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• ABSTRACT 

Theory is developed for the stability of a plane horizontal interface in a 

fluidised bed. It is found that the configuration with the fluidised phase 

uppermost is always unstable to small perturbations. The results of this 

analysis are used to derive a criterion for bubble stability, which is 

based on the relative magnitudes of the growth rate of the disturbance and 

the speed at which the disturbance would be swept away around the bubble. 

Experimental evidence is provided for this theory which predicts a much 

greater range of stability for bubbles in gas fluidised systems than in 

liquid fluidised beds. The experimental results are in qualitative agree-

ment with the predictions of the theory. 

Theory is developed for the stability of a plane vertical interface in a 

fluidised bed. It is found that the interface is always stable when the 

homogeneous phase is not fluidised (spouting), but that the interface is 

only stable if the upward velocity in the particle-free fluid exceeds a 

. given limit when the homogeneous phase is well fluidised (channelling). 

This limiting superficial velocity is much greater in gas fluidised systems 

than in liquid fluidised beds. The theory is tested experimentally and the 

experimental results are in quantitative and qualitative agreement with the 

predictions of the theory. 

The behaviour of liquid fluidised beds following a stepwise increase in 

fluidising velocity has also been studied. It is shown that the interface 

formed between two regions of different voidage fraction is unstable. 

Theory developed by Layzer for Taylor instabilities which lead to slugging 

adequately describes the behaviour and development of these instabilities. 

provided allowance is made for the effects of density difference and 

geometry. 
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INTRODUCTION 

Fluidisation is now used industrially in many different chemical and metal-

lurgical processes and, although the number of applications is still 

increasing, our understanding of the phenomena involved is still inadequate. 

For example, in the case of a fluidised chemical reactor, it appears that 

the size and frequency of bubbles have some effect on the temperature, gas 

contacting and conversion, but as yet, no theoretical approach has been 

developed which adequately describes from first principles the way in which 

bubbles grow from small disturbances or the manner in which other factors, 

such as bubble splitting, limit the size of bubbles in a large fluidised 

bed. It is clear that the questions of bubble formation and splitting 

involve problems of hydrodynamical stability. 

This work was undertaken to extend previous investigations into the effect 

of the physical parameters involved on the stability of fluidised beds and 

in particular, to consider the behaviour of different configurations of the 

interface between the fluidising fluid and fluidised phase. The purpose of 

these analyses is to discuss the differences between the states of bubbling 

and non-bubbling fluidisation, and to predict the way in which well observed. 

phenomena, such as channel formation or bubble splitting, initiate or limit 

bubbling in fluidised beds. 

Before discussing the formulation and analysis of the situations in this 

work it is appropriate to review briefly earlier studies of the stability 

of fluidised beds and other problems in hydrodynamic stability which bear 

upon the present work. 



CHAPTER 1: A REVIEW OF MI, STABILITY OF FLUIDISED BEDS 

1.1 Equations of Motion for the Homogeneous Phase  

In the past decade a great deal of interest has been shown in the 

stability of the state of uniform fluidisation with reference to the 

behaviour of the fluidised system and in particular to bubble forma-

tion. A number of theoretical analyses have been presented 

(van Deemter and van der Laan (1961); Hinze (1962); Jackson (1963); 

Pigford and Baron (1965); Murray (1965,1966); Anderson and Jackson 

(1967, 1968, 1969); Molerus (1967); Ruckenstein and Tzeculescu 

(1967) and Jones (1970)), the results of which, although agreeing 

qualitatively, show a distinct lack of quantitative agreement. An 

examination of these analyses shows that this is due to differences in 

the linearisation techniques employed and a general disacreement over 

the terms to be included in the momentum equations. 

The general form of the momentum equations is not in dispute, and 

consists of equations of motion for two interacting continua, one 

corresponding to the interstitial fluid and the other to the particle 

phase. For each phase, the equation of motion is defined by a 

balance between the acceleration and momentum of that phase, gravi-

tational forces, viscous and pressure stress forces and the forces of 

interaction between the two phases (which include such terms as 

viscous drag, bouyancy and additional mass acceleration). This leads 

to equations which are comparable to typical hydrodynamic equations of 

motion (ie Navier-Stokes) but with additional terms to account for the 

interaction between the two phases. 

The main differences of opinion occur in the choice of the fluid-

particle interaction forces and on the importance of the additional 

1 



mass acceleration and particulate shearing stress terms. 

In principle, the equations of motion of a system of particles sus-

pended in a fluid could be written in terms of the initial state of 

motion, the boundary conditions, the Navier -Stokes equation, to be 

satisfied at each point of the fluid, and Newtonian equations of 

motion for each particle. However, a typical fluidised system con-

tains too many particles for this to be a practical possibility, so 

that a simplification must be made for the particle phase to be des-

cribed in terms comparable to the continuum mechanics of a single 

fluid. 

It is therefore convenient to replace the point mechanical variables 

by smoothed variables obtained by averaging over regions large com-

pared with the interparticulate spacing but small in comparison to the 

complete system. The particle and fluid phases are thus defined by 

all the authors referred to above as if they were interpenetrating 

continua. 

In one of the earliest attempts to formulate equations of motion of 

this type for fluidised systems, van Deemter and van der Lean 

developed formal, unsteady continuity and motion equations but did not 

propose specific forms for the fluid-particle interaction, or the 

fluid and particle shear stress-forces. Hinze completed this work 

by suggesting specific forms for these terms, but his work does differ 

radically from all the others mentioned as he postulates a combined 

shear stress force based on a velocity, W, averaged over the whole 

system. 

So that W 	+ (1 - 
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Where U, V are the fluid and particle velocities and e is the 

voidage fraction of the system. Hinze also includes an additional 

mass force in the equations of motion for the fluid, but omits the 

equal and opposite force in the equations for the particle phase. As 

Murray (1965) points out, this cannot be correct as it contradicts 

Newton's third law. 

The first published set of unsteady equations of motion for the 

homogeneous phase of a fluidised bed, together with solutions used to 

estimate the stability of the bed was suggested by Jackson (1963). 

These describing equations however, have limited applicability due to 

the omission of the particulate shear stress forces, which, as 

Jackson (1970) himself points out, Schugerl et al (1961) have shown to 

be significant in gas fluidised systems. 

This omission in Jackson's equations of motion was corrected by 

Pigford and Baron (1965) who also solved these equations to show the 

effect of the particle phase viscosity (ie particulate shear stress 

forces) on the stability of the bed. 

Murray (1965) proposed a much more complete form of the unsteady 

continuum equations, adding energy balances to the momentum balances, 

in which he included the particulate shear stress and compressibility 

effects. He derived new approximations for the prediction of the 

particle phase shear and bulk viscosities. These equations were then 

used in a study of the stability of the homogeneous phase, the propa-

gation of surface waves, and to bubble motion (1965a). Murray (1966) 

later improved his earlier momentum equations, deriving a new form for 

the fluid particle interaction forces. He also argued that the 

particle collision (pressure) forces, although probably insignificant, 

3 



can be interpreted as a bulk viscosity term, thus reducing the number 

of unknowns and eliminating the need to estimate the size of the 

particle pressure forces. 

The most complete set of equations that have been proposed to date 

are due to Anderson and Jackson (1967). All the other workers have 

assumed that the unsteady equations of motion may be written in terms 

of variables which are smoothed averages, taken over an area large 

compared to the interparticulate spacing but small in comparison to 

the complete system. Anderson and Jackson formally derived their 

equations of motion from the corresponding equations for the variables 

at each point in the system, by taking local averages of these 

equations and translating them into a set of equations in terms of 

the smoothed, local averaged variables. 

They show that all the other derived sets of equations referred to - 

above reduce to special cases of their equations. A summary of the 

more important features of the equations as proposed is shown in 

Table 1. 

However, Anderson and Jackson, in presenting such a complete set of 

motion equations, introduce further difficulties, since, as Murray 

(1966) also pointed out, a complete set of equations must include 

several terms of unknown magnitude and importance. These include, 

for example, the local mean pressure in the particle phase, the 

virtual (additional) mass acceleration and the drag forces on the 

particle phase. Thus, although the equations derived by Anderson and 

Jackson apparently describe the system completely, the fact that the 

unknown coefficients have to be approximated to somewhat reduces the 

advantages which this set of equations should hold over the earlier 

approximations. 
4 • 



TABLE 1 
Features of the Proposed Equations of Motion 

Terms in equations 
of motion 

Authors 

Particulate Stress Fluid Stress 

. 

Virtual Mass Fluid-Particle 
Interaction 

van Deemter & van der Laan Included but not specifically defined Included but not specifically defined 

Hinze 
No individual particle or fluid stresses, 
but a combined one, based on a velocity 

averaged over the whole system 
- ve in fluid phase only 

Included, but not 
specifically 

defined 

Jackson zero Pressure stress only + ve in particle phase 
- ve in fluid phase 13(c) 	(U. 	- V.) 

	

i 	i 

Pigford & Baron Viscous stress only Pressure stress only Not included 
 i ..(U 	- V) 

Murray (1966) Viscous stress only Pressure and 
viscous stress 

+ ve in particle phase 
- ve in fluid phase 

ACU 	- 'V.) 
i 	i 

Anderson & Jackson (1967) 
Pressure, viscous 
and'Reynold's' 

(turbulent) stresses 
... 

Pressure, viscous 
and 'Reynold's' 

(turbulent) stresses 

+ ve in particle phase 
- ve in fluid phase i 	i 

 
p(e) 	(u. 	— v.) 

This work Viscous stress only Pressure and 
viscous stresses 

+ ve in particle phase 
- ve in fluid phase P(e) 	(U. 	- V.) 

	

1 	1 

Where, Ui, Vi  = fluid and particle velocities. 

NB The virtual mass terms and coefficients in the fluid-particle interaction force Me), K'  A) are defined in different ways by each author. 
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1.2 Solution of the Equations of Motion  

The simplest solution of all these sets of equations is the steady 

state solution, representing uniform fluidisation. Under these condi-

tions the local (averaged) particle velocity is everywhere zero, the 

local (averaged) fluid velocity is constant and acts only in the 

vertical direction, and the voidage is constant throughout the system. 

This simplification satisfies the continuity equations and reduces 

the equations of motion to a balance between the drag forces on the 

particles and their bouyant weight, together with a balance between 

the drag forces, the fluid pressure forces and gravitational forces, 

which can be used to define the pressure drop in a fluidised system. 

The stability of this state of uniform fluidisation to small disturb-

ances can then be determined by normal perturbation techniques. That 

is, a small disturbance is imposed on the steady state solution by 

perturbing the variables, and the behaviour of this disturbance is 

used to predict the stability of the system. If the disturbed 

variable grows with time, the system is assumed unstable, if it decays 

with time, the system is assumed stable. 

Consider any variable, say U, to be composed of a steady value, Uo, 

which satisfies the steady state solution, and a continuous perturba-

tion. variable, 11, which is small in comparison with Uo. 

 
ie U= U0  + U  

Casting all the variables into this form, substitution into the con-

tinuity equations and equations of motion, and subtraction of the 

steady state solutions, gives the equations governing the perturba-

tion variables. 

6 



As these variables are, by definition, small in comparison with the 

steady state solutions, all terms of second or higher order in per-

turbation variables can be neglected. 

Thus, the non-linear equations of motion may be reduced to linear, 

partial differential equations in terms of the perturbation variables. 

A plane wave solution of these linearised equations of motion is 

sought, and an exponential time dependence which is common to all 

variables is assumed, so that a typical variable has the form: 

= A exp(Kx + Ky nt) 

Where A = a constant associated with that variable. 

K = the wave number of the solution, where the disturbance 

wavelength, X = 2rr/K 

and n = the growth rate, where positive values of n correspond to 

the unstable solution, and negative values of n correspond 

to the stable solution. 

Casting all the perturbation variables into this form and substitut-

ing into the governing equations, gives a set of simultaneous, linear 

equations; the non-trivial solution of which is that the determinant 

of the matrix of coefficients vanishes. Another, simpler method of 

solution is by the elimination of variables from the set of simul-

taneous equations; this method- was used in all the previous work 

mentioned here. 

In this way, a relationship between the growth rate, n, wave number, 

K, and the physical system parameters is achieved; if this solution 

reveals no positive (or zero) growth rate for any positive wave 

number, all disturbances will decay with time, hence the system is 
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stable. Any positive growth rate for positive wave numbers will show 

an unstable system. 

Jackson (1963) used the above method to solve his equations of motion, 

and concluded that the uniform state of fluidisation is always 

unstable. By comparing the growth rate, at a given dimensionless 

wave number, for the different fluidised systems investigated by 

Wilhelm and Kwauk (1948), he showed that all fluidised systems are 

unstable (+ve growth rate) but that the growth rate was smaller in 

water fluidised systems than in gas fluidised systems. However, this 

solution gives an increasing growth rate with wave number (decreasing 

wavelength) which would indicate that as the disturbance wavelength 

approaches zero, the growth rate approaches infinity which is clearly 

untenable, as this would provoke explosive situations. It must be 

noted that, as the disturbance wavelength approaches the particle 

diameter (from above) the solution might be expected to break down, as 

the assumption that the particle phase is a continuous fluid will no 

longer apply. Pigford and Baron (1965) show that this behaviour at 

large wave numbers is due to Jackson's omission of particle stress 

terms. Using a similar solution to Jackson with improved equations 

of motion, Pigford and Baron show that the effect of particle vis-

cosity is to reduce the growth rate at large wave number, in such a 

way as to give zero growth rate as the wavelength tends to zero. 

Thus, for any given system, there is a maximum growth rate and a 

corresponding dominant wavelength. (ie In any physical system, which 

will produce disturbances over the whole range of wavelengths, that 

disturbance which grows most rapidly will become the dominant one). . 

However, at the time, the available data on the viscosity 
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of the particulate phase was limited and Pigford and Baron did not 

have enough accurate data to calculate the growth rate for any 

specific systems. 

Murray (1965), again using this method of solution, showed that all 

systems are unstable to internal disturbances, and that surface waves 

are quickly damped out, but made no attempt to calculate the growth 

rates for specific systems. 

Mblerus (1967) used the equations of motion derived by Hinze (1962) 

to provide stability charts for fluidised systems. He linearised the 

equations in the normal manner, and used the method of elimination of 

variables from the differential equations at this stage to produce 

one second order, linear, partial differential equation for the per-

turbed voidage variable, e(X, t). 

By seeking the typical plane wave solution for this variable, but 

with a general time dependence, T(t), this equation was transformed 

into the standard form ofMathieuis differential equation, from which 

Molerus was able to produce stability charts for any given system. 

These charts do compare qualitatively with known experimental 

behaviour, but, once again, it would appear that more data on 

Mblerust unknown coefficients is needed before quantitative results 

could be obtained. 

Using equations similar to those proposed by Pigford and Baron (the 

fluid-particle interaction force is replaced by an expres-ion for the 

'drag force on an isolated sphere in flow through a pipe), Ruckenstein 

and Tzeculescu (1967) used an analogue computer to solve the non-• 

linear equations of motion. 



The equations of motion were transformed into one non-linear differen-

tial equation in terms of the voidage variable. The unknown parameters 

were selected to give a solution which was a periodical function of 

time. Although their results show that all fluidised systems are 

unstable to some degree, they do not make comparisons with experimen-

tal results as, once again, some of the assumed values of their 

unknown parameters are uncertain. 

Anderson and Jackson's (1968) solution of their equations of motion 

follows the general method outlined here. They determined the effect 

of the uncertain system parameters (particle phase shear and bulk 

viscosity, particle collision pressure, virtual mass coefficient and 

drag coefficient for water fluidised systems and particle shear and 

bulk viscosity for air fluidised systems), on the relationship 

between the disturbance wave number and growth rate. 

Their theoretical results agree qualitatively with those of other 

authors: that is, that all fluidised systems are unstable, and gas 

fluidised systems more so than water fluidised systems; the particle 

phase viscosity decreases the growth rate at large wave number, so 

that there exists a dominant disturbance. Their analysis also shows 

that the interparticulate pressure tends to decrease the growth rate, 

but is not capable of inducing a maximum in the growth rate - wave 

number relationship on its own. 

To test their analysis experimentally, Anderson and Jackson (1969) 

investigated the rate of growth, propagation velocity and dominant 

wavelength of naturally occurring voidage disturbances in water 

fluidised beds using a light transmission technique. They obtained. 

encouraging agreement between theory and experiment, bearing in mind 
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the uncertainty in the values of some of the parameters used in their 

theoretical analysis, for although in individual cases the accuracy 

of agreement between theory and experiment was not high, the general 

variation in observed properties was correctly accounted for. 

Murray's (1966) equations of motion were solved in a similar way to 

that described above by Jones (1970) (denoted by Jones (1) in Table 2). 

He found that a fluidised bed was generally unstable to disturbances, 

but that under certain conditions, such as gas fluidisation of very 

fine particles, stable solutions were possible. He considered the 

effect of the system parameters on the growth rate of disturbances 

and found that one, the particulate stress, had a stabilising effect. 

This, of course, concurs with the findings of other workers that the 

particulate stress force decreases the growth rate as the wave number 

increases. Jones also approached the problem of stability in a 

rather different way (denoted by Jones (2) in Table 2); by consider.- 

ing a force balance on an individual particle, he obtained a non-

linear differential equation in terms of the particle displacement 

and was thus able to determine the effect of the non-linearity of this 

equation on the particle oscillating frequency. He found that the 

non-linearity increased with decreasing particle size in gas fluidi-

sation, and thus explained the qualitative aspects of the bubbling 

frequency of fluidised beds: that is, the variation with particle 

diameter and fluidising gas velocity. 

Although the oscillation frequency given by this approach compared 

well with bubble frequencies recorded experimentally, Jones did not 

attempt to map out the stability limits of a system in terms of its 

parameters, as the accuracy of some of the parameters used was no 
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greater than an order of magnitude. 

By solving his non-linear differential equation of particle motion on 

an analogue computer, Jones was also able to show that an instability 

could be triggered off either by increasing the damping coefficient, 

or by increasing the amplitude of particle oscillation, and he there-

fore associated this behaviour with the eventual onset of bubbling in 

a fluidised system. 

The results of all these stability analyses, the one reported here 

being no exception, have the same limited application. The greatest 

danger inherent in the application of the linearised equations, used 

in one form or another in the work mentioned, is to infer conclusions 

about the final behaviour of a disturbed system - which necessarily 

includes non-linear effects - from an analysis which holds true only 

for infinitesimally small disturbances. This also implies that com-.  

parison between theoretical results and experimental results can be 

accurataymade only during the initial growth, whilst the disturbance 

is still infinitesimally small, and, outside this range can be no 

more than tentative. 

Table 2 summarises the main features of these proposed solutions. It 

can be seen that the predictiOns of all the authors agree 

qualitatively with the known experimental behaviour of fluidised sys-

tems. The only authors to achieve even poor quantitative agreement 

were Anderson and Jackson, whose experimental results were recorded 

for small disturbances in water fluidised beds. 

It must be noted that this type of theory is very difficult to test 

experimentally. As pointed out above, the analysis is only valid for 
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infinitesimally small disturbances, whereas, in any experimental 

system the disturbances recorded are necessarily of finite size. 

There is no guarantee that disturbances of finite size continue to 

grow at the same rate as they did when infintesimally small, in any 

fluidised system. 

In general, with, it would seem, only a few exceptions, the homo-

geneous phase of a fluidised system is unstable to small disturbances 

in the particle density. The growth rate of these disturbances being 

an order of magnitude larger in air fluidised systems than in the 

equivalent water fluidised system. 



TABLE 2 

Features of the Proposed Solutions of the Unsteady Enuatlons of Motion 

Author Menor! of 
LineariSatiOn 

Stability of 
Fluidised Systems 

Effect of Particle 
Stress Forces 

Comparison with 
Experiments 

Jackson 
(1963) 	. 

Perturbation 
techniques 

All fluidised sys 
teino always unstable Not included Qualitative agreement 

Pigford & 
Baron (1965) 

Perturbation 
techniques 

All fluidised sys- 
tars alvmys unstable 

Decreases growth rate 
as wave number 
increases 

Not made, as  accurate data on all 
coefficients was not 
available 

Murray(1965) Perturbation 
techniques 

All fluidised sys- 
tens always unstable Not calculated Not made 

Molerus 
(1967) 

Perturbation 
techniques 

Stability depends on 
system parameters. 
Some systems stable, 
some unstable. 

Not included as 
such Qualitative agreement 

Ruckenstein
& Tzeculesau 
(1967) 

Not ' linearized 
All fluidised sys- 
is always unstable Not calculated 

Qualitative agreement 
for gas fluidisation. 
No comparison made 
for water fluidisa-
tion 

Anderson & 
Jackson 
(1968)(194;1) 

Perturbation 
techniques 

All fluidised sys- 
tens always unstable 

Decreases growth rate 
as wave number 
increases 

Qualitative agreement 
with poor quantitat- - 
ive agreement for 
water fluidised beds 

Jones (1) 
0970) 

Perturbation 
techniques 

Generally unstable 
Some cases, such as  fine particles 
fluidised with air 
are always stable 

Stabilising effect Qualitative agreement 

Jones (2) 
(1970) 

Not 
linearised 

All fluidised sys- 
tems always unstable 

• 

Decreasing force 
could trigger off 
instability 

. 

Qualitative arxeemert 
Quantitative agree-
rent for bubble 
frequencies of gas 
fluidised systems. 
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1.3 Bubble Stability in Fluidised Systems  

Observation of the motion of bubbles in both air and water fluidised 

systems (Rowe (1971); Clift and Grace (1972)) suggests that bubbles 

are unstable to disturbances on the bubble roof. These disturbances 

are seen to grow rapidly downwards into the bubble so that some 

actually split the bubble in two. 

The study of the stability of the homogeneous phase of a fluidised 

system reveals only the initial behaviour of small disturbances. It 

is generally assumed that these disturbances in the density of the 

particulate phase continue to grow, eventually becoming, in 

aggregatively fluidised systems, large enough to appear as bubbles, 

or voids. However, as the theoretical studies discussed in section 

1.2 hold only for infinitesimally small disturbances, no information 

can be obtained from them about the behaviour of the final, fully-

grown bubble. 

The theories which have been derived for the motion of a bubble in a 

fluidised bed (Davidson (1961); Jackson (1963a); Murray(1965a)) are 

summarised by Jackson (1969), and Rowe (1971). Jackson and Murray 

started from the steady state version of the equations reported in 

section 1.1, whilst Davidson assumed that Darcy's law also related 

the pressure gradient and relative velocities in a fluidised system at 

low Reynolds number. The distribution of gas flow through the bubble 

was derived, which, for an assumed particle motion, maintains the 

bubble surface in its assumed form (circular, in 2-dimensions). The 

gas percolation across the interface adjusts itself so as to exactly 

balance the particle momentum. Thus, the gas flow distribution for a 

stable (circular) bubble has been derived, but no attempt has been 
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made to predict the rate of growth of instabilities on the bubble 

surface. 

The problem of bubble stability can therefore be approached by 

analysing the stability to small disturbances of the bubble surface 

which exists as an interface between a particle free fluid and a 

fluid-particle suspension. In a complete consideration of the 

stability of the bubble surface, the curvature of the surface and the 

velocity and voidage profiles in all phases in the region of this 

surface must be considered. However, this would lead to a very com-

plex analysis, the solution of which would still only be approximate 

as many of the parameters would be uncertain. It is therefore 

thought that as much useful information on the stability of bubbles 

in fluidised systems could be obtained from the study of a simpler 

model; for example, for a bubble large in comparison with the 

horizontal scale of the solution, the roof of the bubble could be 

approximated to a plane horizontal interface. 

The problem of the stability of an initial horizontal interface 

between two superposed fluids is well known and is generally referred .. 

to as the Taylor stability problem, after Taylor's initial work in 

this field (1950). He studied the behaviour of two inviscid fluids of 

infinite extent, meeting at a plane horizontal interface. The solu-

tion of the linearised equations of motion for both fluids, following 

a sinusoidal perturbation in space of this interface, was studied and 

the system found to be unstable when the acceleration force is directed 

from the more dense to the less dense medium; the rate of growth of 

J 	

1 
the disturbance being proportional to 	p2 - p1  

P2 +  p1 
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Where p = density 

1 = less dense fluid 

2 = more dense fluid 

This work was extended by Bellman and Pennington (1954) to include 

the influences of viscosity and surface tension on the solution, and 

they showed that both of these variables exert a stabilising influence 

on initial disturbances of small wavelength. They demonstrated that 

the role of viscosity is to decrease the rate of growth of the dis-

turbance over the corresponding inviscid solution although the 

instability is never eliminated completely; they also found that, 

besides decreasing the growth rate of the disturbance, surface tension 

forces can completely eliminate the growth of disturbances with a 

wave length smaller than some critical value. 

This analysis was extended to the problem of the stability of a plane 

horizontal interface in a fluidised bed by Rice and Wilhelm (1958). 

To facilitate this, they made the approximation that the interacting 

fluid and particle phases in the bed could be described as a single 

Newtonian fluid with mean density and viscosity, obeying the 

Navier-Stokes equations. They linearised their describing equations 

by assuming the non-linear terms to be negligible, but did also show 

that linearisation by perturbation techniques gave similar results 

under certain conditions, viz zero slip velocity between the two 

phases. Unfortunately, at the time of their analysis little informa-

tion was available on the viscosity of the bed phase, which has a most 

.important effect on the solution, so that their results could only be 

tentatively applied to explaining the differences between bubbling 

and non-bubbling systems. 
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By treating the particles and interstitial fluid as one phase and the 

particle free fluid as another discrete phase, Rice and Wilhelm 

effectively neglected the percolation of fluid across the boundary 

between these two regions. It therefore follows that their solution 

is valid only where the momentum of the fluid percolating across the 

boundary is negligible. 

Since this early analysis, considerable advances have been made 

towards setting up the describing equations for the motion of both 

the fluid and particle bed phases (see section 1.1 above), and the 

present work was therefore undertaken to investigate the problem of 

stability of an interface in a fluidised bed, by extending the Rice 

and Wilhelm analysis to incorporate two interacting bed phases. A 

similar, unpublished analysis by Clift, Grace and Weber (1973) has 

recently been brought to notice. Starting from a similar set of 

equations of motion (yet again, there are small differences in the 

choice of particle stress and fluid-particle interaction terms) and 

linearising in a manner similar to that described in section 1.2, 

they arrive at a solution to these equations not too far removed from 

the one presented here. The reaction of a given system to a small 

perturbation at a plane horizontal boundary is then found by 

substituting this solution into an appropriate set of boundary 

conditions, and the growth rate of the imposed perturbation used to 

predict the incidence of bubble splitting in fluidised situations. 

In general terms, their work shows that, if the momentum of the 

interstitial fluid is neglected, Rice and Wilhelm's solution is 

correct for gas fluidisation, but only approximately so for systems 

fluidised by liquids. The results of their work and the differences 
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between their analysis and the one presented here will be discussed 

in later sections. 

This type of analysis of the stability of a plane horizontal interface 

in a fluidised bed to small sinusoidal disturbances can be applied to 

the stability of a bubble roof with the following limitations: 

1 	When the equations of motion are linearised by perturbation 

techniques the limitations of this technique must apply. 

2 	For the bubble roof to be approximated to by a flat plane, 

the bubble radius must be large in comparison with the wave-

length of the imposed disturbance. 

Provided these conditions are applicable, the analysis can be used to 

give a guide to the effect of the system parameters on the stability 

of bubbles in fluidised beds and the limitations on bubble growth 

thus imposed. 

1.4 Maximum and Minimum Stable Bubble Size  

Various workers have suggested that upper and lower limits on the 

bubble size do exist in practice. 

Davidson, Harrison and de Kock (1961) based their theory of maximum 

bubble diameter on the rather tenuous assumption that the bubble 

disintegrates_ by particles being dragged in through the wake. This 

led to the conclusion that the bubble is stable until the fluid 

circulation velocity inside the bubble exceeds the particle free 

fall velocity, at which point the void should fill with particles 

entrained from the wake. The only observations of this mode of 

bubble instability are by Davidson, Harrison and de Kock themselves, 

and, as Clift and Grace (1972) observed, this should only occur when 
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the method of injection imparts the wake with sufficient momentum for 

it to rise to the bubble roof. 

However, on the basis of this assumption, Davidson et al were able to 

predict a maximum stable bubble diameter which is large for gas 

fluidised beds and relatively small for liquid fluidised beds. In 

other words, the theory suggests that most liquid fluidised systems 

appear to be particulate in nature because the largest possible stable 

bubble is so small that it is not visible. 

For example: Glass beads of diameter 510 microns have as the maximum 

diameter, 0.2 cm when fluidised with water 

and 250.0 cm when fluidised with 

Although the model used appears very doubtful, the theory leads to an 

ordering of the stability of fluidised systems which agrees 

qualitatively both with the experimental evidence and also with 

Wilhelm and Kwauk's earlier classification. Ieappears that correct 

ordering of the stability of fluidised systems arises since the 

criterion proposed by Davidson et al, Did p, 
• P 

(= the max stable bubble diameter), is proportional to the Fi•oude 
particle diameter 

number, (Fr = U 
o  2/dp  g), and the solid-fluid density ratio (p s  - p ) 

P F 

the constant of proportionality depending on the parameters of the 

system studied. 

Wilhelm and Kwauk (1948) have shown that the Froude number is a 

reasonable measure of bed stability, and Romero and Johanson (1962) 

show that a combination of Fr, ( p s  - ly and a Reynold's number 

pF 
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gives an even better indication of stability than Fr alone (see 

section 2D) 

Godard and Richardson (1969) investigated the possibility of a mini-

mum stable bubble size. They found, by measurement of the collapse 

rate of small injected bubbles in a particulately fluidised bed, that 

such a minimum stable size does exist. Typically, for spherical 

acrylic resin particles, with surface mean diameter = 126 microns; 

density = 1.18 g/cc, fluidised with air at twice the minimum 

fluidising velocity, the minimum stable bubble volume is 0.08 cc (or, 

for a spherical bubble, the minimum stable diameter = 0.5 cm = L0 x 

particle diameter). Their results show that this minimum bubble size 

tends to increase as the background velocity decreases towards the 

minimum fluidising velocity, but for conclusive proof, determination 

of actual values and of the dependence on other bed variables, more 

experimental work in this field is necessary. 

1.5 Bubble Stability in Viscous Fluids (Liquids) 

Gas bubbles in liquids also exhibit a tendency towards instability as 

the bubble size increases: large individual bubbles deform and then 

fragment into smaller bubbles. According to Levich (1962), a rising 

bubble flattens out, pulsates and forms a thin film at the centre. 

The sudden rupture of this film fragments the bubble. Levich calcu-

lated, by balancing the dynamic pressure within the bubble with the 

capillary pressure (surface tension forces), the critical radius, 

acr,  , at which break up begins. Thus: 

= •a cr 
3.0 

3] kf 

aT 
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Where p. = liquid density 

= gas density 

b 
= bubble velocity 

. kf = numerical coefficient ='0.5 

aT  = surface tension 

For a typical bubble of air in water, acr  = 1.8 cm. It would be very 

misleading to compare the break-up of bubbles in fluidised beds with 

that of gas bubbles in liquids, especially as the mechanism in the 

latter case is wholly dependent on the liquid surface tension at the 

bubble boundary, a variable which is non-existent in the case of 

fluidised beds. A fluidised system has no actual surface tension 

because there is no discrete boundary between separate fluids; the 

boundary is merely the limit of the region of particles suspended in 

one continuous fluid. 

However, using the principle of corresponding states, Furukawa and 

Ohmae (1958) have described an 'effective' surface tension at the 

boundary of bubbles in water fluidised beds, by comparison with the 

behaviour of bubbles in liquids of known surface tension. Their 

results for glass particles of diameter 300 to 400 microns, when used 

in equation (1.1) lead to a critical radius of order 1 cm for a system 

of these particles fluidised with water. This compares with a maximum 

diameter of 2-3 cm predicted by.Davidson, Harrison and de Kock (1961):. 

(see section 1.5), but comparison with experimental results would seem 

unprofitable, since Davidson et al base their maximum diameter on a 

doubtful model and bubble break-up in liquids is dependent on a force 

which is not present in fluidised situations, and takes place in a 

manner not observed in bubble break-up in fluidised beds. 
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CHAPTER 2: THE STABILITY OF A PLANE HORIZONTAL INTERFACE IN A FLUIDISED BED 

SECTION 2A: THEORY 

2A.1 Equations of Motion  

As explained above, Rice and Wilhelm (1958) treated the fluidised 

system as a single fluid phase. A more correct treatment would be 

to consider the homogeneous phase of the fluidised bed not as one 

single fluid, but as two interacting continua: the 'particle phase' 

and the interstitial fluid phase. It is therefore necessary to 

define the equations of motion for these two phases. In sections 

1.1 and 1.2, previous work in this. field has been discussed, and in 

the light of the information available from this previous work, for 

the present analysis, a rather simple set of equations based on the 

original equations derived by Jackson (1963) and including particle 

stress and fluid-particle interaction terms similar to those pro-

posed by Murray (1966), Anderson and Jackson (1967) and Jones (1970) 

is employed in preference to the more complete set used by Anderson 

and Jackson (1967, 1968, 1969). The equations then include those 

physical terms which the other authors show to be the most 

important and are simple enough to lead to readily manageable 

mathematical analysis. 

Following the general method of analysis used by Rice and Wilhelm, 

the study is undertaken of the stability of a horizontal plane sur-

face in the fluidised bed to small wave-like disturbances. The 

equations of motion must therefore be written for three fluid 

phases: the homogeneous particle-free fluid phase, referred to by 

Rice and Wilhelm and hereafter as the 'support fluid'; and the two 

interacting phases in the fluidised region. All three phases are 

*see page 23a. 	23 



23a. 

The particle stress forces equations 2A.4 and 2A.7) have the form 

suggested by Murray (1966) and Anderson and Jackson (1968, 1969). 	The 

components of this force are given by 
aa
ikwhere. alk is the particle 

ax. 

stress given by the above workers as 

p rvi 	av 	2 k a 	 i- (S. P. 	P 	 al7":" 	 3 Sik d v V ik 	ik 	• 

Equations 2A.4 and 2A.7 are derived by differentiating the normal stress 

(i = k) and the tangential stress (i j  k) respectively, and the same 

definition of stress is used later in defining the boundary conditions 

at the interface (ie equations 2A.45 and 2A.46) 

For the particle phase, P = 0, and thus, 

3V 	DV 	2 3V 2 DV 
a= .=p 	x+ 	x - 	x 	y 

ali 
P ax 	ax 	 ax 	3y 

cry _ 	[4 2 	2 3
2
V 

ay 	- pp 	D Vx 	- 3- 	

Yll • -ax3y 	Dy
2  

Similarly, for the tangential stress, ax  = aik, i # k and 

2 
Max 
	

V
x 	

a
2
V 3 

 
ax 	TxDy 

3 x
2 

as used in equations 2A.4 and 2A.7 



assumed to be incompressible. Considering a plane disturbance, then, 

there are nine such equations in all, for a two-dimensional system. 

These equations of motion are:- 

Continuity: 

Particle phase: 

de  . d[(1-e)  x]d[0.-e)Vyj 

	

dt 	dx 	dy 	= 0 

Interstitial fluid: 

de d(ex) d(eU ) 

	

+ 	+ 	=0 dt 	dy dx  

Support fluid: 

dW dW x 
+ 	- 0 dx dy 

Momentum in x Direction: 

Particle phase: 

(2A.1) 

(2A.2) 

	 (2A.3) 

dV V dV V dV 	dU U dU dU 
(1-e) 	x 	x p 	+ 	x x x 

-p dt 	d
x  
x 	y dy ePF 	dt 	dx 	dy 

 

p(u -v.3c) µ d2V 	ev 
6-77 	774 -;:5 = 0 

Interstitial fluid: 

 

(2A.4) 

 

dUx  UxdUx  UydUx  

	

___ 	dP
2 + g.0.x-7.x)  =0 ePF 	dt + 	dx 4 	dy 	+  

0 	 dx 

Support fluid: 

[ 	7 	

ew
x dW W dW W dW 	dP, Pp 	d:. 4.  x x +  yx 	+ 7123.c - lip 

 dx 
dx2  dY

2 

(2A.5) 

+Fx =0 

(2A.6) 
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Momentum in y Direction: 

Particle phase: 

dV
I (1-0p 	

VycIll 	UrxdU 	U dU 

p dt 	dx 	dy ePF dt 	dx 	dy 

p(u —v ) 	d
2
V 	2 d2V 

(1_J  + p 3 Ig4 — 	+ C(1-e)pp-eppjg = 0 - - - (2A.7) 
41,1 

Interstitial fluid: 

	

[ dU U dU U dU 	dP, 

EPF 1-1 + 3c-7a + Y4 + --T  + p(us—vy) + eppg = 0 — — — — (2A.8) 

Support fluid: 

	

F 7:ii + 'c-.71; + Y.-4 	+ --e.  -F ---5 + ---5 
I 
dW 	W dW 	W (14/ ] 	dP 	g I d2141 	d24,1 

	

dx 	ay 	+ PFg -I- Fy = 0  dy 

- - - - (2A.9) 

Where U is the velocity of the fluidising fluid 

✓ is the velocity of the particle phase 

W is the velocity of the support fluid 

Subscripts x, y represent the horizontal and vertical directions 

F, P represent the fluid and particle phase parameters 

2, 3 represent the interstitial and support fluid 

and the drag coefficient p(e) = 18P'F  W(e) (1-e) 

with W(e) = e-N  

The exponent, N, is dependent on the Reynold's number as given by 

Richardson and Zaki (1958). In the following calculations, N is 

taken to be 4.7, the value for low Reynold's numbers. 

These equations may be linearised in the manner described in section 

1.2 by casting the variables in the form U = U + 
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A 
Where U is the perturbation variable 

U.  is the steady state solution 

with the following steady state solutions: 

= so 	  

 

(2A.10a) 

(2A.10b) 

(2A.10c) 

(2A.10d) 

(2A.10e) 

(2A.10f) 

 

xtY = 0  

Ux = o 

U • = /Jo 
Y co 

11X = o 

y o 

  

  

  

  

  

  

Where U = minimum fluidising velocity 
0 

  

co = voidage fraction at minimum fluidisation 

and the homogeneous phase is assumed to be at the conditions of mini-

mum fluidisation. Linearisation of equations (2A.1) to (2A.9) by this 

method gives, where all variables are now perturbation variables: 

4.  (1-co ) a:: + (1-eo) !IL = 0 
ay 

de  dt U de 	dU +o 	+o x+o___Ay _0 
co 	dx 	dy 

dW dW x  
+ —11  = 0 dx dy 

(1-0 )p 
dVX 	p 	dU 	U dU 	laW(e0)P.1, (Ux-VX) e 	o x o P 	- o - 	x + - dt 	dt co dy 	

`qa 
„I  2 

I  + 	dv2 x + d2VY 	= 0 
P — dxdy dx2 

(2A.11) 

(2A.12) 

(2A.13) 

(2A.14) 

[ dU 

	U dU ] 	dP2  18W(e0) (1 -e0)%, (u -Vx) 

d.. eoPF 	3  + e0  d; 	+ dx  + 	 2 	x 	= 0 - (2A.15) 
o ,1  

'AP 
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dW 	U dW .1 	dP 
x 	 x 

[ 	

d2W d2W 
o  

PF 	dt + 	dy 	4-  dx  P.11 	2  + 	 7 = 0 	- - - (2A.16) 
dx 	dy 

(1- )PP 

dV dU 	U dU 

--Xdt o "--idY 

18W(e0)P"F  1-1 7-Vy-4.7U0e + 

Xt 1 	eoPF d 2 
p 

2 
eo 

2 
01  4 d2Vx - 4. d Vy  1 

	

+   (2A.17) 
- g(PP + PF)e  = 0 .3  dxdy i  

0117
2 

dU U dU 	dP 18W(e_)% 

dt eoPF 	+ ec'  dY + dy 4. 	 
[ o a , 

2  [ (U -Vy)(1 -00) + 

P 

	

+ (3.7 - L2) uoc 	+ epg  = 0 	 (2A.18) 
c o e0 	

p 

 

dW 	U dW ] dP 	II 	d2W 	d2W 

dt PF 	+ o  dy + dy - F 	2 + 	2  = 0 - - - - (2A.19) 
[ 	 dx 	dy 

To cast these equations into a convenient dimensionless form, the 

following characteristic dimensions are chosen: 

Length = Ed; 

Time = _pa  i { 
Uo 

Pressure = [ppdpg] 

 

(2A.20) 

 

Substitution of (2A.20) into (2A.11) to (2A.19) gives, where all the 

variables are now dimensionless, perturbation variables: 

(1-e ) dV 	(1-e ) dV de o x 
dt 	dx + 	° 	- 0 	 

4Y - 	
(2A.21) 
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d2W dP 1 	 2 _ 
dy kep dx 3111 

	

- 

- - - (2A.29) 
dy
2 	0  

dW dW 
P [-Z  + 4] 

de 	k eo  dirx  e dU 

dt co d'Y 	-Tix- 	° 	= 

 

(2A.22) 

(2A.23) 

 

dW dW x + 	0 
dx. dy 

  

  

dV 	dUx  1 dUx 	18W(e ) 

(1-eo)  dt 

• e

oP dt eo dy - Rep  ( UX- VX) + 
 

i d

2VX d2V 
+ Rep Tdd:-y 4. dx 

2  
0 	  (2A.24) 

dir 	1 dU ] 	1 dP x 	
x Fr 

 2 	 
1-  " dx + 

[ 	

18W(e0)(1-e 

eoP 	dt 4- eo dy  R 	
(X- X) = 0 - (2A.25) 

ep 
 

p 
dW 	dW 	1 2._P.2 	1 [ d2W 

dt "4-  dy 	Fr 	- Rep 	 2 + 

	

dx 	
ow, 2 0 	(2A.26) 

dV dU 	1 dU 	18W(c ) If -V -4.7e  
(1-so) 	- eop 	+ eo  -ey  - 	YY 	 2 +

dt 	 Rep 	eo  

_a_ 	
d
2
V 	d2V 

[  Rep 	3 ftdY 3 dY2  

(2A.27) 

[dill  dU 	dP2  18W(so) 

dy eoP 	dt 	
(UVy)(1 -co) + + so  ay 	Fr 	Rep 	
y- 

 

] 

	

+(3-7 - L..1) 1_ + 2S. = 0 	  (2A.28) 
e e 	Fr - 
O 0 
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Where the dimensionless groups are: 

Rep = pPdp 	- a type of Reynold's number 

11F 

Ft = .o
2 
- a Froude number 

gd 

P = PF 

Pp 

= Pp 

PF 

and it is also convenient to define a second Reynoldts number 

Rer  = ppdpUo  = p R  

PF 
ep 

2A.2 General Solution to the Equations of Motion  

The solution of the set 2A.21 to 2A.29 to an arbitrary initial 

disturbance may be found by the methods of Fourier analysis, and 

accordingly a solution is sought to a small initial sinusoidal 

disturbance of the interface with wave number K. The variables are 

thus assumed to have a wave-like spatial variation with a common time 

dependence of the form ent, the sign and magnitude of n (the growth 

rate) then determine the quantitative and qualitative features of the 

resulting solution. If n is positive the resulting solution is 

unstable, any disturbance being magnified at the rate ent. Negative 

values of n correspond to solutions in which any disturbance is 

damped out. 

A particular solution to the equations 2A.21 to 2A.29 is then: 

c = A exp(- Ky nt) Cos Kx 
	 (2A.30) 

V.3c = B exp (- Ky nt) Sin Kx 	  (2A.31) 
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V = B exp(- K + nt) Cos kx - n 	A exp(- Ky + nt) Cos Kx 
RT1.7;;) 

	 (2A.32) 

U = C exp( - Ky + nt) sin Kx + D exp(-Ky + nt) sin Kx - - - (2A.33) 
x  

U = C exp(- Ky + nt) cos Kx + D exp(- Ky + nt) cos Kx + 

+ (son - K) A exp(- Ky + nt) cos Kx 	 (2A.34) 

c 2K  

P2 = Fr n D exp(- Ky + nt) cos Kx K 

 

(2A.35) 

 

W'pc = E exp(m
3
y + nt) sin Kx + F exp(Ky + nt) sin Kx - - - - (2A.36) 

Wy = K E exp(m3y + nt) cos Kx - F exp(Ky + nt) cos Kx - - (2A.37) 
m
3  

= F p (n + K) F exp(Ky + nt) cos Kx 	 (2A.38) r. 	K  

Where m
3 
is defined by: 

	

R   (2A.39) 

and is, by definition, positive 

Details of the derivation of the particular solution, equations 

(2A.30) to (2A.38) from a general solution are given in Appendix I. 

2A.3 Boundary Conditions  

A consistent set of interfacial boundary conditions must be imposed 

to relate the growth rate, n, of the disturbance on the plane 

horizontal interface to the wave number, K, and the physical 

parameters of the system. 
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As the solution governing the behaviour of the system parameters to a 

wave-like disturbance at the interface (equations 2A.30 to 2A.39) 

contains six unknowns (the constants A to F) six consistent and 

independent boundary conditions are required for the complete solu-

tion to obtain the growth rate. 

The boundary is defined at y = 0, the perturbed boundary being 

y =11 (x, t). (See Figure 1 for definition of the co-ordinate system). 

By definition, the boundary is the limit of the particle phase, thus, 

the rate of change of the boundary with time, is 

-V dt 	y 

 

(2A.4o) 

 

Integration of (2A.40) gives: 

V 	B exp(- Ky + nt) cos Kx - 	1 	A exp(-Ky + nt) cos Kx 
n ila770) 

( 2A )a) 

for V . 0 at t = 0 
y 

The boundary conditions are then derived by taking material balances 

across the (slightly) deformed surface and by equating normal 

tangential stresses on either side of the surface. 

There are two possible configurations of the system with a horizontal 

boundary: 

2A.3.1 Fluidised Phase Uppermost; eg roof of a bubble or base of 

the bed. 

a 	Material Balance  

Taking a material balance normal to the (slightly 

deformed) interface gives (cast into perturbation and 
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Figure 1: Wavelike disturbance on a plane horizontal surface 



dimensionless form, as in section 2A.1): 

W-  = c U.  + -e— + V (1 - so) y 	o y co 

 

( 2A.42) 

 

A simplified approximation of this is to treat the 

interface as a fixed boundary. That is, at any instant 

in time the particle phase, by definition, cannot move 

across the boundary. Taking material balances across 

this fixed boundary then leads to (again in perturbation 

and dimensionless form): 

111c .e  y 	o U y+ co 

and W = x o x 

  

(2A.42a) 

(2A. )43) 

  

  

Pyle and Rose (1965) also used the simple form of the 

boundary conditions, equation (2A.43) to determine the 

gas flow inside a bubble in a fluidised bed; it is 

employed throughout this analysis, although other pos-

sibilities do exist. 

b 	Stress Boundary Condition  

Continuity of the normal and tangential stresses at the 

interface gives:- 

cY 	
+   (2A.44) SF = cYF crP 

Where a = normal or tangential stress 

subscripts SF represents the support fluid 

F represents the interstitial fluid 

P represents the particle phase 

Employing a definition of stress analogous to that used 

by Murray (1966), Anderson and Jackson (1967) and Jones 

(1970) gives, for the support fluid: 
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Tangential stress: asp  = 
g
p 	

dW
x +IL]  - 

dx dy 
- - (2A.45) 

Normal stress: asp  = P3 	T'714 	
d  :: 

- - - (2A.46) 

with corresponding expressions fog" the other two 

phases. Thus (2A.44) gives, in perturbed and dimen-

sionless form:- 

dW 	dW 	dU dU g idV 	dV 
x 	_ x 	 x 
dy dx dy dx 	dy dx - - - (2A.47) 

R P 	d_ y _ 51 R P 	dW 2 dU 
i-  _2R 3 	x - 7 	= 	

2 .
1-  3 	- 3 x 

Fr 	dy dx Fr 	dy dx 

{ dV 	2 dV 3 	- 3   
dy 	dx

x  

 

(2A.48) 

 

In (2A.48) the interparticulate pressure is taken, as in 

the equations of motion, to be zero. 

Also, from hydrostatic considerations 

P3  at y 	= P3  at y = 0 - 
and P2  at y 	= P2  at y = 0 - cop 1 

To obtain the other two necessary boundary conditions 

an assumption must be made about the distribution of 

stress across the boundary. This gives rise to a number 

of possibilities whose implications are discussed below. 

The simplest assumption is that the stress is shared 

equally by the two fluidised bed phases; so that, for 

both normal and tangential stresses, ap  = ap  (2A.49). 
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A variation of this assumption, which has more physical 

reasoning behind it, is that (2A.44) can be replaced, 

for both normal and tangential stresses by 

aSF = P = aF (2A.50). 

This follows from observing the system on a micro-

scopic scale: a 'packet' of support fluid may be 

opposed at the boundary by a corresponding 'packet' of 

either interstitial fluid or of the particle phase. 

Thus, if the stress is directly transmitted between the 

two opposing fluids, (2A.50) will be correct. However, 

the equations of motion are derived for variables 

averaged over a distance large in comparison with the 

particle spacing, so that this assumption may not be 

consistent with the equations chosen. 

Another assumption similar to (2A.49) is that the 

stress is shared by the two fluidised phases in the 

ratio of their volumes: 

Cd7F  = (1-co) c, for normal and tangential stresses 

	 (2A.51) 

Equations (2A.49).  (2A.50) and (2A.51) have a similar 

form: 

(2A.49) with (2A.44) gives asp  = Zap  = aup  

(2A.50) au  = ap  = ap  

(2A.51) with (2A.44) gives a = 1 	a = 
SF  (1-co) F  

= 1 a
P  where co - 0.4 — 	r'd 

 
Co 

35 



In the present calculations, equation (2A.50) is 

employed throughout, having checked that the other two 

give results of similar order. 

As the tangential stresses are proportional to the 

velocity gradient, (2A.50) implies that the velocity 

gradients in the fluids are in the inverse ratio of the 

respective viscosities. Two other possible assumptions 

are then: 

a 	that the velocity gradients in the two fluidised 

bed fluids are equal, giving rise to: 

dU dU dV dV 

	

x 	- x 

	

 
dy 	dx 	dy + dx 

 

(2A.52) 

 

d 4 _zdU 2  dx 4  dV 2  dVx  an  

3 dy 	dx =3 dy 	dx  - - - - (2A.53) 

and 

b 	that the interstitial velocity gradients are neg- 

ligible (zero). 

This assumption was made by Clift, Grace, and Weber (1973) and is 

also implied by Rice and Wilhelm. 

In (2A.47) and (2A.43), this is equivalent to assuming that the 

velocity gradients in the interstitial fluid phase are negligible in 

comparison to those in the other phases. 	Thus, the terms involving 

velocity gradients of the interstitial fluid are neglected. 	Equations 

(2A.47) and (2A.48) are simplified by setting: 

au 	Du x 	y 	- 0   (2A.54) 
ay 	ax 

and 
4 au 2  au 
3 —Z. 

ay 3  ax 
0 	(2A.55) 



As no conclusive evidence can be presented either for or against 

these assumptions, different consistent combinations of the proposed 

boundary conditions are solved in this work to find the dependence of 

the solution on these boundary conditions. There are therefore 

several possible consistent sets of boundary conditions; those 

investigated here are, as summarised in Table 3:- 

Set 1: This set is derived from the full material balance allowing 

interfacial movement, and from the assumption that the stress is 

directly transmitted between the phases (equation 2A.50). This 

latter assumption also implies that the velocity gradients in the 

particle phase are (..t) x those in the interstitial fluid; where, for 

water fluidised systems, p = 0[102  to 103], and for air fluidised 

systems, p = 0[104 to 106]. 

Set 2: This set is similar to Set 1, but with the full material 

balance replaced by the approximate material balance taken over a 

fixed boundary. The effect of this approximation on the solution 

can thus be investigated. 

If the stress boundary conditions are employed simultaneously with 

the assumption that normal and tangential velocity gradients in the 

two fluidised bed phases are equal (equations (2A.52) and (2A.53)), 

this unfortunately leads to an indefinite result, (two rows of the 

determinant, M (see section 2A.4), are equal). Thus the effect of 

the boundary conditions was determined separately in sets 3 and 4: 

Set 3:  This set is similar to set 2, but with the velocity gradients 

in the tangential stress terms equal. 

Set 4:  This set is similar to set 2, but with the velocity gradients 

in the normal stress terms equal. 

Set 5: This set is similar to set 1, but with the velocity gradients 
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in the normal stress terms equal. That is, sets 4 and 5 are used to 

investigate the effect of the approximate mass balance on the solu- 

tion in this case. 

Set 6: Again, neglecting  the velocity gradients in the interstitial 

fluid gives an indefinite result by this method of solution, but as 

this is the assumption made by Clift, Grace and Weber (1973), their 

solution has been re-calculated for the physical systems investigated 

here. 

In their solution, Clift, Grace and Weber simplified the equations of 

motion by neglecting  the interstitial fluid momentum and assuming  

that the voidage is constant, so that only four constants were neces-

sary. Thus, only four consistent boundary conditions were needed for 

the complete solution. 
79k 

2A.3.2 Support Fluid Uppermost;  eg  top of the bed 

The boundary conditions are as in 2A.3.1 for the configura- 

tion;  fluidised bed phases uppermost, with the definition 

of normal stress which is equivalent to (2A.46) in dimension-

less terms:- 

1 
aSF = 

 

dW 	2 dW x + 3 -3   
dx 

 

(2A.46a) 

  

Fr 

  

Where aSF 
is a dimensionless stress. 

The only difference between these two configurations is the 

change in the direction of the acceleration force (eg  

gravity, g,and hence Fr) with respect to the chosen system 

of co-ordinates. That is, with the stress as defined in 

(2A.46), y is positive in the opposite direction to that in 

which the gravitational force acts for the configuration, 
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details of boundary conditions for sets 2 and 6 are given in 
Table 3a, page 40a. 



fluidised phases uppermost, and in the same direction for 

the configuration support fluid uppermost. 
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TABLE 3 

Features of the Sets of Boundary Conditions Investigated 

Boundary 
Conditions Material Balance Aseumptions and Equations Employed in Deriving the 

Stress Boundary Conditions 	. 

Set 1 

Full mass balance over moving interface. 

Equations: 	(2A.42) and (2A.43) 

Normal and tangential stress directly transmitted 
across the boundary. 	From observations on microscopic 
scale. 
Equation: 	(2A.50) 

Set 2 

Approximate mass balance over fixed interface. 

Equations: 	(2A.142a) and (2A.143) 

Normal and tangential stress directly transmitted 
across the boundary. 	From observations on microscopic 
scale. 
Equation: 	(2A.50) 

Set 3 

Approximate mass balance over fixed interface. 

Equations: 	(2A.142a) and (2A.43) 

Normal stress directly transmitted across the boundary. 
From observations on microscopic scale. 	Equation (2A.59) 
Tangential stress: 	velocity gradients equal. 
Equations: 	(2A.47) with (2A.52) 

Set L1. 

Approximate mass balance over fixed. interface 

Equations: 	(2A.42a) and (2A.143) 

Tangential stress directly transmitted across the boun- 
dary. 	From observations on microscopic scale. 	Equation 
(2A.50). 	Normal stress: 	velocity gradients equal. 
Equations: 	(2A.48) with (2A.53) 

Set 5 

Full mass balance over moving irterface. 

Equations: 	(2A.42) and (2A.43) 	• 

Tangential stress directly transmitted across the boun- 
dary. 	From observations on microscopic scale. 	Equation 
(2A.50). 	Normal stress: 	velocity gradients equal. 
Equations: 	(2A.48 with (2A.53) 

Set 6 
Full mass balance over moving interface. 

. 
Equations: 	(2A.42) and (2A.43) 

Interstitial fluid velocity gradients zero. 	Normal and 
tangential stresses are continuous across the interface. 
Equations: 	(2A.47), (2A.48) with (2A.54) and (2A.55) 
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Table 3a 

Boundary 
Condition 

Set 2 Set 6 

Mass balance 
(i)  

Mass balance 
(ii)  

V 	= e 11 	+ 5-- 
y. 	o y 	e . 	o 

W= c x 	o 	x 

e W. 	= e II 	+ — 	+ y 	o y 	Co 

W. 	= e 	U x 	o 	x 

V 	(1 - co ) 
Y 

Tangential stress 
balance (i) 

—_,. 

3W
x 	3W r avx 	av 

+ 	■■•Z-1 

ad 	3W 
+ -.2 	= 	p 

av 	av 
X  A + p 

3y 	3x Dy 	Dx ay 	3 x 3y 	3x 

Tangential stress 
balance (ii) 

3Wx 	a'a 	au 	DU 
= 	x + 	--2. 	+ 	_2 - 

ay 	ax 	3y 	3x 

normal 1 stress 
balance (i) 

Re 	P 	- Re 	ivi 	4 	avr 	2 	3W 
P 	3 	F I 	+ 	— 	- 	7 	x 3 	._..2  

4 Re 	P 	- 	Re 	+ — a 3 	Fl 	3 
2 aw 	— 	— 	3W 3 	x .....z.  

Fr 	Fr 

= 
	4 	. 

3 	uL_ 	.23.1131/x 
3y 

3y 	ax Fr 	Fr 

= 	
Re 
—2. 	- Re_ v e Fr 	Fr 	

o  

ay 	3x 

4 	- 2 	-3-u  3Vx + 7p 3V  _z  9x 9 	3x 

Normal stress 
balance 	(ii) 

Re 	Re 	n __2. 	p 
	- 	

F 	, 4 
-3-  Fr 	3 	Fr 	- 

Re 	Rev  
= --2 p 	- 	- 	c 

Fr 	2 	F 	o 

3W 	2 	alix --.Z. -  S 

DU 
x 

. 

- ay 	Dx 

+ 	
4 	DU 	2 
7---z - 3 Dy ax 



2A.4 Solution Using the Proposed Sets of Boundary Conditions  

2A.4.1 Fluidised Phase Uppermost  

Full details of all the algebra involved is given in 

Appendix 2. 

Substitution of the assumed solution of the equations of 

motion (2A.30) to (2A.39) into the boundary conditions gives 

the matrix equation: 

	

[M]x[ABCDEF]2  = 0   (2A.56) 

Where [M] is a 6 x 6 matrix of coefficients. 

The matrix, M4 is given in Appendix 2 for all the sets of 

boundary conditions used. 

The non-trivial solution to (2A.56) is given by: 

det [N] = 0 
	

(2A.57) 

Which leads to n3(a) + n2  (b + c) + n (d + e) + f = 0 

	 (2A.58) 

Where the coefficients a to f are also given in Appendix 2, 

for all the sets of.boundary conditions used. 

The solution to equation (2A.58) together with (2A.39) can 

then be determined by a fairly straightforward method using 

a digital computer. 

2A.4.2 Support Fluid Uppermost  

Substitution into the boundary conditions for the configura-

tion, supprt fluid uppermost, gives the same general form of 

solution and equation (2A.58) becomes: 

d(a) + n2(- b + c) + n (- d + e) + f = 0 - - - - (2A.58a) 
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2A.4.3 Physical Parameters  

To make the solution of equations (2A.58) and (2A.39) pos-

sible, the physical parameters of each system must be known. 

Values for pp, pp, dp and lir  are readily available for systems 

of interest; values for the minimum fluidising velocity, U0, 

when not available, were found experimentally in the normal 

manner. 

eo 
is taken to be 0.4 for all systems. This is, of course, 

an approximation, but will not introduce large errors: 

Wilhelm and Kwauk (1948) show that eo  is between 0.37 and 

0.41 for all the water fluidised systems investigated here, 

and most gas fluidised beds have a voidage fraction at 

incipient fluidisation of around 0.4 - 0.45. 

The viscosity of the particle phase, pp has been taken from 

the work of Schugerl et al (1961); Schugerl (1971), Hetzler 

and Williams (1969) and Hagyard and Sacerdote (1966). 

Schugerl gave values of Plo as a function of fluidising 

velocity for many air fluidised systems, and showed that lip 

settles down to a (fairly) constant value in a well fluidised 

system (fluidising velocity > 2 U0). Hetzler and Williams 

correlated the average bed viscosities for many water 

fluidised systems. Hagyard and Sacerdote determined the 

effect of the system density on Pp. 



SECTION 2B: PREDICTIONS FROM ihE 'THEORY 

2B.1 Support Fluid Uppermost  

The solution for this configuration (that is, equations (2A.58a) and 

(2A.39) has no positive roots of n for positive K, for any of the six 

sets of boundary conditions proposed. This configuration is there-

fore always stable, and any plane wave disturbance on such a boundary 

will be damped out. This agrees with the findings of Murray (1965) 

(see section 1.2) who predicted that disturbances on the upper surface 

of the bed (ie this configuration) were always damped out. 

2B.2 Fluidised Phase Uppermost  

The solution for this configuration, (that is, equations (2A.58) and 

(2A.39) has one positive root of n for positive K, for each of the 

six sets of boundary conditions proposed. Thus, this configuration 

is always unstable. There is, of course, no surface tension force to 

exert a stabilising influence, as in the case of the gas/liquid sys-

tems investigated by Bellman and Pennington (1954). 

In the following work, attention is confined only to this one positive 

root. 

Figures 2, 3, 4, 5 6 and 7 show the solution in the form of a graph of 

n vrs K for several known physical systems for each proposed set of 

boundary conditions. (For systems fluidised by water, the experimental 

values of Wilhelm and Kwauk (1948) are taken; for systems fluidised 

by air, the experimental systems presented in section 3, (Table 7), 

are taken). 

It can be seen from Figures 5 and 6 that the two sets of boundary 

conditions in which the velocity gradients in the two fluidised bed 

phases are assumed equal in the normal stress terms give a similar 
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solution to that due to Jackson (1963). His analysis of the stability 

of homogeneous fluidisation showed that the growth rate increased 

monotonically with wave number. The reason for this in Jackson's 

work (see section 1.2) was the omission of the particle phase viscous 

(stress) forces. It- can be seen in Appendix 2 that the dominant 

coefficients in the solution equations for these two boundary condi-

tion sets have the viscosity ratio, p, and thus the particle phase 

viscosity, pp, as a common factor, so that these two sets of boundary 

conditions also produce a solution which is independent of the particle 

phase viscosity. 

However, there would seem to be no physical explanation for this 

solution; the assumption that the velocity gradients in the particle 

and interstitial fluid phases are equal in the normal direction, in 

no way implies that the particle phase viscosity is zero. These sets 

of boundary conditions could be inconsistent, but again there seems to 

be no physical justification to suppose that this is true. 

Figures 2, 3, 4 and 7, the solutions for the other sets of boundary 

conditions, show that, for these four sets, the general form of the 

solution n versus K is similar for the whole range of physical 

properties investigated. It can be seen that, as Rice and Wilhelm 

found, there is a maximum in the n versus K curve at nmax  , correspond-

ing to the most rapidly growing, or 'the most dangerous' wavelength, X% 

Table 4 lists the calculated values of n ax  and the corresponding m 

'most dangerous' wavelength X, for a range of different fluidised 

systems for each of these four sets of boundary conditions. 
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Figures 2, 3 and 4, and the corresponding columns in Table 4, show 

that the sets of boundary conditions 1, 2 and 3 give very similar 

solutions. The difference between these boundary conditions is given 

in section 2A.3 and summarised in Table 3, but in summary; Set 1 

was derived from the full material balance and .the assumption that the 

stresses are directly transmitted between the phases. Set 2 differs 

from set 1 in as much as the approximate material balance is used, ie 

sets 1 and 2 may be used to study the effect of this approximation on 

the solution. Set 3 differs from set 2 in as much as the velocity 

gradients in the two fluidised phases are assumed equal in the tan-

gential stress terms, ie sets 2 and 3 may be used to study the effect 

of this assumption on the solution. 

Obviously, from the results, neither of these two assumptions have a 

great effect on the solution, and thus from here on only the solutions 

using boundary condition sets 2 and 6 will be discussed. (Sets 1 and 

3 being very similar to 2 and 4 and 5 yielding results independent of 

the particle phase viscosity). 

Figures 8 to 13 show that, although the solutions using boundary 

condition sets 2 and 6 are of similar order for water fluidisation, 

set 6 leads to a much larger maximum growth rate for air fluidisation 

than does set 2. This is quite consistent with the assumptions made 

in deriving these two sets of boundary conditions. Set 6 (which 

gives a solution directly comparable to that of Rice and Wilhelm, and 

Clift, Grace and Weber) involves the assumption that the momentum of 

the gas percolating across the interface is zero and that the velocity 

gradients in the interstitial fluid are small in comparison with those 

in the particle phase. Set 2 implies that the momentum of the gas 
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percolating across the interface is large (ie the velocity gradients 

in the interstitial fluid are p.x those in the particle phase, where 

p. is large, (see 2A.3). 

It is to be expected that the higher the momentum of the fluid 

percolating across the interface, the more stable that interface will 

be, as this increases the drag force on the particles: Jones (1970) 

showed that increasing the drag force on particles in a fluidised bed 

leads to a decrease in particle oscillation (ie greater stability). 

Thus, for air fluidised systems, which have much larger density and 

viscosity ratios than water fluidised systems, it is to be expected 

that boundary condition set 2, with the higher momentum in the inter-

stitial fluid than in set 6, should be more stable. 

Clift, Grace and Weber did attempt to calculate the effect of includ-

ing the interstitial fluid momentum in their solution, and claim to 

have proved that the effect is negligible. However, this more complete 

calculation necessitated the use of an extra boundary condition. 

Clift et al overcame this problem by using their general continuity 

boundary condition twice, with different values for the uncertain 

constant. Their set of boundary conditions are therefore not consis- 

- tent or independent, so that their claim that the inclusion of the 

interstitial fluid momentum terms has negligible effect on the solu-

tion has not been proved. 

It is probable that neither set of boundary conditions is completely 

correct: under certain conaitions either one may appear more reason-

able, but the true situation almost certainly lies somewhere between 

the two extremes of large and zero interstitial fluid momentum. 
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In Table 4, the use of boundary condition set 2 predicts an increas-

ing growth rate (ie instability) with decreasing Froude number, or in 

more concrete terms, that liquid fluidised beds are more unstable in 

the situation investigated here, than gas fluidised beds. This is, 

of course, an opposite trend to the results found by analysis of the 

stability of the state of homogeneous fluidisation, (see section 1) 

and of the correlation of the degree of stability proposed by 

Wilhelm and Kwauk (1948). These results are not however inconsist-

ent. It is possible that the homogeneous phase in a liquid fluidised 

system is more stable to disturbances, while a horizontal interface 

between this phase and the support fluid is less stable than in gas 

fluidised systems. In other words, it could be argued that one pos-

sible reason for the general absence of bubbles in liquid fluidised 

beds lies precisely in the instability of any interface, for example, 

the bubble boundary, to small disturbances. 

Although this same argument cannot be applied to the solution with 

boundary condition set 6, as this solution gives growth rates of 

similar order for both air and water.  fluidised systems, it will be 

shown later (in section 3) that, if these boundary conditions apply, 

bubbles in water fluidised systems are still less stable to disturb-

ances than are bubbles in air fluidised beds. 

59 



TABLE 14. 

Stability of Various Fluidised Systems  

Diameter of 
Particles dp 

Microns 
System ReF Fr 

Boundary 
Condition Set 1 

Boundary 
Condition Set 2 

Boundary 
Condition Set 3 

Boundary 
Condition Set 6 

-1 n 	sec 
-1  max cm -1 n 	sec max X cm max  sec 

 
max X cm 1 n 	sec max X cm 

490 Glass/Air 8.65 18.7 2.46 790 3.13 1050 2.26 890 17.0 12.4 

370 Glass/Air 2.61 3.79 3.14 628 4.04 628 3.02 628 20.0 7.0 

280 Glass/Air 1.24 2.05 3.66 314 4.54 314 
...__ 

3.54 314 23.0 5.3 

210 Glass/Air 0.68 1.47 4.o8 314 5.09 314 3.98 314 26.0 4.3 

100 Glass/Air 0.088 0.23 5.12 209 6.42 209 5.07 209 32.0 3.1 

5180 Glass/Water 222 0.036 18.24 15.7 23.2 15.7 16.7 15.7 11.5 17.9 

458o Socony Beads/Water 96.6 0.009 22.6 10.5 28.7 12.6 21.5 10.5 - - 

1280 Lead/Water 51.7 0.130 23.2 9.0 29.6 10.5 20.9 10.5 28.0 4.2 

3360 Socony Beads/Water 57.1 0.0088 26.9 7.0 34.2 9.0 25.6 7.0 - - 

1010 Glass/Water 9.0 0.0080 49.3 2.1 62.7 2.1 47.1 2.1 31.0 2.5 



SECTION 2C: COMPARISON WITH !nth STABILITY OF THE HOMOGENEOUS PHASE 

Anderson and Jackson (1967; 1968; 1969) studied the stability of the state 

of homogeneous fluidisation to small internal disturbances. Their analysis 

has been discussed in sections 1.1 and 1.2 but, in summary, they derived 

equations of motion for the particulate and interstitial fluid phases in 

terms of variables which are smoothed local averages, taken over an area 

that is large in comparison to the interparticulate spacing, but small in 

comparison to the whole system; they linearised these equations by the 

usual perturbation techniques. 

They assumed a complex, wave-like solution for the perturbed variables of 

the form: 

e . A exp(- ikx - iky + nt)   (2C.1) 

where n = a complex growth rate; n = -   (2C.2) 

k = the wave number of the disturbance 

and i = 

Elimination of variables between the equations of motion and substitution 

of the above solution leads to a relationship between the growth rate, n, 

wave number, K, and the physical system parameters. This relationship 

applies only for the state of homogeneous fluidisation, ie a long way from 

the boundary between the homogeneous phase and the support fluid. 

To compare the solution given in section 2A, for the stability of the 

boundary between the homogeneous phase and the support fluid, with that of 

Anderson and Jackson for the homogeneous phase in general, the support 

fluid must be assigned the physical parameters of the homogeneous phase. 

This, of course, involves the simplifying assumption that the homogeneous 

phase below the (now hypothetical) boundary can be described as one fluid 
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with mean density and viscosity, while above the boundary it is described 

as two interacting phases. 

A complete analysis is given in Appendix 3. 

For comparison with the solution of Anderson and Jackson, the present work 

is repeated with their form of general solution to the equations of motion 

(equation (2C.1)). For this to be possible, an assumption must be made: 

the solution proposed in Appendix 3 to the equations of motion is valid 

only at x = 0. However it is sinusoidal in x, and thus repeated at 

distances of one wavelength. It is therefore assumed that the solution at 

x = 0 is valid for all x; the error of this approximation will increase as 

the wavelength increases, so that the solution will be invalid for disturb-

ances of large wavelength. 

This comparison has only been attempted with boundary condition set 2, as 

defined in section 2A.3 and Table 3. The method of solution is completely.  

analogous to that used in the simpler case given in section 2A.2 and 

Appendix 1, and is therefore not repeated. 

However, the final solution by digital computer proved more difficult, 

owing to the presence of the complex coefficients introduced, and a complete 

solution was not made. The equations were solved, using a minimisation 

routine, only for the root with the largest positive real value of n. It 

is not possible to state, as in the simpler case that this is the only 

positive root. 

Tabl,, 5 shows some of the results of Anderson and Jackson for fluidisation 

with air and water, with the results from this analysis for approximately 

corresponding systems. For air fluidised systems, Anderson and Jackson 
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calculated their solution for three values of the bed (particle phase) 

viscosity 8, 16 and 32 poise, which correspond approximately to beds of 

glass particles of 210, 370 and L,.90 microns diameter. 

For the system fluidised by water, they calculated the growth rate for a 

given experimental system of glass particles of 2000 microns diameter, 

setting the parameter lib  = 70 poise. This figure would seem to be too 

large (for example, Anderson and Bryden (1965) show that shear viscosities 

of water fluidised beds are between 10 and 20 poise) even though Anderson 

and Jackson also include the bulk viscosity in their parameter. The 

results from this analysis are therefore calculated for µb  = 20 poise. 

It can be seen that the results of the two analyses do not compare well. 

However it must be remembered that there are many differences between the 

two analyses. That is, they are based on slightly different equations of 

motion; it is shown in section 1.2 that similar analyses based on equations 

of motion differing slightly from those of Anderson and Jackson give 

dissimilar results. There are also many simplifying assumptions involved 

in the analysis presented here, such as, that the solution at x = 0 is also 

valid for all x; that the system can be represented as one homogeneous 

fluidised phase below two interacting phases; and that the stress is 

transmitted equally to each phase across the boundary. It would therefore 

be reasonable to expect results of only the same order of magnitude. 

This analysis does, however, confirm that, for boundary condition set 2, 

the homogeneous phase itself is much more stable in water fluidised beds 

than in air fluidised beds, whilst the boundary between this pha3e and the 

particle free support fluid, (with the support fluid underneath) is much 

less stable. 
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TABLE 5 
Comparison With the Stability of the State of Uniform Fluidisation 

Description of System 
of Anderson & Jackson 

(1967, 1968) 

Solution of Anderson & Jackson Description of 
Equivalent System - Solved Here 

Solution of this Work 

li max 
sec-1  

YL at 	max 
sec-1  

K at 'ratax 
cm-1  

'' 	max 
sec-1  

1 at 	max 
sec-1  

K at 	max 
cm-1  

2000 micron diameter 
glass particles/water 
ilb  = 70 poise 

0.38 6.6 1.2 
2000 micron diameter 
glass particles/water 
pb  = 20 poise 

0.27 20.7 5.3 

Glass particles/air 
Erb = 8 poise 52.0 84.0 3.5 

210 micron diameter 
Glass particles/air 
pb  = 8 poise 

18.6 27.3 12.9 

Glass particles/air 
pb  = 16 poise 39.0 64.0 2.2 

370 micron diameter 
Glass particles/air 
pb  = 16 poise 

79.0 25.0 6.1 

Glass particles/air
pb  = 32 poise 25.0 45.0 1.5 

490 micron diameter 
Glass particles/air 
pb  = 32 poise 

130.0 15.0 7.5 



SECTION 2D: DIMENSIONAL ANALYSIS 

A number of investigations have been made (Wilhelm and KwaUk(1948); 

Romero and Johanson (1962); Doitchev (1973)) into the use of dimensional 

analysis in order to propose a criterion to distinguish between particu-

late and aggregative fluidisation. 

Wilhelm and Kwauk proposed the use of the dimensionless Froude number, 

2 

[ 

Fr = uo , for this criterion, such that:- 

Fr > 1.0 - aggregative fluidisation (bubbling) 

Fr < 1.0 - particulate fluidisation (non-bubbling) 

gd 

(2D.1) 

However, Wilhelm and Kwauk gave no theoretical justification for the use of 

this group nor for the limit set: Wilhelm and Kwauk found that the experi-

mental systems which they investigated could be characterised in this way, 

and their classification remains a most useful guide to the type of 

.fluidising behaviour to be expected. 

By casting the solution due to Rice and Wilhelm (1958) into dimensionless 

form, Romero and Johanson (1962) defined the dimensionless groups on which 

the stability of a fluidised system depends. The simple solution (model 1 

of Rice and Wilhelm) exposed the groups Fr, ReF, (.1.;:a); (and rr a length 

ratio) and Romero and Johanson claimed that a linear combination of these 

groups gave a better criterion for ordering fluidised systems in terms of • 

stability than did Fr alone. viz: 

1-o \ Fr R / eF p > 100 

Fr ReF p 
(1 ) < 100 

aggregative fluidisation 

particulate fluidisation 
(2D.2) 
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Once again, no justification was given for the combination of groups used 

in this criterion, other than that these three groups were those defined by 

the solution of Rice and Wilhelm. The limit set for the criterion was 

determined by calculating its value for many systems of known behaviour. 

Doitchev (1973), by calculating the amount of energy required to transport 

the fluid in excess of that required for minimum fluidisation, 

a with bubbling, and 

b without bubbling, was able to predict that: 

when Nf 
> 143 - aggregative fluidisation 

Nf 
< 143 - particulate fluidisation 

] 	

3 
Where Nf  = 	

gd 
___p_ (p - Pp)  (p (1-c 
2P 

	(p
p 
(1-c 

  

(2D.4) 

  

Now, as (pp-pp) and (pp  (I -go) + poo) are of the same order, it can be 

seen that, approximately:- 

Nf  R (1
=2).Fr 2  

Thus, Doitchev seems to have improved the criterion due to Romero and 

Johanson, equation (2D.2), by theoretically justifying a combination of the 

dimensionless groups proposed and also theoretically justifying their 

limit. However, Table 3 shows that the criterion due to Doitchev, equation-

(2D.3), does not in fact order the given fluidised systems as well as that 

due to Romero and Johanson. In fact, nearly all the systems studied here 

lie above the critical value. This is due to an assumption which Doitchev 

made. To calculate the critical value, lica,u7it is necessary to assume a 

value for the average bubble size, db, since 11. 1; depends on the ratio 

(2D.3) 
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Bubble diameter 	(db) and the voiaage at incipient fluidisation, eo. 
particle diameter ' dp  

Then, the assumption db = 1.0 and eo 0.4 leads to Nfcrit = 143. d p 
However, values of db >> 1.0 (thus N

fcrit 
>> 1L3) could still give a particu- 

d 
p 

lately fluidised system, so that the designated critical value, Nf  = 143 

seems to be somewhat below the correct limit. 

Using a similar method to Romero and Johanson on the present analysis, 

reveals the dimensionless groups 61=1), Fr, Rep and p (and TT, a length 

ratio). A linear combination of these groups should provide a more power-

ful ordering system than that of Romero and Johanson, as the additional 

group, 	shows similar trends to the other groups (ie for a given system, 

p is proportional to the density group (Haggard and Sacerdote (1966)); is. 

large for air fluidised systems and small for water fluidised systems) and 

also decreases with particle diameter for a given fluidising fluid, and 

should thus broaden the range of the criterion. 

It might therefore be expected that the inclusion of the viscosity group 

would improve the criterion, especially for those systems close to the limit 

between aggregative and particulate fluidisation. 

The linear combination of these groups gives, approximately:- 

p. (1  p ). ReF  . Fr > 2 x 105  - aggregative fluidisation 

1141:9-). R 	Fr < 2 x 105 - particulate fluidisation 

(2D.5) 
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Again, there is no justification for the combination of groups used here, 

and the limit set for the criterion was determined by calculating its 

value for many systems of known behaviour. 

Table 6 shows a comparison between these four criteria for known physical 

systems. It can be seen that Wilhelm and Kwauk's original classification, 

in terms of Froude number alone, gives a correct ordering of the systems in 

terms of stability. The added refinements which follow from this analysis 

and that of Rice and Wilhelm does not lead to any significant improvement 

in the prediction of the type of fluidising behaviour to be expected. 

However, it should be remembered that the linear combination of groups 

proposed here and by Romero and Johanson are merely the simplest combina-

tions possible. Further theoretical studies would be necessary to determine 

a combination of these groups which has physical justification, and this 

may then lead to a better criterion. 
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TABLE 6 
Comparison of the Criteria Proposed for the Prediction of the Stability of Fluidised Systems  

System Wilhelm & Kwauk (1958) 
Fr 

Romero & Johanson (1962) 

(.1=2-).Fr.R 
p 	eF 

Doitchev (1973) 

/1Z2AR 	.Fr 	2  p / eF 

This Work 

/2:2A.R 	.— rr.0 \ p 1 	eF 

Observed 
Nature 

1010 micron diam 
Glass/water 

0.0080 0.117 164 50.0 Particulate* 
_ 

3360 micron diam 
Socony beads/water 

0.0088 0.292 354 876 Particulate* 

4580 micron diam 
Socony beads/water  

0.0099 0.520 527 2.81 x 103  Particulate* 
_ 

5180 micron diam 
glass/water 

0.036 12.0 1760 
, 

1.03 x 10' Particulate* 

55 micron diam 
Glass/air  

0.046 1.88 189 2.21 x 104  Transitional** 

1280 micron diam 
Lead/water 

0.130 65.7 1400 2.82 x 105 Transitional* 

100 micron diam 
Glass/air 

0.230 50.5 455 1.31 x 106 Aggregative** 

210 micron diam 
Glass/air  

1.47 2.5 x 103  1400 1.26 x 10
8 Aggregative** 

280 micron diam 
Glass/air 

2.05 6.4 x 103  2160 
8  

4.33 x 10 Aggregative** 

370 micron diam 
Glass/air 

3.79 2.5 x 104 3390 2.7 x 109 Aggregative** 

490 micron diam 
Glass/air 

18.7 4.0 x 10 5  5000 8.8 x 1010  Aggregative** 

*Data from Wilhelm and Kwauk (1958) 
**Data from experimental measurements 



CHAPTER 3: BUBBLE STABILITY 

3.1 A Theory for Bubble Splitting 

As it stands, the theory developed in section 2 cannot be expected 

to yield much information about bubble stability. The analysis holds 

good only for a plane horizontal surface, with no relative motion 

between the phases. On the other hand, in a complete consideration 

of the stability of a bubble roof, the curvature of the equilibrium 

surface and the velocity and voidage profiles in all phases in the 

region of this surface must be considered. Rather than attempt a 

description of this complex situation the results obtained in the 

solution in section 2 are used to establish a qualitative theory for 

bubble stability. 

Observation of the mechanism of bubble splitting in fluidised beds 

suggests that some estimate of the likelihood of bubble splitting 

could be based on a comparison between the speed at which the disturb-

ance develops and the speed at which it would be swept away around 

the bubble surface. As Rowe (1971) observes 'the upper boundary 

commonly develops downward pointing cusps which frequently grow 

rapidly into long fingers ... (which) run around the edge to be lost 

eventually near the wake ... but some grow so fast relative to their 

• lateral movement that they divide the bubble'. 

In order to apply the earlier theory to the bubble boundary it is 

necessary for the bubble roof to be assumed flat - that is, for the 

wavelength of the disturbance to be small with respect to the curv-

ature of the bubble roof. Clearly this will be only rarely true as, 

too, will be the assumption that the disturbance is so large relative 

to the particle dimensions that the continuum assumption remains 

valid. 



In the solution obtained in section 2A, a disturbance of initial amplitude 

Al has the subsequent form 11= A' exp(- ky t nt) cos Kx 	- - - (3.1) 

which with y = 0 has the maximum value "i7 max = A' e
nt  - - - - - - (3.2) 

The time for this disturbance to grow to ' = db/2, say, is thus 

T1 n = log db 
e  2A' 

 

(3.3) 

 

The solution to the perturbation equations is, of course, a standing wave. 

However, the particles moving around the surface of the bubble are 

essentially falling under gravity (see, eg Hargreaves and Pyle (1972)) and 

to an approximation it might be expected that the disturbance will be swept 

around the bubble with the particleswhilst it is growing. Of course, in 

practice there would be an interaction between these two movements, but here 

it is assumed that they may be superposed. The time for the particle to 

move a distance d.b/2  is thus of order:- 

T  2  \rib7;1  

 

(3.4) 

 

and it can thus be postulated that if T
2 
>> T

1 
 splitting would occur, and 

vice versa. 

Setting Y = T2  T1  = n 
gilOge  (-b/2A')  

 

(3.5) 

 

then if Y >> 1, the bubble tends to split, and 

if Y << 1, the bubble should be relatively stable. 

An approximate condition for the transition between relative stability and 

instability is thus Y = 1, and equation (3.5) gives, for the critical 

bubble diameter:- 

db crit = 1 	db crit 
g 	

] 
n loge 	2A' 

 

(3.6) 
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It seems reasonable to assume that the stability of different systems 

may be compared on the basis of initial disturbances which are 

proportional to the particle diameter. The solution to equation (3.6) 

is shown in Figures 14 and 15. Figure 4 is calculated from equation 

(3.6) using values of n from the solution of boundary condition set 2 

• (large interstitial fluid momentum). Figure 15 is calculated from 

equation (3.6) using values of n from the solution of boundary condi-

tion set 6 (zero interstitial fluid momentum). 

The region of stability corresponds to that underneath the curve, which 

is not monotonic in db. Thus, for a given range of initial disturb-

ances, there appear to be both a minimum and maximum possible stable 

bubble diameter. From Figures 14 and 15 it can be deduced that the 

region of stability of gas fluidised systems is much larger than that 

of liquid fluidised systems. For example, for initial disturbances 

of, say 50 d , water-fluidised systems would be completely unstable, 

whilst gas-fluidised systems remain very stable. It can be seen that 

the choice of boundary condition set has little effect on the solution 

to equation (3.6). 

On the basis of the present simplified analysis, then,the non-existence 

of bubbles in liquid-fluidised beds, and their relative stability in 

gas-fluidised beds can be explained, at least in qualitative terms. 

Moreoever, it does not appear as if bubble diameters should be 

seriously limited by the splitting mechanisms proposed here. 

3.2 Comparison with Other Theories  

The results of the analysis presented here predict the existence of 

both a maximum and minimum stable bubble diameter. The relation of 

this prediction to the maximum and minimum stable bubble diameters 
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Figure 14: Stable bubble iiameters; comparison of regions of stability for gas and 
liquid fluidised systems: boundary condition set 2 
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Figure 15: Stable bubble diameters; comparison of regions of stability for gas and 
liquid fluidised systems: boundary condition set 6 



predicted by Davidsonet al (1961) and Godard and Richardson (1969) 

(see section 1.4) is considered. The present work reveals, for the 

maximum stable diameter, the limit above which splitting from the 

roof is likely, while the work of Davidson et al proposes a limit 

above which another form of instability (never yet observed under 

natural conditions) should occur. Similarly, a bubble larger than 

the Godard and Richardson minimum stable diameter may still be 

susceptible to splitting, and in fact may continue to divide by this 

process until it becomes, under the Godard and Richardson criterion, 

too small to exist. 

Comparison of the size of maximum and minimum bubble diameters pre-

dicted here with those of the other workers is of limited applica-

bility, as both depend explicitly on the amplitude of the initial 

disturbance, A. Calculation of a specific maximum or minimum bubble 

diameter for any given system would thus involve artificially 

specifying the size of the initial disturbance. 

Clift, Grace and Weber (1973) also attempted to use the results of 

their analysis of the stability of a horizontal interface to predict 

the likelihood of bubble splitting. They use, as their two time 

scales: 

T1 n ='-, or the time for the disturbance to grow by a factor e 

= 
 i

TS7 	 oge(uuu1 777-r7--N) 
2g 	

kw/2) 

Where 0 is the angle from the bubble nose at which the disturbance 

originates. 
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Using a similar criterion of T1/T2  = 1 they drew a stability chart 

of T T
2 
vrs X, the disturbance wavelength with the bubble diameter 

as a parameter. This then predicts the wavelength of the disturbance 

which causes splitting (small X; disturbances are swept aside; 

large X, bubble tends to split); whereas the present analysis 

assumes that the 'most dangerous? wavelength will always be dominant 

and is thus used as the basis for comparison and calculation. The 

conclusions then differ in as much as Clift et al predict that all 

bubbles are unstable, at some disturbance wavelength, whereas the 

present analysis assumes that the disturbance wavelength is constant 

for a given physical system, the bubble stability then depending on 

its diameter. 

Measurements of the disturbance wavelength reported here (Table 7) 

for different systems show that the wavelength appears fairly constant 

for any given system and this provides some support for the assump-

tion made in this analysis. 

It must be pointed out that neither analysis can be used to obtain 

quantitative results for bubble stability without further information 

on the initial amplitude of the disturbance. 

3.3 Experimental Study of Bubble Splitting 

The movement and splitting characteristics of bubbles in a two-

dimensional air-fluidised bed were observed and measured. The bed 

had the dimensions 30 cm x 120 cm x 1.5 cm and had a porous plastic 

(Vyon) distributor. Results were obtained for the closely graded 

particle systems recorded in Table 7. 

The bubbles were observed using cine-photography at a frame speed of 

up to 64 frames/sec using angled back-illumination. The film was 
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analysed frame by frame on a frame analyser to find the frequencies 

of bubble splitting as a function of bubble size, and also to measure 

the growth rates and wavelengths of the observed disturbances. 

For each system studied, approximately 13,000 bubbles were observed, 

and the growth rate and wavelength measurements recorded for 

approximately 30 bubbles of diameter between 3 and 15 cm. 

The movement and splitting characteristics of injected bubbles of 

water in a two-dimensional water-fluidised bed were also observed by 

the same technique. The bed had the same dimensions as that used for 

air-fluidisation and had a fine filter-cloth distributor. A simple 

method of injection was employed: namely, an injection tube was 

inserted, flush with the bed wall and connected to a manually operated 

valve. No attempt was made to meter the injected volume. Unfortun-

ately, no measurements of growth rates could be obtained, so that the 

results presented here are qualitative only. 
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TABLE 7 

a Bubble Stability for Glass/Air Systems  

Particle 
Diameter 

d 	microns 
Pl  

Minimum Superficial 
Fluidising Velocity 

Uo, cm/sec 

Measured 
Growth Rate 

sec-1  

Measured Disturbance 
Wavelength, cm 

490 30.0 26.0 4.0 

280 7.5 29.5 3.8 

210 5.5 22.2 2.8 

100 1.5 16.5 2.2 

b Physical Parameters of the Non-Spherical Sand/Air System 

Particle Diameter Microns 599 500 422 353 251 

Wt % Retained at Diameter 4.4 37.6 53.7 4.3 0.0 

Surface mean diameter = 440 microns 

Minimum superficial fluidising velocity = 23.5 cm/sec 
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3.4 Results and Discussion  

Figure 16 shows a typical bubble in a gas fluidised bed in the process 

of splitting. The sequence of photographs illustrates quite clearly 

how the growing fingers of particles are swept around the surface of 

the bubble. In Figure 17a one such finger is seen to finally split 

off a small section of the original bubble. It is also possible to 

estimate a mean wavelength, X, for the disturbance: Figure 17b shows 

a clear waveform on the roof of the bubble and measurements of these 

characteristic wavelengths and growth rates are found to be approxi-

mately constant for each particle size and, independent of bubble 

diameter. Table 7 records these values; the figures given being the 

arithmetic mean of approximately 30 experimental measurements. These 

results are also shown in Figures 10 to 13, where the spread of the 

experimental measurements can be seen. 

Figures 18, 19 and 20 show the behaviour of water bubbles injected 

into a water fluidised bed of 490, 280 and 100 micron diameter glass 

particles, respectively. Although no measurements of growth rates 

could be obtained, the photographs illustrate quite clearly that 

bubbles in liquid fluidised beds do indeed split from the roof rather 

than by collapse started from the wake (Davidson et al (1961)). This 

observation is borne out by Clift and Grace (1972) who observed that 

bubbles injected into a water fluidised bed of 1300 micron diameter 

lead shot, split only from the roof. Figure 20 also shows a wave-

like disturbance of the roof, so that it does seem likely that there 

will be a characteristic disturbance wavelength and growth rate 

associated with water fluidised beds. 
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Figure 16: Fingering in a bubble in a gas fluidised bed 
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Figure 17: Splitting caused by fingering in a gas fluidised bed 
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Figure 19: Behaviour of a bubble in a water fluidised bed 
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Figure 20: Behaviour of a bubble in a water fluidised bed 
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The measured values of the disturbance growth rates and dominant 

wavelengths can be compared with theoretical values between Tables 7 

and L, or, better, in Figures 10, 11, 12 and 13. The values do not 

agree quantitatively although trends are similar in both cases; it 

may be that the experimental results represent a sub-harmonic of the 

theoretical predictions. The experimental results would seem to add 

weight to the suggestion that the correct boundary conditions lie 

somewhere in between the assumption of zero or large interstitial 

momentum (ie set 6 or set 2). It must again be emphasised that the 

theory is in any case only true for infinitesimal disturbances. The 

experimental results, on the other hand, refer to the characteristics 

of finite amplitude disturbances. 

Measurements of the frequency of bubble splitting as a function of 

size are presented in Figure 21. For clearer representation, the 

results are shown as smoothed curves rather than in histogram form. 

The given experimental curves are the result of analysis of approxi-

mately 4000 frames of cine film for each system. Their form is 

independent of fluidising velocity, this is not shown, but for each 

system the results consist of the sum of the results at several 

fluidising velocities (up to ix the minimum fluidising velocity), 

each of which show the same characteristic form. 

The theoretical boundary between stability and instability is not 

sharp, for the criterion that Y = 1 should divide the two regions is 

at best an approximate one. For a system with a wide range of 

.initial disturbances it is to be expected that the theoretical line 

in Figure 21 will be S-shaped, and the experimental results do in 

fact have the expected form. 
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Figure 21: Experimental values of the frequency of bubble splitting, in 

air fluidised systems 



The initial turning down of the curie is due to the effect of rapid 

coalescence of the smaller bubbles. These, being extremely numerous, 

coalesce so quickly that their life span is too short for splitting 

to be important. Also, the assumption of two-dimensional motion will 

be less nearly correct for small bubbles whose diameter is comparable 

to the bed thickness. Splitting in a plane other than one parallel to 

the viewing plane would not be observed. Rowe (1971) points out that, 

in three-dimensional bubbles, splitting can indeed occur at any angle 

to the vertical axis, whilst in two-dimensional bubbles, it occurs 

only in a direction normal to the plane of the bubble. 

Coalescence also appears to be important both for small particle 

systems and at larger bubble diameters. In both cases, coalescence 

was seen to be a very violent process, often inducing splitting 

immediately afterwards, so that the splitting frequency is apparently 

more dependent on the frequency and scale of the coalesctnce rather 

than on the growth of disturbances as proposed here. 
4 

The. trend of the results with respect to the minimum bubble diameter 

is very encouraging. It can be seen from Figure 21 that the minimum 

bubble diameter increases with increasing particle diameter d . 

Figures 14 and 15 both show that for a given (dimensionless) initial 

disturbance, the minimum bubble diameter should increase for glass/ 

air systems, with d . 

Apart from the difficulties in comparing a theory for the initial 

motion of infinitesimal disturbances with experimental data, a further 

problem must be pointed out. The theory has been developed for sys-

tems containing uniformly sized particles. On the other hand, in any 

practical situation, even a laboratory experiment of the type carried 
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Figure 21a: Comparison of experimental and theoretical bubble stability 
in air fluidised systems 

In the experimental results, Figure 21a (ii), the initial section 

of the graph is shown as a broken line; here, the bubble behaviour is 

governed by coalescence. 	That is, the bubbles are so small and numerous, 

and coalesce so readily that disturbances on their boundaries do not have 

time to develop fully. 

Once the bubble behaviour ceases to be dominated by coalescence (full 

line, Figure 21a (ii)), it can be seen that the tendency to split decreases 

with bubble diameter. 	This is in complete agreement with the theoretical 

predictions, Figure 21a (i) (see also Figures 14 and 15) where the bubble 

stability can be seen to increase with the bubble diameter. 



out here, there will be present a distribution of particle sizes. 

The results in Figure 2L for the non-spherical sand mixture of wide 

particle size range show that the minimum bubble diameter is decreased 

by the non-ideality of the system, but it is not known to what extent 

each of the two factors operate. 

It can be seen in Figure 21 that the minimum stable bubble diameter 

with respect to splitting is between 3 and 5 cm. The experimental 

results of Godard and Richardson (1969) show that the minimum bubble 

diameter is 0.5 cm, but, as pointed out in section 3.2, the Godard 

and Richardson analysis predicts the bubble diameter below which a 

bubble cannot exist, whereas the present work predicts the diameter 

below which a bubble tends to split. The two results are not there-

fore contradictory. 
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CHAPTER 4: STABILITY OF VERTICAL CHANNELS IN FLUIDISED BEDS 

4.1 Introduction  

Another interface between the particle free 'support' fluid and the 

homogeneous fluidised bed phase of great interest is the vertical 

interface, say the wall of a channel or spout. 

Channelling, on a large scale, is an abnormality in the behaviour of 

a fluidised system, characterised by the establishment of flow paths 

in the bed of solids through which disproportionately large amounts 

of fluid pass. This can occur in both gas and liquid fluidised sys-

tems (see Hasset (1961)). It is particularly important in industrial 

fluidisation, where the fluid distribution is usually through a small 

number of geometrically spaced holes, so that preferential fluid flow 

paths are common. As this leads to poor fluid-solids contacting and 

mixing, it is undesirable in most situations, and so a greater under-

standing of the factors affecting the stability of these channels 

should help in the design of more efficient fluidised beds. 

It is also thought that channelling may be responsible for the 

initiation of bubbles in fluidised beds. Particularly with a distri-

butor of the sieve-plate type, the fluid will enter the bed as jets 

(or in channels) which penetrate the dense phase, breaking up to form 

bubbles. (Zenz (1968); Fakhimi and Harrison (1970); Chiba, 

Terashima and Kobayashi (1972)). 

There are many physical factors which seem to effect the formation of 

channels in fluidised systems, for example, the shape, density and 

size of the particles, the fluidising velocity and the bed history. 
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Matheson, Herbst and Holt (1949) reported channelling behaviour for 

beds of synthetic cracking catalyst of 10 microns diameter when 

aerated at velocities up to 1 fps. For the same material of 40 

microns diameter, no channelling was observed for fluidising 

velocities as low as 0.01 fps. 

Leva (1959) reported that the tendency towards channelling increases 

as the sphericity factor decreases, ie non-spherical particles are 

more susceptible to channelling. 

Godard and Richardson (1969) reported that severe channelling in air 

fluidised beds of fine solids could be overcome by the rotation of a 

paddle within 1 cm of the distributor. Withdrawal of the paddle 

does not then return the bed to its former channelling state. 

In some cases, a vertical channel is deliberately induced in a 

fluidised system, in fact, the spouted bed technique often permits 

fluidisation of solids that are too coarse for normal fluidisation. 

Spouting is achieved by forcing the fluid through one channel (spout) 

and, by using a conical based vessel,. a cyclic particle movement is 

achieved. 

Once again, the stability of the spout depends on the physical 

parameters of the system (namely, spout and bed diameter, cone 

angle, fluid velocity, particle size and distribution and bed depth). 

These are well reviewed by Mathur (1971). The main parameter of 

interest here is the maximum stable spout height (or the maximum 

spoutable bed depth), for which many correlations have been presented 

(again see Mathur (1971)). If the bed depth is greater than this, 

the spouted bed changes into the normal fluidised state, and it 
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appears that this occurs when the interstitial fluid velocity near 

the spout wall approaches the minimum fluidising velocity (Lefroy 

and Davidson (1969)). 

It is hoped that the analysis presented here will explain some of 

these phenomena. 

4.2 Equations of Motion for Channelling and Their Solution  

If the wall of a (2-dimensional) channel is considered to be a plane 

vertical interface between the 'support' fluid (particle free fluid 

in the channel) and the two interacting fluidised bed phases, all 

three phases being assumed of infinite extent (see Figure 22b), the 

analysis will be similar to that already presented for a plane hori-

zontal interface. 

The equations of motion governing the behaviour of the three phases 

are not altered; that is, the two interacting bed phases are governed 

by the equations based on those of Jackson (1963) and the 'support' 

fluid governed by the Navier -Stokes equations (equations (2A.1) to 

(2A.9), see section 2A.1). 

The stability of the vertical interface to small wave-like disturbances 

may then be studied; a major difference from the earlier analysis is 

• that in linearising the equations of motion (2A.1) to (2A.9) the 

steady state vertical velocity in the support fluid, Wy,is taken to . 

be some (variable) ratio of the incipient fluidisation velocity, so 

that.Wy 
	o 
= 0 lj   (4.1) 

where 0 is a constant. 

The use of equation (4.1) allows the effect of variations in the 

steady state velocity in the channel to be calculated. This is neces-

sary, as the channel velocity may be many orders of magnitude greater 
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than the minimum fluidising velocity. 

Using the same techniques as in section 2A.1, the equations of motion 

are cast into the linearised and dimensionless form; equations 

(2A.21) to (2A.25) and(2A.27) to (2A.28) continue to hold and 

equation (2A.26) is replaced by:- 

2  idWx 	dWx 	d 	c1 Wx  
P 	

2Wx] 

/.° 	

4. 	

dx dy 	Fr 	Rep 	dx2 	dy2  = 	
- - - - (4.2) 

Whilst (2A.29) is replaced by:- 

0 

[ 	

2W 	2  dw 	dW --LY 	--Zi 	 1 dP 	1 	
d 
[ 	 1: d 	+ ___ ],_ 

P 	dt + ' dy 	Fr dy Rep 	
dx2 + d 41 

dy2 
- - - - (4.3) 

Where the dimensionless groups are as defined in section 2A.1. 

A particular solution to these perturbed, dimensionless equations is 

then, as in section 2A.2, with the equation (2A.38) for the support 

fluid pressure replaced by:- 

P3 
_ Es a  (n + OK).F. exp(Ky + nt) Cos Kx 

3 - K 

and m
3 
given by: 

m3
2  - 0 ReF  m3 - ReF n K2 =0 

 

(4.14) 

(4.5) 

 

The solution to the equations of motion is then equations (2A.30) to 

(2A.37) with (4.4) and (4.5). Complete details are given in 

Appendix 2, section A2.2. 

4.3 Boundar Conditions and the Solution Usin These Boundar Conditions 

Again, as in section 2A.3, six independent and consistent boundary 

conditions are required. 

The boundary is now defined at x = 0, the perturbed boundary being 

x = 1 (y, t). By definition, the boundary is the limit of the particle 
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phase, thus, the rate of change of the boundary with time, 

 

dt 
= V3c 

 

(4.6) 

 

Integration of (4.6) gives; 

 

Vlc B 
T1 = — = - e n n exp(- Ky + nt) Sin Kx; for Vx = 0 at t = 0 - - (4.7) 

The boundary conditions are derived as before by taking material 

balances across the (slightly) deformed interface and by equating 

normal and tangential stresses on either side of the surface. 

All the arguments put forward in 2A.3 regarding the boundary condi-

tions for the horizontal boundary still hold true for the vertical 

boundary so that once again, the six sets of boundary conditions 

equivalent to those proposed in section 2A.3 could be derived. 

However, the results for the horizontal boundary show that the two 

sets of boundary conditions of most interest are sets 2 and 6; it 

will be recalled that set 2 is derived from the assumption that the 

interstitial fluid momentum is large and set 6 is derived from the 

assumption that it is negligible. Thus, only the two sets of 

boundary conditions equivalent to sets 2 and 6 are derived here for 

the vertical boundary. 

. Set 2 gives, on derivation in the same manner as in section 2A.3, the 

same results, viz, equations (2A.42a), (2A.43) and (2A.50). 

Set 6 gives as before, equations (2A.42), (2A.43), (2A.47) combined 

with (2A.54) together with (2A.48) combined with (2A.55). As this 

would give an indefinite result, the solution of Clift, Grace and 

Weber (1973) is re-calculated for the vertical boundary with these 

boundary conditions, with their equivalent solution to equations 
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(2A.30) to (2A.37), (4.4) and (4.5) for the solution to their 

simplified equations of motion. 

Substitution of the solution into these boundary conditions gives 

the general solution:- 

[M] [ABcDEF]2  . 0 	 (4.6) 

Where M is a 6 x 6 matrix, for boundary condition set 2 and 

[MI] [AI  BI  CI  DI]T  = 0  	(4.6a) 

Where M is a 4 x 4 matrix for set 6. 

The non-trivial solution is then: det 	0 

 

(4.7) 

 

which degenerates to: 

n3  (a) + n2  (b) + n (c) + d = 0 

  

(4.8) 

  

M, M , a, b, c and d are given in Appendix 2, section A2.2, for both 

sets of boundary conditions. 

Equation (4.8) has been solved by digital computer for several known 

.physical systems, with the constant 0 as a parameter. 

4.4 Predictions from the Theory 

The solutions to the theory described above have been found for two 

different cases: 

a 	The spouting situation, where the gas all flows through the 

channel, that is, the particle phase is not properly fluidised. 

Under these conditions, the particle phase viscosity terrie+5e 

becomes large 	(see Schugerl et al (1961); as the fluidising velocity 

approaches the minimum from above, µb  increases rapidly). In a 

spouted bed the interstitial gas velocity outside the spout is 

zero at the foot of the bed and increases up the bed as gas 

percolates into the bed from the spout. 
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This situation proved to be always stable for all values of the 

channel fluid velocity, for both sets of boundary conditions. 

b 	The channelling situation, where the homogeneous phase close to 

the channel wall is well fluidised. For this situation, the 

normal particulate phase viscosity values were used. 

For the channelling situation, Figure 23 shows a typical solution 

using the boundary condition set 2. The solution was found for all 

the systems recorded in Table 4, and all showed the same basic trends. 

That is, for any given value of the fluid velocity in the channel 

(ie 0 Uo
), the channel wall is unstable to small wave-like disturbances; 

the magnitude of the growth rate of the instability decreasing with 

increasing channel velocity. At a given channel velocity, the mag-

nitude of the growth rate of the instability also decreases with 

increasing particle size. 

This does explain the presence of a maximum spoutable bed depth in 

spouted beds; the spout wall remains stable until the height where 

the particles close to the spout wall become fluidised, at which 

point the wall becomes unstable. Once the top of the spout breaks up 

and disturbs the circulatory particle movement, the whole spout 

collapses. However, none of the other trends of channelling seem to 

be explained by these results. 

Figure 24 shows a typical solution using boundary condition set 6. 

This solution was investigated for four of the systems presented in 

Table 4 and for cracking catalyst of 55 micron diameter fluidised 

with air. The other water fluidised systems given in Table L. were 

investigated but found to have only stable solutions for all channel 

velocities down to 0.1 U 
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It can be seen that increasing the channel velocity makes the 

boundary stable to large wavelength disturbances (small wave number, 

K) until a given limit is reached, above which the boundary is stable 

to all disturbances. These limiting values are given in Table 8. 

It can be seen that the limiting channel velocity decreases with 

particle size for gas fluidisation, and is much smaller for water 

fluidisation. It must be pointed out, for the water fluidised systems, 

that a channel velocity of less than the minimum fluidising velocity 

has no physical meaning. It would not be possible to maintain a 

channel at a velocity lower than that in the surrounding fluidised 

phase. 

The results from boundary condition set 6 explain the maximum spout-

able bed depth in the same way as do those from set 2. Spouting is 

usually carried out with coarse particles, which, according to Table 

8, would have a very high limiting channel velocity, and the spout 

will become unstable as soon as the particles become fluidised. The 

results here indicate that a bed spouted with water would not be 

limited by a maximum spoutable bed depth, as the spout will still be 

stable, even when the particles become fluidised. This has not been 

reported by other workers, but little work has been done with liquid 

spouted beds, possibly because they do not offer any obvious advan-

tages over particulate fluidisation, whic1,unlike aggregative fluid-

isation, is as effective for coarse solids as for fine material. 

The results from the solution of boundary condition set 6 are consist-

ent with the known trends in channelling behaviour. Channelling is 

to be expected for small particle diameters in gas fluidised beds, as 

the channel walls are stable at lower (and therefore experimentally 
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attainable) channel velocities. For larger particles, the channel 

walls are stable only for very high channel fluid velocities, which 

are not likely in a normal physical situation. 

The effect noted by Godard and Richardson (1969), that channels 

broken up by a paddle rotated close to the distributor did not 

re-appear, is also accounted for by this theory. The severe channel-

ling (spouting) at the base of the bed occurs as the fluidising fluid 

is unevenly distributed. The particles close to the channel wall are 

therefore poorly fluidised so that the wall is always stable, no 

matter what the channel velocity is. The paddle will break up the 

channels and ensure good fluidisation, so that, at the low gas 

velocities used by Godard and Richardson, any channel that reforms is 

now unstable. 

The non-bubbling behaviour of most water fluidised systems is also 

accounted for. The fluid enters the dense phase in the form of small 

jets, the particle phase being, close to the distributor, poorly 

fluidised. As the fluid seeps into the particle phase through the 

walls of these jets, the particles close to the jet walls become more 

uniformly fluidised. Thus in gas (air) fluidised beds, the jets 

become unstable and break up forming small bubbles which then 

coalesce. However, in (most) water fluidised beds, the jets will 

remain stable, so that no bubbles form. 

It is not possible to compare this channel break up with that 

proposed by other authors (see Levich (1962a)) for liquia jet break 

up, as it is shown that this is wholly dependent on the surface ten-

sion, which is non-existent in fluidised beds. 
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TABLE 8 
Limiting Values of the Superficial Channel Velocity Above Which the Channel Wall is Stable 

(Theoretical and Experimental) 

System 
Minimum Superficial 
Fluidising Velocity 

Uo cm/sec 

Theoretical 
0 max 

Limiting Theoretical 
Superficial Channel 

Velocity 
. 0Uo  cm/sec max  

Limiting Experimental 
Superficial Channel 

Velocity cm/sec 

490 micron diam 
Glass/air 

30.0 24.0 720.0 Not measured 

100 micron diam 
Glass/air 

1.5 200.0 300.0 270.0 

55 micron diam 
Catalyst/air 

0.5 440.0 220.0 250.0 

1280 micron diam 	' 
Lead/water 

L.0 2.8 11.2 Not measured 

5180 micron diam 
Glass/water 

L.3 0.7 3.4 Not measured 

All other glass/water 
systems from Table 4 

Uo < 0.1 < 0.1 x Uo 0 



4.5 Experimental Study of Channelling Behaviour  

The behaviour of a channel in a two-dimensional fluidised bed was 

observed using cine-photography at a frame speed of 64 frames/sec 

with angled back illumination. The film was then observed at slow 

speed to determine the stability of the channel wall. The bed had 

the dimensions 30 cm x 120 cm x 1.5 cm and was fitted with either a 

porous plastic (Vyon) distributor for air fluidisation, or a fine 

filter cloth distributor for water fluidisation. The channel was 

initiated approximately 10 cm above the distributor, so that the 

bed on either side of the channel would be well fluidised, using the 

system illustrated in Figure 22a. 

These experiments were carried out for several different particle 

sizes fluidised by both air and water with many different fluidising 

and channel velocities. Figure 25 shows a typical photographic 

sequence for an unstable channel in air fluidisation. It can be 

seen that a channel as such, did not form completely through the bed, 

but tended more towards bubbling. This is to be expected; if the 

channel wall is inherently unstable, any channel will break down, 

and once bubble formation at the orifice (channel initiation point) 

commences in this way, the forced oscillations that this sets up in 

the bed oppose any further attempt at channel formation. Zenz 

(1968) reports that jets of gas in fluidised beds break away to form 

bubbles in the above manner, but did not record the jet velocity. 

It was found that this bubbling behaviour could be characterised by a 

constant bubble frequency at any given air flow rate. Davidson and 

Harrison (1963) derived a theory for bubble formation from an orifice 

in inviscid liquids and showed that it also applied for fluidised 
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beds. However, their derivation was for three-dimensional spherical 

bubbles and not therefore applicable here. Their analysis is 

repeated in Appendix 4 for two-dimensional circular bubbles and the 

results, together with the experiMentally measured frequencies for 

100 micron diameter glass particles, and the theoretical frequencies 

of oscillation of the expected dominant disturbance, are given in 

Table 9. Although the basic trends are similar, the agreement seems 

to be poor, but it should be remembered that the bubbles produced 

experimentally are, as can be seen in Figure 25, far from circular. 

As the film shows, the system is bubbling from a point source rather 

than channelling with disturbances growing on the wall breaking up 

the channel. The results in Table 9 bear this out, as the frequency 

of the expected dominant wavelength on the channel wall (nmaxiad 

shows very poor agreement with the experimentally measured 

frequencies. 

Figure 26a shows a typically stable channel in air fluidisation. Any 

disturbance on the wall is damped out. Occasionally, very large 

disturbances occur but these are quickly swept aside and the stable 

channel reformed. 

• Figure 26b shows a stable channel produced in a water fluidised bed. 

It can be seen that the channel wall is stable, but that the channel, 

loses its identity higher up the bed, as the channel fluid velocity 

falls below the surrounding interstitial fluid velocity. 

The experimental results confirm the theoretical predictions obtained 

from boundary condition set 6. That is: for the range of particles 

studied here, for air and water fluidisation, the channel is stable 
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Figure 26: Behaviour of a stable channel in gas and 
water fluidised beds 
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(as in Figure 26a, b) when the background fluidising velocity is zero, 

for all channel fluid velocities. 

For all the water fluidised systems investigated, the channel remains 

stable with the bed phases well fluidised, providing the channel 

velocity is greater than that in the surrounding fluid. 

For gas fluidisation, the channel is unstable (as in Figure 25) with 

the bed well fluidised, until the channel velocity exceeds a given 

limit, when it stabilises (as in Figure 26a). These experimentally 

measured limiting channel velocities are recorded in Table 8, and it 

can be seen that they agree well with the theoretically predicted 

values. 

It is to be expected that the results from boundary condition set 6 

adequately describe this physical situation whilst those from set 2 

do not, as the assumption made in their derivation is more applicable 

here. The fluid velocity in the channel is very large whilst in the 

interstitial fluid it is assumed to be the minimum fluidising velocity. 

It is therefore quite reasonable that the interstitial fluid momentum 

should be ignored in comparison. It seems then, that the boundary 

condition set 6 is approximately true for the case of a vertical 

channel, and the experimental results do bear this out. 
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TABLE 9 

Frequency of Bubble Formation for 100 Micron Diameter Particles Fluidised With Air 

Gas Flow Rate 
G cc/sec 0 

Theoretical Bubbling 
Frequency.f. sec-1  

(equation (4.6)) 

Experimental Bubbling 
Frequency sec-1  

Theoretical Frequency 
of Oscillation of 

Dominant Disturbance 

Sec 	(= nmax/21)) 

4.7 
4  

Description of 
Channel 
Behaviour 

Bubbling 
ie 	unstable 

333.0 92 17.3 10.5 
• 

542 100 14.6 10.0 4.7 Bubbling 
ie 	unstable 

750 119 13.1 9.5 L.6 Bubbling 
ie 	unstable 

1230 160 11.1 9.0 4.3 Bubbling 
ie 	unstable 

1580 180 10.2 	• 8.5 L.1 Transitional 

> 1580 > 180 - Non-bubbling - Non-bubbling 
ie 	stable 

NB: 0 is obtained by calculating the superficial channel velocity 

ie 0 x o = superficial channel velocity = 	 channel width x bed width 



CHAPTER 5: 'Tiii BEHAVIOUR OF LIQUID FLUIDISED BEDS FOLLOWING STEPWISE 
CHANGES IN FLOW RATE 

5.1 Introduction 

During the particulate fluidisation of mono-sized particles the 

particles are uniformly dispersed throughout the expanded solid-fluid 

mixture. Most liquid fluidised systems fall into the range of 

particulate behaviour, and generally expand smoothly as the velocity 

is increased from the minimum fluidisation velocity. The steady 

state relation between expansion, or voidage fraction, and fluidising 

velocity is well correlated by the relationships due to Richardson and 

Zaki (1954). Slis, Willemse and Kramers (1959) studied the transient 

effects on the bed height of step changes in the fluidising flow rate 

using a water fluidised bed. They developed a theory for the 

propagation of 'continuity waves' through the system which satis-

factorily accounts for the observations following a decrease in flow 

rate: rather similar arguments have been developed by Wallis (1969) 

to account for the behaviour of other two-phase systems. Following a 

step increase in flow rate, however, Slis et al found that the bed 

height increased uniformly at first, followed by a fall in the rate 

of increase. The explanation for this curious behaviour which is 

proposed by Slis et al was that the boundary between the regions of 

constant voidage fraction corresponding to the two levels of fluid-

ising velocity spreads out rather than propagates as a sharp inter-

face. They argue that this should happen since the lower region, which 

has a higher voidage fraction, also has a higher velocity, and this 

overtakes the region of lower voidage. 

There may however, be another explanation for this behaviour since 

following a stepwise change in liquid flow rate there exist two 
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regions of different density with the lower density zone underneath. 

This would apparently be an unstable situation and the horizontal 

interface might be expected to break up due to the formation of two-

or three-dimensional disturbances '(Taylor (1959); Bellman and 

Pennington (1954)). Such a possibility has been noted by Wallis 

(1969) and Volpicelli (1967) has observed apparent unstable behaviour 

in liquid fluidised beds. 

In this work, some simple experimental studies of this situation 

following step increases in fluidising velocity are reported and the 

applicability of the analyses of Taylor instabilities to this problem 

are discussed. 

5.2 Theory 

Taylor's classical analysis of the instability of superposed fluids 

of different densities was pursued further by Bellman and Pennington, 

who investigated the stabilising influences of viscosity and density. 

Rice and Wilhelm's (1958) analysis of fluidised bed instabilities 

follows a very similar path to Bellman and Pennington's analysis. 

These theories all relate to the initial motion and growth of an 

unstable interface and allow one to predict growth rates and 'most 

dangerous' wavelengths for infinitesimal disturbances, (see section 

1.3). 

Layzer (1955) produced an elegant theory which includes both the 

initial growth of a two dimensional disturbance and its final 

developed steady movement when the flow is confined within a cylin-

drical region or between two parallel walls. Initially a number of 

small wavelike disturbances develop on the horizontal interface: the 

movement should be quickly dominated by the most rapidly growing - 
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most dangerous - wavelengths; finally the movement of the lower 

density region will have the form of a single tongue or slug, 

essentially filling ,t104.,Aonfining region. -Thert?teady movement of a 

gas.slug in a liquid of low viscosity has been analysed by 

Dumitrescu (1943), Davies and Taylor (1950) and other workers. 

Stewart and Davidson (1967) summarise these studies which predict 

that the slug velocity should depend only on the tube diameter, 2R, 

or the distance (2R) between the parallel walls: they show that the 

Froude Number (()2) is 0.326 in the two-dimensional case, and 0.511 
gR 

in three dimensions. 

Layzer adopted a suggestion due to Fermi (1951) to connect the two 

regions where a solution is available: the initial region of 

exponential growth, which results from the linearised theory, and the 

final steady motion of the vertex of the developed slug-like disturb-

ance. Layzer's solution for the rising velocity of the leading vertex 

of the disturbance is: 

a 	In three dimensions: 

V _ e2  -2 -1  

3.83(e2.g 	1) 

b 	In two dimensions: 

2  
(g)2  

 

(5.1) 

 

1 
[ e31  - 3'1 - 1  	1 

v _ 	(gR)2  	(5.2) 
37(e3I  + 0.5) 

which reduce, in the steady state, 	and vi ---> ., to the results 

quoted above for the slug velocity. 

In this analysis,g and -I are as defined by Layzer from the dimension-
less equations for the free surface between the two fluids: in 2- 

dimensions YI(R) 
(it) 

(5.3) 



(gR)1  
) 

(5.4) 

(gR )2  
3.83 

Where the reference variables are Length = ; velocity = 

where reference variables are, Length = 	3.83 ; velocity = 

in 3-dimensions; 	= Y/(R ) 
.(3.83) 

y is the vertical coordinate of the slug nose, where y = 0 corresponds to 
the hei43ht at which tht slug is initiated. 

The theory is strictly applicable only to situations where the density 

difference between the two phases is very large (eg the interface 

between air and water). Dimensional analysis (Wallis (1969); 

Davidson and Harrison (1963a); Stewart and Davidson (1967)) suggests 

that when viscous and surface tension forces are negligible the 

Froude number relating to the final steady motion should be corrected 

by (1 - ps/pF)2  where p5  is the density of the fluid within the slug, 

and pp  is the density of the surrounding (ie initially uppermost) 

fluid. Stewart and Davidson's experimental results correlated well 

when this factor was introduced. 

A further complication arises in the case of two-dimensional disturb-

ances. Considering a typical 'two-dimensional' apparatus where the 

depth of the apparatus is perhaps one or two orders of magnitude less 

than its width (R) it will be clear that: 

a 	the initial movement of the disturbance will probably be three- 

dimensional and, 

b 	that three-dimensional effects will persit until the width of the 

disturbance is much greater than the depth- of the apparatus. 

Griffith (1963) suggests a corrected Froude number of the form: 

F1  = 0.326 + 0.185 Ds/D    (5.5) 
b 

Where Ds is the depth of the slug and Db  its width. 
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This appears to correlate results for the rising velocities of slugs 

in tubes of rectangular cross-section. Including these two correc-

tions a modified version of Layzer's two-dimensional theory has the 

form: 

1 
V = F2 (gR)2  (1 - p,w/ 	yo pp  

with F2 
= (1.0 + 0.568 Ds) 

 
e31 	— 3'1 	— 

1 
	 (5.7) 

(5.6) 

3ff(eil 	+ 0.5) 
] 

NB: F2 
is derived from Layzer's 2-dimensional solution with F1  from 

equation (5.5) included, and defined to give the correct results 

for the steady state for both 3 and 2-dimensions. 

ie F
2 
= 	

F1  
e3' - 	— 1  p‘: 

+ ---> co {e2 	- 2t - 1 	37(e31 	0.5)  

F1 	e3b1  - 31 - 1  ] or 	- F2 - 0.326 	3n(e31 + 0.5) 

It should be posbible to define the behaviour of the interface by an 

analysis similar to that presented in section 2A. This would involve 

an assumption similar to that made in sexticn 2C, that is, the region 

of lower density would become the support fluid, with mean viscosity 

and density, whilst the region of higher density would be described as 

two interacting phases. However, as before, this approach would only 

be applicable to infinitesimally small disturbances; once the 

disturbance has grown to finite proportions the analysis would become 

invalid. Thus, an approach similar to that due to Layzer presented 

here would still be necessary. 

3.83( e2 	1.  1) 

(5.8) 
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5.3 Experimental  

The behaviour of a two-dimensional bed fluidised with water following 

step changes in water flow rate was observed, using glass ballotini 

particles of nominal diameter 100; 280 and 490 micron respectively. 

The bed, with dimensions 120 cm x 30 cm x 1.5 cm was illuminated by 

high intensity angled back lighting. The fluid distributor was a 

fine filter cloth. It was found possible to follow clearly by eye 

the movement of the interface separating regions of different density 

following a step change in flow rate. The movement of the interface 

was recorded on cine film; some measurements of the velocity of the 

developed disturbance were taken by measuring with a stopwatch the 

time to travel 20 cms. 

5.4 Observations, Results and Comparison with Theory  

The development and motion of an unstable interface in a bed of 490 

micron particles is hown in Figure 27. The sequence shows the 

initial formation and rapid growth of a number of small wavelength 

disturbances along the horizontal interface; the initial wavelength 

is in the region of 1.5 - 2 cms. The growing disturbances begin to 

interact and are gradually taken over by one dominant disturbance. 

In the relatively shallow beds used in these experiments the dominant 

disturbance never increased to completely fill the bed, although it 

seems likely that this would occur, given sufficient time. Figure 27 

appears to give a convincing qualitative demonstration of the role of 

Taylor instabilities in the movement of interfaces between regions of 

different voidage fraction. 

In order to compare the results with the theory of equations (5.6) 

and (5.7) it was necessary to calculate the voidage fraction of the 

Or70 regions. It was assumed that each region was homogeneous with 
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1. 	 2 

Figure 27: Formation and growth of a voidage fraction 
disturbance in a liquid fluidised bed following 

a step increase in flow rate 
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constant voidage fraction which was related to the liquid velocity by 

the appropriate form of Richardson and Zaki's (1954) relation, which 

is U  s  — N where Ut is the particle terminal velocity and the Ut 

exponent, N, depends on the Reynold's number (N = L..65 in the experi-

ments reported here). Given the initial steady voidage fraction 

before the step change in flow rate, it is a straightforward matter 

to calculate the density ratio between the two regions. 

It was found that the light transmission through the bed as measured 

by the reading on a light meter, calibrated against beds of known 

voidage fraction, gave a good check on these results. 

From tine film of the movement of the interface, and given the 

densities ps  and pp  of the lower and upper regions, F2, as defined 

by equation (5.6) was calculated. These values are compared with the 

theoretical values from equation (5.7) in Figures 28-30. The limiting 

width of the slug, 2R, was measured from the film, taking the measurement 

away from the slug vertex. 

The agreement between the theoretical predictions and the experimental 

results is encouragingly close. The deviation as time increases is 

probably due to the assumption of constant voidage fraction, since 

there must be some local variations, especially around the interface 

between the two regions. In some cases there was a certain amount of • 

channelling near the base of the bed. This probably explains the 

deviations between theory and experiment near the origin in some of 

the curves. 

The widest range of voidage fraction (and, thus, density) changes 

were achieved with the smallest (100 micron) particles, where the 
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voidage fraction was doubled from its initial state. Inaccuracies 

and small fluctuations in voidage fraction would thus be most 

important in the case of the larger particles and this, too, may 

explain the better agreement found with the smaller particles. 

Figure 31 shows a typical set of the measurements obtained by using 

direct observation and employing a stopwatch. It can be seen that 

all the measurements lie below those from the cine film (and thus 

below the theoretical results); the time-averaging method is not 

sufficiently accurate in this case because the steady state was only 

achieved near the top of the bed. 

The initial wavelength, X, of the disturbance is difficult to estimate 

with accuracy because of the design of the bed used. Measurements 

suggest that for the 100 micron particles, X is 1.0-1.5 cm and for the 

490 micron particles,.X is 1.5-2.0 cm. These may be compared with . 

Rice and Wilhelm's (1958) predictions of the 'most dangerous' wave-

length of 1.25 cm and 1.55 cm respectively, for conditions comparable 

to those studied here. 

5.5 Conclusions 

It has been shown experimentally that following a step increase in 

liquid flow rate in a particulate fluidised bed the two regions of 

different voidage fraction behave qualitatively and quantitatively 

like a denser fluid superposed over a lighter-fluid. The boundary 

between these two regions is thus unstable and the theory developed 

by Layzer to describe the development of a slug from an initially 

horizontal interface, when suitably modified for density and 

geometrical effects, satisfactorily describes the motion of the 

interface. 
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A stepwise decrease in fluidising velocity leads to a hydrody-

namically stable situation which is well described by the theory 

developed by Slis et al. Their conjecture that, following an 

increase in flow rate, the interface broadens out appears to be 

incorrect, as the interface is in fact unstable. Although the 

results here were taken in a two-dimensional apparatus, they seem to 

confirm Volpicelli's (1967) observation of particle movement at the 

wall of a three-dimensional bed which also indicate the unstable 

behaviour of such an interface leading to slugging. 

Finally, it may be noted that these results should also apply to 

other equivalent situations involving two-phase flows (eg sedimenta-

tion, bubble columns) where density driven instabilities may exist. 
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CHAPTER 6: CONCLUSIONS 

The stability of plane horizontal boundaries within a fluidised bed has 

been analysed. The theory indicates that such boundaries, with the 

fluidised phase uppermost, are always unstable to small two-dimensional 

disturbances. The experimental results suggest that the momentum of the 

interstitial fluid lies somewhere between the two proposed extremes; viz 

very large as in boundary condition set 2, or negligible as in set 6. 

A mechanism of bubble splitting, based on the preceding stability analysis, 

has been proposed. This leads to the prediction of a maximum and a mini-

mum stable bubble diameter. The theory shows that bubbles in gas fluidised 

beds are much more stable than those in liquid fluidised systems and this is 

supported by experimental evidence taken from the observation of bubble 

behaviour in a freely bubbling gas fluidised bed and of injected bubbles in 

a water fluidised bed. The agreement between the predicted and measured 

growth rates of the disturbances is poor, but measured frequencies of bubble 

splitting agree semi-quantitatively with the theory. 

The stability of plane vertical boundaries within a fluidised bed has been 

analysed. The theory indicates that the boundary is stable for all fluid 

velocities in the particle-free channel when the homogeneous phase is not 

fluidised (spouting), and that the boundary is stable only when the fluid 

velocity in the channel exceeds a given limit  when the homogeneous phase is 

well fluidised (channelling). The theoretical predictions agree 

qualitatively and quantitatively with known channelling behaviour and with 

experimental results. 

It has been shown experimentally that, following a step increase in liquid 

flowrate in a particulate fluidised bed, the two regions of different 

voidage fraction behave qualitatively and quantitatively like a denser fluid 
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superposed over a lighter fluid. The boundary between these two regions is 

thus unstable and the theory developed by Layzer to describe the develop-

ment of a slug from an initially horizontal interface, when suitably modi-

fied for density and geometrical effects, satisfactorily describes the 

motion of the interface. 

Suggestions for Further Work: 

Research work tends, by nature, to be self-perpetuating. The work described 

here is no exception and raises a number of points on which further clarifi-

cation should be of value. 

The experimental results on bubble splitting could be refined to eliminate 

the influence of factors not included in the theoretical analysis, for 

example, observations of single injected bubbles should eliminate the 

influence of coallescence on bubble splitting in gas fluidised systems. 

More pwerful and accurate filming techniques would enable the frequency and 

growth rate of instabilities on bubbles in water fluidised beds to be 

measured. 

The theoretical study on channel stability could be tested further by 

observing systems of larger particles. This would involve more refined 

equipment than that employed here, as very high channel velocities would be 

necessary. EXperimental observations on the spouting of particles with 

water would also be useful to check the hypothesis put forward here that 

spouting with water would not be limited by a maximum spoutable bed depth. 

Further experimental studies to verify the analysis of the stability of the 

horizontal boundary would not be particularly informative. As mentioned 

earlier, experimental work in this field cannot really be expected to cor-

relate well with the theory due to the practical difficulties in observing 

situations where the theory remains valid. 
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APPENDIX 1: GENERAL SOLUTION TO lab EQUATIONS OF MOTION 

A general solution to the equations of motion (2A.21) to (2A.29) is sought 

to a small initial sinusoidal disturbance of the plane horizontal interface 

with wave-number K. 

A solution is therefore defined to allow each variable a voidage and 

pressure dependence where appropriate and its on individual term. Thus: 

A exp(- Ky + nt) Cos Kx 

Vx  = B exp(- mly + nt) Sin Kx + a, A exp(- Ky + nt) Sin Kx 

Vy  = bl  B exp(- mly + nt) Cos Kx + a2  A exp(- Ky + nt) Cos Kx 

UX = C exp(- m2y + nt) Sin Kx + D exp(- Ky + nt) Sin Kx + 

+ a
3 

A exp(- Ky + nt) Sin Kx 

Uy  = cl  C exp(- m2y + nt) Cos Kx + di  D exp(- Ky + nt) Cos Kx + 

+ a4  A exp(- Ky + nt) Cos Kx 

P2  = d2  D exp(- Ky + nt) Cos Kx 

Wx = E exp(m
3y + nt) Sin Kx + F exp(Ky + nt) Sin Kx 

Wy = 'e1 E exp(m
3
y + nt) Cos Kx + f1  F exp(Ky + nt) Cos Kx 

P3 = f2 F exp(Ky + nt) Cos la 
(A1.1) 

  

Where ml, m2 , m3  are all positive by definition. 

  

The unknown coefficients, al, a2, b1, etc are then defined to allow solu-

tion of the continuity equations, (2A.21) to (2A.23). 
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Then substitution of equations (A1.1) into the momentum equations (2A.24) to 

(2A.29) reveals the solution for variables ml, 	 and • 1, m  2  an m3, 

ml = m2 = K  

  

(A1.2) 

  

and m
3 
 from m

3
2 - ReF m3 - ReF n - K2  = 0 

 

(A1.3) 

 

NB (A1.2) is only one of the solutions for ml  and m2. However, other 

possible solutions for no, and m2  are very complex functions of the dimension-

less groups defined in (2A.21) to (2A.29), K and n, and are therefore 

mathematically prohibitive. 

The particular solution found in this way is then as given by equations 

(2A.30) to (2A.39). 
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APPENDIX 2: SOLUTION USING THE PROPOSED SETS OF BOUNDARY CONDITIONS 

A2.1 Horizontal Interface Between the Phases  

The complete solution is given here for boundary condition set 1 

only, but the same procedure also applies for all the other proposed 

sets. 

Set 1: The boundary conditions in this set are: 

Material balance: 

Wy  = eoUv  + 7  + Vy  (1 - co) 	  (2A.42) 
o 

(2A.43) WX = e U o x 

Tangential Stress: 

dW dW dU dU x + 	= x + 
dy dx 4Y dx 

clWx 	 [ 	--Z 
dW 
--Z = p 	X-I- dV  dV  

dy dx 	dy dx 

Normal Stress: 

R22.  P 	ReF 	(1 - co) 	_ 2 dW 	R P + 14 dUv 	dUx  

Fr 	Fr 	dy 	dx 	Fr 	dy 3 -crx- 

R P 	R 1 	dW 	2 dW 	ti .(33 	2 ti dVx  3 - eF + 3 	- 7 	- 
Fr 	Fr 	dy 	dx 	dy 	dx 

- - from 
	

(2A.50) 

Substitution of the assumed solution of the equations of motion, 

(2A.30) to (2A.39), into the above boundary conditions gives: 

from equation (2A.142): 

eo C exp(- Ky + nt) Cos Kx + co D exp(- Ky + nt) Cos Kx - 

	

E exp(Ky + nt) Cos Kx - F exp(Ky nt) Cos Kx = 0 	 (A2.1) 

with equivalent equations from the other five boundary conditions. 
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- 1 

These can be written in the form: 

[N] 

 

A exp( - Ky + nt) 	= 0 

B exp( - Ky + nt) 

C exp( - Ky + nt) 

D exp( - Ky + nt) 

E exp(Ky + nt) 

F exp(Ky + nt) 

  

   

(A2.2) 

   

Where M is a 6 x 6 matrix, given in this case by: 

 

0 

(1—e) 

(co)  

(co)  • 

(eo)  

(Go) 

- 1 

(m) 
3 

0 

0 

[N] = 

(2 IIK) 	0 	(3  
(1 -c ) 	 m 	m 

12 (2K) 0 	 3  

eon  - K 
 0 

b1 

Red, (1-eo) 

(2K) 

0 

(- 2K) 

(2K) 

0 

(- 2K + R 	n) eFR 

K N  
(M3  + ( 2K) m 3 

(2K) 

(2K) 

e2 
0 

a, 

d1  

Frn 

Where.  ReF 1 
(A2.3) TTI2T) 	  Fr 

b1=-24 + ReF  1 (A2.4) 
Fr 

c1 = 2K RFe(n + K) 	  (A2,5) 

di  = - 	(eon - K) - ReF  1 	  (A2.6) 

0
2 	Pr 

01 

c1  
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K2  +2 	- 20)..1+ - 2K(1 -co) im3  - 2K + 1 3  o 3  
0 	

m3 

The-non-trivial solution to (A2.2) thus being: det 	= 0 

(2A.57) 

Expanding  the determinant leads to:- 

n3(a) + n2(b + c) + n (d + e) + f = 0   (2A.58) 

for the configuration, fluidised phase uppermost, or 

n3(a) + n2(- b + c) + n(- d + e) + f = 0   (2A.58a) 

for the configuration, support fluid uppermost. 

Where: 

a = ReP 12 (1-e0 	+ e o 11) + K ((l-e0) - (2-0) - - - - (A2.7) K 	m  
eo 	

eo  m3  

b  = ki2K 	im3  + K( so) - 	1.0_111  + 2c0)m3  + L[K(. - eo) + 
3 (1-e0) 	-z-- 	com3 eo '3 	3

0 

(A2.8) 

c = ReF p(m3 + 2K 
2 	2N 0 (2-2e + e ))- (1 - 2e + e 	m + 1 ) 

[ 
+ — 

sot m3 	
o 	o 	o 	o )(  3 	I : 

e
2 e 2 	m3 
o 	o 

 

	 (A2.9) 

d  = hue (211  - 1(!) + 2K2(1-e0) (m3  - 2K + K-) 	 (A2.10) 
2 ' m3 	2 	m3 

0 

e = ReF 37 [- m-2'.1 + 2K 1) +  2K2  
[ Tirc) co 	ce3 [(1-co)  

12._ - 1- 

- m3 Ka-eo + 2 E2 	K3  (- 1 + eo + 2p)] 	 (A2.11) 

sot eo
2m3 Co

2 

f = 'eF 2K2 (K m3) 
Fr go 

 

(A2.12) 
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Set 2: ie Equations (2A.42a); (2A.43) and (2A.50) 

These give: 

(€0)  

(60) 	(60) 
	

3 
	+ 1 

	

(1-co) 	(2 4) 	0 	0 	(M1  ;T) 	(2K) 
./ 	3  

(c n - K) 	0 	(2K) 	(2K) 	(m3  + K2) 	(2K) 
2 	 m3 

ai 	b1 	(2K) 

al 	(ReF(1-'0)) 	(- 2K) 	(-2K + R n) eprk 	(2K) 	c1  
Fr n 

Ow. 

(A2.13) 

Where al  to di  are as given by equations (A2.3) to (A2.6). 

This leads to (2A.58), where:- 

[a . kr 	f.2. 4. 1  _ (1-€0) 

K
2 c 	com3  o

K 

   

  

(A2.14) 

  

   

b=-2m
3 

- 4 (1+c0)K + 22(2-€0) + _21 	m3 K(1-co) - K2  
3(1-co) 

gom3 co 	m3co 	Co 

   

  

(A2.15) 

(A2.16) 

(A2.17) 

[ 

c = Re.5, 

	

	ra2 .4_ (l+co) + K (1 + c02 - co) 
K 2 m3 2 

co 
 

so 

     

     

     

     

d = 22 K - 3 
2 
j m_ 

0 
2 o  

      

      

[N] = 0 	0 

0 

0 
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e=R
eF 

1 

K2 	K 	1 ra2 - (1-co)  + 

(A2.18 ) 

(A2.19) 

(2A.1.7) 

[ 	2 
co m3 

1 	K 	1 
co 

- 

2 

m3) 

(2A.43), (2A.42a), 

K o 	com3 

(2A.50) for normal stress, 

+ tiFr 

f = ReF 

co 	iom3 

2 	(K 
Fr 

,Set 3: 	ie 	Equations 

o
2 

and (2A.52) for tangential stress. These give:- 

(c0) 	(co) 1 	- 1 

0 	(co) (eo) 	(IL) 	1 
3 

0 

-n(l+n) 
(1-00) 

f
cP-co) co2  

K2, 
0 0 ( + --9 (2K) m3  

(2K) (2K) 0 

0 0 (2K) c
1  

(-2K) (-2K + R
22 

 n) (2K) cl  

(A2.20):  

Where al  to di  are given by equations (A2.3) to (A2.6). 

This leads to (2A.58), where.- 

a = R eF 
(1+14 K (1-co ti) 
co 	m3  

C O 

 

(A2.21) 

 

ai 	bl  

di 	ReF(1-co) 
Fr.n 	K 

Cm] = 
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2 J.1.2K2  	(1 — K ) + 2 IAK m3 	— 	- K2  (6c0-5) b - 3 e0(1 -1:0) 	m3 	7 	(1—co) 	co  m3  co  1—co  

—2K (m3  + K(1-2e0) — K2  (1—c0))   (A2.22) 
to 	com3 

[. 

	. c = Rep  m3  + K(1 + 11) (l+co) + K2  (1+11) (1—co) + K2  — — — (A2.23) 

e 2 	m3 
e
2 	m3 

0 	 0 

 

d — 
2 

2K2 (m3p. + K — K
2
(111-1))  

0 	
m3 

 

(A2.24) 

 

1 e 
='eF 
[ _ 	K2(p. + coq.  (1+4)20(1+t 

( ) 	( 	 
)] 

1 	—co  co co)  m3c0 1—co)S co  

    

(A2.25) 

(A2.26) 

	

f = ReF 	K
2 

(K — m3) 

	

Ft. 	co  
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Where al  = 

bl = ReF (1-co)  - 2(1 + OK 

(A2.27) 

(A2.28) 

(A2.29) 

3 
(1(1±  	R elly  eF  

_ 	n 011  - 3  7770) - (A2.30) 

Set 4: ie Equations (2A42a); (2A.43); (2A.50) for tangential stress, 

(2A.48) and (2A.53) for normal stress. These give:- 

[1,1] = 0 

(r) 

nn 

j 

0 

0 

(24) 

0 

b1  

(-2K) 

(eo)  

(co)  

0 

(2K) 

0 

(2K) 

(so)  

(go)  

0 

(2K) 

(R_ 	n) 
K 

(2K) 

1 

(IN 
3 

(m_ + L2) 
3 	m3  

(m3 + 
m3  

(2K) 

0 

) 

1 

1 

(2K) 

(2K) 

o1 

0 

-e0) 

- K 

i.
eo 

2 
o 

al 

di  

Fr n 

o1 = 2K - ReF (n + K) as given by (A2.5) K 

This leads to (2A.58), where:- 

a =b= =e= 0 	 (A2.31) 

d =  m11  	+ K + 	2- + g 2) - K2  
30 ) e 	

-m 
 
3 0 	o 	-o 	o- e0

2(1-eo) 

K2µ(3 3 40 - Co2)  

1113c02 (1_ 0 ) 

 

(A2.32) 
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(211K) 

c n-K 0 
2 

b
1  

3 Km 	am 	2 K2 ( , 
e0) - f=- 	+ 	+ 	+ [1,1 -4 

o 
3m3eo

3 
o co 

3eo 

 

(A2.33) 

 

Set 5: ie Equations (2A.42), (2A.43), (211.50) for tangential stress, 

(2A.48) and (2A.53) for normal stress. These give:- 
• 

0 	(1-00) 	(C0) 
(m3 	

1 m3  

0 

(2K) 

0 

0 

(2K) 

(Repi) 

(m3 + 3  

(m3  + Le-) 3 

(2K) 

(2K) 

(2K) 

Cl 

al 	(-2K) 	(2K) 	(2K) 	0 	0 

(A2.34) 

Where al, b1, cl  and di  are given by equations (A2.28), (A2.29), 

(A2.5) and (A2.30). This leads to (2A.58) where:- 

	

-a=b=c=e= 0   (A2.31) 

d = Km (- 3  + 2c o) + Km3g-10 6c0) - 4K2(4-1)  - K3  (2 + 6e0) + 

	

3c0(1 - co) 	2 	2c 
o  2m3 co

2 ''o  

3 

	

 (k n 	2t - 2x02) 

	

m  2 ) 	° c°  
3co (1-c

o) 
 

 

(A2 .35) 

 

CPO = 0 	0 
	

(to) 
	

^ 
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f - 2K2m (1-7e ) + 160em + 40(1-4e ) (1-1) — K41-1 	+ 
2 	o 	 2 	o 

3 	3 
m3co 

3co
3 	

3eo
2 	

3e03  

1. 2 1c4(1-e40) 
:3 	 3 

m3co 

 

(A2.36) 

 

Set 6: The solution of Clift, Grace and Weber (1973) reduces to the 

simplified form (cast into the dimensionless form used in this analysis): 

det (2K2) (m2+2) 

= 0 

 

 

[ 	F R 1 -  R n 2ouK eF 	e n --K— kl-c0)  Pr 1

ReP .1  
77 n  

(A2.37) 

    

     

1  

Where m = 	
K2  + ReF (1-co)  n   (A2.38) 

Pll 

This simplification can be made when ti >> 1 and p << 1, ie in most gas 

fluidised systems, but, as Clift, Grace and Weber point out 'for liquid 

fluidised beds, the simplified solution still gives a good indication of 

the most dangerous wavelength'. 

This solution (A2.37, A2.38) is the same as that obtained by Bellman and 

Pennington (1954) for fluids of zero surface tension, with the upper fluid 

much more dense and more viscous than the lower fluid, and that obtained 

by Rice and Wilhelm (1958) for gas fluidised beds. 

(A2.36) reduces to: 

2 'To
2 

2K n 	+ K) + n 	
2
ou 	(

,2 m2)  

(1-.12o ReF  Fr 	 - 0 
• 

which can then be solved with (A2.38). 

 

(A2.39) 
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0 

 

(co) 	(co)  

(co) 	(eo)  

0 	0 

 

0 

(2p.K) 

3)  

K2  
(m3 + --) m3  

on-K 0 (2K) (2K) 
,2 

(m3  + 

Co2 

3 (1-g) al 0 0 (-2K) 

(eon-K) ReF(1-so). 
 (2K) (2K-Re  n) (-2K) 3 	2 Fr.n -K eo  

1 

1 

(2K) 

(2K) 

bl  

b 1 

(A2.40) 

(A2.2) Vertical Interface Between the Phases  

A similar procedure is followed in the analysis of the 

stability of a vertical boundary (see section 4.3) and the 

solution yields: det 	= 0 

  

(4.7) 

  

which leads to: n3(a) + n2(b) + n(c) + d = 0 - 

Where: 1) for boundary condition set 2; 

- 	(4.8) 

[M] = 

Where: a, = 2 PK ReF 
Ft n  

b1 = -2K + ReF(n  + OK) K 

 

(A2.41) 

 

a = ReF 	+ 1 	- (1-eo) 	 (4.9) gives: 	 (A2.42) 
K2 Kgo 

 

m3eo 
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p + 1) (1-0 - (1-0 ) n R - ReF 	K ep 
Where al  

n Fr 
- - - (A2.47) 

b
I 
= (p 2) (1-eo) ReF - 2pm 

K n Fr 
(A2.48) 

K2 b = - 2m3 	

g 0 

	

m c  

	

- 4K(1-e) + 2K2(2-e) 	
' 

+ 	2 	 4 	(ELI 	
g 

+ K(1-e0) - 	)+ 
3 (1-eo) 	m3co 

3o 0 	 0  

+ Rer 	+ + (1+0e ) + K. (1-40  + 402)] 
{ K 	

(A2.43) 
. 	2 m3 	2 

eo 	so 
 

= 2 
{Km  3 m3  

ReF0  
e02 

Re.w  
m3  1717;) r122 4. (1 -c0) 	K 1 

K 	Go  e0m3J  
e02 

+ReF 

    

(A2.44) 

(A2.45) 

 

m3  

  

     

d = ReF 
2 

Leo 

 

- K) 

  

   

2) For boundary condition set 6,-(4.8) gives (in the dimensionless 

form used in this analysis): 

1 -1 -1 

(m) (K) (Q) 

K2
)) 

 (-2K)  (-K2 - 22) 

IN] = (1 + 2111) eo  

(1 + Frn) 

(242) 	Gi(m2 

al 	bl 	(-2Q) 

(A2.46) 
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cl = ReF (1 	- 2K 

 

(A2.)49) 

 

and Q and m are given by: 

g 2  0  Rep - Ran - K2  = ° 
	

(A2.50) 

m2 - 	- (1-s0) Rep  n 	= 0 	 (A2.51) 

This could, of course, be expanded in the normal manner to give 

equation (L..8), but this was found to be impractical, as the computer 

solution did not converge. The determinant was therefore expanded in 

full and the resulting expression was solved on a digital computer 

using a minimising routine. 
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P2 = Frn D exp(- ikx - iky + nt) 
ik 

(A3.6) 

APPENDIX 3: COMPARISON WITH THE STABILITY OF THE STATE OF HOMOGENEOUS 

FLUIDISATION 

To compare the stability of a horizontal interface in a fluidised bed with 

the stability of the state of homogeneous fluidisation as given by 

Anderson and Jackson (1967), the general solution to the equations of motion 

(equations (2A.21) to (2A.20)) is written in the complex form analogous to 

that used by them. That is:- 

6 = A exp(- ikx - iky + nt) 	 (A3.1) 

VX = B exp(ikx - iky + nt) 	 (A3.2) 

Vy  = B exp(- ikx  iky + nt) - 	n 	A exp(- ikx - iky + nt) 
1777) 

	 (A3.3) 

U.3c= C exp(ikx - iky + nt) + D exp(ikx - iky + nt) 	 (A3.4) 

U = C exp(- ikx - iky + nt) + D exp(- ikx - iky + nt) + 

+ (eon - ik) A exp( - ikx - iky + nt) 

 

(A3.5) 

 

 

. 2 
lo 

K 

   

W'3c = E exp(ikx + im
3
y + nt) + F exp(ikx + iky + nt) 

-K W = 	exp(- ikx + im
3
y + nt) - F exp(- ikx + iky + nt) - - 

Y m3  

p3  = 	2K2  (n + ik + 	F exp(- ikx + iky + nt) 	 
ik 	ep 	• 

Wher
e 
m
3 
is given by: 

m32 + iReFm3  + Rep  n + K2  = 0 

(A3.7) 

(A3.8) 

(A3.9 ) 

(A3.10) 

and Rep is now given by: Rep = pb dp Uo 
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with pb  = (1-€0) pp  co  pr, as the support fluid now has the parameters 

of the generalised homogeneous fluidised phase. 

n is the complex growth rate, n = 

This particular solution to the dimensionless, perturbed equations of 

motion is derived from a general solution in the same way as in the simpler 

solution (see Appendix 1), and is valid only at x = 0. However, as. the 

solution is sinusoidal in x, it is assumed that the solution at x = 0 is 

also approximately valid for all other x. 

This solution is then substituted into the boundary conditions (set 2 is 

used, that is, equations (2A.42a), (2A.43) and (2A.50) for the 'unstable' 

configuration; support fluid below the fluidised phases, seetion 2A.3), 

where in equation (2A.50), the stress defined for the support fluid now 

has the physical parameters of the generalised homogeneous phase. 

This gives: [F] [ABCDE1]2  = 0  	(A3.11) 

Where M is a 6 x 6 matrix of coefficients. 

The non-trivial solution is then: det [M] = 0  	(A3.12) 

which leads to: 

n3(a) + n
2
(b + ic) + n(d + ie + if) + g = 0 

 

(A3.13) 

 

[Note the 'stable' configuration, support fluid uppermost, reduced to 

n3(a) + n2(- b + ic) + n(d + ie — if) + g = 0  	(A3.13a) 

and although this has not been solved, one would expect similar results, 

as both configurations should be the same]. 



R 	1 
Fr 

(A3.14) 

(A3.15) 

(A3.16) 

111  Where: al = 3 (1—e0) 

= - 2piK + R 	1 
Fr 

O (co) 

O (@o) 	(eo) 
 
(2  -- 	

1 
3   

(24K) 	0 	0 	(ila3-17) 
iK2 	21K) 
3 

n-iK) 
2 
0 

O (21K) 	(2iK) 	(im3+ 12) 	(21K) 3  

b1  

R (1-e ) 
Fr n 

0 	0 	(21K) 	c1  

(-21K) (-2iK+Re  n) 	(21K) 	c1 
iK 

Where: 

[14] = 

c1 = 2iK - R (n + iK 
4. 2K2) 

iK 	Rep 

d_.1 = - ReU 	14 (e n - 1K) -  
Ft iK 2 

Co 
 

and in (A3.13):- 

a = R 	1 ep 	2  + 
K 	o  

(1-e0)1 

com3 

(A3.17) 

(A3.18) 

(A3.19) 



c = R ep 

d = Rep 

e = R 

m 

[ 

(1.teo) + K 
m3  

o
2 

- K 	K2 

2 
eo
2 - 

co m3 

m3 	1 
K(1-c0) 	Co  Fr 

K +  1 

4 m c 3 (1-C 0 0)  
— — — 	(A3.23) 

coKm3 

   

(A3.20) 

(A3.21) 
2% 

(1-c + c ) 0 	0  

c 2 0 

  

  

  

   

(A3.22) 

	

N 
	K2  b 2K(1-2s0) _ 22+  2. 4 	- m3 	0  ) 	em  - K(1-C 	+ 

co 	c m 	3  (1-co) 	3 3 o 

f - 2KM 	 - 2KF 

eo 
 

o
2 

R 
—92 _ -- g _ 	

2 Friac 

    

(A3.24 ) 

(A3.25) 
- K) 

   

    

The solution of equation (A3.13) with equation (A3.10) gives the character-

istic form of the growth rate vrs wave number curve, that is, there is a 

maximum of (real n) corresponding to the most rapidly growing or 'most 

dangerous' wavelength. 

Values of 1:max with their corresponding I and K are given in Table 5, with 

the equivalent solutions due to Anderson and Jackson (1967), 1968), for 

different physical systems. 
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Frequency of formation, f = G - g2/3 0)1/3 11/3  vb 	4 	G 	(A4.6)  

APPENDIX 4: FREQUENCY OF TWO-DIMENSIONAL BUBBLE FORMATION FROM AN ORIFICE 

Repeating the theory of Davidson and Harrison (1963) in two dimensions. 

The bubble is initially centred at the orifice, but because of bouyancy, tends 

to rise, so that at any instant the centre has risen a distance, s. It is 

assumed that the bubble detaches when the base reaches the orifice, ie when 

bubble radius r = s. 

For a constant gas flow rate, G, the bubble volume at time, t, is 

Vb = nr2 6 = Gt 
	 (A4.1) 

Where S = the two dimensional bubble thickness. 

For the forming bubble, the rate of change of upward momentum is equal to 

the bouyancy force, thus 

pp.Vb.g = d (i Pp  Vb  dE) 
dt 	dt 

 

(A4.2) 

 

Substitution of (A4.1) into (A4.2) and integrating twice gives: 

s=2g2  (4.3) 

with ds = s = 0 at t = O. 
at 

At detachment, r = s, (A4.1) and (A4.3) give: 

time of formation, t, = (1)2/3  [41/3  	(A4.4) 
u 

Volume at foation V (t2/3 a\1/3 G  4/3 	 
b 	

12 
gi 	‘Tr / (4.5) 

In the case under consideration, the bed thickness, and thus the bubble 

thickness, g = 1.5 cm. 
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NOTATION 

A, B, C, D, E, F - constants in the wavelike solution to the equations of 

motion. 

a, b, c, d, e, f - coefficients in the solution of det M = 0 given in 

Appendix 2. 

al, bl, cl, di  - terms of the matrix M, given in Appendix 2. 

Al.  

db  

d 
p 

D
b 

Ds  

x,y 

F 

F1 

F2 

Fr 

f 

g 

G 

m 

- initial disturbance on the boundary. 

- bubble diameter. 

- particle diameter. 

- slug width (asymptotic). 

- slug depth. 

- general force term in equations (2A.6) (2A.9). 

- Froude number, ---T V 

(gR)2-  

- corrected Froude number. 

- corrected Froude number (equation 5.7). 

- Fi.oude number, Uo
2 

gdp 

- frequency of bubble formation. 

- acceleration due to gravity. 

- flow rate of injected gas. 

_ 
- wave number of the disturbance. 

- exponent in the solution to the equations of motion. 

- matrix in the solution using the boundary conditions. 

Given in Appendix 2. 

- exponent in the drag coefficient relationship. 

11414 



Nf 	- criterion due to Doitchev, defined by equation (2D.4). 

n - growth rate of the disturbance. 

P - pressure. 

✓ - bubble radius. 

R. 	- half width of the slug. 

Ref 	- Reynold's number, 	U  
gF  

Rep 	- Reynold's number, pp.dp.U0  

gF 

- height of bubble centre above orifice. 

t 	- time. 

Ub 	- bubble velocity. 

IIo 	- minimum fluidising velocity. 

Ut 	- particle terminal velocity. 

x• ,y 	- interstitial fluid superficial velocity. 

✓ - instantaneous velocity of vertex of disturbance. 

Vb 	- bubble volume. 

Vx,y 	- particle phase superficial velocity. 

x• ,y 	- support fluid superficial velocity. 

x 	- horizontal direction. 

y 	- vertical direction. 

- drag coefficient. 

- dimensionless time ratio'  T iT 2 1 

- thickness of two dimensional bed. 

- voidage fraction. 

- the perturbed boundary. 

- imaginary part of complex growth rate, as defined by 

Anderson and Jackson. Equation (2C.2). 

or 1 

145 



pp 

Pp 

a 

aT 

T
1  

T 2 

or "1 	- as defined by the dimensionless equations of Layzer. 

Equation (5.4). 

x 	- wavelength of the disturbance. 

- dimensionless viscosity group, 

/IF 	- viscosity of the fluid phases. 

laP 	
- viscosity of the particulate phase. 

or g 

- real part of complex growth rate as defined by Anderson 

and Jackson. Equations (2C.1). 

- as defined by the dimensionless equations of Layzer. 

Equation (5.3). 

- dimensionless density, pp/pp. 

- density of the fluid. 

- density of the particles. 

- normal and tangential stress. 

- surface tension. 

- time for the distUrbance to grow through the bubble. 

- time for the disturbance to be swept around the bubble. 

- ratio of the superficial fluid velocity in the channel 

to the minimum fluidising velocity. 

Subscripts 

0 - at the minimum fluidising velocity. 

1 - particle phase. 

2 - interstitial fluid phase. 

3 - support fluid phase. 

F - interstitial fluid phase. 

P - particle phase. 

SF - support fluid phase. 

x - in the x (horizontal) direction. 

- in the y (vertical) direction. 
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