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ABSTRACT  

A numerical method for solving the partial differential equations 

which govern the transport of mass, momentum, energy, etc. in three-

dimensional, confined, boundary-layer flows, is described. The extension 

of this procedure to handle flows confined in straight ducts of axially-

varying cross-section, is presented. The method is shown to be flexible, 

economical and reasonably accurate in predicting two classes of laminar-

flow problems. 

A simple turbulence model, akin to the mixing-length hypothesis 

of two-dimensional boundary-layer situations, is proposed and used in 

conjunction with the above-mentioned numerical procedure, in predicting 

fully-turbulent flows in ducts and diffusers. The inadequacies of this 

model are highlighted and an already-existing two-equation model of tur-

bulence is used to overcome these. This more complex model, is then used 

to make predictions of turbulent, unstalled flow in straight, rectangu-

lar-sectioned diffusers under a large variety of conditions. A few heat-

transfer predictions are also reported. In all these situations, detailed 

comparisons with experimental and analytical evidence, are provided. The 

favourable nature of these comparisons lend support to the use and de-

velopment of this prediction procedure as an engineering design tool. 

A modest program of experimental research into three-dimensional, 

turbulent flows in diffusers is also reported. Measurements of static 

pressure and mean-velocity profiles are made with simple pitot probes. 

Rectangular-sectioned diffusers of inlet aspect ratio 1 : 1 are con-

sidered, and a limited range of included angles and Reynolds numbers 

covered. The data thus obtained, are used to provide partial corroborative 

evidence of the prediction procedure mentioned above. 

The program of research, both theoretical and experimental, re-

ported in this Thesis is intended as a demonstration of the capability 

of the numerical calculation procedure. It is not intended to be a 

detailed investigation of the physical nature of turbulent flows in un-

stalled diffusers. 
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PREFACE  

This Thesis presents the major part of my research activities 

during the period 1969 - 1972. These activities centered around the de-

velopment of a numerical procedure for solving the partial differential 

equations governing the three-dimensional boundary-layer flow of fluids; 

they also included the validation of this procedure in predicting tur-

bulent flows in rectangular-sectioned diffusers. 

Upon my arrival at the Mechanical Engineering Department of 

Imperial College, I spent several months in acquainting myself with the 

two separate numerical methods then in existence for predicting two-

dimensional boundary-layer and recirculating flows. It was felt at that 

time, that such an acquaintance would be the logical first step in the 

process of developing a method for three-dimensional boundary-layer 

flows. The task of the latter development was undertaken jointly by 

David G. Tatchell and myself, under the supervision of Dr. A.D. Gosman 

and Professor D.B. Spalding. Simultaneously, Dr. R.M. Curr working 

under the supervision of Professor Spalding was seeking to develop a 

similar procedure using an alternative formulation of the problem. 

It was felt right from the start, that the primitive variables, 

i.e. velocity components and static pressure, would be the most con-

venient dependent variables of the differential equations for the sol-

ution of which, a numerical procedure was sought. The choice of the grid 

system and the manner of discretization of the differential equations, 

were  arrived at after much experimentation. Progress however, was very 

slow and after almost a year, a research group was formed to attempt, 

through joint effort, at a speedy solution to the problem. This group 

consisted of Professor Spalding, Drs. A.D. Gosman and L.S. Caretto, 

David Tatchell and myself. The efforts of this group proved fruitful 

and gave birth, early in 1971, to the SIVA scheme, described by Caretto, 

Curr and Spalding [ 9] . A companion paper by Curr, Sharma and Tatchell 

[ 16] presented predictions made with this procedure, of some laminar 

flows in ducts. 



While this procedure was being tested further, Dr. S.V. Patankar 

joined the group with the intention of developing a method, similar to 

SIVA, for predicting three-dimensional, external boundary-layer flows. 

His work resulted in the development of the SIMPLE algorithm, suitable 

for both internal and external flows. At this stage, I spent some time 

in close collaboration with Dr. Patankar, participating in the develop-

ment and testing of a computer program embodying SIMPLE. The tests were 

also used to compare the capabilities of the two numerical schemes. The 

comparisons confirmed the expectation that for otherwise identical con-

ditions, the non-iterative SIMPLE scheme would prove to be more econ-

omical than the iterative SIVA scheme. I therefore decided to adopt 

SIMPLE for the subsequent part of my research activities. The results 

of some of these activities were presented at the First Indian National 

Conference on Heat and Mass Transfer in Madras in December 1971. 

Once the calculation procedure was ready and tested, I followed 

some suggestions made by Dr. Patankar in devising a simple turbulence 

model, suitable for use in predicting three-dimensional, turbulent flows 

in diffusers. Whilst this model was being tested,I devoted the major 

part of my attention to the experimental program. Over a period of four 

months, I was able to design the rig, have it fabricated, assembled and 

commissioned; I then performed a limited range of measurements on rec-

tangular-sectioned diffusers. The data obtained from these measurements, 

as well as others reported in the literature, were then used by me to 

compare with numerical predictions. Some of these comparisons brought 

out the inadequacies of the simple turbulence model. 

By this time, the 12-€ two-equation model of turbulence had 

come into extensive use in the Mechanical Engineering Department. I 

therefore set about using this model with the calculation procedure and 

was able to convince myself of its superiority over the simple model. 

Confirmation of this fact was achieved by repeating the predictions made 

earlier, and making detailed comparisons with experimental data. Some 

unpublished work in this respect was made available to me by Dr. S. Masuda 

of Keio University, Japan. When this task was completed in October 1972, 

strained financial circumstances compelled me to take on an engagement 

of full-time research in the Mechanical Engineering Department. The pres- 
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CHAPTER  1 

INTRODUCTION 

	

1.1 	The problem considered  

In this Thesis is described, a procedure for predicting steady, 

three-dimensional, turbulent flows confined within ducts whose cross-

sectional area varies with axial position in a prescribed manner. The 

prediction procedure is composed of a numerical scheme for solving the 

partial differential equations which govern the transport of mass, 

momentum and energy in such flows, and a hypothesis for modelling the 

turbulence. A feature common to the flows considered, is the existence 

of a predominant direction of flow. This is one of the features which 

is used here to classify such flows as three-dimensional boundary 

layers. 

Validation of the prediction procedure is achieved by comparing 

predicted results with experimental and analytical evidence, over a 

range of flow situations. Such validation, in this Thesis, is re-

stricted to constant-property, laminar and fully-turbulent flows in the 

inlet region of straight, rectangular-sectioned ducts and diffusers. The 

effects of a variety of conditions upon such flows, are examined. 

	

1.2 	Practical relevance  

The ability to predict the detailed nature of three-dimensional 

confined flows, and the distributions of energy and matter transported 

by them is often a matter of practical importance; whether it be for 

the optimal design of equipment in which they occur, or to aid the 

understanding of their effects upon the immediate environment, as in 

effluent transport by rivers. 

The kind of flows outlined above abound in engineering practice. 

Examples may be found in the air-intake passages of many aircraft en-

gines, in fluids transported in ducts of irregular cross-sections, 



18 

which may on occasions be coiled in some regular or arbitrary fashion, 

in river flows and other similar circumstances. Illustrations of a few 

such situations are provided in figure (1.2-1). 

(a) Flow through coiled ducts. 

(b) Flow through annular diffusers. 

(c) River flows. 

Fig.(1.2.1) Examples of three-dimensional boundary-layer flows. 
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1.3 	The three-dimensional boundary layer  

The term "three-dimensional boundary layer", has been applied 

in the literature to a limited class of external flows adhering to 

walls (see, for example, Rosenhead [50]). In this Thesis however, fol-

lowing recent practice (Caretto et. al. 9] , Patankar and 

Spalding [ 45]), the definition of the term is generalised to include 

*a wide range of flow situations of which, the class of external flows 

mentioned above, form a part. The physical characteristics of flows 

which permit this generalisation are summarised as follows. 

Three-dimensional flows which can be classified as boundary 

layers, posses the following two features: 

1) There should exist, one predominant direction of 

flow; this shall hereinafter be referred to as the PFD. 

2) Events downstream of any location along the PFD, 

should have no influences upstream of this location; 

for example, flow recirculations along the PFD 

should not occur. 

The mathematical consequences of this generalisation are described in 

detail in Chapter 2. 

Flows in ducts and unstalled diffusers of rectangular cross-

section satisfy the above requirements and hence are referred to as 

boundary-layer flows. The important difference between these flows and 

the external flows referred to above is that whereas in the former full 

account is taken of stresses on planes normal to two directions other 

than the PFD, only one such direction is considered in the latter. A 

second, less important, difference lies in the manner in which the 

pressure-gradient along the PFD is related to the flow-field; whereas, 

in the internal flows considered here, it is intimately connected with 

the flow-field itself, in external flows it is related to conditions 

prevailing in regions outside the flow-field, i.e., the so-called 

'free-stream'. 
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1.4 	Historical perspective 

The work reported in this Thesis is now placed in perspective  

with respect to work published in the literature, on rectangular-sec-

tioned ducts and diffusers. 

1.4.1 	Duct flows 

Experimental measurements. Measurements of laminar flow-development in 

rectangular-sectioned ducts have been reported by the following auth-

ors. Sparrow et. al. [59] presented data on pressure-drop and axial-

velocity profiles for ducts of aspect ratios 2 : 1 and 5 : 1. Goldstein 

and Kreid [23] reported similar results for the square-sectioned 

duct. Beavers et. al. [4] obtained pressure-drop data in ducts of 

aspect ratios ranging from 1 : 1 to 59 : 1. Yu and Sparrow [66] 

reported similar measurements in duct of aspect ratio 82 : 1, in which 

one wall was permitted to move longitudinally in a steady manner. Each 

of these studies was conducted over a range of Reynolds number. Experi-

mental work pertaining to large aspect-ratio ducts, has been listed by 

Fan and Hwang [181 

Measurements of pressure-drop and friction factors for tur-

bulent flow in rectangular-sectioned ducts, have been reviewed by 

Harnett et. al. Since this work was published, more detailed measure-

ments have been reported by Ahmed [1] , Ahmed and Brundrett [2] , 

and others; a detailed list of such studies is available in 

Tatchell [60]. As part of 	a study of diffusers, several authors re- 

ported measurements of pressure-drop and profiles of axial velocity, 

across the two centre-planes of ducts, i.e. zero-angle diffusers. 

These authors include Masuda et.al [38], Wolf and Johnstone [65], and 

Masuda [37]; their measurements were obtained in the inlet region of 

ducts of aspect ration 2 : 1, 4 : 1 and 2 : 1 respectively, and covered 

a range of inlet 	turbulence intensities and velocity distributions. 

Analytical studies. Several authors have presented analytical results 

for constant-property, laminar flow development in straight ducts, 

with aspect ratio as parameter; among these are Han [25] , Lundgren 

et. al.[36] , Fleming and Sparrow [20] , and Wiginton and Dalton [64]. 
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Their approaches consisted essentially of analytical integrations of 

linearized forms of the axial momentum equation, in conjunction with 

an integral continuity equation. The difference between the above ap-

proaches, lies in the manner in which the axial momentum equation is 

linearized. Miller [41] has applied a numerical procedure, valid for 

fully three-dimensional flows, to laminar flow in the entrance region 

of a square-sectioned duct. With the exception of Ahmed [1] , analyses 

of turbulent three-dimensional duct flows do not appear to have been 

reported in the literature. 

1.4.2 	Diffuser flows 

Experimental measurements. The study of turbulent flows confined with-

in rectangular diffusers has formed the subject of numerous publi-

cations. A review of the substantial proportion of these published 

results, has been made by Reneau et. al. [47] . Detailed measurements 

have been made of the various flow regimes within diffusers from un-

stalled flow (e.g. Carlson 110] ), through transitory stall (e.g. Smith 

and Kline [56] ) and fully-developed stall (e.g. Chin and Kline [14] ), 

to jet flow. The unstalled flow regime has been subject to extensive 

investigation. The effects of inlet aspect ratio were measured by 

Johnstone and Powars [32] who also reviewed the earlier work in this 

area. The effects of different wall shapes on straight, rectangular-

sectioned diffusers were studied by Carlson et.al.[11] ; Norbury [42] 

reported measurements of pressure-recovery and centre-line velocity 

decay in a trumpet-shaped diffuser. Experimentally-determined values 

of geometries that provided maximum pressure-recovery with little or 

no stall were published by Sovran and Klomp 157] . 

Several authors have reported studies of the effects of a var-

iety of conditions at the inlet to diffusers upon their performance. 

These include Bradley and Cockrell [5] , and Waitman et. al. f 62].  

Particular attention has been paid to the effects of shear flow at in-

let to diffusers by Horlock and Lewis [31] , Masuda et. al. 138] , 

Wolf and Johnstone [65/ and others. 
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Improvements in diffuser performance by tangential injection 

of fluids have been affected by Fiedler and Gessner [19] . Similar re-

sults were reported by Furuya et. al.[22] and Rockwell [48] who stud-

ied the effects of extraction of fluid from regions of low momentum 

within diffusers. 

The flow patterns within curved, rectangular-sectioned dif-

fusers were first observed by Fox and Kline [211 . Subsequently these 

results were augmented by Sagi et. al. [52] . Numerous observations, 

both qualitative and quantitative, have been reported of the perform-

ance of diffusers of arbitrary shape used in engineering practice; the 

work by Sakurai /53] is one example. 

Detailed measurements of heat transfer in rectangular-sec-

tioned diffusers have been sparingly reported. Ellison [17/ , obtained 

measurements of temperature profiles and Stanton number in a low aspect 

ratio diffuser. Similar results were obtained by 4Hool as quoted by 

Carmichael and Pustintsev [12] . 

Analytical investigations. The analyses of turbulent flow within rec-

tangular-sectioned diffusers, have been restricted mainly to the mo-

mentum-integral type. Cocanover et. al. [15] provide one such method 

and indicate how this may be applied to diffusers of several geometric 

configurations. Modifications to momentum-integral methods in order to 

handle special circumstances have been reported by several authors 

(e. g. Bradley and Cockrell [5] , Wheeler and Johnstone [63] etc.), 

but none appear to be generally applicable to all geometric shapes, 

inlet conditions or aspect ratios. 

Horlock and Lewis [31] , and Livesey and Turner [35] , pro-

vide interesting potential flow methods to take account of shear flow 

within large aspect-ratio diffusers. They appear however to suffer 

from the same deficiencies as the above. 

1.4.3 	Numerical calculation procedures  

Numerical procedures for the integration of the partial dif-

ferential equations of convective motion have been reported by several 
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authors. Patankar and Spalding [441 , presented a scheme designed for 

two-dimensional boundary layers. Gosman et. al. /241 reported a method 

applicable to two-dimensional recirculating flows. 

In recent years, several authors have published numerical 

methods designed to make calculations of two- and three-dimensional 

steady and unsteady flows. Among these are Harlow and Welch[28] , 

.Chorin /13) , and Amsden and Harlow [3] . 

A procedure for solving the equations of three-dimensional 

boundary-layer motion, was first reported by Caretto et. al. [ 9 . 

This procedure was used to make predictions of some laminar, confined 

flows which were reported by Curr et. al. [16] . Subsequently, a method 

designed to solve the identical problem was developed by Patankar and 

Spalding [451 . It is an extension of this procedure that has been used 

in the present work. 

Two reviews of existing calculation procedures for steady, 

three-dimensional, external boundary layers have been made. They are 

due to Patankar [43] and Wheeler and Johnstone [63] . 

1.4.4 	Mathematical models of turbulence 

Dating from Prandtl's mixing-length hypothesis, numerous 

authors have applied simple algebraic models to the prediction of tur-

bulent, confined flows, e.g. Hinze [30] . In a recent review, Launder 

and Spalding [33] trace the development of turbulence modelling in in-

ternal flows. 

Present day turbulence models are necessarily complex; they 

require, in general, the solution of partial differential equations 

governing the transport of turbulence quantities. Such equations have 

been derived by several authors and have been reported by Harlow and 

Nakayama [27/ , Rodi (49] , Harlow [26] and others. Multiple-equation 

turbulence models have been successfully applied to a variety of flow 

situations (e.g. Launder and Spalding /34] ). One such model, requir-

ing the solution of two equations, has been adapted for use in the pres-

ent work. 



24 

1.5 	Strategy of the present investigation 

This Thesis reports both theoretical and experimental investi-

gations of three-dimensional, turbulent flows confined within rec-

tangular-sectioned ducts and diffusers. The strategy adopted for this 

work is summarised as follows: 

1) Predictions were first obtained of several laminar 

flow situations. These predictions were compared 

with available experimental and analytical evidence 

in order to validate the numerical calculation pro-

cedure. 

2) Extension of this calculation procedure was made to 

permit its application to flows within ducts with 

axially-varying cross-sections. 

3) A mathematical model of turbulence was developed 

and tested in its ability to predict fully-turbu-

lent flows in the above geometric configurations. 

4) Validation of the prediction procedure consisting 

of the numerical calculation procedure and the 

mathematical model of turbulence was carried out. 

The path followed in implementing the above strategy is summar-

ised as follows: 

1) Performance of a thorough review of the existing 

information on three-dimensional duct and diffuser 

flows; collection and collation of this information 

was achieved in a manner suitable for making compari-

sons with predictions. 

2) Comparison of numerical predictions of laminar flows 

with available information in order to permit an assess-

ment,of the accuracy of the solutions as well as the 

stability and convergence rates of the calculation pro-

cedure, to be made. 
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3) Identification, from the literature review, of 

areas wherein experimental investigations into 

three-dimensional diffuser flows, might profit-

ably be made. Conducting such studies to obtain 

data useful in performing validation tests on as 

many aspects of the prediction procedure as 

possible. 

4) Conducting such validation exercises by com-

paring predictions of a wide range of flow situ-

ations with analytical and experimental evidence 

collected from independent sources. 

1.6 	Layout of the Thesis  

The rest of this Thesis is divided into four parts. In Part I, 

comprising Chapters 2, 3 and 4, a detailed description of the theor-

etical work, is provided. This includes a derivation of the differen-

tial equations, their numerical discretization procedure and a des-

cription of the manner of solution of the resulting algebraic equations, 

which form the subject matter of Chapters 2 and 3. Chapter 4 confines 

itself to details of the two models of turbulence used in this work. 

The experimental program undertaken in this work, is described 

in Part II. Details of the objectives of this program, and the design, 

fabrication and use of the apparatus used therein are provided in 

Chapter 5. In Chapter 6, an evaluation of the data obtained in the 

experimental investigation, is made. 

The prediction of a wide range of laminar and turbulent flow 

situations as well as an assessment of the turbulence models used, 

form the subject matter of Part III. Accordingly, while Chapter 7 

describes predictions of laminar flows, comparison of predictions with 

experimental and analytical results for turbulent flow, are provided 

in Chapter 8. In Chapter 9, a summary is made of the work performed, 

conclusions thereof are drawn and suggestions made for future work. 
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Part IV comprises a list of references, a description of the 

nomenclature used in this Thesis and four Appendices. The latter con-

tains information supplementary to the theoretical work descri%ed in 

Part T as well as tabulated forms of experimental data obtained from 

the program described in Part II. 
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PART I 

Theoretical Investigation 
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CHAPTER 2  

THE MATHEMATICAL PROBLEM 

	

2.1 	Introduction  

This chapter describes the formulation of the mathematical prob-

lem. The description consists first of a brief derivation of the par-

tial differential equations which govern the transport of mass, momen-

tum, energy and other scalar fluid properties in steady three-dimen-

sional boundary-layer flows. In this derivation, the equations of three-

dimensional fluid motion expressed in cartesian-tensor form, are used 

to arrive at a set of equations represented in a quasi-orthogonal cur-

vilinear co-ordinate system. Next, the initial and boundary conditions 

on the dependent variables of this equation set, that are required to 

be specified, are described. Following this, the physical hypotheses 

necessary to complete the problem specification, are detailed. Finally, 

a summary is provided of the approximations involved in arriving at the 

mathematical description of the problem. 

	

2.2 	The governing differential equations  

The partial differential equations which govern steady, three-

dimensional motion of fluids can be expressed as follows: 

Continuity  

a(cui )  
axi  0 	, (2.2.1) 

transport of momenta (three components, j) 

(4  1/2 	.4 U.; 	cry 
azi  , (2.2.2) 
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transport of scalar fluid property,  0 

(4" Ut 0  ) _ 
ax-  • 	 axi 

where the symbols are defined as follows: 

, (2.2.3) 

velocity component in each of the three 

co-ordinate directions,i; 

	

xi 	corresponding co-ordinate axis; 

	

UI 	momentum per unit mass transported 

along the j#' direction; 

= complete stress tensor; 

41 • 
source (and/or sink) of 4.4; 

	

0 	E..: transported scalar fluid property; 

0 

	

)45 	E 	source (and/or sink) of 95 ; 

,•T0, C — 	
• 177 • flux of 0 along the 	direction; =  

and e = fluid density. 

. The conventional Newtonian approximations are now made con-

cerning the diffusion of momenta and other properties,O. 

Accordingly, the following relations are applied to equations 

(2.2.2) and (2.2.3) respectively. 

where pa static pressure; 

Kronecker - delta function; 

,LL E dynamic viscosity of the fluid; 
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0 
T" E coefficient in the "diffusion-law" (2.2.5), 

defined by : 

= 
	

Pro 	 , (2.2.6) 

Pro  , being the Prandtl/Schmidt number appropriate 
to the transport of 0 . 

2.2.1 The boundary-layer approximations  

The mathematical consequences of the generalised definition 

given to three-dimensional boundary layers in Chapter 1, are considered 

in this section. 

1) Let there exist a predominant direction to the flow represented 

by equations (2.2.1) to (2.2.3); furthermore, let this direction (PFD) 

be aligned with the 1-direction. 

2) The requirement that, along this direction, downstream con-

ditions have no influence upon upstream events implies that: 

diffusion 
a) Thekfluxes of momentum, energy and other scalar 

properties along the PFD are negligible. Thus: 

, a)1 

(2.2.7) 
b) 

b) The downstream pressure-field has negligible 

influence upon upstream flow conditions. 

It is the satisfaction of the latter requirement that necessi-

tates the deliberate introduction of an inconsistency in the treatment 

of pressure. The nature of this inconsistency is discussed at length 

by Caretto et. al. / 9) , and Patankar and Spalding [45/ .Here it is 

merely noted that the pressure-gradient appearing in the 27-direction 
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2 	3 - and 	- directions: Z)15  , and..-5/5  respectively. 
DX2 	aZ3 
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(i.e. PFD) momentum equation is presumed to be de-coupled from the 

pressure-gradients appearing in the momentum equations corresponding 

to the z and 2'directions. This practice is a necessary step towards 
3 

making 	a truely "one-way" co-ordinate, i.e. one along which upstream 

conditions determine down-stream events but not vice versa. Accordingly, 

the pressure-gradients driving the three velocity components are ex-

pressed as follows: 

- direction: 	a/g 

The implications of this de-coupling upon the solution procedure are 

elaborated in Chapter 3. 

When the afore-mentioned conditions 1) and 2) are applied to 

equations (2.2.2) and (2.2.3), there results a set of parabolic 

equations. It is the parabolic nature of these equations which permits 

the freedom to employ marching-integration procedures for their sol-

ution. 

The representation of flows within ducts whose cross-sections 

vary with axial position, cannot conveniently be achieved through such 

parabolic equations expressed in orthogonal co-ordinate systems. It is 

to overcome this inconvenience that the set of derived equations is re-

cast in terms of a curvilinear quasi-orthogonal co-ordinate system. 

2.2.2 A curvilinear co-ordinate system 

The curvilinear system of co-ordinates chosen for use in the 

present work, is quasi-orthogonal. It is stipulated that whereas two 

of the co-ordinate axes (i.e.z2and X3) maintain mutual orthogonality 

throughout the flow-field, the third (i.e.2'7) is permitted to depart 

from orthogonality with respect to the other two, within specified 

limits. It is demonstrated below that these limits are consistent with 

the boundary-layer approximations defined above. 
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The elements of the curvilinear system ( t, 77, ) are defined 

in terms of orthogonal, cartesian co-ordinates (for convenience re-

presented here as (2',J)  Z)), as follows: 

.77  = Y  
Y/v - as 
z - z w  

and 4 
Z - E Zit/ 

a)  

b)  

c)  

(2.2.8) 

The definitions (2.2.8) can best be appreciated with reference to 

figure (2.2.1). The subscripts N, S, E, and W, refer respectively to 

the North, South, East and West boundaries of the calculation domain 

in the 	plane. The co-ordinates t) and are mutually orthogonal for 

all values of t. Furthermore, planes of constant- are approximated 

as planes of constant- x. 

The components of velocity U, V and W are now defined as 

follows: V and W are normal to the z-z and z-y planes respectively, 

i.e. are aligned with the iyand  4 co-ordinate directions. U is normal 

to constant- planes, but is permitted to depart from alignment with 

t by small angles; the limits of this inclination are prescribed be-
low. The following mathematical consequences result from the above 

definitions. 

The co-ordinates ( , 77 	) satisfy the general relationships: 

a 	0 	 -a ?z 
ax 	ax 	Z71 ax 	zZ ?lz 

b be 
ay 	at by 	erti ay 	at ay 

-a a 	D .D7/ 	a a4 — az 	az 	oz 	?fr ?.Z 

} (2.2.9) 
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PFD 

calculation 
domain 

Y 

z 

Fig.(2.2.1) Illustration of the quasi-orthogonal co-ordinate 
system; the circled characters represent the 
North, South, East and West boundaries of the 
calculation domain. 
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It can be deduced that, on applying the definitions (2.2.8) to these 

relationships, the effect of non-orthogonality of the 	- co-ordinate 

with respect to 77 and 2  , are negligible only if the following con-

ditions are satisfied: 

 

dx 
1 

 

, a) 

• b) 

(2.2.10) 

and 

 

d4 << 

      

Since the conditions (2.2.10 b) are similar to the relationships (2.2.7), 

it is concluded that the set of assumptions embodied in (2.2.10) are 

consistent with those of (2.2.7). The definitions (2.2.8) along with the 

conditions (2.2.10), thus permit the transport equations to be expressed 

in curvilinear co-ordinates, whilst retaining their boundary-layer 

character. 

A useful digression is made here. The conditions (2.2.10 b) are 

related to the area-ratio variation along the axes of diffuser flows. 

It is well-known that this variation must be small, to maintain the un-

stalled flow regime within diffusers. Since stall, or axial-flow re-

circulation violates the conditions required for boundary-layer flows, 

the above conditions are consistent with the physical nature of dif-

fuser flows examined in this Thesis. 

2.2.3 The general transport equations in curvilinear co-ordinates  

The approximations of Section (2.2.1) along with the definitions 

of Section (2.2.2) when applied to the general equations (2.2.1) to 

(2.2.3), result in a set of differential equations that govern three-

dimensional, boundary-layer flows in ducts with axial-variations in 

cross-section. Recognising the similarity of equations (2.2.2) and 

(2.2.3), this set is expressed in a general form as follows: 
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continuity  

(eu) 	 jcav _ 4u r 
dx
ci gs 	77 c 

(Kdz
I  Ys )7? 

L   
(Yr,- 5s )77 ? 

+ 1 	a 	 rdz 
(z E 	[CW 	qU 	+ 4 d(zE -Zw)1 

dx 

= 0 	, (2.2.11) 

transport of fluid property, 95  

(eu95) 
CyNf 	

-I_ 71 ISI d(Y  gS )16 

.. 	ys) 

	

dx 	dx J/1 

(zE _ 	z a w) 	quf aidzw + 4 d(zE - z‘,07)01 
dx J / 

)6c6 + Yst a71  DCb 	(ze  Z w)2 	[ P° 	. (2.2.12) 
Cy 

In the above equation, cb is taken to represent any fluid property trans-
ported by the flow, including the three components of momenta per unit 

mass, U, V and W. The detailed nature of the equations for each such 

property is provided in Appendix A 1. In the above equations the quan-

tities within square brackets are consequences of the curvilinear nature 

of the geometry confining the flow. 

2.3 	Auxiliary information  

In addition to the set of equations represented by (2.2.11) and 

(2.2.12), the complete specification of the mathematical problem of 

three-dimensional boundary layers requires: 

a) Initial conditions, i.e. initial values of dependent 

variables corresponding to the position of the co- 

ordinate along the PFD (i.e. 	) at which solutions 

to the set of equations are begun. 
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b) Boundary conditions, i.e. conditions of all the 

dependent variables at the E, W, N and S boundaries, 

as a function of 

c) Auxiliary relationships, which allow the density, 

diffusion coefficients, sources and sinks in each 

of the equations, to be computed in terms of the 

dependent variables of these equations, over the 

entire flow-field. 

The auxiliary information supplied to the solution procedure in the 

present work is described in Chapter 3 and Appendix A 1. 

2.4 	Summary 

The contributions of this chapter may be summarised as 

follows: 

1) A derivation is provided of the partial differential 

equations which govern the transport of mass, momen-

tum, energy etc. in three-dimensional boundary-layer 

flows. 

2) These equations are represented in terms of a curvi-

linear, quasi-orthogonal co-ordinate system. This 

practice makes convenient, the representation of 

flows within ducts with moderate variations in cross-

section with axial position. 

3) The auxiliary information required to complete the 

problem specification is enumerated. 

It is left to seek a solution procedure for this mathematical 

problem. Such a procedure is described in Chapter 3. 
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CHAPTER 3 

THE SOLUTION PROCEDURE  

	

3.1 	Introduction 

In this chapter, details are provided of a numerical scheme re-

ported by Patankar and Spalding [45] , for the solution of the mathe-

matical problem described in Chapter 2. The common features of this 

scheme termed SIMPLE (for Semi-Implicit Method for Pressure-Linked 

Equations), with that proposed by Caretto et. al. 1 9] and called 
SIVA (for Simultaneous Variable Adjustment) are first described. Then, 

following a brief outline of the SIVA algorithm, a more detailed account 

is given of the SIMPLE algorithm. A series of unpublished tests per-

formed by the author has indicated that the latter procedure is more 

economical for use in confined-flow situations than the former. It is 

for this reason that the SIMPLE procedure was used throughout this work. 

The layout of the rest of this chapter is as follows: 

Section 2 reports the procedures adopted in the discretizations of 

equations (2.2.11) and (2.2.12). The computational structures of the 

SIVA and SIMPLE schemes, with attention to the differences between them, 

are outlined in Section 3. In Section 4, the manner of incorporation of 

auxiliary information into the computational procedure, is briefly out-

lined. Remarks on the convergence rates and stability of the procedure, 

and assessments of the accuracy of the results obtained, are made in 

Section 5. A brief summary concludes the chapter. 

	

3.2 	The discretization procedure  

The first step in the development of a numerical scheme for 

solving equations (2.2.11) and (2.2.12), is to obtain discretized 

equivalents for them. This is described in the following sections. 



• 	 38 

3.2.1 	The grid system 

The numerical grid used consists of: 

a) A system of intersecting, orthogonal grid lines in 

the T. 4 planes. No restrictions are placed upon 

the spacing between the lines in any given direc-

tion. 

b) Planes of constant t , at which solutions are ob-

tained, are arrived at by taking successive in- 

crements along the 	(i.e. PFD) direction. There 

is again no intrinsic restriction placed upon the 

manner of these increments, hereafter termed the 

forward step size, LSk . The limits on the size of 

the forward step are governed by considerations of 

stability and accuracy of the numerical procedure. 

In obtaining the predictions reported in this Thesis, the spacings be-

tween the grid lines a) as well as the forward step sizes b) were non-

uniform. Details of the grid dispositions used are provided in Appen-

dix A3. 

3.2.2 Location of variables on the gird  

The intersections of the grid lines mentioned above are termed 

grid nodes. All the fluid properties with the exception of the velocity 

components V and W, are presumed to be located at such grid nodes. The 

velocity V is presumed to be located exactly midway between grid nodes 

in the 77-direction and velocity W similarly located along the 4-di-

rection. Figure (3.2.1)indicates the grid system in the 17,4 plane, 

superposed upon which are the locations where variables are stored. This 

"staggered" location of variables is similar to that reported by other 

workers (e.g. Amsden and Harlow [3] ). Such "staggering" of variable 

locations possesses two advant ages: 

a) Velocity components V and W are stored at just the 

points at which they are required when mass balances 



M 	 39 

are made over the control volume surrounding each 

grid node; also, their location makes convenient the 

calculation of convective contributions to the bal-

ance of 0 over such control volumes. 

location 
0 

4 

variable 
stored 
u , fif 

V 

Fig.(3.2.1) Staggered location of variables. 

b) Pressures, stored at the grid nodes themselves, en- 

sure ease in the calculation of pressure-gradients 

that affect the V and W momentum equations. 

In the algebra connected with the discretization procedure, when 

a variable is required at points other than those at which it is located, 

averages of neighbouring values are used to arrive at the value of the 

variable at that point. 

3.2.3 The control volumes  

The control volume surrounding each grid node P, indicated in 

figure (3.2.2), has two faces that coincide with two constant -t planes. 

One of these, at which integrations of the partial differential equations 



forward 
step size 

control 
volume 

downstream 
D ) 

r 	
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are to be performed, is designated the downstream (D) station. 

Fig.(3.2.2) Finite - difference control volume. 

The other faces are so located that, the velocity components giving rise 

to convective fluxes along the /1 and 4 directions, are located on the 
faces themselves. Figure (3.2.3), illustrates this point, with refer- 

ence to a cross-section of the control volume in the 	'77 plane. It is 

over such control volumes, that balances of U, 0 and mass are made in 

the calculation procedure. Similar control volumes, resulting from the 

"staggering" of locations on the grid, are defined to surround the lo-

cations of the V and W velocity components. Three sets of control vol-

umes, are thus identifiable over the entire calculation domain. 
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U 	 0 

grid lines 
_ — 

tr- 	 u,0 
— — — — 

fir/7777 

cell 

--gib- 
— -----41 1 

L 
Fig.(3.2.3) Control volume when the grid expands to accomodate 

exactly the diffuser shape. Note the inclination 
of the U-velocity arrow with grid lines. 

3.2.4 The near-boundary region 

A slight modification to the variable-location and control-

volume definitions is made in the region of boundaries of the calcu-

lation domain. Such boundaries are positioned along lines passing through 

points where the velocity components normal to the boundaries are lo-

cated. The modification to the variable-location concept lies in speci-

fying grid nodes, 'corresponding to the above velocity locations, to be 

located at the boundaries as well. This modification, clearly observable 

in figure (3.2.1), results in a change in control-volume definitions. 

The control volumes corresponding to the near-boundary velocities, V in 

the case of N and S and W in the case of E and W boundaries, are now 

fifty per cent larger than their value within the rest of the flow-

field )  for a uniform grid disposition. Figure (3.2.4) illustrates the 

near-boundary control volumes. 



near - 
boundary + 
W - control 
volume 

near- boundary 
V- control volume 

4 42 

Fig. (3.2.4) The near-boundary modification 

to control volumes. 

3.2.5 The discretized uuation  

The manner in which the discretized forms of the equation 

set (2.2.12) is arrived at is as follows. Integrations of the partial 

differential equation governing the transport of each variable are 

performed, for each location of the variable, over the control volume 

that encloses this location. These integrations are performed after 

making presumptions about the manner in which the variable is distrib-

uted between grid nodes. All variables were presumed so to vary, 

linearly in the 77 - and -directions and in step-wise fashion along 
the -direction. The result of these operations is an algebraic 

equation for each grid location, representing the discretized form of 

the balance of the variable, over the control volume corresponding to 

that location. For a general dependent variable 0, this equation takes 
the form: 

cp 	- 	[ [ON  0p 	[ Op  + 0,31. 

• (32.1) 
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Here, C !S are appropriate to convective contributions, 

z)'s the diffusive, and S the source (and/or sink) 

contributions to the balance of 0. 

The subscripts are associated with pointson the grid system 

and superscripts to the co-ordinate directions for which the coefficient 

is appropriate. 

Before proceeding to define the terms of equation (3.2.1), 

attention is drawn to the manner of discretization of the convective 

terms in the 17- and 4-directions. In this Thesis, two approaches, 

leading essentially to the same results, have been successfully used. 

The problem lies in calculating the value of a variable at the 

face of a control volume,that is convected across that face. For example, 

considering figure (3.2.5), it is required to determine the 

—1 

	0E Ow 6 	yip 	w 
e 0  

lw 	le 

Fig.(3.2.5) 

value of cb that is convected across face w by the mass-velocity G 4  NV • 

Simple averaging schemes often lead to severe problems of convergence, 

often delaying it or even causing divergence of calculation procedures 

for convective flows (e.g. Buiggraf [8] ). Several authors (e.g. Gosman 

et. al. [24] , Spalding [58] ) have proposed remedial measures. 

One of these measures consists of using forward or backward 

differencing for the convective term along any given direction depending 

upon whether the local convective flux is positive (i.e. forward) or 

negative (i.e. backward). This is expressed algebraically as: 

ow  = 2  [ 	[ GiuGcv 
ji 4 op  1 G, 	Gt4,4 	

(3.2 .2 ) 
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where, 	the GA represent the 4'-direction mass'-valocities 

at the W-location. 

Thus, the value of 0 at w is e5 or 93 depending upon whether & is 

positive or nagative. The upwind-differencing practice was adopted with 

the SIVA scheme. 

A second, hybrid method of discretizing the convective terms 

in equation (2.2.12), was used with the SIMPLE algorithm. Designated as 

the high-lateral-flux modification, its application to two-dimensional 

flows is discussed in detail in the book by Patankar and Spalding [44] . 

This method, consisting of a modification of the coefficients of the 

discretized equation, and called the high-lateral-flux modification, is 

described below. 

The coefficients of equation (3.2.1) are now defined, with 

reference to figure (3.2.6). 

6.4w 	She  

Fig.(3.2.6) Grid nomenclature for discretization 
procedure. 

• C 	(4u ) 	ATI 
P,U 	 P,U 	P,U 	P,U 

, (a) 



where, and S is represent the widths of control-

volume faces and internodal distances respectively, 

j and j stand for locations (e, W) and 
(O, .6) respectively, 

Sgi  is the integrated form of the 

(and/or sink) of 0 

and source 

one obtains: On rearranging the terms of equation (3.2.1), 
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It is possible for the convective contribution C of the co-

efficient A' to become large on occasion, resulting in the coefficient 

becoming negative and causing physically implausible results when 

equation (3.2.4) solved with such coefficients. The hybrid scheme 

mentioned above, is introduced to overcome this possibility. It con-

sists of modifying all coefficients of the form DJ  as follows: 

ii 	- 1 	j 	 ( 3.2.6) Di 	2 	2 	D 	2 J 

where, /a/ signifies that the modulus ofais under consideration. The 

effect of the above modification upon the calculation procedure is simi-

lar to that of relation (2.2.2). 

3.3. 	The computational algorithm 

The purpose of a computational algorithm here is to solve 

equations of the form (3.2.4) for all the f), LI, V, W and 0 

simultaneously, at the downstream station. Furthermore, since the 

equations are non-linear, the coefficients 	being functions of the 

dependent variables themselves, the algorithm must provide effective 

means of computing these coefficients. Having completed the solutions 

at the downstream (D) station, a forward step in the 	direction is to 

be taken and the procedure repeated. It is the repetition of this pro- 

cess along the positive- 	direction that allows the algorithm to be 

termed the marching-integration technique. Two such techniques are de-

scribed here. 

3.3.1 	SIVA scheme  

The SIVA scheme is essentially an iterative one. The central 

idea of this scheme may be described thus: If the pressure-field were 

known, the momentum equations would be uncoupled and could be solved 

individually using some scheme for solving algebraic equations. Further-

more, the velocity-field obtained in this manner would satisfy the con-

tinuity equation everywhere. Therefore, in the SIVA procedure, since 

the pressures are not known in advance, guessed or estimated values of 

pressures are used to obtain a first estimate of the velocity-field; 
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thereafter this being is used to obtain a new pressure field, that would 

bring the velocity-field into conformity with the continuity equation. 

The iterative repetition of this process until the continuity and momen-

ta are deemed to be satisfied, according to pre-determined critaria, 

concludes the calculation at one station. A forward step is taken and 

procedure repeated. 

During each iterative cycle at a given station, the algebraic 

discretised equations are rendered linear by maintaining constant the 

coefficients Ai and the source term Sp 0 . Furthermore, in the SIVA 
scheme, the grid is swept in such a fashion that point-by-point sol-

utions are obtained for each variable by the use of a Gauss-Siedel pro-

cedure. At each point, a cluster of five variables is simultaneously 

adjusted (hence the name SIVA), to allow the satisfaction of five al-

gebraic balance equations. With reference to figure (3.2.6), these 

variables are: by Vti V4 , We 	and W. The adjustment is affected 

through algebraic manipulations of five equations of the form (3.2.1). 

The simultaneity is introduced to take additional account of the strong 

interlinkages between the continuity equation and the momentum equations 

along the 77 and 4 directions. Details of the algebra associated with 
the SIVA procedure are described by Caretto et. al. [9] . 

3.3.2 	SIMPLE scheme 

The SIMPLE scheme, while performing essentially the same fund-

tion, departs from SIVA in several important respects. Central to this 

scheme is the idea of seeking a non-iterative marching integration pro-

cedure that takes full advantage of the boundary-layer character of the 

flow-field. To this end, in this scheme as in SIVA, a guessed field of 

pressures is used to arrive at a first approximation to the velocity-

field. It differs from SIVA, however, in the following respects: 

a) The continuity relation is used to arrive at 

corrections to the guessed pressure-field. 
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b) The velocity-field is corrected simultaneously 

so as to satisfy approximate algebraic forms of 

the momentum equations. 

The coefficients Ai  are evaluated from values 

of variables prevailing at the upstream station. 

Thus the boundary-layer character of the problem, 

is invoked to linearise the discretized equations. 

d) The source term Sp is linearised by using partly 

upstream and partly downstream values of 95 . The 

details of this linearisation are provided in 

Appendix A3. 

e) The linearised algebraic equations are solved thus: 

two sweeps, one in the 	and one in the 4-direction, 
of the standard tri-diagonal matric algorithm (TDMA) 

are employed. This involves, for equation (3.2.4), 

in 0 and 0 being presumed constant during the 
17-direction sweep, and 0,4  and Os  presumed constant 
for the 4-direction sweep. 

The following algebraic manipulations illustrate the application of 

SIMPLE to the solution of confined flows in ducts of axially-varying 

area. 

1) First the discretized froms of the continuity and 

momentum equations are expressed as follows: 

continuity  

fGe4  - G,04  67i, A 	- c-r,77  6  6  

= 	71 	 77 6 64 , (3.3.1) 
13u 	 P 'P P 
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Momentum 

t -direction 

a/5 2 
U p  = E 	Ut• 	S 	

+ D uu 
P DE 

17 -direction 

,,
P  
v 	1)P 

v C 

VP  = E Ai Vi 	+ 	+ 	i P P 
i --,  E,W,N,S 

-direction  

(3.3.2) 

(3.3.3) 

IA/P 	E A W  W j 	

▪ 	

5 
P 	

Dwp  Pp  - Pwl (3.3. 4) 
L.= E,W,N,S 

Here, 	represents the mass velocity along direction-,/ 

at location i . For example: 

'77 • = (PV), - (i-w[y, 	,,,d YN-Y5)72 
7 	- (3.3.5) dZ -11,6  

477 	and 64 	represent the upstream values of 

these quantities. 

S95 	represents the source (and/or sink) of each 95 

excluding the pressure-gradient term. 

0 
A • 	denotes coefficients of the form : 

At• 	At• 

  

(3.3.6) 

(3.3.7) 

E Afi 
and, 	l = E,W,N,S, 

DU - 	671p  464'e  

D
v 	— 	■ap• 

DP — .e!■ LI 77p  
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a,6 2) Assuming for the moment that (-) is known, and equation 61 
(3.3.2) has been solved to obtain the downstream values 

of U , the first approximations to V and Ware determined 

from: 

v 	 Ai V 	S p
y 
	DP P; 	, (33.8 ) 

= E,W,N,S 

and 
w 

Ai  Wi  
L = E,W,N,S 

s w 	Dpw 	151:‘,1 	( 3.3.9) 

where the 'starred' values represent velocities correspon-

ding to the guessed pressure-field, p . These starred 

values will not, in general, satisfy the continuity equation 

(3.3.1), but will give rise to a net mass source at F), 

i.e. Th, defined by: 

'67 = 	G17*  - G774  a 44 p 	G4*- G 44  j,6, 47p  
to 

	

+ Gp  L7ip  4 4p 	Gp,,u /377p:ij  A CPU 	• (3.3.10) 

3) It is required now to obtain corrections to the velocities 

and pressures so as to reduce this mass source to zero. To 

this end, the pressure-field is expressed as: 

	

p = 1--)* P 
	 (3.3.11) 

/ 
where p represents the correction to be applied. The 
corresponding corrections to velocities are: 

Vp  = Vp  + Dp  

V/P  = 
	W 	

) (a) I 
(3.3.12) 

* 	v 

W 	p  

	

p  ÷ D  i-  pp,  _ hw  1 	. (b)  

It is emphasised here that in arriving at these velocity 

corrections, terms of the form: 

V W 	--* 

L= E,W,N,S 	 L.- E,W,N,S 

have been neglected, thus introducing further linearisations 
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in the procedure. The inaccuracies thus introduced are more 

than compensated for by the savings in computational effort, 

for when the correct solution has been obtained, the con-

tributuion of such terms is, in any case, zero. 

The substitution of equations (3.3.12 a) and (3.3.12 b) 

into equation (3.3.10), results in an equation, for press-

ure-correction of the form: 

Pi  A. h./  SP 	 (3.3.13) Pp r"--  
Emf,N,S 

where the /VA involve 4,3 , DA and other geometric quan-
tities appearing in equation (3.3.10), and the mass source, 

P 
Tnp, has been incorporated into SPA . It is from solutions 
to this equation, that corrected values of pressures and 

velocities V and W are arrived at. 

4) The foregoing steps were based on the assumptions that 

(P-12) was known and that equation (3.3.2) could be solved 

for 61:6. The procedure adopted for calculating (b/5) and 

the L6is as follows: 

• 	A first estimate of Ligi is obtained by using a guessed value 

of pressure-gradient, 	4') in Cal'  at  , 
u # 	u 	* 7 

U 	= 	 Ai 	+ 	Sp 	Dpi 'a-"Iri 	• (3.3.14) 
E,W,N,S 

• This preliminary velocity field will imply a total mass-

flow rate within the duct given by 

95'?* 	 ?U*  AVp 	 (3.3.15) 
all P 

• The difference between the true mass-flow rate rh and this 

value is used to arrive at corrections to the pressure-

gradient. In order to do this, the following definitions 
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are made: 

and, 

743* 	aj5' 

UP 	UP + Du  P 

1 ) (a ) (3.3.16) 

. (b) 

Since it is required that: 

PUP  13:17p 	p 	 ( 3.3.17) 

all P 
the following relation is obtained by substituting equation 

(3.3.16 b) into (3,3.17): 

afS' 
	 ,r17  - 	pu p  A7i"p  

 

• (3.3.18) E p Du  L77 114 P 	P 
P 

This provides the necessary correction to pressure-gradient 

and consequently to the velocity-field U . 

5) Once, the corrected velocity field has been obtained, sol-

utions to the equation (3.2.4) for any other dependent vari-

able cb , are obtained in a straight-forward manner. 

Steps 1) to 5) complete the operations at a given downstream 

station. A forward step is then taken and the process repeated, until 

the region of interest within the ducts, is covered. 

3.4 	Incorporation of auxiliary information  

3.4.1 Initial conditions 

Initial conditions of all variables can be supplied to the calcu-

lation procedure in a simple manner. For example, a distribtuion of ex-

perimentally-determined velocities at the inlet to a duct may be supplied 

as a function of grid position. So also, may the static-pressure and 

temperature distributions. In fact, the choice of grid dispositions at 

the initial station is sometimes dictated by the necessity of accurately 

representing known distributions of velocity and/or temperature. 
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3.4.2 	Boundary conditions  

An important feature of the calculation procedure is the ease 

with which hydrodynamic boundary conditions can be applied. When solving 

for the starred velocity-field, the actual boundary conditions for vel-

ocities are expected to be close to their true values. Thus, corrections 

are not required to be made to boundary velocities. Consequently, the 

gradients of pi normal to a boundary must be zero. In addition to imper-

vious wall boundaries, boundaries of the calculation domain might at 

times be planes of symmetry. For example, advantage might be taken of 

symmetry in duct geometry and/or inlet conditions to perform calculations 

for a quadrant of a rectangular-sectioned duct. In this event, at the two 

symmetry-plane boundaries, the velocity component normal to it as well as 

the gradients of all other quantities normal to it are set to zero. Some-

times the gradient of a quantity rather than its value (like heat flux), 

may be required to be specified at a boundary. On such occasions, the 

discretized equation for the control volumes adjacent to such boundaries 

are adjusted to accommodate the supplied boundary flux. Examples of the 

boundary-condition incorporation are provided in Chapters 7 and 8. 

3.4.3 	Other auxiliary information  

In the present instance, uniform-property flows only, are con-

sidered and hence, density and laminar viscosity are supplied as constant 

values. The diffusion coefficient in turbulent flow is determined, as des-

cribed in Chapter 4, from a turbulence model. The sources and sinks of all 

variables are computed at each grid node, and represent an average of 

values prevailing over the control volume surrounding the node. Appen-

dix A.1 provides a list of the source/sink terms in tabulated form. 

3.5 	Remarks on the numerical procedure  

The numerical calculation procedure described above has been em-

bodied into computer program, written in the FORTRAN-IV language. 

Details.of the use (on a CDC machine) of this computer 
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program are presented in Appendix A3. 

3.5.1 Accuracy of procedure  

Analytical exact solutions were, in general, not available to 

confirm the accuracy of the numerical results obtained by the calcu-

lation procedure. Assessments of accuracy of predictions, in each of the 

eases presented in this Thesis, was therefore made in the following 

manner: Tests were conducted to determine the dependency of solutions 

upon grid size. To this end, solutions were obtained with successive 

refinements of grid-size, i.e. reductions in the spacing between grid 

nodes in the 77- and 	-directions, as well as the forward step size 

Qt . When solutions were observed, in respect of several details, to be 

unaffected by further refinements, they were presumed to be grid-in-

dependent. The predictions reported in Part III of this Thesis, were 

obtained with grids corresponding to this situation. Figures (3.5.1) 

and (3.5.2) provide illustrations of grid-dependency tests for one lami-

nar and one turbulent flow-situation respectively. Details of grids and 

forward step-sizes used for the predictions reported in this Thesis are 

provided in Appendix A3. 

3.5.2 Stability 

The linearisation procedures described in Section 3.3, do not 

permit the SIMPLE scheme to be unconditionally stable. However, detailed 

tests to trace all the factors influencing stability and to devise re-

medial measures to improve the same, were not found to be necessary. 

The most influential factor affecting stability, was found to be the 

size of the forward step, Zlt . By restricting the maximum step size to 

values presented in Appendix A3, stable solutions were, in all cases 

reported in this Thesis, obtained without recourse to iterations or 

other special measures. 
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Fig.(3.5.1) Effect of grid size on predictions. Laminar flow in a 
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3.5.3 	Convergence 

Convergence of the SIMPLE solution procedure was monotonic for 

all the situations considered in this Thesis. A minimum number of one 

pair of TDMA sweeps at each calculation plane, one each in the 71- and 

- directions, was deemed sufficient,for each dependent variable with 

the exception of pressure correction, to obtain convergent solutions. 

Three pairs of TDMA sweeps were found to be necessary for the pressure-

correction equation. Calculations of residuals of the algebraic equations 

made at frequent intervals, enabled a check to be made during the calcu-

lation procedure, of convergence rates. Such checks invariably indi-

cated monotonic and speedy convergence. 

The errors introduced by the various linearisations into the 

solutions are similar to the truncation errors in any finite-difference 

scheme and hence could be reduced to given acceptable levels by reduc-

tions in the size of the forward steps. 

3.6 	Concluding remarks  

Two numerical procedures for the solution of three-dimensional 

boundary-layer equations have been outlined. One of them, a semi-im-

plicit scheme, as applied to confined flows, is described in some de-

tails. Remarks are made on the stability and accuracy of this procedure 

and the accuracy of the solutions obtained by its use. Predictions of 

several laminar flow situations made by this procedure are reported in 

Chapter 7. 
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CHAPTER 4 

MATHEMATICAL MODELLING OF TURBULENCE  

4.1 	Introduction  

In this chapter the mathematical nature of the problem of model-

ling turbulence in three-dimensional boundary-layer flows, is first out-

lined. Two independent approaches to the solution of this problem are 

then described. The similarity between the two approaches lies in the 

use of the eddy- or turbulent-viscosity concept. In this concept, the 

turbulent stresses are represented by a turbulent viscosity and an ef-

fective mean-velocity gradient. The differences between the two ap-

proaches are fundamental. In the first, a set of simplifying assumptions, 

similar to the mixing-length hypothesis of two-dimensional flows, is 

used to obtain algebraic expressions for the turbulent viscosity; this 

quantity being composed of an empirically-derived mixing-length and an 

effective velocity gradient. In the second, more complex, approach a 

pair of partial differential equations that govern the transport of 

turbulence quantities, is solved. From the resulting distributions of 

these quantities, the turbulent viscosity is calculated. 

The particular attention paid to turbulence in the immediate 

vicinity of wall boundaries, is also described in this chapter. The 

complex nature of this problem is not sought to be modelled; however, 

it is presumed that in the region close to a wall, the profiles of the 

velocity components parallel to the wall, obey the well-known semi-log-

arithmic law. The computational economy achieved by such a presumption 

is emphasised. 

Some mathematical consequences of the above-mentioned models of 

turbulence are described in Appendix A3. The prediction of turbulent 

flows, by the use of these models in conjunction with the numerical sol-

ution procedure described in Chapter 3, is reported in Chapter 8. 
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4.2 	The mathematical problem 

It is first necessary, in defining the mathematical problem, to 

seek expressions for the turbulent transport of momentum and other scal-

ar fluid properties. Following conventional practice (e.g. Hinze [30] ), 

this is achieved as follows: The instantaneous value of any scalar fluid 

property, 95 , may be expressed as the sum of a time-averaged or macro-

scale component and a fluctuating or micro-scale component, thus: 

= F/5 + 0 1 
	

, (4.2.1) 

It is emphasised here that 0 may represent each of the three momenta 
per unit mass, LIJ. , static pressure ID , or any other transported fluid 

property. Considering steady flows (in the macro-scale sense only), when 

the relationship (4.2.1) is substituted into the general form of the 

transport equation (2.2.3), and an average over large times is taken, 

the following equation results: 

a(pDi Fi)  
axi  

,60 	 a( course) 
DX- L. 

, (4.2.2) 

where, the overbars represent time-averaged values and symbols retain 

their earlier meaning. In what follows, the overbars over the time-

averaged values of velocities and 0 are removed and the fluctuating 
components of the velocities are represented by lower-case letters. 

The mathematical nature of the the so-called "closure" problem 

is to cast equation (4.2.2) into a form that has as dependent variable, 

the time-averaged property, 95 ; i.e. a functional relationship of the 

form 

- puvi 	= 	ff ut . , .03 	 , (4.2.3) 

is sought. The physical nature of the problem is to devise such a re-

lationship with the aid of available experimental information on the 

effects of turbulence upon macro-scale motion, and vice versa. 
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The subject of turbulence is replete with attempts to 'close' 

the mathematical problem posed above for a variety of flow situations. 

Some of these attempts have proved successful for simple situations, 

whilst proving inadequate under more complex conditions. Others, have 

withstood, with some measure of success, the tests of generality and 

versatility (e.g. Rodi [49] ). Albeit, there exist tested models of 

• 	 turbulence for two-dimensional flow situations. The present attempt is 

to devise a model for three-dimensional boundary-flows and to test its 

validity. Thus, an expression of the form (4.2.3) is sought; the nature 

of the expression being such as to enable it to be simply incorporated 

into the computational scheme. It is to this end, that, in both models 

of turbulence described here, the so-called eddy-viscosity hypothesis is 

retained. 

4.3 	A simple model of turbulence  

In order to illustrate the derivation of a simple turbulence 

model, consideration is given to the turbulent transport of momentum 

per unit mass. Modelling of the transport of other scalar fluid proper-

ties, is then merely stated. For the transport of momentum per unit mass, 

the quantities 95 and 0' in expression (4.2.3) are replaced respect-
ively by Uj and (Li . The problem then resolves itself into seeking 

an expression for the turbulent, or Reynolds stresses, - puiul. Such 

an expression, similar to that proposed by Boussinesq (see Hinze [30] ), 

relates the turbulent stresses to the mean velocity gradient, via a 

• 
	 proportionality factor, as follows: 

_ p u • U 	f' D 	
?LI/ 	2 A,S 

— 5 LI j 	t{ zi 	DX1. , (4.3.1) 

where: 
	

is the turbulence energy (a ZUi 

So 	the Kronecker delta function, 

and )) 	, the proportional factor, called 

the eddy- or turbulent viscosity, 

is used here. 
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The purpose of the simple turbulence model is to devise an algebraic 

expression for 9t  , based upon the geometric and flow characteristics 

of the situations under consideration. 

The algebraic expression for turbulent viscosity is arrived at 

as follows: it is hypothesised that this quantity is related to a length 

scale of turbulence and an effective mean-velocity gradient thus: 

r  i  Du, 
i 	Dxj. .., ax, Dx," 	, (4.3.2) 

where, 

the turbulence length scale, 

and , 	the quantities in square brackets 

are summed over the three directions 

for each component Jr . 

The above expression can be seen to reduce to the well-known Prandtl's 

mixing-length formula, for two-dimensional boundary-layer flows, and 

thus may be considered to be a generalisation of the same. 

In attempting to 'close' the problem via the effective viscosity 

hypothesis, the length scale ,e has been introduced as a further un-

known quantity. The closure would thus be complete were ,t to be 

specified in some manner. Fortunately, past experience and experimental 

evidence suggest methods of doing so for simple confined flows. For 

two-dimensional flows the practice consists of relating the length scale 

to a "mixing-length" which in turn is typical of a given geometric con-

figuration. For example, when turbulent flow within a circular pipe has 

reached its hydrodynamically fully-developed state, the distribution 

of the length scale is well-known (e.g. Schlichting [67]). 

For three-dimensional flows within ducts, the length scale dis-

tribution can be cast in the form of simple algebraic expressions re-

lated to the geometric configuration of the ducts. One such expression, 

due to Buleev [7] 	, relates the length scale at each point in the 

L 
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cross-section of a duct, to the distance of the point from walls in its 

neighbourhood, thus: 

C 	ci_12 
S (4.3.3) 

where 	Ci 	a constant (here taken as 0.44), 

distance of a point from a wall 

along direction _12, 

and D = 	the domain of integration, i.e. the 

cross-section of the duct. 

For circular pipes, the length scale distribution obtained from the 

formula (4.3.3) is remarkably close to that obtained by Nikuradse (see 

Schlichting [67]) from measurements of velocity profiles (Fig.(4.3.1)). 
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Fig.(4.3.1) Length scale distribution in a circular pipe. 

The length scale distribution in rectangular-sectioned ducts, obtained 
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as follows: 

= 
	 2 ca  gi ye zi ze  

fyz iy2  4z2  	y z .62  ,z2  y2 ay 2,z2 	y
2

z
1' 

72 

(4.3.4) 

• 
where y , 	distances of apoint F)  

1 2 from one pair of walls parallel 

to the 2'-direction, 

and 	Z1,72  5.-  distances of P from the pair of 

walls prallel to the 3/-direction. 

For a duct of aspect ratio 2 : 1, expression (4.3.4) results in a length 

scale distribtuion represented in figure (4.3.2). 

1.0 
d 

Fig.(4.3.2) Length scale distribution in a rectangular- 
sectioned duct of ras = 2 : 1. 

In order to extend the application of expression (4.3.4) to flows 

confined in ducts of axially-varying, cross-sectional area, four ad-

ditional parameters are introduced into it. This results in an expression 

of the form: 

1-( y,z 	E 	ci(
N 
	 (4.3.5) 
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where, the o('S represent slopes of the four walls E, W, N and S. 

The set of expressions (4.3.1) to (4.3.5) taken together re-

present the 'closure' of the problem posed in Section 4.2. The impli-

cations of thus closing the problem upon the partial differential 

equations governing the transport of momentum, are detailed in Appen-

dix A2. It will be seen from this that no change occurs in the form of 

• these equations, thus enhancing the computational efficiency while solv-

ing them. 

It has long been recognised that complex, three-dimensional, 

transient turbulence phenomena occur in the vicinity of wall boundaries 

to fluid flow. The turbulence model described above does not claim to 

model these phenomena. Furthermore, the needs of economy do not permit 

realistic numerical computations to be performed, in the close proximity 

of walls from the laminar sublayer to the fully-turbulent region of flows. 

Consequently, special practices are adopted in modelling the turbulence 

that prevails in such regions. As this treatment has features essential 

to the complex model of turbulence described next, it is described along 

with other common features, in the latter part of this chapter. 

4.4 	A two-equation turbulence model  

Research into the mathematical modelling of turbulence has, in 

recent years, led to the use of multi-equation turbulence models. By this 

is meant the practice of solving partial differential equations governing 

the transport of turbulence quantities whose distributions provide suf-

ficient detailed information to 'close' the problem posed in Section 4.2, 

with realism. Such equations have been derived by several authors (e.g. 

Harlow and Nakayama [27] ); the use of these and similar equations for 

predicting a variety of turbulent flows has been reviewed by Launder and 

Spalding [34] , Harlow [26] and others. 

Turbulence models which require the solution of two transport 

equations have been successfully applied to two-dimensional flow situ-

ations (e.g. Rodi [/9] ). The necessity for two equations is dictated 

largely by the need for describing both the intensity and the scale of 
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turbulence, in any flow situations. Several two-equation models for pre-

dicting confined flow situations have been described by Launder and 

Spalding [33] 	. One such model, in which transport equations for tur- 

bulence energy k , and its rate of dissipation E. are solved,is used 

in a form applicable to three-dimensional boundary-layer flows, in the 

present work. 

• The quantity k is defined as follows: 

k -t U. U- ? 	L , (4.4.1) 

and E is its rate of dissipation. The turbulent viscosity hypothesis 
is retained in this model. The turbulent stresses are related to the 

mean velocity gradient, as before, by the expression (4.3.1), and the 

expression for turbulent viscosity used is an extension of the Prandtl-

Kolmogorov formula (see Rodi [49] ): 

/Lt = PCA 
k 2 	

, (4.4.1) 

where C D  is a constant. The length scale of turbulence in this model, 
is obtained from: 

= 
, (4.4.2) 

The partial differential equations governing the transport of k 
and E in three-dimensional boundary-layer flows are represented as 

follows*: 

a(puk)  t  a(P Vk) 	wh)  = G - a 	D 
ax 	 'ay 	 y 	s  

▪ az A Dz 	I (4.4.3) 

*These equations represent an extension of those reported by Launder and 

Spalding [33] 	, based upon a rationale similar to that used in de- 

riving the equations of Chapter 2. 
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a(PUE) 	a(PVE) 	?(PWE) 	C GE 	C E
z 

ax 	ay 	az 	 - "k7 	2  k 

. a  ay  E 	+ 
aZ E 

?e- 
( 4 .4 .4 ) 

.4 
  

where 
	

G 
	

generation of turbulence energy, 

diffusion coefficients of k and 

. respectively, 

and CI' C2 a- are constants of the turbulence 

model. 

Equations (4.4.3) and (4.4.4) may be expressed in quasi-orthogonal co-

ordinates in a manner identical to that described in Chapter 2. The 

final form of the equations used in this work is tabulated in Appen-

dix Al, along with the expression used for G as well as the constants 

mentioned in this chapter. 

4.5 	The effective viscosity  

The turbulent viscosity, determined from either of the two 

models described above, is then used to determined the overall or 

'effective' viscosity, from: 

= /4  +PI 	 , ( 4 . 5 .1) 

The effective exchange coefficient for the diffusion of all other scalar 

fluid properties 0 , is written simply as: 

r = 14 	itt 
err, 0 

ft:0 	Pr t , 95  

, (4.5 . 2 ) 

where, Pr 	and Fr 	are the laminar and turbulent Prandtl/Schmidt 
,0 	t,0 
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numbers respectively, for the diffusion of fluid property, 0 . Values 

of Prt,q5 	used in this Thesis and tabulated below, are those developed 

and used in recent works*. 

No ch Pr 
t , 93 

1 U 1 . 0 
2 v 1 . 0 
3 VY 1 . 0 
4 k 1 . 0 
5 a 1 . 3 

6 T 0.9 

Table (4.5.1) 

The effective viscosity now replaces the fluid viscosity and the effec-

tive transport coefficient for 0 , the normal transport coefficient, 

in the appropriate transport equation. 

4.6 	The near-wall region 

Although turbulent flow in the immediate vicinity of walls is 

complicated by a large number of factors, it is generally recognised 

that sufficiently far away from the wall, i.e. in the fully-turbulent 

region, the velocity profile exhibits similar characteristics under a 

number of conditions. This "universal" feature has been used to cast 

the velocity profile into the well-known, semi-logarithmic 'law': 

- U 
th [E cc/Vitti 

UZ  

with: 	 the velocity component parallel 

to the wall; 

velocity of the wall (i.e. (U-Uw ) 

denotes the relative velocity); 

2 (4.6.1) 

*See Launder & Spalding [33] . 
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is the shear velocity, 

defined below; 

are log-law constants 

(here, val'Ies of 0.42 and 9.0 

respectively, have been used); 

8 	 is the normal distance from 

the wall; 

and P. ft 	are the fluid density and 

laminar viscosity, respectively. 

It is this relationship that is applied in the present work as a bound-

ary condition for velocity components parallel to and adjacent to wall 

boundaries of the flow (Fig. (4.6.1)). The difference between the two 

models, in the application of equation (4.6.1), lies in the manner in 

which U is calculated. 

Fig.(4.6.1) Representation of velocity profiles in the 
neighbourhood of walls. 
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In the simple turbulence model, the definition 

U , (4.6.2) 

where Z.. 	denotes the wall 

station, equation (4.6.1) is 

boundary until a convergent 

tational details of this and 

Appendix A3. 

shear stress, is used. At each axial 

used in an iterative manner for each wall 

value of LI is obtained. The compu-

the following practice are provided in 

In the two-equation turbulence model LIr  is defined as fol- 

lows: 

C 4  k °  
, (4.6.3) 

where k represents the value of turbulence energy in the near-wall 

region. Account is taken of the behaviour of k and g in the near-wall region, 
in an empirical manner. The diffusion of k near walls is known to be small 

(Rodi [49]) and is neglected,while full account is taken of the generation, 

dissipation and convection of k . The value of E is obtained from a lin-

ear-length-scale-near-walls presumption.The computational aspects of this 

treatment are described in Appendix A3. 

The above-mentioned practices complete the treatment of the near-wall 

region in modelling the turbulent transport of momentum. Figure (4.6.2) 

shows a graphical representation of equation (4.6.1) along with exper-

imental data. The data correspond to experimental measurements made on 

a flat plate with a shear-flow velocity profile (corresponding to case 

B, (Fig. 8.3.21) of Chapter 8). Equation (4.6.1) is seen to represent 

the data fairly well. 

The analyses of other variables with respect to their behaviour 

in the neighbourhood of walls, leads to the conclusion that relation-

ships similar to (4.6.1) may be devised. One such relationship used for 

a general variable, 0 , in the present work, is as follows: 

k 
Esur f//al 7L-  P0 , (4.6.4) 
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• 

• 

where: 0 	, represent the approriate 0-flux 

at the wall; 

and 
	

denotes a function relating the smooth- 

ness of the wall to the diffusion of 0 

through it ; the following functional 

of PO  was used in the present work 
(e.g. see Patankar and Spalding [44] ): 

1}  pro  -0.25 
P
AS 
	 — 9.24[ Pr°  Pr 	Pr 	 • (4.6.5) 

t,0 	t,CO 

0 
0 

0 

0 

0 

Ut SP 
14  

1 	1 	1 	1 	1 	1111 	I 	1 	1 	1 	1 	1 	1 	1 	1 2   
3 

10 
Fig.(4.6.2) Illustration of the semi - logarithmic law of the wall. 

U - Uw  
o Expt. 137 I 

Eq. (4.5.1) 



71 

4.7 	Summary and concluding remarks  

1) Two methods for the mathematical modelling of turbulence in 

three-dimensional boundary-layer flows have been described in this chap-

ter; one is a simple model akin to the mixing-length hypothesis of two-

dimensional flows. The other is a two-equation model, in which transport 

equations are solved for turbulence energy, k and its dissipation 

rate, E . 

2) The method of turbulence modelling adopted here is as follows: 

• The turbulent stresses, -ioa.tt-j  are related to time-averaged 

velocity gradients and an exchange coefficient, by analogy with the 

molecular viscosity concept. 

In both models described here, the concept of this exchange 

coefficient, i.e. turbulent viscosity /Lt  , is retained. However, 

the manner of arriving at it is different in each case. In the simple 

model, the turbulent viscosity is expressed in terms of an effective 

path length, i.e. length scale of turbulence, and an effective vel-

ocity gradient. In the complex model, the turbulent viscosity is 

arrived at from values of kinetic energy and its rate of dissipation, 

obtained by solving equations governing their transport. 

3) Adopted in the above manner, turbulence modelling leads to 

partial differential equations governing time-averaged fluid motion 

identical in form to equations (2.1.7) to (2.1.10) for laminar flows, 

with the exception that the laminar diffusion coefficient is replaced 

by an effective diffusion coefficient. 

4) The above modelling would be inappropriate to regions adjacent 

to wall boundaries of the flow. Thus special attention is paid to such 

regions where steep gradients of fluid properties generally occur. Wall 

flux relationships are devised which use well-authenticated experimental 

information as a basis. 
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5) Some of the mathematical consequences of the turbulent-viscosity 

assumption are derived in Appendix A2, and computational details in 

Appendix A3. 

6) The predictions of fully-turbulent flows in ducts and diffusers 

made with the turbulent models are described in Chapter 8, where an 

s 	assessment of their relative capability is also made. 
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PART II 

Experimental Program 
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CHAPTER 5 

EXPERIMENTAL INVESTIGATION OF TURBULENT  

FLOWS IN RECTANGULAR-SECTIONED DIFFUSERS  

	

5.1 	Introduction  

In this chapter the objectives of, and the motivation for the 

program of experimental investigation are first outlined. The criteria 

which helped to determine the choice of the geometric configuration 

adopted for the program, as well as the measurement devices used, are 

enumerated. The design and fabrication of elements of the rig, includ-

ing details of its permanent features as well as improvements to the 

whole assembly, are then reported. Commissioning, testing and routine 

running of the rig presented no serious difficulties and are described 

only in brief. The measuring devices chosen were simple; however, the 

manufacture of the probes used had some novel and interesting features. 

Thus, these are described in some detail.No special data-logging or 

data-reduction devices were adopted. The experimental data are reduced 

to convenient non-dimensional form and are presented mainly as tables 

in Appendix A4. In conclusion, an assessment is provided of the quality 

of the data obtained. 

	

5.2 	Motivation and general objectives  

The paucity of experimental data on confined, three-dimensional 

boundary-layer flows pin-pointed the need for information to test the 

validity of the prediction procedure described in Part I of this Thesis. 

Furthermore, this information was required in a configuration which 
r 

possessed all the essential physical features of situations occurpg 

in engineering practice, with little of the esential geometric com-

plexity so common in real lift. This would, it was felt, then enable 

both the numerical calculating procedure as well as the turbulence model 

incorporated in it, to be adequately tested. Breadth, rather than depth, 

it was decided, would be the keynote of the investigation.The short 

time available placed a natural restriction upon this motivation. 
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The primary object of the present investigation was thus to ob-

tain experimental data for a range of geometric and hydrodynamic para-

meters. Three secondary objectives at this stage were: first, testing 

of the efficacy of the turbulence model and thereby suggesting future 

lines of development. Second, provision of useful data in an area of 

engineering interest, preferably and within the knowledge of the author, 

hitherto unexplored. Third, testing the mathematical assumptions made 

in deriving the differential equations (2.1.7) to (2.1.10). 

Several tertiary objectives of an educative nature, suggested 

themselves during the course of the investigation. Gaining familiarity 

with measurement techniques and developing a feel for the care required 

in obtaining reliable data, proved imwensely satisfying to the author. 

5.2.1 	Specific objectives  

Taking the above-mentioned considerations into account, it was 

decided that measurements of pressure and velocity fields would be made 

in straight diffusers of rectangular cross-sections. Further, it was 

decided for convenience that attention was to be restricted to the 

situation where two walls were retained parallel and the other two used 

in constructing diffusers of varying included angles. This is the situ-

ation commonly referred to in the literature as "two-dimensional" dif-

fusers. However, in order to ensure three-dimensionality of the flow-

field, the aspect ratio of the test-section at inlet was chosen to be 

unity. 

Measurements were to be made with simple equipment; static and 

total-head probes were considered sufficient for this purpose and 

standard types of micro-manometers were to be used. The various elements 

of the rig were designed in accordance with these objectives. 

5.3 	Design and fabrication of equipment  

Figures (5.3.1) and (5.3.2) show the complete assembly of the 

rig from different angles. In the former, only those elements of the 

assembly which do not constitute standard laboratory equipment, are 
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Fig.(5.3.1) Assembled view of experimental rig. 
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Fig.(5.3.2) Experimental rig. 
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described in detail in the following sections. 

5.3.1 	The test section  

In order to keep the test-section to a compact size and yet pro-

vide information up to stations reasonably far downstream of the inlet, 

the cross-section at inlet was chosen to be 2 in. (50.8 mm) square, and 

the test-section itself 800 mm long. Thus, a length-to-diameter ratio of 

approximately sixteen was attainable and was considered sufficient to 

provide data on diffusers in the unstalled region, over a wide range of 

included angles. 

The side-walls of the test-section were manufactured from 12 mm 

thick Perspex sheets. This was done so as to enable visual checks of 

various kinds to be performed. The roof and floor were machined from 

precision-rolled Aluminium sheets, also 12 mm thick. The manufacturer's 

specifications of both Perspex and Aluminium sheeting, indicated surface 

roughness elements and/or waviness factors of less than 0.01 %. The roof 

of the diffuser was accurately machined in four separate pieces such that, 

when finally in place, the gap between two neighbouring pieces allowed 

sliders of T-shaped cross-sections to fit snugly while permitting a 

smooth sliding motion. There were four such gaps accommodating sliders , 

as well as four circular holes accurately reamed and rendered burr-free 

on the roof of the diffuser. When not in use, these holes as well as 

similar ones on the sliders, were blocked with Perspex plugs machined 

to fit tightly. Measurements were made with probes that passed through 

similar plugs with holes appropriate to the probe size, drilled through 

their axes. Care was taken, by a lapping operation, to ensure a step-free 

smooth inner surface on the diffuser roof, whatever the nature of the plug 

used. The floor of the test-section had 13 holes, 0.25 mm in diameter, 

precision-drilled into the measuring surface at predetermined positions 

along the centreline. The spacing between these holes used to measure 

wall values of static pressure, was chosen such that more holes were 

placed in regions where a steep variation in pressure was anticipated 

than in regions where the variation was expected to be moderate. On the 

under side of the diffuser floor, these holes were connected to holes of 
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larger diameter into which were fitted brass tubing to form pressure 

pick-ups. 

The test-section was assembled with the roof and floor securely 

connected, by means of a number of flat-headed 4 mm screws, to an ad-

ditional pair of fixed side walls, also of Perspex as shown in Fig. 

(5.3.3). This was done, in each case, after the swivelling pair of side-

walls had been adjusted into position to achieve the desired included 

angle. Strips of double-sided sticky tape on the top and bottom edges 

of these side walls, permitted an adequate air-tight seal between the 

roof and floor to be maintained. The complete assembly, when in pos-

ition on the rig, was further clamped at two points along the diffuser 

axis to a pair of hollow Aluminium square-sections, to prevent sagging. 

Care was taken to ensure that when thus assembled, the sliders could be 

smoothly moved and clamped in any desired position. The clamps used 

were U-shaped and manufactured from 13 mm thick Aluminium sheeting. 

They served the dual purpose of holding the roof-sections together as 

well as enabling the sliders to be securely clamped and made immobile 

in any required position. In each instance, the test-section was checked 

and burrs or steps due to mis-alignments, carefully lapped away to en-

sure flat, smooth internal surfaces. Finally, flanges were screwed onto 

the external surfaces of the test-section, at inlet and outlet, to en-

able it to be connected to the contraction section and tail-end dif-

fuser respectively. 

The swivelling of the side walls was achieved through the use of 

a simple hinge arrangement as shown in Fig. (5.3.4). Dowel pins attached 

to fixed portions of the side walls, fitted into appropriately located 

holes in the roof-section at inlet. As seen in the figure, the side walls 

swivel about the axes of these dowel pins. The entrance section to the 

diffuser for all included angles is presumed to be the plane that in-

cludes these axes. Care was taken to smooth any rough edges caused by 

the swivelling action, with plastecene. 
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diffuser 
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Fig.(5.3.4) Details of arrangement for swivelling 
diffuser side walls. 

5.3.2 	Contraction and Bell-mouth sections  

The design of the contraction section was based upon information 

reported by Bradshaw and Pankhurst [ 6 J . It was recognised that pro-
visions for flow acceleration to yield uniform velocity distributions 

and the prevention of local flow reversals in the axial direction are, 

on occasion, opposing aims. It was decided in the present instance to 

overcome these difficulties by the use of a large contraction ratio 

(36 : 1) together with a reasonably smooth contour to the four walls of 

the contraction. Correspondingly, a symmetrical contraction, 300 mm 

square at its inlet end reduced to 50 mm square at its outlet end, over 

a length of 450 mm, was fabricated from sheet metal and treated with 

rust-proof paint. The internal surfaces were polished and plastecene 

used to smooth over any burrs, left over from welding, on the internal 
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corners. A flange was provided at each end. 

At the larger end, the flange was connected to a similar one on 

a straight connecting piece, also constructed of sheet metal, which 

housed the flow-straightening devices. These devices consisted of two 

20-mesh screens made of 28 swg copper wire and possessing an open-area 

ratio of 0.59, one at either end. Sandwiched between these two was a 

honey-comb section made of Aluminium foil. As described by Bradhurst 

and Pankhurst [ 63 , this system was expected to remove any flow ir-

regularities and enabled uniform flow to be obtained at inlet to the 

test-section. 

One end of the above-mentioned connecting-section was attached 

to a bell-mouth section to provide a smooth entry to the contraction 

section. Starting from 300 mm square at its outlet end, this bellmouth 

had sides flared out symmetrically to 500 mul square at its inlet end 

over a length of 200 mm. 

The bellmouth and contraction sections are shown in Figure 

(5.3.5). Also shown are connecting sections. Several were ducts of 

50 mm square cross-section and varying lengths fabricated of sheet metal. 

These were used to obtaining varying thicknesses of inlet boundary 

layers at the entrance to the test-section. The tail-end diffuser shown 

served as a connecting piece between the test-section and the permanent 

portions of the rig. 

From laboratory tests on set-ups similar to the bellmouth-con-

traction section assembly described above, it was observed that the level 

of turbulence at inlet to the test-section was uniformly low; it was 

estimated to be below 0.3 %. 

5.3.3 	Tail-end connecting sections  

The intake manifold of the blower, to which the test-section was 

to be attached, had a circular cross-section, 220 mm in diameter. Thus, 

connecting pieces were required to match the rectangular cross-sections 

at the tail-end of the test-section with the circular cross-section of 
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the intake manifold. This was achieved in two stages: first a sheet 

metal element was fabricated to fit the cross-section of the intake 

manifold on one end and ending in a 200 mm x 160 mm rectangular cross-

section on the other. Four other connecting pieces were fabricated, 

each on one end and on the other having rectangular sections to accom-

modate end-planes of the test-section corresponding to a limited range 

of included angles. 

Connections between the various elements of the rig was affected 

through flanges lined with rubber to ensure an adequate air seal, to 

reduce vibration transmission and to enable small adjustments to be 

made to the alignment of the rig. The flanges were secured with 9.5 mm 

bolts throughout. The assembly was mounted on a test bed fabricated 

from slotted angle-irons and mounted on castor wheels. This set-up per-

mitted ease of movement of the assembly when changes were to be affected 

in the geometric configuration of the test-section. It also served to 

reduce the transmission of machine vibration. Vibration was further 

damped through the use of a rubber bellows section between two portions 

of the intake manifold. 

5.4 	The traversing gear 

The T-sectioned sliders (Fig.(5.3.6)) with the probe holes had 

provisions for the mounting of the probe-traversing mechanism. This con-

sisted of a recess surrounding each probe hole, into which the base of 

the traversing mechanism could be securely screwed. The sliders them-

selves, were accurately machined from brass bar-stock. Particular care 

was taken to ensure that the probe holes were drilled and reamed such 

that their axes were exactly normal to the direction of sliding. The 

above-mentioned base of the traversing gear was also capable of being 

screwed on directly to the external surface of the roof of the test 

section, atfour points. 

The traversing mechanism itself, Figure (5.3.7) consisted of 

two Aluminium discs separated by and rigidly attached to which were 

three silver-steel rods 160 mm in length. These rods were located on a 

circle of 32 mm diameter and were 120°  apart. A platform supporting the 
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Fig.(5.3.7) Assembly showing details of probe-traversing gear. 
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probe was capable of sliding vertically along the rods. This platform 

consisted of two discs 38 mm in diameter, machined from Duralumin bar-

stock, separated by and attached to which were three hollow brass cyl-

inders 30 mm in length. These cylinders provided smooth sliding-fit 

guides for the steel rods and had their axes coincident with those of 

the latter. The probe-holder, made of brass, could be rotated about the 

vertical axis and secured at any orientation. The probe passed through 

a hole drilled along the axis of the probe-holder and could, in turn, 

be rigidly fixed to the probe-holder by a set-screw. The disc at the 

top end of the traversing mechanism, supported a 50 mm travel, Moore 

and Wright, precision micrometer. The stem of the micrometer was con-

nected to the top of the platform, through a journal bearing as shown in 

the figure. This arrangement enabled the platform to be raised or lowered 

accurately through the use of the micrometer screw, with the minimum of 

slip or backlash. To eliminate backlash altogether, traverses were, in 

all cases, made in one direction only. 

Fig.(5.3.6) T - sectioned slider. 

The disc at the bottom of the mechanism rested within a re-

cessed brass base mentioned earlier and acted as a support to the 

traversing gear assembly. The base itself, was threaded externally and 

when a corresponding cap was screwed on the assembly was held rigidly 

in the recess located on the base. A rubber 0-ring, placed between the 
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cap and the bottom disc, ensured an even pressure on the disc at all 

times. 

5.5 	Measuring devices  

Simplicity and ease of measurement were the over-riding criteria 

which decided the use of pitot probes in conjunction with hydrostatic 

micro-manometers for the measurement of static and total pressures 

throughout the test-section. 

The size of the cross-section of the test-section precluded the 

use of combined pitot-static probes which tended to be too large and 

hence caused unacceptable disturbances to the flow. Hence, small-bore 

probes were used to measure static and total pressures separately. Such 

probes of several sizes and shapes were constructed of fine-bore hypo-

dermic, stainless-steel tubing. After a series of tests both for pur-

poses of calibration and to determine their reliability, strength and 

ease of use, a set of probes was finally chosen to make the measurements 

reported in this Thesis. These are represented in Figure (5.5.1). The 

set A were used for routine measurements, B for measurements across the 

inlet cross-section and C for qualitative observations of flow pattern. 

Trials indicated that simple cold bending could produce right-

angled bends in hypodermic tubing with great accuracy and without caus-

ing weakening or pinching of the tubes. Composite probes were construc-

ted by attaching small O.D. tubing to the bores of large diameter tubes 

to produce the requisite length and shape. The connexion was in all cases 

cemented with Araldite; approximately 12 hours were allowed for, for the 

glue to harden in an oven heated to a low temperature. When tested these 

joints proved both air-tight and strong. This done, the connexions were 

smoothed over externally with fine-grained sandpaper and polished to 

give a smooth transition in diameters. In each case, a pair of probes, 

one each for static and total pressure measurement, was fashioned to 

identical dimensions. This ensured identical flow-blockage effects when 

the probes were inserted into the test-section. 

The manufacture of static-head probes presented some interesting 
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problems; to these, it is believed, some novel solutions were devised. 

The major problem was the creation of burr-free, circular holes on the 

periphery of the hypodermic tubing. This took on fairly serious pro

portions since the OD of most tubing used was of the order of 1 nun. The 

location of four symmetric holes of small diameter on such tubing, could 

not be achieved by drilling. Besides being expensive in drills, time and 

tubing, the resulting holes proved unsatisfactory. The problem was over

come through the use of the spark-erosion process. The method adopted 

was as follows: 

First, thin copper strands, each less than 0.125 mrn in diameter 

were extracted from ordinary electric fluxes. One end of such a strand 

was clamped to a precision vice; at the other, a steady pull was exerted. 

This resulted in the drawing out of the strand and served the dual pur

pose of reducing the diameter still further and of stiffening of the 

strand due to work-hardening. Approximately 40 mm lengths of these hard

ened strands were held in pin-chucks and used as electrodes in an S.M.D. 

Electric Discharge Machine. Figure (5.5.2) illustrates the set-up used: 

arm of 
spark - I 

erOder~ 

I 
l"'-..... 

clamping procedure 

Fig.(5.5.2) Assembly for spark - erosion 
of hypodermic tubing. 
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The specimen tubing were placed horizontally on a V-block and 

clamped firmly to it. Through scribing on dye-stains, painted on the 

tubing, the location at which a hole was to be bored was marked on this 

tubing. A disc graduated in degrees, attached to the tubing at :ts far 

end could be used to rotate the tubing through a predetermined interval, 

whenever more holes than one were required in the same plane. The en-

tire assembly was then immersed in a bath, integral to the discharge 

machine, filled with paraffin. The elbow of the arm to which the pin-

chuck holding the elctrode was affixed, was first crudely adjusted to 

position the electrode roughly above the point marked on the tube. A 

servo-motor connected to a cross-member on the arm was then switched on 

to lower this member slowly until the electrode was just in contact with 

the specimen tubing. At this point, the position of the arm was corrected 

manually, until the electrode was aligned exactly with the required point. 

The discharge system was then connected up and the spark-erosion process 

initiated. Through trial and error it was determined that a capacitance 

value of 0.001 mF and a resistance of 82001/ produced the best results. 

Approximately ten minutes sufficed for the creation of each hole. The 

completion of this process was indicated clearly by the ejection of 

debris and air bubbles from the bore of the tubing into the clear paraf-

fin of the bath. Circulation of paraffin through the tubing enhanced the 

removal of debris and made more regular the erosion process. It was 

found useful for the small-bore tubing to increase this circulation arti-

fically by the use of a hand pump from time to time. The graduated disc 

was then rotated through a predetermined angle and the procedure repeated 

as many times as was required. Since the tubes were of small diameter, 

care was taken to stagger the position of these holes axially by a small 

amount, to reduce excessive weakening of tubing at the plane were the 

holes were located. In all cases, the centre-lines of these holes were 

not staggered more than half the O.D. of the tubing. 

Examination under a microscope revealed that the holes generated 

by the afore-mentioned procedure were perfectly circular, free from burrs 

and other imperfections and in almost all instances were less than 0.2 mm 

in diameter. The ends of all static pressure probes were then blocked off 

with a glob of Araldite and when this had dried and set, it was lapped 

to a hemispherical shape to streamline the flow in the vicinity of the 



• 91 

probe tip. Total pressure probes needed no special treatment beyond the 

honing of the ends to render them flat and exactly perpendicular to the 

probe axis. 

Probe set B (Fig. (5.5.1) was used to measure distributions of 

static and total pressure across the inlet plane of the test-section. 

This was necessitated by the design of the sliders whose width required 

a minimum distance of 46 mm from the centre of the measuring hole to 

the inlet plane. Set A was used for measurements at all other planes. 

Static and total pressures were transmitted to and registered 

by Betz-type micromanometers graduated in millimeters. 6 mm bore Poly-

thene tubing was used to transmit pressures from the probes to the mano-

meter. These manometers were found to be reliable and accurate, though 

the large response times associated with their use, detracted somewhat 

from their convenience. Periodic checks were conducted to ensure that 

all connexions associated with measurement of pressures were airtight 

at all times. 

5.6 	Commissioning, testing and running of rig  

a) 	Air-tightness  

The rig was commissioned with both side walls of the test-sec-

tion in a zero-angle position to form a square-sectioned duct. Connec-

tions between the various elements of the rig were sealed with a cloth 

tape and tests were made to detect leaks; the joints proved air-tight. 

The plugs covering probe holes and the slider-roof section contacts were 

similarly checked. A slightly loose contact between one of the sliders 

and the roof of the test-section was corrected with silicone grease. To 

test the side wall-roof contacts, a little chalk dust was sprinkled on 

the test-section floor and was observed to be undisturbed when compressed 

air was blown towards it from the annular space between the fixed and 

swivelling side walls. Finally, with the blower switched on to its full 

capacity, small amounts of smoke were introduced into the above-mentioned 

annular space. These were seen to be undisturbed and were not sucked into 

the test-section at any point. 
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b) Vibration  

Initially, the rig was seen to vibrate considerably, especially 

with the blower at its maximum capacity. Bolts connecting elements of 

the rig, were tightend and a rubber bellows was introduced between two 

sections of the intake mainfold of the blower. While this reduced the 

vibration considerably, it was not eliminated entirely. The major avenue 

of vibration transmission was discovered to be the motor housing. When 

a breach was affected in this support, using a gas-cutter, no visible 

vibration was detectible in the test-section. 

c) Calibration  

The micromanometers were used to register pressures on a test-

tunnel built for purposes of calibration and available in the laboratory. 

These compared very favourably with standard readings and hence no cor-

rections were applied to values registered by these manometers. 

Pressure drop readings at the inlet to the test-section at 

various positions of the rheostat control of the motor used to run the 

blower indicated that Reynolds numbers in the range 1 x 10
5 

to 2 x 10
5 

could be attained. For most of the runs reported in this work, a value 

of approximately 1.4 x 105 was chosen. 

The probes themselves, corresponded to standard designs 

(e.g. Rosenhead [50 ) and required no calibration. 

d) Cleaning 

The inner surfaces of the test-section were constantly cleaned; 

whenever the geometric configuration was changed, the surfaces of the 

roof and floor were polished. At regular intervals, all the probes in 

use were cleaned with acetone. At less frequent intervals all flexible 

tubing were cleaned and dried before re-use. 
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e) 	Operation 

Recordings of pressure static and total were made in several 

sessions over a period of eight weeks. On each occasion the flow was 

allowed some time to settle down after the blower was switched on. 

Readings at any given station were completed before terminating each 

session. Random checks were made at the start of each session to ensure 

repeatability of results; in all instances, this was achieved to within 

2 %. 

5.7 	Data recording and reduction  

a) Traversing  

There were eight measuring stations for static and total press-

ures. Four of these, through the use of sliders, enabled distributions 

over the entire cross-section of the diffusers to be obtained; the re-

mainder enabled pressure profiles across the vertical centreplanes to 

be measured. In addition, there were thirteen pressure taps on the floor 

of the test-section which enabled wall static pressures to be measured. 

The micrometer on the traversing gear was operated manually, the 

direction of traverse always being from floor to roof. Horizontal tra-

verses at four stations were achieved through sliding the traversing 

gear. Graduated steel rulers affixed to the roof and adjacent to the 

slider were used to measure these traverses; a pointer attached to the 

base of the gear indicating the distance moved in millimeters. On average, 

about twenty measuring points were chosen in each direction of traverse. 

b) Data recording and reduction 

All data recordings were performed manually; care being taken 

to allow sufficient time for the micromanometers to respond to changes 

in flow conditions. Checks at random points were constantly made, for 

repeatability of recordings. Occasionally, the speed of the motor con-

nected to the blower tended to float, but invariably returned to the 

speed governed by the rheostat setting on the motor speed control. When- 
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ever such fluctuations were observed, readings were temporarily sus-

pended. 

A small computer program was written to reduce the data to 

convenient nondimensional forms. Tables of these are available in 

Appendix A4. 

5.8 	Concluding remarks  

Within the limits of the objectives laid out at the beginning 

of this chapter, the experimental program undertaken for this thesis 

proved successful. The designing of the various elements of the rig 

and measuring devices and their manufacture was a matter of a few 

months. Commissioning, testing and routine running of the rig occupied 

a further couple of months. The data obtained are tabulated in 

Appendix A4. 
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CHAPTER 6  

PRESENTATION OF EXPERIMENTAL DATA 

6.1 	Introduction 

It is the purpose of this chapter to present experimental data 

obtained by the investigation reported in Chapter 5. A brief description 

is provided of the type of measurements made. A simplistic assessment is 

made of the consistency, reproducibility and accuracy of the data ob-

tained. The data are used to examine the three-dimensional flow pattern 

in rectangular-sectioned diffusers. It is concluded that the limited ob-

jectives of the experimental program were achieved. 

6.2 	Type of measurements made  

6.2.1 	Quantitative measurements 

Measurements of static pressure and axial-velocity distributions 

only were made. This was achieved for three positions of the swivelling 

side walls, corresponding to the 0°, 2°  and 4°  included angles respect-

ively. In addition static pressure recordings were observed from wall 

pressure taps, at two further positions corresponding to the 6°  and 8°  

included angles. Such recordings were also observed with side walls fixed 

at the 4°  included angle position, for five different flow rates, i.e. 

Reynolds numbers. The inlet conditions under all these circumstances 

were identical: uniform velocity with a very small boundary-layer growth, 

(i.e. 2S/c/ 	less than 0.01) on all four walls. The intensities of 

turbulence at inlet to the test-section were in all cases estimated to 

be uniformly low. 

There were eight measuring stations. At four of these, the 

sliders enabled traverses over the entire cross-section of the test-

section to be made. At the remaining four, traverses in the vertical 

direction only could be made along the vertical centreplane of the test-

section. The size of the test-section precluded the use of a combination 
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pitot-static probe. Consequently traverses were made first with the 

static probe and subsequently with the total-head probe at each point 

in the flow field for which measurements are reported. Values of local 

velocity were obtained from a combination of these results. Mean vel-

ocities corresponding to each different flow rate used, were obtained 

by integrating the velocity distribution at inlet to the test-section. 

The uniformity of this distribution made this integration relatively 

easy. Measurement of flow rate by one other means was carried out. An 

orific plate located in the intake manifold of the blower and calibrated 

by earlier workers was used to measure the flow rate which was within 

2 % of that arrived at by the afore-mentioned procedure. Hence the for-

mer practice was adopted throughout the remainder of this work. Great 

care was taken in sealing off points where leaks were expected. The mean 

velocity at inlet to the test-section, obtained from the flow rate was 

used to normalise velocities obtained at all other points, as well as 

static pressures via the dynaic head at inlet. It is these normalised 

quantities which are tabulated in Appendix A4. 

6.2.2 	Qualitative measurements  

In addition to the above measurements, it was sought to arrive 

at qualitative descriptions of the flow field. To this end, the probe 

designated (C) in Figure (5.5.1), was used. For each position of the 

side walls, this probe was introduced into the flow through the normal 

traversing procedure. At any position in the flow, the probe was rotated 

manually through the use of the probe holder (Fig.(5.3.7). At positions 

like the central core of the test-section, the reading on the micromano-

meter with the hole aligned along the flow direction, rapidly diminished 

when the probe was rotated about its axis through a small angle. When the 

rotation was continued this reading returned to its maximum value only 

when the probe hole once again returned to its position of alignment with 

the flow direction. This indicated that the magnitude of secondary flows 

in these regions, was indeed small. 

The above procedure proved less sensitive when adopted close to 

the four walls; however, such tests always indicated a one-way flow, for 

the included angles for which measurements are reported here. When these 
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tests were continued with the sidewalls positioned at 100  and 12°  in-

cluded angles, some interesting behaviour was observed. In the vicinity 

of corners of the test section, no predominant flow direction could be 

detected by the above-mentioned test procedure. Furthermore the re-

cording of the manometer was no longer steady, large fluctuations being 

observed even with the probe hole aligned with the axis of the test-

section. These fluctuations were observed at all four corners in the 

x/d ranges between 6.1 and 13.2 for the 12°  diffuser and 7.45 and 13.2 

for the 10
o  diffuser. This is in qualitative agreement with measurements 

obtained in two-dimensional diffuser-flows reported by Reneau et. al. 

1 47 1 . 

	

6.3. 	Assessment of data obtained  

	

6.3.1 	Consistency and repeatability  

Detailed checks on the internal consistency of the data obtained 

were not made. However, the data recording, performed at different times, 

of the same geometric situation, revealed almost identical results, in 

every case. Repeatability was thus ensured in all cases. 

6.3.2 Accuracy  

The inaccuracy of the micromanometers used in the experiments 

was less than 0.2 mm of water. The error in measurement of flow rate 

and hence of mean velocity at inlet to the test-section is estimated 

at ± 2 - 3 %. The error in registering total head on the manometer was 

of the order of 1 - 2 %. Thus the error, both random and systematic, in 

the normalised velocities presented in Appendix A4, is evaluated to be 

of the order of ± 6 %. The errors in the values of pressure-rise co-

efficients presented are evaluated to be less than this value and of 

the order of + 4 %. 

It is believed that the precision of traversing and probe-pos-

itioning was of a high order. The error in this respect being of the 

order of + 0.01 nan in the vertical direction and ± 0.1 nan in the 

horizontal, i.e. slider, direction. The error in angular displacement 
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of the swivelling side walls was estimated to be less than 1 %. 

6.4 	Concluding remarks  

1) The simple devices used in measurements reported in this Thesis, 

have minimised the need for repeated calibration. The maximum errors in 

the reported values of velocity are estimated to be less than ± 6 % 

and those in values of pressure-rise coefficient to be less than ± 4 %. 

2) The quantitative measurements obtained are reasonably reliable 

and cover a range, which, within the knowledge of the author, has not 

been reported elsewhere. 

3) Qualitative measurements with a special probe have indicated 

that the flow field in diffusers for which measurements are reported, 

is essentially one-way. For 10°  and 12°  diffusers, varying amounts of 

reverse flow or stall were observed. These were of the unsteady kind 

and were detected to commence at 7.45 and 6.1 duct-widths respectively, 

from the inlet. 

4) Static pressure traverses indicated that in the hulk of the 

flow at any given axial station, static pressure was essentially uni-

form, thus vindicating the assumption to this effect made in Chapter 3. 
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PART III 

Theoretical Predictions 

compared with experi-

mental and analytical 

data 
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CHAPTER 7  

PREDICTION OF LAMINAR FLOWS 

7.1 	Introduction 

. In this chapter, the results of computations of three-dimen-

sional laminar flows in ducts, are presented. Two classes of flow situ-

ations are considered, the effect of several flow parameters upon each 

of these, being separtely studied. Predictions of heat transfer in the 

same situations, with two different types of boundary conditions, are 

also reported. Wherever possible, comparisons with available analytical 

and experimental evidence, are indicated. As a result of these, it is 

concluded that the prediction procedure is flexible, and reasonably 

accurate in the prediction of duct flows. 

7.2 	Developing flows in ducts  

The problem considered here is one of laminar flow development 

in straight, rectangular-sectioned ducts. The ducts are of constant 

cross-section, and the velocity distribution at their inlet sections 

are presumed uniform, unless available in experimentally determined 

form. Predictions of the hydrodynamic features of the problem are des-

cribed below. 

7.2.1 Pressure-drop  

The pressure drop along the axes of the ducts is expressed as 

a coefficient,-CpX in terms of the dynamic head at inlet. In Figures 

(7.2.1a), (7.2.1b) and (7.2.1c), the effect of aspect ratio upon the 

pressure drop, can be observed as a function of distance. This distance 

is so normalised, that the results are independent of Reynolds' Number. 

The present predictions are represented by firm lines, experimentally-

determined values by appropriate points and the results of other anal- 
ses by dashed lines. The characteristic duct width, used both for the 

definition of Reynolds numbers and in normalising distance along the 
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duct axes, is the width of the shorter side of the duct, Of  . In this 

way, although the flow rates in each case differ, the influence of the 

width of the longer side may be clearly observed. For uniform-property 

laminar flows, the use of the non-dimensional co-ordinate 	
' 
renders 

RC' the problem Reynolds number independent. 	R  

In Fig. (7.2.1a) the numerical calculations can be observed to • 
predict a lower value of pressure drop in a 2 : 1 duct than those pre-

dicted by the analyses due to Han [25] , Wiginton and Dalton [64 ] 

and Lundgren et. al. [36] . Furthermore, the prediction is in close 

agreement with experimental data obtained by Sparrow et. al. [59] . 

In Figs. (7.2.1b) and (7.2.1c), similar results can be observed for a 

5 : 1 and a 51 : 1 aspect ratio duct respectively. The experimental data 

are those measured by Beavers et. al. [4] . It is emphasized here 

that no special practices were adopted in the calculations to procure 

the close agreement between calculated and experimental values. For the 

results presented in Fig. (7.2.1c), the assumption of two-dimensionality 

of flow in the 51 : 1 aspect ratio duct, was checked by performing cal-

culations for the genuinely two-dimensional situation. Differences too 

small to be plotted, between results for a 51 : 1 and the infinite paral-

lel-plate situation, were observed. 

Computations of flows in ducts were continued until the fully-

developed situation was reached. The friction factors obtained from the 

axial pressure-gradient under this circumstance is represented in 

Figure (7.2.2) and Table (7.2.1). Favourable comparisons can be ob- 

• 	served between calculated and experimentally-determined, values of 

friction factor. 

It may thus be concluded that the manner of calculation of pres-

sure gradient along the PFD is a valid one, for favourable pressure 

gradient situations. It would be reasonable to suppose that an identical 

procedure may be used for adverse pressure gradient situations as in 

diffuser flows. Although calculations were made for laminar diffuser 

flows, no experimental or analytical results were available for com- 
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No. Aspect 
Ratio 
ras 

Fully-developed centreline velocity (U/TJ. ) in 
Fully-developed friction factor constant 

f.Re. C _ 
Han 
[25] 

McComas 
[39] 

Fleming 
and 

Sparrow [20] 
Present 

Lundgren 
et.a1436] 

McComas 
[39/ 

Fleming 
and 
Sparrow[20/ 

Present 

1 1 	; 	1 2.0971 2.096 - 2.09 56.91 56.91 - 56.9 

2 2 	: 	1 1.991 1.992 1.99 1.98 62.19 62.19 - 62.2 

3 3 	: 	1 - - - 1.86 - - - 68.3 

4 4 	: 	1 1.773 1.774 - 1.77 72.93 72.93 - 72.9 

5 5 	: 	1 - - 1.72 1.70 - - 
76.3 75.6 

6 10 	: 	1 - 1.6003 - 1.60 84.68 84.68 - 85.3 

7 : 	1 1.50 1.50 1.50 1.50 96.0 96.00 - 95.9 

Table (7.2.1) 
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7,2.2 	Velocity-profile development  

The present procedure yielded, in addition to the pressure-drop 

results presented above, the associated three-dimensional velocity field. 

In this section the computed values of velocity distributions are pre-

sented and compared with other available information. 

Accordingly, in Figure (7.2.4) the predicted increase in velocity 

along the centreline of a 2 : 1 aspect ratio duct, is presented. The 

experimentally-measured velocity distributuion at a station close to the 

actual duct entrance was used as the initial distributuion in the cal-

culation procedure; the distances represented in the following figures 

are accordingly, measured with reference to this station. The analysis 

due to Han [25] , uses a linearized form of the momentum equation along 

the PFD as well as the continuity relation predicts a more rapid rise 

of velocity than that calculated with the present procedure, as well as 

that experimentally observed. The detailed velocity distrib ution up to a 

normalised distance of approximately 13, is represented in Figures 

(7.2.5a) and (7.2.5b) where comparisons are shown with data obtained by 

Sparrow et. al. [ 59] . These indicate clearly the growth and inter-

action of the boundary layers on all four walls.Similar results for a 

5 : 1 aspect ratio duct are presented in Figures (7.2.6a) and (7.2.6b); 

the numerical predictions being compared with experimental observations 

reported by Sparrow et. al. [59] . 

It is concluded that predictions of velocity profiles in laminar 

duct flows have been obtained with reasonable succes. This lends confi-

dence to the proposed prediction of turbulent flows in ducts and diffusers 

of identical geometric configuration. 
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Fig.(7.2.6) (a) Development of velocity (U/Uin) profiles across the vertical 

centreplane of a 5:1 duct. 

Fig.(7.2.6) (b) Development of velocity profiles across the horizontal 

centreplanes of a 5:1 duct. 
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7.3 	Flow in rectangular-sectioned ducts with one moving wall  

Some of the results reported in this Section has been presented 

by Sharma and Spalding [55] . They are included here for completeness 

and as a further evidence of the flexibility of the numberical calculation 

procedure. Two types of situations are considered here: one in which one 

of the walls of a rectangular-sectioned duct moves longitudinally (i.e. 

along the PFD) parallel to itself and another, in which one wall moves 

laterally again parallel to itself. In both instances, steady movement 

of the walls alone, is considered. The design of screw-extruders and 

movement of glass upon its melt during the manufacture of glass sheeting 

are situations of engineering importance, wherein such analyses would 

prove useful. 

7.3.1 Longitudinal wall movement  

Figure (7.3.1) indicates the geometry under consideration. The 

radius of curvature of the PFD co-ordinate (i.e. 	) is presumed to be 

so large that its effects upon the flow may be ignored. 

In Figure (7.3.2) the calculated values of pressure drop are 

compared with experimentally observed values of Yu and Sparrow [66] 

The parameter is the ratio of moving-wall to inlet Reynolds numbers 

(or mean velocities). It can be seen that pressure-drop is reduced by 

a 'favourably-moving' wall. Within a normalised distance of 5, no re-

circulation along the PFD was observed and calculations of this situ-

ation presented no problems. The influence of the side walls was mar-

ginal due to the large aspect ratio (81 : 1). The radius of curvature 

(Rid) was also very large (94.72), and so its effects were not in-

cluded in the calculation. 

7.3.2 Lateral wall movement 

The situation considered is represented in Figure (7.3.3). Fluid 

is presumed to enter the duct with a uniform velocity and the effect of 
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the moving wall upon the flow development forms the subject of study. 

Fig.(7.3.3) 'Moving wall' geometric configuration, Case2. 

Thus in Figure (7.3.4) the effect of moving-wall velocity (i.e. 

Reynolds number) upon the pressure drop in duct of aspect ratio 1 : 1, 

is presented. Included in the figure are experimental data for the situ-

ation when all walls are stationery. It can be observed that a steady 

increase in pressure drop occurs with increase in wall Reynolds number. 

However, close to the inlet, i.e. (x/d)/Re < 0.02 , the flow remains 

unaffected by the movement of the wall. The effect of aspect ratio upon 

pressure drop at a given value of wall Reynolds number may be observed 

in Fig. (7.3.5a).A dimunition in pressure drop occurs with increase in 

width of the longer side. When the same results are plotted for identical 

mass flow rates, i.e. hydraulic diameters, it is observed that pressure-

drop in fact increases with increase of aspect ratio (Figure (7.3.5b). 
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Predictions of velocity distributions are presented in Figures 

(7.3.6), (7.3.7) and (7.3.8). In the first of these, the calculated 

maximum-velocity development as affected by the wall Reynolds number, 

is represented. When the walls are stationary, the calculated values 

compare favourably with measured values reported by Goldstein and 

Kreid [23] 	In the second, calculated values of axial-velocity con- 

tours as affected by the moving wall Reynolds number can be observed; 

increase in wall velocity is seen to cause a shift in the positions of 

the vortex centre and the position of maximum velocity. Finally, in 

figure (7.3.8), the profile across the vertical centreplane of the vel-

ocity component parallel to the moving wall, is shown compared with the 

result of a numerical calculation entirely different from the work re-

ported in this Thesis. It is thus concluded that predictions of this 

flow situation, consistent with physical reality and available infor-

mation, have been successfully obtained. In the rest of this chapter, 

a set of heat transfer predictions are reported as an illustration of 

the capability of the calculation procedure. 
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7.4 	Some heat transfer calculations  

7.4.1 Four walls heated to uniform temperature  

In the first case, the situation of simultaneous development of 

flow and heat transfer is considered in rectangular-sectioned ducts 

with one moving wall wherein all four walls are heated to a uniform 

temperature. 

Thus in Figure (7.4.1), the effect of the moving wall Reynolds 

number upon the bulk temperature rise can be clearly observed. The bulk 

fluid temperature at any axial position is defined as: 

Tb 	faCp UT cilA/f pcp  Chilli 	 - (7.4.7) 
A 	A 

The increase in mixing caused by increase in the moving-wall velocity 

causes an appreciable increase in temperature rise of the fluid. In 

Figure (7.4.2), the effect of aspect ratio upon bulk temperature rise 

may be observed. The greater the aspect ratio, the lower is this rise 

for a given distance (normalised with the shorter duct width). Also 

studied was the effect, upon the energy transferred to the flow, of the 

Prandtl number of the fluid. As is to be expected, Figure (7.4.3) shows 

the reduction in bulk-temperature rise with increase in Prandtl number. 

The three-dimensional nature of the temperature field dramatically re-

presented in Figure (7.4.4.) where contours of temperature rise are 

indicated at three positions along the duct axis. The position of mini-

mum temperature rise at [20 = 0.01 can be seen to be close to the 

point of maximum velocity (Fig. (7.3.7)). 

7.4.2 Three adiabatic walls and heated moving wall  

In this case, the moving wall is presumed heated to a steady, 

uniform temperature and the remaining three walls of the duct are pre-

sumed impervious to the transfer of heat. Figures (7.4.5) and (7.4.6) 

represent predictions similar to those presented above. In the former, 
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the effect of increasing the moving-wall velocity and in the latter, 

that of fluid Frandt1 number upon bulk temperature rise can be observed. 

Finally in Figure (7.4.7), the effect upon temperature-rise contours at 

a given axial position, of the moving-wall Reynolds number, is re-

presented. The 'cold-centre' of the fluid is moved further and further 

away from the vortex centre (Fig. (7.3.7)) as this quantity is in-

creased. 

7.5 	Concluding remarks  

In this chapter, predictions of a variety of laminar flow situ-

ations have been reported. Comparisons of these with analytical and ex-

perimental information, have indicated reasonably good agreement. It is 

thus concluded that the calculation procedure reported in Chapter 3 is 

reasonably accurate, flexible and, as can be seen from the tables in 

Appendix A3, economical to use. 
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CIWTER 8  

PREDICTIONS OF TURBULENT, DIFFUSER FLOWS  

8.1 	Introduction 

The numerical solution procedure described in Chapter 3 in con-

junction with the turbulence models described in Chapter 4, has been 

used to obtain predictions of turbulent flow development in rectangular-

sectioned ducts and diffusers. It is the purpose of this chapter to 

present these predictions and compare them with experimental data and 

theoretical analyses wherever available. The experimental data used for 

purposes of comparisons, include those obtained in the present investi-

gation, those reported in the literature and some unpublished work. 

Details associated with the computational aspects of the afore-

mentioned predictions, are provided in Appendix A3. 

8.2 	Parameters investigated  

The flow pattern in and performance of rectangular-sectioned 

diffusers, forms the subject matter of this chapter. In all the cases 

examined, the diffuser walls are smooth and impermeable to matter. When 

known, the temperature and heat-flux distribu t ions on these walls are 

supplied to the numerical calculation procedure. Since attention is re-

stricted to unstalled flows in diffusers, the effects of conditions at 

the outlet to diffusers upon the flow within them are negligible and 

are not included in the present study. The effects of the following para-

meters are however, examined. 

Inlet aspect ratio. Aspect ratio is here defined to be the ratio of the 

larger to the smaller widths of the diffuser walls at inlet, without 

reference to whether two or more walls are sloped to form the diffuser. 

Additional information on the manner of formation of the diffuser ge-

ometry is provided in each case. Figure (8.2.1) illustrates the no-

menclature used in representing the diffuser geometry, and in defining 
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the aspect and area ratios. 

b - as d 
b d r 	o o 

ar b d 

Fig.(8.2.1) Illustration of diffuser geometry and nomenclature 

Reynolds number. Reynolds number at the inlet of a diffuser is defined 

in terms of an average velocity at that cross-section and the minimum 

spacing between the two pairs of walls, d . Unless otherwise specified, 

this minimum width is also used as the reference width in normalising 

distance along the diffuser axis. 

Included angle. The included angle between the diverging walls of a 

diffuser is the primary factor which governs the geometric configuration 

and largely performance of the diffuser. When the walls of the diffuser 

are not straight or when the walls of a rectangular-sectioned diffuser 

diverge in asymmetric fashion, the geometric configuration is more con-

veniently expressed as an area ratio factor as a function of diffuser 

length. Only those included angles or area ratios which allow unstalled 

flow in diffusers are considered in this chapter. Figure (8.2.1) illus-

trates the definition of area ratio. 
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Inlet conditions. Conditions at the inlet to diffusers affect the flow 

pattern and pressure rise, often critically, in diffusers. The effects 

of a variety of inlet conditions upon diffuser performance, are con-

sidered here. In a large number of situations considered here, such con-

ditions consist of distributions of axially-directed velocity components. 

In some situations, where the velocity distrib ution across the diffuser 

inlet plane is essentially uniform, measured values of the boundary-

layer layer momentum thickness  Ai on all four walls are used to approximate 

the velocity profiles between pairs of parallel walls. Such approximations 

corresponding to four values of momentum thickness are indicated in 

Figure (8.2.2). Inlet velocity profiles, both experimentally-observed 

.6 .7 .8 .9 1.0 	 .6 .7 .8 .9 1.0 
u / u max 	 u/umax  

Fig.(8.2.2) Inlet velocity profiles of specific boundary -
layer thicknesses. 

and approximated values are supplied to the prediction procedure in the 

form of smooth curves, obtained in the former instance by simple least-

squares curve fitting. Such smooth curves enabled predictions with suc-

cessively refined grid dispositions to be obtained with ease. 
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For two cases considered in this chapter, measured values of in-

let turbulence intensities are used to arrive at distributions of tur-

bulence energy. In all other cases, estimates of energy level are used. 

Inlet turbulence intensities, under normal conditions,'were found to be 

of minor influence upon predicted diffuser performance. 

8.3 	Prediction of diffuser flows  

The predictions of turbulent flows in diffusers are obtained in 

the following manner. The geometric and fluid property information for 

each situation are first supplied to the computer program embodying the 

prediction procedure. The grid distribution in the /7, 4 plane is then 

chosen so as to suit the inlet distributions of velocity, temperature 

and other dependent variables. When the inlet conditions are uniform, a 

uniform spacing between grid nodes suffices for initial tests. When in-

let conditions are unknown, an estimate is made in accordance with re-

alism and information concerning the gross features of the flow. Cal-

culations are then made over the entire length of the diffuser. Advan-

tage is taken wherever possible, of the existence of planes of symmetry 

in the flow and calculations are restricted to domains bounded by such 

planes. Calculations are then repeated with successively refined grid 

dispositions (i.e. increased number of grid nodes, as well as reductions 

in spacing between grid nodes located in regions where steep gradients 

of velocity occur). When the results of these calculations, in detailed 

respects, show variations with grid size of less than 2 %, the grid-de-

pending tests are terminated and the predictions then compared with ex-

perimental data. Checks are made to ensure that overall yances of momen-

tum and other conserved properties are maintained by the calculation 

procedure. 

In many instances, predictions obtained with the simple turbu-

lence model coincided with those obtained with the two-equation model. 

Comparisons of the two models are indicated only when differences 

greater than 2 % are observed in the predictions. Thus, unless otherwise 

stated, predictions reported in this chapter are those obtained with the 

two-equation model. 
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8.3.1 	Two-dimensional diffuser flows  

Flows in diffusers of large inlet aspect ratio are terLled two-

dimensional. However, the influence of the short sides of such diffusers, 

may increase with distance downstream since the aspect ratio, in one 

configuration, approaches unity sufficiently far from the diffuser inlet. 

Consequently, the flow-field becomes increasingly three-dimensional with 

• 	 distance; a fact which makes the attainment of truely two-dimensional 

flow extremely difficult. The purpose of the predictions reported in this 

Section is to test the procedure in a relatively simple situation while 

simultaneously verifying the two-dimensionality assumption. 

Accordingly, a calculation turbulent flow in a diffuser of aspect 

ration 6 : 1 and included angle 4.450 at a Reynolds number of 1.5 x 10 is 

presented in Figure (8.3.1). This figure illustrates the pressure-rise 

coefficient Cpx as a function of axial distance compared with exper-

imental data and analytical results. The experimental data are those re-

ported by Carlson [10] . The analyses include inviscid calculations 

shown dashed, and momentum-integral calculations due to Cocanower et. al. 

[15] shown by a chain line. The former analytical result shows a pres-

sure rise considerably in excess of measured values; the latter, while 

constituting a definite improvement over the former, being essentially 

a prediction procedure for two-dimensional flows, does not account for 

the frictional influence of the shorter sides of the diffuser. Hence the 

calculated value of Cp,x is higher than the measured values. The present 

procedure however, by taking account of three-dimensional effects, pre- 

• 
	 dicts a pressure rise remarkably close to experimental value. It is ob- 

served from this example, that important three-dimensional influences 

persist even in large-aspect ratio diffuser flows which are conventionally 

classified as two-dimensional. 

A second set of predictions of turbulent flow in an even larger 

aspect-ratio diffuser(ras=76,07:/) is presented in Figures (8.3.2a) 

and (8.3.2b). The former shows predicted values of pressure-rise co-

efficient and decay of centreline velocity which are compared with ex- 

perimental data of Ellison [17] 	and the results of inviscid calcu- 

lations. The latter figure illustrates the friction factor along the 



■••••••• 

0 
0 0 

v./ 

0 0 
	0 

• • 

as 	6.1 

2e = 4.45 °  

25/c1 = 0.04 

■• /0  
in viscid 
theory [15 1 

	 pre d. 

o 	expt. [70 1 

x/d 

I 	 I 	 I 	 I 	 I 	 I 

8 	10 	12 	14 	16 	18 

Fig.(8.3.1) Pressure—rise coefficient vs distance in a large aspect ratio diffuser. 



0 
\o o ExptI17 

Pred 	Inviscid 

.•••• 

o 0 

0. 

• 1.2 

0.8 

ud 
uin  0.6 

0.4 

_ 	.- ° 	--,, .........„......--- 0 ■-,0  

	

/ ...•••• 0 	 0-...„..„. 
 

	

/ '2 ij  ❑ 	 0-----, 
// 0 	 0 \-........ 

- 	

/ / z  0 
- 	r ": 16.07 	

0---....„c 
to' 	 os 	 — 

/// 	 r .-- 3 /0 	 or 

	

i 	 Re= 2.08x1O
s 

i/ 
 

	

0.2- 0 	 L/d = 72 

01  

1.0 

0 20 40 

x/d 

60 

138 

0.8 

0.6 

Cpx 

0.4 

0.2 

Fig.(8.3.2) (a) Pressure rise and velocity decay in a large 
aspect ratio diffuser. 

0 
	

20 
	

40 
	

60 

Fig.(8.3,2) (b) Shear stress coefficient in a large aspect ratio 
diffuser. 



• 

• 

139 

centreline of the sloping walls of the diffuser again compared with 

Ellison's data obtained by the Preston-tube method. In both figures the 

predicted results are seen to compare favourably with experimental ob-

servations. Other analytical results were not available for comparison. 

However, the nature of the comparisons made, validates the capability 

of the prediction procedure in taking account of three-dimensional 

effects within large aspect ratio diffusers, in detailed respects. 
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8.3.2 	Effect of aspect ratio  

Systematic and detailed measurements of turbulent flow in dif-

fusers to determine the effect of aspect ratio upon performance under 

otherwise identical conditions do not appear to have been reported. 

However, a compilation of experimental information on pressure rise has 

been made by Reneau et. a. [47] ; a plot of this is shown in Figure 

(8.3.3). Also shown is a curve representing the present predictions. 
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Re = 2.0 x10 

• 0.8 
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Fig.(8.3.3) Effect of aspect ratio on diffuser 
performance at Lid = 6. 
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It does appear from this curve that performance is virtually unaffected 

by aspect ratio beyond a value of 3. It is emphasized here that the 

geometric configuration in this situation was such that two walls of the 

diffuser were kept parallel while the other two were sloped. Further-

more, the reference width was defined to be the spacing between the 

sloping walls at inlet. Thus, it is by varying the spacing between the 

parallel walls that the aspect ratios ranging from 1 to 4 could be 

accounted for in the prediction procedure. Figure (8.3.4) provides a 

better picture of the effect of aspect ratio upon performance; it is 

Fig.(8.3.4) Effect of aspect ratio on pressure rise in 
rectangular - sectioned diffusers. 

from the predictions shown in this figure that the values indicated in 

Fig. (8.3.3) were plotted. Diffuser performance is clearly seen to be 

improved as the parallel walls are spaced further and further apart; the 

flow rate of course being different in each case. 
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8.3.3 Effect of Reynolds number  

As in the case of laminar flows, the effect of Reynolds number 

on flow behaviour in ducts of rectangular cross-sections has been ex-

perimentally determined (e. g. Hartnett et. al. [29] ). In the case 

of fully-developed flow in ducts of constant cross-sections, friction 

factors over a range of Reynolds numbers is reasonably well predicted 

• 
	

by the present procedure. This is illustrated in Figure(8.3.5). 
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Fig.(8.3.5) Friction factor vs Reynolds number for fully-developed 
flow in rectangular-sectioned ducts. 

As expected, the friction factor Cf. decreases with increasing Reynolds 

number. 	Friction factors in rectangular-sectioned diffusers do not ap- 

pear to have been reported. However, the effect of Reynolds number upon 

the pressure-rise coefficient in diffusers of aspect ratio 1 : 1, 

measured in the present investigation, is illustrated in Figure (8.3.6). 

Unfortunately, the range of Reynolds numbers covered in this investi-

gation is limited. Within this range, as can be seen in Figure (8.3.6), 

appreciable Reynolds number dependence cannot be detected. The pre-

dictions, while agreeing reasonably well with the experimental data, 

• 

Pre d. 
-1_ 	(Al 6 .10 
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reveal a small dependence; diffuser performance increasing with in- 
- 

creasi 	 14 ng Reynolds number in the range 	0 Rex/0„ 5 “7.3 by a small 

amount. 
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8.3.4 	Effect of diffuser included angle 

a) 	Zero-angle diffusers or duct flows  

As a preliminary to the study of flows in diffusers, predictions 

made of duct flows with uniform conditions at inlet, over a range of 

aspect ratios are reported in this Section. In figure (8.3.7), the pre-

dicted pressure-drop in a duct of square cross-section at a Reynolds 

number of 1.4 x 105, can be observed. 

Expti

o static probe X/d 
o wall tap 

Re= 1.4 ,,105  
ros:-: :1 

0 

0.1 

Pred 
0.2 
	

Model B 
- Model A 

0.3 Cp, X 

Fig.(8.3.7) Pressure drop in the inlet region of a square-sectioned duct. 

The prediction made with the simple turbulence model (A) in-

dicates a pressure drop greater than that predicted with the two-

equation model (B). Within the scatter of the experimental data obtained 

in the present investigation, also shown in the figure, the model (B) 

predicts the pressure drop with greater accuracy than (A), is accompanied 

by a correspondingly larger turbulent mixing than that experimentally 

observed. This is indeed the case as can be observed in Figure (8.3.8). 

The predicted increase in mixing can be seen to cause a retardation in 

the development of centreline velocity. Model Bmoreover predicts, centre-

line velocity development greater than A; however, the difference is not 

significant when compared with the experimentaluncertainties. 
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Fig.(8.3.8) Development of centreline velocity in a square-sectioned duct. 

An alternative formulation in the modelling the turbulent 

stresses, with particular reference to the turbulent normal stresses 

- puiuj 	, has been applied by Tatchell [60] to the prediction of 

developing flow in a square-sectioned duct. This method has permitted 

the prediction of turbulence-generated secondary flows, when the primary 

or axially-directed flow is otherwise fully-developed. However, in the 

developing region of the flow, no appreciable difference in the pre-

dicted values of pressure drop or centreline velocity increase, is ob-

servable between this method and the present two-equation model upto an 

LAJ ratio of 16 : 1. It is thus concluded that the importance of sep-
arate and special modelling of the turbulence normal stresses is minimal 

in this region. This is borne out by the agreement between predicted 

values of velocity-profile development and corresponding experimental 

observations. The comparison is illustrated in Figure (8.3.9). The ex-

perimental data is that measured by the author in the present investi-

gation. The velocity profiles are those corresponding to the vertical, 

i.e. Z/d = 1) centreplanes. Similar results obtain for the horizontal 

centreplaces as well. 
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It was pointed out in Chapters 2 and 3, that the mathematical 

nature of three-dimensional boundary-layer flows required a special 

treatment of the pressure-gradient appearing in the -direction momen-

tum equation. Also, a method of obtaining this pressure-gradient was 

described; in the absence of other information it was assumed that the 

pressure-gradient was uniform across the duct/diffuser cross-section. 

One of the secondary objectives of the experimental program, was the 

validation of this assumption. That this has been satisfactorily achieved 

can be observed in Figure (8.3.10), where the predicted static pressure 

coefficient -Cp x  is compared with measured values. A discrepancy is 
discernable at two axial stations. This is due to the fact, that, at 

these stations which were located at the downstream end of the test-

section, the experimental results are adversely affected by the sudden 

expansions resulting from the connection to the tail-end diffuser. 

Figures (8.3.11a) and (8.3.11b) show predictions of velocity 

profiles in a duct of aspect ratio 2 : 1, the same configuration for 

which laminar-flow results were described in Chapter 7. These profiles 

are compared with unpublished experimental data obtained by Masuda [37] . 

The comparisons show remarkably good agreement between the two. 
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b) 	Diffuser angles greater than zero  

Predictions made of flows in rectangular-sectioned diffusers, 

of several included angles (i.e. and area ratios) with uniform inlet 

conditions, are reported in this Section. Figure (8.3.12) shows pre-

dictions of pressure-rise coefficients within diffusers, of inlet as-

pect ratio 1 : land having two walls sloping at four different included 

angles. Also shown are experimental data measured in the present in-

vestigation. The open points represent values measured from static 
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pressure probes traversed along the diffuser centreline and the slashed 

points represent values registered at wall static pressure taps. The 

predictions show good agreement with data; both indicate performance, 

at all four angles, well below that predicted by an inviscid analysis. 

For two of these situations, i.e. included angles 2°  and 4°, Figures 

(8.3.13) and (8.3.14a) show profiles of axial velocity across vertical 

centreplanes at nine axial stations. The measured velocity distribution 

at station I (i.e. %=0) is supplied, as usual, as the initi al con-

dition to the prediction procedure. Again, the agreement between data 

and prediction, for this relatively simple situation, is good. Figures 

(8.3.13b) and (8.3.14b) show similar profiles for the corresponding 

horizontal planes. Values indicated are at four stations at which ex-

perimental data were obtained in the present instance. Results are in-

dicated, for convenience, as a function of normalised diffuser width 

at each station; the corresponding actual widths (and, in this case, the 

area ratios) are also indicated. For similarly uniform conditions at 

inlet, predictions of velocity profile in an 8°  diffuser of aspect ratio 

2 : 1 at inlet, are shown in Figures (8.3.15a) and (8.3.15b) the former 

being across vertical planes and the latter, horizontal planes. The pre-

dictions are compared with the data of Masuda [37] who also measured, 

for this circumstance, distributions of turbulence intensities at inlet 

to the diffuser. Values of turbulence energies derived from this are 

used as inlet conditions to the two-equation model of turbulence. The 

influence of this "free-stream" turbulence at inlet, upon predictions, 

is shown by tests to be a minor one. 

As in the previous instances, the static pressure distribution 

remained uniform over the diffuser cross-sections over the entire length. 

This can be observed in Figure (8.3.16), where measured values of static 

pressure across the vertical centreplane of a 4°  diffuser are compared 

at eight axial positions, with predicted values. With the exception of 

two such positions where the influence of tail-end connections have per-

meated upstream, the experimental data are in close agreement with 

predictions. 
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8.3.5 	Effect of inlet conditions  

It is long been recognised that diffuser performance is strongly 

influenced by conditions that prevail at the inlet (e.g. Bradley and 

Cockell [5] ). Generally speaking, performance is improved by re-

ductions in boundary-layer thickness at inlet. Investigations conducted 

with the present prediction procedure using both the simple and the 

two-equation turbulence models indicated that this was indeed so. One 

result of this investigation is shown in Fig. (8.3.17). Two types of 
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Fig.(8.3.17) Effect of inlet boundary - layer thickness on pressure 
rise ina rectangular - sectioned diffuser. 

velocity profile, both essentially uniform but possessing different 

boundary-layer thicknesses, are supplied as inlet conditions, across 

the vertical plane, to a large (8 : 1) aspect ratio diffuser over a 

range of included angles. At a given axial position (LAMthe predicted 
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performance with a thin inlet boundary-layer thickness is seen to be an 

improvement over that with a thick inlet boundary layer. Moreover, pre-

dicted performance compares favourably with measured values due to Reneau 

et. al. [47] . Some uncertainty must remain unresolved with these re-

sults, since the shape of the boundary layer profiles on the side walls 

is not reported; for this reason estimated thicknesses are used in the 

predictions. 

Since diffusers in engineering practice, are often preceded by 

other devices, severe distortions occur in distributions of velocity at 

their inlet. It is interesting to observe the effects of such distor-

tions upon diffuser performance. Accordingly, predictions were made of 

flows in a diffuser of aspect ratio 2 : 1, under shear flow conditions 

at inlet. Figure (8.3.18) shows velocity profiles predicted by both 

models of turbulence described in Chapter 4. Model A fails to predict 

the decay of shear rate with axial position, that is exhibited by the 

experimental data of Masuda et. al. f 38] . Model B however, capable of 

accounting for the energy redistributions of shear flows, does prove an 

improvement over Model A. The performance of this diffuser under ident-

ical inlet conditions, for a range of included angles, is indicated in 

Fig. (8.3.19). Again, an inviscid analysis is seen to predict performance 

considerably in excess of that measured and predicted by the present 

procedure. An increase in shear-rate, causing greater mixing and, corres-

pondingly pressure loss, is expected to reduce performance under other-

wise similar conditions. That this is indeed so may be observed in Fig. 

(8.3.20). Here, for a diffuser of 6°  included angle, predicted values 

of performance are compared with the experimental data of Masuda et. al., 

for three diferent rates of shear A at inlet. This quantity is defined 

as follows: 

• (8.2.1) 

Predictions of performance in the 16°  diffuser indicated some interesting 

results. Stall, i.e. reverse flow along the diffuser axis was predicted 

at the corners of the diffuser cross-section, commencing at stations 

beyond an YA2,  of 4. The experimental data measured with wall static 

pressure taps, do not of course record this stall. However, it was de- 
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termined later (Masuda [371 	), that a state of incipient stall did 

exist at the corners, over the second half of the diffuser length. 
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F'ig.(8.3.20) Effect of shear flow at inlet on the performance of a 
rectangular - sectioned diffuser. 

Detailed measurements of axial velocity profiles in an 8°  dif- 

fuser of inlet aspect ratio 2 : 1 provided by Masuda [37] 	are used to 

compare with predictions of the three-dimensional flow-field existing 

under these circumstances. The comparisons are illustrated in Figures 

(8.3.21a) and (8.3.21b). The decay-rate of 'free-stream' shear is seen 

to be reasonable well predicted. 

The effect of inlet conditions upon diffuser performance was 

experimentally determined by Wolf and Johnstone [65] . They performed 

tests in a diffuser of aspect ratio 4 : 1 at inlet, with four different 

types of inlet conditions over a range of area ratios (i.e. included 

angles). In Figure (8.3.22), the geometric configuration used in these 

tests as well as the four types of velocity profiles across the vertical 
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plane at inlet, are illustrated. These types consist of linear shear, 

jet, wake and step shear velocity profiles numbered in that order. Pre-

dictions made for the zero-included angle (i.e. duct) cases are re-

presented in Figures (8.3.23), (8.3.24), (8.3.25) and (8.3.26).A faster 

rate of velocity profiles is predicted in cases II, III and IV, than 

those observed experimentally. This is attributed to the uncertainty in 

the distribution of velocity in the neighbourhood of the side walls. 

This distribution is presumed, for the sake of the predic tions, to be 

uniform except for thin (26%''z0.04)boundary layers on the side walls. 

Within the limitations of this presumption, the pressure-drop is pre-

dicted reasonably well for all four cases considered. The four parts 

of Figure (8.3.27) represent predictions of diffuser performance in all 

four cases over area ratios ranging from 1.2 to 2.1; other conditions 

remain as represented in Figure (8.3.22). Nothwithstanding uncertainties 

regarding the measurements, made with wall static pressure taps on both 

diverging walls, the predicted performance compares favourably with 

the data. Finally, predictions of the effect of shear flow upon the 

performance of an 8°  diffuser of inlet aspect ratio 2 : 1 are presented 

in Figures (8.3.28a) and (8.3.28b). It can be observed that the shear 

velocity profile does not become uniform downstream of the inlet. Across 

the horizontal plane however, the velocity distribution retains its 

uniformity over a large proportion of the cross-section. 

It is thus apparent that predictions of the effects of inlet 

conditions upon diffuser performance are in reasonably close agreement, 

qualitatively and quantitatively, with experimental measurements. 

8.3.6 	Effect of wall shape  

Although rectangular-sectioned diffusers, with straight axes 

are considered in this Thesis, investigations are made of the effects of 

wall shape upon diffuser performance. Predictions of flow in a diffuser 

of aspect ratio 1 : 1 and uniform conditions at inlet with one pair of 

walls flared out in a trumpet shape are presented in Figure (8.3.29). 

These predictions are compared with an inviscid analysis and experimen-

tal data obtained by Norbury [42j . Both qualitative and quantitative 

agreement between prediction and data is observed. As before, the in-

viscid analysis indicates a greater pressure rise and centreline velocity 
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decay rate than that predicted by the present procedure. 

8.4 	Heat transfer in diffusers  

Unlike the hydrodynamic situation, heat transfer in diffusers 

has been sparingly reported. Ellison [17] obtained measurements of 

Stanton numbers in a large aspect ratio, small included angle diffuser 

over a limited range of Reynolds numbers. Only one wall was heated, at 

a specified rate. The measured distribution of wall temperatures for 

this situation is shown in Figure (8.4.1a). The thermal state of the 

other three walls was not reported. In view of this uncertainity, the 

following assumptions are made in order to obtain predictions of heat 

transfer: 

a) The heated wall is smooth and non-conducting in 

the axial direction. 

b) The other three walls are adiabatic. 

c) The inlet temperature distribution is uniform 

and identical to that of ambient air. 

With these assumptions, the predictions obtained with the present pro-

cedure are presented in Figures (8.4.1a) and (8.4.1b). In the former, 

the predicted temperature excess along the diffuser centreline, though 

small, is seen to be greater than that measured. It would be reasonable 

to presume that this is due to assumption b) above. In the latter pre-

dicted figure, Stanton numbers are in qualitative agreement with ex-

perimental data, for three Reynolds numbers. However, in view of the 

uncertainty about the experimental conditions, further conclusions can-

not be drawn. 

Similar results can be observed in Figure (8.4.2) where pre-

dictions of heat transfer in a large aspect ratio, 4°  diffuser are 

presented. These results are compared with friction factor and Stanton 

number data obtained by Hool as reported by Carmichael and Pustintsev [12] 

whose analysis is also indicated in the figure. This analysis is based 

upon a two-dimensional momentum-integral method. 
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8.5 	Concluding remarks  

• 
	 In this chapter predictions of turbulent flow in rectangular- 

sectioned ducts and diffusers have been reported. Detailed comparisons 

with experimental evidence have been provided over a range of conditions. 

The capability of the numerical prediction procedure in taking account 

of the three-dimensional character of the flow field in rectangular-

sectioned diffusers has been validated. In these validation exercises, 

experimentally-determined conditions at the inlet to diffusers have been 

supplied, wherever possible, to the prediction procedure. For example, 

when measurements of turbulence intensities were available (e.g. Figure 

(8.5.1)), values of turbulence energies were derived from these and used 

as initial conditions for the /;- e. model of turbulence. 
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In the absence of such information, an estimation of the inlet 

conditions, like the axial-velocity distribution in the corner regions 

of diffusers, was made. This estimation was based upon the diffuser geo-

metry and the type of experimental rig used. When such estimations were 

made, the resulting uncertainties in predictions did not permit detailed 

conclusions to be drawn. The availability of detailed information on 

inlet conditions permitted satisfactory predictions to be obtained. For 

example, Figure (8.5.2) illustrates predicted pressure rise in diffusers 

which are compared with Masuda's data [ 37] corresponding to conditions 

in Figure (8.5.1). 

The effects of several parameters upon diffuser performance 

have been studied. The predictions have indicated a three-dimensional 

flow field in large aspect ratio diffusers classified in the literature 

as two-dimensional. The effects of distortions to the inlet velocity 

distribution upon the flow pattern and pressure rise in diffusers have 

been studied in detail. It is believed that the prediction procedure 

will provide a clearer understanding of flow patterns in rectangular-

sectioned diffusers than hitherto possible. 

For example, in Fig. (8.5.3) the performance of a diffuser of 

aspect ratio 1 : 1 over a range of included angles, is presented. For 

long, the data obtained by Vedernikoff [61] , represented in the figure 

by squared points, remained unresolved. Two-dimensional diffuser-per-

formance charts failed to account for the rather low performance, re-

corded by Vedernikoff; an estimation based upon modifications to per-

formance chart values to account for three-dimensional effects, due to 

Reneau et. al. [47] 	, failed likewise. Computational experiments 

made with the present prediction procedure for the above-mentioned 

situation, indicates that the reduced performance can indeed be attri-

buted to a rather thick inlet boundary-layer thickness on all four walls 

of the diffuser. The prediction indicated on the figure corresponds to 

a boundary layer thickness Wid of approximately 0.07. Further cor- 

roboration of this explanation is provided by data obtained in the 

present investigation with thin inlet boundary-layer thicknesses, and 

the corresponding predictions, both of which are also indicated in 
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figure (8.5.3). 
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CHARTER 9  

CONCLUDING REMARKS 

9.1 	Review of work reported in this Thesis  

1) In Part I of this Thesis an outline was provided, of the physi-

cal and mathematical description of three-dimensional boundary layers 

confined within ducts. The physical description highlighted the charac-

teristic features of such flow situations. The mathematical description 

utilized these features in arriving at the partial differential equations 

which govern the transport of mass, momentum and energy in such situ-

ations. The differential equations were represented in a system of curvi-

linear, quasi-orthogonal co-ordinates. Such a representation permitted 

the description of flows within ducts whose cross-sectional area varied 

with axial position. A procedure for the discretization of the differen-

tial equations and the solution of the resulting linearized algebraic 

equations, was then described. Two hypotheses for the mathematical model-

ling of turbulence in confined, three-dimensional, boundary-layer flows 

were presented. 

2) In Part II, the program of experimental investigations of flows 

in rectangular-sectioned diffusers was reported. This program included 

the design and fabrication of various elements of a rig, as well as 

measuring devices used in the investigations. The central element of the 

rig was a test-section, of inlet aspect ratio 1 : 1, capable of being 

adjusted to form diffusers of varying included angles upto a maximum of 

120. The measuring devices were of a simple nature and were used to re-

cord distributions of static pressure and axial velocity at several po-

sitions along diffusers of three different included angles. The results 

of these measurements were presented, along with assessments of the 

reliability and accuracy of data so obtained. 

3) Validation of the prediction procedure formed the subject of 

Part III of this Thesis. Calculations of both laminar and turbulent 

flows were reported. Detailed comparisons of the calculated results with 

a body of experimental and analytical evidence, over a wide range of 
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conditions were presented, 

9.2 	Attainment of objectives - an assessment 

The results presented in Chapters 7 and 8 are used here to 

examine the extent to which the objectives of the research program, 

were attained. 

1) Predictions of two classes of laminar flows in straight, rec-

tangular-sectioned ducts, were successfully obtained. The approximations 

made in arriving at the mathematical descriptions of such flows, were 

thus proved valid. 

2) The predictions of turbulent diffuser flows, presented in Chap-

ter 8, indicate that the numerical procedure proved reasonably success-

ful in handling confined flows in ducts of axially-varying area, i.e. 

diffusers. 

3) The results reported in Section 8.3.5 of Chapter 8, show that 

the simple model of turbulence, while proving adequate for diffuser 

flows with simple inlet conditions, proved insufficient for more com-

plex situations. These situations were successfully predicted with the 

two-equation turbulence model. 

4) The experimental program was successfully completed. The data 

obtained from this program provided additional validation of the pre-

dictive procedure, as can be seen in Section 8.3.4, in several respects. 

These data, tabulated in Appendix A4, augment the existing experimental 

information on low-aspect ratio diffusers. 

9.3 	Limitations and capabilities of prediction procedure  

The capabilities and limitations of the prediction procedure 

are summarised as follows: 

1) 	The prediction procedure comprising the calculation procedure 

'described in Chapter 3, and the two-equation turbulence model described 
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in Chapter 4, is capable of predicting successfully,turbulent three-

dimensional flows in straight, rectangular-sectioned ducts with cross-

sectional areas varying along the axis in a prescribed manner. 

2) The limits within which the cross-sectional area is permitted 

to vary, are such as to ensure that the flows retain their boundary-

layer character. This implies, for example, that the procedure in its 

present form is applicable only to the unstalled flow regime within 

diffusers. 

3) The two-equation turbulence model used in this work is restric-

ted in its application to fully-turbulent flows wherein large variations 

in fluid property do not occur. Modifications to the model would be 

required, for example, to render it applicable to flows subjected to 

strong buoyancy forces. 

9.4 	Suggestions for future work  

A review of the prediction procedure described in this Thesis, 

suggests the following areas of future work. 

1) In a number of engineering situations, small regions of recir-

culating flow occur in flows which are otherwise directed predominantly 

in one direction. In such regions, the boundary-layer approximations are 

rendered invalid, and the differential equations governing the flow are 

elliptic in nature. The ellipticity of these equations does not permit 

marching-integration procedures and the resulting economy in computer 

storage, to be used. Consequently iterative schemes, with the requisite 

increase in computer storage, have to be resorted to and become for the 

situations described above unnecessarily wasteful. A useful future task 

would thus be to extend the capability of three-dimensional, boundary-

layer flow prediction procedures in handling small regions of flow re-

circulation. 

2) The numerical procedure described in this Thesis, needs to be 

tested in its ability to take account of the followingrstreamline cur-

vature along the predominant flow direction, caused by curved geometries; 
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the presence of body forces; and, variations from the regular rectangu-

lar geometries treated in the present work. 

3) Furthermore, the effects of body forces upon the turbulence 

structure in three-dimensional, confined boundary layers, require suit-

able formulation. 

4) Modelling of the interfacial region between two immiscible fluids 

requires to be devised. Such modelling would then permit the prediction, 

for example, of river flows wherein heat and mass transfer occur across 

the free surface. 

5) Validation of the prediction procedure for situations other than 

those reported in this Thesis, needs to be speedily performed. 
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PART IV 

Supplementary Information 



186 

REFERENCES 

1. AHMED, S. (1971): 	"Turbulent flow in non-circular ducts". 
Ph.D. Thesis, University of Waterloo, Waterloo, Ontario, 
Canada. 

2. AHMED S. and J. BRUNDRETT 	(1971): 	"Turbulent flow in non- 
circular ducts. PartI Mean flow properties in the devel- 
oping region of a square duct". 	Int. J. Heat & Mass Trans- 
fer 14, (3), pp. 365 - 375. 

3. AMSDEN A.A. and F.H. HARLOW 	(1970): 	"The SMAC method: a 
numerical technique for calculating incompressible fluid 
flows". 	Los Alamos Sci. Lab. Rep. LA-4370, Los Alamos, 
California, USA. 

4. BEAVERS, G.S., E.M. SPARROW and R.A. MAGNUSON 	(1970): 
"Experiments on hydrodynamically developing flow in rec- 
tangular ducts of arbitrary aspect ratio". 	Int. J. Heat& 
Mass Transfer 13, (6), pp. 689 - 703. 

5. BRADLEY, C.I. and D.J. COCKRELL 	(1971): 	"The response of 
diffusers to conditions at their inlet". 	Paper 5, Section A, 
Symposium on internal flows, University of Salford, UK, 
April 1971. 

6. BRADSHAW, P. and R.C. PANKHURST 	(1964): 	"The design of low- 
speed wind tunnels". 	Prog. Aero. Sci. 5, pp. 1 - 69. 

7. BULEEV, N.I. 	(1962): 	"Theoretical model of the mechanism of 
turbulent exchange in fluid flows". 	Teploperedacha, USSR 
Academy of Sci., Moscow, pp. 64 - 69, Translation J.J. Cornish, 
UKAEA Res. Group, AERE, Harwell, UK. 

8. BURGGRAF, O. 	(1966): 	"Analytical and numerical studies of 
steady separated flows". 	J. Fluid Mech. 24, pp. 113 - 151. 

9. CARETTO, L.S., R.M. CURR and D.B. SPALDING 	(1972): "Two nu- 
merical methods for three-dimensional boundary layers". 
Comp. Methods App. Mech. and Eng. 1, pp. 39 - 57. 

10. CARLSON, J.J. 	(1965): 	"The effect of wall shape on flow 
regimes and performance in straight two-dimensional diffusers". 
Eng. Thesis, Thermosciences Div., Mech. Eng. Dept., Stanford 
Univ., Stanford, California, USA. 

11. CARLSON J.J., J.P. JOHNSTONE and C.J. SAGI 	(1967): 	"Effects 
of wall shape on flow regimes and performance in straight 
two-dimensional diffusers". 	J. Basic Eng. (ASME), 89, (1), 
pp. 151 - 160. 



• 
187 

12. CARMICHAEL, A.D. and G.N. PUSTINTSEV 	(1966): 	"The prediction 
of turbulent boundary layer development in conical diffusers". 
J. Mech. Eng. Sci., 8, (4), pp. 426 - 436. 

13. CHORIN, A.J. 	(1967: 	"A numerical method for solving incom- 
pressible viscous flow problems". 	J. Comp. Phy. 2, pp. 12 - 26. 

14. CHUI, G. and S.J. KLINE 	(1967): 	"Investigation of a two-dimen- 
sional, fully-stalled turbulent flow-fluid". 	Rep. MD-19, 
Thermosciences Div., Mech. Eng. Dept., Stanford Univ., Stanford, 
California, USA. 

15. COCANOVER, A.G., S.J. KLINE and J.P. JOHNSTONE 	(1965): 	"A 
unified method for predicting the performance of subsonic dif- 
fusers of several geometries". 	Rep. PD-10, Thermosciences 
Div., Mech. Eng. Dept., Stanford Univ., Stanford, California, 
USA. 

16. CURR, R.M., DEVRAJ SHARMA and D.B. TATCHELL 	(1972): 	"Numerical 
predictions of some three-dimensional boundary layers in ducts". 
Comp. Methods App. Mech. & Eng., 1, pp. 143 - 158. 

17. ELLISON, G.M. 	(1970): 	"Flow and heat transfer in a straight 
sided diffuser". 	MSc Thesis, Mech. Eng. Dept., University of 
Manchester, Institute of Technology, Manchester, U.K. 

18. FAN, L.T. and C.L. HWANG 	(1966): 	"Bibliography of hydrodynamic 
entrance region flow". 	S. Rep. 67, Kansas State University 
Bull, 50, (3), Manhattan, Kansas, USA. 

19. FIEDLER R.A. and F.B. GESSNER 	(1972): 	"Influence of tangential 
fluid injection on the performance of two-dimensional diffusers". 
J. Basic. Eng. (ASME), 94D, (3), pp. 666 - 674. 

20. FLEMING, D.P. and E.M. SPARROW 	(1969): 	"Flow in the hydro- 
dynamic entrance region of ducts of arbitrary cross-section". 
J. Heat Transfer (ASME) 91, Paper 69-HT-1. 

21. FOX, R.W. and S.J. KLINE 	(1960): 	"Flow regime data and design 
methods for curved subsonic diffusers". 	Rep. PD-6, Thermo- 
sciences Div., Mech. Eng. Dept., Stanford Univ., Stanford, 
California, USA. 

22. FURUYA, F., T. FUJIMOTO, E. YAMAZATO, I. TSUZUKI and I. NISHIURA 
(1970): 	"Performance of the two-dimensional diffuser with 
suction at entrance". 	Bull. JSME 13, (56), pp. 264 - 271. 

23. GOLDSTEIN, R.J. and D.K. KREID 	(1967): 	"Measurements of lami- 
nar flow development in a square duct using a Laser-Doppler 
flow meter". 	J. App. Mech. (ASME) 34, (4), pp. 813 - 818. 

24. GOSMAN, A.D., W.M. PUN, A.K. RUNCHAL, D.B. SPALDING and M. WOLFSHTEIN 
(1969): 	Heat and Mass Transfer in recirculating flows. 	Aca- 
demic Press, London & New York. 



• 
188 

25. HAN, L.S. 	(1960): 	"Hydrodynamic entrance lengths for incom- 
pressible laminar flow in rectangular ducts". 	J. App. Mech. 
(ASME) 27, (3), pp. 403 - 409. 

26. HARLOW, F.H. 	(1973), Editor: 	"Turbulence transport modelling". 
AIAA Selected reprint series, XIV. 

27. HARLOW, F.H. and P.I. NAKAYAMA 	(1967): 	"Turbulence transport 
equations". 	Phy. Fluids, 10, (11), pp. 2323 - 2332. 

28. HARLOW, F.H. and J. E. WELCH 	(1965): 	"Numerical calculation 
of time-dependent viscous incompressible flow of fluid with 
free surface". 	Phy. Fluids 8, (9), pp. 2182 - 2189. 

29. HARTNETT, J.P., J.C.Y. KOH and S.T. McCONAS 	(1962): 	"A com- 
parison of predicted and measured'friction factors for turbu- 
lent flow through rectangular ducts". 	J. Heat Transfer (ASME), 
84, (1), ppg. 82 - 88. 

30. HINZE, J.0. 	(1959): 	Turbulence. 	McGraw-Hill Book Co. Ltd., 
New York. 

31. HORLOCK, J.H. and R.I. LEWIS 	(1961): 	"Shear flows in straight- 
sided nozzles and diffusers". 	Int. J. Mech. Sci., 2, pp. 251 - 
266. 

32. JOHNSTONE, J.P. and C.A. POWARS 	(1967): 	"Effects of aspect 
ratio on the performance of straight-walled, two-dimensional 
diffusers". 	Rep. PD-13, Thermosciences Div., Mech. Eng. Dept. 
Stanford Univ., Stanford, California, USA. 

33. LAUNDER, B.E. and D.B. SPALDING 	(1971): 	"Turbulence models and 
their application to the prediction of internal flows". 	In- 
vited lecture, A Symposium on internal flows, Salford, U.K., 
April 1971. 

34. LAUNDER, B.E. and D.B. SPALDING 	(1972): 	Mathematical models  
of turbulence. 	Pergamon Press, London & New York. 

35. LIVESEY, J.L. and J.T. TURNER 	(1964): 	"The effect of velocity 
profile decay on shear-flow in diffusers". 	Int. J. Mech. Sci., 
6, pp. 371 - 379. 

36. LUNDGREN, T.S., E.M. SPARROW and J.B. STARR 	(1964): 	"Pressure 
drop due to the entrance region of ducts of arbitrary cross- 
section". 	J. Basic Eng. (ASME) 86, (3), pp. 620 - 626. 

37. MASUDA, S. 	(1972): 	Private communication. 

38. MASUDA, S., I. ARIGA and I. WATANABE 	(1971): 	"On the behav- 
iour of uniform shear flow in diffusers and its effects on 
diffuser performance". 	J. Eng. Power (ASME), 93A, (3), pp. 
377 - 385. 



189 

• 

39. McCOMAS, S.T. (1967): 	"Hydrodynamic entrance lengths for ducts 
of arbitrary cross-sections". 	J. Basic Eng. (ASME) 89, (4), 
pp. 847 - 850. 

40. McMILLAN, 0.J. and J.P. JOHNSTONE 	(1970): 	"Performance of low- 
aspect ratio diffusers with fully-developed turbulent inlet 
flows". 	Rep. PD-14, Thermosciences Div., Mech. Eng. Dept. 
Stanford Univ., Stanford, California, U.S.A. 

41. MILLER, J.A. 	(1971): 	"Laminar incompressible flow in the en- 
trance region of ducts of arbitrary cross-section". 	J. Eng. 
for Power (ASME), 93, (1), pp. 113 - 118. 

42. NORBURY, J.F. 	(1959): 	"Some measurements of boundary-layer 
growth in a two-dimensional diffuser". 	J. Basic Eng. (ASME), 
81D, (3), pp. 285 - 296. 

43. PATANKAR, S.V. 	(1971): 	"On available calculation procedures 
for steady, three-dimensional boundary layers". 	Rep. BL/TN/A/44, 
Heat Transfer Section, Dept. of Mech. Eng., Imperial College, 
London, U.K. 

44. PATANKAR, S.V. and D.B. SPALDING 	(1970): 	Heat and Mass Transfer 
in Boundary Layers. 	International Textbook Co., Ltd., U.K. 

45. PATANKAR, S.V. and D.B. SPALDING 	(1972): 	"A calculation pro- 
cedure for heat, mass and momentum transfer in three-dimensional 
parab°lic flows". 	Int. J. Heat Mass Transfer 15, (10), pp.1787- 
1806 

46. PRANDTL, L. 	(1925): 	"Ueber die ausgebildete Turbulenz". 
ZMM, 15 , pp. 136. 

47. RENEAU, L.R., J.P.'JOHNSTONE and S.J. KLINE 	(1964): 	"Diffuser 
design manual - Parts I and II". 	Rep. PD-8, Thermosciences 
Div., Mech. Eng. Dept. Stanford Univ., Stanford, California, 
U. S. A. 

48. ROCKWELL, D.O. 	(1972): 	"Flow-fields in a two-dimensional dif- 
fuser with extraction of fluid on the diverging walls". 
J. Eng. Power (ASME), 94A, (3), pp. 226 - 232. 

49. RODI, W. 	(1972): 	"The prediction of free turbulent boundary 
layers by use of a two-equation model of turbulence". 
PhD Thesis, Univ. London. 

50. ROSENHEAD, L. 	(1963), Editor: 	Laminar Boundary Layers  
Oxford University Press, pp. 409 - 488. 

51. SAGI, S.J. and J.P. JOHNSTONE 	(1967): 	"The design and per- 
formance of two-dimensional curved diffusers - Parts I and II". 
J. Basic Eng. (ASME), 89D, (4), pp. 715 - 731. 



• 190 

52. SAGI, C.J., J.P. JOHNSTONE and S.J. KLINE 	(1965): 	"The design 
and performance of two-dimensional, curved, subsonic diffusers. - 
Diffuser Design Manual Part II". 	Rep. PD-8, Thermosciences 
Div.,Mech. Eng. Dept.,Stanford Univ., Stanford, Calif-Irnia, U.S.A. 

53. SAKURAI, T. 	(1972): 	"Study on the flow in diffusers for 
centrifugal turbomachinery - Rep. 3 : Effects of circumferential 
non-uniformity of inlet flow". 	Bull JSME, 15, (85), pp. 848- 
857. 

54. SHAH, R.K. 	(1971): 	"Laminar flow forced convection Heat Trans- 
fer and flow friction in straight, and curved ducts - a summary 
of analytical solutions". 	PhD Thesis, Dept. of Mech. Eng. 
Stanford Univ., Stanford, California, U.S.A. 

55. SHARMA, D. and D.B. SPALDING (1971): 	"Laminar flow heat transfer 
in rectangular-sectioned ducts with one moving wall". 	First 
National Conference on Heat & Mass Transfer, Madras, India. 

56. SMITH, C.R. and S.J. KLINE 	(1971): 	"An experimental investi- 
gation of the transitory stall regime in two-dimensional dif-
fusers including the effects of periodically disturbed inlet 
conditions". 	Rep. PD-15, Thermosciences Div., Mech. Eng. Dept,, 
Stanford Univ., Stanford, California, U.S.A. 

57. SOVRAN, G. and E.D. KLOMP 	(1967): 	"Experimentally-determined 
optimum geometries for rectilinear diffusers with rectangular, 
conical or annular cross-section". 	From 'Fluid mechanics of 
internal flow' - Ed. G. Sovran, Elsevier Publishing Co., Amster-
dam. 

58. SPALDING D.B. 	(1972): 	"A novel finite-difference formulation 
for differential expressions involving both first and second 
derivatives". 	Int. J. Num. Methods in Eng., 4, pp. 551 - 559. 

59. SPARROW, E.M., C.W. HIXON and G. SHAVIT 	(1967): 	"Experiments 
on laminar flow development in rectangular ducts". 	J. Basic 
Eng. (ASNE) 89, (1), pp. 116 - 124. 

60. TATCHELL, D.G. 	(1974): 	"Convective processes in confined three- 
dimensional boundary layers". 	PhD Thesis, London University, 
to be published. 

61. VEDERNIKOFF, A.N. 	(1944): 	"An expermimental investigation of 
the flow of air in a flat broadening channel". 	NACA T.M. 1059. 

62. WAITMAN, B.A., L.R. RENEAU and S.J. KLINE 	(1960): 	"Effects of 
inlet conditions on performance of two-dimensional diffusers". 
J. Basic Eng. (ASME) 81D, (3), pp. 285 - 295. 

63. WHEELER, A.J., J.P. JOHNSTONE 	(1971): 	"Three-dimensional tur- 
bulent boundary layers - an assessment of prediction methods". 
Rep. MD-30, Thermosciences Div., Mech. Eng. Dept., Stanford 
Univ., Stanford, California, U. S. A. 



• 
191 

64. WIGINTON, C.L. and C. DALTON 	(1970); 	"Incompressible laminar 
flow in the entrance region of a rectangular duct". 	J. App. 
Mech. (ASME), 37, (3), pp. 854-856. 

65. WOLF, S. and J.P. JOHNSTONE 	(1966): 	"Effects of non-uniform 
inlet velocity profiles on flow regimes and performance in 
two-dimensional diffusers". 	Rep. PD-12, Thermosciences Div., 
Mech. Eng. Dept., Stanford Univ., Stanford, California, U.S.A. 

66. YU, H.S. and E.M. SPARROW 	(1970): 	"Flow development in a 
channel having a longitudinally-moving wall". 	J. App. Mech. 
(ASME), Paper No. 70-W.A/APM-11. 

67. SCHLICHTING, H. 	(1960): 	Boundary layer theory. 	McGraw-Hill 
Cook Co. Inc., New York 



192 

NOMENCLATURE 

Symbol 	Meaning  Location  of 
first occurance 

  

A 
Ai 

AM 
b 
C 

C D 
C f 

C1  :1 
C p 
C p, x 

Ci ,C2  
d 
de  

D 

area 

coefficient of reduced discretized eq. 

coefficient of discretized eq. 

turbulence model identification 

width of duct/diffuser 

friction-factor constant 

constant in Prandtl/Kolmogorov formula 

friction factor (E. AL-91- rw/i 0 ) dx 1002 ; 	21' tri 
convective terms in discretized eq. 

specific heat 

pressure-rise coefficient (--7(i3-)In)/kLn2) 

turbulence length-scale constant 

turbulence model constants 

characteristic width of duct/diffuser 

equivalent diameter of duct/diffuser 

domain of integration 

D 	downstream calculation plane 
U V V/ 
D,D,D 	coefficient of pressure gradient terms 

DJ 	diffusion terms in discretized equations 

e 	Location in grid 

E 	grid location East of point P 
E 	constant in semi-logarithmic law-of-the- 

wall 

GL 	generation of turbulence energy 

mass velocity 

i 	
flux of 0 in Ph direction 

k 	turbulence energy 

turbulence length scale 

length of duct/diffuser 

[-hp 	mass source at F) 

* 	mass flow based on 'starred' velocity-fiel 

Eq. (7.4.1) 

Eq. (3.3.6) 

Eq. (3.2.4) 

Fig. (8.3.9) 

Fig. (7.2.5)(a) 

Table (7.2.1) 

Eq. (4.4.1) 

Fig. (7.2.2) 

Eq. (3.2.1) 

Eq. (7.4.1) 

Fig. (3.5.1) 

Eq. (4.3.3) 

Eq. (4.4.4) 

Fig. (3.5.1) 

Fig. (7.2.2) 

Eq. (4.3.3) 

Fig. (3.2.2) 

Eq. (3.3.2) 

Eq. (3.2.1) 

Fig. (3.2.6) 

Eq. (2.2.8) 

Eq. (4.6.1) 

Eq. (4.4.4) 

Eq. (3.2.2) 

Eq. (2.2.3) 

Eq. (4.3.1) 

Eq. (4.3.2) 

Fig. (8.3.17) 

Eq. (3.3.10) 

d Eq. (3.3.15) 
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location on grid 

N 	grid location North of point P 

	

P./5 	static pressure 

P 	location on grid 

PO 	function on semi-logarithmic law 

	

Pr0 	
laminar Prandtl/Schmidt number for 

diffusion of 0 

turbulent Prandtl/Schmidt number for 

diffusion of 0 
ras,  rar ratio aspect and area ratios 

r, f? 	radii of curvature 

	

Re 	Reynolds number 

S 	location on grid 

S 	grid location South of P 
source/sink term for 0 

S0 
	

integrated form of source/sink term 

	

St 	Stanton number 

T 
	

temperature 

	

Ta 	ambient temperature 

	

Tb 	bulk temperature 

	

(1 • 
	fluctuating component of velocity along 

ith direction 

	

U 
	

denoting upstream station 

	

U 	-direction velocity component 

velocity component along ifl/direction 

	

V 
	

71-direction velocity component 

volume 

	

W 	location on grid 

	

W 	grid location West of point P 

	

V/ 	-direction velocity component 

X,y,Z 	Cartesian co-ordinates  

Fig. (3.2.6) 

Fig. (2.2.1) 

Eq. (2.2.4) 
Fig. (3.2.1) 

Eq. (4.6.4) 

Eq. (2.2.6) 

Eq. (4.5.2) 
Fig. (8.2.1) 

Eq. (4.3.1) 
Fig. (3.5.1) 

Fig. (3.2.6) 

Fig. (2.2.1) 

Eq. (2.2.3) 

Eq. (3.2.1) 
Fig. (8.4.1) 

Table (4.5.1) 

Section (A4.1) 

Eq. (7.4.1) 

Fig. (3.2.2) 

Eq. (4.2.2) 
Eq. (2.2.11) 
Eq. (2.2.1) 
Eq. (2.2.11) 
Eq. (A3.1.1) 
Fig. (3.2.6) 

Fig. (2.2.1) 

Eq. (2.2.11) 

Eq. (2.2.1), 
(2.2.8) 

Pr t,0 
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Greek 
Symbols  

a< 	slopes of diffuser walls 	Eq. (4.3.5) 

6 	characteristic distance 	Eq. (4.6.1) 

(5 ,6 	difference of 	 Fig. (3.2.6) 

0 	boundary-layer momentum thickness 	Fig. (8.3.17) 

• 
	 Si j 	Kronecker-delta (= I for i -j 3  - 0 for i .i) 	Eq. (2.2.4) 

e 	dissipation rate of turbulence 	Eq. (4.4.1) 

P0 	
diffusion coefficient for 0 	Eq. (2.2.5) 

.,77, 	quasi-orthogonal co-ordinates 	Eq. (2.2.8) 

6 	half diffuser included angle 	Fig. (5.3.4) 

A 	velocity gradient in shear flow 	Eq. (8.2.1) 

t 	semilog-law constant 	 Eq. (4.6.1) 

11 	laminar viscosity 	 Eq. (2.2.4) 

Pt- 	turbulent viscosity 	 Eq. (4.3.1) 

Per 	effective viscosity 	 Eq. (4.5.1) 

? 	fluid density 	 Eq. (2.2.1) 

07.
/./ 	stress tensor 	 Eq. (2.2.2) 

4 	wall shear stress 	 Eq. (4.6.2) 

0 	general dependent variable 	Eq. (2.2.2) 

15): 	wall-flux of 0 	 Eq. (4.6.4) 

di 	angular direction 	 Eq. (4.3.3) 

Subscripts  

C 	centreline 	 Fig. (3.5.2) 

e 	location - e 	 Eq. (3.2.1) 

i,j 	location [1,j 	 Eq. (2.2.1) 

in 	inlet 	 Eq. (3.5.2) 

0 	outlet 	 Fig. (7.3.6) 

max 	maximum value 	 Fig. (8.2.1) 

Z 	shear 	 Eq. (4.6.1) 

W 	wall 	 Eq. (4.6.1) 

0 	variable 	 Eq. (2.2.3) 
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Superscripts  

0 

i 

A 

variable - 0 

direction -i 

it starred" values 
t% primed values 

Eq. 

Eq. 

Eq. 

Eq. 

(3.2.1) 

(3.2.1) 

(3.3.8) 

(3.3.11) 

0 	outlet 	 Fig. (8.2.1) 

E, W, 1 	relating to boundaries 	Fig. (2.2.1) 
N, S 
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APPENDIX Al  

DIFFERENTIAL EQUATIONS GOVERNING THREE-DIMENSIONAL BOUNDARY LAYERS  

	

A1.0 	Introduction  

In this Appendix the partial differential equations governing 

three-dimensional boundary-layers flows are listed. The equations are 

expressed with reference to the quasi-orthogonal co-ordinate system 

described in Chapter 2. The diffusion coefficient as well as the 

sources and sinks of each dependent variable of the above equations are 

then tabulated. 

	

A1.1 	Differential equations  

Continuity  

(P U) 	p v 	Sigs 	d(Ylv - 
D 	

.Ys)71 	 
77 	 (41_,,,$) 

feW - PU [ 6-!z--w  q- 	d(zE zw)j} 	 dx 	clx 	(z E -zw) 

0 	 . (A1.1.1) 

direction momentum 

a(puw  -t  r a fv- fu[dYs + d(g"  
NArgs) 	 dz 	dx 

f 	1.1ew - fU dZ 	 '  d(ZE z  w )31 U] 
(zt -z w) 	 dx 	 dx 

+ 	 

	

21J 	I 	a[ au 
??.1 L u - ZW )2  04 ti  

- (A1.1.2) 
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/7-direction momentum 

a (rou v) 
	 a  4,v- put dx ?4 	(YN-J.5) ?7 it 

7id ( -"Aidzss )1] 

	 a rfw - iou[lw 
(zE - zw) 	

i d(ZE  - z pv)71v  
dx 

[ OV - 	I 	a [r., aV 
(yiv _ y 	 2 s) 	v 077 	(z zw)2 	v ?4 

. (A1.1.3) 

4 -direction momentum 

a (°uw)  
a 	(yiv -  ys ) al 

r 	[fey _ u dx .i.  I 	dx 
dys  n  c / ON --gsl I 

1- r  	0  eW - PU[ dclxw  + Z cl(zE -zwVW1 dx 	
= ..6 w  

(z E - iw )4 1.  

f 	a Tr  2141  
(YN -  gs)2 911 w 	I  

	 a f p vw 
(z,--zw)2 D41 w  

. (A1.1.4) 

0 	Turbulence energy  

  

 

a (pu k)  4. 	I 	a I-  fiv  pu[2s 
(giv -a5-) 	i t  

7  Gt(y„,(5:.9_s)])k.1  

k 
[flow — Pu[21zw 	2: d(zEolz-zw)iiki -F  	 dx (z - z pv ) 	tr 

	 a f r 	 ak  
(YA, -  Ys)2 7/ 	a77 	(ze -zid2  04" 	k 

• (A1.1.5) 
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Energy dissipation rate  

a(fug) 	1  

?a77 	
fiU[dYs -t- 7 d(Ylv -Ys )11 

(At-  Ys) 	 -C1X 	gx J.) 

9 

+ 9 if 	 ci(zE  - zw)i} 
(z - zw) 	PW 	PU [ ciz  4- 4 	 

(ix 	 6 E I   

I 0 fr  ?e   a p ?e 
CYN -  sYs)2 	" )1 °Y L 8  - 	(z - zw)2 a4 8  

. (A1.1.6) 

Energy  

0(fUcp7)  
°77 

1-11° V— PU * cl 	7d(gAd'z-YsWc,71 
a4. 	Ys)  

	 a  fi PN — PU [ azdz. 
(z E  - zw ) 	4  

4, d(zE -  zw)71cp1 J6 T 

	 O rr,  ar 	-74 	r 	o r, ?T 
(Y/4 - Ys)z  DL 	°J 	(Z - z)2 	L 7" -a 

• 
. (A1.1.7) 
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0 
A1.2 	1  and A for each dependent variable  

No I" x5 ø  

U Peg - 

2 V la  eq 1 	a 	, 	Pz 2 
(Y,,,-  Ys)2 a'17 	f4eff .97 1  

-F. 	I 
-d-  flueff',1 

Niv - YsPE -z  w) 49 	ov 

3 W !Jeff 1 	
a 

(yN -  y.,),(zE -zw) 	
.77 [per, g-} 

• ÷ 	I • ? I 4  
z 102  :4 

[Pelf 
(zE - 04' 7 

k Pew r2  r 	I 	(all  )2 	1 	 ai- 	)2) 
Prt,k 

+ 	 + 
ti 	1 NN - ys)2  \ aVI 	(zt -  zw)2 	°4  . / 
I 	/au)2 	1 	(au )2  4.  ÷ 

(yiv _ y.5 )2 	doi7/ 	(ze _zw)2 l a .  i 

- PE  
[N,i1  --Ys)aiw) 	(z, _lz,,0142.1 

5 Pelf 1 	/ay i21. 	/ 	Ow )2 	* c1  _ILA, 	2 ( 

Pr t E  k 	1 	1 (511,1 -Ysy\al / 	(z-E - ziv)2 a 	i i 

9,,,  	 $) 	(E‘ °71I 	(zE, 	2;02  k 	4 I  

2  

	

NN1-  90 (-614717 ) 	÷ (z:-  z iy)( 4 ).1 .1 
2 

- c e f 2 	-7-- 
R 

6 T Pe PP 0 
Preff, 0 
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A1.3 	Constants of the k- E. turbulence model  

No ,43' Pr t,0. 

1 U 1.0 
2 V 1.0 
3 W 1.0 
4 k 1.0 
5 E 1 . 3 
6 T 0.9 

Co  Cl  C2  

0.09 1.44 1.92 
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APPENDIX A2  

SOME CONSEQUENCES OF THE TURBULENT-'VISCOSITY HYPOTHESIS 

	

A2.0 	Introduction  

In this Appendix a brief derivation s provided of the set of 

equations that is obtained as a consequence of the turbulent viscosity 

assumption. This derivation is independent of the manner in which the 

effective viscosity is arrived at. 

	

A2.1 	Effective form of complete stress tensor  

Consider first, the general form of the momentum equations in 

tensor form: 

(/0  ui) - 	
u 	

°zi 
	 • (A2.1.1) 

For the purposes of this Appendix, attention is confined to the right 

hand side of equation (A2.1.1). 

The complete stress tensor in turbulent flow can be expressed 

as: 

 

aUt" t  au; 
Oxi  axe  

   

 

- a-11 = P 6  Pui ai 	(A2.1.2) 

where: ID F the conventional static pressure, 

and it E molecular viscosity of fluid. 

If the expression for Reynolds stresses (4.3.1) is substituted into 

equation (A2.1.2), we have: 

u  au 	acb. 	r 	out .  + 2C2, 	zkszj. 
- 	= P sii 	 3 DXJ- D2c1' ax 	'Oxif 

= - r/' + 3 ) 51) ± CAI 
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f 
Yecr ax j• 

(A2.1.3) 

where, p _1. 2 
3 , is the "effectivestatic pressure, 

used throughout the text with the sub-

script removed for convenience, 

and 	lieu  z. lu + pi) 

	

t 	, is the "effective" viscosity, i.e. 
transport coefficient of turbulent momen-

tum. 

A2.2 	Simplifying assumptions  

As described in Chapter 2, not all stresses in equation (A2.1.3) 

are of equal magnitude, when the flow considered is of the three-dimen-

sional, boundary-layer variety. In particular, stresses along the PFD 

and on planes normal to it are negligible in comparison with those in 

the other two directions. The mathematical consequences of neglecting 

such stresses are listed below. 

The diffusion-of-momentum terms alone are, in cartesian co-or- 

dinates: 

a:- direction: 
av 

ijueff -Y) 	(lei/ 	÷ -/T('-̀eff 

ax (Peff 	k (Pelf 	(uecf  31) , (A2.2.1) 

y- direction: 

ax (Pop 31) + 	(Pell --°2) ÷ 	(Pelf gl) "D y  

	

8 (Pelfgfri) + 	(per, 	(peri.-2y_9 , (A22.2) 



Z 	direction: 
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( 	?Iv ) VxPeif ax (
//i rv, Ri) 

er -t-  o y  

(P eff Pe) 

 

ict 	w 

Oz‘` eff  ?z 

 

  

Vy (Pelf  ?z az
(ict  a R9 

elf 

(A2.2.3) 

Examination of equations (A2.2.1) to (A2.2.3) reveals that: 

• Neglecting stresses along the PFD implies that all terms of 

the form: 

x Peri'  ax`. ) tiji.  , can be set to zero. 

• Neglecting stresses on planes normal to PFD implies that terms 

of the form: 

(1(Ae„ 2L4) ?X 	?X , can be set to zero. 

A2.3 	Resulting terms representing diffusion  

It can be observed that the effective-viscosity approach leads 

to diffusion terms identical to terms appropriate to incompressible, 

laminar flows, with molecular viscosity being replaced by effective 

viscosity, thus: 

ax• 
(Ye, --u-i

t
) 	 • (A2.3.1) 

In addition, the transport of momentum in the y-  and Z-direc-

tions involve additional terms containing peg. In the present work, 

these have been expressed as additional sources or sinks of the appro-

priate momenta. For completeness, these terms are listed below: 

p_tLI) 
)6 	 err 	 [IUeff ay  j Y 	9  

, (A2.3.2) 
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and, 

?y 
u fl 	D v ) 	.1(u Dw 
eff 	 ; reff (ti. 2.3.3) 

which are expressed in quasi-orthogonal co-ordinates as follows: 

V -1- 	 
2 (gATY s) ?9) 

Pelf 371 
	s)(zE-Z 	

1461 (A 2.3.4) 
wPq °V 

21  

and, 

f 	1-1', 	121_ 
	 PeffZi 	 2 	eff 	. (A2.3.5) )6 	
kflis)(ZE-ZwP7T 

(ZE -Zw) 	u 

A2.4 	Effective viscosity in the mixing-length model  

Using Equation (4.2.3), the general expression for, effective 

viscosity is rewritten as: 

Vt 

f 

12 	?Lit: 	2(21. 7 

	

( ex' 	axj -) oxJ1 , (A2.4.1) 

It is reiterated here, that, as a consequence of the boundary-layer 

approximations: 

(u.) << < 	(v.1 ) and -L (u,-) 

and hence terms of this nature may be dropped from the expression 

(A4.2.1). This done, the expression for effective viscosity, becomes: 

)) 	[
r/P112 ( "O W)2] ! (DU )2 	( W 	VV )2 
(Loy/ 	?z 	• ky/ 	Oy 	?z/ 

(A2.4.2) 
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-aw 4_  _1  1 	V1/ y- 	2 + (

N„,-  as) V71 (A2.4.3) 
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and in terms of the quasi-orthogonal co-ordinates; 

))t- = 	-112  2[(yiv_lys)2 / 4 2  	W)2 O1 
' (z8.-Zwf CD4 / 

	 (aU )2 

	

 	( ?1J 12 
Niv 	)2 "D'71 	(zE  -Zwy 	I 

A 2.5 The generation term in the k-e model  

The general expression for the generation of turbulence energy 

is (see Rodi [49] ): 

— pui  u: dzy 	 (A2.5.1) 

If, into this, the expression for the turbulence stress Equation (3.2.1), 

is substituted, one obtains, 

I -aut.  ÷ 	DLit- 
t Oxj.  axe  Oxi 

• (A2.5.2) 

Using identical arguments to that in the previous section, this expres-

sion for three-dimensiOnal boundary-layer flows is reduced to: 

,,,2 (2f)2.1 
P9t[ 2Rry) 	 + (az) 

+ v 2  
Dy 	21z 

(A2.5.3) 

or, in terms of the quasi-orthogonal co-ordinates: 

1,2,1 	( 0v)2   (w121 G = 
kcys)

7 	
(ZE -Zw)2 °4 ) 	(Y1,1 -Y3) 

	 (OU)2 	/ 	"aW 

1-(ZE -zw)24 	V,YAI-Ys) '°71 
 	)2] • (A2.5.4) 
(zE-zw) 
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A2.6 	Concluding remarks  

Were the Boussinesq hypothesis (4.2.1) to be an exact relation-

ship, the expressions derived above would be exact within the framework 

of the boundary-layer approximations. However, there is strong evidence 

to suggest that the hypothesis breaks down under certain conditions as 

for example in the following situations. 

a) Turbulent stresses 	are known, through 

experimental evidence to be non-zero, even though 

the time-averaged or macroscale velocity gradients 

are identically zero, (e.g. Launder and Spalding 

[34] ). 

b) Turbulent normal stresses, i.e. -ft.414 can but 

be positive; the relationship (4.2.1) would imply 

however, that they are dependent upon the sign of 

the velocity gradients. 

It has been presumed, that, for the situations described in this work, 

the effect of neglecting these factors is negligible, and that methods 

developed to overcome the defects of equation (4.2.1) (e.g. Tatchell 

/60] ) are not required to be used. Results presented in Chapter 8, 

would appear to substantiate this. 

• 
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APPENDIX A3  

SOME COMPUTATIONAL DETAILS 

A3.0 	Introduction 

This Appendix contains information relating to the use of the 

numerical procedure used for the predictions reported in Chapter 7 and 

8. The grid dispositions used, as well as matters associated with the 

use of the computer program incorporating the numerical procedure are 

described. 

A3.1 	Discretization of source terms  

In Chapter 3, it was mentioned that the discretized form of the 

source (and/or sink) term for each variable 0 , was linearized. The 

discretized balance equation having being obtained by integration of the 

differential equation over the control volume for each 0 , the lin-
earized terms involve volumetric quantities. Thus: 

Su 	SP  0 
, (A3.1.1) 

where, 1.9& here represents the volume of the control volume for 0. 

Whatever the nature of the grid-disposition (i.e. uniform or highly non-

uniform spacing between grid nodes) used, the value of Op in (A3.1.1) 

is presumed to be the average value of 0 for that control volume. The 

consequence of the linearization with the above presumption, is an in-

crease in implictness of the discretized 0-equation. This may be ob-

served from the following. 

The coefficients of the algebraic equation representing the 

balance of 0 over the control volume having been assembled in the 

manner detailed in Chapter 3, the balance equation may be expressed as: 
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0 	 0, 

E Ai - 	 Op = E A . 	• --t-  Su  
t 

. 
E,W,N,5,eu 	 L = E,W,N,5 

- (A3.'. 2) 

• 

Then, the coefficient of 0 becomes 

Ap  = E A i  
z.= A6/ pu  

0 
The enlargement of /4p

/ 

 by Sp (this quantity itself being always 

arranged to be negative) helps the coefficients of the reduced form of 

(A3.1.2), i.e. 

	

E A 
	O. + Su 	 (A3.1 . 4) 

E,W,N,5 

to satisfy the condition, 

E A z. 
	1 
	

(A3.1.5) 
= E,141,N,S 

with even more certainty than before. Since criterion (A3.1.5) is known* 

to increase the stability of the discretized balance equation (A3.1.4), 

linearization of source terms is seen to promote stability. Hence, where-

ever possible, the source terms detailed in Appendix Al, are expressed 

in linearized form. 

A3.2 	The near-wall treatment  

The application of wall-functions to the near-wall region, is 

considered here in discretized form. In Fig. ( A3.2.1) below: 

See for example Gosman et. al. [24] 
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Fig. (A3.2.1) 

attention is confined to the control volume associated with grid node 

The steep gradients occuring in the region of the wall are accounted 

for by the use of wall-flux relationships in the following manner. The 

appropriate flux at the wall is expressed in terms of an appropriate 

diffusion coefficient at the wall and a 0 -gradient, with the usual 
presumption of linear 0- variation between grid nodes. Thus, 

• // 
= 	11935  IC/5P C6S 

Yp 

(A3.2.1) 

Since this is identical to the form in which diffusion at the interface 

between adjacent control volumes is calculated in the rest of the cal-

culation domain, the problem reduces to finding an appropriate value of 

r1105 	
. Two examples of so doing are described below. 

a) 	Laminar flow 

The region adjacent to wall boundaries is likened to a "Couette-

flow" region where the velocity at the boundary away from the fixed wall 

is prescribed by reference to the solutions to flow-field equations. Thus, 

the simplified momentum equation in the VC-direction, 

o = _ 	 f Rif  
Oy 1 	'ay J 7(A3. 2.2) 



ru 471-E cDwkp2 yp  q, /,up j 
. (A3.2.6) 

, 
C 	 p  

4 	 210 

is used to arrive at diffusion coefficient [7  in (A3.2.1): 

S 2 
= 	LI (121)[ 

 yP  
dX t1 - CI P s 

• (A3.2.3) 

When pressure gradients are absent, this relation reduces to the use of 

laminar viscosity at the wall boundary. The relation(A3.2.3) moreover, 

may be used either explicitly using upstream values for calculating terms 

on the right-hand side or iteratively at any given downstream station. 

Similar practices may be adopted for all velocity components parallel 

to wall boundaries. The effect of inclusion of wall-functions upon pres-

sure drop is illustrated in Figure (A3.2.2). 

b) 	'Turbulent flow 

Equation (4.5.1) is used to illustrate the practices adopted for 

turbulent flow. The value of fizcomputed from the 	model is used 

in this illustration. 

The wall-shear stress is computed as: 

t-vit 	= 	P (LIP US)/ YP 

using the relation (4.5.1) and the definition 

rpv 	P Uz2  

the following expression is arrived at: 

(A3.2. 4) 

(A3.2.5) 

The underlying assumption behind this expression is the fact that the 

grid disposition is so chosen that the point A) always lies in the fully-

turbulent region of the boundary layer where the semi-log law (4.5.1) 

applies. 
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As mentioned in Chapter 4, the boundary conditions for the equa-

tions governing the transport of k and E in the two-equation turbulence 

model, are prescribed in an empirical manner. The practice adopted in 

the present work is described below. 

It is presumed that in the vicinity of wall boundaries to fluid 

flow, there exists a constant shear-stress region. It is observed that 
• 	 in this region there is near-balance between the generation and dissi- 

pation of turbulence energy, k , and its diffusion is negligible (see, 
for example, Rodi [49] ). In the calculation procedure this region is 

represented by the computational control volumes adjacent to the boun-

dary. The kinetic energy at the grid node corresponding to such control 

volumes, is calculated from 

kr, = 

CD 
2 

Co 	 , (A3.2.7) 

where LI is obtained by re-arrangement of equation (4.6.1). 

In the constant shear-stress layer, by presuming the length scale 

to vary linearly with distance from the wall, the dissipation rate E is 

calculated from 

2 au --- 
P 	 ay 

ut3 

7C'YP 
	 . (A3.2.8) 

This completes the turbulence modelling of near-wall regions. 
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-Cp,x 

rCIS = 2 :1 
Reway  = 0 

uniform 
symbol grid 

—o— 10 x10 without WF 
—e— 10 x10 with WF 
—x— 30 x 30 " 

5 

N.) 

x 	
10

2 
Re tig 

// 

  

    

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 

Fig.(A3.2.2) Effect of including wall functions. Laminar 
flow in a rectangular - sectioned duct. 
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A3.3 	Grid disposition 

As mentioned earlier, a series of grid-dependency tests was 

conducted for each of the cases for which predictions are reported in 

Chapters 7 and 8. In most cases, the grid dispositions used are non-

uniform; the spacing being grid nodes are so adjusted that a greater 

proportion of such nodes are disposed in regions of the calculation 

a 	 domain where steep gradients of dependent variables occur, than in 

regions where such gradients are relatively, small. 

A3.3.1 Grid in the 71, 	plane  

The maximum number of grid lines in each of the 17  and 4 di-
rections, used in the prediction procedure varied from problem to prob-

lem. For the prediction of laminar flows reported in Chapter 7, a 

20 x 20 system of uniformly spaced grid lines has been found sufficient 

in obtaining grid-independent solutions. 

In the prediction of turbulent flows described in Chapter 8 

non-uniform grid spacings were used; a number of grid nodes in the neigh-

bourhood of 400 being used in the 9N., plane. The number of such grid 

dispositions actually used is too great to catalogue here; however, 

table (A3.3.1) lists a few examples of grids used predicting the data 

of Masuda [37] and of Wolf and Johnstone [65] . These examples 

illustrate the manner in which known distribtuions of velocity are used 

to choose the grid dispositions supplied to the prediction procedure. 

Such dispositions resulted for turbulent flow calculations, in 

the first grid node away from the wall in each direction lying in the C:k2)' P  
/3/ 

Pp range 50 to 120, (ref. Figure (4.6.1)). 



Case 
No 

Data 
of 

Calculation 
domain 

No of calc. 
planes 

Grid 
size 

Grid co-
ordinates 

1 Nasuda 	(37] 210 18x 12 `71 	= 0.0,0.01,0.03,0.06,0.1, 
I  

I 

0.15,0.23,0.35,0.5,0.65, 
0.77,0.84,0.88,0.92,0.95, 
0.97,0.99,1.0 

Z = 0.0,0.1,0.3,0.45,0.55, 
0.65,0.75,0.85,0.92,0.96, 
0.99,1.0 

2 Wolf & Johnstone 
[65] 

Case II 

125 16 X12 7/ = 0.0,0.04,0.12,0.24,0.32, 
0.4,0.48,0.56,0.64,0.7, 
0.76,0.82,0.88,0.94,0.98,1.0 I 

4 = 0.0,0.05,0.15,0.25,0.35, 
--I— 0.45,0.55,0.65,0.75,0.85, 

0.95,1.0 

3 Norbury 	[42] 150 12 x12 71 = 0.0,0.05,0.15,0.25,0.35, 

f 0.45,0.55,0.65,0.75,0.85, 

i 
0.95,1.0 

4' = 0.0,0.05,0.15,0.25,0.35, 
0.45,0.55,0.65,0.75,0.85, 
0.95,1.0 

4 Wolf & Johnstone 130 20 x12 71 = 0.0,0.01,0.03,0.06,0.1,0.15, 
[65] 0.25,0.32,0.36,0.42,0.5, 

Case IV . 0.58,0.62,0.7,0.8,0.9,0.95, 
0.98,0.995,1.0 

= 0.0,0.05,0.15,0.25,0.35, 
0.45,0.55,0.65,0.75,0.85, 
0.95,1.0 

Table (A3.3.1) 
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A3.3.2 Forward step sizes  

The marching-integration scheme used in this work permits the 

choice of variable forward-step sizes, with position along the predomi-

nant flow direction. In all cases reported here, the first forward step 

from the diffuser inlet section was chosen to be in the range of 0.5 to 

10 % of the characteristic width, d . This was increased by a constant 

factor at each subsequent forward step, until a specified maximum value 

was reached, whereupon this value was kept constant for subsequent steps 

in the marching procedure. The constant increment factor, used in the 

present work, lay in the range 1.02 to 1.15 and the maximum value of 

forward step size in the range 20 % to 100 % of the characteristic width, 

	

A3.4 	Computer times  

Computations were performed, with a program written in FORTRAN IV 

on a CDC 6600 computer. Economy was affected by storing a major portion 

of the program in compiled form and specifying merely the input infor-

mation for each run in source form. Compilation times, using an FTN, 

Version 4.0 compiler, were of the order of 20 secs. Execution times 

varied considerably from run to run, depending upon the grid sizes used, 

the turbulence model etc. A typical computational time for a case where 

integrations were performed at 200 axial stations, until an L/d of about 

15 was covered, was 75 secs. 

	

A3.5 	Concluding remarks  

The information provided in this Appendix indicates that the 

numerical procedure is flexible and computations are economical to 

perform. 

*  
This program named STABLE (for Steady Three-dimensional Analyser of 

Boundary-Layer Equations), is a property of Combustion, Heat and Mass 

Transfer Limited, 2 Vineyard Hill Road, London SW19. 
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APPENDIX A4  

TABULATED VALUES OF EXPERIMENTAL DATA 

A4.0 	Introduction 

In this Appendix experimental data obtained in the experimental 

program described in Chapter 5, are presented in tabulated form. The data 

consist of axial-velocity and static pressure profiles, suitably norm-

alised, across the vertical and horizontal central planes at eight axial 

stations. Static pressure values obtained from wall static-pressure taps 

at twelve axial stations are also presented. 

A4.1 	Effect of included angle on pressure rise  

Experimental conditions  

0 
ras = 1 : 1; Uin  = 38.5 m/s; Ta = 21 C. 

No x/d 
C 	(wall static-pressure tap values) 
p,x 

29 = 

0
o 

2° 
 

4
o 

6° 
o 

 8 

1 0.0 0.0 0.0 0.0 0.0 0.0 
2 0.25 -0.003 0.024 0.049 0.053 0.061 
3 0.625 -0.015 0.039 0.068 0.082 0.101 
4 1.25 -0.022 0.055 0.118 0.184 0.228 
5 2.0 -0.045 0.087 0.181 0.272 0.330 
6 3.0 -0.066 0.116 0.245 0.354 0.420 
7 4.25 -0.090 0.182 0.307 0.442 0.535 
8 5.75 -0.120 0.208 0.394 0.541 0.606 
9 7.5 -0.144 0.251 0.447 0.610 0.664 
10 9.25 -0.183 0.295 0.489 0.638 0.699 
11 11.25 -0.206 0.325 0.531 0.679 0.742 
12 13.25 0.376 0.579 0.706 0.761 
13 15.0 -0.283 0.348 0.558 0.694 0.750 

A4.2 	Effect of Reynolds number on pressure rise  

Experimental conditions  

r
as = 1 : 1; 	20 = 4 ; 	Ta = 20.5

o 
C. 
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No x/d 

C 	(wall static-pressure tap values) 
13,x 

_5 
Re x 10 = 

1.0 1.16 1.30 1.67 1.73 

1 0.0 0.0 0.0 0.0 0.0 0.0 
2 0.25 0.029 0.028 0.029 0.029 0.026 
3 0.625 0.051 0.051 0.053 0.059 0.058 
4 1.25 0.102 0.100 0.103 0.112 0.107 
5 2.0 0.198 0.195 0.197 0.198 0.191 
6 3.0 0.262 0.260 0.261 0.267 0.257 
7 4.25 0.330 0.327 0.327 0.336 0.335 
8 5.75 0.380 0.393 0.393 0.403 0.390 
9 7.5 0.460 0.455 0.456 0.468 0.458 
10 9.25 0.510 0.506 0.498 0.519 0.508 
11 11.25 0.558 0.549 0.553 0.564 0.548 
12 13.25 0.587 0.582 0.587 0.600 0.584 
13 15.0 0.583 0.577 0.579 0.592 0.577 

A4.3 	Static-pressure traverses: 20 = 0°  (-C pX 
Experimental conditions  

r
as 

= 1 : 1; Uin  = 40.1 m/s; T
a 

= 20 °C; z/d = 0.5. 

No 
x/d = 

y/d = 

2.35 4.20 

. 

6.10 7.45 9.20 11.6 13.2 

1 0.01 0.055 0.0974 0.1380 0.162 0.185 0.206 0.230 
2 0.02 " 0.098 It ti 0.186 0.207 0.231 
3 0.03 II It It It 0.208 0.232 
4 0.04 it II II 11 0.187 0.209 it 

5 0.05 ti II IT II it 11 It 

6 0.06 II II it It It II It 

7 0.08 IT It It II II II it 

8 0.1 It II 11 0.163 It 0.210 II 

9 0.12 It It II II  It IT II 

10 0.16 TT II II It II It 0.231 
11 0.2 It II II II It 0.209 It 

12 0.24 It II II II 0.186 tt It 

13 0.3 It II II II It II tt 

14 0.36 " 0.099 0.139 11 tt II 0.230 
15 0.4 " 0.099 tt II It II II 

16 0.5 ft II 11 0.164 tt 0.208 It 

17 0.6 II " 0.138 It II II 11 

18 0.7 " 0.098 it II 11 II It 

19 0.8 vl II II II 11 II It 

20 0.83 IT IT 11 0.163 It II II 

21 0.88 II II II II  0.185 It 0.231 
22 0.91 It II 11 II It II II 

23 0.94 " 0.097 II II It 0.206 0.232 
24 0.96 IT II II II 11 It 
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0 

A4.4 Static pressure traverses: 20 = 2°  (Civ) 

Experimental conditions  

r=1:1;i1.=38.5 m/s; T 	= 20 	C; z/d = 0.5. 
as 	in 	a 

No 
x/d = 

y/d = 

0.0 0.35 2.35 4.2 6.1 7.45 9.2 11.6 13.2 

1 0.01 -0.011 0.017 0.087 0.146 0.202 0.236 0.278 0.307 0.349 
2 0.02 -0.01 n II It II " 0.277 n 0.345 
3 0.03 -0.01 " ". 0.145 It It II ft 0.346 
4 0.04 11 n It It It It 11 It It 

5 0.05 " 0.016 " n " 0.235 " II II 

6 0.06 II " " 0.144 II II II II II 

7 0.08 II " 0.086 " 0.203 " II II  0.345 
8 0.1 II It II II " 0.236 " n II 

9 0.12 n " " 0.145 0.204 " 0.278 II II 

10 0.16 II 11 11 " 0.205 " 0.279 0.308 II 

11 0.2 II It It " 0.206 0.237 " II 0.346 
12 0.24 11 " 0.087 " 0.205 " 0.280 11 II 

13 0.3 II n n 11 II II 11 tl 0.347 
14 0.36 n If n II 11 It 11 0.309 11 

15 0.4 It 
" " 0.146 0.206 0.238 0.281 li 0.346 

16 0.5 II " " 0.147 Il II II 0.308 11 

17 0.6 II " 0.088 0.148 11 
If It II It 

18 0.7 " 0.017 " It " 0.239 " 11 11 

19 0.8 It 
" " 0.147 0.207 " n 0.307 n 

20 0.83 " 0.018 " n " 0.238 0.280 n II 

21 0.88 " 0.017 " 11 " 0.237 0.279 II 

22 0.91 n ." 0.087 " 0.206 " 0.278 II It 

23 0.94 11 " " 0.146 " 0.236 0.277 n II 

24 0.96 " 0.016 0.086 " 0.207 " II - .... 
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o 
A4.5 Static pressure traverses: 20 = 4 	Uprx) 

Experimental conditions  

ras =1:1;1.J.=.40.1 m/s; T
a 
 = 21°  C; z/d = U.5. 

in  

No 

x/d 	= 

y/d = 

0.0 0.35 2.35 4.2 6.1 7.45 9.2 11.6 13.2 

1 0.01 0.00 0.014 0.176 0.304 0.383 0.415 0.484 0.487 0.462 
2 0.02 " 0.016 ft II II 11 0.483 0.486 " 
3 0.03 " 0.017 " 0.305 " 

n 0.481 " 0.461 
4 0.04 " 0.018 0.177 0.306 0.384 " " 0.485 " 
5 0.05 11 II It 0.305 0.383 0.416 n II 11 

6 0.06 It It II II It II n It It 

7 0.08 " 0.019 II 11 II n  0.480 " n 

8 0.1 n 11 n 0.306 " 0.417 11 n n 

9 0.12 II II IT II " 0.418 It n at 

10 0.16 " 0.021 n 0.305 0.384 " It II 11 

11 0.2 " 0.022 tt II tt II It " 0.462 
12 0.24 " 0.025 u " 0.385 0.420 It II II 

13 0.3 11 n 0.178 II IT II " 0.486 0.463 
14 0.36 " 0.026 IT 0.306 " 0.422 n " 0.464 
15 0.4 " 0.027 0.179 II II II " 0.487 " 
16 0.5 " 0.029 0.180 " 0.386 0.426 " 0.488 0.466 
17 0.6 " 0.030 n " 0.387 0.427 0.481 " II 

18 0.7 " 0.030 0.181 " 0.389 0.425 II " 0.465 
19 0.8 " 0.032 0.182 n It II 0.482 " 0.464 
20 0.84 " 0.034 n " 0.390 0.423 " 0.487 0.463 
21 0.88 " 0.036 0.181 0.305 " 0.421 0.481 0.486 0.462 
22 0.91 " 0.038 0.180 " 0.388 0.418 " 0.485 0.461 
23 0.94 It II II " 0.387 0.416 0.480 0.485 " 
24 0.96 If 

- - 
II II 

- 
- - - 

• 
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S 

ti4.6Valuesof(U/T1
in  
) across the vertical centreplane 

Experimental conditions  

20 = 0°; ras 
= 1 : 1; T.Tia  = 41.2 m/s; Ta  = 22°  C; z/d = 0.5. 

x/d 	= 0.35 2.35 4.2 6.1 7.45 9.2 11.6 13.2 

No y/d = 

1 0.01 0.610 0.762 D.731 0.736 0.727 0.715 0.699 0.706 
2 0.02 0.796 0.800 0.773 0.775 0.744 0.768 0.741 0.750 

3 0.03 0.990 - - 0.821 0.777 0.808 0 783 0.789 
4 0.04 - 0.919 0.869 0.860 0.818 0.841 0.817 0.820 

5 0.05 0.992 0.961 - 0.924 0.857 0.870 0.846 0.846 

6 0.06 - - - - 0.888 0.897 0.871 0.869 
7 0.08 - - - 0.977 0.942 0.947 0.917 0.912 

8 0.1 0.994 1.016 1.033 1.019 0.990 0.987 0.959 0.950 

9 0.12 - 1.016 - 1.048 1.029 1.024 0.996 0.986 

10 0.16 0.995 1.017 - 1.064 1.070 1.073 1.057 1.045 

11 0.2 0.996 1.017 1.046 1.065 1.076 1.086 1.093 1.091 

12 0.24 0.996 1.018 - 1.067 1.077 1.088 1.102 1.111 

13 0.3 0.997 1.019 1.047 1.068 1.077 1.089 1.104 1.115 

14 0.36 0.998 - 1.048 1.068 1.078 1.090 1.105 1.116 

15 0.4 0.999 1.023 1.049 1.068 1.079 1.090 1.106 1.116 

16 0.5 1.005 1.025 1.05 1.070 1.080 1.092 1.107 1.118 

17 0.6 1.008 1.026 1.05 1.071 1.081 1.093 1.109 1.119 

18 0.7 1.010 1.025 1.051 1.071 1.081 1.093 1.110 1.101 

19 0.8 1.010 - 1.052 1.072 1.082 1.094 1.104 1.059 

20 0.84 1.000 - 1.05 1.073 1.081 1.087 1.073 0.976 

21 0.88 0.997 - 1.05 1.072 1.074 1.014 0.986 0.942 

22 0.91 0.993 - 1.05 1.043 1.054 0.976 0.951 0.870 

23 0.94 0.989 - 0.961 1.003 0.930 0.886 0.869 0.822 

24 0.96 0.986 - 0.890 0.966 - 0.830 0.817 - 
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A4.7Valuesof(U/5
in) 

across the vertical centreplane 

Experimental conditions  

20=2°;r=1:1;11.=41.5 m/s; T = 19.5°  c; z/d = 0.5. 
as 	in 	a 

No 

...________-x/d -  

y/d - 

0.0 0.35 2.35 4.2 6.1 7.45 9.2 11.6 13.2 

1 0.01 0.849 0.812 0.678 0.636 0.579 0.537 0.511 0.473 0.439 
2 0.02 0.887 0.855 0.723 0.678 0.616 0.566 0.535 0.500 0.466 
3 0.03 0.921 0.931 0.778 0.724 0.651 0.602 0.565 0.526 0.489 
4 0.04 0.965 0.975 0.825 0.758 0.683 0.633 0.590 0.549 0.511 

5 0.05 0.991 0.987 0.865 0.793 0.713 0.659 0.612 0.568 0.529 
6 0.06 0.994 II - 0.824 0.740 0.683 0.632 0.584 0.544 

7 0.08 0.996 tr - 0.876 0.788 0.729 0.670 0.619 0.574 
8 0.1 0.996 " 0.938 0.908 0.830 0.770 0.708 0.648 0.605 

9 0.12 0.997 " 0.943 0.918 0.865 0.806 0.743 0.675 0.630 

10 0.16 0.997 " 0.949 0.920 0.890 0.857 0.801 0.730 0.680 
11 0.2 It tv u 11 0.891 0.866 0.833 0.774 0.724 
12 0.24 " " 0.950 0.921 " 0.867 0.838 0.799 0.761 

13 0.3 I, 0.988 0.952 0.920 II " 0.840 0.807 0.781 

14 0.36 11 " 0.947 11 0.888 0.866 0.839 0.805 0.783 
15 0.4 0.989 0.989 0.944 It t1 ." 0.838 " 0.785 
16 0.5 1.000 0.990 0.946 11 0.890 0.867 " 0.806 0.784 

17 0.6 1.001 0.991 0.948 11 11 " 0.839 0.807 " 

18 0.7 1.001 0.992 0.952 0.919 0.886 0.866 0.838 " 0.782 

19 0.8 1.000 0.993 0.954 0.922 0.888 0.874 0.837 0.775 0.736 
20 0.84 0.998 0.990 0.955 0.924 0.884 " 0.819 0.738 0.686 

21 0.88 0.997 0.989 0.958 0.926 0.872 0.821 0.739 0.661 0.622 

22 0.91 0.996 - 0.950 IT 0.840 0.787 0.707 0.637 0.601 

23 0.94 0.994 0.940 0.876 0.777 0.705 0.641 0.580 0.551 

24 0.95 0.991 - - 0.815 0.764 0.634 - 0.536 - 

• 



222 

A4.8 	Values of (U/Tiin) across the vertical centreplane 

Experimental conditions  

20=40;ras =1:1;5
in 
 = 41.7 m/s; T

a 
 200  C; z/d = 0.5. 

No 

x/d 	= 

y/d = 

0.35 2.35 4.2 6.1 7.45 9.2 11.6 13.2 

1 0.01 0.911 0.675 0.550 0.473 0.442 0.386 0.344 0.318 
2 0.02 0.943 0.729 0.582 0.498 0.457 0.406 0.361 0.337 
3 0.03 0.947 0.784 0.631 0.533 0.487 0.431 0.379 0.351 
4 0.04 0.948 0.826 0.667 0.564 0.511 0.451 0.394 0.366 
5 0.05 " 0.852 0.703 0.589 0.533 0.470 0.409 0.379 
6 0.06 " 0.864 0.734 0.624 0.554 0.487 0.421 0.391 
7 0.08 " 0.867 0.782 0.668 0.595 0.518 0.445 0.413 
8 0.1 It 11 0.810 0.709 0.631 0.551 0.475 0.431 
9 0.12 0.949 0.868 0.816 0.743 0.667 0.581 0.505 0.449 

10 0.16 0.950 " 0.817 0.772 0.721 0.637 0.541 0.485 
11 0.2 " 0.870 I, 0.776 0.737 0.679 0.584 0.523 
12 0.24 it It 0.818 0.776 0.740 0.693 0.614 0.557 
13 0.3 0.952 " 0.824 11 11 0.695 0.636 0.589 
14 0.36 0.954 0.872 II II II 0.696 0.637 0.602 
15 0.4 " 0.871 I, 0.776 0.738 " 0.637 0.605 
16 0.5 0.955 0.872 II 0.775 0.736 " 0.638 it 

17 0.6 0.958 " 0.825 0.777 0.735 " 0.641 0.606 
18 0.7 0.960 0.871 0.826 0.776 0.738 0.697 " 0.597 
19 0.8 0.963 0.873 0.827 to 0.739 0.688 0.597 0.532 
20 0.84 0.965 0.875 " 0.777 0.735 0.659 0.561 0.505 
21 0.88 0.966 " 0.830 0.759 0.671 0.588 0.501 0.455 
22 0.91 rt " 0.825 0.720 0.644 0.565 0.478 0.442 
23 0.93 " 0.873 0.751 0.645 0.573 0.466 0.446 0.405 
24 0.95 0.950 0.861 0.683 - - - - - 

• 
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A4.9 	Profiles of (U/13in) across horizontal planes 

a) 	Experimental conditions  

20=0°,ras =1:1;TJ.=39.5 m/s; T
a 

= 22°  c; x/d = 6 : 1. 
in 

No 
----„z/d = 

y/d-=----- 
0.05 0.15 0.25 0.35 0.45 0.55 

1 0.05 0.763 0.851 0.859 0.877 0.904 0.905 
2 0.15 0.788 1.028 1.063 1.061 1.064 1.063 
3 0.25 0.790 1.022 1.066 1.064 1.067 1.064 
4 0.35 0.810 1.031 1.067 1.065 1.068 1.066 
5 0.45 0.819 1.048 1.068 1.067 1.070 1.068 
6 0.55 0.825 1.054 1.070 1.068 1.071 1.070 
7 0.65 0.811 1.055 1.071 1.070 1.071 1.070 
8 0.75 0.810 1.056 1.071 1.071 1.071 1.071 
9 0.85 0.789 1.052 1.071 1.071 1.071 1.071 
10 0.95 0.798 0.968 0.966 0.976 0.966 0.966 

b) 	Experimental conditions  

20 = 0°; 
ras 

= 1 : 1; U. = 39.5 m/s; T
a 
 = 22°  C; x/d = 11.6; 

y/d = 0.5. 

No i U 

U. 
in 

No z 
d 

U  

U. 
in 

1 0.03 0.705 13 0.36 1.102 
2 0.04 0.749 14 0.4 1.105 
3 0.05 0.759 15 0.5 1.107 
4 0.06 0.802 16 0.6 1.106 
5 0.07 0.829 17 0.7 1.105 
6 0.09 0.882 18 0.8 1.099 
7 0.11 0.925 19 0.84 1.068 
8 0.13 0.962 20 0.90 0.971 
9 0.16 1.030 21 0.92 0.935 
10 0.2 1.079 22 0.95 0.845 
11 0.24 1.097 23 0.96 0.785 
12 0.3 1.101 - - - 
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A4.10 Profiles of (U/iiin) across horizontal planes 

Experimental conditions  

20 = 2
o 
 ; ras  = 1 : 1;in= 40.5 m/s; T = 21°  C 

a) 	b/d = 1.0862; x/d = 2.35  

No 

y/d = 

z/b = 

0.05 0.1 0.16 0.2 0.3 0.4 0.5 

1 0.019 0.669 0.725 0.735 0.738 0.737 0.747 0.750 

2 0.038 0.737 0.801 0.809 0.810 0.807 0.831 0.834 

3 0.130 0.772 0.904 0.942 0.937 0.941 0.942 0.944 

4 0.223 0.839 0.938 0.953 0.941 0.945 0.943 0.945 

5 0.315 0.855 0.941 0.957 0.944 0.947 0.944 11 

6 0.5 0.865 0.938 0.949 0.949 0.950 0.949 0.944 

7 0.685 0.885 0.934 0.948 0.940 0.942 0.940 11 

8 0.777 0.867 0.931 0.943 0.935 0.939 0.938 0.942 

9 0.870 0.806 0.922 0.940 0.930 0.937 " 0.944 
10 0.962 0.693 0.791 0.798 0.784 0.823 0.820 0.840 

11 0.981 0.637 0.700 0.705 0.718 0.738 0.730 0.751 

b) 	b/d = 1.2130, x/d = 6.1  

No. 

y/d = 

z/b = 

0.1 0.3 0.5 

1 0.038 0.656 0.636 0.646 
2 0.088 0.751 0.758 0.784 
3 0.170 0.774 0.882 0.885 

4 0.253 0.799 0.888 0.886 

5 0.335 0.810 0.890 0.887 

6 0.418 0.817 0.891 0.889 
7 0.500 0.829 0.891 0.888 

8 0.582 0.832 0.892 0.884 

9 0.665 0.827 0.887 0.883 

10 0.747 0.793 0.882 0.883 

11 0.830 0.776 0.878 0.883 

12 0.912 0.760 0.803 0.830 
13 0.962 0.670 0.690 0.685 
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(A4.10 continued) 

c) b/d = 1.405; x/d = 11.6  

No 

y/d = 

z/b - 

0.1 0.3 0.5 

No z/b .- 

0.1 0.3 0.5 

0.016 0.456 1 0.433 0.441 10 0.571 0.646 0.798 0.800 
2 0.044 0.574 0.521 0.546 11 0.642 0.645 0.798 0.801 
3 0.073 0.599 0.584 0.601 12 0.714 0.616 0.794 0.802 
4 0.144 0.602 0.716 0.725 13 0.785 0.608 0.788 0.799 
5 0.215 0.628 0.795 0.796 14 0.856 0.604 0.716 0.742 
6 0.286 0.642 0.805 0.801 15 0.927 0.592 0.584 0.625 
7 0.358 0.632 0.807 0.801 16 0.956 0.553 0.528 0.568 
8 0.429 0.644 0.803 0.802 17 0.984 0.448 0.427 0.454 
9 0.500 0.646 0.801 0.803 

A4.11 Profiles of (U/iiin) across 

horizontal planes 

Experimental conditions  

20=4°, r__=1:1; iIin=40.5mis; 
0  ab 

T = 20 C. 

a) b/d=1.0244, x/d=0.35, y/d=0.5 b)b/d=1.164; x/d=2.35; y/d=0.5  

No b (U/Uin) 
 

No z/b (U/U 	) 
in 

1 0.031 0.939 8 0:598 0.953 
2 0.070 0.944 9 0.695 0.951 
3 0.110 0.952 10 0.793 0.952 
4 0.207 0.952 11 0.890 " 
5 0.305 0.953 12 0.930 " 
6 0.402 0.955 13 0.969 0.950 
7 0.500 0.955 

No z/b (U/T.Jin) No z/b (U/1
i

1
n
) 

1 0.019 0.619 10 0.586 0.870 
2 0.053 0.773 11 0.672 0.869 
3 0.070 0.824 12 0.758 0.866 
4 0.088 0.854 13 0.844 0.867 
5 0.156 0.866 14 0.912 0.866 
6 0.242 0.867 15 0.930 0.864 
7 0.328 0.870 16 0.947 0.846 
8 0.414 0.872 17 0.981 0.699 
9 0.500 0.872 

c) b/d = 1.426; x/d = 6.1, y/d = 0.5  

Noz/b(U5in )Noz/b(U /
in) 	
dlio z/b (ULU

in 
 ) 

1 0.023 0.486 10 0.430 0.775 19 0.921 0.669 
2 0.051 0.570 11 0.500 " 20 0.949 0.591 
3 0.079 0.640 12 0.570 0.771 21 0.977 0.458 
4 0.107 0.709 13 0.640 0.770 

5 0.135 0.761 14 0.710 " 
6 0.149 0.769 15 0.781 0.769 
7 0.219 0,774 16 0.851 " 
8 0.290 0.775 17 0.865 0.765 
9 0.360 0.774 18 0.893 0.728 
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(A4.11 continued) 

d) b/d = 1.810, x/d = 11.6, y/d = 0.5  

No z/b (U/IJin) No z/b (U/Tjin) 

1 0.025 0.339 14 0.555 0.639 
2 0.036 0.360 15 0.611 0.640 
3 0.058 0.388 16 0.666 it 

4 0.080 0.430 17 0.721 " 
5 0.102 0.471 18 0.776 0.639 
6 0.124 0.508 _19 0.832 0.602 
7 0.169 0.580 20 0.876 0.533 
8 0.224 0.634 21 0.898 0.494 
9 0,279 0,640 22 0.920 0.454 

10 0.334 0.642 23 0.942 0.413 
11 0.390 0.641 24 0.964 0.376 
12 0.445 0.638 25 0.975 0.357 
13 0.500 0.638 




