stiffener. The effective width concept has also been 

advocated by Karman, Sechler and Donnell(74) among others, but this 

approach has been criticised by Dwight and Moxham(69) 

Stiffened compression panels are essentially anisotropic plate 

elements. An exact solution of the problem is likely to be very tedious. 

However, in many practical cases the rigidity of a stiffened panel in the 

direction of longitudinal stiffeners is far greater than that in the trans-

verse direction. The post-buckling behaviour of such a panel in such a 

case approaches that of a strut consisting of an individual stiffener 

together with an associated width of the plate, i.e. there is no apprec-

iable overall post-buckling reserve. This approach has been adopted here 

to study the effect of residual stresses due to welding and the effect of 

initial lack of straightness on the strength of stiffened compression panels, 
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The computer programs developed for the study of composite 

columns in biaxial bending were general enough to analyse a wide variety 

of cross-sections including reinforced concrete columns, concrete encased 

steel stanchions, concrete-filled steel tubes, and bare metal sections, 

all of arbitrary shape. A ready application was found for stiffened 

plates in compression using the approach outlined above. 

Another factor influencing the strength of stiffened plates in 

compression is the local buckling of the plate element spanning between 

the stiffeners. A semi-empirical approach was suggested by Vojta and 

Ostapenko(68) using an average stress-strain curve, defining the local 

behaviour of the plate, in place of the material stress-strain relation-

ship. Mittleman
(75)

, who employed the author's computer programs for his 

study, and later Dwight, Little and Rogers(76), used the same approach 

with different curves defining the behaviour of plate elements subjected 

to local buckling. The curves selected in this thesis are based on 

Ratcliffe's experiments(66). The relative merits of various curves are 

discussed in detail in Section 7.4. 

1.5 	SUMMARY OF PREVIOUS WORK ON STIFFENED PANELS AND ITS RELATIONSHIP 

TO THIS THESIS 

It is clear that an exact solution to the problem of stiffened 

plates in compression with the objective of finding their ultimate loads 

is difficult to obtain. For panels having a large number of closely 

spaced stiffeners, the inelastic behaviour of the plate may be approxi-

mated by that of a strut consisting of an individual stiffener and an 

associated width of the plate. This approach has been adopted here 

using a width of the plate equal to the stiffener spacing. The effect 

of residual stresses due to welding and of initial lack of straightness 

• 
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has been studied over the full practical range of slenderness ratios. 

The results obtained have been presented in a form suitable for use in 

the design of stiffened plates. A semi-empirical approach towards 

including the effect of local plate buckling in similar design curves 

is also indicated. 

1.6 	SCOPE AND LAYOUT OF THE THESIS 

The general objective of this thesis, as mentioned in the open-

ing section, was to obtain an analytical method for the determinat-

ion of the collapse load of composite columns under biaxial bending. The 

study was limited to pin-ended columns. However, the entire range of 

combinations of end eccentricities was covered. An approximate solution 

using deflected shape in the form of part of a cosine wave was first 

obtained for columns with symmetrical eccentricities at the two ends. 

Tests on 9 columns in this category are reported, and the results used 

to check the applicability of the approximate solution. The existing 

design method due to Basu and Sommerville is scrutinised in the light of 

more exact analytical results for various cases of biaxial bending. 

Application of the computer programs to a parametric study on stiffened 

plates in compression is also reported. 

The experimental investigation on 9 composite columns is first 

described in some detail in Chapter 2. Sufficient data were collected to 

examine some of the fundamental assumptions made in the theoretical 

calculations. The next three chapters contain the theoretical aspects 

of the problem of composite columns in biaxial bending. 
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Chapter 3 deals with the development of a procedure to compute 

the moment-thrust-curvature characteristics of a composite column cross-

section under biaxial moments and thrust. The moment-thrust-curvature 

relationships are relevant to any computations, approximate or exact, of 

• 
	the failure loads of composite columns of finite length. Hence they 

have been assigned a separate chapter. 

Chapter 4 presents an approximate method for the determination of 

the ultimate load of composite columns under biaxial bending with 

symmetrical eccentricities at the two ends using the part-cosine wave 

assumption for each of the two deflection components. 

In Chapter 5 a method has been developed to determine the exact 

deflected shape of a column under generalised biaxial bending. This is 

used as a basis for the determination of the failure load of such columns. 

All the numerical experiments on composite columns have been 

grouped in Chapter 6. First, the accuracy of the procedure for moment-

thrust-curvature is established. Next, the validity of the computer 

program is examined in the light of comparisons with the existing solut-

ions for uniaxial bending for encased columns as well as filled tubes. 

Verification of the results for biaxial bending is carried out by compar-

ing computed results with the experimental results on columns with 

symmetrical end eccentricities. Also examined in this section is the 

effect of making the part-cosine wave assumption. The following section 

examines in detail the design method due to Basu and Somerville as 

applied to columns in biaxial bending. 
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Chapter 7 describes the results obtained from a study of the 

effects of residual stresses and of lack of initial straightness on 

the strength of stiffened plates in compression. An approximate method 

for estimating the effect of local plate buckling on the stiffened plate 

strength is also indicated. 

The conclusions drawn from the theoretical and experimental 

studies described in the thesis have been grouped together in the final 

chapter. 
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CHAPTER 

TESTS 

	

2.0 	GENERAL 

Tests were carried out on nine pin-ended concrete encased steel 

H-sections of varying lengths which were subjected to compressive loads 

applied at varying biaxial eccentricities, different in the two planes 

of bending but symmetrical at the two ends. Apart from testing the 

columns for the ultimate load, their load-deflection and load-strain 

responses were also monitored. 

	

2.1 	CHOICE OF SCALE 

The tests were carried out on full-scale specimens. One of the 

considerations was that it is difficult to obtain concrete of comparable 

properties in reduced scale models.,  In addition, it is not easy to 

simulate imperfections in the steel section, viz. the initial lack of 

straightness and the presence of residual stresses, in scaled down 

models. In particular, the effects of scale on interaction between steel 

and concrete components are not clear. 

	

2.2 	DETAILS OF CROSS-SECTION 

For convenience, the smallest practical column H-section viz. 

6 in x 6 in @ 15.7 lb, was selected for the column core. A.2 in cover, 

the minimum required by code regulations, resulted in the overall 

dimensions of 10 in x 10 in for the composite column. Concrete was 

effectively tied around with transverse binders (3/16 in diameter) at a 

spacing of 6 in centres. These were held in place by four longitudinal 
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bars of 1/2 in diameter at the four corners, situated at half the depth 

of the cover. 

	

2.3 	PARAMETERS INVESTIGATED 

The two parameters that were systematically varied within the 

test programme were the slenderness of the column and the eccentricity 

of applied load. Three specimens, each of three different lengths - 

6 ft, 12 ft and 24 ft were cast. These lengths were chosen to give 

values of slenderness ratios at the extreme ends and centre of the 

practical range. Specimens of the same length were tested under three 

sets of biaxial eccentricities. The three eccentricities of load used 

with each column were all confined to the same plane. The small 

eccentricity was well within the cross-section, the medium one on the 

perimeter, and the large one outside the cross-section. Table 1 lists 

the lengths and eccentricities of all nine specimens. 

	

2.4 	PARAMETERS NOT INVESTIGATED 

Several other parameters, for example, material strengths, 

concrete cover, unequal end eccentricities at the two ends, and concrete 

contribution parameter, would require investigation for a comprehensive 

experimental verification of various design cases. However, these 

parameters were not studied systematically in this test programme because 

of the limited funds available for the project. 

	

2.5 	MANUFACTURE OF SPECIMENS 

The specimens were cast with two steel end plates, 10 in x 10 in x 

11 in thick, already welded to the main steel sections. The end plates 

were provided with tapped holes by which they were fixed to the rig plates. 
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Figure 1 shows the specimen with details of the end plates. At the time 

of casting, access holes were provided at four places on the mid-section 

to facilitate fixing of strain gauges on the H-section. The casting was 

done with the columns in the vertical position. Sufficient space was 

left between end plates and concrete for subsequent filling with a dry 

mix mortar. This ensured that the concrete shrinkage did not result in 

separation between end plates and concrete. 

2.6 	MATERIAL PROPERTIES 

A concrete strength of 4,500 lbf/in2  was specified. This was to 

be obtained using a 1:2:4 mix with a water cement ratio of 0.55. All 

specimens were manufactured from the same lot of materials (sand, 

aggregate, cement, H-section and reinforcing bars), and similar casting 

and curing procedures were adopted. The period of curing was 28 days. 

Standard 6 in cubes were taken from all batches of concrete. Tests on 

the cubes supplied by the manufacturers of the columns, Taylor Woodrow 

Anglian Ltd., indicated that the concrete strength actually obtained was 

much higher than the specified value. The cubes were tested at the time 

of testing of the corresponding test specimens. The results of compress-

ion tests on all the cubes are listed in Table 2. 

Several tests on coupons cut from the H-section were also carried 

out to determine the yield stress of steel. Some of the coupons were 

taken from the web, others from the flanges. The yield strengths and the 

ultimate strengths obtained in these tests are given in Table 3. Tensile 

tests were done on the steel bars used as the longitudinal reinforcement, 

and the results obtained appear in Table 4. 
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Six stub columns of length 30 in cut from the main steel section 

were tested with axial loads to study the effect of residual stresses and 

local buckling of the flanges on the behaviour of the bare steel section. 

These specimens were prepared and tested in accordance with the procedures 

• 
	

laid down in the Column Research Council's Guide to the Design Criteria 

for Metal Compression Members
(77)

. A notable feature of these tests was 

that the stub columns failed by inelastic buckling of the flanges followed 

by the buckling of the webs. The flange width to thickness ratio for the 

section was 22.3. Thus the exclusion of this section from the 

list of available universal column sections which may be used in plastic 

design of bare steel columns as suggested by Horne
(78) 

 , is confirmed 

experimentally. 	No such restriction applies of course when the column is 

encased in concrete as the surrounding concrete prevents premature local 

buckling of the flanges prior to failure of the whole cross-section. 

Another specimen was tested after cutting 1 in off the flanges on all 

four tips thus reducing the flange width to thickness ratio to 14.9. This 

column failed by overall yielding. The average failure stress over the 

cross-sectional area obtained was higher than for the first five specimens 

and was only 5% less than that obtained by coupon tests. The results 

4 	obtained from these tests are grouped in Table 5. 

In view of the results given in Tables 3-5 an average yield 

strength of 20.375 tonf/in
2 
 was assumed for steel in the H-section, and 

the corresponding yield strain was taken as 0.00155. The strength of 

concrete as obtained from cubes differs substantially from that obtained 

in actual beam/column specimens. It is common practice to employ a 

reduction factor of 0.85 in conjunction with a variability factor of 0.80 

in the case of laboratory specimens. This results in an overall reduction 
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factor of 2/3, a value commonly used for laboratory results. However, to 

assess the concrete strength as obtained in the specimens, some short 

column tests were carried out on 36 in long composite sections sawn off 

from the undamaged lengths of the original test columns after the latter 

had been loaded to failure. Results obtained are listed in Table 6. It 

may be observed that the average strength obtained is less than the 

average cube strength by a factor 0.6415, which is very near to the 

factor 2/3 mentioned above. 

2.7 	INSTRUMENTATION 

Four electrical resistance strain gauges were positioned, one at 

each of the four flange tips of the section at mid-span, to pick up the 

strain distribution across the section. The gauges were placed through 

the access holes provided at the time of casting. Figure 2 shows the 

strain gauges before the access holes were filled with concrete. To 

ensure satisfactory working of the gauges it was necessary to prevent 

them coming into contact with moisture. The following procedure was 

adopted. 

(1) The tip of the flange was ground to a smooth finish; 

(2) The adhesive resin was applied on to the ground tip of the 

flange, and the strain gauge was then stuck in position; 

(3) The surrounding concrete was dried by focussing a light on it 

for a period of four hours; 

(4) The strain gauge circuit was tested using a Peekel instrument; 

(5) An insulating sleeve was placed over the gauge; 

(6) A 1/8 in layer of Prepot sealing mixture was poured into the 

■ 
hole and allowed to set overnight; 
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(7) The strain gauge circuit was tested once again; 

(8) The remainder of the hole was filled with a fast curing cement 

mix. 

The strain gauges used were of 10 mm length with a gauge factor 

of 2.06. The strain measuring circuit included dummy strain gauges fixed 

to an unstressed steel specimen embedded in concrete for temprature 

compensation. 

Concrete strains were measured using demountable mechanical 

gauges between Demec points. The Demec points were fixed on to the side 

of the column at selected points by means of a quick-hardening resin. 

Two gauge lengths were used, 4 in and 8 in. The positions of gauges for 

the three lengths of test specimen are shown in Fig. 3. 

The deflections of the specimens under load were measured using 

dial gauges and vernier scales. These gauges and scales were supported 

on a rig running parallel to the column. The deflection rig was isolated 

from the loading rig, so that the observed deflections. were absolute. 

Deflections were measured at mid-span, quarter-span, and end-points. For 

the long columns, they were also measured at 1/8th span points. The end 

stations were intended primarily to detect any slip or rigid body rotat-

ion of the test specimens. At each station along the length, three or 

four gauges/scales were fixed to measure the average horizontal and 

the vertical deflections. 	A close-up view of one such station is shown 

in Fig. 4. The dial gauges used in measuring deflections had an accuracy 

of 0.001 in and a travel of 21 in, although in some cases gauges with an 

accuracy of ± .0001 in and a travel of 11 in were used. The respective 

figures for the vernier scales were 0.001 in and 6 in. The vernier scales 
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were employed mainly in the case of long columns, as the expected 

deflections were large. 

The faces of all columns were painted white to assist in,the 

detection of tensile cracks in the concrete. At each stage of loading, 

the developing cracks were marked with dark lines. In the case of long 

columns, particular cracks nearest to the mid-span were monitored and the 

growth of the crack width measured with the aid of a microscope. 

2.8 	LOADING RIG 

The columns were tested in a horizontal position. The main 

reason for testing them in such a position was that a vertical loading 

rig to test the 24 ft columns was not available and would have had to be 

specially designed. Apart from considerations of cost it was considered 

that the recording of measurements would have been very time-consuming 

and inconvenient in the vertical position. By testing horizontally the 

need for a large frame was eliminated, the monitoring of various gauge 

readings was simplified, and it became possible to keep the entire column 

length under observation throughout the duration of the test. 

Testing columns horizontally required some mechanism for counter-

balancing the dead weight of the column. This was effected by supporting 

the columns at various points along the length. The arrangement of the 

rig for 6 ft, 12 ft and 24 columns is shown in Fig. 5, indicating the 

points where the column was supported. In each case the supporting rig 

was carried on load maintaining jacks, so that the dead weight effect did 

not become significant even after the column had deflected under applied 

longitudinal load. The maximum dead weight strain induced in the columns 

supported as shown in Fig. 5, was found experimentally to be less than 10 

microstrain. 
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The longitudinal load was applied by means of a hydraulic jack. 

The jack was reacted off heavy concrete blocks which were prestressed to 

the strong floor to prevent slip. The columns were placed with the jacks 

at one end and a further set of concrete reaction blocks at the other. 

Ball and socket type bearings were used at each column end to simulate 

pin-ended conditions. The rig plates, which were each bolted to a column 

end-plate on one side, had a spherical socket machined on the other side. 

The nominal diameter of the ball and of the socket was 34 in. The 

bearings were greased to minimise friction. Figure 6 shows a typical rig 

arrangement with a 24 ft column in position. 

To prevent rigid body rotation of the column, one of the two end-

plates was supported off the strong floor by a special pin-ended steel 

strut. The loading was controlled by an Amsler Load Control Cabinet. 

Two similar cabinets were used for the self-weight supporting mechanism. 

2.9 	TEST PROCEDURE 

Before recording any observations, it was imperative to ensure 

that the specimen was adequately "bedded-in". For this purpose small loads 

were applied, and then removed, a few times. During the test, loads of 

increasing magnitudes were applied, and strains and deflections recorded. 

After reaching the ultimate load, an attempt was made to obtain the 

descending branch of the load-deflection curve in the case of some of the 

specimens. The complete test consisted of three phases in each case. 

(1) Initially, the load was applied in increments of about 10% of 

the estimated failure load for each column. For the first few steps, 

after each increment of load, the specimen was unloaded to zero load. 

The observations for strains and deflections after each unloading were 
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compared with those at the first zero. The process of un?oading was con-

tinued while the two zeros showed negligible difference. The load at 

which the deflections after unloading differed from the initial deflect-

ions was recorded as the elastic limit load (or the load corresponding 

I 
	to the limit state of unserviceability). The process of unloading was 

discontinued beyond this stage. 

(2) The loads were then increased by increments, and deflections 

and strains recorded. As the growth of deflection with load indicated an 

increasing degree of non-linearity, the increment of load was successfully 

reduced. During this stage, steady deflections were obtained after a 

short time, while the load maintained a constant value. The time interval 

needed to obtain a steady deflection reading tended to increase with 

successively higher values of load, beginning initially with almost 

instantaneous equilibrium. When the load reached about 80-85% of the 

failure load value, the interval became as much as 3-5 minutes. Beyond 

this stage, therefore, the testing procedure was slightly modified. 

(3) The observations were recorded, not for increasing loads, but 

for increasing deflections during the final phase. After the last 

equilibrium state, the load was increased slightly and the column allowed 

to deflect progressively. However, when the new increment in deflection 

was roughly the same as the previous one, the valve on the cabinet 

regulating the flow of oil to the jacks was closed. In the early stages 

of this third phase, it was observed that the column sustained success-

ively smaller increments of load. A stage was finally reached when the 

load was decreased from the previous value in order to maintain equilibrium 

at the higher deflection. This reversal in trend corresponds to the peak 

load or the failure load. The observptions for load-deflection relation- 

• 
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ship were carried on further along the descending branch until it was 

considered that no further useful information could be obtained from 

the test. 

The time taken for recording observations at each load level 

varied from about 10 minutes in the early stages to about 15 minutes in 

the later stages. The total time required for each test varied from 

about 4 to 6 hours. 

2.10 	TEST RESULTS 

2.10.0 Mechanism of Failure  

The failure in all cases followed an almost parallel course. The 

first stage always corresponding to yielding in the compression tip of 

the H-section. The strain in the steel flange at the opposite corner 

(tensile zone) was next to reach yield. A continuous deterioration in 

column stiffness was observed. Final collapse was accompanied by spall-

ing of concrete in the compression zone. This immediately resulted in 

the buckling between ties of the longitudinal reinforcement bar at the 

compression corner, reducing the column to a mechanism. An attempt was 

made to monitor the falling branch of the load-deflection curve in the 

case of long columns 'H' and 'I'. However, the zone beyond the peak of 

the load-deflection curve is difficult to trace as the column exhibits a 

negative stiffness at this stage. A summary of test results is given in 

Table 7. 

• 



6 
39. 

2.10.1 Short Columns  

2.10.1.1 	Load-Deflection Curves: 

Figure 7 shows the load-deflection curves as recorded for the 

three short columns. Both vertical and horizontal deflections are shown. 

The vertical and horizontal deflections tend to be of the same order, 

mainly because of the particular combination of end-eccentricities chosen. 

The broken lines in the curves are intended to indicate deflections near 

collapse which were not monitored. The curves indicate typical load-

deflection characteristics with gradual loss of stiffness, and large 

plateaux near the respective peaks. 

2.10.1.2 	Load-Strain Curves: 

Figure 8 shows the variation of strains with increasing loads. 

For each column, two curves are given - one for the point in the steel 

section stressed to the maximum in compression, and the other for the 

diagonally opposite point stressed to the maximum in tension. The non-

linearity exhibited by strains is of the same nature as that exhibited 

by deflections. In all cases the compression tip indicates earlier 

yielding. As the biaxial eccentricity of the load is increased from 

column A to column C the difference in magnitude between the compressive 

and tensile strains reduces, indicating the increasing predominance of 

flexural strains. 

2.10.1.3 Internal Strain Distribution: 

Since strain measurements were made at the four corners of the 

H-section, sufficient information is available to examine the validity 

of one of t'aa major assumptions made in current analytical procedures - 
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viz, plane sections remain plane after loading. Figure 9 shows the strain 

distribution across the section for three load levels for column 'B'. In 

drawing these strain distributions, the strains at three points ,(including 

the two extreme values) were used in locating the neutral axis, and the 

value of strain at the fourth point was measured and compared with the 

recorded value. It may be seen that at very low load level (10 tons) 

there is a very small error in the strain values. At an intermediate 

level the error increases, and at the last load level before collapse 

(60 tons) the error is significant. The extreme values of strain for 

this last case are however beyond yield strain and so the measurements 

are more subject to error. Nonetheless the experimental strain distrib-

ution may be seen to be reasonably linear in distribution. 

In the same strain distribution figures, the strains measured in 

concrete are also shown (in broken lines). The measured concrete strains 

conform: closely to the linear strain distribution and further confirm the 

validity of the assumption that plane sections remain plane. It is only 

near collapse load that there occurs a significant variation (still less 

than 10%) in the strain and it must not be overlooked that by now the 

deflections are no longer infinitesimal, and hence some deviation from 

plane strain distribution is only to be expected. 

2.10.1.4 	Interaction Between Steel and Concrete: 

An important corollary to the observations is the fact that the 

strains are continuous from steel to concrete. This corroborates the 

fundamental assumption made in analytical procedures for the calculation 

of failure loads, viz. the strains in steel and concrete at their inter-

face are compatible. 



0 
41. 

4 

2.10.1.5 	Crushing Strain of Concrete: 

Another interesting observation may be made here. The strain in 

concrete at the load level of 60 tons is about 0.0032 (recorded strain). 

The extrapolated value at the corner would be approximately 0.0035. As 

the column collapsed at the next load level (65 tons) with spalling of 

concrete at this corner, the strain just before crushing of concrete 

would be around 0.0040, which is the commonly observed value of failure 

strain even in direct compression tests. 

2.10.1.6 Variation in Neutral Axis Position: 

The three strain distributions also indicate the shift in the 

position and direction of neutral axis at various load levels. No con-

sistent pattern can be discerned because at each load level the orientat-

ion of the neutral axis is governed by several factors; for example, 

the relative stress levels in concrete and steel, the degree and extent 

of yielding in the cross-section, etc.. The neutral axis, however, 

remains generally at an angle of 35°  - 45°  with the horizontal. 

2.10.2 Medium Columns  

2.10.2.1 	Load-Deflection Curves: 

The load-deflection curves for the three medium length columns 

are shown in Fig. 10. The curves follow the same general pattern 

described for short columns. The magnitude of deflections is much larger - 

these columns were twice as long as the short columns. In the case of 

column F, the falling branch of the load-deflection curve was successfully 

monitored. It may be observed from Fig. 10, that the peaks for both the 

load-horizontal deflection curve and load-vertical deflection curve are 

clearly defined, although the plateau near the top is of considerable 
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length. Near collapse, the horizontal and vertical deflections were again 

almost equal, as was the case for short columns. This, of course, was due 

to the particular ratio of end-eccentricities chosen in these tests. 

	

2.10.2.2 	Load-Strain Curves: 

Figure 11 shows the load-strain variation for all three medium 

columns. For each column the strains plotted are for points under maximum 

tensile strain and maximum compressive strain. As in the case of short 

columns, the difference between the magnitudes of the two extreme strains 

tends to narrow down with increasing eccentricity of the applied load. 

Once again the compression tip reaches yield strain first. 

	

2.10.2.3 	Internal Strain Distribution: 

Strain distributions across the cross-section for column E are 

given in Fig. 12. The figures relate to the strains at 20 tons, 40 tons 

and 52.5 tons. The broadly linear pattern of strain distribution is once 

again in evidence at all the load levels, though errors are noticeable for 

points nearer to the neutral axis. 

2.10.2.4 	Crushing Strain of Concrete: 

The maximum concrete strain recorded was about 0.0032 at a load 

of 55 tons, that would result in a corner strain of about 0.0035 at this 

load level. Since the column failed at 57.5 tons, a failure strain of 

0.0040 might again have been realised. 

2.10.3 Long Columns  

2.10.3.1 	Load-Deflection Curves: 

The deflections obtained for the long columns were large - the 

failure deflection for column I being in excess of 6 in. The comparative 



a 

43. 

load-deflection response for the three long columns G - I are shown in 

Fig. 13. The plateau near the top of the load-deflection curves may be 

seen to be of considerable length, particularly in the case of column I - 

the column with a combination of the largest length and the largest 

eccentricities. 

2.10.3.2 	Load-Strain Curves: 

The load versus steel strain characteristics for these columns 

are given in Fig. 14. The observed behaviour is similar to that for 

short and medium columns. 

2.10.3.3 	Internal Strain Distribution: 

The cross-sectional strain distributions shown in Fig. 15 clearly 

indicate the predominance of flexural strains - the relative magnitudes 

of compressive and tensile strains tend to converge with increasing load. 

The variation of strains is once again nearly proportional to the distance 

from the neutral axis, and shows a continuity of strain between steel and 

concrete. 

2.10.4 Comments on Load-Deflection and Load-Strain Curves  

It was mentioned in Section 2.9 that a special procedure was 

adopted for recording load-deflection characteristics after a load of 

about 80-85% of the failure load had been achieved. Since the loading 

machine employed had a hydraulic-mechanical loading device, it was 

necessary to control deflections by adjusting the applied load. In this 

way, two values of load are recorded corresponding to each deflected 

position - the instantaneous load and the smaller equilibrium load. The 

plots in Figs 7-8, 10-11 and 13-14 correspond to she instantaneous value. 

Figure 16 shows the relative effect the two loads have on the load- 

a 
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horizontal deflection curves for the three columns for which the falling 

branch of the load-deflection curves were monitored (columns F, H and I). 

As the bending of the columns was mainly along a diagonal, two 

diagonally opposite tips of the steel flanges were always very close to 

the neutral axis. Since the position of the neutral axis changes with 

increasing load, the strains near the neutral axis show transition from 

tension to compression, or vice versa. This was observed in almost all 

specimens. The plot in Fig. 17 is for column I. The phenomenon was very 

distinct in this case because of relative predominance of bending. 

Figures 18-19 show the collapse mode of column I. Figure 18 

shows a view from the top of the column in the loading rig. Figure 19 

is a close-up of the collapsed zone and clearly shows the extent of 

spalling of concrete and the buckled shape of the longitudinal reinforce-

ment. Figure 20 is another view of the collapsed zone from a different 

angle. This figure shows the buckled shape of the flange of the H-section. 

Column I was cut at a section slightly away from the crushed mid-

span section. Figure 21 shows the crushed concrete, and the approximate 

direction of neutral axis is given by the boundary between the bonded and 

loosened concrete zones. The bond between steel and concrete in the zone 

where no spalling has taken place appears to be undisturbed. This 

corroborates the deduction made from various strain distribution diagrams 

shown in Figs 9, 12 and 15, viz, there exists a continuity of strain 

between steel and concrete - a necessary condition for full composite 

action. 
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CHAPTER 3 

THEORY - MOMENT-THRUST-CURVATURE RELATIONS  

	

3.0 	GENERAL 

Moment-thrust-curvature relations depend not only on the shape 

of the section and the distribution of one material with respect to the 

other, but also on the individual stress-strain behaviour of the composite 

materials. In addition, the presence of residual stresses, and their 

distribution over the steel area, alters the moment-thrust-curvature 

relations. Analytical evaluation of these relations is very involved, 

if not altogether impossible. The problem becomes acute in the case of 

biaxial bending. Eventually, one has to employ numerical integration 

procedures. The numerical method adopted here is similar to the one 

suggested by Gesund
(56)

. The method is so general that reinforced 

concrete sections and bare metal sections can be analysed as well as 

composite sections be they concrete encased sections or concrete filled 

steel tubes. The residual stresses in the steel sections can be easily 

accounted for in obtaining the moment-thrust-curvature relations. 

	

3.1 	ASSUMPTIONS 

The problem of biaxial bending of composite columns cannot be 

solved without recourse to certain simplifications and idealisations. 

The major assumptions, and their justification or otherwise, are given 

below: 

(1) There exists a complete interaction between steel and concrete. 

In other words,,the strains in steel and concrete at their interfaces 

are assumed compatible. 

i 
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The rather close agreement obtained between computations based on 

this assumption and results obtained from experiments by Bondale(43) 

Neogi
(51)

, Sen
(53)

, and others on columns in uniaxial bending indicates 

that the assumption is substantially valid. 

(2) The stress-strain curves for concrete and steel are assumed to 

be reversible. This implies that the loading and unloading stress-strain 

relations are identical. 

This assumption deviates from the observed phenomenon of different 

unloading characteristics for most inelastic materials, compared with the 

loading characteristics, particularly when the material is strained beyond 

the proportional limit. However, since most cases of failure, particularly 

in laboratory conditions, occur due to progressive loading, this assumption 

is not likely to cause any serious error in the computed results. 

(3) The strain distribution across the section is assumed to be 

linear, varying in proportion to the distance from the neutral axis. In 

other words, it is assumed that the plane sections before bending remain 

so even after the application of the loads. 

This assumption is valid for cases in which the bending 

is about an axis of symmetry. In all other cases, the section is subjected 

to some twisting stresses, which results in the warping, however slight, 

of the section. 

It may be remarked here that the depth of neutral axis depends 

not only on the shape and composition of the section, and the material 

properties, but also on the applied loads and biaxial moments. 
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(4) The stress-strain curves for concrete used for the analysis are 

based on experimentally observed relations of test-specimen, usually 

concrete cubes, or cylinders. The stress-strain relationship for concrete 

as it exists in the column under uniaxial and biaxial bending, differs 

from this observed relationship. It is common practice to reduce the 

stress ordinate by multiplying with a reduction factor. This factor has 

values varying between 0.8 - 0.9. This factor corresponds closely to 

that relating cylinder strength to cube strength. Also, the concrete 

strength varies throughout the column and an additional reduction factor 

on the cube strength is often used to account for this variation. 

The stress-strain relation for steel in the column member is 

assumed to be identical with the stress-strain relation obtained from 

standard tensile tests on steel specimen. 

(5) The tensile strength of concrete, and the effect of strain 

hardening in steel are ignored, although a slight modification in the 

computer program will enable consideration of these two factors as well. 

3.2 	STRESS-STRAIN RELATIONS 

3.2.1 Concrete  

Concrete is an inelastic material, and because of several factors 

involved, does not exhibit a consistent stress-strain relationship. There 

is no unanimity over a single mathematical function defining the concrete 

behaviour. From time to time, several authors have suggested different 

formulae. In order to provide flexibility in the use of the computer 

program described here, provision has been made for adopting one of the 

following formulae, suggested by different investigators: 
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(1) A polynomial curve of the third degree, as proposed by Basu(26).  

This formula is based on tests conducted at Cambridge University, by 

Barnard and Johnson(79) • The formula is as follows: 

ae 2 	c 3 	e 4 = Cl  () C (— ) 	C (—
e 
) 	C (—

e 
) 

a
u 

	
-E-
e
u 	

2 c
u 	

3 u 	4 u 
(1) 

where au = maximum concrete stress 

c
u 

= concrete strain corresponding to au. 

The coefficients Ci (i  . 1, 2, 3, 4)  are obtained by fitting 

data obtained from uniaxial compression of concrete cubes/cylinders. The 

Cambridge University results gave the following values for these 

coefficients: 

C
1 

= 2.410 	C
2 

= -1.865 

C
3 

= 0.500 	C4 = -0.045 

This formula has also been adopted by Sen and Chapman(50) in 

preparing design tables for concrete-filled tubular steel sections in 

uniaxial bending. 

(2) The Desayi-Krishnan Equation(80) • According to Desayi and 

Krishnan, the concrete stress-strain relation can be given by the formula: 

a _ 
au 	4.  (7)2 

u. 

(2) 
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(3) The Equation adopted by the investigators at New South Wales 

(81) 
University. This formula has been adopted by Warner 	to study the 

biaxial bending of short reinforced concrete columns. According to the 

formula, 

k
l 

a  
a 
c 

= Y(-61-) +. (3 - 2Y) (-, L)2  + (Y - 2) (-TeL)3  

for 0 < 	< 1.0 
eu 

= 1 
kl

a
c 	6 f 	ef 2 

	

1 - 2 (7—) 	(---) 
fu 

r. 

for 1.0 	e < -- 
e 

where a
c 

= observed, maximum concrete stress 

u 
= concrete strain corresponding to ac  

ef  = failure strain, where ac, stress in concrete, 

reduces to zero after failure 

k1 
= factor relating member stress with the 

observed stress for identical strains. 

(4) A generalised multilinear curve. The curve is most useful for 

computational purposes and can be made to fit any theoretical or experi-

mentally observed stress-strain relationship. By choosing the data points 

at a sufficiently close spacing, reasonable smoothness of the stress-

strain curve can be obtained. 

M 

4 

and 

CY 
(7) (

c
7)

2  

1 - 2 u 	u 

(3a)  

(3b)  
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Figure 22 shows a comparison between various forms of stress-

strain curves for concrete that can be chosen in the computer program. 

3.2.2 	Steel 

A typical stress-strain curve for ordinary structural steel is 

p 	shown in Fig. 23. For computational purposes, the stress-strain relation- 

ship is idealised. It is common practice to adopt an elastic-perfectly 

plastic (bilinear) curve for steel, ignoring the effect of strain harden-

ing. The computer program can accept the steel stress-strain relation in 

one of the following two forms: 

(1) A multilinear curve: 

This option can be used to specify any theoretical or experimentally 

observed stress-strain relationship, including the bilinear idealisation 

mentioned above. The trilinear curve adopted by Neogi, Sen and Chapman(49) 

can also be similarly specified. 

(2) Basu's
(26) 

exponential formula: 

This formula, adequate mainly for steels with no definite yield 

point, expresses stresses as an exponential function of strains. Different 

curves are obtained by altering the value of the parameter S (Fig. 23). 

* 	According to this formula 

a 	1 - 	to 
oy 

where oy  is the yield stress of steel, and 

E
o is Young's Modulus for steel at origin. 

1+ e13 
(4) 

1 + ef3  (1 - E — 
o ay  
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3.3 	RESIDUAL STRESSES 

The effect of residual stresses present in rolled steel sections 

subjected to compressive axial load is to delay, or speed up, die process 

of yielding in different components depending upon the residual stress in 

p 
	

the component being tensile or compressive respectively. The magnitude 

and distribution of residual stresses across the steel section are highly 

variable. These residual stresses depend not only on the shape and size 

of the section, but also on the manufacturing process. The stress patterns 

also vary because of uneven cooling of different parts of the section after 

the hot-rolling process. Attempts have been made by various investigators 

to obtain generalised patterns for the residual stress distribution across 

the section. 

Two patterns of residual stress distribution in steel sections may 

be considered: 

(1) AISC pattern(82)  

This is shown in Fig. 24. The peak values depend upon the parameter 

A
w
/A
f 

where A
w 

= area of web, and A
f 

= total area of flanges. 

(2) Cambridge pattern(
83) 

This is shown in Fig. 25. It is claimed (83)  that this pattern is 

generalised, and is valid for all I-shapes. 

The residual stress patterns cannot be directly used in consider-

ing their effect on the column behaviour. The stress pattern is first 

converted to the residual strain pattern as it is the residual strain 

that causes residual stress, and not the other way round. The strains 

due to the applied loads are then superimposed on the residual strains. 

The net strains so obtained are then used to determine the net stress in 

3 
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the section including the effect of residual stresses, using the particular 

steel stress strain relationship adopted for computations. 

3.4 	EXPRESSIONS FOR MOMENT-THRUST-CURVATURE RELATIONS 

The column cross-section is subdivided into a grid of small size 

rectangular elements as shown in Fig. 26. The section is assumed to 

consist of either concrete, steel, or hollow areas. The method is there-

fore equally applicable to concrete encased steel structures, concrete 

filled steel tubular columns, reinforced concrete columns or bare steel 

sections. Irregular steel areas are replaced by rectangular areas, 

satisfying two conditions: 

(a) The substituted area is exactly equal to the area of the 

equivalent rectangle. 

(b) The centroid of the substituted area coincides with that of the 

equivalent rectangle. 

The axes of reference are chosen as indicated in Fig. 26, and it 

it assumed that point 0 is always under maximum compression. Thus the 

value of e, the inclination of the neutral axis with the y-axis,is to be 

varied between the limits 0 and 2. This helps to reduce the number of 

cases to be analysed, particularly for those sections which have at least 

two axes of symmetry. Suitable transformation of axes can be easily made 

if some other corner of the section undergoes maximum compression. The 

moment-thrust-curvature relationship, in the case of biaxial bending, con-

sists of a relation between six quantities, viz. axial load P, moment Mx, 

moment My, distance z
n 

of neutral axis from point 0, the curvature (I), and 

angle 8. By assigning all possible values to any three of the variables, 

Ir 
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the other three can be found out, at least in principle. One course that 

can be taken is to assign values to 0, 4), and P, and to locate z
n 

by 

iteration. Once z
n 

is determined, M
x 

and My  can be easily computed. An 

alternative approach is to assign values to 0, 4), and z
n
. In this case 

no iteration is involved, and P, M
x
, and M can be directly computed. 

With the curvature (1) and the neutral axis position z
n 
being 

specified the strain distribution across the section due to applied load-

ing is determined. This follows directly from the assumption about plane 

sections listed above. Thus 

c
o = 4)zn' 
	 (5) 

where c
o 

is the strain at the origin. 

ThestraininanyelementofareaA
aij 	i
.whose centroid is (x,y.) 

is given by 

Z . 

1 j = Eo(1 
	

(6) 

where z.p  is the perpendicular distance of an axis passing 

through the element, and parallel to the neutral 

axis, from the origin O. 

With this value of strain existing at the element the stress c.l  

in the elemental area can be obtained using a stress-strain relationship 

appropriate to the material of the area. If the elemental area is of 

steel, the strain should be modified to take into account residual 

stresses, if any, at this stage. 

• 

• 



54. 

The elemental force is given by 

AP.. = A a.. 

	

13 	.. 13 

Summing over all the elements the axial force P for the section is 

obtained, 

n
a 

nb  

P .=1 j=1 aij 1.1E  

	

= 	A .. a.. 
1  

where n
a 

and nb  are the numbers of elements along x and y 

directions, respectively. 

Similarly, the moments about x- and y-axis are obtained, 

na nb 
M
x i=1 j=1 aij aij Yj 

and 

n
a 

nb  

i=1 j=1 
A
aij aij xi 

If the system of load P and moments Mx and M is replaced by a load P 

acting at eccentricities e
x 

and ey  with respect to the two coordinate 

axes, we have 

e
x 

= Y  and ey  = x  

The axial force P is often non-dimensionalised in terms of the squash 

load, 

P
u 	

. 
1=1 j=1 Aaij aij 

4 

(7)  

(8)  

(9)  

(10)  

n
a Enb 

(12) 
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where a..13 = kl
u
u 
for concrete elements 

= a for steel elements 
y 

= 0 for hollow elements.r 

Equation 12 is usually expressed in a different manner in terms 

of total areas of steel and concrete as follows 

P
u 

= k
l
a
u 
A
c 

4- A 
s  ay 	

(13) 

3.5 	COMPUTATION PROCEDURE 

Values of 0 and 4  are assumed, and the distance of the neutral axis 

from the point 0 is varied between specified limits. For each position 

of the neutral axis, the strain, stress, and force in each elemental 

area are computed, taking into account the stress-strain characteristics 

of concrete or steel as appropriate. Summations over the section are 

carried out for resultant forces, and for the moments due to the elemental 

forces about the two axes of reference. 

Thus, for different locations,of the neutral axis, sets of values 

of axial force, moment about x-axis and moment about y-axis are obtained. 

The values obtained are randomly spaced on the P-M -M system. In order 
x y 

to obtain contours or plots for specific values of P, interpolation is 

employed. 	Lagrangel s interpolation formula using two points on either 

side of the specified P value, has been found to be the most suitable for 

the purpose. 

The moment-thrust-curvature relations obtained according to the 

procedure described above may be used for the determination of the failure 

loads of columns in biaxial bending either by the approximate method 

described in the next chapter or by the more exact method described in 

Chapter 5. 
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CHAPTER 4 

THEORY - FAILURE LOADS WITH PART-COSINE WAVE 

ASSUMPTION FOR DEFLECTIONS 

4.0 	GENERAL 

A procedure for the computation of moment-thrust-curvature relat-

ions for composite columns under biaxial bending and compression was 

described in the previous chapter. Moment-thrust-curvature relations can 

be used to generate moment-thrust interaction surfaces for different 

cross-sections. These surfaces give sufficient information to predict the 

failure load of short, stocky columns loaded by axial forces and moments. 

However, the failure of long columns is influenced by their slenderness, 

and a consideration of their flexural stability under axial loads becomes 

necessary. 

Figure 28 depicts a typical plot of axial load related to the 

corresponding lateral deflection under equilibrium in uniaxial bending. 

The curve consists of two branches - one in which the load increases with 

deflection (ascending branch), and the other in which the load decreases 

with deflection (descending branch). The curve is usually characterised 

by a definite peak, which defines the ultimate strength of the eccentric-

ally loaded column. In the case of columns with biaxial bending, the 

nature of the plot for load versus deflection along either axis remains 

basically unchanged (Fig. 29). One still obtains a characteristic apex. 

However, the ratio of deflections along the two axes does not necessarily 

have a proportionate increase at various load levels. Noting that the 

failure load is associated with the peak of both the deflection curves, 
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the following procedure may be adopted for computing the failure load 

under biaxially eccentric loading. 

For successively higher values of the axial load, the displace-

ments along the two axes are obtained corresponding to the equilibrium 

flexural shape. With increasing load, the rate of change of deflections 

also increases, until it is found that a given load fails to result in an 

equilibrium shape. In such an event, equilibrium shapes with increasing 

deflections are now obtained by reducing the axial load. It is thus 

possible to compute the failure load as the peak of such a load-deflection 

relationship in the case of biaxial bending and compression. 

	

4.1 	ASSUMPTIONS 

These assumptions are in addition to those listed in Section 3.1. -  

(1) Twisting and warping of the cross-section are negligible, so 

that the assumption that the plane sections remain plane still holds. 

While this is reasonable for concrete and composite sections, for most 

practical bare steel sections it may be non-conservative in a limited 

number of cases. 

(2) Shear stresses are small, so that they have no effect on 

deflections, or in producing combined yield stress. 

(3) Deflections are small, so that curvature could be represented 

by second derivatives of deflections. 

	

4.2 	DETERMINATION OF EQUILIBRIUM SHARE 

Differential equations can be derived for the necessary conditions 

of equilibrium of the beam column. A direct solution of these equations 
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for a column with inelastic bending and compression is, in general, not 

feasible. Recourse has to be taken to a numerical solution. The equat-

ions to be solved are now presented. 

Under a given load, the column undergoes deflections and there 

exists a varying curvature all along the length. Deflections of the 

column are measured with respect to the position of centroidal axis before 

and after the application of the load. At all sections along the length, 

the following conditions have to be satisfied: 

fliadA = P (14)  

f axdA = M (15)  A Y 

• f
A
aydA = M:1( (16)  

where a is the stress over an elemental area dA. The stress distribution 

is obtained directly from the strain distribution across the section, and 

the material properties. Thus, 

= a (e) 	 (17) 

The strain distribution across the section depends on the location (x, y) 

of the elemental area dA, as well as the curvature, 4, and the direction 

of neutral axis, 0, for the section. Thus, 

c = c(x23,2$, 0) 
	

(18) 

Both 0 and 4) vary along the length of the column and can be conveniently 

expressed in terms of curvatures along the two principal bending axes. 

If curvatures along the x and y axes are represented by (I)x  and 4y, we have, 

22 
= 141x 'y (19) 
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and 
-1 	 ),. 

0 tan — 
4)x 

(20) 

Provided that the deflections are small, the curvature (I)
x 
and 4y  can be 

related to the deflections u and v (Fig. 30), by the differential 

equations, 

and = 

- a
2
u 

ax
2 

2
v  

Dy
2 

(21)  

(22)  

The deflections u and v have also to satisfy conditions of external 

equilibrium, viz. 

M = P(e v) 
x 	y 

M = P(e
x 

u) 
y 

where e
x 

and e are the net eccentricities of the applied force along the 

two bending planes with respect to the centroid of the section in its 

undeflected position. Thus, the equilibrium shape can be determined by 

the simultaneous solution of Equations (14-24) given above. 

A simple solution for these equations can be obtained by asuming the 

deflected shape to be defined by 

7Z 
U = U

m 
cos — 

and 
	

V = V cos 
7Z 

• 

and 

(23)  

(24)  

(25)  

(26)  
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A further refinement of results is obtained by assuming the deflected 

shape to be defined by a part-cosine wave instead of a cosine wave. This 

device was first suggested by Westergard and 0sgood
(12) 

for bare steel 

columns and works well for columns with symmetrical bending. Thus, 

u + e
x = (u

m 
+ e

x) cos — 
2z 
 cos x  

e u
m 
+ 

x
' 

e r and 	v + e
y 

= (v
m + ey

) cos 1 z— cos -1  ( 	Y )} 
in 
v + e 

where u
m 

and v
m 

are the deflections at the mid-section, and e
x 

and e 

are the eccentricities along the two bending planes and are equal at both 

4 	ends. 

The expressions for curvatures thus become 

e 
= (Z. cos

-1  
u + 

x 
e  )

2 
u + e

x
) 

m x 

e 
- 	2 and 	q) 	= (-- cos

-1 
v Y 	

y )

2 
(v + e ) 

Y 	L 	in + e 	y 

To include the effect of lack of straightness of the unloaded 

column, the initial deflected shape is generally expressed in the form 

of a cosine wave, thus 

7TZ n
x 

= n
mx  cos — 

71-z n
y 

= n
my 
 cos —

L  ,  

(27)  

(28)  

(29)  

(30)  

and 

(31)  

(32)  



61. 

The initial curvatures then become 

ox = I)2 L • n x 

(I) 	= (11)
2 n boy L y 

The expressions for net curvatures are then written as follows: 

4) = 4)x  - x 	ox (33)  

and 
	

= Yy 
	

`Poy 
	 (36) 

Thus, the differential Equations (21) and (22) are replaced by 

linear Equations (35) and (36). Since equilibrium is satisfied only at 

mid-point, the cosine terms implicit in Equations (29), (30), (33) and 

(34) may be conveniently dropped, retaining only the peak values. 

4.3 	COMPUTATION PROCEDURE 

A systematic computation procedure for obtaining the load-lateral 

deflection characteristic is now outlined. The manner in which the 

material properties and the distribution of steel in the cross-section 

are used in computing the moment-thrust-curvature relationships has 

already been described in Section 3.5. 

Step 1: Assume, or read in an initial load value P and its 

increment at which the deflections are desired. 

Step 2: 	Compute initial curvatures (Equations (33) and (34)). 

Step 3: 	Assume, or read in trial values for mid-height deflections. 

(33)  

(34)  and 
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Sten 4: 	Compute curvatures using Equations (29), (30), (35) and 

(36). 

Step 5: 	Compute principal curvature, and direction of neutral axis 

(Equations (19) and (20)). 

• 	 Step 6: Compute Moment-Thrust-Curvature relations for given 

curvature and different positions of neutral axis. 

Step 7: 	Interpolate, for given load P, the values of M
x 
and M . 

Step 8: 	Compute u
x 
and v from Equations (23) and (24). 

Step 9: 	Compare results obtained from Step 7 with those from Step 8. 

Step 10: If the difference between the two results is within the 
■ 

specified degree of accuracy, the solution has been obtained. 

If not, repeat Steps 4 - 9 with modified values of trial 

deflections. 

Step 11: Take a new value of load and repeat Steps 3 - 10. Failure 

load is defined as that value of the load for which no 

equilibrium shape is obtained after a specified number of 

iteration cycles between Steps 3 and 9. 

In Step 11, the new value of load is obtained in the first instance 

in accordance with the load increment specified in Step 1. Subsequently 

this increment is reduced as the slope of the load-deflection curve falls. 

In this manner, a sufficient number of points,can be obtained to 

define more closely the peak of the load-deflection curve. 

In Step 10, the trial values of deflections are modified in the 

following =liner. In the first instance, the assumed deflection is 

incremented by a specified value. Then the rate of change of trial 
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deflections is compared with the rate of change of computed values, and 

the new trial value is computed by a formula similar to Newton-Raphson 

iteration formula. Let u be the trial value of deflection and let U be 

the computed deflection. Let SU be the change in U when u is changed by 

Su. Then, a better trial value is given by 

1.0 USu - uSU 
Su - SU 

(37) 

This formula may be applied to the x and y deflections independently 

at only a slight loss in the rate of convergence. 

• 

to 
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CHAPTER 5 

THEORY - FAILURE LOADS WITH ACTUAL DEFLECTED SHAPE 

	

5.0 	GENERAL 

The method outlined in the last chapter is adequate for columns 

with loads that are applied symmetrically with respect to the column mid-

point in each of the two bending planes. The part-cosine wave assumption 

should result in computed deflections that are sufficiently close to the 

exact values for design purposes. Where the column has an applied loading 

that results in a non-symmetrical deflected shape, it becomes imperative 

to assess the column deflections along the entire length. In what 

follows, a general procedure for computing deflections at a number of 

discrete points in the case of columns with biaxial bending is derived. 

For this purpose the assumptions listed in Sections 3.1 and 4.1 are 

retained. The technique used is essentially a second-order Newton-Raphson 

type iteration procedure. 

	

5.1 	DETERMINATION OF EQUILIBRIUM SHAPE 

Let the column length be divided into n equal segments as shown in 

Fig. 31. End A is identified as station 1 and end B as station (n + 1). 

Let the x and y eccentricites at end A be e
xa 

and e
ya 

respectively, and 

those at end B be exb  and eyb. The deflections, stress-resultants and 

other quantities pertaining to station s will be identified by the suffix 

s. Let us,  v
s 
 be the x and y deflections at station s. 

A solution to the problem may be obtained by solving Equations 

(14) - (24) as applied at all the (n + 1) stations along the length of 
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the column. In general the effect of Equations (14) - (24) may be 

summarised as follows: 

where 	m 	= 2(n 1) 

and wi,i = 1, 2, 	m represent all the deflection components 

at the (n + 1) stations. W. represents some complex function incorporat- 
e 

ing the moment-thrust-curvature relations as well as various conditions 

of geometric compatibility for the station i. Equation (38) may be 

expressed in another form, viz. 

Z. = Z.
1 
 (w1, w

2' 
 ...w

m 
 ) = w. 	w. (w1, w

2' 
 ...w

m 
 ) = 0 	(39) 

The type of equations represented by Equation (39) lend themselves 

favourably to solution by the Newton-Raphson iteration technique. 

Essentially, the technique consists of assuming some trial values for 

1 thesolution,sayw.
1 
 ,1 	1, 2,...m, and obtaining a set of correction 

values Sw.
1
, such that the new values for the solution given by 

w2 	
1 

= TAT. + Sw. (40) 

are better than the trial values. A repeated application of this 

procedure, adopting the new values for the solution as the new trial 

values,canbecarriedout untilthecorrectionterms&w.are all reduced 
1 

to values smaller than a pre-specified error c. It can be shown 

that for the necessary conditions of convergence, the correction terms 

may be calculated by the solution of the following equations: 

0 
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a zi 	a zi 	 DZ1  
N. 	aw2 	 a1 	m 

 

aZ 2 	DZ 2 	 DZ 2 
awl 	Dw2 	 Dwm  

aZin 	aZm 	 aZm 
awl 	Dw2 	 Twm 	 d 

where the functions Z. and their derivatives are calculated for the point 

{14.1. The functions W. may be regarded as the computed deflections for 

theassmeddeflectionw.so that at convergence their differences vanish. 

The expressions for curvatures as given in Equations (21) - (22) 

may be rewritten in the finite difference form as 

= 1  ()
xs 

	- 	(u
s-1 

- 2u
s 
 + u

s+1
) 

1 
and 	Sys = -s-1 - 2v

s 
 + v

s+1
) 

Letting, 

us  w2s -1 

and v = w

2s 
 

s 
(45) 

Equations (42) - (43) may be rewritten as 

1 
45 	/12 (w2s-3 xs 	- 2w

2s-1 
 + w

2s+1
) 

dw1  

6w2 

zi  

Z2 
(41) 

Zm 

(42)  

(43)  

(44)  

(46) 

• 
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1 
andys 	

- 	(w
2s-2 - 2w2s 

+ w2s+2) 

SincethefunctionW.,and hence Z., depends on the relevant 0
x 
and 0 

y 1 	1 

only, we have for each node s, 

Z2s-1 
= w 

 2s-1 - w2s-1 (w2s-3, w2s-2, 	 w2s+2) 
	

(48) 

and 	Z
2s 	

= w
2s 

- W
2s 

(Tel
2s-3' w2s-2' 

	
' w2s+2 ) 
	

(49) 

Equations (48) - (49) yield simplified expressions for the derivatives in 

Equation (41). Thus, 

(47) 

0 

and 

3Z2s-1  - -3W2s-1  
Dw
2s-k 	3w2s-k 

aZ2s 	aW
2s 

az2s-1 	DW
2s-1

1  
aw2s -1 	

aw
2s-1 

aZ2s 	aW2s 1 Dra
2s 	= 	aw2s 

k = 3, 2, 0, -1, -2 	(50) 

k = 3, 2, 	-1, -2 	(51) 

(52)  

(53)  

all other derivatives being zero. 

Equations (46) - (53) are valid for 2 4 s < n. In general, the values of 

u
1, 

v
1 

and u
n+1,  vn+1 

will be determined by the boundary conditions. For 

the case of a pin-ended column, 

w
1 
 = w

2 = w2n+1 = w 2n+2 = 0 
	(54) 
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and therefore the values of the derivatives with respect to any of these 

variables need not be computed. Thus Equations (41) when considered along 

with Equations (50) - (54) are sufficient to obtain the values of the 

correction terms {(Sw.}. 

When the column has an initial lack of straightness defined by 

thedeflections{W.}, the net curvatures are given by 

- 
XS 	(1) 

XS 	XS 

and 0  (I) 	'4) 
Ys 	4>ys 	4>ys 

where S
o 	

y 
and S

o s are the initial curvatures and S 
xs 
 and  S

ys 
are the 

xs  

total curvatures at station s. 

5.2 	COMPUTATION PROCEDURE 

A step-by-step procedure for obtaining the load-deflection 

response is now outlined. 

Step 1: Assume, or read in an initial load value P and its 

increment at which the deflections are desired. 

Step 2: 	Compute initial curvatures. 

Step 3: 	Assume or read in trial values for column-deflections. 

Step 4: 	Compute net curvatures using Equations (55) - (56). 

Step 5: 	For each station s, compute principal curvature and 

direction of neutral axis (Equations (19) - (20)). 

Step 6: For each station s, compute moment-thrust-curvature 

relations for given curvature and different positions of 

neutral axis. 

(55)  

(56)  
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Step 7: 	For each station s, interpolate for given load P the 

values of M
xs 

and M
ys 
 and hence obtain e 

xs 
 and e Ys. 

Step 8: 	Compute deflections 

= e 	- e 	+ (e 	- e 	(s-1) 
x8 ms 	xs 	xA 	x461.-  

(s-1) and 	vms  = e - eyA + (e - e ) — Y yA n ys  

Step 9: 	Change the values of the x-curvatures computed in Step 4 

A 
by an amount - where A is a small fixed quantity, and h2 

repeat Steps 5 - 8, obtaining ums  and vms. 

This results in 

W
2s-1 	1 

aw
2s-1 	aw2s-1 	u' 

ms - ms 
aw
2s-3 = 	2  w2s-1 	

w2s+1 	A 

and 

aw
2s 	1 

aw
2s 	

aw
2s 	

v' 
ms - ms = 	 

aw
2s-3 	2 aw2s-1 	aW

2s+1 

Step 10: Now change the value of the y-curvature computed in 

A Step 4 by an amount -1, and once again repeat Steps 5 - 8 
h' 

obtaining u" and v" . We now obtain 
ms 	ms 

aw
2s-1 _ 	aw2s 	-1 	aw2s 	-1 	ulras - ums _ 	_ 	

- 
aw
2s-2 	

2 aw
2s 	Dw2s+2 	A 

(57)  

(58)  

(59)  

(60)  

(61)  
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and 

Dw 
1 

w
2s 	

9151 	..v" . .v 2s 	' 2s 	ms 	ms 

awns-2  2 Dw
2s 	s+2 	

A 
 

Step 11: The matrix Equation (41) may now be formed with the help 

of Equations (48) - (54) and Equations (59) - (62) and 

solvedfortbecorrectionterms{dw.}. 

Step 12: If for all i, 16wil < e, a deflected shape has been 

obtained and one may now proceed to Step 13. Otherwise 

obtainthecorrecteddeflectionsfw.2  } by Equation (40), 

and repeat Steps 4 - 11 taking the corrected deflection 

values as the new trial values. 

Step 13: Increase the load value P by the increment specified in,  

Step 1 and repeat Steps 3 - 12. 

Step 14: If no convergence is obtained in Step 12 within a pre-

specified number of cycles, the increment in P may be 

reduced by a specified ratio (say half) and Steps 3 - 12 

may be repeated till the value of the increments diminishes 

to a pre-specified small value. 

Step 15: The highest load for which a deflected shape is obtained, 

is taken as the failure load of the column. 

(62) 

• 
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CHAPTER 6  

APPLICATION  TO COMPOSITE COLUMNS IN BIAXIAL BENDING 

6.0 	GENERAL 

Based on the procedures outlined in the foregoing chapters, 

three computer programs were developed for use on the CDC 6600 computer. 

All three programs were written for composite columns in uniaxial or 

biaxial bending, but are equally applicable to reinforced concrete sect-

ions or bare metal sections. The first program - for the moment-thrust-

curvature relations - is also incorporated in the other two programs in 

the form of a subroutine. The second program, called COLUMPC, traces 

the load-deflection response of a column in biaxial bending with symmet-

rically applied end eccentricities. The program assumes the deflected 

shape to be part of a cosine wave. The third program, called COLUMAS, 

also traces the load-deflection response of the column in biaxial 

bending, but calculates the actual deflected shape of the column and has 

no restriction on the values of end eccentricities. All three programs 

can account for the effects of residual stresses of any desired distribut-

ion over the column cross-section. Initial lack of straightness in the 

form of a cosine wave can be considered in Program COLUMPC, while 

Program COLUMAS allows for initial lack of straightness of any form. 

The computer results presented first are aimed at demonstrating 

the accuracy of the programs. Comparisons are made with available results 

for moment-thrust-curvature relations for reinforced concrete sections and 

composite column sections. Results for the failure loads of concrete 

encased steel sections and concrete-filled rectangular tubes in uniaxial 

4 
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bending are obtained as particular cases of biaxial bending and compared 

with existing results. 

Having checked the validity of the computer programs for 

particular cases, computer results from these programs have been used to 

examine the accuracy of the design method proposed by Basu and 

Sommerville
(28) 

as applied to composite columns in biaxial bending and 

compression. The design method has previously been shown to be suffic-

iently accurate for composite columns in uniaxial bending and compression, 

but its application to the case of biaxial bending and compression has so 

far not been checked for accuracy either experimentally or analytically. 

In the design method, the strength of composite columns in biaxial 

bending is obtained by means of an interaction formula that relates the 

biaxial strength to uniaxial strengths in two orthogonal directions. 

The accuracy of the interaction formula is examined in the light of 

computer results on the one hand, and test results on the other, for the 

nine composite columns with symmetrical end eccentricities described in 

Chapter 2. Finally, the design method is evaluated for more general 

cases of biaxial bending with various combinations of end eccentricities 

in the two bending planes. 

6.1 	EXAMPLES OF MOMENT-THRUST-CURVATURE RELATIONS 

6.1.0 General  

To check the validity of the moment-thrust-curvature calculations 

common to all the three computer programs described in this thesis, com-

parisons were made with moment-thrust-curvature relations as obtained by 

three investigators for various types of sections. Section 6.1.1 describes 

studies on a square reinforced concrete section in uniaxial and biaxial 

St 
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bending as reported by Warner(81). In Section 6.1.2, a square concrete-

filled steel tube in uniaxial and biaxial bending is analysed and results 

compared with those obtained by Robertson(84). Comparisons are made in 

Section 6.1.3 with Bast:Ts(26) results on a rectangular concrete encased 

steel section in uniaxial bending. Having demonstrated the applicability 

and accuracy of the results obtained from the computer programs for these 

cases, the effect of residual stresses on the moment-thrust-curvature 

relations for a concrete encased steel section is described in Section 

6.1.4. 

6.1.1 Reinforced Concrete Section in Biaxial Bending 

Moment-thrust-curvature relations for a square reinforced 

concrete section shown in Fig. 32 were obtained by Warner
(81)

, adopting 

a procedure very similar to the one outlined above. Warner plotted the 

values of resultant eccentricity er  against curvature for different 

values of axial load in non-dimensional form. Separate plots were 

obtained for different values of 0, the direction of the neutral axis. 

The values of various parameters are given below: 

u 
= 2.0 s y 

au = 0.055 a y 

A
s 

= 0.02 A g 

y
1 
 = 2.2 

y
2 

= 4.0 

k = 0.85 

The stress-strain curve for concrete was that corresponding 

to Equation (3). For steel, a bilinear stress-strain relationship was 

assumed. 
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The results obtained are given in Figs 33-36, corresponding to 

8 = 0°, 15°, 30°, and 45°. In each case, curves are plotted for 

P/P
u 
= 0.2, 0.4, 0.6, and 0.8. The curvatures are expressed as 4440  

where (I)o = u/a. It may be seen that the two sets of results are 

identical. 

6.1.2 Concrete-filled Steel Tube in Biaxial Bending  

Robertson(84)  obtained the moment-thrust interaction surface for a 

10 in x 10 in x 1/4 in steel tube filled with concrete. In his calculations 

he adopted a slightly different technique of integrating stresses over 

the section, and a different numerical procedure. 

The section is shown in Fig. 37. The concrete stress-strain 

curve used was that corresponding to Equation (1). A bilinear stress-strain 

curve was used for steel. 

The parameters were: 

Cl 
 

= 2.410 C
2 

= -1.865 

C
3 

= 0.500 C
4 

= -0.045 

eu = 0.0025 a
u 

= 3360 lbf/sq.in 

E
y 

= 04,0012 ay 
 
= 3584 lbf/sq.in 

The interaction surface is obtained as the envelope of all 

possible combinations of P, M
x 

and My, and may be described in the form 

of contours for different axial load valli.es. Figures 38 and 39 show 

the comparative results obtained by Robertson and the computer program. 

0 
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Contours for P/Pu  = 0, 0.1 and 0.2 are plotted in Fig. 38, and for 

P/P
u 

= 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 are plotted in Fig. 39. 

It may be observed that the biggest contour is obtained for P/Pu  = 0.2. 

This implies that the moment of resistance is maximum at a finite axial 

load (around 0.2 Pu), and not at P = 0. Thus the moment of resistance 

first increases with axial load, until it reaches a value around 0.2 Pu, 

and then starts diminishing. This phenomenon has also been observed by 

previous investigators(26,53,84,85).  The results obtained show good 

agreement with those of Robertson. 

6.1.3. Concrete-encased Steel Section in Uniaxial Bending 

( 
Basu

26) 
 presented the moment-thrust-curvature relations for a 

4 
steel I-section (12 in x 8 in at 65 lb) encased in concrete (16 in x 

12 in outer dimensions). The section also has four 1/2 in (1) bars as 

longitudinal reinforcement at 1 in cover (Fig. 40). 

The stress-strain curve for concrete was in accordance with Equation 

A bilinear-stress-strain relation for steel was adopted. Values 

of various parameters were: 

C1  1 = 2.4100 C
2 

= -1.8650 

C
3 

= 0.5000 C
4 

= -0.0450 

e
u 

0.0025 a
u 

= 3000 	lbf/sq.in 

ey  = 0.001116 oy . = 32928 lbf/sq.in 

k1  = 1.0000 
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The results are plotted as moment versus curvature for increas-

ing values of P/Pu  = 0.0, 0.25, 0.50, and 0.75. Curves presented here 

are for minor axis bending. Figure 41 shows the excellent agreement 

between the results obtained by Basu and by the computer program 

described here. 

6.1.4 	Effect of Residual Stresses 

Residual stresses can significantly effect the ultimate strength 

of axially loaded bare steel sections especially in the presence of 

geometrical imperfections. The encasement of a steel section by concrete 

is likely to reduce the effect of residual stresses on column strength. 

However, as the concrete contribution to the overall column strength 

reduces, the influence of these stresses may be expected to grow. This 

effect has not been investigated by previous researchers on composite 

columns. In this section, the effect of residual stresses on the moment-

thrust-curvature relations for an encased section has been described. 

Both types of residual stress patterns mentioned in Section 3.3 were 

considered. The stress patterns used had the following values for the 

parameters: 

PATTERN 1 (AISC) 

of = 75 MN/m
2 

a
fw 

= -50 MN/m
2

w 
= -50 MN/m

2 

PATTERN 2 (Cambridge) 

of = 125 MN/m2 a
fw 

= -100 MN/m2  ow. = 175 MN/m
2 

• 

Figures 42 and 43 show the results for 0 = 00  (major axis bending) 

and 0 = 90°  (minor axis bending) respectively, and consist of moment- 
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curvature curves for different thrust levels (P/Pu  = 0.0, 0.25, 0.50, 

and 0.75). The curvatures are expressed in terms ofcp
o 	

eu/a. 

It may be seen that the residual stresses have only a slight 

influence on the moment-thrust-curvature relations. In the case of the 

AISC pattern, the moment resistance capacity is increased for zero axial 

load, but is reduced for axial loads greater than about 0.1 Pu. In the 

case of the Cambridge pattern, the effect on moment of resistance is 

almost opposite to that of AISC pattern. This is probably due to the 

fact that Cambridge pattern has predominantly compression in the web, 

while in the case of AISC pattern, the web is entirely in tension. 

However, it was anticipated that the altered moment-thrust-curvature 

relations could have a definite though small effect on the load bearing 

capacity of long columns. This is further discussed in Section 6.3.3. 

6.2 	EXAMPLES OF UNIAXIAL FAILURE LOADS 

6.2.0 General  

Results were compared with those obtained by Basu(26)  for the 

case of concrete-encased sections in uniaxial bending. The columns 

studied here were the'ones tested at the Building Research Establishment 

and reported previously
(42)

• Comparison is also made for the case of 

columns with a rectangular tubular section filled with concrete in minor 

axis bending. 

6.2.1 	Concrete-encased Steel Sections 

Two series of test columns were chosen for the purpose. The 

section used for series 'AE°  is shown in Fig. 44. Other data common to 

this series of columns is given below: 
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C1  = 2.410 C
2 

= -1,865 

C, = 0.500 
4  

-0.045 

0.0025 = 1.0000 

0.00122 a = 16.1 tonf/in2  

The four columns in this series had different lengths and 

different concrete cube strengths. The results presented here were 

obtained using Program COLUMPC. The comparative results as obtained by 

Basu and as obtained by COLUMPC are listed in Table 8. 

A second batch of columns analysed by Basu and designated as 

series FE in the Building Research Establishment tests had a cross-

section shown in Fig. 40. Other pertinent data for this series is as 

follows: 

C
1 

= 2.410 C
2 

= -1.865 

C
3 

= 0.500 C
4 

= -0.045 

c
u 

= 0.0025 k
1 = 1.000 

E = 0.00112 a = 14.7 tonf/in2  

Results for two of the columns in this series namely FE3 and 

FE4 are also included in Table 8. It is clear from the results presented 

that the theoretical failure loads obtained by COLUMPC agree very closely 

with those obtained by Basu. The slight variation in the two sets of 

results may be attributed to the different computational procedures. 

6.2.2 Concrete-filled Rectangular  Steel Tubes  

Sen and Chapman
(50) 

presented ultimate load tables for concrete-

filled rectangular and circular tubular columns in a CIRIA publication. 

The tables given were for columns in urtiaxial bending only. The ultimate 

loads quoted were obtained by a part-cosine wave assumption, and allowed 
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for the effects of long-term loading and initial imperfections. 

Long-term loading effects were allowed for by doubling the strain at 

various stress levels of the assumed instantaneous stress-strain curve 

for concrete. The initial imperfection was represented as an initial 

end eccentricity of 0,9 x 0.00006 L2/D where L is the length of the 

column, and D is the size of the column in the plane of bending. For 

the purpose of comparison, a rectangular column section 5.0 x 3.0 x 

0.250 in was randomly selected and analysed for three values of end 

eccentricities in minor axis bending using the part-cosine wave assumpt-

ion computer program COLUMPC. Other pertinent data is as follows: 

C
1 
 = 2.410 	C

2 	-1.865 

C
3 

= 0.500 	C
4 	

-0.045 

a 	= 16.0 tonf/sq.in 	E
s = 13000 tonf/sq.in 

au = 2400 lbf/sq.in
u = 0.0050 (after doubling) 

k
1  = 1.000 

The column length was taken as 10 ft, for which the initial end 

eccentricity was 0.2592 in. The eccentricity values chosen were such 

that e/D. = 0, 0.1, and 0.2. Table 9 compares the results from 

Program COLUMPC with the ultimate load values given by Sen and Chapman. 

Since all the assumptions in the two sets of results are identical, the 

closeness of the results is not surprising. 

It is thus clear that the present computer program for the 

determination of failure loads in biaxial bending gives results in close 

agreement with existing uniaxial bending computer programs due to Basu
(26) 

and Sen
(56) 

which have already been verified by tests. It is also clear 

that good agreement is obtained between the biaxial moment-thrust-curvat- 

(81,84) 
ure relations as predicted by this theory and others recently presented . 
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It remains to be shown that the prediction of ultimate loads for the case 

of biaxial bending by the present computer programs is valid. This is 

achieved by comparing, in the next section, the theoretical results with 

the experimental results reported in Chapter 2 on nine composite columns 

in biaxial bending. 

6.3 	COMPARISON WITH TEST RESULTS FOR COLUMNS IN BIAXIAL BENDING 

6.3.0 General 

Computer results were obtained by the nine test columns described 

in Chapter 2. Since all the columns tested had equal eccentricities at 

the two ends for each of the two principal bending planes resulting in 

symmetrical bending, all the computations were carried out using the 

part-cosine wave assumption for the deflected shape. The effects on 

column strength of two types of imperfections commonly occurring in 

columns, namely the residual stresses locked in the steel sections and 

the lack of initial straightness, were studied in various combinations. 

	

6.3.1 	Residual Stresses  

The nature of residual stresses in rolled steel sections was 

discussed in Section 3.3. In the calculations described here, a residual 

stress pattern of the AISC type was adopted with of  = 0.3 ay. 

	

6.3.2 	Initial Lack of  Straightness 

The initial lack of straightness of the centroidal axis in the 

composite column is assumed to be the same as that of the bare metal 

stanchion. This imperfection is expressed as an initial mid-height 

deflection. When other forms of imperfer:tions, particularly residual 

stresses are being considered simultaneously, it is customary to take 

lit 
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the magnitude of the initial mid-height deflection as L/1000 where L 

is the length of the column. Alternatively, a Perry-Robertson imperfect-

ion factor, as incorporated in BS449(36), accounting for all types of 

imperfections may be considered assuming an initial mid-height deflection 

of 0.00006 L
2/D, where D is the size of the bare metal section in the 

plane of the bending. In the general case of columns with biaxial 

eccentricities, the plane of bending cannot be properly defined. One 

approach is to consider the initial mid-height deflection solely in the 

plane of minor axis, as is indicated by the results shown in Table 10. 

The column cross-section chosen for this study is that of the test columns 

of Chapter 2. The material properties selected were those of Column E. 

The results shown are for axially loaded columns with an initial lack of 

straightness in three different planes, along the major axis, along the 

minor axis, and along an axis at 450  from both the major and minor axes. 

It may be seen that the greatest reduction in strength occurs when the 

initial imperfection is along the minor axis. Thus the minor axis 

orientation for the lack of initial straightness has therefore been 

adopted for all the subsequent computations. 

6.3.3 Comparison Between Test and Computer Results  

6.3.3.1 	Failure Loads: 

Computer results were obtained for the following combinations of 

column imperfections, and are listed in Table 11. 

Case I 	Results without any imperfections. 

II 	Results with residual stresses only. 

III : 	Results with an initial mid-height deflection of L/1000 only. 

IV : 	Results with a combination of Case II and Case III imperfect- 

ions. 
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Case V 	Results with an all-inclusive mid-height deflection of 

0.00006 L
2
/D. 

Results for Case IV show good agreement with test results. The 

average value of Pxy/Ptest 
for this case was 0.96 with a standard deviat- 

a 
	 ion of 0.10. The maximum error obtained was 25% for Column G (on the 

safe side), but this was an exceptional deviation. If the results for 

Column G are excluded, the average Pxy/Ptest 
is improved to 0.99 with a 

standard deviation of 0.06. Considering that an error of up to 5% is 

only to be expected when using part-cosine wave assumption for the 

deflected shape of the column, the Case IV results indicate excellent 

correlation with the tests. 

The effect of residual stresses on the failure loads was not con-

sistent. This observation is in line with the findings of Sharma and 

Gaylord
(22) 

for bare metal sections in biaxial bending and compression. 

However, in general, the failure loads were reduced or remained unaltered 

for columns with short lengths or with small eccentricities, while they 

were increased for longer columns with larger eccentricities. The 

variation was within ±3%. It would appear therefore that in certain 

cases the presence of residual stresses can enhance column strength. 

The effect of initial lack of straightness is always to reduce 

the column strength. The Perry-Robertson/BS449 formula for initial 

lack of straightness gives smaller values than the L/1000 criterion for 

short columns, but results in larger values for medium and long columns. 

This is immediately reflected in the results obtained for Cases III and V. 

Results obtained for Case V are close to those for Case-IV, 

indicating that the effect of initial imperfection can be suitably con- 
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sidered by either of the two criteria used. The average value of 

Pxy/Ptest 
for Case V was 0.94 with a standard deviation of 0.13. 

The comparison between experimental and analytical results has 

also been given in Fig. 45. 

6.3.3.2 	Deflections: 

It is interesting to compare the experimental load-deflection 

response of the nine test columns with the theoretically calculated 

values. In Fig. 46 the vertical and the horizontal deflections for three 

of the nine columns have been plotted. The particular columns chosen for 

this comparison were one each from the three specimens of the same length. 

In addition, for each of the three columns chosen, the difference between 

the experimental and theoretical (Case IV) failure loads was the least 

amongst specimens of the same length. This was intended to minimise the 

difference on the load-axis so that the comparison between deflections 

could be most appropriate. Thus, the results plotted are for Columns A,.  

E, and H. 

The values of comparable experimental and theoretical deflections 

may be seen to be generally close for each of the three columns. The 

experimental and theoretical values for deflections corresponding to the 

maximum loads are nearly equal in each case. Of particular note is the 

similar trend of divergence between horizontal and vertical deflections 

for about half the failure load and convergence around the failure load 

observed both in experimental and theoretical plots. Results for other 

columns showed similarly close agreement between the .experimental and 

theoretical deflections. The good correlation found for deflections gives 

added confidence in the close agreement observed for failure loads as 

described in the previous section. 

• 
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6.3.4 	ActUraty * of. the'ParttoSifte'WaVe Assumption  

The accuracy of the solutions obtained on the basis of the part-

cosine wave assumption for deflections is now examined in the light of 

solutions based on more exact estimates of deflections. For this purpose 

• 
	results were obtained for the nine test columns using Program COLUMAS. 

Computations were carried out only for the Case IV imperfections as 

described in the last section. Each column was divided into eight equal 

divisions along the length. Results are presented in Table 12, which 

also lists the comparable results from the COLUMPC program. The maximum 

error is of the order of 5.43% while the average error is only 3.52%, 

all on the safe side. Basu and Hi11(27)  found that the part-cosine wave 

assumption for the computation of uniaxial failure loads of composite 

columns erred only by a maximum of 5% with respect to the computations 

based on true deflected shape. A similar value for the error was found 

by Sharma and Gaylord(22)  in their studies on biaxial bending of bare 

metal sections. Thus there is sufficient evidence to conclude that in 

the case of columns loaded symmetrically about the column mid-height in 

each of the two bending planes, the part-cosine wave assumption for 

deflections is an acceptable approximation resulting in failure loads 

that are within 5-6% of the failure loads obtained by a more rigorous 

computation of the deflected shape. Where the biaxial moments applied 

at the two ends are not symmetrical about the column mid-height, it will 

not be possible to apply the simpler theory assuming the deflected shape 

in the form of a part-cosine wave. This stems from the difficulty in 

locating the cross-section with maximum principal curvature as the maxi-

mum curvatures in each of the two component planes occur at different 

locations along the column length. Recourse has to be had to the more 
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general analysis involving determination of the actual deflected shape 

as described in Chapter 5, and on which Program COLUMNS is based. The 

accuracy of the currently proposed design method in its application to 

columns loaded in this fashion has been examined by the application of 

the more rigorous theory as described in the next section. 

6.4 	INVESTIGATION OF CURRENTLY PROPOSED DESIGN METHOD IN ITS APPLICATION 

TO COLUMNS HAVING GENERAL BIAXIAL END ECCENTRICITIES 

6.4.0 General 

The empirical design method for composite columns proposed by 

(28) 

	

Basu and Sommerville 	was derived on the basis of numerical results 

for the uniaxial failure loads of several composite columns obtained 

using a part-cosine wave assumption for deflections. Their program was 

capable of treating cases where the two end eccentricities for the 

uniaxial bending of the column are unequal. As mentioned in the previous 

section a part-cosine wave assumption for columns with unequal end 

eccentricities in the same plane at the two ends becomes unworkable in 

the case of biaxial bending. 

For computing the strength of composite columns in biaxial bend-

ing, Basu and Sommerville advanced an approximate interaction formula in 

terms of the uniaxial strengths of the column under the given loading. 

This formula is an extension of the Bresler(29) formula for the biaxial 

bending of short reinforced concrete columns. Bresler showed that the 

failure load for biaxially compressed short columns can be approximately 

given by 

P 	P 4-  
xy 

• 

(63) 

• 
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where Px 
= Failure load of the short column under uniaxial bending 

about the y-axis with eccentricity ex. 

Py  = Failure load of the short column under uniaxial bending 

about the x-axis with eccentricity e . 

P
u 

= Squash load. 

= Failure load of the short column under biaxial bending 
xy 

with eccentricities e
x 
and e along x and y respectively. 

The Bresler formula is based on the material interaction surface. The 

formula is exact for perfectly elastic materials and yields satisfactory 

results for short reinforced concrete columns. However, it is not 

applicable to long columns as instability effects are not included in 

deriving the formula. 

Basu and Sommerville extended the Bresler formula for the case 

of long columns by suggesting that instead of uniaxial failure load values 

for short columns, the uniaxial failure load values for long columns be 

used, and that the value of the squash load be substituted by the failure 

load under axial loading with the column constrained to bend about its 

stronger axis. Thus 

1 	1 	I 
P "F. 	- 
xy 

(64) 

where Pa 
is the larger of P

ax 
and P , 

ay 

P
ax 

= Failure load under axial loading with the column constrain-

ed to bend about y-axis, 

Pay 
= Failure load under axial loading with the column constrain-

ed to bend about x-axis, 

Px 
= Failure load under uniaxial bending about the y-axis with 

eccentricity e 	and 

• 



• 	
87. 

= Failure load under uniaxial bending about the x-axis 

with eccentricity e . 

The same authors also proposed simple design formulae to evaluate P
x
, 

P
y' 

P
ax 

and  Pay' and gave the basis on which these formulae were derived. 

No proof was given for the interaction formula of Eq. 64, although its 

relationship to the current elastic interaction formula contained in 

British design codes was pointed out. In what follows, the accuracy of 

the Basu and Sommerville design formulae, including Eq. 64, is examined 

in the light of numerical results obtained for several composite columns 

in biaxial bending using the methods described in Chapters 4 and 5. In 

Section 6.4.1 the validity of Eq. 64 is examined as applied to the nine 

test columns. Later, in Section 6.4.2, numerical results for a composite 

column with various combinations of end eccentricities are compared with 

values obtained from Basu and Sonwerville's design formulae. 

The accuracy of the method based on the actual deflected shape 

with respect to the number of subdivisions is examined in Section 6.4.3. 

6.4.1 	Symmetrical Bending  

Failure loads for the nine test columns under biaxial bending 

were computed using the interaction formula. Uniaxial failure loads 

were computed (a)-using the design formulae presented by Basu and 

Somuerville, and (b) by the analytical procedure of Chapter 4 using 

Program COLUMPC. 

Table 13 gives the results obtained by the empirical formulae. 

It may be readily observed that the biaxial interaction formula is uni-

formly conservative. The margin is greater in the case of longer columns 

than for shorter columns. This may be attributed to the fact that for 
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shorter columns tb, actual failure surface is close to the simplified 

(planar) material failure surface implied in the interaction formula. 

The empirical and test results vary by as much as 48%. The average 

P xy /Ptest is 0.71 with a standard deviation of 0.10. 

0 
	 Table 14 shows the improvement in the results obtained when 

analytically computed uniaxially eccentric failure loads are used in 

the interaction formula. The agreement is very close indeed for short 

columns. The difference between theory and test results increases for 

medium and for long columns. The average Pxy/Ptest 
for this case is 

0.83 with a standard deviation of 0.16. 

Comparing the ratios 
Pxy/Ptest 

obtained from Table 13 and Table 

14 it is clear that the biaxial-interaction formula gives close agree-

ment for short columns, while it is conservative for long columns. The 

difference in results given in Tables 13 and 14 stems from the fact that 

uniaxial failure loads used in Table 13 are themselves conservative as 

compared with the analytical values. Application of the conservative-

biaxial formula further increases the margin of safety. 

The interaction formula studied here has been shown to be con-

servative for obtaining failure loads from uniaxial loads. The formula 

gives consistently conservative results when used in conjunction with the 

design formulae for uniaxial failure loads proposed by Basu and 

Sommerville. The margin of safety is greater for long columns than for 

short columns. Good agreement between calculated and experimental values 

is obtained for short columus when analytically computed uniaxial failure 

loads are used with the interaction formula. For long columns and for 

columns with increasing eccentricity, the formula becomes more conserv-

ative. 
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6.4.2 Asytmetrical Bending 

In this section the relative differences between the theoretical 

failure loads and those obtained by Basu and Sommerville's design method 

for the case of asymmetrical biaxial bending are examined. Failure loads 

were obtained analytically using Program COLUMAS and by the empirical 

design formulae for a 12 ft long column with various combinations of end 

eccentricities. The cross-section and material properties were arbitrar-

ily selected as those of test Column E, since this column represented 

the middle of the range for slenderness as well as end eccentricities. 

Let e
x 
and e

y 
 be defined as the larger of the two end eccentricit-

ies lying in the x- and y-planes respectively, and let x and 13 be 

defined as the ratios of the smaller to the larger of the two end eccen-

tricities lying in the x and y bending planes respectively. The entire 

range of end eccentricity combinations can be covered by assigning values 

of 1.0, 0.5, 0.0, -0.5, and -1.0 to both (3
x 

and (3 	This results in 25 

cases when both e
x 

and ey  are on the same end, i.e. the larger of the two 

end eccentricities lying in one plane are at the same end for both x- and 

y-bending planes (Series S). Additional 9 cases result when e
x and ey  

are located on opposite ends (Series T). Figure 47 shows the difference 

between the two types of loading. For the purpose of this study e
x and 

e were taken as 5.00 in and 2.90 in respectively, the same values as 

for test Column E. The column length was subdivided into 16 segments 

(compare Section 6.4.3). 

The results have been presented in Table 15. Series T failure 

loads are always greater than those for Series S. The percentage 

differences between the design failure leads and the exact failure loads 
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for Series S have also been tabulated. Clearly the design method is 

uniformly conservative by 25-43%. It is even more conservative for 

Series D type loading with errors varying from 32-51%. This indicates 

that the Basu and Sommerville's design formulae may give over conserv-

ative results when applied to composite columns with asymmetrical 

biaxial bending. Figures 48 and 49 show the variation of failure loads 

corresponding to Series S loading with respect to 0
x 
and o respectively. 

Also plotted are the design failure loads. The wide difference between 

the theoretical and design values is again observed, and clearly points 

to the need for an improvement in estimating the failure loads for 

composite columns with this type of loading. 

In conclusion it may be stated that a computer program is now 

available which can be used to study the failure loads of composite 

columns under general biaxial bending with varying values for the crucial 

parameters such as length and end eccentricity combinations. In this way 

sufficient data can be collected to make it possible to derive simple 

formulae to predict the strength of such columns. Until such time as the 

new design formulae are derived and shown to be safe, the existing 

conservative design formulae can be used with confidence. 

6.4.3 Accuracy of the Method Based on the Actual Deflected Shape  

The method described in Chapter 5, in which the failure loads 

are calculated on the basis of the actual deflected shape, should give 

the exact failure load if the column length is subdivided into a large 

number of segments. However, the computation time increases rapidly 

with increase in the number of subdivisions. To determine the optimum 

number of segments that may be used with confidence in subdividing the 
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column, two extreme cases of loading were analysed for different numbers 

of column segments. The first case was that of a column with equal 

biaxial end eccentricities at both ends (3
x 
= 1.0, 8 = 1.0), resulting 

in a symmetrical deflected shape in single curvature in both the bending 

planes. The other case was that of a column with equal but opposite end 

eccentricities at both ends (a  = -1.0, f3 	-1.0), resulting in an 

asymmetrical deflected shape having reverse curvatures in both the bend-

ing planes. These two cases correspond to the two extreme combinations 

of biaxial end eccentricities. The column cross-section, material 

properties,magnitudes of end eccentricities, and the column length chosen 

for the comparison given here are the same as those for the study 

described in the preceding section. 

Table 16 presents the results obtained from Program COLUMAS for 

the number of subdivisions varying from 4 to 20 for both modes of bending 

mentioned above. It may be observed that for columns in symmetrical 

bending, the results for number of subdivisions equal to 16 and 20 are 

almost the same. Thus the exact failure load for this case may be taken 

as that obtained for 20 subdivisions. The error in estimating the 

failure load by taking 8 subdivisions is only 0.1 per cent on the safe-

side. The variation of computed failure load with the number of column 

subdivision is shown in Fig. 50. 

Interesting results are obtained for columns with anti-symmetrical 

end eccentricities (Fig. 51). It is found that to compute the exact 

failure load more than 20 subdivisions are required. More important, 

however, is the fact that for fewer number of subdivisions, the computed 

failure load is on the unsafe side. The error in the computed failure 

load with 16 segments on the basis of the failure load obtained with 24 
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segments is more than 3.5 per cent on the unsafe side. While this error 

may be acceptable in engineering calculations, the error obtained by 

having fewer segments than 16 may be quite serious. 

The source of this error may be found by observing that in the 

case of symmetrical bending, the location of the critical section with 

maximum curvature is known, namely the mid-point. Even with 8 subdivis-

ions there are sufficient number of points on either side of this section 

to obtain a satisfactory estimate of the critical curvature. This is 

clearly not the case when the column is subjected to anti-symmetrical 

eccentricities. The critical sections now are near the column ends. 

Because of the sharp change in curvature here, an accurate assessment of 

the curvature at these sections would not be possible, unless a large 

number of subdivisions is employed. Also as the rumber of subdivisions 

is decreased, the first station from the column end at which the 

equilibrium is satisfied moves farther from the critical section. As a 

result there is an effective reduction in the net eccentricity of the 

line of action of the applied force and consequently the failure load is 

over-estimated. 

The curve shown in Fig. 50 approaches the exact failure load 

asymptotically. However, the curve for anti-symmetrical end eccentricit-

ies would not approach the exact failure load asymptotically from above 

as it appears from Fig. 51. The lowest point on the curve is obtained 

when sufficient albeit small number of stations are located on either 

side of the critical section. Subsequently, as the number of column 

subdivisions increases, the accuracy in the estimation of the maximum 

curvature also increases and the failure loads would then show a 

tendency to approach the exact failure load asymptotically from below. 
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This is shown in Fig. 52 with an exaggerated vertical scale. Thus the 

error with 17 subdivisions will be somewhat less than the 3.5% mentioned 

above. 

For results presented in the preceding section, the column length 

a 	 was subdivided into 16 segments for all the cases. This number was 

chosen as it represented a compromise between economy of computer time on 

the one hand and accuracy of the computed results on the other. The 

error in the worst case, that is for anti-symmetrical end eccentricities, 

has been shown to be less than 3.5%. For other combinations of end 

eccentricities the error will be less than this value, thereby justify-

ing the use of 16 subdivisions for all the calculations. 

• 
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CHAPTER 7 

APPLICATION TO STIFFENED PLATES IN COMPRESSION 

7.0 	GENERAL 

Figure 53. shows the elevation of a typical box girder bridge 

continuous over intermediate supports. The cross-sectional views at a 

point near a support and another near the mid-span are also shown. In 

each case the distribution of normal stress across the section based 

on simple beam theory, i.e. ignoring shear lag, has been shown alongside. 

In practice, the stress distribution is of course influenced by the 

presence of shear, eccentric loading inducing torsion and other factors. 

The study described in this chapter nevertheless relates primarily to 

stiffened plates that are subjected to uniform compression such as the 

bottom flange in Fig. 53(b) and the top flange in Fig. 53(c). The 

particular purpose of the study is to investigate the effect of residual 

stresses and the lack of initial straightness on the strength of 

stiffened compression plates. 

A compression panel of practical dimensions was arbitrarily 

chosen. The breadth to thickness (bit) ratio of the plate panels between 

stiffeners was taken as 60. Although with this bit ratio, the section 

chosen is more slender than would normally be used, it was selected so 

that the interaction of local and overall buckling could be included in 

this study. The dimensional details of the cross-section including the 

stiffener are given iq Fig. 54. 

• 

• 
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The results are presented in non-dimensional form for two reasons. 

First, to facilitate comparisons with other studies and second, to provide 

a basis for the application of these results'to other cross-sectional 

shapes. It is acknowledged that results for different shapes of the 

cross-section will not necessarily lie on the curves obtained for the 

particular cross-section chosen here. However, from previous experience 

of the behaviour of other axially loaded steel columns the scatter is 

likely to be within a narrow band. With this in view, the objectives of 

this study may be stated thus: 

1. To assess the relative effect of various types of column imperfections 

on the strength of the stiffened compression panels. 

2. To demonstrate how the necessary design curves for a rapid design of 

stiffened plates may be obtained. 

Another factor influencing the stiffened plate strength is the 

local buckling strength of the plate spanning between the stiffeners. In 

Section 7.4 an approximate method which accounts for the interaction of 

the local and overall buckling has been described. 

7.1 	ASSUMPTIONS 

It is assumed that the steel plating has evenly spaced longitud-

inal stiffeners spanning between cross-frames. The loading on the 

stiffened plates is assumed to be uniaxial in the direction of the stiffener 

span with equal end eccentricities. For the main part of the study, where 

the effects of residual stresses and initial lack of straightness are 

studied, the loading is assumed to be concentric with the geometrical 

centroid of the total stiffener-plate assembly. 

• 
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The failure loads have been obtained using the method outlined in 

Chapter 4, in which the deflected shape of the column is assumed to be in 

the form of a part-cosine wave, reducing to a cosine wave for axial loads. 

Assumptions made in Chapters 3 and 4 about the material properties, strain 

• 
	 distribution, and small deflections are all retained. Further assumptions 

regarding the distribution of residual stresses and the values of initial 

lack of straightness are discussed in Sections 7.3.1 and 7.3.2 below. 

7.2 	MOMENT-THRUST-CURVATURE RELATIONS 

Moment-thrust-curvature relations for the cross-section of Fig. 54 

were obtained according to the procedure laid out in Chapter 3. As the 

cross-section is asymmetrical about the horizontal axis the moment-thrust-

curvature curves for bending with the plate in greater compression than 

the stiffener (mode A) are different from those for bending with the 

stiffener in greater compression than the plate (mode B). Mode A curves 

are shown in Fig. 55 and mode B curves in Fig. 56. When the plate is 

under a greater compression than the stiffener, the moment of resistance 

of the cross-section exceeds the plastic moment value for axial loads 

varying from 0 to 0.8 times the squash load value. The maximum moment of 

resistance, 1.36times the plastic moment under zero axial load, is obtained 

for an axial load approximately equal to 0.6 times the squashload. Such 

an increase in the moment of resistance is not observed for the other mode 

of bending in which the stiffener is in greater compression than the plate. 

This is illustrated in Fig. 57, which shows the moment-thrust relations for 

a fixed value of curvature (0.0026 per in,corresponding-to c])/4
o 

= 10.0) for 

both modes of bending. The bulge noticed for mode A bending may be 

explained as follows. 



97. 

The full plastic moment corresponds to infinite curvature with the 

compressive and tensile stresses on opposite sides of the neutral axis both 

being at the yield level (Fig. 58). The neutral axis does not coincide 

with the geometric centroidal axis and is located towards the heavier part 

of the cross-section, in this case towards the plate. When an axial load 

is present, the position of the neutral axis shifts. In mode B bending, 

this shift is away from the centroid as illustrated in Fig. 58. The strain 

and stress diagrams shown in Fig. 58 are for a fixed value of curvature and 

for increasing depths of the neutral axis. This is accompanied by an 

increase in the net axial force acting on the section. Also marked on the 

stress diagrams are the locations of the resultant compressive and result-

ant tensile forces. For increasing loads, the shift in neutral axis posit-

ion is consistently away from the geometric centroid, with more and more of 

the stiffener area reaching yield in compression. Consequently the result-

ant of the compressive stresses moves towards the geometric centroid of the 

whole cross-section. There is little change, however, in the position of 

the resultant tensile force, which remains within the plate thickness. The 

resulting loss in the lever arm is reflected in the continuously diminishing 

moment of resistance. However, in mode A bending, for small axial loads the 

neutral axis shifts in the direction of the geometric centroid as shown in 

Fig. 56. Any tensile yield in the stiffener is reduced, causing the 

resultant of the tensile stresses to move away from the geometric centroid. 

The location of the resultant compressive force undergoes little change. 

There is thus an increase in the moment of resistance not only because of 

an increase in the net force on the cross-section but also due to an 

increase in the lever arm. This trend continues until the entire plate is 

in compressive yield and the stiffener area closest to the plate also begins 

to yield in compression. At this stage, the moment of resistance of the 

cross-section will be a maximum. This corresponds to an axial load of 



S 
98. 

approximately 0.6 times the squash load for the cross-section chosen. 

Beyond this value of the load, for increasing positions of neutral axis, 

the stiffener rapidly goes into compressive yield which is accompanied by 

a similarly rapid reduction in the lever arm, diminishing in the limit to 

zero when the load on the section reaches the squash load value. This 

explains the reasons behind different moment-thrust-curvature relations for 

the two modes of bending. 

The moment-thrust-curvature curves shown in Figs 54-55 were 

obtained for the cross-section free of residual stresses. Similar curves 

can be obtained for the cross-section with residual stresses. 

The divergence observed for the moment-thrust-curvature relations 

for the two modes of bending leads directly to differences in the inelastic 

failure loads of columns of similar cross-sections having finite length. 

The effects of residual stresses and of initial lack of straightness on the 

failure loads of stiffened plates of varying slenderness are studied in the 

next section. 

7.3 	RESULTS OF PARAMETRIC STUDY 

7.3.0 General 

Inelastic failure loads were obtained for axially loaded stiffened 

plate elements having the cross-section shown in Fig. 54 for slenderness 

ratios varying from 12.5-250. For the complete range of slenderness ratios, 

the effects of residual stresses and lack of initial straightness were 

systematically studied. These results were obtained for axial loading. 

Later, the effect of eccentricity of loading on the column strength is also 

investigated. 

7.3.1 	Residual Stress Distribution in Welded Stiffened Plates 

The high temperatures involved in the welding procoes produce 

thermal strains several times larger than the steel yield strain in the 
S 
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imwediate vicinity of the weld. The material away from the weld has thermal 

strains of much lower order. The uneven rate of cooling in the areas near 

and away from the weld results in considerable residual stresses. The dis-

tribution of residual stresses across the section is, in general, very 

irregular. Dwight and Moxham(69) have investigated this problem in some 

depth. It is observed that the welds themselves, together with the metal 

in their immediate neighbourhood, are invariably stressed up to yield in 

tension. In order to maintain statical equilibrium, the rest of the section 

remains in a state of residual compression. Experiments reported by Dwight, 

Chin and Moxham
(86) 

on welded box sections indicate a residual stress 

pattern of the type shown in Fig. 59. Similar patterns were also reported 

by Nishino, Ueda and Tall
(67) 

working at Lehigh. Dwight and Moxham recomm-

ended an idealised residual stress pattern for use in calculations. This 

is shown in Fig. 60. The width of the tension block is thought to be largely 

independent of the total width of the plate. In addition, when two or more 

plates meet at a weld, the width of the tension block for each of these is 

assumed to be the same, and may be calculated by the following equation 

1
t
1 

= ri2t2 
C A  
a Et 
y 

where Et is the sum of plate thicknesses, C is a constant whose value 

recommended by Dwight and Moxham is 400 tonf/in
2 
 , and A is the cross-

section of the added metal. For the cross-section shown in Fig. 54, the 

value of A is arbitrarily taken as 0.15 in
2 
 . 

Knowing the lengths of the tension blocks, the average stress 

arising in the compression zone (or) is calculated by satisfying the 

equilibrium of normal forces on the section. The resulting stress-dis-

tribution is shown in Fig. 61. However, this residual stress distribution 

has an unbalanced moment - about the centroidal axis x-x. To ensure complete 
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statical equilibrium, correcting stresses in the compression zone are 

calculated for a moment that is equal and opposite to the unbalanced 

moment. Figure 62 shows the distribution of correcting residual stresses 

and Fig. 63 shows the resulting residual stress distribution, used in 

the subsequent computations. The maximum compressive residual stress 

(a ) may be seen to occur at the tip of stiffener and is approximately 

equal to 0.18 ay. 

7.3.2 	Initial Lack of Straightness 

In stiffened plates two types of geometric imperfections may be 

commonly encountered. The first corresponds to the lack of straightness 

of the plate along its line of intersection with the stiffener. This 

overall out-of-plane defoLmation of the stiffener is denoted by Do  (Fig. 64).. 

The second type of geometric imperfection, which may be called the ripple 

component of geometric imperfection, relates to the additional initial 

deformations (S
o
) in the plate elements measured with respect to a surface 

parallel to the surface defined by the stiffener out-of-plane deformations. 

Figure 64 shows the nature of these secondary deformations. In the present 

study only the stiffener out-of-plane deformations are considered. The 

ripple component of imperfection is usually small in magnitude compared 

with the stiffener out-of-plane deformations and mainly effects the local 

plate buckling strength. Thus the initial lack of straightness of the 

stiffener-plate combination is taken to be the same as the stiffener-out-

of-plane deformation Ao. 

In general, it is difficult to estimate the magnitude of the lack 

of initial straightness for practical cases. The Merrison Design Appraisal 

Rules
(60)

, current at the time the calculations presented here were carried 



• 
101. 

• 

cut, recomaended two values for this out-of-plane deformation associated 

with the two directions in which the stiffened plate can bend. For bend-

ing with the plate in greater compression than the stiffener (i.e. mode A 

bending) a value of L/400 was recommended. L is taken as the length of 

the stiffened plate between cross-frames. For the other mode of bending 

(i.e. mode B), in which the stiffener has a greater compression than the 

plate, an initial lack of straightness of magnitude L/600 was recommended. 

Following the results of tests carried out by Dowling, Chatterjee, Frieze 

and Moolani(72), and Dorman and Dwight(87), the out-of-plane deformation 

for stiffeners as specified in the Merrison Design Appraisal Rules(60) 

have been halved for both modes of bending in the new Merrison Design 

Rules(88). Thus the current values are L/800 and L/1200 for mode A and 

mode B bending respectively. These values are also supported by the 

measurements of imperfections on actual structures(89). Since the cal-

culations presented in this thesis are based on higher values of out-of- - 

plane deformations, the failure loads obtained for axially loaded stiffen-

ed plates are on the conservative side compared with the failure loads 

that would be obtained using the currently recommended values for out-of-

plane deformations. 

7.3.3 	Strength of Ideally Straight Columns  

The failure load of an ideally straight column with ideal elastic 

perfectly plastic stress-strain properties may be obtained by the well-

known Euler equation. For low slenderness values, the strength is li 

limited by the yield stress of the material. Figure 65 shows the 

variation of column strength with slenderness ratio for such a column. 

Although no such ideal column exists in practice, this hypothetical case 

is chosen as the basis for comparison when studying the effects of 

various imperfections. The failure loads for different slenderness 
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ratios are expressed as a fraction of the squash load. The slenderness 

ratio at which the failure curve shows a discontinuity is given by 

x = 
e 	6 (66) 

which represents the Euler load for which the stress over the section 

equals the yield stress of material. For the material of the plates 

chosen in this study, E = 13000 tonf/in
2 
 and a = 22 tonf/in2  resulting 

in A
e 
= 76.4. 

7.3.4 	Effect of Residual Stresses 

The effect of residual stresses on the strength of an ideally 

straight column may be obtained by the tangent modulus theory using an 

idealised elastic-plastic stress-strain curve for the material. This 

results from the observation that the presence of residual stresses 

causes a deviation from the linear elastic zone of the stress-strain 

curve at a stress well below the yield stress. The deviation begins as 

soon as the fibre under maximum compressive residual stress attains the 

yield stress of the material. The idealised elastic-plastic average 

stress-strain curve for the column cross-section of Fig. 54 having a 

residual stress distribution of Fig. 63 is depicted in Fig. 66. The 

curve is obtained on the following bases: 

1. The stress-strain curve deviates from the linear elastic range at 

a stress that is equal to the difference between the yield stress of 

the material and the maximum compressive residual stress in the section. 

2. The stress-strain curve approaches the flat plastic range at a 

point corresponding to a permanent off-set of 0.002%. This is done to 

retain the value of yield stress as defined in various cedes. 



• 

103. 

• 

3. 	The curve is assumed to be parabolic between the two linear zones. 

In addition the tangents at the two points of contact are assumed to 

coincide with the two linear segments. 

The tangent modulus failure loads are plotted in Fig. 67. The 

maximum effect is noticed at a slenderness value where the elastic 

critical failure mode changes to the yield failure mode. Figure 68 

shows the variation of percentage loss in strength due to residual 

stresses. The maximum loss in stiffened plate strength is about 14 per 

cent for a slenderness ratio of A
e(= 76.4), falling sharply on either 

side of this value. 

7.3.5 	Effect of Initial Lack of Straightness  

Figure 69 shows the variation of failure loads with slenderness 

when the columns are given an initial lack of straightness. The magni-

tudes of the initial lack of straightness are in accordance with 

Section 7.3.2. The failure loads for mode B bending, i.e. failure by 

compression in the stiffener outstand are less than those for mode A 

bending with failure by compression in the plate up to a slenderness 

ratio of about 150. For slenderness ratios greater than 150, mode B 

results are greater than those for mode A. Figure 70 depicts the 

percentage loss in strength on the basis of the failure loads for ideally 

straight elastic perfectly plastic columns. It may be observed that the 

loss in strength increases steadily until the slenderness ratio Ae, and 

then tends to reduce. The maximum loss for mode A bending is around 27 

per cent and for mode B bending, approximately 47 per cent. Clearly the 

section is weaker for failure with mode B bending for a slenderness 

range of 0-150 in spite of a smaller anuunt of initial lack of straight-

ness. The trend is reversed for slenderness ratios greater than 150, 
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beyond which the difference in the failure loads for the two modes merely 

reflects the difference in the two levels of imperfection. For such 

large slenderness ratios, if the imperfections for mode A and mode B were 

the same, the failure loads obtained would also be the same, and would 

approach the Euler load for diminishing values of imperfections. 

7.3.6 Combined Effect of Initial Lack of Straightness and Residual 

Stresses 

Failure loads were obtained with the column cross-section having 

a residual stress pattern shown in Fig. 63 for the two modes of bending 

with the same imperfections as adopted in Section 7.3.5. The results are 

plotted in Fig. 71. Mode B results are found to be smaller than mode A 

results for a range even larger than in the case without residual stresses. 

An interesting feature of these curves is the cusp obtained for both the 

modes of bending. The cusp occurs due to the rectangular nature of the 

residual stress-pattern. For a residual stress-pattern with gradual 

transition from the compressive to the tensile zones, the cusp in both 

the curves would vanish resulting in a smooth curve. The stress at 

which the cusp occurs is about the same for the two modes of bending, 

but there seems to be no direct relation with the magnitude of maximum 

compressive residual stress. The percentage loss of strength for this 

case for both modes of bending is plotted in Fig. 72. For the sake of 

comparison, the curves obtained in Fig. 70 are also superimposed. 

It is clear that the effect of combining residual stresses with 

an initial lack of straightness is to reduce the column strength for mode 

B bending over the entire range of slenderness ratios. For mode A 

bending also a reduction in strength is indicated except for a range of 

slenderness ratios from 85 to 210, for which there seems to be a small 
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increase in strength with a maximum value of about 5% of the ideal column 

strength. This may be explained on the following basis. The residual 

stress pattern of Fig. 63 shows a compressive stress of approximately 

0.18 a at the tip of the stiffener. For mode B bending, this results in 

an earlier initiation of yielding, and eventual collapse, as compared with 

the case when residual stresses are not considered. For mode A bending, 

for low slenderness ratios where the failure is initiated by the yielding 

of the compressive zone of the flange, the presence of compressive 

residual stresses in the greater portion of the flange again causes an 

earlier collapse. However, in this mode of bending for slenderness ratios 

from 85 - 210 when the collapse is due to instability initiated by lack of 

equilibrium only, the presence of tensile stresses in part of the flange 

and of compressive stresses in the stiffener directly strengthens the 

column. 

7.3.7 Comparison with Existing Design Rules 

At this stage it will be pertinent to compare the results obtained 

by the theory developed here with those predicted by available design 

formulae. In the BS153
(90) use is made of the Perry formula with a value 

of imperfection factor given by n = 0.003(L/r). To correlate with the 

results obtained for the two modes of bending, the imperfection factor may 

be taken as 

c o al 
(67) 

r
2 

where c
o 

is the initial lack of straightness and a
1 

is the distance 

of the most stressed compressive fibre from the centroid of the section. 

In the formula given above, the value of c
o 

is taken as L/400 for mode A 

bending and as L/600 for mode B bending. 

• 
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Figure 73 shows the variation of failure load with slenderness 

as obtained by the Perry-Robertson formula (n = 0.003L/r). Results are 

also plotted for the two modes of bending with appropriate values of co  

and a1 substituted in the Perry formula. The Perry-Robertson curve is 

the same for the two modes of bending and lies in between the Perry 

curves for mode A and mode B bending. The curves clearly show that the 

use of Perry-Robertson formula would imply a greater value for the initial 

lack of straightness for mode A bending and a smaller value for mode B 

bending, as compared with the original Merrison values(60) for the 

corresponding modes. 

Figure 74 has all the results for mode A bending grouped together. 

The effect of adding various imperfections can clearly be seen to result 

in a successive loss of stiffened plate strength. The curve for residual 

stresses combined with initial lack of straightness gives the least 

strength for slenderness values ranging from zero to around 85. For more 

slender columns, the residual stresses seem to enhance the column strength 

by a small amount. For the practical range of slenderness ratios, there-

fore, there is a clear need for accounting for residual stresses as well 

as an initial lack of straightness. The Perry formula with c
o = L/400 

seems to represent the inelastic failure load quite closely for slender-

ness values up to 80, beyond which it overestimates the strength increas-

ingly. It is also shown that the effect of both types of imperfections 

can be adequately represented by the Perry-Robertson formula with an all-

inclusive imperfection of n = 0.003(L/r) although for slenderness values 

greater than about 100, the formula tends to overestimate the column 

strength by as much as 10%. 
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Figure 75 shows the results for mode B bending grouped together. 

The observations for this mode are substantially different from those for 

mode B. The loss in strength due to various imperfections is evident for 

the whole range of slenderness. The smallest column strength is obtained 

with residual stresses combined with an initial lack of straightness. The 

Perry-Robertson curve is seen to be comparatively non-conservative by up to 
• 

24%, while the Perry curve with c
o 

= L/600 still over-estimates the column 

strength by 15% in the worst case at a slenderness value of 23. The last 

two values of percentages are based on the column strength that includes 

the effects of residual stresses as well as a lack of initial straightness. 

This points to the inadequacy of the Perry-Robertson formula in predicting 

the strength of the stiffened plate cross-sections for bending with the 

stiffener outstand in greater compression than the plate. However, with 

n = 0.009 (L/r) a close approximation can be made to the mode B bending 

analytical results obtained by combining residual stresses and initial lack 

of straightness. 

If the results for mode A and mode B bending as shown in Figs 73 

and 74 were to be superimposed, it would be obvious that the more critical 

design case is the one with the stiffener outstand in greater compression 

than the plate (mode B). This seemingly contradicts the pattern of failure 

$ 

	

	observed in the tests carried out at Imperial College by Dowling, Chatterjee, 

Frieze and Moolani
(72)

, who reported that the majority of failures were in 

mode A, but is in agreement with those reported by Murray(91). This is 

readily explained by the fact that the welding procedures adopted in the 

preparation of the models tested at Imperial College caused a predishing 

of the stiffened plate panels between cross-girders in Sympathy with mode 

A deflections. In these tests the possibility of local instability of the 

stiffener outstand (flat plates) was also considerably reduced by limiting 

the b/t ratio of outstauds to 3. However, in the tests reported by 
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Murray(91), the stiffener outstands (bulb flats) were relatively slender 

having b/t ratio of 20 in most cases and the failure was often precipit-

ated by the local instability of stiffeners. Also, Murray's tests were 

conducted on isolated panels in which the load was applied at the centroid 

of the gross cross-section whereas in the Imperial College tests the 

flanges were tested as part of a box and this causes an inevitable eccen-

tricity of loading in the flanges that would tend to make it bend towards 

the stiffener outstand (mode A). In cases where the initial deformations 

are likely to be in sympathy with mode B bending, the stiffened plate 

strength would be grossly over-estimated if only mode A bending were to 

be considered. This points to the need for considering both the modes of 

bending at the design stage. Curves 2 in Figs 74 and 75 may accordingly 

be used as basic design curves for a rapid design, allowing for the fact 

that the imperfections implicit in these curves are comparatively higher 

than the values recommended in the current Design Rules(88) 

7.4 	LOCAL FLANGE BUCKLING 

7.4.0 General 

When the spacing between the stiffeners is too large, the 

strength of the stiffened plate in compression is adversely influenced 

by the local buckling of the plate situated in between the stiffeners. 

The U.S.S. Steel Design Manual(92) allows the problem of local plate 

buckling to be circumvented by specifying limiting values for the spacing 

between the stiffeners. The effect of local flange buckling can, 

however, be accounted for in an approximate manner by substituting an 

appropriate average stress-strain curve instead of the material stress-

strain curve while computing the failure load. This was first suggested 
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by Vojta and 0stapenko(68). Later Mittleman(75) made a similar 

assumption using the author's computer programs while examining the 

results of a test on a I scale box girder model. The artifice used is 

to employ plate load-end shortening curves obtained by theoretical or 

experimental means as average stress-strain curves for the plate. Vojta 

and Ostapenko used Koiter's equation which has the limitation that it is 

applicable to the elastic post-buckling range only. This excludes any-

thing but the very slender stiffened plates. To include the inelastic 

effects, Mittleman used Moxham's experimentally obtained load-end shorten-

ing curves(70) Moxham has also suggested a theoretical approach for 

obtaining such load-end shortening curves. Earlier, Ratcliffe
(66) 

had 

obtained a few experimental load-end shortening curves. His results were 

given for four different values of width to thickness ratios and were 

obtained for a fixed length of the plate. Moxham's experimental results 

were all obtained for a length to width ratio of 4, except in a few cases, 

which had a length to width ratio of 0.875. All of Moxham's theoretical 

results are based on a length to width ratio of 0.875, a value which was 

arrived at based on the observation that the maximum load values of the 

load-deflection curves were a minimum for this value. Moxham also con-

cluded that the least value of maximum load is not sensitive to the 

length to width ratio. However, Moxham has not compared his theoretical 

curves with the experimental results except for a small number of cases. 

The agreement shown cannoL be considered close. In view of the diffi-

culty in establishing a suitable stress-strain curve, or a family of 

curves for various length to width ratios, the results described in this 

section which are based on Ratcliffe's experimental load-end-shortening 

curves, must only be considered as representative and cannot be used for 

• 
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design purposes. They are intended to show how local plate buckling 

could be included in developing design curves for stiffened plates and 

also to show the extent to which the local plate buckling can reduce the 

stiffened plate strength. 

7.4.1 Load-end Shortening Curves  

Ratcliffe's experimental results are available for width to 

thickness ratios of 44, 54, 66 and 81.. To obtain a load-end shortening 

curve for the section shown in Fig. 54 which has a width to thickness 

ratio of 60, an interpolated curve was obtained using the experimental 

curves for width to thickness ratios of 54 and 66. Ratcliffe has given 

curves both for welded as well as for stress free plates. For the 

purpose of this study, the curves for welded plates were adopted. The 

interpolated curve and the two parent curves are all shown in Fig. 76. 

Since the effect of residual stresses is already implicit in the load-

end shortening curve, no further residual stesses are considered. 

7.4.2 Effect of Local Flange Buckling on Failure Loads 

Figure 77 shows the variation of failure loads with slenderness 

when local flange buckling effects are included. In calculating the 

failure loads an initial lack of staightness of L/400 was also considered. 

Also plotted are the failure loads obtained without considering local 

plate buckling (compare Fig. 69). In Fig. 78 the percentage loss of 

strength on the basis of the strength of ideal elastic perfectly plastic 

straight columns for the two cases are also plotted. For slenderness 

ratios greater than about 115, the curve with local plate buckling merges 

with the curve without local plate buckling because the strains at the 

failure stage are within the linear elastic zone of the load-end shorten- 
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ing curve. In this zone the curve coincides with the material stress-

strain curve. For smaller slenderness ratios, the difference continues 

to increase and the maximum loss of strength is obtained at a slenderness 

ratio of approximately 75 and is of the order of 51%. This is about 

twice the value obtained when local flange buckling is not considered. 

Clearly the effect of local flange buckling on the column strength is of 

considerable importance for slenderness ratios less than about 110 - 115. 

At this stage the inadequacy of the average stress-strain curve 

used can be pointed out. The failure load at zero slenderness is shown 

at about 66% of the squash load (Fig. 77). However, the local buckling 

effects at very low slenderness values (near zero) would be expected to 

be negligible. This discrepancy points to the need for employing a more 

representative load-end shortening curve. 

Despite the inaccuracy of the load-end shortening curves indicated 

at low slenderness values, the loss in strength observed for intermediate 

range of slenderness shown in Figs 77 and 78 indicates the necessity of 

including the effects of local buckling on the column strength where such 

effects are likely to occur, that is, when the spacing between the 

stiffeners is larger than that required to prevent local plate buckling. 

7.4.3 	Use of:Effective Width Concept to'Account for - Local'Plate Buckling  

In this section an attempt will be made to correlate the stiffened 

plate strength obtained by including the effect of local plate buckling 

(shown in Fig. 77) with the strength obtained on the basis of an effective 

width criterion specified in BS153(90). This code gives formulas to com-

pute the effective cross-sectional area of a member in compression using 

lik 

the effective width of the plate in terms of its width in between adjacent 
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stiffeners. The strength of the effective cross-section so obtained is 

calculated by using the Perry-Robertson (BS153) formula and expressed as 

a fraction of the squash load of the gross section. The variation of the 

stiffened plate strength calculated in this manner, with respect to the 

slenderness ratio of the gross cross-section has been plotted in Fig. 77 

along with the theoretically based curve using experimental average stress-

strain curves. It may be observed that the correlation between the 

theoretical results and the results based on BS153 is good. This leads to 

an important conclusion. In section 7.3.2 it was shown that the Perry-

Robertson curve agreed well with the failure curve obtained for axially 

loaded stiffened plates failing in mode A when no plate buckling was con-

sidered. It has now been shown that by using an effective width such as 

that given in BS153, a satisfactory correlation with the theoretical 

results can still be obtained by using the Perry-Robertson curve. 

It should be noted however that the effective width that may be 

used to compute the collapse load (such as those given in BS153) are not 

necessarily the same as those required for rigidity, that is, for the 

calculation of deflections. It is also recognised that the correlation 

between the loads obtained from effective width calculations and the 

collapse loads obtained by a consideration of average stress-strain curves 

to include local plate buckling is itself subject to verification by 

further research to demonstrate that either approach would agree well with 

true results for a full range of b/t ratios. 
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7.5 	ECCENTRICALLY LOADED STIFFENED PLATES 

7.5.0 General  

Depending upon the detailing of the junction between stiffened 

plate elements acting as flanges and those acting as webs, the compress-

ive loading on the flange elements can be eccentric with respect to the 

geometric centroid of the stiffener-plate column element. In general, 

the effect of the end moments so introduced is to reduce the ultimate 

load of such stiffened plates. These effects can be considered by con-

structing load-moment interaction curves, which may subsequently be used 

for design purposes. 

• 7.5.1 Load-moment Interaction Curves  

It is customary to represent the load-moment interaction curves 

as relations between P/P
u 
and M/M

u where M is the applied end moment, 

Pu is the squash load, and Mu is the ultimate moment of resistance in the 

pure bending case. In general, the effect of end moments on the failure 

loads is to reduce it. Thus, in no case can the ultimate load obtained 

in the presence of end moments be greater than the corresponding axial 

failure load. However, the maximum moment capacity, in the case of un-

symmetrical sections does not necessarily occur for the no axial load 

condition, especially for columns with low slenderness raiots, but may 

occur for some fraction of the squash load. For columns with medium to 

high slenderness ratios, there is usually a continuously steady reduction 

in the moment capacity with increasing loads. 

To illustrate these remarks, load-moment interaction relations 

were obtained for the column cross-sectica shown in Fig. 54 for both 

mode A and mode B bending. The slenderness values chosen were 25, 75 and 

• 
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150 representing the stocky, the medium and the slender stiffened plates. 

Figure 79 shows the load-moment interaction diagrams for both mode A and 

mode B bending. For very slender columns (slenderness ratio = 150), there 

exists a steady reduction in ultimate loads with increasing end moments 

for both mode A and mode B bending. The effects of end moments seem to be 

most drastic for columns with medium slenderness, particularly for mode B 

bending. For mode A bending, at first a sharp drop in strength is 

observed even for small end moments, but as the moments increase further 

the rate at which the loss of strength occurs with increasing moments is 

slowed down and there follows a steady loss in strength with increasing 

end moments. For stocky stiffened plates, there is a steady loss in 

strength with increasing moments for mode B bending. For mode A bending, 

the loss of strength is very gradual for end moments as high as M
u
. For 

load values ranging between 0.25 Pu  and 0.68 Pu  the ultimate moment capac-

ity in fact exceeds the value at zero load. For P/P
u 
ranging between 0 

and 0.25, the moment capacity remains in excess of 957 of the value at 

zero load. Thus for short stiffened plates in mode A bending, the end 

moments appear to have only a small effect on the column failure load. 

Results presented in this section once again illustrate the high 

sensitivity of stiffened plates with intermediate slenderness ratios to 

various types of imperfections, in this case the eccentricity of end-

loading. 

7.5.2 'Strengthening"Effect'of Initial - Lack'of StraightnesS'in'OppoSition 

with End Eccentricities  

For design purposes it is essential to consider the effect of the 

worst possible combination of factors in estimating the strength of any 

structure, including stiffened plates. However, to correlate results from 
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laboratory tests it is often necessary to take into account the beneficial 

effects of certain actual circumstances. One such situation arises when 

the column initial lack of straightness is such that the failure ought to 

occur in mode B bending, but due to the over-riding effects of end eccen-

tricities the failure actually may occur in mode A bending. Clearly, the 

failure loads obtained would be higher than the mode A results shown in 

the interaction curves of Fig. 79. To illustrate this, Fig. 80 shows the 

interaction curves for mode A and mode B bending, along with an additional 

curve for the case when the end eccentricities cause failure in mode A 

bending while the initial lack of straightness is in sympathy with mode B 

bending. An increase in strength is indicated for all values of end 

moments and is as high as 68% for end moments, equal to approximately one-

half of the ultimate moment at zero load. This shows the significant 

amount of strengthening that may be provided by negative initial lack of 

straightness. 

7.6 	IMPLICATIONS FOR DESIGN 

It has been shown that for isolated, axially loaded stiffened 

plates in compression, failure will always be governed by mode B bending, 

i.e. with the stiffener outstand in greater compression than the plate. 

However, when such plates form the compression flange of a box girder, 

three factors complicate the situation. In the first instance, the out-

of-plane deformations caned by the welding of the stiffener to the plate 

cause the initial deformations to occur more often in mode A than in 

mode B. This is reflected in a greater occurrence of the failure of 

stiffened compression panels in mode A than in mode B as observed in tests 

on box girder models carried out at Imperial College(72). The second com- 
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plication arises from the overall flexure of the box (Fig. 81). Since 

the plate is always further removed from the neutral axis of the box than 

the stiffener, the moments acting on the stiffened panel in compression 

are consistently in sympathy with mode A bending and in opposition to 

mode B bending. A third factor, which is of a secondary nature but 

nevertheless further exaggerates the moments acting on the column, 

originates from the initial eccentricity of loading favouring mode A 

bending due to the connection detail between the web and the flange (Fig. 

82), although in practice the presence of cross-frames at regular intervals 

tends to reduce this effect. If for a column with L/r = 75, the eccentric-

ity of loading is taken to be equal to the distance between the centroid of 

the plate and the centroid of the stiffener-plate combination, the failure 

load for mode A bending with mode A initial deformations may be seen to be 

less than the failure load for mode A bending with mode B initial deformat-

ions (Fig. 80). Clearly, in these circumstances, that is, when the initial 

lack of straightness in mode B does not exceed the magnitude of the eccen-

tricity of loading (favouring mode A bending and opposing mode B bending), 

then the collapse will occur in mode A and not in mode B. 

We thus have (a) an explanation as to why the majority of the com-

pression flange failures in the series of tests on box girders carried out 

at Imperial College
(72) 

occurred with the plate in failing in compression 

and the stiffener in tension, and (b) a possible simple design approach 

suggesting itself in outline. 

However, before outlining the possible design method, it is 

necessary to deal with the local buckling effects that limit the strength 

of stiffened panels. Local buckling of the plate in between the stiffener 

influences only mode A collapse loads, and can be accounted for in the way 
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outlined in Section 7.4. The local buckling of the stiffener, on the 

other hand, would invalidate some of the arguments set out above, and 

could lower the stiffened panel strength considerably below that predicted 

for mode A bending even in the presence of restraining moments. The post-

buckling reserve of a stiffener, supported along its line of intersection 

with the plate would 'be negligible compared with any such reserve possessed 

by the plate panel in between the sciffeners. It would, therefore, appear• 

to be highly undesirable to have the strength of the stiffened panel to be 

curtailed by such a premature failure due to relatively less stable 

stiffeners. Conversely, it would be highly desirable to proportion 

stiffeners in such a way as to prevent their local buckling. In the 

Imperial College boxes, where flats were used as stiffeners, such failures 

were prevented by limiting the depth to thickness ratio to 8. In the one 

case where a mode B failure did occur at an end panel with mode B type 

initial deformations, the flats failed by compressive yielding and did 

not buckle locally before the collapse load of the box was attained. 

Thus to prevent local buckling of the stiffeners, it should be possible 

by further research to specify limits for the cross-sectional dimensions 

of the stiffener. These limits would of course depend upon the material 

strength and width to thickness ratios of the plate panels in between the 

stiffeners. In the absence of such information, the current rules in 

Ref. 88 could be used to check the design of stiffeners. 

If the local buckling of the stiffener could be eliminated by a 

suitable design, only mode A or mode B failures as treated in this study 

would need to be considered. It has already been shown-that the use of 

Perry-Robertson formula gives good agreement with the predicted collapse 

loads for mode A failure in which the eftects of residual stresses and 
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initial lack of straightness of L/400 (based on Merrison Design Appraisal 

Rules
(60)

) were included. Therefore, the application of this formula 

might be expected to give good agreement with test results. This is 

indeed the case, as illustrated by the findings from tests carried out 

at Imperial College(72) and Cambridge University
(87)

. It has also been 

shown that local buckling of the plate in between the stiffeners can be 

accounted for with sufficient accuracy by the effective width approach 

already incorporated in BS153. Therefore, use of the Perry-Robertson formula 

in conjunction with the effective widths incorporated in BS153 can be 

safely recommended for design where mode A failures are indicated, 

particularly as the new values of initial lack of straightness specified 

in the current Merrison Design Rules(88) are only half of those used in 

this study. 

Where mode B failures are indicated, use of the Perry-Robertson 

formula has been shown to be inadequate. However, using a higher 

imperfection factor fl = 0.009 WO, the Perry formula has been shown 

to give good agreement with mode B curves. 

The suggested. simple design procedure may now be outlined as 

follows: 

(1) Proportion stiffener outstands so as to prevent local buckling. 

Pending further research, Merrison Design Rules(88) clauses may be 

applied to check whether local buckling is likely to limit stiffened panel 

strength and if so the stiffener outstand should be redesigned to prevent 

this occurring. 

(2) Check initial eccentricity of loading, e, by considering bending 

moment gradient over the column cross-section derived by a consideration 
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of the flexure of the box (cf. Fig. 81). 

If e > mode B initial deformation (L/1200), the plate-stiffener 

combination column cross-section fails in mode A, otherwise in mode B. 

(3) For mode A failure, if e 4 L/800 (the new value of initial 

S 	
deformation), the cross-section may be designed as an axially loaded 

column using the Perry-Robertson formula and effective widths in accord-

ance with BS153 to account for local plate buckling. 

It is important to remember that the Perry-Robertson curves imply 

a consideration of residual stresses and initial lack of straightness of 

L/400 as shown above, which may be considered to be equivalent to a con-

sideration of residual stresses, an initial lack of straightness of L/800 

and an implied end eccentricity of approximately L/800. 

(4) For mode B failure, if e 4 L/1200, the cross-section may be 

designed as an axially loaded column using an imperfection factor 

fl = 0.009 (L/r) in the Perry formula (Curve 5 in Fig. 75). 

In this case the imperfections considered are residual stresses, 

initial lack of straightness of L/1200 and an implied end eccentricity 

of approximately L/1200. 

(5) Where eccentricities are outside the limits mentioned in steps (3) 

and (4) above, an appropriate reduction in strength can be considered 

using load-moment-interaction curves such as those given in Fig. 79. 

(6) No separate allowance needs to be made for residual stresses, as 

they are already included in the design formulas/curves mentioned in 

earlier steps. The presence of residual stresses only modifies the 

strength but has no influence on the preferred mode of bending. 
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CHAPTER 8  

CONCLUSIONS  

8.0 	GENERAL CONCLUSIONS 

• 
(1) Experimental results on the ultimate load behaviour of short, 

medium and long composite columns in biaxial bending have been made 

available. 

(2) Two analytical methods for the determination of the strength of 

such columns have been developed within this thesis. The first method, 

an approximate one based on an assumed deflected shape in the form of a 

• 	 part of a cosine wave, is applicable to columns in symmetrical bending 

in each of the two bending planes. The other method, based on the 

determination of the actual deflected shape, is more exact and general, 

and is applicable to columns with any combination of end eccentricities. 

(3) Comparisons between experimental and theoretical results for 

composite columns show good agreement for both methods of analysis. 

(4) The analyses developed here are not limited in their applicat- 

ion to composite columns alone. 	They have also been used to study 

the influence of imperfections on the strength of stiffened plates in 

compression. 

(5) It has been shown that the presence of residual stresses and 

initial lack of straightness may reduce the strength of stiffened plates 

in compression by up to 50% (for L/r = 75) based on the ideal elastic 

perfectly plastic column strength (40% on the tangent-modulus strength). 
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(6) 	A simple design procedure has been outlined which is based (a) on 

the elimination of local buckling of the stiffener outstand by suitable 

design, and (b) on the use of the Perry formula to closely represent the 

inelastic failure loads of stiffened plates in compression. 

8.1 	PARTICULAR CONCLUSIONS RELATING TO COMPOSITE COLUMNS IN BIAXIAL 

BENDING 

8.1.1 	Composite Action  

The test results fully substantiate the validity of two of the 

fundamental assumptions made in the theoretical analysis of composite 

columns. These relate to the continuity of strains between steel and 

concrete interfaces and the planar distribution of strains over the 

cross-section. The distribution of strains deduced from strain measure-

ments at the four tips of the H-section and at several points on the 

concrete surface were found to be essentially linear for all columns 

even for loads very close to the respective failure loads. The variation 

of strain away from the planar distribution was found to be within a 

maximum of 10% just before collapse. From the planar nature of the strain 

distribution it was also evident that the strains remain continuous between 

steel and concrete, thereby endorsing the assumption of composite action. 

It should be noted however that these composite columns, like all others 

tested to-date, were tested in symmetrical bending, and no primary shear 

loading likely to break the bond between steel and concrete was introduced. 

8.1.2 	Failure Strain of Concrete 

The crushing strain of concrete observed in almost all the tests 

was approximately 0.00400. This corresponds to the strain just before 

concrete begins to spall. 
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8.1.3 	Failure Mechanism of the Test Columns  

In each case the first indications of distress were recorded 

when the tip of the flange stressed most in compression reached yield. 

This was followed by tension yield in the diagonally opposite tip and 

finally by the crushing of the concrete in compression. It was also 

observed that the first yield in steel occurred well below the collapse 

load of the column except for long columns where the difference was 

small and hence no simple failure criterion could be established. 

8.1.4 Accuracy of the Method Based on the Actual Deflected Shape 

In principle, by taking a large number of column subdivisions, the 

calculated failure loads can be made to approximate to the exact failure 

load with only a negligible error. In practice, the number of subdivis-

ions that may be employed is limited by the available computer time and 

storage. It has been shown that for symmetrical bending, failure loads 

that are within 0.1 per cent of the exact value may be obtained by using 

as few as 8 subdivisions. However, for columns with antisymmetrical end 

eccentricities about both the bending planes, the number of subdivisions 

required for a similar accuracy is more than 24. More important, in such 

cases the results obtained by using a smaller number of segments are 

found to be on the unsafe side. As a compromise between the accuracy of 

results and the required computer time, it was shown that by using 16 

segments speedy results could be obtained with an error of only ± 3.5 %. 

8.1.5 Accuracy of the Method Based on the Part-cosine Wave Assumption 

for the Deflected Shape  

The part-cosine wave assumption can be conveniently applied to 

columns having symmetrical end eccentricities in each of the two bending 



• 
123. 

• 

planes. It has been shown that the maximum error introduced by using this 

assumption is of the order of 5.5% and the average error is only 3.5% 

when applied to the nine test columns. The percentages are based on the 

theoretically exact failure loads, and are on the safe side. 

8.1.6 Effect of Residual Stresses on the Strength of Composite Columns  

It was found that the consideration of residual stresses in the 

steel core of the nine composite columns tested resulted in a variation 

of ± 3% in the failure loads. The computed failure loads were found to 

reduce or remain unaltered for columns with short length or with small 

eccentricities, while the strength of long columns or columns with larger 

eccentricities was found to be enhanced by the presence of residual 

stresses. This originates from the nature of the residual stress dis-

tribution which, although initiating larger deflections, causes a delayed, 

collapse due to the presence of strains opposite in sign to the imposed 

strains having a major flexural component. For short columns, or columns 

with small eccentricities, the flexural strains are less important com-

pared with direct compressive strains, and the residual strain distribut-

ion has little or no effect on the failure load. 

8.1.7 ' Effect'Of an'Initial*Lack of'SttaightnesS'on the:Sttength'of  

CoMpOsite'ColuMns  

The presence of an initial lack of straightness in a column 

results, as is well known, in a reduction in its strength. It was shown 

that for columns in symmetrical biaxial bending, the maximum reduction 

in strength occurs when the initial lack of straightness is oriented along 

the minor axis. Since the exact orientation of initial imperfection in 

columns with arbitrary end eccentricities resulting in the least failure 
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loads is difficult to locate, it is recommended that the minor axis 

orientation be adopted in all cases for simplicity. 

8.1.8 Comparison of Test Results with the Two Analytical Methods  

Both methods have been shown to give good agreement with the 

observed failure loads. When residual stresses together with an initial 

lack of straightness of L/1000 are included, the computer results based 

on the approximate method have been shown to give failure loads having 

a standard deviation of 10% with the average value of P
xy

/P
test within 

an error of -5%. The method based on the actual deflected shape gives 

results that are 1.5% to 5.5% higher than the approximate method. This 

results in an even closer approximation of test results. The standard 

deviation remains at about 10% but the average 
Pxy/Ptest has an error of 

less than 0.5%. 

The theoretical and experimental deflections for the nine test 

columns also showed a correspondingly good agreement. 

8.1.9 Validity of the Design Method as Applied to Composite Columns 

in Biaxial Bending  

Basu and Sommerville's design method has been shown to be always 

conservative when applied to composite columns in biaxial bending. The 

interaction formula relating uniaxial strengths to the biaxial strength 

has been shown to be adequate for short columns but significant errors 

are obtained for long columns. Errors varying from 25 - 43% were also 

observed for columns having asymmetrical end eccentricities. The errors 

were least for columns with symmetrical end eccentricities in both the 

bending planes and were maximum for columns with equal and opposite end 

eccentricities in each of the two bending planes. Intermediate values 

• 
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were obtained for other combinations of end eccentricities. This large 

difference between actual failure loads and those predicted by the design 

method points to the need for an improved design method. It is suggested 

that the use of the analytical procedures developed in this thesis can 

w 
	 lead to the derivation of a more exact design method in future. 

8.2 	PARTICULAR CONCLUSIONS RELATING TO STIFFENED PLATES IN COMPRESSION 

8.2.1 	Effect of Residual Stresses 

In most cases residual stresses as predicted by currently avail-

able theory have been shown to have a detrimental effect on the strength 

of stiffened plates in compression. The effect has been noted both for 

straight columns (up to 13%) and for columns having an initial lack of 

straightness (up to 16%), although for columns in the range of slender-

ness ratios 85 - 210 the residual stress patterns used provide a small 

increase in strength (up to 5%) for bending with the plate in a greater 

compression than the stiffener. 

8.2.2 Effect of Initial Lack of Straightness  

An initial lack of straightness also has a detrimental effect on 

the stiffened plate strength of the same order of magnitude as the 

residual stresses. Initial imperfections of the same magnitude have a 

greater effect with the stiffener in a greater compression than the plate 

(mode B), as compared with the plate in a greater compression than the 

stiffener (mode A). It was shown that the values of imperfections 

recommended in an earlier version of the Merrison Design Rules
(60) 

2 

namely L/400 for mode A bending and L/600 for mode B bending, resulted in 

the mode B bending being the more critical case for design. With the new 
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values of imperfection(88)  , respectively L/800 and L/1200 for the two 

modes of bending,the same would still be true. 

8.2.3 Effect of Local Plate Buckling  

An approximate method for considering local plate buckling was 

described in Section 7.4 above. The method is based on the use of load-

end-shortening curves for the plates in place of material stress-strain 

curves. Using Ratcliffe's experimental curves, it has been found that 

maximum loss in strength due to the interaction of local and overall 

buckling could be as high as 25% for slenderness ratios around 75. Local 

buckling effects depend, of course, on the width to thickness ratio of 

• 
	 the plate. With more adequate load-end-shortening curves, it should be 

possible to obtain a more accurate estimate of the effect of local plate 

buckling on the stiffened plate strength. 

It was also shown that the use of effective widths such as those 

specified in BS153 leads to a satisfactory correlation with strength 

curves obtained from the inelastic column failure criterion combined with 

average load-end shortening curves. 

8.2.4 	Sensitive Range of Slenderness Ratios for Stiffened Plates with 

4 	Imperfections  

It has been shown that stiffened plates in the range of slender-

ness ratios 20 - 100 are the most sensitive to various types of imperfect-

ions. Residual stresses (when considered,in conjunction with an initial 

lack of straightness) appear to have a maximum effect in the range 20 - 60 

for both modes of bending. The loss in strength is as high as 25%. 

Initial imperfections appear to have a maximum effect around a slenderness 

of 75. The effects of residual stresses as well as of initial lack of 
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straightness are more pronounced for mode B bending than for mode A 

bending. Local buckling effects have been shown to be important for all 

slenderness values less than about 100, although the magnitude of loss 

in strength depends on the width to thickness ratio of the plate. 

8.2.5 	Effect of End Eccentricities  

The presence of end eccentricity of loading has a pronounced 

effect for plates with slenderness ratios in the range 30 - 100. Small 

eccentricities can result in a sharp loss of strength for this range of 

slenderness ratios. For plates outside this range, the loss in strength 

is more gradual. The presence of end eccentricities can also over-ride 

any tendency of the stiffened plate panels in actual box girders to bend 

in mode B due to initial lack of straightness being in that mode, and 

cause failure to occur in mode A. 

8.2.6 Simple Design Approach for Stiffened Compression Panels in Box 

Girders 

Provided that the stiffeners are detailed so as to preclude their 

failure by local buckling, the stiffened plate panels can be designed on 

the basis of the Perry-Robertson curve and a suitable effective width 

criterion such as that specified in BS153 to include local plate buckling 

for mode A bending, or on the basis of the Perry formula with modified 

n (= 0.009 L/r) for mode B bending. The panels may be treated as axially 

loaded as long as the applied end eccentricities do not exceed a value 

equal to the magnitude of the initial lack of straightness for the relevant 

mode. For other cases, suitable modification in strength can be made by 

the use of load-moment interaction curves. 
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8.3 	FUTURE WORK 

The way now appears to be clear to the derivation of improved 

design formulas by a direct application of the computer programs developed 

to predict the strength of composite columns in biaxial bending. A 

corollary of such a study would be to identify those cases in which the 

minor axis instability has a negligible effect on columns with applied 
R 

major axis bending moments, thereby eliminating the need to consider the 

more tedious biaxial bending failures in the design. 

An immediate extention of the present work can be made to columns 

with end-restraints. Further, the same procedures can be applied to 

frames without sidesway. This can be achieved by applying necessary con-

ditions of compatibility at the junction of beam and column elements, 

each of which is treated in the same manner as the isolated column. It 

is envisaged that a consideration of the change in geometry due to the 

relative deflections between adjacent nodes can lead to the study of the 

collapse load of space-frames including sidesway. It has been shown that 

such'a procedure can be made to be equally applicable to frames comprising 

bare metal sections and reinforced concrete sections as well as composite 

sections. A consideration of torsion of the elements would be necessary. 

In its application to the design of stiffened plates, the exist-

ing method can be applied to other cross-sectional shapes and other width-

to-thickness ratios of the plate in order to cover most practical cases. 

By applying more adequate load-end-shortening curves, the effect of local 

plate buckling on the strength of stiffened plates can be studied more 

accurately. Similarly, by considering load-end-shortening curves for the 

stiffener outstand, the effect of local buckling.of stiffeners can be 

studied. The method can also be conveniently extended to include the 

restraining effects of cross-frames on the strength of multiple span 

stiffened plate panels. 
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TABLE 1 

COLUMN DESIGNATION 

No. 
Column 

Designation in 

Length Leng 
lid 

Eccentricity 
along X 

in 

Eccentricity 
along Y 

in 

1 A 72 7.2 2.50 1.45 

2 B 72 7.2 5.00 2.90 

3 C , 	72 7.2 7.50 4.35 

4 D 144 14.4 2.50 1.45 

5 E 144 14.4 5.00 2.90 

6 F 144 14.4 7.50 4.35 

7 G 288 28.8 2.50 1.45 

8 H 288 28.8 5.00 2.90 

9 I 288 28.8 7.50 4.35 
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TABLE 2 

RESULTS OF TESTS ON CUBE SPECIMENS 

No. 
CRUSHING LOAD FOR CUBES (tonf) 

Cube 
Strength 

2 lbf/in 

Column  Desig- 
nation 

1 2 3 4 5 6 Average 

1 131.0 142.0 136.0 147.0 140.0 131.0 137.83 8576 B 

2 122.5 147.0 151.0 152.5 147.0 144.0 143.95 8957 A,C,E 

3 151.0 152.0 155.0 158.0 151.0 148.0 152.50 9489 D,F 

4 124.0 132.0 131.0 130.0 142.0 135.0 132.33 8234 G 

5 135.0 149.0 148.0 145.5 140.0 148.0 144.25 8975 H 

,6 151.0 153.0 161.0 166.5 149.5 159.5 156.83 9758 I 
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TABLE 3 

RESULTS OF TESTS ON COUPONS FROM H -SECTION 

No. Coupon Size 

in x in 

Coupon 
From - 

Yield 
Load 

lb 

Ultimate 
Load 

lb 

Young's 
Modulus 

106 x lbf/in2 

Yield 
Stress 

lbf/in2 

1 1.000 x 0.250 Flange 11800 18000 30.14 47200 

2 1.000 x 0.250 Flange 11850 18050 30.22  47400 

3 1.000 x 0.250 Flange 11550 17750 30.04 46200 

4 1.000 x 0.250 Flange 11750 18050 30.14 47000 

5 1.000 x 0.250 Flange 11100 17250 29.84 44400 

6 1.000 x 0.250 Flange 11000 17350 29.93 44000 

7 1.000 x 0.235 Web 10150 15750 28.00 43190 

8 	. 1.000 x 0.235 Web 10200 16200 28.24 43400 

9 1.000 x 0.250 Flange 11450 - 29.75 45800 

10 1.000 x 0.235 Web 11200 16350 29.78 47660 

11 1.000 x 0.235 Web 11000 16400 29.16 46810 

12 1.000 x 0.250 Flange 11400 17600 28.28 45600 

13 0.738 x 0.252 Flange 8400 13100 29.79 45170 

14 0.738 x 0.252 Flange 8400 13100 29.01 45170 

AVERAGE 29.45 45642 

AVERAGE STRAIN = 0.00155 
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TABLE 4 

RESULTS OF TESTS ON REINFORCEMENT BARS 

No. 

Specimen 
Diameter 

in 

Yield 
Load 

lb 

Ultimate 
Load 	' 

lb 

Yield 
Stress 

lbf/in
2 

Young's 
Modulus 

lbf/in2 

1 0.4946 8350 11900 43460 28.76 x 106 

2 0.5020 8650 12250 43700 29.78 x 106 

3 0.4883 8800 12050 46990 29.81 x 106 

4' 0.4905 8350 12250 44190 30.60 x 10
6 

5 0.5010 8550 12200 43370 31.00 x 106 

6 0.4924 8850 12250 46470 29.80 x 10
6 

7 0.4279 8240 12100 44070 28.91 x 10
6 

8 0.5010 9050 12700 45900 31.05 x 106 

AVERAGE 44770 29.96 x 10
6 

AVERAGE STRAIN = 0.00149 
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TABLE 5 

RESULTS FROM STUB COLUMN TESTS ON H -SECTION 

No. 
Area of 
Cross- 
Section 

sq. in 

Failure 
Load 

tonf 

Maximum 
Strength 

lbf/in2 

Mode of Failure 

1 4.62 85.0 41212.2 Buckling of Flanges 

2 4.62 83.0 40242.4 Buckling of Flanges 

3 4.62 85.0 41212.2 Buckling of Flanges 

4, 4.62 83.0 40242.4 Buckling of Flanges 

5 4.62 82.0 39757.5 Buckling of Flanges 

6 3.524 68.5 43541.4 Overall Yielding, 
including Strain 
Hardening 



M 

TABLE 6 

RESULTS FROM TESTS ON SHORT AXIALLY LOADED COMPOSITE SECTIONS 

No. 
Column 
Desig- 
nation 

Column 
Strength 

Tons 

Steel 
Contri- 
bution 

Tons 

Concrete 
Contri-
bution 

Tons 

Concrete 
Strength 

lbf/in2  

Cube 
Strength 

lbf/in2  

Ratio 
K
1 

1 G 375.0 109.822 265.178 6279.4 8234  0.7626 

2 D 390.0 109.822 280.178 6634.6 9489 0.6992 

3 H 335.0 109.822 225.178 5332.2 8975 0.5941 

1 	4 

I 

I 

256.5 

320.0 

109.822 

109.822 
5 

 146.678 

210.178 

3473.3 

4977.0 

9758 

9758 

0.3559 

0.5100 

AVERAGE 0.6415 

NOTES: 	(1) 	Steel contribution is calculated for a steel area 

of 4.62 in2 	 i and a reinforcement area of 0.76 n
2  . 

(2) 	Ratio K1 
is defined as concrete strength/cube strength. 

(3) In calculating average, result 4 is ignored since the specimen 
exhibited slipping between concrete and steel - this may have 
been due to differential loading of steel and concrete. 



TABLE 7 

SUMMARY OF RESULTS FOR TESTS ON BIAXIALLY LOADED COMPOSITE COLUMNS 

No. 
Column 
Desig- 
nation 

Cube 
Strength 

lbf/in
2 

Failure 
Load 

Tons 

1 A. 8957 126.0 

2 B 8576 65.0 

3 C 8957 47.5 

4 D 9489 93.0 

5 E 8957 57.5 

6 F 9489 42.0 

7 G 8234 67.5 

8 x 8975 35.5 

9 I 9758 29.5 



TABLE 8 

UNIAXIAL FAILURE LOADS FOR ENCASED SECTIONS 

Column 
No. 

. 

L 
eff 

in 

e
y 

in 

U 
w 

lbf/in2 

_ 
a 	= --ii 
u 	3 w 

lbf/in2 

P theory 
(Basu) 

tonf 

P theory 
(Program 
COLUMPC) 

tonf 

AE1 28 1.0 3100 2167 74.3 75.1 

AE2 46 1.0 3950 2633 75.4 76.2 

AE3 82 1.0 3800 2533 60.1 60.2 

AE4 118 1.0 4250 2833 49.1 48.3 

FE3 180 1.0 3150 2100 242.9 241.3 

FE4 180 2.0 2950 1967 172.2 171.0 
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TABLE 9 

UNIAXIAL FAILURE LOADS FOR RECTANGULAR FILLED TUBES 

Length e/D Ultimate Load 
(Sen and Chapman) 

Ultimate Load 
(COLUMPC) 

120 0.0 33.2 33.1 

120 0.1 26.8 26.7 

120 0.2 23.0 22.9 

Column Squash Load 71.6 71.6 



TABLE 10 

EFFECT OF THE ORIENTATION OF THE LACK OF INITIAL STRAIGHTNESS 

Orientation of Initial Imperfection 
Failure Load P/P 

 
(Program COLUMAS) 

1.  Along Major Axis 0.83525 

2.  Along 450  Axis 0.81610 

3.  Along Minor Axis 0.80219 
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TABLE 11 

BIAXIAL FAILURE LOADS OBTAINED FROM THE COMPUTER PROGRAM COLUMPC 

Column 

Case I 
Without 
imperfect- 

ions 
tonf 

Case II 
Residual 
stresses 
only 
tonf 

Case III 
Lack of 

straightness 
of L/1000 

tonf 

Case IV 
Residual stresses with lack 
of straightness of L/1000 

Case V 
All inclusive lack of 

straightness of 0.0006 12/D 
Test 
failure 
load 
tonf tonf P

xy/Ptest tonf F.xy/I)test 

A 135.3 133.7 132.5 131.0 1.0397 133.3 1.0579 126 

B 68.5 68.5 67.8 67.7 1.0415 68.0 1.0462 65 

C 45.8 45.7 45.5 45.4 0.9558 45.5 0.9579 47.5 

D 107.6 105.7 103.1 102.0 1.0968 101.6 1.0925 93 

E 56.6 57.6 55.3 56.0 0.9739 54.8 0.9530 57.5 

F 40.0  40.2 39.4 39.6 0.9429 39.2 0.9333 42 

G 53.3 53.3 50.2 50.2 0.7493 44.8 0.6687 67 

H 35.5 35.9 34.3 34.8 0.9803 32.1 0.9042 35.5 

I 27.4 28.3 26.8 27.6 0.9356 24.3 0.8237 29.5 
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TABLE .12 

EFFECT OF PART-COSINE WAVE ASSUMPTION 

Column Test Load 	' P xy 
Part Cosine Wave 

* P 
xy 

Exact 

P x Y) % Error (1 	x 100 
P xy 

A 126 131.0 133.1 1.58 

B 65. 67.7 69.3 2.31 

C 47.5 45.4 45.9 1.09 

D 93 102.0 107.3 4.94 

E 57.5 56.0 58.2 3.78 

F 42 39.6 41.0 3.42 

G 67.5 50.2 53.0 5.28 

H 35.5 34.8 36.8 5.43 

I 29.5 27.6 28.7 3.83 

Average error 3.52 



TABLE .13 

BIAXIAL FAILURE LOADS USING UNIAXIAL LOADS COMPUTED BY 

APPROXIMATE EXPRESSIONS IN THE INTERACTION FORMULA 

Column 
desig- 
nation 

t 

Uniaxial 
failure 
load P 

x 

tonf 

Uniaxial 
failure 
load P 

y 

tonf 

Major axis 
bending axial 

failure 
load Pax 

tonf 

Biaxial 
failure 
load P 

xy 

tonf 

Test 
failure 
load- 
P test 

tonf 

Ratio 
P
xy/Ptest 

A 149.46 180.91 327.81 109.08 126.0 0.8657 
B 75.93 119.90 322.43 54.32 65.0 0.8357 

C 50.78 81.15 327.81 34.52 47.5 0.7267 

D 99.72 122.48 284.61 68.13 93.0 0.7326 

E 59.62 79.32 274.36 38.86 57.5 0.6758 

F 43.37 61.02 284.61 27.83 42.0 0.6626 

G 61.83 45.33 104.81 34.85 67.0 0.5201 

H 44.83 35.72 108.88 24.32 35.5 0.6850 

I 	. 35.34 30.17 113.27 19.00 29.5 0.6441 



TABLE 14 

BIAXIAL FAILURE LOADS USING UNIAXIAL FAILURE LOADS OBTAINED 

FROM COMPUTER PROGRAM IN THE INTERACTION FORMULA 

Column 
desig- 
nation 

Major axis 
uniaxially 
eccentric 

failure load 

Px, tonf 

Minor axis 
uniaxially 
eccentric 

failure load 

P
Y' 
 tonf 

Major axis 
bending axial 
failure load 

Pax' tonf 

Biaxial failure 
load from 
formula 

P
xy' tonf 

 Ratio 

Pxy/Ptest 
.............................a...4 

A 165.42 202.96 337.50 124.85 0.9909 

B 100.52 123.35 331.87 66.48 1.0228 

C 65.30 86.18 337.50 41.75 0.8789 

D 133.86 150.59 298.18 92.96 0.9996 
E 80.19 89.62 286.76 49.65 0.8635 

F 53.54 66.49 298.18 32.93 0.7840 

G 60.77 53.59 122.45 37.11 0.5498 

H 44.16 41.06 129.33 25.47 0.7175 

I 34.14 34.96 136.86 19.77 0.6702 



153. 

TABLE 15 

COMPARISON OF EXACT FAILURE LOADS WITH BASU AND SOMMERVILLE'S 

DESIGN FAILURE LOADS FOR COLUMNS IN BIAXIAL BENDING 

f3x 0y 

COLUMAS 
Failure load 

P/P
u 

Design 
Failure load 

P/P
u 

Percentage 
error in design 
failure load 

on the basis of 

S T S T 

1.0 0.16537 - 0.11025 33.33 - 
0.5 0.18075 - 0.12141 32.83 - 

1.0 0.0 0.19533 - 0.13293 31.95 - 
-0.5 0.20801 - 0.13293 36.09 - 
-1.0 0.21611 - 0.13293 38.49 - 

1.0 0.18700 - 0.12844 31.32 - 
0.5 0.20270 0.21275 0.14384 29.04 32.39 

0.5 0.0 0.21391 0.23985 0.16031 25.06 33.16 
-0.5 0.21889 0.26751 0.16031 26.76 40.07 
-1.0 0.22322 - 0.16031 29.14 - 

1.0 0.20644 - 0.12844 37.78 - 
0.5 0.21644 0.24525 0.14384 33.54 41.35 

0.0 0.0 0.22128 0.28973 0.16031 27.55 44.67 
-0.5 0.22564 0.28818 0.16031 28.95 44.37 
-1.0 0.22987 - 0.16031 30.26 - 

1.0 0.21733 - 0.12844 40.90 - 
0.5 0.22311 0.26996 0.14384 35.53 46.72 

-0.5 0.0 0.22772 0.32583 0.16031 29.60 50.80 
-0.5 0.23204 0.29913 0.16031 30.91 46.41 
-1.0 0.23643 - 0.16031 32.19 - 

1.0 0.22385 - 0.12844 42.62 - 
0.5 0.22927 - 0.14384 37.26 - 

-1.0 0.6 0.23404 - 0.16031 31.50 - 
-0.5 0.23860 - 0.16031 32.81 - 
-1.0 0.24334 - 0.16031 34.12 - 

• 
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At 10 ton f 

At 35 ton f 

At 60 ton f 

Fig .9 	Strain distributions across the section for Co?umn B 
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At 20 tonf 

At 40 tont 

At 52.5 tonf 

Fig.12 	Strain distributions across the section for Cdumn E 
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Fig.15 	Strain distributions across the section for Column H 
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Fig.24 	Linear residual stress distribution pattern (Ref.82) 
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Fig.25 	Parabolic residual stress distribution pattern (Ref.83) 
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Fig.26 	Discretization of the column cross - section 

Fig .27 	Sign-convention used in the analysis 
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Fig.30 	Column deflections under biaxial bending 
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Fig.31 	Column deflections under generalised biaxial eccentricities 
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Fig.32 	Reinforced concrete section for moment-thrust-curvature example 
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szccion of Fig.32 with 0=15' 

• 

183. 

0=15' 

1-0 

0-8 

0.6 

a 

0.4 

02 

10 

0-8 

0.6 

er  
a 

04 

0 2 

0 

P/Pu=0.4 

P/Pu-0.6 

P/Pu=0.8 

P/Pu  =0-2 

0 =0* 

P/Pu=0.2 



wo- 	 184. 

PIPu= 0.2 

P/Pu= 0.4 

PIPu=0.6 

P/Pu= O. 8 

0=30' 

0 
	

10 
	

20 
	

30 
	

4.0 
	

50 
0 
00  
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Fig.44 	Concrete encased steel section (Series AE) for the unaxial failure load example 
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Fig.51 	Variation of computed failure load with the number of column subdivisions for 
antisrnmetrical end - eccentricitias 
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Fig.52 	Variation of failure load with number of subdivisions in the case of 

asymmetrical bending shown to an exaggerated scale 
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Fig.53 	Typical box girder bridge elevation and cross - sections 
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Fig.58 	Stress and Strain distributions across the section for constant curvature and. 
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Fig.60 	Idealised residual stress distribution in a plate with edge welds 
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Fig.64 	Stiffener out-of-plane deformation and the ripple component of 
out-of-plane deformation 

212. 



100 

0 90 

0 80 

070 

0 60 

0 40 

0 30 

0 20 

0 10 

Pu 
P 0 50 

Yield p ateau 

Euler curve 

0 
	

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 

Slenderness ratio 

Fig.65 	Strength of an ideally straight column having ideal elastic perfectly plastic material properties 
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Fig.66 	idealized elastic - plastic average stress strain curve including the effect 
of residual stresses 
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Fig.67 	Strength of ideally straight columns with residual stresses 
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Fig.68 Loss in strength due to residual stresses on the basis of idealised elastic - plastic average stress 
strain curve 
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Fig.69 	Strength of columns with initial lack of straightness 
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Fig.70 	Loss in strength due to initial lack of straightness 
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Fig.71 	Failure loads including the effect of residual stresses and lack of initial straightness 
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Fig.73 	Failure loads from empirical formulae 
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Fig.76 	Load-end shortening curve for the cross-section chosen 
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Fig.78 	Loss in strength due to local plate buckling and initial lack of straightness 
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Fig.81 	Stress distribution over the whole cross section 



Line of loading 

Effective eccentricity of loading 

Centroidal axis of the plate 
stiffener combination 

• 
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NOTATION 

A 	- Area of added metal in the welding process 

Ac 	- Area of concrete in a composite section 

Ag 	- Gross area of a composite section 

As 	- Area of steel in a composite section 

a 	- Side of a rectangular cross-section 

a
1 	- Distance of top fibre from neutral axis in bare metal 

sections 

b 	- Side of a rectangular cross-section 

C 	- Constant used in residual stress calculations 

C
12 	- Coefficients of the polynomial expression for concrete 

stress-strain curve 

c
o 	- Initial out-of-plane deformation 

D 	- Depth of bare metal section in the plane of bending 

E,Es 	- Modulus of elasticity for steel 

E
o 	- Modulus of elasticity for concrete at origin 

e 	- Eccentricity of applied force with respect to the geometric 

centroid 

e 
x 
 ,e
y 	- Eccentricity of applied force with respect to the geometric 

centroid in the x and y directions 

_ - 
e 
x 
 ,e
y 	- Larger of the eccentricities of the applied force at the 

two ends in the xz and yz planes respectively 

- Eccentricities of applied force with respect to the exA'eyA 

exB,eyB 	geometric centroid in the x and y directions at ends A 

and B respectively 



h
a'
n
b 

n , xn y 

n , my my 

P 

232. 

e
xs ,eys 	

- Eccentricities of the line of action of the applied force 

at station s in the x and y directions respectively 

h 	- Distance between stations along the length 

k1 	
- Factor relating the strength of concrete in a compression 

member to the concrete cube strength 

L 	- Length of the column 

Mxy 	
- Biaxial bending moments in the x and y directions respect- 

ively 

Mxs ,Mys 	- Biaxial bending moments at station s in the x and y 

directions respectively 

M
u 	

- Ultimate moment of resistance under zero axial load (Plastic 

Moment) 

- Number of subdivisions of the column cross-section in the 

x and y directions respectively 

- Initial out-of-plane deformations along x and y directions 

respectively 

- Mid-point (maximum) values of initial out-of-plane deformat-

ions along x and y directions respectively 

- Axial force in a column 

Pa 	
- Larger of P

ax 
and P

ay 

P
ax

,P
ay 	

- Uniaxial bending axial failure loads of a column for 

bending in the xz and yz planes respectively 

Ptest 	
- Test failure load of a column 

P 
x 
 ,P
y 	

- Uniaxial bending failure loads with applied eccentricities 

in the x and y directions respectively 

xy 	- Biaxial bending failure load 

P
u 	

- Squash load of a column 
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r 

t 

ti,t2  

u,v 

UI 	11 

It 
VI 11 

u ,v 
m m 

u ,v ms ms 

U ,V M 
MS S 

rr U V rr 
 

UM MS 

U 1 V 
S S 

- Radius of gyration 

- Station s along the length of a column 

- Thickness of flange 

- Thickness of plates welded together 

- Deflections along x and y directions respectively 

- Calculated deflections along x and y directions respectively 

in consecutive cycles 

- Mid-point (maximum) deflections of a column under load 

- Calculated deflections at station s in the x and y direct-

ions respectively due to assumed deflections 

- Calculated deflections at station s in the x and y direct- 
' 

ions respectively due to an incremental deflection in the 

x-direction ('prime) and in the y-direction ("primes) 

- Deflections at station s in the x and y directions 

respectively 

w.
1 	- Trial deflection component 

w.1  ,w.2  - Successive computed values of (i)th deflection component 1 1 

W. 	 - Computed deflection component (function of wi) 

x,y 	- Co-ordinate axes in the plane of a cross-section 

x.,y. 	- Co-ordinates of the centroid of the (i,j)th element 

Z. 	 and W. 1 	 1 	1 

z 	- Co-ordinate axis along the length of the straight column 

zij 	- Distance of a point (x.,y.) from an axis passing through 

the origin and parallel to the neutral axis 

z
n 	

- Depth of neutral axis from the origin 

aij 	- Yield stress of the material of (i,j)th element 

- Coefficient used to describe steel stress-strain curve 
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0 ,ay 	— Ratio of smaller end eccentricity to the larger end 

 eccentricity for x and y directions respectively 

Y211 	- Coefficients used to define concrete stress-strain curve 

Y2 	- e
f
/e
u 

A 	- Incremental deflection used to compute rate of change of 

calculated deflection with respect to assumed deflections 

Ao 	- Stiffener out-of-plane deformation 

Aa.. 	- Area of (ij)th element 

AP.. 	- Force in the (i,j)th element 

So 
	- Ripple component of plate out-of-plane deformation 

dw. 	- Error correction in the (i)th component of assumed 

deflections 

c 	- Strain on arbitrary small constant 

e
o- 	- Strain at the point 0 (origin) 

ef 	- Limiting strain at which stress reduces to zero after 

collapse 

eij 	- Strain in the (i,j)th element 

u 	
- Strain corresponding to maximum stress in concrete 

- Perry imperfection factor = c
oa1

/r
2 

n
1
t
1
,n
2
t
2 	- Widths of plates 1 and 2 respective under tensile yield 

after welding 

6 	- Direction of the neutral axis, measured with respect to 

y-axis 

Ae 	- Critical slenderness ratio, for which the Euler load equals 

the squash load 

a 	- Stress 

ac 	- Maximum compressive concrete cube strength 
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of 
	

- Maximum compressive residual stress in the flange of an I- 

or H -section 

afw 	- Tensile residual stress at the junction of flange and web 

in an I- or H-section 

aij 	- Stress in the (i,j)th element 

ar 	- Average compressive residual stress in welded cross-sections 

a 	- Maximum compressive residual stress rm 

a
u 	

- Maximum compressive concrete strength in the member 

aw 	- Maximum residual stress in the web of an I- or H-section 

a 	- Yield stress of steel 
y 

- Curvature 

00 	- u/a 

- Components of initial curvature in the x and y directions 

- Components of curvature in the x and y directions 

- Components of total curvature in the 'x and y directions 

- Components of curvature at station s in the x and y 

directions 

- Components of total curvature at station s in the x and 

y directions 

- Components of initial curvature at station s in•the x 

and y directions 


