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ABSTRACT 

Computations of the elastic and elastic-plastic behaviour of some 

symmetrical pressure vessel heads and nozzle-sphere junctions is 

described; comparison of the stress concentration factors of the two 

geometries are made with previous published results. 

= The computed plastic strain values for a particular head are com-

pared with experimental results in order to demonstrate the validity of 

the. computational methods, and a collapse mechanism derived from the 

computed values is given. 

From the computed results, the elastic-plastic behaviour for a 

series of nozzles: 

(a) having a specified radius of toroidal knuckle and continuous thick-

ness, 

(b) for a specified radial nozzle-on-sphere having different geometries 

of the toroidal knuckle and a sphere thickness double that of the 

cylinder, is described. 

A comparison is made of collapse and shakedown results using different 

criteria and work-hardening rules, and also using available results from 

a limit analysis for flush cylindrical nozzles. 

It was generally found that the use of work-hardening in the cal- 

culation gave only a slight improvement in the predicted values for 

shakedown behaviour, using the ellipse of yield moving towards the 

stress state reached, In the case of radial nozzles on spheres, the 

ellipse expanding with work-hardening is also considered. 

Tests concerning shakedown behaviour were carried out with a 

circular plate with a central hole, and with an almost symmetrical radial 

nozzle-on-sphere, both plate and nozzle-on-sphere being made of mild 

steel. 
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The results of these tests are presented and discussed; those for 

the nozzle-on-sphere case are compared with computed values of the 

elastic-plastic behaviour of rigid-plastic and work-hardening 

materials. 
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NOMENCLATURE AND ABBREVIATIONS 

Nomenclature  

a 	material constant or geometry constant 

A
n 	

constants of integration for the cylinder (n = 1, ... 4) 

A',A" 	constants of integration for the plate 

b 

ber,bel 

B' B" 

C. 

material constant or geometry constant or suffix for shallow 
shell 

Kelvin function 

constants of integration for the plate 

suffix for cylinder or for collapse or material constant 

variable in a non-linear strain distribution through the 
thickness, i = 1,4), or constants of integration for the 
sphere, (i = 1,.. 4) 
mean diameter of cylinder, Figs. 3 to 5 

D
o 	

mean diameter of sphere, Figs. 3 and 4 

D flexural rigidity [= 2h3E/3(1 - v3)] 

e strain with suffixes A, 	i and j 

ep 	equivalent plastic strain 

E Young's modulus 

f variable in a non-linear strain distribution through thickness 

F 	radial force per unit length, Fig. la; with suffix b for 
shallow sphere 

g17g2 	
series used in the Kelvin function . 

h half thickness of shell, Fig. la, or height of the head 

H' 	slope of the equivalent stress v plastic strain curve 
(= doe/dep) 

i,j 	suffixes (=Lotp) 

k 	constant describing the cylindrical shell [= 4,/-12(1 - v2)/d2e] 

K
1 	

elastic stress concentration factor; ratio of maximum von 
Mises' equivalent stress to membrane equivalent stress (SCF) 

K* 	elastic stress concentration factor; ratio of maximum shear 
1 stress to membrane shear stress [the * notation also applies 

to K
2 
and K

3
] 

K
2 	

ratio of shakedown pressure to membrane yield stress 
(= 13*

s
/k
1 

 ) 
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K
3 	

ratio of collapse pressure to membrane yield stress 
(= P*/k ) 

c 1 

ker,kei Kelvin function 

meridional suffix and meridional length 

axial load 

Ly 	axial load to cause yield 

bending moments per unit length, with suffixes, yo  tp, i and j, 
Fig. lb or work hardening case in Tables 1 to 12 

N direct force per unit length, with suffixes, A, 	i and j, 
Fig. la 

p,P 	pressure (numerically positive for internal), Fig. la, or 
with suffixes c, s and y 

variable used in spherical heads 

pressure for first yield at any point in the vessel 

P* 	ratio of pressure to first yield pressure 

P* 	ratio of collapse pressure to first yield pressure 

P* 	ratio of shakedown pressure to first yield pressure 

✓ radius perpendicular to shell axis, Fig. 2b, or radius of 
Toroidal knuckle 

R 	mean radius of the sphere or non-work hardening case in Tables 
1 to 12 

s 	suffix, either for the sphere or for shkedown load 

SCF 	stress concentration factor 

t cylinder thickness 

T 	either sphere or plate thickness 

u radial displacement, Fig. 2a 

U. 	variable in non-linear strain distribution through the 
1 thickness (i = 

✓ axial displacement, Fig. 2a 

✓ constant of integration for axial loading, per unit radian 

x 	meridional coordinate for the cylinder, Figs. 3 to 5 

X 	applied radial force per unit length, Fig. la 

Y 	applied axial force per unit length, Fig. la 

y 	suffix for equivalent stress limit of elasticity 

W axial force per unit length, Fig. la 



el)  
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0i • 
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0 
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0A± 

a
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a*  
C 

a
y 

T 
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a 	complementary angle of 0(= ni2 - 0), Fig. 3 and 4 

shell thickness taper (= dh/d/) 

variable used in shallow shells [= 41/(4X
4 
- V2 )/4] 

increment' 

variable used for spherical shell 

circumferential suffix 

rotation of the meridional direction, Fig.2b 

change in curvature (i = /m) 

variable used for shallow shells (= y a ,r2) 

angle between shell-wall normal and the radial direction, 

Fig. la 

the value of 0 on a point on the sphere, defined by the 

intersection of cylinder-sphere geometries 

particular value of e corresponding to points marked by 

Ai (i = ' 	In  'v) on°Figs. 19-21 

parameter describing spherical shell (= 4/3(1 - v2) 45-77) 
0 

smaller radii of curvature of the shell 

direct stress, with suffixes, L, ep, i, j, c, m and y 

equivalent stress (von Mises' criterion) 

deviatoric stress, with suffixes./, cp, i and j 

ratio of meridional stress to yield or proof stress 

ratio of circumferential stress to yield or proof stress 

yield or proof stress 

shear stress 

Poisson's ratio 

nozzle parameter (Ref. 13) (40256T), and variable used for 

spherical shell 	 ° 

mid-wall values 

membrane values 
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Abbreviations (for further details see text, Chapter 2) 

In connection witkshakedown, based on: 

SEM 	elastic calculations by the method of Macfarlane and 
Findlay, Ref. 12 

SPC 	elastic-plastic computations with the ellipse of yielding 
moving along the path of the elastic., stress ratios 

SPT 	elastic-plastic computations with the ellipse of yielding 
moving along the radius, to the actual stress point considered 

SPW 	elastic-plastic computations with the ellipse of yielding 
increasing in size with work-hardening 

In connection with incipient collapse: 

Intersection of the elastic line with the tangent drawn to a 
particular point on a given curve defined by: 

C3I 	a line of one third the elastic slope intersecting an 
individual strain curve 

C3E 	a line of one third the elastic slope intersecting an 
equivalent strain curve 

C3D 	a line of one third the elastic slope intersecting the 
overall deflection curve 

Based on the pressure to cause: 

BSLY 	large increase in rate of spreading of local yield 

C5I 	5% individual maximum strain on the outer surface 

C5E 	5% equivalent maximum strain on the outer surface 

C15I 	1.5% individual maximum strain 

C15E 	1.5% equivalent maximum strain 

CMEO 	large jump of the position of maximum equivalent strain 
on the outer surface 

CSP 	the turning point on the stress path to the last anti- 
clockwise movement,around an ellipse of yield (applied 
to nozzles) 
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INTRODUCTION 

Design of pressure vessels has in the past been restricted to a 

"strength of materials" approach. With the demands of modern industry, 

the designer must now consider higher static and cyclic loading on the 

structure; he is also obliged to produce a more efficient design. 

The methods of elasticity have been developed and applied to the 

design of pressure vessels but, although approximations to the correct 

solution have been used, the effort to present better approximations 

is still a subject demanding a great deal of research. 

The improvement in knowledge of material behaviour beyond the 

elastic limit has made possible the development of some theories of 

plastic design i.e. design for structures loaded beyond this limit. The 

theorems of limit analysis and of slip line field have given to the 

designer the assistance of the theory of plasticity in the design of 

structures. Limit analysis was extended to plates by Hopkins and 

Prager [22].* in 1953 and to cylindrical shells by Drucker [80] in 1954; 

since then, limit analysis has been the object of much research and has 

lately been successfully applied to some cases of plastic design of 

pressure vessels e.g. [33] to [36]. Only in the late 1950's was limit 

analysis applied to nonsymmetrically loaded shells, although very few 

relevant works are available, e.g. [72]. Limit analysis is basically 

an approximate theory, since it considers the structure as having a 

mechanism of plastic deformation, and the material as having perfectly 

plastic behaviour. The effect of changes in geometry in increasing the 

limit pressure of. some nozzles has also been studied [70]. Limit 

analysis has been used to assess the collapse level by determining the 

upper and lower limitsof loading in which collapse of the component 

must occur, in the absence of work-hardening. 

*Numbers in square brackets are references. 
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Cyclic loading of a structure implies the possibility of cyclic 

failure either by incremental collapse or by low or high cycle fatigue. 

The necessity of avoiding incremental collapse, or low cycle 

fatigue behaviour, restricts the extent of permissible plastic flow due 

to the cyclic loading of the structure. These types of behaviour are 

in principle cycle-dependent, and must be so treated if a limited life 

design is proposed. The concept of shakedown arises when the above-

mentioned types of failure are to be avoided in circumstances in which 

not all the variables, with their effects, are known. Shakedown 

behaviour is associated with entirely elastic behaviour after some 

initial plastic flow has been undergone by the structure, This has 

become an accepted criterion. Shakedown behaviour was well known in 

structural design, but Symonds [54] and Koiter [55] extended Melan's 

theorem to continuous media. Leckie [61] has described a method of 

estimating the lower limit of the shakedown pressure for a flush cylinder-

sphere intersection, by applying Melan's theorem, using the results from 

an elastic analysis, and the Tresca yield criterion [61]. Fox et al 

have applied Leckie's method to ellipsoidal heads [23]. Macfarlane and 

Findlay have described a simple technique for calculating shakedown loads 

on pressure vessels by using Leckie's method [12]. Findlay and Spence 

however explained how shakedown loads may be determined from the post-

yield behaviour of the pressure vessel [53], although Crisp describes a 

computer program which provides a rapid and accurate means of computing 

post-yield stresses and the shakedown limit from experimental data, 

assuming an elastic-perfectly plastic material [57]. Taylor has investi-

gated the effect of shakedown with regard to strain hardening materials. 

In the above-mentioned approximations to shakedown analysis, the 

Bauchinger effect has in all the cases been neglected, and the unloading 

path is considered parallel to the elastic. Very little experimental 
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work has been reported on shakedown behaviour; Procter and Flinders [59], 

have carried out shakedown investigations on partial penetration welded 

nozzles in a spherical shell, and Findlay, Moffat and Stanley [56] 

have carried out limit-pressure and shakedown investigations on tori-

spherical drum heads. 

The development of electronic digital computers has made the 

elastic-plastic analysis of pressure vessels a reality. In the last 

four years, much work has been done on the improvement of the elastic-

plastic solutions by the use of methods of numerical analysis and of 

the equivalent plastic stress-strain curve of the material under con-

sideration. In a collapse or limit pressure study, elastic-perfectly 

plastic material is very often considered, [3],[7],[9] and [73], but 

more appropriate stress-strain curves, as an approximation to the real 

static equivalent plastic stress-strain curve for the material, are, 

when available, used in order to obtain a better approximation to the 

collapse behaviour of the structure, [6],[7] and [24]. In a low cycle 

fatigue study, Blomfield [6] has demonstrated that a settled down 

equivalent plastic stress-strain curve would give very reasonable 

results in pipe bend studies. In shakedown studies, the material has 

always been considered as elastic-perfectly plastic for an elastic-

plastic analysis [9] and [73]. 

The object of the present work is to extend the study of collapse 

and shakedown behaviour by means of an elastic-plastic computer program. 

The feasibility of such studies has been shown by earlier work, [3],[7], 

[8] and [42]. Comparisons of elastic stress concentration factors are 

made between the analytical results and the numerical results from an 

elastic computer program for symmetrically loaded shells of revolution. 

Calculated elastic-plastic strains are compared with the available 

experimental data for the case of Head A [3] in order to assess the 
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reasonableness of the elastic-plastic computer program used in this 

work. Some shakedown investigations were carried out on a plate with 

a central hole, and on a knuckle of cylindrical nozzle on spherical 

pressure vessel. The elastic-plaStic behaviour given by the computer 

program was compared with the experimental results from the test nozzle 

in order to assess the feasibility of the shakedown criteria described 

in this thesis, and in [24]. 
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CHAPTER 1  

THE ELASTIC-PLASTIC ANALYSIS OF SYMMETRICALLY LOADED 

SHELLS OF REVOLUTION 

1.1 Elastic Theory  

1.1.1 Introduction  

In Figs. 1 and 2 an element of a symmetrically loaded thin shell 

of revolution is shown in which the geometrical parameters are defined, 

and the applied and resultant forces and moments are presented. 

In Appendix A, the basic equations for the theoretical study of 

the distribution of elastic stresses.and strains are described; they 

are based on the thin shell theory defined previously by Love,:  Ref.[77] 

and used later by other researchers, e.g. Refs. [1],[4],[13]  to [20]. 

The derivation of the equations in Appendix A has its origin in Ref. [1], 

and is based on the four following assumptions: 

(a) The ratio of thickness of the shell to the smallef'Tadii of 

curvature is small compared to unity. 

(b) Plane sections normal to the mid-surface of the shell in the 

unloaded state remain plane after the application Or the load. 

(c) The stresses normal to the mid-surface are negligible in com-

parison with those acting in the plane of the mid-surface. 

(d) The magnitude of the displacements is small. 

These four assumptions, together with Hooke's law as applied to 

isotropic and homogeneous materials, form the basis for the derivation 

of the equations in Appendix A, are the same as those used in Ref. [2], 

and ,[3], with minor differences, in Ref. [1]. These equations have 

proved to give good agreement with results when compared with experi- 

mental work, as long as the ratio 2h/p is less than or equal to 1/10, 

as defined by FlUgge, Ref. [14], and Timoshenko, Ref. [15]. It is 

noteworthy that Novozhilov, Ref. [16], has 1/20 as the upper limit to 2h/p. 
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Because this work is concerned with shell geometries containing 

some region where the condition 2hip .1 is not satisfied, as in 

knuckles of small radius of curvature in the meridional plane, a "thick 

curved bar" theory or "Winkler's curved beam" theory, Ref. [11], was used 

where the above condition was not satisfied. This approximation allows 

an elastic stress pattern to develop, that is non-linear across the 

thickness (as in "Winkler's theory", Ref. [11]), but nevertheless 

ignores shear and through thickness deformations. This approximation 

is shown and described in Appendix D. The improvement gained with this 

approximation can be seen in Refs [3] and [9], but, for ratios of 21011p 

greater than 1, this approximation over-estimates results, Ref. [9]. 

1.1.2 Theoretical Analysis  

The governing equations, presented in Appendix A, are fora symmetric-

ally loaded thin shells of revolution theory, and they must be simplified 

• in order to obtain an analytic solution for each particular case. 

It is known that each simplification, in a system of differential 

equations; brings a corresponding limitation to the solution. Hence the 

simplification must be made with the geometry and system of applied 

loading to the structure in mind. 

In Appendix B, the analytic solutions for internally pressurised 

cylinder-sphere intersections, Figs. 3 tb 5, are shown, bearing in mind 

the limitations presented by the sphere solution, either when the sphere 

can be treated as a proper sphere, as a shallow sphere, or as a plate, 

Fig. 5 and Refs. [1],[4],[15] and others. These limitations are a con-

sequence either of the simplication made in the initial differential 

equations, as in the case of the sphere when it becomes a shallow sphere, 

or by the solution of the simplified system of differential equations, 

as in the case of the shallow sphere in which the completed solution is 

limited by the unity of the independent variable in the Kelvin function, 

thus: 
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eg1(X)  
bei(x) - 

	

	 cos g
2
(x) 

(2n)() 2  

• egl(X)  
ber(x) 	 3 sin g

2
(X) 

(2nX)2  

egl(-)°  
ker(x) - 	1  cos g

2(-)) 
(2x/n)2  

egi(-)0 
kei(X) - 

	

	sin g2( -X) 
(2X/n)1  

with 

	

X 	1 	25 	13  
g1(X ) 	+ v2 

	

8 2 384X3/2 	.128X4 - 

g(x) = -X- - F  - 	1 	1 	25  
2 

	

/2 	8X/2 16X2  384X4/2 

from Ref. [10], where x = sei7a; hence, if x < 1, the g1  and g2  series 

are not convergent. Besides the limitation in the solution due to the 

restraining in x, it is normal procedure to use simplified expressions 

for g1  and g2, as can be seen in Appendix B, equations(B.17) and (B.18), 

or in Refs. [1] and [13]. If equations (1.1) are to be used when x 

approaches or becomes less than unity, the plate solution is in some 

cases better than the shallow sphere solution; if (B.17) and (B.18) 

are to be used, when x < 7, as defined in Refs. [1] and [4], the plate 

solution is a more convenient approximation also. 

The limit from which a shallow integration should be applied, 

instead of a sphere integration, is very difficult to define as a 

particular value to be applied in all cases, because the validity of 

the solution depends not only on the value of a, but also on the value 

of 2h/p for the geometry under study. A similar comment can be made as 

regards the plate integration to the shallow sphere integration. 

*Numbers in brackets 0 indicate equations. 
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The convergence of the analytic solution depends not only on these 

geometrical considerations, but also on the loading, e.g. a high load 

bending situation will yield more inaccurate results than a uniform 

pressure situation. 

A better convergence, depending on the value of x and therefore, 

on the angle a, was found by Leekie and Penny, in Refs. [13] to [16], 

by using a variable substitution in the shallow sphere differential 

1 
equation of f to (sin a/a)2f; the solution of the new equation must, 

1 
accordingly, be multiplied by (a/sin a)2, Ref. [17]. 

1.1.3 Numerical Analysis  

All the elastic calculations based on a finite difference tech-

nique in the present work have been done with the computer program, 

PVA1, used in several previous pieces of research work, e.g. Refs. [3], 

[7] to [9] in the discussion of [23] and [63], and first reported in 

Ref. [2]. 

This computer program uses the governing equations described in 

Appendix A, with four dependent variables (u, 0, aid/ and F), and the 

meridional length (L) as the independent variable. 

The computer program was developed in order to study the elastic 

distribution of stresses, strains and displacements in a thin shell 

of revolution and therefore for structures containing one or more 

different geometries. A user's manual was written as a report by the 

C.E.G.B., Ref. [45]. 

The shell is assumed to be divided into at least two branches, but 

can contain up to four branches connected at the same part, which is 

called a junction. Each structure has at least one junction. The 

geometry within each branch can change, as long as it can be completely 

described by a formula of the type a + b cos 0, by a value for thickness)  

and, by a linear change in thickness, known as taper; the parts of the 

structure identified by the a + b cos 0 formula and by thickness-taper 

values are known as elements. 



In the computer program each branch may be divided into no more 

than twenty elements, each having different values for the variables in 

a + b cos 0, or with different thickness, or linear changes in the 

thickness along the meridional length. Either the branches or the 

elements can be sub divided into equal lengths, so long as the number 

of steps within each branch does not exceed two hundred. 

There are seven different methods of shell loading' in this program: 

(i) constant pressure within each branch;.  

(ii) constant axial load within each branch; 

(iii) applied constant band forces along the meridian within each 

element in any branch; 

(iv) applied meridional moment and radial force at the junction 

and at points on the meridian of any branch; 

(v) a specified boundary condition at the end of each branch, as 

long as the boundary condition can be expressed in a linear 

form with the dependent variables; 

(vi) constant axial body forces on the whole shell; 

(vii) radial body forces, linear dependent on the radius vector (r) 

only. 

In the present work, only internal pressures and axial loads from 

internal pressures, were considered, together with the membrane boundary 

condition expressed by the radial displacement and by the meridional .  

moment equal to zero, thus: 

M
A 
 0 implies 

r - u = E — (6 - v a ) 

dO 	v sin  tx 	n  
r 	" 

(1.2a) 

(1.2b) 
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Marcal introduced into the computer program the "O'Connell 

modification" which distributes the sharp corner forces, e.g. at 

cylinder-sphere intersections, over a prescribed meridional length 

from the junction along each branch. This modification was first 

reported in Ref. [8]. 

The numerical procedure used in the computer program is known as 

a predictor-corrector process and consists of guessing initial values 

for the four dependent variables at the junction and then using these 

as the starting values for a numerical integration procedure which 

calculates the values of the variables at each point along each branch. 

At the end of the branch the calculated values are compared with the 

values specified for the given boundary conditions. The initially 

guessed values of the dependent variables are then corrected by a 

boundary control technique using the values of the previous integration; 

this procedure is repeated until the specified accuracies of the inte-

gration and the boundary control are satisfied. For a more detailed 

description of the numerical process see Refs. [2] and [3]. 

1.2 Elastic-Plastic Theory  

1.2.1 Introduction  

As it is common procedure to allow a small amount of plastic flow 

to occur early in the life of a vessel,•the problem of elastic-plastic 

deformation of vessels at once presents itself to the designer. 

There have been some attempts to produce an algorithm capable of 

solving the problem of the elastic-plastic behaviour of shells. Firstly 

a "limit analysis" calculation was defined, and used by many authors, 

Refs. [4],[20],[31] to [40]. Later moresophisticated methods were 

developed, with high speed computers in view. Mendelson, in 1959, 

Refs. [26] and [27], presented an algorithm for the solution of elastic-

plastic deformation and Marcal in 1963, Refs, [21] and [28], presented 
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a new algorithm based on a "partial stiffness" method, more recently 

known as the "tangent modulus" method, Ref.5. [6],[29] and [30]. Since 

then new improved methods have been developed having in view a finite 

element type of analysis, Refs. [30] and [41]. The gtangent modulus" 

method has been applied to a wide variety of problems, e.g. Refs. [3], 

[6] to [9], [24],[29],[42] and [43]. A comprehensive description, and 

a comparison of Marcal's and Mendelson's methods may be seen in Ref. 

6] • 

The computer program for elastic-plastic analysis used in this 

work includes Marcal's algorithm, and was developed from the elastic 

program, Section 1.1.3, described in more detail in Refs. [2] and [3]. 

Tests of the program's accuracy were made and good agreement with 

experimental results was arrived at, Refs. [3] and [5], when the geo-

metry was within the limits of the thin shell theory. The case of a 

torispherical head showed reasonable agreement, but radial nozzles-on-

sphere, however, produced far from accurate results with the program; 

not even with the use of the "thick curved bar" theory, where the ratio 

2h/p is larger than.1, and which gives much better agreement than the 

simple thin shell theory, Refs. [3] and [9]. 

1.2.2 Numerical Analysis  

The elastic-plastic calculations for thin shells of revolution 

were carried out using a computer program, PLINTH, developed from one 

of the elastic analyses described in Section 1.1.3, and modified in 

order to include Marcal's algorithm, described in Appendix C, and 

Refs. [3] to [6]. 

A user's manual has been written in the form of a report, Ref. [44]. 

Minor, but important, alterations have since been made, Ref. [ 3], 

which include a larger number of integration steps, from sixty-six, to 

two hundred, data for the material given in exponential form, 
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a(1 be.  )c, and the output capable of being printed periodically 

at the increment required. 

The larger number of integration steps improves convergence and 

allows the analysis of longer branches. For each type of geometry, 

there is an optimum number of integration steps as far as efficient 

convergence is concerned, but the present work was not, however, 

sufficiently extensive to arrive at a definite conclusion. The time of 

computation increases very sharply with the number of integration steps 

and with the development of the plastic area during the computation 

procedure. 

The plastic stress-strain relation was modified as it was seen that 

the new relation fitted the experimental plastic stress-strain curve 

better. In Fig. 6 can be seen the plastic stress-strain curves for the 

material used by Cheung, Refs. [3] and [7], in Head A. The three curves 

are the experimental curve, the second degree polynomial form _and the 

exponential form, of the elastic-plastic calculations. 

The numerical procedure is the same as for the elastic case to the 

point where a convergent solution of the elastic problem to unit load 

is obtained. 

Once the elastic solution has been found, *the maximum von Mises 

stress is evaluated and used to scale the load in order to obtain the 

maximum von Mises stress equal to stress limit of elasticity. 

The new value of the load is known as the elastic limit load of the 

particular shell. 

Henceforward, the elastic-plastic calculation is carried out using 

the transition-region method with the Prandtl -Reuss stress-strain 

relationships, as in Marcal's algorithm, (see Appendix C), by increasing 

the load by a fraction of the first yield load. The integration is 

carried out, see Refs. [3] and [44] in order to obtain covergence to the 
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required accuracy. This procedure is repeated in accordance with the 

information of incremental procedure. 

The printed output of the program can include stresses, strains 

(individual or plastic equivalent strains, or both), deflection and 

rotations, moments and forces, as well as the progress of yielding at 

each point of the shell. 
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CHAPTER 2  

COLLAPSE AND SHAKEDOWN CONCEPTS 

2.1 Introduction  

The designer is faced with the fact that any structure is capable 

of failing and he must, therefore, attempt to make the likelihood of 

such a failure as remote as possible. 

The safe operation of a pressure vessel depends on the stress-

strain distribution under the relevant loading, the working temperature, 

the environment in which the vessel is going to be used, the material 

chosen, which must demonstrate economy and reliability in constructions 

and the total period during which the structure is meant to operate. It 

can, therefore, be seen that the designer is confronted most of the time 

with a combination of many varying parameters; the existing codes, 

Refs. [46] to [49],and [68], furthermore do not cover all possible 

circumstances affecting design. The latest codes, Ref. [46, division 2] 

and [68], present complex criteria for acceptable stress levels for 

defined geometries and loadings. Because it would be impossible to pre-

scribe a code of safety covering all the vast number of possibilities, 

there is a tendency instead to give the basis for the criteria which the 

designer must apply to his particular problem in order to satisfy the 

code chosen by the client, Ref. [50]. 

As the designer, therefore, is called upon to do a work more funda-

mental in character,he must understand the mechanisms of failure, with 

their attendant variables, as well as the way they interact. 

There have been attempts to classify the modes of failure, but to 

do so can become very difficult because of the combinations of the 

different modesl e.g. fatigue-creep, fatigue-corrosion. 

Some more comprehensive classifications can be found in Refs. [3], 

[20], [50] and [51]. 
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This thesis is concerned with elastic-plastic behaviour of pressure 

vessels and, therefore, with failures associated with stress and 

deformations. The object of this thesis is the better understanding of 

the collapse and shakedown mechanisms. 

2.2 Shakedown  

2.2.1 Basic .Concepts 

Any normally formed structure possesses residual stresses due to the 

manufacturing process, since all the processes, either mechanical or 

thermal, inevitably produce an effect on the material structure; because 

of this, careful precautions must be taken during the process of manu-

facture, Ref. [3], if the residual stresses are to be minimised. 

If it is supposed that the residual stress distribution in a 

structure is known, and is defined by a function of stress aRE  = a(?), 

where P is a point function (therefore, dependent on its location in 

the structure and on the properties of that structure), the stress dis-

tribution from the load may be found: al,  = a(P). 

When the two stress systems can be superimposed, such that the 

structure does not, at that time, yield anywhere within it, that is to 

say that is still elastic, then the structure has shaken down for that 

particular loading. 

It may be taken note that within the definition of shakedown and 

the theorems relating to it5 the way in which the optimum residual stress 

may be obtained is not mentioned, Refs. [4], [53] to [55]; (N.B. In the 

general, non-technical sense of the word, "shakedown" implies a settling-

down process whereas in the strictly technical sense, a cyclic process 

is not necessarily involved.) It is, however, always assumed that the 

structure is, in the beginning, free of residual stresses and that they 

are caused only by the unloading of the structure after some plastic 

deformation has occurred in the load process. 
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The material used and the structure into which it is incorporated have 

always formed an inherent part of the shakedown concept, and mechanism, 

as will be described later. 

Consider two different structures: 

(a) the simplest structure, which is an ideal tension test piece; 

(b) a pressure vessel, which is the subject of this thesis. 

In the case (a), when the tension load is increased up to the 

elastic limit (L
e, Fig. 7) and then relieved, it is most probable that 

no residual strain will appear, since creep has not been taken into 

account. If the loading has passed the elastic limit (L' or L", Fig. 7), 

and, therefore, plastic strain has developed, the level of stress will 

probably be much higher than the elastic limit (say a' or a", Fig. 7). 

In the process of unloading, since the stress distribution is uniform, a non 

self-equilibrating system of residual stresses can be defined, the 

residual stress system is zero; theoretically speaking, the new limit of 

elasticity for this material will be a' or a" (not including the effect 

of hysteresis), therefore the test piece has shaken down to a new value 

L' or L" bigger than Le. 

In reality, the process of shakedown implies an initial cyclic 

loading, Refs. [6], [56] to [62], of the structure since the material, 

with its inherent properties, presents different paths for loading and 

unloading, known as the hysteresis effect. Thus, when the load has • 

arrived at L', Fig. 8, the cyclic process of zero to L', then back 

again to zero, will define the two paths, one of loading and the other 

for unloading; most materials have a tendency to settle down to a 

defined cycle, although there are exceptions, as can be found in Ref. 

[52], in which the strain history has its effect on plastic behaviour. 

Materials which do settle down to a fixed cycle, often present 

either work-hardening or work-softening, Refs. [6], [58], [62] and [75]. 
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The work-hardening is shown in Fig. 9 for the case of overall load 

control, which is the usual method for work with pressure vessels, and 

it is characterised either by a decrease in strain amplitude or by an 

increase in stress amplitude, locally. 

ft 
The work-softening is shown in Fig. 10 for the case of overall load 

control; it is characterised either by an increase in strain amplitude 

or a decrease of stress amplitudes  locally. 

There are other metals which have neither work-softening nor work - 

hardening, but which do exhibit however the conformation shown in Fig. 

8 after some cycles. 

The cycles may stabilise anywhere between a few cycles or hundreds 

of cycles, Refs. [6], [60], [62] and [75]. 

In case (b) the problem is much more complicated, because: 

(i) Some plastic strain may have occurred in the vesls once the 

load has been relieved; the part of the structure that remained elastic 

during the loading process will play a very important part in the 

stabilisation of the cyclic loading. 

(ii) After some degree of plastic strain has occurred in the 

structure, assuming that it does occur, the residual stress will not be 

zero since the plastic work comes mainly from the bending action, intro-

duced into the vessel due to the change in geometry, either in radii of 

curvature, or in thickness, or even because of a change in its material 

properties, Ref. [61]. 

There are many other problems connected with the shakedown mechanism, 

such as: 

(a) The ability of the material to stabilise in a hysteresis cycle. 

(b) Whether the material, being of a settle down type, will either 

work-harden or work-soften. 

*A similar change in stiffness could also be caused by change in 
geometry. 
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(c) Whether the stress level for a shakedown load is in the 

region of: C1) Elastic instability, buckling; 

C2) Creep-rupture; 

C3) Fatigue-creep; 

C4) Stress corrosion; 

CS) Plastic instability, bursting; 

C6) Collapse. 

Since the designer has to prevent against all these types of 

failure, he must decide upon the load level that the vessel will take, 

or in other words, he has to design the vessel in order to prevent any 

of these possibilities becoming real. 

The present work is, however, concerned only with shakedown and 

collapse and the rest of the thesis will concentrate on these topics. 

2.2.2 The Mechanism of Shakedown  

It has been seen in Section 2.2.1 that the decisive factors in-

fluencing the shakedown mechanism are that: 

(a) The material has to have a settled cyclic behaviour. 

(b) A defined residual stress system has to be well developed 

within the structure in a few cycles. 

(c) The superimposition of the systems of stress, both residual 

and loading, must be within the bounds of elastic behaviour. 

The material property has already been described in Section 2.2.1. 

The stabilisation of a defined residual stress system, the material 

having been chosen from among those that settle, depends on the stress 

distribution in the structure due to the loading process. If it is 

assumed that the material has isotropic work hardening, then an incre-

mental theory of plasticity can be used with any appropriate yield 

criterion, such as the von Mises or Tresca maximum shear stress. The 

implication of isotropic work hardening is that the yield surface expands 
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uniformly in a direction parallel to the octahedral plane. The Prandtl-

Reuss incremental plasticity equations (C.1) have been used in all the 

elastic-plastic calculations.in this work and are based on the assumption 

of isotropic work-hardening and on the von Mises yield criterion. 

Hence, this theory cannot be applied to describe the behaviour of a 

structure for a single cycle, Figs.8 to 10, because of the Baushinger 

effect of the material. Since it is impossible by the use of the 

Prandtl-Reuss equation to describe a single cycle, it is assumed that 

the final state of stress and strain is better defined by the use of a 

settle cyclic curve, that can be obtained by using the methods described 

in Refs. [6] and [62] 	(the general path can be seen in Fig. 12) than 

by the use of a uniaxial tension test curve of the material. 

This reasoning is found in Ref. [6]; intuitively it seems sensible 

and more appropriate, in determining the final stress-strain state of 

a structure that has been cycled, than the use of the stress-strain 

curve obtained from a simple tension test for the material. 

Once the properties of the material have been specified for a 

theoretical elastic-plastic analysis, the influence of the structure's 

shape can be considered. 

It is well established that the stress paths of the different 

points in a structure are dependent of the material used and the shape 

of the structure. It was found during the course of the present work 

that the structure which was most susceptible to the bending action 

normally had a stress path, in a biaxial stress space;  moving around 

the von Mises ellipse and to a small extent toward the expanding work 

hardening ellipse. The reverse was true for structures with less 

susceptibility to bending action. It can therefore be concluded that 

this susceptibility to bending action is brought about, not only by a 

high stress concentration factor but also by the shape of the structure. 
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Let three different structures be considered, with the following 

assumptions being made: 

(i) they follow the same elastic path in a biaxial stress space; 

(ii) after yield has occurred at any point on the structure, the 

most highly stressed point in each follows the stress paths 

a,b,c, respectively, in Fig. 13 (the structures will be 

referred to from now on as 1, 2 and 3), as the load is in-

creased; 

(iii) deformations are negligible so that the stress paths in the 

unloading process can be taken as parallel to the initial 

elastic loading paths; 

(iv) the materials are free of hysteresis, and are capable of 

stabilising; 

(v) the extent of the expanding work hardening ellipse needed to 

double the load for first yield, anywhere in the structures, 

is the same for all three structures. 

The points representing twice the load necessary to cause yield 

anywhere in the structures (1, 2 and 3) are marked in Fig . 13, as A, B 

and C, respectively, and the points that represent the residual stresses 

assuming no reverse yielding, are marked as A', B' and C' respectively. 

Structure 1: 

As long as the points representing the residual stresses of a 

structure from an unloading process do not violate the work-hardening 

ellipse derived from the loading process, it seems unlikely that a 

definition of an upper limit to shakedown for the expanding ellipse is 

possible for that structure. 

Assuming the mechanism described in Ref. [24] (or Appendix E), and 

in Section 2.2.3, in which the ellipse for the elastic limit (yield 

surface) moves either in the direction of the elastic path, or in the 
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radial direction to the point on the stress path being considered, the 

structure has its shakedown limit near 2S = L/Ly), but slightly below 

pointsAc  and AT respectively. 

Structure 2: 

It is probable that this type of structure does have an upper limit 

to shakedown, but if this is so it is greater than 2.. For the other two 

criteria of the moving ellipse, Section 2.2.3, the values are both less 

than 2, with little difference between them. 

Structure 3: 

The upper limit of shakedown is less than 2., and the residual 

stress point will probably be in CR instead of C'. If this criterion 

is used, and a cyclic process is used between zero and twice the elastic 

load (Ly), then the structure will behave as shown in Fig. 11, but with 

the upper and lower stress limits equal in magnitude (+ a), but there 

will be an incremental collapse failure if the stabilisation behaviour 

cannot be defined. For the other two moving yield ellipse criteria, 

Section 2.2.3, the values of shakedown are well below 2. and are also 

very different from each other (points Cc  and CT, Fig..13). 

These conclusions were arrived at during the course of this work, 

when comparisons were made between the different pressure vessels 

analysed. In fact, the conclusions are much more complex because the 

elastic paths were not the same in each case, but the purpose here is 

to describe the influence of the geometrical characteristics of the 

structure in shakedown behaviour. 

2.2.3 Shakedown Criteria  

In Sections 2.2.1 and 2.2.2 the basic concept of, and variables 

connected Withl the shakedown mechanism were described. 

In this section the method of evolution of the shakedown values is 

described, assuming that elastic and elastic-plastic analyses have been 
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carried out and hence the stress distribution throughout the structure 

is known both at the elastic limit and at different load increment 

steps. 

Leckie, Ref. [61], has derived a method based on Melan's theorem, 

Ref. [54], using the hypothesis of an elastic-perfectly plastic material, 

and an elastic analysis. This method is now well established, is often 

used in design to guard against shakedown, and has been used in this 

work (as well as in Refs. [12],[23],[24] and [63]). Macfarlane and 

Findlay, Ref. [12], have described a simple technique for shakedown 

calculation using Leckie's method in its simpler form with either the 

Tresca or the von Mises yield criteria. 

This technique was used in Ref. [24] (or Appendix E), as well as 

in the present work, but only using the von Mises criterion• in these 

cases. 

Leckie's method has proved to be most helpful if work-hardening of 

the material is not included in the shakedown behaviour, and its appli-

cation is much more economical than those described later in this 

section, since these methods are based on an elastic-plastic computation. 

Prager, Refs. [64] and [65], presents a kinematic theory of plasti- 

city allowing the yield surface to move laterally as well as to expand. 

This has been applied to shakedown behaviour of structures with work-

hardening materials. Prager has defined the way in which the shift would 

be made, but in. the present work, it is assumed that the yield ellipse 

moves in the direction either of the elastic path or of the radial 

vector of the point that represents the stress state of the particular 

load considered. The movement in these directions is made on the 

assumption that the principal direction of the stress tensor remains the 

same, and hence the axes of the initial ellipse and of the moving 

ellipse are parallel, and movement is made up to the point where the 
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nearest limit of the yield surface is on the point that represents the 

stress state of the particular load considered. In the case of the 

second movement the two surfaces, yield and work-hardening are tangential 

to each other. These movements of the yield surface, together with the 

unloading process described in Section 2.2.2, form the two initial 

criteria, referred to throughout this work as SPC and SPT. 

' A third criterion is used wherein the work-hardening surface 

reached during loading is taken as the limit for elastic unloading of 

the structure. This criterion may well be overambitious, as well as 

unconservative, but as far as the author is aware no theory has been 

developed that contradicts this assumption. This criterion will be 

referred to in this thesis as SPW. 

Crisp, Ref. [57], uses the strain gauge readings from the experi-

ments with the assumption of an elastic-perfectly plastic material, 

Prandtl-Reuss equations of incremental plasticity, and von Misesa  

criterion, in order to determine the post yield state of stress and the 

shakedown loads by assuming an elastic unloading. 

2.3 Collapse  

2.3.1 Basic Concepts and the Mechanism of Collapse  

Consider a structure loaded such as to cause a stress state, at 

the most highly stressed point, just on the yield surface and therefore 

free of plastic strain, and assume the material to be either ductile or 

perfectly plastic, and the load increased to a fixed value: if the 

elastic-plastic deformation does not stop, the structure either collapses 

or bursts, hence this last load value is called a collapse load or 

bursting load, Ref. [20]. 

Collapse calculations have been reported in many papers, e.g. Refs. 

[3],[4],[7],[9],[20] and [24]; some experimental work has also been 

reported, e.g. Refs. [3],[7] and [57]. Sometimes the collapse load is 

referred to in the literature as the limit load. 
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The collapse concept assumes a monotonic increase in load. 

Another type of collapse can take place in the case of cyclic 

load, but this is however recognised as a different kind of behaviour, 

that of incremental collapse. This behaviour assumes a process of 

yielding and reverse yielding, with geometrical changes in the structure's 

shape in each load cycle, Refs. [4],[20],[50],[66] and [67], 

The principal variables as regards the collapse mechanism are: 

the structure's geometry and, therefore, the elastic stress and strain 

distribution; the material behaviour and its capacity to accommodate 

plastic strain; and in, if work-hardening is considered, the residual 

stresses in the structure, Ref. [4]. 

It can thus be seen that the larger the capability of the structure 

to sustain the plastic flow of a region in the plastic phase, the less 

likelihood there is of collapse. The growth of the plastic region is 

constrained mainly by the remaining elastic parts of the structure and, 

once the elastic regions are about to reach gross yielding, collapse is 

delayed only by the work-hardening of the material. 

In Fig. 14, the effect of the material properties on the collapse 

load can be compared for two different structures with elastic-perfectly 

plastic material (curves a1 
 and e

1
) and structures with work-hardening 

material (a = 13.3 (1 + 133 	).269) (curves .a and e). It can, therefore, 

be readily concluded that material properties are of consequence in the 

collapse mechanism. 

2.3.2 Collapse Criteria  

It is critically important that the value of the collapse load is 

found, otherwise excessive deformation can be introduced into the 

structure-during the testing process, especially since the value of 

the testing load is sometimes fixed as a fraction of the limit load. 

The ASME code, Section VIII, Division 2, Ref. [46] and BS3915, Ref. [68], 
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permit the use.of limit analysis; the former specifies that the design 

loading must be less than two thirds of the limit load, although this 

carries with it further implications, as design stress is equal two 

thirds of the proof stress, Ref. T691. 

Limit analysis has long been used in the plastic design of 

structures, and its theorems have been extended to the plastic design 

of pressure vessels, Ref. [50]. A relatively larger literature on the 

limit analysis of symmetrically loaded shells of revolution has been 

published, e.g. Refs. [31],[32],[38],[70] and [71], and some work has 

been reported on the asymmetric loading of shells of revolution, e.g. 

Ref. [72]. 

Limit analysis normally uses the Tresca criterion, and assumes a 

rigid-plastic material with a possible pattern of plastic deformation. 

Since computer programs have become available for the analysis of 

the elastic-plastic behaviour of pressure vessels, attempts have been 

made to define some criteria in order to evaluate the collapse load 

from computational results, Refs. [3], [7] to [9] and [73]. 

Marcal and Turner, Ref. [8] have proposed the criterion of 1.5% 

maximum allowed strain. The load, therefore, that causes that percent-

age of strain is considered to be the collapse or limit load. This 

criterion will be hereafter referred as.C15 ; it is probably uncon-

servative if the material examined is elastic-perfectly plastic, but 

' certainly depends on the structure itself. 

Cheung and Turner, Ref. [7], have put forward two collapse criteria: 

The first is based on the curves of individual strain, equivalent 

strain, and overall deflections, against load. This criterion is based 

on the intersection of the elastic curve with the tangent drawn to the 

point defined by a line of one third the elastic slope intersecting 

the considered curve. This criterion will generally be referred to as 

C3 in this work and, in particular as, 
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C3I for the curve of individual strain against load, 

C3E for the curve of equivalent strain against load, 

C3D for the curve of overall deflection against load. 

The second criterion is based on the load necessary to cause 0.5% 

maximum strain on the outside surface. This criterion can be used with 

either the individual or the equivalent strain, and will be hereafter 

referred to as C5 and in particular as, 

C5I for the individual strain, 

C5E for the equivalent strain. 

These two criteria, C3 and C5, are generally speaking conservative; 

perhaps the less conservative is C5 so long as elastic-perfectly plastic 

material is chosen for the computations. The C5 criterion is, of 

course, more conservative than C151, because the internal and external 

maximum individual strains are not very different from each other, but 

do depend however on the structure's geometry; the C5 criterion is also 

convenient in the testing process since.  it can be used to control the 

collapse load. 

Marcal and Turner, Ref. [7], and Crisp, Ref. [9], have proposed a 

criterion based on the growth of the plastic region. This criterion is 

probably better than those above mentioned, but is somewhat subjective 

in its nature, as it is difficult to define previously a reasonable 

spreading ratio of the local yield from which the collapse will spread 

quickly. 

This criterion will be hereafter referred as BSLY. 

Townley, Refs. [73] and [74], defines a collapse load by considering 

an equivalent strain of 1% as excessive deformation. This criterion is 

probably the most convenient since it lies between C5 and C151, although 

for low stress concentration structures however it is certainly uncon- 

servative. 
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It can be appreciated on the basis of the above mentioned criteria 

that definition of a collapse mechanism applicable in all circumstances 

is a very difficult undertaking; it is here that the ability and ex-

perience of the designer is of primary importance. 

From an extensive and detailed study of the elastic-plastic com-

puter results, two new criteria are described. 

The first is applied to geometries with neither concave, nor sharp 

corners, i.e. torispherical and hemispherical heads, and the second to 

geometries with concave corners either sharp or smooth, i.e. cylindrical 

nozzles-on-sphere geometries. 

Collapse criterion for torispherical and hemispherical heads: 

In the data used for the elastic-plastic computer program, the 

number of steps for the integration process is defined for each element, 

and the load increment is also defined. The computer program determines 

the yield load and its position on the vessel. The maximum equivalent 

strain is calculated for the outside surface, associated with its 

position. When the load was increased step by step during the original 

• calculation, it was found that the position of the maximum equivalent 

strain on the outside surface changed its location, first from point to 

point, then over two or three points or even more. The jumping process 

of the maximum equivalent strain on the outside surface was first 

detected when the local yielded region across the thickness started to 

spread to membrane areas. Hence the load in which the jump begins to 

be large, can be defined as the collapse load. 

This criterion will be hereafter referred as CMED. 

This phenomenon is, like the Crisp criterion, Ref. [9], dependent 

on the integration step size, and the load increment selected, as well 

as on the analyst's knowledge of the subject. The load increment 

needed for a high stress concentration factor is about .15, but for a 
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medium stress concentration factor, of about 2.to 3., a value of about 

.05 or .075 is recommended. In case of a low stress concentration 

factor, a value lower than .05 is desirable, but of course when the 

stress concentration factor is near 1., then a much smaller value for 

the load increment has to be used with the scaling process to the 

load increment if this criterion is to be employed.  

This phenomenon is better demonstrated in a computation with a 

work-hardening material, than one with an elastic-perfectly plastic, 

since the former allows a simpler computation, as well as the growth 

in plastic strain. 

An application of this criterion, as well as the Crisp criterion, 

Ref. [9], can be seen in Fig. 15 for Head A from Cheung, Refs. [3] and 

[7], in Section 4, other particulars can be found. 

Collapse criterion for internally pressurised cylindrical nozzles-

on-sphere geometries: 

This criterion was described from plotting the biaxial stresses 

obtained from the computer results. The computer program uses the 

von Mises criterion to define the yield surface. Plotting in the 

biaxial von Mises space the history path of both stresses (circum-

ferential and meridional)l for each particular point in the pressure 

vessell gives Figs. 13, 16 and 17. The latt6r two figures are for 

radial nozzles-on-sphere geometries, and are obtained by plotting the 

computer program results for an elastic-plastic analysis. In Fig. 17 

the stress paths for the cross-section containing the most highly 

stressed point of nozzle N5 (see Chapter 4) for both the elastic-

perfectly plastic, and the work-hardening, cases can be seen. The 

stress paths for the internal point (i.e. the most highly stressed 

point in the structure) are marked by B1 and B2 on Fig. 17; B1 de-

notes the material treated as non-work-hardening and B2 the material 

treated as work-hardening. 
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The path B2 shows a clockwise movement around the ellipse as 

long as the local yield growth is smooth, but when the local yield 

begins to spread rapidly towards the membrane shell, the path begins 

to bend to anticlockwise. It is at this particular stage in the 

loading process that work-hardening becomes apparent in the highly 

stressed region. This criterion is based on the following observation: 

Tracing from the centre of the yield ellipse a line tangential 

to the stress path, a point on the path is defined which corresponds 

to a defined pressure; this pressure is called the collapse pressure 

for the particular structure. 

If the material is treated as non work-hardening the stress path 

shows similar behaviour to that of work-hardening material. The 

pressure at which reversal occurs is called the structure collapse 

pressure. 

This criterion will be hereafter referred to as CSP. 

This criterion is perhaps the simplest of those considered, but 

it requires more work than the others because of the necessary plotting. 
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CHAPTER. 3 

PRESENTATION AND DISCUSSION OF ELASTIC RESULTS 

3.1 Introduction  

In this chapter the results of elastic analysis using either an 

analytic integration or a finite difference computer program for 

symmetrically loaded shells of revolution are presented and, where 

possible, compared with published data. The effects due to welding 

are not taken into account in these calculations. 

Analytic integration is explained in Appendix B, and is derived 

using the equations presented in Appendix A. The governing equations, 

and the type of analysis involved, are described by Turner, Refs. [1] 

and [76], using Love's shell theory Ref.[77].Many  other works have been 

published using the same theory, e.g. Refs. [2] to [9], [13] to [16]. 

Once the simplifications for each particular geometry and loading 

have been introduced into the general governing equations for an 

analytic integration, (A.14) and (A.20), the calculated results are 

different for each particular situation and sometimes, for similar 

situations, the results are limited by the approximation, depending on 

whether a high bending situation, where e is near + E/2,existed. 

Leckie and Penny, Refs. [13] to [16],have given an analytic solution 

that can be used for all values of 0. 

The integration process used by Turner, Ref. [1], is used here, 

Appendix B, to evaluate the stress concentration factor for flush 

cylindrical nozzles-on-sphere geometries, as well as for spherical and 

hemispherical heads on cylinder geometries. 

A computer program for the elastic-analysis of symmetrically 

loaded shells of revolution, developed by Pilgrim et al, Ref. [2], 

that uses the equations described in Appendix A, with a predictor-

corrector process of integration and boundary value control, 
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e.g. Refs. [2] and [3], was used to determine some stress concentration 

factors for the two above-mentioned geometries, and also the stress 

distribution on some knuckles of cylindrical nozzles on spherical geometries, 

as well as for the tested radial nozzle on sphere, Fig. 37; the com-

parison for the latter geometry is made between experimental measure-

ments and calculated strains. 

3.2 Stress Concentration Factors 

The stress concentration factor (SCF) of a pressure vessel is 

defined as the ratio between the maximum stress value in the structure 

and a membrane stress for the pressure vessel, i.e. nominal stress, 

hence: 
a  SCF _ 	 
a
memb. 

(3.1) 

The stress values in (3.1) can be either individual stresses 

(circumferential or meridional) or equivalent stress values (either 

by the von Mises or Tresca criteria) 

It is normal practice to say that the stress concentration factor 

is based on a yield criterion. The Tresca criterion is normally used 

when a limit analysis is involved, since its implications can be more 

easily set out than those for the von Mises criterion Ref. [32]. In 

the case of an elastic-plastic computation, using either the Marcal or 

Mendelson algorithms, the von Mises criterion is more convenient as 

its differential form is more suitable than that of the Tresca criterion. 

It therefore appears logical to use the Tresca criterion for (3.1) 

when a limit analysis is being undertaken, and von Mises criterion for 

(3.1) when an elastic-plastic computer program is being used. 

For cases of nozzle geometries on spheres it is normal practice to 

define the stress concentration factor in terms of the membrane stress 

on the sphere, e.g. Refs. [16] and [78]; in the particular case of 
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internal pressure, the membrane stress, either individual or equi-

valent (Tresca or von Mises criteria), has always the same value; 

hence 

. a 	. a 
s(w or 1) 	

4T s
Tresca 	

s
von Mises 

therefore 

2 T max  
Tresca criterion: SCF = 

	

	 (3.2.1) 
as 

and 
a 

von Mises 
	SCF _ emax 
	

(3.2.2) 
a
s 

For cases of hemispherical and spherical heads on cylindrical 

geometries, it is normal practice to define the SCF in terms of the 

membrane equivalent stress on the cylinder. If the Tresca criterion is 

used e.g. Ref. [9], the membrane equivalent stress, for a pressure 

vessel, is equal to the membrane circumferential stress (= pd/2t); 

this SCF is defined by Crisp, Ref. [9], as the principal SCF. Using 

the von Mises criterion, the membrane equivalent stress is given by 

al- and Crisp, Ref. [9], refers to this SCF as the von Mises 
2 2t' 

equivalent SCF. 

Therefore 

Tresca criterion : 	SCF = 
2 Tmax 	

(3.3.1) 
a 

cloc  

and 

von Mises criterion : SCF _ 

ae 
max 

a e 

(3.3.2) 

Langer, Ref. [51], defines a stress index as the ratio of the 

maximum individual stress to the membrane circumferential stress on 

the cylinder, hence, 

*D=D 
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a. 
max 

a. Index = 
a 
Pc 

i 	1, cp 	(3.3.3) 

In the present work the inverse values of the SCF and stress 

index are used for spherical and hemispherical heads as these values 

were found to be more suitable for logarithmic plotting against 

acos (coop. When referring to these values (1/SCF or 1/aind  ) the 

expressions "stress concentration ratio" and "stress index ratio" 

will be-used. 

3.2.1 Spherical and Hemispherical Heads on Cylindrical Pressure Vessels  

In Figs. 4 and 5 the geometric variables for the spherical head 

and for the flat end are shown, respectively. It can clearly be seen 

that a spherical head may be defined by the following parameters: 

= cylinder diameter/sphere diameter Do  

d = cylinder diameter/cylinder thickness 

T. cylinder thickness/sphere thickness 

In the design of pressure vessels, an attempt is made to keep all 

component parts small, for economic reasons. This leads to an effort 

to equalise the membrane equivalent stresses on the different com-

ponents. Hence, for the spherical head-on-cylinder geometry, this 

condition is given by 

a . a e C 	es 

using the von Mises equivalent stress criterion. For internal pressure, 

the ratio of the membrane equivalent stress on the sphere to that on 

the cylinder, defines a variable pm, that shows in which element the 

membrane yielding will occur first, hence, 
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ae 

Pm• = = 
	 (3.1.) 
a
ec 

This quantity can also be defined by the ratio of pressure to 

cause membrane yielding on the sphere, to that on the cylinder, hence 

m

• 

s 
P m • = 

m

• 

c 

(3.2) 

The values of p and p , however, assuming the two components 
ms 	me 

are made of the same material and have a limit of elasticity given by 

ay, are obtained from: 

2T 
p 

• 

= 2 a — ms 	y Do  
(3.3.1) 

and 

- 2 	2t 
15  - a mc 	y d 

( 3.3.2) 

Therefore, from (3.2) 

p=rn  = 
	T d 	 ( 3.4) 

For a given spherical head on a cylinder pressure vessel it can 

readily be decided which of the two membrane regions will yield first 

by using (3.4), since: 

if p = 1, it will be most probable that both membrane regions 

will yield at the same pressure; 

if p
m 
< 1, membrane yield will start on the sphere (head); 

if pm 
> 1, membrane yield will start on the cylinder (drum or 

body vessel). 

The value of d/D gives the cosino of the angle (e) of those 

points on the sphere which result from the intersection of the two 

mid-wall surfaces of the sphere and cylinder, 

d 
— = cos 0 (3.5) 
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The spherical head-on-cylinder geometries have two limiting cases: 

the hemispherical head for which 0 = 0°, and the flat end with 0 = 'g/2. 

It is well known that for hemispherical heads on cylindrical geometries 

the mid-wall diameters of the sphere and the cylinder are equal (d = D) 

and therefore, from (3.4), 

pm = t 

Hence, the value of unity for p will be obtained for 
m • 

(3.6) 

Since it was realised that with hemispherical heads, the SCF, 

using the definition given by (3.3.2), diminishes with t/T increasing 

up to 1, and decreasing rapidly for t/T = 2., some extra calculations 

were made for t/T = 1.25, 1.5 and 1.75 (see (3.7)) and a graph drawn, 

Fig. 18, for stress concentration ratios (1/SCF) versus t/T; it was 

found that the maximum stress concentration ratio (or the minimum SCF) 

occurs for values of t/T between 1.5 and 1.75, and therefore the value 

given by (3.6) for t/T is a good approximation to the minimum SCF, 

Fig. 18. 

The same reasoning could have been done for other geometrical 

situation but as it was not, no generalisation is possible. 

The values of the geometrical parameters taken for the spherical 

heads were 

00(d/D) = 0°  to 90° 	• 

d/T = 10, 20, 40, 80, 160, 400 	(3.7) 

t/T = .25, .5, 1, 2, 4. 

Graphs and tables were drawn for the stress concentration ratio 

(1/SCF), using the definition (3.3.2), against the geometrical para-

meters 00(d/D), d/T and h/d, Figs. 19 to 25 and Tables HH1, HH2, SH1, 

SH2, FH1 to FH3 and TH1 to TH4, but in some tables other definitions 

were used for comparison with published results, Refs. [9] and [61]. 
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In Figs. 19 to 22, the stress concentration ratio was plotted 

against 00  (d/D) with each curve for constant d/t (3.7); separate 

graphs were drawn for t/T = .25, .5 and 1, respectively, Figs. 19, 20 

and 21, but in Fig. 22 the graphs for t/T = 2.and 4.,, have been included. 

Some other graphs were drawn, Figs. 23 and 24, in order to obtain 

a final graph showing the maximum stress concentration ratio for all 

considered geometrical parameters, which may be seen in Fig. 25. 

Each curve in Figs. 19 to 21 is made from three main approximations, 

the exponential integration (B.38), the approximation to Kelvin function 

integration (B.39) with (B.17), or the solid plate solution (B.34), but 

certain particular parts of the curves are from the elastic computer pro-

gram (PVA1), e.g. values of 00(d/D) near n/2. 

Let a particular curve be considered as an example, t/T = 1.0, 

Fig. 21, curve d/t = 10.: 

This curve can be divided into three main parts, i.e. 0°  to 20°, 

20° to 60° and 60° to 90°. In the first interval (0° to 20°), either 

the exponential integration (B.38) or the Kelvin function approximation 

(B.17), as well as the values from the elastic computer program, give 

virtually the same values, e.g. hemispherical head, Table HH1. In the 

second interval (20°  to 60°) in this particular case, thq Kelvin 

function approximation (B.17) yields slightly higher values than the 

exponential integration (B.38) but, since they are very close to those 

obtained from the elastic computer program (PVA1), no table is given 

for comparison. In the third interval (60
o to 90o), the true curve 

has been obtained using the elastic computer program, as both the 

solution from (8.38) and the solution using (8.17) considerably diverge, 

whereas the solution that uses an approximation to the Kelvin function 

(B.17) gives better values. The complete Kelvin function (1.1) would 

give better values than (B.17), but it is considered highly probable 
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that Leckie and Penny's solution, Refs. [13] to [16] would give a 

better approximation than (B.39). As expected, the solid plate 

solutions for values of 0
o(d/D) close to i/2 yield more accurate values 

than (B.39) with (B.17) solutions. 

Generally speaking, all the curves in Figs. 19 to 22 can be divided 

into three parts but, for t/T = .25 and .50 in the second interval, the 

values obtained from the exponential solution (B.38) are slightly higher 

than the values from (B.39) which uses the approximation (B.17) to the 

Kelvin function; in the third interval the former solutions are better 

than the latter when compared with the results from the elastic com-

puter program (PVA1). These conclusions may also be seen from Tables 

SH1 and SH2 for the spherical head case, and from Tables FH1 to FH3 for 

the flat end (solid plate) case. 

In Figs. 19 and 20 some dotted_ lines are drawn which represent 

spherical heads with 2h/p larger than .1, and therefore outside the 

thin shell theory. If theSe curves are to be used the obtained values 

for SCF should be used very cautiously. 

In the tables TH1 to TH4, values from Ref. [9] and from the analytic 

exponential integration (B.38) for the,von Mises stress concentration 

ratio are presented. The purpose of these tables is to demonstrate 

the improvement gained by the inclusion of the knuckle on the spheri-

cal head. The comparison is made for torispherical [9], and spherical 

heads with equal d/D. From Ref. [9] the following equation can be 

written: 

h r 

- 
	 with h = head height 

D 	(142 	.25 E. and r = knuckle radius 
(3.8) 

From (3.8) with defined ad and h/d, the values of d/D can be 

determined and hence gold/D) from (3.5). 
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From Crisp, [9], the values of h/d . .15, .20, .25 and .4 and 

rid = .06 and .10 were chosen for comparison. In Table TH1 the values 

of h/d for spherical heads are given for each hid from [9]. The values 

of spherical h/d changes with rid. In this table the values of r 

are quoted as percentage of vessel diameter, d. In Tables TR2 to 

TH4 different values of d/t have been considered, 20., 50. and 1001  

respectively. 

3.2.2 Flush Cylindrical Nozzles on Spherical Pressure Vessels 

For this type of geometry, two theoretical analyses, (Appendix B), 

were carried out, using either the exponential integration solution 

(B.36), or the solution by the Kelvin function's approximation (B.37) 

with (B.18); the elastic computer program was also used for comparison 

of its results with the values obtained from the above analyses. Com-

parisons can be done with values from Leckie [61] and [63]. Leckie has 

plotted curves for an average Tresca SCF (3.2.1) for constant values of 

tiT (.0, .25, .5, .1) against w(= dirit,.D127i), obtained from a cylinder 

sphere intersection analysis described in [14] to [16], with the 

assumption that the maximum stress occurs in the spherical portion 

(although in certain geometries of very thin nozzles the maximum stress 

probably lies in the cylinder portion), and that the cylinder can be 

treated as semi-infinite. Leckie also assumed that the pressure vessel 

could have a reinforcement pad (area replacement rule, Ref. [78]) 

away from the nozzle, but with a length such that the change in thickness 

in the sphere would not modify the stresses on the sphere close to the 

junction, and also that the highest stress point remained in the same 

position. Leckie and Penny have presented a discussion, Ref. [16] on 

pad size.. 
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In the present work the same assumptions were made, except that 

the. SCF is based on the maximum equivalent stress anywhere in the 

geometry; cases of cylinders thicker than the sphere are also considered. 

The "area replacement,  rule and "pad size" were not studied, although 

some considerations regarding this can be seen in Section (3.4.1). 

In Tables FN1 to FN4, values of SCF using either the (3.2.1) or 

(3.2.2) definitions, can be compared for values from analytic inte-

gration, either (B.36), or (B.37) with (B.18), from the elastic computer 

program, and from Ref. [61]. 

Graphs were plotted, Figs. 26 to 29, for the von Mises SCF (3.2.2) 

against w(= d/1/217), together with values from the exponential inte-

gration analysis (B.36). Each graph is for constant t/T, and the cases 

t/T = 2.and 4,are plotted in the same Fig. 29. Figs. 26 to 28 are for 

t/T = .25, .5 and 1, respectively. 

The geometrical parameters for cylindrical nozzle-on-sphere geometries, 

without considering any pad size, either on the cylinder or on the 

sphere, can readily be seen to be R/T, d/D and t/T, from Fig. 3. The 

parameter d/D has been substituted by win the graph, Figs. 26 to 29, 

as Leckie et al, have done. The geometrical parameter values considered 

are 

R/T = 400., 200., loa, 50., 20, and 10. 

d/D = .0025 to .6 

t/T = .25, .5, 1, 2,and 4, 

Although the value of .6 for d/D may seem very high, Mershon has 

considered higher values, [79]; likewise although the minimum value of 

.0025 may well be too small (except for the case of R/T = 400 and 

t/T = .25), a value of 2.9 for the von Mises SCF is obtained, and hence 

it was decided to include this value in the graphs for d/t > 10 (although 

it should be d/t 
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In Figs. 26 to 29, two average curves for the von Mises Stress 

Concentration Factor can be seen for R/T = 10. to 400., and R/T = 10. to 

100.. Because it was realised that errors as high as 40% and 30%, could occur 

respectively, in relation to these average curves, if it were to have 

been decided that a graph with only average curves were to be drawn, 

it was resolved instead not to present a unique graph like Leckie et 

al in Refs. [16], [61] and [63]. 

3.2.3 Discussion of Results  

Firstly spherical heads are considered and the flush cylindrical 

nozzles on spherical geometries. This discussion is based on the above-

mentioned tabulated values. 

Hemispherical and Spherical Heads on Cylindrical Pressure Vessels 

The results are tabulated separately for hemispherical, spherical, 

flat end (solid plate), and torispherical-spherical heads, for compari-

son between previously published data and the present calculations 

(which are described in Section 3.2.1), on Tables HH1-HH2, SH1-SH2, 

FH1-FH3 and TH1-TH4 respectively. (Note: The first letter of the title 

refers to the type of head, and the second to denote the fact that the 

table is for heads.) 

Each geometry is considered separately and in the latter part of 

this section the torispherical-spherical heads comparison is made. 

Hemispherical Heads on Cylindrical Pressure Vessels  

From Table HH1, it can readily be seen that the analytic values, 

and 	Langer's values from Ref. [51], are in excellent agreement; it 

is relevant to note that the Tresca stress concentration ratios and 

stress index ratios are equal according to the elastic computer program. 

From Table HH2, it may be concluded that the values obtained from 

Langer [51], Crisp [9] and by the analytic exponential integration, are 

independent of d/t and only change with t/T. The value from Crisp is 

very nearly the same as that obtained in the analytic solution. 
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Spherical Heads on Cylindrical Pressure Vessels 

For these geometries, comparisons are only made for stress con-

centration ratios based on von Misesl criterion. 

The values of d/D = .4 and .25 are chosen because for d/D > .4 

the three solutions (exponential,approximation to Kelvin function, and 

elastic computer program) are in good.agreement within + 2%, while for 

d/D = .25 the divergence is greater than - 20%; naturally, these values 

depend to a large extent on the whole vessel, shown in Figs. 19 to 22. 

From Tables SH1-2, it can be seen that the exponential solution 

yields results better than the approximation to Kelvin function for the 

case of thicker head than vessel, although the reverse is found to be 

true for a head and vessel of the same thickness. For thicker heads 

than vessels, the results from the exponential solution, when compared 

with those from the elastic computer program, are within - 10% to - 20%, 

Table SH1, and - 20% to - 30%, Table SH2, for d/D = .4 and .25, 

respectively. For similar comparisons for head-vessel of equal thick-

ness, the results are within - 0% to - 10% and .5% to - 35% for d/D = .4 

and .25, respectively. Comparing the results from the approximation 

to Kelvin functions solution with those from the elastic computer pro-

gram, it is found that, for thicker heads than vessels the results are 

within - 10% to - 30% and - 30% to - 70% for d/D = .4 and .25, respect-

ively, but for head-vessel of equal thickness the results are within 

- 7% to .5% and - 5% to - 20%, for d/D = .4 and .25 respectively. 

Referring to Figs. 19-21, lines (b'b") mark the limit of good 

agreement between the analytic (Appendix B) and the numeridal (computer 

program PVA1) integrations. On the right hand side of b'b" lines the 

analytic (either exponential or approximation to Kelvin function 

solutions) integrations may be applied instead of the elastic computer 

program, but on the left hand side of the bib" line the former solutions 
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are in places much too conservative. In the same figures points 

Ai i , 	1,",",'11  are marked; these points are of special consequence in 

that they denote the limits of application of the solid plate, as 

opposed to the spherical head, for an analytic solution (Appendix B) 

when the results are compared with those from the elastic computer 

program; point A' stands for at = 10, and so on, and A'v for at = 80. 

,Consider the follOwing example: 

Thicker head than vessel, t/T = .5, d/t = 20, (see Fig. 20, point A"). 

If acos (d/D) < 0)500  the cylinder-sphere solution (exponential, 

Appendix B), gives a better result than the solid plate solution, when 

compared with values from the elastic computer program (PVA1). 

If acos (d/D > 0.10, the solid plate solution gives better results 

than any analytic solution considered in the present work when compared 

with the values from the elastic computer program (PVA1). 

Flat Ends (Solid Plate) on Cylindrical Pressure Vessels  

Referring to Figs. 19L.22 and Tables FH1-3, it can be seen that the 

stress concentration ratios (either index, von Mises or Tresca) increase 

with the thickening of the head,as may be expected from Ref. [51]. For 

the considered geometrical parameter range (3.7), only nine geometries 

.present stress concentration ratios higher than 1. The solid plate 

solutions for the von Mises stress concentration ratio are in very good 

agreement with values from the elastic computer program, but comparison 

of stress index ratios, from Langer [51], with the elastic computer 

program, show differences of up to 15%, which is an acceptable margin. . 

Comparison of Torispherical and Spherical Heads on Cylindrical Pressure 
Vessels of Equal d/D  

Tables TH1-4 show that the presence of a knuckle raises the head, 

particularly for low h/d values and large ad values. The knuckle 

inclusion gives an improvement as far as stress concentration is con-

cerned although in certain conditions, taking the knuckle into account 
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does not bring the expected improvement, e.g. Table TH2, h/D = .25, 

.4, either 6% or 10% knuckle, and Table TH3-4, h/D = .4, either 6% or 

10% knuckle; the improvement gained is less than 12% and certainly the 

cost will be higher with rather than without the knuckle. 

The improvement for knuckles of 6% and 10% is within 0% to 30% 

and 0% to 45% respectively. 

Thus once the values of d/D, at and t/T have been determined, it is 

a Worthwhile exercise to study whether a geometry with a knuckle is 

a significantly better design with regard to economic factors. 

Flush Cylindrical Nozzles on Spherical Pressure Vessels 

A comparison is made between the values from the two analytic 

solutions (cylinder-sphere and cylinder-shallow sphere intersections) 

presented in Appendix B, and the elastic computer program for von Mises' 

Stress Concentration Factor, although values frOm Leckie, Ref. [61] are 

also compared with values from the computer program. 

Tables FN1 -4 are for R/T = 50. with t/T = .5, 1., and R/T = 100. 

with t/T = .5, 1.respectively. 

Leckie's values [61], when compared with the results from the 

elastic computer program (PVA1), show that, the former values are on 

average - 43% and + 5% different for nozzle-vessel thickness ratios 

'(t/T) of .5 and 1.respectively; these results however are to be 

expected since Leckie assumes that the maximum Stress Concentration .  

Factor lies on the sphere itself. 

The results from the exponential and the approximation to Kelvin 

function solutions when compared to the results from the elastic com- 

puter program (PVA1), for nozzles thinner than sphere, are within - 11% 

to + 1% and 0% to 15% respectively, but for nozzle-vessel of •the same 

thickness, the results are within - 12% to + 10%, with an exception of 

+ 25%, and + 2% to + 30%, for exponential, and approximation to Kelvin 
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function, solutions (Appendix B) respectively. Generally speaking, the 

exponential solution yields lower values than the elastic computer 

program but the reverse is the case for the approximation to Kelvin 

function solution. 

If one excludes the two following geometries from Tables FN1-4, 

d/D = .025, t/T = 1 with R/T = 50 and 100, the values obtained by the 

exponential solution lie within a range of + 10% when compared to 

those from the elastic computer program, whereas values from the 

approximation to Kelvin function lie within 0% to 20%. 

From the values obtained from Leckie [61], for a nozzle-vessel 

of the same thickness (t = T), it is very probable that Leckie's method 

will yield better results for von Mises'stress concentration factors 

than the methods based on the analytic integrations used here; however, 

a similar study using Leckie's method, Ref. [13],is recommended. 

If the curves drawn in Figs. 26 to 28 are to be represented by a 

unique average curve from each graph, a very large degree of error 

would be entailed. For example, for t/T = .25, Fig. 26, the error 

would be within + 25% and + 45%, for the average curves of R/T = 10. to 

100. and R/T = 10. to 400., respectively. The error for t/T = .5 and 1 

would be within + 20%, + 35% and + 20%, + 30%, Figs. 27 and 28, respect-

ively. 

3.2.4 A Graph for Stress Concentration Ratios based on von Mises' 

Criterion in Spherical Heads on Cylindrical Pressure Vessels of  

t/T = .25, .5 and 1. 

Results from the spherical head discussed in Section 3.2.3 can be 

considered reasonable and, because it was realised that a maximum 

stress concentration ratios graph could be obtained from Figs. 19-21, 

two intermediate graphs were drawn, Figs. 23 and 24, and then a final 

one drawn on the basis of these two, Fig. 25. 
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In Figs. 23 and 24 the maximum stress concentration ratios are 

shown for t/T = .25, .5 and t/T = 	1., respectively. 

The final graph can be seen in Fig. 25 and shows the maximum' 

stress concentration ratios for t/T = .25, .5 and 1; only cases of 

either d/t or D/t larger than or equal to 20 are there considered. 

Three separate regions are defined in Fig. 25, the first for 

t/T = 1, in the region above line 324, the second for t/T = .5, 

bounded by line 123, and the third for t/T = .25, the region below 

line 124. 

Hence, from this graph the designer can find out for a defined d/D 

and d/t, which value of t/T will give the lowest SCF if the geometry 

is of 2h/p<.1 type. 

3.3.1 The von Mises and Tresca SCF on some Knuckles of Cylindrical  

Nozzles on Spherical Pressure Vessel$ 

The geometries in this section are also analysed by the elastic-

plastic method, in Chapter 4. The geometries are divided into two 

series apart from the knuckle of cylindrical nozzles on spherical pressure 

vessel tested in the course of this work. 

The first series is considered in order to study the effect of a 

change of geometry on the cylinder-sphere junctions; accordingly, the 

values of d/D, and t/T are taken as constants and 2r/D (ratio of twice 

knuckle radius to sphere diameter) and thickness taper on the junction 

as variables. Details of the knuckle geometry are shown in Fig. 38. 

Other parameters are taken as 

d/D6= .2; t/T = .5; 2r/E6= .0, .015,.045 

The geometrical case of 2r/q,= .0 is treated using the fact that the 

forces at a "square corner" intersection can be distributed as bands 

of loading over a finite width of shell (equal say to the thickness of 
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the shell wall plus a fillet weld), rather than the point or line load 

of conventional shell theory, Refs. [2], [8] and [24]. The force is 

distributed over either the first step of integration or the first two 

steps in the elastic computer program. 

For the other two geometries, the knuckle junction is treated by 

defining a small fillet of specified mean radius and taper. The taper 

details are shown in Fig. 38; these geometries are referred as C1, 

C2 and C3 for junction details of types A, B and F, Fig. 38, respect- 

ively, for 2r/Do= .015. The last junction detail, in this particular 

study, is for 2r/Do = .045 with type A knuckle, Fig. 38. 

In the calculation of the knuckles of cylindrical nozzles on spherical 

geometry the "Winkler's curved beam" theory was used. 

For each detail parameter, certain quantities are tabulated, 

Table 1, and the elastic von Mises SCF is given according to conventional 

shell theory, except for the case of a small local radius of curvature, 

when the Winkler type modification (Appendix D) is used. Values of 

Tresca SCF are also given, from the simple shell theory analysis and 

from Ref. [61]. 

The second series of knuckle of cylindrical nozzles-on-sphere geometries 

will be referred to as series N; they are for a given sphere, diameter 

4, thickness T = .005 4, and with cylinder-knuckle-sphere of equal 

thickness (t = T, no taper). Various ratios of cylinder to sphere 

diameter d/Do = .05 to .25 are used, with a constant knuckle radius 

2r = .05 Do. The stress and strain distributions are shown in Figs. 30 

to 33 for the cases of d/D0 = .05 and .25, nozzles N1 and N5, respect- 

ively. Table 4, similar to Table 1, allows a comparison of the elastic 

SCF for series N, but in this case the Tresca and von Mises SCF's are 

calculated from the flush cylinder nozzle with simple shell theory and 

can be compared with values from Ref. [61], and to values from the 
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knuckle of cylindrical nozzles with Winkler's type approximation, 

respectively. 

The knuckle of cylindrical nozzle-on-sphere geometry tested in the course 

of this work is shown in Fig. 37; the represented geometry is the best 

approximation to the real tested nozzle described in Section (5. 3.2). 

The geometrical parameters are: d/Do  = .112, Do/t = 149, t/T = .5, 2r/Do  = 

.0134 and a type A cylinder-sphere junction, Fig. 38. In Table 7 the 

SCF values are derived either from the knuckle of cylindrical nozzle Winkler's 

approximation, or from flush cylinder nozzle simple shell theory. The 

values presented are based on the Tresca and von Mises criteria, from 

the elastic computer program, from the test, and from Ref. [61]. 

3.3.2 Discussion of Results  

Series C (Table 1). Nozzles C5 and C6, those with band modi-

fication, present unrealistic stress concentration factors based on 

von Mises'criterion when compared with the Stress Concentration Factors 

from the simple shell theory for the flush nozzle; the reason for this, 

however, is possibly due to the size of the step involved, over which 

the point forces (sharp corner) are spread, although the lengths of 

the steps are those recommended in Ref. [8]; the unrealistic values 

abovdinentioned may be explained by comparing the C5 and C6 SCF values 

since, in the first, the spreading is over a smaller length (area) 

than the second, with the result that there is a worsening in the Stress 

Concentration Factor prediction. Unless great care is taken when 

applying this modification, the structure will be subjected to a large 

degree of deformation. 

Other nozzles of this series, C1 to C3, show a negligible variation 

in the different details of connection, although C4 has a reduction of 

30%, as could be expected for the larger knuckle radius. If a compari-

son is made with the von Mises stress concentration factor obtained 
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for a flush cylinder-on-sphere with the simple shell theory, it can be 

seen that the stress concentration factor values for nozzles C1 to C3 

are lower by about 25%, but in the case of the C4 nozzle, by some 5()%. 

The value from Ref. [61] is some 25% lower than the value from the 

flush nozzle simple shell theory, (IT, but part of this difference 

can be justified by the fact that K1 is taken to be at any point in 

the structure in the present work, but in Ref. [61] is taken from the 

maximum -stress concentration on the sphere; the rest of the difference 

is because Leckie's curves are averaged. 

Series N (Table 4). The stress concentration factor values based 

on von Mises criterion for the knuckle nozzles are plotted in Fig. 39, 

together with the values from the flush nozzle simple shell theory, and 

from Ref. [61], Tresca SCF on sphere. 

Comparing the von Mises Stress Concentration Factors, columns K
1 
in 

Table 4, it may be observed that values from the knuckle nozzle "Winkler's 

curve beam" approximation, are 17% to 27% lower than those from the 

flush cylinder nozzle simple shell theory; however when the values of 

the Tresca Stress Concentration Factor, flush cylinder, and from Ref. 

[51] are compared, it can be seen that they haVe differences of - 7% to 

2% from each other. This is brought about.by the two different methods 

of calculation, since the maximum stress concentration is in this case 

on the sphere, and as well because Leckie's curves are averaged curves. 

Tested Nozzle (Table 7). The strain distribution is shown in 

Figs. 34 and 35, based on the strain gauge readings and on the knuckle of 

cylinder nozzle "Winkler's curved beam" approximation elastic computer 

program results. 

Comparing the stress concentration factor values K
1 
(von Mises) 

from Winkler's approximation applied to the knuckle nozzle, with the 

test value/there is a + 11% difference but, when compared to the value 
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found using the flush nozzle simple shell theory, a - 23% difference 

is found. The good agreement between the test, and the knuckle nozzle 

Winkler's approximation, may well be described as unexpected since the 

knuckle radius used was too small, as can be realised from a study of 

Refs. [3] and [9]. 

The comparison with a stress concentration factor value based on 

Trescdscriterion shows a 40% reduction when the knuckle is introduced 

and a 46% reduction when the values from Ref. [61] are compared with 

the results from the elastic computer program, simple shell theory. 

The former reduction is due to the effect of knuckle radius, although 

the reduction may perhaps be too large for this; the latter reduction 

is due to the fact that in this case the high stress concentration 

region is definitely in the cylinder, though near the junction, and 

as well Leckie's curves are average curves, Ref. [61]. 

3.4 Stresses and Strains on some Knuckles of Cylindrical Nozzles on 

Spherical Pressure Vessels  

From hereon in the present chapter, only the elastic computer 

program (PVh1) is referred to, and wherever possible its results are 

compared with experimental data obtained in the course of this work. 

3.4.1 Stress and Strain Distribution on some Knuckles of Cylindrical  

Nozzles,Series N  

As referred to in SeCtions3.3, two main sets of elastic-plastic 

computations were undertaken on radial nozzles with closed ends sub-

jected to internal pressure. In the second set, Series N, for a given 

sphere, diameter D, thickness T = D/200, cylinder-knuckle-sphere thick-

ness t = T, with ratios of cylinder to sphere diameter from .05 to .25 

were used with constant knuckle radius r = D/40. Graphs for the two 

extreme geometries, d/D = .05 and .25, were drawn in order to compare the 
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distribution of stresses and strains for both geometries. 

The stress distributions can be seen in Figs. 30 and 31, for 

d/D = .05 and .25, respectively; the strain distributions are shown 

in Figs. 32 and 33. 

From Figs. 30-33 the pad size may be approximately and intuitively 

visualised although further study of stress and strain distribution for 

a theoretical real structure is recommended. 

As an example of, nozzle N1 (d/D = .05), it may be observed from a 

study of Figs. 30 and 32 that the thinning of the cylinder can being 

between 1.5" and 2.5" from the knuckle, though unnecessary in the 

sphere, since the SCF is less than 2.25; with nozzle N5, Figs. 31 and 

33, (d/D = .25) the thinning must be done on the cylinder and sphere, 

since both stress concentration factors (in relation to the von Mises 

membrane stress on the sphere and on the cylindrical) are larger than 2.25. 

The thinning on the cylinder and on the sphere should probably begin 

at 12" to 15" from the cylinder-knuckle junction, and at about 42°  

towards zero, respectively. It should be borne in mind that further 

stress and strain distributions ought to be calculated with the 

theoretical new shape in order to find out if there are any influences 

on the previous local stress concentration, and any - major changes on 

. the region near the thickness taper. 

The Elastic Strain on the Test Knuckle Cylindrical Nozzle  

The elastic strain distributions, from the elastic computer program, 

are plotted in Figs. 34 and 35, for 250 lb in2  internal pressure, on 

the internal and external surfaces, respectively. In these figures, 

strain gauge readings for the same pressure on the test nozzle, Fig. 37 

(see Section 5.3.2) are plotted for comparison. 

On the internal surface, Fig. 34, the agreement is reasonable 

although gauge 90F, Fig. 37, circumferential and meridional, shows a 
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- 10% and + 40% disagreement, respectively, when the calculated strains 

are compared with the gauge reading; this is probably due to the asym-

metry of the nozzle (see Section 5.3.2). Leaving aside these gauge 

readings (90f, Fig. 37) it can be stated that, on the internal surface, 

the reading and the calculated strains are within less than 15% dis-

agreement. 

.On the external surface, Fig. 35, the problem of the asymmetric 

nozzle appears again, gauge 90C, however, there is in case another 

gauge pair (B in Fig. 37) that also presents a large disagreement. This 

disagreement with the gauges B probably takes place because of the 

welding fillet. Similar behaviour should be expected on the inside 

surface, gauges H, but gauges (outside) were fixed on the transition 

region (fillet to sphere) and gauges H well on the fillet. Continuing 

with the comparison, gauges 90C present on the circumferential and 

meridional directions, + 3% and - 25% disagreements, respectively, when 

the calculated strains are compared with strain gauge readings, and 

gauges B present on the circumferential and meridional directions, - 5% 

and - 40%, respectively, doing the comparison as before. 

Leaving out this pair of gauge readings, B and 90C, the disagreement 

on the outside surface, can be said to be less than 18%. 

' From the analysis of the strains on the outside and inside surfaces, 

it may generally be stated that the elastic computer program with Winkler's 

modification gives a reasonable agreement if the geometry is properly 

defined and if other parameters, such as welding fillet-base material 

transition, do not wield too much influence. 

3.4.2.2 Discussion of Results 

The reliability of the elastic computer program (PVA1) has been 

tested before in many works, e.g. Refs. [2] and [3], and once more its 
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accuracy is within 18%, not considering welding fillet and asymmetry 

effects of the structure, and therefore within reasonable agreement. 

Comparing the results from the gauges on the transition region 

(B, circumferential and meridional directions, see Fig. 37 for their 

positions, and Fig. 35 for the values) it can be seen, as could be 

expected, that the transition fillet-base material exerts more influence 

in the meri_dional direction than in the circumferential (- 40% and 

- 5% respectively). The difference in values is probably because a 

significant part of the area of the gauge for the meridional direction 

lies on the sphere (less than 50% of the total gauge area), whereas the 

circumferential gauge, although lying in a direction normal to the 

transition region, and which therefore registers the influence of 

this region, which influence can be expressed by Poisson's ratio,O, 

has only a small area on the sphere. It is noteworthy to observe that 

the circumferential strains are overestimated by the computer program, 

with the exception of 90FC, in the circumferential direction, for which 

the circumferential strain is underestimated, and hence the influence 

of the weld-base transition region materials must be larger than - 5%. 

The introduction of the knuckle with the Winkler's curve beam 

theory has improved the results and may be reliably used to study the 

"areareplacement rule" in order to find.out which area and area-

distribution is optimum. 
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CHAPTER 4  

COMPUTED ELASTIC-PLASTIC BEHAVIOUR, COLLAPSE AND SHAKEDOWN 

OF SOME PRESSURE VESSEL COMPONENTS 

4.1 Introduction  

In this chapter the elastic-plastic results from the use of the 

PLINTH program for the elastic-plastic analysis of symmetrically 

loaded shells of revolution are presented, and compared with available 

data. For details of the computer program see Chapter 1, Refs. [3], 

[5] and [44]. 

In Chapter 3, two series of knuckle cylindrical nozzles on spheri-

cal pressure vessesl are defined, Tables 1 and 4, Series C and N, and 

the geometrical parameters for the tested knuckle nozzle are defined 

in Table 7. Besides these geometries the torispherical Head A from 

Ref. [3] is  also analysed. 

In these analyses the material was considered to be either of 

elastic-perfectly plastic or of work-hardening type. 

Limit pressures are calculated, using some of the criteria described 

in Chapter 2 and, in this chapter, are compared with values from a limit 

analysis, Refs. [3], [33] or [63], whichever one is applicable to the 

geometry under consideration. 

Values of shakedown pressure are calculated by using the criteria 

described in Chapter 2, and are compared with available data from 

Refs. [63] and [73], whichever is applicable to the geometry under con-

sideration; however, the minimum value obtained by an application of 

Macfarlane and Findlay's method, [12].  referred to in the present work 

as SEM (Section 2.2.3), an adaptation of Leckie's method [61], is made 

either at the cylinder-torus or the sphere-torus junctions since, as 

far as the writer is aware, this method cannot be applied to toroidal 

shells near e = 90°, because of the discontinuity in the membrane 

stresses (Ref. [1], page 34). 
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The torispherical Head A, Refs. [3] and [7], and later, the knuckle 

cylinder nozzles, are treated in this chapter, but the tested knuckle 

radial nozzle results are only compared with values from strain gauge 

readings and other available data in Chapter 6. 

4.2 Torispherical Head on Cylindrical Pressure Vessel.  

Cheung and Turner, [7] have compared limit pressures for two tori-

spherical heads, using (a) an elastic-plastic computer program with 

and without work-hardening material, (b) limit analysis and, (c) static 

strain-gauge readings on a vessel with two torispherical heads pressurised 

beyond yield. 

In the present work, the result for Head A, Refs. [3] and [7] are 

compared with values obtained from the elastic-plastic computer program, 

but using a better fitting than that used by Cheung and Turner to the 

material equivalent stress-plastic strain curve. 

4.2.1 Comparison of Computed and Experimental Values  

Cheung and Turner [7] used data regarding material behaviour in 

the computer program, that is, a fitted 0-2% stress-strain curve given 

by the second order polynomial expression 

ae = 33.5 + 1336.9 ep  - 18159 	(ksi) 	(4.1) 

However it was realised, in the course of this work, that this 

expression was far from being a good representation of the equivalent 

stress-plastic strain curve of the material, since it would not give a 

good fitting where it was most necessary, at initial yielding and up 

to 1% equivalent plastic strain, Fig. 6. This is because it is in 

this range that local plastic flow takes place, and where the gross 

yield is much influenced by the local plastic flow history. 
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= 27.2 (1 + 6626 .5 ).132  p ( 4. 3) 
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Because of this, a better fitting was attempted for the average 

tensile test stress-plastic strain curve for the material, by using 

the exponential approximation given by either 

 
o = 26.6 + 82.3 e 

.305 
e 	p (4.2) 

The computer program used for the evaluation of the constants in (4.2) 

and (4.3) indicated that (4.3) would provide the best fitting for the 

range3.L.4.5% equivalent plastic strain. A comparison between the 

averaged tensile test stress-strain curve, the second order polynomial 

from (4.1), Ref. [3], and the exponential expression (4.3) for the 

material is shown in Fig. 6. The approximation (4.3) is unquestionably 

better than (4.1). 

Computations were carried out using either (4.1) and (4.3). Some 

results are plotted in Figs. 40 and 41 in order to compare the improve-

ment gained from the fitting used in the present work, (4.3) with that, 

(4.1), from 	Refs. [3] and [7]. 

The computed results from (4.3) were used in order to evaluate 

collapse pressure ratios (EV, as well as shakedown pressure ratios 

(E"), based on the different criteria described in Chapter 2. The SCF 

and collapse (K3) and shakedown (K2) pressure ratios to membrane yield 

pressure, may be seen in Tables 10-12, respectively, as well as the 

ratios of the lower and upper limit pressures, using limit analysis, to 

membrane yield pressure on the vessel body (cylinder), assuming a non- 

workhardening yield stress of 34.9 ksi (.2% strain, proof stress). 

All these values are based on von Mises' criterion, with the exception 

of the values from the limit analysis, in which the Tresca criterion 

is used, Ref. [3]. 



68 

Some stress paths, including that of the most highly stressed 

point on Head A, Ref. [7], up to and beyond first yield, are 

plotted, Fig. 42, in terms of circumferential and meridional stress 

ratios for the inside, outside and mid-wall surfaces. 

The maximum equivalent strain on the outside surface is plotted 

in Fig. 15, together with the point with which the particular value 

is associated. Head A is considered as two branches with the junction 

on the cylinder 2.5" from the knuckle-cylinder connection. The 

branch which contains the torispherical head is divided into 30, 50 

and 120 elements on the cylinder, the knuckle and the sphere, respect-

ively. It should be borne in mind that the numbering of the points on 

the shell begins at the junction. 

4.2.2 Plastic Flow, Collapse and Shakedown  

In Fig. 42, the stress paths for cross-sections A, B, C and D, 

the first two in the cylinder (vessel body), the third on the knuckle 

(this cross-section contains the most highly stressed point on the 

structure), and the fourth on the sphere, are plotted. Following the 

stress paths for A and B, those on the cylinder, it can be seen that 

Section B makes its elastic to plastic transition between 6 and 7 

(numbers marked in Fig. 42), whereas A's lies between 7 and 8. Analysing 

the inside stress path of section C, it may be concluded that there is 

a change of curvature between 6 and 7, that is, where the plastic flow 

begins to spread into the membrane region of the cylinder. It is at 

this stage that the work-hardening of the material starts to make a 

major contribution to the plastic deformation. Another important point 

is that, in the sphere, the internal stress path shows a very high 

bending tendency, but when the yield begins to spread from outside to 

inside, in that region of the sphere, the bending tendency is greatly 

reduced. This mechanism is particularly important as far as shakedown, 
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with permitted work-hardening, is concerned, since if those points 

were left unanalysed, one might be led to conclude that no upper limit 

to shakedown could be found, or that P* for shakedown was larger than 3., 

since the computations were made only up to that point. In fact, that 

is not the case, since as shown in Fig. 43, it is precisely because of 

the above-mentioned bending of the internal stress paths on that region 

of the sphere, that an upper limit to shakedown was found slightly less 

than 2.8. This situation is of particular interest, since, because 

the internal point on the cross-section E, Fig. 43, shows an elastic 

behaviour which is markedly non-linear, an upper limit of shakedown can 

be defined for this structure before plastic flow takes place at that 

point. 

From Fig. 42, a collapse limit pressure can be estimated, since 

between 7 and 8 on the figure, the plastic flow moves from near B to A, 

that is a limit of between 2.2 and 2.4 for collapse pressure ratio 

(P*). This value is probably the upper limit of collapse if no yield 

is permissible on the membrane region of the vessel body (cylinder). 

If the collapse definition is straight away applied to 

calculate equivalent strains, then, by a careful analysis of the 

results, a graph of maximum equivalent strain on the outside surface 

can be drawn, Fig. 15, and, marking on the graph the corresponding 

points, it can be seen that for a non-work-hardening material, the 

position of the maximum equivalent strain on the outside surface 

starts at 106, moves to 105, 104 and finally to 102, and hence it is 

possible to define a collapse pressure ratio (ratio to first yield 

pressure) of between 1.9 and 2.1, perhaps 1.95, that is a value of 

.86 to K3 
 in. Table 11, line CMEO. The same analysis was made from the 

calculation using work-hardening material (4.3). The maximum equi-

valent strain, on the outside surface, is shown in Fig. 15, and it can 
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be seen that the collapse pressure ratio may be estimated at about 

2.83, that is a value of 1.24 for K
3
, Table 11. 

4.2.3 Discussion of Results  

The value of the stress concentration factor, based on the von 

Mises criterion, for Head A, with or without knuckle, can be seen in 

Table 10; a 40% improvement is obtained by the introduction of the 

knuckle. 

Comparing the collapse pressure ratios (K3), Table 11, obtained 

from the elastic-plastic computer program with test values, Ref. [7], 

it can be concluded that the values from the calculations with the 

second order polynomial expression, approximation to the material 

equivalent stress-plastic strain curve, (4.1), are within - 17% to 

- 28%; however the results using an elastic-perfectly plastic material 

are within - 19% to - 43%, and those obtained by using the exponential 

expression, (4.3), are within.- 3% to - 15%, when compared to the values 

from the test results, Ref. [7]. The average test value in Table 11, 

when compared with the average calculated calues, in each column, 

differ by - 27%, -4% and - 32% from the computed values using (4.1) 

(the second order polynomial expression), (4.3) (the exponential 

expression), and the case of non-work-hardening materials, respectively. 

Without question, the exponential expreSsion, (4.3), values give a 

better approximation than either the case of elastic-perfectly plastic 

material, or the second order polynomial expression, (4.1). 

It should be pointed out that values K3, either from the test 

results or from the calculation with the exponential expression, (4.3), 

are larger than the limit analysis upper limit. 

From Table 11, one is led to conclude that values from a non-work- 

hardening calculation are more conservative than those from a work- 

hardening calculation, but they would,in fact be reduced if a more realistic 
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equivalent to the idealised yield stress were to be used, for example, 

.2% proof stress rather than the linear limit of elasticity. In the 

case of Head A, the linear limit of elasticity is 27.2 ksi and the 

.2% proof stress is 34.9 ksi, and hence 26% larger than the former value. 

It is very difficult to choose which criterion is more reasonable 

than the others but the most useful was found to be C5I, since it can 

be used in the testing of pressure vessle, and though it brings with 

it the uncertainty of where to attach the strain gauge, because of 

an elastic-plastic calculation using the best fitting curve for 

the equivalent stress-plastic strain curve should be used in order to 

decide the optimum place for attaching the gauge. The criterion CMEO 

yields 	a calculated value for collapse pressure ratio (K3) 24% 

higher than the limit 1.of the criterion BSLY, but, since the maximum 

value from the test reading is 48% higher, it would. seem to be appli-

cable in this particular case, Head A; however, because of its 

unconservative characteristics, if it is to be applied, the designer 

has to take great care in making such a decision. 

The C3 criteria are the most conservative in any calculation, as 

well as being shown by the test readings to be so, and therefore may 

be judged safely applicable. 

The shakedown pressure ratios, K2, may be compared in Table 12, 

from which it can be seen that the introduction of work-hardening (4.3)-  

improves the K
2 

values for either SPC or SPT when compared to values 

obtained from the elastic-plastic calculations, with non-work-hardening 

material, by 1%; however, if the work-hardening ellipse simply grows 

according to the load used, the shakedown pressure ratio K2  will show 

an improvement of about 50% when compared with the non-work-hardening 

value. It should be recalled that the fitting curve is from a tensile 

test and not from a settled cyclic curve, since the latter type of 

curve was not available. The value obtained for SEM is larger than the 
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values from SPC and SPT, either work-hardening or elastic-perfectly 

plastic, although from [73] the K
2 

value is some - 20% and 4% different 

from the values obtained in the present work, based on SPT for non - 

work-hardening and work-hardening, respectively. 

From an examination of Tables 11 and 12, one is led to conclude 

that values from a non-work-hardening calculation are more conservative 

than those from a work-hardening calculation, but, in fact, such con-

servatism should be relaxed if a more realistic equivalent of the 

idealised stress is to be used, say, e.g. .2% proof stress rather than 

the linear limit of elasticity for the material. 

4.3 Some Knuckle of Cylindrical Nozzles on Spherical Pressure Vessels 

In Chapter 3, it is stated that elastic-plastic calculations had 

been carried out for some knuckle nozzles, Series C and N and the 

tested knuckle nozzle. These calculations were carried out using the 

elastic-plastic computer program described in Refs. [2] to [5], with 

the "Winkler's curve beam" modification on the meridional plane when 

2h/p is larger than .1 .(see also Chapter 1, Appendices A, C and D). 

The elastic-plastic calculations were carried out assuming a non-work-

hardening, and a work-hardening curve, which latter is given by 

a = 13.3 (1 + 133 	).269; this was taken as representative of mild 

steel, ignoring the horizontal discontinuity at first yield. 

Some graphs are plotted in order to facilitate comprehension of 

the plastic flow, and of the mechanisms of collapse and shakedown of 

the series of nozzles analysed, Figs. 14, 16, 17, 44 and 45. 

Tables 1-9 are drawn up in order to compare the stress concentration 

factors (see Section 3.2), and the collapse and shakedown pressure 

ratios, from the elastic-plastic computer program using the different 

criteria described in Chapter 2 and the values from Refs. [33], [61] 

and [63], with either the von Mises or the Tresca criteria; Tables 7 to 

9 for the test knuckle nozzles, however, are discussed in Chapter 6. 
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4.3.1 Plastic Flow, Collapse and Shakedown  

The stress paths of the most highly stressed point in each of 

four nozzles, Series N, up to and beyond first yield are plotted in 

Fig. 16, in terms of circumferential and meridional stress ratios for 

the inside, outside and mid-wall surfaces. 

For small values of SCF (case N1), the internal path turns anti-

clockwise a very short distance around the ellipse for'pressures of 

up .to about 25% higher than first yield, and then clockwise for 

higher pressures (a1, Fig. 16). A similar effect is noted for a 

rather higher SCF (case N2), for up to about 10% beyond first yield, 

and for even higher SCF values (cases N3 and N5), the stress path 

moves clockwise around the ellipse from the moment that first yield 

takes place (e.g. a5, Fig. 16). The virtually stationary values of 

the stress ratios, for significant increases in pressure, only occur 

when the first region of stress concentration is yielding; however, 

when a second adjacent stress peak yields, the clockwise movement of 

the stress ratios begins as described above. In all the cases studied, 

first yield takes place on the inside surface, with the close second 

yielding on the outside, both cases being in bending mode. 

The succeeding tendency of the stress ratios to move anti-clock- 

wise (b1 	b5, Fig. 16) appears at a pressure when the local plastic 

region begins to spread over a much greater area compared with the 

initial zone of small extent. This phenomenon is more marked for cases 

with small SCF (e.g. case N1 rather than case N5), as can be seen in 

Fig. 16. Another observation that can be made from Fig. 16 is that 

when the SCF is small, a larger degree of work-hardening is required 

in order to obtain a given level of non-dimensional loading, P/Py.  

The locus. P/P = 2.is shown chain-dotted in Fig. 16. 
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The fact that the stress ratio changes is of course well known, 

but here it can be understood quantitatively. The variation of such 

ratios increases with SCF, especially in the regions a1  ... a5, Fig.16. 

This second change in the direction of the movement around the 

ellipse can most probably be considered as the beginning of collapse, 

since it is this re-distribution of stress which is caused by the 

rapid spreading of membrane yielding to areas of the sphere adjacent 

to the nozzle. 

Another typical biaxial stress field is shown Fig. 17, for the 

cross-section containing the most highly stressed point of nozzle N5 

for both the work-hardening and elastic-perfectly plastic cases. In 

both, the most highly stressed point follows a linear path, such as 

curve A, Fig. 17, to the point where the yield criterion is reached. 

If the material is considered as non-work-hardening, the stress path 

will be around the ellipse after yielding, and will be like curve B1, 

Fig. 17, or, if treated as work-hardening, along some line following 

the increasing size of the work-hardening ellipse, such as B2, Fig. 17. 

Again, as with Head A, Section 4.2.2, Figs. 42 and 43, after 

yielding at any point in the structure, linearity of the stress path 

cannot be assumed. As the yielding is extended the direction of 

movement of the stress ratio for a point which is still elastic may 

change, sometimes reversing its original direction of movement, 

e.g. in Head A,. an internal point between pointsD and E on Figs. 42 

and 43, respectively. This non-linearity of the elastic region of the 

structure may be interpreted as the re-distribution of the elastic 

stresses caused by the yielding of adjacent parts of the structure. 

As soon as the final anticlockwise movement begins on the stress 

path, the shakedown pressure obtained by using any of the criteria, 

SPC, SPT and SPW, with an elastic-plastic computation becomes higher 
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but unfortunately the collapse pressure, in terms of pressure ratio , 

grows smaller. 

Here it is plain to see that the shakedown value can be limited 

by the collapse value, Ref. [80]. 

The values of the collapse (P*
' 
 K and K*) and shakedown (P*

' 
 K 

c 3 3 	s 2 

and K*
2
) pressure ratios can be seen in. Tables 2,5 and 8 and 3, 6 and 9, for 

nozzle series C, N and the tested nozzle , respectively. 

The maximum individual strains for nozzle series N and C are 

plotted in Figs. 14, 44 and 45, respectively, in order to show that the 

maximum individual strain can start by being internal circumferential 

and end by becoming internal meridional, curves a, b and c, Fig.44, for an 

SCF larger than about 2.5; however, for a stress concentration factor 

less than about 2.5 they may end by becoming external meridional, 

curves d and c, Fig. 44, although when the band modification (the 

forces in a sharp corner spread over a small meridional length near 

the junction) is assumed for flush cylindrical nozzles, this behaviour 

maybe different, see Fig. 45, curves el and e2 in which the initial 

behaviour is the same as described above, although the final behaviour 

for case C5 (spreading over a short meridional length) may end as 

internal circumferential as happens while the structure is still in 

the elastic range, with ca.a.C6 (spreading over a larger meridional 

length) becoming internal meridional and returning later to internal 

circumferential again. 

4.3.2 Discussion of Results  

Nozzle Series C  

The minimum values of P* were obtained by using the C3 criteria, 

but the maximum values were obtained by the C15 criteria applied to 

the maximum individual strain. Values obtained from the elastic-plastic 

computer program (cases C5 and C6) are generally unconservative except 
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for the C3 criteria. Comparing cases C1, C2, C3M and C3R, Table 2, one 

is led to conclude that minor changes in details of connection do not 

alter the values by more than 10%, although if band modification (cases 

C5 and C6) is used in the computer program, then the change can be 

larger than 35%. 

Comparing case C1 with C4, it can be seen that the larger knuckles 

show a decrease in their collapse ratios (13*), with a difference of about 

25%, 	though the K3 ratios have improved by the same amount, as 

might well be expected. 

Comparing the pressure ratios K
3 
and K*

3' 
 it can be seen that the 

low K
3 values (C1-C3) show no considerable difference; however, the band 

modification results show an increase of about 100%. Once again one is 

led to conclude that the use of this modification gives unconservative 

results, and hence the designer must exercise considerable caution when 

using it. The larger knuckle (C4) gives 18% and 30% improvements re-

spectively, when the C5I and C15I criteria are used for K3, compared with 

K*3' Ref. [63]. 

Generally speaking, the overall collapse factor, K3, improves as 

SCF decreases; this fact is well known, Ref. [80]. 

The C15I criterion is probably very reasonable for an SCF larger 

than 3.5, and the C3 criteria are reasonable for an SCF of less than 2. 

The C5I criterion is reasonable for intermediate SCF values. These 

intervals cannot be accurately defined since a collapse criteria must 

be connected with the shape of the structure and environmental 

material properties. 

Once again the values from the computer program, using the band 

modification, are unrealistic, with the exception of results obtained 

when the SEM criterion is used, Ref. [12]. 
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Shakedown values derived from the elastic-plastic computer pro-

gram results do not show any differences when either work-hardening or 

elastic-perfectly plastic materials are used, case C3, Table 3; this 

is because of the high SCF, 4.88 Table 1. Small differences in con-

nection details (cases C1-C3) do not alter the P* and K2 
values by more 

than 6%, although the larger knuckle (case C4, Table 3) when compared 

with case C1(same type of connection) do not show any considerable 

differences, either, for the SEM, SPC and SPT criteria; however case 

C4 shows an improvement of more than 14% if full work-hardening is 

considered (SPW). 

The shakedown pressure ratios K2, based on the SPT criterion, 

for cases C1-C3, are some 20% smaller when compared with those cal-

culated using Leckie's (Tresca) value K*2' 
 although the larger knuckle 

(case C4) shows an improvement of 18%. It is noteworthy that the SEM 

values for P* are the same as Leckie's values. 

Series N  

The stress concentration factor and collapse and shakedown values 

for this series of radial nozzles are shown in Tables 4, 5 and 6, 

respectively. 

The collapse pressure ratios (P) using the C3 criteria, with the 

results from the elastic-plastic computer program, are reasonable for 

cases N1 and N2, but conservative for cases N3 to N5, and in the overall 

range (N1 - N5) they are within + 8% of an average value; the inclusion 

of work-hardening slightly improves the results. 

The collapse pressure ratios based on the C5 criteria are within 

+ 10% of an average value, and are therefore slightly more sensitive to 

changes in geometry than the C3 criteria. The C5 criteria seem reason-

able for all the cases N1 - N5. 
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The collapse criteria C15 give values within + 16% of an average 

value, and therefore are more sensitive than the C5 and the C3 criteria 

to geometry changes. The C15 criteria, apart from the problem of the 

degree of strain (1.5%), are therefore much more subject to creeping 

than any of the other criteria, but are unconservative for a low SCF, 

cases N1 and N2, especially N1 with work-hardening (K3  = 1.01, Table 5) 

although they are probably reasonable' for cases N3 to N5. 

The collapse criterion CSP gives values slightly lower than C5I. 

The CSP criterion is conservative for cases with a stress concentration 

factor larger than 2.5 (cases N3 - N5), but seems reasonable for 'cases N1 

and N2, cases with a stress concentration factor lower than 2.5. 

Referring to Table 6, the shakedown pressure ratios SEM show values 

equal to, or larger than, 2.if the SCF's are larger than 2.6; it should be 

borne in mind that these values are taken either on the sphere-torus or 

torus-cylinder intersections. For SCF values of 2.or less, the values 

obtained using the SEM criterion appear to be limited by the SCF value. 

When the shakedown criterion SPC is used, values within + 2% of an average 

are obtained. The values from the SPT criterion slightly improve when 

values for work-hardening material, with ellipse moving toward the point 

considered on the stress path, are compared with values from an elastic- 

perfectly plastic material, although the former values are within + 3% of 

an average value,while,in the latter, the value for N1 is some 11% smaller than 

the N5 value. The improvement gained with the application of SPT with 

work-hardening is some 22% for N1 and 3% for N5, in relation to the values 

obtained with the assumption of elastic-perfectly plastic material, N1R 

and N5R, respectively. The SPW criterion, which allows full work-hardening 

to be attained, is sensitive to changes in geometry or SCF values; the 

SPW values, Table 6, are within + 19% of an average value. These values, 

when compared to the SPT values, show an improvement as the SCF values 
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grow, as expected. A point worthy of mention is that, for an SCF 

smaller than about 2.5, the SPW values (P*) are probably larger than 

the SCF values, but for a SCF larger than 2.5 the SPW values are 

probably smaller than the SCF values, although this depends on the 

geometry. 

The SPT criterion is suitable for any elastic-plastic calculation, 

giving unconservative values for a low SCF (less than 2.), but more 

reasonable values fora large SCF (more than 2J; however, SPW is always 

unconservative as far as the values for the collapse criteria used are 

concerned. 

4.3.3 Comparison of K2  K* Ka3 	K*  Values for Nozzle Series N  

In Fig. 46, the values of collapse pressure ratios K3  (C5I and 

C15I) as well as the K
2  (SPT and SPW) values,and the SCF values based 

on von Misesi criterion for knuckle nozzles, are plotted against d/D, 

(log scale), together with values based on the Tresca criterion for 

the SCF, and the K2 and 9 values, which last three are from Ref. [63] 

(flush nozzle). 

The values from Ref. [63] show behaviour in which values for K* 
2 

are always smaller than those for 9, and hence, in those cases, the 

design to prevent shakedown stops the structure collapsing. 

The results obtained, for nozzle Series N, in the course of this 

work show, referring to Fig. 46, that: 

(i) K2 
(SPW) is always larger than K

3 
(C15I or C5I), and therefore 

full work-hardening will not be attained in any of the studied cases, 

since the collapse criterion must-be satisfied, 

(ii) for these particular structures, if d/Do  is less than4 (Ki  < 2.2)), 

the K
2 
(SPW) value is limited by K

2 

(iii) the K3 (C15I) values are larger than those for K2 
(SPT), for d/Do  

larger than about .07 (K1  > 2), hence, if minimum work-hardening is to 
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be attained in the cyclic settling down procedure, the structure must be 

designed against shakedown, although for d/D0  smaller than about .07, 

(K
1 
< 2), the structure must be designed against collapse if the C15I 

criterion is used. 

(iv) The K3 
(C5I) values are smaller than those for K

2 
 (SPT) for d/D0  
 

smaller than about.2 (K
1 
< 3), hence,. the design must prevent collapse 

if the C5I criterion is used for collapse limiting; but for d/D larger 

than .2 (K1  > 3.), shakedown is the main criterion in design, if the  

SPT criterion is to be used. 

In Fig. 46, the K2  and K3  values from the elastic-plastic computer 

program used for an elastic-perfectly plastic material are also plotted, 

and it can be seen that the difference between the values are minimal, 

with the values for K2 
(SPT) always slightly larger than or equal 

to, those for K
3 
(C5I and C15I); hence the structure must be 

designed against collapse. 

Considering the most suitable criteria for shakedown and collapse, 

the SPT (with or without work-hardening), and C5I criteria, respectively, 

may be chosen, as was done in Ref. [24], Appendix E; it may therefore 

be concluded from Fig. 46 that: 

(a) If the SCF (von Mises') is larger than 3., the collapse pressure 

ratios K3  are higher than the shakedown pressure ratios K2; 

(b) If the SCF (von Mises') is smaller than 3., the collapse pressure 

ratios K
3 
are smaller than the shakedown pressure ratios K

2
; 

(c) If the SCF (von Mise) is smaller than about 2., that is, for case of 

d/D less than about .07, the shakedown pressure ratios K2 
(SPT) are 

near 1, for those cases of work-hardening, but are rather lower (.87, 

case NIR) if work-hardening is neglected. 
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CHAPTER 5 

DESCRIPTION OF MEASURING AND LOADING EQUIPMENT, TEST SPECIMENS 

AND TEST PROCEDURE 

5.1 Introduction  

The purpose of the tests carried out during the course of the 

present work was a better understanding of the mechanisms of shakedown 

since.it was known that most of the materials commonly used in pressure 

vessel construction do either strain harden. 	or soften 	in a 

cyclic process, Refs. [6] and [75]. This was known because of cyclic 

tests done under either stress or strain control. In reality, however, 

. the load is usually the source of control, and hence the cyclic process 

will lie between neither - e and + e (strain control), nor - a and + a 

(stress control), but between either e1 
and e

2 
 or 

61
and  a

2' 
with these 

limits changing with either the number of cycles, or. the load limits, 

e.g. temperature changes. Cyclic behaviour is therefore difficult to 

comprehend and to define. 

The cyclic loading for the tests was chosen between zero and a 

maximum. 

Since one of the more commonly used materials for pressure vessel 

construction is mild steel, this material was chosen for the specimens. 

It is noteworthy to point out that mild steel is one of the few materials 

that perform cyclic strain softening for up to 103  cycles, Ref. [75]. 

In order to better understand the test procedure for shakedown 

study on the knuckle radial nozzle on a spherical pressure vessel, Fig.37, 

a test on a plate with a circular hole in the centre, Fig. 36, was carried 

out. 

(U 

	

	
In the test of the circular plate with central hole, a Denison 

machine, and in the knuckle nozzle, an oil circuit, Fig. 47, were used 

for loading. 
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Strain measurements were made by using strain gauges with a 

Solartron Data logging system; the overall deflection was measured by 

means of a linear variable differential transformer (L.V.D.T.'s) dis-

placement transducer. 

5.2 Measuring and Loading Systems  

5.2.1 Measuring Equipment  

The strain gauges used in this work were made by the Tokyo Sokki 

Kenkyujo Co. Only one type was used, a wire with a 3 mm gauge length. 

They were made for registering up to 3% strain, and consisted of one 

element (Foil gauge, type FLA-3-11); because some of the gauges were 

to be attached to the inner surface of the cylinder, a quick drying 

adhesive was used. This was type CN, which dried in 1 min. There was 

one component only for this type of cement, which was supplied by the 

gauge manufacturer, and retained satisfactory properties at high-strains, 

Ref. [6]. The linearity of the gauges was not checked, because of 

economic reasons, but the manufacturer guaranteed linearity for up to 

3% strain. The gauge factor was also not checked since the manufacturer 

guaranteed a constant value of 2.1 for a temperature range of 0°C to 40°C 

for the mild steel test object used by them,which was therefore of the 

same type of material as used for the specimens. 

The internal strain gauges were coated with epoxy resin in order 

to prevent the oil from penetrating between the gauge and the pressure 

vessel surface. No water-proofing was necessary since a hydraulic oil 

(Shell, Tellus 27) with reasonably good insulating properties was used 

for pressurisation. The lead wires of the internal gauges were drawn 

through the cover flange in the cylinder by means of the sealing glands 

specially made for such a purpose by Conax Corp. (New York), Ref. [3]. 

The dummy strain gauges were attached to -1", 1/4" and 1/8" thick mild 

steel plates, because of the different thicknesses of the specimen, Figs. 

36 and 37. 
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A Solartron Data logging system was used for the measurement and 

recording of strain gauge resistance. This system allows up to 50 

gauges to be scanned at a chosen rate per second, but this rate is 

limited by the recording method. Only 5 and 23 channels were used for 

the plate with central hole, and for the knuckle nozzle tests, respectively. 

The data logger contained fifty half-bridges and apex units; the out of 

balance bridge voltage could be recorded by means of a 14-column line 

printer, but only 8 columns were used and 2 channels per second chosen. 

Of the 23 channels used on the knuckle nozzle, one was for the deflection 

recording. Because the factor of the strain gauge was 2.1 for one 

active arm bridge, an excitation voltage of 1.9 volts was used, since 

direct readings of out of balance bridge voltages are approximately equal 

to the strain. The digital voltmeter had a resolution of 1011 V in the 

most sensitive range, and therefore gave a 101 strain resolution. The 

absolute accuracy of the readings was + 20 VV. Each set of readings was 

done by scanning the range of channels in use three times, which values 

were taken as average for the three values for each channel. If any of 

the values in each channel were out by 40 vV from the average values, then 

the reading for that particular channel was not used. 

The overall deflection of the knuckle. nozzle was measured on the 

cover flange on the cylinder by means of a linear variable differential 

transformer (L.V.D.T.'s) displacement transducer. The output from the 

transducer was measured by one of the channels on an S.E.Laboratories Ltd. 

Amplifier-Demodulator (S.E4905) with 3 kc/s 5V bridge excitation, which 

produced about 1 V D.C. output. The recording was taken using one of 

23 channels of the data logger used in the knuckle nozzle test. 

Internal pressure was measured with pressure gauges of Bourdon-

tube type of 6" diameter, measuring up to 2000 lb in in 100 lb irV 

divisions. 
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5.2.2 Loading Equipment 

Plate with Central Hole, Fig. 36  

The test with this plate was carried out in a tension and compression 

Denison machine (model T42B3), which provides variable load and speed. 

The procedure was to apply from 50 lb to each upper load limit, 

manually controlled, but with the exception of the first the cycles 

for each limit load were intended to all take about the same time, 

Section 5.4.1. 

Knuckle Radial Nozzle on Sphere Pressure Vessel 

Since the purpose of this test was not a fatigue but a shakedown 

investigation, few cycles of loading were to be applied, and so a manually 

controlled oil circuit was designed to satisfy the following requirements: 

(i) variable load, and capability of maintaining any required 

pressure; 

(ii) capability to begin and end each load cycle from and at zero. 

. 	- 
This requirement could not be satisfied unless the pump, at 

the end of each cycle, was turned off; 

(iii) use of hydraulic oil with good insulating properties in order 

to prevent extra costs for the strain gauge insulation, and 

the potentially dangerous situation of bursting, if air were 

to have been used. 

The oil circuit is shown in Fig. 47. The materials used in this 

circuit had been used by Blomfield, Refs. [6] and [60]. Pressure control 

was effected by means of a by-pass flow control relief value (1500 lb in2). 

A relief valve set to the pump limit pressure was introduced between the 

pump and the tank. The pump was of a constant volume (2000 lb in2) type. 

The internal pressure on the knuckle nozzle was measured directly from 

the pressure vessel. 
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5.3 Test Specimens  

5.3.1 Plate with Central Hole  

From a mild steel plate 1" thick, the shape drawn in Fig. 36, with 

dimensions shown, was cut. The surface near the hole was finished in 

such a way as to facilitate strain gauge attachment. The positions of 

the gauges can be seen in Fig. 36. Gauges 1 and 3 were stuck on the 

inside of the hole, and therefore in an almost uniaxial state of stress. 

The results of the strain gauge readings are presented and discussed 

in Chapter 6. 

The shape of the plate, Fig. 36, was chosen such as to have a small 

region of plasticity compared with the remaining elastic part, as this 

is the usual case with pressure vessels, but it was also desired that 

for higher levels of load the plasticity would spread on a large scale 

to other regions. 

5.3.2 Knuckle of Cylindrical Nozzle on Spherical Pressure Vessel  

Cheung, Ref. [3], tested tow knuckle radial nozzles on spherical 

geometries, the tests being of axial compression loading. 

In order to carry out a test on a knuckle cylinder radial nozzle on 

a spherical geometry, it would have been necessary to obtain from out-

side the department the part for the sphere, since the other parts could 

be made in the departmental workshop. However, a spherical cap was 

available, which had been used in the thin cap experiment reported in Ref. 

[3]. It must be added that the size of the sphere was not ideal for a 

membrane region on the sphere adjacent to the junction region, Figs. 34 

and 35/and had a high deformation towards the inside near the cylinder. 

The original cylinder was cut off the sphere, as much as possible 

without damaging it and, because of the sphere's large deformation it was 

necessary to bring the shape back as near as possible to its original 

spherical form. Measurements were made on the inside and outside 
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surfaces in order to find the average radii of the least'deformed 

region of the sphere. An inside 171/4" and outside 171" radii were 

obtained. Two die$ , female and male, were made from the largest 

available mild steel shaft, 10" diameter, with 171" internal and 171/4" 

external radii, respectively. The dieS were mounted on an Olsen 

Universal Testing Machine in order to apply a compression load. The 

sphere was placed centrally between the dies and left there for a 

period of time, the load having been increased; only at about 100,000 lb 

compression was the region near the hole on the sphere reshaped to a 

near smooth spherical surface. This structure with a near spherical 

shape was given heat treatment of 600°C lasting for three hours, in 

order to relieve the structure of residual stresses. No furnace with 

the needed dimensions was available that gave the 850°C required for 

the heat treatment of mild steel for a period of one hour. The structure 

proved to stay in its original shape, although, in its final form it 

did not have, as it did originally, a constant radius. 

After all these processes the hole was enlarged to 41" diameter in 

order to remove any welding deposits from the previous manufacturing 

process, Ref. [3]. 

A hot finish mild steel tube (B.S.3601) of 41" outside diameter 

and,1/4" thickness was radially welded to the sphere; in the welding 

process mild steel filler rods (made by the British Oxygen Co.) com-

plying to B.S.639(1952) were used. The welding preparation and final 

machining of the nozzle is shown in Fig. 37. This shape of knuckle was 

chosen in order to have a geometry as near as possible to the theoretical 

representation used in the computer program. In fact, current pressure 

vessel codes, Refs. [46], [47] and [68], specify minimum internal and 

external radii at the cylinder-sphere connections. Although that shape 

was more convenient for comparison with computed results, the maximum 

stress point would be some way from the welding zone. 
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Finally, another heat-treatment was applied to the finished 

structure, at 600°C, lasting for 2 hours, in order to relieve the 

structure from the welding and machining residual stresses. 

New measurements of the internal and external surface radii were 

made in order to select a region of the sphere with a radius as near as 

possible constant; the variations of the average radii on the meri-

dional plane were between 18" and 19". Fortunately, a relatively 

extensive region could be found with mean meridional radii of about 

181" on the inside and 183/4" on the outside. The o ntr 1 meridional 

area of this region was prepared for the attachment of the strain 

gauges. 

Another area, 90
o away in the hoop direction, was also prepared 

for attaching some strain gauges, for comparison with readings from the 

corresponding gauges on the previous area. 

The first strain gauges, therefore, on the chosen part of the 

structure, are referred to in Chapter 6as follows: 

X Y 

where X. stands for the position on the structure (A,B 	I, Fig. 37) 

and Y stands for measurement direction (M-meridional and C-circum-

ferential); the strain gauges 90°  away in the hoop direction are 

referred to as: 

90 X Y 

Only gauges on the positions C, E, F and I were chosen for comparison 

with those at 90
o
. 

Position and direction of the strain gagues: 

(i) A and I, about 41/4" along the mid-wall sphere surface in the 

axial plane from the knuckle sphere junction. The gauges were both 

meridional and circumferential, and external and internal respectively. 

A 90 IM gauge was attached for comparison. 
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(ii) D and E, about 21" from the knuckle-cylinder junction, the 

length being along the axial plane. Both gauges were circumferential 

only, and external and internal respectively. A 90 EC gauge was 

attached for comparison. 

(iii) Bon the outside surface just near the knuckle-sphere junction, 

about 1 mm away in the direction of the knuckle, meridional and 

circumferential. 

(iv) C on the outside surface, near the knuckle-cylinder junction, 

about 1 mm away from the knuckle, meridional and circumferential. 

Gauges 90 C (M and C) were attached for comparison. 

(v) F on the inside, on the knuckle-cylinder junctionl meridional 

and circumferential; gauges 90 F for both directions were attached. 

(vi) G on the inside, about 7 mm from the knuckle-cylinder junction 

on the knuckle (about halfway from the knuckle cylinder and sphere 

junctions), meridional and circumferential. 

(vii) H on the inside, on the knuckle-sphere junction, meridional and 

circumferential. 

5.4 Test Procedure  

Before each test, the electrical system would be left on for 24 

hours; it was never switched off either during each load test or 

between them. 

The loading systems, Denison Machine and oil circuit, Fig. 47, 

would be switched on for at least one.hour before the start of each 

day's testing. 

5.4.1 Plate with Central Hole  

This test was carried out in order to find out the general trend a 

shakedown experimental study would follow. 

The procedure of this test was as follows: 
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(i) The test began by cycling in the elastic range from zero to a 

load that would give a maximum strain of about .05% on gauge 1 (the 

other gauges registered lower values), Fig. 36. In less than 10 cycles 

the initial and final values of the data logger would be about the 

same. Scanning of zero and at various load increments was done. 

(ii) The load was increawd in steps 	till a strain of .099% on 

gauge 1 was registered, Fig. 36, with the data logger being scanned at 

that load. The load was then left at its maximum for about 10 mins., 

during which no major changes in strain readings were recorded. The 

load was relieved in stages, with scanning carried out during this 

process. 

(iii) Cycles from zero to the same maximum load as in (ii), and return-

ing to zero, were done, with scanning at each load step. No major 

changes were recorded for 10 cycles. 

(iv) The maximum load was increased by about 20% of the load in (ii). 

The load incrementally increased and decreased up to its maximum, with 

scanning of the data logger at each load step. The maximum load was 

then left at that level to allow creeping of the structure, and decreased 

when no major change on the data logger recording was seen during about 

5 mins. 

(v) Cycles from zero to the maximum load in (iv), returning to zero, 

were done, with scanning at each load step. When the width of the 

load-strain cycles was stable, the initial and final strain readings 

over 10 cycles were compared; if no major changes were found in the 

initial and final strain gauge readings over 10 cycles, the process 

was restarted as in (iv). 
0 

It was found for loads of between 1 and 2.36 x the load in (ii) 

the strain gauge readings would stabilise in width, and that initial-

final readings would show no major change after 10 but before 20 cycles; 
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however, for loads larger than 2.5 x the load in (ii), the process of 

stabilisation of strain-gauge readings would require a higher number 

of cycles. 

When stabilisation occurred within the first 20 cycles, the process 

was restarted from (iv), tut when this did not happen, the process 

would be carried on for larger numbers of cycles. 

5.4.2 Knuckle of Cylindrical Nozzle on Spherical Pressure Vessel 

	

The procedure in this test was 6imilar 	to that described in 

Section 5.4.1, i.e. the plate with central hole, but with these 

differences: 

The elastic-plastic computer results were known and therefore for a 

chosen limit of linear elasticity of the material, an initial estimate 

of the pressure to first yield could be made, since 

	

ay  = 29.2 ksi implies Py 	= 250 lb in2  

From hereon, the load in (i) (Section 5.4.1) was chosen as 

200 lb in2. The stabilisation of initial and final strain gauge values 

was again obtained after about 15 cycles. 

The load increment up to 600 lb in2  was selected as 100 lb in2, 

since the divisions on the gauge pressure dial were of that amount. 

From 600 lb in2  the load increment had to be taken at steps smaller 

than 100 lb in2  since otherwise the deformation would be too large and 

less information would be available (see Chapter 6 for values of incre-

ments). 

The number of cycles taken up by pressures smaller than 675 lb in2  

was about 20, but from thereon the number was chosen while the loading 

process was going on. In case of doubt about the correct inter-

pretation of results the number of cycles would be increased. 

The scanning of the data logger was generally done for the first 

five cycles, for the eight and tenth cycles, and later for each fifth 

or each tenth cycle, depending on the number of cycles already performed. 



91 

CHAPTER 6 

ELASTIC-PLASTIC COMPUTED AND TEST RESULTS; DISCUSSION 

6:1 Introduction  

In Chapter 5, the measuring and loading equipment, the specimens 

and the test procedures, are described. 

Very little experimental work on the shakedown behaviour of 

pressure vessels has been reported. As far as the author is aware, 

only Procter and Flinders, Ref. [59], have reported shakedown investi-

gations on partial penetration welded nozzles in a spherical pressure 

vessel, and Findlay et al, Ref. [56], have reported limit-pressure and 

shakedown investigations on torispherical drum head pressure vessels; 

they have let creep take place in the first half-cycle of the cyclic 

process for each particular maximum load. In these works, there is a 

tendency to avoid the creeping of the material during a shakedown 

investigation; when creep does occur, the number of cycles has never 

exceeded 20, in Ref. [56], and 8,in Ref. [59]. It will be recalled 

that Findlay et al, Ref. [56], used mild steel. As mild steel is a 

work-softening material, Ref. [75], a stable value for the residual 

strains should not be expected, but rather a decrease, approaching zero, 

of the strain increment in each cycle compared to previous cycles. It 

is possible that only after 103  cycles, Ref. [75], would a stable 

residual strain be obtained. Of course the number of cycles needed 

for the stabilisation of residual strain in an overall load control 

test is dependent on the high strain level as well as on the membrane 

strain level, since the shakedown is dependent on the material and the 

shape of the structure. 

In this chapter the result for each test is presented, analysed 

and discussed. 
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6.2 Plate with Central Hole  

The plate geometry is shown in Fig. 36, as well as the positions of 

the strain gauges. A plot of the strain gauge readings against load 

can be seen in Figs. 48 to 51 for gauges 4-5, 2, 1 and 3 respectively. 

As may naturally be expected, gauge 1 shows the highest strain 

value. The yield of the plate begins at about 24 klb for a strain of 

about .098%, which for. a Young's modulus of about 29 ksi, gives an 

elastic limit of about 28.5 ksi. This value is probably low when com-

pared with the value from a tensile test, but it must be borne in mind 

that about 15 cycles were accomplished in the elastic range for 20 klb, 

and 20 at about 24 klb, from which it may be concluded that the yield 

stress limit decreases as a consequence of the mild steel work-softening. 

An examination of Fig. 48 reveals that the redistribution of 

stresses due to the cyclic process can in certain circumstances cause a 

reduction of strain, as well as an increase. 

It can be seen from Figs. 48-51 that creep can stabilise during 

the first cycle, in about half to three-quarters of an hour (load 

cycles 64 klb and 68.7 klb); however when the cycle pressure begins, 

but with a stoppage for the purposes of scanning of about one minute in 

each load step, some creep can again take place, the occurrence of which 

can probably be accounted for by the biaxiality of the plastic deform-

ation. This biaxiality effect begins to show itself at 64 klb, at which 

point gauge 3, Fig. 51, shows a slight reversal of straining. From the 

fact that this happens, an important point can be made. 

Let gauges 1 and 2, Figs. 50 and 49 respectively, be assumed to be 

broken; one might therefore be led into error from Fig. 51, since one 

could say that the shakedown limit had not yet been reached. However, 

since gauges 1 and 2 did not break the following conclusion can be 

made: 



93 

If the cyclic strain measurements on a yielded region show a de-

crease in its equivalent value for one or more positions on the 

structure, and the other measurements do not reveal a reason for this, 

then some important point or points on the structure are not being 

examined in the measured locations and hence the interpretation of the 

results can be misleading. 

In Figs. 49-51, it is shown that the maximum shakedown load lies 

between 57 klb and 64 klb. Taking the minimum value of 57 klb, a 

shakedown ratio (L/Ly) of 2.37, i.e. ellipse expanding by 18% is used 

in the cyclic shakedown process. 

Analysing Fig. 50, gauge 1, in the last cyclic load process per 

formed in the course of this test, an increase in the plastic strain 

is recorded up to the tenth cycle; after that the strain value starts 

to decrease because of a process of reverse yielding due to the bi-

axiality of the deformation, which process is demonstrated in Fig. 51. 

This phenomenon commences with the start of visible plastic flow in 

those regions marked with AA in Fig. 36. This was observed during the 

course of the test. An alternative explanation may be shown by means 

of the plastic flow of Sections BB, Fig. 36, as seen in Fig. 49 for 

gauge 2. 

The strain gauge readings of position 1, Fig. 36, are tabulated 

for the 1st to 5th, 8th, 10th, 20th, 25th and 35th cycles in order to 

analyse quantitatively the cyclic settling-down of the structure: 

(a) Up to 1.99 X first yield load, the settling process was 

reached in the first 10 cycles but, between 1.99- X and 2.37 X, the 

settling process was only reached in the first 20 cycles. 

(b) For loads of about 2.66 X first yield load, the settle down 

process is certainly taking place, but a number of cycles greater than 

25 will be necessary. In this stage reversal of straining was detected 
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in the region of gauges 3-5. (This should not be confused with reverse  

yielding but should rather be interpreted as an effect of the redistri-

bution of stresses due to the cyclic process with the increase of 

local plastic flow towards gross yield in Sections BB, Fig. 36.). 

(c) For the maximum aiclic ly tested load (68.7 klb), reverse  

yield occurred after the 10th cycle, during which cycle a second type 

of creep behaviour manifested itself in the region of gauges 3-5. This 

load must be considered larger than that for an upper limit of shake-

down since reverse yield is out of the question according to Melan's 

theorem, Ref. [54], although the strain reading had shown that the 

strain increment had a tendency to decrease, which is indicative of the 

settling down process. 

From this analysis it is possible to draw three conclusions regard-

ing shakedown behaviour: 

(i) The shakedown in the early stages of straining of the structure 

is of a static character, since, within the first 20 cycles, shake-

down can be defined. This shakedown is of local yield character, and 

is limited mainly by the location of the elastic regions of the structure. 

(ii) When the local yield begins to grow, but is still controlled 

by the remaining elastic parts of the structure, it is possible to 

define a shakedown load for a number of cycles greater than 20. This 

type of shakedown may be defined as semi-static as this will only be 

possible if other parts of the structure can limit the local yield 

plastic growth. 

(iii) When the yield is of gross type, then the reverse yielding 

can take place as a consequence of the biaxial character of the strain-

ing, and a load to settled-down behaviour can only be defined if the 

material is of the settling-down type; the strain gauge readings must 

therefore show a stabilisation tendency, and if this is so, it will be 
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possible to define a residual stress system which, together with the 

stress load system, will be within an expanded and settled ellipse of 

yield. 

6.3 Knuckle of Cylindrical Nozzle on Spherical Pressure Vessel  

This geometry, with its strain gauge positions, is described in 

Section 5.3.2 and is shown in Fig. 37. 

The elastic results are presented and discussed in Section 3.4.2 

and are shown in Figs. 34 and 35 for 250 lb.in2  internal pressure. 

The strain gauge readings and strain values from the elastic-

plastic computer program are plotted against internal pressure values 

in Figs. 52 to 59. The overall axial deflection is plotted, in Fig. 60, 

against internal pressure, and also in Fig. 61, but there versus ratios 

of pressure to first yield pressure together with the overall deflection 

values from the elastic-plastic calculations. 

Some of the readings from gauge FC, Fig. 37, which in fact gave 

the maximum strain readings, are shown in Table 14. Collapse and shake- 

down pressure ratios (p
c
*, P*

s
,K

3 
 , K2, 
	2

, K* and K*) can be seen in Tables 

8 and 9 respectively. 

The elastic-plastic calculations were carried out well before the 

tests were carried out, using data for a nominal equivalent stress-

plastic strain curve of either 29.3 (1 + 133 e .269) (ksi), which is 

not intended to represent either a settled cyclic, or a statiq curve 

for the used mild steel from which the test specimens were constructed, 

for the work-hardening case, or 33.(ksi) proof stress for .2% strain 

for the non-work-hardening case, as representing mild steel material. 

However the equivalent stress-strain curves, either static or settled 

cyclic, were not known for the particular materials used in the con-

struction. It should be noted that the sphere and the cylinder were 

made from different pieces of mild steel, and that the welding effect 

was not taken into account in the computations. 
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6.3.1 The Test Results  

Figs. 52 to 57 show the effect of the structure being not quite 

symmetric, as pointed out in Section 5.3.2. The differences in length 

are larger in the meridional direction than in the circumferential, 

Fig. 57, which would appear to be logical because of the small radius 

used in the knuckle region. 

The redistribution of strains, in those regions of the sphere and 

the cylinder away from the junction, which redistribution is due to 

the cyclic loading process, can be seen in Figs. 52 to 54. 

Results for the cyclic process up to 500 lb in2, internal pressure, 

are not presented in detail, as it was realised that, the strains values 

having settled down in less than 20 cycles, the structure is considered 

as having shaken-down. 

It may be concluded from Fig. 60 that the structure has, in its 

overall behaviour, shaken-down for pressures of up to 815 lb in2  due 

to the fact that the overall deflection indicates a settling down 

behaviour. Cycles at 900 lb in2  were not performed because of over-

deformation of the ring base of the sphere, Fig. 37. Since the von 

Mises stress concentration factor of about 2.92, Table 7, was obtained 

in relation to a membrane sphere, for some internal pressure less than 

810 lb in2, a behaviour similar to the test plate, (Section 6.2 and Fig. 

50; at about 64k1b), was expected since,in the case of the plate the 

local yield starts to spread across Sections BB. However, in the 

vessel case the local yield which was expected to spread freely to the 

membrane areas of the sphere is limited by the fact that the sphere 

was clamped to its base ring. Hence the deformation of the membrane 

sphere was restricted; the straining of critical areas was not only 

controlled by the cylinder, still being elastic, Fig. 52, but by the 

sphere not being free to deform. 
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From Fig. 61 a comparison between the overall measured deflection 

and the calculated deflection can be made; for pressure ratios (P*) 

less than 1.5 the agreement is not as good as for pressure ratios 

larger than this figure. Once again the better approximation to the 

stress-strain curve of the material, the better will be the approxi-

mation obtained from the elastic-plastic computer program. Differences 

for pressure ratios higher than 2.2 can be accounted for by the fact 

that the computer program uses the initial geometry for the calculation. 

(a) From Fig. 57, the movement of the internal stress path on a 

biaxial plane around the yield ellipse, described in Chapter 4, 

Section 4.3.1, may be visualised, since the meridional strain readings 

from gauges FM and 90 FM register a small initial increase with later a 

larger increase and then show a decrease in strain readings for higher 

loads. The initial increase can be identified with the first anti-

clockwise movement of small extent around the ellipse, as shown in 

Fig. 16. The second, larger, increase probably corresponds to the 

clockwise movement around the ellipse, of larger extent than the first 

anticlockwise movement, Fig. 16. The decrease in strain reading for 

higher loads can be identified with the last anticlockwise movement 

around the ellipse, Fig. 16 (see Section 4.3.1.). 

(b) As shown in Figs. 55 and 58, gauges 90CC and CC, respectively, 

register a reversal of straining (see Section 6.2, (b)) for 675 lb in2  

internal pressure, due to the redistribution of stresses in the local 

yielded region caused by the cyclic lOading process. This behaviour 

is probably different in origin from that described in Section 6.2 (b) 

because in this case there is a cross-sectional' effect at the local 

yielded region, whereas in the case of the plate it is due to the start 

of gross yielding in Sections BB, Fig. 36, and which is therefore not 

as localised. 
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(c) Fig. 58 shows the strain reading from gauge CC; this 

registers a reverse yielding at 715 lb in2  internal pressure, although 

none of the strain readings demonstrated the incremental behaviour 

shown for the test plate in Figs. 49 and 50; it was therefore concluded 

that a point, or points, of importance, On the structure had not been 

considered for strain measurement readings, since Fig. 53 shows that 

yielding in some areas of the spherehasprobably been reached. This 

line of reasoning concurs with that in Section 6.2 for gauge 3 on the 

test plate, Fig. 36, for 64 klb. Accordingly, since the strain gauge 

readings have shown a settling down behaviour for a number of cycles 

larger than 20, and because no membrane yielding has been reached, it 

may be concluded that a settling-down behaviour has been attained. 

This is probably different of shakedown behaviour because reverse 

yielding has been recorded. 

The same reasoning can be applied to loading cycles of 770 and 

815 lb in2  internal pressure; no last stage as in the test plate for 

68.7 klb, was obtained, probably because of the deformation restraint 

or because no cyclic loading was possible at 900 lb in2 ,internal 

pressure since the sealing on the base ring of the sphere, Fig. 37, 

had broken, due to excessive twist deformation on the ring. 

The conclusions reached here are more complicated than in the 

case of the test plate in which the strain gauges, 1 and 3, Fig. 36, 

gave readings of near uni-axial strain by virtue of their position; 

in the present case, however, the situation is, that of biaxial strain-

ing. 

From Table 14 for gauge FC, the following conclusions may be 

arrived at 

(i) 	Up to 675 lb ing internal pressure, a near stable behaviour 

is obtained within the first 20 cycles, hence this is a static shake-

down, as in Section 6.2 (i). 
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(ii) At about 715 lb in2  internal pressure, a near stable 

behaviour is obtained for a number of cycles larger than 20, hence 

this is a semi-static shakedown, as in Section 6.2 (ii). 

(iii) For internal pressures larger than 770 lb in2, there is a 

tendency to settle down, but more than 50 cycles are necessary. 

Gross yield on the sphere, Figs. 53 and 54, is obtained, and hence 

this is a gross yield settle down behaviour, although controlled by 

the nozzle, which is still in the elastic range, Fig. 52. This type 

of settle down, although dependent on the ability of the material to 

settle down, dcies not show the large incremental straining as in the 

case of the test plate, Figs. 50 and 51, due either to the restraint 

deformation by the base ring of the sphere, Fig. 37, or the possi-

bility that incremental straining was not detected, or both. 

Comparing the test values registered by all the gauges, (see (b)), 

with the particular values registered by gauge FC, which gave the 

maximum reading, (see (i)), for static shakedown, that is settle down 

within the first 20 cycles, it can be seen that values 675 lb in2  are 

obtained, but in (b) a reversal of yielding was recorded. It there-

fore seems logical to take the limit for static shakedown as an 

average value of 600 lb in2  and 675 lb in2  internal pressure. Hence 

637 lb in2  internal pressure will be taken hereafter on the static  

shakedown limit for this particular structure. 

6.3.2 Comparison of the Results from the Test and the Elastic_Plastic  

Computer Program  

In Figs. 52 to 59 and 61 the strain and deflection curves, 

respectively, from the elastic-plastic calculation with work-hardening 

and elastic-perfectly plastic materials information, are plotted and 

demonstrate that the general agreement is reasonable. 
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Collapse and shakedown pressure ratios (P*, P
s
*, K

2 
 and K3) are 
 

listed in Tables 8 and 9, respectively; the values were obtained by 

the application of the criteria described in Sections 2.3.2 and 2.2.3 

respectively. 

Collapse Pressure Ratios  

The collapse pressure ratios (P*c' 
 K3 	3 

and K *) can be compared in 

Table 8. 

The collapse pressure ratios, 	from the elastic-plastic cal- 

culation with work-hardening and elastic-perfectly plastic materials 

are within - 10% to 20%, and + 20% respectively, compared with values 

obtained from the strain gauge reading curves. 

It is particularly noteworthy to see the good agreement between 

the values for the C5I criterion, especially for the elastic-perfectly 

plastic material (a = 33 ksi, .2% proof stress), and the 5% difference 

for the work-hardening case, when compared with the values from the 

test. The values for the C15I criteria present a difference of - 15% 

for the elastic-perfectly plastic, and - 7% for the work-hardening, 

cases when compared with the values from the test. 

The C3I criterion yields values with very good agreement, but the 

C3 criteria are, once again, comparatively conservative. 

The CSP criterion, from the test results, cannot be precisely 

defined, as can be seen from Fig. 57, but can be taken as lying between 

2:45 and 2.6 (XP y). Taking the average value, 2.52, it may be concluded 

. that the values obtained using the elastic-plastic computer program 

with work-hardening and elastic-perfectly plastic materials are about 

15% and 20% smaller, respectively, than the average values from the 

test. 
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The collapse pressure ratios to the membrane yield pressure,  K3, 

were obtained by using the C5I and C15I criteria; K3  was obtained from 

Ref. [63] and was based on the Tresca criterion with limit analysis 

from Ref. [33]. 

The K'ivalue is in any case smaller than K3, and is also smaller 

than K3 
from the test readings, by 10% for the C5I,and 28% for the C15I 

criteria, when compared with values from the test data. 

The IS value obtained using the C5I and C15I criteria, when com-

pared with the results from the computer calculations, are smaller than 

the values from the strain gauge readings by 4%, 17% and 8%, 22% for 

the work-hardening and elastic-perfectly plastic material cases respect-

ively, for the C5I, C15I,criteria. 

Shakedown Pressure Ratios  

Value P* from Ref. [63] is equal to the valUe obtained by the 

application of criterion SEM; from Ref. [12], to the case of the cylinder 

and sphere junction with the knuckle (see Section 2.2.3). 

The P* value from the use of the SPC and SPT criteria for the work-
s 

hardening case are about 6% lower than the SEM value, but for. the 

elastic-perfectly plastic case, the shakedown value is some 15% less. 

The application of criterion SPW, hence allowing the yield ellipse 

to expand with work-hardening from the loading process, gives two values 

for the shakedown pressure ratios, lower and upper limits. This geometry 

was the first that the author came across with such shakedown behaviour. 

The reason for this is the small amount of work-hardening used up to a 

relatively large load (2.5 of first yield presure). The lower limit is 

defined before -the last anticlockwise movement around the ellipse has 

begun, but just before the turning point on the stress path where the 

structure would have shaken down again, up to about 2.45 X first yield 

pressure, from which the structure would not, from a theoretical point 
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of view, shakedown again for the work-hardening used. In the loading 

process it should be recalled that this particular geometry was not a 

realistic structure since the membrane deformation on the sphere was 

restrained by the ring and plate base, Fig. 37; this is probably the 

reason for the small amount of work-hardening used in the loading pro- 

cess. 

The lower limit is some 3.5% higher than the limit of 2, from the 

hypothesis'of the moving ellipse of yield, but is some 10% higher than 

the values obtained from the application of the SPC and SPT criteria. 

The upper limit is some 22% higher than the limit 2., of the moving 

ellipse of yield criteria, but is about 30% higher than the values 

obtained using the SPC and SPT criteria. 

The upper limit, P;, obtained for the SPW criterion with the computer 

results is some 6% larger than the average value obtained from the test 

data for the static shakedown (Section 6.3.1, last paragraph), but the 

computed lower limit is some 10% lower than the test knuckle (static shakedown). 

The shakedown pressure ratios to the membrane yield pressure, K2, 
 

obtained from the calculations with the SPT criterion are smaller than 

K;, from Ref. [63], but with the SPW criterion are larger than 9. The 

differences are about 7% and 18% for the SPT criterion with work-harden- 

ing and elastic-perfectly plastic cases respectively, and almost the 

same for the lower limit of the SPW criterion, but about 18% higher for 

the upper limit. 

It is particularly noteworthy that the. K2  values obtained from 

the experimental criterion, of settling down in the first 20 cycles 

(Section 6.3.1, last paragraph), gives an upper limit close to the upper 

limit obtained from the calculation with SPW criterion, in which work- 

hardening is permitted. The difference is about 4%. 
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Since from the test results an average value of 2.31, for P;, was 

obtained it can be said that the settled down yield surface has expanded 

by at least 16% and hence at least about 16% of work-hardening was used 

for the experimental static shakedown behaviour. The reasoning is by 

no means correct, since the stress path has a movement around a 

settled ellipse of yieldlas with an elastic-perfectly plastic material, 

the shakedown limit being 2.(XP ), the values are in most of the cases 

below 2, but it defines a lower limit for expansion of a settled yield 

ellipse. Using the same reasoning, for the results from the computer 

program, work-hardening case, it can be realised that a 22% expansion 

is obtained with the upper bound (P: = 2.45, Table 9) from the SPW criterion, 

but in fact the computer results show a 30% expansion. For the lower 

bound (P* = 2.07, Table 9), a 3.5% expansion is obtained using that line 

of reasoning, but in fact the computer results show an 11% expansion. 

It should be noted that from the test plate readings an 18% ex- 

pansion of the settled down yield surface was obtained, which compared 

with 16% for the test discussed in this section. This allows an approxi- 

mation of the permissible work-hardening of a settled ellipse of yield, 

for mild steel, of 17%. Of course the value cannot be accepted as 

definitive for mild steel; a more extensive study is necessary. 

If the 17% expansion of the settled down yield ellipse is intro- 

duced in the SPT criterion, a value of 2.18 for P; is obtained, which 

improves the shakedown pressure ratio, P*, by 15% when compared with 

the simple value for SPT (moving the yield ellipse) criterion. The 

shakedown pressure ratio to membrane yield pressure, hence, has a value 

of .68, which is 14% less than the value from the test results. These 

values, 2.18 and .68, have not been included in Table 9, since the 

figure of 17% for the expansion, as understood by the author, is not 

intended as an exact value, as above mentioned. 
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6.3.3 Comparison of Collapse and Shakedown Pressure Ratios (K
3 
and K2)  

A final conclusion is arrived at in Chapter 7, but here some interim 

• comments are made. 

From the calculations, once again, as in the Series N nozzles in 

Chapter 4, Fig. 46, the upper limit of K .  2 (SPW) is larger than K
3 
 (C5I, 

C15I), but from the experiment the opposite situation is found for the 

C15I value, and the same situation (i.e. larger) for the C5I criterion. 

If the C5I criterion is chosen as the criterion to design against 

collapse, then, in this case the design will be limited by the shake-

down criterion if SPT or the lower limit for SPW are used, but the 

opposite is true for the upper limit for the SPW criterion. 

The C5I criterion seems sensible and reliable, but C15I although 

it appears, in the theoretical calculations, safe, in the experiment it 

is unreliable as far as a static shakedown is concerned. This C15I 

criterion shows a marked creep deformation, hence precautions during 

design against creep should be considered by the designer. 

If the C3I criterion is used in the design to help prevent collapse, 

it is possible that no precautions against shakedown need to be con-

sidered, unless an elastic-perfectly plastic case is being studied. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

7.1 Conclusions  

7.1.1 Elastic Results  

Heads: 

For hemispherical heads the stress concentration factor depends 

solely on the cylinder-sphere thickness ratio. For this geometry, the 

minimum stress concentration factor, based on the von Mises criterion, 

is found when the thickness ratio (t/T) is between 1.5 and 1.75, Fig. 

18. A similar line of reasoning can be made for other spherical heads. 

The approximation to the Kelvin functions (Appendix B) gives for 

spherical heads(caps) with 00(d/D),(3.5), near .g/2, a better approximation 

than the exponential solution (Appendix B), for cylinder-sphere thick-

ness ratios equal to or larger than 1, but a poor approximation for t/T 

equal to or less than .5. There are values for t/T between .5 and 1., 

for which both solutions give the same results. A comparison with the 

solutions obtained for the solid plate (Appendix B) indicates that even 

.the best of the above-mentioned solutions should not be used for some 

values of 00(d/D) near Iri2; values of 00(d/D) from which the plate 

yields to better solutions than the other two (Appendix B) are defined 

in Fig$. 19-21, for t/T = .25, .5 and 1., respectively, and are associated 

with points marked on these figures by Al (i = °,11,1 ",'v) for some 

values of d/t (= 10, 20, 40, 80., respectively). In the text (Section 

3.2.3), the value of 00  is represented by 0Ai. This paragraph can be 

shown schematically, thus: 

t/T .5, exponential solution 

eo(d/D)[plate solution] > QAi >00(d/D)- 

t/T > 1., approximation to 
Kelvin function solution 

(.5 < t/T < 1. was not considered in this study) 
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These conclusions were arrived at by comparing the results 

obtained from the exponential, the approximation to the Kelvin 

function, and solid plate solutions (Appendix B), with the results 

from the elastic computer program (PVA1) used in the course of this 

work, for stress concentration factors based on von Mises' criterion. 

When a knuckle is introduced into a spherical head, for it to 

become a torispherical head, the improvement gained for the stress 

concentration factors based on von Mises' criterion is not as large 

as might be expected for some geometries of h/d larger than .25 (tori-

spherical); however, research into the question of whether or not a 

geometry with a knuckle is a significantly better design with regard 

to economic factors, is recommended. 

Nozzles: 

Flush Cylindrical Nozzles: 

For the geometries considered in this work, it is concluded that 

Leckie's method, Refs [13] to [16] would yield better results for the 

maximum stress concentration factors, for all geometries, based on 

von Mises' criterion, than the solutions presented in Appendix B (ex-

ponential solution (B.36.2)and approximation to Kelvin function 

solution (B.37.2) with (B.18)), the elastic computer 

program results being used as the basis for the comparison. 

The presentation of a single graph with averaged curves for each 

value of the cylinder-sphere thickness ratio (t/T), would cause con-

siderable errors, so accordingly, the author has preferred to present 

graphs for single values of t/T, for the stress concentration factors 

based on the von Mises criterion. 
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Series C Nozzles: 

The band0Connell modification (which allows the forces at a 

"square corner" intersection to be distributed as bands of loading 

over a finite width of shell, equal say to the thickness of the shell 

wall plus a fillet weld, rather than the point or line load of con-

ventional shell theory) will give unrealistic values unless an 

optimum size of band width is selected. 

Small differences in the detailed junction geometry of a continuous 

nozzle-sphere do not significantly alter the elastic stress concentration 

factor, although large knuckle radii do give lower values. 

Test Knuckle Nozzle 

The stress concentration factor based on the von Mises criterion, 

from the elastic computer program, is 11% larger than the value obtained 

from the test, which indicates that the computer program gave a reason-

able approximation, especially in view of the fact that the knuckle 

radius was small. This agreement is perhaps as good as it is only 

because of the described irregularities of the geometry. 

The strains predicted by the elastic computer program at the most 

differ by 18% from the strain readings Figs. 34 and 35, hence these 

results are not so good as those obtained for the stress concentration 

factor; the weld effect is not considered in the 18%. 

7.1.2 Elastic-Plastic Results  

The elastic-plastic strains predicted by the elastic-plastic com-

puter program are, in both cases, for elastic-perfectly plastic and 

for work-hardening materials (nominal curves, Section 6.3), in reason-

able agreement with the test nozzle results; the work-hardening (either 

(static or cyclic settled work softening) curves were, however, not 

known for the mild steel used, and the proof stress was obtained for 

a .2% strain from the nominal curve used in this case. 
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It is particularly important to use a proper representation of 

the material behaviour in the computer program, if, the elastic-plastic 

behaviour of the structure is to be correctly predicted, as can be 

seen from the results for head A, Ref. [7]. 

Intuitively, it would seem proper to use a static equivalent 

stress-plastic strain curve for a study of collapse, since a static 

elastic-plastic deformation is involved in the collapse behaviour; 

however, for a cyclic elastic-plastic deformation study, an equivalent 

stress-plastic strain settled cyclic curve will probably give a better 

prediction for the shakedown behaviour, as may be concluded from a 

study of Section (6.3.2) Some other comments will be made on the 

shakedown behaviour from the elastic-plastic computer program in 

Section 7.1.4. 

7.1.3 Collapse Criteria  

One of the initial ideas was the intention of presenting, from 

the computed results, and comparing them with some available experimental 

data, a collapse criterion that would satisfy any of the geometries 

studied in the course of this work; however this was found to be 

impossible (in the following paragraphs the assumption that K
3 
cannot 

be larger than 1,is made throughout), as: 

(a) The C3 criterion has safe characteristics for the whole range 

of geometries studied, except that for a geometry with elastic stress 

concentration factors (von Mises' criterion) higher than about 2.2, 

the collapse pressure ratios are very conservative (K3  << 1). 

(b) The C5 criteria have safe characteristics for geometries with 

stress concentration factors (von Mises') larger than about 1.75; 

however, for cases with stress concentration factors lower than about 

that value, these criteria have unconservative(K3 
> 1) characteristics. 
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(c) The C15 criteria not only gives highly unconservative (K
3 
> 1) 

collapse pressure ratios for stress concentration factors (von Mises') 

lower than about 2., but also has the defect that design against creep, 

even at room temperature, must be considered. 

(d) The BSLY criterion, although giving reasonable results for 

collapse pressure ratios, for head geometries, is a subjective criterion. 

(e) The CMEO criterion, for head geometries, being a direct appli-

cation of the definition of collapse, gives unconservative (K
3 
> 1) 

values. 

(f) The CSP criterion, for nozzle geometries, gives reasonable 

values for stress concentration factors larger than about 1.75, but 

brings with it the necessity of plotting stress paths. 

From the foregoing paragraphs, it may be concluded that_the C5I 

criterion is very useful for stress concentration factors (von Mises') 

larger than about 1.75, since it can be used in the course of the 

pressure vessel test under consideration, although the correct positions 

for fixing the strain gauge must be known beforehand.' For cases of 

stress concentration factors (von Mises) lower than about 1.75, the 

C3I or C3D criterion is probably more suitable. 

7.1.4 Shakedown Criteria  

Conclusions regarding shakedown behaviour were reached with greater 

difficulty than those for collapse, since the static and cyclic settled 

equivalent stress-strain curves were not known, and because a cyclic 

process is involved, which cannot be described by the incremental theory 

of plasticity used here for the elastic-plastic computations. 
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There are two main questions to be answered' in any theoretical 

shakedown study: 

(i) which curve should the elastic-plastic computer program be 

fitted with? 

(ii) which shakedown criterion for permissible elastic unloading 

should be used? 

There are, of course, other questions e.g. the effect of change 

in geometry, which stress path should be followed in the unloading 

process, and many others, which will influence the shakedown behaviour 

of the structure. 

Since a cyclic process is involved in shakedown behaviour, it seems 

logical that the elastic-plastic computer program used in the course of 

the present work should be fitted with a curve such that: 

(a) if the material is of settled cyclic work-hardening type, a 

settled cyclic equivalent stress-strain curve should probably be used; 

however a static curve would give conservative results; 

(b) if the material cyclically neither work-hardens nor work-

softens, the only possible approximation to a work-hardening case is 

the static equivalent stress-strain curve; 

(c) if the material is of settled cyclic work -softening type, a 

settled cyclic curve is probably better than a static curve, although 

the latter will probably give unconservative results. 

. It is, therefore, highly probable that the elastic-plastic com-

puter program should be fitted with a settled cyclic equivalent stress-

strain curve for a study" of shakedown. 

Once the elastic-plastic results are available from a computer 

program, the other main question is which shakedown criterion is more 
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suitable for consideration as permitting elastic unloading of the 

structure? 

The SPW criterion (full expansion of the ellipse of yield with 

the loading process) is probably too ambitious, as may be concluded 

from the shape of some available stress-strain curves obtained (in 

previous works) in the process of defining a settled cyclic equivalent 

stress-strain curve; however, in any structure, the stress limits on a 

cyclic process are not + a, but some values a
1 
and a

2 
in which a

1 
is 

probably larger than - a and a2  = a, although al  and a2  change with 

the cyclic process until stable values are obtained and hence the 

cyclic strain amplitude will be smaller in the structure than in the 

test piece, and the reversal of yielding will either be of small 

extent or probably zero; the results obtained, therefore, from the 

application of the SPW criterion are probably not conservative, unless 

there is zero reverse yielding. 

The SPT criterion (moving the ellipse of yield towards the stress 

state reached) is very reasonable, although, from inspection of some 

available data, it is highly probable that the ellipse of yield defined 

from the settled cyclic equivalent stress-strain curve will expand by 

an unknown amount depending on the strain level; it seems probable from 

these considerations, as well as from the test results, that this 

criterion (SPT), with defined expansion for the settled cyclic ellipse 

of yield, is so far the most correct shakedown criterion described. 

Unfortunately the author is not in a position to present the reader with 

any values derived from the use of this criterion, although an estimated 

value was used, in Chapter 6 (17% for mild steel), for the expansion 

of the ellipse of yield used in the calculation. 
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The SPC criterion is nearly the same as the SPT, except that the 

movement of the ellipse of yield is in the direction defined by the 

linear elastic path. The SPC criterion gives slightly lower values 

than the SPT. 

If an elastic-perfectly plastic material is under study, the 

results are conservative or unconservative depending on the level of 

the chosen proof stress; however the shakedown pressure ratios (P* 

and K
2
) are underestimated for the cases of low stress concentration 

factors (von Misess), when compared to values from the SPT criterion 

(non=expansion of the yield ellipse). 

7.1.5 Final Conclusions  

Small differences in the detailed geometry of continuous nozzle-

sphere connections do not significantly alter the elastic stress 

concentration factors, or the shakedown and collapse loads of the 

vessel, despite the junction being at the region of highest stress in 

the vessel. The agreement obtained between the elastic-plastic computer 

program and experimental strain results makes possible elastic-plastic 

shell theory calculations with some assurance that the results can be 

applied usefully to real vessels even if only the nominal details of 

the shape of the junction are known. 

In a shakedown behaviour study which takes into account the effect 

of the settled cyclic behaviour of the material (i.e. work-hardening 

according to a settled cyclic behaviour, which may be harder or 

softer than the static curve), the assumption of a moving ellipse must 

be made. Because the real size of the moving ellipe is not initially 

known, the ellipse that should be used is the settled ellipse of yield 

(i.e. the settled value of first yield). 
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In the collapse pressure ratio calculations, a unique value was 

not found, at least not for .5% and 1.5% level of strains. 

From the various collapse criteria examined for incipient 

collapse, the C5I criterion (.5% maximum outside the strain), and 

either the C3I or C3D criteria, were chosen as suitable for geometries 

with elastic stress concentration factors (von Mises') larger than 

about 2., and lower than about 2. respectively. 

A comparison of collapse pressure ratios K3  (based on the C5I, 

C3I and C3D criteria), with shakedown pressure ratios K
2 (based on 

the SPT criterion, moving the ellipse of yield), leads to the con-

clusion that for elastic stress concentration factors (von Mises') below 

about 2.5, incipient collapse occurs before shakedown. The broad 

trends of previous calculations based on elastic stress distributions, 

and on the limit load concept, are confirmed, although the elastic-

plastic computations show rather lower collapse loads for nozzles with 

low stress concentration factors if work-hardening is neglected. 

It was realised that the settling down process of the structure 

deformation could be divided into three main, not mutually inclusive, 

types, making the assumption that time has been allowed to let the 

structure to creep in the first half cycle: 

(a) Static shakedown, which depends only on the local yield, but 

is generally limited by the disposition of the remaining elastic parts 

of the structure. The cyclic settling down process can be arrived at. 

in a few cycles (up to 20 for the case of mild steel). 

(b) Semi-static shakedown, which is an intermediate gross yield 

stiation in which the cyclic settling down process not only depends 

on the ability of the material to settle down, but also on the remaining 

elastic parts of the structure. In this situation reversal of 
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straining can appear due to the redistribution of stresses and strains, 

which is a result of the cyclic loading process; the number of cycles 

needed to settle down, however, will be larger than for a static 

shakedown. 

(c) When a gross yield situation has been reached on a large 

scale in the structure, the cyclic settling down process depends solely 

on the ability of the material to settle down, although reverse 

yielding and large incremental straining can appear as a consequence 

of the biaxiality of the plastic deformation, in the early cycles. 

7.2 Recommendations for Future Work  

Since the results of the elastic-plastic computer program gave 

reasonable agreement with the test results, the study of the "area 

replacement rule" can be made from a general point of view, since 

small differences in the connection details (nozzle-sphere) do not 

show a significant effect on the elastic stress concentration factor, 

and on the incipient collapse behaviour. 

The differences between the calculated and the test values become 

greater for higher loads, hence it seems logical to attribute this 

increase in the difference to the change in geometry during the load 

process; it is, therefore, recommended that the necessary alterations 

to allow for the effect of geometry changes due to the loading process, 

in the calculations, be introduced into the computer program. 

One of the first stages in a shakedown and collapse behaviour 

study, using an elastic-plastic computer program,is to obtain the 

settled cyclic and the static equivalent stress-strain curves for the 

material under consideration for construction of a pressure vessel. In 

the particular case of a shakedown calculation, it is necessary to 

assess the possible expansion of a settled cyclic ellipse of yield 

for different levels of strain. Once these curves are known, 
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elastic-plastic calculations should be carried out and their results 

compared with those found from tests with carefully, constructed 

pressure vessel components. 

After careful consideration, the author feels that it would be 

worthwhile to include finite-element techniques in future pressure 

vessel research, especially for sphere-nozzle junctions or other 

discontinuity regions. 
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APPENDIX A 

FUNDAMENTAL EQUATIONS FOR ELASTIC SYMMETRICALLY  

LOADED SHELLS OF REVOLUTION  

The notation used in Figs. 1 and 2 is the same as used in the 

following equations and, with minor changes, in references [1,2 3]. 

A.1 Equilibrium Equations  

Referring to Fig. 1, the equations of equilibrium are: 

A.1.1 Axial equilibrium  

d(wr)  - 2hrY-prsin 0 =0 
d/ 

A.1.2 Radial equilibrium 

d(Fr)  - N + pr cos 0 + 2hrX. 0 
d/ 

( A . 1 ) 

(A.2) 

A.1.3 Moment balance  

Because of the axisymmetry of loading it will only be necessary to 

consider the meridional balance, 

d(M r) 

d/ 
	 - Fr cos 0 - M sin 0 + Wr sin 0 . 0 

p 
( A . 3 ) 

A.1.4 The meridional stress resultant N
A 
 is given by 

N= W cos 0 + F sin 0 	 (A.4) 

A.2 Displacement , rotation and strain relationships  

Referring to Fig. 2, the relationship between the displacements, 

rotation and strains, are given by: 

A.2.1 Mid-wall strains 

e =/ si1 a  d/ 
da 

+ cot 
n v  

= 
cp r 

A.2.2 Strains at any position through the thickness, with the 

assumption that plane sectionsremain plane, are given by 

ddb 
e 	e

t 
+ z d/ 

sin 0 
e = e + z 	0 

(A.5)  

(A.6)  

(A.7)  

(A.8)  
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A.2.3 The axial displacement is related to the radial displacement and 

rotation through the following equation, again referring to Fig. 2a 

d 
-= 0 sin 0 + e cos 0 	 (A.9) d/ 

From (A.5) it is possible to write a similar equation for the radial 

displacement 

d/ d-11  = -0 cos 0 + 
,e, 

sin 0 

A.3 Elastic stress-strain law 

Hookean material will be considered, therefore 

E 
1 

ilj = L'T 

(A.5.1) 

(A.10) 

A.4 Other relations  

It is usual to have as dependent variables either 0 and F, or 

dO 
functions of them, in an analytic solution, and 0, Tip u and F in a 

numerical solution, hence it is necessary to eliminate stress and moment 

resultants from some of the above equations. 

In order to proceed using these dependent variables, it will be 

necessary to know the relationships between the latter variables and the 

former dependent variables. These relationships are as follows: 

Denoting the thickness of the shell by 2h: 

A.4.1 Stress resultants 	+h 
Ni 
 - 
	ra_ 

a. dz, i = 1,cp 

or 
	 -h 

2 E h 
`e. 	i/j = L'cio 1 - (A.11) 

A.4.2 Moment resultants 

+h 

M. . f a. z dz , 	i = I,y 
-h 

or 

d0 v sin 0  
D + r  (A.12.1) 
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and 

MD (sin  0 + v 
	 (A.12.2) 

where D = 2 E h3/3(1 - v2) 

The derivative of M
11, 
 is required in the solution of (A.3), hence, 

from (A.12.1) 

dM 

	

A 2 E h2  (d0 	sin 0 	d20 	sin 9 dO sin29 
dt 	7:77r  dA 	r 0 + D -c72- +v ( r 4 - r  

1 	d (sin 9)  ) 
+ r  0 d/ 

(A.13) 

dh i 
where 3, which is equal to 7-17, is the taper. 

A.5 The equations used in a numerical integration or in an analytic 

integration are different forms of the above equations, e.g. (A.11), 

with i = cp and j = A, is substituted into (A.2) giving 

d 	A  2 h + pr cos v - 1 	
ke 

d/ 	- 	
/7 

 T
+ v ) + 2hr X = 0 

 
(A.21) 

(A.1) is generally used as an integral form 

Wr = V + j (pr sin 0 + 2 h r Y)d/ 	(A.1.1) 

Using (A.11), with i = A and j = cp, and substituting into (A.4), the 

following equation is obtained 

21 Eh2  
(e
/ 
 +ye) =WCOS0+Fsin 0 

—v  
(A.4.1) 

dM 
Replacing the valuesof M1

- 

, M and dAJ('  , respectively, from (A.12.1) 

(A.12.2) and (A.13) into (A.3), the following equation is obtained 

Z.1 	2 Eh2 	sin 0 d0 

dA
2 	D(1 - v5° 	d/ 

• 

2 v Ehsin e 	, de sin20  
+   D(1 - V 	+) 	r 	

cos to dl 
r2 

-D cos 0 + 17- sin 0 = 0 

(A.14) 
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A.6 As far as an analytic solution is concerned, a better equation 

than (A.5.1) can be derived for use in conjunction with (A.14). 

Considering the. case X, Y and equal to zero and using the 

definition of Ni, i = L,T from [1] 

Ni  
a. = —2h 	= (A.15)  

Substituting the value of ui, i = 1,T into (A.10) for i,j = /,(1), 

gives 

1 
ei 

- 2 hE (N
i  - v N.), i,j = t,cp (A.16)  

Taking the values of N and NL, respectively, from (A.2) and (A.4) 
cP 

and replacing them into (A.16) for i = y and j = L, and then multiplying 

by r and differentiating in relation to I, these can be written 

d(r 6.5)) d ( d(Fr) 
dy, 	2hE 	r 	- v(Fr) sin 0 	+ cos 0 1(-212)  

dl  

+ sin 0 ( - pr2  +v V+v i pr sin 0 d,021-)  dt 
(A.17)  

Substituting i = A, j = y into (A.16), and using NL  and N from 

(A.4) and (A.2), respectively, the following equation is obtained 

et 2hE v  dn 	
T 

E 	
d(Fr) 	1 + F sin 0 + cos 0 	jpr sin 8 dt - v pr + -Y- 

(A.18)  

Taking the value of u from (A.6) and replacing into (A.5.1) gives 

1   
0 cot 0 = - 	

 d( 
sin 0 	d/

-e0) 4.  (A.19) 



128 

Again, taking the values of el  and d(re), respectively, from 

(A.18) and (A.17) 

1 	d 

[ 

and substituting them 

d(Fr) 0 

into 

+ v 

(A.19), gives 

d(Fr) 0 	0 
sin 0 d/ 	r  v (Fr) sin 4 	- - F sin 	+ 2Eh 0 cot 

4 

= cos 0 (_ 
sin 0. 	

44.  1 r 
r J 

d(pr2)   pr sin 0 dL + r 

dO + (p - vV - v pr sin 0 4) di  (A. 20 ) 

' The equation (A.14), with the assumptions already made for (A.20), 

forms with this latter equation the system of differential, equations 

used to solve analytically the problems of stress distribution in 

pressure loaded shells of revolution in this thesis and many other works. 
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APPENDIX B 

CYLINDER-SPHERE INTERSECTIONS FOR INTERNALLY PRESSURISED  

HEADS AND NOZZLES  

Referring to Figs. 3, 4 and 5 it can be seen that for each parti- 

cular type of geometry the following relationships may be applied: 

- Sphere: 
	R

o
/2 

r R cos 8 

- R dB 

= 0 

2h = T 

- Cylinder: 	d/ = dx 

r = d/2 

8 = 0°  

(B.1)  

(B.2)  

= o 

2h = t 

- Plate: 	0 = u/2 or a = 0 

d/ = dr 	 (B.3) 

2h = T 

S = o 

It will be assumed, hereafter, that X and Y are zero and that the 

pressure is constant, i.e. X = 0, Y = 0; p = (constant). 

Certain of the equations to be found in Appendix A, referring to 

the particular geometry, either sphere or cylinder, under consideration, 

give rise to the following relationships: 

B.1.1 - Sphere 

Substituting (B.1) into (-.14) and using (A.1), the following 

result is obtained: 

2 	
D 
o d 0 	dO 

tan 0 	- (v + tan20)0 - 2D ° (Fr) . -  2D  tan 8 (V + ipr2) de  
d02  

(13.4) 
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Likewise, introducing the conditions of (B.1) into (A.20) 

• d2  (Fr) 	d(Fr) 	
TED 
7 

 () 
- tan 0 	- (tan2e - v) (Fr) + -- 0 de 

d02  

4 ' o 
D DP co s sin 0+ (1 + v) tan 0 

= -  2 pre  + V) 

(B.5) 

(B.4) and (B.5) form the system of differential equations which 

will be used to solve the analytical problem of stress distribution in 

a spherical shell. 

This system is similar to that in Ref. [1], page 110, except that the 

right hand side has been altered to take the load condition into 

account. (B.4) and (B.5) are, also,.similar to the system presented 

in Ref. [4], page 23, except that they use a different system of axes, 

and definitions concerning the directions of the stress and moment 

resultants. 

The right hand side of equations (B.4) and (B.5) gives the parti- 

cular integral which corresponds to the membrane solutions for the 

type of loading under consideration, Refs. [1] and [4]. 

A complete solution to the problem will consist of the solution 

resulting from the application of the homogeneous system, known as the 

edge bending solution, plus the particular integrals from the above 

system, which is dependent on the loading of the shell. 

and 

Using the following relationships, 

Fr - 	 
cos20 

0 

(B.6.1) 

=  	 (B.6.2) 
cos20 

similar to those used in Ref. [1], and substituting them into (B.4) and 

(B.5), the following system of equations is obtained for the edge bend-

ing conditions: 



1 3 1 

	

A
e 	

D 

	

d e 	 o 
— 4 tan2e + (v - i)] +

2D 
 w = 0 

d02  

TED 
 

	

d2w 	3 
- wE.T tan

2  0 - (v 	
2 

i)] _ 	e . 0 
de 2  

(B.7.1) 

(3.7.2) 

The system of differential equations is the same as that in Ref. 

1], page 111. 

Since the terms in e  and w, in (B.7.1) and (B.7.2) respectively, 

2  d e 
are minute compared with the terms in 	 and — in the same equation, 

dO2 	dO2  
the former terms will henceforth be neglected. Once the solution of the 

simplified system has been arrived at it will become apparent that the 

terms of the second derivatives are of the order of X2, with X a con-

stant for each particular geometry and material, in relation to the 

single functions e  and w respectively. It should be noted that the 

larger the value of X, the better will be the approximation to the 

solution. 

It should also be noted, as regards the solution of the simplified 

system from (B.7.1) and (B.7.2) that, when the comparison was made 

d2e 	dw 
between the values of terms e and w and those of —2- and 	actual 

d0 	de 

values of the coefficients of e and w in (B.7.1) and (B.7.2) respect-

ively, were not given; in fact when 8 is near + ,r/2 the values of these 

coefficients may be larger than X and, if this is the case these terms 

cannot therefore be regarded as negligible in comparison with the 

second derivatives. 

Taking (B.7.1) and (B.7.2), and neglecting the terms in e  and w, 

respectively, gives 

d2e 
D
o +  —w . 0 

d02  2D 
(8.8.1) 

and T 
d2w ED  	 e 	0 
dO2  - 2 (B.8.2) 
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Eliminating e between them, the following result is obtained: 

4  d w 4X
4
w =0 

de 4  

where 2 

4X4 
TED

o  
4D 

or, recalling that D = E?/12(1 - v2), 

4 	 
v/3(1 - v2) -71, 

The solution of (B.9) is well known, [11, i.e. 

w = eXe(C
1 

cos X0 + C
2 
sin X0) 

+ e X  (C
3 
cos X0 + C

4 
 sin X0) 

(B.10) 

(B.11) 

where C1,  C2, C
3 
and C

4 
are constants of integration, determined by the 

boundary conditions. 

From the foregoing assumptions, and from (B.10) it can be stated 

that the higher the value of D0/2T and the greater the difference 

between 0 and + A/2 the better will be the approximation given by the 

solution of (B.8.1) and (B.8.2). 

The validity of solution (B.11) for the system (B.7) is inter-

dependent on R/T and 0, hence it will be difficult to define the 

applicability limits of such a solution. 

B.1.2 Shallow Spherical Shells  

In the theory of shallow shells, the independent variable is taken 

as the complementary angle of 0; only the case of 6 being near to + A/2 

is considered here. 

Let a be the independent variable, defined by 

a = A/2 - 0 	 (B.12.1) 

(B.9 ) 

as used in [1]. 

Since 0 is near + n/2, a must be a small angle, hence 

tan 0 == 1/a 
	

(B.12.2) 
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Substituting (B.12) into the homogeneous system of differential 

equations formed by (13.4) and (B.5), the following relationships are, 

respectively, obtained: 

D 
oP 0 1 dO 	1 
da2  a dm 

+ v) 0 - 2D (Fr) = 0 
- 

TED 
o 

da a da 
d2  (Fr) 1 d(Fr)._ v) (Fr) + 	0 =2

0 
--  

(B.13.1) 

(8.13.2) 

Substituting the value of 0 from (B.13.2) into (B.13.1) gives: 

d2  
(dal + a da a2

) 
 (dal — 	- — 	+ a da a2

— — - — ) (Fr) + 4?4 (Fr) = 0 (B.14) 

where
4 

= 4X
4 - v2  (recalling 4A

4 
 = TED2/4D). 

(B.14) is identical to the corresponding equation in [1], page 117, 

hence it will have the same solution: 

Fr = C1  berix + C2  bei + C3  ker'X + C4  keitx 
	

(B.15) 

where ber, bei, ker and kei are known as Kelvin functions, and x is 

defined by: 

X = /71  a 

Since the Kelvin function will be required, an approximated 

expression is given here: 

ber x = 1 eX4/1cos (xi /7-- n/8) 
fTiR 

bet-ix  - 	1 	 ex/(  cos (x//+ n/8) 

beix 	(WI= n/8) 

1 
belix -

rzik ex/sin 	n/8) 

(B.16) 

3.17) 

and 
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ker x= +,711/2x e-X417-cos (x/ff + 71/8) 

ker! 	-vrir/2x e-X412—cos (x/12--- w/8) 

keiX = -/V-727,k 3-44 in (x4/2 + 7S/8) 

kei'X = 41-72X 	(x4/2--- 76(8)  

(B.18) 

as used in [1]. 

These equations make an adequate approximation to the Kelvin 

functions as long as x is bigger than 7 (x > 7) Refs. [1] and [4], 

which'is common for most practical shell problems. 

The solution for Fr, given by (B.15), of the differential 

equation (B.14), is an approximated one as the function -Lane was 

substituted for by an approximate value, 1/a. In connection with this 

solution, it should be noted that, once (B.17) and (B.18) are used as 

approximated functionsto Kelvin function, the solution Fr (B.15), will 

also be limited to values of 0 close to + u/2. 

If the complete expression for the Kelvin function, (1.1), are to 

be used, then the solution validity will be limited by values of x near to 

and less than 1., unless some artifice is used as by Leckie Ref. [13]. 

B.1.3 Solid Plate  

Since the Kelvin functions are limited by the condition that X 

may not be smaller than unity, Ref. [10], and as it has already been 

stated that (B.17) and (B.18) are good approximations of x > 7, the 

solid plate solutions must be known if either a flat, or almost flat, 

head is to be studied using an analytic solution, otherwise a numerical 

solution will have to be used. 

The solid plate end is the limit of a spherical head when d/Do  

tends to zero, see Fig. 5. 
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Introducing (B.3) into the homogeneous system from (A.14) and 

(A.20), Appendix A, the following results are respectively obtained: 

d 1 d 
Tr- [7 	°)] 	= o  (B.19) 

and 

d d(rF) 
+ F] . 0 

dr dr (B.20) 

These two equations form the system of differential equations that 

will be used to solve the analytical problem of stress distribution in 

a solid plate. 

This homogeneous system of differential equations, together with 

data concerning the particular boundary conditions, will be used to 

obtain the edge bending solution of a solid plate. 

Since (B.19) and (B.20) are independent of each other as far as 

integration is concerned, the expressions for F and for 0 from these 

equations are obtained by a straightforward integration, giving re-

spectively: 

and 

A" 
0 = Aer + -- r 

B" 
F B' + -2- 

r 

(B.21.1) 

(B.21.2) 

Therefore, these two expressions can be used to obtain the edge 

bending solution for an almost flat head as can be seen from (B.3). 

B.1.4 Cylinder  

The geometry of a cylinder with constant thickness, 2h = t, and 

closed end, is now considered: substituting (B.2) into (A.14) and 

(A.20) there will be obtained respectively: 

d20 F d o x2   (B.22.1) 

and 
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4  d2  d2  F 
dx2  + E t0 = 0 

where D, for a cylinder of thickness t, is given by 

D 	-t2/12(1 - v2) 

(B.22.2) 

From the fact that the system of differential equations formed by 

(B.22.1) and (B.22.2), which will later be used to solve the problem 

of a pressurised cylinder intersecting a spherical shell, already have 

a homogeneous form, the membrane solution for F and 0 are both zero; 

this does not however mean that the membrane stresses and strains are 

zero. 

Taking the value of f6 from (B.22.2) and substituting it into 

(B.22.1), gives 

where 

d4F
4 + 4k4F = 0 

dx 
 

4k4  - 48(1 - v
2
) 

d2  t2  

(B.23)  

(B.24)  

The differential equation is identical to the corresponding 

equation in Ref. [1], page 103, hence the corresponding solution can 

be written as: 

F = e(A
1 

cos kx + A
2 

sin kx) + e
kx(A

3 
cos kx + A

4 
sin kx) 

(B.25)  

where A1,  A2, A
3 
and A

4 
are the constants of integration, depending 

either upon the edge bending or the boundary conditions. 

B.2 Formulae ofN,N,M,M,uand 0 as functions of (B.1122(L.L1.5):  
cf) A 	cA 

(B.21) and (B.25) res ectivel for s.here shallow s.here solid late 

and cylinder 

Referring to Figs. 3, 4 and 5, and denoting by superscript = either 

the membrane values concerned or the particular integral of the differ-

ential systems,((B.4) and (B.5)) for the spheres, (B.13) for the 
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shallow sphere, ((B.19) and (B.20)) for the solid plate and (B.22) for 

the cylinder, the following results are obtained: 

B.2.1 Sphere  

Considering the junction geometry (see Figs. 3 and 4) and the 

axial equilibrium for ao  = acos (d/Do), W will be given by 

pD 
 

W(0 = a
o) = .4 

COS
o 

accordingly the constant of integration from (A.1), will be V = 0, hence 

pD 
W - -4 cos 8 	 (B.26) 

pDo 

4 
Substituting the well known membrane value of N (= 	for the 

sphere, into (A.2) and integrating together with conditions (B.1), the 

following is obtained: 

1 F 	— 
4 pDo 

 sin 0  + F
1 
 /cos 0 

where F
1 

is the constant of integration. 

(B.27.1) 

Replacing the values of W and F from (B.26) and (B.27.1), respect-

ively, with the membrane.value of N L  (=pD/4) into (A.4), it can be 

seen that F
1 

0, hence 

; 4 
1  D p 

o 
 sin 
 

(B.27.2) 

Substituting (B.27.2) and (B.26) into (B.5), the following result is 

obtained: 

0 = 0 

Substituting into (A.10) with i = cp and j = /, the membrane stress 

values 	i =Q„ cp) , a formula for 
cc'  
e will be obtained which, when 

substituted into (A.6) will give 

pD 2  

8ET 
(1 - v) cos 0 (B.28) 



Fr = 	 + 1  p D2  cos 0 sin 0 8 (B.29.1) 
COS2e 
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Once the membrane values are known, it will be possible to derive 

the complete solution (membrane + bending) for the sphere: 

the solution for Fr will be obtained from (B.27.2) and (B.6.1): 

Introducing (B.26.1) into (A.2) with (B.1) gives 

1 d 	 N 	-  R de ( w 	4 ) + 1--- p Do 
cos 

 (B.29.2) 

Substituting (B.29.1), (B.26) and (B.1) into (A.4), the following 

result is obtained: 

N _wsin O 
 + 1 D 
/2 	4 P  o R cos 0 

(B.29.3) 

Using (A.16) for i = p, j =/, and replacing with (B.29.2) and (B.29.3) 

the values of N and N
A' 
 respectively, the value of 5 will be found 

which,substituted into (A.6) with (B.1), will give 

D cos e 
u _ 	 + 2v sin e 	2 	dw p  Do 

2 T E 	D
o cos3/20 w D cos20 

de + 	(1 - v) 

o 

 

(B.29.4) 

Recalling that equations (B.8.1) and (B.8.2) apply only to the 

bending solutions and that 0 = 0 for a sphere, determining e from 

(B.8.2) and substituting into (B.6.2), the solution for 0 is given by 

0 2 	d2w 
in de2 

0 
T E D cos-v 

(B.29.5) 

Using the previous equations, the bending moments are given from 

(A.12.1) and (A.12.2) respectively for meridional and circumferential 

moments, 

1 	1 - 2V sin 0 	d2w1 btu(B.29.6) 
4X
4 	2 	cos3/20 d02  +coslOde3 

and 
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M
_  1 	2- v sin 0  d2w _ 	d22. 

Y 	), 	3/28 de2 	del 
4
4 	2 cos 	cos 

(B.29.7) 

  

Once determined,the constants in (B.11), which will be defined by 

the boundary conditions, equation (B.26) together with (A.5) to (A.8), 

(A.15) and (B.11) form the solution of the sphere problem, as long as 

the geometry lies within the original definitions, Section (B.1.1). 

B.2.2 Shallow Spherical Shell  

Both the membrane solution and the particular integral are the same as 

for the sphere, and so will not be here presented. 

The edge bending value of F is given by (B.16), but the subscript 

b will be used here, otherwise it can be confused with the complete 

solution for the radial force, hence: 

Fbr = C1  ber'x + C2  beitx + C3  ker'x + C4  kerix 

Therefore, using (B.27.2), the complete solution for Fr is: 

Fr = C
1 
 ber'x + 	bei'x + C3  ker'x + C4  ker. 	1 'x + pD20  sin 0 cos 0  

(B.30.1) 

Substituting Fr and (B.1) into (A.2), gives 

pD 
N 

	

	o 2 d (F r) + 
m D de b 	4 
T 	o 

(B.30.2) 

and replacing the value of W from (B.26) with (B.30.1) into (A.4), the 

following result is obtained 

2 sin 0 	
pD
o  

N - 	(F r) + D cos 8 b 	4 
0 

 
(B.30.3) 

Taking e from (A.16) for i = p and j = £, N and N
L 
from (B.30.2) 

and (B.30.3), and substituting into (A.6) gives: 

u - 	
2 D

o 
cos 0 [ 	 pD 

d (F r) 	v 
s (Fbr) + (1 - v) 2-  2 T E 	D

o 
dO b 	Dcio-

: 0 0  
4 

(B.30.4) 
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Noting that (B.13.1) and (B.13.2) apply only for the edge bending 

solution and that 0 = 0 for the shallow spherical shell, the following 

equation is obtained from (B.13.2): 

	

2 
	dal - TED 	

(F Dr) (Fbr) - 	- v) (Fbr) 
o d 	a2  (B.30.5) 

  

From equation (A.12.1) with (13.12).  it is found for the meridional 

moment 

M
L D 

_ 221 (da a 
IL 0) 

0 
 

but using (B.13) 9  

M =- 1 [72  

4X
4 da3 	Ia 	v d2  

	

(Fbr) 	 2 (Fb 	a  r) + (9 2  - 2  da  

2—
a2 	

v2  v  

	

( 	(Fbr) 	. a  

+v -dT .(Fbr) 

(B.30.6) 

With the above-mentioned conditions, but this time using (A.12.2) 

instead of (A.12.1), the circumferential moment will be given by 

D 2 	d0 M - 
D 
 (-1  0 + v —) co 	a 	da 

T 	0 

hence, 

1 
d3(Fbr) 1 + v d2(Fhr) 

9 
m 	- 	

[ 4x4  v 
	+ da3 	dal 

d(Fbr) (1 a2..=Lv. - v2) da 
(2%) 

a3 
- 1 

 + a  (F
br) 

(B.30.7) 

Equations (B.30) together with (A.5) to (A.8), (A.10) and (A.15) form 

the solution of the problem for the shallow sphere as long as the 

geometry is within the conditions of approximation and once the constants 

in (B.1.6) are known from boundary conditions. 
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B.2.3 Solid Plate  

Since (B.20) is the complete equation, it is obvious that the 

membrane value for the radial force, F, is zero and, hence, from sub-

stituting (B.3) into (A.4) the following result is obtained: 

r 
0 

a value to be expected since the pressure is normal to the mid-

wall. 

Introducing (B.3) into (A.1) and integrating, the following 

equation is obtained: 

Wr = 4 pre  + V 

where Vis a constant of integration. Since the plate is solid, and 

because the axial equilibrium at r = ro  is given by 21troW 
	it 

can be seen that V = 0, hence: 

W = 1 pr 
	 (8.31) 

Substituting F and (B.3) into (A.2), the following result is obtained: 

= 0 

the expected value. 

From (8.19) can be deduced that 0 is not zero, since the vertical 

equilibrium has to be satisfied. 

Substituting (B.31) into (B.19) and integrating the membrane 

solution for 0 there obtained 

= - 	
3 

 pr 
16D 

(8.32) 

Bearing in mind that it is a solid plate that is being considered, the 

edge bending solutions for 0 and F given by (B.21) have an infinite 

value for r = 0, hence the constants of integration A" and B", respect-

ively, must be zero. Those equations can, therefore, be written as 

follows: 
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0 = A'r 	 (B.33.1) 

and 

F = B' 	 (B.33.2) 

The complete solution for the solid plate will be given by the following 

equations: 

since 	F = 0, from (B.33.2) 

F = B' 	 (B.34.1) 

Substituting (B.34.1) and (B.3) into (A.2) 

N = B' 	 (B.34.2) 
P 

and (B.3) with (B.34.1) into (A.4) 

N = B' 	 (B.34.3) 

Substituting (B.3) and the values of NI  and N into (A.16) for i = p 

and j = t, a value of e is obtained which, substituted into (A.6), 

gives: 

u = ,TE-  (1 - V)B" 

Adding (B.32) and (B.33.1) the solution for 0 is given by 

1 0 = 	16D pr
3 

4. A'r 

(B.34.4) 

(B.34.5) 

Substituting 0 and (B.3) into (A.12), the moment resultants are given 

by: 

M
r -Pr2 (3 + v) + A'D (1 + v) 16 (B.34.6) 

and 

M 	- Pr2-  (1 + 3v) + A'D (1 + v) 16 (B.34.7) 

These equations (B.34) together with (B.3), (A.5) to (A.8), (A.10) and 

(A.15) form the solution of a solid plate with pressure normal to its 

mid-wall surface; the constant of integration will be determined from 

the boundary conditions. 
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B.2.4 Cylinder  

Referring to Figs. 3 and 4 and observing that axial equilibrium 

has to be satisfied at the junction, the following equation can be 

written: 

W(x = 0) = 4 

which is equivalent to (B.26) when 0 = a.. 
0 

The constant of integration from (A.1) will, therefore, be V = 0, 

thus: 

= 	d W (B.34.1) 

Substituting the well known value of N (= 21) for the pressur- 
, 

ised cylinder, and (B.2) into (A.2) and integrating gives: 
= = 
F = F

1  

where F
1 

is the constant of integration. 

Taking (A.3) with the values of W and F substituted, as well as 

(B.2), and since the membrane definition implies zero bending moment, 

the following result is obtained: 

F-
1 
 = 0 

and hence, 

F = 0 
	

(B.34.2) 

Substituting F into (B.22.2) gives 

(B.3 4 . 3 ) 

These two latter equations have already been pointed out,in Section 

(B.1.4). 

The value of e.  is obtained by substituting the membrane stress 

values(6„i = /,y) into (A.10), with i = T and j = I. Once "e" is 
eP 

known, it can be put into (A.6) giving 

- u . 8d  Et (2 - v) (B.34.4) 
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Since the membrane solutions are known, the complete solution 

(bending + membrane) for the cylinder can now be presented. 

Recalling (B.25) and (B.34.2) the radial force will be given by 

F = ekx(A
1 
 cos k x + A

2 
sin kx) + e-kx(A

3
cos kx + A4  sin kx) 

(B.35.1) 

Substituting (B.2) into (A.2) and using N = pd/2, 
cP 

_d dF N 	+ p 
cp 	2 dx 	2 

Replacing (B.2) and (B.34.1) into (A.4) gives 

N 
4 

(B.35.2) 

(B.35.3) 

Substituting the values of N and N into (A.16) for i = y and 
cP 

j = /, a value of 6 will be obtained, which, substituted into (A.6), 

gives for u: 

d2  dF 
-  u- 4E t ( dx  p 2  p) 

Similarly, recalling (B.22.2) gives 

d
2 

d
2
F 

= 4Et dx2  

(B.35.4) 

(B.35.5) 

Replacing 0 and (B.2) into (A.12), the moment resultants will be 

given by: 

 

1 d3F 
4k4 dx3  (B.35.6) 

and 

M= v M (B.35.7) 

Having been determined, the constants of integration in (3.35.1) 

which are obtained from the boundary conditions, equations(3.35) to-

gether with (A.5) to (A.8), (A.10) and (A.15), form the solution to 

the problem of the pressurised cylindrical shell, as long as the geometry 

is within the conditions of approximation. 



145 

B.3 Constants of Integration  

Since the ends away from the junction are considered to have 

membrane conditions, the edge bending solution at the connection 

(cylinder-sphere intersection) has to diminish away from the junction 

or at some distance from the junction which increases nearer to the 

end with membrane conditions. Therefore in (B.11), (B.15) and (B.25), 

for the sphere, shallow sphere and cylinder, respectively, only the 

terms that die away when the independent variable takes values 

different from the junction value should be taken, e.g. for the cylinder 

in a flush nozzle, Fig. 3, where x = 0 at the junction and xis positive 

only the terms that contain e 
kx should be considered, unless on the 

other end of the cylinder (x =1 , where A is equal to cylinder length), 

some conditions other than membrane conditions were applied. 

The same reasoning can be applied to the sphere and shallow sphere with 

the intention of finding out which terms should be applied to the parti-

cular geometry. 

B.3.1 Flush Nozzle  

Let the flush nozzle, Fig. 3, be considered as a whole. 

B.3.1.1 Cylinder-Sphere Geometry  

Cylinder - x is positive and increasing, therefore, from (B.25), 

the edge value of F may be written as 

F = e kx(A
3 
cos kx + A

4 
sin kx) 
	

(B.36.1) 

Sphere - 0 is negative and increasing, hence, from (B.11), the 

value of w for the edge bending condition may be calculated by 

w  = e 	(C3 
cos X0 + C4 sin X0) 
	

(B.36.2) 

Hence, from equations (B.36), it can be seen that only four 

constants of integration need to be determined from the boundary 

conditions. 
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B.3.1.2 Cylinder-Shallow Sphere Geometry  

As it has been pointed out before in this appendix, when d/2R has 

a small value, which corresponds to a near zero, the solution for the 

shallow sphere should be applied, particularly in cases of high bending 

conditions at the junction, Refs. [1] and [4]. 

Because the shallow sphere has been studied only for 0 near + u/2 

and therefore e positive, the cylinder has to be taken in an opposite 

sense to that of Fig. 3, hence, x is negative and decreasing. 

Cylinder - x is negative and decreasing, so as a consequence of 

(B.25): 

F = e
kx
(A
1 

cos kx + A
2 
sin kx) 
	

(B.37.1) 

Shallow sphere - a positive and increasing, therefore the same 

conditions are found to x (B.16); from (B.17) and (B.18), it can be 

seen that for the shallow sphere, equations (B.18) should be taken. 

These are an approximation to the ker and kei functions, hence for the 

edge bending conditions the solution (B.16) should be taken as 

Fbr = C3  ker' x + C4  kei' X 	(B.37.2) 

B.3.2 Spherical Head  

Referring to Fig. 4, it can be seen that the cylinder has x nega-

tive and the sphere has e negative, but if the shallow sphere solution 

is to be applied, then because 8 was taken near + .n/2, the reverse 

situation will be found, just because of the same reason as that for the 

cylinder-shallow sphere geometry, and therefore x and X are positive. 

B.3.2.1 Cylinder-Sphere Geometry  

Cylinder - x is negative and decreasing, hence the same situation 

will apply to the cylinder as to the cylinder-shallow sphere geometry, 

Section B.3.1.2, and so (B.37.1) should be applied. 
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Sphere - 8 is negative and decreasing, therefore the terms in 

0 
eX  of (B.10) should be applied, henCe 

w = eX0  (C
1 
 cos Xe + C

2 
sin X8) (B.38) 

B.3.2.2 Cylinder-Shallow Sphere Geometry  

Cylinder - x is positive and increasing, so in consequence, it is 

the same case as for the cylinder of the cylinder-sphere geometry of a 

flush nozzle, and therefore (B.36.1) can be applied. 

Shallow sphere - from Section B.3.2, a is positive and decreasing, 

therefore equation (B.17) which is an approximation to ber and bei 

functions, should be applied, hence, from (B.16), the solution for Fbr, 

to the edge bending conditions can be written as follows: 

Fbr = C1  ber'X + C2  bei'x 	(B.39) 

B.3.2.2 Cylinder-Solid Plate Geometry  

The cylinder has the same solution as in section B.3.2.2 but the 

solid plate case does not have damping consideration. 

(B.10), (B.15) and (B.22) having been reduced to their simplest 

forms, and because of the membrane conditions far from the junction, 

it may be seen that each particular intersection case will only need 

four boundary conditions at the connection, since only four constants 

of integration are necessary in order to solve the problem completely. 

B.4 Boundary Conditions for Cylinder-Sphere Intersections  

Referring to Figs. 3 to 5 can be seen that the boundary conditions 

for cylinder-sphere intersections for nozzles, Fig. 3, and heads, Figs. 

4 and 5, can be of displacement and rotation type and as well as of 

forces and moment type. 

In order to obtain geometric continuity at the junction, the radial 

displacement and the rotation there should be equal for the cylinder 

and sphere. Using the subscripts c for the cylinder and s for the sphere 

or plate, these conditions are as follows: 



and 

U = U 
C 	S 

0. = 0 
C 	S 
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(B.40.1) 

(B.40.2) 

In order to satisfy the equilibrium at the junction the radial 

force and meridional bending moment have to be in equilibrium, there-

fore: 

and 

F
s 

M = M 
Id" Ls 

(H.40.3) 

(B.40.5) 

because no extra loads have been considered other than the internal pressure. 

Equations(B.40) are four boundary conditions that can be used in 

order to evaluate the four constants of integration, (A3,A4,C3,C4), 

(A1,A2,C3,C4), (A1,A2,C1,C2), (A3,A4,C1,C2) and (A3,A4,A',13.1 ) respect- 

ively, the first two for the flush cylinder and the last three for 

the spherical head. Hence, it can be seen that a system of linear 

equations has been formed having dimensions [4 x 4] and its solution 

gives the four constants of integration, and hence the complete 

solution can be found. 
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APPENDIX C 

MARCAL'S METHOD FOR ELASTIC-PLASTIC ANALYSIS OF  

SYMMETRICALLY LOADED SHELLS OF REVOLUTION  

Marcal's method has been known as thellstiffness method" Ref. [3], 

[5] and [6], but presently it is called . theutangent modulus method", 

[6], and it has been employed in investigations into small elastic-

plastic deformations in pressure vessels, e.g. in Refs. [7], [8], [9]. 

This method uses the von Mises' criterion and the Prandtl -Reuss. 

equations of plasticity. 

C.1 Partial Stiffness  

Using the Prandtl -Reuss equations in order to write the elastic-

plastic stress-strain increment relationships, the following equation 

may be obtained: 

3 - 	1 	
i/j = L,cp p E 2 a

i 

e 

Denoting the slope of the equivalent stress to equivalent plastic 

strain curve by H', and differentiating the von Mises yield criterion, 

the following equation is obtained: 

tae  H' 5e = 3a' ba + 3a' ba 	 (C.2) 
p A 2 T T 

Defining a one-column matrix of individual stresses and equivalent 

plastic strain increments, {bat ba
cp 
 oe

P 
 1, the equations (C.1), for 

(i = A, j = cp) and (i = cp, j = 2), together with (C.2), may be written 

in a matrix form, thus: 

. 	cy ,  
1 	3 	

— — 

E 	E 	tae  

_ 1 	3 
E 	E 	2 ae  

    

    

    

6a
A  

Sa 
cp 

be 

 

be 
cp 

(C.3) 

- H' 
2 a 	2 a e 	e 

   

0 

 

       

       



and 
o6 	o6 

be  + __a F„ 
t P be A be -- 

9 	c()  

(C.4.2) 
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Since this system of equationsis linear, it can be inverted there-

by giving the increments of the individual stress,and the equivalent 

plastic strain to the individual strain increments. These increments 

can also be written in a partial differential form: 

ba. 	Oa. 
Oa. - 	be. + 	i,j 	,y 

b 	be. (C.4.1) 

because 	a.(e.,e.), 	(e.,e.), 	= L,cp) and 1 	1 	p p 1 3 

e.
1 	

e.(/,z,L). 
 1 

Marcal and Pilgrim [5] call the partial derivatives in (C.4.1) 

"partial stiffnesses"; these may be determined by inverting the matrix 

in (C.3). In the same way, the partial derivatives of the equivalent 

plastic strain in respect of each individual strain can be found. 

C.2 Stiffness Coefficients  

Considering the stress and moment resultants, (Ni,Mi,i = 1,T), 

the following equations may be written: 

oN. 	ON. 

3 
1 

a. 6N. — be. + 	6e. i,j = /7T oe 	oe 	' 
1 

(C.5.1) 

and 
bMi 	OM. 

6M. = 	5e. + 	Se, i,j 	1,y 
be. 	j be.  

(C.5.2) 

Another form of equations(A.7) and (A.8), may be written thus: 

e. = ei  + z O . , i = yoy 	 (c.61 

where 951  
. denotes the in-plane curvature change; therefore comparing 

(C.6) with (A.7) and (A.8), 

0 = 
	 (C.7) 

and 
0   

= sin 0 

9 
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The total increment of the individual strain is given by the sum 

oftheincrementsofthemid-wallstrain.,
1  
e., and of the strain incre- 

ments from the increment of curvature change, 50i, hence using (C.6), 

the total increment is given by: 

6e.a 	5 16. 	z 50. ,  1 
i 1,T 	 (C.8) 

Differentiating the integral form of (A.11) and (A.12) in respect 

to the individual strains, 

results are obtained: 

and substituting (C.4.1), the following 

„h/2 
6N. 	= ba. dz 	with i = /,cp (C.9)  

th/2 
1 

 

and 
h/2 

6M. = a 5u. zdz 	with i = L,cp (C.10)  
—h/2 

Replacing (C.8) 	for i = 1,y, with (C.7) into (C.4.1), the incre- 

ments of the individual stresses in relation to the increment of the 

mid-wall strain, and, to the strains from the increment of the 

curvature change, are given by 

boi 	to% 
i,j L,cp (c.11) 

	

1 be. 1 	a be. 3 
a 

Using (C.11) either for (i = A, j = cp) or (i = cp, j = t), and sub-

stituting into (C.9) and (C.10) with either i = / or i = cp respectively, 

the values of the partial derivatives of the stress and moment resultants 

are given by: 

ON. 	h/2 ba. a 77- dz , i,j =1,,cp 	 (C.12.1) 
be. . 
3 	—h/2u  j 

oN. 

b0. 

,h/2 bai  
zdz, 

—h/2 be.  
i,j = L,cp (C.12.2) 
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and 

h/2 ba. 
1 r 	1 

zdz , i,j = A,T 
63j 	lj-h/2 bej 

(C.13.1) 

bm. 	h/2 ocr. 

b0 f 	
z2dz 

J 	-h/2 bej 
i,i = 	 (C.13.2) 

The partial derivatives on the left hand side of (C.12) and (C.13) 

are known as the "stiffness coefficients", Refs. [4] and [5],and are 

expressed as an integral form of the partial stiffnesses. 

C.4 Transition Elements  

Once the load which causes first yield at any point in the shell 

has been obtained from an elastic analysis, then, using the equations 

explained in Appendix A, together with von Mises yield criterion, the 

procedure consists of adding fractional increments to the first yield 

load. All the other elements, therefore, except the most stressed, 

will undergo, during the incremental loading, an elastic deformation 

and, at a certain stage in the increment action, the deformation will 

become elasto-plastic. Such elements are collectively known as the 

"transition region", Refs. [5], [8] and [9]. Hence, those elements 

that yield during a particular increment will have a partial stiffness 

form in two parts, one elastic and the other elasto-plastic. 

The elastic partial stiffnesses are easily obtained from the 

generalised Hooke's law of elasticity, thus: 

and 

bu. 
be.  - 1- v2 7 	= LIT 

1 

oai. 	
v 2 / 	A j/ .t/cp 

ST 37- 	v 

(C.14) 
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In the transition elements, the strains caused by the next successive 

increment are estimated by making them equal to the previous load incre-

ment and then scaling them to the elastic limit. 

In order to determine these values, the yield stresses of the 

transition elements must be known; when they are, the partial stiff-

nesses can be calculated, by assuming elastic-plastic behaviour. The 

mix partial stiffness at the transition element is given by 

ba. 

be. 
mix.  elastic 

+ (1 - m) 
boi  

be. 
plastic 

(C.15) 

     

        

where m is the scaling factor. 

Usually, the initial value of m is a rough estimate, and the strain 

values produced by the subsequent calculation should be compared with 

the previous estimated values. This process is repeated until a value 

of strain considered to be within an assumed error, as compared with 

the value of the previous iteration, is reached. 

Once the transition elements have passed the elastic yield limit, 

the calculation is made using the stiffness coefficients derived in 

Section C.3, and the partial stiffnesses, Section C.2. 

C.5 Method of Solution  

Once the elastic analysis has been performed using the thin shell 

equation, Appendix A, the first yield load having been found (von Mises 

criterion), the solution of the problem is obtained by making use of 

the incremental form of the thin shell equations, in which the von Mises 

criterion is employed with the partial stiffness or mix partial stiff-

ness, using the stiffness coefficient explained previously in this 

appendix, and each time incrementing the load. 

The numerical solution is obtained by using a step-by-step pre- 

dictor -corrector integration method with Newton-Rophson boundary control. 
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These methods are used as demonstrated in Refs. [3], [5]'and [6], in 

that they are the most suitable for a finite difference solution for 

the elastic-plastic analysis of thin shells. 
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APPENDIX D 

A NON-LINEAR STRAIN DISTRIBUTION THROUGH THE THICKNESS 

OF SYMMETRICALLY LOADED SHELLS OF REVOLUTION 

The assumptions made are the same as those for thin shell theory, 

except that the strain distribution through the wall thickness is 

appraised in the same way as "Winkler's theory of curved beams", Ref. 

[11], p.249, but applied here to symmetrically loaded shells of 

revolution in that region which has ratios of thickness to meridional 

radius larger than 0.1. This approximation, although inconsistent with a 

thin shell theory, gives better results than either this theory, Refs. 

[3] and [9],.or the "O'Conneilmodification" (or the band modification) 

Ref. [8], and Chapters 3 and 4 of this thesis. 

The general case is considered first, then the assumptions con-

cerning ratios of thickness to radius of curvature are introduced. 

Referring to Fig. 2, the angles e before and after deformation 

are, respectively 

0 and 0- 0 

where 0 is the angle through which the mid-wall surface of the shell at 

the corresponding point 0 has rotated; the radial radius r for any 

point on the cross-section 0, isthereforef  r + z cos 0. 

The mid-wall radial radius r, after deformation, becomes r + u, 

r + z cos 0 becomes r + u + z cos (0 - 0), and the meridional radius b 

becomes b + 5 b, hence the mid-wall strain and the strain at any point 

in the thickness, respectively, may be written thus: 

Hoop strain, 

= 
r 

e + Z 0 sin 0 
e - 	(I) 	r  

1 — cos 0 r 

(D.1.1) 

(D.1.2) 



e 
1 + 

- 	dO z d )2,  
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Meridional strain, 

eL  1 du m  
sin 0 d/ 	cot 0  (D.2.1) 

(D.2.2) 

Defining a variable Ui, i = A,T, such that 

with 

and 

U. = C. h, 
1 1 

1 
A b 

C 	cos 0  

i = 1,9 	(D.3.1) 

(D.3.2) 

(D.3.3) 

and defining a function f(Ui) by 

f(U. ) = 2 'U
1  
. ...n ( 1  + Iji \\ 	(D.4.1) 

a.  1 - U. 
i 

or,limitingui toavableoflessthanunity,(U.<1), the function 

f(U.)can be written in a series form by 

2 
2 U.

n+1  
f(U.) = n-1 2n + 1 

(D.4.2) 

Because the values of the following integrals are required for the 

calculation of the stress and moment resultants, as functions of e , 
A 

e and 0, they are presented here, but without the use of the index i: 

f+h dz 	1 

-h 1 + Cz 	
C [2U - f(U)] J  (D.5.1) 

j zdz 1 
-h 1 + Cz 	

f(U) (D.5.2) 
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th
z2dz 	1 

	

-h 1 + Cz 	f(U)  

Integrating ei, i = 1,y, with respect to z, 

• 1 	1 
dz - e — C. (2U - f(U ) + 0 — f(U i) -J ei 	[ 	i 	i 

-h 	1  

ande.z, i = 1,T, with respect to z, 
1 

e•1zdz 	1 	1 C2 f(U1) - 0. --1  - f(U.) 
1 

(D.5.3) 

(D.6.1) 

(D.6,.2) 

where0.1
,i = /,T, is given by 

00 
01 d/ = — 	 (D.7.1) 

0 _ 
sin 0 0 
	 (D.7.2) 

Y 	r 

as used in Appendix C, (C.7). 

The stress resultants are given by 

N. 
. = I cr1 .clz  -h 

and the moment resultants by 

+h 
M. = 	a. zdz, 	= 

-h 

However, from the generalised Hooke's law 

a. -1 - v2 
(e. +v e.), 	= 1,cp 

therefore, using (D.6), the following expressions can be deduced for 

N. and M., i = /,T, respectively: 
1 	1 
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1 
Ni 
 . 1 	V2 	

C [2.1.1 	f(U,.)] -+ 0i 1 — f(U.) . 	i 

(D.8.1) 

1 
+ 	+ . -7,rf(u.)) 

3 C. 	3 	3 	ui  

and 

1 M. = 1 _ v2 ei  ET f(Ui
) _ 0.  -1_ f(Ui) 

(D.8.2) 

+ v 	-I--- f(U.) - O. 	f(U )) 
3 

with i,j = /,T. 

If the assumptions of Ui  <<.1 for i = / and i = y, the linear strain 

distribution assumption, are made,(D.8.1) and (D.8.2) accordingly gener-

ate equations (A.11) and (A.12). 

Since geometries possessing small radii of curvature are the knuckle 

regions in either radial nozzles or heads, the following assumptions are 

made, as in Ref. [3]: 

cos 0  

	

h << 1 	 (D.9.1) 

and 

< 1 	 (D.9.2) 

When 8 is near to mi2, near the axis of symmetry, condition (D.9.1) is 

not satisfied and the following expressions should not therefore be 

applied, e.g. cone part near the vortex. 

The radial radius is assumed to be of the form 

r a + b cos 0 

where a and b are constants for each particular shell element as in the 

computer programs used in this work, and hence b is the meridional radius 

of the shell element. 



and 

- 2b2  (11-- 3  (b)
3 
 eL 2n+ 1 	

-b 
 

h 2n+1 
(b) 
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Introducing (D.4.2) and conditions (D.9) into (D.8.1), with, 

respectively, i = 1, j = y and i = cp, j = 1, the following equations 

are obtained: 

oo 	h 2n+1 

N = 	
E  

1v3
2hre + veep) + 2b 	- b 	

J 
] 

2n 	+ 1 \ / 	d/ 
n=1 

(D.10.1) 

and 

co (b)2n+1 

N
y 1 v

2
2h (e

Y 
 + ve

A 
 ) + 2vb _ 

2n + 1 (,e, - b  13-4) 
b  (D.10.2) (e cp  

. 	 n=1 

Using the same procedure as with the equations of (D.10), but now 

with (D.8.2), the following expressions are obtained for M and M 
cP 

respectively: 

M _  E 	[2h3  (d0 	sin 0 
A 1 - v2  3 VII v  r 

(D.11.1) 

E 	2h3 (sin 0 	4.  
Nip 1 - v2  3 	r 	d/ 

co 	h 2n+1 	(D.11.1) 

- 2vb2  (1  (11b )3  3 	2n + 1 	A 	d/ ) - b -21] (171)  

n=2 

Comparing 	(D.10) with (A.11), and (D.11) with (A.12), it can 

be seen that the new values of N
/' 

N
y
, 	and M receive further con- 

y 
dO 

tributions from eL 
	d and  ' 
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The derivative of M in respect to L  is necessary in equation (A.3), 

3 
co h 2n+1 

2  
dM1 2Eb 	 () 

c1 7 b 	0 
d L  - 1 - v2  [ L 2n + 1 1 d/2  

n=1 

co 

+ 2Eb3 	1 (1 	 + 1)3  v sin 0 	17 	(12 ) 2n og  li.  

	

1 - v2 	3 b 	r 	13- b " d/ 
n=1 

[ 2Eb3 	l' h 3 C d(sin 0 ) 	sin's 0 	h2  sine + T _.--.---N-T 7 (,-) 
D 	r dL 	- v --7---2  ) + v 	r--13°  

co 	 0 	(L)  2n+1 d-- 

	

- 2Eb3
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E (- 
h )  2n 	:1 	b 	,e, 

1 — 	 "e + - E b 	/ b 	2n + 1 	d/ 
n=1 	 n.1 

dM 
From (A.3), substituting M , M , (i 4- and f(b) from (D.4.2), and 

using f'4:17) as the derivation of f in respect to 11-), the following 

expression is obtained: 

d28 	1  (—b)3 ( 
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h 3  

	

[ (-) 	 2 

	

+ .1 117-  CrV 
cos 6  a - 

si
/12

0 ),I. 
4- 

 sin 0  0 
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Substituting N from (D.10.2) into (A.2) the following equation 

is obtained for the derivation of F in respect to L; 

dF 	sin 	2Eh v
2  r 
1 

"cri = 	r  - p cos 0 + 1 	
(-e
T 
 + vet ) - 2hX 

1 
2Eh 	h 
y2 

1 
r 
f(T) (e-  - (D.14) 

Comparing (D.14) and (D.13), with (A.2.1) and (A.14), respectively, 

dO 
it can be seen that an extra contribution from e and d — is obtained A 

for the former equations due to the assumption of a non-linear strain 

distribution. (D.14) and (D.13) will, therefore, replace (A.2.1) and 

(A.14) in a numerical analysis, when the 2h/p .C.1 assumption of the 

meridional plane of thin shell theory is not fulfilled as regards the 

linear strain distribution through the thickness. The same applies to 

(D.10) and (D.11), in relation to (A.11) and (A.12) respectively. 

When an elastic-plastic analysis is carried out using the method 

described in Appendix C, the procedure is exactly the same, except 

that the incremental form of the equations is used. 

For more details of this modification see Ref. [3]. 
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ABSTRACT 

Elastic-plastic computations are described for cylindri-
cal nozzle•on-sphere junctions. Various geometrical details 
of the junction are examined to ensure that results for 
shakedown and collapse are not greatly affected by such 
differences of detail. Brief comparison is made of com-
puted plastic strain and previously determined experi-
mental results on a head, to verify the general reasonable-
ness of the results. The effect of work hardening is studied 
with particular referenCe to the assumption of how the 
range of stress available for shakedown can best be repre-
sented, and how incipient collapse best defined. A range 
of nozzle to sphere diameters is then studied. The results 
show that the details of geometry have little effect on 
shakedown or collapse. It is concluded that the most 
realistic model for work hardening implies a translation 
rather than expansion of the yield surface and that, except 
for cases with low stress concentration, the effect of work 
hardening on shakedown and collapse is small, and that 
for such low stress concentrations, incipient collapse may 
precede shakedown. 

NOMENCLATURE 

d 	mean diameter of cylindrical nozzle 

mean diameter of spherical vessel 

kr 	stress concentration factor; ratio of maximum 
von Mises equivalent stress to membrane equivalent 
stress (SC17) 

k1* stress concentration factor; ratio of maximum shear 
stress to membrane shear stress. The * notation 
also applies to k2  and k3  

k2 	ratio of shakedown pressure to membrane yield 
stress (=P:Ik i) 

k3 	ratio of collapse pressure to membrane yield stress 
(=Pcx  

P 	internal pressure 

Py 	pressure for first yield anywhere in the vessel 

PP ratio of collapse pressure to first yield pressure 

Psx ratio of shakedown pressure to first yield pressure 

r 	radius of toroidal knuckle 

t 	thickness of cylindrical nozzle 

T 	thickness of spherical vessel 

omx ratio of meridional stress to yield or proof stress 

ocx ratio of circumferential stress to yield or proof 
stress 

w .nozzle parameter (Ref. 20) dIV2157 

ABBREVIATIONS (FOR FURTHER DETAILS SEE 
TEXT) 
In connection with shakedown based on: — 

SEM elastic calculations by the method of Macfarlane 
and Findlay (Ref. 7) 

SEL elastic calculations from Leckie (Ref. 20) 

SPC elastic-plastic computations with the ellipse of 
yielding moving along the path of the elastic stress 
ratios 

SPT elastic plastic computations with the ellipse of 
yielding moving along the radius to the actual stress 
point considered 
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SPW elastic plastic computations with the ellipse of 
yielding increasing in size with work hardening. 

Note: Case SPT is used for values of k2  Tables 3 and 6. 

In connection with incipient collapse: Intersection of the 
elastic line with the tangent drawn to a particular point 
on a given curve defined by: - 

C31 a line of one third the elastic slope intersecting an 
individual strain curve 

C3E a line of one third the elastic slope intersecting an 
equivalent strain curve 

C3D a line of one third the elastic slope intersecting the 
overal deflection curve 

based on the pressure to cause: - 

051 0.5 percent individual maximum strain on the out-
side surface 

C5E 0.5 percent equivalent maximum strain on the out-
side surface 

Note: Criterion CSI is used for values of k, Tables 2 and 4. 

INTRODUCTION 

The practice of allowing a small amount of plastic flow 
to occur early in the life of a vessel is well established. The 
amount of plastic flow is restricted by the need to avoid 
one or more of three possible modes of behavior; plas-
ticity sufficiently gross in either magnitude or extent to 
lead to bursting or plastic collapse of a major feature of 
the vessel; cumulative increments of small scale plasticity 
leading to incremental collapse or "ratcheting"; alternating 
plastic flow leading to low cycle fatigue. Other modes of 
failure such as thermal and conventional high cycle fatigue, 
creep, corrosion and brittle fracture have to be guarded 
against, of course, but these are outside the scope of the 
present paper. In considering the extent of plastic flow 
permissible, it is convenient to distinguish three loosely 
defined regions of a vessel; general shell or membrane 
regions, extensive features of well defined geometry, such 
as end closures, and local features often with a geometry 
only defined nominally, such as nozzle details or rein-
forcing rings. Collapse of a vessel shell or head, or small 
scale plasticity leading to either incremental collapse or 
fatigue in a region of stress concentration are the primary 
features to be avoided. The former might occur on a 
single overload and the latter from a few thousand re-
peated loadings to design pressure. 

Although in thick walled vessels, and even in certain 
cases of thin walled vessels such as gas pipe lines and some 
containment vessels made of very rapidly work hardening 
material [I] the main shell is deliberately taken beyond  

yield, for most vessels and materials the attainment of 
general yield in the shell or head is an obvious design 
point often limiting in itself or at least providing a "stake 
point" from which to proceed carefully. At such a point 
the membrane regions of a vessel are protected from 
bursting by work hardening. Where collapse may set in 
from bending action, subsequent changes in geometry 
may delay the onset of complete collapse. The normal 
method of predicting general yield is to assess the collapse 
level by lilnit analysis using the original shape [2] , [3] to 
determine upper and lower bounds of load in between 
which collapse of the component must occur, in the 
absence of work hardening or changes in geometry. The 
effect of changes in geometry in increasing the limit pres-
sure of some nozzles has also been studied [4] . 

A great advantage of this method is that the real pattern 
of plastic flow leading to collapse need not be considered 
so that estimates of the lower bounds can be made from 
elastic solutions and of the upper bound from any plausi-
ble (but not necessarily correct) deformation pattern that 
can be envisaged. 

Incremental collapse or low cycle fatigue are in prin-
ciple cycle dependent and must be so treated if a limited 
life design is proposed. For many purposes an assurance 
of avoidance of these'  roblems is preferred since some 
small degree of conservatism gives a certain latitute for 
the acceptability of unknowns in the anticipated service 
experience of the vessel. In these circumstances the 
concept of shakedown [5] or the settlement of a com-
ponent to entirely elastic behavior after some initial 
excursion into the plastic region, has become an accepted 
criterion. Although the principle is clear in allowing ma-
terial to experience only a cycle of stress between tensile 
and compressive yield and thereby remain entirely elastic, 
the concept becomes blurred when details of the process 
are considered. Predictions can again be based on an ex-
tension' of elastic solutions [6] , [7] , thus avoiding the 
complexities of plastic analysis but some doubt exists on 
how far such solutions might be affected by work harden-
ing, and the detail of the analysis used to determine the 
elastic stress concentration factors. 

The object of the present paper is to extend the study 
of these two modes of behavior, collapse and shakedown, 
by means of an elastic-plastic computer program. Earlier 
work [8] , [9] , [10], [11] has shown the general feasi-
bility of such studies and confirmed their reasonableness 
in the broadest terms but it must be clear that only con-
tinued experimentation and service experience can finally 
confirm the correctness or otherwise of the predictions. 
Wh:reas confidence in prediction of elastic shell theory, 
whether applied by numerical or algehraic analysis, has 
been established against much carefully controlled experi-
mental work [for example, 12] and its limitations gener- 
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ally appreciated, there is far less evidence against which 
to judge the results of detailed elastic-plastic computa-
tions, and any divergences noted between calculation and 
experiment may be attributed either to inherent weak-
nesses in the computations per se or to differences in the 
assumed and real modes of plastic deformation. It is thus 
necessary to attempt to establish confidence in the com-
putational method, by detailed comparisons where avail-
able, and thus infer the general reasonableness of the more 
widespread predictions which are the object of the present 
study. 

OUTLINE OF THE METHODS USED 

The computer program used is a development of that 
described Ref. 13, which was itself used for some of the 
studies already referenced [8] , [9] , [10] . Conventional 
small displacement shell theory is assumed expressed in 
terms of circumferential and meridional bending and 
direct stress resultants. The von Mises yield criterion is 
assumed with the Prandtl-Reuss equations for incremental 
plastic flow, allowing either non-work hardening or work 
hardening behavior to be expressed. The program is 
restricted to axial symmetry, and original geometry. Each 
element of a shell structure is divided into numbered steps 
convenient for the application of a Riinge-Kutta forward 
integration method starting from a junction. The whole 
solution is first, worked elastically, scaled to first yield, 
and then extended in increments such as 0.1 of first yield 
load. 

The developments from Ref. 13 include a "thick 
curved bar" theory for treating knuckles of small radius 
of curvature [14] , [15] . This approximation allows an 
elastic stress pattern to develop, non linear across the 
thickness (as in Winkler's theory for curved bars), but 
still ignores shear and through thickness deformations. 
The original program included elements tapering in thick-
ness and a previous modification [8] allowed the forces at 
a "square corner" intersection to be distributed as bands 
of loading over a finite width of shell (equal say to the 
thickness of the shell wall plus a filet weld) rather than 
the point or line load of conventional shell theory. Thus 
three representations of a nozzle junction can be made; a 
simple intersection as is conventional shell theory, a dis-
tributed band load and a small filet of specified mean 
radius and taper. It is not to be expected that simple shell 
theory can predict reasonable local stresses and strains at 
a discontinuity in shape and it was pointed out Ref. 8 
that a realistic collapse behavior for such discontinuities 
could not be obtained without recourse to the band load 
model. To the extent that the "thick curved bar" treat-
ment is adequate, the curved and tapered corner can be  

fitted to a specifie.d real curved junction or used as an 
arbitrary approximation to a nominal or unspecified 
corner detail. One of the objects of the present study was 
to determine the extent to which such variations in as-
sumed geometry of detail affected predictions of collapse 
or shakedown of adjacent regions. 

A second improvement of the program is the better 
representation or work hardening and departure from 
linearity at a proof stress, appropriate to materials with-
out a distinct yield point, either by an exponential or 
power formula of the type a = a (1 + b ep)0  where 5, &I, 
are the von Mises equivalent stress and equivalent plastic 
strain and a, b, c are constants over some range of a stress 
strain curve. Several such representations can be joined 
together where a particular stress and strain Curve is 
closely known. 

COMPARISON BETWEEN SOME COMPUTED 
AND EXPERIMENTAL RESULTS 

The general validity of the computed values of plastic 
strain and deflection were shown Ref. 10, in which com-
parison was made with strain gage measurements on the 
tori-spherical head of a stainless steel test vessel. As re-
marked Ref. 10, the degree of detail agreement achieved 
was not as close as for elastic analyses, where Ref. 12 and 
much previous work suggested differences from shell 
theory might be of the order of 12 percent for reasons of 
departure from the nominal geometry of the vessel. Fig. 1 
shows the improved agreement, now to within about 10 
percent in prdssure, based on experimental values of first 
yield pressure, or within 5 percent based on first yield 
calculated from tensile test data. This latter close agree-
ment reflects the better representation of proof stress now 
possible with the better description of the stress-strain 
curve. Values of the pressure for incipient collapse as de-
fined Ref. 10 (by backward extrapolation of the tangent 
from the point defined by a line giving 1/3 of the initial 
elastic slope) are marked on Fig. 1. It should be recalled 
that the stainless steel used showed a rapid work harden. 
ing with no distinct yield point and clearly the previous 
"best fit" available, which matched stresses of around 2 
percent strain with an under estimate of stress for smaller 
plastic strains and an over estimate of the proof stress, was 
not in fact a very good compromise. There is a similar im-
provement in all the other detailed stress-strain-displace-
ment records re-studied from these tests, leading to the 
belief that the computed results are more numerically 
realistic than previously realised, at least for smooth shell 
regions of a vessel. In the absence of a corresponding 
detailed study of strain distributions in a specified nozzle 
shape (in which matters such as the difference in stress-
strain behavior of the parent shell and weld metal might 
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FIG. 1 COMPARISON OF EXPERIMENTAL AND COMPUTED 
ELASTIC-PLASTIC STRAINS ON A PRESSURE 
VESSEL HEAD 

FIG. 2 DETAILS OF NOZZLE JUNCTION AS USED FOR 
COMPUTATIONS OF NOZZLES TYPE C 

also be relevant) some uncertainty must of course remain 
over the accuracy of the present program for such regions. 

COMPUTATION ON SOME NOZZLE GEOMETRIES 

Two main sets of elastic-plastic computations have 
been conducted on radial nozzles with closed ends sub-
jected to internal pressure. In the first set, Series C, a 
nozzle of thickness t, diameter d, set in a sphere D = 5d, 
thickness T = 2t = D/100 has been examined for various 
junction details (Fig. 2). For each detail certain quan-
tities are tabulated, Table 1. The elastic stress concentra-
tion factor (SCF) based on von Mises equivalent stress is 
given according to conventional shell theory, except when 
the local radius of curvature is small when the Winkler 
type modification already described is used [14, 15]. The 
SCF is quoted as the ratio of local stress to the membrane 
meridional or hoop stress in the sphere. Since these equal 
the von Mises equivalent stress this ratio also equals the 
ratio of membrane yield pressure in the sphere to first 
yield pressure anywhere in the structure. 

Table I. Nozzle details: Series C. w = 1.41 

Geometry Parameters and SCE for • 
drn = .2; TM .01; r/T = .5 

Ref. 2rld Taper 
Type k, 

Cl .015 A 4.91 
C2 .015 B 4.96 
C3 .015 F 4.88 
C4 .045 A 3.21 

Value from Ref. 20: k,*  = 4.3 

Table 2. Nondimensional collapse pressures, Pcx and k 3 : 
Series C 

Collapse Criteria 
Ref. 

C3I 	C3E 	C3D 	C5I C5E 
k, 

CI 1.83 	1.84 	2.31 	2.31 2.13 .47 
C2 1.89' 	1.92 	2.45 	2.33 2.17 .47 

M 1.93 	2.06 	2.37 	2.31 2.18 .47 
CI 

R 1.9 	1.87 	 2.28 2.12 .47 
C4 1.49 	1.55 	1.64 	1.88 1.76 .59 

Value from Ref. 20: Pc = 2.15 k 3*  = .5 

Values of the incipient collapse pressure are given, 
Table 2, according to the three definitions used.in Ref. 10. 
Two of these are based arbitrarily on the intersection of 
the elastic line with a backward tangent drawn to the load-
ing curve at a certain point. The loading curve used is 
firstly overall deflection v load, or secondly, maximum 
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strain v load and in either case the point at which the 
tangent is constructed is defined by the intersection of 
the loading curve with a straight line drawn from the 
origin with a slope one third of the elastic line, Fig. 1. The 
third criterion is the value of load obtained for a maximum 
strain of 0.5 percent on the outside surface. A feature of 
this last criterion is that it can be measured during a test 
of a vessel, although there may be a problem of where to 
take measurements since the point of maximum strain can 
change its location along the vessel wall as plasticity 
spreads. The last two criteria can be based either on indi-
vidual circumferential or meridional strain — this is clearly 
simpler for experimental work — or more logically on a 
von Mises equivalent strain basis. Both values are tabulated, 
Table 2. 

Values of the shakedown pressure are given according 
to several criteria described below, Table 3. Some typical 
dimensionless pressure-maximum strain curves are shown 
Fig. 3 for a work hardening curve a = 13.3 (I + 133  e-00.269 

representative of mild steel ignoring the horizontal discon-
tinuity at first yield. 

MAX. INDIV. STRAIN 

FIG. 3 COMPOSITE CURVES OF MAXIMUM COMPUTED 
STRAIN AGAINST PRESSURE FOR SEVERAL 
NOZZLE JUNCTION DETAILS 

.5 	1.0 	1.5 	% 
MAX. INDIV. STRAIN 

FIG. 4 COMPOSITE CURVES OF MAXIMUM COMPUTED 
STRAIN AGAINST PRESSURE FOR A SERIES OF 
NOZZLE TO SPHERE DIAMETER RATIOS 

A second set of similar results, Series N, is shown in 
Tables 5, 6 and 7 for a given sphere, diameter D, thickness 
T= D/200, cylinder thickness t = T. Various ratios of 
sphere to cylinder diameter Dld from 20 to 4 were used 
with constant knuckle radius r :--- D/40. The variation of 
maximum strain with nozzle diameter ratio is shown Fig. 
4 as a series of composite curves against load. 

Elastic — perfectly plastic material has also been con-
sidered for the cases C3, NI and N5, to show the effect of 
lack of work hardening. The variation of maximum strain 
with the two different materials is shown (Figs. 3 & 5) 
and the values for Pcx, Pr are tabulated in the correspond-
ing Tables 5 and 6:  

PLASTIC FLOW, WORK HARDENING, SHAKEDOWN 
AND COLLAPSE 

For the most highly stressed point in each of four 
nozzles, series N, the stress path up to and beyond first 
yield has been plotted, Fig. 6, in terms of circumferential 
and meridional stress ratios, for inside, outside and mid-
wall surfaces. 

For small values of SCF (Case NI) the internal path 
moves anticlockwise around the ellipse to a very small 
extent (not visible to the scale of Fig. 6) for pressures up 
to some 25 percent above first yield and then moves clock- 
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wise for higher pressures (a1  Fig. 6). For rather higher 
SCF (case N2) the same effect is noted up to about 10 
percent above first yield. For yet higher SCF. (cases N3, 
N5) the stress path moves clockwise around the ellipse 
from the instant of first yield (e.g. a5  Fig. 6). The near 
stationary value of the stress ratios for appreciable in-
crease of pressure occurs when only the first region of 
stress concentration is yielding but when a second adjacent 
stress peak yields, the clockwise movement of the stress 
ratios begins as just described. In all the cases studied, first 
yield is on an inside face, with the second nearby yielding 
on the outside face, both clearly in bending modes. 

The next tendency for the stress ratios to move anti 
clockwise (Fig. 6, b i ...b s ) appears at a pressure when 
the region of plasticity begins to spread greatly compared 
with initial zone of small extent. This tendency is more 
marked for the cases with small SCF (e.g. case 1 rather 
than case 5) as can be seen in Fig. 6. 

Another observation that can be made from Fig. 6 is 
that when the SCF is small, a larger degree of work-
hardening will be necessary to obtain a given level of 
nondimensional loading P/Py. The locus 111)y = 2 is 
shown chain dotted in Fig. 6. 

The fact that the stress ratio changes, is of course well 
known, but can here be followed quantitatively. The varia- 

MAX. INDIV. STRAIN 

FIG.5 THE EFFECT OF WORK HARDENING ON THE 
COMPUTED VALUES OF MAXIMUM STRAIN IN 
TWO NOZZLES 

FIG.6 ELASTIC-PLASTIC STRESS PATHS FOR A SERIES 
OF NOZZLES BEYOND FIRST YIELD IN A WORK 
HARDENING MATERIAL 

• tion of such ratios increases with SCF especially in the 
regions a l  ....as , Fig. 6. 

Probably this second change in the direction of the 
movement around the ellipse can be considered as the 
beginning of collapse, since it is the rapid spreading of 
membrane yield to areas of the sphere adjacent to the 
nozzle which is' causing this re-distribution of stress. 

Another typical biaxial stress field is shown Fig. 7, for 
the cross section that contains the most highly stressed 
point of nozzle N5 for both work hardening and elastic-
perfectly plastic cases. In both, the most highly stressed 
point follows a linear path, such as curve A, Fig. 7 until 
the yield criterion is reached. If the material is treated as 
non-workhardening, the stress path after yielding will be 
around the ellipse and will he such as curve B1, Fig. 7, or 
if workhardening, along some line following the increasing 
size of the workhardening ellipse, such as B2, Fig. 7. 

After yielding, anywhere in the structure, the linearity 
of a stress path cannot be assumed. As the yielding be- 
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comes more extensive the direction of movement of the 
stress ratio for a point which is still elastic may change, 
sometimes reversing an original direction of movement. 
This non-linearity of the elastic region of the structure 
may be interpreted as the re-distributing the elastic stresses 
caused by yielding of adjacent points of the structure. 

For the case shown, Fig. 7, the change in stress ratio - 
leads to a reduction of the highest pressure for shake-
down because the length of the unloading path available 
decreases from twice A to some lesser value, path D. 

If workhardening is included a question arises on what 
unloading path should be permitted. It is generally recog-
nised that reversal of stress causes a reduction in the yield 
stress in the reversed direction of flow such that ultimately 
a settled cyclic yield stress curve may be defined [16] . 
Such a curve usually lies above the curve for original load-
ing of a material in the soft condition but may in fact lie 
below that (i.e. work softening) obtained from an initially 
hardened material, even if the hardening is by thermal 
rather than mechanical treatment [17]. 

The number of cycles to reach this settled state is in 
most cases not large in relation to the number of cycles to 
cause low cycle fatigue, but even if only 50 or 80, is per-
haps rather more than normally envisaged for shakedown 
to occur. If known, however, the settled cyclic curve 
would appear to be the rational one at which to aim,  

although the development of it under biaxial stresses, 
some components of which may not completely reverse 
under repeated (one way) pressurisation, has not been 
well documented as far as the authors are aware. 

In the present work the calculations of shakedown have 
therefore been based on one of three assumptions. The 
first is that the work hardening ellipse simply grows ac-
cording to the load used. As just explained, if that law is 
taken to represent a conventional uniaxial stress-strain 
curve then the stress range of twice the workhardened 
yield stress available between yielding in one direction 
and the other will be an over statement of the real situa-
tion and the calculation unconservative in most cases. If 
the curve is fitted to (or here simply taken to represent) a 
settled cyclic curve rather than an original uniaxial one 
then the stress ranges implied may be realistic. In the 
second and third cases alternative assumptions akin to 
Prager's "sliding pin" model [18] are used, to allow the 
ellipse of yielding to remain at its original size but trans-
late with axes kept parallel (initial principal direction re-
main the same). In the second case the translation is along 
A, Fig. 7, the elastic path to first yield, until the ellipse 
passes through the stress point for the increment (such as 
increment 8, on curve B2, Fig. 7) being considered. This 
second case has proved sometimes to be unrealistic for the 
cases when the stress ratio moves round the ellipse to a 
point remote from the extension of A at the particular 
load considered. In the third case the translation of the 
ellipse is along the radius C to the stress point for the 
increment in question, Fig. 7. The second is slightly more 
conservative in the cases presented but the third seems 
more reasonable intuitively. It may be noted that for 
some of the cases studied the point of which the structure 
first yields does not remain the critical point for shake-
down or for collapse, particularly for cases with small 
SCE. Thus the development of the plastic zone has to be 
watched carefully on both inner and outer faces if the 
worst condition is to be monitored. 

DISCUSSION OF RESULTS 

The values of SCF, Table 1. based on equivalent 
stresses show a negligible variation for the different con-
nection details, but a reduction of some 30 percent as can 
be expected for the larger knuckle radius, case C4. If a 
comparison is made with the meridional SCF obtained 
supposing a flush cylinder on sphere. (20), it can be seen 
that the values of SCF for Cl to C3 nozzles are higher by 
about 15 percent, but the case C4 nozzle is lower by 
some 25 percent. It may be noted that the calculated SCF 
based on equivalent stresses for a flush nozzle is substan-
tially higher at 6.5. The values of non-dimensional collapse 
pressures are compared, Table 2, for the various nozzle 
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details, Series C, and the several collapse criteria adopted, 
firstly as a ratio to first yield pressure. For a given nozzle 
detail, the criteria differ by ± 15 percent. In general the 
maximum value of collapse is given by the C5I or C3D 
criteria. The difference between nozzles Cl to C3 and 
nozzles C4 again reflects the differences between the 
values of knuckle radius - the larger radius gives collapse 
pressure ratios some 25 percent lower. The overall 
collapse factor (i.e. ratio to membrane yield, not to first 
yield) is shown in the final column, k3  Table 2. It increases, 
of course, as SCF decreases, and is here based on method 
CM. 

Comparison of the collapse ratios Pcx, Table 2, with 
the value of a limit pressure obtained from Ref. 20 shows 
a variation of about ± 10 percent for nozzles Cl to C3 ac-
cording to the criterion used, with present values some 
25 percent lower for the case of nozzle C4. It will be re-
called that, for all cases except C3R, a work hardening 
material has been assumed. Comparing C3M (work 
hardening) with C3R (nonwork hardening) an increase of 
collapse pressure of only some 2-3 percent is found by 
the inclusion of work hardening. Values of k, for nozzles 
C1- C3, here inclusive of work hardening fall 5 percent 
below the nonwork hardening value from Ref. 20. 

The shakedown ratios Pcx for nozzles C r  to C3, Table 
3, are very close to the value 2 that can be obtained from 
Ref. 20. Case CI gives values slightly smaller (5 percent) 
than the other two cases perhaps because the highest 

Table 3. Nondimensional shakedown pressures, 
P: and k 2 : Series C 

Shakedown Criteria 
Ref. 

SE/s1 	SPC 	SPT 	SPW 

Cl 	1.98 	1.86 	1.87 	1.96 	.38 
C2 	1.96 	2. 	2. 	2.09 	.4 
C3 M 2. 	1.97 	1.97 	2.09 	.4 

Value from Ref. 20: II = 2. kj = 

Table 4. Nozzle details: Series N. w = 10 dID 

Geometry Parameters and SCE' for 
T/D = .00.5; 2r/D= .05; :IT =1 

Ref. 	d/D 	Torus Angle 	k, 	k,* 

	

.05 	8e5 	1.79 

	

.10 	8r8 	2.18 

	

.15 	79'0 	2.63 

	

.20 	76!2 	3.08 

	

.25 	734 	3.55  

stressed region on nozzles C2 and C3 is smaller than on 
nozzle Cl. The values of shakedown for nozzle C4, for 
methods SPC and SPT (where the ellipse of yielding 
translates but does not expand) are again smaller than 
Cl but by only 1-2 percent, i.e. some 9 percent below the 
value of 2 from Ref. 20. 

For all nozzles, method SPW (allowing the ellipse of 
yielding to expand uniformly to accommodate work 
hardening) gives the highest values for shakedown but 
still within the region -±4, percent of the value 2 except for 
nozzle D where the effects of lower SCF and the SPW 
model of work hardening combine to give a value in 
excess of 2.28. The final column, Table 3, expresses the 
factor k2  for shakedown in relation to membrane yield 
rather than first yield, based on method SPT. Despite 
work hardening, k2  is some 20 percent less than kx 
[Ref. 20] for Cr  to C3. 

In summary, the different connection details make 
negligible effect on stress concentration, shakedown or 
collapse (i.e. less than 5 percent). A larger knuckle radius 
reduces SCF, reduces collapse and affects shakedown 
according to the model used for work hardening. Work 
hardening itself has surprisingly little effect (e.g. 5 percent) 
on incipient collapse as defined here or on shakedown 
with any but the least conservative (expanding ellipse) 
model for cases with low SCF. 

The results of the calculations for series N having 
various ratios of nozzle to sphere diameter, are shown 
Table 4, dimensions and SCF, and Table 5, collapse. 
If the values of SCF are plotted against diameter ratio, all 
the five points for the series N nozzles fall on a straight 
line, (not shown). The SCF value, Table 4, can be com-
pared with the values obtained from Ref. 20 treating the 
nozzles of serial N as flush cylinders on sphere of equal 
thickness. The present results are some 20-30 percent 
lower. 

The values of collapse for all nozzles Ni to N5, Table 
5, are within a margin of ± 10 percent of an average value. 
Comparing Table 4 with Table 5 it can be seen that the 
collapse value as here defined, increases with SCF value, 
as is well known, the nozzles (e.g. N5, N4) with SCF 
higher by a factor of about 2 having collapse pressures 
some 10 percent higher. The values of collapse for criteria 
C3I, C3E, C3D arc smaller than the values of C51 and C5E 
by about 10-15 percent. The effect of non-workhardening 
(NIR and N5R) or work hardening (NIM and N5M) is 
again not more than 5 percent. The greatest plastic strain 
is internal for N3-N5 (high SCF) but external for Ni and 
N2 (low SCF). 

For all the cases studied, C51 gives the highest value for 
incipient collapse, and from Fig. 5 it is seen that for non-
work hardening materials this pressure is near actual col-
lapse. The nonhardening results fall 10 percent below 

R 	2. 	**** 	1.97 	**** 	.4  
C4 	2. 	1.81 	1.85 	>2.28 	.59 

NI 
N2 
N3 
N4 
N5 

2.2 
3.1 
3.9 
4.7 
5.4 
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Ref. 20 for low SCF (NIR) and equal to it for high SCF 
(N5R). Inclusion of work hardening gives results for 5 
percent below (NI) to 8 percent above (N5) Ref. 20 but 
the rising slopes of curves a and e Fig. 5, and for nozzles 
C Fig. 3, suggest that denoting collapse by a larger strain 
of 1 or 1.5 percent (as Ref. 8) to give PAY some 10 percent 
higher might be acceptable for the degree of work harden-
ing used here. 

Table 5. Nondimensional collapse pressures, Pcx and k 3: 
Series N 

Ref. 
Collapse Criteria 

C31 C3E C3D C5I CSE k3  Ic 3* 

M 1.42 1.44 1.41 1.62 1.56 .91 .94 
N1 

R 1.39 1.4 1.37 1.52 1.5 .85 .94 
N2 1.44 1.44 1.47 1.69 1.6 .78 .77 
N3 1.48 1.48 1.52 1.76 1.64 .67 .63 
N4 1.48 1.48 1.57 1.80 1.67 .58 .54 

M 1.5 1.49 1.6 1.84 1.7 .52 .48 
N5 

R 1.49 1.49 1.57 1.7 1.63 .48 .48 

Table 6. Nondimensional shakedown pressures, l'sx and 
k2 : Series N 

Ref. 
Shakedown Criteria 

SEM SPC SPT SPIV k, k,* 

M 1.78 1.8 1.9 1.96 1.06 .79 
Ni 

R 1.78 *** 1.56 *** .87 .79 
N2 1.97 1.74 1.83 2.25 .84 .65 
N3 2. 1.76 1.84 2.45 .7 .52 
N4 2. 1.74 1.83 >2.2 .59 .43 

Df 2. 1.77 1.82 2.88 .51 .38 
N5 

2. *** 1.76 *** .5 .38 

In Table 6, the values of shakedown for nozzle N1 to 
NS are compared by the different criteria used, as ex-
plained earlier in the paper. The minimum value obtained 
by an application of Macfarlane and Findlay [7] graphical 
adaptation of Leckie's method [6], is taken at the cylin-
der-torus or sphere-torus junctions because, as far as the 
authors are aware, this method cannot be applied to 
toroidal shells near 0 = 90°, because of the discontinuity 
in the membrane stresses [Ref. 19, page 34]. The highest 
stressed points are in fact in the knuckle near the sphere 
junction, so for the cases NI to N5 the minimum value 
obtained here is at sphere-torus junction. For elastic type 
calculations, cf Psx, (methods SEL, SEM) the values Of 
shakedown increase with the SCF from 1.74 (low SCF) 
up to 2 (high SCF). The values of SPIV also increase, and 
lie some 10-30 percent above these values, increasingly so 
as the SCF increases. The more conservative, and probably  

more realistic critera SPT or SPC are within 5 percent of 
each other for values of SCF thus showing no trend with 
nozzle/sphere diameter ratio. 

Because for elastic perfectly plastic material the 
ellipse of yielding stays at its initial position, comparison 
of the effect of work hardening is made against the SPT 
criterion, Table 6. For NI, the neglect of work hardening 
reduces shakedown by 15 percent. For N5, there is a 
decrease of about 3 percent. Thus the neglect of work 
hardening may allow a signiciant underestimation of 
shakedown for low SCF (-=-- 2.0) but not for high SCF 
(-A 3.5). It thus appears that the little effect of diameter 
ratio on shakedown by method SPT is a consequence of a 
greater effect of work hardening on nozzles with low SCF 
(such as NI) offsetting the lower shakedown found for 
these lower SCF cases if work hardening is ignored. The 
results, inclusive of work hardening, fall some 30 percent 
above Ref. 20 when expressed as the ratio k2  to membrane 
yield. 

All values of shakedown and smaller than the values of 
a limit pressure, [Ref. 20]. Comparing the values here, Fig. 
8, the shakedown ratios Psx (SPT) are larger than the col-
lapse rations PP (C5I) except for values of d/D greater 

S.C.F. 
P.  
PS  

5. 

- - S.C.F. 
	-- COLLAPSE 

SHAKEDOWN 
Mises) 

hardening 

non  
work 
hardening. 

121/ 

I 

/ 

••• a.b.c - work hardening (von 

- ref. 20 non work 

-COLLAPSE 
o SHAKEDOWN 

4. 

3. -4 

/tt 
/ 	„----7 

/ 
2. 

___ ____ __ t 
• 

1. - I__ 
.02 .1 	.15 2 .25 

FIG. 8 ELASTIC STRESS CONCENTRATION FACTORS, 
SHAKEDOWN AND COLLAPSE RATIOS FOR A 
SERIES OF NOZZLE TO SPHERE DIAMETER 
RATIOS 
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than 0.22 (high SCF). The two non-hardening cases (NI R, 
N5R) also show shakedown ratios marginally above in-
cipient collapse. 

Summarizing all the cases so far computed; 
(i) for a high SCF (> 3.5) the shakedown ratio is 

near 2, for work hardening or elastic-perfectly 
plastic material. It is considered that C5I is the 
best criterion for incipient collapse. These col-
lapse pressures are higher than shakedown. 

(ii) for the intermediate SCF (2.5 to 3.5) a shakedown 
ratio near 1.85 is obtained for work hardening 
material or rather lower (about 1.75) for the one 
case (N5) of non-work hardening in this regime. 
The collapse and shakedown pressure ratios are 
not markedly different. 

(iii) for low SCF 	2.5; NI and N2) shakedown is 
between 1.85 and 2.0 if work hardening is in-
cluded but substantially lower (1.56 for NI) if 
work hardening is neglected. Criterion C5I is again 
considered most suitable for incipient collapse. 
This collapse is always less than the shakedown 
value. 

0.5 percent individual (i.e. hoop or meridional) strain at 
the most highly strained point on the outside surface 
seems not too conservative. It is also amenable to easy 
use in experimental work. Further examination of this 
criterion for experimental results would be useful. 

For the particular equal thickness nozzle-sphere 
geometries reported here the shakedown load did not vary 
greatly with nozzle-sphere diameter ratio, due to the 
opposing effects of geometry and work hardening, with 
results 30 percent above previous estimates. For values of 
SCF below about 2.5, incipient collapse occurs before 
shakedown. The broad trends of previous calculations 
based on elastic stress distributions and limit load con-
cepts are confirmed, although the elastic plastic computa-
tions show rather lower collapse loads for nozzles with 
low SCF if work hardening is neglected. Now that the 
effects of detailed alterations in geometry, the criteria 
used for incipient collapse and of assumptions on work 
hardening behavior have been assessed, results for other 
component configurations and load systems can be 
calculated with some confidence. 
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TABLE HH1  

ELASTIC STRESS CONCENTRATION AND INDEX. RATIOS FOR SOME 
HEMISPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS 

d/t . 10 

t/T 

Langer* Analytically** PVA 1 Program 

(a) (b) (a) (b) (c) 

.5 .961 .962 .977 .972 .977 

1.0 .971 .968 .972 .969 .972 

2.0 .900 .807 .904 .795 .904 

(a),(b),(c) see Section 3.2.1 

(a) Stress index ratio 
(b) von Mises criterion 
(c) Tresca criterion 
* Ref. [51] 
** Either using approximation to Kelvin functions or 

exponential solutions (Appendix B) 

TABLE HH2  

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR A RANGE OF 
HEMISPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS 

104d/t4300. 

• t/T 

Langer* Crisp*** Analytically** 

(a) (b) (b) 

.5 .961 .... .962 

1.0 .971 .967 .968 

2.0 .900 .... .807 

*,**, (a),(b),(c) see Table HH1. *** Ref.[9] 20 	100. 
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TABLE FH1  

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR SOME 
FLAT ENDS ON CYLINDRICAL PRESSURE VESSELS 

t/T = .25 

d/t 

Langer* Analytically** PVA1 Program 

(a) (b) (a) (b) (c) 

10. .52 .47 .47 .46 .47 

20. .41 .39 .40 .39 .40 

40. .26 .27 .24 .27 .24 

80. .15 .15 .13 .15 .13 

(a),(b),(c),* see Table HH1 
** Solid plate solution (Appendix B) 

TABLE FH2 

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR SOME 
FLAT ENDS ON CYLINDRICAL PRESSURE VESSELS 

t/T = .50 

d/t 

Langer* Analytically** PVA1 Program 

(a) (b) (a) (b) (c) 

10. .44 .37 .37 .36 .37 

20. .25 .22 .22 .21 .22 

40. .12 .11 .10 .11 .10 

(a),(b),(c),* see Table HH1 
** See Table FH1 



TABLE FH3  

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR SOME 
FLAT ENDS ON CYLINDRICAL PRESSURE VESSELS 

UT = 1.0 

at 

Langer* Analytically** PVA1 Program 

(a) (b) (a) (b) (c) 

10. .26 .26 .27 .26 .27 

20. .14 .14 .14 .13 .14 

(a),(b),(c),* see Table HH1 
** See Table FH1 

164 



• 165 

TABLE SH1 

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR SOME 
SPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS 

d/D.= .40 

PIM 	Program Analytically 

t/T d/T 

(a) (c) (b) Exponent. 
(b) 

AP.Kelvin' 
(b) 

1.0 10. .386 .386 .369 .338 .344 

20. .266 .266 .242 .240 .248 

. 5 10. .435 .435 .425 .354 .330 

20. .291 .291 .277 .258 .249 

.25 10. .503 .503 .492 .417 .333 

20. .408 .408 .394 .336 .296 

(a),(b),(c) see Table HH1 
*Approximation to Kelvin functions (Appendix B) 

TABLE SH2 

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR SOME 
SPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS 

dip,. .25 

PAV1 	Program  Analytically 

t/T 'at 
(a) (c) (b) 

Exponent. 
(b) 

AP.Kelvin* 
(b) 

1.0 
10. .326 .326 .311 .190 .242 

20. .202 .202 .184 .157 .174 

.5 10. .402 .402 .392 .264 .223 

20. .250 .250 .239 .190 .173 

10'. .491 .491 .479 .338 .170 
.25 20. .399 .399 .384 .272 .194 

t 
(a),(b),(c) see Table HH1. 	'see Table SH1 



TABLE TH1  

COMPARISON OF THE HEIGHT RATIO FOR TORISPHERICAL 
AND SPHERICAL HEADS WITH EQUAL d/D 

 

Torispherical 
h/d 

Spherical 
_withoutrknuckle of 

r 	& 
d --=6/0 r = 10% 

et 

h/d 
* 

00  h/d 
* 

00  

.15 .111 64.9° .074 73.10 

.20 .170 52.5° .142 58.2° 

.25 .227 41.20 .207 45.1° 

.40 .391 13.7° .386 14.6° 

* 00  = acos (d/D) 

TABLE TH2  

COMPARISON OF ELASTIC STRESS CONCENTRATION RATIOS FOR 
TORISPHERICAL AND SPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS 

OF EQUAL THICKNESS, AND THE SAME DIAMETER RATIO: d/t = 20 

(1) 

h/d 

Torispherical(1) 

with knuckle of 
Spherical 

without knuckle of 

6%, 
1 

10% 6% 
1 

10% 

.15 	. .297 .259 .255 .206** 

.20 .408 .400 .359 .309 

.25 .532  .537 .480 .434 

.40 .954 .954 
i 

.954 
. 

.953 

(1) from Ref. [9] 
*Value from analytic solution (Appendix B) 
** Value from the elastic computer program 

166 



TABLE TH3 

COMPARISON OF ELASTIC STRESS CONCENTRATION RATIOS FOR 
TORISPHERICAL AND SPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS 

OF EQUAL THICKNESS, AND THE SAME DIAMETER RATIO: d/t = 50 

(1) 

h/d 

Torispherical(1) 

with knuckle of 

* 
Spherical 

without knuckle of 

6% 10% 6% 10% 

.15 .205 .183 .160 .119 

.20 .289 .303 .231 .198 

.25 .381 .410 .318 .284 

.40 .865 .876 .829 .806 

(1),*, see Table TH2 

TABLE TH4  
COMPARISON OF ELASTIC STRESS CONCENTRATION RATIOS FOR 

TORISPHERICAL AND SPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS 
OF EQUAL THICKNESS, AND THE SAME DIAMETER RATIO: d/t = 100 

(1) 

h/d 

Torispherical(1) 

with knuckle of 

* 	' 
Spherical 

without knuckle of 

6% 10% 6% 10% 

.15 .161 .149 . 	.113 .083 

.20 .227 .257 .163 .138 

.25 .298 .345 .227 .202 

.40 .713 .736 .666 .656 

(1),• see Table TH2 
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TABLE FN1  

ELASTIC STRESS CONCENTRATION FACTORS FOR SOME FLUSH CYLINDRICAL 
NOZZLES ON SPHERICAL PRESSURE VESSELS 

Ref. R/T . 50. ; t/T = .50 

d/D6 

Leckie* PVA1 Program Analytically 

(1) (1) (2) (2)** (2)*** 

.025 1.8 2.96 2.60 2.30 2.85 

.05 2.1 3.50 3.09 3.00 3.42 

.10 2.7 4.76 4.30 4.35 4.63 

.25 4.6 8.24 7.58 7.58 7.72 

.50 7. 11.98 10.95 10.97 11.05 

* Ref.[63] 
*'Exponential Solution (Appendix B) 
***Approximation to Kelvin function solution (Appendix B) 
(1) Tresca criterion 
(2) von Mises criterion 

TABLE FN2  

ELASTIC STRESS CONCENTRATION FACTORS FOR SOME FLUSH CYLINDRICAL 
NOZZLES ON SPHERICAL PRESSURE VESSELS 

Ref. R/T = 50. ; t/T = 1.0 

d/D. 

Leckie* PVA1 Program Analytically 

(1) (1) (2) (2)** (2)*** 

.025 1.8 1.68 1.38 1.72 1.81 

.05 2. 1.78 1.61 1.77 2.00 

.10 2.6 2.58 2.27 2.16 2.41 

.25 4.4 4.13 3.59 3.57 3.68 

.50 6.6 5.92 5.12 5.12 5.24 

*,**,***,(1),(2) see Table FN1 
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ELASTIC STRESS CONCENTRATION FACTORS FOR SOME FLUSH CYLINDRICAL 
NOZZLES ON SPHERICAL PRESSURE VESSELS 

Ref. R/T = 100. ; t/T = .50 

d/Do  

. 

Leckie* PVA1 Program Analytically 

(1) (1) (2) (2)** (2)*** 

.025 1.85 3.26 2.87 2.72 3.21 

.05 2.3 4.20 3.77 3.78 4.14 

.10 3.2 6.22 5.74 5.81 6.01 

.25 5.7 11.44 10.72 10.71 11.01 

.50 8.7 17.00 15.81 15.68 15.70 

*,**,***, 1 ,(2) see Table FN1 

TABLE FN4  
ELASTIC STRESS CONCENTRATION FACTORS FOR SOME FLUSH CYLINDRICAL 

NOZZLES ON SPHERICAL PRESSURE VESSELS 

Ref. R/T = 100. ; t/T = 1.0 

1 
d/Do  

Leckie* PVA1 Program Analytically 

(1) (1) (2) (2)** (2)*** 

.025 1.85 2.03 1.94 1.70 1.89 

.05 2.2 2.38 2.15 2.00 2.28 

.1 3.1 3.19 2.77 2.71 2.95 

.25 5.4 5.54 4.85 4.80 4.98 

.50 8.15 8.13 7.16 7.08 7.19 

"*,**,***,(1),(2) see Table FN1 
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TABLE 1  

NOZZLE DETAILS: SERIES C. cv = 1.41 

Geometry Parameters and S.C.F. for 
d/Do = .2 ; T/D = .01 ; t/T = .5 

Ref. 
1 

2r/D 
1 

Taper Type K1 
 

C1 .015 A 4.91 

C2 .015 B 4.96 

C3 .015 F 4.88 

C4 .045 A 3.21 

C5 .0 
Band 

Modification 
1 step . 

1.75 

C6 .0 
Band 

Modification 
2 steps 

1.34 

Value from Ref.[61]: 	Tresca 	Ki = 4.3 

Flush nozzle simple 	von Mises K:1  = 6.5 
shell theory 

Tresca 	K.*
1 
 = 5.8 



TABLE 2 

NON-DIMENSIONAL COLLAPSE PRESSURES, Pc and K3: SERIES C 

Collapse Criteria K3 
Ref. 

C31 C3E C3D C5I C5E C15I C15E C.S.P. C5I C15I 

C1 1.83 1.84 2.31 2.31 2.13 > 2.5 > 2.45 > 2.5 .47 > 	.51 
C2 1.89 1.92 2.45 2.33 2.17 > 2.7 > 2.62 2.15 .47 > 	.54 

C3
M 1.93 2.06 2.37 2.31 2.18 > 2.5 > 2.49 2.3 .47 > 	.51 
R 1.9 1.87 - 2.28 2.12 > 2.28 > 2.28 > 2.28 .47 > 	.47 

C4 1.49 1.55 1.64 1.88 1.76 2.12 2.03 2.05 .59 .66 
C5 1.29 1.29 - 1.48 1.41 ,....1.7 1.62 > 1.675 .85 .91 
C6 1.23 1.26 1.26 1.42 1.37 1.72 1.54 1.52 1.06 1.28 

Value from Ref. 	[63] 	: 	Pc = 2.15 ; K'' = .5 



TABLE 3  

NON DIMENSIONAL SHAKEDOWN PRESSURES, P; and 2: SERIES C 

Ref. 

Shakedown Criteria K 
2 

SEM SPC SPT SPW 
i 

SPT SPW 

C1 1.98 1.83 1.87 1.96 ,38 .4 

C2 1.96 2. 2. 2.09 .4 .42 

C3 

M 2. 1.97 1.97 2.09 .4 .43 

R 2. *** 1.97 *** .4 - 

C4 2. 1.81 1.85 > 2.28 .59 > .71 

C5 1.69 1.62 
4 

> 1.675 
J 

> 1.675 > .96 > .96 

C6 1.1 1.54 1.59 1.64 1.18 1.22 

Values from Ref. [63]: P: = 2. ; 	IC; = 	.5 
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TABLE 4  

NOZZLE DETAILS: SERIES N. w = 10 d/D 

Geometry Parameters and S.C.F. for 
T/Do = .005 ; t/T = 1. 

Ref. d/D 
Torus. 
Angle 

K1 K' 	(2r/Do = .0) 1 

2r/Do = .05 2r/D = .0 

1 

Ref. 63 An
ywhere in the stru. 

N1 .05 84o.5 1.79 2.15 2.2 2.38 

N2 .10 81.8 2.18 2.77 3.1 3.19 

N3 .15 790.0 2.63 3.4 3.9 3.85 

N4 .20 76(2'2 3.08 4.1 4.7 4.65 

N5 .25 730.4 3.55 
. 

4.85 
. 

5.4 5.50 
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TABLE 5  

NON-DIMENSIONAL COLLAPSE PRESSURES. P* and K3: SERIES N 

_ 

Collapse Criteria 
I 

K 
'3 

K'  
3 

C31 C3E CED C5I C5E C15I 
1 
C15E CSP C5I 

1  

C15I 

M 1.42 1.44 1.41 1.62 1.56 1.81 1.72 1.62 .91 1.01 .94 
N1 R 1.39 1.4 1.37 1.52 1.5 1.53 1.54 1.58 .85 .86 .94 
N2 1.44 1.44 1.47 1.69 1.6 1.95 1.8 1.67 .78 .89 .77 
N3 1.48 1.48 1.52 1.76 1.69 1.98 1.88 1.71 .67 .75 .63 
N4 1.48 1.48 1.57 1.80 1.67 2.01 1.93 1.76 .58 .66 .54 

N5 
M 1.5 1.49 1.6 1.84 1.7 2.07 1.97 1.83 .52 .58 .48 
R 1.49 1.49 1.57 1.7 1.63 1.76 1.76 1.68 .48 .5 .48 



TABLE 6  

NON-,DIMENSIONAL SHAKEDOWN PRESSURES, P.; and 2: SERIES N 

Ref. 

Shakedown Criteria .  K
2 

K* 
2 

SEM SPC SPT SPW SPT SPW 

M 1.78 1.8 1.9 1.96 1.06 1.09 .79 
N1 

R 1.78 **** 1.56 **** .87 - .79 

N2 1.97 1.74 1.83 2.25 .84 1.03 .65 

N3 2. 1.76 1.84 2.45 .7 .93 .52 

N4 2. 1.74 1.83 >2.2 .59 >.72 .43 

M 2. 1.77 1.82 2.88 .51 .81 .38 
N5 

R 2. **** 1.76 **** .5 - .38 
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TABLE 7  

TEST NOZZLE DETAILS:w = .97 

Geometry Parameter and S.C.F.  

d/Do = .112 ; Do/T = 149 ; t/T = .5 

2r/Do  

1 

 

K.  
1 

Computed Test Computed Ref. [63] 

.0134 3.2 2.92 3.62 - 

.0 5.5 - 6.0 3.2 

TABLE 8 

NON-DIMENSIONAL. COLLAPSE PRESSURES, F) and K3:.  TEST NOZZLE 

Ref. 

Collapse Criteria K
3  

C3I C3E C3D C5I C5E 	I  C15I C15E CSP C5I C15I 

M 1.77 1.76 2.09 2.24 2.05 2.43 2.39 2.15 .69 .74 

R 1.76 1.75 2.07 2.12 1.94 2.21 2.18 1.95 .66. .69 

Test 1.78 - 1.75 2.13 - 2.6 - "2.52 .73 .89 

Value from Ref. [63]: 	9 = .64; 1:"' = 2.05 
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TABLE 9  

NON-DIMENSIONAL SHAKEDOWN PRESSURES, P; and K2: TEST NOZZLE 

Ref. 

Shakedown Criteria K
2 

SEM SPC SPT SPW SPT SPW 

M 2. .1.88 1.89 2 07(1)  

2.45 
 (2) .59 .64(1)  

.76(2) 

R 2. - 1.69 - .52 - 

Value from the Test(3) 	: 
-- < 

P3  * 2.31*'  K2 -- < .79 

• Value from Ref. [63] 	: K; = .63 	; P: = 2. 

(1) Lower limit 

(2) Upper limit 

(3) Based on the static shakedown (less than 20 cycles) 
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TABLE 10  

HEAD A (REF. [7]) DETAILS 

Geometry parameter and S.C.F. 

dip.= .578 ; at = 74 ; h/Do. .245 

ad von Mises S.C.F. 

.245 2.28 

.0 3.7 

TABLE 11  

NON-DIMENSIONAL COLLAPSE PRESSURES, K3:HEAD A (Ref. [7]) 

Calculated 	' 

• Work-Hardening 

Ref. Test* ' Non-Work-Hard 

a = a1 + b1 ..e.p + c7e?P  
a = a(1. + lie

P  )
c  

• 
C31 * 	1,98 * 	.77 .95 * 	.74 

C3E - - .97 	• - 

C3D * 	1.0 * 	.83 * 	.81 

C5I ' * 1.48 * 1.06 1.26 * .84 

C5E - - 1.24 .80 

C15I **1.34 - 1.33 - 

Cl5E - - . 	1.34 .87 

BSLY - - .99 .79 

CMEO - - 1.24 .86 

Limit Analysis* 

Lower Bound = .81 	Upper Bound = .91 

* Value from Ref. [7] 
**1% Maximum strain 
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TABLE 12  

NON-DIMENSIONAL SHAKEDOWN PRESSURE, P: and K2  

HEAD A (REF. [7]) 

Ref. SEM SPC SPT SPW 

K2 

SPT SEM SPW 

W.H. 

Non 
W.H. 

2. 

1.94 1.96 2.79 .861 

.88 

1.22 

_ 1.85 - .811 _ 

Value from Ref. [73] 	: K2  = .B28 



TABLE 13  

STRAIN GAUGE READINGS FROM POSITION 1 ON THE TEST PLATE: GAUGE 1 

Cycle Number 

(1) 
L/L Y L 1 2 3 4 5 8 10 20 2(5 35 

J 
I 

.00• 	.. .002 .003 .003 .002 .003 .004 .003 --- --- 
1 0-24 .099 .10 .101 .101 .101 .101 .102 .101 

.002... .003 .003 .003 .003 .003 .003 .003 - --- 

.010 .075 .075 .076 .077 .076• .076 .077 --- 
-1.58 0-38 .225 .226 .225 .226 .226 .226 .226 .226 

.075 .075 .076 .077 .076 .077 .076 •.077 --- --- 

.076 .310 .317 .322 .325 .326 .326 .327 
-1.79 0-43 .480 .490 .495 .497 .498 .508 .508 .508 

.310 .317 .322 .325 .326. .327 .326 .326 - 

.326 .579 .582 .586 .589 .593 .594 .595 
-1.99 0-47.6 .812 .814 .816 .817 .819 .821 .820 .820 

.586 .582 .586 .589 .592 .594 .595 .594 

.594 .853 .857 .862 .866 .872 .877 .877 
-2.16 0-52 1.138 1.143 1.146 1.148 1.149 1.151 1.151 1.152 

.856 .858 .862 .866 .870 .876 .876 .878 

.878 1.131 1.185 1.180 1.175 1.156 1.154 1.153 
-2.37 0-57 1.460 1.461 1.463 1.465 1.466 1.467 1.468 1.470 

1.139 1.190 1.180 1.175 1.162 1.156 1.154 1.153 - 

1.152 1.643 1.866 1.976 2.088 2.190 2.225 2.275 2.297 ---- 
2.66 0-64 1.958 2.190 2.302 2.415 2.405 2.517 2.552 2.593 - 	2.620 

1.602 1.868 1.977 2.092 2.102 2.200 2.239 2.276 2.298 

2.299 2.707 2.902 2.968 3.028 3.056 3.085 2.921 2.723 2.673 -2.86 0-68.7 3.180 3.240 3.300 • 3.332 . 3.348 3.372 3.387 Y.173 2.944 2.876 
2.727 2.902 2.993 3.027 3.051 3.078 3.093 2.918 2.717 2.667 

• Initial 
• • • Maximum 	(%) 
••• Final 
(1) L -.24 klb 



TABLE 14  

INTERNAL CIRCUMFERENTIAL STRAIN GAUGE READINGS FROM POSITION F ON THE TEST NOZZLE: GAUGE FC 

(1) 

Cycle Number 

P/P 1 2 3 5 8 10 20 30 40 50 
Y  . , 

.018 ** .120 .120 .121 .122 .121 .120 

1.82 *** .278 .279 .280 .281 .280 .281 .280 -- -- -- 
.120 .120 .121 .121 .122 .120 .121 

.120 .420 .421 .422 .424 .428 .430 
2.18 .597 6.18 .620 .621 .624 .629 ..630 -- -- -- 

.398 .421 .423 .422 .425 .429 .429 

.427 1.068 1.096 1.106 1.114 1.129 1.132 
2.45 1.297 1.322 1.332 1.340 1.347 1.352 1.359 -- -- -- 

1.070 1.100 1.104 1.110 1.119 1.131 1.132 

1.132 1.647 1.670 1.686 1.688 1.693 1.704 1.706 1.709 1.710 
2.60 1.880 1.886 1.904 1.910 1.917 1.922 1.928 1.930 1.932 1.934 

1.649 1.659 1.676 1.688 1.690 1.693 1.703 1.706 1.708 1.709 

1.729 2.439 2.446 2.454 2.463 2.469 2.484 2.497 2.523 2.539 
2.8 2.608 2.685 2.690 2.695 2.701 2.705 2.721 2.736 2.760 2.776 

2.446 2.446 2.450 2.457 2.467 2.474 2.484 2.498 2.526 2.539 

2.541 3.366 3.378 3.385 3.398 3.410 3.417 3.423 
2.96 3.612 3.623 3.626 3.632 3.641 3.648 3.666 3.673 -- -- 

3.362 3.378 3.381 3.385 3.399 3.425 3.416 3.424 
. . . 

* 
	

Initial 
* * Maximum 

	
(1) P - 275 lb inP 

* * * Final 
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(normal ' 
direction) 

FIG. la 

FIG. lb 

FORCES AND MOMENTS CN AN ELEMENT OF SYMMETRICALLY 

LOADED SHELL OF .REVOLUTION 



FIG. 2a 

1 1 I 
I 
t 	 
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FIG. 2b 

GEOMETRY OF DEFORMATION FOR SMZETRICALLY 

LOADED SHELL OF REVOLUTION 

Original position 

final position 
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Fig.3 Flush radial nozzle 	Fig.4 Spherical head 
in cylinder in sphere 

T 

cc.0°,q;.90?' 

Fig.5 Flat end in 
cylinder 
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EQUIV. STRESS-STRAIN CURVE 
FOR HEAD -A- (FR EF.[31AND [7]) 

	AVERAGE FROM 3 TENSILE TEST 

CURVES FITTED WITH 

—33.5 	 2nd ORDER POLYNOMIAL EXPRES. 

------ EXPONENTIAL EXPRESSION 

-27.2 

	

1 	 1 	 I 	 1 	 I 	 1 	 I 

	

1. 	 2. 	 3 	 4 
PLAST. EQUIV. STRAIN 

FIG. 6 STRESS - STRAINCURVE HEAD A MATERIAL 

0/0 
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FIG.7 
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STRESS—STRAIN. CURVE FOR AN IDEAL TENSION TEST PIECE 

z 

L' 

le  

FIG.8 
LOADING AND UNLOADING PATHS FOR STRUCTURES WITH STABLE MATERIAL 

(Hysteresis Loop) 
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K 

FIG.9 
THE EFFECT OF OVERALL LOAD-CONTROLLED CYCLIC WORK-
HARDENING ON STRAINS ADJACENT TO THE YIELDED REGION 

FIG.10 
THE EFFECT OF OVERALL LOAD-CONTROLLED CYCLIC WORK-
SOFTENING ON STRAINS ADJACENT TO THE YIELDED REGION 
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2- 3 4 	kt 

FIG. 11 

e 

cr 

STRESS-CONTROLLED TEST WITH CYCLIC STRAIN ACCUMULATION 

FIG.12 

CONSTRUCTION OF SETTLED CYCLIC STRESS-STRAIN CURVE 



HARDENING ELLIPSE 
FOR 2 x LOA  

TO YIELD 

a 
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FIG. 13 
ELASTIC-PLASTIC STRESS PATHS FOR THREE DIFFERENT STRUCTURES 

LOADED BEYOND FIRST YIELD IN A WORK HARDENING MATERIAL 
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a • 

e 
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—.— INT. 

• re -WORK HARD. N1 el - II 	 NON-WK. HARD. 
r a - WORK HARD. 

NV - NON-WK. HARD. 

5 
	

1.0 _ 	.1.5 
MAX. INDIV. STRAIN 

FIG.14 

----- INT. CIRCUMFERENTIAL 

THE EFFECT OF WORK HARDENING ON THE COMPUTED VALUES OF MAXIMUM STRAIN IN TWO NOZZLES 
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WORK - HARD.• 

- NON WK.-HARD. 

BSLY- CRISP CRITERION (ref. 9) 
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.5 	 1.0 	 I .5;'°/0) 
MAXIMUM EQUIV. STRAIN 
ON OUTSIDE SURFACE 
F1G.15 

. MAXIMUM EQUIVALENT STRAIN ON THE OUTSIDE SURFACE OF HEAD A (Ref. [7]) 
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FIG.16 

ELASTIC-PLASTIC STRESS PATH FOR A SERIES OF NOZZLES LOADED BEYOND 
FIRST YIELD ON A WORK HARDENING MATERIAL 
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NOZZLE N5 
WORK-Ha ) 

NON.  WORK-FM.(1 
FIG.17 

THE EFFECT OF WORK HARDE:IING ON THE ELASTIC-PLASTIC STRESS PATH 
FOR A NOZZLE LOADED BLY0:1) FIRST YIELD 



FIG.18 	• 
MAXIMUM STRESS CONCENTRATION RATIO 

FOR 'HEMISPHERICAL .r_,ADS OF DIFFERENT 

CYLINDER-SPHERE THICKNESS RATIOS (t/T) 

.194- 
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FIG.22 - STRESS CONCENTRATION RATIOS FOR SPHERICAL 
HEADS ON CYLINDRICAL PRESSURE VESSELS. 
WITH t/T =2.0 AND 4.0 



.8 

1./SCF 

.4 

.2 

.1 
90. 	80. 	70. 	60. 	50. 	40. 	30. 	20. 	10. 	.0 

FIG.23 .— MAXIBUM STRESS. CONCENTRATION RATIOS FOR SPB:ERICAL HEADS 	9 0  (degrees) 	 ...s • ..o 
ON CYLINDRICAL PRESSURE VESSELS OF t/T = 025 AND. .50 	,: 	 .o 



1. 

.8 

1./SCF 
.6 

.4 

.2 

.1 
90. 	80. 	70. 	60. 	50. 	40. 	30. 	20. 	10. 	.0 

PIG.24' MAXIMUM STRESS CONCENTRATION RATIOS FOR SPHERICAL HEADS 	go  (degrees)• 

ON CYLINDRICAL PRESSURE VESSELS OF t/T = .50 AND '100 



90. 	80. 	70. 	GO . 	50. 	40. 	30. 
e 

FIG .25 - MAXIMUM STRESS CONCENTRATION RATIOS FOR SPHERICAL HEADS 
ON CYLINDRICAL PRESSURE VESSELS OF t/T = .25i.50 AND 1.0' 

10. 20. 

t /T=1 .0 

-.t/T= .25 



FIG.26 - ELASTIC STRESS 
CONCENTRATION FACTORS FOR 
FLUSH CYLINDRICAL NOZZLES 
ON SPHERICAL PRESSURE 
VESSELS (t/T = .25) 
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FIG.36 
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• F1G.38 
CONFIGURATIONS OF NOZZLES JUNCTIOM.USED FOR 

VARIOUS NOZZLE COMPUTATIONS 	• 
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