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ABSTRACT

Theory is developed for the stability of a plane horizontal interface in a
fluidised bed. It is found that the configuratiop with the fluidised phase
uppermost is always unstable to small perturbations. The results of this
analysis are used to derive a criterion fér bubble stability, which is
based on the relative magnitudes of the growth rate of the disturbance and
the speed at which the disturbance would be swept away around the bubble.
Experimental evidence is provided for this theory which predicts a much
greater range of stability for bubbles in gas fluidised systems than in
liquid fluidised beds. The experimental results are invqualitative agree-

ment with the predictions of the theory.

Theory is developed for fhe stability of a plane vertical interface in a
fluidised bed. It is found that the interface is always stable when the
homogeneous phase is not fluidised (spouting), but that the interface is
only stable if the upward velocity in the particle-free fluid exceeds a
given limit when the homogeneous phase is well fluidised (chamnelling).
This limiting superficial velocity is much greater in gas fluidised systems
than in liquid fluidised beds. The theory is tested experimentally and the
experimental resulis are in quantitative and qualitative agreement with the

predictions of the theory.

The behaviour of liquid fluidised beds following a stepwise increase in
fluidising velocity has also been studied. It is shown that the interface
formed between two regions of different voidage fraction is unstable.
Theory developed by Layzer for Taylor instaﬁilities which lead to slugging
adequately describes the behaviour and development of these instabilities.
provided allowance is made for the effects of density difference and

geometry.
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INTRODUCTION

Fluidisation is now used industrially in many different chemical and metal-
lurgical processes and, although the number of applications is still
increasing, our understanding of the phenomena involved is still inade@uate.
For example, in the case of a fluidised chemical reactor, it appears that
the size and frequency of bﬁbbles have some effect on the temperature, gas
contacting and conversion, but as yet, no theoretical approach has been
developed which adequately describes from first principles the way in which
bubbles grow from small disturbances or the manmer in which other factors,
such as bubble splitting, limit the size of bubbles in a large fluidised
bed. It is clear that the questions of bubble formation and splitting-

involve problems of hydrodynamical stability.

This work was undertaken to extend previous investigations into the effect
of the physical parameters involved on the stability of fluidised beds and
in particular, to consider the behaviour qf different configurations of the
interface between the fluidising fluid and fluidised phase. The purpose of
these analyses is to discuss the differences between the states of bubbling
and non-bubbling fluidisation, and to prediEt the way in which well observed -
phencmena, such as channel formation or bubble splitting, initiate or limit

bubbling in fluidised beds.

Before discussing the formulation and analysis of the situations in this
work it is appropriate to review briefly earlier studies of the stability
of fluidised beds and other problems in hydrodynamic stability which bear

upon the present work.



CHAPTER 1: A REVIEW OF THE STABILITY OF FLUIDISED BEDS

1.1

Bguations of Motion for the Homogeneous Phase

In the past decade a great deal of interest has been shown in the
stability of the state of uniform fluidisation with reference to the
behaviour of the fluidised system and in particular to bubble forma-
tion. A number of theoretical analyses have been presented

(van Deemter and van der Laan (1961); Hinze (1962); Jackson (1963);
Pigford and Baron (1965); Murray (1965,1966); Anderson and Jackson
(1967, 1968, 1969); Molerus (1967); Ruckenstein and Tzeculescu
(1967) and Jones (1970)), the results of which, although agreeing

qualitatively, show a distinct lack of quantitative agreement. An

. examination of these analyses shows that this is due to differences in

the linearisation techniques employed and a general disagreement over

the terms to be included in the momentum equations.

The general form of the momentum equationsis not in dispute, and
consists of equations of motion for two interacting continua, one
corresponding to the interstitial fluid and the other to the particle
prhase. For each phase, the equation of motion is defined by a
balance between the acceleration and momentum of that phase, gravi—
tational forces, viscous and pressure stress férces and the forcés Qf
interaction between the two phases (which include such terms as
viscous drag, bouyancy and additional mass acceleration). This leads
to equations which are comparable to typical hydrodynamic equations of

motion (ie Navier-Stokes) but with additional terms to account for the

interaction between the two phases.

The main differences of opinion occur in the choice of the fluid-
particle interaction forces and on the'importance of the additional

1



mass acceleration and particulate shearing stress terms.

~In principle, the equations of motion of a8 system of particles sus-
penqed in a fluid could be written in terms of the initial state of
motion, the boundary conditions, the Navier-Stokes equation, to be
patisfied at each.point of the fluid, and Newtonian equations of
motion for each particle. However, a typical fluidised system con-
tains too many particles for this to be a practical possibility, so
that a simplification must be made for the particle phase to be des-
cribed in terms comparable to the continuum mechanics of a single

ﬂuid.

It is therefore convenient to replace the poinf mechanical variables
by‘smoothed variables_obtained by averaging over regions large com-
pared with the interparticulate spacing but small in comparison to the
complete system. The particle and fluid phases are thus defined by
all the authors referred to above as if they were interpenetrating

continua.

In one of the earliest attempts to formulate equations of motion of.
this type for fluidised systems, van Deemter and van der Laan
developed formal, unsteady continuity and motion equations but did not
propose specific forms for the fluid—particle interaction, or the
fluid and particle sheér stress. forces. Hinze completed this work

by suggesting specific forms for these terms, but his work does differ
radically from all the others mentioned as he postulates a combined
shear stress force based on a velocity, W, averaged over the whole

systen.

So that W=1¢U+ (1 - ¢)V



Where U, V are the fluid and particle velocities and e is the
voidage fraction of the system. Hinze also includes an additional
mass force in the equations of motion for the fluid, but omits the
equél and opposite force in the equations for the particle phase. As
Murray (1965) points out, this camnot be correct as it contradicts

Newton's third law.

The firSf published set of unsteady equations of motion for the
homogeneous phase of a fluidised bed, together with solutions used to
estimate the stability of the bed was suggested by Jackson (1963).
These describing equations however, have limited applicability due to
the omission of the particulate shear stress forces, which, as
Jackson (1970) himself points out, Schugerl et al (1961) have shown to .

be significant in gas fluidised systems.

This omission in Jackson's equations of motion was corrected by
Pigford and Baron (1965) who also solved these equations to show the
effect of the particle phase viscosity (ie particulate shear stress

forces) on the stability of the bed.

Murray (1965) proposed a much more complete form of the unsteady
continuum equations, adding energy balances to the momentum baianceé;
in which he included the particulate shear stress and compressibility
effects. He derived new approximations for the prediction of the
particle phase shear and bulk viscosities. These equations were then
used in a study of the stability of the homogeneous phase, the propa-
gation of surface waves, and to bubble motion (19652). Murray (1966)
later improved his earlier momentum equations, deriving a new form for
the fluid particle interaction forces. He also argued that the

particle collision (pressure) forces, although probably insignificant,
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can be interpreted as a bulk viscosity term, thus reducing the number
of unknownsand eliminating the need to estimate the sizeﬂsf the

particle pressure forces.

The most complete set of equations that have been proposed to date

are due to Anderson and Jackson (1967). All the other workers have
agssumed that the unsteady equations of motion may be written in terms
of variables which are smoothed averages, taken over an area large
compared to the interparticulate spacing but small in comparison to
the complete system. Anderson and Jackson forﬁally derived their
equations of motion from the corresponding equations for the variables
at each point in the system, by taking local averages of these
eqﬁationé and transiaxing them inté a set of equations in terms of

the smoothed, local averaged variables.

They show that all the other derived sets of equations referred to
above reduce to special cases of their equations. A summary of the
more important features of the equations as proposed is shown in

Table 1.

However, Anderson and Jackson, in presenting such a complete<set Qf
motion equations, introduce further difficulties, since, as Murray -
(1966) also pointed out, a compléte set of equations must include
several terms of unknown magnitude and importance. These include,
for example, the local mean pressure in the particle phase, the
virtual (additional) mass acceleration and the drag forces on the
particle phase. Thus, although the equations derived by Anderson and
Jackson apparently describe the system completely, the fact that the
unknown coefficients have to be approximated to somewhat reduces the
advantages which this set of equations should hold over the earlier

approximations,
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TABLE 1

Features of the Proposed Egquations of Motion

-Terms in equations _ }
of motion Particulate Stress Fluid Stress Virtual Mass Flu_w.d—Part%cle
Interaction
Authors
van Deemter & van der Laan .W Included but not specifically defined Included but not specifically defined
No individual particle or fluid stresses, Included, but not
Hinze but a combined one, based on a velocity - ve in fluid phase only specifically
averaged over the whole system defined
+ ve in particle phase -
Jackson Zero Pressure stress only - ve in fluid phase B(e) (Ui Vi)
Pigford & Baron Viscous stress only Pressure stress only Not included %(Ui - Vi)
X Pressure and’ + ve in particle phase _
Murzray (1966) ‘Viscous stress' only viscous stress - ve in fluid phase A(Ui vi)
Pressure, viscous Pressure, viscous ve in varticle vhase
Anderson & Jackson (1967) and'Reynold's! and 'Reynold's! "_' v: ;..n ?.1 3 hage B(e) (Ui - Vi)
(turbulent) stresses | (turbulent) stresses wmerp '
. . Pressure and + ve in particle phase _
Thls work Viscous stress only viscous stresses - ve in fluid phase B(e) (Ui vi)

Where, Ui’ Vi = fluid and particle velocities.

NB The virtual mass terms and coefficients in the fluid-particle interaction force (B(e), &,

: A) are defined in different ways
by each author. ' ,
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1.2

Solution of the Equations of Motion

The simplest solution of all these sets of equations is the steady

state solution, representing uniform fluidisation. TUnder these condi-

tions the local (averaged) particle velocity is everywhere zero, the
lccal (averaged) fluid velocity is constant and acts only in the

vertical direction,and the voidage is constant thioughout the system.

This simﬁlification satisfies the continuity equations and reduces

the equations of motion to a balance between the drag forces on the
particles and their bouyant weight, together with a balance between
the drag forces, the fluid pressure forces and gravitational forces,

which can be used to define the pressure drop in a fluidised system.

The stability of this state of uniform fluidisation to small disturb-
ances can then be determined by normel perturbation techniques. That
is, a small disturbance is imposed on the steady state solution by
perturbing the variables, and the behaviour of this disturbance is
used to predict the stability of the system. If the disturbed
variable grows with time, the system is assumed unstable, if it decays

with time, the system is assumed stable.

Consider any variable, say U, to be composed of a steady value; Uo,v.

-which satisfies the steady state solution, and a continuous perturba-

tion variable, ﬁ, which is small in comparison with Ub.
. s
ie U=0U_+1T

o
Casting all the variables into this form, substitution into the con-
tinuiﬁy equations and equations of motion, and subtraction of the
steady state solutions, gives the equations governing the perturba-

tion variables.



As these variables are, by definition, small in comparison with the
steady state solutions, all terms of second or higher order in per-

turbation variables can be neglected.

Thus, the non-linear equations of motion may be reduced to linear,

partial differential equations in terms of the perturbation variables.

A plane wave solution of these linearised equations of motion is
sought, and an exponential time dependence which is common to all
variables is assumed, so that a typical variable has the form:

U = A exp(Kx + Ky + nt)

Where A = a constant associated with that variablé.

K = the wave number of the solution, where the disturbance
wavelength, A = 2n/K
and n = the growth rate, where positive values of n correspond to

the unstable solution, and negative values of n correspond

to the stable solution.

Casting all the perturbation variables into this form and substitut-
ing into the governing equétions, givés a set of simultaneous, linear
equations; the non-trivial solution of which is that the determinant
of the matrix of coefficients vanishes. Another, simpler methéd ofA.
solution is by the elimination of variables from the set of simﬁl-
taneous equations; this method was used in all the previous work

mentioned here.

In this way, a relationship hetween the growth rate, n, wave number,
K, and the physical system parameters is achieved; if this solution
reveals no positive (or zero) growth rate for any positive wave

number, all disturbances will decay with time, hence the system is

T



stable. Any positive growth rate for positive wave numbers will show

an uwnstable system.

Jackson (1963) used the above method to solve his equations of motion,
and concluded that the uniform stafe of fluidisation is always
unstable. By comparing the growth rate, at a givén dimensionless
wave number, for the different fluidised systems investigated by
Wilhelm and Kwauk (19L48), he showed that all fluidised systems are
unstable (+ve growth rate) but that the growth rate was smaller in
water fluidised systems than in gas fluidised systems. However, this
solution gives an increaéing growth rate with wave number (decreasing
wavelength) . which would indicate that as the disturbance wavelength .
.approaches zero, the growth rate approaches infinity which is clearly
tntenable, as this would provoke explosive situations. It must be
noted that, as the disturbance wavelength approaches the particle
diameter (from above) the solution might be expected to break down, as
the assumption that the particle phase is a continuous fluid will no
longer apply. Pigford and Baron (1965) show that this behaviour at
large wave numbers is due to Jackson's omission of particle stress
terms. Using a similar solution to Jackson with improved equations
of motion, Pigford and Baron show that the effect of particle vis-
cosity is to reduce the growth rate at large wave number, in such a

way as to give zero growth rate as the wavelength tends to zero.

Thus, for any given system, there is a maximum growth rate and a
corresponding dominant wavelength. (ie In any physical system, which
will produce disturbéncgs over the whole range of wavelengths, that
disturbance which grows most rapidly will become the‘dominant one). -

However, at the time, theavailable data on the viscosity -

8



of the particulate phase was limited and Pigford and Baron did not
have enough accurate data to calculate the growth rate for any

specific systems.

Murray (1965), again using this method of solution, showed that all
systems are unstable to internal disturbances, and that surface waves
are quickly damped out, but made no attempt to calculate the growth

rates for specific systems.

Molerus (1967) used the equations of motion derived by Hinze (1962)
to provide stability charts for fluidised systems. He linearised the
equations in the normal mammer, and used the method of elimination of
. variables from the differential equations at this stage to produce
one second order, linear, partial differential equation for the per-

turbed voidage variable, e(X, t).

By seeking the typical plane wave solution for this variable, but
withva general time dependence, T(t), this equation was transformed
into the standard form of Mathieu's differential equation, from which
Molerus was able to produce stability charts for any given system.
These charts do compare qualitatively with known experimental
behaviour, but, once again, it would appear that more-data on
Molerus! unknown coefficients is needed before quantitative results

could be obtained.

Using equations similar to those proposed by Pigford and Baron (the
fluid-particle interaction force is replaced by én expres~ion for the
" drag force on an isolated sphere in flow through a pipe), Ruckenstein
and Tzeculescu (1967) used an analogue computer to solve the non-~

linear equations of motion.




The equations of motion were transformed into one non-linear differen-
tial egquation in terms of the voidage variable. The unknown parameters
were selected to give a solution which was a periodical function of
time. Although their results show that all fluidised systems are
unstable to some degree, they do not meke comparisons with experimen-—
tal results as, once again, some of the assumed values of theif

unknown parameters are uncertain.

Anderson and Jackson's (1968) solution of their equations of motion
follows the general method outlined here. They determined the effect
of the uncertain system parameters (particle phase shear and bulk
viscosity; particle collision pressure, virtual mass coefficient and
drag coefficient for water fluidised systems and particle shear and
bulk viscosity for air fluidised systems), on the relationship

between the disturbance wave number and growth rate.

Their theoretical results agree qualitatively with those of other
authors: +that is, that all fluidised systems ére unstable, and gas
fluidised systems more so than water fluidised systems; the particle
phase viscosity decreases the growth fate at large wave number, so
that there exists a dominant disturbance. Their analysis also shows
that the interparticulate pressure tends to decrease the growth rafé;
but is not capable of induciné a maximum in the growth :ate - wave

number relationship on its own.

To test their analysis experimentally, Anderson and Jackson (1969)
investigated the rate of growth, propagation velocity and dominant
wavelength of naturally occurring voidage disturbances in water
fluidised beds using a light transﬁission technique. They obtained.
encouraging agreement between theory and experiment, bearing in mind

10



the uncertainty in the values of some of the parameters used in their
theoretical anélysis, for although in individual cases the accuracy
of agreement between theory and experiment was not high, the general

variation in observed properties was correctly accounted for.

Murray!s (1966) equations of motion were soived in a similar way to
that described above by Jomes (1970) (denoted by Jones (1) in Table 2).
He found that a fluidised bed was generally unstable to disturbances,
but that under certain conditions, such as gas fluidisation of very
fine particles, stable solutions were possible. He considered the
effect of the system parameters on the growth rate of disturbances
and found that one, the particulate stress, had a stabilising effect.
This, of course, concurs with the findings of other workers that the
particulate stress force decreases the growth rate as the wave number
increases. Jones also approached the problem of stability in a
rather different way (denoted by Jones (2) in Table 2); by consider-
iﬁg a force balance on an individual particle, he obtained a non-
linear differential equation in terms of the particle displacement
and was thus able to determine the effect of the non-linearity of this
equation on the particle oscillating frequency. He féund that the -
non~-linearity increased with decreasing particle size in gas fluiai—-
sation, and thus explained fhe qualitatiye aspects of the bubbling
frequency of fluidised beds: that ié, the variation witﬁ particle’

diameter and fluidising gas velocity.

Although the oscillation frequency given by this approach compared
well with bubble frequencies recorded experimentally, Jones did not
attempt to map out the stability limits of a system in terms of its
parameters, as the accuracy of some of the parameters used was no

11



greater than an order of magnitude.

By solving his non-linear differential equation of particle motion on
an analogue compufer, Jones was also able to show that an instability
could be triggered off either by increasing the damping coefficient,

of by increasing the amplitude of particle oscillation, and he there-
fore associated this behaviour with the eventual onset of bubbling in

a fluidised system.

The results of all these stability analyses, the one reported here
being no exception, have the same limited application. The greatest
danger inherent in the application of the linearised equations, used
inAone form or another in the work mentioned, is to infer conclusions
about the final behaviour of a disturbed gystem - which necessarily
includes non-linear effects - from an analysis which holds true only
for infinitesimally small disturbances. This also implies that com-
parison between theoretical results and experimental results can be
accurately made only during the initial growth, whilst the disturbance
is still infinitesimally small, and, outside this range can be no

more than tentative.

Table 2 summarises the main features of these proposed solutions.. Tt
can be seen that the predictions of all the authors agree
qualitatively with the known experiﬁental behaviour of fluidised sys-
tems. The only authors to achie&e even poor iuantitative agreement -
were Anderson and Jackson, whose experimental results were recorded

for small disturbances in water fluidised beds.

It must be noted that this type of theory is very difficult to test
experimentally. As pointed out above, the analysis is only valid for

12



infinitesimally small disturbances, whereas, in any experimental
system the disturbances recorded are necessarily of finite size.
There is no guarantee that disturbances of finite size continue to
grow at the same rate as they did when infintesimally small,‘in any

fluidised system.

In general, with, it would seem; only a few exceptions, the homo-
geneous phase of a fluidised system is unstable to small disturbances
_in the particle density. The growth rate of thése disturbances being
an order of ﬁagnitude larger in air fluidised systems than in the

equivalent water fluidised system.
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TRBIE 2

Features of the Proresed Soluticns cf the Unsteady Equations eof Motinn

Athor Method of Stability of Effect of Particle Conparison with
Linearisation Flnidised Systems Stress Ferces Eyxperiments
Jackson Perturbation { A1l fluidised sys=-
{1963) techniques tems always unsteoble Not imludeq Qualftative agreenent
- Not mede, as
2 h ’
Pigtord & Perturtatlon | All flufdised sys- B:c::;zeiug::«‘t rate accuratz data on all
Barcn (1965)] techniques tems always unsteble ;mr;"‘es ) coefficients was not
= avallable
oggy| Perturbation | A1l fluldised cys~ 3
trurrey (1965) techniques tens always unstable Yot calculated Not made
Mol P rbati Stability depends ¢n
hlerus erturbation | system rarzmeters. Not included as o
(1967) techniques Sore systexs stable, | such Qualitative agreement
some unstable.
Ruck ; Qualitative zgrearent
ckenstein for g=s fluidisation
Not A11 flufdised sys= 4 .
& Tzeculescu Not calculated N ari
lirearised tems always unstable 0 Ccomparison mede
(1967) & for water fluldise=
tion
j:c“fgﬁﬁ" % | permurbation | A1 fluidised sys= | Decreases erontn rate [ $islivavive asresrent
> technique t 1 b as wave number Pt "y
(1968)(196) hniques ers alweys unstable |, .0 a9 ive agreevent fcr
© vater fluidised beds
Generally unstable
Scme cases, s¢h as
Jone Pe a ’
(3972)(1) t;;uniz;:;on fine particles Stabilising effect Qualitative agreement
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“ 1.3

Bubble Stability in Fluidised Systems

Observation of the motion of bubbles in both air and water fluidised
sys.'tems (Rowe (1971); Clift and Grace (1972)) suggests that bubbles
are unstable to disturbances on the bubble roof. These disturbances
are seen to grow rapidly downwards into the bubble so that some

actually split the bubble in two.

The study'of the stability of the homoéeneous phase of a fluidised
gystem reveals only the initial behaviour of small disturbances. It
is generally assumed that these disturbances in the density of the
particulate phase continue to grow, -eventually becoming, in
aggregatively fluidised systems, large enough to abpear as bubbles,
or-voids. However, as the thedretical studies discusséd in section
1.2 hold only for infinitesimally small disturbances, no information
can be obtained from them about the behaviour of the final, fully-

grown bubble.

The theories which have been derived for the motion of a bubble in a
fluidised bed (Davidson (1961); Jackson (1963a); Murray (1965a)) are
summarised by Jackson (1969), and Rowe (1971). Jackson and Murray '

started from the steady state version of the equations reported in

~section 1.1, whilst Davidson assumed that Darcy's law also related

the pressure gradient and relative velocities in a fluidised system at
low Reynolds number. The distribution of gas flow through the bubble”
was derived, which, for an assumed particle motion, maintains the
bubble surface in its assumed form (circular, in 2-dimensions). The
gas percolation across the interface adjusts itself so as to exacfly
balance the particle momentum. Thus, the gas flow distribution fo? a

stable (circular) bubble has been derived, but no attempt has been
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made to predict the rate of growth of instabilities on the bubble

surface.

The problem of bubble stability can therefore be approached by
analysing the stability to small disturbances of the bubble surface
which exists as an interface between a particle free fluid and a
fluid-particle suspension. In a complete consideration of the
stability of the bubble surface, the curvature of the surface and the
velocity and voidage profiles in all phases in the region of this
surface must be considered. However, this would lead to a very com-
plex analysis, the solufion of which would still only be approximate
as many of the parameters would be uncertain. It is therefore

" thought that as much useful infbrmation on the stability of bubbles
in fluidiéed systems could be obtained from the study of a simpler
model; for example, for a bubble large in comparison with the
horizontal scale of the solution, the roof of the bubble could be

approximated to a plane horizontal interface.

The problem of the stability of an initial horizontal interface

between two superposed fluids is well.known and is generally refe:red
to as the Taylor stability problem, after Taylor's initial work in

this field (1950). He studied the behaviour of two inviscid fluids éf
infinite extent, meeting at a plane horizontal interface. The solu-
tion of the linearised equations of motion for both fluids, following
a sinusoidal perturbation in space of this interface, was studied and
the system found to be unstable when the acceleration force is directed
,from the more dense to the less dense medium; the rate of growth of

the disturbance being proportional to

Po = Py
p2+ pl
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Where p = density
1 = less dense fluid
2 = more dense fluid

This work was extended by Bellman énd Pennington (1954) to include

the influences of viscosity and surface tension on the solution, and
they showed that both of these variables exert a stabilising influence
on initial disturbances of small wavelength. They demonstrated that
the role of viscosity is to decrease the rate of growth of the dis-
turbance over the corresponding inviscid solution although the
instability is never eliminated completely; they also found thét,
besides decreasing the growth rate of the disturbance, surface tension
"forces can completely eliminate the growth of disturbances with a

wave length smaller than some critical value.

This analysis was extended to the problem of the stability of a plane
horizontal interface in a fluidised bed by Rice and Wilhelm (1958).
To facilitate this, they made the approximation that the interacting
fluid and particle phases in the bed could be described as a single
Newbtonian fluid with mean density and.viscosity, obeying the
Navier-Stokes equations. They linearised their describing equations
by assuming the non-linear terms to be negligible, but did also show”.
that linearisation by perturbation techniques gave similaf results
under certain conditions, viz zero slip velocity between the two
phases. Unfortunately, at the time of their analysis 1little informa-
tion was available on the viscosity of the bed phase, which has a most
. important effect on the solution, so that their results could only be
tentatively.applied to explaining the differences between bubbling

and non-bubbling systems.
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By treating the particles and interstitial fluid as one phase and the
particle free fluid as another discrete phase, Rice and Wilhelm
effectively neglected the percolation of fluid across the boundary
between these two regions. It therefore follows that their solution
is valid only where the momentum of the fluid percolating across the

boundary is negligible.

Since this early analysis, considerable advances have been made
towards setting up the describing equations for the motion of both
the fluid and particle bed phases (_see gection 1.1 above), and the
present work was therefore undertaken to investigate the problem of
stability of an interface in a fluidised bed, by extending the Rice
and Wilhelm analysis to incorporate two interacting bed phases. A
gimilar, unpublished analysis by Clift, Grace and Weber (1973) has
recently been brought to notice. Starting from a similar set of
equations of motion (yet again, there are small differences in the
cﬁoice of particle stress and fluid-particle interaction terms) and
linearising in a manner similar to that described in section 1.2,
they arrive at. a solution to these equations not too far removed from
the one presented here. The reaction of a given systém to a small'. )
perturbation at a plane horizontal boundary is then found by
substituting this solution into an appropriate set of boundary
conditions, and the growth rate of the imposed perturbation used to

predict the incidence of bubble splitting in fluidised situations.

In general terms, their work shows that, if the momentum of the
interstitial fluid is neglected, Rice and Wilhelm's solution is
correct for gas fluidisation, but only approximately so for systems
fluidised by liquids. The results of their work and the differences
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1.4

between their analysis and the one presented here will be discussed

in later sections.

This type of analysis of the stability of a plane horizontal interface
in a fluidised bed to small sinusoidal disturbances can be applied to

the stability of a bubble roof with the following limitations:

1 When the equations of motion are linearised by perturbation
techniques the limitations of this technique must apply.

2 For the bubble rcof to be approximated to by a flat plane,
the bubble radius must be large in comparison with the wave-

length of the imposed disturbance.

~ Provided these conditions are applicable, the analysis can be used to

give a guide to the effect of the system parameters on the stability
of bubbles in fluidised beds and the limitations on bubble growth
thus imposed.

Maximum and Minimum Stable Bubble Size

Various workers have suggested that upper and lower limits on the

bubble size do exist in practice.

Davidson, Harrison and de Kock (1961) based their theory of maximum
bubble diameter on the rather tenuous assumption that the bubble' ”
disintegrates . by particles being dragged in through the wake. This
led to the conclusion that the bubble is stable until the fluid
circulation velocity inside the bubble exceeds the particle free

fall velocity, at which point the void should fill with particles

_entrained from the wake. The only observations of this mode of

bubble instability are by Davidson, Harrison and de Kock themselves,
and, as Clift and Grace (1972) observed, this should only occur when
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the method of injection imparts the wake with sufficient momentum for

it $o rise to the bubble roof.

However, on the basis of this assumption, Davidson et al were able to
predict a maximum stable bubble diameter which is large for gas
flﬁidised beds and relatively small for liquid fluidised beds.,. In
other words, the theory suggests that most liquid fluidised systems
appear to be particulate in nature because the largest possible stable

bubble is so small that it is not visible.

For example: Glass beads of diameter 510 microns have as the maximum
diameter, 0.2 cm when fluidised with water

and 250.0 cm when fluidised with air.

Al though the model used appears very doubtful, the theory leads to an
ordering of the stability of fluidised systems which agrees
quallitatively both with the experimental evidence and also with
Wilhelm and Kwauk's earlier classification. It"appears that correct
ordering of the stability of fluidised systems arises since the
criterion proposed by Davidson et al, D/ dp,

(= the max stable bubble diameter), is proportional to the Froude
particle diameter '

number, (Fr = Uoz/dpg); and the solid-fluid density ratio ( p g - pF)
A b
the constant of proportionality depending on the parameters of the

system studied.

Wilhelm and Kwauk (1948) have shown that the Froude number is a

‘reasonable measure of bed stability, and Romero and Johanson (1962)

show that a combination of Fr, ( Py - pF) and a Reynold's number
_ ._______pF _
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1.5

gives an even better indication of stability than Fr alone (see

section 2D)

Godard and Richardson (1969) investigated the possibility of a mini-
mum stable bubble size. They found, by measurement of the céllapse
rate of small injected bubbles in a particulately fluidised bed, that
such a minimum stable size does exist. Typically, for spherical
acrylic resin particles, with surface mean diameter = 126 microns;
density = 1.18 g/cc, fluidised with air at twice the minimum
fluidising velocity, the minimum stable bubble volume is 0.08 cc (or,
for é spherical bubble, the minimum stable diameter = 0.5 cm = AO x

particle diameter). Their results show that this minimum bubble size

“tends to increase as the background velocity decreases towards the

minimum fluidising velocity, but for conclusive proof, determination
of actual values and of the dependence on other bed variables, more
experimental work in this field is necessary.

Bubble Stability in Viscous Fluids (Liquids)

Gas bubbles in liquids also exhibit a tendency towards instability as
the bubble size increases: .large individual bubbles deform and then
fragment into smaller bubbles. According to Levich (1962), a rising
bubble flattens out, pulsates and forms a thin film at the centre.
The sudden rupture of this film fragments the bubble. Levich calcu-
lated, by balancing the dynamic preséure within the bubb;e with the
capillary ﬁressure (surface tension forces), the critical radius,

8, at which break up begins. Thus:




Where p. = liquid density
' = gas-density
Uﬁ = bubble velocitiy
kf = numerical coefficient =0.5
Op = surface tension

For a typical bubble of air in water, a,n = 1.8 em. It would be very
misleading to compare the break-up of bubbles in fluidised beds with
that of gas bubbles in liquids, especially as the mechanism in the
latter case is wholly dependent on the liquid surface tension at the
bubble boundary, a variable which is non-existent in the case of
fluidised beds. A fluidised system‘has no actual surface tension
because there is no discrete boundary between séparaté fluids; the
boundaxry is merely'the limit of the region of particlés suspended in

one continuous fluid.

However, using the principle of corresponding states, Furukawa and
Ohmae (1958) have described an 'effective! surface ténsion at the
boundary of bubbles in water fluidised beds, by comparison with the
behaviour of bubbles in liquids of known sufface tension. Their
results for glass particles of diameter 300 to LOO microns, when used
in equation (1.1) lead to a critical radius of order 1 cm for a system
" of these particles fluidised with water. This compares with a maximum
diameter of 2-3 cm predicted by.Davidson, Harrison and de Kock (1961)-
(see section 1.5), but comparison with experimental resulits would seem
unprofitable, since Davidson et al base their maximum diameter on a
doubtful model and bubble brzak-up in liquids is dependent on a force
which is not present in fluidised situations, and tekes place in a -

manner not observed in bubble break-up in fluidised beds.
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CHAPTER 2: THE STABILITY OF A PLANE HORIZONTAL INTERFACE IN A FLUIDISED BED

SECTICN 2A: THEORY

2A.1 Bguations of Motion

. As.explained above, Rice and Wilhelm (1958) treated the fluidised
system as a single fluid phase. A more correct treatment would be
to consider the homogeneous phase of the fluidised bed not as one
single fluid, but as two interacting continua: the 'particle phase'
and the interstitial fluid phase. It is therefore necessary to
define the equations of motion for these two phases. In sections
1.1 and 1.2, previous work in this field has been discussed, and in
the light of the information avsilable from thisAprevious work, for
the present analysis, a rather simple set of equatioﬁs based on the
original equations derived by Jackson (1963) and including particle
stress and fluid-particle interaction ferms similar to those pro-
posed by Murray (1966), Anderson and Jackson (1967) and Jones (1970)
is employed in preference to the more complete set used by Anderson
and Jackson (1967, 1968, 1969). The equations then include those
physical terms which the other authors show to be the most
important and are simple enough to lead to readily manageable

mathematical analysis.

Following the general method of analysis used by Rice and Wilhelm,
the study is undertaken of the stability of a horizontal plane sur—;
face in the fluidised bed to small wave-like disturbances. The
equations of motion must thesefore be written for three fluid
phases: the homogeneous particle-free fluid phase, referred to 5y
Rice and Wilhelm and hereafter as the 'support fluid'; and the tﬁo
interacting phases in the fluidised regionf All three phases are

*see page 23a. 23



23a.

The particle stress forces(equations 2A.4 and 2A.7) have the form
suggested by Murray (1966) and Anderson and Jackson (1968, 1969). The

. . 90, . .
components of this force are given by ik where Tk is the particle

9x%.
i

stress given by the above workers as

u BVi aV.

9x + IX

2
k i 3

N sik div V

Equations 2A.4 and 2A.7 are derived by differentiating the normal stress
(i = k) and the tangentia¥ stress (i # k) respectively, and the same
definition of stress is used later in defining the boundary conditions
at the interface (ie equations 2A.45 and 2A.46)

For the particle phase, P = 0, and thus,

_ 3V v 2 V. 2 W

%y T %1 T oW XY X T3 XT3 L
3x 9x 9x oy
oy p}13 ___x 3 ——~%
X0y 9y
Similarly, for the tangential stress, O = T i# k and

30 u {: 3%y 3%y
_...}_{. = ...___}i + y
9% P 9x3y 5 x2

as used in equations 2A.4 and 2A.7



&
assumed to be incompressible. Considering a plane dishmbaﬁce, then,
there are nine such equations in all, for a two-dimensional system.
These equations of motion are:-
Continuity:

Particle phase:

L(1-e)v ] dl@-e)v.] .

de -
-at = + G =0-------mmm-- - (2a.1)
Interstitial fluid:
a(eU_ ) a(ev)
de X ¥y o _
st T Ty 0 Tt ToomTTTommTmoo (28-2)
Support fluid:
dw. aw
X
=t -Tily =0 e e m - - R (24.3)
Momentum in x Direction:
Particle phase:
: av v.av, V. av du U_4u au
(medp =2+ L+ -, |+ =+ |-
p| at ax dy F | dat ax dy
2 2
B(U-V.) p [a°V, a7V
x x/ X, _ ¥ O e e e ..
m-}-y d.xdy+ dxz =0 - . - (2A.)4)
Interstitial fluid:
4, U, 4u  T.au, ap | o
®p | @t ot oy | t2 Pl =0 --- - (24.5)
. _
Support fluid:
o .
P —-]£+"IX'CE‘-"I-J£+wyi"ils +f£3- Hp d2wx+d2w}c + F 0
P | at - -
dx dy dx dx2 dy2 b d
----- (24.6)
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Momentum in y Direction:

Particle phase:

F, P represent

2, 3 represent

av v _dv v_av du U_4u U_du

(1-¢) —L gy =Ly T g + =Ly YL

Pp at ax ay F |7t ax iy

2 2
B(U-V.) p | Ladv, 2a%v
X _3 X - - =0 = = =

Interstitial fluid:

UM AL SR L
R R R R R
Support fluid: .

. W.aw_ W.aw ., u | a%w a%w
P d¥ + dz + bA d§ + _E§ - F ———% + ———% + pp8 + Fy =0

- - - - (209)

Where U is the velocity of the fluidising fluid

V is the velocity of the particle phase

"W is the velocity of the support fluid
Subscripts x, y represent the horizontal andvertical directions

the fluid and particle phase parameters

the interstitial and support fluid

and the drag coefficient p(e) = 18“? W(e) (1-¢)

with W(e) = eV

2

5

The exponent, N, is dependent on the Reynold's number as given by

Richardson and Zaki (1958).

In the following calculations, N is

taken to be L.7, the value for low Reynold's numbers.

These equations may be linearised in the manner described ih section

- A
1.2 by casting the variables in the form U =T + U
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A
VWhere U is the perturbation variable
T is the steady state solution

with the following steady state solutions:

R I i i (24.10a)
V' 20 o e e m ettt e e e e e - — - 2A.10b
- (¢ )
U, =0 =m-mmmcmmmmmmmmm o mmoo o (24.10¢)
ﬁy - l,_ _________________________ (24.104)
o
WX = O ——————————————————————— (2A.lOe)
N 1 (2A.10f)
¥ o
Where U = minimum fluidising velocity
€, = voidage fraction at minimum fluidisation

and the homogeneous phase is assumed to be at the conditions of mini-
mum fluidisation. Linearisation of equations (24.1) to (24.9) by this

method gives, where all variables are now perturbation variables:

S, (-e) @V, (e ) &V, o _ o ___._ (24.11)
dx dy
g:+i;_%+eo&+eoit_]z=0 ---------- (24.12)
¢, dx dy
dWx aw
~x . _d_gfr - (24.13)

at o dy d»_1.)2

2 2
“P ¢V, , ¢ VX =0 mm e e e e e e .-~ (2A.14)

Bdy 2

K _
& + P_‘Z & + d'P2 + le(eo) (l-eo) F (Ux Vx)_ 0 - (24.15)
PP | Tt T e ay ax 2 =5 = \eh.
o} dP
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2t 2

I aw U AW - dP dzwX dzwX
PF{: O_d_yJ +—53%_“F[—-;‘;— o =0 - - ~ (2a.16)

H -V -
av au U_o au i 18W(e0) p| Uy L.T0 e | +
(1-e)op 3% ~ SofF | "a& * 5. &y 5
o d 2
D ¢,
2 2.

Lav, 24V | . . N e

+ X - N glpp + p )Je=0 - - (24.17)
Hp [ 35ay pTPp
dy .

du. U dau @, 18w(e )"

-y o _ ¥ 2 o’ F R _
eopF[ dt+€0 rell B i iy [(U v )(1-¢ ) +

P
(3.7 - 521) eri] I e e (24.18)
(o} € )
. o]
o U aw ap W aw
— & —3 _ K SN A B - — -

pFI: 35+ dy}"' 3y F[ dx2+ d,yz} 0 (24.19)

To cast these equations into a convenient dimensionless form, the

following characteristic dimensions are chosen:

Length = [dp]
Time = [EE}
U
o
Pressure = [dePg] I I (24.20)

Substitution of (24.20) into (24.11) to (2A.19) gives, where all the

variables are now dimensionless, perturbation variables:

(1—e0) av, (1—e0) sz

L, g =0 —ee-m-—ma- - (24.21)
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1 d¢ € 4dU, e _aUu_
de = S5, © o 20 e e e e — - oA
3t * €, W+ =t 3y 0 (
By My o e (2
ax . dy
av du, 1 4y 18W(e )
x x =] _ o' (g -
(1 eo) —at -~ %P [—d_t + 8 dy} éﬁ Ux Vx) +
2 2
a“v_  a°v
+il;_p'[dxx+—%}—o ------------------ (2a
W i
du, 1 au 1 dp, 18W(e )(1-e )
ep| ==+ —=| + = 4 9 2 (g-v.)=0 - (2a
0 d o dy ep
aw, A 1o, [, dAw
p ——:+—x +Frfé—Re_ >+ 5 =0 =~~~ (2A
d dy I dy
av au. 1 du 18W(e )| U -V -L4.Te
(1-¢ ) —=Z - ¢ p —%+e_- L. R ° 2+
at o d o dy ep ‘eo
r 2
., hdvx_zdzvy] ) (24
Rep L 3 &% 3
I
au au dp, 18W(e )
¢ s L 2 2 0T (77 )(1-e,) +
of |Tat T e ay Fr dy R y ¥ 0
L o ep
+(37_.):Ll)€_. +'&=O _________________ (QA
€ € Fr
e} e}
& aw ap v, ay
—L + L3 _ 1 + 2| =0 -=~-- (2a
P Gy | TRTG TRy | o2 &
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2A.2

Where the dimensionless groups are:

Rep = deEUO - a type of Reynold's number

by

Fr = U02 - a Proude number

Bd_
5%

©

I

o
=

and it is also convenient to define a second Reynold's number

Rep = ppdpls = R,
p.F .

General Solution to the Equations of Motion

D

The solution of the set 24.21 to 24.29 to an arbitrary initial
disturbance may be found by the methods of Fourier énalysis, and
éccordingly a solution is sought to a small initial sinusoidal
disturbance of the interface with wave number K. The variables are
thus assumed to have a wave-like spatial variation with a common time
dependence of the form ent, the sign and magnitude of n (the growth E
rate) then determine the quantitative and qualitative features of the
resulting solution. If n is positive the resulting solﬁtion is
unstable, any disturbance being magnified at the rate ent. Negative
values of n correspond to solutions in which ény disturbance is

damped out.

A particular solution to the equations 24.21 to 2A.29 is then:

¢ =A exp(-Ky +nt) CoOS KX = = = = = = = = = = 0 = = = = (24.30)

v
X

Bexp (-Ky+nt) Sin KX = = = = = = = = = = = = = = = - €24.31)



2A03

V. =3B exp(- K_+ nt) Cos kx - _n A exp(- Ky + nt) Cos Kx
y ( 4 (1) _
------ (24.32)
U =C exp(- Ky + nt) sin Xx + D exp(-Ky + nt) sin Kx - - - (2A.33)
Uy = C exp(- Ky + nt) cos Kx + D exp(- Ky + nt) cos Kx +
+ (eon -K) Aexp(-Ky+nt) cos KX = = = = = = = - - (24.3L)
T
P,=FrnD exp(- Ky + nt) coS KX = = = = = = = = = = - = (24.35)
K
W_=E exp(m3y + nt) sin Kx + F exp(Ky + nt) sin Kx - - - = (2A.36)
Wy ==-XE exp(mBy + nt) cos Kx - F exp(Ky + nt) cos Kkx - - (24.37)
"3
P,=F p (0 +K) Fexp(Ky + nt) cos KX = = = = = = = = = = (24.38)
3 S |
Whefe m3 is defined by:
m32-ReFm3-Ran-K250 e e e e e = (2A.39)

and is, by definition, positive

Details of the derivation of the particular solution, equations

" (24.30) to (24.38) from a general solution are given in Appendix I.

Boundary Conditions

A consistent set of interfacial boundary conditions must be imposed
to relate the growth rate, n, of the disturbance on the plane
horizontal interface to the wave number, X, and the physical

parameters of the system.
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As the solutiqn governing the behaviour of the system parameters to a
wave-like disturbance at the interface (equations 24.30 to 2A.39)
contains six unknowns (the constants A to F) six consistent and
independent boundary conditions are required for the oompleté solu-

tion to obtain the growth rate.

The boundary is defined at y = 0, the perturbed boundary being

y ="1 (x, t). (See Figure 1 for definition of the co-ordinate system).
By definition, the boundary is the limit of the particle phase, thus,
the rate of change of the boundary with time, is

-g—;l =V,  mmmmmmmmm———o----------- (24.40)

Integration of (2A.40) gives:

Bl

exp(- Ky + nt) cos Kx - 1 A exp(-Ky + nt) cos Kx

"= Yy -
n K(l-¢ )

for V.=0at t=0
or V,

The boundary conditions are then derived by taking material balances
across the (slightly) deformed surface and by equating normal and

tangential stresses on either side of the surface.

There are two possible configurations of the system with a horizontal
boundary:

2A.3.1 Fluidised Phase Uppermost; eg roof of a bubble or base of

the bed.

a Material Balance

Teking a material balance normal to the (slightly
deformed) interface gives (cast into perturbation and
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Figure 1: Wavelike disturbance on a plane horizontal surface
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dimensionless form, as in section 24.1):

[
e e T 4 & —e)  — - ao-- 24.42
Wy = e T+ o v, (1 -e) (2a.42)

A simplified approximation of this is to treat the
interface as a fixed boundary; That is, at any instant
in time the particle bhase, by definition, cammot move
across the boundary. Taking ﬁaterial balances across
this fixed boundary theﬁ leads to (again in perturbation

and dimensionless form):

Wo=e U+ ;;- -------------- (24.42a)
and W, =eU  =-—=-----------—-- (24.43)

Pylenand Rose (1965) also used the simple form of the
boundary conditions, equation (24.43) to determine the
gas flow inside a bubble in a fluidised bed; it is
employed throughout this analysis, although other pos-
gibilities do exist.

Stress Boundary Condition

Continuity of the normal and tangential stresses at the
interface gives:-

Ogp =Op +0p — = - = ~-=-=-------- (24.14)

Where o = normal or téngential stress
subscripts SF represents the support fluid

F represents the interstitial fluid

P represents‘the particle phase
Employing a definition of stress analogous to that used
by Murray (1966), Anderson and Jackson (1967) and Jones
(1970) gives, for the support fluid:
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dw

Tangential stress: Ogp = uF { _ X+ 2{1] -=-- (2A.b,5)
e dy dx
Normal Lp av 2. dW
stress: ogp = P3 t3 'y _dyx 3 F _d_x_

with corresponding expressions for* the other two -
phases. Thus (2A.LY4) gives, in perturbed and dimen-
- sionless form:-

U av av
aw. dWy du. d - il <

Bttt || C o @
R_ P, Law 2d__R_P, Law _24d7
P 3+3_J-3_X=_8 2+3_J-F_X+
TFr dy d&x Fr dy dx
+“[%§Xx %_EEJ ------------ (24.148)
dy dx

In (2A.48) the interparticulate pressure is taken, as in

the equations of motion, to be zero.

Also, from hydrostatic considerations
P3 a.‘l7y='2=P3 a;by:()_p'l

andP2 aty:"{:Pzaty=O—eop”]

To obtain the other two nec‘essary ‘boundary. conditions
an assumption must be made about the distribution of

stress across the boundary. This gives rise to a number

of possibilities whose implications are discussed below.

The simplest assumption is that the stress is shared

equally by the two fluidised bed phases; so that, for

both normal and tangential stresses, op = op (2A L9).
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A variation of this assumption, which has more physical
reasoning behind it, is that (2A.L4Y) can be replaced,
for both normal and tangential stresses by

sF = %p

= oy (24.50).

This follows from observing the system on a micro-
scopic scale: a 'packet' of support fluid may be
opposed at the boundary by a corresponding 'packet' of
either interstitial fluid or of the particle phase.
Thus, if the stress is directly transmitted between the
two opposing fluids, (24.50) will be correct. However,
the equations of motion are derived for variables -
averaged over a distance large in comparison with the

particle spacing, so that this assumption may not be

consigtent with the equations chosen.

Another assumption similar to (24.49) is that the
stress is shared by the two fluidised phases in the
ratio of their volumes:

€op = (l-eo) op for normal and tangential stresses

e a e (24.51)
Equations (24.49). (24.50) and (24.51) have a similar’
form:

(24.49) with (2A.4L) gives Oep = 2 = 2p

(24.50) Tap

il
G
|

(2A.51) with (2A.LL) gives o

l
e

SF ~

1 op where ¢ 0.L
®o
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In the present calculations, equation (24.50) is

'employed throughout, having checked that the other two

give results of similar order.

As the tangential stresses are proportional to the

velocity gradient, (2A.50) implies that the velocity

gradients in the fluids are in the inverse ratio of the

- respective viscosities. Two other possible assumptions

are then:

a

that the velocity gradients in the two fluidised

bed fluids are equal, giving rise to:

U, du &V av,
ay tax - dj* = 2 - ----- (24.52)
au au av av
Y _2_x_L” 'y 2_"x
and% E - m =3 -Sm - - - - (24.53)
and

that the interstitial velocity gradients are neg-

ligible (zero).

This assumption was made by Clift, Grace, and Weber (1973) and is

also implied by Rice and Wilhelm,

In (2A.47) and (2A.48), this is equivalent to assuming that the

velocity gradients in the interstitial fluid phase are negligible in

comparison to those in the other phases. Thus, the terms involving

velocity gradients of the interstitial fluid are neglected, Equations

(24.47) and (2A.48) are sinplified by setting:

£

and —

<+

Ju
—
9%

20 veaneenees(24.54)

‘_l =O ....l.lll.(zAQSS)



As no conclusive evidence can be presented either for or against
these assumptibns, different consistent combinations of the proposed
boundary conditions are solved in this work to find the dependence of
the solution on these boundary conditions. There are therefore
several possible consistent sets of boundary conditions; those
investigated here are, as summarised in Table 3:-

Set 1: This set is derived from the full material balance allowing
interfacial movement, and from the assumption that the stress is
directly transmitted between the phases (equatiﬁn 2A.50). This
latter assumption also implies that the velocity gradients in the
particle phase are (%) x those in the interstitial fluid; where, for
water fluidised systems, p = 0[1027to 103],_and for air fluidised
systems, p = O!:lOLl to 106]. |

Set 2: This set is similar to Set 1, but with the full material
balance replaced by the approximabte material balance taken over a
fixed boundary. The effect of this approximation on the solution

can thus be investigated.

If the stress boundary conditions are employed simultaneously with
the assumption that normal and tangential velocity grédients in the |
two fluidised bed phases are equal (equations (24.52) and (24.53)), -
this unfortunately leads to an indefinite result, (two rows of the
determinant, M (see section 2A.L), are equal). Thus the effect of
the boundary conditions was determined separafely in sets 3 and L:
Set 3: This set is similar to set 2, but with the velocity gradients
in the tangential stress terms equal.

Set L4: This set is similar to set 2, but with the velocity gradients
in the normal stress terms equal.

Set 5: This set is similar to set 1, but with the velocity gradients
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in the normal stress terms equal. That is, sets L and 5 are used to
investigate the effect of the approximate mass balance on the solu-
tion in this case.

§g§_§: Again, neglecting the velocity gradients in the interstitial
fluid gives an indefinite result by this method of solution, but as
this is the assumption made by Clift, Grace and Weber (1973), their
solution has been re-calculated for the physical systems investigated

here.

In their solution, Clift, Grace and Weber simplified the eguations of
motion by neglecting the interstitial fluid momentum and assuming
that the voidage is constant, so that only four constants were neces-

" sary. Thus, only four consistent boundary conditions were needed for
the compiete solution.

2A.3.2 Support Fluid Uppermost; eg top of the bed

The boundary conditions are as in 2A.3.1 for the configura-
tion; fluidised bed phases uppermost, with the definition
of normal stress which is equivalent to (RA.46) in dimension-
less terms:- |

P Py L2
Fr iy

&) 2
1
1
1
1
1
1
1
P
N
>
=
oN
R

1§
Ogp =

?

Where OSF is a dimensionless stress.

The oniy difference between these two configurafions is the

change in the direction of the acceleration force (eg

gravity, g, and hence Fr) with respect to the chosen systenm

ofAco—ordinates. That is, with the stress as defined in

(24.46), ¥ is.positive in the opposite direction to that in

which the gravitational force acts for the configuration,
- 38 |

*Full details of boundar

, y conditio . .
Table 3a, page 40a. 7 1ons for sets 2 and 6 are given in



fluidised phases uppermost, and in the same direction for

the configuration support fluid uppermost.
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TABLE 3

Features of the Sets of Boundary Conditions Investigated

Boundary . Ass:umptlons and Equations Employed in DerJ.v:Lng the
Conditions Material Balance Stress Boundary Conditions
Full mass balance over moving interface. Normal and tangential stress directly transmitted
Set 1 across the boundary. From observations on microscopic
scale. '
Equations: (2A.42) and (2A.43) Equation: (24.50)
Approximate mass balance over fixed interface. Normal and tangential stress directly transmitted
Set 2 % across the boundary. From observations on microscopic
) scale.
Equations: (2A.42a) and (2A.43) Equation: (2A.50)
Approximate mass balance over fixed interface. Normal stress directly transmitted across the boundary.
Set 3 From observations on microscopic scale. Equation (24.50)
Tangential stress: velocity gradients equal.
Equations: (2A.42a) and (24.L43) Equations: (2A.47) with (2A.52)
Approximate mass balance over fixed interface Tangential stress directly transmitted across the boun-
Set L dary. From observations on microscopic scale. Equation
(2A.50). Normal stress: velocity gradients equal.
Equations: (2A.42a) and (2A.43) Equations: (2A.48) with (2A.53)
Full mass balance over moving irberface. Tangential stress directly transmitted across the boun-
Set 5 dary. From observations on microscopic scale. Equa‘tlon
(2A.50). Normal stress: velocity gradients equal.
Equations: (2A.42) and (24.43) Equations: (2A.48 with (2A.53)
Full mass balance over moving interface. Interstitial fluid velocity gradients zero. Normal and
Set 6 tangential stresses are continuous across the interface.

(2A.42) and (2A.43)

Equations:

(24.47), (24.48) with (2A.54) and (2A.55)

Equations:




40a

Table 3a
Boundary . Set 2 Set 6
Condition -
Mass balance W =¢U _,+5— W o=el +& & vV (1 =-¢)
(@) LR AN y TSy T Ty BT
Mass balance W = U ) W =¢ U
(ii) X o "x . o x
k-
Tangential stress BNX o avx v, awx W BVx v
balance (i) 5y + _Zax = —By + _'Lax R + -—Zax =y ——ay + ™
Tapgential stress awx I aUx ou
I 1 2 : 3 —— = —— —
balance (ii) 5y + -—Zax > + -—lax
P 4 2
Normal stress Re P, - Re 4 W 2 oV Re P - Re + = 3 - -
; —p 3 _r o+ 5 y- 5% —p 3 3y T3
balance (i) Fr . Fr 3 3y 3 9x Fr T "} 3y
= % u_avz_ oy = R, p _Re L av
3 iy 2 _Te T _y-
3y Ix Fr = © 3 3y
Normal stress Re ReF n PR 2 s
* . - had ¥ - L
balance (ii) _EFr P3 3 + 3 y 3 x
3y 9x -
Re Re
= —2p - L s LoRu 23U
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2A.4 Solution Using the Proposed Sets of Boundary Conditions

2AL.1

2A.h.2

Fluidised Phase Uppermost

Full details of all the algebra involved is given in

Appendix 2.

Substitution of the assumed solution of the equations of
motion (24.30) to (24.39) into the boundary conditions gives
the matrix equation:

[M] x[ABCDEF]T =20  ccmmoocmeoo-o (24.56)
Where [M] is a 6 x 6 matrix of coefficients.

The matrix, M, is given in Appendix 2 for all the sets of

boundary conditions used.

The non-trivial solution to (24.56) is given by:

det [M] =0 @ = = 0 o o e e e e e e e - - - oo | (24.57)

Which leads to n3(a) + n° (b+c)+n(@a+e)+£f=0
----- (2A.58)

where the.coefficients a to f are also given in Appendix 2,

for all the sets of boundary conditions used.

The solution to equation (2A.58) together with (24.39) can
then be determined by a fairly straightforward method using
a digital computer.

Support Fluid Uppermost

Substitution into the boundary conditions for the configura-
tion, supprt fluid uppermost, gives the same general form of

solution and equation (2A.58) becomes:

n3(a) + nz(- b+ec)+n(-d+e)+£f=0 = --- (24.583)

la



2A.L.3

Physical Parameters

To make the solution of equations (24.58) and (2A.39) pos-
sible, the physical parameters of each system must be known.
Values for Pps Pps dp and by are readily available for systems
of interest; values for the minimum flﬁidising velocity, Uo’
when not available, were found experimentally in the ﬁorma.l

manner.

€, is taken to be 0.4 for all systems. This is, of course,
an approximation, but will not introduce large errors:
Wilhelm and Kwauk (1948) show that ¢, is between 0.37 and

0.41 for all the water fluidised systems investigated here,

and most gas fluidised beds have a voidage fraction at

incipient fluidisation of around 0.4 - 0.45.

The viscosity of the particle phase, Hp has been taken from

the work of Schugerl et al (1961); Schugerl (1971), Hetzler

and Williams (1969) and Hagyard and Sacerdote (1966).

Schugerl gave values of Hp as a function of fluidising |
velocity for many air fluidised systems, and showed that ;_LPH
settles down to a (fairly) constant value in a well flulda.sed-
system (fluidising velocity > 2 Uo)' Hetzler and Williams
correlated the average bed 'viscosities for many water
fluidised systems. Hagyard and Sa.cer-dote determined the

effect of the system density on Hpe



SECTION 2B: PREDICTIONS FROM THE THEORY

2B.1

2B.2

Support Fluid Uppermost

The solution for this configuration (that is, equations (2A.58a) and .
(2A.39) has no positive roots of n for positive K, for any of the six
sets of boundary conditions proposed. This configuration is there-
fore always stable, and any plane wave disturbance on such a boundary
will be damped out. This agrees with the findings of Murray (1965)
(see section 1.2) who predicted that disturbances on the upper surface
of the bed (ie this configuration) were always damped out.

Fluidised Phase Uppermost

The solution for this configuration, (that is, equations (2A.58) and

(2A.39) has one positive root of n for positive K, for each of the

gix sets of boundary conditions proposed. Thus, this configuration
is always unstable. There is, of course, no surface tension force to
exert a stabilising influence, as in the case of the gas/liquid sys-

tems investigated by Bellman and Pemnington (1954).

In the following work, attention is confined only to this one positive

root.

Figures 2, 3, L, 5 6 and 7 show the solution in the form of a graph of
n vrs K for several known physical systems for each proposed set.of. |
boundary conditions. (For systems fluidised by water, the experimental
values of Wilhelm and Kwauk (1948) are taken; for systems fluidised
by air, the experimental systems presented in section 3, (Table 7),

are taken).

' It can be seen from Figures 5 and 6 that the two sets of boundary

conditions in which the velocity gradients in the two fluidised bed

phases are assumed equal in the normal stress terms give a similar

13
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solution to that due to Jackson (1963). His analysis of the stability
of homogeneous fluidisation showed that the growth rate increased
monotonically with wave number. The reason for this in Jackson's

work (see section 1.2) was the omission of the particle phase.viscous
(stress) forces. It can be seen in Appendix 2 that the dominant
coefficients in the solution equations for these two boundary éondi-
tion sets have the viscosity ratio, p, and thus the particle ﬁhase
viscosity, Hps @8 a common factor, so that thesg two sets of boundary
conditions also produce a solution which is independent of the particle

phase viscosity.

However, fhere would seem to be no physical explanation for this
solution§ the assumption that the'velocity‘gradients in the particle
and interstitial fluid phases are equal in the normal direction, in
no way implies that the particle phase viscosity is zero. These sets
of boundary conditions could be incomsistent, but again there seems to

be no physical justification to suppose that this is true.

Figures 2, 3, L and 7, the solutions for the other sets of boundary
conditions, show that, for these fou£ sets, the general form of the
solution n versus K is similar for the whole range of physical
proﬁerties investigated. It can be seen that, as Rice and Wilhelm
foﬁnd, there is a maximum in the n versus K curve at Ny correspond-

ing to the most rapidly growing, or 'the most dangerous' wavelength, A

Table L lists the calculated values of noox and the corresponding
'most dangerous' wavelength A, for a range of different fluidised

systems for each of these four sets of boundary conditions.
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Figures 2, 3 and L, and the corresponding columms in Table l, show
that the sets of boundary conditions 1, 2 and 3 give very similar
golutions. The difference between these boundary conditions is given.
in section 2A.3 and summarised in Table 3, but in summary; Set 1

was derived from the fuil material balance and the assumption that the
stresses are directly transmitted between the phases. BSet 2 differs
from set 1 in as much as the approximate material balance is used, ie
sets 1 and 2 may be used to study the effect of this approximation on
the solution. Set 3 differs from set 2 in as much as the velocity
gradients in the two fluidised phases are assumed equal in the tan-
gential stress terms, ie sets 2 and 3 may be used to study the effect

of this assumption on the solution.

Obviouslj, from the results, neither of these two assumptions have a

great effect on the solution, and thus from here on only the solutions
using boundary condition sets 2 and 6 will be discussed. (Sets 1 and
3 being very similar to 2 and L and 5 yielding results independent of

the particle phase viscosity).

Figures 8 to 13 show that, although the solutions using boundary
condition sets 2 and 6 are of similar order fo; water fluidisation,
get 6 leads to a much larger maximum growth rate for air fluidiséti;n
than does set 2, This is quite consistent with the assumptions made
in deriving these two sets of béundary conditions. Set & (which

gives a solution directly comparable to that of Rice and Wilhelm, and
Clift, Grace and Weber) involves the assumption that the momentum of

~ the gas percolating across the interface is zero and that the velocity
gradients in the interstitial fluid are small in comparison with those

in the particle phase. Set 2 implies that the momentum of the gas
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percolating across the interface is large (ie the velocity gradients
in the intersfitial fluid are px those in the particle phase, where

i is large, (see 24.3).

It is to be expected that the higher the momentum of the fluid
percolatiﬂg across the interface, the more stable that interface will
be, as this increases the drag force on the particleé: Jones (1970)
showed that increasiﬁg the drag force on particles in a fluidised bed

leads to a decrease in particle oscillation (ie greater stability).

Thus, for air fluidised systems, which have much larger density and
viscosity ratios than water fluidised systems, it is to be expected
that boundary condition set 2, with the higher momentum in the inter-

stitial fluid than in set 6, should be more stable.

Clift, Grace and Weber did attempt to calculate the effect of includ-
ing the interstitial fluid momentum in their solution, and claim to
have proved that the effect is negligible. However, this more complete
calculation necessitated the use of an extra boundary condition.

Clift et al overcame this problem by using their general continuity
boundary condition twice, with different values for the uncertain _.
constant. Their set of boundary conditions are therefore not consis-

- tent or independent, so that their claim that the inclusion of the
interstitial fluid momentum terms has negligible effect on the solu-

tion has not been proved.

It is probable that neither set of boundary conditions is completely
correct: under certain conaitions either one may appear more reason-
able, but the true situation almost certainly lies somewhere between

the two extremes of large and zero interstitial fluid momentum.
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In Table L, the use of boundary condition set 2 predicts an increas-
ing growth rate (ie instability) with decreasing Froude number, or in
more concrete terms, that liquid fluidised beds are more unstable in
the situation investigated here, than gas fluidised beds. This is,
of course, an opposite trend to the results found by analysis of the
stability of the state of homogeneous fluidisation, (see sectién 1)
and of the correlation of the degree of stability proposed by
Wilhelm and Kwauk (1948). These results are not however inconsist-
ent. It is possible that the homogeneous phaserin a liquid fluidised
system is more stable to disturbances, while a horizontal interface
between this phase and the support fluid is less stable than in gas
fluidised systems. In other words, it could be argued that one pos-
sible reason for the general absence of bubbles in liquid fluidised
beds lies precisely in the instability of any interface, for example,

the bubble boundary, to small disturbances.

Aithough this same argument cannot be applied to the solution with
boundary condition set 6, as this solution gives growth rates of
similar order for both air and water fluidised systems, it will be
shown later (in section 3) that, if these boundary coﬁditions apply,..
bubbles in water fluidised systems are still less stable to distufb—~

ances than are bubbles in air fluidised beds.
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TABLE L

Stability of Various Fluidised Systems

¥

. Boundary Boundary Boundaxry Boundary

P]a);-ixji;:: gi Systen R p Fr Condition Set 1 Condition Set 2 Condition Set 3 Condition Set 6
Microns noox sec™T | A om N sect| A cm N sect| A cm n o sec > |A cm
1490 Glass/Air 8.65 |18.7 2,46 790 3.13 | 1050 2.26 | 890 17.0 12.4
370 Glass/Air 2.61 | 3.79 3.14 628 .ok 628 3.02 | 628 20.0 7.0
280 Glass/Air 1.24 | 2.05 3.66 314 L.5h 314 3.54 | 314 23.0 5.3
210 Glass/Air 0.68 1.47 L. 08 314 5.09 314 3.98 314 26.0 4.3
100 Glass/Air 0.088 | 0.23 5.12 209 6.42 209 5.07 | 209 32.0 3.1
5180 Glass/Water 222 0.036 18.24 15.7 23.2 15.7 16.7 15.7 11.5 17.9
1,580 Socony Beads/Water | 96.6 o.ooé 22.6 10.5 28.7 12.6 21.5 10.5 - -
1280 Lead/Water 51.7 0.130 23.2 9.0  29.6 10.5 20.9 10.5 28.0 4.2
3360 Socony Beads/Water| 57.1 0.0088 26.9 7.0 34.2 9.0 25.6 7.0 - -
1010 Glass/Water 9.0 0.0080 49.3 2.1 62.7 2.1 47.1 2.1 31.0 2.5




; SECTiON 2C: COMPARISON WITH THE STABILITY OF THE HOMOGENEOUS PHASE
Anderson and Jackson (1967; 1968; 1969) studied the stability of the state
of homogeneous fluidisation to small internal disturbances. Their analysis
has been discussed in sections 1.1 and 1.2 but, in summary, they derived
equations of motion for the particulate and interstitial fluid phases in
terms of variables which are smoothed local averages, taken over an area
that is large in comparison to the interparticulate spacing, but small in
comparison to fhe whole system; they linearised these equations by the

usual perturbation techniques.

They assumed a complex, wave-like solution for the perturbed variables of

the form:

¢ = A exp(~ ikx - iky + nt) R PR (2¢.1)

where n = a complex growﬁh rate; n=6-1i1 ~-=-=====-= (2c.2)
k = the wave number of the disturbance

and i

J137

Elimination of variables between fhe eQuations of motion and substitution
of the above solution leads to a relationship between the growth rate, n,
wave number, K, and the physical'system parameters. This relationship
applies only forbthe state of homogeneous fluidisation, ie a long way from

the boundary between the homogeneous phase and the support fluid.

To compare the solution given in section 2A, for the stability of the
boundary between the homogeneous phas; and the support fluid, with that of
Anderson and Jackson for the homogenequs phase in general, the support
fluid must be assigned the physical parémeters of the homogeneous phase.
This, of course, involves the simplifying assumption that the homogeneous
phase below the (now hypothetical) boundary can be described as one fluid
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with mean density and viscosity, while above the boundary it is described

as two interacting phases.
A complete analysis is given in Appendix 3.

For comparison with the solution of Anderson and Jackson, the present work
is repeated with their form of general solution to the equations of ﬁotion
(equation (2C.1)). For this to be possible, an assumption must be made:
the solution proposed in Appendix 3 to the equations of motion is valid
only at x = 0. However it is sinusoidal in x, and thus repeated at
distances of one wavelength. It is therefore aséumed that the solution at
X = 0 is valid for all x; the error of this approximation will increase as
the wavelength increases, so that the solution will be invalid for disturb-

ances of large wavelength.

This comparison has only been attempted with boundary condition set 2, as
defined in section 2A.3 and Table 3. The method of solution is completelj
analogous to that used in the simpler case given in section 2A.2 and

Appendix 1, and is therefore not repeated.

However, the final solution by digital comﬁuter proved more difficult,

owing to the presence of the complex coéfficients introduced, and a complete
solution was not made. The equations were solved using a minimisation R
routine,‘only for the root with the largest positive réal value of n. It

is not possible to state, as in the simpler case that this is the only

positive root.

Tabl- 5 shows some of the results of Anderson and Jackson for fluidisation
with air and water, with the results from this analysis for approximately
corresponding systems. For air fluidised systems, Anderson and Jackson
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calculated their solution for three values of the bed (particle phase)
viscosity 8, 16 and 32 poise, which correspond approximately to beds of

glass particles of 210, 370 and 490 microns diameter.

For the system fluidised by water, they calculated the growth rate for a
given experimental system of glass particles of 2000 microns diameter,
setting the parameter Hy = 70 poise. This figure would seem to be too
large (for example, Anderson and Bryden (1965) show that shear viscosities
of water fluidised beds are between 10 and 20 poise) even though Anderson
and Jackson also include the bulk viscosity in their parameter. The

results from this analysis are therefore calculated for by = 20 poise.

It can be seen that the results of the two analysgs do not compare well.
Howevér, it must be remembered that there are many differences between the
two analyses. That is, they are based on slightly different equations of
motion; it is shown in section 1.2 that similar analyses based on equations
of motion differing slightly from those of Anderson and Jackson give
dissimilar results. There are also many simplifying assumptions involved
in the analysis presented here, such as, that the solution at x = 0 is also
valid for all x; that the system can be rebresented as one homogeneous’
fluidised phase below two interacting phases; and th@t the stress is
transmitted équally to each phase across the boundary. It would therefﬁreﬂ

be reasonable to expect results of only the same order of magnitude.

This analysis doés, however, confirm that, for boundary condition set 2,
the homogeneous phase itself is much more stable in water fluidised beds
than in air fluidised beds, whilst the boundary between this phose and the
particle free support fluid, (with the support fluid underneath) is much

less stable,
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TABLE 5

Comparison' With the Stability of the State of Uniform Fluidisation

Description of System

Solution of Anderson & Jackson

Description of

Solution of this Work

of Anderson & Jackson| ‘g Equivalent System
(1967, 1968) ?ix M at glma.x K at :S’ma.x Solved Here k3 Iil?-.‘x M at'i max | K at ? max
sec sec~ cm sec sec cm

2000 micron diam.eter 2000 micron diameter

glass particles/water 0.38 6.6 1.2 glass particles/water 0.27 20.7 5.3

By = 70 poise By = 20 poise

Glass particles/air 210 micron diameter :

Hy = 8 poise 52.0 84.0 3.5 Glass particles/air 18.6 27.3 12.9
}J..b =8 poise

Glass particles/air 370 micron diameter

by, = 16 poise 39.0 6L4.0 2.2 Glass particles/air 79.0 25.0 6.1
Hy = 16 poise

Glass particles/air : 490 micron diameter

Hy = 32 poise 25.0 L45.0 1.5 Glass particles/air 130.0 15.0 7.5

My = 32 poise




SECTION 2D: DIMENSIONAL ANALYSIS

A number of investigations have been made (Wilhelm and Kwauk (1948);
Romero and Johanson (1962); Doitchev (1973)) into the use of dimensional
.analysis in order to propose a criterion to distinguish between particu—

late and aggregative fluidisation.
Wilhelm and Kwauk proposed the use of the dimensionless Froude number,

- 2
Fr{: Uo ] , for this criterion, such that:-
' P

Fr > 1.0 - aggregative fluidisation (bubbling)

Fr < 1.0 - particulate fluidisation (non-bubbling) )
S e e e e e e (2p.1

However, Wilhelm and Kwauk gave no theoretical justification for the use of
this group nor for the limit set: Wilhelm and Kwauk found that the experi-
mental systems which they investigated could be characterised in this way,
and their classification remains a most useful guide to the type of

fluidising behaviour to be expected.

By casting the solution due to Rice and Wilhelm (1958) into dimensionless
form, Romero and Johanson (1962) defined the dimensionless groups on which -
the stability of a fluidised system depénds. The simple solution {model 1
of Rice and Wilhelm) exposed the groups Fr, R pr (L;_Q), (and 7 a length -
ratio) and Romero and Johanson claimed that a linear cémbina.tion of these
g;roui)s gave a better criterion for ordering fluidised systems in terms of

stability than did Fr alone. viz:

Fr R o (-]-'-;-Q) > 100 aggregative fluidisation
Fr R (1—;&) < 100 particulate fluidisation
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: Once again; no justification was givén for the combination of groups used
in this criterion, other than that these three groups were those defined by
the solution of Rice and Wilhelm. The limit set for the criterion was

determined by calculating its value for many systems_of known behaviour.

Doifchev (1973), by calculating the amount of energy required to transport
the fluid in excess of that required for minimum fluidisation,

a with bubbling, and

b without bubbling, was able to predict that:

vwhen N, > 143 - aggregative fluidisation

i
N, < 143 - particulate fluidisation .
------------ (2D.3)
a L
Where N, = i.’éL (o, = o) (pp(1-e,) +pp (6))) == == ===~ (2D.4)

Hp

Now, as (pp—pF) and (pp (1~s,) + pge,) ave of the same order, it can be.
seen that, approximately:-

N

£° Re

g (50 2

Thus, Doitchev seems to have improved the criterion due to Romero and
Johanson, equation (2D.2), by theoretically justifying a combination of the
dimeﬂsionless groups proposed and also theoretically justifying their
limit. However, Table 3 shows that the criterion due to Doitchev, equation
(2D.3), does not in fact order the given fluidised s&stems as well as that
due to Romero and Johanson. In fact, nearly all the systems studied here
lie above the critical value. This is due to an assumption which Doitchev

made. To calculate the critical value, y&crit‘it‘is necessary to assume a

value for the average bubble size, db’ since %britdepends on the ratioA
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Bubble diameter (i) and the voidage at incipient fluidisationm, €,
particle diameter '’ dp

Then, the assumption 4 _ 1.0 and e = 0.4 leads to Neopit = 143,
R o cri
Y

However, values of i >> 1.0 (thus >> 143) could still give a particu-

d
b

Nf crit

lately fluidised system, so thé,t the designated critical value, Nf = 143

geens to be somewhat below the correct limit.

Using a similar method to Romero and Johanson on the present analysis,

reveals the dimensionless groups (;L—;-Q), Fr, R, and p (and n, a length

eF
ratio). A linear combination of these groups should provide a more power-
ful ordering system than that of Romero and Johanson,. as the additional

group, U, shows similar trends to the other g:rc;ups (ie for a given system,
b is proportional to the density group (Hagyard and Sacerdote (1966)); is.
large for air fluidised systems and small for water fluidised systems) and

also decreases with particle diameter for a given fluidising fluid, and

should thus broaden the range of the criterion.

It might therefore be expected that the inclusion of the viscosity group .
would improve the criterion, especially for those systems close to the limit

between aggregative and particulate fluidisation.

The linear combination of these groups gives, approximately:-

TH (_l_gg) Ry Fr>2x 105 - aggregative fluidisation
1-
p(—pg‘) ReF' Fr<2x 105 - particulate fluidisation
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Again, there is no justification for the combination of groups used here,
and the limit set for the criterion was determined by calculating its

value for many systems of known behaviour.

-Table 6 shows a comparison between these four criteria for known physical
systems.' It can be seen that Wilhelm and Kwauk's original classification,
in terms of Froude number alone, gives a correct ordering of the systems in
téms of stability. The added refinements which follow from this analysis
and that of Rice and Wilhelm does not lead to any significant improvement
in the prediction of the type of fluidising behaviour to be expected.
However, it should be remembered that rthe linear combination of groups
proposed here and by Romero and Johanson are merely the simplest combina-
tions pos'sible; Further theoretical studies would be necessary to determine
a combination of these groups which has physical justification, and this

may then lead to a better criterion.
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TABLE 6

Comparison of the Criteria Proposed for the Prediction of the Stability of Fluidised Systems

Romero & Johanson (1962)

Doitchev (1973)

This Work

Wilhelm & Kwauk (1958) Observed
System 1-p 1 -% | /10 :
Fr ( > )-Fr.R g ( > R _p.Fr ( > ) Rgp-Fr.u Nature
1010 micron diam 0.0080 0.117 164 50.0 Particulate*
Glass/water
3360 micron diam 0.0088 0.292 354 876 Particulate*
Socony beads/water
;580 micron diam 0.0099 0.520 527 2.81 x 103 Particulate*
Socony beads/water
’ (e

5180 micron diam 0.036 12.0 1760 1.03 x 10° | Particulate*
glass/water
55 micron diam 0.0L6 1.88 189 2.21 x 10% | Transitional®*
Glass/air
1280 micron diam 0.130 65.7 1400 2.82 x 105 Transitional*
Lead/water :
100 micron diam 0.230 50.5 L55 1.31 x 10° Aggregative**
Glass/air
210 micron diam 1.47 2.5 x 105 1400 1.26 x 108 Aggregative¥*
Glass/air
280 micron diam 2.05 6.4 x 103 2160 L.33 x 108 Aggregative¥
Glass/air
370 micron diam 3.79 2.5 x 10)4 3390 2.7 x 109 Aggregative*¥*
Glass/air
190 micron diam 18.7 4.0 x 10° 5000 8.8 x 1010 | Aggregatives*

Glass/air

¥Data from Wilhelm and Kwauk (1958)
**¥Data from experimental measurements




- CHAPTER 3: BUBBLE STABILITY

3.1

A Theory for Bubble Splitting

As it stands, the theory developed in section 2 cannot be expected
to yield much information about bubble stability. The analysis holds
good only for a plane horizontal surface, with no relative motion
between the phases. On the other hand, in a complete consideration
of the stability of a bubble roof, the curvature of the equilibrium -
surface and the velocity and voidage profiles in all phases in the
region of this surface must be considered. Rather than attempt a
description of this complex situation the results obtained in the
solution‘in section 2 are used to eétablish a qualitative theory for

bubble stability.

Observation of the mechanism of bubble splitting in fluidised beds
suggests that some estimate of the likelihood of bubble splitting
could be based on a comparison between the speed at which the disturb-
ance develops and the speed at which it would be swept awaj around
the bubble surface. As Rowe (1971) observes 'the uppér boundary
commonly develops downward pointing cusps which frequently'grow
rapidly into long fingers ... (which) run around the edge to be 103%

eventually near the wake ... but some grow so fast relative to their

" lateral movement that they divide the bubble'.

In order to apply the earlier theory to the bubble boundary it is
necessary for the bubble roof to be assumed flat - that is, for the
wavelength of the disturbance to be small with respect to the curv-
ature of the bubble roof. Clearly this will be only rarely true és,
too, will be the assumption that the disturbance is so large relative
to the particle dimensions that the continuum assumption remains

valid.
T0



In the solution obtained in section 24, a disturbance of initial amplitude
A has the subsequent form ¥ = A' exp(- ky + nt) cos Kx - === (3.1)

which with y = 0 has the maximum value ‘Q max = A ML oo (3.2)

‘The time for this disturbance to grow to 1 = db/2, say, is thus
L log a4y I € )

157 %% | 57
247

1=
The solution to the perturbation equations is, of course, a standing wave.
However, the particles moving around the surface of the bubble are
essentially falling under gravity (see, eg Hargreaves and Pyle (1972)) and
to an approiimation it might be expected that the disturbance will be swept
around the bubbie with the particleswhilst it is growing. O0f course, in
practice there wouldbe an interaction between these two movements, but here
it is assumed that they may be superposed. The time for the particle to

move a distance db/2 is thus of order:-

and it can thus be postulated_that if 7, >

5 Ty splitting would occur, and

vice versa.

Setting ¥ = T -n l-d—b—ﬂ ' . _ o
° 2/rl /g/loge (db/2A') ------------ (3.5)

then if ¥ >> 1, the bubble tends to split, and

if ¥ << 1, the bubble should be relaiively stable.

An approximate condition for the transition between relative stability and
instability is thus ¥ = 1, and equation (3.5) gives, for the critical

bubble diameter:-

db crit = G erit| e e o e oo oo .
IT_E Liog, [Tt] - 60



3-2

It seems reasonable to assume that the stability of different systems
may be compared on the basis of initial disturbances which are
proportional to the particle diameter. The solution to equation (3.6)
is shown in Figures 14 and 15. Figure 14 is calculated from equation
(3.6) using values of n from the solution of boundary condition set 2
(1arge interstitial fluid momentum). Figure 15 is calculated from
equation (3.6) using values of n from the solution of boundary condi-

tion set 6 (zero interstitial fluid momentum).

The region of stability corresponds to that underneath the curve, which

is not monotonic in db. Thus, for a given range of initial disturb-
ances, there appear to be both a minimum and maxiﬁum possible stable
bubble diameter. From Figures 1l and 15 it can be deduced that the
region of stability of gas fluidised systems is much larger than that
of liquid fluidised systems. For example, for initial disturbances
of, say SO‘dP, water-fluidised systems would be completely unstable,
whilst gas-fluidised systems remain very stable. It can bé seen that
the choice of boundary condition set has little effect on the solution

to equation (3.6).

On the basis of the present simplified analysis, then, the non-existence

_ of bubbles in liquid-fluidised beds, and their relative stability in

gas-fluidised beds can be explained, at least in qualitative terms.
Moreoever, it does not appear as if bubble diameters should be
seriously limited by the splitting mechanisms proposed here.

Comparison with Other Theories

The results of the analysis presented here predict the existence of
both a maximum and minimum stable bubble diameter. The relation of

this prediction to the maximum and minimum stable bubble diameters
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predicted by Davidsonet al (1961) and Godard and Richardson (1969)
(see section i.h) is considered. The present work reveals, for the
maximum stable diameter, the limit above which splitting from the
roof is likely, while the work of Davidson et al proposes a limit
above which another form of instabiiity (never yet observed under
natural conditions) should occur. Similarly, é bubble larger than
the Godard and Richardson minimum stable diameter may still be
susceptible to splitting, and in fact may continue to divide by this
process until it becomes, under the Godard and Richardson criterion,

too small to exist.

Comparison of the size of maximum and minimum bubblé diameters pre-
“dicted here with those of the other workers is of limited applica-
bility, as both depend explicitly on the amplitude of the initial
disturbance, A, Calculation of a specific maximum or minimum bubble
diameter for any given system would thus involve artificially

specifying the size of the initial disturbance.

Clift, Grace and Weber (1973) also attempted to use the results of
their analysis of the stability of a horizontal interface to predict
the likelihood of bubble splitting. They use, as their two time -

scales:

T, %, or the time for the disturbance to grow by a factor e

Ty = ig log (t—-];zg—-))
2g e tan \e /0
Where © is the angle from the bubble nose at which the dizturbance

originates. .
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Using a similar criterion of 71/72 = 1 they drew a stability chart
of Ty To VTS A, the disturbance wavelength with the bubble diameter
as a parameter. This then predicts the wavelength of the disturbance
which causes splitting (small A; disturbances are swept aside;
large A, bubble tends to split); whereas the present analysis
assumes that the 'most dangerous' wavelength will always be dominant
and is thus used as the basis for comparisoh and calculation. The
conclusions then differ in as much as Clift et al predict that all
bubbles are unstable, at some disturbance wavelength, whereas the
present analysis assumes that the disturbance wavelength is constant
for a given physical system, the buﬁble stability then depending on

its diameter.

Measurements of the disturbance wavelength reported here (Table 7)
for different systems show that the wavelength appears fairly constaht
for any given system and this provides some support for the assump-

tion made in this analysis.

It must be pointed out that neither analysis can be used to obtain
quantitative results for bubble stability without further information

on the initial amplitude of the disturbance.

_ Experimental Study of Bubble Splitting

The movement and splitting characteristics of bubbles in a two-
dimensional air-fluidised bed wére observed and measured. The bed
had the dimensions 30 cm x 120 cm x 1.5 cm and had a porous plastic
(Vyon) distributor. Resulis were obtained for the closely graded

particle systems recorded in Table 7.

The bubbles were observed using cine-photography at a frame speed'of
up to 64 frames/sec using angled back-illumination. The film was
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analysed frame by frame on a frame analyser to find the frequencies
of bubble splitting as a function of bubble size, and also to measure

the growth rates and wavelengths of the observed disturbances.

For each system studied, approximately 13,000 bubbles were observed,
and the growth rate and wavelength measurements recorded for

approximately 30 bubbles of diameter between 3 and 15 cm.

The movement and splitting characteristics of injected bubbles of
water in a two-dimensional water-fluidised bed were also observed by
the same technique. The bed had the same dimensions as that used for
air-fluidisation and had a fine filter-cloth distributor. A simple
method of injection was employed: nemely, an injection tube was
inserted, flush with the bed wail and connected to a manually operated
valve. No attempt was méde to meter the injected volume. Unfortun-
ately, no measurements of growth rates could be obtained, so that the

results presented here are qualitative only.

17



TABLE 7
a Bubble Stability for Glass/Air Systems

Particle |Minimum Superficial Measured Measured Disturbance
Diameter |Fluidising Velocity | Growth Rate >
. -1 Wavelength, cm
dp, microns Uo’ cm/sec sec

190 30.0 - 26.0 L.0

280 7.5 = 29.5 3.8

210 5.5 22,2 2.8

100 1.5 16.5 2.2

b Physical Parametei-s of the Non-Spherical Sand/Air System

Particle Diameter Microns | 599 500 422 353 251

Wt % Retained at Diameter L.Lh| 37.61 B53.7 L.3 0.0

Surface mean diameter = L}0 microns

Minimum superficial fluldising velocity = 23.5 cm/sec
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Results and Discussion

Figure 16 shows a typical bubble in a gas fluidised bed in the process
of splitting. The sequence of photographs illustrates quite clearly
how the growing fingers of particles are swept around the surface of
the bubble. 1In Figure 17a one such finger is seen to finally split
off a small section of the original bubble. It is also possible to
estimate a mean wavelength, A, for the disturbance: Figure 17b shows
a clear waveform on the roof of the bubble and measurements of these
characteristic wavelengths and growth rates are found to be approxi-
mately constant for each particle size and, independent of bubble
diameter. Table 7 records these vélues; the figures given being the
arithmetic mean of approximately 30 experimental measurements. These
results are also shown in Figures 10 to 13, where the épread of the

experimental measurements can be seen.

Figures 18, 19 and 20 show the behaviour of water bubbles injected
into.a water fluidised bed of 490, 280 and 100 micronrdiamefer glass
particles, respectively. Although no measurements of growth rates
could be obtained, the photographs illustrate quite clearly that
bubbles in liquid fluidised beds do indeed split from the roof rather

than by collapse started from the wake (Davidson et al (1961)). This

"observation is borme out by Clift and Grace (1972) who observed that

bubbles injected into a water f;uidised bed of 1300 micron diameter
lead shot, split only from the roof. Figure 20 also shows a wave-
like disturbance of the roof, so that it does seem likely that there
will be a characteristic dicturbance wavelength and growth rate

associated with water fluidised beds.
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Figure 16: Fingering in a bubble in a gas fluidised bed
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Figure 17: Splitting caused by fingering in a gas fluidised bed
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Figure 18: Behaviour of a bubble in a water fluidised bed
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Figare 20: Behaviour of a bubble in a water fluidised bed
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The measured values of the disturbance growth rates and dominant
wavelengths can be compared with theoretical values between Tables 7
and lj, or, better, in Figures 10, il, 12 and 13. The values do not
agree quantitatively although trends are similar in both cases; it
may be that the experimental results represent a sub-harmonic of the
theoretical predictions. The experimental results would seem to add
weight to the suggestion that the correct boundary conditions lie
somevwhere in between the assumption of zero or large interstitial
momentum (ie set 6 or set 2). It must again be emphasised that the
theory is in any case only true for infinitesimal disturbances. The
experimental results, on the other hand, refer to the characteristics

~of finite amplitude disturbances.

Measurements of the frequency of bubble splitting as a function of
size are presented in Figure 21. For clearer representation, the
results are shown as smoothed curves rather than in histogram form.
The given experimental curves are the result of analysis of approxi-
mately LOOO frames of cine film for each system. Their form is
independent of fluidising felocity, this is not shown, but for eéch
system the results consist of the sum of the results at several
fluidising velocities (up to Lx the minimum fluidising velocity),

each of which show the same characteristic form.

The theoretical boundary between stability and instability is not
sharp, for the criterion that ¥ = 1 should divide the two regions is
at best an approximate one. For a system with a wide range of
.initial disturbances it is to be expected that the theoretical line
in Figure Zi will be S-shaped, and the experimental results do in

fact have the expected form.
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The initial turning down of the curve is due to the effect of rapid
coalescence of the smaller bubbles. These, being extremely numerous,
coalesce so quickly that their life span is too short for splitting
to be important. Also, the assumption of two-dimensional motion will
be less nearly correct for small bubbles whoge diameter is comparable
to the bed thickness. Splitting in a plane other than one parallel to
the viewing plane would not be observed. Rowe (1971) points out that,
in three—dimehsional bubbles, splitting can indeed occur at any angle
to the vertical axis, whilst in two-dimensional bubbles, it occurs

only in a direction normal to the plane of the bubble.

Coalescencé also appears to be important both for small particle
systems and at larger bubble diameters. In both cases, coalescence
was seen to be a very violent process, often inducing splitting
immediately afterwards, so that the splitting frequency is apparently
more dependent on the frequency and scale of the coalescdnce rather

than on the growth of disturbances as proposed here.
k

The. trend of the results.with respect to the minimum bubble diameter
is very encouraging. It can be seen from Figure 21 that the minimum -
bubble diameter increases with increasing particle diameter dp.
Figures 14 and 15 both ‘show that for a given (dimensionless) initiai”
diéturbance, the minimum bubble diameter should ihcrease; for glass/

air systems, with dp'

Apart from the difficulties in comparing a theory for the initial
motion of infinitesimal disturbances with experimental data, a further
problem must be pointed out. The theory has been developed for sys-
tems containing uniformly sized particles. On the other hand, in any
practical situation, even a laboratoryiexperiment of the-type:carried
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In the experimental results, Figure 2la (ii), the initial section

of the graph is shown as a broken line; here, the bubble behaviour is ,

governed by coalescence, That is, the bubbles are so small and numerous,

and coalesce so readily that disturbances on their boundaries do not have

time to develop fully.

Once the bubble behaviour ceases to be dominated by coalescence (full

line, Figure 2la (ii)), it can be seen that the tendency to split decreases

. with bubble diameter,

This is in complete agreement with the theoretical

predictions, Figure 21a (i) (see also Figures 14 and 15) where the bubble

stability can be seen to increase with the bubble diameter.




out here, there will be present a distribution of particle sizes.

The results in Figure 2 for the non-spherical sand mixture of wide
particle size range show that the minimum bubble diameter is decreased
by the non-ideality of the system, but it is not known to what extent

each of the two factors operate.

It can be seen in Figure 21 that the minimum stable bubble diameter
with respect to splitting is between 3 and 5 cm. The experimental
results of Godard and Richardson (1969) show that the minimum bubble
diameter is 0.5 cm, but, as pointed out in section 3.2, the Godard
and Richardson analysis predicts the bubble diameter below which a
bubble cannot exist, whereas the present work predicts the diametef
below which a bubble tends to split. The two results are not there-

fore contradictory.
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* CHAPTER l: STABILITY OF VERTICAL CHANNELS IN FLUIDISED BEDS

Introduction

Another interface between the particle free 'support' fluid and the
homogeneous fluidised bed phase of great interest is the vertical

interface, say the wall of a channel or spout.

Channelling, on a large scale, is an abnormality in the behaviour of
a fluidised system, characterised by the establishment of flow pathé
in the bed of solids through which disproportionately large amounts
of fluid pass. This can occur in both gas and liquid fluidised sys-
tems (see Hasset (1961)). It is particularly important in industrial
fluidisation, where the fluid distribution is usuélly through a small
number of geometrically spaced holes, so that prefereﬁtial fluid flow
paths are common. As this leads to poor fluid-solids contacting and
mixing, itAis undesirable in most situations, and so a greater under-
standing of the factors affecting the stability of these channelsA

should help in the design of more efficient fluidised beds.

It is also thought that channelling may be responsible for the
initiation of bubbles in fluidised béds. Particularly with a distri-

butor of the sieve-plate type, the fluid will enter the bed as jeté

' (or in channels) which penetrate the dense phase, breaking up to form

bubbles. (Zenz (1968); Fakhimi and Harrison (1970); Chiba,

Terashima and Kobayashi (1972)).

There are many physical factors which seem to effect the formation of
channels in fluidised systems, for example, the shape, density and

size of the particles, the fluidising velocity and the bed history.
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Matheson, Herbst and Holt (l9h9) reported channelling behaviour for
beds of synthetic cracking catalyst of 10 microns diameter when
aerated at velocities up to 1 fps. For the same material of LO
microns diameter, no channelling was observed for fluidising

velocities as low as 0.01 fps.

Leva (1959) reported that the tendency towards chamnelling increases
as the sphericity factor decreases, ie non-spherical particles are

more susceptible to channelling.

Godard and Richardson (1969) reported that severe channelling in air
fluidised beds of fine solids could be overcome by the rotation of a
paddle within 1 cm of the distributor. Withdrawal of the paddle

does not then return the bed to its former channelling state.

In some cases, a vertical channel is deliberately induced in a
fluidised system, in fact, the spouted bed technique often permits
fluidisation of solids that are too coarse for normal fluidisation.
Spouting is achieved by forcing the fluid through one channel (spout)
and, by using a conical baéed vessel, a cyclic particle movement is

achieved.

Once again, the stability of the spout depends on the physical
parameters of the system (namely, spout and bed diameter, cone

angle, fluid velocity, particle size and distribution and bed depth).
These are well reviewed by Mathur (1971). The main parameter of
interest here is the maximum stable spout height (or the maximum
.spoutable bed depth), for which many correlations have been presented
(again see Mathur (1971)). If the bed depth is greater than this,

the spouted bed changes into the normal fluidised state, and it

20
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appears that this occurs when the interstitial fluid velocity near
the spout wall approaches the minimum fluidising velocity (Lefroy

and Davidson (1969)).

It is hoped that the analysis presented here will explain some of
these phénomena. ‘

Equations of Motion for Channelling and Their Solution

If the wall of a (2-dimensional) channel is considered to be a plané
vertical interface between the 'support' fluid (pai-ticle free fluid
in the channel) and the two interacting fluidised bed phases, all

three phases being aséumed of infinite extent (see Figure 22b), the
analysis will be similar to that already presenteci for a plane hori-

zontal interface.

The equations of motion governing the behaviour of the three phases
are not altered; that is, the two interacting bed phases are governed
by the .equa;tions based on those of Jackson (1963) and the 'support!
fluid governed by the Navier-Stokes equations (equations QA.1) to

(24.9), see section 24.1).

The stability of the vertical interface to small wave-like disturbances

may then be studied; a major difference from the earlier analysis is

" that in linearising the equations of motion (2A.1) to (2A.9) the

steady state vertical velocity in the support fluid, Wy, is taken to
be some (variable) ratio of the incipient fluidisation velocity, so

that - W = FU, e e e e e — oo (4.1)

vhere @ is a constant.

The use of equation (L4.1) allows the effect of variations in the
steady étate x}elocity in the channel to be calculated. This is ne-ces—
sary, as the channel velocity may be many orders of magnitude greater
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than the minimum fluidising velocity.

Using the same techniques as in section 2A.1, the equations of motion

are cast into the linearised and dimensionless form; equations

(24.21) to (2A.25) and 2A.27) to (24.28) continue to hold and

equation (2A.26) is replaced by:-

: . &
p[dwx ?5%}*'5‘% @, 1[d§+ ;‘]:o e e e = (L.2)

—— + -—
dt dy & T E e iy

Whilst (2A.29) is replaced by:-
awl a | [dzw a2
‘V+ A

ap
A A A3 _ 1
P[ Tt P dy} *¥r dy "R

€p

Where the dimensionless groups are as defined in section 2A.1.

A particular solution to these perturbed, dimensionless equations is
then, as in section 2A.2, with the equation (2A.38) for the support

fluid pressure replaced by:-—

P3 =,§§%Q (n + PK).F. exp(Ky + nt) Cos Kx = = = = = = = = = (L.L)

and m3 given by:

m32—¢ReFm3—Ran—K2=O -------------- (4.5) -

The solution to the equations of motion is theﬁ equations (24.30) to
(24.37) with (4.4) and (4.5). Complete details are given in
Appendix 2, section A2.2.

Boundary Conditions and the Solution Using These Boundary Conditions

Again, as in section 2A.3, six independent and consistent boundary

conditions are required.

The boundary is now défined at x = 0, the perturbed boundary being
X = ﬂ (v, t). By definition, the boundary is the limit of the particle
oL



phase, thus, the rate of change of the boundary with time,

a
% = V'x ——————————————————— (L.6)

Integration of (4.6) gives:

vV

x B ; = = - -
n = === exp(- Ky + nt) Sin Kx; for V,=0at t=0 (L.7)

The boundary conditions are derived as before by taking material
balances across the (slightly) deformed interface and by equating

normal and tangential stresses on either side of the surface.

A1l the arguments put forward in 2A.3 regarding the boundary condi-
tions for the horizontal boundary still hold true'for the vertical
boundary, so that once again, the six sets of boundary conditions
equivalent to those proposed in section 2A.3 could be derived..
Hdwever, the results for the horizontal boundary show that the two
sets of boundary conditions of most interest are sets 2 and 6; it
will be recalled that set 2 is derived from the assumption~that the
interstitial fluid momentum is large and set 6 is derived from the
assumption that it is negligibie. Thus, only the two sets of
boundary conditions equivalent to sets 2 and 6 are derived here for,

the vertical boundary.

. Set 2 gives, on derivation in the seme manner as in section 2A.3, the

same results, viz, equations (2A.42a), (24.43) and (2A.50).

Set 6 gives as before, equations (2A.42), (2A.43), (2A.47) combined
with (24.5L) together with (24.48) combined with (24.55). As this
would give an indefinite result, the solution of Clift, Grace and’
Weber (1973) is re-calculated for the vertical boundary with these

boundary conditions, with their equivalent solution to equations
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(24.30) to (24.37), (L.l4) and (4.5) for the solution to their

simplified equations of motion.

Substitution of the solution into these boundary conditions gives

the general solution:-
[M][ABCDE F]T =0 e mmm e e e e e m - - (L.6)

Where M is a 6 x 6 matrix, for boundary condition set 2 and

[M'] [A' 3 ¢ D'JT =0 e e m e e e e e m e — - - - (4.62)

Where M is a L x L matrix for set 6.

The non-trivial solution is then: det [M] =0 - = = = = - - (L.7)

which degenerates to:

P () +n2 (B) +n(e) +d 20  mm-mmmmmm e (4.8)

t
My M, a, b, ¢ and 4 are given in Appendix 2, section A2.2, for both

sets of boundary conditions.

Equation (4.8) has been solved by digital computer for several known

.physical systems, with the constant # as a parameter.

Predictions from the Theory

The solutions to the theory described above have been found for two

different cases:

a The spouting situation, where the gas all flows through the
channel, that is, the particle phase is not properly fluidised.

Under these conditions, the particle phase viscosity temds—ie

becomes large  (see Schugerl et al (1961); as the fluidising velocity

approaches the minimum from above, Hy increases rapidly). In a
spouted bed the interstitial gas velocity outside the spout is
zero at the foot of the bed and increases up the bed as gas

percolates into the bed from the spout.
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This situation proved fo be always stable for all values of the

chammel fluid velocity, for both sets of boundary conditions.
b The channelling situation, where the homogeneous phase close tc

" the chammel wall is well fluidised. For this situation, the

normal particulate phase viscosity values were used.
For the channelling situation, Figure 23 shows a typical solution
using the boundary condition set 2. The solution was found for all
the systems recorded in Table L, and all showed the same basic trends.
That is, for any given value of the fluid velocity in the channel
(ie ¢ Uo), the chammel wall is unstable to small wave-like disturbances;
the magnitude of the.growth rate of.the instability decreasing with
increasing channel velocity. At a given channél velocity, the mag-
nitude of the growth rate of the instability also decreases with

increasing particle size.

This does explain the presence of a maximum spoutable bed depth in'
spouted beds; the spout wall remains stable until the height where
the particles close to the spout wall become fluidised, at which
point the wall becomes unstable. Once the top of the spout brezks up
and disturbs the circulatory particle movement, the whole spout
collapses. However, none of the other trends of chamnelling seem to

" be explained by these results.

Figure 2hbshows a typical solution using boundary condition set 6.
This solution was investigated for four of the systems presented in
Table L4 and for cracking catalyst of 55 micron diameter fluidised
with air. The cther water fluidised systems given in Table L weré
investigated but found to have only stable solutions for all channel

velocities down to 0.1 U@'
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It can be seen that increasing the channel velocity makes the
boundary stable to large wavelength disturbances (small wave number,
K) until a given limit is reached, above which the boundary is stable

to 21l disturbances. These limiting values are given in Table 8.

If can be seen that the limiting channel velécity decreases with
particle size for gas fluidisation, and is much smaller for water
fluidisation. It must be pointed out, for the water fluidised systems,
that a channel velocity of less than the minimum fluidising velocity
has no physical meaning. It would not be possible to maintain a

chammel at a velocity lower than that in the surrounding fluidised

phase.

The results from boundary condition setA6 explain the maximum spout-
able bed depth in the same way as do those from set 2., Spouting is
usually carried out with coarse particles, which, according to Tabl¢
8, would have a very high iimiting channel velocity, and the spout
will become unstable as soon as the particles-beCOme fluidised. The
results here indicate that 2 bed spouted with water would not be
limited by a maximum spoutable bed dépth, as the spout will.still be -
stable, even when the particles become fluidised. This haé not been
reported by other workers, but 1ittle work has been done with liqui&
spouted beds, possibly because they do nét offer-any obvious advan-
tages over particulate fluidisation, which,unlike aggregative fluid- -

isation, is as effective for coarse solids as for fine material.

The results from the sglution of boundary condition set 6 are consist-
ent with the known trends in channelling behaviour. Channelling is

to be expected for small particle diameters in gas fluidised bheds, as
the channel walls are stable at lower (and therefore experiméntally
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attainable) channel velocities. For larger particles, the channel
walls are stable only for very high chamnel fluid velocities, which

are not likely in a normal physical situation.

The effect noted by Godard and Richardson (1969), that channels
broken up by a paddle rotated close to the distributor did not
re-appear, is also accounted for by this theory. The severe chammel-
ling (spouting) at the base of the bed occurs as the fluidising fluid
is unevenly distributed. The particles close to the channel wall are
therefore poorly fluidised so that the wall is always stable, no
matter what the channel velocity is. The paddle will break up the
chamnels and ensure good fluidisation, so that, at the low gas

- velocities used by Godard and Richardson, any chamnel thet reforms is

now unstable.

The non-bubbling behaviour of most water fluidised systems is also
accounted for. The fluid enters the dense phase in the form of small
jets, the particle phase being, close to the distributor, poorly
fluidised. As the fluid seeps into the particle phase through the
walls of these jets, the particles close to the jet walls become more
uniformly fluidised. Thus in gas (air) fluidised beds, the jets
become unstable and break up forming small bubbles which then |
coalesce. However, in (most) water fluidised beds, the jets will

remain gtable, so that no bubbles form.

It is not possible to compare this channel break up with that
proposed by other authors (see Levich (1962a)) for liquid jet break
" up, as it is shown that this is wholly dependent on the surface ten-

sion, which is non-existent in fluidised beds.
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TABLE 8

leltlng Values of the Superficial Channel Velocity Above Which the Channel Wall is Stable

(Theoretical and Experimental )

Minimum Superficial

Limiting Theoretical

Limiting Experimental

System Fluidising Velocity Theoretical Superf%zialoihannel Superficial Channel
U_ cm/sec max ocLty Velocity cm/sec
o =g U_ cm/sec
max "o

L90 micron diam 30.0 2L.0 720.0 Not measured
Glass/air
100 micron diam 1.5 200.0 300.0 270.0
Glass/air
55 micron diam 0.5 Lho.0 220.0 250.0
Catalyss/air
1280 micron diam L.0 2.8 11.2 Not measured
Lead/water
5180 micron diam L.3 0.7 3.4 Not measured
Glass/water
A11 other glass/water Ub < 0.1 < 0.1 x Ub 0

systems from Table L




L.5

Experimental Study of Channelling Behaviour

The behaviour of a channel in a two-dimensional fluidised bed was
observed using cine-photography at a frame speed of 6L frames/sec
with angled back illumination. The film was then observed at slow
speed to determine the stability of the channel wall. The bed had
the dimensions 30 cm x 120 cm x 1.5 cm and was fitted with either a
porous plastic (Vyon) distributor for air fluidisation, or a fine
filter cloth distributor for water fluidisation. The channel was
initiated approximately 10 cm above the distriﬁutor, so that the
bed on either side of the channel would be well fluidised, using the

system illustrated in Figure 22a.

These experiments were carried out for several different particle
gizes fluidised by both air and water with many different fluidising
and channel velocities. Figure 25 shows a typical photographic
sequence for an unstable channel in air fluidisation. It can be
éeen that a channel as such, did not form completely through the bed,
but tended more towards bubbling. This is to be expected; if the
channel wall is inherently unstable, any channel will break down,
and once bubble formation at the orifice (channel initiation point) :
commences in this way, the forced oscillations that this sets up.inu
the bed oppose any fﬁrther attempt at chaﬁnel formatidn. Zenz
(1968) reports that jets of gas in fluidised beds breakAaway to form

bubbles in the above mammer, but did not record the jet velocity.

It was found that this bubbling behaviour could be charécterised by a
constant bubble frequency at any given air flow rate. Davidson.and
Harrison (1963) derived a theory for bubble formation from an orifice
in inviscid liquids and showed that it also applied for fluidised
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Figure 25: Behaviour of an unstable channel in a gas
fluidised bed
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beds. However, their derivation was for three-dimensional spherical
bubbles and not therefore applicable here. Their analysis is
repeated in Appendix L for two-dimensional circular bubbles and the
results, together with the experinmentally meésured frequencies for
100 micron diameter glass particles, and the theoretical frequencies
of oscillation of the expected dominant disturbance, are given in
Table 9. Although the basic trends are éimilar, the agreement seems
to be poor, but it should be remembered that the bubbles produced

experimentally are, as can be seen in Figure 25, far from circular.

As the film shows, the system is bubbling from a point source rather
than channelling with disturbances growing on the-wall breaking up

the channel. The results in Table 9 bear this out, as the frequency
of the expected dominant wavelength on the channel wall (nmax/2n)

shows very'poor agreement with the experimentally measured

frequencies.

Figure 26a shows a typically stable channel in air fluidisation. Any
disturbance on the wall is damped out. Occasionally, very large
disturbances occur but these are quidkly swept aside and the stable

channel reformed.

Figure 26b shows a stable channel produced in a water fluidised bed.
It can be seen that the channel wall is stable, but that the channel.
loses its identity higher up the bed, as the channel fluid velocity

falls below the surrounding interstitial fluid velocity.

The experimental results confirm the theoretical predictions obtéined
from boundary condition set 6. That is: for the range of particles
gtudied here, for air and water fluidisation, the channel is stable
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(b),

Figure 26: Behaviour of a stable channel in gas and
water fluidised beds
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(as in Figure 26a, b) when the background fluidising velocity is zero,

for all chammel fluid velocities.

For all the water fluidised systems investigated, the channel remains
stable with the bed phases well fluidised, providing the channel

velocity is greater than that in the surrounding fluid.

For gas fluidisation, tﬁe channel is unstable (as in Figure 25) with
the bed well fluidised, until the channel velocity exceeds a given
limit, when it stabilises (as in Figure 26a). These experimentally
measured limiting chammel velocities are recorded in Table 3, and it
can be seen that they agree well with the theoretically predicted

values.

It is to be expected that the results from boundary condition set 6
adequately describe this physical situation whilst those from set 2

do not, as the assumption made in their derivation is more applicable
here. The fluid velocity in the channel is very large whilst in the
interstitial fluid it is assumed to be the minimum fluidising velocity.
It is therefore quite reasénable that the interstitial filuid momentum
should be ignored in comparison. It seems then, that the boundary
condition set 6 is approximately true for the case of a vertical

charmel, and the experimental results do bear this out.
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TABLE 9
Frequency of Bubble Formation for 100 Micron Diameter Particles Fluidised With Air

Theoretical Frequency

Experimental Bubbling of Oscillation of Description of

Theoretical Bubbling

Gas Flow Rate ¢ -1
Frequency.f. sec -1 . . Channel
G cc/sec (equation (. 6)) Frequency sec Domlfint Disturbance Behaviour
Sec ~ (= nmax/2n)

333.0 92 17.3 10.5 4.7 Bubbling
’ : s ie unstable

52 100 14.6 10.0 L.7 ' Bubbling
ie unstable

750 119 13.1 . 9.5 L.6 Bubbling
' ie unstable

1230 160 11.1 9.0 ' Lh.3 Bubbling
ie unstable
1580 180 10.2 . 8.5 L.l Transitional
> 1580 > 180 - Non-bubbling | - Non-bubbling

] ie stable

NB: ¢ is obtained by calculating the superficial channel velocify»

G
chanmmel width x bed width

ie @x U = superficial channel velocity =



CHAPTER 5: THE BEHAVIOUR OF LIQUID FLUIDISED BEDS FOLLOWING STEPWISE
CHANGES IN FLOW RATE

5.1 Introduction

During the partiéulate fluidisation of mono-sized particles the
particles are uniformly dispersed throughout the expanded solid-fluid
mixture. Mogt liquid fluidised systems féll into the rangé of
particulate behaviour, and generally expand smoothly as the velocity
is increased from the minimum fluidisation velocity. The steady
state relation between expansion, or voidage fraction, and fluidising
velocity is well correlated by the relationshiﬁs due to Richardson and
Zoki (1954). Slis, Willemse and Kramers (1959) studied the transient
effects oh the bed height of step changes in the fluidising flow rate
using a water fluidised bed. They developed a theory for the
propagation of 'continuity waves' through the system which satis-
factorily accounts for the observations following a decrease in flow
rate: rather similar arguments have been developed by Wallis (1969)
to account for the behaviour of other two-phase systems. Following a
step increase in flow rate, however, Slis et al found that the bed
height increased uniformly at first, followed by a fall in the rate
of increase. The explanation for this curious behaviour which is
proposed by Slis et al was that the boundary between the regions.of"
constant voidage fraction corresponding to the two levels of fluid-
ising veiocity spreads out rather than propagates as a sharp inter-
face. They argue that this should happen sinée the lower region, which
has a higher voidage.fraction, also has a higher velocity, and this

overtakes the region of lower voidage.

There may however, be another explanation for this behaviour since
following a stepwise change in liquid flow rate there exist two
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regions of different density with the lower density zone undermeath.
This would apparently be an unstable situation and the horizontal
interface might be expected to break up due to the formation of two-
or three-dimensional disturbances {(Taylor (1959); Bellman and
Pennington-(195h)). Such a possibility has been noted by Wallis
(1969) and Volpicelli (1967) has observed apparent unstable behaviour

in liquid fluidised beds.

In this work, some simple experimental studies of this situation
following step increases in fluidising velocity are reported and the
applicability of the analyses of Taylor instabilities to this problem
are discussed.

Theoxry

Taylor's classical analysis of the instability of superposed fluids
of different densities wes pursued further by Bellman and Pemnington,
who investigated the stabilising influences of viscosity and density.
Rice and Wilhelm's (1958) analysis of fluidised bed instabilities
follows a very similar path to Bellman and Pennington's analysis.
These theories all relate to the initial motion and growth of an
unstable interface and allow one to predict growth rates and 'most

dangerous' wavelengths for infinitesimal disturbances, (see section -

- 1.3).

Layzer (1955) produced an elegant theory which includes both the

“initial growth of a two dimensional disturbance and its final

developed steady movement when the flow is confined withir a cylin-
drical region or between two parallel walls. Initially a number 6f
small wavelike disturbances develop on the horizontal interface: fhe
movement should be quickly dominated by the most rapidly growing -
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most dangerous - wavelengths; finally the movement of the lower
density region will have the form of a single tongue or slug,
essentially fillingﬂgggﬁgonfining region., f%he"q£éady movement of a
gas-slug in a liquid of low viscosity has been analysed by |
Dumitrescu (1943), Davies and Taylor (1950) and other workers.
Stewart and Davidson (1967) summarise these studies which predict
that the slug velocity should depend only on the tube diameter, 2R,
or the distance (2R) between the parallel walls: they show that the

Froude Number ((é%)%) is 0.326 in the two-dimensional case, and 0,511

in three dimensions.

[

Layzer adopted a suggestion due.to Fermi (1951) to comnect the two
regions where a solution is available: the initial region of
exponential growth, which results from the linearised theory, and the
final steady motion of the vertex of the developed slug-like disturﬁ—
ance. Layzer's solution for the rising velocity of the leading vertex
of the disturbance is:

a In three dimensions:

25 7 Q—. M .
vo €= =1 T o mE o (5.1)
3.83(e” + 1) J '
b In two dimensionsg
N ] % 1 | |
v | &3 -1 ()% - = - == = == = - - (5.2)
;! 4 0.5) |

which reduce, in the steady state, § and N ===> =, to the results

quoted above for the slug velocity.

In this analysis, 3 and M are as defined by Layzer from the dimension-
less equations for the free surface between the two fluids: in 2-

dimensions 1 % Y/(Bg oo (5.3)
()



...3

Nhe;éifﬁé‘réferencerariables 4re, Lenggh - -% ; veloci;y _ Eégg%

in 3-dimensions; "yl ) I ¢ NS
(3.83)

[ - — - = ' . j,__*_._——— e _ 12

whére reference variables are, Length = %ng ; velodity = (%%ﬁg

S _———— T e e e —

y is the vertical coordinate of the slu

o nose, where y = 0 corresponds to
2
the heignt at which the slug is initiated. ' o

1he theory is strictly applicable only to situations where the density
difference between the two phases is very large (eg the interface
between air and water). Dimensional analysis (Wallis (1969);

Davidson and Harrison (1963a); Stewart and Davidson (1967)) suggests
that when viscous and surface tension forces are negligible the

Froude number relating to the final steady motion should be corrected

i : :
by (1 - ps/pF)2 where pg is the density of the fluid within the slug,

and py is the density of the surrounding (ie initially uppermost)
fluid. Stewart and Davidson's experimental results correlated well

when this factor was introduced.

A further compliqation a:ises in the case of two-dimensional disturb-
anceé. Considering a typical 'two-diﬁensional' apparatus Where the
depth of the apparatus is perhaps one or two orders'of magnitude less
than its width (R) it will be clear that: N
&  the initial movement of the disturbance will probably be three-
dimensional and,
b that three-dimensional eﬁgects will persit until the width of the
disturbance is much greatér than the depth of the apparatus.
Griffith,(l963) suggests a corrected Froude number of the form:

F, = 0.326 + 0.185 DS/Db g (5.5)

Where DS is the depth of the slug and D, its width.

b
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This appears to correlate results for the rising velocities of slugs
in tubes of rectangular cross-section. Including these two correc-

tions a modified version of Layzer's two-dimensional theory has the

form:
| . N o
VB @F -y )P — oo (5.6)
D n s |
with F, = (1.0 + 0,568 52) | &1 - 31 -1 [ - (5.7)
b | 3n(e3N + 0.5)

NB: F2 is derived from Layzer's 2-dimensional solution with F, from
equation (5.5) included, and defined to give the correct results

for the steady state for both 3 and 2-dimensions.

F , [eh_m_l%

ie F_ = 1 ) T
lim.E———)oao[ezg - 2¢ -1 :,_5 3TT(G + 0.5)

3.83(e2£ + 1)

no
I

: F 3n -t
or T, =53 [ - 3;3'2 _1}2
. 3m(e”" + 0.5)

It should be possible to define the behaviour of the interface by an
analysis similar to that presented in section 24, This would involvs
an assumption similar_to that made in sextion 2C, that is, the région
of lower density would become the support fluid, with mean viscosity
and density, whilst the region of higher density would be described as
two interacting phases. However, as before, fhis approach would only
be applicable to infinitesimally small disturbances; once the
disturbance has grown to finite proportions the analysis would become
invaliq. Thus, an apprcach similar ito that due to Layzer presented

here would still be necessary.



5.3

5.4

Bxperimental

The behaviour of a two-dimensional bed fluidised with water following
step changes in water flow rate was observed, using glass baliotini
particles of nominal diameter 100; 280 and L9O micron respectively.
The bed, with dimensions 120 cm x 30 cm x 1.5 cm was illuminated by
high intensity angled back lighting., The fluid distributor was a
fine filter cloth. It was found possible to follow clearly by eye
the moveﬁent of the interface separating regions of different density
following a step change in flow rate. The movement of the interface
was recorded on cine film; some measurements of the velocity of the
developed disturbance were taken by measuring with a stopwatch the
time to travel 20 cms.

Observations, Results and Comparison with Theory

The development and motion of an unstable interface in a bed of 490
micron particles is hown in Figure 27. The sequence shows the |
initial formation and rapid growth of a number of small wavelength
disturbances along the horizontal interface; the initial wavelength
is in the region of 1.5 -~ 2 cms. The growing disturbances»begin to
interact and are gradually taken over by one dominant disturbance. .
In the relatively shallow beds used in these experiments the dominant
disturbance never increased to completely fill the bed, althoﬁgh it
seems likely that this would occur, given sufficient time. Figure 27
appears to give a convincing qualitative demonstration of the role of
Taylor instabilities in the movement of interfaces between regions of

different voidage fraction.

In order to compare the results with the theory of equations (5.6)
and (5.7) it was necessary to calculate the voidage fraction of the
oWwo regions. It was assumed that each region was homogeneous with
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Figure 27: Formation and growth of a voidage fraction
disturbance in a liquid fluidised bed following
a step increase in flow rate
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constant voidage fraction which was related to the liquid velocity by
the appropriate form of Richardson and Zaki's (195L4) relation, which

is U eN where Ut is the particle terminal velocity and the

Uy
exponent, N, depends on the Reynold's number (N = 4.65 in the experi-
ments reported here). Given the initial sfeady voidage fraction

before the step change in flow rate, it is a straightforward matter

to calculate the density ratio between the two regions. » i

It was found that the light transmission through the bed as measured
by the reading on a light meter, calibrated against beds of known

voidage fraction, gave a good check on these results.

From cine film of the movement of the interface, and given the

densities Pg and Pp of the lower and upper regions, sz as defined

by equation (5.6) was calculated. These values are compared with the
theoretical values from equation (5.7) in Figures 28-30. The limiting
width of the slug, 2R, was measured from the film, taking the measurement

away from the slug vertex. ‘ ?

The agreement between the theoretical predictions and the experimental.
results is encouragingly close. The deviation as time increases is
probably due to the assumption of constant voidage fraction, since
there must be some iocal variations, especially aiound the interface
between the two regions. In some cases there was a certain amount of
channelling near the base of the bed. This probably explains the
deviations between theory and experiment near the origin in some of

the curves.

The widest range of voidage fraction (and, thus, density) changes i
were achieved with the smallest (100 micron) particles, where the
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voidage fraction was doubled from its initial state. Inaccuracies
and small fluctuations in voidage fraction would thus be most
important in the case of the larger particles and this, too, may

explain the better agreement found with the smaller particles.

>Figure 31 shows a typical set of the measurements obtained by using
direct observation and employing a stopwatch. It can be seen that
all the measurements lie below those from the cine film (and thus
below the theoretical results); the time-averaging method is not
sufficiently accurate in this case because the'steady state was only

achieved near the top of the bed.

The initial wavelength, A, of the disturbance is difficult to estimate
with accuracy because of the design of the bed used. Measurements
suggest that for the 100 micron particles, A is 1.0-1.5 cm and for the
490 micron particles, A is 1.5-2.0 cm. These may be compared with
Rice and Wilhelm's (1958) predictions of the 'most dangerous' wave-
length of 1.25 cm and 1.55 cm respectively, for conditions comparable
to those studied here.

Conclusions

It has been showmn experimentally fhat following a step increase in‘i
liquid flow rate in 2 particulate fluidised bed the two regions of
different voidage fraction behave gqualitatively énd quantitatively
like a denser fluid superposed over a lighter fiuid. The boundary
between these two regions is thus unstable and the theory developed
by Layzer to describe the developmént of a slug from an initially
horizontal interface, when suitably modified for density and
geometrical effects, satisfactorily describes the motion of the
interface.
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A stepwise decrease in fluidising velocity leads to a hydrody-
namically stable situation which is well described by the theory
developed by Slis et al. Their conjecture that, following an
increase in flow rate, the interface broadens out appears to be
incorrect, as the interface is in fact unstable. Although the
results here were taken in a two-dimensional apparatus, they seem to
confirm Volpicelli's (1967) observation of éartiole movement at the
wall of a three-dimensional bed which also indicate the unstable

behaviour of such an interface leading to slugging.

Finally, it may be noted that these results should also apply to
other equivalent situations involving two-phase flows (eg sedimenta-

tion, bubble columns) where deﬁsity driven instabilities may exist.
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CHAPTER 6: CONCLUSIONS

The stability of plane horizontal boundaries within a fluidised bed has
been analysed. The theory indicates that such boundaries, with the
fluidised phase uppermost, are always unstable to small two-dimensional
disturbances. The experimental results suggest that the momentum of the
interstitial fluid lies somevwhere between the two proposed extremes; viz

very large as in boundary condition set 2, or negligible as in set 6.

A mechanism of bubble splitting, based on the preceding stability analysis,
has been proposed. This leads to the prediction of a maximum and a mini-
mum stable bubble diameter. The theory shows that bubbles in gas fluidiséd
beds are much more stable than those in liquid fluidised systems and this is
supported by experimental evidence taken from the observation of bubble
behaviour in a freely bubbling gas fluidised bed and of injected bubbles in
a water fluidised bed. The agreement between the predicted and measured
growth rates of the disturbances is poor, but measured frequencies of bubble

splitting agree semi-quantitatively with the theory.

The stability of plane verticai boundaries within a fluidised bed has been
analysed. The theory indicates that the boﬁndary is stable for all fluid
velocities in the particle-free channel when the homogeneous phase is not
fluidised (spouting), and that the boundary is stable only when the fluid
velocity in the channel exceeds a given limit when the ﬁomogeneous phase is
well fluidised (channelling). The theoretical predictions agree
qualitatively and quantitatively with known channelling behaviour and with |

experimental results.

It has been shown experimentzally that, following a step increase in liquid
flowrate in a particulate fluidised bed, the two regions of different
voidage fraction behave qualitatively and quantitatively like a denser fluid
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superposed over a lighter fluid. The boundary between these two regions is
thus unstable and the theory developed by Layzer to describe the develop-
ment of a slug from an initially horizontal interface, when suitably modi- .
fied for density and geometrical effects, satisfactorily describes the

motion of the interface.

Suggestions for Further Work:

Research work tends, by nature, to be self-perpetuating. The work described
here is no exception and raises a number of points on which further clarifi-

cation should be of value.

The experimental resulits on bubble splitting could be refined to eliminate
the influence of factors not included in the theoretical analysis, for
exampie, observatiéns of single injected bubbles éﬁould eliminate the
influence of coallescence on bubble splitting in gas fluidised systems.
More pwerful and accurate filming techniques would enable the frequency and
growth rate of instabilities on bubbles in water fluidised beds to be

measured.

The theoretical study on channel stability could be tested further by
observing systems of larger particles. This would involve more refined
equipment than that employed here,‘as very high channel velocities would.be
necessary. Experimental observations on the spouting of particles with
water would also be useful to check the hypothesis put forward here that

spouting with water would not be limited by'a maximum spoutable bed depth.

Further experimental studies to verify the analysis of the stability of the
horizontal boundary would not be particularly informative. As mentioned
earliér, experimental work in this field cannot really be expected to cor-
relate well with the theory due to the practical difficulties in observing
situations where the theory remains valid.
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APPENDIX 1: GENERAL SOLUTION TO THE EQUATIONS OF MOTION
A general solution to the equations of motion (2A.21) to (24.29) is sought
to a small initial sinusoidal disturbance of the plane horizontal interface

with wave number K.

A solution is therefore defined to allow each variable a voidage and

pressure dependence where appropriate and its own individual term. Thus: |
¢ = A exp(- Ky + nt) Cos Kx
V=Bexp(-m1y+nt)SinKx+a1Aexp(—Ky+nt)SinKx
v =blBexp(-m1y+nt) Cost+a2Aeip(—Ky+nt) Cos Kx
U=Ce::jp(—mzy+nt)SinKx+Dexp(-Ky+nt)SinKx+

+ a.é A exp(~ Ky + nt) Sin Kx

) =clcexp(-m2y+nt) Cost+d1Dexp(-Ky+nt) Cos Kx +

+o) A exp(- Ky + nt) Cos Kx

P, = d, D exp(- Ky + nt) Cos Kx
W =E exp(m3y + nt) Sin Kx + F exp(Ky + nt) Sin Kx

W, ="e E exp(mBy + nt) Cos XKx + £, F exp(Ky + nt) Cos Kx
Py =1, F exp(Ky + nt) Cos Kx
Where ml, m2, m3 are all positive by definition.

The unknown coefficients, a1y 2y, bl’ etc are then defined to allow solu-

tion of the continuity equations, (24.21) to (24.23).
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Then substitution of equations (A1.1) into the momentum equations (24.2L) to

(2A.29) reveals the solution for variables m,, m, and m3;

m = I B e (a1.2)

2 = () = e e em e wm e am o v em wm = ‘2
and my from m,” - R p my -Rpn - K =0 _ - (a1.3)

NB (ALZ) is only one of the solutions for m, and o, . However, other
possible solutions for m, and m, are very complex functions of the dimension-~
less groups defined in (2A.21) to (22.29), X and n, and are therefore

mathematically prohibitive.

The particular solution found in this way is then as given by equations

(2A.30) to (2A.39).
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APPENDIX 2: SOLUTION USING THE PROPOSED SETS OF BOUNDARY CONDITIONS

Aé.l Horizontal Interface Between the Phases

The complete solution is given here for boundary condition set 1
only, but the same procedure also applies for all the other proposed
sets.

Set 1: The boundary conditions in this set are:

‘Material balance:

. _
W o=elU 4+ 1 - e e e e e e e m L2
v = €Uy 2 + Vy ( eo) (2A.12)
wx = eon Bl it e (2A.h3)

Tangential Stress:

aw aw au du
X+ y=_ X+ ¥

N L
Fr Fr Ty & TFr 3y &
Y L Y.
Tr Fr I & 2 &

- - - from (24.50)

Substitution of the assumed solution of the equations of motion,
(24.30) to (24.39), into the above bou.ndary conditions gives:

from equation (2A.42):
e, C exp(- Ky + nt) Cos Kx + e, D exp(- Ky + nt) Cos Kx -

'~ E exp(Ky + nt) Cos Kx - F exp(Ky + nt) Cos Kx =0 = = - - = (42.1)

with equivalent equations from the other five boundary conditions.
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These can be written in the form:

-

[M] | Aexp(-Ky +mnt)| -0
B exp(- Ky + nt)
C exp(- Ky + nt)
D exp(- Ky + nt)

E exp(Ky + nt)

[ F e;cp(Ky + nt) ] il (a2.2)
rV_Vhere M is a 6 x 6 matrix, given in this case by: _
[M] = 0 0 | (¢,) (s,) -1 -1
o0 (1) (o) - () G) 1
- (2 uk) 0 0 (my +'§) (2K)
e - K | 0 (2K) (2K) (m3 + EK-Z-) (2K)
€ 2 3
2 by 0 0 (2K) ¢y
N oF (1-¢ ) (-2k) (- 2K+ R_n) (2K) c
Fn '
i i -
Where'a; =3 ﬁl_—) eF Ti:—) --------------- (42.3)
= R Lo L (a2.L)
Fr
¢ =K -Rp(R £K) - ----mmmmm oo (22.5)
4 % (e,n-K) -R '115 ---------------- (A2.6)
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The-non-trivial solution to (42.2) thus being: det [M] = O

————— (24.57)
Expanding the determinant leads to:-
n3(a) + n2(b +c)+n(@+e)+£=0 = mmmme— (2A.58)
for the COnfigurafion, fluidised phase uppermost, or
n}(a) + n2(— b+c)+n(-d+e)+f=0 - = - (24.58a)

for the configuration, support fluid uppermost.

Where:

m
a = ReF[_i (1-e_ + e p) +
K ——— m

€
(o]
€ 3

((1-e,) - u <z-eo>)} - (27)

Q.%T_E_y[ +K(1°€)-K23 IE134+2@)m +L|K(Q-e)+

o}
+ = (2«;0 - 20) |+ - 2K(1-¢ ) my - 2K+ 1 | -------- (A2.8)
3 3 6 3
o}
c=Rg [u(m3 + 2K K (2-2¢  + 602))- (1 -2+ 602)(1113 +1)
¢ 2 m3 5 > m3
° o _ SO
------- (42.9)
- gng (m3 - _K_z_) + 2K2(l-eo) (m3 - 2K + _K_Z_) ------- (42.10)
-2 m o . e
Go _ 3 [ 2 3 .
o ,
e=R _|= [— m2u + 2K(1-p) + 2K> [ uo - l”-—
- TeP| Fr .
[ il—eo) € €03 (l_eo)
o, ; .
- my K(l-eo) . _2111; . 12< (-1+ s, + 2u) J ------- (A2.11)
e°2 €, €y Iy
f=Rp &K (K-my) -----mmmmmmmmmm o (42,12)
= 2
Fr LN
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Set 2: ie Equations (2A.42a); (2A.43) and (2A.50)

These gives

(M] = [ 0 0 (eo) (eo) -1 -1
@ 0 (e,) (¢,) (%;) 1
TG=y) @w o 0 my+i) (@
(e,n - K) 0 | (2K) (2K) (my + ) (2K)
RE o3
31 bl 0 0 (ZK) cl
& (Rgi(i—eo)) (- 2k) (-2K + Rep%) (2K) ey
S aea o (42.13)

Where a, to & are as given by equations (42.3) to (42.6).

This leads to (24.58), where:-

=--2m3 -4 (1+eo)K + 2K?(2—eo) + _ZgE__ [ 0y + K(l;eo) - B }

. i, 3 l—eo) : €T3
----- (42.15)
¢ =R [ E} + (1+€o) + é& 1+, - eo)] ————————— (A2.16)
K 2 3 2
0 %o
8= 20K = 2K> e om o m e e e e e e e e e o - (42.17)
— 5
2 € m.
€ 3
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eo m3 o T eo eom
1 1 X
+ uFr [?;_eom3]J __________________ (82.18)
s S S (42.19)
Fr ¢ 2
)

Set 3: ie Equations (24.42a), (24.L3), (ZA.SO) for normal stress, (2A.47)

and (2A.52) for tangential stress. These give:—

[(M] = r 0 0 (eo) (eo) -1 -1
& 0 () (e) <-§;) 1
2
ﬁ%iliﬁg (2K(1+1)) 0 0 (m3 + é}) (2K)
1-e 3 ‘
[ 2 X ] (-2K) (2K) (2K) 0 0
efieg) e
a, by 0 0 (2K) ¢y
4 | ReF(l-eo) (-2K) (A-2K + E@P_If) (2x) c; -
Fr.n KX
| J
——————— (A2.20)

Where a; to d, are given by equations (42.3) to (A2.6).

This leads to (2A.58), where:-

a=Rr. | Py, G K (e +u)]  _____ _ A2.21
@ |30 ] - -
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b2 b -E) ez ™ - oK e -5)
=3 e l-—eo) my 3 (1-e.)) ¢, ny T
- 2K (mg + K(1-2¢ ) - K (1e))) —mmmmmmmmm-- - (A2.22)
eo eom3 .
c ;ReF [mB + K(1 + p) (Qee ) + 1{3 (T+u) (l;eo) + 1{3}— - - (A2.23)
2 "3 2
eO cO
d = -Z-K—E (mgu + X - 2(14)) s mmmmmmmm - o (a2.2L)
Go m3
. I S Ko + ) (L) K(14+5)
Reff.l‘ [Fr [T—i—l ” ) eofl-eo) + E;;_ZT-e_) ,
————————— (A2.25)
£ =Rep Lz (K-m))  m-mmmm-mm---- (A2.26)
Fr €,
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-1

(2K)

(2K)

Set L4: ie Equations (2ah2a); (2A.43); (2A.50) for tangential stress,
(24.48) and (2A.53) for normal stress. These give:-
[M] = B 0 (e,) (e,) -1
(% 0 (eo) (e,) ('Ef'{"
3
- -% (2uK) 0 0 m, + K2)
(1-e, (m3 m3
[eon - K 0 (2K) (2K) (m3 + ﬁ)
2 ] o
¢ 3
o
a.l' b, 0 (Rep %) (2K)
o (20 () (2K) o
oo _Lh(1+pm RBR_1
Where & = 3 TI-_e‘;g— - _F%F' X mmmee----
by = Ry (1-¢.) - 21 + u)k = mmmmm e mmm
Fr n
¢, = 2K - R 5 (n.+ K) as given by (42.5)
K
_L_ = _ Ik
U=300%) "32 0 Ttttoommees
This leads to (24.58), where:-
a=>b= C = =0 e e m e e =
a-"mE g cR(A o2 e &2
38%1—6) . (3 Jo QO) ¢ m i
o o 0 c 2(1_e ) o3




Set 5:

(24.48) and (2A.53) for normal stress. These give:—

. [M] =

Vhere al, b
(42.5) and (42.30).

cra=b=c=e=20

d

[

kny (-3

]

1’ ©

0
(1-e°)

(2uK)

(e,)

(e )

0

(2K)

(2x)

(e)

3
3m36o

(s,)

0

(2x)

n

(Re x

(2K)

- s mw mw ae mm ww e e e e sa e

This leads to (24.58) where:-

360(1 - eo)

+ KBE (% + 28 - 2e°2)

m

2
3%

(1‘36)
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2, 230) + Kme(—lO + 6@0) - th(u—l) - 5

3¢

ie Equations (24.h2), (24.43), (2A.50) for tangential stress,

(2x)

(2)

; and d; are given by equations (a2.28), (42.29),



f= 2K2m3 (l—7eo) + l6uK2m3 +_hK3(1_heo) (p-1) - L th +
3¢ 3 3¢ 3e°3 3%

0 0

P2R(e) .. (42.36)
- 3

m3¢:°

Set 6: The solution of Clift, Grace and Weber (1973) reduces to the

simplified form (cast into the dimensionless form used in this analysis):

det (2x%) (® +X%)
=0
R 1 R.n 2Zpouk R 1
[2e-gd] [ 0]
! | ] =-=-=-=-- (42.37)
Where n = % 4 R p (1~ ) n e (A2.38)

This simplification can be made vher p >> 1 and p << 1, ie in most gas
fluidised systems, but, as Clift, Grace and Weber point out 'for liquid
fluidised beds, the simplified solution still gives a good indication of

the most dangerous wavélength'.

This solution (42.37, 42.38) is the samé s that obtained by Bellman and
Pernington (195L) for fluids of zero surface tension, with the upper fluid
mich moie dense and more viscous than the lower filuid, and that obtained
by Rice and Wilhelm (1958) for ges fluidised beds.

(42.36) reduces to:

2 . \2 2
2 . - —
e s [BUSER] LG o oo 42.29)

which can then be solved with (A2.38).
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M} =

(A2.2) Vertical Interface Between the Phases

A similar procedure is followed in the analysis of the

stability of a vertical boundary (see section L.3) and the

solution yields: det [M] =0
which leads to: n3(a) + nz(b) +n(c) +d=0

Where: 1) for boundary condition set 2;

(4L.9) gives: a = R p [

0 0 (e,) (e,)
@ 0 (e,) (e,)
“(1e) (2k) ° °
€ c’n-K 0 (2K) ( ?—K)
Goz
-3 @ g ° °
Blen®) BpUle) () (2xr_n)
. 2 Fr.n K

Where: ay = 2uK + EEE .%
Fr
b, = -2K + ReF(n E §K) - - - - - - - - -

=

el - (1-%)]

2 Kso m3g
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2
= - 2m, - LK(1-¢ ) + 2Kz(2-e )+2 _w (m3 + K(1~¢ ) - mK )+
3 o 0 3 (Toe) 0 360
eO m3€o (o} 30
+ ReF [ Ei‘i + (1+¢eo) * 'I_nlg- (l-éeo + ¢eo2)] ------ (AZ-LI-B)
K 2 3 2
®o o
3 2. RBa
2 [Km -1 +R_J[K+ ~ em m, + (1-¢ ) -
c == 3 = _eF” = — 3. o K +
eo2 m3] 602 [ mB] Fr(i-c_) [ = - eomB]
*Rp | X 1] oo (82.14)
Frse [ m3 ]
d=Rg (my-K)  m--mm---------- (42.45)
Fm-eo2

2) . For boundary condition set 6,°(L4.8) gives (in the dimensionless

form used in this analysis):

r -
D= | (1« —F:—“) 1 -1 -1
(1 + Frn) | (m) (k) (2)

(2uk?) (u(n® + €%)) (-2K) (- - 2%)

a b, o (-20) |
________ (A2.46)
Where a; = (p + 1) (1-e,) Rp - (1-30) R - 2uK - - = (A2.47)
“n  Fr K
by =(p+m) (I~ )Ry ~2m - - - - (42.148)
K n Fr ' ‘
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¢, = - ReF' 1+ %) - 2K e e = [ - - (a2.19)

and @ and m are given by:

02 -BRgp ~Rn K =0 —-mmmmmm e (42.50)
m® - K2 - (1-¢.) Eépf =0 = mmmmmm e m - = (42.51)
m

This could, df course, be expanded in the normal manner to give
equation (h.8), but this was found to be impractical, as the computer
solution did not converge. The determinant was therefore expanded in
full and the resulting expression was solved on a digital computer

using a minimising routine.
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. APPENDIX 3: COMPARISON WITH THE STABILITY OF THE STATE OF HOMOGENEQUS
FLUIDISATION

To compare the stability of a horizontal interface in a fluidised bed with

the stability of the state of homogeneous fluidisation as given by

Anderson and Jackson (1967), the general solution to the equations of motion

(equations (2A.21) to (2A.20)) is written in the complex form analogous to

that used by them. That is:-

¢ =4 exp(-ikx - iky + nt) = - - - - - - - - - - - - oo (43.1)
v, =B exp(ikx - iky + nt) I (43.2)
V. =B exp(- ikx - iky +nt) — __n ‘A exp(- ikx - iky + nt)
y . ikzl-eo) .

----- (43.3)
U =0C exp(ikx - iky + nt) + D exp(lkx - iky + nt) - - - - - (A}h)

Uy =Cexp(-—ikx.-iky+nt)+1) exp(~ ikx - iky + nt) +

+ (e,n - ik) A exp(- ikx - iky + nt) - - - - (A3.5)
ie 2K
(o]
P, =Fn D exp(- ikx - iky + nt) - = - - oo oo - (A3.6
ik .
W, =B exp(ikx + imgy + nt) + F exp(ikx + iky + nt) = = - = « = (A3:7)
wy:,.‘?;f(- E exp(- ikx + imgy + nt) - F exp(~ ikx + iky + nt) - - - '(A3.8)'
LK . .
P, =Fr (n+ ik + =) F exp(~ ikx + iky + nt) == - =« = - = (43.9)
3 T Rep ) . .

Where m., is given by:

3
2 . N
my” + iR gmy + Ropn o+ K2 = 0 i (43.10)
and R__ is now given by: =p,. AT
ep ep b p ©
uF



with Py = (1—eo) pP + € pps @8 the support fluid now has the parameters

of the generalised homogeneous fluidised phase.

n is the complex growth rate, n = § =il

-This particular solution to the dimensionless, perturbed equations of
motion is derived from a general solution in the same way as in the simpler
solution (see Appendix 1), and is valid only at x = O. However, as.the
gsolution is sinusoidal in x, it is assumed that the solution at x = 0 is

also approximately valid for all other x.

This solution is then substituted into the boundéry conditions (set 2 is
used, that is, equations (24.42a), (24.43) and (24.50) for the 'unstable'
configuration; support fluid below the fluidised phases, seetion 2A.3),
where in equation (2A.50), the stress. defined ‘for the support fluid now
has the physical parameters of the generalised homogeneous phase.

This gives: [M] [ABC DEF]® =0 - o mm = m = = = = = = = = (43.11)
Where M-is a 6 x 6 matrix of coefficients.

The non~trivial solution is then: det [M] =0 -—- ; -——— (43.12)

which leads to:

n3(a) + n2(b +ic) +n(d + ie + if) + g =10 ———— - (A3.13)
[Note the 'stable! configuration, support fluid upperﬁost, reduced to |
23(a) + n2(- b+ dc) +n(d + e —if) + g=0 =-==-=-==  (43.13a)
and although this has not been solved, one would expect similar results,

as both configurations should be the same].
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Where: -

[M] =

0 0 (e,) (e,) -1
1, 0 () (c,) (m—‘;)
K2
- (iﬁ_l-%-;) (2uik) 0 0 (1m3+-n-1-3-
(egn-1%) 0 (2iK)  (2K)  (impi)
2
ay b, 0 0 ~ (2iK)
4 R, (1-e,) (-2ix) (-21K+_R_8Ln) (2iK)
Frn ik
|
R 1
ST Reery I N
q = = 2pik + _I_i_e_;g _Irl_l ---------------
Fr
oy = 2K -R_ (n+ 3K+ 2K) ==--=======-=-
iK ep
d, =-R, _bh(en-3K) @ - - e e m e e
Fr ik ° N

<1




b = 2K(1-2¢ ) oK 4 $ - my - K(1-¢ ) +— ]
<, com3 (1-e ) ey o3
__________ (A3.20)
2
o - my (1+eo)+ K (1-s_+e¢ Dl _ _________ (43.21)
°PlX 2 m, 2
e0 3 e0
[ 2
a-n,| - & __x ] ---------------- (£3.22)
L €o Go m3 .
e =R - 1 K 11 _x
3&? K(1-¢ ) ~ €, + mBeOEl—eo) A [.eo T e m, ] T (43.23)
£ = - Koy EK—E ---------------- (43.21)
602 e0
R ' o |
g = -—55175 (m3 S K)o (43.25)
F.rpeo

The solution of equation (A3.13) with equation (A3.10) gives the charactor—
istic form of the growth rate vrs wave number curve, that is, there is a
maximum of § (real n) corresponding %o the most rapidly growing or 'most’

dangerous' wavelength.

Values of & max with their corresponding 1 and K are given in Table 5, with
the equivalent solutions due to Anderson and Jackson (1967), 1968), for

different physical systems.

12



_ APPENDIX L4: FREQUENCY OF TWO-DIMENSIONAL BUBBLE FORMATION FROM AN ORIFICE

Repeating the theory of Davidson and Harrison (1963) in two dimensions.

The bubble is initially centred at the orifice, but because of bouyancy, tends
to rise, so that at any instant the centre has risen a distance, s. It is
assumed that the bubble detaches when the base reaches the orifice, ie when

bubble radius r = s.

For a constant gas flow rate, G, the bubble volume at time, t, is

v, = rrrzé =Gt - --------- m - - - - - (AL.1)

Where J = the two dimensional bubble thickness.

For the forming bubble, the rate of change of upward momentum is egual to

the bouyancy force, thus

— VA 1= Y
pF'Vb'g = d_;".b (2‘ PF Vb .g-_:_) (A}-l".z)

Substitution of (AL.1) into (AL4.2) and integrating twice gives: -
2
s=38g" =000 e e e e mem o - — - - (ak.3)
withds =s =0at t =0.
dt

At detachment, r = s, (Ah.1) and (AL.3) give:

time of formation, %, = (_1g_)2/ 3 [:(gg) 2 B (ah.ly)
mét - . )
Volume at formation, V. = (é)z/'3 (T-Th'-g)l/3 G L/ B (AL.5)
Frequency of formation, f = %’.—- = g2/ 3 (%)1/ 3 %1/3 ——————— (Ah6)
b . '

In the case under consideration, the bed thickness, and thus the bubble

thickness, § = 1.5 cm.
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NOTATION
A, B, C, D, E, F - constants in the wavelike solution to the equations of
motion.

ay b, ¢, dy &, £ - coefficients in the solution of det M = 0 given in

Appendix 2.

2y bl, Cys dl ~ terms of the matrix M, given in Appendix 2.
At - initial disturbance on the boundary.
d.b - bubble diameter.
dp v - particle diameter.
D, ~ slug width (asymptotic).
Ds - slug depth.
- - general force term. in equations (24.6) (24.9).
F ~ Froude number, --Y-T

(er)?
Fl A - corrected Froude number.
F2 -~ corrected Froude number (equa.tion 5.7).
Fr - Froude numbér, U02

gdp
£ - frequency of bubble formation.
g - acceleration due to gravity.
G - flow i'a.te of injectéd gas.
i - -7
K - wave number of the disturbance.
m '_ exponent in the solution to the equations of motion.
M -~ matrix in the solution using the boundary conditions.

Given in Appendix 2.

N -~ = exponent in the drag coefficient relationship.

1Lk



ef

R
ep

criterion due to Doitchev, defined by equation (2D.L).

growth rate of the disturbance.

pressure.

bubble radius.

half width of the slug.

d

'U

Reynold's number, PP "p’ o

P

Reynold's number, p_.d

.U
o

ip

height of bubble centre above orifice.

time.

bubble velocity.

minimum fluidising velocity.

particle terminal velocity.

interstitial fluid superficial velocity.

instantaneocus velocity

bubble volume.

of vertex of disturbance.

particle phase superficial velccity.

support fluid superficial velocity.

horizontal direction.

vertical direction.

drag coefficient.

dimensionless time ratio, T2/Tl

voidage fraction.

the perturbed boundary.

imaginary part of complex growth rate, as defined by

Anderson and Jackson.
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thickness of two dimensional bed.

Equation (2C.2).



or

>

=

S F F

Subscripts

0

- ag defined by the dimensionless equations of Layzer.

Equation (5.L4).
wavelength of the disturbance.

dimensionless viscosity group, “P/“F'
viscosity of the fluid phases.
viscosity of the particulate phase.

real part of complex growth rate as defined by Anderson
and Jackson. Equations (2C.1).

as defined by the dimensionless equations of Layzer.
Equation (5.3).

dimensionless density, pF/pP.

.density of the fluid.

density of the particles.

normal and tangential stress.

surface tension.
time for the disturbance to grow through the bubble.
time for the disturbance to be swept around the bubble.

ratio of the superficial fluid velocity in the channel

to the minimum fluidising velocity.

— at the minimum fluidising velocity.

particle phase.
iﬁterstitial fluid phase.
support fluid pﬂase.
interstitial fluid phase.
particle phase.

support fluid phase.

in the x (horizontal) direction.

in the y (vertical) direction.
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