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Abstract: Hybrid perovskite materials have considerable potential for light emitting devices 
such as LEDs and lasers. We combine solution processed CH3NH3PbI3 perovskite with UV 
nanoimprinted polymer gratings to fabricate distributed feedback (DFB) lasers. The lead 
acetate deposition route is shown to be an effective method for fabricating low-loss 
waveguides (loss coefficient ~ 6 cm-1) and highly compatible with the polymer grating 
substrates. The nanoimprinted perovskite exhibited single-mode band-edge lasing, confirmed 
by angle-dependent transmission measurements. Depending on the excitation pulse duration 
the lasing threshold shows a value of 110 μJ/cm2 under nanosecond pumping and 4 μJ/cm2 
under femtosecond pumping. We demonstrate further that this laser has excellent stability 
with a lifetime of 108 pulses. 
© 2016 Optical Society of America 
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1. Introduction 

Hybrid organic-inorganic halide perovskites have recently emerged as an important new class 
of optoelectronic materials [1]. Perovskite solar cells have shown by far the most rapid 
growth in performance of any photovoltaic technology with efficiencies now exceeding 20% 
[2, 3]. Most research has focused on methylammonium lead halides (CH3NH3PbX3 where 
X=Cl, Br or I). By altering the halide constituent, the band-gap may be tuned from near-
infrared to deep-blue [4, 5]. The CH3NH3PbX3 thin films can be solution processed by 
depositing precursors onto a substrate followed by a thermal annealing process. There is now 
considerable interest in light-emitting devices as well as solar cells. Light-emitting diodes 
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(LEDs) [6–8]  have been demonstrated using CH3NH3PbX3 thin films, while fully inorganic 
CsPbX3 colloidal nanocrystals have shown photoluminescence quantum yields (PLQY) of up 
to 90 % [9, 10]. 

The high brightness and band-gap tuneability has made CH3NH3PbX3 perovskites 
attractive candidates as optical gain media for a new family of low-cost semiconductor lasers. 
Combined with their high ambipolar charge mobility they have future potential to be used as 
visible wavelength tuneable diode lasers. Perovskite lasers have been demonstrated in several 
configurations: resonators including a Fabry-Perot cavity formed with parallel edge facets 
[11]; ring resonators in microspheres or nanoplatelets [9, 12–14]; and random lasing in 
scattering films [15]. These structures have supported multimode lasing spanning the full 
amplified spontaneous emission (ASE) bandwidth (5-10 nm). For many applications 
(spectroscopy, sensing, communications) laser action at user-defined wavelengths and single-
mode operation is very desirable [16]. Photonic crystal single-mode perovskite lasers have 
recently been demonstrated using both SiO2 and Si photonic crystals fabricated by electron 
beam lithography [17] and holographic lithography [18]. Here we present distributed 
feedback (DFB) perovskite lasers fabricated on UV nanoimprint lithography (UV-NIL) 
polymer gratings. This is a simple, high-throughput and fully solution processable method for 
DFB grating fabrication which we demonstrate to be compatible with perovskite solution 
processing. 

To achieve high performance operation in perovskite lasers, it is important to create films 
with good optical performance and low scattering losses. As such, deposition methods which 
produce large crystallites such as thermal evaporation are less suitable for making DFB lasers 
[19]. Here we demonstrate DFB lasing by using the lead acetate deposition method to form a 
low loss optical waveguide on top of high fidelity polymer micro pillar arrays made by UV-
NIL where sub-nanometre lasing spectra are observed at the band edge of the photonic 
dispersion. We compare laser thresholds under nano- and femto- second optical pumping and 
show that the perovskite lasers are very stable compared with organic semiconductor lasers, 
even at high repetition rates of 20 kHz, dropping to half their initial output after ~ 108 pulses. 

2. CH3NH3PbI3 solution deposited waveguides 

Perovskite solutions were prepared by combining methylammonium iodide and lead acetate 
trihydrate, at a 3:1 molar ratio (dissolved in dimethylformamide (DMF) at 400 mg/ml). 
Hypophosphorous acid was also added to the solution for improved film quality and increased 
PLQY [20] (0.3% of the total volume) prior to deposition. Films were fabricated inside a N2 
glovebox by spin-coating solution onto substrates pre-treated by oxygen plasma ashing. DFB 
laser samples had an additional encapsulating layer of CYTOP spin-cast on top of the 
perovskite surface. Planar waveguide samples were initially fabricated by using glass 
substrates without encapsulation. These were used to measure the amplified spontaneous 
emission as well as the perovskite waveguide loss. The 450 nm output from an OPO (4 ns 
pulse duration, 20 Hz) (Continuum Panther) was focused to a stripe of dimensions 4 x 0.5 mm 
using a cylindrical lens onto a glass/perovskite film. When pumping above ASE threshold, 
the stimulated emission signal was collected from the edge of the film and passed through a 
100 μm slit into a fibre coupled CCD spectrograph.  Using a motorised stage the pump stripe 
was scanned across the 2.5 cm x 2.5 cm films, and the ASE signal collected at each position.  

Figure 1(a) shows the measured ASE spectra centred at 788 nm and the reduction in ASE 
intensity detected as the stripe was moved away from the edge of the film. The reduction is 
due to loss in the waveguide and the decay was fitted to the equation  ܫ௢݁ିఈ௫ , where ܫ௢ is the 
initial intensity,	ߙ is the loss coefficient and ݔ is the distance between the excitation stripe and 
the detection edge, giving the waveguide loss to be 6 ± 0.3 cm-1. 
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methods such as evaporated crystals [26], creating relatively low loss waveguides with loss 
coefficient, α = 6 ± 0.3 cm-1 [Fig. 1(a)], much smaller than some previously reported 
perovskite waveguide losses (19-21 cm-1) [27] comparable with others for CH3NH3PbI3 
perovskite films deposited from DMF (6.7 cm-1) [28]. In comparison to more established DFB 
lasers, these perovskite films still have very high surface roughness as shown in Fig. 2(b)-
2(d). If smoother films could be fabricated with improved deposition methods we would 
expect the lasing threshold to be lowered, increasing the future applicability of perovskite 
lasers. The negative effect of the surface roughness can be seen in Fig. 3(b); at high pump 
intensities random lasing modes can be seen to emerge in the background of the DFB laser 
spectrum.  

6. Conclusion 

In conclusion, we have demonstrated simple fabrication of a solution-processed CH3NH3PbI3 

distributed feedback laser using nanoimprinted polymer gratings. The laser shows single 
frequency lasing at the stop band edge of the photonic structure. SEM images of the 
perovskite surface and a cross-sectional image of the waveguide demonstrate that the solution 
processed CH3NH3PbI3 formed via the lead acetate route can fill sub-micron structures well 
and that the surface is unperturbed by the presence of the grating underneath. Under 
femtosecond excitation the perovskite laser exhibits a low lasing threshold of 4 μJ/cm2 and 
high stability with a half-life of 108 pulses. These results show that perovskite materials 
provide a promising new route to low-cost fully solution-processed lasers. 
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