
1.

A DIGITAL SYSTEM DESIGN LANGUAGE

This thesis is submitted to the Department of Computing and Control at

the Imperial College of Science and Technology, University of London,

in fulfillment of the requirements for the degree of Doctor of Philosophy.

B. Shandad, July 1974

2.

ABSTRACT

Digital systems may be viewed at different descriptive levels: at the

higher levels the designer is mainly concerned with the behaviour of the

system; at the lower levels with the behaviour of its components and the

way they are connected, i.e. the system structure.

The design of a system is thought of as involving several steps, each of

which is concerned with the transfer of the system description from a

particular level to a neighbouring one.

Among the design media being employed are natural languages, block diagrams,

logical equations, and combinations of these. This thesis introduces a

high level language to serve as a single medium throughout the design process.

This approach, as well as providing a formal medium of communication,

enables us to develop a processor for the Language which can simulate the

behaviour of the system at each design step, before it is implemented in

hardware. With regard to this application, the new problems in the

implementation of the Language, as compared with conventional programming

languages, are also investigated.

3.

ACKNOWLEDGMENTS

The work reported here was carried out under the supervision of

Professor D.J. Howarth, to whom I am very grateful for his encouragement

throughout the project.

The work was begun at the Institute of Computer Science in February 1972,

following the closure of which, in September 1973, it was continued at

the Imperial College of Science and Technology. The project was supported

by a CENTO scholarship made available to the author through the efficient

service of the British Council.

I would like to express my gratitude to Mr. I.H. Gould for constructive

suggestions made in many discussions with Professor Howarth and the author.

Thanks are also due to Mr. D.R. Brough for his comments on the implementation

of the Language, and to Mr. C.T. Burton for his help in editing the

manuscript.

The author has been on leave from Arya-Mehr University, Teheran, Iran.

4.

CONTENTS

Abstract
	

2.

Acknowledgetents
	 3.

Contents

Chapter I 	Introduction
	 9.

1. The Digital Description System

2. Applications

3. The Process of Design

4. Levels of Description

5. The Requirements of the Language

6. General Considerations

7. Plan of the Thesis

Chapter="II 	The Level of Logic Elements
	18.

1. Introduction

2. Boolean and Integer Constants

3. Primitive Elements

4. Graphic Description

5. Symbolic Description

6. same and delay Elements

7. Connectivity

8. Networks

9. Symbolic Description of a delay

10. Sequential and Parallel Operations

11. Ordering the Operations

12. Terminal Registers

5.

Chapter III - The Register Transfer Level 	44.

	

1. 	Introduction

	

2. 	Representation of Boolean Constants

	

3. 	The unknown Value

	

4. 	Arrays

	

5. 	Constants

	

6. 	Array Operations

	

7. 	Expressions

	

8. 	RT-operations

Chapter IV 	The Control Level
	 64.

1. Introduction

2. Parallel Networks

3. Sequential Networks

4. Controlled Networks

5. General Networks

6. Systems

7. Implementation of General Networks

	

- 8. 	Higher Level Control Structures

	

9. 	An Example of Design

Chapter V 	Miscellaneous Extensions 	 90.
1. Introduction

2. Logic Elements with Time Delay

3. System-defined Elements

4. Element Definition

5. Simulation Facilities

6. Input/Output Facilities

7. An Overall View of a Description

6.

Chapter VI 	The Implementation

1. Introduction

2. The Choice of the Implementation Language

3. Major Strategies

4. Linking the Modules

5. Declaration of Modules

6. Referencing the Modules

7. Determination of the Base Address

8. The Virtual Stores

9. Declarations

10. The System Body

11. RT-operations

12. Considerations Concerning the delay Element

13. Delayed Boolean Operators

14. Element Designators

15. The for Structure

16. The Implementation Work

Chapter VII 	Concluding Remarks 	 129.

1. An Overall View

2. Other Design Languages

3. Use of Programming Languages

4. Formal Description

5. Simulation

6. Scheduled Event Simulators

7. Design Automation

7.

Appendix A 	Description of a Computer 	 137.
1.. 	Introduction

2. General Description

3. Effective Address Generation

1+. 	Instructions

5. 	The System

6. 	Conclusion

Appendix B 	The Implementation Language 	152.
1. Introduction

2. General Description

3. The BCL Sequencing Mechanism

4. Format Handling

5. Repeated Elements

Effectiveness for Semantic Analysis

7. 	Representation of Data Structures

8. 	The Scope of Variables

9. 	Concluding Remarks

Appendix C 	Definition of the Syntax
	 170.

1. Constants

2. Variables

3. Expressions

4. RT-operations

5. Sequential and Parallel Networks

6. The if Structure

7. The for Structure

8. The case Structure

9. Loop Structures

10. Miscellaneous Structures

8.

11. Systems

12. Declarations

13. User-defined Elements

References 	 179.

9.

CHAPTER I

Introduction

Digital systems serve for a variety of purposes: the field of computer

systems alone gives a great importance to the study of their design.

The designers of digital systems have long been in search of suitable means

of presenting the methods and products of their designs. English descriptions,

lacking as they do precision, concision, and clarity, were soon replaced by

block diagrams, which have the advantage of a certain correspondence to the

physical configuration of the system. An alternative language was suggested

by the application of Boolean algebra to network-simplification, and logical

equations have been used, both alone, and in combination with block diagrams.

The relative merits of the two methods have been the subject of several

discussions and papers [9,30,46].

The use of flowcharts, which are capable of describing the sequencing and

operation of systems, has been suggested and design problems have been

presented for which this method is effective C38].

In general, the designer might use a combination of these or other languages

in his design: a state diagram might present the initial statement of the

problem; the notation of logical equations might serve to observe certain

design restrictions and simplify the system; the final solution might be

presented in the form of a block diagram.

It is desirable to abstract from these languages the features which are

pertinent to the design process, to obtain a single language which could

serve as the design medium throughout.

This thesis is concerned with the investigation of the required features of

such a language. In recent years several attempts in various directions

10.

have been made to evaluate the effectiveness of this approach, e.g. [39,1413].

Due to their diversity - embracing the fields of digital system design,

language design, translator writing, and simulation - and their lack of

established terminology, we review them, in our final chapter, in the context

of the terminology and conceptual framework of this thesis.

In this chapter we first expand the idea of a high level digital system design

language to define what is called the Digital Description System; the purposes

for which the Description System could serve are considered, and the

requirements of the corresponding Description Language are set out in relation

to the multi-level structure of digital systems, and the process of their

design; finally we mention characteristics of digital computer systems

affecting simulation.

1. The Digital Description System

The Description System is composed of three components: the Description

Language, which is the notation in which the user describes his design; a

simulator which simulates the behaviour of the system described; and a

compiler which can be regarded as an interface between the first two

components. The compiler accepts the source description and produces an

object description which is acceptable to an object machine. The simulator

among other things interprets the object code.

2. Applications

The Description System could serve for three kinds of purposes:

a) 	It could provide a medium of communication in the same way that

programming languages have been used to express computational

processes. Such a description is formal, concise, precise, and

expressive.

The simulator could assist the designer in ensuring the proper

working of the system, in investigating its behaviour, and in

improving the design before it takes a hardware form. Once the

design has been approved, information for assembling the hardware

could be derived from the description, with obvious saving in

design time acid co,5t. Also effects of mulfunctions in any part

of the system could be simulated and investigated.

c) The Description Language could conceptually help the designer

in his creative work by offering facilities which encourage him

to take a systematic approach in his design; this is further

discussed in ensuing sections.

3. 	The Process of Design

In designing the Language we have had in mind the design process, known

as the 'stepwise refinement method', which recently has been considered

in the design of programs [58].

According to this process the designer begins with the problem statement,

i.e. the specification of the 'component' to be designed. The design

task involves several steps. In each step the design of a component is

refined, that is, the solution is expressed in terms of the design of

sub-components of a lower degree of complexity. This is achieved by

decomposing the complex operations into simpler ones, and refining the

representation of data into more primitive forms. This process is continued,

directing progress toward a level whose 'primitive components', i.e. the

components forming the solution, are available to the designer, thus

accomplishing the design task. The primitive components of this final

level are also referred to as 'primitive elements'.

12.

A component designed in this manner might become part of a more complex

system.

3.1 The Design. Tree

As pointed out in [35] one can imagine a design tree whose root, Po,

represents the initial statement of the problem; the leaves of this tree

correspond to possible solutions to the problem; each level of the tree

contains all the possible refinements of the previous level.

Po

P1: possible refinements of PO

possible refinements of P1

A A : possible solutions

Figure 1. The design tree

In each refinement step the designer, on the basis of certain design

criteria, makes design decisions which take him to a node belonging to

the next design level.

It may well happen that after reaching a level the designer wishes to

reconsider the decisions made at a previous level, and to select an

alternative design route. Similarly, the designer might make a choice on

the basis of looking ahead one or two levels. An example of trade-offs

13.

between various design decisions in the design of a multiplier,

leading to several solutions, can be seen in [6].

3.2 Features of this Method of Design

This approach toward design has the following features:

Firstly, the correctness of the design can be ensured at each level so that

ideally the final design product is free of logical errors.

Secondly, the design product is accompanied by a design history which

shows the decisions made and the reasons for them. While the solution at

the final level is suitable for implementation, it obscures the architecture

of the design due to too much detail. Intermediate solutions, which are

presented at higher levels, aid comprehension of the way the final product

has been developed.

Finally, from the documentation viewpoint, if a change is made to the system

at a certain level, only the descriptions at lower levels are affected.

The nature of the change might be a physical modification or reconsideration

of a design decision. Since the design is well documented, modifications

and maintenance should prove to be easier.

4. 	Levels of Description

As mentioned earlier.a digital system may be described at different levels.

At each level the behaviour of the system is defined by the behaviour of

its components and the way they are connected, that is the 'system structure'.

The lowest level considered here is the one whose primitive components are

logic elements, and is therefore referred to as the 'Level of Logic Elements',

at which each logic element produces an output signal after performing a

certain logical operation on its input signals, possibly (depending on the

type of element) with a time delay.

The next higher level is the 'Register Transfer Level', at which a

digital system is imagined to be composed of registers connected through

blocks of logic elements. Each block performs an operation on the contents

of one or more input registers, and places the result in output registers,

which may include some of the inputs.

The next higher level is the 'Control Level' where the order in which the

operations take place is expressed; an operation may be invoked at a

particular step in a sequence of steps, or at a certain time, or in general

when certain conditions are satisfied. Such conditions may well be a

function of the'previous states of the system.

The levels stated above are the important ones. The descriptive levels

of digital systems are not rigid or restricted to these; thus it might

prove convenient to extract a sub-level from a level, or extend the range of

a level. For example, the Control level might be extended to include the

instruction level, at which a machine is described in terms of the changes

in its states as the result of the execution of each instruction.

At the highest descriptive level a digital system is in general composed of

a small number of components, each with a high degree of complexity. As

we move downwards, the number of components increases while the degree of

complexity of each component decreases. The invariant of this process is

the behaviour of the aggregation of the components - i.e. the system.

5. 	The Requirements of the Language

With regard to the purposes for which the Language could serve, the process

of design mentioned earlier, and the descriptive levels of digital systems,

we state the following requirements for the Description Language.

15.

a) The same language should be used throughout the design so that

the designer need not be obliged to learn several notations

(possibly corresponding to different descriptive levels), and so

that components of the system described at different levels can

interact with each other.

b) In order for the Language to be used throughout the design, it

should have a multi-level structure, and be flexible to the

designer's choice of levels.

It should be able to suppress details so that, at a high level,

the designer can investigate the overall interaction of a component

with the rest of the system, or ignore structural details.

Similarly, if a component has already been designed in detail, one

should be able to refer to it at a higher level without going into

its structural details, and by merely complying with the require-

ments of the interface.

c) The concepts on which the Language is based should provide for the

description of the complex behaviour of components at a high level,

where only a few components are involved, and at the same time for

the description of connectivity at a low level where the system is

composed of numerous components.

d) The Language should be equally suitable whether the design approach

is top-down, bottom-up, or some combination of the two. From this

viewpoint its main concern should be to cater for the design of

components in terms of sub-components.

As stated in [57] the required power and flexibility should derive

from a unified simplicity rather than the inclusion of integrated

16.

facilities. This should be combined with the Language ability for

multi-level description in such a way as to offer the designer a

conceptual aid for progressing toward the implementation level,

presenting the solution in terms of the pre-defined components which

he is likely to have at his disposal.

f) An ease of expression should be achieved by building into the

Description System the abstract behaviour of digital systems. Once the

user feels an ease of expression, one of our main objectives, that of

creating a medium of communication and a way of documentation, is

achieved. For when it is easy to describe, it is easy to read; the

description is then self-documented and self-expressive.

One of the important requirements of the Language is to allow the

designer to define his own operators and use them in the same manner

as the standard operators so that the description is homogeneous. This

enables the user to describe his own technology and design his

components in terms of this technology.

h) Finally, the Language should lend itself to implementation so that a

simulator can be developed to ensure the proper working of the system

at every level, and therefore to raise the designer's degree of

confidence in his design.

6. 	General Considerations

The 'model' represented in the computer is in general an approximation to

the real digital system. The words, model and system, are used in contrast

to each other when one is concerned with those features of the system which

are abstracted to obtain the model; otherwise the word, system, refers

to both.

17.

Using a digital computer for the purpose of simulation implies that the

continuous advance of the 'Real Time' in which the digital system runs

should be approximated by discrete changes in the variable representing

it in the model. This variable is called the 'Simulated Time', or 'time'.

Having only one processor available, the effect of parallelism is created

by making available to the receiving component the result of the propagation

of parallel signals only after they have all been propagated.

As the simulation process continues the variable know as the 'Computation

Time', which corresponds to the computer system used for the purpose of

simulation, advances. The following figure shows the correspondence between

different systems and Times involved in the process.

digital system

model

computer system

Real Time

I
Simulated Time

Computation Time

Figure 2. Systems and Times

7. 	Plan of the Thesis

Chapters II, III, and IV of this thesis are concerned, respectively, with

the Levels of Logic Elements, Register Transfer, and Control. Chapter V

is mainly devoted to the extension of the basic set of operators of the

Language, and ways of composition and decomposition of systems in this light.

In Chapter VI problems involved in the implementation of the Description

System are considered; BCL - the implementation language - is described in

Appendix B. Finally, Appendix C gives the syntactic definition of our

Language, and Appendix A illustrates its application in presenting a user-

oriented view of a small computer.

18.

CHAPTER II

The Level of Logic Elements

1. Introduction

It is the purpose of this chapter to define the notion of a network,

and to study such networks at the Level of Logic Elements. Logic designers

often use graphic descriptions to present their design, and we begin by

establishing a formal correspondence between this type of description and

symbolic notation, since the latter is a more suitable form for computer

input, and for representing digital systems at other levels of design.

The notation is then used to introduce and study certain categories of

networks, which are regarded here as basic constituent elements of digital

systems. Detailed attention is paid to the representation and behaviour

of delay elements, from which a suitable notation is developed.

At the same time a theoretical foundation is set up, to form a basis for

identifying the requirements of a simulator for the behaviour of digital

systems described at this level.

2. Boolean and Integer Constants

A Boolean constant is a member of the set

B = (true, false}

and an integer constant is a member of the set

Z = 	1, -2, 2, }

The constant, unknown, is used to indicate an undefined value for a variable.

19.

Primitive Elements

The notion of a 'primitive element' corresponds to a function from the

set of its 'input' values into the set of its 'output' values; the element

has an arbitrary number of inputs (n), and a single output. The functional

form is:

f: 	I -0 0

where 	I =i1 X i2 X X in, n 1

and each i. is either B or Z; and similarly, 0 is either B or Z.

'Terminal' is a general word for referring to an input or output. A terminal

may take values from an appropriate set of constants. In this respect, we

can talk about 'terminal variables'. The value of such a variable is often

called a signal; therefore, a signal is either of 'type' Boolean or integer.

3.1 Naming

Terminals may be given names for purpose of reference. Two identical names

indicate that their corresponding values are always the same; therefore

distinct terminals should be given distinct names.

The whole element may also be given a name, in which case the name is

written on the left hand side of its output identifier, separated by a

colon (:).

4. 	Graphic Description

Figure 1 shows graphic description of a primitive element. There are arrows

on input and output, pointing towards and out from the centre. If f is a

standard function, such as Z, 	+, etc., the corresponding symbol is entered

in the circle; otherwise the function name is written. Such a composite

20.

function should be.described in terms of standard functions,

i2

0

Figure 1. General form of a primitive element

x 	a
	

b

w 	z

(2)
	

(3).

Figure 2. Examples of primitive elements

21.

5. 	Symbolic Description

The symbolic representation of a primitive element is of the form:

o = 	i2, 	in);

The above form is called a statement. Examples are:

1) w =

2) z = 4-(x,y);

3) c = (a,b);

corresponding to the graphic descriptions in Figure 2.

Same and delay elements

The statement

(1) 	b = same a;

is a symbolic description of the function same, whose output value is

always the same as its input value, i.e. it is the identity function. A

simpler way to write statement (1) is:

a = b;

The function same may be used to change the name of a signal, in this case

from b to a.

Figure 3 is a description of the delay element. The two input variables

are not independent; in fact,

(a) 	x = f(t)

22.

for the output, we have

(b) 	y = f(t -n)

where n Z 0 is an integer constant. t is usually referred to as time. Since

x = f(t), t need not explicitly be shown.

x 	t

Figure 3. The delay element

There are two special cases in which delay behaves like same:

1) if n = 0

2) if x is a constant. In this case f is a function whose

range is a constant, and therefore y = x.

If the function f is not known analytically, the tabulated form is

available. Let tabulation points be

(c) 	ti = ti_i + 1, 	t0 =

then

(d) yi+n = f(ti+n n) = f(ti) = xi

23.

Assuming that time is increasing according to (c), if a value yi

is to be released at t =ti, a buffer of n locations is needed to store

xj 	for all 	i-n 5 j s i-1

since according to (d)

y. = x. 1 1-n

Values enter and leave the buffer on a queue basis, i.e. first in, first

out. All yi, 0 5 i < n are unknown. If after t = ti no value enters the

buffer, those already in will be released at time points

t.3, 1+1 	j 	i+n

6.1 Functional Form of delay

In order to treat delay elements in the same manner as other primitive

elements, a functional form is needed to represent them. The required

function is:

y. = x
1 i-n

This function is in a tabulated form. The symbolic representation of

delay is discussed in Section 9.

6.2 Sub-classes of Primitive Elements

Three sub-classes of primitive elements are introduced here. The members

of each sub-class accept a certain type of input signal and produce a certain

type of output signal.

a) Boolean elements: and (&), or (v), not (").

The terminal signals of these elements are of type Boolean.

24.

b) Relational elements: It (<), le 00, la (=), ne

Eut W, t (>). The input signals are of type integer, and the

output signal is of type Boolean.

c) Arithmetic elements: plus (+), minus (-) mult (*), div (/).

The terminal signals are of type integer.

7. 	Connectivity

7.1 Graphic

In graphic description connectivity is indicated by joining lines

representing input or output. If two lines are joined, the signals on both

lines are the same (in either direction) up to the point where they reach

a primitive element. Connection of two outputs as shown in Figure 4 is not

'valid'.

a
	

b

Figure 4. An invalid connection.

The reason such a connection is invalid is that: if c and e are not always

the same, we should express what combination of the two exists at d. This

is done through replacing the connectivity by a primitive element; otherwise

the signal at d is 'ambiguous'. (An ambiguous signal is different from an

unknown signal). If c and e are always the same, the network is 'redundant'.

25,

7.2 	Symbolic

Since distinct identifiers represent distinct signals, similar identifiers

may safely be used to indicate connectivity. For example, the following is

a symbolic description of Figure 5. Elements la and lb are connected.

a

1a
: c = f(alb);

lb: d = g(c);

Figure 5.
Let L and R represent the left and. right hand sides of a statement 1. In

terms of symbolic description, connectivities due to a set of statements are

valid if there are no two statements 	
3

l.and1.0. 0 j), such that

(a) L. = L. 3

If there exist a pair of statements satisfying (a) and also

(b) R. = R. 3. 	3

the network is redundant; otherwise, if (a) holds but not (b), an ambiguous

signal will be produced.

	

8. 	Networks

A 'network' is a set of primitive elements with a set of valid connections

over them.

	

8.1 	Tree Networks

We define an input to be 'free' if it is not connected to an output.
•

26.

Similarly, an output is free if it is not connected to an input. The

following is a recursive definition of a 'tree network': a 'tree network'

is either

a) a primitive element, or

b) a primitive element with free'output provided that either

each of its inputs is free, or the only output connected

to it is the output of a tree network.

The above definition covers both symbolic and graphic descriptions. It

excludes all networks containing invalid connections.

'Terminals' of a tree network are those which are free. The element from

which the network output emanates is the 'root' of the tree. Since each

tree has only one output, its root is unique. A tree is called by the name

of its root, therefore it should be made clear which one is meant when a

reference is made.

b1 	
a1 	c1 	d1

e
l

a1

1 : g 1
2
: h

(a)

27,

c3

(c)

Figure 6. Tree networks

Figure 6 shows three examples of trees. Inputs of 1 in 6.a are

a1, b1, c1'
 d
1, el' and its output is o. The root of the tree is the element

1 and the function corresponding to the root is fr.

(a)
	

(b) 	Figure 7. 	(c)

Networks described in Figure 7 are not trees. (a) has no free output,

(b) contains an invalid connection, and (c) has an extra element.

28.

8.1.1 Behaviour of a Tree Network

The functional property of a tree network is called its behaviour. Let

is, 1 s s s p be the inputs of a tree 1. Let o be the output of 1.

We are looking for a function f such that:

o = f(i1' i2
	i);

LetfrbethefluictioncorresPonclingtotheelemel 	i s m be

the trees connected to 1, and gi, 1 s i 5 m be the functions corresponding to

these trees. Let k 	j ‘:n. be the set of inputs to the tree 1.; then,

a) if 1 is a primitive element, then

fr(i1' i21
	ip 7)- otherwise,

b) o = fr(gi(kii, k12, . 	. 	kini),

. 	, gi(kii, kit, . 	kid, . . . , kin.), . . . ,

gin(kno, kin2, . . . „ kinn));

Clearly, the functions gi are determined in the same manner as f. Note

that if an input a is free, it can always be assumed that it is the output

of a tree network, say

a = same b;

As can be seen from the functional expansion, the behaviour of a tree

network depends on the behaviour of its elements and the way they are

connected, i.e. the tree 'structure'. Therefore, the behaviour of a tree is

independent of the textual position of the statements representing that tree.

Similarly, graphic transpositions do not affect the behaviour of a tree

provided that the tree structure is retained. Two trees are said to be

'equivalent' if they behave the same way.

29.

In the following example, the general functional form derived in this

section is employed to determine the function corresponding to the tree

1. From Figure 8 we have,
a

m = 2, n1 = 3, n2 = 12 p = 4

fr = and, g1 = or, g2 = not

k11 = al ki2 = b, ki3 = c, k21 = d

hence,

g = and (or(a,b , not d);

8.1.2 Sub-trees Figure 8.

'Sub-trees' of a tree 1 are those whose output is connected to an input of

the element 1. Each sub-tree has-its own terminals; these can be determined

by treating it as a tree. In Figure 8, la and lb, are sub-trees of 1.

The following relation exists between the inputs of a tree and the inputs

of its sub-trees:

1 s i s m 	s s p

15 j5 ni

that is, the set of inputs of sub-trees of a tree, is the same as the

set of inputs of the tree itself.

8.1.3 Well-formed Trees

Consider the element 1 described as:

1: o = f(i1' i2, . 	i n)* '

30.

A set of input signals to this element is identified by the ordered

n-tuple

S = (s s 11 21 	. 	, an)

Inorder for lto beable tooperate, typesofi.and s. for all

1 5 j 5 n should match; they should be either both integer or both Boolean.

The signal is then said to be 'correct'. If the tree structure is such that,

given any correct set of input signals,, each element of the tree receives

correct signals, the tree is 'well-formed'.

8.1.4 Linear Description of a Tree

It was mentioned in Section 8.1.1 that the behaviour of a tree is

independent of the textual position of statements forming its symbolic

description. If the statements are arranged in a sequence such that every

input of an element 1 is textually described before the description of 1,

the arrangement is said to be 'linear'. Clearly, if an input to an element

is also a tree input, it need not be described further.

In general the linear description of a tree is not unique; furthermore each

tree has at least one linear description, for if a network cannot be

described linearly, there is at least one statement

1: o =f(i1,i2, . . . , in);

withaninputi.suchthati.is neither a tree input, nor can be described

before 1. This implies that the description of
3
 depends on the description

of o, in which case the network does not have the tree property. For

example, a linear description of the tree,

b 	g
	e

Figure 9.

x = plus(1,x);

and

31.

is:

h = or(f,a);

d = not e;

f = and(g,d);

a = and(b,c);

a = and (b,c);

d = not e;

f = and(g,d);

h = or(f,a);

The networks

b = not a;

c = not b;

a = c;

Figure 10.

cannot be described linearly. In the first network, description of

x depends on itself, and in the second one, a and c depend on each other.

32.

8.2 Composite Trees

A 'composite tree' is either

a) obtained from a tree by connecting at least one of its inputs

to one or more of the elements of another simple tree, or

b) obtained from a tree by connecting at least one of its inputs

to one or more of the elements of a composite tree.

Trees defined in Section 8.1 are referred to as 'simple trees' in

contradistinction to composite trees. In general a composite tree has

several outputs. The definition of the linear description of a composite

tree is the same as that of a simple tree. Following is a graphic and

linear description of a half-adder in the form of a composite tree.

a

c = and(a,b);

x = or(a,b);

s = and(xl not c);

Figure 11. A composite tree

Like simple trees, each composite tree has at least one linear description.

33.

8.3 Closed Trees

A 'closed tree' is either

a) obtained from a simple or composite tree by connecting at

least one of its outputs to one or more of its inputs, or

b) obtained by validly connecting a closed tree to a simple,

composite, or another closed tree.

The definition of a linear description is relaxed for closed trees, in

that the closing terminals need not be described before they are referenced.

If a closed tree has a closing terminal t, the symbolic description of that

tree will include a network of some form equivalent to:

t = f(. 	. 	t, . . .)

As this form suggests, the working of the network is 'repetitive', in the

sense that the output signals on closing terminals are fed back as input.

Trees defined in Sections 8.1 and 8.2 are referred to as 'open trees' in

contradistinction to closed trees.

8.4 Networks

We can now give a more precise definition of a network: a network is a

set of single/composite/closed trees described together. A linear

description of a network is one in which each tree belonging to the network

is described linearly. Networks more complex than a certain degree are

referred to as 'digital systems'. There is no precise definition for the

boundary whereafter a network is, or should be called a digital system.

9. 	Symbolic Description of a delay

The discussion of this topic has been deferred up to this point so that

examples could be drawn from tree structures for its illustration and

34.

justification.

The functional form of a delay, i.e.

yi = xi_n

states that the output value of the delay is equal to its input value with

a time lag. This suggests calling the terminals of the delay by the same

name; in fact one can regard this name as the name of the delay itself.

On the basis of this interpretation, we adopt a declarative form for

introducing the delay elements in a network; for example,

delay cnt(1:16);

declares that cnt is a 16-bit delay element whose storage locations run

from c(1) to c(16), with c(1) being at the front of the queue (the oldest

member), and c(16) at the end of the queue (the youngest member).

Distinction between the input and output of a delay is made at the time the

connectivity is established. If cnt appears on the left hand side of a

statement, then the input of the delay is connected to the output of the

right hand side tree; whereas if cnt is referenced in the right hand side,

the output of the delay is meant.

As an example, the half-adder in Figure 11 is turned into a 16-bit serial

counter [26]; cnt holds the count, and at every 16-bit time interval a true

signal appears at x. Without going into the details of the working of

this device, its linear description is given in Figure 12.

35.

x

1- _delay cnt(1:16),b;

2- c = or(x,b);

3- d = and(c cnt)!

4- b = d;

5- cnt = and(or(c,cnt), not d);

cut

Figure 12. A serial counter

The above network is a closed tree with two closing terminals, namely

cnt and b. Lines 2 to 4 describe the tree located to the right of the

dotted line; the rest of the network is described in line 5; note that the

name, cnt, at the left hand side of this statement refers to the input of

the delay, whereas the same name at the right hand side refers to the output

of cnt, with a 16-bit time delay with respect to the input.

The notation introduced here for the symbolic representation of the delay

has, apart from a close correspondence to its functional form, three other

important advantages discussed in the following sections.

9.1 Connection to other Elements

Connecting an element to a delay is quite simple; this is especially useful

if one wishes to introduce the inherent delays of logic elements. For

instance, an and gate which has a 1-bit propagation delay can be described

as:

36.

a 	 b

delay c;

c = and(a,b);

Figure 13. An-and gate with a propagation delay

If the above tree were part of a network, the name c, which could only

be referenced in the right hand side of the statements of the network, would

correspond to the output of the delay, and thus the 1-bit propagation delay

could easily be introduced. Since a 1-bit propagation delay is quite common,

later (Chapter V) we shall see simpler ways of coping with this special case.

Another example of the connection between delay and other elements can be

seen in line 5 of the example already given in Figure 12.

9.2 Initialization and Store Allocation

The second advantage concerns the fact that one has access to the members

of the line (storage buffer associated with the delay). This could be

37.

helpful as it is frequently desired to regard a delay as a storage element

during the initialization time. For example, the following segment

initializes the first element of cnt to true, and the rest to false.

cnt(1) = true;

cnt(2:16) = false;

Finally, with regard to implementation, no matter what notation is adopted,

one has to allocate an area of store, of appropriate size, to the delay line.

In this respect, the notation given here treats the delay introductions almost

in the same manner as declarations, and thus simplifies the implementation

task.

10. Sequential and Parallel Operations

An output signal is produced as a result of primitive elements operating

on their input signals, and thus propagating them. An operation is called

by the name of the primitive element it corresponds to. We define the

following relations between pairs of operations; by their nature they may

also be referred to as meta-operators.

a) x is 'parallel' to y, denoted by x 7

b) x is 'sequential' to y (x after y), denoted by x 	y

These have the following properties:

I) if x -> y and y 	z then x 	z

II) if neither x 	y nor y 	x then x s y

III) if x y and y 1 z then x z

IV) if x -2> y and y z then x 	z

V) if x •> y and x 1 z then z 	y

38.

VI) if x y then y x

Property VI is in fact a consequence of

The above axioms represent the nature of parallel and sequential

operations, and their inter-relationship. Among these, axiom II has a

special importance, for it ensures that one of the two relations, •> or

holds between any two objects belonging to a set of operations.

From the behaviour of a tree network it is understood that when propagating

the signals the operation corresponding to the root of the tree should be

carried out after all operations belonging to the sub-trees of that tree

have been performed. Therefore, if x is the root of an open tree, and y

is a sub-tree of x, we define

(1) x y

As an example, consider the following tree:

Figure 14.

39.

According to the above definition, the following relations hold over

the set of operations A = 	12, 13, 141:

a) 14 -> 12

b) 14 -2> 13

c) 13 -> 11

According to axiom II, since neither 1
2 -2> 13

nor 1
3

-> 12, we have

) 1 1 3 - 2

This means that 1
3

and 12 are parallel. Axiom I and relations (b) and

(c) result in

e) 	14 -2> 11

Axiom V together with relations (c) and (el) results in

12 -2> 11

In this manner we obtained the six relations over the set A;

it can be seen which operations are parallel and which are serial to each

other. Note that we could have equally said that, since neither 12 -2> 11

nor 11 ..2> 12' we have

11 = 12

In this case we would have had the following six relations instead:

a') 14 •> 12
b') 14 •> 13

4o.

c') 13I

d') 11 1 12

e') 14•>11

f') 13 •> 12

The difference is between (d') and (d), and, (1') and (1); the rest are

the same. The important thing is that no matter which set of relations

we choose, the behaviour of the network is maintained; this is because of

the definition (1) which corresponds to the behaviour of trees, and also

because the axiomatic properties given at the beginning of this section truly

represent parallel and sequential operations and the inter-relation between

them.

11. Ordering the Operations

11.1 Open Trees

As our natural constraint is that: using a single processor, only one

operation can be carried out at a (Computation) time, we should like to

arrange the operations in a sequence such that the output signals obtained,

as a result of performing them in that order, would correspond to the

behaviour of the tree.

An operation x CAN be carried out when all operations y E A have been

performed,

where 	A. Cy 1 x•>y}

The other constraint is that x SHOULD be carried out before all operations,

Z E B, have been performed,

ki.

where 	B = 	I z

This suggests a Computation Time interval, understood by z 	u 	y,

where 	u E C

and 	C = 61 u x)

during which x could be performed. We note that all operations u E C are

parallel to x.

The important result of the above analysis is the following assertion:

THE BEHAVIOUR OF AN OPEN TREE CAN BE SIMULATED USING A SINGLE PROCESSOR.

This assertion has two cornerstones; the first is axiom II, which as

mentioned earlier, establishes one of the two relations, 	or 1, between

any two operations belonging to a set of operations corresponding to a tree.

The second is the fact that, using a single processor, a primitive element

can be simulated.

11.2 Closed Trees

As mentioned in Section 7.4, the functional form of a closed tree is

repetitive, i.e. once the output signals are obtained, the ones on the

closing terminals have to be fed back, and the process repeated. The best

possible correspondence between a digital system and its model is obtained

if the behaviour of the Simulator is such that the state of the model is

re-evaluated at every point in Simulation Time. This repetitive evaluation

causes the signals on the closing terminals to be fed back to the network.

In this manner the behaviour of a closed tree is simulated using a single

processor. Clearly, the Simulation Time is advanced at the end of each cycle.

By now the role of the linear description, in connection with the

implementation of the Description System, has become apparent. Since

42.

in a linear description, the root of the tree is described after the

sub-trees of that tree are described, the execution of the statements from

top to bottom would simulate the behaviour of the open trees; the Simulator

repeats its control cycle, and thus the behaviour of the closed trees is

simulated.

The user need not necessarily specify his description in a linear form since,

using a pre-processor, any symbolic description of a network can be

transformed into a linear description.

12. Terminal Registers

The result of an operation may be needed at a later point in Computation

Time. If so, we assume that there are imaginary 'terminal registers'

connected to the terminals of a primitive element. In this form,

c = and (a,b) could be thought of as:

a
	

b

Figure 15. An and gate with its terminal registers

43.

The name of a terminal register is the same as that of the signal it

corresponds to. In this respects one can give another definition for

connectivity: two terminals are connected provided they share the same

terminal register. The user can give a hint to the Simulator whether the

result of an operation is going to be needed later. For example, from

d = and (or (a, b), not c);

it is understood that the intermediate signals, or (a, b) and not c,

are not needed later.

In this manner, the operation of a primitive element can be looked at as

a transfer of signals from input registers to the output register. This

interpretation of the working of primitive elements take us to Chapter

which discusses the generalised form of register transfer operations.

44.

CHAPTER III

The Register Transfer Level

1. Introduction

At the Register Transfer Level (RT-Level), a digital system is imagined

to be composed of registers connected through blocks of logic elements.

Each block performs an operation on the contents of one or more input

registers, and places the result in output registers, which may include

some of the inputs.

At the end of the previous chapter, we noted that the structure and working

of a network, at the Level of Logic Elements, could be described in terms

of terminal registers and register transfer operations (RT-operations).

In this chapter we generalize such operations to include vectors, as well as

scalars. As a result of this generalization, the operators of the Language

are defined, which cover the sub-classes of primitive elements mentioned in

the previous chapter.

Detailed attention is paid to Language features for describing a digital

system at the RT-Level. Some of the topics considered in the previous

section, such as types and constants, are reviewed here with more emphasis

on linguistic features, and occasionally on implementation requirements.

2. Representation of Boolean Constants

In digital systems information is represented using entities which take

one of the two possible states. When concerned with switches and lights,

these are called on and off; in connection with logical operations, they are

named true and false; when a numerical interpretation is meant, these are

referred to as 1 and 0.

45.

One or more of these constant sets should be selected in order to assign

states to lights, switches, and other binary objects. Whichever is

selected, the Description System can choose only one of these representations

to output the states of objects, unless the System has already been told

about the type of object concerned with the information to be output. This

would require introducing declarations such as:

switch 	s;

memory 	m;

register r;

together with keeping distinct descriptors for each type. The approach

might obscure from the user the fact that all objects, s, m, and r are

essentially of the same type, namely Boolean.

Another--e.xtreme solution would be to allow only one type, for example

Boolean, and ask the user to interpret all his binary entities in terms of

this type. Besides putting the burden of the interpretation task on the

user, we have also decreased the clarity of descriptions. In order to

overcome this, the user would be forced to insert comments. For example,

Boolean s; 	s is a switch;

Boolean m; 	m is a memory

Boolean r; 	r is a register;

A compromise solution, adopted here, is to permit the user to make use of

all types (Boolean, switch, memory, etc.) interchangeably. The System will

then interpret them all in the same manner. The price paid for this is that

the output information would be represented in only one form. Corresponding

to this, all sets of binary constants {on, off}, 0, 0), (true, false)

1+6.

may be used interchangeably. We select the binary constants 1 and 0 for

outputting binary information.

3. The unknown value

The question is whether to define the logical operators over two-valued

or three-valued space. At a low level, a digital system can be thought

of as a number of bistables connected through logic elements. When the

system is switched on, the bistables take on one of the two possible states

at random. Assuming that there are no faulty elements, or disconnections,

and that other physical requirements such as the fan-out of the elements are

satisfied, the system works on a two-valued space. Thus the only advantage

in the inclusion of an unknown value would be the simulation of faults and

other undesired effects due to non-initialization of storage elements which

should have been initialized. Fault simulation may be done by defining

faulty elements, with the aid of the element definition facility. In order

to simulate the effect of non-initialization, one may either assume that the

output of an element is unknown unless all its inputs are defined, or adopt

some other arrangement which propagates the unknown value under certain

conditions, so that the user becomes aware of the effects. However, this

approach has shortcomings when dealing with networks whose working is

independent of the initial values of their storage elements. If all storage

elements were initialized to an undefined value by the System, then under

this arrangement, the working of the model would not correspond to that of

the digital system. Therefore we consider the logic elements to operate on

a two-valued space.

4. Arrays

To identify one of many distinct objects, events, or operations, an array of

binary entities must be used. In its simplest form, an array is a linear

47.

list, also called a vector. A binary vector may be interpreted numerically,

or as a string of bits, an instruction, an address, or otherwise.

Main memories may be regarded as two dimensional arrays, also called

matrices. As such, they are identified by the number of words they contain,

and the number of bits per word. In the simplest case, the Main memory has

one address register which holds the address of the word to be written to or

read from the memory, and one buffer register which holds the corresponding

item of data. The memory read/write time is the same for all words. This

type of memory may be declared as a Boolean matrix. More complex and special

purpose memories such as stack, associative, multi-access, modular, etc.

should be described explicitly.

4.1 The Type Integer

Integer entities are at a higher level than the binary ones - an integer can

be represented by a binary vector. We therefore introduce the type integer

so that arithmetic operations can easily be described at a high level. In

input and output, integers are represented in the conventional decimal form.

Arrays of integers do not seem to be required and we therefore exclude them.

4.2 Array Declaration

Arrays are declared by naming their type, and the lower and upper bounds

for each dimension. Arrays and scalars may be declared together, for example

switch console(0:15), start, stop, power;

It is often required to refer to a sub-array of an array throughout a

description. For example, an instruction in a computer may be composed of

the following fields: operation-code, format, and address part, as defined

below:

register instruction(op-code(0:4), format, address (0:9));

48.

Some of these fields may in turn contain sub-fields; for example, the

address field may be regarded as composed of an indirect addressing flag,

an index register indicator, and the static address part.

register instruction(op-code(0:4), format, address(ia,ix(1:2),

s-address(1:7)));

Sub-registers, format and ial are of one bit length only. The above method

for declaring arrays is called the nested-top-down method. Sometimes it is

convenient to declare sub-arrays by giving the boundary bit positions that

they occupy in the array, rather than by declaring the array in terms of its

constituent sub-arrays. This is called the simple-top-down method, e.g.

register double -word(0:31);

sub-array word(0:15) = double-word(0:15),

next -word(0:15) = double-word(16:31);

sub-array instruction(0:15) = word(0:15);

Up.to now the register, word, has had only one interpretation, i.e.

an instruction. One can easily introduce other interpretations, e.g.

sub-array fixed-point(0:15) = word(0:15);

sub-array sign = fixed-point(0),

magnitude = fixed-point(1:15);

and similarly for the register double-word:

sub-array floating-point(0:31) = double-word(0:31);

sub-array signs = floating-point(0),

mantissa(0:23) = floating-point(1:24),

exponent(1:7) = floating-point(25:31);

f address

ix s -add

next-word word

double-word

instruction

op-code

is

word

fixed-point

magnitude

mantissa exponent

double-word

floating-point

49.

A picture of the structure which has been constructed is given in

Figure 1. For clarity the picture is presented in three parts.

Figure 1. Interpretations of a double-word

50.

Such constructions are ambiguous in the sense that referencing the name

of an array, in general, does not convey the full meaning of the contents

of that array. For example, word, may have different meanings such as

instruction or fixed-point. This ambiguity is due to the very fact that a

string of bits in a memory location could be interpreted in different ways:

it could be an instruction, a data item, the second word of a double-word

instruction, etc. Only the context of reference can clarify the meaning.

4.3 Array referencing

4.3.1 Referencing Sub-arrays which are Declared

There are two choices:

a) The sub-array might be referenced through the hierarchical

structure it was declared in, e.g.

ix(address(instruction))

b) The subarray might be called by its name only, e.g.

ix

In the first method two sub-arrays not belonging to the same array may have

the same name, i.e. a certain name may give different meanings depending on

the context, e.g.

a(c)

a(b). (a, b, c are arrays)

This is a useful advantage when one has to declare many names, and wishes to

use similar ones. However, as our declarations are not numerous and because

of its simplicity, we adopt the second method.

51.

4.3.2 Referencing Sub-arrays which are not Declared

If references to a sub-array do not occur frequently, one may choose

not to give it a symbolic name. The same notation used earlier can serve to

construct sub-arrays or cascaded arrays, e.g.

instruction(0:4)

instruction(6:15)

op-code:address

word:next-word

In the last two examples, the colon sign serves to concatenate arrays.

Dynamic references fall into this category, e.g.

word(n:m)

op-code(i) : instruction(j :P) : ix

4.4 Matrices

A matrix is an ordered list of vectors of the same dimension. In digital

systems main memories and groups of registers are examples of matrices. When

dealing with a register, one part of it cannot in general play the role of

another part, for they usually perform distinct duties. By contrast, in a

list of registers forming a matrix, one member may be replaced by another one.

The only reason for having several of them instead of one is to increase the

speed of the system. Although there is no exception to this general rule

in the case of memories, i.e. all memory words perform the same function,

there are exceptions with regard to registers. For example, in some computers

certain index registers can also be used as accumulators.

Due to this interchangeability of registers and memory words among each other,

there is no need to introduce elaborate facilities, as in the case of vectors,

for constructing two dimensional structures. The fact is that one member

52.

of a list of registers is not going to be interpreted in a different way

than another member, except in some special cases.

4.4.1 Declaration and Referencing of Matrices

We extend the notation introduced earlier for one-dimensional arrays in order

to reference vectors forming a matrix. Also the special cases discussed in

the previous section are catered for. Like vectors, matrices are declared

by specifying the bounds for each dimension, e.g.

memory matrix M(0:8191, 0:15);

register matrix index-reg(1:51 0:15);

In order to refer to the kth element of a list of vectors, the integer k

is written in place of the first index, and the second index is omitted, e.g.

m(i,) 	ith memory word

index-reg(2,) 	the second index register

Parts of such vectors may also be referenced in the same manner as before,

e.g.

index-reg(2,0:4) the first five bits of the second index register.

A vector belonging to a matrix may be given a symbolic name throughout a

description, e.g.

sub-array accumdlator(0:15) = index-reg(3,);

5. 	Constants

5.1 Declaration

Integer constants may be given symbolic names, e.g.

53.

constant 	add = 1, sub = 2, mutt = 3, div = 4;

5.2 Specification

There are two types of constants,Boolean and integer; the latter is

represented in the conventional decimal form. For the sake of simplicity,

we allow Boolean constants to be specified in binary, octal, or hexadecimal

form, as well as other forms discussed in Section 2, e.g.

952 	a decimal constant

bin(0,0,1) 	a binary constant

oct(7,7,7) 	an octal constant

hexa(f,f,f,f) 	a hexadecimal constant

6. Array Operations

As stated earlier in section 4.4, we need only be concerned with operations

on one dimensional arrays. The operators and their characteristics are

described in Table 1. The type of operand indicated here is that which the

operator expects. If the operand is not of the required type it will be

transformed according to the following rules: an integer is converted to

an unsigned binary number represented by a Boolean vector; conversely,

a Boolean vector is treated as an unsigned binary number and transformed into

an integer.

If the user wishes to regard the numbers as signed, he may do so by placing

a directive at the beginning of description, which indicates whether negative

numbers are in two's or one's complement. The operator int in general takes

a Boolean vector as its operand and transforms it into a signed integer.

Similarly, the operator bin may be employed to convert a signed integer into

a Boolean vector.

If the result of a conversion is a Boolean vector, its dimension is determined

54.

in accordance with the context. It should not be overlooked that we permit

implicit type conversion at the cost of not forcing the user to distinguish

between the state of a register and its interpretation.

In arrays, the element with the lowest index is called the first element.

For positional and directional referencing this element is assumed to be the

leftmost one, and in connection with binary numbers it is the most

significant digit.

left 	 right

t

first element
	

last element

Figure 2.

Let s1' s
2,. 	1 smlx be scalars

and v1, v2, 	, vm,y be vectors of length n,

and asop be an associative operator,

and ident (asop) be the identity operand for the operator asop.

Associative operators are allowed to have multiple operands, as shown

below for scalars:

x = asop(si , s2, 	 sm) is the same as

x = asop(s1, s2,....asop(sm_1'sm))

1

A/

Al

1

Al

Al

Al

1

WEAli

operator

category symbolic graphic operation

plus arithmetic addition

subtraction

multiplication

division

remainder

minus

mult

div

rem

and logical and

or V or

not

nand

nor

equivalence

exclusive or

not

nand

nor

eor

type of operand
and [result] associa-

tive

number of operands

monadic diadic multiple Boolean integer

Table 1.

NI

A/

Al

Al

for shift operaters, the

firSt operand is Boolean,

and the second operand,

if present, is integer.

Type of result is Boolean

Al

Al LA

type of operand
and [result] number of operands'

diadic 	multiple

relational less than
	

Al

less than or
equal to

equal 	Al

not equal 	'I

greater than or 	Al
equal to

greater than 	N/

operator

symbolic 	graphic

It

le

ne 	0

£22.

category operation monadic Boolean integer

associa-
tive

rshift 	shift 	shift right 	AI 	Al
ishift 	- 	shift left 	Al 	AI

rcirc 	- 	circulate 	I NI 	NI
right

	

AI 	Al

bin 	special
	

convert to
	

Al
Boolean

convert to
	

Al
integer

lcirc circulate left

int

Table 1 - (continued)
rn

57.

and for vectors

y = asop(v1'2' 	, vm) is the same as

for i = 1 to n do

y(i) = asop 	v2(i), 	 7m(i));

(see Section IV.8.1 for semantics of for structure.)

If an associative operator is given a vector as its only operand, the

operator is distributed through the elements of the vector as shown below:

x = asop(v1) is the same as

x = ident(asop);

for i = 1 to n do

x = asop(x, vi(i));

In addition to associative operators, nand and nor are also allowed to have

multiple operands; their operation in this role is described below:

nand 1 	is the same as 	not and 1

nor 1 	is the same as 	not or 1

where 1 is a list of operands, possibly only one vector.

The shift operators take a vector as their first operand and an integer

as their second operand. The operation is then performed as many times as

specified by the second operand. If the operation is to be done only once,

the second operand may be omitted. Examples are:

58.

rcirc(v1, 2) 	circulate v1 two positions to the right.

lshift v1 	
shift v., one position to the left.

The only case in which the operands of an operator can have different

dimensions is when one operand is a scalar. The scalar is then

distributed through all elements of the vector as shown below:

y =.22(x, v1) is the same as

for i = 1 to n do

y(i) =22.(x, v(i));

where 22 is an operator.

7. Expressions

<expression> ::= <simple expressiOn>I<Boolean expression)

<integer expression>l<delayed Boolean expression!

<element designator>

<simple expression> ::= <constant>l<variable>

<Boolean expression> ::= <Boolean operator> <operand list>

1 .*
<operand list> ::= <source vector>t(<source vector> (,<source vector>f

The simplest form of an expression is a constant or variable in which

case a connectivity is established, or a reference to the contents of a

variable, as defined in Chapter II. For a detailed syntactic definition

of variables and constant refer to Appendix C.

An expression defines the structure and behaviour of a network. Among the

structural properties the network inputs are given; the outputs are however

not named. This is a feature of expressions which permits the specification

of connectivity without naming the signals at the interconnections. An

expression, in general, returns a vector as its result, e.g.

1) register a,b;

and(a, not b)

2) register a(1:16), b(1:16);

and(al not b)

59.

Figure 3. Graphic description

In both examples a and b are inputs. The first example returns a vector

of length 1 as its result, while the second returns a vector of length 16.

The signal in between the two gates is not named.

As was shown earlier in Chapter II, if a good correspondence between

graphic and symbolic description of trees is required, it is better to

represent the expressions in prefix notation; this also serves for describing

elements with multiple inputs, e.g.

nand (a,b,c)

However, the prefix notation is not suitable for simplification, and

addressing elements of arrays. The problem could partly be solved by using

the prefix notation in general, and employing the infix notation for indexing;

however, this would not be a good solution because of the non-uniformity

introduced in the structure of expressions.

Boolean, shift, and relational expressions return Boolean results. The

first two take Boolean operands, whereas the last one takes integer operands.

The results and operands of arithmetic expressions are both integer. Other

types of expressions will be discussed in Chapter V.

8. 	7T-operations

<source vector> ::= <exp>(:<exp>)*

<destination vector> ::= <variable>t:variable>)

<RT-operation. ::= <destination vector> . <source vector>

Boolean j,k,q,nq;

q,nq = jkbs (j, k, clock);

1

k

clock

q nq

60.

The expressions outputs may be concatenated to form a source vector;

Similarly variables may be concatenated to form a destination vector.

Neither of these vectors is named. A 'register transfer operation'

specifies the outputs of a network. It may also be looked upon as a mapping

from a set of input vectors into a set of output vectors whose concatenation

is called the destination vector.

Elements concatenated by the colon sign should be of the same type. If the

number of elements of the source vector is equal to that of the destination

vector, a one-to-one correspondence can easily be established; if the source

vector has more elements than the destination vector, the extra elements

at the left hand side are ignored; if the source vector has fewer elements,

it is expanded to the left by repeating its leftmost element.

Some examples of RT-operations are given below:

Figure 4. A JK-bistable

jkbs (JK-bistable) is a System-defined element; its outputs are q and nq

jkbs returns a vector of length 2; the first element is assigned to q,

and the second to nq. When JK-bistables are cascaded (Fig. 8, or Fig. 10),

the two inputs are not independent (k =

1

z

x

•

y

61.

In this case we use an abbreviated form as shown below:

q = ajkbs(j, clock);

clock

q

Figure 5. Graphic description of ajkbs

2) register a, b;

a:b = b:a;

Figure 6. The contents of a and b are swopped upon the receipt of

the controlling signal

3) register x(1:16), y(1:16), z(1:16);

x:y:z = y:z:x;

Figure 7. Upon activation, the contents of x, y, and z are rotated.

62.

4) register ain,c,d;

b:c:d:a = a:b:c:bin 0;

a

bin

Figure 8. A 4 stage logical shift register

5) register a,b1c,d;

b:c:d:a = a:b:c:a;

a

Figure 9. A 4 stage arithmetic shift register

6) register a(10);

a = rshift a(1:7):--a(8):a(9:101);

a(1) 	a(2) a(8) 	a(9) 	a(10)

bin 0 •

Figure 10. All positions of register, a, are shifted one place to

the right, with the exception of the 9th position which receives the

negation of the 8th position.

63.

7) switch x(1:4);

x = off, off, on, off;

switch x is initialised.

8) register x(I:16), y(1:16),a;

y = and(a,x);

x

Figure 11. The control signal, a, gates a transfer from register x to y.

64.

CHAPTER IV

The Control Level

1. 	Introduction

Up to now we have dealt with the operations without being concerned about

when an operation should - or does - take place. At this level, control

structures are introduced which can be used to impose an ordering on

operations - an operation may be invoked at a particular step in a sequence of

steps, or at a certain time, or in general when certain conditions are

satisfied. Such conditions may well be a function of the previous state of

the system.

The chapter starts with the introduction of the concept of a controlled

RT-operation; two basic ways of ordering the operations, namely parallel and

sequential are then discussed, and attention is paid to systems expressed in

such terms. The latter part of the chapter is concerned with higher level

control structures, such as conditionals and loops, which are frequently used

for writing procedural algorithms.

Furthermore, the hardware implementation of such structures is discussed in

detail; thus once the user has described his ideas in these terms, he has

general paths in sight by which to progress toward the implementation level,

and features of his design are realized as progress continues. The choice of

control structures is important since these are the tools in terms of which

the user will tend to think.

At the levels near to the implementation, we are concerned with a subset of

RT -operations involving only Boolean variables. In general, a 'controlled

RT -operation' is denoted in the following way:

<control condition> <RT-operation>

where

<control condition> ::= <Boolean expression>

A controlled operation is said to be 'activated' or 'invoked' when the

'control condition' for that operation becomes true.

2. 	Parallel Networks

<parallel network> ::= <RT-operation>l[C<RT7operation>,}4]

A 'parallel network' is enclosed in square brackets unless it is composed

of only one operation. The operations will later be given the same control

condition. By parallelism it is meant that the transfers take place in two

steps:

1) all expressions (source vectors) are evaluated

2) destination vectors take on their values simultaneously.

That is, the textual ordering of the RT-operations in a parallel network

is immaterial. Examples of parallel networks are given below:

register a(1:4), b(1:4), c(1:4), d;

1) a = b;

2) [a = b; b = a; d = and CO

A parallel network is said to be activated when its control condition

becomes true, in which case all the RT-operations composing the network are

activated. For example, one of the results of activating (2) is that the

contents of registers a and b are swapped.

66.

3. 	Sequential Networks

<sequential network> ::= <parallel network>I(kparallel networkW)

A 'sequential network', which is an ordered list of parallel networks, is

enclosed in round brackets unless it is composed of only one parallel network.

Examples are:

register a(1:4), b(1:4), c(1:4), d;

1) a = b; .

2) [a = b; b = a;]

3) (d = not b; [c = d; a = 	d = or a;)

Since a sequential network is an ordered list, we can talk about the

'successor' or 'predecessor' of a member of the list. When the operation

of each member of the list terminates it invokes its successor. The process

continues until the last member of the list is activated. The first member

is invoked when the network control condition becomes true.

4. 	Controlled Networks

<controlled network> ::= <control condition> <control sign>

<sequential network>l<sequential network>

<control sign> !:=

A 'controlled network' is a sequential network with a control condition.

Whenever the condition becomes true the network is activated. In the

special case that a network has to be activated at all successive points in

time, i.e. the control condition is always true, we may omit the control

sign and condition. Examples are:

67.

Boolean w, x, y;

register a(1:4), b(1:4), c(1:4), d;

1) w -4 a = b;

2) and(y, x) -4 [a = b; b

3) and(y, or(w, x)) 	(d = and c; [a = b; b = d;] d = or c;)

4) true d . not d;

5) a = not b;

At this point we have to clarify what exactly is meant by 'whenever a

condition becomes true'. Digitizing the time implies that in the most

accurate case a control condition may be tested only at consecutive discrete

points in time. This should not, however be interpreted as a restriction,

since the distance between two neighbouring points in time, hereafter called

At, may be assumed to be so short that no event is missed. As illustrated

below, if t
m+1

is the successor of t
m
the event occuring at x will be

skipped.

logical value

time
tm x tm+1

Figure 1. A sequence of events

In this respect, we state the following assumption: CONTROL CONDITIONS

ARE TESTED AT ALL SUCCESSIVE POINTS IN TIME. Our Second Assumption at

this level is that: ALL OPERATIONS IN A CONTROLLED SEQUENTIAL NETWORK,

INVOKED BY ITS CONTROL CONDITION AT A CERTAIN TIME, WILL COME TO CONCLUSION

BY THE NEXT POINT IN TIME.

68.

The above assumptions are understood to be part of the semantics of a

controlled network. They relieve the user from some timing problems so that

he can concentrate on other aspects of his design. Nevertheless, at a lower

level the designer must comply with certain requirements in order that the

assumptions at the present level be maintained. Later these requirements

will be dealt with.

5. 	General Networks

<general network> ::= kcontrolled network>)+

A 'general network' is composed of several controlled networks, each of

which behaves as described in the previous section. At every time point,

firstly all control conditions are tested, and then the networks corresponding

to the true control conditions are activated. An example of a general

network is given below:

register a(1:4), b(1:4),.c(1:4);

Boolean w, x, y;

w -4 [c = add(a,b)i a = sub(alb)0

x -* (a = add(b,c); [b = c; c = a;])

and (x,y) x = false;

The two assumptions set out earlier apply to each member of a general

network, in addition to our next assumption which is a consequence of the

aggregation of several controlled networks. Before stating this assumption

we need to establish the following definitions.

Two RT-operations are said to be 'directly joint' if they share only a

destination register, and 'indirectly joint' if the output of one is an

69.

input to the other. If two operations are not directly or indirectly

joint, they are said to be 'disjoint'. Two controlled networks are joint

if they have two joint operations; otherwise they are disjoint. A general

network is disjoint if all its members are disjoint. Let

w
1

A
l

w
2 -+ A2

be two disjoint members of a general network. If there exists a time point

at which both w1 and w2 are true it is immaterial which network is activated -

i.e. its operations take place - first. The conflict arises when the two

networks are joint. Our third assumption is now stated to be: THE

OPERATIONS OF JOINT NETWORKS TAKE PLACE ACCORDING TO THEIR TEXTUAL ORDERING,

i.e. THE TOP ONE IS THE FIRST. This, of course, means that if Al and A2

are directly joint through a vector s, the operation involving s in A2 has

a higher significance than that in Al' since this is the one which is carried

out last, and therefore its effect remains in the system for the present time

interval.

Note that the Third Assumption gives rise to a new way of sequencing; for

example the networks (1) and (2) below are the same:

1) Boolean w;

w (opt opt . . . 0pn)

2) Boolean w;

w -0 opt

w -0 opt

w opn

70.

where op, is an RT-operation.

In summary, a general network is an ordered list of controlled sequential

networks with the assumption that if there exists a time point at which more

than one sequential network is activated, the operations take place according

to their textual ordering.

6. 	Systems

<system> ::. kdeclaration>1*<system body>

<system body> 	<initialization> end;I

start; <general network> end;I

<initialization> start; <general networR> end;

<initialization> 	<sequential networR>

A 'system' is composed of a general network together with the necessary

initializations required for the network to perform in the way it is

expected to. Initializations conclude before the network begins to operate.

As far as hardware implementation is concerned, they are done by manual

switches. The following are two examples of systems:

1) Boolean clk; - - a user defined clock;

cik = false; - - initialize the clock to false;

Start;

cik = not clk; - at successive points clk changes state;

end;

2) register a(1:4), b(1:16), c(1:16);

a = bin(0,0,0,1);

71.

start;

-- shift left a and b three places;

--a(1) [a = 'shift a; b = 1Shift

-- at the end transfer b to c;

a(1) --■ c = b;

end;

7. 	Implementation of General Networks

In this section we discuss the problem of implementing a general network

assuming that the implementation of a controlled BT-operation is already

known. It should be pointed out that this is a fair assumption, since

BT-modules are usually available to the user [8,211. Nevertheless, if they

are not available, it is easy to make them out of primitive logic elements

such as a-bistables, and, or, not, or similar gates. When we set out to

implement a general network, the task will naturally result in the

representation of the network at successively lower levels, where assumptions

inherent in the high level representation turn into requirements that should

be acknowledged and implemented in order to comply with those assumptions.

It is frequently desired to identify a certain step of an event composed

of several steps. To this end, depending on the circumstances, some kind of

'sequencer' is used. The simplest one, called the synchronous sequencer

is described below:

register s(1:M);

s = bin (1,0,0,,0); -- initialize;

start;

true s = rshift s; 	-- shift right at each time point;

end;

72.

The above component may be used to distinguish. between M steps of an

event; when s(i) becomes true, the ith operation is identified. FUrthermore,

when all stages of s are false the end of the event is signalled. Equally,

one can use an M + 1 stage sequencer where the last stage identifies the

end of the event.

7.1 Reduction to Type a Networks

Let a general network be composed of controlled networks

w -4 A

where w is the control...condition and

A = (Al A2 AM)

That ist A. is a sequential network and each Ai is a parallel one. Using

a sequencer we arrange that the M steps of A occur in order. This process

demonstrates the property of sequential networks, that each one activates

its successor. The new description is as follows:

register s(1:14);

s = bin (1,0,0, 0);

start;

true -9. s = rshift s;

and (s(1),w) 	Al

and (s(2),w) -' A2

and (s(M),w) Am

end- 7

?3.

Let a network be composed of controlled networks

x -4 B

where x is the control condition and

B = [Bi B2 	Bx

That is,B is a parallel network and each Bi is an 14T-operation. This

combination is called a 'type a network'. Thus, the first stage of the

reduction to implementation level, has been reduction to a type a network.

We recall that our Second Assumption is that all operations initiated at a

point in time will conclude by the next time point. One can see that it is

easier to comply with this assumption in a type a network than in a general

network because of the parallel-only nature of the operations. But we are

not yet in a position to say that the Second Assumption has been complied

with, since not all parallel networks Ai do take the same time to conclude.

Let A be the one which takes the longest time. One way to solve the problem

would be to adjust the First Assumption, i.e. to permit At to be at least as

longasthetimetakenbyA.
3
. This is not however a good solution, because

it makes At dependent upon the behaviour of a certain network, and hence

all other parts of the system run as slowly as this network does, which is

contrary to the normal requirement from a design product that it should be

as fast as circumstances allow.

Let t(Ak) denote the time taken by Ak to conclude; this can be expressed

as

t(Ak) = nk* At, nk z1

We now arrive at a new solution, that is to make the result of Ak

available to its successor Akil after nk time units as shown in the

74.

following segment. This is called the 'bynchronous' method.

and(s(1),w) 	Ak

and(s(+(1,ilk)),w) 	Ak 1.

where s(1) is the stage corresponding to Ak, and therefore s(+(lInk))

is the stage corresponding to Ak41. This method, which is applicable in

many cases, does not have the drawback of the first one, but it assumes

that we already know how long Ak would take. When t(Ak) depends on the

data supplied to it, the following method, known as 'asynchronous', is used.

First we define an asynchronous sequencer or, more precisely, an asynchronous

stage in a sequencer. Each stage of a synchronous sequencer is true for a

time interval determined by an external signal, while for an asynchronous

stage this length of time is determined by the component to which the stage

corresponds. The asynchronous component is activated when its corresponding

stage is set to true. When its operation ends, the stage is set to false;

the succeeding stage then becomes true. Any number of synchronous or

asynchronous stages can be cascaded together.

In summary, during the reduction to type a we saw that all the three

assumptions remained invariant. This was because the form of representation

did not change, i.e. the network was always represented as a list of controlled

networks. As a result of this reduction, we showed how the requirements for

complying with the Second Assumption could be implemented.

7.2 Implementation of Joint Networks

Let

w
1 --0 [• • . opi .

w2 	[. . . op
2
. .

wN 	. . . opN It • •

be a Lype a network where each opi is an RT-operation, and due to the

existence of certain joint operations, opi's must take place according to

their textual ordering. We integrate all the joint operations to obtain:

or (wl,w2, . . 	wm) -, (if wl then opt

if v2 then op2

if wu then opN)

This is a controlled sequential network which can be implemented using

a sequencer composed of N stages. Although the above solution is a general

one, it may not always be desirable because of the slow nature of the

sequential network. The designer must search for more suitable solutions

which better suit his special case.

As will be seen later in the examples, the control conditions are such that

very few of them may be true at the same time and there is little chance

that the true ones have a shared register. A case which usually gives rise

to the need for integration is when one of the control conditions is the

constant true.

75.

76.

7.3 The clock

Our First Assumption was stated to be: control conditions are tested at

consecutive discrete points in time. The result of this test is that

controlled networks whose control conditions are true are activated at the

forthcoming point in time. Therefore, the requirement can be re-fomulated

to become: the only assignments taking place at the forthcoming point in

time are to the destination registers in controlled networks with true

control conditions. If there exists a variable which is true at every

successive time point, and false otherwise, the problem is solved. Let us

call this variable clock; then, the condition for the assignment is:

and(clock, control condition)

This, of course, means that the storage elements employed as destination

registers should offer the facility for conditional assignment. A clock

cannot be described in terms of our primitives, i.e. controlled HT-operations.

However, it is easy to make such a component out of primitives lower than

those we have ever considered. Its output signal varies according to the

time as shown below:

clock

. . •

true

false 	 time
t t+1 *+++*

* assignments take place

+ expressions are evaluated

Figure 2. The clock output signal

77.

There are variations in the type of storage elements used as registers,

and in the waveform of the clock; these are discussed in Chapter V.

In all cases the general idea is to cater for the implementation of the

First Assumption.

One would like to speed up the computation by increasing the rate of the

clock pulse. This, however, would shorten the time for evaluating expressions

(At), which calls for the use of elements with a shorter inherent time delay -

one of the factors to be considered when compromising between cost and speed.

8. 	Higher Level Control Structures

<sequential network> ::= <conditional structure>I

<unconditional structure>

<conditional structure> ::= <if structure>

<unconditional structure> ::= <parallel network>1<block>I

<for structure>I

<case structure>I

<loop structure>1

<miscellaneous structure>

<parallel network> : := <RT -operation>, [kRT-operation>)+]

<blocl.C) ::= ((<sequential networ%>)+)

Control structures are essentially at the same syntactic level as parallel

networks. Therefore, we have extended the definition of a sequential

network to include these. As might be expected from the syntactic form,

all control structures need to be activated. They may be either explicitly

conditional, like the if structure or unconditional like the rest. With

this modified form of definition, a sequential network may be as simple as

an RT-operation, or as complex as the structures suggested by a block.

78.

Blocks are enclosed in round brackets which in this context are a sign

of sequentiality. The for structure differs from all other control

structures in that it is used only to define repetitive constructions.

8.1 Repetitive Constructions

<for structure> ::= <for clause> do <sequential network>

<for clause> ::= <for list>l<for list> step <index step>

<for list> ::= for <for index = <initial value> to <final value>

<for indeX> :•= <integer variable>

<initial value> ::= <integer constant>

<final value> ::= <integer constant>

<index step> ::= <integer constant>

Repetitive constructions may be described with the aid of the for structure

which defines zero or more instances of a sequential network. Each instance

differs from the previous one in the value of the for index. The index

starts at the initial value and is increased by the specified step until it

reaches its final value. If no step is given, the index is increased by 1.

Some examples of the for structure were given in Section 111.6. Two more

examples are given below:

1) register a(1:16),b,c(1:16);

for i = 1 to 15 step 2 do C

a(i) = b; c(i) =

The equivalent graphic description is given in Figure 3. This network,

when activated, sets all the odd positions of registers a and c to the

value contained in b. Notice the correspondence between the parallel nature

of the graphic and symbolic descriptions.

a(15) a(16)
a(1)

c(16)
	1

c(2)

na(16)

clock

79.

a(2)
	

a(3)

c(3) c(1) c(15)

Figure 3.

Boolean a(1:16), na(1:16);

for i = 1 to 15 do

a(4.(i,1)): na(+(i,1)) =ffkbsCa(i), na(i), clock);

a(1): na(1) = jkbs(a(16), na(16), clock);

Figure 4. 16 JK-bistables connected in a circular way

8.2 Implementation of Control Structures

As will be seen below, control structures can be simply implemented in

hardware; this is particularly interesting since experience in developing

algorithms has shown how frequently these structures occur.

80.

Control structures are essentially asynchronous, since the time they

take to complete their operation varies from one activation to another.

At the end of their operation a completion signal, called comp, is sent

which allows the successor of the control structure to be activated. It

should always be reset to false before the asynchronous device is invoked.

8.3 The if structure

<if structure> ::= <simple if>I<simple if> else <sequential network>

<simple if> ::= <if clause> <unconditional structure>

<if clause> :: if <control condition> then

If the control condition is true the unconditional_structure is activated;

otherwise, the sequential network, if any, is invoked. Examples are:

register a(1:4), b(1:4), c(1:4)1d;

Boolean xi y;

1) y -, if x then (a = b; b = c;) else [a = b; b =

2) if x then d = and a;

8.4 Implementation of the if Structure

We augment both the unconditional structure and the sequential network

by the operation comp = true; in parallel to their last operation. If no

sequential network is given, the result of augmentation is the operation

itself. The control condition for the augmented unconditional structure

is given in the if clause, and its negation is the control condition for

the newly formed sequential network. For example the augmented forms of

(1) and (2) are:

1) y --, if x then (a = b; [b = c; comp = true;])

else [a = b; b = a; comp = true;]

81.

2) if x then Ed = and a; comp = true;]

else comp = true;

When the if structure involves only RT-operations, like the two examples

considered above, it is easier to implement it in a Synchronous manner.

For example, (1) could be implemented as:

and (y, x) -+ (a = b; b = c;)

and (y, not x) 	Ca = b; b = a;3

8.5. The case Structure

<case structure> ::= case <selector> of <case body>

<selector> ::= <integer variable>

<case body> ::= Ekcase primary>)4]

<case primary> ::= <labellabel>1*-4 <sequential network>

<label> ::= <integer constant>lothers

The sequential network whose label is equal to the value of the selector

will be activated. The labels must be distinct. If no such network exists,

the one labelled others will be activated provided this label is specified,

e.g.

constant add = 1, sub = 2, 	, shift = 10; -- operations;

integer op-code; -- operation code;

register acc(1:16); -- accumulator;

register afr(1:16), -- arithmetic factor register;

register error; -- error indicator for invalid operation codes

case opcode of [

add -► acc = add(acc, afr);

sub -* acc = sub(acc, afr);

others --a error = true;]

82.

8.6 Implementation of the case Structure

First it must be decided how to represent the selector. Among various ways

of doing this, we choose the base infinity (co) representation, whereby to

represent n distinct values, n distinct digits are needed. In the binary

coded form of base co, the element s(i) of the Boolean vector s is set to

true to represent the ith digit. This representation, which is extremely

redundant, has however the advantage of being easily interpretable; in fact

the information is already in the final interpreted form. Furthermore, the

operations addition and subtraction can be easily performed; in the special

case of increasing or decreasing by one, they are simply done by shifting to

the right or left. (Due to these advantages the representation is used for

lift position-indicators.) There are simple ways of mapping other forms of

binary representation onto base co and vice versa. At present we use this

base becuase of its ease of interpretation.

We augment all the sequential networks of the case structure by the operation

comp = true; in parallel to their last operation. If no network labelled

others exists, one will be created whose only operation is comp = true;.

Let Z. be one such newly formed sequential network whose label is a constant

and corresponds to s(i); then, s(i) is the control condition for Zi. Let

s(kI) s(k2), . 	. , s(kn) be the elements which do not correspond to any

of the constant labels; then,

Er(s(ki), s(k2), . . . 	s(kn))

is the control condition for the sequential network labelled others.

Like the if structure, when the case structure involves only RT -operations

it is easier to implement it in a synchronous manner.

83.

8.7 Loop Structures

<loop structure> ::= <do structur6>l<while -do structure>l<do -while structure>

There are three kinds of loops: do is a loop without a termination test;

while-do has its termination test at the beginning of the loop; and do-while

is used for a test at the end.

It is often needed to exit from a loop under certain conditions. A primitive

element, named exit, is included for this purpose. As a result of activating

this element, the successor of the loop is invoked.

In order to implement loops, a loop sequencer is used, as defined below for

sequencing M steps of an event.

register s(1:M) ;

s = bin(1,0,0, . . 	0);

start;

true -4 s = rcirc s;

end;

The only difference between this sequencer and the one described in Section 7

is in the use of circulation instead of shifting. Loop sequencers may

contain stages for asynchronous operations; this is needed, for example, when

control structures are nested.

In all kinds of loops, two things must be done in order to exit: the loop

sequencer must be stopped by resetting it to false, and the operation comp =

true; activated. Since only one of the stages of the sequencer is true at a

time, in order to reset the sequencer it is sufficient to reset the successor

of this stage.

84.

8.7.1 The do Structure

<do structure> ::= do <sequential network>

The network is repeatedly activated until an exit element is invoked, in

which case the successor of the structure is activated. For example, as a

result of activating the following sequential network all even locations of

register f are set to false, in series.

register f(1:16);

integer i;

i = 1;

doff = lcirc f;

f = lshift f;

if eg(i,8) then exit;

i = plus(i,1);)

8.7.2 Implementation of the do Structure

In the implementation the exit element plays two roles: it resets the loop

sequencer to false, and sets the register, comp, to true. These two operations

can be done in parallel. A low level description of the previous example

is given below. In this, s is a synchronous loop sequencer.

register f(1:16), s(1:4), comp;

integer i;

1- Ei = 1;

2- s = bin(1,0,0,0)0

start;

3- true -, s = rcirc s;

4- s(1) 	f = lcirc f;

5- s(2) 	f = lshift f;

85.

6- s(3) if eq(i,8) then [s(4) = false; comp = true;]

7- s(4) 	i = plus(i,1);

end;

There are a number of points to be noticed in this description. Firstly,

the initializations are in parallel. Secondly, the exit element is

translated into two parallel operations. Thirdly, the control conditions

of lines 4 to 7 become true one at a time; this is typical of descriptions

at this level. Finally, there is a point in time at which control

conditions of both lines 3 and 6 are true, and also i = 8; then, two

assignments to location s(4) of the register s occur. As mentioned earlier

the one textually lower has a higher significance, which results in the

resetting of the sequencer.

8.7.3 The while-do Structure

<while-do structure> ::= while <control condition> do

<sequential networ1>

The network is repeatedly activated while the control condition is true.

The condition is tested at the beginning of operations; therefore if it is

false at the beginning the network is not activated at all.

8.7.4 Implementation of the while-do Structure

The while-do structure is a special case of the do structure

where the exit test is performed at the beginning of operations. If the

sequential network involves n steps, a loop sequencer composed of n + 1

stages is used. The first stage caters for testing the condition.

8.7.5 The do-while Structure

86.

<do-while structure> ::= do <sequential network> while

<control condition>

The network is repeatedly activated while the control condition is true.

The control condition is tested at the end of operations; therefore the

network is activated at least once.

8.7.6 Implementation of the do-while Structure

This is implemented as a special case of the do structure, where the exit-

test is performed at the end of operations. If the sequential network

involves n steps, a loop sequencer composed of n 1 stages is used. The

last stage caters for testing the control condition.

9. 	An Example of Design

This section is concerned with an example-of the design of a component with

the aid of concepts discussed so far. First i high level description of

the device to be designed is produced from its verbal description; this

description is then successively reduced toward the implementation level.

We would like to design a component which repeatedly shifts to the left

the contents of the register, acc, until the leftmost position contains a

true bit. The integer i holds the count of shifts, and it is assumed that

acc contains at least one true bit. The formal description is as follows:

register acc(1:16);

integer i;

i = 0;

while not acc(1) do C

acc = lshift acc;

i = plus(i,1);]

end;

87.

The two operations of the while-do loop are stated to be in parallel

since they do not interfere with each other. In order to make the exit

condition more transparent, we now express the description in terms of a

do loop.

register acc(1:16);

integer i;

i = 0;

do(if acc(1) then exit;

[ace = lshift acc;

i = plus(i,1);])

end;

At the next step we need a two-stage synchronous loop sequencer to implement

the do loop. The first stage is concerned with the exit test and the second

with the operations of the loop.

register acc(1:16), s(1:2), comp;

integer i;

= 0;

s = bin(1,0);

comp = false;

start;

true -4 s = rcirc s;

s(1) -4 if acc(1) then Es(2) = false; comp = true;]

s(2) [acc = 'shift acc; i = plus(i11)0

end;

As mentioned in Section 8.7.2 the exit element is translated into two

RT-operations: the first one resets the sequencer and the second sends

the termination signal.

88.

At the next level the decision must be taken how to represent i. We

adopt the familiar base co representation for the sake of simplicity in

counting. Acc may be shifted to the left by at most 15 positions; therefore

a total of 16 positions are required, the first one for representing O.

register acc(1:16), s(1:2), comp;

register cnt(1:16); -- register to hold the number of shifts;

Cent = hexa(8,0,0,0); -- set count to decimal zero;

s = bin(1,0);

comp = false;]

start;

1- true s = rcirc s;

2- . 	and(s(1), acc(1)) 	[s(2) = false; comp = true;]

3- s(2) 	[ace = lshift acc; cnt = rshift cnt;]

end;

This description is in the form of a type a network, where lines 1 and 2

are directly joint. We integrate the joint operations in order to obtain a

disjoint type a network. Only the main body of the description is given

below since the rest remains unchanged.

1- true -. s = rcirc(and(s(1), not acc(1)):s(2));

2- and(s(1), acc(1)) 	comp = true;

3- s(2) [ace = lshift acc; cnt = rshift cnt;]

The second line can be written in the following equivalent, but simpler form:

2- 	true --, comp = and(s(1), acc(1));

The description is now ready for final implementation. Remember that the

control conditions for register assignments should be and'ed with the

clock. The graphic description in terms of abbreviated JK-bistables is

given below:

acc(16)
o•S

clock

s(2)

cnt(1) 	 cnt(16)

89.

s(2) 1
clock

comp

clock

Figure 5. The component to shift left and count

The symbolic description is as follows

for i = 1 to 15 do

acc(i) = ajkbs(acc(+(i,1)), and(clock,s(2)));

i2. 11 2. 152.

cnt(+(i,1)) =ajkbs(cnt(1), and(clock, s(2)));

s(1) = ajkbs(s(2), clock);

s(2) = ajkbs(and(s(1), not acc(1)), clock);

comp = aftbs(and(s(1), acc(1)), clock);

The network is activated when s(1) is set to true. The initializations

should conclude prior to activation; also, the register acc should contain

the bit pattern to be operated upon.

90.

CHAPTER V

Miscellaneous Extensions

1. Introduction

Most of this chapter is devoted to the description of System- and

user-defined elements. Analogies are pointed out between the roles of

such elements in a description language and sub-programs in a programming

language; some examples are given to show how user-defined elements could

be employed in extending the basic set of primitive elements available to

the user, and in composition of networks.

The chapter concludes by stating that a description at any level could be

looked at as if it had been given at the Control Level, and that the Control

Level is thus the generalized form of all levels.

The System bistables are basically selected from the DEC Logic Handbook [18].

Their behaviour differs slightly from that of DEC bistables because of the

digitization of time.

Syntactic details of the structures introduced in this chapter are given

in Appendix C.

2. Logic Elements with Time Delay

It is quite common to consider a time delay of one unit for certain of the

gates forming a network. Although the delay element, as demonstrated in

Section 11.9.1, can serve to introduce the desired time delay, a simpler

way is suggested in this section, namely extending the set of operators of

the Language (Table II1.1) to include operators with one unit of time

delay; the letter, d, in front of the name of standard logical operators means

that the corresponding operator imposes the required delay. In this manner

91.

seven operators, viz. dand, dor dnot, dnand, dnor, deov, deor are formed

which may be used along with the other operators of the Language to define

networks or new elements. (Examples of these will be seen later in this

chapter.) The expressions corresponding to these operators are called

delayed Boolean expressions.

3. 	System-defined Elements

System-defined elements perform functions more complex than those of primitive

elements. Usually it is better to leave the task of defining complex

elements to the user so that they can be defined in accordance with the user's

specific requirements. However, the inclusion of certain of such functions

allows the System to implement them efficiently, as well as providing the

user with additional facilities. In the following sections we shall describe

two types of elements incorporated in the System - binary adding elements and

bistables.

3.1 Binary Adding Elements

The four binary adding elements operate on, and result in binary numbers

represented by Boolean vectors. They are:

1) add: this element takes two vectors of size n as'its inputs,

and returns their sum in a vector of size n + 1. The first

element of the output vector holds the carry out, e.g.

register opr(1:16); -- operand register;

register acc(1:16); -- accumulator;

register c; 	-- carry indicator;

c:acc = add(opr,acc);

2) sub: this is the same as the previous element with the

exception that the second operand is subtracted from the first

92.

one. The first element of the output vector holds the

borrow in, e.g.

c:acc = sub(opr,acc);

Since increasing or decreasing by one occurs quite frequently, the next

two elements are incorporated for this particular purpose.

3) add1: this element takes a vector aS its pnly,input, and after

increasing it by one, returns a vector of the same size, e.g.

register ic(1:16); -- instruction counter;

ic = add1 ic;

4) subl: this is the same as the previous element except that

the input vector is decreasing by one, e.g.

register src(1:16); -- shift count register;

src = sub1 src;

3.2 Bistables

3.2.1 The Requirements of Bistables in Relation to the clock Waveform

It was stated in Section IV.7.3 that in order to implement the Third

Assumption a clock generating the following waveform is needed:

clock

true

	›. time
+++

false

. . .

* assignments take place

+ expressions are evaluated

Figure 1. Ideal waveform of the clock

93.

Two problems concerned with the clock waveform are considered here:

firstly, if an expression takes longer than At to be evaluated and has

to be evaluated at every point in time, the Second Assumption is violated.

To overcome this, the user has to define his own clock to run at a slower

rate; alternatively logic elements with faster switching time could be

used at a higher price.

Secondly, because of certain physical constraints the clock waveform in

practice would look like:

. . .
	

. . .

clock

true

false 	1. time

Figure 2. Actual waveform of the clock

Under this condition, there is a possibility that the contents of a

register, say x, are refreshed more than once during a clock cycle - this

violates the First Assumption. Such a possibility arises because the

expression resulting in the value of x is fast, i.e. its evaluation is

fast in comparison with As.

Note that in the first of the two cases considered above, the problem was

due to the slow expressions, as compared with the second case in which the

problem was due to the combined effect of certain physical constraints

and fast expressions. As far as the clock waveform is concerned, there is

no solution to the second problem. Attention is therefore directed toward

the other factor involved, that is, bistables employed as registers.

. . • 	 . . .

	

t. 	
1
t.

	

1 	41 ti+2

clock

true

false
time

94.

Since two of the three System bistables (to be described below) take as

one of their inputs an actuating signal which is byuchronous with the

System clock, we specify the form of this clock before going into further

details:

Figure 3. The System clock

The two variables, time and clock, are defined to the System with

ti +1 - t.1 +1
+1

The System initializes time to zero, and clock to false; they may be

re-initialized by the user.

3.2.2 JK-bistables

One solution to the problem posed in the previous section is as follows:

The storage element accepts its inputs at t1 (Figure 4), the leading edge

of the actuating signal, but the result does not appear at the output until

t
2'

the trailing edge of the actuating signal.

95.

activator
A

true

false 	
time

t1 t2

output,

true

false time

* assignments take place

+ expressions are evaluated

Figure 4. The actuating and output signals for a JK-bistable

The input signals should settle before the leading edge is reached, and

they should not change while the activating signal is at the true level.

If they do change, the output signal is indeterminate.

If q and q' represent the present and future states, the following

relation should hold between them; j and k are inputs:

q = v(8c(--- q, j) , 	k,q))

During the interval Au the bistable holds both the present and future

states, although only the present state is available at the output. The

JK-bistable is triggered by the trailing edge of the actuating signal.

96.

Figure 4 shows the bistable response to j = true; k = false; it is

assumed that the previous state of the bistable was false.

A JK-bistable returns a vector of two elements: the output signal and its

negation, e.g.

Boolean q,nq,j,k;

q:nq = lkbs(j,k,clock);

A fourth element, which should be a binary constant, could be added to the

input list so as to initialize the bistable statically, e.g.

q:nq = jkbs(j,k, clock, true);

otherwise, the initial state is set randomly by the System.

3.2.3 D-bistables

Another solution to the problem raised in Section 3.1.1 is as follows.

The storage element accepts its input at the leading edge of the actuating

signal. The input signal is then locked out until the trailing edge of

the actuating signal has passed. The following relation holds between the

bistable input (d), and its future state:

q' = d

A D-bistable is triggered by the leading edge of the actuating signal.

Figure 5 shows the bistable response to d = true; it is assumed that the

previous state of the bistable was false.

97.
activator

.•.
• • .

++++++++++++++++++

output

A

time

* assignments take place

expressions are evaluated

Figure 5. The actuating and output signals for a D-bistable

An example of the use of a D-bistable is given below:

Boolean d, q;

q = dbs(d, clock);

A D-bistable may be initialized in the same manner as a JK-bistable, e.g.

q = dbs(d, clock, true);

3.2.4 RS-bistables

In contrast to JK- and D-, PS-bistables do not have an activator as one

of their inputs, and the bistable response to a change in one of the input

signals, has a delay of one unit. The following relation, presented in

the form of a truth table, holds between the present and future states;

r and s are inputs:

time

98.

q'

false 	false

false 	true 	true

,true 	false 	false

true 	true

The output signal is indeterminate when both inputs are at the true

level; eventually the input which stays longer at this level, wins the race.

Figure 6 shows the bistable response to r = false; s = true; it is assumed

that the previous states of both inputs were false:

) 	time

output,

time

Figure 6. RS-bistable response

An RS-bistable returns a vector of two elements; the output signal and

its negation, e.g.

99.

Boolean q,nq,r,s;

q:nq = rsbs(r,$);

RS-bistables may be initialized in the same way as JK- and D-bistables,

e.g.

q:nq = rsbs(r,s, false);

4. 	Element Definition

The element definition facility helps to increase the existing capabilities

of the System through defining new elements in terms of the present ones.

Once an element has been defined, it is used in the same way as the standard

elements of the System. In this manner, the user can extend the Language in

a uniform and simple way to meet his own requirements. As an example, the

majority function is defined here:

element Boolean majority = (Boolean a,b,c;)

majority = or(and(a,b), and(b,c), and(c,a));

In the above example, a, b, and c are formal inputs, and the output

identifier which is also the name of the defined element, is majority. An

example of the use of this element in a network is given below:

t
	

v

Boolean t,u,v,x;

x = majority(t,u,v);

x

Figure 7.

100.

As this example suggests, the syntactic form of a reference to a user-

defined element is the same as that of a standard element.

A user-defined element, like a standard one, can take arrays as its inputs

and return an array as its result. For example, a majority function which

operates on three vectors of length 16, and returns a vector of the same

size, is defined below:

element Boolean majority (1:16) = (Boolean a(1:16),b(1:16),c(1:16);)

majority = or(and(a,b), and(b,c), and(c,a));

Elements defined by the user may impose a time delay in the course of

propagating their input signals; a majority element with one unit delay

could be defined as:

element Boolean majority = (Boolean a,b,c;)

(delay d;

d = or(and(a,b 	and(b,c), and(c,a));

majority = d;)

or alternatively,

element delay majority = (Boolean a,b,c;)

majority = or(and(a,b), and (b,c), and(cla));

. Similarly an element returning an array as its output, may impose a time

delay on all members of the output array:

101.

element Boolean majority (1:10 =(Boolean a(1:16),b(1:16),c(1:16);)

(integer i;

for i = 1 to 16 do

majority(i) = dor(and(a(i),b(i)),

and 03() c(i)),

and (c(i),a(i)));)

4.1 Similarities to Sub-programs

Conceptually, certain aspects of the idea of element definition in a

description language are similar to that of sub-programs in a programming

language. Both cater for the construction of complex primitives from the

existing ones; they thus provide the user with the facility to form a new

primitive once and for all, and subsequently to be relieved of thinking

about its details each time it is needed. In a programming language, this

process may be repeated to adapt the language to a certain application. In

a description language, at the beginning the idea serves to describe a

certain technology in terms of the existing tools which, for this purpose,

are regarded as abstract operators; later, in a broader context one can

exploit the same idea to compose networks.

Looking from the reverse direction, that is top-down, one can decompose a

problem into sub-problems of a lower degree of complexity, and thus nearer

to the ones which can be handled with the aid of available primitives. This

cycle may be repeated until the gap between the required function and the

existing resources is filled.

In the following sections, we present two examples of function construction

related to the kinds of uses mentioned above.

102.

4.2 A Bistable

In this section, as an example of constructing a new primitive, we describe

a bistable with the property that it changes state if its input is true,

and remains unchanged otherwise. Furthermore it is required that the input

signal be accepted while an actuating signal is at the false level; the

input is locked out when the leading edge of the actuating signal is reached,

and is not unlocked until the trailing edge is passed, at which time the

bistable response to the input signal appears at its output.

If t denotes the input, and the present and future states are represented

by qp and qf, the following relation should therefore hold:

qf = or(and(not t, qp), and(t, not qp))

Figure 8 shows the state diagram of the bistable. There are two states,

sf and stl
 and the transition between them occurs as a result of a change

in the actuating signal. The numbers written on the arcs correspond to the

actions to be taken when the transitions occur.

false

1- accept inputs

2- transfer qf to qp

Figure 8. The state diagram of the bistable

103.

In the following description of this element, the two possible values

of variable, s, correspond to the states sf and st.

element Boolean qp = (Boolean t, activator;)

(Boolean s, qf;

if nor (s, activator) then qf = or(and(not t, qp),

and(t, not qp));

if and (not 	activator) then s = true;

if and (s, not activacor) then (qp = qf; s = false;))

4.3 A Parallel Adder

The example presented in this section concerns network composition - a

16-bit parallel adder is constructed from half-adders. A half-adder can be

described as:

element Boolean h-adder(c,$) = (Boolean x,y;)

(h-adder(c) = and(x,y);

h-adder(s) = eor(xly);)

Figure 9. A half-adder

The first element of the output vector holds the carry out, and the

second element holds the sum. A full-adder can now be constructed:

element Boolean f-adder(c1s) = (Boolean x,y,z;)

(Boolean cl,c21s1,s2i

c1:s1 = h-adder(x,y);

c2:s = h,-adder(s1,z);

c = or(c1,c2);)

s(1)

Figure 10. A full-adder

The following is a description of a 16-bit Parallel adder in terms of

full-adders:

element Boolean s(1:16) = (Boolean x(1:16), y(1:16);)

.(Boolean c(1:17);

c(1) = false;

for i = 1 to 16 do

s(i):c(+(i,1)) = f-adder(x(i), y(i), c(i));)

c(1) x(1) y(1) 	c(2) x(2) y(2)
	

c(16) x(16) y(16)

s(2) s(16)

Figure 11. A 16-bit parallel-adder

Propagation delays and techniques for SPeeding up the carry propagation

can easily be introduced and investigated.

105.

4.4 Contrasts to Sub-programs

4.4.1 Local Variable

In a conventional program, several calls to a sub-program indicate that the

same segment of code should be executed several times, possibly with

different arguments. In a description, however, several references to an

element mean that several instances of that element exist in the network;

these instances may well be in different internal states.

Local variables of an element are the ones which do not appear in the input

list, and therefore they are declared in the body of the element description.

These variables may be employed to represent internal states of elements;

in this respect, a helpful feature in a description language is that the

values of these variables remain-intact from the end of one activation to

the beginning of the next one. Otherwise, in order to achieve the same

effect, the user has to represent internal states by variables declared in

the input list. This decreases both the clarity of descriptions, and the

correspondence between symbolic and graphic descriptions.

The same argument, about the values of local variables, applies to the

output variable. In the example of Section 4.2 the output variable corresp-

onded to the present state of the bistable.

4.4.2 Linking the Main-description and Elements

The actual inputs to an instance of an element are determined by the main-

description; when that instance is activated, the signal corresponding to

the actual inputs should be made available to the element.

In programming languages, a call by value ensures that the value of the

1o6".

corresponding actual parameter is not changed by the sub-program, as

contrasted to call by reference or call by name. This feature is a

particularly useful one to incorporate in a description language, for if

both the main-description and the user-defined element assign values to the

same variable, there is the possibility of an ambiguous connectivity

(Section 11.7.1) being created by the user. For a similar reason it is

useful to have a user-defined element as the only object which can assign

a value to its output variable.

	

5. 	Simulation Facilities .

Three structures, namely initialize, restart, and stop are incorporated in

the System merely for the purpose of simulation. Their behaviour is similar

to RT -operations, in that they need to be activated; however none of these

activates its successor.

) initialize when invoked terminates the present simulation run and

starts a new one. The initializations are performed and the model

is then entered. This serves to run the model for several sets

of input data.

2) restart when invoked terminates the present simulation cycle, but

retains the state of the model. The initializations are ignored

and a new cycle is then begun. This helps when one wishes the

initial state of the model to be the result of the previous run.

3) stop when invoked terminates the simulation. No new run can then

be started.

	

6. 	Input/Output Facilities

The facilities described in this section are elementary, and only involve

107.

those features which have been implemented. An I/O structure behaves

in the same way as an RT-operation, in that it needs to be activated so as

to operate, and upon completion it activates its successor.

For input, the variables named in the input list take on values from the

'input stream'. Each data item in this stream should be separated by a

semi-colon from the next one. Array names refer to the whole of the array;

the same is true of sub-arrays and array segments identified by subscripted

variables. As far as delay elements, joint and disjoint operations are

concerned, the input structure acts like an RT-operation, with the variable

identifier on the left hand side, and the data item to be input on the

right hand side.

For output, the values of variables in the output list are transferred

to the 'output stream'. A certain number of spaces, held in the variable

space, are inserted after all the values corresponding to each variable are

transferred. The default value of space is 5; it can be initialized to any

decimal value by the user. As far as delay elements, joint and disjoint

operations are concerned, the output structure acts like an RT-operation,

with the variable name on the right hand side.

Among other output facilities, there are structures for inserting new-lines

and spaces in the output stream.

7. 	An Overall View of a Description

In this section we shall consider the most general form of all the levels

so far considered. This will give us the ability to integrate several

description segments at different levels into one unit whose working is

understood in terms of the general level.

108.

One form of integration which was seen at the end of Chapter II, came as

a result of interpreting the behaviour of a network described at the Level

of Logic Elements in terms of a sequence of RT-operaLions; it resulted in

the ability to combine description segments belonging to these two levels.

Another form of integration was seen in Chapter IV: since sub-levels of

the Control Level were all presented in the form of controlled networks, we

managed comfortably to combine them, and as a result of this aggregation

the Third Assumption was introduced.

Thus in order to achieve total integration on all levels, we can now focus

our attention only on the Control and Register Transfer Levels. The state

of a network at the latter level is re-evaluated at every time point; in

this respect, such a description is similar to that of a controlled network

with a true control condition. Therefore in order to interpret, at the

Control Level, the working of a network whose description is given at the

Level of Logic Elements, it is sufficient to prefix the description with

a true control condition; the sequence of RT-operations now takes the form

of a sequential network. As was stated in Section IV.4, in this special

case both the control condition and sign may be omitted. Thus if such a

description is to be combined with other segments, described at the Control

Level, it is sufficient to place them textually next to each other. The

particular textual position is important when joint operations are involved.

It can now be said that the Control Level is the most general form of all

the levels. The understanding of this general level is important from two

viewpoints: firstly, it shows how several segments described at different

levels interact with each other, and subsequently helps the user to

understand the semantics of the notation; secondly, it forms a basis for

the implementation of the Language by determining the design criterion to

109.

be the requirements of the Control Level. Having formed such a basis we

are now in a position to discuss the problems involved in the implementation

of the Language which takes us to Chapter VI, but first an example of the

combination of description segments is presented in the next section.

7.1 An Example

The description of the serial binary counter given in Section 11.9 is

expanded here to include structures for initialization, simulation, and

output.

1- delay cnt(1:16),b;

2- Boolean x, c, d;

3- . 	cnt = false;

4- x = true;

5- time = 0;

6- start;

7- esStimell) x = false;

8- ..s(time,16) 	(time = 	x = true;

newline; write cnt;

restart;)

9- c = or(x,b);

10- d = and(c,cnt);

11- b = d;

12- cnt = and(or(c,cnt), not d);

13- end;

Lines 9 to 12 are the same as lines 1 to 5 in Section 11.9. Lines 7 and 8

serve to produce the following waveform.

110.

x

• • •

time

0 1 	16 17 	32 33

Figure 12. The signal x

The main body of the description includes two controlled networks

(lines 7 and 8), with the rest represented at the Level of Logic Elements.

The output obtained from the simulation run is as follows:

16

1000000000000000

0100000000000000

1100000000000000

0010000000000000

CHAPTER VI

The Implementation

1. Introduction

In this chapter we consider the problems involved in implementing the

Language introduced so far. A detailed discussion of the implementation

would be too long for inclusion here, and furthermore would cover topics -

such as details of syntax and semantic analysis, administration of the

symbol table, compilation of control structures - which are well discussed

in the literature of translator writing; for example [28,31]. Since

compiler technology is so advanced that suitable solutions exist to these

problems we do not refer to them again in this chapter. Instead we discuss

particular problems encountered in the implemtation of our Language and

the main strategies adopted. The solutions suggested to these problems are

not in general the best, but rather have been selected for reasons specific

to this project which are mentioned in the following sections.

2. The Choice of the Implementation Language

Among the languages available, BCPL was particularly reported to have been

used for compiler writing [5]. A persistent attempt, at the beginning of

this project, to use this language for writing a compiler was unsuccessful,

mainly because of the difficulties in joining segments of a program, and

later in linking modules of the compiler. While writing the compiler, it

was noticed that a considerable amount of code was produced merely to overcome

the deficiencies of the language, and subsequently the compile time and

runtime errors increased unnecessarily.

Meanwhile the author became familiar with the Translator Writing System

BCL [12], and some early experiments with this language returned promising

112.

results. As compared with BCPL: the lexical analysis phase was handled

by the BCL System, far less code was needed to compile the same source

segment, runtime and compile time errors decreased, the language lent

itself to modular programming, and the runtime was acceptable. A compiler

writer's view of BCL, together with certain critical remarks and suggestions

for the improvement of the language, is given in Appendix B.

3. 	Major Strategies

The choice of BCL was an important decision, for it dictated other strategies

such as the use of a top-down parser, the method of linking the modules

of the compiler, and the amount of work to be done in the syntax and semantic

analysis phases.

The second decision was to make the compiler manoeuvrable so that new

features could be included and tested easily, and the expansion of the

compiler could be achieved in a uniform way without making major changes in

the existing modules. As a result of this decision the source description

was translated into an intermediate one, hereafter referred to as the object

description, which was then interpreted. If the intermediate description had

been translated into machine code the compiler would not have been as

flexibly modifiable.

Interpretation of the object description entailed, of course, a higher

runtime, proportional to the length of the object description. We were

therefore led to select an order code for the object machine which would

decrease the length of the object description. This in turn led to compiling

the code for a zero-address machine, i.e. using a runtime stack.

Topics discussed in this chapter mainly involve those features which

distinguish our Language from conventional programming languages. These are:

113.

linking the instances of the user-defined elements with the main-description,

the implementation of delay elements and delayed Boolean operators,

certain aspects of the declarations, the general networks, and the for

structure.

4. 	Linking the Modules

A 'module' is a general word for a main-description or a user-defined element.

In general the description of a digital system is composed of several

user-defined elements and a main-description. The main description may

activate an element, and this in turn may invoke other elements. For the

sake of uniformity we assume that the Description System itself activates

the main-description so that the activation of this description is not

different from the activation of the elements.

In general, there are two 'classes of variables' associated with a module:

parameter variables and local variables; the former refers both to the input

variables and the output variable. The main-description does not have any

parameter variables, and therefore all those declared in it are regarded as

its local variables.

Since each class of variables may contain variables of the type integer,

Boolean, or delay, there are six 'address spaces' associated with a module;

each space is composed of a set of addresses, starting from zero, relative

to one of six base registers.

At the end of compilation six 'storage spaces' are assigned by the Description

System to each instance of a module; clearly each storage space corresponds

to an address space.

114.

parameter variables
	

local variables

integer
	

Boolean
	

delay
	

integer
	

Boolean 	delay

(RIP) 	(RBP)
	

(RDP)
	

(RIL) 	(RBL)
	

(RDL)

Figure 1. Address spaces and classes of variables

Once the storage requirements of each module are known, the size of the

storage space for the whole description can be determined; we assume that

the starting address of this storage is zero. At the start of runtime the

base address of the memory data segment to be used by the description is

determined by the operating system. 'Since the storage allocation is done

on the basis that this base address is zero, all the addresses are in fact

relative to this new base address which is held in a certain base register,

called RDS.

When a module is activated at runtime, the activating module passes to the

activated module the base addresses of the six storage spaces required.

Six 'link registers' are employed to establish the link; the names of these

are shown in brackets in Figure 1. As shown in this figure, a total of

six categories of variables may be encountered at compile time; when a

variable is then analysed, its address is considered as relative to the

corresponding base register.

115.

With the aid of this arrangement we can use the same routines for compiling

the structures in a main-description or in a user-defined element.

5. Declaration of Modules

The Description System keeps a 'module declaration file'; each of its

records corresponds to a module in the description and contains the following

information: the name of the module, the size of each of the six address

spaces associated with it, and a pointer to the beginning of the storage

area where the object code for the module stands.

The name of a user-defined element is the same as its output identifier. A

main-description is preceded by a directive specifying its name. The first

record of the module declaration file is reserved for the main-description.

At the end of compilation the file contains all the information it should

have,

6. Referencing the Modules

We mentioned that when a module activates another one the base addresses of

the storage spaces should be loaded into the link registers. In this section

we describe a 'module reference file' which serves to determine the base

addresses for the main description and instances of user-defined elements.

Here we are concerned with each instance, since as mentioned in Section

V.4.4.1 a digital system in general may contain several instances of a certain

user-defined element, each in a different internal state.

Whenever at compile time a reference is detected to a user-defined element,

a new entry is created in the module reference file by inserting the name of

the element referenced and the name of the module which makes the reference.

The index corresponding to this entry is then supplied to the routine

analyzing the reference, and is used to load the link registers with the base

addresses of the storage spaces.

116.

As well as the name fields each record has six fields to hold the sizes

of the six address spaces associated with the instance, and another field

to hold the starting address of the object code corresponding to the

instance. At the end of compilation the contents of these fields are set

using the information already existing in the module declaration file. The

routine which does this task can also ensure that all the modules referenced

are declared.

The first record of the module reference file is reserved for the main-

description so that the Description System can easily activate it.

7. 	Determination of the Base Addresses

With the aid of informai-don so far collected in the module reference file

the Description System can now determine the base addresses of the storage

spaces required by each instance; these are relative to the register RDS.

However, in doing so two things must be taken into consideration.

Firstly, each record of the module reference file has two fields containing

the size of the storage spaces for the integer variables, and four fields

containing the sizes of storage spaces for Boolean and delay variables.

We assume that the sizes of the integer spaces are expressed in terms of

words; each word being one unit of store. The sizes of Boolean and delay

spaces, which are stated in terms of bits, must be converted into words by

dividing the size by the number of bits per word. If the result is not a

whole number the nearest greater number is taken as the result.

Secondly, for each module a separate storage space should be allocated for

the local variables of each instance that the module refers to. Whereas for

the parameter variables only one storage space is sufficient; however, the

117.

size of this space should be the maximum of the storage spaces required.

When the six base addresses for each instance are determined the Description

System places them in the size fields of the record, since the sizes are

no longer required.

8. 	The Virtual Stores

There are three types of address spaces, namely integer, Boolean, and delay

spaces, which correspond to three 'virtual stores', namely integer, Boolean,

and delay stores. In this section we consider how to convert a virtual

address of a certain type to a real address corresponding to a 'real store'.

An integer, Boolean, or delay address is one belonging to an integer, Boolean,

or delay address space. Since an integer address refers to one or more

words - each word being a unit of the real store - no problem is encountered

in this case; that is, the virtual store for the integers is addressed in

the same way as the real store.

Each Boolean or delay address refers to one or more bits. In this respect

the virtual stores for both types are addresses in the same way. There is,

however, a time factor involved in the addressing of the delay store. In

the following sections we investigate Boolean and delay stores.

8.1 The Boolean Store

Here the problem is how to convert a Boolean address into its corresponding

real store location. The Boolean address to be converted is of course

relative to one of the base registers RBP or RBL (Figure 1.), depending on

whether it relates to a parameter variable or a local variable.

118.

In order to convert the address it should be divided by the number of

bits per storage word; the quotient is the displacement with respect to

the base register, and the remainder indicates which bit of the word is

addressed. Having determined this bit position, the Description System

can retrieve or insert the information required.

8.2 The Delay Store

This store is also referrea to as the 'delay line'. In this section we

first describe a primitive solution to the maintenance problem of the delay

store; this is then modified and improved for better efficiency.

The Description System performs a cycle for .each point in time, during which

the state of the digital system is re-evaluated. At the end of each cycle

the contents of the delay line are shifted forward by one position, that is,

for every virtual address n, the contents of the (n+1)th position after the

shift is the same as that of nth position before the shift. To make this

task simple the Description System uses a contiguous area of store to

represent the delay line; this is in accordance with the storage allocation

scheme discussed earlier.

Obviously this solution is not efficient. To improve it we assume that all

the delay addresses are relative to a base address which indicates the start

of the delay line. At the end of each cycle, instead of physically shifting

the contents of the delay line, the Description System now simply increases

the base address by one.

As the delay line base address, held in the register DBA, is increased, the

locations at the beginning of the line are no longer referred to, while

certain addresses refer to positions beyond the upper limit of the delay line.

To overcome this difficulty, whenever a delay address is greater than the

upper limit the Description System decreases it by the length of the delay

119.

line. The 'effective address' thus obtained refers to the beginning of

the delay line, i.e. the positions which would otherwise not have been

referred to. When the base address itself reaches the upper limit it is

reset to its initial value.

This approach, although better than the previous one, has the disadvantage

that every address - and at the end of each cycle the contents of DBA -

have to be tested against the upper limit. The following solution is suggested

to overcome this problem.

We choose the smallest number m such that 211 is greater than or equal to

the size of the delay line. The positions of the line are addressed from

zero onward, and the register DBA is of m bit length. The effective address

is also formed in an m-bit register. The problem of testing and decreasing

the address is now solved automatically, for whenever the base address

or the effective address exceeds the permissible limit an overflow occurs

whose net effect in,this case. is that the generated address is decreased by

i 2m which is what we want.

The price paid for this achievement is that the delay line is padded up so

that its length is 211.

9. 	Declarations

9.1 Array Declarations

A linked linear dictionary is used in which the following information

(descriptors) is kept for each variable:

1) the variable identifier

2) class: local or parameter

120,

3) type: integer, Boolean, delay or constant

4) rank: scalar, vector, or matrix

5) the lower and upper bounds for each dimension; this applies

only to vectors and matrices. If a register is described by the

nested-top-down method the lower biund is assumed to be zero, and

therefore the upper bound is the same as its size.

6) the base address of the virtual store space assigned to this

variable.

When a declaration like:

register instruction (op-code(0:4), format, address(0:9));

is analyzed the above information is formed into a record for each variable;

this record is then appended to the dictionary. Furthermore, the hierarchical

structure presented by the declaration is set up.

For a scalar the required information is immediately available, but the size

of a vector is not known until its rightmost bracket is encountered during

the syntax analysis. In the above example, this implies that the declaration

of the register, instruction, in the dictionary is to be postponed until

the registers, op-code, format, and address, have been declared. This post-

ponement serves to set up the hierarchical structure desired, as described

below.

At compile time there are six pointers initialized to zero which correspond

to the six address spaces mentioned before. After allocating a storage space

to a variable the corresponding pointer is advanced. If a register is

described by the nested-top-down method the value of the address pointer is

saved before the sub-registers are declared in the dictionary. When the

rightmost bracket of the register is encountered, i.e. when its sub-registers

are declared, the register itself will be declared in the dictionary; the base

121.

address of the virtual store space for the register is what was saved at

the beginning - not the current value of the address pointer.

Since the hierarchical structure of declarations is recursive a recursive

implementation language is of great help in implementing the above scheme.

In the above example the order of declaring the variables is:

op-code, format, address, instruction

The fields of the dictionary records concerned with the identifier, the

base address, and the link are shown below:

nstruction

0

16

Figure 2.

ptr is the pointer corresponding to the Boolean virtual store; after

declaring each variable its value is given at the right hand side. As can

be seen the base addresses of the registers, instruction and op-code, are

the same. The structure thus set up could be illustrated by the following

figure:

instruction

OD-code
	

format
	address

0
	5
	6

Figure 3.

122.

9.2 Sub-array Declarations

An example of a sub-array declaration is:

sub-array ix(0:1) = address(1:2);

The analysis of the right band side variable determines its type and base

address, which are the same as those of the left hand side.

Also the rank and the lower and upper bounds for each dimension must be the

same for both sides. Having obtained the required information, a record is

formed for the register, ix, to be appended to the dictionary.

10. The System Body

As was seen in Chapter IV the body of a system in general begins with certain

initializations which are followed by a general network. The initializations

take place first; a cycle involving two steps is then repeatedly performed

over the general network. In the first step all the control conditions are

evaluated, and in the second the networks whose control conditions are true

are activated. The operations corresponding to such networks are performed

according to their textual ordering. The object description has to be

compiled in such a way that the above effects are achieved. To illustrate

bow this is done let the following be the body of a system:

-- initializations;

start;

wi -4 Al

W2 A2

• .

wn -+ An

end;

123.

where each wi is a control condition, and each A. is a sequential network.

The object description is equivalent to:

init:

-- initializations;

start:

t1 = wi;

t2 w • 2 =
- 2'

to = w
n

 ;

if t1 then A
l

if t2 then A
2

•

if to then An —

-- miscellaneous actions;

go to start

whereinitandstartarelabels,andeacht.is a temporary location in

the Boolean virtual store. The cycle is repeated by a branch instruction.

The miscellaneous actions refer to operations such as increasing the time

and the base address of the delay line.

As mentioned in Chapter IV networks without a control condition are assumed

to have a true condition. An important advantage of this approach to

compiling the object description is that no special preparations need be

124.

made for compiling such networks. No temporary location is needed for them,

and the position of their object code in the object description corresponds

to that of their source code in the source description.

The simulation structures, initialize; and restart; are simply translated

into branch instructions to the lables, init and start.

11. RT-operations

Two stacks are used at runtime in order to simulate PT-operations. The

first one, the V-stack, serves to store values of the variables involved in

an RT-operation, and the second one, the D-stack, holds the descriptors of

such variables.

The set of operators of the Language is extended to include the System-

defined elements, and the concatenation, assignment, and subscription

operators. The latter are used in the infix form, while the other operators

of the Language are in prefix form.

As mentioned earlier, the source description is translated into an object

description which is then interpreted. Each operator of the Language,

encountered in the source description, is translated into its corresponding

operator in the object description, with its operands expected to be on the

top of the V-stack. At runtime, the interpretation of each operator invokes

its associated runtime routine which performs the necessary actions; control

is then passed to the interpreter which repeats the same cycle. For example,

the runtime routine associated with the not operator involves two steps.

Firstly, it analyses the top element of the D-stack to find out whether

its operand is a scalar or an array; secondly, it negates the operand. The

routine associated with the and operator is slightly more complex; first

it determines whether its operands are both scalars, both vectors, or one

125.

a vector and the other a scalar; then the decision is taken as to what

Should be done. The operators are in general concerned with both stacks;

the concatenation operator is, however, one which is only concerned with

the D-stack.

The scheme described above has the advantage that very complex operators

may be included in the object description; this simplifies the translation

task while the interpreter preserves its modularity, and hence the features

of the source language can be easily tested. For example, the JK-bistable

is simply dealt with by loading its three operands and their descriptors

onto the stacks, and then calling the appropriate runtime routine.

Parallel RT-operations are translated by postponing the assignment operation

until all the operands involved in the operations are loaded into stacks.

12. Considerations Concerning the delay Element

During each time interval, each delay element has a certain output signal;

furthermore, a certain input signal, which will appear at output at a later

point in time, is determined for each delay element. If the input signal

were determined at a Computation Time such that thereafter no reference

were made to the output signal, it could enter the queue associated with the

delay element, since there would be an empty position in this queue. In

general this is not the case, i.e. the output signal is referred to after the

input signal is determined.

This problem is overcome by allocating n + 1 positions, from the System

delay line, to an n-bit delay element.

13. Delayed Boolean Operators

An RT-operation like:

126.

resister a,b;

b = dnot a;

can be translated as:

register a,b;

delay t;

t = not a;

b = t;

where t is a one unit temporary delay element.

This combination shows a special use of the delay element, in which the

output is immediately, referred to after the input is determined, and further-

more no reference is made to the output in other parts of the description.

This feature can be exploited to translate a delayed Boolean expression in

such a way that no temporary delay element is involved; the advantage being

that instead of using two locations from the System delay line, only one

location from the Boolean store is used.

This is achieved by associating a temporary location with the operator to

hold the value of the expression for the next time interval. When the

result of the expression is referred to, first the contents of this location

are loaded onto the V-stack, and then the value of the expression is stored

in the location to be used in the next time interval.

The amount of space saved in this manner depends on the number of delayed

operators used in the description under translation.

14. Element Designators

Whenever an element designator is encountered during compilation an entry

is created in the module reference file, and the index corresponding to

127.

this entry is passed to the routine in charge which creates object code for:

1) swapping the contents of the link registers with the contents

of the fields holding the base addresses of the six storage spaces

corresponding to the new entry

2) storing the values of the input variables in the three storage

spaces corresponding to the parameter variables

3) branching to the start of fhe object code for the element referred

to

4) repeating the action described in (1); this resets the link registers

to their initial value.

The element returns its results in the V -stack, with the D-stack containing

the descriptors of the result.

15. The for Structure

As can be seen from the syntactic form of this structure (Section IV.8.1),

the initial value, the final value, and the step of the for index are integer

constants, and therefore known at compile time.

The structure is translated by reproducing, for each value of the index,

the object code corresponding to the sequential network of the for structure.

In this manner several instances of the network are created which differ

from one another only in the value of the index.

If the sequential network includes an element designator an entry is

created in the module reference file for each value of the for index; the

effect being that separate storage spaces are created for each instance.

Note that the same code segment operates on all the storage spaces thus

created.

128.

16. The Implementation Work

At the beginning of this project work began with the design and

implementation of the Level of Logic Elements, and a compiler was developed

for this level. The concepts related to the Control and Register Transfer

Levels were introduced later, and the original compiler was extended as much

as possible to include the features of these levels. As this effort continued

it was noticed that certain aspects of the Control and Register Transfer

Levels dictated the inclusion of certain features which were fundamental to

the overall design of the compiler. These are: the basic requirements of

the Control Level, features for translating expressions involving vectors,

and considerations related to the user-defined elements and element

designators.

In the special case that the expr'essions involve only scalars, one of the

System stacks - the V-stack - is sufficient for the simulation of the

operations; therefore the object language need include operation codes

operating on this stack only; this simplifies the structure of the interpreter

129.

CHAPTER VII

Concluding Remarks

At the beginning of this thesis we set out the requirements for the

Description Language. In this chapter we examine how far these requirements

have been met by the Language, and subsequently review the related work which

has been carried out in this area, including a summary of other design

languages developed so far, the use of programming languages in description

and simulation of digital systems, and the types of simulators adopted.

The effect of the underlying structure of the simulator on the language

features is emphasised to point out the limitations of a particular implement-

ation.

1. An Overall View

1.1 Procedural Features

The Language incorporates the sequencing mechanism and the control structures

which are common to most programming languages. This is to be expected

since there is no essential difference between a high level description of

a hardware component and that of a software routine performing the same task.

This is clearly demonstrated in the high level description of the example

given in Section IV.9.

The ability to write procedural algorithms in the Description Language also

shows the correspondence to the language of flowcharts which, as mentioned in

the introduction, has been used in the design of digital systems.

1.2 The Hierarchical Structure

The examples of the shift-left-and-count component (Section IV.9), and of

the parallel adder (Section V.4.3), show the adaptability of the Language

130.

to top-down and bottom-up methods of design, and its suitability in

suppression of details at higher levels. The first example presents seven

descriptive levels of the same component; these range from the initial

problem statement to the final solution, presented at the hardware level.

The second example shows the use of user-defined elements in constituting

descriptive levels of the Language. The close correspondence to the graphic

description demonstrates the suitability of the language of block diagrams,

in this class of problems, in representing levels of digital systems.

1.3 Formal Description

Appendix A presents a formal description of the IBM 1130 in the Description

Language. The manufacturer's user-manual [32] has been considerably condensed,

without loosing its intelligibility. The result is a concise and precise

description which can efficiently-replace the manual, when the user is

familiar with the System architecture, and has a basic knowledge of the

instructions.

One of the results of the precision of a formal description, as contrasted

with a verbal description, is that the effect of not complying with the

special requirements of certain instructions - such as their mode or length -

is explicitly expressed.

1.4 Implementation

It was shown in Chapter VI that the newly introduced linguistic features can

be conveniently implemented: the for structure is implemented by

reproducing the object code; the delay elements by introducing one more level

of indexing; and instances of user-defined elements by incorporating the

module reference file.

Although the object code is interpreted, and no special provision is made

131.'

for optimizing the code, the runtime has been acceptably low: for the

example of Section V.7.1, which was presented in a complete form for

processing, the total runtime for compiling the compiler, and funning the

description for 5000 time units, was 2 minutes; of this runtime, some 90%

was spent in the processing of the compiler.

2. Other Design. Languages

The design languages which have been developed so far mainly cater for one

descriptive level, and are based upon certain modeling philosophies;. thus,

while being suitable for a certain class of problems, they cannot be

effectively applied to others. Three design languages are mentioned in this

section.

ISP[5] is a notation for describing the instruction repertoir of .a computer,

and has been used to give a formal description of the PDP 11 instruction set;

it has also been extended to represent and simulate digital systems at the

Register Transfer Level. The notation lacks procedural features; when the

nature of a problem demands such features the user is forced to leave the

notation: the authors have used programming languages and variations of

flowcharts in such cases [8].

Another language [1] conceives of digital systems as being composed of two

parts: the structural part, in which the operations take place, and the

control part, which organises the sequencing of the operations. The

structural part consists of the description of operators and their inter-

connection; the control part describes activators for activating operators

in the structural part, conditional and unconditional jumps, and branches

into parallel operations. This approach, which suits its on class of

problems, is not effective when one does not wish to separate the control

132.

function from the rest of the system, as could happen at very high or very

low levels.

CDL [15] is a language which is not inclined toward a particular modeling

philosophy, and describes digital systems mainly as a collection of controlled

networks. It has been used together with sequence charts in the design of

a number of components, and in the presentation of computer organisations.

The description of a computer organisation in this language involves

declaration of major system components - such as decoders, memories, switches,

etc.- and specification of the micro-operations forming the algorithm

implemented in hardware.

3. Use of Programming Languages

Apart from the use of APL, which is mentioned in the next section, attempts

have been made to extend or modify programming languages into description

languages. Since the language processor already exists, this approach saves

writing a new simulator; however this advantage is offset by the need to

tailor the programming language for description purposes. The resulting

simulator is said to be 'object code driven'.

The programming language Algol 60 has been extended by several procedures,

and modifications made to its compiler, so as to simulate digital systems at

the Level of Logic Elements [45]. The primitives for describing networks

are logical operators, bistables in the form of system defined elements, and

a one-unit delay element. These are all referred to in the form of Algol

procedures, where the procedure name indicates the type of the element, and

the parameters establish connectivity.

Three procedures are the constituent elements of each description: the first

one determines the state of inputs at successive points in time, with the

time being a global variable; the second describes the network to be simulated

133.

by calling procedures corresponding to the primitive elements; the third

is concerned with the terminal whose condition is to be monitored during

the simulation run.

The textual position of statements forming the description is immaterial,

at the cost that at each point in time the processor scans the whole structure

of the network to form a linear description.

Another attempt to extend a programming language uses a dialect of Algol 60

for the behavioural description and simulation of digital systems [42]; the

language itself, like many other programming languages, lacks hardly anything

in this respect.

4. Formal Description

A description language has been proposed to describe digital systems, mainly

at the Level of Logic Elements [53]. The language is suitable only for

description purposes, and does not lend itself to implementation. Since the

language is unaware of the concept of time, the author limits himself to open

trees so that ambiguous situations do not arise.

Programming languages could be used to describe existing systems in a formal

fashion: an APL description of the IBM 360 has been presented [22]; however

it has been pointed out that the description, although an impressive work,

is not easy to follow [52].

5. Simulation

So far we have mentioned the use of programming languages for simulation at

the behavioural level, and at the Level of Logic Elements. In this section

the basic structure of simulators, particularly developed for the latter level,

is studied in relation to the overlying language.

134.

One approach toward system description at the Level of Logic Elements

is, for each gate in the system, to write one line of description composed

of a number denoting the gate type, a second indicating the gate output,

followed by several numbers indicating the gate inputs [36,40]. The

resulting medium of representation, which cannot be called a language, is

improved by replacing numbers by mnemonics [29]. It is usually assumed that

each gate has a one-unit time delay.

The core of the simulator is a table which has one entry for each gate: its

type, inputs, and output. The resulting simulator is therefore said to be

'table driven', At the start of the simulation run, the gates connected to

the inputs of the system propagate. Those gates whose input signals are

changed as a result of this propogation, are scheduled to propagate at the

next point in time. This process' continues until a time point is reached

where the user wishes to stop the system.

Apart from the obvious simplicity of implementing the table driven scheme,

its main advantage is that the textual ordering of description lines is

immaterial; its disadvantage is that the basic structure of the simulator is

not sufficiently powerful and flexible to be effective for higher level

descriptions.

The representation form, described earlier, is improved by representing each

gate in the system by an assignment statement; the output identifier appears

on the left hand side and the gate name, followed by input identifiers enclosed

in brackets, is written on the right hand side [23]. Further improvements

have been achieved by allowing prefix expressions on the right hand side, and

by using the for statement for representing repetitive constructions [54].

User-defined elements and Boolean vectors have also been incorporated [23].

135.

This is the limit which the language can reach on the basis of a table

driven simulator. Therefore the scheme is suitable mainly for the Level of

Logic Elements, and partly for the Register Transfer Level; it cannot deal

with control structures, which are essential to the functional description

of digital systems.

Chapter II of this thesis provides a theoretical basis and a suitable notation

for presenting digital systems at the Level of Logic Elements; the notation

lends itself to the table driven implementation scheme.

6. Scheduled Event Simulators

In scheduled event simulators, an event is identified by an instruction pointer

referring to the start of the event, and by a time point at which the event

is to be carried out.

A table of events is maintained which contains an ascending list of time

points, each of which refers to a sequence of events to be executed at that

particular point. Execution of an event may cause other events to be scheduled

at later points in time. The simulator begins by executing the events of the

first time point, and at the completion transfers the control to the next

point. This process is repeated until either there is no further event to be

executed, or a user command ha-Its the simulation run.

This kind of underlying structure requires the system description to be

dynamic, that is, instead of a system being described as a set of components

and their interconnection, the propagation of change of signals at input

terminals must be described, thus weakening the correspondence between the

system and its model. This disadvantage, and the poor efficiency caused by

the administrative effort required to maintain the table of events, were

the main reasons for abandoning this approach when a description language

and its processor were developed at the beginning of this project [5400.

136.

7. Design. Automation

Efforts have been made to automate the design, e.g. [25,48], that is,

given a high level description of a digital system - which is mainly a

functional description - to produce the system description for implementation.

Among these the most serious attempt is [24] in which the high level

description is presented in a notation based on APL [34]. The implementation

description is presented by block diagrams. Designing the major parts of

the IBM 1800 using this approach resulted in 160% more gates than the actual

design. Modifications were suggested which would decrease the number of

gates to only 33% more than the actual design.

137.

APPENDIX A

Description of a Computer

1. Introduction

In this appendix we give a user-oriented description of an actual

computer at the instruction level. An already existing computer has

been considered, instead of devising an example, so as better to put the

Language to test.

The machine described here is a subset of the IBM 1130, i.e. the special

instructions for handling interrupts and I/O operations are excluded.

It has been chosen because of its limited number of operation codes

(22 in the subset), which however include a variety of functions, some

of them very integrated. This unavoidably results in an operation code

having several meanings, depending on the modifier bits used. Since these

interpretations do not usually have a common basis, it is difficult for

the programmer to get used to the instructions, and therefore he often

needs to refer to the reference manual. Because of this (unnecessary)

complexity, the IBM 1130 seems to be a good case against which to test the

Language.

In the following descriptions, verbal explanations should be treated as

comments.

2. General Description

The IBM 1130 is a 16-bit word machine. There are three index registers

which occupy words 1 to 3 of the main memory, and an instruction address

register which in general contains the address of the next instruction

to be executed.

138.

ntusa).it 	matrix m(0:32767,0:15);

sub-array xr(1:3,0:15) = memory(1:3,);

register iar(0:15);

At most two consecutive words can be joined together to form a unit

to hold instructions or data items. A long instruction is composed of

two words, a short instruction of one.

Boolean double-word(0:31);

sub-array lins(0:31) = double-word;

sub-array sins(0:15) = double-word(0:15);

The first 8 bits are common between short or long instructions.

The first 5 bits of the common part indicate the operation code, the

next bit signifies whether the instruction is long or short, and the

last two (tag bits) point to the register whose contents are to be used

during effective address generation.

sub-array cpart(0:7) = double-word(0:7);

sub-array opcode(0:4) = cpart(0:4),

f = cpart(5),tag(1:2) = cpart(6:7);

In shift instructions, which are always short, bits 8 and 9 indicate

the type of shift operation, e.g. shift to the right, to the left, etc.

sub-array sind(1:2) = sins(8:9);

In general the last 8 bits of a short instruction specify the

displacement with respect to a base address during effective address

generation. The base address is contained in the register indicated

by the tag bits.

sub-arra disp(1:8) = sins(8:15);

139.

In general, bit 8 of a long instruction indicates the mode of addressing:

if it is true addressing is indirect; otherwise it is direct. The

modifier bits (9 to 15) are employed in some I/O instructions. The address

part of a long instruction occupies the whole of its second word.

sub-array ia = lins(8),modifier(1:7) = lins(9:15);

sub-array address(0:15) = lins(16:31);

The register, ov, is used in some arithmetic operations to indicate an

overflow. Arithmetic operations take place in the whole or part of a

register, called cacxt, which has as its sub-registers, cy for carry

indication, and acxt. The latter is composed of an accumulator, acc, and

an extension, ext, which is the low-order extension of acc in double, word

arithmetic operations.

register ov;

register cacxt(cy,acxt(acc(0:15),ext(0:15)));

3. 	Effective Address Generation

The effective address is formed in register ea(0:15); and is

interpreted as an unsigned binary number. If the instruction is short,

the displacement is expanded to 16 bits by duplicating its leftmost bit,

thereby preserving its sign; the expanded displacement is then added to

the contents of iar or the appropriate index register according to the

tag bits.

In long instructions, after indexing, the ia bit is checked to determine

the mode of addressing; if it is true, ea is regarded as a pointer to

the effective address. Note that in a long instruction tag bits of zero

specify no indexing, i.e. the addressing is absolute.

register edisp(0:15); -- expanded displacement;

if f then (if nor tag then ea = address;

else ea = add(address,xr(tag,));

if is then ea = m(ea,);)

else (edisp(0:7) = disp(1);edisp(8:15) = disp(1:8);

if nor tag then ea = add (edisp,iar);

else ea = add (edisp,xr(tag,));)

4. 	Instructions

The action to be performed by an instruction is mainly determined by the

value contained in the sub—register opcode. There are 22 operation codes

as defined below:

constant ld = 1, add = 2, sto = 3, std = 4, -- load and store;

ldx = 5, stx = 6, Ids = 7, sts = 8;

constant a = 9, ad = 10, s = 11, sd = 12,_m = 13, -- arithmetic;

d = 14;

constant land = 15, lor = 16, leor = 17; 	-- logical;

constant shl = 18, shr = 19; 	-- shift;

constant bsi = 20, bsc = 21, mdx = 22; 	-- branch:

A case structure embraces the description of instructions:

case opcode of

ld

iko.

141.

In the following sections we replace the dotted lines in the case

structure as the action performed by each instructions is described.

4.1 	Load and Store Instructions

Load: the contents of the memory location pointed to by ea replace

the contents of acc.

ld --• acc = m(ea,);

Load double: the contents of the memory location pointed to by ea and

of its successor replace the contents of acc and ext respectively.

ldd 	acxt = m(ea,): m(add1 ead;

Store: the contents of the memory location pointed to by ea are replaced

by the contents of acc.

sto » m(ea,) = acc;

Store double: the contents of the memory location pointed by ea and

of its successor are replaced by the contents of acc and ext

respectively.

std 	m(ea,): m(add1 ea,) = acc:ext;

Load index: a value is stored in the index register indicated by the

tag bits. In a long instruction the value is contained in the

address field or the memory location pointed to by this field

depending on the mode of addressing. In a short instruction

the expected value is the displacement.

register val(0:15);

142.

ldx 	(if f then (if is then val = m(address,);

else val = address;)

else (val(0:7) = disp(1); val(8:15) = disp(1:8);)

if nor tag then iar = val;

else ix(tag,) = val;)

Store index: the contents of the index register specified by the tag

bits are stored in a memory location. In a long instruction

the location is pointed to by the address field, or the contents

of the address field, depending on the mode of addressing. In

a short instruction the location is determined by adding the

contents of iar and the expanded displacement.

register loc(0:15);

stx 	(if f then (if is then loc = m(address,);

else loc = address;)

else (edisp(0:7) = disp(1); edisp(8:15) = disp(1:8);

loc = add(edisp, iar);)

if nor tag then m(loc,) = iar;

else m(loc,) = ix(tag,);)

Store status: the status of carry and overflow indicators are stored

in bits 14 and 15, respectively, of the addressed memory location.

Bits 0 to 7 of this location remain unchanged, and bits 8 to 13

are reset to false.

sts 	Em(ea,14) = cy; m(ea,15) = ov; m(ea,8:13) = false;]

Load status: the status of carry and overflow indicators are set

according to the status of bits 14 and 15 of this instruction.

lds 	Ecy = sins(14); ov = sins(15)0

11+3.

4.2 	Arithmetic Instructions

Negative numbers are represented in two's complement.

In arithmetic instructions two registers t1 and t2 are used to hold

the sign bits of operands for the overflow test.

Add: the contents of acc and the memor:y, location pointed to by ea

are added together and the result is placed in acc. The carry

indicator is set if there is a carry out of the leftmost position,

and the overflow indicator is set if the result exceeds the

Capacity of the accumulator.

a -4 (ts = acc(0); t2 = m(ea,1); cy:acc = add(acc,m(ea,));

if and (laz(t1,t2),Legts,acc(0))) then ov = on;)

Add double: the contents of the memory location addressed by ea

and of its successor are added to the contents of acc and ext.

The carry and overflow indicators are affected as in the previous

instruction.

ad -4 (t1 = acc(0)*' t2 = m(ea,1);

cacxt = add(acxt,m(ea,): m(addl ea));

if and (12y(t1,t2),ms(t1,acc(0))) then ov = on;)

Subtract: the contents of the memory location pointed to by ea are

subtracted from the contents of acc. The carry indicator is set

if there is a borrow at the leftmost position, and the overflow

indicator is set if the result exceeds the capacity of accumulator.

s 	(t1 = acc(0); t2 = m(ea,1); cy:acc = sub(acc,m(ea,));

if and (pea(ts,t2),Ema(tvacc(0))) then ov = on;)

Subtract double: the contents of the memory location pointed to by

ea and of its successor are subtracted from the contents of acc

and ext. The carry and overflow indicators are affected as in

the case of the previous instruction.

sd -4 (ti = acc(0); t2 = m(ea,1);

cacxt = sub(acxt, m(ea,): m(addl ea,));

if and (2a2(t1, t2),J2e2(t1, acc(Q))) then ov = on;)

Multiply: the contents of acc and the word at ea are multiplied

together and placed in acxt.

m 	acxt = bln(mult(int acc, int m(ea,)));

Divide: the contents of acxt are divided by the contents of the

word at ea; the quotient is placed in acc and the remainder in

ext. The overflow indicator is set if the quotient exceeds the

capacity of the accumulator; otherwise it will remain unchanged

Integer quotient;

d 	(quotient = div(int acxt, int m(ea,));

acc = bin quotient;

ext = bin (rem(int acxt, int m(ea,)));

if or (.2L(quotient, 32767), lt(quotient, -32768)) then ov = on;)

4.3 	Logical Instructions

land -4 acc = and(acc,m(ea,)); -- logical and;

for -, acc = orfacc,m(ea,)); -- logical or;

leor acc = eor(acc,m(ea,)); -- logical exclusive or;

4.4 	Shift Instructions

Except for the shift left and count instruction, the number of positions

shifted is controlled by the field specified by the tag bits. Each of

the four shift left and three shift right instructions are defined by

bits 8 and 9 (sind) of the instruction. In the following description,

the first case statement is for shift left and the second one is for

145.

shift right instructions.

register scount(1:6); -- count of shifts;

shl,shr -4 (if nor tag then scount = disp(3:8);

-- six rightmost bits of displacement;

else scount = xr(tag,10:15);

-- six rightmost bits of the index register;

case opcode of [

shl -► case sind of C

shr -4 case sind of [

])

- -

4.4.1 Shift Left Instructions

constant sla = 0, slt = 1, slca = 2, slc = 3;

sla 	cy:acc = lshift(cy:acc, scount); -- shift left accumulator;

slt 	cacxt = lshift(cacxt, scount); -- shift left cacxt;

Shift left accumulator and count: when the tag bits are zero this

instruction is executed in the same way as shift left accumulator.

In any other case acc is shifted to the left until either its leftmost

bit is true, or the shift count is zero. The count is decreased by one

at each step, and at the end it is loaded into the six rightmost bits of

the index register indicated by the tag bits.

slca --0 if nor tag then cy:acc = lshift(cy:acc,scount);

else (while and(not acc(0), or scount) do [

cv:acc = 'shift (cy:acc);

scount = sub1 scount;]

xr(tag,10:15) = scount;)

146.

Shift left and count acc and ext: this instruction is the same as the

previous one, except that both acc and ext are shifted.

slc-' if nor tag then cacxt = lshift cacxt;

else (while and(not acc(0), or scount) do

cacxt = lshift(cacxt, scount);

scount ¢ subl scount;]

xr(tag,10:15) = scount;)

4.4.2 Shift Right Instructions

constant sra = 1, srt = 2, rte = 3;

sra'acc = rshift acc; -- shift right accumulator;

srt -'acxt = rshift acxt; -- shift right accumulator and extension;

rte -'acxt = rcirc acxt; -- circulate right acc and ext;

4.5 	Branch Instructions

4.5.1 Branch or Skip on Condition

Six separate conditions of acc can be tested by placing a true bit in

the appropriate bit position of the instruction. The bit positions,

corresponding conditions, and expressions describing them are given below:

bit position 	condition 	expression

15 	overflow indicator off c(1) = and(not ov,sins(15));

14 	carry indicator off 	c(2) = and(not cy,sins(14));

13 	acc contents even 	c(3) = and(not acc(15),sins(13));

12 	acc contents positive, 	c(4) = and(at(int acc,0),sins(12));

not zero

11 	acc negative 	c(5) = and(acc(0), sins (11));

10 	acc zero 	c(6) = and(nOr ace, sins(10));

Long format: When none of the conditions specified is true, the

program branches to ea; otherwise the next instruction in

sequence is obeyed.

Short format: If any of the conditions specified is true, the next

word in memory is skipped and the second one is regarded as

the instruction to be obeyed; otherwise the next instruction

is executed. The overflow indicator is reset when tested by

the bsc instruction.

bsc 	(if f then (if nor c then iar = ea;)

else if or c then iar = addi iar;

if sins(15) then ov = off;)

4.5.2 Branch and Store iar

Long format: the long bsi instruction is exactly the same as the long

bsc instruction.

Short format: the contents of iar are stored in the memory location

pointed to by ea; the iar is then set to addi ea.

bsi 	if f then (if nor c then iar = ea;

if sins(15) then ov .= off;)

else [m(ea,) = iar; iar = addi ea;]

4.5.3 Modify Index and Skip

This instruction can be used to modify an index register, the iar, or

the contents of a word in memory. Except in the case of the

modification of iar in short format, a skip occurs if the index register

or the memory word being modified changes sign or becomes zero. This

causes the next memory word in sequence to be skipped over.

14-7.

148.

Long format: modification is accomplished according to the tag and

ia fields of the instruction. If the tag bits are false the

expanded displacement is added to the contents of the memory

location specified by the address field of the instruction.

Otherwise, the ia bit determines whether the contents of the

memory location pointed to by the address field, or the contents

of the address field should be added to the indicated index

register.

Short format: the expanded displacement is added to the register

specified by the tag bits of the instruction.

Boolean sb; -- sign before modification;

Boolean sa; -- sign after modification;

Boolean zero; -- zero.test indicator for the modified word;

edisp(0:7) = disp(1); edisp(8:15) = disp(1:8);

if f then (if nor tag then (sb = m(address,0);

m(address,) = add (m(address,),edisp);

sa = m(address,0),;

zero = nor m(address,);)

else (sb = xt(tag,0);

if ia then

xr(tag,) = add(xr(tag,),m(address,));

else

xr(tag,) = add(xr(tag,),address);

sa = xr(tag,0);

zero = nor xr(tag,);))

else if nor tag then (iar = add (iar, edisp);

-- provisions for no skip;

149.

sb = false;

sa = false;

zero = false;)

else (sb = xr(tag,0);

xr(tag,) = add(xr(tag,), edisp);

sa = xr(tag,0);

zero = nor xr(tag,);)

The skip occurs as shown below:

if or (zero,n22(sb,sa)) then iar = addl iar;

5. 	The System

The system itself can now be described:

switch start-on;

rest of declarations:

start;

start-on-, (-- fetch the instruction pointed to by iar;

double -word(0:15) = m(iar,); iar = add1 iar;

if f then (double-word (16:31) = m(iar,);

iar = add1 iar;)

-- descriptions for generating the effective address;

-- interpret the operation code;

case op-code of E

•

.3)
end;

150.

6. 	Conclusion

Some 90 pages of the manufacturer's reference manual [32],

describing the instruction set, has been condensed by a factor of six,

with no loss of precision. It is worth pinpointing some of the areas

where we have gained over verbal explanation. To this end we look

at overflow setting in arithmetic instructions, and testing conditions

in the Branch or Skip on Condition instruction.

The overflow setting in arithmetic instructions, add, subtract, and

divide, is such that at the end of a sequence of such 'Calculations,

possibly related to the evaluation of an arithmetic expression, if the

indicator is on it means that an overflow has occurred in one of the

calculations. The system achieves this effect by setting the indicator,

ov, if an overflow occurs as a—result of the execution of any of the

three instructions mentioned above, leaving the indicator unchanged

otherwise. The way this is described in our notation is:

if x then ov = on;

where x represents the condition for overflow. Equally, one could write:

ov = or(ov, x);

We have only expressed the condition for setting ov; the structure

itself implies that the indicator is left unchanged otherwise, while

in a verbal description the case in which the indicator remains

unchanged has to be emphasised.

The second example is concerned with the bsc instruction. Considering

the long format, a verbal explanation should describe three cases:

151.

1) when none of the conditions is true

2) if any of the conditions is true

3) if no condition is specified

After some analysis one can satisfy oneself that the consequence

of (1) and (3) should be the same, but this is not quite clear from the

beginning. On the other hand, a formal description treats both cases

in a unified manner namely:

if nor c then iar = ea;

It is interesting to note that in both examples a formal description

is more precise and more concise than a verbal explanation, and for

this reason it is easier for the programmer to retain it mentally and

for the logic designer to implement it, and furthermore less examples

are required to clarify it. The bulk of saving, as compared with the

reference manual, is in exclusion of examples.

152.

APPENDIX B

The Implementation Language

1. Introduction

This appendix describes the main features of BCL [12] and evaluates

its effectiveness for compiler writing. Suggestions made for improvement

are intended to be compatible with the present System, from both

notational and implementation viewpoints.

The notation used here for presenting the language, is chosen for its

suitability for reference and publication. Slight differences exist

as compared with the hardware language, for example in the type

identifier and in the representation of recursive groups. The language

user is therefore advised to consult appropriate manuals for writing

programs in BCL.

The input data to a BCL program is regarded as a string of characters.

The normal mode of operation is input, in which the program occasionally

tries to recognise a sub-string. The programmer can easily switch the

mode to output so as to transfer information to the environment. An

input pointer, called chpt, points to the beginning of the unprocessed

sub-string of the input string. At the start, it is initialised to point

to the first character at input. During the program execution, the

pointer may move forward or backward, as will be seen later.

2. General Description

General parallelism exists between BCL and Backus-Naur Form (BNF).

In BNF a meta-variable, x, is defined by a 'production':

153.

x 	Y11 Y12. • •Y1n1 I Y21 Y22— •Y2n2 l• • • •1Ym1 Ym2 • • • •Yro.nm

where each y is one of the following:

1) a terminal constant, such as a keyword or delimiter

2) a terminal variable, such as an identifier or an integer

3) a non-terminal, in which case it should be defined

subsequently through other productions.

A BCL description of such a production for syntax analysis purposes

is given by the following 'group':

x is (either yil,y12,....,y1n 1.

or 9 	9 9 Y21 Y22 0**4. Y2n2

•
•

or Ym1'Ym2""—"Ymn) rn

If a meta-variable, x, is defined directly or indirectly in terms

of itself, the corresponding group definition should be preceeded by

the word recursive.

As an example, suppose in a language a Boolean expression is defined

to be:

<Boolean expression> ::= <Boolean operator>(<operand list>)1

<simple expressiorC'

<Boolean operator> ::= andlorInot

<operand list> ::= <Boolean expression>(,<Boolean expression>)*

<simple expression> ::= truelfalsel<Boolean variable>

<Boolean variable> ::= <subscripted variable> k simple variable>

<subscripted variable> ::= <name>(<subscript>)

<simple variable> ::= <name>

154.

This grammar generates sentences which are Boolean expressions in

the language under consideration. A BCL program which recognizes

such sentences is given below. Terminal constants are enclosed in

quotation marks.

recursive Boolean expression is (either Boolean operator,

'(', operand list,')'

or 	simple expression)

Boolean operator is (either 'and'

or 	'or'

or 	'not')

recursive operand list is (Boolean expression,

repeat(',', Boolean expression))

simple expression is (either 'true'

or 	'false'

or 	Boolean variable)

Boolean variable is (either subscripted variable

or 	simple variable)

subscripted variable is (name,'(', subscript,')')

simple variable is (name)

The BCL notation, repeat (y), indicates zero or more occurrences of a

meta-variable, y, as does the (y)* notation in BNF. The above description

is simple in that it does not recognize syntax errors; nor has any

semantic analysis been introduced; and the use of spaces and newlines

in the input Boolean expressions is not allowed. We shall later

demonstrate ways of improving these shortcomings.

The two meta-variables, name and subscript, are not defined any further.

As mentioned earlier, when defining a language there exist two kinds of

terminal variables, namely identifiers and integers. Corresponding to

these, BCL introduces two types of variables - identifier and integer.

155.

If a name is assigned either of the two types in a description, it is

understood to be a terminal variable, and therefore not required to be

defined any further. The maximum character length of an identifier should

be given at the time of its declaration. For example, the declarations

for the Boolean expression program could be:

dec is (identifier name (8), :: name is an identifier of

:: maximum 8 character length

integer subscript 	:: subscript is an integer variable)

An identifier variable matches a string of alphanumerics, starting with

a letter. As a result of a successful match, the variable takes on the

string as its value. The only operation allowed on identifier variables

is comparison (=).

An integer variable matches a sequence of decimal digits, and a successful

match results in the decimal value of the sequence being assigned to the

variable. Relational and arithmetic operators can be employed to form

expressions over integer variables.

3. 	The BCL Sequencing Mechanism

In order to obtain a better insight into the language, and to be able to

process semantics, as well as syntax, we study the sequencing mechanism

of BCL, i.e. the movement of the program pointer.

A BCL 'primitive unit' returns a logical value true or false each time

executed. These values are not available to the programmer, and are

merely used to describe the sequencing technique of the System. It is

assumed here that the mode of operation is input, in which some of the

primitives affect the input pointer chpt. A primitive unit is one of the

following:

156.

a) a terminal constant or variable, e.g.

'and', '(', 'true' 	*(terminal constants)

subscript 	
+
(integer terminal variable)

name 	
+(identifier terminal variable)

The System tries to find a match for the string constant* or the

terminal variable
+
. A 'successful' match results in the value true being

returned, and chpt being advanced to point to the first character after

the matched sub-string. In the case of 'failure', the value returned is

false and chpt is affected as described in Section 3.1.1.

b) An assignment statement, e.g.

i = j+1

a = 'begin'

The assignment takes place as specified; the value returned is always

true, and dhpt remains unchanged.

c) A conditional statement, e.g.

if i <

if a = 'begin'

The value returned is that of the Boolean expression following if, and

chpt is affected as described in Section 3.1.1.

In output mode, case (a) simply outputs the value of the primitive

involved, instead of attempting to find a match; the logical value

returned is always true, and chpt always remains unaffected. The

behaviour of cases (b) and (c) is independent of the operation mode.

3.1 	Units

A 'unit', which is either a compound alternative or a group, is

composed of several primitive units, and the way it affects the System

157.

depends on its constituent elements. Like primitives, units return a

logical value when executed. In the following sections, after describing

alternatives, we shall study the effect of units on the input and program

pointers.

3.1.1 Alternatives

An 'alternative' could be one of the following:

1) either 'and', '(', operand list, ')'

2) or 	'false'

The program pointer moves along an alternative as long as the value

returned by its primitives is true. The first false value causes 21pt

to .be moved back to its position at the time the alternative was entered.

The logical value of an alternative is true provided the value returned

by each of its primitives is true, in which case the alternative is said

to have been successful. Failure of any element causes the alternative

to be failed.

3.1.2 Compound Alternatives

A 'compound alternative' is composed of several alternatives enclosed in

brackets, e.g.

(either 'and'

or 	'or'

or 	'not')

When the compound is entered, the first alternative is scanned; in the

case of a failure, the program pointer moves to the next alternative.

This process continues until either a successful alternative is found,

in which case the compound is said to have been successful, or, the last

158.

alternative fails; this failure causes chpt and the program pointer to

be moved back to their original positions at the time the compound was

entered.

3.1.3 Groups

An example of a 'group' is:

simple expression is (either 'true'

or 	'false'

or 	Boolean variable)

A call to a group is indicated by the occurence of the group-name, and

returns a logical value corresponding to the success or failure of the

group body; the input and program pointers are affected accordingly.

Therefore, group calls (and similarly, compound alternatives) can be

treated as primitive units, and they maybe combined in a nested or

linear fashion. An example of the use of groups follows.

In extended BNF, we can rewrite the productions for Boolean variable and

simple variable to save some back-tracking:

<Boolean variable> ::= cname>((<sUbscript>)1<empty>)

where braces are meta-symbols of factorization, and <name> is being

factorized. The corresponding BCL definition would be:

Boolean variable is (name,(either '(',subscript, 1)1

or 	nil.))

Here the primitive name is followed by a compound alternative. The

primitive nil in the second alternative of the compound corresponds

to the meta-variable<empty>; it is always successful and has no effect

159.

onsla. Similarly, in the group operand list (Section 2), the

primitive ',' is preceeded and followed by calls to the group, Boolean

expression.

A BCL program consists of a sequence of group definitions, followed by

the directive:

*enter (<group-name>)

indicating which group the program is to enter first.

4. 	Format Handling

Three System-defined variables are used to match spaces and end of record

(EOR) markers in input data; spa. matches only one space, while 	matches

an optional number of spaces - Pero or more - and nl. matches an EOR

marker. For instance a group, called spc, may be defined which matches an

optional number of spaces, possibly containing a newline character.

spc is (osp., (either nl. ,osp.

or 	nil.))

Having defined spc, we may now modify for example the group, Boolean

expression, to accept a free format input.

recursive Boolean expression is

(either simple expression

or 	Boolean operator, spc, '(', spc,

operand list, spc, 1)1)

It is possible to have the BCL System remove all the spaces and EOR

markers, but this is not always desirable; for example, spaces in string

constants are of importance in most languages. Omission of EOR markers

160.

excludes the possibility of reporting error messages at the end of the

input program under translation, for if these messages are to be printed

at the end, they should have some reference to the program lines, but

without FOR markers such a reference could not be constructed.

5. 	Repeated Elements

As was seen earlier, the (element)* notation in extended BNF is described

by repeat (element) in WT.; the element is repeated until a failure

occurs. The unit thus formed can be expressed in terms of a compound

alternative. For example,

repeat(',',Boolean expression)

is equivalent to:

(either 1 ,1 , Boolean expression,

(either 1 ,', Boolean expression),

(either ',',Boolean expression

or 	nil.)

or nil.)

• or nil.)
•■••=11, ••■■11■•■■

As can be seen from the above form, a repeat can also be regarded as a

primitive unit which always returns the value true.

161.

6. 	Effectiveness for Semantic Analysis

In comparison with languages like Fortran and Algol, BCL cannot be

regarded as totally procedural. In order to perform semantic, as well

as syntax analysis, the language should be capable of representing

procedural algorithms. These are needed, for example, to search a symbol

table, or to generate object code. It can be easily demonstrated that

BCL lends itself to this requirement.

Five control structures, common to most procedural languages, are here

expressed in terms of BCL structures. Of these, the first three are

loops and the last two are conditional structures.

1) The construction while-do defined as:

while <Boolean expression> do <block>

can be described by:

repeat (if<Boolean expression>,<block>)

2) The construction do-while defined as:

do <block> while <Boolean expression>

takes the form:

repeat (<block>, if <Boolean expression>)

3) The construction:

do<block-1>if <Boolean expression> then exit; <block-2>)

can be described by:

repeat (<block-1>, if not <Boolean expression> , <block-2>)

4), The construction if-then defined as:

if <Boolean expression> then <block>

can be represented by the compound alternative:

(either if <Boolean expression> , <block>

or nil.)

162.

5) The construction if-then-else defined as:

if <Boolean expression> then <unconditional structure>

else <block>

is translated into:

(either if <Boolean expression>, <unconditional structure>

or 	<block>)

All the units formed in this manner always return a true value, like

assignment statements, and thus the program pointer can move

sequentially.

7. 	Representation of Data Structures

Contiguous and linked linear lists are frequently used during the

compilation time, and occasionally at runtime. In this section, BCL

facilities for handling such lists are investigated.

A contiguous storage pool composed of m cells, addressed from 0 to m-1,

is made available to the programmer. Any integer variable may be used

to access a cell; however, this should be done through defining a 'record'.

For example, a dictionary record in a linked linear dictionary might be

defined as:

record dic is (identifier name (8), :: variable identifier

integer type, :: type of identifier-

:: either integer or Boolean

integer mode, :: mode of identifier-

:: either scalar or array

integer loc, :: pointer to the cell holding

:: the value of variable at runtime

integer nextrec :: pointer to the next record)

163.

A pointer variable, say start, is needed to point to the first dictionary

record. At the beginning this pointer is initialized to zero, indicating

an empty dictionary. An integer variable is also required to point to

the start of the storage area which could be used to keep the dictionary.

This variable, here called free, could have been initialized by a group

which allocates storage areas from the storage pool for different purposes.

When a statement like register x; is parsed, information concerning the

name, type, and mode of the declared variable (respectively, vname, vtype,

vmode) is obtained. This information should be formed into a record and

appended to the previous dictionary records.

The following group performs this task:

append is (name(free) = vname, :: insert name

type(free) = vtype, :: insert type

mode(free) = vmode, 	insert mode

loc(free) 	rmemory,:: allocate runtime memory

:: advance runtime memory pointer

rmemory = rmemory + constant,

a) nextrec(free) = start, :: append the new record

b) start = free, :: modify start

free = free + 1.dic :: adjust the start of the free.area)

start free

free area

Figure 1. Storage picture before variable x is declared

164.

start

free 	

•

newly appended record

free area

Figure 2. Storage picture after variable x is declared

The expression, 1.<record -name>, returns the number of storage cells that

a record occupies; for example, 1.dic is the length of a dictionary

record. Now one can easily write a group which searches the dictionary

for an occurence of a certain identifier, say the one held in vname.

search is (ptr = start, :: initialize pointer to traverse dictionary

repeat (if ptr # 0, :: make sure that the last record

:: has not yet been searched

if vname # name(ptr), :: is the name field

:: same as vname?

ptr = nextrec(ptr) :: if not advance the pointer))

After calling the group, search, any non-zero value of ptr indicates

that the variable identified by vname has already been declared.

By making a storage pool available to the programmer, and by introducing

the 1. notation, BCL treats linked and contiguous linear lists in the

same way. For example, in order to have a sequential dictionary instead

of a linked one, the only change to be made is to eliminate the field,

nextrec, from the dictionary record. Consequently in the group, search,

165.

the statement, ptr = nextrec(ptr),, should be replaced by ptr = ptr+1.dic

and in the group, append, the statements (a) and (b) are no longer

needed.

8. The Scope of Variables

The scope of a name is that region of the program throughout which that

name identifies the same variable. Names declared in recursive groups

have a local scope limited to the textual body of the group; those

declared in non-recursive groups have a global scope covering the whole

program. Similarly, the field names declared in records have a global

scope; obviously such names do not correspond to a variable, and as seen

in the examples they only take part in forming variables, like nextrec(free),

nextrec(ptr), type (free), etc.

9. Concluding Remarks

Comments given in this section are implemention independent,with the

exception of remarks on boundary alignment which refer to the current

implementation under the HASP operating system cn the IBM 360/65 at

University College, London.

9.1 	Boundary Alignment

The problem of boundary alignment in the IBM 360 series has been

transmitted even to such a high level as that constituted by BCL, resulting

in some inconveniences in record definition. The computing system requires

that a data item 2
k Bytes long (0.-k 3) should be assigned a storage area

whose starting address is a multiple of the length of the data item.

Therefore, the programmer should learn how many Bytes a storage cell, an

integer variable, and an identifier variable occupy. It is not surprising

166.

that if the programmer does not comply with this addressing rule, he will

receive a runtime message from a very low level near to the hardware,

which is not of much help. The boundary alignment problem is a frequent

source of error, in order to cope with which, the System should provide

elaborate debugging facilities.

9.2 	Runtime Errors

In general there are four causes of runtime error in BCL.

1) The programmer specifies that a certain sub-string should exist

at a certain place in the input string, but this condition is

not satisfied.

2) the input string has been exhausted, yet the program tries

to find a match.

3) Too deep recursion.

4) Wrong addressing.

A trace routine which gives some information about the groups called

and alternatives tried, since some time before the program failed, is

quite helpful in detecting the first three kinds of error. The fourth

kind, which becomes much more frequent as soon as list processing routines

enter, is the most difficult to pinpoint. It remains undiscovered until

either the boundary alignment is violated (perhaps a point in favour of

boundary requirements), or an attempt is made to write into a location

outside the storage pool. Sometimes as a result of wrong addressing

the source of error itself may have been destroyed, and consequently even

storage dumps cannot be as helpful as they would have been otherwise.

167.

Apart from what was mentioned above, the following point should be

considered in connection with the way BCL back-tracks after a failure.

The effect is that if a program failed to achieve what the programmer

had in mind, he would not know how near to the result he got, unless he

traced his program either by inserting acknowledgements to be output at

runtime, or by using System-provided facilities. The first method expands

the program, which could increase compilation and runtime errors; while

the second one produces voluminous outputs if recursive and repetitive

structures are traced.

9.3 	Suggestions

The price paid for the universal treatment of linked and sequential lists

is, as well as some notational inconvenience, that the programmer has to

write his own garbage collection routines. An alternative, for example,

for appending a dictionary record could be:

start = dic(vname,vtype,vmode,rmemory„start),

where the dictionary record is assumed to have been defined as before;

its name, dic, acts as an operator which structures the five data items

involved; the new record is then appended to the dictionary as a result

of assignment. In this manner, the System administers the storage pool,

rather than the programmer. Whenever it is exhausted, a garbage collection

routine returns the unreferenced cells to the pool. A new type of variable,

namely pointer, is now required. For example, the statement

pointer dic(start) ,

declares that start isa pointer to dictionary records (and nothing else).

Thus, the discovery of errors caused by wrong addressing is not in general

delayed as long as before, and the effect is not as drastic. The garbage

collection routine uses pointer variables to begin collection.

168.

Apart from pointers, inclusion of Boolean type variables and expressions

is of help for safety reasons, as well as the new dimension they thus

would create.

Inclusion of packing and unpacking facilities would allow efficient use of

store; nevertheless, they are not of paramount importance since assembly

language routines may be included in a BCL program as separate groups.

Since BCL limits itself to strictly local and global variables,

inconveniences arise in connection with recursive groups. If such a group

is to pass a value held in a local variable to another group, first the

value must be transferred to a global variable. This difficulty can be

overcome through establishing a parameter passing mechanism.

9.4 	Efficiency and Effectiveness

Two remarks concerned with efficiency: firstly, writing a compiler

in BCL, in contrast to an assembly language, eliminates the lexical

analysis phase. If the grammar as implemented in the compiler necessitates

back—tracking, the lexical analysis phase is repeated, and the user pays

a price for not doing the compilation in two phases; secondly, since the

alternatives in a compound are tried serially, the runtime increases

drastically as the compiler grows. The combination of these two effects

could result in a very poor runtime efficiency.

Because of its correspondence to the BNF notation, and its simple way of

handling semantics, BCL is an easy language to use for translator writing,

but not so easy to debug. Its modularity makes it helpful for language

design where one needs to produce quickly a translator, and to modify it

frequently. BCL manages to implement a wide range of algorithms without

using goto —statements which are pointed out to be a frequent source

of error [19]. The interpretation of object code, produced by the user's

169.

program, requires the use of case-statements; the current case-structure

of the language is not powerful enough and does not permit multiple

exits without using goto-statements.

170.

APPENDIX

Definition of the Syntax

This appendix is devoted to the bjatax definition of the Language

introduced in Chapters II to V. The definition is presented in BNF

Language Description Language.

1. 	Constants

<Conatant> ::= <Boolean constant>I<integer constant>

<Boolean constant> ::= <binary constant>l<octal constant>I

<hexadecimal constant>

<binary constant> ::= <true value>I<false value>lbin <binary list>

<true value> ::= truelon

<false value> ::= falsel off

<binary list> ::= <binary digit>1(<binary digit>(<binary digit>))

<binary digit> ::= 110

<octal constant> ::= oct <octal list>

<octal list> ::= <octal digit>1(<octal digit> {,<octal digit>}*)

<octal digit> :: 0..7

<hexadecimal constant> ::= hexa <hexa list>

<hexa list> ::= <hexa digit>I(<hexa digit>c<hexa digit>)*)

<hexa digit> ::= 0..f

<integer constant> ::= <constant identifier>I<decimal constant>

<constant identifier> ::= <identifier>

<decimal constant> ::= (<decimal digit>)*

<decimal digit> ::= 0..9

171.

2. Variables

<variable> ::= <simple variable>l<subscripted variable>

<simple variable> ::= <variable identifier>

<variable identifier> ::. <identifier>

<identifier> ::= <letter>kletter>l<decimal digit>)*

<letter> ::

2.1 	Subscripted Variables

<subscripted variable> ::= <vector identifier>(<vector subscript>)1

<matrix identifier>(<matrix subscript>)

<vector identifier> ::= <identifier>

<vector subscript> ::= <indeX>l<lower indeX> : <upper indeX>

<indel> ::= <subscript expression>

<lower index> ::= <subscript expression>

<upper indeX> ::= <subscript expression>

<subscript expression> ::= <expression>

<matrix subscript> ::= <row subscript>, <column subscript>

<row subscript> ::= <subscript expression>

<column subscript> ::= <indeX>l<lower indeX> : <upper indeX>l<empty>

<empty> ::=

3. Expressions

<expression> ::= <simple expression>I<Boolean expression>I

<delayed Boolean expression>l<integer expression>I

<element designator>

<simple expression> ::= <constant>I<variable>

172.

3.1 	Boolean expressions

<Boolean expression> ::= <Boolean operator> <operand list>

<Boolean operator> ::= <logical operator>l<relational operator>,

<shift operator>lbln

<logical operator> ::= andlorinotfnandlnorlesfeor

<relational operator> ::= ltIlelealnefzelitt

<shift operator> ::= rshiftllshiftIrcircilcirc

<operand list> ::= <source vector>“<source vector>c<source vector>)*)

	

3.2 	Delayed Boolean Expressions

<delayed Boolean expression> ::= <delayed Boolean operator>

<operand list>

<delayed Boolean operator> ::= dandldorldnotldnandldnorldeovIdeor

	

3,3 	Integer Expressions

<integer expression> ::= <arithmetic operator> <operand list>

<arithmetic operator> ::= plusiminuslmultldiviremlint

	

3.4 	Element Designators

<element designator> ::= <user-defined element>l<System-defined element>

<user-defined element> ::= <element identifier>kinput list>)

<element identifier> ::= <identifier>

<input list> ::= <expression>c <expression>1*

173.

3,4.1 System-defined Elements

<System-defined element> ::= <binary adding element>l<bistable>

<binary adding element> ::= add(<Boolean vector>, <Boolean vector>)?

sub (<Boolean vector>, <Boolean vector>)!

addl <Boolean vector?

sub1 <Boolean vector>

<Boolean vector> ::= <variable>

<bistable> ::= <abbreviated JK-bistable>1<JK-bistable>1

<D-bistabld>l<RS-bistable>

<abbreviated JK-bistabl> ::= ajkbs (<JK input>,<activator> <initial state>)

<JK input> ::= <general Boolean expression>

<activator> ::= <general Boolean expression>

<general Boolean expression> 	<delayed Boolean expression)

<Boolean expression>

<initial state> ::= <binary constant>I<empty>

<JK-bistable> ::= jkbs (<J input>, <K input>,<activator> <initial state>)

<J. input> ::= <general Boolean expression>

<K input> ::= <general Boolean expression>

<D-bistable> ::= dbs (<D input>, <activator> <initial state>)

<D input> ::= <general Boolean expression>

<R2-bistable> ::= rbs (<R input>, <S input> <initial state>)

<R input> ::= <general Boolean expression>

<S input> ::= <general Boolean expression>

174.

PT-operations

<source vector> : := <expression> (:<expression>1*

<destination vector> : := <variable> (:<variable>)*

<PT-operation> ::= <destination vector> = <source vector>;

5. Sequential and Parallel Networks

<sequential network> ::= <conditional structure>I

<unconditional structure>

<conditional structure> ::= <if structure>

<unconditional structure> ::= <parallel network>l<block>1

<for structure>I

<case structure>I

<loop structure>I

<Miscellaneous structure>

<parallel network> ::= <RT-operation>1[C<PT-operation>)4]

<block> ::= ((<sequential networkW)

6. The if Structure

<if structure> ::= <simple if>l<simple if> else <sequential network>

<simple if> ::= <if clause> <unconditional structure>

<if clause> ::= if <control condition> then

<control condition> ::= <Boolean expression>

7. The for Structure

<for structure> ::= <for clause> do <sequential network>

<for clause> ::= <for list>l<for list> step <index step>

<for list> :: for <for index' = <initial value> to <final value>

<for index' ::= <integer variable>

175.

<initial value> ::. <integer constant>

<final value> ::= <integer constant>

<index step> ::= <integer constant>

8. 	The case Structure

<case structure> ::= case <selector> of <case body>

<selector> ::= <integer variable>

<case body> ::= Ekcase primary>J4]

,*
<case primary> ::= <label>c<label>1 -4 <sequential network>

<label> ::= <integer constant>lothers

9. Loop Structures

<loop structure> ::= <do structure>l<while-do structure>I

<do-while structure>

<do structure> ::= do <sequential network>

<while-do structure> ::= while <control condition> do

<sequential network>

<do-while structure> ::= do <sequential network> while

<control condition>

10. Miscellaneous Structures

<miscellaneous structure> ::= <simulation structure>I

<I/0 structure>lexit;

<simulation structure> ::= initializeOrestart:Istop;

<I/0 structure> ::= <input structure>l<output structure>

<input structure> ::= read <input list>;

<input list> ::= <variable>{,<variable>)*

<output structure> ::= write <output list>;!

newline <number of lines-;J

Is<number of spaces>:

176.

<output list> ::= <variablec<variabls>)

<number of lines> ::= (<decimal constant>)1<empty>

<number of spaces> ::= (<decimal constant>)1<empty>

11. Systems

<system ::= kdeclaration>) <system body>

<system body> ::= <initialization> end;1

start; <general network> end;1

<initialization> start; <general network> end;

<initialization> ::= <sequential network>

<general network> ::= {<controlled networkW

<controlled network> ::= <control condition> <control sign>

<sequential network>l<sequential network>

<control sign> : :=

12. Declarations

<declaration> ::= <constant declaration>l<vector declaration>1

<matrix declaration>l<sub-array declaration!

<integer scalar declaration>1<delay declaration>

12.1 Constant Declarations

<constant declaration> ::= constant <constant declaration list>;

<constant declaration list> ::= <constant iteM>(,<constant iteM>)*

<constant item ::= <constant identifier> = <integer constant>

12.2 	Vector Declarations

<vector declaration> ::= <vector type> <vector declaration list>;

<vector type> ::= Booleanlregisterlmemorylswitch

<vector declaration list> ::= <vector declarative>(,vector declarative>)

177.

<vector declarative> ::= <scalar declarator>I<vector declarator>

<scalar declarator> ::= <scalar identifier>

<scalar identifier> ::= <identifier>

<vector declarator> ::= <vector identifier>(<dimension list>)

<vector identifier> ::= <identifier>

<dimension list> ::= <bound pair>I<vector declaration list>

<bound pair> ::= <lower bound> : <upper bound>

<lower bound> :•= <integer constant>

<upper bound> ::= <integer constant>

12.3 Matrix Declarations

<matrix declaration> ::. <matrix type> <matrix declaration list>;

<matrix type> ::= Boolean matrix! register matrix'

memory matrixIswitch matrix

• <matrix declaration list> ::= <matrix declarator>c<matrix declarator>)

<matrix declarator> ::= <matrix identifier>(<bound pair list>)

<bound pair list> ::= <bound pair>, <bound pair>

12.4 Sub-array Declarations

<sub-array declaration> ::= sub-array <sub-array list>;

<sub-array list> ::= <sub-array item>(,<sub-array item)*

<sub-array item ::= <declarative item> = <array segment>

<declarative item> :•= <scalar declarator>l<vector declarator>I

<matrix declarator>

<array segment> ::= <vector segment>l<matrix segment>

<vector segment> ::. <vector identifier>l<vector identifier>(<bound pair>)

<matrix segment> ::= <matrix identifier>(<row selector>,<column selector>)I

<matrix identifier>

178.

<row selector> ::= <integer constant>

<Column selector> ::= <bound pair>kinteger constant>1 <empty>

12.5 Integer Scalars

<integer scalar declaration> : = integer <scalar list>:

<scalar list> :: <scalar identifier>(1<scalar identifier>)*

12.6 delay Declarations up -

<delay declaration> ::= delay <delay element list>;

<delay element list> ::= <delay element> (,<delay element>)

<delay element> :: <delay identifier>I<delay identifier>(<bound pair>)

<delay identifier> ::= <identifier>

13. 	User-defined Elements

<element declaration> :: element <output declaration> =

(<formal input list>)

<element body>

<output declaration> ::= <vector type> <vector declarative>I

<matrix type> <matrix declarator>I

integer <scalar identifier)

delay <delay element>

<formal input list> ::= (<declaration>)+

,*
<element body> ::= kdeclaration>I <sequential network>

179.

REFERENCES

1. 	Baray, M.B., Su, S.Y.H., 'A Digital System Modeling Philosophy

and Design Language', Proceedings of the SHARE.ACM.IEEE Design

Automation Workshop, 1971.

Barbacci, M.R., 'A Comparison of Register Transfer Languages for

Describing Computers and. Digital Systems', Department of Computer

Science, Carnegie-Mellon University, 1973.

3. Barbacci, M., Bell, C.G., Newell, A., 'ISP: A Language to Describe

Instruction Sets and other Register Transfer Systems', Department

of Computer Science, Carnegie-Mellon University, 1973.

4. Barron, D.W., et al, 'The Main Features of CPL', Computer Journal,

Vol. 6, No. 2, 1963.

5. BCPL Reference Manual, Essex University System, 1970.

6. Bell, C.G., et al, 'Register Transfer Modules (RTMs) for Understanding

Digital Systems Design', IEEE Computer Conference, COMPCON 72, 1972.

7. Bell, C.G., Newell, A., 'Computer Structures: Readings and Examples',

McGraw-Hill Book Company, 1971.

8. Bell, C.G., Grason, J., Newell, A., 'Designing Computers and Digital

Systems Using PDP -16 Register Transfer Modules', Digital Press, 1972.

9. Bensky, L.S., 'Block Diagrams in Logic Design', Proceedings of the

WJCC, 1958.

10. Bogo, G., at al, 'CASSANDRE and the Computer Aided Logical Systems

Design', IFIP 71, North-Holland Publishing Company, 1972.

180.

11. Breuer, M.A., 'Recent Developments in the Automated Design and

Analysis of Digital Systems', Proceedings of the IEEE, Vol. 60,

No. 1, 1972.

12. Brough, D.R., 'An Introduction to BCL', University of London, Institute

of Computer Science, ICSI 452, November 1972.

13. Burnett, G.J., 'A Design Language for Digital Systems', M.Sc.Thesis,

EE Department, MIT, 1965.

14. Chu, Y., 'An ALGOL - like Computer Design Language', CACM, Vol. 8,

No. 10, 1965.

15. Chu, Y., 'Introducing the Computer Design Language', IEEE Computer

Conference: COMPCON 72, 1972.

16. Chu, Y., 'Computer Organization and Micro-programming', Prentice-Hall,

1972.

17. Dahl, 0.-J., Dijkstra, LW., Hoare, C.A.R., 'Structured Programming',

Academic Press, 1972.

18. Digital Equipment Corporation, 'Logic Handbook', 1971.

19. Dijkstra, E.W., 'Go To Statement Considered Harmful', Letter to the

Editor, CACM, Vol. 11, No. 3, 1968.

20. Duley, J.R., Dietmeyer, D.L., 'A Digital System Design Language

(DDL)', IEEE Transactions on Computers, Vol. 17, No. 9, 1968.

21. Ellis, LA., Franklin, M.A., 'High-Level Logic Modules:

A Qualitative Comparison', IEEE Computer Conference: COMPCON 72, 1972.

181.

22. Falkoff, A.D., Iverson, K.E., Sussenguth, E.H., 'A Formal

Description of System/360', IBM Systems Journal, Vol. 3, No. 3, 1964.

23. Flake, P.L., 'HILO - A Logic System Simulation Language', Seminar

given at the Department of Electrical Engineering, Brunel University,

November 1973.

24. Friedman, T.D., Yang, S., 'Methods Used in an Automatic Logic Design

Generator (ALERT)', I1 Transactions on Computers, Vol. 18, No. 7, 1969.

25. Gorman, D.P., Anderson, J.P., 'A Logic Design Translator', Proceedings

of the FJCC, 1962.

26. Gould, I.H., 'Logic Design Lecture Notes', University of London,

Institute of Computer Science, 1972-73.

27. Gould, I.H., 'First Thoughts on a Simulation Facility', private

communication to the author, 1971.

28. Gries, D., 'Compiler Construction for Digital. Computers',

John Wiley & Sons, 1971.

29. Gwendolyn, G.H., 'Computer-Aided Design: Simulation of Digital Design

Logic; IEEE Transactions on Computers, Vol. 18, No. 1, 1969.

30. Hesse, 	'The Advantages of Logical Equation Techniques in

Designing Digital Computers', Proceedings of the WJCC, 1958.

31. Hopgood, F.R.A., 'Compiling Techniques', Macdonald, 1969.

32. IBM 1130 Functional Characteristics, File No. 1130-01, Order No.

GA26-5881-6, April 1972.

33. Iverson, K.E., 'A Common Language for Hardware, Software, and

Applications', Proceedings of the FJCC, 1962.

182.

Iverson, K.E., 'A Programming Language', Wiley, 1962.

35. Ledgard, H.F., 'The Case for Structured Programming',

BIT, Vol. 14, No. 1, 1974.

36. Lewin, D., 'Theory and Design of Digital Computers', Nelson, 1972,

37. Lindsey, C.H., Van Der Meulen, S.G., 'Informal Introduction to

ALGOL 68', North-Holland Publishing Company, 1971.

38. MacKinnon, A., 'Flow Charts Methods of Logic Design',

Computer Design, February 1968.

39. McClure, R.M., 'A Programming Language for Simulating Digital Systems',

JACM, Col. 12, No. 1, 1965.

40. Musgrave, G., White, I.J., 'Piogram for Digital Simulation Logic',

University of Bradford, Postgraduate School of Electrical & Electronic

Engineering, Report No. 90, November 1971.

41. Naur, P., Woodger, M., (Editors), 'Revised Report on the Algorithmic

Language Algol 60', CACM,Vol. 6, No. 1, 1963.

42. Parnas, D.L., 'A Language for Describing the Function of Synchronous

Systems', CACM, Vol. 9, No. 2, 1966.

43. PDP 11 Processor Handbook, Digital Equipment Corporation, 1971.

44. Proctor, R.M., 'A Logic Design Translator Experiment Demonstrating

Relationships. of Language to Systems and Logic Design', IEEE

Transactions on Computers, Vol. 13, No. 8, 1964.

45. Reeves, C.M., 'An Introduction to Logical Design of Digital Circuits',

Cambridge University Press,. 1972.

183.

46. Richards, R.K., 'Logic Design Methods', Proceedings of the

WJCC, 1958.

47. Schlaeppi, 	'A Formal Language for Describing Machine Logic,

Timing, and Sequencing (LOTIS)', IEEE Transactions on Computers,

Vol. 13, No. 8, 1964..4_

48. Schorr, H., 'Computer-Aided Digital System Design and Analysis

Using a Register Transferlahtuage', IEEE Transactions on Computers,

Vol. 13, No. 12,+1964.

49. Shandad, B,, 'Computer-Aided Teaching of Low Level Machine Architecture:

Design Considerations', University of London, Institute of Computer

Science, ICSI 407, May 1972.

50. Shandad, B., 'Computer-Aided Design of Digital Systems: SEEMA, A

Multi-Level Digital System Simulator', University of London, Institute

of Computer Science, ICSI 427, July 1972.

51. Shandad, B., 'Logic Design Systems', University of London, Institute

of Computer Science ICSI 500, June 1973.

52. Shaw, B., (Editor), 'Proceedings of a Seminar on the Teaching of

Computer Design', University of Newcastle upon Tyne Computing Laboratory,

1972.

I 	53. 	Stabler,.E.P., 'System Descriptio4.Languages'i IEEE Transactions

on Computers, Vol. 19, No. 12, 1970.

54. 	Whitney, G.E., Tulloss, 	'The Best Language: A Language for

Use in Simulation of Digital Circuits', IEEE Computer Conference:

COMPCON 72, 1972.

184.

55. Woodger, M., 'On Semantic Levels in Programming', IFIP 1971,

North-Holland Publishing Company, 1972.

56. Woodger, M., 'Levels of Language', High Level Languages, State

of the Art Report No. 7, Infotech Education Ltd., 1972.

77. 	W1rth N., Hoare, C.A.R., 'A Contribution to the Development of

ALGOL', CACM, Vol. 9, No. 6, 1966.

58. 	Wirth, N., 'Program Development by Stepwise Refinement', CACM,

Vol. 14, No. 4, 1971.

59. 	Zissos, D., 'Logic Design Algorithms', Oxford University Press, 1972.

