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ABSTRACT

Computations of the elastic and elastic-plastic behaviour of some
symmetrical pressure vessel heads and nozzle-gphere junctions is
‘described; comparison of the stress concentration factors of the two
geometries are made with previous published results.

The computed plastic strain values for a particular head are com-
pared with experimental results in order to demonstrate the validity of
the  computational metﬁods, and a collapse mechanism derived from the
computed values is given.

From fhe compﬁted results, the elastic-plastic behavioﬁr for a
Vseries of nozzles:

(a) having a specified radius of toroidal knuékle and continuous thick-
ness,

(b) for a specified.radial nozzle-on-sphere having different geometries
of the toroidal knuckle and a sphere thickness double.that of the

cylinder, is described.

A comparison is made of collapse and shakedown results using different
criteria and work-hardening rules, and also using available results from
. a limit analysis for flush cylindrical nozzles.

It was generally found that the use of work-hardening in the cal-
culation gave only a slight improvement in the predicted values for
shakedown behaviour, using the ellipsé of yield moving towards the
stress state reached, In the case of radial nozzles on spheres, the'
ellipse expanding with work-hardening is also considered.

Tests concerning shakedown behaviour were carried out with a
circular piate with a central hole, and with an almost symmetrical radial
nozzle~on~sphere, both plate‘and nozzle-on-sphere being made of mild

steel.



The results of these tests are presented and discussed; those for
the nozzle-on-sphere case are compared with computed values of the
elastic-plastic behaviour of rigid-plastic and work-hardening

materials.
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NOMENCLATURE AND ABBREVIATIONS

Nomenclature

a material constant or geometry constant

Anv constants of integration for the cylinder (n = 1, ... 4)

At ,An constants of integration for the plate

b materlal constant or geometry constant or suffix for shallow
shell

ber}bei Kelvin function

B',B" constants of integration for the plate

c suffix for cylinder or for collapse or material constant

Ci ) variable in a non-linear strain distribution through the

thickness, i = {,¢, or constants of integration for the
‘ sphere, (i = 1,.. 4)

d mean diameter of cylinder, Figs. 3 to 5

Do mean diameter of sphere, Figs. 3 and 4

D flexural rigidity [= 2n°E/3(1 - v®)]

e strain with suffixes £, ¢, 1 and j

Ep equivalent plastic strain

E Young's modulus

f variable in a non-linear strain distribution through thickness

F radial force per unit length, Fig. 1a; with suffix b for
shallow sphere

9,19, series used in the Kelvin function

h half thickness of shell, Fig. 1a, or height of the head

H' slope of the equivalent stress v plastic strain curve
(= do_/de )

€ p

i,j suffixes (=4,p)

k constant describing the cylindrical shell [= 41501 - V)/EE]

K1 elastic stress concentration factor;'ratio of maximum von
Mises' equivalent stress to membrane equivalent stress (SCF)

Ki‘ elastic stress concentration factor; ratio of maximum shear
stress to membrane shear stress [the * notation also applies
to K, and K3]

K2 ratio of shakedown pressure to membrane yield stress

(= P;/kl)



ker,kei
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ratio of collapse pressure to membrane yleld stress
(= P::/kl)

Kelvin function

meridional suffix and meridional length
axial load

axial load to cause yield _

bending moments per unit length, with suffixes, g, &, 1 and 3,
Fig. 1b or work hardening case in Tables 1 to 12

direct force per unit length, with suffixes, ¢, tp, i and j,
Fig. 1a

pressure (numerically positive for internal), Fig. 1la, or
with suffixes ¢, s and y

variable used in spherical heads

pressure for first yield at any point in the vessel
ratio of pressure tovfirst yield pressure

ratio of collapse pressure to first yield pressure

ratio of shakedown pressure to first yield pressure

radius perpendicular to shell axis, Fig. 2b, or radius of
Toroidal knuckle

mean radius of the sphere or non-work hardening case in Tables
1 to 12

suffix, either for the sphere or for shdkedown load

stress concentration factor

cylinder thickness

either sphere or plate thickness

radial displacement, Fig. 2a

variable in non-linear strain distribution through the
thickness (i = f,p)

axial displacement, Fig. 2a

constant of integration for axial loading, per upit radian
meridional coordinate for the cylinder, Figs. 3 to 5
applied radial fofce per unit length, Fig. 1la

applied axial force per unit length, Fig. 1la

suffix for equivalent stress limit of elasticity

axial force per unit length, Fig. 1a
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complementary angle of (= /2 - g), Fig. 3 and 4
shell thickness taper (= dh/dy)

variable used in shallow shells [= ‘4/(4x4 - Vv2)/4]
increment '

variable ﬁsed for spherical shell

circumferential suffix |

rotation of the meridional direction, Fig.2ﬁ
change in curvature (i = g,0) |

variable used for shallow shells (= y o /2)

angle between shell-wall normal and the radial direction,

Fig. 1a

the value of § on a point on the sphere, defined by the
intersection of cylinder-sphere geometries

p@rticular value of eo corresponding to points marked by
Al (i = v+ w 1m V) on Figs. 19-21

parameter describing spherical shell (; A3 -2 /bo/zT)
smaller radii of'curvature of the shell

direct stress, with suffixes, £, ¢, i, j, ¢, m and y
equivalent stress (von Mises' criterion)

deviatoric stress, with suffixes. 4, ¢, 1 and j

ratio of meridional stress to Yield or proof stress

ratio of circumferential stress to yield or proof stress
yield or proéf stress

shear stress

Poisson's ratio

nozzle parameter (Ref. 13) (d//2DOT), and variable used for
spherical shell

mid-wall values

membrane values
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Abbreviations (for further details see text, Chapter 2)

In connection withshakedown, based on:

SEM elastic calculations by the method of Macfarlane and
Findlay, Ref. 12

SpC elastic-plastic computations with the ellipse of yleldlng
moving along the path of the elastic, stress ratios

SPT elastic-plastic computations with the ellipse of yielding
moving along the radius, to the actual stress point considered

SPwW elastic-plastic computations with the ellipse of yielding
increasing in size with work-hardening
In connection with incipient collapse:

Intersection of the elastic line with the tangent drawn to a
particular point on a given curve defined by:

C3I a line of one third the elastic slope intersecting an
individual strain curve

C3E a line of one third the elastic slope intersecting an
equivalent strain curve

C3D a line of one third the elastic slope intersecting the
overall deflection curve
Based on the pressure to cause:

BSLY largé increase in rate of spreading of local yield

C5I1 5% individual maximum strain on the outer surface

C5E 5% equivalent maximum strain on the outer surface

C15I 1.5% individual maximum strain

C1SE 1.5% equivalent maximum strain

CMEO large jump of the position of maximum equivalent strain

on the outer surface

¢sp . the turning point on the stress path'to the last anti-
clockwise movement around an ellipse of yield (applied
to nozzles)
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INTRODUCTION

Design of préssure vessels has in the past been restricted to a
"strength of materials" approach. With the demands of modern industry,
the designer must now consider higher static and cyclic loading on the
structure; he is also obliged to produce a more efficient design.

The methods of elasticity have been developed and applied to the
design of pressure vessels but, although approximations to the correct
solution have been used, the effort to preseqt better approximations
is still a subject demanding a great deal of research.

The improvement in knowledge of material behaviour beyond the
elastic limit hés made possible the development of soﬁe theories of
plastic design i.e. design for structures loaded beyond this limit. The
theorems of limit analysis and of slip line field have given to the
designer the assistance of the theory of plasticity in the design of
structures. Limit analysis was extended to plates by Hopkins and
Prager [22}* in 1953 and to cylindrical shells by Drucker [80] in 1954; .
since then, limit analysis has been the object of much research and has
lately been successfully applied to some cases of plastic deslgn of
pfeséure vessels e.g. [33] to [36]. Only in the late 1950's was limit
analysis applied to nonsymmet:ically loaded shells, although very few
relevant works are available, e.g. [72]. Limit analysis is basically
an approximate: theory, since it oonsideré the structure as having a
mechanism of plgstic deformation, and the material as having perfectly
plastic behaviour. The effect of changes in geometry in increasing the
limit pressure of. some nozzles has also been studied [70]. Limit
-analysis has been used to assess the collapse 1¢Vel by determining the
upper and lower iimitSOf loading in which collapse of the component

must occur, in the absence of work-hardening.

*Numbers in square brackets are references.
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Cyclic loading of a structure implies the possibility of cyclic
failure either by incrementalAcollabse or by low or high cycle fatigﬁe.

The necessity of avoiding incremental collapse, or low cycle
fatigue behaviour, restricts tﬁe extent of pefmissible plaétic flow due
to the cyclic loadiné of the structure. These types of behaviour are
in principle cycle—dependent, and mﬁst be so treated if a limited 1life
design is proposed. The concept of shakedown arises whén the above-
mentioned types of failure are to be avoided in circuﬁstances in ﬁhich
not all the variables, with their effects, are known. Shakedown
behaviour.is associated with entirely elastic behaviour after some
initial plastic flow has'been undergone by the structure, Fhis has
become an accepted criterion. Shakedown behaviour was well known in
structural design, but Symonds [54] and Koiter [55] extended Melan's
theorem to continuous media. Leckie [61] has described a method of
estimating the lower ;imit of the shakedbwn pressure for a flush cylinder -
sphere intersection, by applying Melan's theorem, using the results from
an elastic énalysis, and the Tresca yield criterion [61]. Fox et al
have applied Leckie's method to éllipsoidal heads [23], Macfarlane and
Findlay have.described a simple fechnique for calculating sﬁakedown loads
A onApressure vessels by using Leckie's method [12]. Findlay and Spence
~however explained how shakedown loads may be determined from the post-
yield behéviour of the pressure vessel [53], although Crisp describes<a
computer program which provides a rapid and accurate means of computing
post-yield stresses and the shakedown 1imit from experimental data,
assuming ah elastic-perfectly plastic material [57]. Taylor has investi-
gated>the effect of shakedown with regard to strain‘hardeﬁing ma terials.
In the above~mentioned approximations to shakedown analysis, the
Bauchinger effect has in all the cases been neglected, and the unloading

path is considered parallel to the elastic. Very little experimental
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work has been reported on shakedown behaviour; Procter and Flinders [59],
‘have carried ou£ shakedown investigations on partial penetration welded
nozzles in a spherical shell, and Findlay, Moffat and Stanley [56]
"have carried out limit-pressure and shakedown investigations on tori-
spherical drum head§,

The develbpment of electronic digital computers has made the
elastic-plastic analysis of pressure vessels a reality. In the last
four years, much work has been done on the improvement of the elastic~
plastic solutions by the use of methods of numerical analysis and of
the equivalent plastic stresé—strain curve of the material uﬁder con-—
sideration. In a collapse or limit pressure study, elastic-perfectly
plastic material is very often considered, [3],[7],[9] and [73], but
more appropriate stress-strain curves, as an approximation to the real
static equivalent plastic stress-strain éurve for the material, are,
when available, used in order to obtain a bettér approximation to the
collapse behaviour of the structure, [6],[7] and [24]. In a low cycle
fatigue study, Blomfield [6] has demonstrated that a settled down
equivalent plastic stress-strain curve would give &ery reasonable
résults in pipe bend studies. In shakedown studies, the material has
always been considered as elastic-~perfectly plastic for an elastic-
plastic analysis [9] and [73].

The object of the present work is t; extend the study of collapse
and shakedown behaviour by means of an elastic-plastic computer program.
The feasibility of such studies has been shown by earlier work, [3],[7],
[8] and [42]. Comparisons of elastic stress concentration factors are
made between the analytical results and the numerical results from an
elastic computer program for symmetrically loaded shells of revolution.
Calculated elastic-plastic strains are compared with the available

experimental data for the case of Head‘A [3] in order to assess the
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reasonableness of the elastic-plastic computer program used in this
work. Some shakedown investigations were carried out on a plate with

a central hole, and on a knuckle of cylindrical nozzle on spherical
pressure vessel. The elastic-plastic behaviour given by the computer
program was compared with the experimental resuits from the test nozzle
in order to assess the feasibilitf of the shakedown criteria described

1

in this thesis, and in [24].



CHAPTER 1

THE ELASTIC-PIASTIC ANALYSIS OF SYMMETRICALLY LOADED

‘SHELLS OF REVOLUTION

1.1 Elastic Theory

1.1.1 Introduction

In Figs. 1 and 2 .an element of a symmetrically loaded thin shell
of revolution is shown in which the geometrical parameters are defined,
and the applied and resultant forces and moments are presented.

In Appendi# A, the basic equations for the theoretical study of
the distribution of elastic.gtresses.and strains are described; they
are based on the thin shell theory defined previously by Love, Ref.[77]
and used later by other researchers, e.g. Refs. [1],[4],[13] to [20].
The derivation of the equations in Appendix A has its origin'in Reff (1],
énd is based on the four followingyassumptions:

(a) The ratio of thickness of the shell to the smalle%égggii of

curvature is small compared to unity. |

(b) Plane sections normal to the mid-surface of the shell in the

unloaded state remain piane after the apblication of the load.

(¢) The stresses normal to the mid-surface are negligible in com-

parison with those acting in the.plane of the mid~surface.

(d) The magnitude of the displacements is small.

These four assumptions, together with Hooke's law as applied to
iéotropic and homogeneous materials, form the basis for the derivation
of the equations in Appendix A, are the same as those used in Ref. [2],
and.[3}‘with minor differences, in Ref. [1]. These equations have
proved to give good agreement with results when comﬁared witﬁ experi-
mental work, as long as the ratio 2h/p is less than or equal to 1/10,
as defined by Fltigge, Ref. [14], and Timoshenko, Ref. [15]. It is

noteworthy that Novozhilov, Ref. [16], has 1/20 as the upper limit to 2h/p.
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Because this work is concerned with shell geometries containing
some region where the condition 2h/p;s .1 is not satisfied, as in
knuckles of smali radius of curvature in the meridional plane, a "thick
curved bar" theory or "Winkler's curved beam" theory, Ref. [11], was used
- where the above condition was not satisfied. This approximation allows
an elastic stress pattern to develop, that is non-linear across the'
thickness (as in "Winkler's theory", Ref. [11]), but nevertheless
ignores shear and through thickness deformatiops. This approximation
is shown and described in Appendix D. The improvement gained with this
approximation can be seen in Refs [3] and [9], but, for ratios ofHZpr

greater than %4, this approximation over-estimates results, Ref. [9].

1.1.2 Theoretical Analysis

The governing equations, presented in Appendix A, are for a symmetric-
ally loaded thin shells of revo;utidn theory, and they must be simplified
- in order to obtain an analytic solution for each particular case.

It is known that each simplification, in a system of differential
equations, brings a corresponding limitation to the solution. Hence the
simplification must be made with the geometry and system of applied
loading to the structure in mind.

In Appendix B, the analytic solutions for internally pressurised
cylinder-sphere intersections, Figs. 3 to 5, are shown, bearing in mind
the limitations presented by the sphere solution, either when the sphere
can be treated és a proper sphere, as a shailow sphere, or as a plate,
Fig. 5 and Refs. [1],[4],[15] and others. These limitations are a con-
sequence either of the simplication made in the initial differential
equations, as in the case of the sphere when it becomes a shallow sphere,
or by the solution of the simplified system of differential equations,
as in the case of the shallow sphere in which the completed solution is
limited by the unity of the indepeﬁdent variable in the Kelvin function,

thus:
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from Ref. [10], where x = ¥/Za; hence, if x < 1, the g, and g, series
are not convergent. Besides the limitation in the solution due to the
restraining in x, it is normal procedure to use simplified expressions
for g, and g,, as can be seen in Appendix B, equations(B.17) and (B.18),
or in Refs. [1] and [13]. If equations (1.1) are to be used when
approaches or becomes less than unity, the plate solution is in some
cases better than the shallow sphere solution; if (B.17) and (B.i8)
are to be used, when x < 7, as defined in Refs. [1] and [4], the plate
solution is a more convenient approximation also. .
The limit from which a shallow integration should be applied,
instead of a sphere integration, is very difficult to define as a
particular value to be applied in all cases, because the validity of
the solution depends not only on the value of a, but also on the value
of 2h/p for the geometry under study. A similar comment can be made as

regards the plate integration to the shallow sphere integration.

*Numbers in brackets () indicate equations.
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The convergence of the analytic soluéion depends not only on these
geometrical considerations, but also on the loading, e.g. a high load
bending situation will yield more inaccurate results than a uniform
pressure situation.

A better converéence, depending on the value of ¥ and therefore,
on the angle a, was found by Leekie.and Penny, in Refs. [13] to [16],
by using a variable substitution in the shallow sphere differential
equation of £ to (sin a/a)%f; the solution of the.new equation muét,

1
accordingly, be multiplied by (a/sin «)?, Ref. [17].

1.1.3 Numerical Analysis

All the elastic calculations based on a finite difference tech-
niqge in the ﬁresént work have been done with the computer program,
PVA1, used in several previous pieces of research work, é.g. Refs. [3],
[7] to [9] in the discussion of [23] and [63], aﬁd first reported in
Ref. [2]. |

This computér program uses the governing equations described in
Appendix A, with four dependent variables (u, #, df/dg and F), and the
meridional length (g) as the independent variable.

The computer pr@gram was developed in order to study thé elastic
distribution of stresses, strains and displacements in a thin shell
of revolution and therefore for structures containing one or more
different geometries. A usér's manual was written as a report by the
c.ﬁ.G.é., Ref. [45].

The shell is assumed to be divided into at least two branches, but
can contain up to four branches connected at the same part, which is
called a junction. Each structure has at least one junction. The
geometry within each branch can change, as long as it can be completely
described by a formula of the type a-+ b cos 9, by a value for thickness,

and, by a linear change in thickness, known as taper; the parts of the

structure identified by the a + b cog 8 formula and by thickness-taper

values arec kncwn as elements.
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In the computer program each branch may be divided into no more

than twenty elements, each having different values for the variables in

a + b cos 0, or with different thickness,'or linear changes in the

thickness along the meridional length. Either the branches or the

elements can be sub divided into equal lengths, so long as the number

of steps within each branch does not exceed two hundred.

There
- (1)
(ii)

(1ii)

(iv)

(v)

(vi)

(vii)

are seven different methods of shell loading'in this program:
constant pressure within each branch;_.

constant axial load within each branch;

applied constant and forces along the meridian wi%hin each
element in any branchj;

applied meridional moment and radiai force at the junction
and at points on the meridian of any branchj

a specifiéd boundary condition at the end of each branch, as
long as the boundary condition can be expressed in a linear
form with the dependent variables;

constant axial body forces on the whole shell;

radial body forces, linear dependent on the radius vector (r)

only.

In the present work, only internal pressures and axial loads from

internal pressures, were considered, together with the membrane boundary

condition expressed by the radial displacement and by the meridional -

moment equal to zero, thus:

u = %‘(3 -vao.) (1.2a)

M = 0 implies

@, vsin® o 4 (1.2b)
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Marcal introduced into the computer program the "0'Connell
modification" thch distributes the sharp corner forces, e.g. at
cylinder—sphereVintersections, over a prescribed meridional length
from the junction along each branch. This modification was first
reported in Ref. [é].

The numerical procedure used in the computer program is known as
a predictor-corrector process and consists of guessing initial values
for the four dependent variables at the junction and then using these
as the starting values for a numerical integration procedure which
calculates the values of the variables at each point along each branch.
At the end of the branch the calculated values are compared with the
values specified for the given boundary conditions. The initially
guessed values of the dependent variables are then corrected by a
boundary control.technique'using the values of the preyiousyintegration;
this procedure is repeated until the specified accuracies of the inte-
gration and the boundary control are satisfied. For a more detailed

description of the numerical process see Refs. [2] and [3].

1.2 Elastic-Plastic Theory

1.21 Introduction

As it is common procedure to allow a small amount of plastic flow
to occur early in the life of a vessel,: the problem of elastic-plastic
deformation of vessels at once presents itself to the designer.

There havé been some attempts to produce an algorithm capable of
'solving the problem of the elastic—plastic'behayiour of shells. Firstly
a "limit analysis" calculation was defined, and used by many authors,
Refs. [4],[20],[3i] to [40]. Later,more sophisticated methods were
developed, with high speed computers in view. Mendelson, in 1959,

Refs. [26] and [27], presented an algorithm for the solution of elastic-

plastic deformation and Marcal in 1963, Refs. [21] and [28], presented
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a new algorithm based on a "partial stiffness" method, more recently
known as the ™angent modulus" method, Refs, [6],[29] and [30]. Since
then new improved methods have been developed having in view a finite
element type of analysis, Refs. [30] and [41]. The "tangent modulus"
method has been appiied to a wide variety of problems; e.g. Refs. [3],
[6] to [9], [24],[29],[42] and [43j. A comprehensive description, and
a comparison of Marcal's and Mendelson's methods may be seen in Ref,
[e].

The computer program for elastic-plastic analysis used in this
work includes Marcal's algorithm, and was developed from the elastic
program, Section 1.1.3, described in more detail in Refs. [2] and [3].

Tests of therprogrém’s accuracy were made and good agreement with
experimental results was arrived at, Refs.‘[3] and [5], when the geo-
metry was within thé limits of the thin shell theory. The case of a
torispherical head showed reasonable agreement, but radial nozzles—on-
sphere, however, produced far from accurate results with the program;
not even with the use of the "thick curvedbar" theory, where the ratio
2h/p is larger than.l, and which gives much better agreement than the

simple thin shell theory, Refs. [3] and [9].

1.2.2 Numerical Analysis

The elastic-plastic calculations for thin shells of revolution
were carried out using a computer progrém, PLINTH, developed from one
of the elastic analyses described in Section 1.41.3, and modified in
order to include Marcal's algorithm, described in Appendix C, and
Refs. [3] to [6].
A user's manual has been written in the form of a report, Ref. [44].
Minor, but important, alterations have since been made, Ref. [ 3],
. which include a larger number of integration steps, from sixty-six, to

two hundred, data for the material given in exponential form,



24

o= al(l + bEp)c, and the output capable of being printed periodically
at the increment required.

The larger humber of integration steps improves convergence and
allows the analysis of longer branches. For each typerof geometry,
there is an optimum.number of integration steps as far as efficient
convergence is.concerned, but the present work was not, however,
sufficiently extensive to arrive at a definite conclusion. The time of
computation increases very sharply with the number of integration steps
and with the development of the plastié area during the computation
procedure.

The plastic.stress—strain relation was modified as it was seen that
the new relation fitted the experimental plastic stress-strain curve
better. In Fig. 6 can be seen the plastic stress-strain curves for the
material used by Cheung, Refs. [3] and [7], in Head A. The three curves
are the experimental curve, the second degfee polynomial form and the
exponential form, of the elastic-plastic calculations.

The numerical procedure is the same as for the elastic case to the
pqint where a convergent solution of the elastic problem to unit load
is obtained.

Once the elastic solution has been found, "the maximum von Mises
stress is evaluated and used to scale the load in order to obtain the
maximum von Mises stress equal to stress limit of elasticity.

The new value of the load is known as the elastic limit load of the
particular shell.

Henceforward, the elastic-plastic calculation is carried out using
the transition-region method with the Prandtl-Reuss stress;strain
relationships, as in Marcal's algorithm, (see Appendix C), by increasing
the load by a fraction of the first yield 1oad; The integration is

carried out, see Refs. [3] and [44] in order to obtain covergence to the
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required accuracy. This procedure is repeated in accordance. with the
information of incremental procedure.

The printed ﬁutput of the program can include stressés, strains
(individual or plasti; equivalent strains, or both), deflection and
rotations, moments aﬁd forces, as well as the progress of yielding at

each point of the shell.
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CHAPTER 2

COLLAPSE AND SHAKEDOWN CONCEPTS

2.1 Introduction

The designer is faced with the fact'that any structure is capable
of failing and he must, therefore, attempt to make the likelihood of
such a failure as remote as possible.

The_safe operation of a pressuré vessel depends on the stress—
strain distﬁbution under the relevant loading, the working temperature,
the environment in which the vessel is going to be used, the material
chosen, which must demonstrate economy and reliability in construction,
and the total period during which the structure is meant to operate. It
can, therefore, be seen that the designer is confronted most of the time
with a combiﬂation of many varying parameters; the existing codes,

Refs. [46] to [49], and [68], furthermore do not cover all possible
circumstances affecting design. The latest codes, Ref. [46, division 2]
and [68], present complex criteria for acceptable stress levels for
defined geometries and loadings. Because it would be impossible to pre-
scribe a code of safety covering all the vast number of possibilities,
there is a tendency instead to give the basis for the criteria which the
designef must apply fo his particular problem in order to satisfy the
code chosen by the client, Ref. [50]. .

As the designer, therefore, is called upon to do a work more funda-
mental in character,he must understand the mechanisms of failure, with
their attendant variables, as well as the way tﬁey interact.

.Thére have been attempts to claésify the modes of failure, but to
do so can become-very difficult because of the combinations of the
different modes, e.g. fatigue-creep, fatigue-cdrrosion.

Some more comprehensive classifications can be found in Refs. [3],

[20], [50] and [51].
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This thesis is concerned with elastic-plastic behaviour of pressure
vessels and, therefore, with failures associated with stress and
deformations. The object of this thesis is the better understanding of

the collapse and shakedown mechanisms.

2.2 Shakedown

2.2.1 Basic -Concepts S

Any normally formed structure possesses residual stresses due to the
manufacturing process, since all the processes, either mechanical or
thermal, inevitably produce an effect on the material structure; because
of this, careful precautions must be taken during the process of manu-

facture, Ref. [3], if the residual stresses are to be minimised.

If it is sﬁpposgd that the residual stress distribution in a
structure is known, and is defined by a function of stress ORE = o(P),
wheré Pisa point function (therefore, dependent on its location in
the structureiand on the properties of that structure), the stress dis-
tribution from the load may be found: o, = o(P).

When the two stress systems can be superimposed, such that the
structure does not, at that time, yield énywhere witﬁin it, that is to
éay that is still elastic, then the structure has shaken-down for that
particular loading.

It ﬁay be taken note that within the definition of shakedown apd
the theorems relating to it,the way in which the optimum residual stress
may be obtained is not mentioned, Refs. [4], [53] to [55]; (N.B. In the
general, non-technical sense of the word, "shakedown" implies a settling-
down procesé whereas in the strictly technical sense, é cyclic process
is not necessarily involved.) It is, however, always assumed that the
structure'i;, in the beginning, free of residual stresses and that they

are caused only by the unloading of the structure after some plastic

deformation has occurred in the load process.
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The material used and the structure into which it is incorporated have
always formed an iﬁherent part of the shakedown concepf, and mechanism,
as will be described later.
Consider two different structures:
(a) the simplest structure, which is an ideal tension test piece;
(b) a pressure veésel, which is the subject of this thesis.
In the case (a), when the tension load is increased up to the
elaétic limit (Le, Fig. 7) and then relieved, it is most probable that
no residual strain will appear, since creep has not been taken into
account. If the loading has passed the elastic limit (L' or L", Fig. 7),
and,ltherefore, plastic strain has developed, the level of stress will
probably be much higher than the elastic limit (séy o' or o", Fig. 7).
>In the process of unloading, since the stress distribution is uniform, a non
self—-equilibrating system of residual stresses cén be defined, the

residual stress system is zéro; theorétically speaking, the new limit-of
elasticity for this material will be o' or o" (not including the effect

of hysterssis), therefore the test piece has shaken down to a new value

L' or L" bigger than Le'

In reality, the process of shakedown implies an initial cyclic
loading, Refs. [6], [56] to [62], of the structure since the material,
with its inherent properties, presents different paths for loading and
unloading, known as the hysteresis effect. Thus, when the load has
arrived at L', Fig. 8, the cyclic process of Zero to L', then back
again to zero, will define the two paths, one of loaaing and thg other
for unloading; most materials have a tendency to settle down to a
defined cyclé, although there age exéeptions, as can be found in Ref.
[52]; in which the strain history has its effect on plastic behaviour.

Materials which do settle down to a fixed cycle, often present

either work-hardening or work-—softening, Refs. [6], [58], [62] and [75].
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The work-hardening*is shown in Fig. 9 for the case éf overall load
control, which is thé usual method for work with pressure vessels, and
it is characterised either by a decrease in strain amplitude or by‘an
increase in stress amplitude, locally.

The work—softening*ié shown in Fig. 10 for the case of overall load
control; it is‘characterised either by an increase_in.strain amplitude

_or a decrease of stress amplitude, locally. |

There are other metals which have nelther work-softening nor work-
hardening, but thch do exhibit however the coﬁformation shown in Fig.
8 after some cycles.

The cYcles may stabllise anywhere between a few cycles or hundreds
of ¢yc1es, Refs. [6]; [60], [62] and [75]. |

In case (b) the problem is much more complicated, because:

(i)  Some plastic strain may have occurred in the veskls once the
load has beenArelieved; the part of the structure that remained elastic
during the loading procéss Will play a very important part in the
stabilisation of the cyclic loading. |

(ii) After some degree of plastic strain has occurred in the
structure, assuming.that it does occur, the residual stress will not be
zero since the plastic work comes mainly from the bending action, intro-

duced into the vessel due to the change in geometry, either in radii of

curvature, or in thickness, or even because of a change in its material
properties, Ref. [61].

There are many other problems connected with the shakedown mechanism,
such as: |

(a) The ability of the material to stabilise in a hyster®sis cycle.

(b) Whether the material, being of a settle down type, will either

work-harden or work-soften.

*A simiiar change in stiffness could also be caused by change in
geometry. :
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(c) Whether the stress level for a shakedown load is in the

‘region of: C1) Elastic instability,'buckling;
C2) Creep-rupture;
C3) Fatigue-creep;
C4) Stress corrosion;
C5) Plastic instability,Abursting;:
C6) Collapse.

Since the designer has to prevent againstlall these types of
failure, he must decide upon the load level that the vessel wili take,
or in other words, he has to design the vessel in order to prevent any
of these possibilities becoming real. |

The present work»is, however, concerned only with shakedown_énd

collapse and the rest of the thesis will concentrate on these topics.

2.2.2 The Mechanism of Shakedown

‘It has been seen in Section 2.2.1 that the decisive factdrs in-
fluencing the shakedown mechanism are that:

(a) The material has to have a settled cyclic behaviour.

(b) Aldefined residual stress system has to be Qell developed
within the structure in a few cycles.

(c) The superimposition of the systems of stress, both residual
and 1oéding, must be within the bounds of elastic behaviour.

The material property has already been described in Section 2.2.1.

The stabilisation of a defined residual stress syétem, the material
having been chosen from among those that séttle, depends on the stress
distribution in the structure due to the loading process. If it'is
aésumed that the material has isotropic work hardening, then an incre-
mental theory of plasticity can be uéed with any appropriate yiéld
criterion, such as the von Mises or Tresca maximum shear stress. The

implication of isotropic work hardening is that the yield surface expands
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"uhiformly‘in a direction pafallel to the octahedral plane. The Prandel—-
Reuss incrementel plasticity equations (C.1) have been used in all the
elastic-plastic ealculatiens'in this work and are based on the assumption
of isotropic work-hardening and on the wn Mises yield criterioh.'
Hence, this theory eannot be applied to describe the-behaviour of a
structure for-a single cycle, Figs. 8 to 10; because of the Baushinger
effect of the material. Since it is impossible by the use of the
Prandtl-Reuss equation to describe a single cycle, it is assumed that
the final state of stress and strain is better defined by the use of a
settle cyclic curve, that can be Obtained by using the methods described
in Refs. [Gj and [ 62] (the general path can be seen in Fig. 12) than
by the use of a uniaxial tension test curve of the material.

This reasoning is found in Ref. [6]; intuitively it seems sensible
and more appropriate, in determining the final stress-strain state of
a structure that has been cycled, than the use of the stress-strain
curve obtained from a simple tension test for the material.

Once the properties of the-material have beeﬁ specified for a
theoretical elasﬁic—plastic analysis, the influence of the structure's
shape can be considered.

Tt is well established that the stress paths of the different
points in a structure are dependent of the material used and the shape
of the structure. It was found during ihe course of the present work
that the structure which was most sﬁsceptihle to the bending action
normaily had a stress path, in a biexial stress space, moving around
the von Mises ellipse and to a small extent toward the expanding work
hardening ellipse.v The reverse was true for strﬁctures with less
susceptibility to bending action. It can therefore be concluded that
this susceptibility to bending action is brought about, not only by a

high stress concentration factor but also by the shape of the structure.
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Let th;ee different structures be considered, with fhe following
assumptions being made:

(i) they follow the same elastic path in a biaxial stress Spéce;

(ii) after yield has occurred at any point on the structure, the

mgst highly stfessed point‘in eacﬁ followsthe stress paths
a,b,c, respectively, in Fig. 13 (the structures will be

. referred to from now on as 1, 2 and 3), as the loaa is in-

creased;

(iii) deformations are negligible so that the stress paths in the
unloading process can be taken as pafallel fo thé initial
elastic loading paths;

(iv) the materials are free of hysteresis; and are capable of

sfabilising; |

(v) the extent of the expanding work hardening ellipse needed to

| double the load for first yield, anywhere in thevstructures,
is the same for éll three structures.

The points representing twicg the loaa necessary to cause yield
anywhere in the structures (1, 2 and 3) are marked.in Fig . 13, as A, B
and C, respectively; and the points that represent the residual stresses
assuming no reverse yielding, are marked as A', B' and C' respectively.

 Structure 1:

As long as the points representing the residual stresses of a
stfuctufe froﬁ an unloading process do not violate the work-~hardening
ellipse derived from the loading process, it seems unlikely that a
definition of an upper limit to shakedown for the expanding ellipse is
possible for that structure.

Assuming the mechanism described in Ref. [24] (or Appendix E), and
in Section 2.2.3, in which the ellipse for the elastic limit (yield

surface) moves either in the direction of the elastic path, or in the
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radial direction to the point on the stfess path béing considered, the
structure has its shakedown limit near 2(= L/Ly):, but slightly below
pointsAC and AT respectively.

Structure 23 ‘

It is probable thaf this type of structure does have an upper limit
to ;hakedown, but if this is so it is gréater than 2.. For the other two
critéria.of the moving eliipse, Section 2.2.3, the values are both 1ess'
than 2., with little difference between them.

Structure 3:

The upper 1imit.0f shakedown is less than 24 and_the residual
stfess point will probabiy be in Cﬁ instead of C'. If this criterion
is used, and a cyélic process is used between zero and twice the elastic
load (Ly), then the structure will behave as shown in Fig. 11, but with
the upper and lower stress limits equal in magnifude (+ o), but there
will be an incremental collépse failure if ﬁhe stabilisatién behaviour
cannot be defined. For the other two moving yield ellipse criteria,
Section 2.2.3, the values of shakedown are well below 2. and are also
very different from each other (points C_ and Cy, Fig. 13).

These conclusions were arrived at during the course of this work,-
when comparisons were made between the different pressure vessels
- analysed. In fa¢t, the conclusions are mucﬁ more complex because the
elastic paths were not the same in each case, but the purpose here 1s

to describe the influence of the geometrical characteristics of the

structure in shakedown behaviocur.

2.2.3 Shakedown ECriteria

In Sections 2.2.1 and 2.2.2 the basic concept of, and variables
.connected With,the shakedown mechanism were described.
In this section the method of évolution of the shakedown values is

. described, assuming that elastic and elastic-~plastic analyses have been
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carried out and hence the stress distribution throughout the structure
is known both ét the elastic limit and at different load increment
steps.

Leckie, Ref. [61], has derived a method based on Melan's theorem,
Ref. [54]; using thé hypothesis of an elastic-perfectly plastic material,
and an elastié analysis. This method is now well established, is éften
used in design to guard against shakedown, and has been used in this
work (as well as in Refs. [12],[23],[24] and [63]). Macfarlane and
Findlay, Ref. [12], have described a simple technique for shakedown
calcﬁlation using Le;kie's method in its simpler form with either the
Tresca or the von Mises yield criteria.

This technique was used in Ref. [24] (or Appendix E), as well as
in the present Qork, but only using the von Mises criteripn-iﬁ these
cases. |

Leckie's method has proved to be most helpful if work-hardening of
the material is not included in the shakedown behaviour, and its appli-
cation is much more economical than those described later in this
secfion, since these methods are based on an glastic-plastic‘computation.

Prager, Refs. [64] andA[65], presehts a kinematic theory of plasti-
city allowing the yield'surface to move laterally as well as to expand.
This has been applied to shakedown behaviour of structures with work-
hardening materials. Prager has defined the way in which the shift wouid
be made, but in the present work, it is assumed that the yield ellipse
moves in the direction either of the elastic path or of the radial
vector of the point that represents the stress state of the particular
load considered. The movement in these directions is made on the
assumption that the principal direction of the stress tensor remains the

same, and hence the axes of the initial ellipse and of the moving

ellipse are parallel, and movement is made up to the point where the



35

nearest limit of the yield surface is on the point that represents the
stress state of the particulér load considered. In the case of the
second movement the two surfaces, yield and work-hardening are tangential
to each other. These movements of the yield surface, together with the
unloading process described in Section 2.2.2, form the two initial
criteria,.referred to throughout this work as SPC and SPT.

“A third criterioﬁ is used wherein the work-hardening surface
- reached during loading 1s taken as the limit for elastic unloading of
the structure. This criterion may well be overamhitious, as well as
unconservative, but as far as the author is aware no theory has been
developed that ceontradicts this assumptién. This criterion will be
referred to in this thesis as SPW.

Cfisp, Ref. [57], uses the strain gauge readings from the experi-
ments with the assumﬁtion of an elastic—perféctly.plastic material,
Prandtl-Reuss equations of incremental plasticity, and von Mises!
critgrion, in order to de£ermine the post yield state of stress and the

shakedown loads by assuming an elastic unloading.

2.3 Collapse

2.3.1 Basic Concepts and the Mechanism of Collapse
| Consider a structure loaded such as to cause a stress state, at
the most highly stressed point, just on the yield surface and therefore
free of plastic strain, and assume the material to be elther ductile or
pérfectly plastic, and the load increased to a fixed value: if the
elastic-plastic deformatioh does not stop, the structure either collapses
or bursts, hence this last load valué is called a collapse load or
bursting load, Ref. [20].

Collapse calculations have been reported in many papers, e.g. Refs.
[31,04],[7],[9],[20] and [24]; some experimental work has also been

reported, e.qg. Refs. [3],[7] and [57]. Sometimes the collapse load is

referred to in the literature as the limit load.
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The collapse concept assumes a monotonic increaée in load.

Another type of collapse can take place in fhe case of cyclic
load, but this is however recognised as a different kind of behavioﬁr,
that of incremental.collapse. This behaviour assumes a process of
vielding and reverse yielding, with geometrical changes in the structure's
shape in each load cycle, Refs. [4],[20],[50],[66] and [671,

Thé principal variables as regards the collapse m;chanism are:
the structure's geometry and, therefore, the elastic stress and strain
distribution; the material behaviour and its capacity to‘ac;ommodate
plastic'strain; and in, if work-hardening is considered, the residual
stresses in the structure, Ref. [4].

It can thus be seen that the larger the capability of the structure
to sustain the plastic flow of a region in the plastic ﬁhase, the less
likelihood there is of collapse. The g;owth of fhe plastic region is
constrained mainly by the remaining elastiq parts of the structure and,
once the elastic regions are about to reach gross yielding, céllapse is
delayed only by the work-hardening of the material.

In Fig. 14, the effect of the material properties on the collapse
load can be compared for two different structu;es with elastic-perfectly

plastic material (curves a, and ei) and structures with work-hardening

.269

1

material (o = 13.3 (1 + 133 Ep) ) (curves a and g). It can, therefore,
be readily concluded that material properties are of consequence in the

collapse mechanism.

2.3.2 Cbllapse Criteria

It is critically important that the wvalue of the collapse load is
found, otherwise excessive deformation can be introdﬁced into the
structure-during the testing process, especially since the value of
the testing load is sometimes fixed as a fraction of the limit load.

The ASME code, Section VIII, Division 2, Ref. [46] and BS3915, Ref. [68],
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permit the use of limit analysis; the former specifies that the design
loading must be less fhan two thirds of the limit load, although this
carries with it further implications, as design stress is equal two
thirds of the proof stress,:Ref.”[69].

Limit analysis has 1on§ been used in the plastic design of
structures, and its theorems have been extended to the plastic design
of pressure vessels, Ref. [50]. A relatively larger literature oﬁ the
limit analysis of symmetrically loaded shells of revolution has been
publishéd, e.g. Refs. [31],[32],[38],[70] and [71], and some work has
been reported on the asymmetric loading of shélls of revolution, e.q.
Ref. [72].

Limit analysis normally uses the Tresca criterion, and assumes a
rigid—plasﬁic material with a possible pattern of plastic deformation.

Since computer programs have become available for the analysis of
the élastic—plastic behaviour'of pressure vessels, attempts have been
made to define some criteria in>ordér to evaluate the collapse load
from computational results, Refs. (3], [7] to [9] and [73].

Marcal and Turner, Ref. [8] have proposed the ériterion of 1.5%
maximum allowed strain. The load, therefore, that causes that percent-
age of strain is considered_to be the collapse or limit load. This
criterion will be hereafter referred as.C15 ; it is probaﬁly uncon-—
servative if the material examined is elastic—perfectiy plastic, but
certainly depeﬁds on the structure itself.

Cheungvand Turner, Ref; [7], have put‘forward two collapse criteria:

The first is based on the curves of indiviaualvstrain, equivalent
strain, and overall deflections, against load. This criterion is based
on the intersecfion of therelastic curve with the tangent drawn to the
point defined by a line of one third the elastic slope intersecting

the considered curve. This criterion will generally be referred to as

C3 in this work and, in particular as,
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C3I for the cﬁrve of individual strain against load;

C3E for the curve of equivalent strain against load,

C3D for the curve of overall deflection against load.

The second criterion is based on the load necessary to cause 0.5%
maximum strain on the outside surface. This criterion can be used with
either the individual or the equivalent strain, and will be hereafter
referred to as C5 and in particular as,

C5I for the individual strain,

CSE for the equivalent strain.

These two criteria, C3 and C5, are generally speaking conservative;
perhaps the less conservative is C5 so long as elastic—perfectly plastic
maferiai is chosen for the computations. The C5 criterion is, of
course, more conservative than C15I, because the internal and external
maximum individual strains are not very different from each other, but
do dépend however on the structure's geometry; the C5 criterion is also
convenient in the testing process since. it can be used to control the
collabse load. |

Marcal and Turner, Ref. [7], and Crisp, Ref. [9], have proposed a
criterion based on.the growth of the plastic region. This criterion is
probably better than those above mentioned, but is éomewhat subjective
in its nature, as it is difficult to define previously a reasonable
spreading ratio pf the local yield from which the collapse will spread
quickly: |

This criterion will be hereafter referred as BSLY.

Townley,iRefs. [73] and t74], defines a collapse load by considering
an equivalent strain of 1% as excessive deformation. This criterion is
probably the most convenient since it lies between C5 and C15I, although
for low stress concentration structures however it is certainly uncon-

servative.
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It can be appreciated on the basis of the above mentioned criteria
that definition of a collapse mechanism applicable in all circumstances
is a very difficult undertaking; it is here that the ability and ex-
perience of the designer is of primary importance.

From an extensive and detailed study of the elastic-plastic com-
puter results, two new criteria are described.

The. first is applied to geometries with neither concave, nor sharp
corners,'i.e. torispherical and hemispherical heads, and the second to
geoﬁetries with concave corners either sharp or smooth, i.e. cylindrical
nozzles;on;sphere geometries.

‘Collapsé criterion for torispherical and hemispherical heads:

In the data used for the elastic—pla;tic computer proéram, the
number of steps for the integration process is defined for each element,
and the load incremeﬁt is also defined. The computer program determines
‘the yield load and its position on the vessel. The maximum equivalent
strain is calculated for the outside surface, associated with its
position. When the load was increased step by step during the original
caleulation, it was found that the position of the maximum equivalent
strain on the outside surface changed its location, first from point to
point, then over two or three points or even more. The jumping process
" of the maximum equivalent strain on the outside surface was first
detected when the 1océl yvielded region across the thickness started to
épread to membrane areas. Hence the load in which the jump begins té
be large, can be defined as the collapse load.

This criterion will be hereafter referred as CMED.

This phenomenon is, like the Crisp criterion, Ref. [9], dependent
on the integration step size, and the load increment selected, as well
as on the analyst's knowledge of the subject. The load increment

needed for a high stress concentration factor is about .15, but for a
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medium stress concentration factor, of about 2,to 3, a value of about
.05 or .075 is recommended. In case of a low stress concentrétion
factor, a value lower than .05 is desirable, but of course when tﬁe
stress concentration factor is near 1, then a much smaller value for
the load increment has to be used witﬁ the scaling process to the
load increment if this criterion is to be employed.

) ﬂThisphenomenonis better demonstrated in a computation with a
work=-hardening material, than one with an elastic-perfectly plastic,
since the former allows a simpler computation,vas well as the growth
‘in plastic strain.

An application of this criterion, as well as the Crisp criterion,
Ref. [9], can be seen in Fig. 15 for Head A from Cheung, Refs. [3] and
[7], in Section 4, wther particulars can be found.

Collapse criterion for internally pressurised c¢ylindrical nozzles-
oNesphere geémetries:

This criterion was described from plotting the biaxial stresses
obtained from the computer results. The computer program uses the
von Mises criterion to define the yield surface. Plotting in the
biaxial von Mises space the history path of both étresses (circum-
ferential_and meridional), for each particular point.in the pressure
vessel, gives Figs. 13, 16 and 17. The latter two figures are for
rédial ﬁozzles-on—sphere geometries, and are obtained by plotting the
compute; pregram results for an elastic-plastic analysis. In Fig. 17
the stress paths for the cross-section containing the most highly
stressed point of nozzle N5 (see Chapter 4) for both the elastic—
perfectly plastic, and the work-hardening, cases can be seen. .The
stress paths for the internal point (i.e. the most highly stressed
point in the structure) are marked by Bl and B2 on Fig. 17; B1 de-
notes'the material treated as non-work-hardening and B2 the material

treated as work-hardening.
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The path B2 shows a clockwise movement around the elliése as
long‘as the local yield growth is smooth, but when the local yield
begins to spread-rapidly towards the membrane shell, the path begins
to bend to anticlockwise. It is at this particular stage in the
loading process tha£ work-hardening bécomes apparent in the highly
stressed regién. This criterion is based on the following observation:

Tracing from the centre of the yield ellipse a line tangential
to the stress path, a point on the path is defined which corresponds
to a defined pressure; this pressure is called the collapse pressure
for the_particular structure.

If the material is treated as non work-hardening the stress path
shows similar behaviour to that of work-hardening material. The
pressure at which reversal occurs is called the strﬁcfgre collapse
pressure.

This criterion will be hereafter-referred o as CSP.

This criterion is perhaps the simplest of those considered, but

it requires more work than the others because of the necessary plotting.
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CHAPTER, 3

PRESENTATION AND DISCUSSION OF ELASTIC RESULTS

3.1 Introduction

In this chapter the results of elastic analysis using either an
analytic iﬁtegration or a finite difference computer program for
symgetrically loaded shells of revolution are présented and, where
possible, compared with published data. The effects due to welding
are not taken into account in these calculations.

Analytic integrationris explained in Appendix B, and is.derived
using the equations presented in Appendix A. The governing equations,
and the type of analysis inwolved, are described by Turner, Refs. [1]
and [76], using Love's shell theory'ReﬂW7],Many other works have been
published using the same theory, e.g. Refs. [2] to [9], [13] to [16].

Once the simplifications for each particular géometry and loading
have been introduced into the general governing equations for an
analytic integration, (A.14) and (A.20), the calculated results are
different for each particular situatipn and sometimes, for similar
situations, the results are limited by the approximation, depending on
whether a high bending situation, where B is near + W2,existed.
Leckie and Penny, Refs. [13] to [ﬁ6],have given an analytic solution
that can be used for ail values of §. ' | |

The integration process used by Turner, Ref. [1], is used here,
Abpendix B, to evaluate the stress concentration factor for flush
cylindrical nozzles-on-sphere geometries, as well as for spherical and
hemispherical heads on cylinder geométries.

A coﬁputer program for the elastic-analysis of symmetrically
loaded shells of rewolution, developed by Pilgrim et al, Ref. [2],
that uses the equations described in Appendix A, with a predictor—

corrector process of integration and boundary wvalue control,
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e.g. Refs. [2] and [3], was used to detefmine some stress concentration
factors for thé two above-mentioned geometries, and also the stress
distribution on some knuckles of cylindrical nozzles on spherical geometries,
as well as for the tested radial nozzle on sphere, Fig. 37; the com-

pafison for the lat£er geometry is made between experimental measure-

ments and calculated strains.

3.2 Stress Concentration Factorsg
The stress concentration factor (SCF) of a pressure vessel is
defined as the ratio between the maximum stress value in the structure
and a membrane‘stress for the pressure vessel, i.e. ndminal stress,
hence: '
a

SCF = —&X (3.1)

memb.

The stress values in (3.1) can be either individual stresses
(circumferential or meridional) or equivalent stress values (either
by the von Mises or Tresca criteria) .

It is normal practice to say that the stress concentration factor
is based on a yield criterion. The Tresca criterion is normally used
when a limit analysis is inwolved, since its implications can be more
easily set out than fhose for the von Mises criterion Ref. [32]. 1In
the case of an elastic-~plastic computation, using e€ither the Marcal or
Mendelson algorithms, the von Mises criterion is more convenient as
its differential form is more suitable than that of the Tresca criterion.
It therefore appears logical to use the Tresca criterion for (3,.1)
when a limit analysis is being undertaken, and von Mises criterion for
(3.1) when an elastic-plastic computer program is being used.

For cases of nozzle geometries on spheresit is normal practice to
define thé stress concentration factor in terms of the membrane stress

on the sphere, e.qg. Refs, [16] and [78]; in the particular case of
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internal pressure, the membrane stress, either individual or equi-
valent (Tresca or von Mises criteria), has always the same value;

hence

¥
G - & - _ D
s s s . a7
. (w or 1) Tresca von Mises
thgrefore
2Tmax ‘
Tresca criterion: SCF = —— (3.2.1)
s
and
G .
von Mises : SCF = :Em@x ' (3.2.2)
o
S

'For cases of hemispherical and spherical heads on cylindrical
geometries, it is normal practice to define the SCF in terms of the
membrane equivalent.stress on the cylinder. If the Tresca criterion is
ﬁsed,e.g. Ref. [9], the membraﬁe equivalent stress, for a pressure
vessel, is equal to the membrane circumferential stress (= pd/2t);
this SCF is defined by Crisp, Ref. [9],'as the principal SCF. Using
the von Mises critérion, the membrane equivalent stress is given by
V3 pd

< 5g» and Crisp, Ref. [9], refers to this SCF as the von Miges

equivalent SCF.

Therefore
‘ 2 "max
Tresca criterion : SCF = ——= (3.3.1)
Pc
and
- o
' “max
von Mises criterion : SCF = ——— (3.3.2)
o
e
c

Langer, Ref, [51], defines a stress index as the ratio of the
maximum individual stress to the membrane circumferential stress on

the cylinder, hence,

D

il
w}
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9 i = l, q) (3'303)

In the present work the inverse values of the SCF and stress
index are used for spherical and hemispherical heads as these values
were found to be more suitable for logarithmic plotting against

acos (d/D). When referring to these values (1/SCF or ‘l/cin o Ehe

d

expressions "stress concentration ratio" and "stress index ratio"

will be-used.

3.2.1 Spherical and Hemispherical Heads on Cylindrical Pressure Vessels

In FPigs. 4 and 5 the geometric variables for the spherical head
and for the flat end are shown, respectively. It can clearly be seen

that a spherical head may be defined by the following parametersﬁ

%-: linder diameter/sphere diameter
(¢}
, %= cylinder diameter/cylinder thickness
t . . .
7T = cylinder thickness/sphere thickness

In the design of pressure vessels, an attempt is made to keep. all
component parts émall, for economic reasons. This leads to an effort
to equalise the membrane equivalent stresses on the different com-
ponents. Hence, for the spherical head-on—cyliﬁder geometry, this

condition is given by

~using the von Mises equivalent stress criterion. For internal pressure,

- the ratio of the membrane equivalenf stress on the sphere to that on

the cylinder, defines a variable pm, that shows in which element the

membrane yielding will occur first, hence,
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e » .
= —= - (3.1)
] .

This quantity can also be defined by the ratio of pressure to

cause membrane yielding on the sphere, to that on the cylinder, hence

_ ms | (3.2)

The values of Ems and Emc’ however, assuming the two components
are made of the same material and have a limit of elasticity given by

Gy’ dre obtained from:

pms = 2 O'y "D—o' (3.3-1)
and
P =\/—_2- o, gdﬁ | ! (3.3.2)
3
Therefore, from (3.2)
= T d
P, =V3TD, (3.4)

For a given spherical head on a cylinder preésure vessel it can
readily be decided which of the two membrane regions will yield first

by using (3.4), since:

if Em = 1, it will be most probable that both membrane regions
will yield at the same pressure;

if Em < 1, membrane yield will start on the sphere (head);

if p_ > 1, membrane yield will start‘on the cylinder (drum or

body vessel).
The value of d/D gives the cosino of the angle (§) of those
points on the sphere which result from the intersection of the two

mid~wall surfaces of the sphere and cylinder,

d

5;= cos eo : (3.5)
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The spherical head-on-cylinder geometries have two limiting cases:
the hemispherical head for which § =-Oo, and the flat end with § = + w/2.
It is well known that for hemispherical headson cylindrical geometries

the mid-wall diameters of the sphere and the cylinder are equal (d = D)

and therefore, from (3.4)
' = T
b, =37
Hence, the value of unity for Em will be obtained for
%=/§ (3.6)

Since it waé realised that with hemispherical heads, the SCF,
using the definition given by (3.3.2), diminishes with t/T increasing
up to 1., and decreasing rapidly for t/T = 2, some extra calculations
were made for t/T = 1.25, 1.5 and 1.75 (see (3.7)) and a graph drawn,
Fig. 18, for streés concentration ratios (1/SCF) versus t/T; it was
found that the maximum stress concentration ratio (or the minimum SCF)
occurs for values of t/T between 1.5 and 1.75, and therefore the value
given by (3.6) for t/T is a good approximation to' the minimum SCF,
Fig. 18.

The same réasoning could have been done for other geometrical
situation but as it was not, no generalisation is possible.

The values of the geometrical.parameters taken for the spherical
heads were -

0° to 90° R

eo(d/D)
a/T = 10, 20, 40, 80, 160, 400 (3.7)
/T = .25, .5, 1, 2, 4. .

Graphs and tables were drawn for the stress concentration ratio
(1/SCF), using the definition (3.3.2), against the geometrical para-
meters eo(d/D), d/T and h/d, Figs. 19 to 25 and Tables HH1, HH2, SH1,
SH2, FH1 to FH3 and TH1 to TH4, but in some tables other definitions

were used for comparison with published results, Refs. [9] and [61].
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In Figs. 19 to 22, the stress cgncentration ratio wés plotted
against §_ (d/D) with each curve for constant d/t (3.7); separate'
graphs were drawn for t/T = .25, .5 and 1, respectively, Figs. 19, 20
and 21, but in Fig. 22 the gfaphs for t/T = 2.and 4,,have‘been included.

Some other graphs wére drawn, Figs. 23 and 24, in order to obtain
a final graph showlng the maximum stress concentration ratio for all
considered geometrical'parameters, which may be seen in Fig. 25.

Each curve in Figs. 19 to 21 is made from three main approximations,
the exponential integration (B.38), the approximation to Kelvin function
integration (B.39) with (B.17), or the solid plate solution (B.34), but.
certain particular parts of the eurves are from the elastic cqmputer pro-
gram (PVA1), e.g. values of eo(d/D) near /2.

Let a particular curve be considered as an example, f/T = 1.0,

Fig. 21, curve d/t = 10.:

This curve can be divided into three main parts, i.e. OO to 200,
20° to 60° and 60° to 90°. In the first interval (0° to 20°), either
the e#ponential'integration (B.38) or the Kelvin function approximation
(B.17), as well as the values from the élastic computer program, give
virtually the same values, e.qg. hemispherical head, Iable HH1. In the
second interval (20° to 60°) in this particular case, theg Kelvin
function approximation (B.17) yields slightly higher values than the
exponential integration (B.38) bﬁt, since they are very close to those
obtained from the elastic computer program (Pvﬁi); no table is given
for comparison. In the third interval (60° to 900), the true curve
has been obtained using the elastic computer program, as both the
solution from(B.385 and thésolution using (B.17) considerably diverge,
whereas the solution that uses an approximation to the Kelvin function
(B.17) gives better values. The complete Kelvin function (1.1) would

give better values than (B.17), but it is considered highly probable
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that Leckie and Penny'é solution, Refs. [13] to [16] would give a
better appfoximation than (B.39). Aé expected, the solid plate
solutions for values of eo(d/D) close to n¥2 yield more aécurate values
than (B.39) with (B.17) solutions.

Generally speaking, "all the curves in Figs. 19 to 22 can be divided
into three ﬁarts but, for t/T = .25 and .50 in the second interval, the
values obtained from the exponential solution (B.38) are slightly higher
than the values from (B.39) which uses the approximation (B.17) to the
Kelvin function; in the third interval the former solufions are better
than the lafter when compafed with the results from the elastic com—
puter program (PVA1). These conclusions may also be seen from Tables
SH1 and SH2 for the spherical head case, and from Tables FH1 to FH3 for
the flat end (solid plate) case;

In Figs. 19 and 20 some dotted. lines are drawn which represent
spherical‘heads_with 2h/p larger than .1, and therefore outside the
thin shell theory. If these curves are to be used the obtained values
for SCF should be used very cautiously.

In the tables TH1 to TH4, values from Ref. [9] and from the analytic
exponential integration (B.38) for the, von Mises stress concentration
ratio are presented. The purpose of these tables is-to demoﬁstrate
the improvement gained by the inclusion of the knuckle on the spheri-
cal heaa. The comparison is made for torispherical [9], and spherical
heads with equal d/D. From Ref. [9] the following equation can be

written:

h

r .
Q_: d d with h = head height (3.8)
b (%02 + .25 --% and r = knuckle ;adius

From (3.8) with defined r/d and h/d, the values of d/D can be

determined and hence eo(d/D) from (3.5).
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From Crisp, [9], the values of h/d = .15, .20, .25 and .4 and
r/d = .06 and .10 were chosen for comparison. In Table TH1 the values

of h/d for spherical heads are given for each h/d from [9]. The values

of spherical h/d changes with r/d. In this table the values of r

are quoted as percentage of vessel diameter, d. In Tables TH2 to

TH4  different values of d/t have been considered, 20.,, 50.and 100,

l

respectively.

3.2.2 Flush Cylindrical Nozzles on Spherical Pressure Vessels

For this type of geometry, two theoretical-analyses, (Appendix B),
were carried out, using either the exponential integration solution
(B.36), or the solution by the Kelvin function's approximation (B.37)
with (B.18); the élastic computer program was also used for comparison
of its results with the values obtained from the above analyses. Com-
parisons can be done with values from Leckie [61] and [63]. Leckie has
plotted curves for an averaée Tresca SCF (3.2.1) for constant values of
t/T (.0, .25, .5; .1) against w(= &/, V/D/2T), obtained from a cylinder
sphere intersection analysis described in [14] to [16], with the
assumption that the maximum stress occurs in the spherical portion
(although in certain geometries of very thin nozzles the maximum stress
probably lies in the cylinder portion)2 and that the cylinder can be
treated as semi-infinite. Leckie also assu%ed that the pressure vessel
could have a reinforcement pad (area replacement rule, Ref. [78])
away from the nozzle, but with a length such that the change in thickness
in the sphere would ndt modify the stresses on the sphere close to the
junction, and also that the highest stress point remained in-the same
position. Leckie and Penny have presented a discussion, Ref. [16] on

pad size. .
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In the present work the same assﬁmptions were made, except that
the SCF' is based on the maximum equivalent stress anywhere in the
geometry; cases of cylinders thicker than the sphere are also considered.'
The "area replacement rule and "pad size'" were not studied, although
some considerations fegarding this can be seen in Section (3.4.1).

In Tables FN1 to FN4, values of SCF using either the (3.2.1) or
(3.2.2) definitions, can be compared for values from analytic inte-
gration, either (B.36), or (B.37) with (B.18), from the elastic computer
program, and from Ref. [61].

Graphé were plotted, Figs. 26 to 29, for the von Mises SCF (3.2.2)
against gl= d/VEBE), together with values from the exponential inte~

gration analysis (B.36). Each graph is for constant t/T, and the cases

t/T = 2,and 4,are plotted in the same Fig. 29. Figs. 26 to 28 are for

/T

.25, .5 and 1,‘respectively.
The geometrical parameters for cylindrical nozzle-on-sphere geometries,
without considering any pad size, either on the cylinder or on the
sphere, can readily be seen to be R/T, d/D and t/T, from Fig. 3. The
parameter d/D has been substituted by @ in the graph, Figs. 26 to 29,
as Leckie et al, have done. The geometrical parameter values considered

are:

g
3

400., 200, 100, 50., 20, and 10.

.0025 to .6

o

Sy
w)
Il

t/T = .25, .5, 1, 2,and 4,

Although the value of .6 for d/D may seem very high, Mershon has
considered higher values, [79]; likewise although the minimum value of
.0025 may well be too small (except for the case of R/T = 400 and
t/T = .25), a value of 2.9 for the von Mises SCF is obtained, and hence

it was decided to include this value in the graphs for d/t > 10 (although

it should be d/t 3 .20).
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In Figs. 26 to 29, two average curves for the von Mises Stress
Concentration Factor can be seen for R/T = 10, to 400,, and R/T = 10, to
160.. Because it was realised that errors as high as 40% and 30%, could occur
respectively, in relation to these average curves, if it were to have
been decided that a graph with only average cﬁrves were to be drawn,
it was resolved instead not to present a Unique graph like Leckie et

al in Refs. [16], [61] and [63].

3.2.3 Discussion of Regults

Firstly spherical heads are considered and the flush cylindrical
nozzles on spherical gecmetries. This discussion is based on the above-
mentioned tabulated wvalues.

Hemispherical and Spherical Heads on Cylindrical Pressure Vessels

The results are'tabulated sepafately for hemispherical, spherical,
flat end (solid plate), and.torispherical-spherical heads, for compari-
son between prevlously published data and the present calculations
(which are described in Section 3.2.1), on Tables HH1-HH2, SH1-SH2,
FH1-FH3 and TH1-TH4 respectively. (Note: The first letter of the title
refers to the type of head, and the second to denote the fact that the
table is for heads.)

Each geometry is considered separately and in the latter part of
this section the toriépherical—spheriéal heads comparison is made.

Hemispherical Heads on Cylindrical Pressure Vessels

From Table HH1, it can readily be seen that the analytic values,
and Langer's values from Ref. [51], are in excellent agreement; it
is relevent to note that the Tresca stress concentration ratios and
stress index ratios are equal according to the elastic computer program.

From Table HH2, it may be concluded that the values obtained from
Langer [51], Crisp [9] and by the analytic exponential integration, are
independent of d/t and only change with t/T. The value from Crisp is

very nearly the same as that obtained in the analytic solution.
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Spherical Heads on Cylindrical Pressure Vessels

For these~geometries, comparisons are only made for stress con-
cent;atiOn ratios based on von Mises'criterion.

The values of d/D = .4 and .25 are chosen because for d/D > .4
the three solutioné (exponential,approximation to Kelvin function, and
elastic computer program) are in good agreement within + 2%, while for
d/D = .25 the divergence is greater than - 20%; naturally, these values
depend to a large extent on the whole vessel, shown in Figé.’19 to 22.

From Tables SH1-2, it can be seen that the exponential solution
yields results better than the approximation to Kelvin function for the
case of thicker head than vessel, although the reverse is found to be
true for a head and vessel of thé same thickness. For thicker heads
than vessels, the results from the exponential solution, when compared
with those from the elastic computer program,are within - 10% to - 20%,
Table SH1, and - 20% to - 30%, Table SH2, for d/D = .4 and .25,
respectively. For similar comparisons for head-vessel of equal thick-
ness, the results are within - 0% to — 10% and .5% to - 35% for d/D = .4
and .25, respectively. Comparing the results from the approximation
£o Kelvin functions solution with those from the elastic computer pro-
gram, it is found that, for thicker heads than vessels the results are
within - 10% to - 30% and - 30% to - 70% for d/D = .4 and .25, respect-
ively, but for head-vessel of ecual thiékness the results are within
- 7% to .5% and - 5% to - 20%, for d/D = .4 and .25 respectively.

Referring to Figs. 19-21, lines (b'b") mark the limit of good
agreement between the analytic (Appendix B) and the numerical (computer
program PVA1) integrations. On the right hand éide of b'b" lines the
analytic (either exponential or approximation to Kelvin function
solutions) integrations may be applied instead of the elastic computer

program, but on the left hand side of the b'b" line the former solutions
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are in places much too conservative. In the same figures points

.

i, . .
AV, i = t',","" 'V are marked; these points are of special consequence in

‘that they denote the limits of application of the solid plate, as
opposed to the spherical head, for an analytic solution (Appendix B)
when the results are compared with those from the elastic computer
program; poigt A' stands for d/t = 10; and so on, and A'V for d/t = 80.

Consider the following example: ’

Thicker head than vessel, t/T = .5, d/t = 20, (see Fig. 20, point A").

If acos (d/D) < Bpn» the cylinder-sphere solution .(eXponential,
Appendix B), giveé a better result than the solid plate solution, when
compared with values from the elastic computer program (PVA1).

If acos (d/D > Bpus the solid plate solution gives better results
than any analytic solution considered in the presgnt work when compared
with the values from the elastic computer program (PVA1).

Flat Ends (Solid Plate) on Cylindrical Pressure Vessels

Referring to Figs. 19-22 and Tables FH1—3, it can be seen that the
stresé concentration ratios (either index, von Mises or Tresca) increase
with the thickening of the.head,as may be expected from Ref. [51]. For
the considered geometrical parameter range (3.7), only nine geometries
.present'stress concentration ratios higher than 1. -The solid plate |
solutions for the von Mises.stress concentration ratio are in very good
agreement with values from the elastic computer program, but comparison
‘of. stress index ratios, from Langer [51], with the elastic computer
program, show differences of up to 15%, which is an acceptable margin. .

Comparison of Torispherical and Spherical Heads on Cylindrical Pressure
Vessels of Equal d/D ‘

Tables TH1-4 show that the presenceof a knuckle raises the head,
particularly for low h/d values and large r/d values. The knuckle
inclusion gives an improvement as far as stress concentration is con-

cerned although in certain conditions, taking the knuckle into account



55

doeé not bring the expected improvement, e.g. Tablé TH2, h/D = .25,
.4, either 6% or 10% knuckle, and Table TH3-4, h/D = .4, either 6% or
16% knuckle; the improvement éained is less than 12% and certainly the
cost will be higher with rather than without the knuckle.

The improvemen£ for knuckles of 6% and 10% is within 0% to 30%
and 0% to 45% respectively. |

Thus once the values of d/D, d/t and t/T have beén determined, it is
a worthwhile exercise to study whether é geometry with a knuckle is

a significantly better design with regard to economic factors.

Flush Cylindrical Nozzles on Spherical Pressure Vessels

A- comparison is made between the values from the two analytic
solutions (cylinder-sphere and cylinder-shallow sphere intersections)
presented in Appendix B, and the elastic computer program for von Mises'
Stress Concentration Factor, although values from Leckie, Ref. [61] are
also compared with values from the compuﬁér program.

Tables FN1-4 are for R/T = 50.with /T = .5, 1, and R/T = 100.
with /T = .5, 1, respectively.

Leckie's values [61], when ¢ompared with the results from the
elastic computer program (PVA1), show that the former values are on
average - 43% and + 5% differént for nozzle-vessel thickness ratios
(t/T) of .5 and 1.respectively; these results however are to be
expected since Leckie assumes that the maximum Stress Concentration
Factor lies on the sphere itself.

The results from the exponential and the approximation to Kelvin
function solutions when compared to the results from the elastic com-—
puter pfogram (PVA1), for nozzles thinner than sphere, are within - 11%
to + 1% and 0% to 15% respectively, but for nozzle-vessel of -the same
thickness; the results are within - 12% to + 10%, with an exception of

+ 25%, and + 2% to + 30%, for exponential, and approximation to Kelvin
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function, solutions (Appendix B) respectively. Generally speaking, the
exponential soluﬁion yields lower values thén the elastic computer
program but the feverse is the case for the approximation to Kelvin
function solution.

If one excludes the two following geometries from Tables FN1-4,
a/D = .025, t)T = 1 with R/T = 50 and 100, the values obtained by the
exponential solution lie within a range of + 10% when compared to
those from the elastic computer program, whereas valueé from the
approximation to Kelvin function lie within 0% to 20%.

From the vaiues obtained from Leckie [61], for a nozzle-vessel
of the same thickness (t = T), it is very probable that Leckie's method
will yield better results for von Mises' stress concentration factors
than the methods based on the analytic integrations used here; however,
a similar study using Leckie's method, Ref. [13],is recommended.

If the curves drawn in Figs. 26 to 28 ére to be represented by a
unique average curve from each graph, a very large degree of error
would be entailed. For example, for t/T = .25, Fig. 26, the error
would be within + 25% and + 45%, for the average curves of R/T = 10. to
' 10Q.and R/T = 10. to 400., respectively. The error for t/T = .5 and 1
would be within + 20%, + 35% and + 20%, + 30%, Figs. 27 and 28, respect—

ively.

3.2.4 A Graph for Stress (oncentration Ratios based on von Mises'

Criterion in Spherical Heads on Cylindrical Pressure Vessels of

/T = .25, .5 and 1.

Results from the spherical head discussed‘in Section 3.2.3 can be
considered réasonable and, because it was realised that a maximum
stress concentrétion ratios graph could be obtained from Figs. 19-21,
two intermediate graphs were drawn, Figs. 23 and 24, and then a final

one drawn on the basis of these two, Fig. 25.
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In Figs. 23 and 24 the maximum stress concentration ratios are
shown for E/T = .25, .5 and t/T = .5, 1, respectively.
| The final graph can be seen in Fig. 25 and shows the maximum-
stress concentration fatios for t/T = .25, .5 and 1; only cases of
either d/t or D/t larger than or equal to 20 are there considered.
Three ;eparate regions are defined in Fig. 25, the first for
t/TI? 1, in the region above line 324, the second-for‘t/T = .5,
bounded by line ZEE; and the third for t/T = .25, the region Eelow
line 124.
Hence, from this graph tﬁe deéigner can find out for a defined d/D
and d/t, which value of t/T will give the lowest SCF if the geometry

is of 2h/p £ .1 type.

3.3.1 The von Mises and Tresca SCF on some Knuckles of Cylindrical

Nozzles on Spherical Pressure Vessels

The geometries in this section are also analysed by‘the elastic-
plastic method, in Chapter 4. The geometries are_divided into two
series apart from the knuckle of cylindrical nozzles on spherical pressure
vessel tested in thevcourse of this work. |

The first series is considered in order to study the effect of a
change of geometry on the cylinder-sphere junctions; accordlngly, the
- values of d/D, and t/T are taken as constants and 2r/D (ratio of twice
knuckle radius to sphere diameter) and thickness taper on the junction
as variables. Details of the knuckle geometry are shown in Fig. 38.
Other parameters are taken as

d/D;= .25 /T = .5; 2v/D,= .0, .015,.045
The geometrical case of 2r/D, = .0 is treated using the fact that the
forces at a "square corner" intersection can be distributed as bands

of loading over a finite width of shell (equal say to the thickness of
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the shell wali plus a fillet weld), rather than the point or line load
of conventional shell theory, Refs. [2], [8] and [24]. The force is
distributed over either the first step of integration or the first two
steps in the elastic computer program.

For the other two geometries, the knuckle junction is treated by
defining a small fillet of specifiéd mean radius and taper. The taper
details are shown in Fig. 38; these geometries are referred as C1,

C2 and C3 for junctién details'of types A, B and F, Fig. 38, respect—
ively, for 2r/D,= .015. The last junction detail, in this particular
study, is for 2r/bo= .045 with type A knuckle, Fig. 38.

In the calculation of the krmuckles of cylindrical nozzles on spherical
geometry thé "Winkler's curved beam" theory:was used.

For each aetail parameter, certain quantities are tabulated,

Table 1, and the elagtic von Mises SCF -is given according to conventional
.shell tﬁeory, except for thé case of a small local radius of curvature,
when the Winkler type modification (Appendix D) is used. Values of
Tresca SCF are also given, from the simple shell theory analysis and
from Ref. [61].

The second series of knuckle of cylindrical nozzles-on-sphere geometries
will be referred to as series.N; they are for a given sphere, diameter

D, thickness T

1

.005 D, and with cylinder-knuckle-sphere of equal

thickness (t >T, no taper). Various ratios of cylinder to sphere

i

diameter d/D,= .05 to .25 are used, with a constant knuckle radius

2r = .05 D. The stress and strain distributions are shown in Figs. 30
to 33 for the cases of d/D,= .05 énd .25, nozzles N1 and N5, respect-
ively. Table 4, similar to Table 1, allows a comparison of the elastic
SCF for series N, but in this case the Tresca and von-Mises SCF's are
calculated from the flush cylinder nozzle with simple shell theory and

can be compared with values from Ref. [61], and to values from the



59

bknuckle of cylindrical nozzles with Winkler's type approximation,
respectively.

The knuckle of cylindrical nozzle—on—sphere‘geometry tested in the course
of this wbrk is shown in Fig. 37; the represented geometry is the best
approximation to thé real tested nozzle described in Section (5. 3.2).

The geometrical parameters are: d/bo = .112,‘Do/t = 149, t/T = .5, 2r/DO =
.0134 and a type A cylinder-sphere junction, Fig.A38.l In Table 7 the

SCF values are derived either from the knuckle of cylindrical noézle Winkler's
approximation, or from flush cylinder nozzle simple shell theory. The

values presented are based on the Tresca and von Mises criteria! from

the elastic computer program, from the test, and from Ref. [61].

3.3.2 Discussion of Results

Series C (Table 1). Nozzles C5 and C6, those with band modi-
fication, present unrealistic stress concentration factors based on
von Mises'criterion when cémpared with the Stress Concentration Factors
from the simple shell theory for the flush nozzle; the reason for this,
however, is possibly due to the size of the step involved, over which
the point forces (sharp cornef) are spread, although the lengths of
the steps are those recommended in Ref. [8]; the unrealisfic values
. aboveémentioned may be explained by comparing the C5 and C6 SCF values
since, in the'first, the spreadirig is over a smaller length (area)
than the second, with the result that there is a worsening in the Stress
Concentration Factor prediction. Unless great care is'taken when
applying this modification, the structure will be subjected to a large
degree of deformation.

Other nozzles of this series, C1 to C3, show a'negligible variation
in the different details of connection, although C4 has a reduction of
30%, as could be expected for the larger knuckle radius. If a compari-

son is made with the von Mises stress concentration factor obtained
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for a flush'cylinder—on—spheré with the simple‘shell theéry, it can be
seen that the stress concentration factor values for nozzles Ci to C3
are lower by about 25%, but in the case of the C4 nozzle, by some 50%.
"The value from Ref. [61] is some 25% lower than the value from the
flush nozzlg simple shell'theory, (Ki), but part of this difference
can be justified by the fact that K{ is taken to be at‘any point in
the structure in the pfesent work, but in Ref. [61] is taken from the
maximum stress concentration on the sphere; the rest of the difference

is because Leckie's curves are averaged.

Series N (Table 4). The stress concentration factor values based

on von Mises criterion for the knuckle nozzles are plotted in Fig. 39,
toéether with the values from the flush nozzle simple shell theory, and
‘from Ref. [61], Tresca SCF on spgere.

Compg;ing the von Mises‘Stress Concentration Factors, columns K1 in
Table 4, it may be observed that values from the knuckle noézle "Winkler's
curve beam" approximation,‘are 17% to 27% lower than those from the
flush'cylinder nozzle simple shell theory; however when the values of
the Tresca Stress Concentration Factor, flush cylinder, ahd from Ref.
t61] are compared,-it can be seen that they have differences of — 7% to
2% from each other. This is brought about.by the th different method%
of calculation, since thé maximum stress concentration is in thils case

on the sphere, and as well because Leckie's curves are averaged curves.

Tested Nozzle (Table 7). The strain distribution is shown in

Figs. 34 and‘35, based on the strain gauge readings and on the knuckle of
cylinder nozzle "Winkler's curved beam" approximation elastic computer
program resuits.

Comparing the stress concentration factor values K1 (von Mises)
from Winkler's approximation applied to the knuckle nozzle, with the

test value, there is a + 11% difference but, when compared to the value
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found using the flush nozzle simple shelbl theory, a - 23% difference
is found. The good agreement between the test, and the knuckle nozzie
Winkler's apﬁroximation, may well be described as unexpected since the
"knuckle radius used was too small, as can be‘realised from a study of
Refs. [3] and [9].

The comparison with a stress eoncentration factor wvalue based on
Trescadscriterion shows a 40% reauction when the knuckle is introduced
and a 46% reduction when the values from Ref. [61] are compared With
tﬁe results from the elastic computer program, simple shell theory.
The formef reduction is due to the effect of knuckle radius, al though
the reduction may perhaps be too large for this; the latter reduction
is due to the fact that in this ease the high stress concentration
region is definitely in the cylinder, though near the junction, and

as well Leckie's curves are average curves, Ref. -[61].

3.4 Stresses and Strains on some Knuckles of Cylindrical Nozzles on

Spherical Pressure Vessels

From hereon in the present chapter, only the elasticbcomputer
program (PVA1) is referred to, and wherever possible its results are

compared with experimental data obtained in the course of this work.

3.4.1 Stress and Strain Pistribution on some Knuckles of Cylindrical

Nozzles,Series N

As referred to in Sections 3.3, two main sets of elastic-plastic
computations were undertaken on radial nozzles with closed ends sub-
jected to internal pressure. In fhe second set, Series N, for a given
sphere, diameter D, thickness T = D/200, cylinder-knuckle-sphere thick-
ness f = T, with ratios of cylinder to sphere diameter from .05 to .25
were used with constant knuckle radius r = D/40.  Graphs for the two

extreme geometries, d/D = .05 and .25, were drawn in order to compare the
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distribution of stresses and strains for both geometrieé.

The stress distributions can be seen in Figs. 30 and 31, for
d/D = .05 and .25, respectively; the strain distributions are shoﬁn
in Figs. 32 and 33.

From Figs. 30-33 the pad size may be approximately and intuitively
visualised although further study of stress and strain distribution for
a theoretical real structure is recommended.

As an example of, nozzle N1 (d/D = .05), it may be observed from a
study of Figs. 30 and 32 that the thinning of the cylinder can being
between 1.5" and 2.5" from the knuckle, though unnecessary in the
sphere, since the SCF is less than 2.25; with nozzle N5, Figs. 31 and
33; (d/D = .25) the thinning must be done on the ;ylinder and sphere,
‘since both stress concentration factors (in relation to the von Mises
membrane stress on the sphere and on the cylindrical) are larger than 2.25.
The thinning on the cylinder and on the sphere should probably begin
at 12" to 15" from the cylinder—knuckle junction, and at aboﬁt 42°
towaras zero, respectively. It should be borne in mind that further
str;ss and strain distributions ought to be calculated with the
theoretical new shape in order to find out if there are any influences
on the previous local stress concentration, and any;major changes on

the region near the thickness taper.

3.4.24 The Elastic Strain on the Test Knuckle cylindrical Nogzle

The eiastic strain distributions, from.the elastic computer program,
are plotted in Figs. 34 and 35, for 250 1brin? internal pressure, on
the internal and external surfaces, respectively. In. these figures,
strain gauge readings for the same pressure on the test nozzlé, Fig. 37
(see Section 5.3.2) are plotted for comparison.

On the internal surface, Fig. 34, the agreement is reasonable -

although gauge 90F, Fig. 37, circumferential and meridional, shows &
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- 10% and + 40% disagreement, respectively, when the calculated strains
are compared with the gauge reading;-this is probably due to the asym-—
metry of the nozzle (see Section 5.3.2). Leaving aside these gauge
readings (90f, Fig. 37) it can be stated that, on the internal surface,
the reading and the calculated strains are within less than 15% dis;
agreement. |

-On the external surface, Fig. 35, the problem of the asymmetric
nozzle appears again, gauge 90C, hgwever, there is in case another
gauge pair (B in Fig. 37) that also presents a large disagreement. This
disagreement with the gauges B probably takes place because of the
welding fillet. Similar behaviour should be expected on the inside
sufface, gauges H, but gauges (putside) were fixed on the transition
region (fillet to sphere) and gauges H well on the fillet. Continuing
with the comparison,.gauges 90C present on the circumferential and
meridionai directions, + 3% and - 25% disagreements, respectively, when
the calculated strains are-compared with strain gauge readings, and
gaugés B present on the circﬁmferential and meridional directions, - 5%
and - 40%, respectively, doing the comparison as before.

Leaving out this pair of gauge readings, B and 90C, the disagreement
on the outside surface, can be said to be less than.18%.

* From the analysis of the strains on the outside and inside surfaces,
it may generall? be stated that the elastic computer program with Winkler's
'quification gives a reasonable agreement if the geometry is properly
defined and if other parameters, such as welding fillet-base material

transition, do not wield too much influence.,

3.4.2.2 Discussion of Results

The reliability of the elastic computer program (PVA1) has been

tested before in many works, e.g. Refs. [2] and [3], and once more its



64

accuracy is within 18%, not considering welding fillet and asymmetry
effects of the structdfe, and therefore within reasonable agreement.
Comparing the results from the gauges on the transition region
(B, circumferential and meridional directions,'see Fig. 37 for their
positions, and Fig. 35 for the values) i£ can be seen, as could be
‘eXpected, that the transition fillet-base material exerts more influence
in the meri_dional direction than in the circumferential (- 40% and
- 5% respectively).‘ The difference in values is probably because a
signifiéant part of the area of the gauge for the meridional direction
lies on the sphere (less than 50% of the total gauge area), whereas the
circumferential gauge, although lying in a direction normal teo the
transition region, and which therefore registers the influence of
this region, which influence can be expressed.by Poisson's ratio, v,
has only a small area on the sphere. It is noteworthy to observe that
the circumferential strains are overestimated by the computer program,
with the exception of 90FC, in the circumferential direction, for which
the circumferential strain is underestimated, and hence the_influence‘
. of the weld-base transition region materials must be larger than - 5%.
The'introduction of the.knuckle with the Winkler's curve beam
theory has improved the results and may be reliably used to study the

"areareplacement rule" in order to find out which area and area-

distribution is optimum.
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CHAPTER 4
COMPUTED ELASTIC-PLASTIC BEHAVIOUR, COLLAPSE AND SHAKEDOWN

OF SOME PRESSURE VESSEL COMPONENTS

4.1 Introduction

In this chapter the elastic-plastic results from the use of the~
PLI&TH prograﬁ for the elastic-plastic analysis of sym@etrically
loaded shells of revolution are presented, and compared with available
daté. For details of the computer program see Chapter 1, Refs. [3],
[5] and [44]. |

In Chapter 3, two series of knuckle cylindrical nozzles on spheri-
cal pressure vessesl are defined, Tables 1 and 4, Series C and N, and
the geometrical pérameters for the tested knuckle nozzle are defined
in Table 7. Besides-these geometries the torispherical Head A from
Ref. [3] is also analysed. ;f

In these analyses the material was considered to be gither of
elastic-perfectly plastic or of work—haraening type. |

Limit pressures are calculated, using some of the criteria described
in Chapter 2 and, in this chapter, are compared with values from a limit
analysis, Refs. [3], [33] or [63], whichever one is applicable to the
geometry under consideration.

Values of shakedown pressure are calculated by using the criteria
"described iﬁ Chapter 2, and are compared with available data from
Refs. [63] and [73], whichever is applicable to the geometry under con-
sideration; however, the minimum value obtained by an application of
Macfarlane and Findlay's method, [12]. referred to in the present work
as SEM (Section 2.2.3), an adaptation of Leckie's method [61], is made
elther at ﬁhe cylinder~torus or the sphere-torus junctions since, as
far as the writer is aware, this method cannot be applied to toroidal

shells near p = 900, because of the discontinuity in the membrane

stresses (Ref. [1], page 34).
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The torispherical Head A, Refs. [3] and [7], and later, the knuckle
cylinder nozzles, are treated in this chapter, but the tested knuckle
radial nozzle results are only compared with values from strain gauge

readings and other available data in Chapter 6.

4.2 Torispherical Head on Cylindrical Pressure Vessel

Cheung and Turner, [7] have compared limit pressures for two tori-
sphe;ical heads, using (a) an elastic-plastic computer program.with
and without work-hardening material, (b) limit analisis and, (c) static
strain—gauge readingson a vessel with two torispherical heads pressurised
beyoﬂdvyield.

In the present work, the results for Head A, Refs. [3] and [7] are
compared with values obtained from the elastic-plastic computer program,
but using a better fitting than that used by Cheung and Turner to the

’
material ‘equivalent stress-plastic strain curve.

4,2.1 Comparison of Compﬁted and Experimental Values
Cheung and Turner [7] used data regarding material behaviour in

the computer program, that is, a fitted 0-2% stress-strain curve given

by the second order polynomial expression
0 = 33.5 + 1336.9 e - 18159 & (ksi) (4.1)
e P p .

However it was realised, in the course of this work, that this
expression was far from being a good representation of the equivalent
stress-plastic strain curve of the material, since it would not give a
good fitting where it was most necesséry, at initial yielding and up
to 1% equivalent plastic strain, Fig. 6. This is because it is in
this range that local plastic flow takes place, and where the gross

yield is much influenced by the local plastic flow history.
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Because of this, a better fitting was attempted for the average
tensile test sﬁress—plastic strain curve for the material, by using

the exponential approximation given by either

- e p

or

.132

o =27.2 (1 + 6626 & ) (4.3)
e P

The computer program used for the evaluation of the constants in (4.2)
and (4.3) indicated that (4.3) would provide the best fitting for the
range 0~4.5% equivalent plastic strain. A comparison between tﬁe
averaged tensile test stress-strain curve, the second order polynomial
from (4.1), Ref. [3], and the exponential egpression (4.3) for the
material is shown in Fig. 6. The approximation (4.3) is unquestionably
better than (4.1). )
Computations were carried out using either (4.1) and (4.3). Some
resulﬁs are plotted in Figs. 40 and 41 in order to compare the improve-—
ment gained from the fitting used in the present work, (4.3) with that,
(4.1), from  Refs. [3] and [7].
| The computed results from (4.3) were used in order to evaluate
collapse pressure ratios (Pé), as well as shakedown pressure ratios
(P;), based on the different criteria described in Chapter 2. The SCF,
and collapse (K3) and shakedown (K2) pressure ratios to membrane yield
pressure, may be seen in Tables 10-12, respectively, as well as the
ratios of the lower and upper limit pressures, usind limit analysis, to
membrane yield pressure on the vessel body (cylinder), assuming a non-
workhardening yield stress of 34.9 ksi (.2% strain, proof stress).
All these values are based on von Mises' criterion, with the exception
of the values from the limit analysis, in whiéh the Tresca criterion

is used, Ref. [3].
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Some sStress paths, including thgt of the most highl& étressed
point on Head A, Ref. [7], up to and béyond first yield, are.
plotted, Fig. 42, in terms of circumferential and meridional stress
ratios for the inside, outside and mid-wall surfaces.

The maximum equivalént strain on the outéide surface is plotted
in Fig. 15,‘together with the point with which the particular value
is associated. Head A is considered as two branches with the junction
on the cylinder 2.5" from the knuckle-cylinder connection. The
branch which contains the torispherical head is divided into 30, 50
and 120 elements on the cylinder, the knuckle and the sphere, respect-
ively. It should be borne in mind that the numbering of the points on

the shell begins at the junction.

4.2.2 Plastic Flow, Collapse and Shakedown

In Fig. 42, the stress paths for cross-~sections A, B, C and D,

| the first two in the cylinder (vessel body), the third on the knuckle
(this cross-section contains the most highly stressed point on the
structure), and the fourth on the sphere, are plotted. Following the
stress paths for A and B, those on the cyliﬁéer, i£ can be seen that
Section B makes its elastic to plastic transition bétween 6 and 7
(numbers marked in Fig. 42), whereas A's lies between 7 and 8. Analy;ing
the inside stress path of section C, it may be concluded that there is -
a change of curvature between 6 and 7, that 1s, where the plastic flow
beéins to spread into the membrane region of the cylinder. It is at
"this stage that the work-hardening of the ﬁaterial starts to make a
major contribution to the plastic deformation. Another important point
is that, in the sphere, the internal stress path shows a very.high
bending tendency, but when the yield begins to spread from outside to
inside, in that region of the sphere, the bending tendency is greatly

reduced. This mechanism is particularly important as far as shakedown,
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with permitted work-hardening, is concerned, since if those points

were left unanalysed, one might be led to conclude that no upper limit
to shakedown could be found, or that P; for shakedown was larger than 3.,
since the computations were made only up to that point. -In fact, that
is not the case, since as shown in Fig. 43, it is precisely because of
the above-mentioned bending of the internal stress paths on that region
of the sphere, that an upper limit to shakedown was found slightly less
than 2.8. This situation is of particular interest, since, because

the intefnal point on the cross-section E, Fig. 43, shows an elastic
behaviour which is markedly non-linear, an uppér limit of shakedown can
be defined for this structure before plastic flow takes place at that
point.

From Fig. 42, a collapse limit pressure can be estimated, since
between 7 and 8 on the figure, the plastic flow moves from near B to A,
that is a 1limit of between 2.2uand 2.4 fér collapse pressure ratio
(P;). This valge is probably the upper limit of collapse if no yield
is permissible on the membrane region of the vessel body (cylinder).

If the collapse definition is straight away applied ' to
calculate equivalent strains, then, by a careful analysis of the
results, a graph of maximum equivalent strain on the outside surface
can be drawn, Fig. 15, and, markingon the graph the corresponding
points, it can be seen tﬁat for a non-work-hardening méterial, the
position of the"maximumbequivalent strain on the outside surface
starts at 106, moves to 105; 104 and finally to 102, and hence it is
possible to define a collapse pressure ratio.(rétio to first yield
pressure) of between 1.9 and 2.1, perhaps 1.95, that is a value of
.86 to K3 in,Tabie 11, line_CMEO. The same analysis was made from the
calculation using work-hardening material (4.3). The maximum equi-

valent strain, on the outside surface, is shown in Fig. 15, and it can
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be seen that the collapse pressure ratio may be estimated at about

2.83, that is a value of 1.24 for K_, Table 11.

37

4.2.3 Discussion of Results

The value of the stress concentration factor, based on the vﬁn
Mises criterion, for Head A, with or without knuckle, can be seen in
Table 10; a 40% improvement is obtainéd by the introduction of the
- knuckle. |

Comparing the collapse pressure ratios (K3), Table 11, obtained
from the elastic-plastic computer program with test values, Ref. [7],
it can be concluded that the values from the calculations with the
second order polynomial expression, approximation to the material
equivalent stress-plastic strain curve, (4.1), are within - 17% to
— 28%; however the results using an elastic-perfectly plastic material
are within -~ 19% to ~ 43%, and those ébtained by using the exponential
expression, (4.3), are within - 3% to - 15%, when compared to the values
from the test results, Ref. [7]. The average.test value in Table 11,
when compared with the average calculated calues, in each column,
differ by - 27%, -4% and - 32% from the computed values using (4.1)

(the second order polynomial expression), (4.3) (the exponential
expression), and the case of non-work~hardening materials, respectively.
Without question, the exponential expression, (4.3), values give a
better approximation than either the case of elastlc-perfectly plastic
material, Qr‘thé second ordgr polynomial expression, (4.1}.

It should be pointed out that values K

3 either from the test

results or from the calculation with the exponential expression, (4.3),
are larger than the limit analysis upper.limit.

From Table 11, one is led to conclude that values from a non-work-
hardening calculation are more conservative than those from a work-

hardening calculation, but they would,in fact, be reduced if a more realistic
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equivalent to the'idealised yield stress were to be used, for example,
.2% proof stress rather than the linéar limit of elasticity. In the
case of Head A, the linear limit of elasticity is 27.2 ksi and the

.2% proof stress is 34.9 ksi, and hence 26% larger than the former value.

It is very difficult to choose which criterion is more reasonable
than the otﬁers but the most useful Qas found to be C5I, since it can
be used in the testing of pressure vessle, and théugh it brings with
it the uncertainty of where . to atfach the strain gauge, because of
this, an elastic-plastic calculation using the best fitting curve for
the gquivalent stress-plastic strain curve should be used in order to
decide the optimum place for attaching the gauge. The criterion CMEO
yields a calculated value for collapse pressure ratio (K3) 24%
higher than the limit 1.of theicriterion BSLY, but, since the maximum
value from the test reading is 48% higher, it Qould_seem to be appli-
cable in:this particular cése, Head A; however,; because of its
unconservative charécteristics, if it is to be applied, the designer
has to take great care in making such a decision.

The C3 criteria are the most conservative in any calculation, as
well as being shown by the test readings to be so, and therefore may
be judgéd safely applicable.

The shakedown pressure ratios, K2, may be compared in Table 12,
from which it can be seen that the introduction of work-hardening (4.3
improves the K2 values for either SPC or SPT when compared to values
obtained from the elastic-plastic calculations, with non-work-hardening
material, by 1%; however, if the work-hardening ellipse simply grows
according to the load used, the shakédown_pressure ratio K2 will show
an improvement of about 50% when compared with the non-work-hardening
value. It should be recalled that the fitting curve is from a tensile
test and not from a settled cyclic curve, since the latter type of

curve was not available. The value obtained for SEM is larger than the



values from SPC and SPT, either work-hardening or elastic-perfectly
plastic, although from [73] the K, value is some - 20% and 4% different
from the values obtained in the present work, based on SPT for non-
work~-hardening and work-hardening, respectively.

From an examination of Tables 11 and 12, one is led to conclude
that values from a non-work—hardeniqg calculation are more conservative
than those from a work~hardening calculation, but, in fact, such con-
servatism should be relaxed if a more realistic equivalent of the

idealised stress is to be used, say, €.g. 2% proof stress rather than

the linear limit of elasticity for the material.

4.3 Some Knuckle of Cylindrical Nozzles on Spherical Pressure Vessels

In Chapter 3, it is stated that elastic-plastic calculations had
been carried out for some knuckle nozzles, Series C and N and the
tested knuckle nozzle. These calculations were carried out using the
elastic~-plastic computef progfam described in Refs. [2] to [5], with
the "Winkler's curve beam'" modification on the meridional plane when
2h/p is larger than .1 {see also Chapter 1, Appendices A, C and D).
The elastic-plastic calculations were carried out assuming a non-work-
hardening, and a work-hardening curve, which latter is given by
g = 13.3 (1 + 133 Ep)'269; this was taken as representative of mild
steel, ignoring the horizontal discontinuity at first yield.

Some graphs are plotted in order to facilitate cémprehension of
the plastic flow, and of the mechanisms of collapse and shakedown of
the series of nozzles analysed, Figs. 14, 16, 17, 44 and 45.

Tables 1-9 are drawn.up in order to compafe the stress concentration
factors (see Section 3.2), and the collapse and shakedown pressure
ratios, from thé elastic-plastic computer program using the different
criteria described in Chapter 2 and the values from Refs. [33], [61]

and [63], with either the von Mises or the Tresca criteriaj; Tables 7 to

9 for the test knuckle nozzles, however, are discussed in Chapter 6.
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4.3.1 Plastic Flow, Collapse and Shakedown

The St£eSS paths of the most highly stressed point in each of
four nozzles, Series N, up to and beyond first yield are plotted in
Fig. 16, in terms of circumferential and meridional stress ratios for
the inside, outside and mid-wall surfaces.

» For small values of SCF (case.Ni), the internal path turns anti-
clockwise a very short distance around the ellipse for' pressures of
up -to about 25% higher than first yield, and then clockwise for
higher pressures (al, Fig. 16). A similar effect is noted for a
rather higher SCF (case N2}, for up to about 10% beyond first yield,’
and for even higher SCF values (cases N3 and N5), the stress path
moves clockwise around the ellipse from the moment that first yield

takes place (e.g. a Fig. 16). The virtually stationary values of

5?
the stress ratios, fﬁr significant increases in pressure, only occur
when the first region of stress concentration is yielding; however,
when a second adjacent stress peak yields, the clockwise movement of
the stress ratios begins as described aboves In all the cases studied,
first yield takes place on the inside surface, with the close second
yielding on thé outside, both cases being in bending mode.

| The succeeding tendency of the stress rétios to move anti-clock-
wise (bi cee bS’

region begins to spread over a much greater area compared with the

Fig. 16) appears at a pressure when the local plastic

initial zone of small extent. This phenomenon is more marked for céses
with small SCF (e.g. case N1 rather than case N5), as can be seen in
Fig. 16. Another obsefvation that can be made from Fig. 16 is that
when the SCF is small, a larger degree of work-hardening is required
in order to obtain a given level of non-dimensional loading, P/Py.

The 1ocus'P/Py = 2,1is shown chain-dotted in Fig. 16.
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The fact that the stress ratio changes is of course well known,
but here it can be understood quantitatively. The variation of such

ratios increases with SCF, especially in the regions a_, ... a

1 59 Fig.16.

This second change in the direction of the movement around the
ellipse can most prébably be considered as the beginning of collapse,
since if is this re-distribution of stress which is caused by the
rapid spreading of membrane yielding to areas of the sphere adjacent
to the nozzle.

Another typical biaxial stress field is shown Fig. 17, for the
cross-section containing the most highly stressed pointAof nozzle N5
for both the work-hardening and elastic-perfectly plastic cases. In
both, the most highly stressed point follows a linear path, such as
curve A, Fig. 17, to the point where the yield criterion is reached.
If the material is considered as non-work-hardening, the stress path
will be around the ellipse after yielding, and will be like curve B1,
Fig. 17, or, if treated as work-hardening, along some line following
the increasing size of the work-hardening ellipse, such as B2, Fig. 17.

Again, as with Head A, Section 4.2.2, Figs. 42 and 43, after
yielding at any point in the structure, linearity of the stress path
cannot be assumed. As the yielding is extended the direction of
movement of the stress ratio for a point which is still elastic may
change, sometimes reversing its original direction of movement,

e.g. in Head A, an internal point between pointsD and E on Figs. 42
and 43, respectively. This non-linearity of the elastic region of the
structure may be interpreted as the re-distribution of the elastic
stresses caused-byrthe yielding of adjacent parfs of the structure.

As soon as the final anticlockwise movement begins on the stress

path, the shakedown pressure obtained by using any of the criteria,

SPC, SPT and SPW, with an elastic-plastic computation becomes higher
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but unfortunately the collapse pressure, in terms of pressure ratio ,
grows smalier.A

Here it is plain to see that the shakedown value can be limited
by the collapse value, Ref. [80].

The values of the collapse (Pé, K, and Kg) and shakedown (P;, K

3 2

and Kg) pressﬁre ratios can be seen in Tables 2,5 and 8 and 3, 6 and 9, for
nozzle series C, N and the tested nozzle , respectively.

The maximum individual strains for nozzle series N and C are
plotted in Figs. 14, 44 and 45, respectively, in order to show that the
maximum individual strain can start by being internal circumferential
and end by becoming internal meridional, curves a, b and ¢, Fig.44, for an
SCF larger than about 2.5; however, for a stress concentration factor
less than about 2.5 they may end by becoming external meridional,
curves d and ¢, Fig. 44, although when the band modification (the
forces in a sharp corner spread over a small meridional lengthvnear
the junction) is assumed for flush cylindrical nozzles, this behaviour
may be different, see Fig. 45, curves el and e2 in which the initial
behaviour is the same as described above, although the final behaviour
for case C5 (spreading over a short meridional length) may end as
internal circumferential as happens while the structufe is still in
the elastic range, with caseC6 (spreading over a larger meridional
length) becoming internal meridional ana returning later to internal

circumferential again.

4,3.2 Discussion of Results

Nozzle Series C

The minimum values of PE were obtained by using the C3 criteria,
but the maximum values were obtained by the C15 criteria applied to
the maximum individual strain. Values obtained from the elastic-plastic

computer program (cases C5 and c6) are generally unconservative except
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for the C3 criteria. Comparing cases C1, C2, C3M and C3R, Table 2, one
is led to conclude that minor changeé in details of connection do not
alter the values by more than 10%, although if band modification (cases
C5 and C6) is used in the computer program, then the change can be
larger than 35%.

,Comparing case Cilwith C4, it caﬁ be seen that the larger knuckles
show a decrease in their collapse ratios (PZL with a difference of about

25%, though the K ratios have improved by the same amount, as

3
might well be expected. -
Comparing the pressure ratios K3 and K;, it can be seen that the

low K3 values (C1-C3) show no considerable difference; however, the band
modification results show an increasé of about 100%, Once again one is
led to conclude that thé use of-this modification gives unconservative
results, and hence the designer must exercise considerable caution when
using it.' The larger knuckle (C4) gives 18% and 30% improvements re-

spectively, when the C5I and C15I criteria are used for K., compared with

3’

K*, Ref. [63].

39

Generally speaking, thg overall collapse factor, K3, improves as
SCF decreases; this fact is well known, Ref. [80].

The C15I criteriom is probably very reasénable for an SCF larger

than 3.5, and the C3 criteria are reasonable for an SCF of less than 2.
The C5I criterion is reasonable for intermediate SCF values. These
intervals cannot be accurétely defined since a collapse criteria must
be connected with the shape of the- structure and environmental
material properties.
Once again the values from the computer program, ﬁSing the band

modification, are unrealistic, with the exception of results obtained

when the SEM criterion is used, Ref. [12].
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Shakedown values derived from the elastic-plastic computer pro-
gram results do not show anyAdifferenceé when either work-hardening or
elastic—perfectly plastic materials are uéed, case C3, Tablé 3; this
is because of the high SCF, 4.88 Table 1. Small differences in con-

nection details (cases C1-C3) do not alter the P; and K_ values by more

2
than 6%, although the larger knuckle (case C4, Table 3) when compafed
with case-C1(same type of connection) do not show any consiaefable
differences, either, for the SEM, SPC and SPT criteria; however case
C4 sﬁows an improvement of more than 14% if full work-hardening is
considered (SPW).

The shakedown pressure ratios K_, based on the SPT criterion,

2?
for cases C1-C3, are some 20% smaller when compared with those cal-
culated using Leckie's (Tresca) value Kg, although the larger knuckle
(case C4) shows an improvement of 18%. It is noteworthy that the SEM
values for P; are the samg as Leckie's values.

Series N

The stress concentration factor and collapse and shakedown values
for this series of radial nozzles are shown in Tables 4, 5 and 6,
respectively.

The collapse pressure ratios (P;) using the C3 criteria, with the
‘results from the elastic-plastic computgr program, are reasonable for
cases N1 and N2, but conservative for cases N3 to N5, and in the overall
range (N1 - N5) they are within + 8% of an avefage value; the inclusion
of work-hardening slightly improves the results.

The collapse pressure ratios based on the C5 criteria are within
+ 10% of an average value, and are therefore slightly more sensitive to

changes in geometry than the C3 criteria. The C5 criteria seem reason-

able for all the cases N1 - N5.
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The collapse criteria C15 give values within + 16% of an average
value, and therefore are more sensitive than the C5 and the C3 criteria
to geométry changes. The C15 criteria, apart from the problem of the
degree of strain (1.5%), are therefore much more subject to creeping
than any of the other criteria, but are unconservative for a low SCF,
cases N1 and N2; especially N1 with work-hardening (K3 = 1.01, Table 5)

although they are probably yreasonable  for cases N3 to N5.

The collapse criterion CSP gives values slightly lower than C5I.
The CSP criterion is conservative for cases with a stress concentration
factor larger than 2.5 (cases N3 - N5), but seems reasonable for cases N1

and N2, cases with a stress concentration factor lower than 2.5.

- Referring to Table 6, the shakedown pressure ratios SEM show values
equal to, or larger than, 2.if the SCF's are larger than 2.6; it should be
borne in mind that these values are taken either on the sphere-torus or
torus-cylinder intersections. For SCF values of 2,or less, the values
obtained using the SEM criterion appear to be limited by the SCF value.
When the shakedown criterion SPC is used, values within + 2% of an average
are obtained. The values from the SPT criterion slightly improve when
values for work-hardening material, wi£h ellipse moving toward the point
considered on the stress path, are compared Qith values from én elastic-
perfectly plastic material, although the former values are within + 3% of
an average value,while,in Fhe latter, the value for N1 ig éome 11% smaller than
the N5 value. The improvement gained with the application of SPT with
work-hardening is some 22% for N1 and 3% for N5, in relation to the values
obtained with the assumption of elastic—perfectly p1astic material, NiR
and N5R, respectively. The SPW criterion, which allows full work-hardening
to be attained, is sensitive to changes in geometry or SCF values; the
SPW values, Table 6, are within + 19% of an avefage value. These values,

when compared to the SPT values, show an improvement as the SCF values
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grow, . as expected. A point worthy of mention is fhat, for an SCF
smaller than about 2.5, the SPW valués (P;) are probably larger than
the 5CF values, but for a SCF larger'than 2.5 the SPW values are
probably smaller than the SCF values, aithough this depends on the
geometry.

The SPT criterion is suitable fér any elasti;—plastic calculation,
giving unconservative values for a low SCF (less than 2J, but more
reasonable values for @ large SCF (more thanb2J; however, SPW is always
unconservative as far as-the values for the collapse criteria used are

concerned.

4.3.3 Comparison of K., K*, K, and K* Values for Nozzle Series N
[ [ ~ ) ]

In Fig. 46, the values of collapse pressure'ratios K3 (C5I and

C15I) as well as thg Kz(SPT and SPW) yalues,and the SCF values based
on von Mises' criterion for knuckle nozzles, are plo£ted against d/D,
(log scale), tbgether with values based on the Tresca criterion for
the SCF, and the KE and K§ values, which last three are from Ref. [63]

(flush nozzle).

2

are always smaller than those for Kg, and hence, in those cases, the

The valuesfrom Ref. [63] show behaviour in which values for K?¥

design to prevent shakedown stops the structure collapsing.
The results obtained, for nozzle Series N, in the course of this
work show, referring to Fig. 46, that:

(i) K, (SPW) is always larger than K_ (C15I or C5I), and therefore

2 3

full work-hardening will'not be attained in any of the studied cases,
since thg collapse criterion mﬁst'be'satisfied,

(ii) for these particular structures, if d/D,is less thand ®, < 2.2),
the K2 (SPW) value is limited by K2 = 1.

(iii) the K

(C15I) values are larger than those for K, (SPT), for d/D,

3
larger than about .07 (K

2

1 > 2), hence, if minimum work-hardening is to
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be attained in the cyclié settling down procedure, the structure must be
designed againét shakeéown, although for d/D,smaller than about .07,
(K1~< 2), the stfucture must be designed against collapse if the C15I
criterion is used.

(iv) The K. (C5I) values are smaller than those for K

3 (SPT) for d/D,

2
" smaller than about,2 (K1~< 3), hencé,.the design must prevent collapse
if the CS5I criterion is used for collapse limiting; but for d/Q,larger
than .2 (Kﬁ > 3J), shakedown is the main criterion in design, if the

SPT criterion is to be used.

In Fig. 46, the K2 and K3 valués from the elastic-plastic computer
program used for an elastic—perfeétly plastic material are also plotted,
and it can be seen that thé difference between the values are miﬁimal,
with the values for K2 (SPT) always slightly larger than or equal
to, those for K3 (C51I and C15I); hence the structure must be
designed against collapse.

Considering the most suitable criteria for shakedown and collapse,
the-SPT (with or without work-hardening), and C5I criteria, réspectively,
may.be chosen, as was done in Ref. [24], Appendix E; it may therefore
Ee concluded from Fig. 46 that:

(a) If the SCF (von Miges) is larger than 3, the collapse pressure
ratios Ks-are higher than the shakedown pressure ratios K2;
(b) If the SCF (von Mises) is smaller than 3, the collapse pressure
ratios K3 are smaller than the shakedown pressﬁre ratios K2;
(c) If the SCF (von Mised) is smaller than about 2, that is, for case of
d/D less than about .07, the shakedown pressure ratios, K2 (SPT) are

near 1, for those cases of work-hardening, but are rather lower (.87,

case NIR) if work-hardening is neglected.
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CHAPTER 5
DESCRIPTION OF MEASURING AND LOADING EQUIPMENT, TEST SPECIMENS
AND TEST PROCEDURE

5.1 Intreduction

The pﬁrpose of the tests carried out during the course of the
present work.was a better understandiﬁg of the mechanisms of shakedown
since.it was known that most of the materials comménly used in pressure
vessel construction do either strain harden'  or soften in a
cyclic process, Refs. [6] and [75]. This was known because of cyclic
tests doneunder either stress or strain control. In reality, however,
the load is usually the source of control, aﬁd hence the cyclic process
wili lie between neither - e and + e (strain control), nor -~ ¢ and + ¢
(stress control), but between either A and e, or o, and Oy with these
limits ehanging with either the number of cycles, or the load limits,
€.9. température changes. Cyclic behaviour is therefore difficult to
comprehend and to define.

The cyclic loading for the tests was chosen between zero and 2a
maximum. |

Since one of the more commonly used materials for pressure vessel
construction is mild steel, this material was chosen-for the specimens.
It is noteworthy to point out that mild steel is one of the few materials
that perform cyclic strain softening for up to 10° cycles, Ref. [75].

In order to better understand the test procedure for shakedown
study on the knuckle radial nozzle on a spherical pressure vessel, Fig.37,
a test on a plate with a circular hole in the centre, Fig. 36, was carried
out.

In the test of the circular plate with central hole, a Denison

machine, and in the knuckle nozzle, an oil circuit, Fig. 47, were used

for loéding.



82

Strain measurements were made by using strain gauges with a
Solartron Data logging system; the overall deflection was measured by
means of a linear variable differential transformer (L.V.D.T.'s) dis-

placement transducer.

5.2 Measuring and Loading Systems

5.2.1 Measuring Equipment

The strain gauges used in this work were made by the Tokyo Sokki
Kenkyujo Co. Only one type was used, a wire with a 3 mm gauge length.
They weré made for registering up to 3% strain, and consisted of one
elemeﬁt (Foil gauge, type FLA-3-11)j because some of the gauges were
to be attached £o the inner surface of the cylinder, a quick drying
adhesive waé used. This was type CN, which dried in 1 min. There was
one component only for éhis type of cement, which was supplied by the
gauge manufacfurer, énd retained satisfactory properties at high-strains,
Ref. [6]. The linearity of tﬁe gauges was not checked, because of
economic reasons, but the manufacturer‘éuaranteed linéarity for up to
3% strain. The gauge factor was also not checked since the manufacturer
guaranteed a constant value of 2.1 for a tempera#ure range of 0°C to 40°¢
for the mild steel test object used by them,which‘was therefore of the
same type of material as used for the specimens. |

The interﬁal strain gauges were coated with epoxy resin in order
to prevent the o0il from penetrating between the gauge-and the pressure
vessel surface.~ No water-proofing was necessary since a hydraulic oil
(Shell, Tellus 27) with reésonably good ihsﬁlating pfOpertieé was used
for pressurisation. The lead wires of the intefnal gauges were dréwn
through the cover flange in the cylinder by.means of the sealing glands

specially made‘for such a purpose by Conax Corp. (Ngw York), Ref. [3].
The dummy strain éauges were attached to 4", 1/4" and 1/8" thick mild
steel plates, because of the differen£ thicknesses of the specimen, Figs.

36 and 37.
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A Solartron Data logging system was used for the méasurement and
recording of strain gauge resistance. This system allows up to 50
gauges to be scanned at a chosen rate per second, but this rate ié
limited by the recording method. Only 5 and 23 channels were used for
the plate w%th central.hdlg and for the knuckle nozzle tests,respectivelé.
The data logger contained fifty half-bridges and apex units; the out of
balance bridge voltagé could be recorded by means of a 14-column line
printer, but only 8 columns were used and 2 channels per second chosen.
0f the 23 channels used on the knuckle nozzle, one was for the deflection
recpnding. Because the factor of the strain gauge was 2.1 for one
active arm bridge, an excitation voltage of 1.9 volts was used, since
difect readings of out of balance bridge wvoltages are approximately equal
to the strain. The digital woltmeter had a resolution of 10H{ V in the
most sensitive range,'and therefore gave a 10f strain resolution. The
absolute accuracy of the readings was + 20 WV. Each set of readings was
done by scanning the rangé of channels in use three times, wﬁich values
were‘taken as average for the three values for each channel. If any of
the values in each channel were out by 40 PV from the average values, then
the reading for tbét particular channel was not used.

The overall deflection of thé knucklé.nozzle was measuréd on the
cover flange on the cylinder-by means of a linear variable differential
transformer (L.V.D.T.'s) displacement transducer. The output from the
transducer was measured by'one of the channels on an S.E.Laboratories Ltd.
Amplifier-Demodulator (S.E:905) with 3 ke/s 5V bridée excitation, which
produced about 1 V D.C. output. The recording was taken using one of
23 channels of the data logger used in the knuckle nozzle test.

Internal preséure was measured with pressure gauges of Bourdon-
tﬁbe type of 6" diameter, measuring up to 2000 1b in ® in 100 1b if®

divisions.
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5.2.2 loading Equipment

Plate with Central Hole, Fig. 36 -

The test wifh this plate was carried out in a tension and compression
Denison machine (model T42B3), which provides variable load and speed.
The procedure was té apply from 50 1b to each upper load limit,
manually contfolled, but with the exception of the first the cycles
for each limit load were‘intended to all take about the same time,
Section 5.4.71.

Knuckle Radial Nozzle on Sphere Pressure Vessel

Since the purpose of this test was not a fatigue but a shakedown
investigation, few cycles of loading were to be applied, and éo a manually
controlled oil circuit was designed to satisfy the‘following requirements:

(i) variable load, and capability of maintaining any required

pressure;

(1i1) capability to begin and end each load cycle from and at zero.

This requirement could not be~sétisfied unless the pump, at
the end of each cycle, was turned off;

(iii) wuse of hydraulic oil with good insﬁlating properties in order
to preVent extra costs for tﬁe strain gauge insulation, and
the potentially dangerous situation of bursting, if air were
to have been used.

The oil circuit is shown in Fig. 47. The materials used in this
circuit had been used by Blomfield, Refs. [6] and [60]. Pressure control
was effected by means of a by-pass flow control relief value (41500 1b in?®).
A relief valve set to the pump limit pressure was introduced between the
pﬁmp and the tank. The pump was o% a constant volume (2000 1b in?) type.
The internal pressure on the knuckle nozzle was measured directly from

the pressure vessel.



85

5.3 Test Specimens

5.3.1 Plate with Central Hole

From a mild steel plate #" thick, the shape drawn in Fig. 36,.with
dimensions shown, was cut. The surface near the hole was finished in
such a way as to facilitate strain gauge attachmenﬁ. The positions of
the gauges can be seen in Fig. 36. Gauges 1 and 3 were stuck on the
inside of the hole, and therefore in an almost uniaxial state of stress.
The results of the strain gauge readings are presented and discussed
in Chapter 6.

The shape of the platé, Fig. 36, was chosen such as to have a small
region of plasticity compared with the remaining elastic part, as this
is fhe usual case with pressure vessels, but it was also desired that
for higher levels of load the plasticity would spread on a large scale

to other regions.

5.3.2 Knuckle of Cylindrical Nozzle on Spherical Pressure Vessel

Cheung, Ref. [3], tested t&W knuckle radial nozzles on spherical
geometries, the tests being of axial compression loading.
In ordér to carry out a test on a knuckle cylinder radial nozzle on
a spherical geometry, it would have been necessary to 6btain from out-
sidg the department the part for the spheré, since the other parts could
be made in the departmental workshop. However, a spherical cap wa;
avallable, which had been used in the thin cap expériment reported in Ref.
[3]. Tt must be added that the size of the sphere was not ideal for a
membrane fegion on the sphere adjacent to ﬁhe junction region, Figs. 34
~and 35;and had a high deformation towards the inside near the cylinder.
The original cylinder was cut off the sphere, as much as-pOSsible
without damaging it and, because of the sphere's large deformation it was
necessary to bring the shape back as near as possible to its original

spherical form. Measurements were made on the inside and outside
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surfaces in order to find the average radii of the leaét'deformed

region of the sphere. An inside 171/4" and outside 174" radii were
obtained. Two die$ , female and male, were made from the largest
available mild steel shaft, 10" diameter, with 173" internal and 17174
external radii, respectively. The die§ were mounted on an Olsen
Universal Tésting Machine in order to-épply a compression load. The
sphere was placed centrally between the dies and ieft there for a
period of time, the load having been increased; only at about 100,000 1b
compression was the region near the hole on the sphere reshaped to a
near smooth spherical surface. -This structure with a near spherical
shape was given heat treatment of 600°C lasting for three houfs, in
order to relieve the structure of residual stresses. No furnace with
the needed dimensions was availabie that gave the 850°C required for

the heat treatment of~ﬁild steel for a period of one hour. The structure
proved to-stay in its original shape, although, in its final form it

did not have, as it did originally, a coﬁstént radius.

After all these processes the hole was enlarged to 43" diameter in
order to remove any welding deposits from the previous manufacturing
process, Ref. [3].

A hot finish mild steel tube (B.S.3601) of 4%"‘outside diamgter
and .1/4" thickness was radially welded to the sphére; in the welding
process mild steel filler rods (made by the British Oxygen Co.) com-
plying to B.S5.639(1952) were used. The welding preparation and final
machining of the nozzle is shown in Fig. 37. This shape of knuckle was
chosen in order to have aigeometry as near as possible to the theoretical
representation used in the computer pfog;am. In fact, current pressure
vessel codes, Refs. [46], [47] and [68], specify minimum internal and
external radii at the cylindér—sphere connections. Although that shape
was more convenient for comparison with computed results, the maximum

stress point would be some way from the welding zone.
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Finélly, another heat-treatment was applied to the finished
structure, a 6060C, lasting for 2 hours, in order to relieve the
structure from the welding and machining residuai stresses.

New measurements of the internal and external surface radii were
made in order to seiect a region of the sphere with a radius as near as
possib;e constant; the variations of the average radii on the meri—A
dional plane were betweeﬁ 18" and 19". Fortunately, a relatively
extensive region could be foﬁnd with mean meridional radii of about
183" on the inside and 183/4" on the outside. The o ntr 1 meridional
area of this region was prepared for the attachment of the strain
gauges.

Another area, 90° away in the hoop direction, was also prepared
for attéching some st;ain gauges, for comparison with readings from the
corresponding gauges on the previous area.

The first strain gauges, therefore, on the chosen part of the
structure, are referred to in Chapter 6 as follows:

XY
where X stands for the position on the structure (A,B ... I, Fig. 37)
and Y stands for measurement direction (M—me;ididnal and C-circum—
ferential); the strain gauges 90° away in the hoop Qirectioﬁ are
referred to as:

90 X Y
Only gauges dn the positions C, E, F and I were chosen for comparison
with those at 90°.

Position and direction of the strain gagues:

(1) A and I, about 4l/74v along the mid;wall sphere surface in the
axial plane from the knuckle sphere junction. The gauges were both
meridional and circumferential, and external énd internal“respectively.

A 90 IM gauge was attached for compariscn.
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(i1) D and E, about 23" from the knuckle-cylinder junetion, the
length being along the axial plane. Both gauges were circumferential
only, and external and internal respectively. A 90 EC gauge was
attached for comparison. |

(iii) B on_the outside éurface just near the knuckle-sphere junction,
about 1 mm away in the direction of the knuckle, meridional and
circumferentials

(iv) C on the outside surface, near the knuckle-cylinder junction,
about 1 mm away from the knucklé, meridional and circumferential.
Gauges 90 C (M and C) were attached for comparison.

(v) vE_on the inside, on the knuckle-cylinder junction,meridional
and circumferential; gauges 90 F for both directions were attached.
(vi) g'én the inside, about 7 mm from the knuckle-cylinder junction
on the knuckle (about‘halfway from the knuckle cylinder and‘sphere
junctions), meridional and circumferential.

(vii) Hon the'inside, onAthe knuckle-sphere junction, meridional and

circumferential.

‘5.4 Test Procedure

Before each test, the electrical system would be left on for 24
hoursy 1t was never switched off either during each load test or
between them.

The loading systems, Denison Macﬁine and oil circuit, Fig. 47,
woﬁld be switched on fof at least one,hour‘before the start of each

day's testing.

5.4.1 Plate with Central Hole

This test was carried out in order to find out the general trend a
shakedown experimental study would follow.

The procedure of this test was as follows:
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(i)  The test begaﬁ by cycling in the elastic range from zero to a
load that would give a maximum strain of about .05% on gauge 1 (the
other gauges registered lower values), Fig. 36. In less than 10 cycles
the initial and final.values of the data logger would be about the
same. Scanning of zero and at various load increments was done.
(ii) The 16ad was increaged in steps.” till a strain of .099% on
gauge 1 was registered, Fig. 36, with the data logger being scanned at
that load. The load was then left at its maximum for about 10 mins.,
during which no major changes in strain readings were recorded. The
load was relieved in stages, with scanning carriéd out during this
process.
(iii) Cycles ffom zero to the same maximum load as in (ii), and return-
ing to zero, were done, with scanping at each locad step. No major
changes were recordedvfor 10 cycles.
(iv) The maximum load was increased by about 20% of the load in (ii).
The load incrementally increased and decreased up to its maximum, with
scanﬁing of the data logger at each load step. The maximum ioad was
then left at that level to allow creeping of the structure, and decreased
when no major change on the data logger recording was seen during about
5 mins. |
(v). Cycles from zero to the maximum load in (iv), returning to zero,
were done, with scanning at each load step. When the width of the
load-strain cycles was stable, the initial and final strain readings
~over 10 cycles were compared; if nomajor changes were found in the
initial and final strain gauge readings over 10 cycles, the process
was restarted as in (iv). N |

It was found for loads of between 1 and 2.36 x the load in (ii)’
the strain gauge readings would stabilise in width, and that initial-

final readings would show no major change after 10 but before 20 cycles;
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however, for loads larger than 2.5 x the load in (ii), the process of
stabilisation of strain-gauge readings would require a higher number
of cycles.

When stabilisation occurred within the first 20 cycles, the proéess
was restarted from (iv), but when this did not happen, the process

would be carried on for larger numbers of cycles.

5.4.2 Knuckle of Cylindrical Nozzle on Spherical Pressure Vessel

The procedure in this test was similar fo that described in
Section 5.4.1, i.e. the plate with central hole, but with these
diffefences:

The elastic-plastic computer results were known and therefore for a
chésen limit of linear elasticity of the material, an initial estimate
of the pressure to first yield could be madé, since

o, = 29.2 ksi inplies P = 250 1b in?

From hereon, the load in (i) (Section 5.4.1) was chosen as
200 1b in®. The stabilisafion of initial and final strain gauge values
was again obtained after about 15 cycles.

The load increment up to 600 1b in® was selected as 100 1lb irf,
since the divisionévon the gauge pressure dial were of that amount.
From 600 1b in® the load increment had to be taken at steps smaller
than 100 1b in® since otherwise the deformation would be too large and
less information would be available (see Chapter 6 for values of incre-
ments).

The number of cycles taken up by pressures smaller than 675 1b ir?
was about 20, but from thereon the number was chosen while the loading
process was going on. 1In case of doubt about the corréct inter-
pretation of results the number of cycles would be increased.

The scanning of the data logger was generally done for the first
five cycles, for the eight and tenth cycles, and later for each fifth

or each tenth cycle, depending on the number of cycles already performed.
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CHAPTER 6

ELASTIC-PLASTIC COMPUTED AND TEST RESULTS; DISCUSSION

6.1 Introduction

In Chapter 5, the measuring and loading equipment, the specimens
and the test procedures, are described. |

Very little expefimentél work on tﬁe shakedown behaviocur of
pressure vessels has beén reported. As far as the author is aware,
only Procter and Flinders, Ref. [59], have reported shakedown investi-
gations on partial penetration welded nozzles in a spherical pressure
vessel, and Findlay et al, Ref. [56], have reported limit-pressure and
shakedown investigations on torispherical drum head pressure vessels;
they have let creep take place in the first half-cycle of the cyclic
process for each particular maximum load. In these works, there is a
tendency to avoid the creeping of the material during a shakedown
investigation; when creep does occur, the number of cycles has never
exceeded 20, in Ref. [56], and 8,in Ref. [59]. It will be recalled
that Findlay et jal, Ref. [56], used mild steel. As mild steel is a
work~softening material, Ref. [75], a stable value for the residual
" strains should not be expected, but rather a decrease, approaching zero,
of the strain increment in each cycle compared to previbus cycles. It
is poésible that only after 103 cycles, Ref. [75], would a stable
residual strain be oﬁtained. Of course the number of cycles needed
for the stabilisation of residual strain in an overall load control.
test is dependent on the high strain level as well és on the membrane
strain level, since the shakedown is dependent on the material and the
shape of the structure;

In this chapter the result for each test is presented, analysed

and discussed.
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6.2 Plate with Central Hole

The plate geometry is shown in Fig. 36, as well as the positions of
the strain gauges. A plot of the strain gauge readings against load
can be seen in Figs. 48 to Si for gauges 4-5, 2, 1 and 3 respectively.

As may naturally be expected, gauge 1 shows the highest strain.
value. The.yield of the plate begins at about 24 klb for a strain of
about .098%, which for a Young's modulus of about 29 ksi, gives an
elastic 1imit of about 28.5 ksi. This value is probably low when com-
pared with the wvalue from a tensile test, but it must be borne in mind
that about 15 cycles were accomplished in the elastic range for 20 kib,
and 26 at about 24 klb, from which it may be concluded that the yield
stress limit decreases as a consequence of the mild steel work-softening.

An examination of Fig. 48 reyeals that the redistribution of
stresses due to the cyclic process can in certain circumstances cause a
reduction of strain, as well as an increase.

It can be seén from Figs. 48-51 that creep can stabilise during
the first cycle, in about half to three-quarters of an hour (load
cycles 64 klb and 68.7 klb); however when the cycle pressure begins,
‘but with a stoppage for the purposes of scanning of about one minute in
each load step, some creep can again take place, the occurrence of which
can probably be accounted for by the biaxiélity of the plastic deform-
ation. This biaxiality éffect begins to show itself at 64 klb, at which

point gauge 3, Fig. 51, shows a slight reversal of straining. From the

faét that this happens, an important point can be made.

Let gauges 1 and 2, Figs. 50 and 49 réspectivelx be assumed to be
- broken; one might therefore be led into error from Fig. 51, since one
could say that the shakedown limit had not yet been reached. .However,
éince gauges 1 and 2 did not break the following conclusion can be

made:
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If the cyclic strain measurements on a yielded region show a de-
crease in its e@uivalent value for one or more positions on the
structure, and the other measurements do not reveal a reason for this,
then some important point or points on the structure are not being
examined in the measured locations and hence the interpretation of the.
results can be misleading;

In Figs. 49-51, it is shown that the maximum shakedown load lies
between 57 klb and 64 klb. Taking the minimum value of 57 klb, a
shakedown ratio (L/Ly) of 2.37, i.e. ellipse expandiné by 18% is used
in the cyclic shakedown process. |

Analysing Fig. 50, gauge 1, in the last cyclic load process per—
formed in the course of this test, an increase in the plastic strain
ig recorded up to the tenth cycle; after_that the strain value starts
to decrease because of a process of reverse yielding due to the bi-
axlality of the deformation, which process is demonstrated in Fig. 51.
This phenomenon commences with the start of visible plastic flow in
those regions marked with AA in Fig. 36. This was observed during the
course of the test. An alternative explanation may be shown by means
'of the plastic flow of Sections BB, Fig. 36, as seen in Fig. 49 for
gauge 2.

The strain gauge readings of position 1, Fig. 36, are tabulated
for theiist to 5th, 8th, 10th, 20th, 25t£ and 35th cycles in order to
analyse quantitgﬁively the cyclic settling-dowm of the structure:

(a) Up to 1.99 X first yield load, the settling process was
reached in the firét iO cycles but, between 1.99 X and'2,37 X, the
settling process was only reached in the first 20 cycles..
| (b) For loads of about 2.66 X first yield load, the settle down
process is certainly taking place, but a number of cycles greater than

25 will be necessary. In this stage reversal of straining was detected
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in the region of gauges 3-5. (This should not be confused with reverse
yielding but should rather be interpréted as an effect of the redistri-
bution of stresses due to the cyclic process with the increase of
local plastic flow towards gross yield in Sections BB, Fig. 36.).

(c) For the maximum glclic__ly tested load (68.7 klb), reverse
yield occurréd after the 10th cycle, auring which cycle a second type
of creep behaviour manifeéted itself in the region>of gauges 3-5. This
load must be considered larger than that for an upper 1imi£ of shake-
down since reverse yield is out of the question according to Melan's
theorem, Ref. [54], although the strain reading had shown that the
strain increment had a tendency to decrease, which is indicativelof the
setfling down process.

From this analysis it is possible to draw three conclusions regard—
ing shakedown behaviour: |

(1) ‘The shakedown in the early stages of straining of the structure

ig of a static character, since, within the first 20 cycles, shake-

down'éan be defined. This shakedown is of local yield‘character, and

is limited mainly by the location of the elastic rggions of the structure.
(ii) When the local yield begins.to grow, but is still controlled

by the remaining elastic parts of the structure, it is possible to

define a shakedown load for a number of cycles greater than 20. This

type of shakedown may be defined as semi-static as this will only be

po;sible if other parts of the étructure can limit the local yield

plastic growth.

(1ii) When the yield is of gross type, then the reverse yielding
can take place as a consequence of thé biaxial character of the strain-
ing, and a load to settled-down behaviour can only be defined if the
material is of the settling—d§wn type; the strain gauge readings must

therefore show a stabilisation tendency, and if this is so, it will be
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possible to define a residual stress system which, together with the
stress load system, will be within an expanded and settled ellipse of

yield.

6.3 Knuckle of Cylindrical Nozzle on Spherical Pressure Vessel
This geometry, with its strain gauge positions, is described in

Section 5.3.2 and is shown in Fig. 37.

The elastic results are presented and discussed in Section 3.4.2
énd are shown in Figs. 34 and 35 for 250 1b. irf? internal pressure.

The strain gauge readings and strain values from the elastic-
plastic computer program are plotted against internal pressure values
- in Figs. 52 to 59. The overall axial deflection is plotted, in Fig. 60,
against internal bressure, and also in Fig. 61, 5ut there versus ratios
of pressure to first yield pressure together with thé overall deflection
values from the elastic-plastic calculations. |

Some of the readings from gaﬁge FC, Fig. 37, which in fact gave
the maximum strain readings, are shown in Table 14. Collapse and shake-

down pressure ratios (Pé, P;,K K? K* and Ké) can be seen in Tables

3’ 3

8 and 9 respectively.
The elastic-plastic calculations were carried out well before the
tests were carried out, using data for a nominal equivalent stress-

plastic strain curve of either 29.3 (1 + 133 5p'269

) (ksi), which is
not intended to represent either a settled cyclic, dr a gtatig curve
for the used mild steel from which the test specimens were constructed,
for the work-hardening case, or 33.(ksi) proof stress for .2% strain
for the non-work-hardening case, as representing mild steel material.
However the equivalent stress-strain curves, either static or settled
cyclic, were not known for the particular materials used in the con-~
struction. It should be noted that the sphere and the cylinder were

made from different pieces of mild steel, and that the welding effect

was not taken into account in the computations.
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6.3.1 The Test Results

Figs. 52 to 57 show the effect of the structure being not quite
syﬁmetric, as pointed out in Section 5.3.2. The‘differences in length
are larger in the meridional direction than in the circumferential,
Fig. 57, which would.appear to be 1o§ical because of the small radius
used in the knuckle region. |

The redistribution of straiﬁs, in those regions of the sphere and
the cylinder away from fhe junction, which redistribution is due to
the cyclic loading process, can be seen in Figs. 52 to 54.

Results for the cyclic process up to 500 1b ir?, internal pressure,
are not presented in detall, as it was realised that, the strains values
having settled down in less than 20 cycles, the structure is consideréd
as having shaken-down.

It may be concluded from Fig. 60 that the structure has, in its
overall behaviour, shaken-down for pressures of up to 815 1lb in? d&e
to the fact that the overall deflection indicates a settling down
behaviour. Cycles at 900 1b i were not performed because of over-
defqrmation of the ring base of the sphere, Fig. 37. Since the von
Mises stress concentration factor of about 2.92, Table 7, was obtained
in relation to a membrane sphere, for some internal pressure less than
810 1b irf?, a'behaviour similar to the test plate, (Section 6.2 and Fig.
50, at about 64klb), was expected since,in the case of the plate the
local yield gtarts to spread across Sections BB. However, in the |
vessel case the local yield which was expected to spread freely to the
membrane areas of the sphere is limited by the fact that the sphere
was clambéd to its base ring. Hence the deformation of the membrane
sphere was restricted; the straining of critical areas was not only
controllea by the cylinder,‘still being elastic, Fig. 52, but by the

sphere not being free to deform.
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From Fig. 61 a comparison between the overall measured deflection
and the calculated deflection can be made; for pressure ratios (P*)
1eés than 1.5 the agreement is not as good as for pressure ratios
larger than this figure. Once again the better approximation to the
stress~-strain curve éf the material, the better will be the approxi-
mation obtained from the elastic-plastic computer program. Differences
for pressure ratios higher than 2.2 can be accounted fo; by the fact
that the computer program uses the initial geometry for the calculation.

(a) From FPig. 57, the movement of the internal stress path on a
biaxial plane around the yield ellipse, described in Chapter 4,
Section 4.3.1, may be visualised, since the meridional strain readings
from gauges FM and 90 FM register a small initial increase with later a
larger increase and then show a decrease in strain readings for higher
loads. The initial increase can be identified with the first anti-
clockwise movement of small extent around the ellipse, as shown in
Fig. 16. The second, larger, increase probably corresponds to the
clockwise movement around the ellipse, of larger extent than the first
anticlockwise movement, Fig. 16. The decrease in strain reading for
Bigher loads can be identified with the last anticlockwise movement
around the ellipse, Fig. 16 (see Section 4.3.1.).

(b) As shown in Figs. 55 and 58,'gauges 90CC and CC, respectively,

register a reversal of straining (see Section 6.2, (b)) for 675 1b in?

internal pressure, due to- the redistribution of stresses in the local
yielded region caused by the cyclic loading process. This behaviour

is probably different in origin from that described in Section 6.2 (b)
because in this case there is a cross-sectional effect at the local
yielded region, whereas in the casé of the plate it is due to the start
of gross yiélding in Sections BB, Fig. 36, and which is therefore not

as localised.




g8

(c) Fig. 58 shows the strain reading from gauge CC; this

registers a reverse yielding at 715 1b in® internal pressure, although

none of the strain readings demonstrated the incremental behaviour
shown for the test plate in Figs, 49 and 50; it was therefore concluded
that a point, or points, of importance, on the structure had not been
considered for strain measurement readings, since Fig. 53 shows that
yielding in some areas of the sphere has probably been reached. This
line of reasoning concurs with that in Section 6.2 for gauge 3 on the
test plate, Fig. 36, for 64 klb. Accordingly, since the strain gauge
readings have shown a settling down behaviour for a number of cycles
larger than 20, and because no membrane yielding has been reached, it
may be concluded that a settling-down behaviour has been attained.
This is probably different of shakedown behaviour because reverse
yielding has been recorded.

The same reasdning can be applied to loading cycles of 770 and
815 1b in® internal pressure; no last stage as in the test plate for
68.7 klb, was obtained, probably because of the deformation restraint
or because no cyclic loading was possible at 900 1b in® .internal
pressure since the sealing on the base ring of the sphere, Fig. 37,
had broken, Aue to excessive twist deformation on the ring.

The éonclusions reached here are more complicated than in the
case of the test plate in which the strain gauges, 1 and 3, Fig. 36,
gave readings of near uni-axial strain by virtue of their position;
in the present case, however, the situation is that of biaxial strain-
ing.

From Table 14 for gauge FC, the following éonclusions may be
arrived at:

(1) Up to 675 1b in® internal pressufe, a near stable behaviour

is obtained within the first 20 cycleés, ‘hence this is a static shake-

down, as in Section 6.2 (i).
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(i1) At about 715 1b ir? internal pressure, a near stable

behaviour is obtained for a number of cycles larger than 20, hence

this is a semi—static shakedown, as in Section 6.2 (ii).

(iii) For internal pressures larger than 770 lb in?, there is a
tendency to settle'down, but more than 50 cycles are necessary.
Gross yield dn the sphere, Figs. 53 and 54, is obtained, and hencé
this is a gross yield settle down behaviour, although controlled by
the nozzle, which is still in the elastic range, Fig. 52. This type
of settle down, although dependent on the ability of the material to
settle down, does not show the large incremental straining as in the
case of the test plate, Figs. 50 and 51, due either to the resgtraint
deformation by the base ring of the sphere, Fig. 37, or the possi-
bility that incremental straining was not detected, or both.

éomparing the test values registered by all the gauges, (see (b)),
with fhe particular values registered by gauge FC, which gave the
maximum reading, (see (i)), for static shakedown, that is settle down
within the first 20 cyéles, it can be seen that values 675 1lb ir? are

obtained, but in (b) a reversal of vielding was recorded. It there-

fore seems logical to take the limit for static shakedown as an

average value of 600 1b in® and 675 1b in® internal pressure. Hence
637 1b irn® internal pressure will be taken hereafter on the static

shakedown limit for this particular structure.

6.3.2 Comparison of the Results from the Test and the Elastic~Plastic

Computer Program

In Figs. 52 to 59 and 61 the strain and deflection curves,
respectively, from the elastic-plastic calculation with work-hardening
and elastic-ﬁerfectly plastié materials information, are plotted and

demonstrate that the general agreement is reasonable.



100

Collapse and shakedown pressure ratios (P;, P;, K, and K3) are

2
listed in Tables 8 and 9, respectiveiy; the values were obtained by
 the application of the criteria described in Sections 2.3.2 and 2.2.3

respectively.

Collapse Pressure Ratios

The collapse pressure ratios (PE, K., and K;) can be compared in

3
Table 8.

The collapse pressure ratios, PE, frém the elastic-plastic cal-
culation with work-hardening and elastic-perfectly plastic materials
are within - 10% to 20%, and + 20% respectively, compared with values
obtained from the straih gauge reading curves.

It is particularly noteworthy to see the good agreement between
the wvalues for‘thé C5I criterioh, especially for the elastic-perfectly
plastic material (GY = 33 ksi, .2% proof stress), and the 5% difference
for the wbrk-hardening case, when compared with the values from‘the
~test. The values for the C15I criteria present a difference of - 15%
for the elastic-perfectly plastic,and - 7% for the work-hardening,
cases when compared with the values from the test.

The C3I criterion yields values with very good agreement, but the
C3 criteria are, once again, comparatively.conservafive.

The CSP criterion, from the test resulté, cannot be precisely
defined, as can be seen from Fig. 57, but can be téken as lying between
2{45 and 2.6 (XPy)° Taking the average value, 2.52, it may be concluded
that the values obtained using the elastic-plastic computer program
with work-hardening and elastic-perfectly plastic materials are about
15% and 20% émaller, respectively, thgn the average values from the

test.
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The collépse pressure ratios to the manbrane yield pressure, K3,
were obt;ined b; usiﬁg the C5I and C15T criteria; Kg was obtained from
Ref; [63] aﬁd waé based on the Tresca criterion with limit analysis
from Ref. [33].

The Kgxalue ig in any case smaller than Ky and is al'so smaller

than‘K3 from the test readings, by 10% for the C5I,and 28% for the C15I

criteria, when gompared with values from the test data.

‘The %& value obtained using the C5I and C15I criteria,vwhen com—
pared with the results from the computer calculations, are smaller than
the values from the strain gauge readings by 4%, i7%vand 8%, 22% for
ﬁhe Qork—hardening and elastic-perfectly plastic material cases respect-

ively, for the C5I, C15I,criteria.

Shakedown Pressure Ratios

Value P; from Ref. [63] is equal to the'valﬁe obtained by the
application of criterion SEM, from Ref. [12], to the case of the cylinder
and sphere junction with £he knuckle (sée Séction 2.é.3).

The P; value from the use of the SPC and SPT criteria for the work-
hardening case are about §% lower than the SEM value? bu£ for the
.elastic—perfectly plastic case, the shakedown value is some 15% less.

The appiication of criterion SPW, hence allowing the yield ellipse
to'expand with work-hardening from the loadiné process, gives two values
for the shakedown pressure ratios, lower and'ﬁpper limits. This geometry
was the first that the author came across with such shakedown behaviour.
The reason for this is the small amount of work~hardening ﬁsed up to a
relatively large load (2.5 of first yield pressure). The lower limit is
~defined before “the iaét anticlockwise movement afound the ellipse has
begun, butl just before the turning point on the stress path where the
structure would have shaken down again, up to about 2.45 X first yield

pressure, from which the structure would not, from a theoretical point
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of view, shakedown again for the work-hardening used. In the loading
process it should be recalled that tﬂis particular geometry was not a
realistic structure since the membrane deformation on the sphere wés
restrained by the ring and plate base, Fig. 37; this is probably the
reason for the small amount of work-hardening used in the loading pro-
cess.
The lower limit is some 3.5% higher than the limit of 2, from the
hypothesis of the moving ellipse of yield, but is some 10% higher than
the values obtained from the application of the SPC and SPT criteria.
The upper 1limit is some 22% higher than the limit 2, of the moving
ellipse of yield criteria, but is about 30% higher than the values
obtained using the SPC and SPT cfiteria.
The upper limit, P;, obtaiﬁed for the SPW criterion with the computer
results is some 6% larger than the average value obtained from the test
data for the static shakedown (Section 6.3.1, last paragraph), but the
computed lower limit is some 10% lower than the test knuckle (static shakedown).
-The shakedown p;éssure rétios to the membrane yield pressure, K2’
obtained from the calculations with the SPT criterion are smaller than
Kg, from Ref. [63],Abut with the SPW criterion are larger than KE. The
differences are about 7% and 18% for the SPT criteribn with work-harden-
ing and elastic-perfectly plastic cases respectively, and almost the
same for the lower limit of the SPW criterion, but about 18% higher for
the upper limit.
It is particulafly noteworthy that the. K2 values obtained from
the experimental criterion, of settling down in the first 20 cycles
(Section 6.3.i, last paragraph), gives an upper limit close to the upper

limit obtained from the calculation with SPW criterion, in which work-

hardening is permitted. The difference is about 4%.
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Since from the test results an average value of 2.31, for P;, was
obtained i1t can be said that the settled down yield surface has expanded
by at least 16% and hence at least about 16% of work-hardening was used

for the experimental static shakedown behaviour. The reasoning is by

no means correct, since the stress path ﬁas a movement around a

settled ellipse of yield,as with an elastic-perfectly plastic material,

the shakedown limit beiné 2.(XPy), the values are in most of the cases

below 2, but it defines a lower limit for ekpansion of a settled yield
ellipse.' Using the same reasoning, for the results from the computer
program, work-hardening case, it can be realised that a. 22% expansion

is obtained with the upper bound (P; = 2.45, Table 9) from the SPW criterion,
but in fact the computer results show a 30% expansion. For the lower

bound (P; = 2.07, Table 9), a 3.5% expansion is obtained using that line

of reasoning, but in fact the computer results show an 11% expansion.

It should be noted that from the test plate readings an 18% ex-
pansion of the settled down yield surfaée was obtained, which compared
with 16% for the test discussed in this section. This allows an approxi-—
mation of the permissible work-hardening of a settled ellipse of yield,
for mild steel, of 17%. Of course the value cannot be accepted as
definitive for mild steel; a mofe extensive study 1s necessary.

If the 17% expansion of the settled down yield ellipse is intro-
duced in the SPT criterion, a value of 2.18 for P; is 6btained, which
improves the shakedown pressure ratio, P;, by iS% when compared with
the simple value for SPT (moving the yield.éllipse) criterion. The
shakedown pressure ratio to membrane yileld preséure, hen;e,has a value
of .68, which is 14% 1¢ss than the value from the test results. These
values, 2.18 and .68, have not been included in Table 9, since the
figure of 17% for the expansion, as understood by the author, is not

intended as an exact value, as above mentioned.
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6.3.3 Comparison of Collapse and Shakedown Pressure Ratios (K. and Kg

3

A final conclusion is arrived at in Chapter 7, but here some interim
comments are made.

From the calculations, once again, as in the Series N nogzzles in
Chapter 4, Fig. 46,4the upper limit of KZ'(SPW) is larger than K, (cs1,
C15I), but from the experiment the opposite situation is found for Ehe
C15I value, and the same situation (i.e. larger) for the C5I criterion.

If the C5I criterion is chosen as the criterion to.design against
collapse, then, in this case éhe design will be limited by the shake-
down criterion if SPT or the lower limit for SPW are used, but the
opposite is true for the upper limit for the SPW criterion.

The C5I criterion seems sensible and reliable, but C15I although
it appears, in the theoretical calculations, safe, in the experiment it

is unreliable as far as a static shakedown is concerned. This C151

criterion shows a marked creep deformation, hence precautions during
design against creep should be considered by the designer.

If the C3I criterion is used in the design to help prevent collapse,
it is possible that no precautions against shakedown need to be con-

ksidered, unless an elastic-perfectly plastic case is being studied.
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CHAPTER 7
CONCILUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
7.1 Conclusions

7.1.17 Elastic Results

Heads:

* For hemispherical heads the sfress concentration factor depends
solely on the cylinder-sphere thickness ratio.v For this geometry, the
minimum stress concentration factor, based on the von Mises criterion,
is found when the thickness ratio (t/T) is between 1.5 and 1.75, Fig.

18. A similar line of reasoning can be made for other spherical heads.

The approximation to the Kelvin functions (Appendix B) gives for
spherical heads(caps) with Go(d/D)3(3.5), neaf n/2, a better approximation
than the exponential- solution (Appendix B), for cylinder-sphere thick-
ness ratios equal to or larger than 1, but a poof approximation for t/T
equal to or less tgan .5..’There are values for t/T between .5 and 1,
for which both solutions give the same results. A comparison with the
solutions obtained for the solid plate (Appendix B) indicates that even
. the best of the above;mentioned solutions should not be used for some
values of eo(d/D) neér n/2; values of eo(d/D) from which the plate
yields to better solutions than the other two (Appendiva) are defined
in Figs 19-21, for t/7T ; .25, .5 and 1, respectively, and are associated
with points marked on these‘figures by at (i ="','",111,*VY) for some’
vaiues of d/t (= 10, 20, 40, 80, respecti&ely). In the text (Section
3.2.3), the value of eo is representéd by eAi. This paragraph can be
shown'schematically, thus:

t/T £ .5, exponential solution
8, (d/D)[plate solution] > g,i > 0, ¢ d/py
' t/T > 1, approximation to

Kelvin function solution

(5 <« t/T < 1, was not considered in this study)
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These copclusions were arrived at by ¢omparing the results
obtained from the exponential, the approximation to the Kelvin
function, and solid plate solutions (Appendix B), with the rgsults
from the elastic cqmpufer program (PVA1) used in the coﬁrse of this

work, for stress concentration factors based on von Mises' criterion.

When a knuckle is introduced into a spherical head, for it to
becoﬁé a torispherical head, the improvement gained for the stress
concentration factors based on von Mises' criterion is not as large
as might be expected for some geometries of h/d larger than .25 (tori-
spheriéal); however, research into the question of whether or not a
geometry with a knuckle is a significantly better design with regard

to economic factors, is recommended.

Nozzles:
Flush Cylindrical Nozzles:

For the geometries considered in éhis work, it is concluded that
Leckie's method, Refs [13] to [16] would yield better results for the
maximu@ stress concentration factors, for all geometries, based on
von Mises' criterion, than the solutions presented in Appendix B (ex-
ponential solution (B.36.2)and approximation to Kelvin function
solution (B.37.2) with (B.18)), the elastic computer
program results béing used as the basis for the compafison.

The pfesentation of a single graph with averaged curves for each
value of the cylinder-sphere thickness ratio (£/T), would cause con-
siderable errors, so accordingly, the author haé preferred to present
graphs for single values of t/T, for the stress concenitration factors

based on the von Mises criterion.
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Series C Nozzles:

The band(?Connell modification (which allows the forces at a
"square corner" intersection to be distributed as.bands of loading
over a finite width of shell, equal say to the thickness of the shell
wall plus a fillet weld, rather than the boint or line load of con-
ventional shell theory) will give unrealistic values unless an
optimum size of band width is selected.

Small differences in the detailed junction geometry of a continuous
nozzle-sphere do not significantly alter the elastic stress concentration

factor, although large knuckle radii do give lower values.

Test Knuckle Nozzle

The stress concentration factor based on the von Mises criterion,
from the elastic computer program, is 11% larger than the wvalue obtained
from the test, which indicates that the computer program gave a reason-
able approximation, especially in view of the fact that the knuckle
radius was small. This agreement is perhaps as good as it is only
because of the described irregulafities of the geometry.

The strains prediéted by the elastic computer program at the most
differ by 18% from the strain readings Figs. 34 and 35, hence these
results are not so good as those obtained for the stress concentration

factor; the weld effect is not considered in the 18%.

7.1.2 Elastic-Plastic Results

| The elastic-plastic strains predicted by the elastic-plastic com—
puter program are, in both cases, for elastic—peffectly plastic and
for work-~hardening materials (nominal curves, Section 6.3), in reason-
able égreement with the test nozzle resul ts; the work~-hardening (either
(static or cyclic settled work softening) curves were, however, not
known for the mild steel used, and the-proof stress was obtained for

a .2% strain from the nominal curve used in this case.
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It is particularly important to use a proper representation of
the material béhaviour in the computer program, if. the elastic-plastic
behaviour of thé structure is to be correctly predicted, as can be
seen from the results for head A, Ref. [7].

Intuitively, it would seem proper to use a static equivalent
stress-plastic strain curve for a study of collapse, since a statié
elastic-plastic deformation is involved in the collapse behaviour;
however, for a cyclic elastic-plastic deformation study, an equivalent
stress—plastic strain settled cyclic curve will probably give a better
prediction for the shakedown behaviour, as may be concluded from a
study of Section (6.3.2) Some other comments will be made on the
shakedown behaviour ffom the elastic-plastic computer program in

Section 7.1.4.

7.1.3 Collapse Criteria

One of the initial ideas'was the %ntention of presenting, from
the computed rgsults,‘and comparing them with some available experimental
data, a collépse criterion that would satisfy any of the geometries
studied in the course of this work; however this was‘found fo be
impossible (in the following paragraphs the assumption that K3 cannot
be larger than 1, is made throughout), as:

(é) The C3 criterion has safe characteristics for the whole range
of geometries studied, except‘that for a geometry with elastic stress

concentration factors (von Mises' criterion) higher than about 2.2,

the collapse pressure ratios are very conservative (Ké << 1).

(b) The C5 criteria have safe characteristics for geometries with
stress concentration factors (von Mises') larger than about 1.75;
however, for cases with stress concentration factors lower than about

that value, these criteria have unconservative(K3 > 1) characteristics.
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(c) The C15 criteria not only gives highly unconservative (K3 > 1)
collapse pressure ratios for stress concentration factors (von Mises')
lower than about 2, but also has the defect that design against creep,

even at room temperature, must be considered.

(d) The BSLY criterion, although giving reasonable results for

collapse pressure ratios, for head geometries, is a subjective criterion.

(e) The CMEO criterion, for hecad geometries, being a direct appli-

cation of the definition of collapse, gives unconservative (K, > 1)

3

values.

(f) The CSP criterion, for nozzle geometries, gives reasonable
values for stress concentration factors larger than about 1.75, but

brings with it the necessity of plotting stress paths.

From the foregoing paragraphs, it may be concluded that. the C5I
criterion is very useful for stress conéentration factors (von Mises')
larger than about 1.75, since it can be used in the course of the
pressure vessel test ﬁnder consideration, although the cérrect positions
for fixing the strain gauge must be known beforehand. For cases of
stress concentration factors (von Mises) lower than about 1.75, the

C3I or C3D criterion is probably more suitable.

7.1.4 Shakedown Criteria .

Conclusions.regarding shakedown pehaviour were reached with greater
difficulty than those for collapse, since the static and cyclic settled
equivalent stress-strain curves were not known, and because a cyclic
process is involved, which cannot be described by the incremental theory

of plasticity used here for the elastic-plastic computations.
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There are two main questions to be answered in any theoretical
shakedown study: '

(1) which curve should the elastic-plastic computer program be
fitted with?

(ii) whi;h shakedown criterion for bermissible elastic unloading
should be used?

There are, of course, other questions e.g. the effect of change
in geometry, which stress path should be followed in the unloading
process; and many others, which will influence the shakedown behaviour

of the structure.

Since a cyclic process is inwolved in shakedown behaviour, it seems
Jogical that the elastic-plastic computer program used in the course of
the present work should be fitted with a curve such that:

(a) if the material is of settled cyclic work-hardening type, a
settled cyclic equivalent stress-strain curve should probably be used;
however a static curve would give conservative results;

(b) if the material cyclically neither work-hardens nor work-
éoftens, the oniy possible approximation to a work—hafdening case is
the static equivalent stress-strain curve;

(c) if the material is of settled cyclic work ~softening type, a
settled cyclic curve is probably better than a static curve, although

.

the latter will probably give unconservative results.

It is, therefore, highly probable that the elastic-plastic com-
- puter program should be fitted with a settled cyclic equivalent stress-

strain curve for a study of shakedown.

Once the elastic-plastic results are available from a computer

program, the other main question is which shakedown criterion is more
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suitable for consideration as permitting elastic unloading of the

structure? X

The SPW criterion (full expansidn of the ellipse of yield with
the loading process) is probably too ampitious, as may be concluded
from‘the shape of some available stress-strain curves obtained (in
previous works) in the process of defining a settled cyclic equivalent
stress—-strain curve; however, in any structure, the stress limits on a
cyclic process are not + o, but some values ¢, and o, in which o, is

1 2 1
probably larger than - ¢ and o, = o, although ¢, and o, change with

2 1 2
the cyclic process until stable values are obtained and hence the
cyclic strain amplitude will be smaller in the structure than in the
test pieée, and the reversal of yielding will either be of small
extent or probably zero; the results obtained, therefore, from the

application of the SPW criterion are probably not conservative, unless

there is zero reverse yielding.

The SPT criterion (moving the ellipse of yield towards the stress
state réached) is very reasonable, although, fromAinspection of some
available data, it is highly probable that the ellipse of yield defined
from the settled cyclic equivalent stress-strain curve will expand by
an unkqown amount depending on the strain ievel; i£ seems probable from
these considerations, as well as from tﬁe test results, that this
criterion (SPT), with.defined expansion for the settled cyclic ellipse
of yield, is so far the most correct shakedown criterion described.
Unfortunately fhe author is not in a position to pfesent the reader with
any values derived.from the use of this criterion, although an estimated
value was used, in Chapter 6 (17% for mild steel), for the expansion

of the ellipse of yield used in the calculation.
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The SPC criterion is nearly the same as the SPT, except that the
movement of the ellipse of yield is in the direction defined by the
linear elastic path. The SPC criterion gives slightly lower values

than the SPT.

If an elastic-perfectly plastic material is under study, the
results are conservative or unconservative depending on the level of
the chosen proof stress; however the shakedown pressure ratios (P;
and K2) are underestimated for the cases of low stress concentration
factors (von Mises'), when compared to values from the SPT ¢riterion

(non-expansion of the yield ellipse).

7.1.5 Final Conclusions

Small differences in the détailed geometry of continuous nozzle-
sphere connections do not significantly alter the elastic stress
concentrétion factors, or the shakedown and collapse loads of the
vessel, despite the junction being af the region of highest stress in
the vessel. The agreement ébtained between the elastic-plastic computer
prégram‘and experimental strain results makes poss;ble elastic-plastic
shell theory calculations with some assurance that the results can be
applied usefully to real vessels even if qnly the nbminal details of

the shape of the junction are known.

In a shakedown behaviour study which takes into account the effect
of the settled cyclic behaviour of the material (i.e. work-hardening
gccording to a settled cyclic behaviéur, which may be harder or
softer than the static curve), the assumption of a moving ellipse must
be made. Because the real size of the moving ellipe is not initially
known, the ellipse that should be used is the settled ellipse of yield

(i.e. the settled value of first yield).
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In the collapse pressure ratio calculations, a uniéue value was
not found, at least not for .5% and 1.5% level of strains.

From the various collapse criteria examined for incipient
collapse, the C5I criterion (.5% maximum outside the strain), and
either the C3I or C3D criteria, were chosen as suitable for geometries
with elastic stress concentration factors (von Mises') larger than

about 2, and lower than about 2, respectively.

A comparison of collapse pressure ratios K, (based on the C5I,

3

C3I and C3D criteria), with shakedown pressure ratios K, (based on

the éPT criterion,'moving the ellipse of yield), leads to the con-
clusion that for elastic stress concentration factors (von Mises') below
about 2.5, incipient collapse occurs before shakedown. The broad

trends of previous calculations based on elastic stress distributions,
and on the limit load concept, are confirmed, althoﬁgh the elastic-

plastic computations show .rather lower collapse loads for nozzles with

low stress concentration factors if work-hardening is neglected.

It was realised that the settling down process of the structure
deformation could be divided into three main, not mutualiy inclusive,
types, making the assumption that time has been allowed to let the
structure to creép in the first half cyclé:

(a) Static shakedown, which depends only on the local yield, but
is generally limited by the dispdsition of the remaining elastic parts
of the structure. The cyclic settliﬁg down process can be arrived at.
in a few cycles (up to 20 for the case of mild steel).

(b) Semi-static shakedown, which is an intermediate gross yield
stiation in which the cyclic settling down process not only depends
on the ability of the material to settle down, but also on the remaining

elastic parts of the structure. In this situation reversal of
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straining can appear due to the redistribution of stresses and strains,
whiéh is a result of the cyclic loading process; the number of cycles
needed to settle down, however, will be larger than for a static
shakedown.

(c) When a gross yield situation has been reached on a large

scale in the structure, the cyclic settling down process depends solely

on the ability of the material to settle down, although reverse
yielding and large incremental straining can appear as a consequence

of the biaxiality of the plastic deformation, in the early cycles.

-~

7.2 Recommendations for Future Work

Since the results of the elastic—pléstic computer program gave
reasonable agréement with the test results, the study of the "area
replacement rule" cén be made from a general point of view, since
small differences in the connection details (nozzle-sphere) do not
show a significant effect on the elastic stress concentration factor,
and on the incipient collapse behaviour.

The differences between the calculated and the test values become
greater for higﬁer loads, hence it‘seems logical to attribute this
increase in the difference to the change in geometry during the load
process; it 1s, therefore, recommended that the necessary alterations
to allow for the effect of geometry chahges due to the loading procese,
in the caléulations, be introduced into the computer program.

One of the first stages in a shakedown and collapse behaviour
study, using an elastic-plastic computer program,is to obtain the
settled cyclic and the static equivalent stress-strain curves for the
material under consideration for construction of a pressure vessel. In
the particular case of a shakedown calculation, it is necessary to
assess the possible expansion of a settled cyclic ellipse of yield

for different levels of strain. Once these curves are known,
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elastic~plastic calculations should be carried éut anq théir results
compared with thOSe found from tests with carefully, constructed
pressure vessel éomponents.

After careful consideration, the author feels that it would be
worthwhile to include finite-element techniques in future pressure
vessel research, especially for sphere-nozzle junctions orrother

discontinuity regions.
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APPENDIX A

FUNDAMENTAL EQUATIONS FOR ELASTIC SYMMETRICALLY

LOADED SHELLS OF REVOLUTION

The notation used in Figs. 1 and 2 is the same as used in the
following equations'and, with minor changes, in references [1,2,3].

A.1 Equilibrium Equations

Referring to Fig. 1, the equations of equilibrium are:

A.1.1 Axial equilibrium

d{wr)

7] (A.1)

It
o

-2hrY-prsinb

A,1.2 Radial equilibrium

d(Fr)

a " N¢ + prcos® +2hrX=0 (A.2)

A.1.3 Moment balance

Because of the axisymmetry of loading it will only be necessary to

consider the meridional balance,

d(Mzr)
—2t e _Fr cos 8 ~M sin® + Wr sin 6 = 0 (A.3)
dag P : '
A,1.4 The meridional stress resultant Nz is given by
Ni =Wcos 8 +F sin © (A.4)

A.2 Displacement , rotation and strain relationships

Referring to Fig. 2, the relationship between the displacements,
rotation and strains, are givén by: -

A.2.1 Mid-wall strains

- 1 AL

ez = %in® + @ cot 6 | (A.5)
e =% | . . (a.6)
¢ T

A.2.2 Strains at any position through the thickness, with the -
assumption that plane sectionsremain plane, are given by
- as .

e = + 2z = (A.7)
R RT)

e =e + 2z sin 8 @ ' (A.8)
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A.2.3 The axial displacement is related to the radial displacement and
rotation through the following equation, again referring to Fig. 2a

%% = @ ;in 9 + EL_cos 0 (A.Q)

From (A.5) it is possible to write a similar equation for the radial
displacement
du

a - % cos 6 + e, sin 8 - (A.5.1)

A.3 Elastic stress—strain law

Hookean material will be considered, therefore

1 . s
e, = E-(ci -V ci) , 1,3 = 4,0 (A.10)

A.4 Other relations

It is usual to have as dependent variables either $§ and F, or
functions of them, in an analytic solution, and 4, %%3 u and F in a
numerical solution, hence it is necessary to eliminate stress and moment
resﬁltants from some of the above equations. |

In order to proceed using these dependent variables, it will be
necessary to know the relationships between the 1attér variables and the
former dependent variables. These relationships are as follows:

Denoting the thickness of the shell by 2h:

A.4.1 Stress resultants

+h )
Ni = J( o, dz, i = L9
or ~h
2 Eh - - . s
Ni = m (ei + \)ej), 1,5 = 4,9 (A.11)
A.4.2 Moment resultants
+h
Mi = jh ci z dz , i=12,0

or

dg v sin 8 4 ) (A.12.1)

M =D('a:%‘+ T
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and

sin 6 ag | |
, Mcp =D (—-;f-m + v dz) (A.12.2)

where D = 2 E H3/3(1 = V)

The derivative of ML is required in the solution of (A.3), hence,

from (A.12.1)

dM 2 s 2 P s .2
4 2EHN ag sin © _ ag sin 6 df sin®8
dag 1=V (dz Y TTY ﬁ‘) B+ D[ aZ Y ( r dy = g
1 d(sine))
+ TP —a ] . (A.13)
dh

where B, which is equal to , is the taper.

dg

A.5 The equations used in a numerical integration or in an analytic
integration are different forms of the above equations, e.g. (A.11),

with i = ¢ and j = 4, is substituted into (A.2) giving
. E _ _
-gT(Fr) + pr cos B - %‘:‘%}g _(ecp + v ez) +2hr X =0 (A.21)
(A.1) is generally used as an integral form

Wr =V + J‘ (pr sin ® + 2 h r Y)dg , (A.1.1)

Using (A.11), with i = ¢ and j = ¢, and substituting into (A.4), the

following equation is obtained

2 Eh

- (8, +ye)=Wcos 6 +F sin O (A.4.1)
1-v L [0} . )
dM .
Replacing the valuesof ML’ Mcp and a’-!’- , respectively, from (A.12.71)

(A.12.2) and (A.13) into (A.3), the following equation is obtained

Fg 2 Eh® sin 6 | d¢
+ B + _—
g2 D(1 - v9 r dy
2 Eh2 sin © do sin®®
AY A — s ———
l D1 = V) r B+ r ©°° ® dg, 2 ¢ _ (A.14)

P
—6cose+-—-sin9—_—0
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A.6 As far as an analytic solution is concerned, a better equation
than (A.5.1) can be derived for use in conjunction with (A.14).
Considering the case X, Y and 8 equal to zero and using the

definition of N, i = g,p from [1]

- i . )
O‘i = '2_h- s 1 = L,(P (A.‘15)
Substituting the value of o, i = 4, into (A.10) for i,j = 4,0,
gives
1

e, = T}E (Ni -V Nj), i,j = 4,09 ‘ (A.16)

Taking the values of N¢ and NL’ respectively, from (A.2) and (A.4)
and replacing them into (A.16) for i = ¢ and j = ¢, and then multiplying

by r and differentiating in relation to 4, these can be written

d(r e ) ‘
o 1 |d d(Fr)) : d(pr®)
) = %hE | dg ( E7) - v(Fr? sin O + cos 6 a

+8in 0 (= pr® +v Va4 oy J pr sin © dg)%% (A.17)

Substituting i = g, j = ¢ into (A.16), and using NL and N(P from

(A.4) and (A.2), respectively, the following equation is obtained

- 1 d(Fr) . . _‘l_J‘ ‘n 6 do — y
eL = ShE| = Y Tqg + F sin 0 cos © (r pr sin 0 dg - v pr + T

(A.18)

Taking the value of u from (A.6) and replacing into (A.5.1) gives

P cot 0 = - —72——-9£EEQ?+ e . (A.19)
sin 8 7§y 2 :
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Again, taking the values of e, and d(reb)’ respectively, from

4
A dg
(A.18) and (A.17) and substituting them into (A.19), gives

.1 5= r g-(-EE-)—--- v (Fr) sin © + v d(Fr)_ F sin € + 2Eh @ cot ©
sin 6 dg dg . dag

. 1 dlpr?) lf . 1)
= cos O (— Sn® aq trdPr sin © dg + .

o+ (p:z - W=y I pr sin © dz) g%- (A.20)

The equation (A.14), with the assumptions already made for (A.20),
forms with this latter equation the system of differential equations
used to solve analytically the problems of stress distribution in

pressure loaded shells of revolution in this thesis and many other works.
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APPENDIX B

CYLINDER-SPHERE INTERSECTIONS FOR INTERNALLY PRESSURISED

HEADS AND NOZZLES

Referring to Figs. 3, 4 and 5 it can be seen that for each parti-

cular type of geometry the following relationships may be applied:

-~ Sphere: R DO/2A

r=Rcos

ag = - R.de (B.1)
B=20
2h = T
- Cylinder: dg = dx
r=4d/2
0 = 0° (B.2)
B=o0
2h = t
-~ Plate: . O =g/20ra=0
dy = dr : (B.3)
2h = T
8 =0

It will be assumed, hereafter, that X and Y.are zero and that the
pressure is constant, i.e. X =0, ¥ = O; p.= (constant).

Certain of the equations to be found in Appendix A, referring to
the particular geometry, either sphere or cylinder, under consideration,
gi&e rise to the following relatioﬁships:

B.1.1 - Sphere
Substituting (B.1) into (A.14) and using (A.1), the following

result is obtained:

acg ag Do Do
82 _ tan 8 == - (v + tan®0)g - Eﬁ-(Fr) = = Eﬁ-tan ® (V + 4pr®)

462 de

(B. 4)
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Likewise, introducing the conditions of (B.1) into (A,20)

2 ' " TED
9—‘—5-11)_ taneg-%l)-_ (tar?0 - y)(Fr) + —2 7

- - %-p Di cos 0 sin 6 + (1 + y) tan 6 {%>Pré + v}

(B.5)

(B.4) and (B.5) form the system of differential equations which
will be used to solve the analytical problem of stress distribution in
a spherical shell.

This system is similar to that in Ref. [1], page 110, except that the
right hand side has been altered to take the load condition into
account. (B.4) and (B.5) are, also, similar to the system presented
in Ref. [4], page 23, except that they use a different sysﬁem-of axes,
and definitions concerning the directions of the stress and moment
resultants.

The right hand side of:eﬁuations (B.4) and (B.5) gives the parti-
cular integral which corresponds to the membrane solutions for the
type of loading under consideration, Refs. [1] and [4].

A complete solution to the problem will consist of the solution
resulting.from the application of the homogeneous system, known és the
edge bending solution, plus the particular integrals from the above
system, which is dependent on the loading of the shell.

Using the following relationships,

Fr = — (B.6.1)
cos°6
and
g = —55 (B.6.2)
cos?0

similar to those used in Ref. [1], and substituting them into (B.4) and
(B.5), the following system of equations is obtained for the edge bend-

ing conditions:
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d? 3 : Do ’

SE e[ tan®0 + (y =]+ =2 =0 (B.7.1)
2 ) TED

do _ m[-3- tan®0 - (y + $)] - 2 e =0 (B.72)
d62 4 2

The system of differential equations is the same as that in Ref.
(11, page 111.

Since the termsin ¢ and w, in (B.7.1) and (B.7.2) respectively,
' 2

. . . d
are.minute compared with the terms in £EL ang &8

de= de?
the former terms will henceforth be neglected. Once the solution of the

in the same equation,

simplified system has been arrived at it will become apparent that the
terms éf the second derivatives are of the order of xa, with % a con-
" stant for each particular geometry and material, in relation to the
single functions ¢ and g respectively. It should be noted that the
larger the value of 1; the better wili be the approximation to the
solution.

It_should also be noted, as regards the solution of the simplified

system from (B.7.1) and (B.7.2) that, when the comparison was made

2 2
between the values of terms ¢ and w and those of gg%-and §§$3 acltual

values of the coefficients of ¢ and @ in (B.7.1) and (B.7.2) respect-—
ively, were not given; in fact when © is near + w2 the values of these
coefficients may be larger than ) and, if this is the case these terms
cannot theréfore be regarded as negligible in comparison with the
second derivatives.

Taking (B.7.1) and (B.7.2); and neglecting the terms in ¢ and w,

respectively, gives

2 D R
de . . 2.,.-0 (B.8.1)
ae= 2D
and '
. Eu TED

@ - 5 e=0 (B.8.2)
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Eliminating ¢ between them, the following result is obtained:

4
9_%. + 414@ =0 (B.9)
ad '
where s
TED
4X4 - o
T 4D

or, recalling that D = ET°/12(1 - vy,

4 D
A= J3(1 = V@) ‘/E% (B.10)

The solution of (B.9) is well known, [1], i.e.

® = e)‘e(C1 cos \6 4+ C_ sin \6) -

2

+ e"'-)‘e(c3 cos A0 + C, sin \8) (B.11)

4
where Cl’ C2, C3 and C4 are constants of integration, determined by the
boundary conditions.

From the foregoing assumptions, and from (B.10) it can be stated
that the higher the value of DO/ZT and the greater the difference
between 6 and + W2 the better will be the approximation given by the
solution of (B.8.1) and (B.8.2).

The validity of solution (B.11) for the system (B.7) is inter—
dependent on R/T and 6, hence it will be difficult tg define the

applicability limitsof such a solution.

B.1.2 Shallow Spherical Shells

In the theory of shallow shells, the independent variable is taken
as the complemeﬁtary angle of 6; only the case of © being near to + W2
is considered here.

Let a be the independent variable, defined by

a = w2 -6 _ (B.12.1)
as used in [1].
Since 6 is near + W2, « must be a small angle, hence

tan © ~ 1/a . _ (B.12.2)
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Substituting (B.12) into the homogeneous system of differential
equations formed by (B.4) and (B.5), the following relationships are,

respectively, obtained:

D
Eg 140 1 _o 3 : -
-a?z— o+ E; -a; — (a + \)) ﬁ - 5D (Fr) = 0 (B’-1301)
) " TED
dzézr)-*_ _c% d(Fr)~ (l \)) (Fr) + o g =0 » : (B.13.2)

do o« 2

Substituting the value of # from (B.13.2) into (B.13.1) gives:

& 1 d 1, ,& 1 d 1 4
(Ea_é-+;-cl_ot-_?) (-a?a-+;a£—x'—a§') (FJ:“)+4Y (Pr) =0 (B.14)

4 _ v® (recalling A TEDi/4D).

where 4Y4 = 4\
(B.14) is identical to the corresponding equation in [1], page 117,
hence it will have the same solution:

Fr = C1 ber'y + C_ bei'y + C

ker'y + C, kel'y (B.15)

2 3 4
where ber; bei, ker and kei are known as Kelvin functions, and g is
defined by:

x=y/2a (B.16)

Since the Kelvin function will be required, an approximated

expression is given here:

ber x = 1 K2 g (xf/2. - n/8)
J 2Ty :

ber'y = —1 é*orﬁ cos (x4 2 + W8) B.17)
J2my :

beix =

K2 sin g/ T w8)
v 2T, .

. 4 .
be‘i'x o — X//z .-
Vers e sin (x/4/2 + n/8?

and
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ker y= + /W2y euXAri-cos (XAfi + W/'8)

ker'y = -~ /1—r72X e_X/v 2 cos (x//2 - w/8)

| (B.18)
keiy = - /W2y 3%2 sin (x4 T+ w/8)
Kei'y = + /72y X2 in (/T - W)

as used in [1].

These.equations make an adecquate approximation to the Kelvin
functions as long as y is bigger than 7 (x > 7) Refs. [1] and [4],
which’is common for most practical shell problems.

The solution for Fr, given by (B.15), of the differential
equation (B.14), is an approximated one as the function tanf was
substituted for by an approximate value, 1/a. In connection with this
solution, it should be noted that, once (B.17) and (B.18) are used as
~approximéted functions to Kelvin function, the solution Fr (B.15), will
also be limited to values of 8 close to + W 2.

"If the complete expression for the Kelvin function, (1.1), are to
be used, then the solution validity will be limited by values of X near'to
and less‘than 1, unless some artifice is used as by Leckie Ref. [13].
B.1.3 Solid Plate

Since the Kelvin functions are limited by the cbndition that ¥
may not be smaller than unity, Ref. [10], and as it has already been
stated that (B.17) and (B.18) are good approximations of ¥ > 7, the
solid plate solutions must be known if either a flat, or almost flat,
head is to be studied using an analytic solution, otherwise a numerical
solutién will ha&e to be used. | |

The solid plate end is the limit of a spherical head when d/DO

tends to zero, see Fig. b.
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Introducing (B.3) into the homogeneous system from (A.14) and

(A.20), Appendix A, the following results are respectively obtained:

d 1 d w '

w53 (r #)] + D= 0 (B.19)
and

d d(rF) o

. These two equations form the system of differential equations that
will be used to solve the analytical problem of stress distribution in
a solid plate.

This homogeneous systeﬁ of differential equations, together with
data congerningbthe particular boundary conditions, will be used to
obtain the edge bending solution of a solid plate.

Since (B;19) and. (B.20) are independent of each other as far as
integration is concerned, tﬁe expressions for F and for ¢ from these

equations are obtained by a straightforward integration, giving re-

spectively:
An ’
g =A'r + —;—- (B.21.1)
and
B"
. F =B + == (B.21.2)
r

Therefore, these two expressions can be used to obtain the edge
bending solution for an almost flat head as can be seen from (B.3).
B.1.4 Cylinder

The geometry of a cylinder with constant thickness, 2h = t, and
closed end, is now considered: substituting (B.2) into (A.14) and
kA.gQ) there will be obtained respectively:

dg

F
SE-5=0 (B.22.1)

and
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=3 2
F
_d4 aF ~ + Etf = 0 (B.22.2)

where D, for a cylinder of thickness t, is given by

D = B¥/12(1 - v®)

From the fact'fhat the system of differential equations formed by
(B.22.1) and (B.22.2), which will later be used to solve the probleﬁ
of a pressurised cylinder intersecting a spherical shell, already have
a homogeneous form, the membrane solution for F and § are both zero;
this does not however mean that the membrane stresses and strains are-
zero.

Taking the vaiue“of g from (B.22.2) and substituting it into

(B.22.1), gives

4
g—%'+ 4k4F =0 (B.23)
dx .

where

4 48(1 - °) »

The differential equation is identical to the corresponding
equation in Ref. [1], page 103, hence the corréspondihg solution can

be written as:

F = ek~-X(A1 cos kx + A2 sin kx) + e—kx(A3 cos kx + A4 sin kx)

(B.25)

where A A_ and A4 are the constants of integration, depending

1’ AZ’ 3

either upon the edge bending or the boundary conditions.

B.2 Formulae of Nm,”yh,_yz,_ym, u and § as functions of (B.11), (B.15),

(B.21) and (B.25) respectively for sphere, shallow sphere, solid plate

and gzlinder

Referring to Figs. 3, 4 and 5, and denoting by superscript = either
the membrane values concerned or the particular integral of the differ-

ential systems,((B.4) and (B.5)) for the spheres, (B.13) for the
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shallow sphere, ((B.19) and (B.20)) for the solid plate and (B.22) for
the cylinder, the following results are obtained:
B.2.1 Sphere

:Considering the jﬁnction geometry (see Figs. 3 and 4) and the

axial equilibrium for a  =acos (d/DO), W will be given by

accordingly the constant of integration from (A.1), will be V = 0, hence

- D |
W = — cos e . (B.26)

4
= pD
Substituting the well known membrane value of Ntp (= _ZFh for the
sphere, into (A.2) and integrating together with conditions (B.1), the

following is obtained:

el

_ 1 in© 4+ F "
= 4 pb sin ¥+ F‘1 /;os 0 (B.27.1)

where F, is the constant of integration.

1
Replacing the wvalues of W and F from (B.26) and (B.27.1), respect-

ively, with the membrane value of Nz (=de/4) into (A.4), it can be

seen that 51 = 0, hence

F

-j: PD_ sin 6 ' (B.27.2)

Substituting (B.27.2) and (B.26) into (B.5), the following result’ is
obtained: '

B-0
Substituting into (A.10) with i = ¢ and j = £, the membrane stress
values (Ei, i=yg,¢), a formla for & will be obtained which, when
substituted into (A.6) will give

2
= pDO

= BT (1 -v) cos 6 (B.28)
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Once the membrane values are known, it will be possible to derive
the complete solution (membrane + bending) for the sphere:

the solution for Fr will be obtained from (B.27.2) and (B.6.1):

Fr = wl .2 Dz cos © sin © (B.29.1)

cos?6 8

Introdiucing (B.26.1) into (A.2) with (B.1) gives

a_

N =- 5

j=o] 58
joN

( “’%e) + %—- pD_ (B.29.2)
CcOos .

Substituting (B.29.1), (B.26) and (B.1) into (A.4), the following

result is obtained:

w sin B 1

Using (A.16) for i = ¢, j =4 and replacing with (B.29.2) and (B.29.3)
the values of N(P and.Nz, respectively, the value of §¢ will be found

which, substituted into (A.6) with (B.1), will give

D, cos © 1+ 2y sin 6 2 QQ_ P D,
2TE |~ D 3/2, ¥ 7 1. ao 4
o cos 6

(1 - )

(B.29.4)
Recalling that eqﬁations (B.8.1) and (B.8.2) apply only to the
bending solutions and that B = 0 for a sphere, deterﬁining ¢ from
(B.8.2) and substituting into (B.6.2), the solution for # is given by

g = 2 d?w
= = 2
T E D coste 98

(B.29.5)

Using the previous equations, the bending moments are given from
(A.12.1) and (A.12.2) respectively for meridional and circumferential

moments,

1 1-2v sin® &y 1 o

2 *T 1 363
4 C cos3/29 a® coszede

(B.29.6)

and
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1 2 ~y sin B S o d?@ ‘
M = - (B.29.7)
2 1 2
[0 4 2 S3/ 26 g9 cos28 do

Once determined,the constants in (B.11), which will be definea by
the boundary conditions, equation (B.26) together with (A.5) to (A.8),
(A.15) and {B.ll) form the solution of the sphere problem, as long as
the geometry lies within the original definitions, Section (B.1.1).

B.2.2 Shallow Spherical Shell

Both the membrane solution and the particular integral are the same as
for the sphere, and so will not be here presented.

The edge bending value of F is given by (B.16), but the subscript
b will be used here, otherwise it can be confused with the complete
solution for the radial force, hence:

Fbr = C1 ber'y + C bei'y + C, ker'y + C4 ker'y

2 3

Therefore, using (B.27.2), the complete solution for Fr is:

o , 1 .

Fr = C, ber'y + C, bei'y + C, ker'y + C, ker'y + g-pDi sin 8 cos g
-(B.30.1)
Substituting Fx and (B.1) into (A.2), gives
pD
2 d o) :
N(P =335 (B0 + 3 | v (B.30.2)
o

and replacing the value of W from (B.26) with (B.30.1) into (A.4), the

following result is obtained

D
2 sin B P )
NL = Do o5 6 (qgr) + , v (B.30.3

Taking e from (A.16) for i = ¢ and j = 4, N(p and Nz-from (B.30.2)
®

and (B.30.3), and substituting into (A.6) gives:

pD

D cos 8 . : .
o 2 'd 2y sin 6 o
“=T2TE | D W (Fpr) - D_ ‘cos © (Fpr) + (1 - v

(B.30.4)
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Noting that (B.13.1) and (B.13.2) apply only for the edge bending

solution and that § = 0 for the shallow spherical shell, the following

equation is obtained from (B.13.2):

2 ' ' :
S mn s 1S m) - - ) ) (B.30.5)

p=- TEDo do? o d

From equation (A.12.1) with (B.12) it is found for the meridional

moment

= 22.(§2.+ X

My D do  « #)
o

but using (B.13),

I 1+y 42 v -2 d
ML = - 4K4 W (Fbr) + = Eab(Fbr) + ( p-al Y? 55 (Fbr)
2 - .
b G5 (g J (B.30.6)

With the above-mentioned conditions, but this time using (A.12.2)

instead of (A.12.1), the circumferential moment will be given by

M = 22-(1-¢ + v =
(P D o do

o

hence,
1 EFyr) + .y & (Fpr).
My =~ " 2|V a2 T a da®
P a”|
d(F, r)
1 -2y _ 2 b 2v -1 v
+( = Vo) - T ( = + a) (Fbr)

7 (B.30.7)
Equations (B.30) together with (A.5) to (A.8), (A.10) and (A.15) form
the solution of the problem for the.shallow sphere as long as the
geometry 1is within the conditions of approximation and once the constants

in (B.16) are known from boundary conditions.
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B.2.3 Solid Plate

Since (B.20) is the complete equation, it is obvious that the

membrane value for the radial force, F, is zero and, hence, from sub-

stituting (B.3) into (A.4) the following result is obtained:

a value to be expected since the pressure is normal to the mid-

[

wall.

Introducing (B.3) into (A.1) and integrating, the following

equation 1s obtained:

where V is a constant of integration. Since the plate is solid, and
because the axial equilibrium at r = r, is given by 2nroﬁ = anp; it

can be seen that V = 0, hence:
- W =% pr (B.31)

Substituting F and (B.3) into (A.2), the following result is obtained:

the expected value.A

From (B.19) can be deduced that E is not zero,-since the vertical
equilibrium has to be satisfied.

Substituting (B.31) into (B.19) and integrating the membrane

solution for @ there obtained
= 1 3
g =~ Tep PE (B.32)

Bearing in mind that it is a solid plate that is being cénsidered,the
edge bending solutions for § and F given by (B.21) have an infinite
value for r = 0, hence the constants of integration A" and B", respect-
ively, must be zero. Those equations can, therefore, be written as

follows:
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g =A'r (B.33.1)
and |

F = B! ’ (B.33.2)
The complete solution for the solid plate will be given by the following

equations:

since F - 0, from (B.33.2)
F = B'. . (B.34.1)
Substituting (B.34.1) and (B.3) into (A.2)

q? = B! ' _ (B.34.2)

and (B.3) with (B.34.1) into (A.4)
N = Bt (B.34.3)
j

Substituting (B.3) and the values of N£ and N¢ into (A.16) for i = ¢
and j = g, a value of’E; is obtained which, substituted into (A.6),

gives:
u === (1 - v)B" - (B.34.4)
TE - L ]
Adding (B.32) and (B.33.1) the solution for @§ is given by
B =~ —— pr® 4 At T (B.34.5)
16D

Substituting § and (B.3) into (A.12), the moment resultants are given

by
M = - 2l (3 +v) +A'D (1 + vy) (B.34.6)
r 16 . ' T
and
M = - EEE-(l + 3y) + A'D (1 + y) ‘ (B.34.7)
[0 16

These equations (B.34) together with (B.3), (A.5) to (A.8), (A.10) and
(A.15) form the solution of a solid plate with pressure normal to its
mid-wall surface; the constant of integration will be determined frcm

the boundary conditions.
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B.2.4 Cylinder

Referring fo Figs. 3 and 4 and observing that axial equilibrium
has to be satisfied at the junction, the following equation can be
written:

V_\I(X=O)=%d

which is equivalent to (B.26) when 8 = a ..
O
The constant of integration from (A.1) will, therefore, be V = 0,
thus:

~ (B.34.1)

=l

d
4

Substituting the well known value of NCP (= %?0 for the pressur-

ised cylinder, and (B.2) into (A.2) and integrating,gives:

o
ol

1
where ;1 is the constant of integration,
Taking (A.3) with the values of W and F substituted, as well as
(B.2), and since the membrane definition implies zeré bending moment,

the following result is obtained:

F. =0

1
and hence,
F =0 (B.34.2)
Substituting F into (B.22.2) gives
E = O . (B. 34.3.)

These two latter equations have already been pointed out,in Section
(B.1.4).

The value of E; is obtained by substituting the membrane stress
values (Ei, i = 4,9) into (A.10), with i = ¢ and j = g. Once éw is

known, it can be put into (A.6) giving

5. L
U= ey (2 = v) (B.34.4)
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Since  the membrane solutions are known, the complete solution
(bending + membrane) for the cylinder can now be presented.

Recalling (B.25) and (B.34.2) the radial force will be given by

F = ekx(A cos k x + A_ sin kx) + e~kX(A3cos kx + A4 sin kx)

1 2
(B.35.1)
Substituting (B.2) into (A.2) and using Nw = pd/2,
d drF d
N(P = > dx + P > (B.35.2)
Replacing (B.2) and (B.34.1) into (A.4) gives
N - B (B.35.3)
)} 4

Substituting the values of Nm.and N, into (A.16) for i = ¢ and

L
j =4, a value of E@ will be obtained, which, substituted into (A.6),

gives for u:

u = ———-(QE-+ p - g-p) , (B.35.4)

Similarly, recalling (B.22.2) gives

&£ &BF

b=~ 45t oz

(B.35.5)

Replacing # and (B.2) into (A.12), the moment resultants will be

given by:

1 &F
M o e — — (B.35'6)
4 4k4 dx®
and
P L _

Having been determined, the constants of integration in (B.35.1)
which are obtained from the boundary conditions, equations (B.35) to-
gether with (A.5) to (A.8), (A.10) and (A.15), form the solution to
the problem of the pressuriséd cylindrical shell, as long as the geometry

is within the conditions of approximation.
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B.3 Constants of Integration

Since the ends away from the junétion are considered to have
membrane conditions, the edge bending solution at the connection
(cylinder-sphere interéection) has to diminish away from the junction
or at some distance from theAjunction which increases nearer to the
end with meﬁbrane conditions. Therefore in (B.11), (B.15) and (B.25),
for the sphere, shallow sphere and cylinder, respeétively, only the
terms that die away when the independent var;able takes values
different from the junction value should be taken, e.g. for the cylinder
in a flush nozzle, Fig. 3, where x = 0 at the junction and x is positive
only the terms that contain e"kx should be considered; unless on the
other end of the cylinder (x =g , where g is equal to cylinder length),
some conditions other than membrane conditions were applied. “

The same reasoning can be applied to the sphere and ;hallow sphere with
the intention of finding out which terms should be applied to the parti-
cular geometry.

B.3.1 Flush Nozzle

Let the flush nozzle, Fig. 3, be considered as a whole.

B.3.1.1 Cylinder-Sphere Geometry
Cylinder — x is positive and increasing, therefore, from (B.25),
the edge value of F may be written as

F = e—kx(A3 cos kx + A4 sin kx) (B.36.1)

Sphere - 6 is negative and increasing, hence, from (B.11), the

value of y for the edge bending condition may be calculated by

W = e—ke(c3 cos A8 + C, sin \6)

4 % (B.36.2)
Hence, from equations (B.36), it can be seen that only four
constants of integration need to be determined from the boundary

conditions.
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B.3.1.2 Cylinder-Shallow Sphere Geometry

As it has been pointed out before in this appendix, when d/2R has
a small value, which correSponas to a near zero, the solution for the
" shallow sphere should be applied, particularly in cases of high bending
conditions at the junction; Refs. [1] and [4].

Because the shallow sphere has been sfudied only for © near + W2
and therefore © positive, the cylinder has to be takenlin an opposite
sense to that of Fig. 3, hence, x is negative and decreasing.

Cylinder ~ x is negative and decreasing, so asra consequence of
(B.25):

F = ekX(A1 cos kx + A_ sin kx) (B.37.1)

2
Shallow sphefe — o positive and increasing, therefore the same
conditions are found to g (B.16); from (B.17) and (B.18), it can be
seen that for the shallow sphere, equations (B.ié) should be taken.
These are an épproximation fo the ker and kei functions, hence for the

edge bending conditions the solution (B.16) should be taken as

_ 1w R
F.r= C3 ker Xf-C4 kei'¥X (B.37.2)

B.3.2 Spherical Head

Referring to Fig. 4, it can be seen that the cylinder has x nega-
tive and the sphere has 8 negative, but if the shallow sphere solution
is to be applied, then because ® was taken near + w2, the reverse
situation will be found, just because of the same reason as that for the
cylinder-shallow sphere geometfy, and therefore x and ¥ are positive.

B.3.2.1 Cylinder-Sphere Geometry

Cylinder - x is negative and decreasing, hence the same situation
will apply to the cylinder as to the cylinder-shallow sphere geometry,

Section B.3.1.2, and so (B.37.1) should be applied.
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Sphere - 6 is negative and decreasing, therefore the terms in

] )
et of (B.10) should be applied, hence

© = e“’(c1 cos A8 + C, sin 28) (B.38)

B.3.2.2 Cyliﬁder—Shallow Sphere Geometryv

Cylinder - x is positive and incfeasing, so in consequence, it is
the same case as for the cylinder of the cylinder-sphere geometry of a
f£lush nozzle, and therefore (B.36.1) can be applied.

Shallow sphere - from Section B.3.2, a is positive and decreasing,
therefore equation (B.17) which is an approximation to ber and bei
functicns, should be applied, hence, from (B.16), the solution for F, r,

b

to the'edge bending conditions can be written as follows:

F.r=C_ ber'y + C

b 4 bei 'y (B.39)

2

B.3.2.2 Cylinder-Solid Plate Geometry

The cylinder has the same solution as in section B.3.2.2 but the
SOliQ plate case does not‘have damping consideration.
- (B.10), (B.15) and (B.22) having been reduced to their simplest
forms, and because of the membrane conditions far from the junction,
it may be seen that each particular intersection case will only need
four boundary conditions at the connection, since only four constants
of integration are necessary in order to solve the problem completely.

B.4 Boundary Conditions for Cylinder-Sphere Intersections

Referring to Figs. 3 to 5 can be seen that the boundary conditions
for cylinder-sphere intersections for nozzles, Fig. 3, and heads, Figs.
4 and 5, can be of displacement and rotation type and as well as of
forces and moment type. | |

In order to obtain geometric continuity at the junction, the radial
displagement and the rotation there should be equal for the cylinder
and sﬁhere. Using the subscripts c for the cylindgr and s for the sphere

or plate, these conditions are as follows:
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u =u ' . (B.40.1)
and

g =0 (B.40.2)
¢ s

In order to satisfy the equilibrium at the junction the radial
force and meridional bending moment have to be in equilibrium, there-
fore:

and

M =M o
Mo=M | (B.240.5)

because no extra loads Have been considered other than the internal pressure.
Equations (B.40) are four boundary conditions that can be used in

order to evaluate the four constants of integration, (A3,§4,C3,C4),

(Ai’A c C4), (Ai,AZ,C‘ C2), (A3,A A' ,B') respect-

2773 1’?
ively, the first two for the flush cylinder and the last three for

A_LA
4’C1’C2) and ( 3o,
the spherical head. Hence, it can be seen that a system of linear
equations has been formed having dimensions [4 x 4] and its solution

gives the four constants of integration, and hence the complete

solution can be found.
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APPENDIX C

MARCAL'S METHOD FOR ELASTIC-PLASTIC ANALYSIS OF

SYMMETRICALLY LOADED SHELLS OF REVOLUTION

Marcal's method has been known as the''stiffness method" Ref. [3],
[5] and [6], but présently it is called ' theYtangent modulus method",
[6], and it has been employed in investigations into small elastic;
plastic deformations in pressure vessels, e.g. in Refs. [7], [8]? rel.
This method uses the von Mises' criterion and the Prandtl-~Reuss.
equations of plasticity.

C.1 Partial Stiffness

Using the Prandtl-Reuss equations in order to write the elastic-
plastic stress-~strain increment relationships, the following equation

may be obtained:

-

o!
- 1 . -
5 e + Ei(boi -~ Vboj), i, =450 (c.1)

. 3
'6e =3 b

5 =

o v

Denoting the slope of the equivalent stress to equivalent plastic
strain curve by H', and differentiating the von Mises yield criterion,

the following equation is obtained:

20_ H' de_ = 30! 60, + 30' 60 ‘ (c.2)
e P L L ® @ -

Defining a one-column matrix of individual stresses and equivalent

plastic strain increments, {60 60¢ 6€p}, the equations (C.1), for

4
(i=4g,3=9) and (L =¢, j=4), together with (C.2), may be written

in a matrix form, thus:

- . y 1 ~ —-
1y 3% 50 _ 57
E E 2 0, ) = )
o-l
) 1 3
— Lo — 50 e (C-3)
E
E 2 o o )
\ 1
3% 3% ' z
= = - H be 0]
2 R 2 o p
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Since this system of equationsis linear, it can be inverted there-
by giving the increments of the individual stress,and the equivalent
plastic strain to the individual strain increments. These incremenfs

can also be written in a partial differential form:

003 0oy e |
Goi = Sz;-ﬁei + SZ;- 6ej, 1,3 = 4,9 (C.4.1)
and .
6ep = bez' bez f e be _ (C.4.2)
¢
because o, = oi(ei,ejf, Ep = Ep(ei,ej), (ij = £,9) and

e; = ei(z,z,L).

Marcal and Pilgpim [5] call the partial derivatives in (C.4.1)
"partial stiffnesses"; these may be determined by inverting the matrix
in (C.3). In the same way, the partial derivatives of the equivalent
plastic s£rain in respect of each individual strain can be found.

C.? Stiffness Coeffitients

Considering the stress and moment resultants, (Ni,Mi,i = 4,9),

the following equations may be written:

N, ‘ oN; ,
6Ni = 3o, 6ei + 3o, Gej, i3 = 4,0 : (C.5.1)
1 ]
and
oMy oM . (.5.2)
6Mi.§ SE;-Gei + SE;— Gej, i, = 2y 7 «5.2

Another form of equations(A.7) and (A.8), may be written thus:
e, =e, +2zd.,1=4,9 (c.el

where Qi denotes the in-plane curvature change; therefore comparing

(C.6) with (A.7) and (A.8),

3, - g% c.7)
and 5 sin © y

o r
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The total increment of the individual strain is given by the sum
of the increments of the mid-wall strain, Ei’ and of the strain incre~
ments from the increment of curvature change, 6¢i, hence using (C.6),

the total increment is given by:
be, = 68, + 2 68, , i=1,p , ' _ (c.8)
Differentiating the integral form of (A.11) and (A.412) in respect

to the individual strains, and substituting (C.4.1), the following

results are obtained:

’ 2
6Ni = vrh/ 60‘1 dz with i = ﬂ,,(p (C.9)
-h/2
‘and
h/2 -
oM. = I . . .
SR 6Gi zdz with i = g,p (c.10)
-h/2

Replacing (C.8) for i = g,9p, with (C.7) into (C.4.1), the incre-
ments of the individual stresses in relation to the increment of the
mid-wall strain, and, to the strains from the increment of the

curvature change, are given by

boi _ boi _ .
6oi = Sg; (6ei + 2z 6¢i) + Sg;-(béj + z&ﬁj), i, = g, (Co11)

Using (C.11) either for (i =4, j =¢) or (i =¢, J = 4), and sub-
stituting into (C.9) and (C.10) with either i = g or i = ¢ respectively,
the values of the partial derivatives of the stress and moment resultants

are given by:

DN, h/2 da,
1 1 .« s .
—_ —dz , i,] = 2,9 : (C.12.1)
bej . I—h/zbej
N, 2 do, '
-b-—-‘ = S"é“' zdz, 1,] = 4,9 (C.12.2)
j -h/2 "] :
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and
bMi h/2 o
g; = J‘ / b_— ZdZ Py l,J = !,’(P (c'1301)
J ~-h/2 73 ‘
oM /2 o,
Sﬁ* = , SET'szz sy 1,) = Ly (C.13.2)

‘The partial derivatives on the left hand side of (C.12) and (C.13)
are known as the "stiffness coefficients", Refs. [4] and [5],and are
expressed as an integral form of the partial stiffnesses.

C.4 Transition Elements

Once the load which causes first yield at any point in the shell
_has been obtained from an elastic analysis, then, using the equations
explained in Appendix A, together With von Mises yield criterion, the
procedure consists of‘adding fractional increments to the first yield
load. All the other elements, therefore, except the most stressed,
will gndefgo, during the incremental loéding, an elastic deformation
and, at a certain stage in the increment action, the deformation will
become elasto-plastic. Such elements are collectively known as the
"transition region", Refs. [5], [8] and [9]. Hence, those elements
that yield during a partiéular increment will have a partial stiffness
form in two parts, one elastic and the other elasto-plastic.

The elastic partial stiffnesses are easily obtained from the
generalised Hooke's law of elasticity, thus:

boi

bei' 1 -

-] i = !,,(P (C-14)
and

do. '
v E . s s s
bel =7 e 1 #£ 3, 1, = L
J
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In the transition elements, the strains caused'by tﬁe next successivé
increment are estimated by making them equal to the p:evious load incre-
ment and then scaling them to the elastic limit.

In order to determine these values, the yield stresses of the
transition glements must be known; when they are, the partial stiff-
nesses can be calculated, by assuming elastic—plastic behaviour. The

mix partial stiffness at the transition element is given by

oo, o0, 0o,
6;_1. = n bc—l + (1 -m) le (C.15)
; . .

mix. J lelastic J plastic
where m is the scaling factor.
Usually, the initial value of m is a rough estimate, and the strain
values produced by the-subsequeht calculation should be compared with

the previops estimated values. This process i1s repeated until a value

of strain considered to be within an assumed error, as compared with

the value of the previous iteration, is reached.

Once the transition elements have passed the elastic yield limit,
the calculation is made using the stiffness coefficients derived in
Section C.3, and the partial stiffnesses, Section C.2.

C.5 Method of Solution

. Once the elastic analysis has been performed using the thin shell
equation, Appendix A, the first yield load having been found (von Mises
criterion), the solution of the problem is obtained by making use of
the incremental form of the thin shell equations, in which the von Mises
criterion is employed with the partial stiffness of mix partial stiff-
ness, using the stiffness coefficienflexplained previously in this
appendix, and each time incrementing the load.

The numerical solution is obtained by using a step;by—step pre-

dictor—corrector integration method with Newton-Rophson boundary control.
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These methods are used as demonstrated in Refs. [3], [5]'and [6], in
that they are the most suitable for a finite difference solution for

the elastic-plastic analysis of thin shells.
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APPENDIX D
A NON-LINEAR STRAIN DISTRIBUTiON THROUGH THE THICKNESS
OF SYMMETRICALLY LOADED SHELLS OF REVOLUTION

The assumptions made are the same as those for thin shell theory,
except that the strain distribution through the wall thickness is
appraised in‘the same way as "Winkler;s theory of curved beams", Ref.
[11], p.249, but appliéed here to symmetrically 1oacied shells of
revolution in that region which has ratios of thickness to meridional
radius larger thanO.1. This approximation, althoughninconsistent with a
thin shell theory, gives better results than either this theory, Refs.
[3] and [9], or the "O'Connell modification" (or the band modification)
Ref. [8], and Chapters 3 and 4 of this thesis.

The éenefal case is considéred first, then the assumptions con-
cerning ratios of thickness to radius of curvature are introduced.

Refefring to Fig. 2, the angles g before and after deformation

are, respectively

® and 6 -9

where # is the angle through which the mid-wall surface of the shell at
the corresponding ﬁoint ® has rotated; the radial radius r for any
‘point on the cross-section 8, is{hereféré, r+ z cos 8.
4\The mid-wall radial radius r, after deformation, becomes r f u,

r + z cos 0 becomes r + u + z cos (8 -~ @), and the meridional radius b
Eecomes b + & b, hence the mid-wall strain and the strain at any point
in the thickﬁess, respectively, may be writ@en thus:

Hoop strain,

E& -2 -. ~ (D.1.1)
+-%~¢ sin ©

P .
e =2 (D.1.2)
¢ 1 + %-cos e
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Meridional  strain,

- 1 du '

¢ = Sin® af + @ cot © (D.2.1)
- ag

X + Z 'd—’

e'e = _-zj_———-&-z ‘ * (D.2-2)
1+ '5'

Defining a variable U,, i = f,p such that

i
Ui = Ci h, i= Lyp | (D.3.1)
with
1
and
c -osb (D.3.3)
[ r

and defining a function f(Ui) by

£(U) =2 U, = 4n ( l.*..ﬁ) , (D.4.1)

or, limiting U, to a value of less than unity, (Ui-< 1), the function

f(Ui) can be written in a series form by

i 5 U12n+'l
f(Ui) = - '—éh_+_1— (D.4.2)
: n=1

Because the values of the following integrals are required for the
calculation of the stress and moment resultants, as functions of Ez,
€ and P, they are presented here, but without the use of the index i:

+h

dz 1
J-h 1 + Cz C :
h
zdz 1
J zdz 1 (D.5.2)
-h 1 4+ Cz Cc? .



2
z-dz 1 1.
.I__h T+rcz- " £V

Integrating ey i = g, with respect to z,

- | T
Jz eidz = e, [C. (2Ui - f(Ui)] + ﬁi o f(Ui)
- 1 1

and €2, i = g,p, with respect to z,

-1 1
‘Ih ,eiZdZ =& @ f(Ui) - ﬁi o3 f(Ui)
-h i i

where ﬁi, i = f,p, is given by

; 9

ﬁz“ dg

' sin ©

ﬁ@ == #

as used in Appendix C, (C.7).
The stress resultants are given by
-_b-h :

N'=‘r O'idZ K i=2,‘P
~h

and the moment resultants by

+h
Mi = J N os zdz, 1 = L,p

However, from the generalised Hooke's law

E . s
o‘i ='i—:'—v'2— (ei + vV ej), 1,] = 4,9
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(D'5.3)

(D.6.1)

(D. 6,'2)

(D.7.1)

(D.7.2)

therefore, using (D.6), the following expressions can be deduced for

Ni and Mi’ i=142,9, respectively:
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E - 1 . 1
o Lorou - : =
N=T—% |8 T [2 A f(”Ui)] + 8, & £(U)
1 1
(D'8.1)
v (B, =20, - £(U)] + 8. = £(u.))
j C. p) b ] & J
i 3
and
E - 1 1
M= 1w |8 e ) -4 o )
1 1
(D.8.2)
- 1 1
+v (& G £(U,) - 4, = f(Uj))

with 1,j = £,¢.

If the assumptions of ﬁi <1 for i = ¢ and 1 = ¢, the linear strain
distribution assumption, are made, (D.8.1) and (D.8.2) accordingly gener-
atevequations (A.11) and (A.12).

Sinc¢ geometries possessing small radii of curvature are the knuckle
regions in either radial nozzles or heads, the following assumptions are

made, as in Ref. [3]:

ws® ., 4 © (D.9.1)

and
. _
5 < 1 (D.9.2)

When © is near to W2, near the axis of symmetry, condition (D.9.1) is
not satisfied and the following expressions should not therefore be
applied, e.g. cone part near the vortex.
The radial radius is assumed to be of the form
r=2a+bcos
where a and b are constants for each particular shell element as in the
computgr programs used in this work, and hence b is the merididnal radius

of the shell element.
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i

Introducing (D.4.2) and conditions (D.9) into (D.8.1), with,
respectively, i = ¢, j =¢ and 1 = ¢, J = 4, the following equations

are obtained:

o h,2n+1
N = —o | on(E ")+2b2 fﬁ)————(’é p 2 (D.10.1)
L1 =R Gt Ve 2n+ 1T\ 4 T 4 M
n=1 -
and
© (_11)2n+’l
E - - b - gl_g)
th =T- o7 2h (etp + \;ez) + 2\;bz——-—2n.+ ) (ez - b ) | (D.10.2)
n=1 )

Using the same procedure as with the equations of (D.10), but now
with (D.8.2), the following expressions are obtained for Mz and M¢’

respectively:

M ='__£i___ gbi.<§g.; Eiﬁ_g. # )

4 1 =V 3 \dg r
{(D.11.1)
a o (Qo2n+1 :
Cwr @5 T L2 [ -» )
2b.(3(b € m 1 % bdz_]
n=2
and
E 2n® /sin © _qg_)
M(p=1—\)2 3 ( r g'!'\)dgl
2 (L (hys 2 Z D s oo 9.@.)
- 2vyb (3 (b) e, ¥ ] [ez b )
n=2
Comparing (D.10) with (A.11), and (D.11) with (X.12), it can

be seen that the new values of Nz, N, Mz and M. receive further con-

- ag
tributions from ez and Ezu
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The derivative of Mf, in respect to § is necessary in equation (A.3),

aM m. _1'_1_2n+‘1

4 2ER° z 2 &£y
dg 1 -8 2n + 1 dg2
: n=1

— @

2EL® 1 hyz v sin B ;l_z h,2n dg
*Iow| 3% T *p B Bl
» n="71
+ 2EbL°® [ 1 By (y_ d(sin 6) sirﬁe) ¥ sinf
1-v2| 3 b \r 4 TVTE /v E T
- : h,2n+1 -
-2 R NP S S
1 -V | P b 4 b 2n + 1 dy
L. n=1 n=1
M h
From (A.3), substituting ML’ Mtp’ d—z&and f(g) from (D.4.2), and
using f' (%) as the derivation of f in respect to %, the following
expression is obtained:
bys ' h
d?e (1 (b) +1\\)sine_;1_f'(b)8 sin © | dg
dg® " [\3 £y / r b b T r dg
b b
h.2
L2 (S) (_\_’_ cos O @ sin®® )+ vh® sin © 8 1 &
3 gy \r d4 e . b r £
b b
h
V(=
. vysin® 1 sin 6 _';_Bf(b) s
“b r b r b2 h )
£(3)
b
1 de 1 -y 1 1 -y 1 1
+ 5 L _ Y. = F cos 8 + === S —=— Y sin 6

dg 2B b3 2E oy h

(D.13)

B|2
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Substituting NcP from (D.10.2) into (A,2) the following equation

is obtained for the derivation of F in respect to 23

dr sin © 2Eh 1 ,- -
ryial =—-p cos.B + aftfsg-r (ecP + vez) - 2hX
TTov 2P (ez Py (D.14)

Comparing (D.14) and (D.13), with (A.2.1) and (A.14), respecﬁively,
it éan be seen that an extra contribution from EL and %% is obtained
for the farmer equations due to the assumption of a non-linear strain
distribution. (D.14) and (D.13) will, therefore, replace (A.2.1) and
(A.14) in a numerical analysis, when the 2h/p <.l assumption of the
meridional plane of thin shell theory is not fulfilled as regards the
linear strain distribution through the thickness. The same applies to
(D.10) and (ﬁ.ii), in relation to (A.11) and (A.ié) respectively.

When an elastic-plastic analysis is carried out using the method
described in Appendix C, the procedure is exactly the same, except

that the incremental form of the equations is used.

For more details of this modification see Ref. [3].
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Computed Elastic-Plastic Behaviour and Shakedown of
Some Radial Nozzle-on- Sphere Geomelrres

V. M. SAMPAYO and C. E. TURNER

Imperial College
London, England

ABSTRACT

Elastic-plastic computations are described for cylindri-
cal nozzle-on-sphere junctions. Various geometrical details
of the junction are examined to ensure that results for
shakedown and collapse are not greatly affected by such
differences of detail. Brief comparison is made of com:
puted plastic strain and previously determined experi-
~ mental results on a head, to verify the gencral reasonable-
ness of the results. The effect of work hardening is studied
with particular reference to the assummption of how the
range of stress available for shakedown can best be repre-
sented, and how incipient collapse best defined. A range
of nozzle to sphere diameters is then studied. The results
show that the details of geometry have little effect on
shakedown or collapse. It is concluded that the most
realistic model for work hardening implies a translation
rather than expansion of the yield surface and that, except
for cases with low stress concentration, the effect of work
hardening on shakedown and collapse is small, and that
for such low stress concentrations, mcnplent collapse may
precede shakedown.

‘NOMENCLATURE
d  mean diameter of cylindrical nozzle
D mean diameter of spherical vessel
k;  stress concentration factor; ratio of maximum
von Mises equivalent stress to membrane equivalent
stress (SCF) _
k,* stress concentration factor; ratio of maximum shear.

stress to membrane shear stress. The * notation
also applies to k, and k5

ks

ka

ratio of shakedown pressure to mcmbrane'.yield
stress (= P [ky)
ratio of collapse pressure to membrane yield stress
(=P [k)
P internal pressure
Py, pressure for first yield anywhere in the vessel
Px* ratio of collapse pressure to first yield pressure
PF¥ ratio of shakedown pressure to first yield pressure
r radius of toroidal knuckle
t thickness of cylindrical nozzle .
T thickness of spherical vessel
0,,* ratio of meridional stress to yield or proof stress
oF ratio of circumferential stress to yield or proof
stress )
w  nozzle parameter (Ref. 20) d/~/2DT

" ABBREVIATIONS (FOR FURTHER DETAILS SEE

TEXT)
In connection with shakedown based on: —

SEM elastic calculations by the method of Macfarlane
and Findlay (Ref. 7)

SEL elastic calculations from Leckie (Ref. 20)

SPC e'lastic-plast‘ir computations with the ellipse of
yielding moving along the path of the elastic stress
ratios

SPT elastic plastic computations with the ellipse of
yiclding moving along the radius to the actual stress
point considered
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SPW elastic plastic computations with the ellipse of
yielding increasing in size with work hardening,

Note: Case SPT is used for values of 4, Tables 3 and 6.

In connection with incipient collapse: Intersection of the
elastic line with the tangent drawn to a particular point
on a given curve defined by: —

C31 aline of one third the elastic slope intersecting an

individual strain curve

a line of one third the elastic slope intersecting an
equivalent strain curve

C3E

a line of one third the elastic slope intersecting the
overal deflection curve

C3D

based on the pressure to cause: —

C5I 0.5 percent individual maximum strain on the out-

side surface

CSE 0.5 percent equivalent maximum strain on the out-

side surface

Note: Criterion C51is used for values of k, Tables 2 and 4.
INTRODUCTION

The practice of allowing a small amount of plastic flow
to occur early in the life of d vessel is well established. The
amount of plastic flow is restricted by the need to avoid
one or more of three possible modes of behavior; plas-
ticity sufficiently gross in either magnitude or extent to
lead to bursting or plastic collapse of a major feature of
the vessel; cumulative increments of small scale plasticity
leading to incremental collapse or “ratcheting”; alternating
plastic flow leading to low cycle fatigue. Other modes of

failure such as thermal and conventional high cycle fatigue,

creep, corrosion and brittle fracture have to be guarded
against, of course, but these are outside the scope of the
present paper. In considering the extent of plastic flow
permissible, it is convenient to distinguish three loosely
defined regions of a vessel; general shell or membrane
regions, extensive features of well defined geometry, such
as end closures, and local features often with a geometry
only defined nominally, such as nozzle details or rein-
forcing rings. Collapse of a vessel shell or head, or small
scale plasticity leading to either incremental collapse or
fatigue in a region of stress concentration are the primary
features to be avoided. The former might occur on a
single overload and the latter from a few thousand re-
peated loadings to design pressure.

Although in thick walled vessels, and even in certain
cases of thin walled vessels such as gas pipe lines and some
containment vessels made of very rapidly work hardening
materiat [1] the main shell is deliberately taken beyond

yield, for most vessels and materials the attainment of
general yicld in the shell or head is an obvious design
point often limiting in itself or at least providing a “stake
point” from which to proceed carefully. At such a point
the membrane regions of a vessel are protected from
bursting by work hardening. Where collapse may set in
from bending action, subsequent changes in geometry
‘may delay the onset of complete collapse. The nornial
method of predicting general yield is to assess the collapse
level by limit analysis using the original shape [2], [3] to
determine upper and lower bounds of load in between
which collapse of the component must occur, in the
absence of work hardening or changes in geometry. The
effect of changes in geometry in increasing the limit pres-
sure of some nozzles has also been studied [4]. .
A great advantage of this method is that the real pattern
of plastic flow leading to collapse need not be considered
so that estimates of the lower bounds can be made from
elastic solutions and of the upper bound from any plausj-
_ble (but not necessarily correct) deformation pattern that

* can be envisaged. .

Incremental collapse or low cycle fatigue are in prin-
ciple cycle dependent and must be so treated if a limited
life design is proposed. For many purposes an assurance
of avoidance of these problems is preferred since some
small degree of conservatism gives a certain latitute for
the acceptability of unknowns in the anticipated setvice
experience of the vessel. In these circumstances the
concept of shakedown [5] or the settlement of a com-
ponent to centirely elastic behavior after some initial
excursion into the plastic region, has become an accepted
criterion. Although the principle is clear in allowing ma-
terial to experience-only a cycle of stress between tensile
and compressive yield and thereby remain entirely elastic,
the concept becomes blurred when details of the process
are considered. Predictions can again be based on an ex-
tension of elastic solutions [6], [7], thus avoiding the
complexities of plastic analysis but some doubt exists on
how far such solutions might be affected by work harden-
ing, and the detail of the analysis used to determine the
elastic stress concentration factors.

The object of the present paper is to extend the study
of these two modes of behavior, collapse and shakedown,
by means of an elastic-plastic computer program. Earlier
work [8], [9], [10], [11] has shown the general feasi-
bility of such studies and confirmed their reasonableness

_-in the broadest terms but it must be clear that only con-

tinued experimentation and service experience can finally
confirm the correctness or otherwise of the predictions.
Whercas confidence in prediction of elastic shell theory,
whether applied by numerical or algebraic analysis, has
been established against much carefully controlled experi-
mental work [for example, 12] and its limitations gener-
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ally appreciated, there is far less evidence against which
to judge the results of detailed elastic-plastic computa-
tions, and any divergences noted between calculalion and
experiment may be attributed either to inherent weak-
nesses in the computations per se or to differences in the
assumed and real modes of plastic deformation. It is thus

" necessary to attempt to establish confidence in the com-
putational method, by detailed comparisons where avail-
able, and thus infer the general reasonableness of the more
widespread predictions which are the object of the present
study.

OUTLINE OF THE METHODS USED

The computer program used is a development of that
described Ref. 13, which was itself used for some of the
studies atready referenced [8], [9], [10]. Conventional
small displaccment shell theory is assumed expressed in
terms of circumferential and meridional bending and
direct stress resultants. The von Mises yield criterion is
assumed with the Prandtl-Reuss equations for incremental
plastic flow, allowing either non-work hardening or work
hardening behavior to be expressed. The program is
restricted to axial symmetry, and original geometry. Each
element of a shell structure is divided into numbered steps
_ convenient for the application of a Runge-Kutta forward
integration method starting from a junction. The whole
solution is first worked elastically, scaled to first yield,
and then extended in increments such as 0.1 of first yield
load.

The developments from Ref. 13 include a “thick
curved bar” theory for treating knuckles of small radius
of curvature [14], [15]. This approximation allows an
elastic stress pattern to develop, non linear across the
thickness (as in Winkler’s theory for curved bars), but
still ignores shear and through thickness deformations.
The original program included elements tapering in thick-
ness and a previous modification [8] allowed the forces at
a “square corner” intersection to be distributed as bands
of foading over a finite width of shell (equal say to the
* thickness of the shell wall plusa filet weld) rather than
the point or line Joad of conventional shell theory. Thus
three representations of a nozzle junction can be made; a
simple intersection as is conventional shell theory, a dis-
tributed band load and a small filet of specified mean
radius and taper. It is not to be expected that simple shell
theory can predict reasonable local stresses and strains at
a discontinuity in shape and it was pointed out Ref. 8
that a realistic collapse behavior for such discontinuities
could not be obtained without recourse to the band load
niodel. To the extent that the “thick curved bar™ treat-
ment is adequate, the curved and tapered corner can be

fitted to a specified real curved junction or used as an
arbitrary approximation to a nominal or unspecified
corner detail. One of the objects of the present study was
to determine the extent to which such variations in as-
sumed geometry of detail affected predictions of collapse
or shakedown of adjacent regions.

A sccond improvement of the program is the better

“representation or work hardening and departure from

linearity at a proof stress, appropriate to materials with-
out a distinct yield point, either by an exponential or
power formula of the type & =a (1 + b &) where 3, 2,,
are the von Mises equivalent stress and equivalent plastic
strain and a, b, ¢ are constants over some range of a stress
strain curve. Several such representations can be joined
together where a particular stress and strain curve i
closely known. :

COMPARISON BETWEEN SOME COMPUTED
AND EXPERIMENTAL RESULTS

The general validity of the computed values of plastic
strain and deflection were shown Ref. 10, in which com-
parison was made with strain gage measurements on the
tori-spherical head of a stainless steel test vessel. As re-
marked Ref. 10, the degree of detail agreement achieved
was not as close as for elastic analyses, where Ref. 12 and
much previous work suggested differences from shell
theory might be of the order of 12 percent for reasons of
departure from the nominal geometry of the vessel. Fig. 1
shows the improved agreemient, now to within about 10

-percent in pressure, based on experimental values of first
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yield pressure, or within 5 percent based on first yield
calculated from tensile test data. This fatter closec agree-
ment reflects the better representation of proof stress now
possible with the better description of the stress-strain
curve. Values of the pressure for insipient collapse as de-
fined Ref. 10 (by backward extrapolation of the tangent
from the point defined by a line giving 1/3 of the initial
elastic slope) are marked on Fig. 1. It should be recalled
that the stainless steel used showed a rapid work harden-
ing with no distinct yield point and clearly the previous
“best fit” available, which matched stresses of around 2
percent strain with an under estimate of stress for smaller
plastic strains and an over estimate of the proof stress, was
not in fact a very good compromise. There is a similar im-
provement in all the other detailed stress-strain-displace-
ment records re-studied from these tests, leading to the
belief that the computed results are more numerically
realistic than previously realised, at least for smooth shell
regions of a vessel. In the absence of a corresponding
detailed study of strain distributions in a specified nozzle
shape (in which matters such as the difference in stress-
strain behavior of the parent shell and weld metal might
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also be relevant) some uncertainty must of course remain
over the accuracy of the present program for such regions.

COMPUTATION ON SOME NOZZLE GEOMETRIES

Two main sets of elastic-plastic computations have
been conducted on radial nozzles with closed ends sub-
jected to internal pressure. In the first set, Series C, a
nozzle of thickness 1, diameter g, set in a sphere D = 54,
thickness 77 = 2t = D/100 has been examined for various
junction details (Fig. 2). For each detail certain quan-
tities are tabulated, Table 1. The elastic stress concentra-
tion factor (SCF) based on von Mises equivalent stress is
given according to conventional shell theory, except when
the local radius of curvature is small when the Winkler
type modification already described is used [14, 15]. The
SCF is quoted as the ratio of local stress to the membrane -
meridional or hoop stress in the sphere. Since these equal
the von Miscs equivalent stress this ratio also equals the
ratio of membrane yicld pressure in the sphere to first
yield pressure anywlhiere in the structure.

Table 1. Nozzle details: Series C. w = 1.41

Geometry Parameters and SCF for -
dfD=.2: T/D=01; t/T=.5

Taper

Ref. /d Tyne K,
c1 015 A 491
2 015 B 4.96
c3 015 F 4.88
c4 045 A 3.21

Value from Ref. 20: &,% = 4.3

Table 2. Nondimensional collapse pressures, P and k5:

Series C
Collapse Criteria
Ref. k,
’ C31 C3E C3D Cst C5E

Ci 1.83 1.84 2.31 2.31 2.13 .47
C2 1.89 1.92 245 2.33 2.17 47
c3 1.93 2.06 2.37 2.31 2.18 47

1.9 1.87 - 2.28 2.12 47
C4 1.49 1.55 1.64 1.88 1.76 .59

Value from Ref. 20: P = 2.15 k., =.5

Values of the incipient collapse pressure are given,
Table 2, according to the three definitions used in Ref. 10.
Two of these are based arbitrarily on the intersection of
the elastic line with a backward tangent drawn to the load-
ing curve at a certain point. The loading curve used is

“firstly overall deflection v load, or secondly, maximum
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strain ¥ load and in either case the point at which the

tangent is constructed is defined by the intersection of

the loading curve with a straight line drawn from the

origin with a slope one third of the elastic line, Fig. 1. The
third criterion is the value of load obtained for a maximum
strain of 0.5 percent on the outside surface. A feature of
this last criterion is that it can be measured during a test
of a vessel, although there may be a problem of where to
take measurements since the point of maximum strain can

change its location along the vessel wall as plasticity
spreads. The last two criteria can be based either on indi-

vidual circumferential or meridional strain — this is clearly
simpler for experimental work — or more logically on a
von Mises equivalent strain basis. Both values are tabulated
Table 2.
Values of the shakedown pressure are given according
to several criteria described below, Table 3. Some typical
dimensionless pressure-maximum strain curves arc shown
Fig. 3 for a work hardening curve 0 = 13.3 (1 + 133¢,)°*%
representative of mild steel 1gnormg the horizontal dlscon-

tinuity at first yield,
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A second set of similar results, Series N, is shown in
Tables 5,6 and 7 for a given sphere, diameter D, thickness
T =D/200, cylinder thickness t = T. Various ratios of
sphere to cylinder diameter D/fd from 20 to 4 were used
with constant knuckle radius r = D/40. The variation of
maximuim strain with nozzle diameter ratio is shown Fig.
4 a5 a series of composite curves against load.

Elastic — perfectly plastic material has also been con-
sidered for the cases C3, NI and NS, to show the effect of
lack of work hardening. The variation of maximum strain
with the two different materials is shown (Figs. 3& 5)
and the values for PX, P¥ are tabulated in the correspond-

ing Tables 5 and 6.

PLASTIC FLOW, WORK HARDENING, SHAKEDOWN
AND COLLAPSE .

For the most highly stressed point in each of four
nozzles, series N, the stress path up to and beyond first
_yield has been plotted, Fig. 6, in terms of circumferential
and meridional stress ratios, for inside, outside and mid-

wall surfaces.
For small values ofSCF (Case N1) the internal path

moves anticlockwise around the eilipse to a very small
extent (not visible to the scale of Fig. 6) for pressures up

to some 25 percent above first yield and then moves clock
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wise for higher pressures (a, Fig. 6). For rather higher
SCF (case N2) the same effect is noted up to about 10
petcent above first yicld. For yet higher SCF. (cases N3,
NS) the stress path moves clockwise around the ellipse
from the instant of first yield (e.g. a5 Fig. 6). The near
stationary value of the stress ratios for appreciable in-
crease of pressure occurs when only the first region of
stress concentration is yiclding but when a second adjacent
stress peak yields, the clockwise movement of the stress
ratios begins as just described. In all the cases studied, first
yield is on an inside face, with the second nearby yielding
on the outside face, both clearly in bending modes.

The next tendency for the stress ratios to move anti
clockwise (Fig. 6, b, .. .bs) appears at a pressure when
the region of plasticity begins to spread greatly compared
with initial zone of small extent. This tendency is more
marked for the cases with small SCF (e.g. case 1 rather
than case 5) as can be scen in Fig. 6.

Another observation that can be made from Fig. 6 is
that when the SCF is small, a larger degree of work-
hardening will be necessary to obtain a given level of
nondimensional loading P/Py . The locus P/Py = 2 is
shown chain dotted in Fig. 6.

The fact that the stress ratio changes, is of course well
known, but can here be followed quantitatively. The varia-
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OF NOZZLES BEYOND FIRST YIELD IN A WORK
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* tion of such ratios increases with SCF especially in the

regions a;. . . .4s, Fig. 6.

Probably this second change in the direction of the
movement around the ellipse can be considered as the
beginning of collapse, since it is the rapid spreading of
membrane yield to areas of the sphere adjacent to the
nozzle which is causing this re-distribution of stress.

Another typical biaxial stress field is shown Fig. 7, for
the cross section that contains the most highly stressed
point of nozzle N5 for both work hardening and elastic-
perfectly plastic cases. In both, the most highly stressed
‘point follows a lincar path, such as curve 4, Fig. 7 until
the yield criterion is reached. If the material is treated as
non-workhardening, the stress path after yielding will be
around the ellipse and will be such as curve B, Fig. 7, or
if workhardening, along some line following the increasing
size of the workhardening <Hipse, such as B2, Fig. 7.

After yielding, anywhere in the structure, the linearity
of a stress path cannot be assumed. As the yielding be-
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comes more extensive the direction of movement of the
stress ratfo for a point which is still elastic may change,

" sometimes reversing an original direction of movement.
This non-linearity of the elastic region of the structure
may be interpreted as the re-distributing the clastic stresses
caused by yielding of adjacent points of the structure.

For the case shown, Fig. 7, the change in stress ratio
leads to a reduction of the highest pressure for shake-
down because the length of the unloading path available
decreases from twice 4 to some lesser value, path D,

If workhardening is included a question arises on what
unloading path should be permitted. it is generally recog-
nised that reversal of stress causes a reduction in the yield
stress in the reversed direction of flow such that ultimately
ascttled cyclic vield stress curve may be defined [16].
Such a curve usually lies above the curve for original load-
ing of a material in the soft condition but may in fact lie
below that (i.e. work softening) obtained from an initially
hardened material. even if the hardening is by thermal
rather than mechanical treatment [17].

The number of cycles to reach this settled state is in
most cases not large in relaiion to the number of cycles to
cause low cycle fatigue, but even if only 50 or 80, is per-
haps rather more than normally envisaged for shakedown
to occur. If known, however, the settled cyclic curve
would appear to be the rational one at which to aim,

although the development of it under biaxial stresses,
some components of which may not completely rcverse
under repeated (onc way) pressurisation, has not been
well documented as far as the authors are aware.

In the present work the calcuiations of shakedown have
therefore been based on one of three assumptions. The
first is that the work hardening ellipse simply grows ac-.
cording to the load used. As just explained, if that law is
taken to represent a conventional uniaxial stress-strain
curve then the stress range of twice the workhardened
yield stress available between yielding in one direction
and the other will be an over statement of the real situa-
tion and the calculation unconservative in most cases. If
the curve is fitted to (or here simply taken to represent) a
settled cyclic curve rather than an original uniaxial one
then the stress ranges implied may be realistic. In the
second and third cases alternative assumptions akin to
Prager’s “sliding pin” model [18] are used, to allow the
ellipse of yielding to remain at its original size but trans-
late with axes kept parallel (initial principal direction re-
main the same). In the second case the translation is along
A, Fig. 7, the clastic path to first yield, until the ellipse
passes through the stress point for the increment (such as
increment 8, on curve B2, Fig. 7) being considered. This
second case has proved sometimes to be unrealistic for the
cases when the stress ratio moves round the ellipse to a
point remote from the extension of A4 at the particular
load considered. In the third case the translation of the
ellipsc is along the radius C to the stress point for the
increment in question, Fig. 7. The second is slightly more
conservative in the cases presented but the third seems
more reasonable intuitively. [t may be noted that for
some of the cases studied the point of which the structure
first yields does not remain the critical point for shake-
down or for collapse, particularly for cases with small
SCF. Thus the development of the plastic zone has to be
watched carefully on both inner and outer faces if the
worst condition is to be monitored.

DISCUSSION OF RESULTS

The values of SCF, Table 1. based on equivalent
stresses show a negligible variation for the different con.
nection details, but a reduction of some 30 percent as can
be expected for the larger knuckle radius, case C4. If a
comparison is made with the meridional SCF obtained

- supposing a flush cylinder on sphere. (20). it can be seen
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that the values of SCF for Cl to C3.nozzles are higher by
about 15 percent. but the case C4 nozzle is lower by

some 25 percent. [t may be noted that the calculated SCF
based on equivalent stresses for a flush nozzle is substan-
tially higher at 6.5. The values of non-dimiensional collapse
pressures are compared, Table 2, for the various nozzle



details, Series C, and the several collapse criteria adopted,
firstly as a ratio to first yicld pressure. For a given nozzle
detail, the criteria differ by 15 percent. In general the
maximum value of collapse is given by the C51 or C3D
criteria. The difference between nozzles Cl to C3 and
nozzles C4 again reflects the differences between the
values of knuckle radius — the larger radius gives collapse
pressure ratios some 25 percent lower. The overall
collapse factor (i.e. ratio to membrane yield, not to first
yield) is shown in the final column, k5 Table 2. It increases,
of course, as SCF decreases, and is here based on method
Csl.

Comparison of the collapse ratios ¥, Table 2, with
. the value of a limit pressure obtained from Ref. 20 shows
a variation of about + 10 percent for nozzles C1 to C3 ac-
cording to the criterion used, with present values some
25 percent lower for the case of nozzle C4. It will be re-
called that, for all cases except C3R, a work hardening
material has been assumed. Comparing C3M (work
hardening) with C3R (nonwork hardening) an increasc of
collapse pressure of only some 2-3 percent is found by
the inclusion of work hardening. Values of k&, for nozzles
C,-Cs, here inclusive of work hardening fall 5 percent
below the nonwork hardening value from Ref. 20.

The shakedown ratios P* for nozzles Cy to C;, Table
3, are very close to the value 2 that can be obtained from
Ref. 20. Case C1 gives values slightly smaller (5 percent)
than the other two cases perhaps because the highest

Table 3. Nondimensional shakedown pressures,
PF and k,: Series C

Shakedown Criteria

Ref.
SEM spPC SPY SPwW k.,
Cl 1.98 1.86 1.87 1.96 38
C2 1.96 2. 2. 2.09 4
M 2. 1.97 1.97 2.09 4
e R 2. P 1.97 Kk 4
C4 2. 1.81 1.85 ° >2.28 .59

Value from Ref. 20: P =2. k=5

Table 4. Nozzle details: Series N. w = 10 dfD

Geometry Parameters and SCF for
T/D = .005; 2r/D = .05; t/T=1

Ref. d/D Torus Angle k, k*
N1 .05 8475 1.79 2.2
N2 .10 81°8 2.18 3.1
N3 .15 7970 2.63 3.9
N4 .20 7652 3.08 4.7
N5 .25 7374 3.55 5.4

_stressed region on nozzles C2 and C3 is smaller than on

nozzle C1. The values of shakedown for nozzle C4, for
methods SPC and SPT (where the ellipse of yiclding
translates but does not expand) are again smaller than

C! but by only 1-2 percent, i.e. some 9 percent below the
value of 2 from Ref. 20.

For all nozzles, method SPW (allowing the ellipse of
yielding to expand uniformly to accommodate work
hardening) gives the highest values for shakedown but
still within the region 4 percent of the value 2 except for
nozzle D where the effects of lower SCF and the SPW
model of work hardening combine to give a value in
excess of 2.28. The final column, Table 3, expresses the
factor k&, for shakedown in relation to membrane yield
rather than first yield, based on method SPT. Despite
work hardening, &, is some 20 percent less than i *

[Ref. 20] for C, to C,.

In summary, the different connection details make
negligible effect on stress concentration, shakedown or
collapse (i.e. less than 5 percent). A larger knuckle radius
reduces SCF, reduces collapse and affects shakedown
according to the model used for work hardening. Work
hardening itself has surprisingly little effect (e.g. 5 percent)
on incipient collapse as defined here or on shakedown '
with any but the least conservative (expanding ellipse)
model for cases with low SCF.

The results of the calculations for series N having
various ratios of nozzle to sphere diameter, are shown
Table 4, dimensions and SCF, and Table 5, collapse.

If the values of SCF are plotted against diameter ratio, all
the five points for the series N nozzles fall on a straight
line, (not shown). The SCF value, Table 4, can be com-
pared with the values obtained from Ref. 20 treating the
nozzles of serial N as flush cylinders on sphere of equal
thickness. The present results are some 20-30 percent
lower.,

The values of collapse for all nozzles N1 to NS5, Table
5, are within a margin of £ 10 percent of an average value.
Comparing Tablc 4 with Table 5 it can be seen that the
collapse value as here defined, increases with SCF value,
as is well known, the nozzles (e.g. N5, N4) with SCF
higher by a factor of about 2 having collapse pressures
some 10 percent higher. The values of collapse for criteria
C3I, C3E, C3D are smaller than the values of C51 and C5E
by about 10-15 percent. The effect of non-workhardening
{(NIR and N5R) or work hardening (NIM and N5M) is
again not more than 5 percent. The greatest plastic strain
is internal for N3-N5 (high SCF) but external for N1 and
N2 (low SCF).

For all the cases studied, C51 gives the highest value for
incipient collapse, and from Fig. 5 it is seen that for non-
work hardening materials this pressure is near actual col-

~ lapse. The nonhardening results fall 10 percent below
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Ref. 20 for low SCF (N1R) and equat to it for high SCF
(N5R). Inclusion of work hardening gives results for 3
percerit below (N1) to 8 percent above (N5) Ref. 20 but
the rising slopes of curves ¢ and e Fig. 5, and for nozzles
C Fig. 3, suggest that denoting collapse by a larger strain
of 1 or 1.5 percent (as Ref. 8) to give P* some 10 percent
higher might be acceptable for the degree of work harden-
ing used here. '

Table 5. Nondimensional collapse pressures, P and kj:

Series N
Collapse Criteria

Ref.
C3l C3E C3D C51 CSE k, kS
N1 M 142 144 141 1.62  1.56 91 .94
R 139 14 1.37 152 1.5 .85 .94
N2 1.44 144 147 169 1.6 .78 .17
N3 1.48 148 1.52 1.76 1.64 67 .63
N4 1.48 1.48 1.57- 1.80 1.67 .58 54
NS M 15 1.49 1.6 1.84 1.7 .52 48
R 149 149 1.57 1.7 1.63 48 .48

Tuble 6. Nondimensional shakedown pressures, P& and

ky: Series N
Shakedown Criteria
Ref. -
SEM spC SPT SPW k, kS*
NI M 1.78 1.8 1.9 1.96 1.06 79
R 1.78 i+ 1.56 ko .87 .79
N2 1.97 1.74 1.83 225§ .84 .65
N3 2. 1.76 1.84 245 .7 .52
N4 2. 1.74 1.83 >2.2 .59 43
N5 M 2 .77  1.82 288 .51 .38
R 2 e 1.76 e .5 387

In Table 6, the values of shakedown for nozzle N1 to
NS are compared by the different criteria used, as ex-
plained earlier in the paper. The minimum value obtained
by an application of Macfarlane and Findlay [7] graphical
adaptation of Leckic’s method [6] , is taken at the cylin-
der-torus or sphere-torus junctions because, as far as the
authors arc aware, this method cannot be applied fo
toroidal shells near 8 = 90°, because of the discontinuity
in the membrane stresses [Ref. 19, page 34]. The highest
stressed points are in fact in the knuckle near the sphere
junction, so for the cases N1 to NS the minimum value
obtained here is at sphere-torus junction. For elastic type
calculations, ¢f P, (methods SEL, SEM) the values of
shakedown increase with the SCF from 1.74 (low SCF)
up to 2 (high SCF). The valucs of SPW also increasc, and
lie some 10-20 percent above these values, increasingly so
as the SCF increases. The more conservative, and probably
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more realistic critera SPT or SPC are within 5 pzrcent of
each other for values of SCF thus showing no trend with
nozzle/sphere diameter ratio. '

Because for elastic perfectly plastic material the
ellipse of yiclding stays at its initial position, comparison
of the effect of work hardening is made against the SPT
criterion, Table 6. For N1, the neglect of work hardening
reduces shakedown by 15 percent. For N5, there is a
decrease of about 3 percent. Thus the neglect of work
hardening may allow a signiciant underestimation of
shakedown for low SCF (= 2.0) but not for high SCF
(= 3.5). It thus appears that the little effect of diameter
ratio on shakedown by method SPT is a consequence of a
greater effcct of work hardening on nozzles with low SCF
(such as N1) offsetting the lower shakedown found for
these lower SCF cases if work hardening is ignored. The
results, inclusive of work hardening, fall some 30 percent
above Ref. 20 when expressed as the ratio &, to membrane
yield.

All values of shakedown and simaller than the values of
a limit pressure, [Ref. 20]. Comparing the values here, Fig.
8, the shakedown ratios P (SPT) are larger than the col-
lapse rations P (C5I) except for values of d/D greater

T ¥ T T T T
SCE| ——scF
| ------ COLLAPSE /
ks SHAKEDOWN Y,
51 a.b.c- work hardening [vonMises) / .
albict -ref. 20mon york hardening /
e -COLLAPSE }{ ot/
o - SHAKEDOWN] | haordening. /
' /
4l / ]
/
/ /
/ /
3. / /
- / n/ _(
// '/d o
e
ST i
2. - ol - //_ S _3
B e SNSRI
—_— ‘_______—_.._—--‘"' £ :
T !
!
)
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FIG.8 ELASTIC STRESS CONCENTRATION FACTORS,
SHAKEDOWN AND COLLAPSE RATIOSFOR A
SERIES OF NOZZLE TO SPHERE DIAMETER
RATIOS



than 0.22 (high SCF). The two non-hardening cases (NIR,
NS5R) also show shakedown ratios marginally above in-
cipient collapse.

Summarizing all the cases so far computed;

(i) for a high SCF (> 3.5) the shakedown ratio is
near 2, for work hardening or elastic-perfectly
plastic material. It is considered that C51 s the
best criterion for incipient collapse. These col-
lapse pressures are higher than shakedown.

(ii) for the intermediate SCF (2.5 to 3.5) a shakedown
ratio near 1.85 is obtained for work hardening
material or rather lower (about 1.75) for the one
case (N5) of non-work hardening in this regime.
The collapse and shakedown pressure ratios are
not markedly different.

(iii) for tow SCF (< 2.5; Nt and N2) shakedown is
between 1.85 and 2.0 if work hardening is in-
cluded but substantially lower (1.56 for N1) if
work hardening is neglected. Criterion C51 is again
considered most suitable for incipient collapse.
This collapse is always less than the shakedown
value. '

CONCLUSIONS

Small differences in the detailed geometry of conti-
nuous nozzle-sphere connections do not alter significantly
the elastic SCF or the shakedown and collapse loads of
the vessel despite the junction being the region of highest
stress in the vessel. Comparison with previously published
plastic strains now shows good agreement between experi-
. mental and computed values. Thus it is possible to per-
form elastic-plastic shell theory computations with some
assurance that the results can be applied usefully to real
vessels even if only the nominal details of the shape of the
junctions are known, :

For computations including the effect of work harden-
ing an assumption must be made on the movement of the
ellipse of yielding. Translation towards the stress state
reached, without expansion unless a steady state cyclic
stress strain curve is knewn, appears most reasonable. This
then shows a significant effect of work hardening on
values of shakedown or collapse pressure only for the
cases of low SCF although the values of plastic strain are
smaller than if work hardening is neglected. For a more
than twofold increase in SCF the ratio to first yield, P{*,
does not vary greatly while P increases by 40 percent,
but the ratios k5 and k3 to membrane yield increase two-
fold for the hardening used here, as the SCF is halved. In
such computations a unique collapse load is not found, at
least for small strains, but rather a gradual change from
elastic to plastic behavior. Of the various arbitrary criteria
examined for incipicnt collapse that based on reaching

~ 0.5 percent individual (i.e. hoop or meridional) strain at

the most highly strained point on the outside surface
seems not too conservative. It is also amenable to casy
use in experimental work. Further examination of this
criterion for experimental results would be useful.

For the particular equal thickness nozzle-sphere
geometries reported here the shakedown load did not vary

_greatly with nozzle-sphere diameter ratio, due to the

opposing effects of geometry and work hardening, with
results 30 percent above previous estimates. For values of
SCF below about 2.5, incipient collapse occurs before
shakedown. The broad trends of previous calculations
based on elastic stress distributions and limit load con-
cepts are confirmed, although the elastic plastic computa-
tions show rather lower collapse toads for nozzles with
low SCF if work hardening is neglected. Now that the
effects of detailed alterations in geometry, the criteria
used for incipient collapse and of assumptions on work
hardening behavior have been assessed, results for other
component configurations and load systems can be
calculated with some confidence.
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ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR SOME
HEMISPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS

TABLE HH1

d/t = 10
Langer®* | Analytically** pvA 1 Program
t/T
(a) (b) (a) (b) (c)
-5 961 .962 977 8972 977
1.0 971 .968 .972 .969 .972
2.0 +900 .807 .904 | .795 | .904

(a),(b),(c) see Section 3,62.1

(a) Stress index ratio
(b) wvon Mises critérion
(¢) Tresca criterion

* Ref. [51]

** Either using approximation to Kelvin

exponentj_al solutions (Appendix B)

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR A RANGE OF
HEMISPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS

TABLE HH2

functions or

10£d/ £4300.
Langer* Crisp*** Analytically**
. t/T
(a) (o) (b)
.5 .961 .962
1.0 971 .967 .968
2.0 .900 .807

x 28
? ?

(a),(b),(c)

see Table HH1.

LR R
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TABLE FH1

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR SOME
FLAT ENDS ON CYLINDRICAL PRESSURE VESSELS

t/T = 025
Lahger* Analytically** PVA1 Program

a’t ' :
(a) (b) (a) (b) (c)
10. .52 .47 .47 | .a6 | .a7
20. .41 .39 .40 | .39 | .40
40. .26 .27 24| 27| .24
80. .15 .15 .13 | .15 | .13

(a),(b),(c),* see Table HH1
** Solid plate solution (Appendix B)

TABLE FH2

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR SOME

FLAT ENDS ON CYLINDRICAL PRESSURE VESSELS

/T = .50
Langer* | Analytically** PVAi Program
d/t ,
(a) (b) . (a) (b) (c)
10. .44 <37 .37 | .36 | .37
20. «25 #22 22 ] £21 | .22
40. .12 .11 .10 | .11 | .10

(a),(b),(c),* see Table HH1
** See Table FH1
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TABLE FH3

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR SOME
FLAT ENDS ON CYLINDRICAL PRESSURE VESSELS

t/T = 1'0
Langer* | Analytically** PVA1 Program
d/t —
(a) (b) (a) (b) (c)
10. .26 26 .27 .26 .27
20. .14 .14 .14 | .13 | .14

(a),(b),(c),* see Table HH1
*+ See Table FH1



TABLE SH1

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR SOME
SPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS

d/D° = .40
‘PVA1 = Program Analytically
wr | ar [
: Exponent. AP.Kelvin®*
(a) (c) (b) (b) (b)
i 0 10. | .386 | .386 | .369 .338 .344
20. | .266 | .266 | .242 . 240 .248
. 10. | .435 | .435 | .425 .354 330
20. | .291 | .291 | .277 .258 . 249
o5 | 0. | .503 | .503 | .492 <417 0 .333
20. | .408 | .408 | .394 .336 .296

(a),(b),(c) see Table HH1
*Approximation to Kelvin functions (Appendix B)

TABLE SH2

ELASTIC STRESS CONCENTRATION AND INDEX RATIOS FOR SOME
SPHERTCAL HEADS ON CYLINDRICAL PRESSURE VESSELS

d/DO = -25
PAVI Program Analytically
T d(t (a) () ;b) Exponent. AP.Kelvin®*
o (b) (b)
1.0 10. .326 .326 | .311 .190 .242
20. .202 .202 .184 .157 . » .174
5 10. -402 .402 392 264 «223
20. | .250 | .250 | .239 190 173
10 491 491 479 .338 «170
-25 20. .399 .399 .384 .272 .194

(a),(b),(c) see Table HH1. *see Table SH1
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TABLE TH1

COMPARISON OF THE HEIGHT RATIO FOR TORISPHERICAL
AND SPHERICAL HEADS WITH EQUAL d/DO

Spherical
without knuckle of
Torispherical T : -
h/_d —z 6% —_—= 10%
d : A
X x
na | 8, n/a | e
.15 111 | 64.9° | .074 | 73.1°
.20 170 | 52.5° | (142 | =8.2°
.25 .227 | 41.2° | .207 | 45.1°
.40 .391 | 13.7° | .386 | 14.6°
*eo = acos {(d/D)
TABLE TH?2

COMPARISON OF ELASTIC STRESS CONCENTRATION RATIOS FOR
TORISPHERICAL AND SPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS
OF EQUAL THICKNESS, AND THE SAME DIAMETER RATIO: d/t = 20

(1) T@rispherical(i) ) Spherical *

: with knuckle of without knuckle of
h/d &% 10% 6% 10%
.15_. . 297 . 259 .255 .206*%*
.20 .408 . 400 .359 . 309
.25 .532 «537 . 480 ..434
.40 .954 .954 .954- .953

(1) from Ref. [9]
*Value from analytic solution (Appendix B)
** Value from the elastic computer program



COMPARISON OF ELASTIC STRESS CONCENTRATION RATIOS FOR

TABLE TH3
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TORISPHERICAL AND SPHERICAL HEADS ON CYLINDRICAL PRESSURE VESSELS

OF EQUAL THICKNESS, AND THE SAME DIAMETER RATIO: d/t = 50

x
1) Torispherical(i) Spherical-

.with knuckle of without knuckle of
h/d

6% 10% 6% 10%

.15 . 205 .183 . 160 - .119
«20 . 289 . 303 .231 .198
25 T .381 410 «318 284
.40 +«865 876 .829 .806

(1),*, see Table TH2

COMPARISON OF ELASTIC STRESS CONCENTRATION RATIOS FOR
TORISPHERICAL AND SPHERTCAL HEADS ON CYLINDRICAL PRESSURE VESSELS
OF EQUAL THICKNESS, AND THE SAME DIAMETER RATIO: 4/t = 100

TABLE THA4

(1) ATbrisphericalﬁi) Spherical

: with knuckle of without knuckle of
h/d

6% 10% 6% 10%

.15 .161 .149 .113 .083
.20 227 .257 .163 .138
.25 .298 .345 227 .202
.40 .713 .736 666 .656

(1),* see Table TH2
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TABLE FN1

ELASTIC STRESS CONCENTRATION FACTORS FOR SOME FLUSH CYLINDRICAL
NOZZLES ON SPHERICAL PRESSURE VESSELS

Ref. ' | R/T = 50. ; /T = .50
Leckie* PVA1 Program Analytically

a/n,

(1) (1) (2) (2)*+ (2)¢es*
.025 1.8 2.96 2.60 2.30 2.85
.05 2.1 3.50 3.09 3.00 3.42
.10 2.7 4.76 4.30 4.35 4.63
.25 4.6 8.24 7.58 7.58 7.72
.50 7. 11.98 10.95 10.97 11.05
* Ref.[63]

**Exponential Solutlon (Appendlx B)
***Approximation to Kelvin function solution (Appendlx B)
(1) Tresca criterion
(2) von Mises criterion
TABLE FN2~
ELASTIC STRESS CONCENTRATION FACTORS FOR SOME FLUSH CYLINDRICAL
NOZZLES ON SPHERICAL PRESSURE VESSELS

Ref. R/T = 50. ;5 t/T = 1.0
Leckie* PVA1 Program Ana}ytically
a/o,

: (1) - (1) (2) (2)*= (2)*==>
.025 1.8 1.68 1.38 172 1.81
.05 2. 1.78 1.61 1.77 2.00
.10 2.6 2.58 2.27 2.16 2.41
.25 4.4 4.13 3.59 3.57 3.68
.50 . 6.6 5.92 5.12 5.12 5.24

' ]

# %% w2 (1),(2) see Table FN1



TABLE FN3
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ELASTIC STRESS CONCENTRATION FACTORS FOR SOME FLUSH CYLINDRICAL
NOZZLES ON SPHERICAL PRESSURE VESSELS

Ref., R/T = 100, ; .50
Leckie* PVA1 Program Analytically

a/p,

(1) (1) - (2) (2)== (2)eex
.025 1.85 3.26 2.87 2.72 3.21
.05 2.3 4.20 3.77 3.78 . 4,14
.10 3.2 6.22 5.74 5.81 6.01
+25 5.7 11.44 10.72 10.71 11.01
«50 8.7 17.00 15.81 15.68 15.70
#,¢n %55 (1),(2) see Table FN1

TABLE FN4

ELASTIC STRESS CONCENTRATION FACTORS FOR SOME FLUSH CYLINDRICAL
NOZZLES ON SPHERICAL PRESSURE VESSELS

Ref. R/T = 100. ; t/T = 1.0
Leckie® PVA1 Program Analytically

a/n, . -

(1) (1) (2) (2)*= (2) %=+
.025 1.85 2.03 - 1.94 1.70 1.89
.05 2.2 2.38 2.15 2.00 2.28
.1 3.1 3.19 2.77 2.71 2.95
.25 5.4 5.54 4.85 4.80 4.98
.50 8.15 8.13 7.16 7.08 7.19

e re ese (1), (2)

see Table FN1



TABLE 1

NOZZLE DETAILS: SERIES C. w = 1.41

Geometry Parameters and S.C.F. for
d/D,= .2 ;3 T/D = .01 ; t/T = .5

Ref. 2r/D Taper Type K1
c1 .015 A 1 4.91
c2 .015 B 4,96
c3 .015 F 4.88
- C4 .045 A 3.21
Band
C5 .0 Modification 1.75
1 step -
Band
3] .0 Modification 1.34
- 2 steps :

Value from Ref.[61]: Tresca K3 = 4.3

Flush nozzle simple von Mises _K'.1 = 6.5
shell theory '
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NON-DIMENSTIONAL COLLAPSE PRESSURES, Pé and

TABLE 2

K.: SERIES C

3
Cbllapse Criteria K4
Ref.
C31 C3E C3D C5I C5E C151 C15E C.S5.P. Cs5X1 . C151

C1 1.83 1.84 | 2.31 2431 | 2.13 | >.2.5 > 2.45 | > 2,5 47 | > .51
cz 1.89 | 1.92 | 2.45 | 2.33 | 2.17 | > 2.7 > 2.62 2.15 .47 | > .54
C3M 1.93 | 2.06 | 2.37 | 2.31 | 2.18 | > 2.5 > 2.49 2.3 A7 | > .51

R | 1.9 |1.87 | - 2.28 | 2.12 | > 2.28 | > 2.28 | > 2.28 | .47 | >..47
c4 1. 49 1.55 | 1.64 | 1.88 | 1.76 2.12 2.03 2.05 «59 «66 |
CS 1.29 1.29 - 1.48 1-41 ~1.7 1.62 > 1. 675 .85 .91
C6 1.23 | 1.26 | 1.26 | 1.42 | 1.37 1.72 1.54 1.52 1.06 1.28

Value from Ref. [63] : * = .5

P; = 215 H K

3

V4L



172

TABLE 3

NON DIMENSIONAL SHAKEDOWN PRESSURES, P; and-Ké: SERIES C

‘Shakedown Criteria Ké
Ref.
SEM SPC SPT SPW SPT SPW

c1 1.98 | 1.83 1.87 1.96 .38 C .4
c2 1.96 | 2. 2. 2.09 .4 L42

M| 2. 1.97 1.97 2.09 A .43
c3

R | 2. exe 1.97 ars .4 -
ca 2. 1.81 1.85 | > 2.28 59 > W1
cs 1.69 | 1.62 | >1.675| >1.675 | > .96 | > .96
c6 1.1 | 1.54 1.59 1.64 1.18 1,22

Values from Ref. [63]: P; = 2. 3 KE = .5




TABLE 4
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NOZZLE DETAILS: SERIES N. ¢ = 10 d/D

Geometry Parameters and S.C.F. for

T/D, = .005 3 /T = 1.
E —
K, Ks (2r/D,= .0)
Torus . :
Ref. | 4/D | Angle
Anywhere

2r/Do= 005 2r/D = .O Ref- 63 in tl']e Stru.
N1 .05 | 8435 1.79 2.15 2.2 2.38
N2 .10 | 81%8 2.18 2.77 3.1 3.19
N3 .15 | 79%0 2.63 3.4 3.9 3.85
N4 .20 7622 3.08 4.1 4.7 4.65
N5 .25 | 73% 3.55 4.85 5.4 5. 50




NON-DIMENSIONAL COLLAPSE PRESSURES. Pé and K

TABLE 5

: SERIES N

3

Cellapse Criteria

L]
K
3

C3I C3E CED C51 C5E C15I | C15E | €8P |CBI C15I
1.42 | 1.44 | 1.41 | 1.62 | 1.56 | 1.81 | 1.72 | 1.62 | .91 | 1.01 | .94
N1 1.39 | 1.4 | 1.37 | 1.52 | 1.5 | 1.53 | 1.54 | 1.58 | .85 | .86 | .04
N2 1.44 | 1.44 | 1.47 | 1.69 | 1.6 | 1.95 | 1.8 1.67 | .78 .89 | .77
N3 1.48 | 1.48 | 1.52 | 1.76 | 1.69 | 1.98 | 1.88 | 1.71 .67 .75 | .63
N4 1.48 | 1.48 } 1.57 | 1.80 | 1.67 | 2.01 { 1.93 | 1.76 | .58 .66 | .54
NS’ 1.5 1.49 | 1.6 1.84 | 1.7 2.07 | 1.97 | 1.83 | .52 .58 | .48
1.49 | 1.49 | 1.57 | 1.7 1.63 | 1.76 | 1.76 | 1.68 | .48 .5 .48

il



TABLE 6
NON.DIMENSTONAL SHAKEDOWN PRESSURES, P¢ and Ké: SERIES N
'Shakedown Criteria K
Ref. KE
SEM SPC SPT SPW SPT SPW

M| 1.78 | 1.8 1.9 1.96 | 1.06 | 1.09 | .79
N1

R 1.78 L 1.56 Exw 087 - 079
N2 1.97 | 1.74 | 1.83 | 2.25 .84 | 1.03 | .65
N3 2. 1.76 | 1.84 | 2.45 .7 .93 | .52
N4 2. 1.74 | 1.83 [>2.2 .59 | >.72 | .43

M| 2. 1.77 | 1.82 | 2.88 .51 .81 | .38
N5

R | 2. srex | 76 | #ese .5 - .38
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TABLE 7

TEST NOZZLE DETAILS:w = .97

Geometry Parameter and S.C.F.

d/Do = 112 3 DO/T = 149 ; /T = .5

*
K, K .
- 2r/D
(o]
Computed | Test | Computed | Ref. [63]
.0134 3.2 2.92 3.62 -
.0 5.5 - 6.0 3.2

TABLE 8

NON-DIMENSIONAL COLLAPSE PRESSURES, Pé and K,: TEST NOZZLE

3:

Collapse Criteria K
Ref.

C3I C3E C3D C51 C5E €151 | C15E | CSP C5I | C4151

M 1.77 | 1.76 | 2.09 2.24 | 2.05 || 2.43 | 2.39 2.15 .69 .74

R 1.76 | 1.75 2.07 2.12 | 1.94 || 2.21 | 2.18 || 1.95 .66 .1 .69

Test | 1.78 - 1.75 || 2.13 - 2.6 - ~2,52 .73 | .89

Value from Ref. [63]: K* = .64; P? = 2.05
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TARLE 9

NON-DIMENSIONAL SHAKEDCWN PRESSURES, P; and K2: TEST NOZZLE

Shakedown Criteria H K2
Ref. :
SEM SpC SPT SPW SPT SPW
(1) (1)
2.07 .64
M 2. 1.88 1.89 59
2.45'2) 762
R 2- - 1.69 — ] 052 —
Val Pest!3) . ps 31; K
alue from the Test : P3 < 2.31; 5 € .79
Value from Ref. {63] : KE = .63 ; P2 = 2.

(1) Lower limit
(2) Upper limit

(3) Based on the static shakedown (less than 20 cycles)



NON-DIMENSIONAL COLLAPSE PRESSURES, K

TABLE 10

HEAD A (REF. [7]) DETAILS

Geometry parameter and S.C.F.
d/D, = 578 ; d/t = 74 ; h/D,= .245

r/d von Mises S.C.F.
.245 2.28
.0 3.7

TABLE 11

3

178

:HEAD A (Ref. [7])

Caleulated

Work~Hardening

Ref, Test* Non-Work-Hard
o=a, +b, 'ép+c?% o = a(l. +b§p)c

C31 * ,98 * 77 .95 * 74
C3E - - <97 -
C3p | * 1.0 + .83 - . .81
csT | * 1.48 *+ 1.06 1.26 * .84
C5E - - 1.24 .80
C15I **1.34 - 1.33 -
C15E - - 1.34 .87
BSLY - - .99 .79
CMEO - - 1.24 . .86

Limit Analysis®*

Lower Bound =

.81

Upper Bound = .91

* Value from Ref. [7]
#+1% Maximum strain




NON-DIMENSTONAL SHAKEDOWN PRESSURE, P; and K

TABLE 12

HEAD A (REF. [7])

2

KZ
Ref.| SEM SPC SPT SPW
SPT SEM SPW
W.H. 1.94 1.96 2.79 .861 1.22
2. .88
Non
W.H. - 1.85 - .811 -
Value from Ref. [73] : K, = 828

2
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TABLE 13

SIRAIN GAUGE READINGS FROM POSITION 41 ON THE TEST PLATE: GAUGE 1
Cycle Number
(1) _
L/Ly L 1 2 3 4 5 8 10 20 205 35
.00* ve] 2002 003 .003 - .002 .003 .004 .003 —_— —_—
1 0-~24 .099 .10 .101 .101 .101 .101 .102 ,101
.002,,, .003 .003 .003 | .o03 .003 .003 .003 — —
.010 .075 <075 .076 .077 . .076, .076 .077 — —_—
-1.58 |0-38 .225 .226 .225 .226 «226 1226 .226 .226 .
075 .075 .076 .077 .076 .077 .076 #4077 — —_
.076 .310 ] a3 .322 325 .326 .326 .327 _— —_—
~1.79 |0-43 4480 .490 T .495 .497 .498 .508| .508 .508
.310 .317 .322 .325 .326. .327 .326 1 .326 —_ —_
.326 .579 .582 .586 .589 .593 . | .594 .595
-1.99 |0-47.6 .812 814 . .816 .817 .819 .821 .820 .820
.586 .582 .586 .589 .592 .594 .595 .594
.594 853 . .857 - .862 .B66 .872 .877 .877 —_— —
~2.16 |0-52 1.138 1.143 1.146 1.148 1.149 1.151 1.151 1.152
.856 -B58 .862 866 .870 +876 .876 .878 —— —
: .878 1.131 1.185 1.180 1.175 1.156 1.154 1.153 —_ —_
-2.37 | 0-57 1.460 . 1.451f. 1.463 1.465 1.466 1.467 1.468 1.470
1.139 1.190 1.180 1.175 1.162 1.156 1.154 1.153 —_ —
1.152 1.643 1.866 1.976 2.088 2.190 2.225 2.275 2,297 —_—
2.66 |0-64 1.958 2.190 2.302 2.415 2.405 2.517 2.552 2.593 |- 2.620
1.602 1.868 1.977 2.092 2.102 2.200 2.239 2.276 2.298 _
2.299 2.707 2.902 2.968 3.028 3.056 3.085 2.921 2.723 2.673
-2.86 |0-68.7 3.180 3. 2401 3.300 3.332 3.348 ¢ 3.372 3.387 3.173 2.944 2.876
2.727 2.902 2.993 3.027 3.051 - 3.078 3.093 2.918 2.717 2.667
*  Initial
-**  Maximum (%)
*+** Final
— 24 k1b

(1) L
Y

o8l



INTERNAL CIRCUMFERENTIAL STRAIN

TABLE 14
GAUGE READINGS FROM POSITION F ON THE TEST NOZZLE: GAUGE FC

(1)

Cycle Number

P/Py 1 2 3 5 8 10 20 30 40 50
.018 wa| <120 .120 .121 122 .121 120
1 82 W 0278 .279 0280 .281 .280 -281 .280 — — ——
- .120 120 .121 .121 .122 .120 .121
.120 «420 421 -422 - -424 .428 «430
2.18 . 597 6.18 . 620 .621 .624 .629 .«630 —_ - -
.398 .421 423 +422 425 429 . 429
427 1.068 1.096 1.106 1.114 1.129 1.132
1.070 1.100 1.104 1.110 1.119 1.131 1.132
1.132 1.647 1.670 l1.686 1.688 1.693 1.704 1.706 1.709 1.710
2.60 1.880 1.886 1.904 1.910 1.917 1.922 1.928 1.930 1.932 1.934
1.649 1.659 1.676 1.688 1.690 1.693 1.703 1.706 1.708 1.709
1.729 2.439 2.446 2.454 2.463 12,469 2.484 2.497 2.523 2.539
2.8 2.608 2.685 2.690 2.695 2.701 2.705 2.721 2.736 2.760 2.776
2.446 2.446 2.450 2.457 2.467 2.474 2.484 2.498 2.526 2.539
2.541 3.366 3.378 3.385 3.398 3.410 3.417 3.423
2.96 3.612 3.623 3.626 3.632 3.641 3.648 3.666 3.673 - -
3.362 3.378 3.381 3.385 3.399 3.425 3.416 3.424
* Initial
**  Maximum (1) P _ 275 1b ir?

LR

Final

Y

L8L
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FIG.7

STRESS~-STRAIN. CURVE FOR AN IDEAL TENSION TEST PIECE

e
FIG.8

LOADING AND UNLOADING PATHS FOR STRUCTURES WITH STABLE MATERTIAL
(Hysteresis Loop)



o v - ——_— s

187

KL

FIG.9

THE EFFECT OF OVERALL LOAD-CONTROLLED CYCLIC WORK-
HARDENING ON STRAINS ADJACENT TO THE YIELDED REGION

FIG.10

THE EFFECT OF OVERALL LOAD-CONTROLLED CYCLIC WORK.-
SOFTENING ON STRAINS ADJACENT TO THE YIELDED REGION
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|

“FIG. 11

STRESS—-CONTROLLED TEST WITH CYCLIC STRAIN ACCUMULATION

/

FIG.12

‘ CONSTRUCTION OF SETTLED CYCLIC STRESS~STRAIN CURVE
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FiG. 13

ELASTIC-PLASTIC STRESS PATHS FOR THREE DIFFERENT STRUCTURES
LOADED BEYOND FIRST YIELD IN A WORK HARDENING MATERIAL
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FIG.16

ELASTIC-PILASTIC STRESS PATH FOR A SERIES OF !0ZZLES LOADED BEYOXD
FIRST YIELD ON A VORK HARDENING MATERIAL :
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