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Modelling Lane Keeping by a Hybrid Open-Closed-
Loop Pulse Control Scheme

Abstract—This paper presents a novel methodology for mod-
elling human lane keeping control by characterizing a unique
concept of elementary steering pulses, which are motor primi-
tives in man-vehicle systems. The novelty of the paper is the
introduction of elementary steering pulses that have been evidently
extracted from naturalistic driving data through machine learning
techniques (data-driven modelling), and are incorporated into an
alternative steering control scheme. This newly proposed hybrid-
open-closed- loop (HOCL) control scheme, where an elementary
steering pulse starts with an open loop, representing real human’s
reflex responses triggered by human lane keeping errors, and is
adjusted back with the traditional close-loop control, has shown
a significant improvement on both the stability and matching
performance to real driving events. Online measurement of the
key metrics in the steering process provides a new tool for
monitoring driver states, and the biofidelic steering model may
provide human-like qualities for future automated lane-keeping
systems. Both will add to the array of tools available for achieving
autonomous and semi-autonomous driving systems, which greatly
benefits the current vehicle industry.

Index Terms—Driver behaviour, man-machine systems, open-
closed- loop control systems, road safety, biofidelic modelling,
data-driven modelling.

I. INTRODUCTION

THE way in which humans manoeuvre a vehicle is a
complicated task which involves initially the interpreta-

tion of all the sensory information about the road conditions
ahead. It is generally accepted that visual stimuli account for
90% of the sensory information used by the driver to choose
the required driving action [1]. In fact, the central nervous
system (CNS) can easily control the manoeuvres of a vehicle
using only this information. Human driving modelling in the
literature [2] is generally based in linear control laws acting in
closed-loop as a response to a visually perceived lane keeping
error. This category of steering control models, although can
exhibit good driving from a performance point of view can
hardly characterize normal human driving, which is essentially
a nonlinear task. In this paper, through signal processing and
machine learning techniques we extract elementary steering
pulses from naturalistic driving data (NDD) and incorporate
them in a new framework of steering control through data-
driven modelling – patterns in data are identified to construct
a biofidelic representation of human steering control. The
purpose is to suggest new assistance and automation control
technologies, by understanding how humans perform steering
corrections to keep the vehicle within the lane boundaries or
to avoid potential road conflicts.

A. Related Work

From the point of view of modelling driver behaviour,
one fundamental question is: which are the road distinctive

attributes or which are the regions of the road ahead from
which the driver extracts the most significant information.
Early experiments performed more than fifty years ago on
test-tracks [3], showed that the visual information from a
particular sighting distance is of special importance for human
lane keeping in straight roads. The required sighting distance
depends on the speed of the vehicle, height of the driver
and also on local driving habits. Furthermore, experiments
in curved test-tracks suggested that the driver focuses sight
at a different distance according to road curvature [3]. Later
literature [4] [5], advocated that drivers typically use infor-
mation from ‘near’ and ‘far’ regions of the road relative to
the vehicle, to produce a suitable steering wheel action. This
led to Salvucci and Gray to propose a linear steering control
model [6], which is discussed in this paper and compared with
the newly formulated approach. In distinction to the two point
strategy of Salvucci and Gray for modelling driving behaviour,
other models have been suggested in the literature. Many of
these are surveyed in [1] and [2]. Beyond these models, one
alternative approach to conventional control methods is the
‘act-and-wait’ method [7] [8], which is incorporated into the
proposed control scheme.

Steering signals obtained from NDD [9] do indicate that
steering actions consist of a series of relatively short pulse-
like corrections rather than smooth, linear and continuous
steering motion [10]. It has been verified [11] that hand
movement in reaching behaviour follows a bell-shaped pattern
over time. As a consequence, it has been hypothesized that
motor movements are composed by adding different motor
primitives [12]. In [13] it is shown that steering corrections
can be fitted by Gaussian functions and that they can be
described by superposition of symmetric motor primitives.
Thus, a new model is required which explicitly includes such
motor primitives. In [14], such a model of steering control
was introduced, and here it is developed further by deriving
the required steering action primitives directly from NDD.

Signal processing of steering signals has been applied to
vehicle industry extensively; some examples are the steering
entropy [15], a driver workload measure developed by Nissan
Motor Co. Ltd, and the Driver Alert Control developed by
Volvo, a monitoring system of driver vigilance. It should
also be mentioned that in addition to vehicle control and
conditional automation another approach, the electronic stabil-
ity control (ESC), increases vehicle stability through braking
control to help in the steering [16].

There is an immense interest in developing vehicles that
take over the steering control from the driver in particular sit-
uations, for example in highway cruising; this comes under the
heading of conditional automation – or level 3 of automation
in the scale from 0 to 5 according to the specification of the
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Society of Automotive Engineers (SAE) [16]. Although fully
automated vehicles (level 5) seem unlikely for unconditional
use in a very near future, conditional automation is a more
feasible and immediate goal. This level of automation involves
a transition of control between driver and vehicle that, in order
to be safe, must happen in a smooth manner. There must be
a period of transition in which the vehicle holds some of the
steering control, and the driver must be sympathetic to it while
holding the steering wheel. For this to be possible, a better
understanding of how humans drive is needed.

B. Contribution

In this paper, existing tools in signal processing and control
theory are integrated to extract the natural pulses occurring in
NDD. An exhaustive analysis, as the one presented, applying
signal processing and machine learning techniques to steering
patterns has not occurred before in the literature. The extracted
pulses are incorporated into an already existing pulse control
law [14] to propose a new nonlinear hybrid open-closed loop
(HOCL) control scheme. Therefore our approach has been one
of data-driven modelling. The HOCL control scheme performs
an initial steering pulse correction in open-loop which is later
ended in a closed-loop control action, in an analogous way
as how the CNS appears to work. Unlike previous driver
control models, the driving strategy of this scheme is extracted
from NDD and not conceptualized merely from theoretical
considerations.

The key contributions of the presented work are: (i) to in-
troduce new means of driver steering control that characterize
normal human driving and are thus biofidelic, (ii) to propose
a new framework for driver assistance and level 2 (partial
automation) or 3 (conditional automation) of vehicle control
[16], and (iii) to expose the industrial applications of the new
methods.

In the following (Section II) the characteristics of the
NDD used are explained along with the description of the
simulations. Section III evaluates the Salvucci and Gray model
where its parameters are fitted with NDD. In Section IV the
natural patterns in the steering pulses – elementary steering
pulses – are extracted from NDD, and the length of the
rising and falling parts of such pulses is determined. This
leads us to propose the HOCL control scheme based on
elementary steering pulses, alternative to the conventional
linear control laws. In Section V, the generic HOCL scheme is
formulated and an example is developed to compare stability
and performance with respect to the Salvucci and Gray model
– with parameters fitted from NDD. Finally, conclusions are
drawn, and future work is suggested in Section VI.

II. EXPERIMENTAL DATA AND SIMULATIONS

It is only recently that rich databases of naturalistic driving
data have become available for research [9],[17]. Here, the
source of the data is the Road Departure Crash Warning
(RDCW) Field Operational Test [17]. For the present analysis
and parameter estimation, 200 sets of data were used, corre-
sponding to 200 driving events for 4 different drivers (50 for
each). The data are considered ‘naturalistic’, that is, the data

are recorded in real road conditions where subjects don’t have
to interact with the logging equipment, and eventually become
unaware of it. Thus the data represent ‘normal’ driving.
The recorded data comprises around 400 channels including
dynamic data variables – recorded at 10 Hz – and video based
recordings such as lane tracking at 2 Hz. Each of the events
has a duration of 60 seconds. The four drivers (A,B,C,D)
are all within the age range from 40 to 50 years old. Drivers
(A,B) are female while drivers (C,D) are male. The initial
speed of the events is 28− 32 ms−1 with an overall variation
less than ±5 ms−1. The driving events were recorded in roads
essentially straight, with radius of curvature at least 500 m.

For parameter fitting the data have been utilized at the
sampling frequency – 10 Hz – but for machine learning
analysis the data have been interpolated to 30 Hz. Comparison
simulations with fitted parameters run accordingly at 10 Hz
and are performed in closed-loop between the steering control
model and a linear bicycle vehicle model. The NDD events
were recorded in Nissan Altima 3.5SE (2003) vehicles, thus
the parameters of the vehicle model were adjusted according to
the specifications of this model of vehicle. A yaw moment per-
turbation on vehicle response was added, so that the steering
control model could not simply point the vehicle straight and
cease action. The amplitude of the perturbation was adjusted
to be equivalent in magnitude to the one found in the NDD.

To create a realistic control problem and allow the simu-
lation to test a biofidelic driving pattern, a delay of 200 ms
is introduced; this was included in the simulations performed
to fit model parameters between the driver control and the
vehicle. The delay represents the effect of neuromuscular
processes in the human driver. At the same time, the driver
control responds to future predicted stimuli according to the
road conditions by using the yaw rate and vehicle velocity. The
prediction is also set at 200 ms in the future to counteract the
response lag. This therefore represents a lag compensation for
visual cues, but not to motion cues such as yaw rate response
to perturbations in the vehicle. The chosen response time is
comparable to the reported value of 180 ms in reference [1].
These considerations are important because it is well known
that delays in the CNS [18], and in control systems in general
[19], decrease the stability of the system.

III. TWO POINT CONTROL MODEL

The Salvucci and Gray model, simplifies the notions of
‘near’ and ‘far’ regions of the road in the form of a near and a
far point fixed at given distances. According to the model, the
driver makes two type of corrections, one to keep the vehicle
within the lane edges, according to the angle from the heading
of the vehicle to a near point θn, and the other to accommodate
the trajectory of the vehicle to the road geometry according
to the angle to a far point θf . The near point is always at the
centre of the lane, while the far point can also be the tangent
point from the vehicle position to the farthest visible point
of the curve when the road is not straight [6]. In the present
analysis we consider only roads which are essentially straight
(see Section II), so here it is considered that the far point is
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again at the centre of the lane. The Salvucci and Gray control
law is the following:

δ̇ = Kf θ̇f +Knθ̇n +Kiθn (1)

where δ is the steering angle.
This approach, while explaining many aspects of human

lane-keeping, has some limitations. The control law (1) re-
sponds to the errors in a continuous manner. As soon as an
error is detected the controller tries to rectify it. Additionally,
the controller reacts simultaneously to information from the
‘near’ and the ‘far’ regions of the road. Another important
remark is that the controller is linear.

For parameter fitting the discrete version of equation (1) is
considered [6]:

∆δ = Kf∆θf +Kn∆θn +Kiθn∆T (2)

where ∆T = 0.1 s is chosen to match the sampling rate
of driving data. In [14] the parameters were fitted using
the continuous version of the controller. The discrete version
provides a time base for representing discrete control actions.

To fit the parameters, all the driving events were sliced in
blocks 2 s long. For each of the blocks, the parameters Kf , Kn

and Ki were fitted using the Moore-Penrose pseudo-inverse
matrix, obtaining a distribution of fitted parameters. In the
present analysis, the near and far point distances are chosen
to be dn = 6 m, df = 30 m respectively. These values were
found to overall produce a higher clustering density in the
parameter distribution (Fig. 1). The slice duration of 2 s was
chosen according to this same criterion. Considering that we
are representing a human control system and that parameter
identification in closed-loop is well known to be prone to
dispersion (due to actions related to disturbance rejection), the
clustering density of the distribution of the fitted parameters
appears very high – Fig. 1 first column. The distribution of
parameters suggests that it can be fitted by a three dimensional
Gaussian model – Fig. 1 second column – which yields mean
values (Kf = 1.0826, Kn = −0.2228, Ki = 0.0415). The
distribution shows that sign of Ki is ill-defined. It is not clear
if it is positive, negative or zero. A negative value of Ki would
mean that the controller would increase lane offsets instead of
decreasing them. Kn has clearly a negative sign. Thus, as the
parameter fitting seems consistent, it suggests that there is a
flaw not in the identification of the parameters but in the model
itself. It appears that these data processing techniques are able
to extract patterns from driving data, even if the model is not
the most appropriate one. The most likely reasons for this
are: the pulse like nonlinear nature of steering signals, and the
evidence that the CNS operates on a HOCL scheme [18].

The eigenvalues of the Salvucci and Gray model, working
in closed-loop with the vehicle model, according the the fitted
parameters are: (−0.078 ± 1.082i, −0.357, 0.065 ± 0.225i).
Thus the system is unstable with the fitted parameters from
NDD – one pair of conjugated complex eigenvalues have
positive real part.

K
f

-1 0 1 2 3
0

500

1000

1500

2000

(a)
K

f

-1 0 1 2 3

K
n

-1

-0.5

0

0.5

(d)

K
n

-2 -1 0 1 2
0

500

1000

1500

2000

2500

(b)
K

f

-1 0 1 2 3

K
i

-1

-0.5

0

0.5

1

(e)

K
i

-2 -1 0 1 2
0

500

1000

1500

2000

(c)
K

n

-1 -0.5 0 0.5

K
i

-1

-0.5

0

0.5

1

(f)

Fig. 1: Subfigures (a), (b), (c): Distribution of each of the fitted
parameters Kf , Kn, Ki. Subfigures (d), (e), (f): Projections
for each parameter pair with the fitted Gaussian model contour
lines. The outer ellipses enclose a confidence region of 95%.

IV. PULSE EXTRACTION AND ANALYSIS

A. Identification of natural pulses

Regarding the nature of the driver’s motor primitives, here
it is first conjectured that the steering angle signal of a driver
can be described as a combination of a ramp function, required
when taking a curve, a bump function, which changes the
heading of the vehicle, and a ripple function, which brings
about a lateral offset shift (Fig 3a). These signals are referred
as elementary steering pulses, and any superposition of them
as a complex steering pulse. It is shown that steering angle
signals, recorded from driver in real road conditions, can be
constructed as a sparse representation of complex steering
pulses, and that the complex steering pulses found in real
data are linear combinations of the same elementary steering
pulses. This will justify the use of the proposed control scheme
(9). To extract the elementary steering pulses from the NDD
feature extraction methods are applied.

When identifying the elementary steering pulses in the
steering angle signal, the well known technique of singular
value decomposition (SVD) will be used [20]. This technique
has the advantage of extracting the natural pulses from the data
without any prior assumption about the pulse shapes. However,
it does not provide a suitably sparse representation. The data
shows that the nature of the steering signal pulses is sparse
in human lane keeping control. Once the pulses are identified,
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a matching pursuit dictionary [21] will be built with them.
The matching pursuit algorithm will reconstruct the signal as
a sparse superposition of the dictionary elements.

The adopted approach is to slice each signal into sub-
samples of 1 s of duration – since it is verified that for human
lane keeping pulses shorter than 1 s are typical. From the
slices, a two-dimensional matrix is built by joining them in
a matrix M , and principal component analysis SVD [20]
is employed. The results are found to be very similar for
all the driving events, and for a chosen driving event they
are displayed in Fig. 2. The most dominant mode is a flat
curve which contains 84% of the energy of the signal. This
flat curve is responsible of dealing with the geometry of the
road (compare 2a with 2c and 2d) and is the only pulse
that clearly has a constant offset in amplitude (2b). The flat
curve is followed by a ramp, a bump and a ripple pulse of
smaller energy content. These three are the steering primitives
or elementary steering pulses above hypothesized.

The given analysis also suggests a way to detrend the data,
as the main interest is to describe human lane keeping and
not how humans follow a particular road geometry. From the
SVD output (matrices U,Σ, V such that UΣV > = M ), the
rows and columns corresponding to the first mode (flat curve)
are eliminated (reduced Û , Σ̂, V̂ ), obtaining a detrended signal
with almost no road geometry content (M̂ such that M̂ =
Û Σ̂V̂ >). Thus it is possible to preserve the frequency and
amplitude of the pulses for posterior analysis (Fig. 2d). After
detrending, the relative energies of the ramp, bump and ripple
are 48%, 22% and 10% respectively. So the three main modes
account for 80% of the energy of the detrended signal.

In this paper it is verified that the human-driver performs
non-symmetric pulses. However, as the given analysis yields
equivalent results for all the driving data, it serves to further
justify the hypothesis of elementary steering pulses and hy-
pothetize their shapes. The normalized pulses (ramp δ1, bump
δ2 and ripple δ3) can be described analytically according to
the haversine function (Fig. 3a):{

δ1(t, Tp) = 1/2 · (1− cos(π/Tp)t) if 0 < t < Tp

1 otherwise
(3)

{
δ2(t, Tp) = 1/2 · (1− cos(2π/Tp)t) if 0 < t < Tp

0 otherwise
(4)

{
δ3(t, Tp) = 4/(3

√
3) · sin(2π/Tpt) · δ2(t, Tp) if 0 < t < Tp

0 otherwise
(5)

where Tp is the activation time span of the pulse or pulse
duration (Fig. 3). δ1 produces a change in the yaw-rate of
the vehicle that serves to follow the geometry of the road. δ2
produces a change on the yaw-angle. It is used to adjust the
heading of the vehicle in lane keeping. And δ3 corrects lateral
offset deviations from the centre of the lane.

B. Duration of the asymmetrical steering pulses:

Regarding the question of what is the typical pulse ac-
tivation span time Tp of a human driver, the possibility of
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Fig. 2: (a): Road geometry for one chosen driving event (event
30 of driver A). (b): The five dominant modes of the steering
signal analyzed in 1 s slices. (c): Time history of the linear
combinations to describe the signals with the modes. (d):
Recorded steering signal for the given driving event, along
with the detrended version and the reconstruction through
matching pursuit – using 60 pulses.

these pulses to be asymmetrical is contemplated. In previous
literature, only symmetrical pulses have been considered [13].
While working with detrended signals, essentially devoid of
road geometry content, it is assumed that the ramp pulse
has no relevance and it may only be used to shape bumps
by joining a rising and a falling ramp. The ripple can be
constructed in the same way by joining two bumps, so the
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Fig. 3: Row (a): Examples of normalized ramp function, bump
function and ripple function with Tp = 0.5 s of activation each.
Row (b): Responses for each of the pulses. The dashed line
shows the yaw angle in radians while the sign markers show
the offset from the centre of the road in meters.

most crucial pulse for lane keeping is the bump, as all pulse
activity can be reconstructed by a superposition of bumps.
Building a matching pursuit dictionary of asymmetrical bumps
of different rising and falling time – rising and falling duration
from 0.05 s to 1.5 s as in the detrended data there are not longer
pulses and shorter pulses are regarded as noise – and running
the matching pursuit algorithm over the 200 driving events,
the histogram of chosen rising and falling time is obtained
(Fig. 4a). This displays the selected pulse duration by the
algorithm to obtain an optimal reconstruction of the signal.
The rising part tends towards a shorter duration than the falling
part, the latter also displaying more variability. The distribution
of the mean rising and falling time of the pulses for each
driving event exhibits differences among drivers. Drivers A
and B use shorter pulses, especially driver B, which is the
most distinct driver compared to the others (Fig. 4c). For all
the drivers, the relationship between rising and falling time
is inverse – the quicker the driver makes the initial ramp,
the slower they make the reverse ramp. We hypothesize that
the rising and falling pulse duration can be used to classify
different driving states.

C. Open-loop vs. closed-loop control

According to the above, it is proposed that the driver per-
forms an initial response to a potential conflict, by performing
a first initial quick adjustment according to an open-loop
scheme – the quicker rising part of the bump shaped pulse.
After this adjustment has been made, that due to its open-loop
nature will result in a over- or under-correction, the driver will
perform a falling ramp in closed-loop. This falling ramp will
have a different duration depending on how good the initial
open-loop guess was. Thus its length has a higher variance
than the rising part. In the proposed model, the rising ramp
will correspond to a learned pattern (pre-cognitive action [14]),

while the falling ramp to a smoother adjustment relative to
the current driving scenario and the magnitude of the error
produced by the first ramp. It is expected that the more
imminent the potential conflict, the faster the driver will tend to
execute the first ramp, and the more error will occur resulting
in a longer closed-loop correction. The mechanism proposed
is consistent with the presented signal analysis, and also is
consistent with known mechanisms of the CNS. Specifically,
the process is analogous to the way in which the human eye
tracks a target. It first produces an quick saccade, to make
a first approach to the target, and then smaller saccades that
occur 0.15− 0.3 s after [19] [22]. Also, experimental research
has shown that the CNS uses a combination of open-loop
and closed-loop control [18], and it has been found [23] that
control only via open-loop cannot reproduce human motor
behaviour. Open-loop systems are poor controllers, although
they have the advantage of responding quicker. Since research
suggests that the human visual and motor systems work on
an open-closed- loop scheme, it is reasonable to believe that
steering pulses do so too.

D. Measures of lane keeping error

Regarding the question of what makes the human driver trig-
ger a pulse, lane keeping and driver performance metrics are
examined. Different lane keeping metrics have been defined
and considered for human lane keeping, for example, the time
to lane crossing (TTLC) [24], the yaw-rate error (YRE) [25]
and the near point angle in the two-point model [6]. Here, an
alternate formulation of the YRE is defined, which is called
the critical normalized yaw-rate (CNYR). The CNYR is easier
to correlate to pulse amplitude than the YRE, although the
conceptual meaning of the metric is the same. Its definition
follows. First the critical yaw-rate is considered,

ψ̇R
crit =

2U sinφR

dR
(6)

where U is the velocity of the vehicle, φR is the azimuth angle,
i.e., the angle difference between the yaw angle and the right
boundary point at the distance of a far point [25]. The far point
distance depends on the speed of the vehicle and a selected
preview time. In the simulations, as the speed of the vehicle
is mostly constant, a fixed far point distance is selected. dR is
the distance from the right front wheel of the vehicle to the
same boundary point. From (6) it is defined the right boundary
margin,

mR = ψ̇ − ψ̇R
crit (7)

with ψ̇ the yaw rate. When mR < 0, the vehicle has engaged
in a trajectory that if sustained, it would eventually take the
vehicle outside the right road boundary at the distance of the
far point. In an analogous way the left boundary margin mL
is defined. The critical yaw-rate, is the yaw-rate at which the
vehicle would exit the right or left boundary at the predefined
distance dR,L if keeping the same speed. The right or left
boundary margins just show how far the current trajectory is
from the critical trajectories.
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Fig. 4: (a) Histogram of rising and falling duration span of
the bumps chosen by the matching pursuit algorithm over
200 driving events. (b) Distribution of the mean rising and
falling duration time over the same driving events tabulated
by driver. The mean values after fitting by a Gaussian dis-
tribution are: A : (0.3286, 0.3935), B : (0.2890, 0.3456),
C : (0.3521, 0.4029), D : (0.3458, 0.4077). The outer ellipse
corresponds to a confidence region of 95%. (c) Comparison
of the ellipses for each driver that enclose a 50% confidence
region and their centres.

From (6) the CNYR follows:

χ =
ψ̇ − 1/2

(
ψ̇Rcrit + ψ̇Lcrit

)
1/2
(
ψ̇Rcrit − ψ̇Lcrit

) (8)

This error metric is zero whenever the yaw-rate is at equal
distance from both the left and right critical yaw-rates, and its
value is (≤ −1 or ≥ 1) when the vehicle is in a lane exiting
trajectory at the far point, left or right respectively. In order
to validate the detrending procedure used, the relationship be-
tween the CNYR and the amplitude of the pulses reconstructed
by the matching pursuit algorithm over the detrended steering

signal is compared (Fig 5). This is done working over the
reconstructed signal through matching pursuit, which allows
for a better identification of the starting and end time of the
pulses and their amplitude. Fig. 5a shows the amplitude of
the error produced by a steering bump. Here we display how
a steering correction, performed in response to an unknown
cause, produces an increase in the CNYR error. A steering
bump changes the heading of the vehicle so this translates
into increase in the error. This relationship, although trivial, is
tested to further verify that the detrending method did keep the
relevant characteristics of the data. Fig. 5b shows the reverse
relationship, which is the one of interest: the CNYR error is
displayed vs. the correcting pulse, done by the driver after the
error is perceived in order to nullify it. Some representative
cases of the relationship between CNYR and steering response
to CNYR are shown in Fig. 6.

In general, for all the driving events, the steering angle of
the driver goes in the direction that neutralizes the CNYR,
although this does not happen for all the duration of the event.
So there are a number of cases in which the CNYR does not
account for the steering action undertaken. The driver may not
be responding all the time to lane-keeping needs. Some of the
steering pulses may be due to noise in the driver behaviour,
vehicle or data collection methods, and some of the driver
actions may be due to other type of precondition such as
traffic contingencies, interaction with other vehicles on the
road driver or even driver distraction.

In Fig 5a, 79% of the pulses generate a CNYR of the
expected sign – positive pulses generate later positive error –
after a lag of 0.3−0.7 s. This relationship corresponds mostly
to vehicle response, but it is relevant the fact that the signal
pre-processing – SVD and matching pursuit – did preserve
it. The driver, in order to rectify an error, must first change
the heading of the vehicle, producing a higher CNYR. A
steering bump in the opposite direction gets the heading back
within the right and left boundary margins (mR and mL). And
in Fig. 5b, the number of pulses occurring in the expected
quadrant location – positive error induces a bump of negative
amplitude is 74% – a little lower than the previous relationship.
This correcting pulse is detected after a lag of 0.1−0.5 s from
the error preceding peak.

The same direct relationship has been tested for the two
error measures, regarding human lane keeping, of the two point
model: θn and θ̇n. In the case of θn the relationship is very
weak. Choosing only the driving events in which the steering
action to near point angle error occurs in the direction that
neutralizes it at least 60% of the times, a much more inhabited
plot results (Fig 7a). In the plot the percentage of dots in the
expected quadrant – a positive value of θn is corrected by
a positive amplitude steering pulse – is only of 62%. This
percentage appears to be very low considering how the cases
where selected, and suggests that there is no correlation at all.
For θ̇n the correlation looks present but very weakly – 65% of
corrections in the neutralizing direction and plot slightly more
populated (Fig. 7b).

Nevertheless, even if the driver would not be directly
responding to these error measures, the relationship must
be there in an indirect way. The driver needs to keep the
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Fig. 5: (a): Amplitude of the steering pulses chosen by
matching pursuit against the CNYR error generated by them.
(b): Amplitude of the pulses against the error they respond
to. The fitted lines display the trend of the relationship. In
both cases, pulses of small amplitudes are discarded by the
matching pursuit algorithm, which selects only 60 pulses from
the dictionary.
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Fig. 6: (a-d): Examples of CNYR neutralizing actions after a
time lag of variable duration for drivers (A−D) respectively.
The start of the EPSs is detected by the matching pursuit
reconstruction of the detrended steering signal.

vehicle between the lane boundaries, whatever strategy he
or she may utilize. The relationship has not been detected
by signal processing probably because θn and θ̇n signals are
much more dependent on road geometry, cross-wind steering
counter-reactions or much more affected by noise in the data.
Furthermore, it has been mentioned that the driver may not be
persistently responding to errors in a continuous way, as this
will involve a high observational workload [10] and steering
action workload. On the other hand, CNYR does not require
constant monitoring as it is based on a preview distance or
time. In any case, the elementary steering pulse-χ relationship
seems to be most consistent.

V. HOCL CONTROL SCHEME

A. ‘Act-and-wait’ Control

The ‘act-and-wait’ method is a relatively new concept in
control theory, although very familiar in everyday human ex-
perience; when controlling a system subject to both uncertainty
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Fig. 7: (a): Amplitudes of matching pursuit detected elemen-
tary steering pulses vs. near angle errors (θn). (b): Amplitudes
of matching pursuit detected elementary steering pulses vs.
derivative of near angle errors (θ̇n).

and time-delay, there are advantages in waiting to assess the
effect of a control action before acting again. According to
[7], for a linear plant with delay, the method simplifies the
process of stabilization by pole-placement and results in a
finite-dimensional discrete-time linear feedback system which
may be stabilized using simple pole-placement. It is shown
that the waiting time should exceed the delay time. In [8] the
method is successfully applied to the control of a nonlinear
mechanical system, and indicates that a proportional gain can
be increased significantly without losing stability, compared to
a continuous controller. For steering control, it seems plausible
that the same act-and-wait action can be successful, allowing
the human driver to apply higher feedback gains to overcome
nonlinearities (e.g. friction in the steering system) and yet
preserve stability.

This hypothesis that human drivers adopt the act-and-wait
method is not formally analysed in the current paper, but the
similarity is assessed in general terms and the HOCL control
scheme incorporates this concept. In particular, one expects the
delay between actions (steering pulses) to exceed the drivers
neuro-muscular time delay of around 200 ms. The following
designed control scheme explicitly incorporates the ‘act-and-
wait’concept.

B. Hybrid Control Law

In the line with the considerations of the previous section,
the HOCL pulse control scheme is now defined:{
δ(t) = K̄ · C̄

(
Ē(t)

)
if R

(
Ē(t)

)
≤ Th

δ(t) = Krb · δrb(t− t0, Trb) · F
(
Ē(t)

)
otherwise

(9)
where K̄ is a vector of parameters, C̄ a vector function con-
troller (working in closed-loop, linear and continuous/discrete)
that acts according to another vector function of selected errors
Ē, when these are below the threshold Th relative to a function
R. When R is above the threshold at a given time t0, a rising
bump δrb is performed (open-loop) of rising duration Trb. For
the duration of the rising bump C̄ is interrupted, then the
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control is passed back to C̄ until the termination of the pulse.
The amplitude of δrb depends on a constant parameter Krb and
on the magnitude of the errors according to a function F . The
HOCL control scheme also assumes a wait time Tw during
which may not trigger further pulses. This is further justified
by the sparsity of higher amplitude pulses, as shown in the
matching pursuit reconstruction (Fig 2d). The same HOCL
scheme can also be applied with different types of elementary
steering pulse acting on superposition. Here we consider a
HOCL that triggers elementary steering pulses according to
the right or left boundary margins (7) and the closed-loop
control is the Salvucci and Gray model,

{
δ̇(t) = Kf θ̇f +Knθ̇n +Kiθn if min(mL,mR) < 0

δ(t) = Krbδrb(t− t0, Trb) · (mR −mL) otherwise.
(10)

Kf ,Ki are taken as in the above fitted parameters (Fig 1), and
Trb = 0.3 according to the rising time results (Fig. 4). The pa-
rameters Kn – which as fitted through NDD was leading to in-
stability – and Kp are fitted using a genetic algorithm. The ob-
jective function evaluates performance based on lane keeping
quality and smoothness steering: P = 1

N

∑t=tN
t=t1

(
yk + Cδ̇k

)
,

where N is the number of time samples t1 . . . tN , yk is the
lateral offset from the centre of the lane and δ̇k the steering rate
in rad/s at each time sample. C is a constant set empirically to
100 which relates both terms in the objective function. With
the given setup the optimized parameters are Kn = 0.1105
and Kp = 0.0119.

The wait time Tw has been set to 0.5 s. Although this value
has not been optimized, it has been observed that much longer
or shorter wait times were less effective. With longer wait
times the pulse control offers reduced error correction, whereas
with shorter wait times the closed-loop part of the model does
not have time to counterbalance the effect of the pulses. In
this case the trajectory becomes too jerky, which forces the
triggering of continuous pulses to rectify this, as the threshold
is continuously surpassed. So this example can be considered a
first implementation of the act-and-wait concept in the context
of steering control [7] [8].

In simulation, the above implementation of HOCL model
performs significantly better than the Salvucci and Gray model
with the fitted parameters from NDD. Running the Salvucci
and Gray model and (10) in the road geometry of the same
driving event as in Fig. 2, it is shown that Salvucci and Gray
model becomes unstable after about half of the event has been
covered (Fig. 8a). The hybrid model, although presenting a
jerky spot at the same point where Salvucci and Gray model
becomes unstable, is able to recover the stability and proceed
to the end of the event within the lane boundaries (Fig. 8b).
Testing also the HOCL in a straight track with an initial lane
offset of 3 m to the left, the simulations show that the vehicle
is able to neutralize the offset and stabilize at the centre of the
lane (Fig. 8b). The Salvucci and Gray model was also tested
in a straight track, and even without initial offset the noise
in the simulation was enough to destabilize it, and thus not
presented in the figure.
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Fig. 8: (a) Recorded steering signal for driving event 30 of
driver A, along with the steering signals of Salvucci and Gray
model and the HOCL example (10) (b) Lane offset from
the centre of the road for the HOCL example in the curved
geometry of the same driving event, and on a straight track
with an initial offset of 3 m. Negative offsets are to the left
and positive offsets to the right. The outer margins are the lane
boundaries, while the inner margins mark when the wheels of
the vehicle reach to the lane boundaries.

VI. CONCLUSION

This paper has focused on describing patterns of driver
behaviour that can lead to representative biofidelic modelling
of human driving. Firstly, the hypothesis is developed, that
the steering signal is governed by basic motor primitives.
Through the use of machine learning techniques and detailed
signal processing, it has been possible to extract patterns
from steering signals that support this claim. Furthermore,
the basic motor primitives for human lane keeping, which are
referred to as elementary steering pulses, have the shape of
an asymmetrical bump function. These findings suggest that
the steering action is well described by an HOCL scheme,
which is further supported by previous research on the CNS.
The HOCL control scheme, designed through a data-driven
modelling approach using NDD and based on pulses, may also
account for visual attention switching and opens new ways to
implement level 2 or level 3 automation assistance controls.

Furthermore, fitting the parameters with NDD of a well
known steering control model, the Salvucci and Gray model,
led to a consistent set of parameters from the optimization
point of view. Nevertheless, the Salvucci and Gray model is
unstable with the fitted parameters, which suggests that this
very simple model does not characterize the way in which
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humans perform steering control. Pure linear type closed-
loop control systems cannot easily accommodate for visual
attention switching as the HOCL does. The presented example,
shows that adding pulse control to a linear closed-loop control
law can stabilize unstable parameters. Regarding the fact of
which are the error-metrics that relate more faithfully to the
way in which humans trigger elementary steering pulses, it
was found that the YRE metric, in particular the alternate
formulation of CNYR, is a possible representative. Some
examples have been given of how performance metrics are
used already in the industry to monitor driver vigilance.

Further work should be aimed towards the study of the most
suitable control systems based on the general HOLC model
as well the design of control laws, that modify the human
performed steering pulses, improving thus the performance
and the safety of the driving, including the possibility of
manipulating driver attention levels. In general, vehicle au-
tomation research aims at increasing the level of automation.
But this work aims at increasing the level of security and
performance of the driver by assisting with partial or condi-
tional automation. One option would be via the addition of
pulses to those performed by the driver. The aim of these
pulses would be to modulate the effective amplitudes and test
whether the driver responds accordingly. This is the subject
of ongoing research. This research has the potential for high
impact in the intelligent transportation industry, road safety
and development of vehicle automation.

Acronyms
CNS Central nervous system
HOCL Hybrid open-closed- loop
NDD Naturalistic driving data
SAE Society of Automotive Engineers
SVD Singular value decomposition
TTLC Time to lane crossing
YRE Yaw-rate error

TABLE I

Notation
δ Steering angle
δ1, δ2, δ3 Ramp function, bump function and ripple

function respectively.
δrb Rising bump function
θn,f Angle to near (n) or far (f) point (from

center of vehicle)
φR,L Azimuth angle to right (R) or left (L) bound-

ary point
χ Critical normalized yaw-rate (CNYR)
ψ Yaw-angle
ψ̇R,L Critical yaw-rate to right (R) or left (L)

boundary point
dn,f Distance to near (n) or far (f) point (from

center of vehicle)
dR,L Distance from right (R) or left (L) wheel to

right or left boundary point
mR,L Right (R) or left (L) boundary margin
P Driving performance metric
U Velocity of the vehicle

TABLE II
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[8] T. Insperger, L. L. Kovács, P. Galambos, and G. Stépán, “Increasing the
accuracy of digital force control process using the act-and-wait concept,”
Mechatronics, IEEE/ASME Transactions on, vol. 15, no. 2, pp. 291–298,
2010.

[9] T. Victor, J. Bärgman, M. Hjälmdahl, K. Kircher, E. Svanberg, S. Hurtig,
H. Gellerman, and F. Moeschlin, “Sweden-michigan naturalistic field
operational test (semifot) phase 1: Final report,” SAFER Report, vol. 2,
2010.

[10] T. Gordon and Y. Zhang, “Steering pulse model for vehicle lane
keeping,” in Computational Intelligence and Virtual Environments for
Measurement Systems and Applications (CIVEMSA), 2015 IEEE Inter-
national Conference on. IEEE, 2015, pp. 1–5.

[11] P. Morasso, “Spatial control of arm movements,” Experimental brain
research, vol. 42, no. 2, pp. 223–227, 1981.

[12] W. Abend, E. Bizzi, and P. Morasso, “Human arm trajectory formation.”
Brain: a journal of neurology, vol. 105, no. Pt 2, pp. 331–348, 1982.

[13] O. Benderius and G. Markkula, “Evidence for a fundamental property of
steering,” in Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, vol. 58, no. 1. SAGE Publications, 2014, pp. 884–888.

[14] T. Gordon and K. Srinivasan, “Modeling human lane keeping control in
highway driving with validation by naturalistic data,” in Systems, Man
and Cybernetics (SMC), 2014 IEEE International Conference on. IEEE,
2014, pp. 2507–2512.

[15] O. Nakayama, T. Futami, T. Nakamura, and E. R. Boer, “Development
of a steering entropy method for evaluating driver workload,” SAE
Technical Paper, Tech. Rep., 1999.

[16] M. Lidberg and T. Gordon, “Automated driving and autonomous func-
tions on road vehicles,” Vehicle System Dynamics, vol. 53, no. 7, 2015.

[17] D. LeBlanc, “Road departure crash warning system field operational
test: methodology and results. volume 1: technical report,” 2006.

[18] S. Hanneton, A. Berthoz, J. Droulez, and J.-J. E. Slotine, “Does the
brain use sliding variables for the control of movements?” Biological
cybernetics, vol. 77, no. 6, pp. 381–393, 1997.

[19] R. J. Jagacinski and J. M. Flach, Control theory for humans: Quantitative
approaches to modeling performance. CRC Press, 2003.

[20] V. C. Klema and A. J. Laub, “The singular value decomposition: Its
computation and some applications,” Automatic Control, IEEE Transac-
tions on, vol. 25, no. 2, pp. 164–176, 1980.

[21] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” Signal Processing, IEEE Transactions on, vol. 41, no. 12,
pp. 3397–3415, 1993.

[22] L. Young and L. Stark, “Variable feedback experiments testing a sampled
data model for eye tracking movements,” Human Factors in Electronics,
IEEE Transactions on, no. 1, pp. 38–51, 1963.

[23] N. Bhushan and R. Shadmehr, “Computational nature of human adaptive
control during learning of reaching movements in force fields,” Biolog-
ical cybernetics, vol. 81, no. 1, pp. 39–60, 1999.

[24] C.-F. Lin and A. G. Ulsoy, “Time to lane crossing calculation and
characterization of its associated uncertainty,” Journal of Intelligent
Transportation Systems, vol. 3, no. 2, pp. 85–98, 1996.

[25] T. Gordon, A. Blankespoor, M. Barnes, D. Blower, P. Green, and
L. Kostyniuk, “Yaw rate error–a dynamic measure of lane keeping
control performance for the retrospective analysis of naturalistic driving
data,” in 21st International Technical Conference on the Enhanced Safety
of Vehicles, Stuttgart, Germany, 2009, pp. 09–0326.


	I 
	I-A 
	I-B 

	II Experimental Data and Simulations
	III Two Point control model
	IV Pulse extraction and analysis
	IV-A Identification of natural pulses
	IV-B 
	IV-C Open-loop vs. closed-loop control
	IV-D Measures of lane keeping error

	V HOCL control scheme
	V-A 
	V-B Hybrid Control Law

	VI 
	References

