
Optimal Experiment Design for 

Dynamic System Identification 

R.L. Payne 

A Thesis Submitted for the 

Degree of Doctor of Philosophy 

February 1974 

Department of Computing and Control 

Imperial College of Science and Technology 

University of London 



- 

Abstract 

The dynamic system experiment design problem is treated from a 

Bayesian viewpoint. It is shown how experiments may be designed using 

available prior information to optimise some measure of goodness of the 

experiment. The measure of goodness may be an information measure or, 

if a decision theoretic approach is adopted, a measure of the. ultimate 

use of the experimental data. It is further shown that experiments 

may be designed for joint structure determination and parameter 

estimation. 

Design algorithms for the realization of optimal input sequences 

are described for general linear discrete time dynamic systems. 

Characterisation theorems are obtained for amplitude and energy 

constrained inputs for general linear discrete time and continuous 

time dynamic systems. Stronger results are obtained for scalar output 

systems. 

The problem of optimal sampling rate determination is also 

formulated and a simple design algorithm is described. 

Several examples of designs carried out in the time and frequency 

domains are given. 
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CHAPTER 1 

Preliminaries 

.1. 	Introduction to the Thesis  

In this thesis aspects of the problem of optimal planning of 

experiments for dynamic system identification are considered. The 

problem is approached from a control theoretic point of view and much 

of the notation and terminology reflects this. The results obtained 

are, however, applicable in many time series analysis applications 

where the experimenter has a degree of control over the methods of 

data generation and collection. 

In general the experimenter must decide which variables (inputs, 

outputs, intermediate outputs etc.) to measure and how to measure 

them. It may also be possible to introduce input signals to further 

excite the system under test and the experimenter must decide upon 

the form of these test signals. These decisions will in general 

depend on a large number of factors (physical and economic constraints, 

current engineering practice, methods available for data analysis, 

purpose of experiment, etc.). In this thesis it is assumed that only 

the form of the test inputs and of the measurement system are left to 

be decided. It is further assumed that there are amplitude or energy 

(power) constraints on the test inputs, that the data collected 

consists of a fixed number of samples equally spaced in time, and that 

efficient use is made of the data. Subject to these constraints, test 

inputs and measurement system (sampling rate) are chosen to optimise 

some suitable measure of goodness of the experiment. This measure of 

goOdness may be related to the purpose of the experiment which might, 



• 
- 1.2 - 	 2. 

for example, be the design of a controller or simulator for the 

dynamic system under test. 

Obvious applications for the results obtained are in areas where 

the carrying out of an experiment is expensive. For example, aircraft 

flight tests and production line tests usually have costs proportional 

to experiment time and it is important to obtain the required 

information as quickly as possible. However, the results may also be 

applied advantageously in less critical applications since there will 

usually be savings due to smaller experiment and analysis times, or 

perhaps due to superior performance of a controller or simulator 

designed using information obtained from the experiment. 

2. Originality and Significance  

The results in this thesis which are believed by the author to 

be original are listed below, together with the chapter and section 

in which they appear. 

1. The experiment design problem for dynamic system identification 

is formulated from a Bayesian decision theoretic viewpoint. The 

Bayesian approach answers the criticism that is often levelled at 

alternative formulations; viz. that, in order to design an experiment 

it is necessary to know the parameters that the experiment is being 

designed to find. The decision theoretic approach is conceptually 

pleasing since the experiment is designed to optimise a measure of the 

ultimate use to which the experimental data is to be put. (Chapter 3, 

section 2.) 

2. A new optimality criterion is proposed. This is of the form: 

Itt 
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J = trace {rM-1} 	 (1) 

where r is a positive semi definite matrix and M is the "posterior 

information matrix" which is related to the expected posterior. 

covariance. It is shown that r may be chosen so that J reflects the 

ultimate use to which the data is to be put. (Chapter 3, section 2, 

theorem 1.) 

3. Several properties of information matrices for general innovations 

models are derived. These prove to be useful for experiment design 

purposes. In particular, they allow minimum identifiability 

conditions to be stated, and reduce the dimensionality of the design 

problem considerably. (Chapter 4, Section- 4, results 1 to 7.) 

4. Methods for evaluating the expected values of the posterior cost 

and posterior information based on first and second moments of the 

prior probability distribution are described. These methods offer 

significant reductions in computational effort over alternative 

approaches. (Chapter 4, section 5.) 

5. Necessary conditions for optimality for both amplitude and 

power constrained inputs are derived for the general innovations 

model. (Chapter 4, section 6.) 

6. A theorem on amplitude constrained optimal inputs is stated and 

proved. It is shown that optimal amplitude constrained inputs for 

linear systems are binary. This allows attention to be restricted to 

binary signals when performing an amplitude constrained design. 

(Chapter 4, section 6, theorem 2.) 

7. A theorem showing that it is sufficient to consider only a subset 

of the parameters is stated and proved. (Chapter 4, section 6, 

theorem 1.) 
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8. A general design algorithm based on the necessary conditions for 

optimality is described. A number of design examples based on the 

algorithm are presented. (Chapter 4, section 7.) 

9. A theorem on the choice of Lagrange multiplier for energy 

constraints in systems with disjoint system and noise modes is stated 

and proved. It is shown that the design can be performed with any 

value of the multiplier provided that the input is later scaled in 

amplitude. This fact leads to reductions in the computational effort. 

(Chapter 4, section 7, theorem 1.) 

10. A detailed analysis of storage and computational requirements of 

the algorithm is made and methods proposed for reducing these 

requirements. For a typical model, it is shown that a 90% reduction 

is possible. (Chapter 4, section 8.) 

11. It is shown that the computational requirements may be further 

reduced by exploiting the special structured of single output systems. 

(Chapter 4, section 9.) 

12. A spectral characterisation theorem is stated and proved, showing 

that the average information matrix depends only on the spectral 

properties of the input. (Chapter 5, section 2, theorem 1.) 

13. It is shown that the information matrix may be specified to any 

desired accuracy by considering only the first few shifts of the 

input autocovariance. (Chapter 5, section 2, theorem 2.) 

14. Expressions for the information matrix are obtained in the 

frequency domain for general multi-input innovations models. This 

extends Mehra's frequency domain results which were restricted to 

single input discrete time systems having known disturbance 

characteristics. (Chapter 5, section 3.) 

15. It is shown that for complete identifiability, the input spectrum 
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must contain at least p'/2m lines, where p' is the number of B and D 

parameters (B and D are the input gain matrices) and m is the number 

of outputs. (Chapter 5, section 3, theorem 2.) 

16. It is shown that optimal inputs may be found by optimisation in 

a rp"(p"+1)-1 dimensional space where r is the number of inputs and p" 

is the number of system (A, B, C, D) parameters. (Chapter 4, section 

3, theorem 4; section 4, result 8.) 

17. Tests for optimality of test signals are derived using a theorem 

due to Whittle. The tests enable signals obtained by any means to be 

tested for optimality. (Chapter 5, section 4, theorems 2 and 3, results 

3, 4, 5 and 6.) 

18. It is shown that, for single output systems, it is sufficient to 

consider input spectra containing not more than (2n4.1)r2 lines where n 

is the state dimension and r the number of inputs. (Chapter 5, 

section 5, result 1.) 

19. Frequency domain algoriththsand corresponding time domain 

realization procedures are described. It is further demonstrated 

that amplitude constraints may be handled in the frequency domain. 

(Chapter 5, sections 6 and 7.) 

20. It is shown that the results of the thesis can be applied to 

continuous time linear systems. (Chapter 5, section 8.) 

21. A theorem is established showing that, for single input-single 

output linear systems, it is sufficient to consider input spectra 

containing not more than p" lines, where p" is the number of system 

parameters which may include a pure time delay for continuous time 

systems. (Chapter 5, section 8, theorem 1.) 

22. The problem of optimal sampling rate determination for the case of 

a fixed number of samples is formulated. It is shown that joint 

• 
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optimal design of sampling rate and input may be carried out. (Chapter 

5, section 9.) 

3. Conventions and Symbols  

The system of numbering and cross-referencing is a standard 

one and is described as follows: within each section, equations, 

theorems, lemmas, results, definitions and so forth are given a single 

number. When refered to from within the same section only this number 

is used, but when refered to from another section the section number 

is also given. A similar convention applies to the numbering of 

sections within chapters. The chapter and section number appear at 

the top of each page. 

The end of a proof or the end of a particular train of thought is 

denoted by #. The usage of other symbols is indicated in table 1. 

Table 1 - Symbols  

A 	nxn state transition matrix 

A 	n
th order polynomial in z or z

-1 

B. nxr matrix 

B nth order polynomial in z or z
1 

B n
th   order polynomial in z or z

-1 

C 	mxn output matrix 

• n
th order polynomial in z or z

-1 

B mxr matrix 

• polynomial in z 
-1 

7 	
--aD/a(3. 

0 
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D() 	maximal rate of descent 

det 	determinant 

E total energy (power) 

E E 

expectation over p(w,f3); similarlyE,E 	E 	, E 
W/13' f3/W W 

e exp 

exp exponential 

F 	sensitivity state transition matrix 

sensitivity input matrix for z' 

Gk 	
sensitivity output matrix (903k/ T  

gk 	
gradient vector - dimension r 

gk
k  
 (gk)2, 

gkgradient gk  projected onto constraint surface 

H. 	(4.6.13); also 
H(1)  
L 	, F

(2)  
L 	

, H(3) 

H 	Hamiltonian 

I 	unit matrix 

J general cost 

J. 	i = 1: log det; i = 2: trace 

j 	/If;  dummy suffix 

K nxm Kalman filter gain matrix 

L sensitivity input matrix for z" 

k
k 	

noise sequence; k - dummy suffix 

log 	natural logarithm (base e) 

M 	information matrix. Also M', M", Mact etc. 

average information matrix, M' - part affected by u 

m 	output dimension (yk,Wk) 

N experiment length 

n state dimension 

0 
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PRBN PRES pseudo random binary noise (sequence) 

P prior information matrix. Also P', Paa  etc. 

PQ 	prior covariance matrix for 13 

p 	number of parameters, dimension of 13. (e,a) 

P(*) 	generic symbol for probability density function 

Q 	steady state covariance of z" 

QS  
posterior covariance; Q13  = E .Q, 

w 0 

q (a) p(VW); q, q': dummy suffix 

Re{.} real part of 

✓ dimension of input (uk) 

S Laplace operator; jW 

S 	complex conjugate of s 

s
k 	

A-parameter sensitivities 

T 	as a superscript: transpose 

t
k 	

B parameter sensitivities; t: dummy suffix 

uk 	
input at time k - dimension r 

u 
T T 

(u1,...uN) 

uk 	
(uk)2, 

W symmetric PD weighting matrix 

xk 	state vector at time k - dimension n 

Yk 	
conditional mean 

Yk 	
output vector at time k - dimension m 

system transfer function 

zk 	
sensitivity state vector; also 

z 	unit shift operator; ej
co  

a 	parameters in A, B, C, D and K 

full parameter vector 

maximum likelihood estimate 

• 
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prior mean 

posterior mean 

weighting matrix (3.2.14) 

initial conditions 

w 	a measure assigning all the power to w 

E
k 	

noise sequence 

n 
	a measure E 

parameters in a and y 

Oi 	i
th 

component of 0 or generalised polar coordinate 

A 	set of all possible frequencies, w (design space) 

A 	Lagrange multiplier 

U 	noise variance (scalar) 

a measure 

set of all measures defined on the Borel field generated by the 
open sets of A 

E 	noise covariance 

0 
	parameters in E 

noise spectral density 

(1)(,n) directional derivative 

(I)  derivative of J 	M' 

X 	x
T
x = E 

noise transfer function 

space of all possible innovations sequences, {wk} 

radian frequency; vector of innovations 

wk 	innovations at time k 

th 
(*) i 	i 	component of -; also (.).. 13 

{.
k
} sequence 

as a superscript - optimal path or complex conjugate transpose 

end of proof or current discussion 

1. 1 	modulus 
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CHAPTER 2 

Background 

1. Introduction  
t 

In this chapter the problem of identification experiment design 

is briefly discussed. For details of various identification methods 

the reader is referred to the survey papers by Astrom and Eykhoff, 

[43], [44]. A survey of applications of identification in physical 

and chemical processes is given by Gustaysson [42]. This latter.  

paper and that of Bohlin [40], present general experiment design 

principles. This is also the topic of section 2 of this chapter. 

In section 3, various techniques for optimal test signal design 

are discussed. 

2. Design of Identification Experiments - Some General Considerations  

It is generally true that efficient experiments for dynamic 

system identification can only be designed if the system dynamics and 

disturbance characteristics are fairly well known. It is also true 

that the experiment should be designed with the ultimate purpose in 

mind. The first two steps of the design should be: 

(a) Specify the purpose of the experiment. For example to 

design a control strategy, to build a simulator, or just to gain 

knowledge about the process. 

(b) Perform a physical analysis on those parts of the process 

and disturbances which are relevant to the purpose. If possible 
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perform simple preliminary experiments to determine gross characteristics 

of the process and disturbances. 

• 

Steps (a) and (b) are possibly the most important aspects of 

experiment design. A good knowledge of the physics of the process is 

not only essential for designing an experiment but also for inter-

pretation of the results. The remaining steps of the design are: 

(c) Choose variables. That is, choose the inputs and outputs 

to be measured. This choice depends on the purpose of the 

experiment, for example, for control purposes the inputs and outputs 

should be the same as those used by the controller. In general, it 

is advisable to measure as many variables as possible, as the purpose 

of the experiment may change after preliminary analysis of the data. 

In cases where it is uncertain whether a variable is an input or an 

output, it may be treated as an output and the model adjusted 

accordingly [42]. 

(d) Choose a class of model structures. This choice depends ' 

primarily on the purpose of the identification; for example, if the 

model is required to design a regulator, a linear model of a non-

linear process is often adequate. If, however, a controller valid 

over a wide range of operating conditions is desired, then the non-

linearities should be, included in the model. The results of the 

physical analysis also affect the choice of structure. Sometimes 

the model structure is well defined by this preliminary analysis and 

it only remains to find several undetermined parameters. Often, 

however, the model obtained from physical considerations is far too 

complex, and model reduction techniques or simulations have to be 
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used to obtain simpler models that are adequate for the purpose. The 

model structure must also be suitable for the identification method 

chosen. 

(e) Choose identification method. This choice depends basically 

on the cost involved in relation to the ultimate purpose. Sophisticated 

procedures which make use of prior information and estimate 

disturbance characteristics are generally much more expensive and 

difficult to use than the simpler, more restrictive methods. The 

choice also depends on the model structure chosen and on the form of 

the inputs, [42], [43], [44]. 

(f) Choose sampling rate. Most computer programs require the 

data to be in the form of samples equally spaced in time. Furthermore 

it is usually the case that the number of samples is limited due to 

the increased cost of analysis with large amounts of data. There is, 

therefore, the problem of choosing a suitable sampling rate. In 

practice this choice has not been found to be critical and the sampling 

period is usually chosen to be of the same order of magnitude as the 

smallest time constant of interest, [423, [46]. In order to prevent 
104 of Ciett, VA CV otie 40 CO flOC-44 ON of  pocw da-tet 

it is necessary in most cases to include an 

"aliasing filter" before the sampler [427. This is a low-pass filter 

with steep cut-off characteristics at half the sampling frequency. 

The problem of optimally choosing the sampling rate has been 

” 
investigated by Astrom , [45], and Zarrop, [50]. 

A disadvantage of equi-spaced samples is that it is difficult to 

find process characteristics over more than a few decades. 

overcome this, non-uniform sampling may be used but special 

identification procedures are necessary. The problem of optimally 
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placing non-uniform samples has been investigated by Goodwin and 

Zarrop [49]. 

(g) Specify the input. -  Whenever possible a perturbation signal 

should be introduced. The source of the perturbation should be 

independent of the process disturbances [40], [41]. The form of the 

input is often determined by the identification method. For example, 

pseudo-random binary sequences for cross-correlation methods [42]. 

For non-linear systems, the form of the input should approximate 

normal operating signals. The amplitude of the input should be as 

large as possible subject to constraints. Constraints may be. technical 

(non-linearities), economic (quality of output of process) or 

political. The frequency spectrum of the input should be chosen with 

reference to the characteristics of the the process and disturbances, 

and to the ultimate purpose of the experiment. Minimal properties of 

test signals are discussed by Astrom, [44], Staley and Yue, [51], Tse, 

[52], and Ljung, [54]. Simple and robust procedures for generating 

binary sequences whose properties are related to the estimation 

accuracy have been described by Keviczky [20], [21] and Arimoto and 

Kimura, [8]. The generation of random signals with prescribed, 

amplitude probability density function andP rescribed power density 

spectrum has been described by Veltman et al, [53], and Gujar and 

Kavanagh , [55]. Care must be taken when using deterministic signals 

with line spectra due to "confounding". For example it would be 

unwise to use a test signal with a component at 150 Hz in an 

environment containing third harmonic interference from power 

transformers, or to use a signal with one day period on a process 

that may depend on ambient temperatures. In the next section the 
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optimal choice of input is discussed. 

Problems that arise due to poor design of experiments and other 

reasons are discussed by Bohlin, [40], [41]. 

3. Optimal Design of Inputs  

The choice of optimal inputs for static systems has received a 

great deal of attention during the last fifteen years. (For example 

Kiefer and Wolfowitz, [331, Karlin and Studden, [34], Federov, [38] 

and Whittle, [56].) A linear (in the parameters) multiple input single 

output static system is described by equation (1): 

y.=0Tf(x.)-1- k. 	j = 1, 	N 
	

(1) 

where yj is the j
th observation and k1' 	N have zero mean, 

variance U, are uncorrelated with one another and are statistically 

independentofthex..The design of an experiment consists of 

choosingthevectorsx,
3 
 from a set of allowable inputs, X. From the 

correspondingobservations. 173,j = 1, 	N a minimum variance 

unbiased linear estimate, 0, of the parameters, 0, may be 'calculated 

and can be shown to have covariance matrix given by: 

cov(0)=U[P(x.)i2(‹.)]-1 

j=1 3 7 

N 
(2) 

The optimal design of the experiment thus consists of choice of xi, 

N  x from X, to maximise some scalar function of cov(0). Algorithms 

have been devised which converge to optimal designs, [38], [57]. 

Typical applications of this theory are in the design of reaction 
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experiments in chemistry where x is a vector of reagent concentrations 

and y the yield, or in the design of agricultural experiments where x 

might represent fertilizer composition and y the dry weight of the 

crop. 

Much less attention has been devoted to the design of optimal 

inputs for dynamic systems. 

Turin (1957, [39]) considers the design of optimal signals for 

the estimation of the weighting function of a linear system in the 

case that the estimate is obtained as a convolution of the system 

output (matched filter). 

Levin (1960, [1]) considers the same problem as Turin but uses 

a Markov estimator of the system weighting function. In the case of 

white output noise, the important result that an input with impulsive 

autocOrrelation is optimal with respect to several common optimality 

criteria, is obtained. 

Levadi (1966, [3]) considers a linear time varying system with 

non-stationary coloured output noise. (The time variations in both 

system and noise are known.) The system output is assumed to be 

linear in the parameters and.a Markov estimator is employed. 

Necessary conditions for optimality are obtained but no realization 

procedure is given. 

Aoki and Staley, [22], [23], [24], Nahi 	[12], Mehra, 

[9], Schmidt, [63] and Napjus, [25], [26] all use the trace of Fisher's 

information matrix (or slight variants) as an optimality criterion. 

This choice of cost function .leads to a standard quadratic performance 

index optimal control problem•to which numerical solutions may be found. 

However, as has been pointed out by Goodwin, [17], [37], Reid, [18] and 
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Tse [523, the use of the trace of the information matrix can lead to 

inputs with little engineering appeal. (In fact the optimal inputs 

obtained may not even be "persistently exciting" in the sense of [44], 

[7].) 

Goodwin (1970, [37], [16], [17]) treats the case of a general 

time varying, discrete-time, non-linear system with coloured non-

stationary output noise (known time variations). The trace of the 

inverse of Fisher's information matrix is used as an optimality 

criterion. Necessary conditions for optimality are derived and a 

realization algorithm capable of handling state inequality constraints 

is described. The algorithm solves the two point boundary value 

problem by a steepest descent method, and is able to handle moderately 

complex systems, but at the cost of very long computation times. 

Reid (1972, [18]), obtains results similar to Goodwin's for the 

linear continuous-time case. Reid's realizations algorithm generates 

a binary signal by searching on a fixed number of switching times. 

The algorithm appears to be limited to rather simple systems and 

inputs with few switches. 

Box and Jenkins, [11], and Minnich, [59] obtain interesting 

results.for simple first order linear models. Minnich shows that an 

optimal input for a first order, two parameter model with least 

squares structure is a first order autoregressive process. 

An approach which ignores the statistical aspects of the problem 

is the so-called "sensitivity approach". (Rault et al, [14], Inoue;  

et al, [13], Sawaragi et al, [19], Kalaba and Spingarn, [603.) 'If 

the system can be represented by 

y(t) = h(u(t) ,t,e) 	 (3) 
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• 

where u(t), y(t) are the input and output at time t and 0 is a vector 

of parameters, 0
T 
= (0l,...0), then the "sensitivity equations" are 

defined by: 

g
T
(t) - Dl(u(t),t,e)  ao 

where 0
0  is some nominal value of 0. The output sensitivity is 

usually measured by some scalar function of the matrix: 

G = fg(t)g
T
(t)dt 

0 

where T is the experiment time. If, in fact, there is white gaussian 

observation noise with variance a
2
, G can be interpreted as a2M where 

M is Fisher's information matrix. Litman and Huggins E23, follow, 

a related approach and find the optimal probing signal, within the 

space matched to that spanned by the elements of g(t), t E [0,00), 

for a simple two parameter system. 

A problem closely related to the problem of optimal input design 

for identification is that of optimally selecting probing signals, 

from a finite set of allowable signals, to determine which of a finite 

number of possible systems is in fact present. A multiple hypothesis test 

is used for the identification and the input is selected to optimise 

in some sense the power of the test. Details may be found in the 

papers by Smith, [10], Gagliardi, [41, Mosca, [611 and Eposito and 

Schumer, [62]. 

0.0o 
(4)  

(5)  
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4. Concluding Remarks  

In this chapter the engineering problems associated with the 

design of identification experiments have been briefly indicated. The 

problem of optimal input design has also been discussed and a short 

survey of relevant material has been presented. In the next chapter a 

more concise statement of the problem is given. 
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CHAPTER 3 

Bayesian Problem Statement 

1. 	Introduction  

As has been pointed out in chapter 2, efficient experiment design 

depends upon a knowledge of the characteristics of the system. In 

fact, as the problem is usually stated, optimal designs depend upon a 

complete knowledge of the system characteristics - a situation in which 

it is hardly necessary to perform an experiment! This point has been 

made by Box and Jenkins [11]. In this thesis the problem is reform-

ulated in a Bayesian framework which is shown to resolve the above 

paradox, [24], [25], [26]. There has been a good deal of controversy 

in statistical literature regarding the use of Bayesian methods due 

mainly to the subjective nature of choosing prior probability 

distributions. (See for example chapter 1 of [643.) The methods are, 

however, gaining in popularity, [65], and are finding acceptance in 

control engineering applications where the choice of prior distributions 

is often uncontroversial, [66]. 

In section 2 it is shown how Bayesian Decision theory may be 

employed to design experiments which are optimal with respect to the 

ultimate purpose of the experiment. In many cases, however, a concise 

mathematical statement of the purpose is not possible or is far too 

complicated. In these cases it is proposed to use an information 

measure. This will be discussed further in section 3. 

Design for structure determination is discussed in section 4 from 

both decision theoretic and information theoretic viewpoints. 

• 
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Examples of decision theoretic design criteria are given in 

appendices A and B. 

2. Decision Theoretic Design  

Optimal experiment designs which are independent of the system 

and noise parameters exist for simple classes of systems, [1], [38]. 

In general, however, this is not true for dynamic systems. Hence it 

is appropriate to adopt a Bayesian viewpoint and to express the prior 

knowledge regarding the parameters a E B as a probability distribution 

p(s). This prior information can be obtained from physical reasoning 

or a preliminary experiment. 

For any experiment, the posterior distribution p(a/w), summarises 

all the information contained in the data, w, and the prior distribution 

p(s). The posterior distribution is obtained from Bayes' Rule: 

P(a/w) - P(W/a)p(8) 
10(W) 

where 

P(w) = Ea EP(C0/13)3 = fp(to/a)p(a)da 

/P /w 
is a scaling factor which ensures that p(66-14) integrates to unity. 

The distribution p(w/a) of the data given the parameters is completely 

specified by the model structure and experimental conditions, E. 

When regarded as a function of a, p(w/a) is called the likelihood 

function of a for given w. 

In order to design an optimal experiment for parameter estimation, 

a measure of the return from the experiment is required. In principle, 

the measure should reflect the use to which the model will be put, 

(1)  

(2)  
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and, in general, will be a scalar function of the posterior distribution, 

p(8/w). Let va) = pWw). Then the cost associated with the density 

function p(./W) when the true parameter value is f3 is given by: 

s = s(qw(.),(3) 	 (3) 

For example s might be the output variance of a linear optimal 

regulator designed using p(./w) when the true parameter is 13. (See 

appendix A.) Thus after the experiment, a measure of the return from 

the experiment may be defined as: 

g = E 	Es(q
w 
 (-),)] 

where E 	denotes expectation over the distribution p(8/w). 

E
(3,/w E-3 
	f(-)p(13/w)(33 

B 

g is a function of qw(-) only. 

Before the experiment, the expected value of g is given by 

s =
w
Eg3 =

w
EE

fi/w
Es(g

w(.),B)13 

where EwE.) denotes expectation over p(W). From Bayes' rule, (1), it 

follows that: 

s = EA3WCs(q
W 
 (-),(3)3 = E

a 
EE
w/a Cs(qw  (') (3)]] 
	

(7) 

(4)  

(5)  

(6)  
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It can be seen that s depends upon the functional form of the likelihood 

function which in turn depends on the experimental conditions, E. Thus 

the experiment can be designed to minimise s, the expected cost before 

the experiment of using the data to be obtained from the experiment. 

In order to perform this minimisation it is preferable to have 

parametric forms for the likelihood function and posterior distributions. 

These are readily obtained by making use of the large sample properties 

of the likelihood function, [27], [477, viz.: subject to mild 

regularity conditions, the likelihood, p(w/(3) is asymptotically normal 

with mean and covariance M
I 
where M is Fisher's information matrix 

def-iited by;  et•e. 109 p(w715) is a- cra-AteA-44c -Po eh° ` of ys  ) ccv‘x 

alogp(wn) T  1.ogp(w/f3) 
M = E

wn  E 
	) ( 	of 	)) 

Also: 

E
a 
 = 

w 

For a normal prior distribution it is readily shown that the mean 
asy,i,1.+04.;cc,u1 

and covariance of the posterior distribution are given by: 

Vf3 = km 13 	 (10) 

and 

=vg+P;113 ) 

where T, 	are the mean and covariance respectively of the prior 

distribution, p(S). Equations (10) and (11) are true for large 

(8)  

(9)  

41 
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samples even in the case where p(13) is not normal, provided p(s) is 

well behaved, [68]. Since a normal distribution is completely 

described by its mean and covariance, (7) may be written as: 

A 
s = E 	[s(a,Q'a,a)] 
	

(12) 

A theorem that allows s to be implemented as a design criterion is 

now stated and proved: 

Theorem 1: For experiment designs based on the first and second 

moments of the prior and posterior distribution functions, and for 

large samples, the following design criteria are equivalent: 

	

(1) 	J
1 
 = s = Eto,13 [s(0,Q0)] 
	

(13) 

where s is a function such that the first and second derivatives of s 

with respect to R and 3, and the first derivative with respect to Q$  

exist, and that: 

r — 	+ 1- a2s  ^2 
a a 2  

is positive semi-definite (PSD). 

	

(ii) 	J2 = trace cr 

where 

51r(3  = EwQ0 	 (16) 

(14)  

(15)  
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A 

Proof: Expand s(0,Q(3 ,(i) in a Taylor series about the prior mean Tand 

covariance Pf3: 

s(0,Q 0) = 	70) +4(4 + 	trace[22—(Q -P )3 0' 	0' 	DO 	a a a Q13  

2 , 1 " — To s — 
+ -0-13) 	0) 2 	g2 

2 
+ P5 

ga 

-,,Ta2s — 
+ 	—(0 	+ ••• 2 DO2 

E 	[5(0 Q131 0)3 = s(6 P 	+ trace0=1—( i -P )3 aQ 

1 a
^2

2s—  1 a2
s + — traceE 

Q13  3 +-2  traceE—P 3 2 

	

	^ 313 

ra2s n + traceL 
aaB P  

1 traceC--  a2s 11 
asP 

a2s la2s la
2
s as = 	+ 	 7--ip,] 

a0a8 as' 2  Da'Qa 

,2 as 	19 -Q )Q trace[(Tii3--+ 2 ar3,2 

(17) 

where the derivatives are evaluated at 6, P. P
AP  The high order terms 

depend only on moments of third order and higher and may, therefore, 

be neglected since only first and second moments are of interest. 

• • • 
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Equations (15) and (17) are therefore equivalent apart from an additive 

constant. The theorem is proved. 

To proceed further it is necessary to specify the model structure 

describing p(wM. In the next chapter, the criterion, J
2 

= trace CI 'QS]  

is used to design optimal inputs for the class of linear time 

invariant dynamic systems with stationary disturbances. 

3. 	Information Theoretic Design  

The Bayesian decision theoretic approach to experiment design 

described in section 2 is conceptually very pleasing, but unfortunately 

there are many cases where it is difficult or impossible to implement. 

The major problem is in describing the ultimate purpose of the 

experiment in a suitable mathematical form. For example, if the 

purpose is just to gain knowledge about the process, there is no 

obvious mathematical statement of the ultimate purpose. Thus, there 

exists the need for a measure of the return from an experiment which 

does not depend directly upon the ultimate purpose, but which does 

indicate how "good" the experiment is in some well defined sense. 

A suitable measure for this purpose is the average information 

increment provided by an experiment as defined by Lindley C68). This 

quantity is now defined: 

Definition 2:  The amount of information provided by the experiment, 

e, with prior knowledge p()3), is 

1(e,p(- ) ) = Ewal(w)-/03 	 (1) 
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where 11(w) is the amount of information about 13 contained in the 

posterior distribution and is defined by: 

1(w) = fPWw)logPO/w)dr3 
B 

and 10  is the prior information defined as: 

1o = fP(i3)10gp(13)d0 

1(e,p(-)) is called the average information increment for the 

experiment, e, with prior distribution p(). It has also been called 

the mutual information between parameters and data, [8], and the 

sensor channel transmittance, [70]. 

An optimal experiment, C*, may now be defined by: 

	

I(6*.P(*)) > 1(6,P(*)) 	V 6 
	

(4) 

If p(13) and p(Uto) are assumed to be normal with covariances P(3  

and Qo  respectively, it is possible to obtain an expression for 

1(c,p(.)) in terms of these covariances. 

Result 1  

10 2 
1 

= 	logdet[P 1] - 	log(2ire) 2 —P 	 (5) 

( 2 ) 

( 3 ) 

where p is the dimension of 3. 
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111 

Proof:  From (3) 

0 	2 = 	Elog ( 270+ -1-logdet[P13 	21] 1(3 -) TP ( 	p ( ) cl[3 

1   • logdet [P 13- -log (2T1)--t 1 race[P,1  .E [ (13-43) 	T 3) a 2 	2 

1 • —logdetEP 1  2log 	—ID  (27r)- 2 	 2 

Result 2: 

(w) = 2logdet [Q
:1 	

log (271i) 	(6) 

Proof: 

Follows immediately from (2) and (5) by analogy. 

Result 3: 

r (6 rID ( • ) ) = 1co [ logdet [PP. Q13 11 2  (7) 

Proof: 

From (1), (5) and (6). 

As was discussed in section 2, the assumption of normality of 

p(12./W) is realistic for large samples. If p(13/w) is not normal then 

-the following inequality holds [701: 

1 (w) — 2 
2
logdet [12

13
1  ]- log (27e) 1  (a) 

so that (7) becomes: 
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I(E,p(-)) 	
2 

> —E
W 
 Clogdet[P

8  Q8  l
l] 
	

(9) 

Thus, use of the optimality criterion, J, defined by: 

J = E
w
ElogdetEP

8  Q
-1
]] 
	

(10) 

is sensible even in the case of non-normal posterior distribution. 

Non-normal prior distributions do not usually cause any concern, 

since, for long experiments, I1(w) dominates 10. 

In the next chapter it is shown how J defined in (10) may be 

used as an optimality criterion for linear systems. 

4. 	Design for Structure Determination  

In this section the results of sections 2 and 3 are extended 

to the case where there is the need to design an experiment to 

discriminate between alternative model structures. For simplicity, 

only the case of two alternative structures, H1  and H2, is 

considered. It is assumed that one of H1, 
H
2 
is the true structure 

and that the prior probabilities of H1, H2  are p(111), p(H2) 

respectively (P(H2) = 1-P(111)). 

Following section 2 define cost functions: 

Si = s.(g1(.), g
2 	

1 	i = 1, 2 	(1) 

where s. is the cost associated with posterior distributions: 
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, 
w(p1) = 1)1D(Ii /w) 

4w
2

(R2 
 ) = p (K2/w,H2)p(H2/W) 

when the true structure is H. with parameters Ri. After the 

experiment, the expected cost is: 

1 	2 

	

S 
= Yp(H,/wM 	Es. (q (-) q

w 
 (.),R.)] 

	

136 	. 1  w 	 1  i 	i 	1 

Before the experiment, the expected cost is: 

s 

- 

= E
w
g = E 

w
[7n(H./w)E 
 a: 

	

1 	1 

which, from Bayes' rule, gives: 

- r Es.(ci
1
(..),g 	13.J1 

2
(-), S 	 tp(H.)En 	FE. 

w 
i I 

In general, the use of s as a design criterion would be extremely 

complicated. However, as in section 2, it is possible to simplify 

the form of s 

- 

considerably by considering large samples and 

parametricformsofs„In appendix B an example illustrating a 

decision procedure for controller design is given. Even for the 

simple case considered, the problem of optimal experiment design is 

very complicated. 

The information theoretic approach of section 3 can also be 

extended by redefining the information [383: 

(2)  

(3)  

(4)  

(5)  

(6)  
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I = /P(Hi) P(0./H.)logp0.,H.)ciTh 0 	i 	a. 	a. B. 

1
11 
(W) = Xp(H./w)fp(13./H.,w)logp(13.,H./w)dai  

 B 

Inthecasewhere, 131  is known for i =. 1, 2, then the divergence, J, 

as defined by Kullback, [677 is also a suitable measure: 

p(Hi/w) 	P(H2/w) 
J(c.12,(-)) = EW/H 

Cloy 	
p( 	

]+E
H /w) 	w/H 	p(H1 /W) 
 2  

(9) 

The design of experiments to increase the power of commonly used 

experimental tests such as F-tests is also theoretically possible, 

although more work needs to be done in this area. A detailed 

discussion of the problem is given in [38]. 

5. Concluding Remarks  

In this chapter two alternative formulations of the experimental 

design problem have been given. Both formulations base the design on 

the information contained in the prior distributions of model structure 

and parameters. The decision theoretic approach assumes the existence 

of a scalar function of the experimental data related to the ultimate 

purpose of the experiment, and leads to a cost function of the form: 

J1 	0 
= E[tracerQ,) 	 (I) 

The information theoretic approach does not make use of a knowledge 

of ultimate purpose (except perhaps in the initial choice of 

structure and parameter set) and leads to the following cost: 

(7)  

(8)  



is Toe," asrfrk)4-icatly 	G J  (M t 	e civ 	C7.10)) 

Q 	 lect 	A44e "4-rae " 	 ,/ce,lve 	sa /hie s r  wt, ere 
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J
2 

= E[dett2,7 	 (2) 

This latter cost function has another interpretation as the expected 

volume of the posterior highest probability density region for (3. 

Other cost functions such as the expected value of the maximum eigen- 

value of42F8  (major diagonal of highest probability density ellipsoid) 

are possible but are not discussed further here. 

.6 	-kale 	,e-tse 	42* I^42.,C 	 et AC.a4ed 	1 ,̂  	(I )  et-4401 	ovey 	pe;o, 

ci(;14;6,41b,, 	
( 
	1,(13). 
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APPENDIX A 

An Example of Ultimate Model Use 

A simple first order linear system under minimum variance 

control is considered. • 

System Structure: 

Yk+1 = ayk buk Wk 
	 (1) 

where {Lid, 1171,1 are the input and output sequences respectively and 

{wk} is a sequence of independent identically distributed random 

variables having zero mean and variance U. 

Minimum Variance Control Law: 

(2) 

where (a,B) is the mean of the posterior distribution for (a,b). 

(The posterior covariance information has been discarded - see [48] 

for a general treatment.) 

Measure of Ultimate Model Performance: 

s() = s(a,B4O,a,b,U) 

= E
W/a,b,U xk+1 ) 
	

(3) 

Finally from (1) and (2) s((,13.) becomes: 
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U 
s(R,13) — 	ha 2 
	 (4) 

b 

The weighting matrix, r, may be readily evaluated from (4) and (2.14). 

APPENDIX B 

A Criterion for Structure Determination 

Firstly the (non-optimal) decision function is described for a 

simple minimum variance control application: 

Structure 1: 

H :y =011 4. 6 
1 	k 	1 k 	k 

where {6
k
} is a sequence of independent identically distributed 

random variables having zero mean and variance 132. 

Structure 2: 

H2 : yk = Olyk + 02uk 
+ w

k 

where {wk} is a sequence of independent identically distributed 

random variables having zero mean and variance 03. 

From analysis 'of a given finite set of data, {d}, the random 

variable 	has has posterior distribution (given Hi) with mean 

S 

(1)  

(2)  
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(8l
iR2) and covariance N. From the same set of data the random 

variable' (0
1
,0
2
,0
3
) has posterior distribution (given H2) with mean 

A A A 

(0
1
/0
2
,0
3
) and covariance R0. It is assumed that p(H

I
[(ca}) and 

p(H2/{d}) cannot be found with the analysis program available. 

Two controller structures are proposed, the parameters of which 

are based only on the posterior means of the parameters in the 

corresponding model structure: 

Controller 1: 

uk  = 0 	 (3) 

This is the minimum variance control law corresponding to H1. 

Controller 2: 

61 
- uk = 	Yk 
0
2
. 

This is the minimum variance control law corresponding to H2. 

Now the costs s„ associated with true structure i and 
ij 

controller j are calculated: 

s11(fR) = EE/f3
Eyk+1

]  

= 8
2 

s12(818) = E 
	Cy 

 
k+1 

(4)  

(5)  

(6) 

• 
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s21(0,R) = EWO  Ey 
 
k+1 

(7) 

s22(OA = EWOCyk+13 

03 

0201
32 

	

1-001 	
02 

The average risk of controller i is now'defined: 

— 1 
ri  = 2 iE 	

s (13) + E 

	

/td.r,H1 	0/{d},R2s2i(0)3  

which yields (neglecting moments of third order and higher): 

— 1  83  

	

11 	2 	 3^ Ro (1+301)I+ 	

2 

2R0 
011 

2 ' 
^ 

r = -{R I- 	{1+ 

	

1 2 ^2 	^2 j  

	

1-01 	(1-0
1) 	(1-61)  

11 el 2 

	

R2 	
3R, (7,7) 

r2  = 
 1 	02 	 , 

f1+ 	f 
2 2 

	

,,: 31 2 	1 2 
Clod (w-i3 	Cl+ j_(-;-,—) 1 

1 02  02 

el 
11 	121 	22 

61 2, 

	

83{1+R0 -2R 	+R 	.17 
02 0  02 

2 1 2R1, (7-.-) 
15  02  

'a 3 
E1+(3 (7--)3 

1 2  

(8)  

(9)  

(10)  

4 
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where R
i
,
j 
 and R

i
0
j 
refer to elements in R R

0 
 respectively. 

0 	 V  

The decision rule is: choose controller i  such  that r.=mi.n(r
l'r2). 

The experiment may now be designed to minimise the expected 

average risk or some other suitable criterion. In spite of the 

simplifying assumptions and the very simple model structures, it can 

be seen that this is far from trivial! 



A 
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CHAPTER 4 

Time Domain Designs 

1. 	Introduction  

In this chapter the problem of optimal input sequence design for 

linear discrete time systems with stationary disturbances is considered. 

In section 2 the "innovations" model of such systems is introduced and 

in sections 3 and 4, the likelihood function and Fisher's information 

matrix are derived. Several properties of the inforMation matrix which 

will prove to be useful for design purposes are stated and proved. 

In section 5, a method for computing the expected return from 

an experiment is presented. The method is based on first and/or 

second moments of the prior probability density function p(0). 

In section 6, a theorem on the equivalence of optimality criteria 

is stated and proved and is shown to lead to simplified designs. 

Necessary conditions for optimality are also stated and proved via 

the Minimum Principle, for both energy and amplitude constraints. It 

is further shown that an optimal amplitude constrained input is 

binary. 

In section 7, a general design algorithm based on the necessary 

conditions for optimality is described. A theorem which leads to 

simplification of energy constrained designs is stated and proved. 

Section 8 contains a discussion on the computational aspects of the 

algorithm and it is shown that significant simplifications can be 

obtained by exploiting the structure of the sensitivity equations. 

In section 9 it is shown that even greater simplifications are 

possible for single output systems. Several examples of optimal 

• 	 designs obtained using these algorithms are given in the appendices. 



- 4.2 - 	 38. 

2. 	Model Structure  

The model considered is for a system having r-dimensional control 

input sequence, {Ilk}, and M-dimensional output sequence, 
{yk}. 

 The 

output (with no control input) has spectral density 0(z), assumed to 

be rational, having full rank and no poles on the unit circle. 

Youla , [29], has shown that there exists a factorisation of 0(z) such 

that 

O(z) = T(z)ETT(z-1) 	 (1) 

where T and T
1 
are stable. The spectral density given in (1) can 

be realized by the following noise model: 

yk = T(z)2,k 
	 (2) 

where {St
k
} is a sequence of zero mean, m-dimensional independent 

random variables having covariance E. The complete model is thus: 

yk  = Z(z)uk 	111(z)Zk 	 (3) 

where Z(z) is the rational transfer function from input to output. 

(Note: z may be interpreted either as the unit shift operator: 

zxk=xk-F1' e.g. (2) and (3) , or as z=eyo as in (1).) . The transfer 

function model, (3), has a minimal n-state space representation of 

the form: 
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xk}l  = Axk  Buk  Kkk 

yk  = Cxk 	kk  

x1  = 

where both A and A-KC are stable (i.e. have eigenvalues with negative 

real parts). See for example [713. 

This is a general model for a linear time invariant discrete 

dynamic system and ,inoludes the special canonical structures 

proposed, for example, by Mayne, [30], and'Caines, [313. 

3. The Likelihood Function  

For the purpose of constructing the likelihood function, the 

noise sequence, {kk,k=1,...,N}, is assumed to be normally distributed. 

That is, the joint probability distribution of ki,...,kN  is of the form: 

N - 	N 
p(R. 1,...,tN1= ((2700i detE) 

2  expt -- 	x
T 
--1 

k
k
y  (1) 

k=1 

Now equations (2.4), (2.5) and (2.6) may be rewritten in the form: 

y = Ek Fx1  Gu 
	

(2) 

T 	T T T TT 
where y = (y ...,yN), Q = (2, 	N) and E, F, G, are NmXNth, Nmxn 

and NmxNr matrices respectively and may be derived from (2.4)-(2.6). 

The important thing to note however, is that the diagonal elements of 

E are unity and that all elements above the diagonal of E are zero. 

Thus the Jacobian of the transformation from k to y given by (2) is 

det E = 1 and it can be shown that: 

R 
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N 
- — 	N 

r 1 r 	— T 	-- 
P(y/u,f3) = ((271) d 	

2 
etz) 	expl- —2 

L (y
k
-y
k
) E-1  (y

k
-y
k
)j (3) 

k=1 

where yk, the conditional mean given 	is given by: 

y
k- 
= ; + Duk 
	 (4) 

xk+1

- 

	=Axk Buk + x k) 
	

(5) 

x 

- 

=y 

and 

, T 	T,
) 
 T 

u = ul 	uN  

Thus the likelihood function for P, is given by 

y T- lik(Vu,y) = ((27) :detE) 2  expt--  1 	wL-1  wl 2k=1 k 	k 

where the innovations sequence {wk}, [74], is given by: 

wk = yk - yk , 
k = 1, 	N 

The sequence {wk,k=1,...,N} is a sequence of independent 

normally distributed random Variables with joint distribution: 

_N N T -1 
L p(w5) = ((27)111detE) 9 

	1 
L WkE Wk} 
k=1 

(6)  

(7)  

(8)  

(9)  

(10)  

where: 
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w = (w
1n 

T 
)
T 

 

Comparison of (8) and (10) yields: 

lik(O/u,y) = p(w/f3) 	 (12) 

This ties in with the notation used for the likelihood function 

throughout the rest of this thesis. 

4. Fisher's Information Matrix 

Fisher's information matrix, M, is defined by: 

Iv = E 	r( 	) ( 	* 	) 3 
wg 	08 

Dlogn(wn)  T 3logo(wa) 	
(1) 

where the likelihood function for 13, p(w/0), is given by (3.10) and 

EW/f3 [-] is the mathematical expectation defined by: 

Ew/8 C•1 = f(•)p(u)/13)do.) 
	

(2) 

11 is the space of all w defined by (2.9), (2.4)-(2.6). 

For the purposes of calculating the derivatives indicated in (1), 

the following partition of [3 is considered: 

T 
= (0

T
,aT) 
	

(3) 
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where 0 is taken to be that part of which contains elements of A, B, 

K,C,D and y, and CY is the vector of elements of E. Thus M may be 

partitioned in an obvious manner: 

 
M00 

m 
 Oa 

T maa 
I- 

To obtain expressions for the submattices in (4), the following 

lemmas will prove useful: 

Lemma 1: 

For any random variables X, Y, and Z with k independent of X and 

Z, it is true that: 

E[A(X)B(Y)C(2)1=E[A(X)E[B(r)]C(Z)] 	(5) 

where A, B, C are , _matrix functions of X, Y, Z respectively. 

Proof: 

th
j  The i 	element of EIABC] denoted d..ij

, is given by; 

d..
13 	I 

= 	IE[a. ,(A)b P , q (Y)c 
q3
.(Z)] 

1P  P q 

= 
Pig 
YE[a. (X)c

qj  (Z)]Erbpl c/  '(Y)] .1p.  
 

since Y is independent of X and Z. Thus dij 
 is also the ij

th  term 

of E[A EIBJC]. 

M = (4) 

0 
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Lemma 2: 

The random variables wk, k = 1, ...N, defined by1(3.9).aie functions 
Dwk 

of 0 and have derivatives — which are independent of w for all t 

greater than or equal to k. 

Proof: 

Equations (3.9) and (3.4) - (3.6) may be rewritten in the form: 

wk  = yk  Cxk  - Du
k 
	 (6) 

xk+1 = Axk  Buk  + KWk 
	 (7) 

xl = (8) 

It is obvious that wy depends on 0 (the elements of A, B, K, C, D, y) 

and the derivatives 
D—e'
—  may be obtained by differentiating (6) - (8). 

570  .—c ae. 	xk 	30.  uk  
Dwk x3c DC 	aD 

1 	1 
	 (9) 

Dx
k+1  - 	k (DA 

	K -
DC x

lc 	
aB 

K-
1) )11 + 	W DO. 	

i 
aoi 	DO. 	DO. DO. 	DO. k 

ax 	ay 
	 (10) 

DO. — DO. 1 	a. 

Now, from (7), it can be seen that xk 
depends only on w

2. 
 for 2, < k 

Dx 
and similarly from (10) 3-

h
0. 

--depends only on w
2, 	

2, for 	< k. 
2. 

Result 1: 

(12) 
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Proof: 

Differentiating the log of (3.10) with respect to 01  yields: 

alogp(wa)CNC T -1 
3w
k 

@O - w
k
E 

30. . 1 	k=1 	1 

Thus, from (1): 

N  
(M 	

3w
k T -1 	T -1 ato 00),. =  13 	wa 

k=1 
 ao 	k

Z=1 	
Y), i 

N-1 N 	w
k  -1 -1 2, = 	y E /a E(75)TE w wT  E 

k=1 °=k4-1 w" 	
k t 	30 

N-1 N 

w/a 
, 3wk T -1 T -1 9w , E 	
30 	wkwtE (-07).1 

	

t=1 k=t+1 	3 

N 	
aWk T -1 T -1 Du)k 

E 	E -w w E Y) w/f3 90. 	k k  k=1 	3 

&I)k 	 h3k = 0 0 	Ew/T 
De 	E

-1 
(557)] 

	

k=1 	3 

where lemmas 1 and 2 together with the results: 

T„ 
Ewa[cok = 0 ; E LWk  Wk  = L 

0 

(13)  

(14)  

have been used. 

• 
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Result 2: 

The ij th element of M a is given by: a 

(Macs )13 . = 4{(E
- 

) pp  (E 1) 	, 	a 	
Pq 

, (E 	P- , q  1 	
(15) 

	

where 6i  corresponds to (E) 	and G corresponds to (E) 
Pq 	 wqw- 

Proof:  

Differentiating the log of (3.10) with respect to a. = (E) Pq 
yields: 

DlogP (coM 	N 	1 -1 	T -1 ( -1 E) 	+ —(E ( y  w w )E ) 
@C. 	2' 	pq 	2 	k k 	Pq 1 	 k=1 

Taking 6,3 
 to be the pr q'

th 
elements of E it follows from (1) that: 

mm —1) 	y  
(m
a 	

(.0s(
kt

(E71)
tq 

	

+ 	ps
k=1 

0, 
u ) 	= E

n
Cf- (E J 	w 	2 	Pq 2 s=1t=1 

m 
N 	

m 
-1 	r  

	

(E )pici .1--2 	L 	
—1 )(w ) 	(w ) 	

-1
) 	17 p's' 	k s 	k t' 	t'q' 

s'=1t1 =1 

2 N - 	N
2 

= 	
1 ) 
	(E

-1
) p ,q,-T -(L ) 	(E 

Pq 	 Pq pT q f 

mm in m 

4 G y 	Ps  (E 	tq (E
-1
) „

-1
).t,q, 

s=lt=is =1t' =1 

N-1 N 

" I  X 	X Ew/f3E (wk) s (wk) t ( w2, )  s. (wt )  
k=lk=k4.1 

N-1 N 
+ X 	Ew/i3 E (wk ) s  (Wk ) t  (wk) s, (03k) t, 3+ 	Ew5E (wk ) s  (cok ) (cok ) s  (wk ) t ,31 
Q=1k= +1 	 k=1 

2 -1 	-1 	(N
4

2-N) -1 
= 	(E ) 	),+ 	(E ) pg a 1) 

Pq 	
pig, 

(16) 

0 
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a • .31
s=it=isi=it..1 
yy 	y 	(E - tq -1) 	(Ep,s, 	)t.q,f(E)stms.t, Ps -  

+ (Z)ss,(E)tt'+(E)st'(E)ts'}  

N -1 	N -1 

	

= - 	 ) 	(E  1) 
p ,q, 

 _F.__
4 

(E  ) 	1) 	+ a  1) 	a  1) 	+ a  1) 	a  1)  
Pq 	 Pq 	plql 	PA' 	pq, 

	

. 4 
	PP' 

114(E-1) 	(E-1) qqi+(E-1) 	(E-l)p,(11 

where again lemmas 1 and 2 together with (14) have been used. 

Result 3: 

m m 
I  ,) (E-1) 

MC)C1 = 0 
	

(17) 

Proof: 

th 

	

From (13), (16) and (1), the i j 	element of M
00 

 is: 

N 	-1 
(mw ) 	= Ewa 	( 30

k
.  ) 

T -1 LOkf- 
 N 
(z)

Pqij 	 k=1 

T rki, 	
N 

  
+ —2 L L (E

-1 
 ) is  X (wt s 	t ) (wn) (E 1)tj 

1] 
s=lt=1 	t=1 

u] 
1 	 T -1 C r 	-1 	-1 	r r 	L r 

N-1 ,N 	D 
= 0+ L L (E 	is  (E ) tit L 	Ewa  E 	E Wk  (wt) s  

s=lt=1 	k=l2=k+1 

N-1 N(Alk T - 
+nx EW/ (—) 1Wk  
k 	

(Wt) s(C0z) t] 
lk=t+1 

Du)
k T + 	E 	-1 

w (w) (w ) ]1  
k=1 w/0 aoi 	k ks kt 

T T -1 	-1 . 	L a )isa ) 	0+0+0} 
s=it=1 	t 1 j 

where lemmas 1 and 2 together with the additional result: 
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Ea
w[(wk )

i 
 (W
k  )j 

 (w
k  )k 

 = 0 for all i, j, k, k 

(which is a result of the normality of W) have been used. 

A further partition of 13 is now considered: 

• 

• 13 = (a
T 
 ,y
T 
 ,a
T 

 ) 

where a.contains elements of A, B, K, C, D; y is the initial state 

vector and ci contains elements of E as in (3). The partition of 13, 

(19), corresponds to a partition of 0: 

T 
(a
T
,y
T
) 
	

(20) 

and the matrix M
00 

 may therefore be partitioned in an obvious way: 

M 	M 
as 	ay 

(21) 

M 	M 
ay 

Result 4: 

The limits as N approaches infinity of the submatrices M 
YY 

and M
ay 

 are finite. 

0 	Proof: 

The elements of 
a  M
ay  and M

YY 
 are readily obtained by substituting 
 

the expressions for ---- obtained from (9) - (11) into (12). For this 
30i  

case,however,where0.=1 , say, the equations (9) - (11) may be 

written as: 

(19) 
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aW
k 	

aX
k 

C 
ay 

	aYq 
 

ay 

ax
k+1 	ax

k 
= (A-KC) 

ay 

ax
1 ay  

aYq ayq 

Now, since (A-KC) has eigenvalues with negative real parts, [713, and 
aw
k 

since 
ae. 

 is bounded for bounded y, uk, the result follows from the 

r 
convergence of the series Le

-bk 
 cos(Vk+) for arbitrary V, (I) and 

k 
positive b. 

Result 5: 

The information matrix M, may be expressed as the sum of a matrix 

M
u depending on 

the input and a matrix M
c 
independent of the input. 

Proof: 

It is immediately obvious that M 	is independent of the input. 
GU 

Further, by superposition, equations (6) - (11) may be rewritten as: 

3w 	aw' 	aw" 

ae. 	ao. i 	1 	1 
(22) 

where 

	

aw' 	x' 
k 

	

 
@O. 

- 	C 
3
k 	ac

e . 3k
, 	

a0 .1c 	
(23) 

	

i 	i 	i 	i 

	

)(1'c+1 	
ax' 

	

k 	aA 	ac 	aB 	ap 

	

ae, 	
— (A-KC) -a(-5-:- 4- q(57 	K TTi xii(  4. (ae. 	

-RT.-) Uk 

	

1 	1 	x 	1 	I 	i 
(24) 

x1  
k aY 	 (25) 

	

1 	1 



• 
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x;c1.1  = A)c + Bu
k 

xl = y 

and 
Dcc 	axk 

Dc 

aoi = C  aoi 	ae. xk 

3x"k 	3x" +1  = (A-KC) 	k 	@A + ( 30. 	@O. 	'38i 1  

3x" 

Be. - 0 

+1 = Ax + Kw, k 	K 

x"1  = 0 

Thus, from (12) and (22): 

- 49. 

(26)  

(27)  

(28)  

K 3K 
wk (29)  ae. x" + 

k 

(30)  

(31)  

(32)  

(1400)i3. 
N 	3(13 1 	@co' 

	

k T -1 k 	N 	awe 	De k T -1 k = 	E E(--) E (---)3 + X Econ1W E %)3 

	

wn @O. 	@O. k=1 	1 	3 	k=4 	1 	j 

N 	am" 	3w' 	N wk T -1 k 
+ Z Ewa[(57T) E (70] + X Ewn,[(;;ITE714] 
k=1 	1 	3 	k=1 	i 	3 

Since {uk} and {wk} are independent it follows that: 

M'  0 fl 

(33) 
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where 

3w' aWk T -1 k ] 

	

(M')= 	) E (TV 
k=1 i 

N 	awn 

	

1411 = 
	-1 &13k 

( 
k=1

E 
 413[ (a°.)E (5C-03  

3 

Since M" is independent of {uk}, the result is proved. 

Result 6: 

The matrices Mu 
depending on the input and mc independent of the 

input may be written as 

M
u 
= N 

M c 

_., 	I ' 	0 1 	I _ 	1 .1 
-- 	- 

	

NM 
BDCA 	1 01—M 

I 	; 	1 o 	, , 	Q 	, 	0 	; 
.._ 	_ 	_ 	_.. 	__ 	.... 

1 	T 	t 
— M 	0 N 	ay 	r 

0 	0 	0 	i 	0 
L 

I 	1 	0  0 0 	 I 
■ 	
0! 

1 
1 	1  1  

I 	I 
0 	i 

- -r 	M 	I 

	

CAK 	I 	1 
0 	 I 	0 	1  

r 
0 	! 	o 	, 	0 1 m 	: 

	

_ _ _ I_ _ _f _ _ _ I 	-Yi 1 
i 	i 	r 

0 	i 	0 	t 	0 1 	0 ; 
I 

. 
1 	0 

; 	- 
t 	0 

*0 

r 	0 

0 

0 

0 

0 
- - - 

M 
MI 

. 

( 36 ) 

where the partitions correspond to the partition of symbolised by 

E B, DI C, A; Ki y; a] or a - [ B, D; C, A ] 

Proof: 

(i) The form of M
u follows from (33), (21) and the fact that 

awl 

30 ----= 0 for 0, = an element of K. . 

(34)  

(35)  
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(ii) The form of Mc follows from (33) and the facts that Myy  

is independent of {uk} and that 	- 0 for ei  an element of B or 

D. 

Result 7: 

As. N approaches infinity4Mu  may be written as: 

N BDCA 

0 o i 	o 

0 0 0 

i;r1 
rn M = 0 O 0 0 ' 0 (37) 

Oja 00 N U 11,30  

0 0 0 0 t 0 

0 I  O c 

Proof: 

The result follows immediately from result 4, i.e. that M is ay 
1 

finite so that --M tends to zero as N tends to infinity. 
N ay 

5. 	Optimality Criterion  

It was shown in chapter 3 that suitable criteria for optimality 

are: 

(a)  J = E flogdet(Mn+P)
-1 

 J 
, 

1 	0 

(b) J
2 
= E[traceIrKMni-i)-1)] 

(1)  

(2)  

where 	denotes M evaluated at (3, P = P13  , and 	denotes expectation 

over the prior distribution p(M. 
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Definition: 

A sequence  fad which minimises J. is said to be  J.-optimal, 

i = 1, 2. 

The evaluation of either J1 or J2 poses a problem in general 

due to the expectation which involves integration over a p-dimensional 

space. A common approach to this type of problem is to use a discrete 

approximation for the prior distribution so that integration is 

replaced by summation, £283. This can, however, lead to a prohibitively 

large number of calculations, even for small systems and with coarse 

quantization of the prior distribution, [723. An alternative approach 

using only first and second moments of the prior distribution is now 

proposed. 

From Taylor's Formula: 

'A" logdet(M,+P)-1  = logdet(M +P)-1 - 	trace-UM -FP)-1 
m,  

i=1 

1 P P + -2- X 	X Etrace{(M +P)-1 	
AM}  

j 
5-0m tP) 

i=1 j=1 	1 0 , 

-  a2M  +tracel,(m +Pl 1313 n  13 (0i-Ti) (8j-3j) 
i j 

(3) 

and 

Trace{r(m 	-14P) } = trace{f (M +P) -1, 

trace{(M +P)-1r(M +P)-1  aM ' k0.-0i) i=1 	ni  

	

P P
C- 
	-1 aM 	-1 am, + 	 .[trace{(M +P) 1r(m +P) ao  (mj-p) 30 j- 

	

i=1j=1 	 Pi 13 	3 

trace{(m—  +P) 
-1  DM  (m

7 
 4 

 
p) ir(m

1 
 FP)-1 a 
  

 f 
0 	3 
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2 
-1 M  + tracef(M +P)

-1 	
+P) 	1) (P, 	(13. —r.) at3.313 	i 3 

J 
3 

(4) 

Taking expectations as indicated in (1) and (2) and neglecting high 

order terms in (3) and (4) leads to: 

1 J = logdet(M +P)-1  -t + racefV
1  P 1 2  

1 J2 = tracefr(M +P) -1,  
s + -tracefV

2P1 2 

where 

(V1)i3 = tracef(M +P)-14-(m_tP)-14 3 	(7) 3 	j 

and 

3 
cv)ij 	tracef(M +P)-inm 44:1)-4 mt. .-.-1  am 	am 	-1 am 

13- 	Lafs.'",') 	V.-(M +P)  TT: i 	3 	3 -1-3- i 

aaa13. 
D
2m 	

(8) 

Thus, it can be seen, from equations (5)-(8) that an approximation 

to J
1 
and J2 based on first and second moments of p(0), can be obtained 

from the information matrix and its first and second derivatives with 

respect to 0 (all evaluated at the prior mean IT). Expressions for 

these derivatives are now obtained for the case f3i  (xi. (For simplicity 

of exposition y is assumed to be zero and U(E) is assumed to be known.) 

Differentiatingtheexpressionfor(m)..
13  given by (4.12) and using the 

fact that the third moments of p(w/0) are zero for Gaussian w leads to: 

(5)  

(6)  

at 
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• 

	

D(M).. 	N 

	

13 	
32w

k 
)
T
E
-1(&1.1k) 

 + (

awk

)
T
E
-1

( 

a2w
k  

E 	 )J (9) 
52, 	k=1 

W5 aokaoi 	poi 	3 yoj  

and 
a. (m).. 	N 	:a3

w 	
aw 	aw 

13 	k 	
)TE-1( 

k
) + ( 

k
)
T
E
-1

( 

a3
Wk  

a 	
- 	

co/ [( aaao
q

afe,
i 	pa. 	ao. 	aoaaao

j
) 

q k=1 	3 

a
2
w
k 

)
TE-1 

a2w 	a
2
w
k  T -1  a

2
w
k  k  

38 	(a a0 	(a8 	E cap, aa.)) (10) 
k 	q D 	q 	3 

Thederivativesofw.are obtained from the following sets of equations: 

x
k+1 

= Ax
k 

+ Bu
k 

+ Kw
k 	

(11) 

x
1 
= 0 	 (12) 

ax 
k+1 

 - (1<
ax
k 	aA 	ac 

A-c)— 	K }x 
30i 	aoi  3(3 k 

,as 	aK 
+ 	K + 

k ni  k 

ax1 
ail 

— 0 

2 	

axk 
a2x x

k+1 	k 
 {aoi ac aK = (A-KC) 	+1---- K 	C) ---- 

ao.ao. 	aoiaoj  aoi  aoi  aoi  aoj  1 3 

ax
k Dc 

+ 	K 	cl 
ao 	ao., 	aoi  

J 

2x1  
n.a0.- 0 

(13)  

(14)  

(15)  

(16)  

• 
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p3x
k  	- (A-KC) 

nining 	nining  

a2 
fDA 	K  ac 	alc 	xk  .1 _ 

	

Lai 
	

ail 	' ning  

+ 
La  
f 	

K 	: ,
c} 

a:: 

	

aA 	:

lki . 

	

(33 	3  

3
2
xk  

	

DA 	ac 	aK Cl + {-- K  
a.a. 

	

3 q 	98q  nq 	l3 1 f3 3 

a
3x1  

as,n .n - ° i j q 

Dwk ac 	Dxk aD 
as — Fif:- xk - c  as 	as 5c: Ilk a. 

	

Dx 	D 2xk  D2tok 	ac 	k _ 	 C 	 
38.38. 	30. .38. 	nini  3. j 	i 3 

2 a3 w
k'DC 

32xk 	DC 
D2xk 	

ac 
 D xk  

38.30.38 - 	as aVal3 	38. D8.90 	38 n.30. 
i 3 q 	i 	 q 	' 3 	iq 	q 	3 

33xk 

The "sensitivity equations", (11)-(18) can now be combined into a 

single state equation as follows: 

zk+1 = Fzk + Guk + Lwk 

z1 = 0 

where T Dxk 	D2xT T 
T 	r  T 	k 	33x 

- k  zk  = ock,".a0i...,...3B.u.".,...u3" ...] 
i 3 	i 3 q 

(24) 

C D13 3 q 

(17)  

(18)  

(19)  

(20)  

(21)  

(22)  

(23)  

• 
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The form of the matrices F, G and L follow immediately from equations 

(13), (15) and (17). The derivatives of 6.)
k given in (19), (20) and 

(21) can now be expressed as: 

3w
k(1) 	aD 

Tfc:  = Hi  zk  - 	uk  

2w
(2) 

	 - Hij  zk  
J 

a3w. 	(3) H. . z 

	

pf3.aa.ai3 	
13q  k 

1 	q  

(3 	13
(3 ) 	, 

	

wherematricesH(1) 	
1 	

follow from equations (19) ,,(20) and q  

(21). 

The expressions for the first and second derivatives of M given 

in (9) and (10) may now be written as: 

04) . 	N 
r v. Tr  (1) 	(1) 3]  a i3  - E -1. L  z i.R. . z -S..„u 3f3st 	w/B 	k 13i k 13X k 
k=1 

a  (4) ii  T (2) ..s(2) 
n 	 - EwipTE zkER iitek iizquk]] 

	

k 	k=1 

where 

(1) 	(2)Ti..-1 (1)T,-1 
R 	=HHLH (2) 

tj i32, 	Li 	.j 

(1) (2)T -1 a) 	(2)T )T  -1 an  
SijQ = 	03

H
2 3 	op i  

(2) (3)T--1 (1) 	(1)T -1 (3) 
R 	= H .. 	. L H. 	+ H. 
13 	kcil 	3 	1 	lizqj 

(25)  

(26)  

(27)  

2 

(28)  

(29)  

(30)  

(31)  

(2)T -1 (2) 	(2)T--1 (2) + H
Li
ZH 	

+ 
 c13 	qa. (32) 
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S(2) = H (2) 	(3)T
E 
 -1 3D 

+ H
(3}T

E
-1 3D ,  

ijkia 	Qqi 	ash 	kg] 
(33) 

Note that, from equation (4.12) for M : 

N 
(M ).. 	E  _1 	EH(1)z 	3D 	3Tz-1 (1) 	3D 

" 	Wi  k=1 	k 	uk 	
zk  asp uk]] (34) 

To perform the expectation operations indicated in (28), (29) and 

(34) it is convenient to split zk into deterministic and stochastic 

components: 

z = z' + z" k k k 

where, from (22) and (23): 

' 	' z 	= Fz + u 
k+1 	k G k 

z'1  = 0 

z" k+1 = Fz" + k 

z" = 0 
1 

Equations (28) and (29) for the derivatives of M and equation (34) 

for M now reduce to: 

(M ).. = X {11(1)z' - 3D u ITC1r-(1)  1 - 9D 

T3 1 	k=1 	k ni  k 	zk 3fL uk} 
7 

1)T,-1H(1) + N tracefil 1 	j  Qy 	(40) 

(35)  

(36)  

(37)  

(38)  

(39)  

V 



- 4.5 - 	 58. 

a (m) 	N 
ij 	r 	T (1) 	(1) 	r (1) 1 

	

- L z' ER. z'-S. 	+ N tracetR...QI 43 	k=1 k ijk k ijku 	13X (41) 

D
2 
(M) 	N 

ij r ,T (2) , (2) 	(2) - L z ER.. z -S.. u. + N trace{RiitqQ} 	(42) 
Qq 	k=1 

k 132,q k 13Zq 

where Q is the steady state covariance of z" and satisfies a simple 

linear equation: 

Q FQFT  LELT  = 0 	 (43) 

Remark 1: Equation (40) for M corresponds to expressing M as the 

sum of a constant matrix, M
c
, and a matrix depending on the input, 

M
u
. 	(c.f. result 4.5.) 

Now substituting (40), (41) and (42) back into (5), (6) , gives 

a computational procedure for evaluating the costs, JI  and J
2 

In 

principle the sequence {uk} which minimises JI  or J2  could now be 

obtained by applying a standard optimisation technique such as 

differential dynamic programming, [363. In practice, however, the 

complexity of the resulting algorithm would probably restrict its use 

to critical situations where the economics demand the maximum possible 

return from the experiment. Usually, however, the added complexity 

incurred by inclusion of the second order terms cannot be economically 

justified and it is sufficient to base designs on the mean of the 

prior distribution. For this case, the cost functions J1 
and J

2 

reduce to: 
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J1 = log det (M +P)
-1 

1  

13-  
J2 = trace fr(M +P)

-1 
 f 

where M is given by (40). 

In the next section, necessary conditions that must be satisfied 

by any {u*} which minimises either (44) or (45), are given. Section 

8 contains a discussion of the computational requirements of the 

. various methods for evaluating J which have been described in this 

section. 

6. Necessary Conditions for Optimality  

Following the discussion in the last section, the following two 

cost functions are defined: 

J = log det (M +P) 
T 

J2 = trace {F(M +P)-1} 
13 

(2) 

Throughout this section attention will be restricted to the U 

parameters, that is, the parameters in A, B, C, D and K. The 

justification for this comes from the following theorem: 

Theorem 1: 

Provided P has the same "structure" as M , the cost functions 
13,  

J
1' 

J
2 defined in (1) and (2) lead to the same optimal designs as the 

cost functions: 

(44)  

(45)  

-1 (1) 
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(3)  a  
J'
1 
 = log det (M a +P 

 aa)
-1 

, J'
2 
 = trace {Pm

aa 
+P 

 aa)
-1 

f 

respectively, where I" is the principle submatrix of r corresponding 

to a. 

Proof: 

It was shown in results (4.6) and (4.7) that, for large N, M 
a 

has the structure: 

m
aa 0 

m = 	 (5 ) 

L 
O 	O 	, m

ax 

Assuming that P has the same %tructure, that is, 

FP aa , 0 	I  0 

0 I Pyy 

0 	0 
UU 

enables J
1 
 and J2 

given by (1) and (2) to be written 

J = log det (M +P )
-1 

 + log det 	+P ) 
-1 

1 	aa aa 	YY YY 

+ log det (M +P ) 
OU CU (7) 

(4)  

P = (6) 

it 
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and 

, J2 = trace {Pm +P )
-1 

 / + trace r (M +P ) -11 aa ea 	Y 	 YY 

+ trace fra(Maa+Paa) -11 	(8) 

where FY, r
a 
 are the principle submatrices of r corresponding to 

y, 0 respectively. Now, since M
YY 

 and Matt  are independent of the 

input, the result follows. 

Remark 1: The restriction on the structure of P in the above theorem 

is unnecessary if there is little prior information, that is P is 

small compared with M . 
13 

Remark 2: If P=P,
1
0 
 is obtained from a previous long experiment it will 

have the same "structure" as M (since P
13 
 approaches M 1 

for. long 
T3   

experiments). 

Now making use of result (4.5) and equation (5.41), equations 

(7) and (8) may be rewritten as: 

J = log det (M'+P') 
-1 

1 

J
2 
= trace {1"(M'+P')-1} 

where M' is given by: 

N 
(M'). = y (Hizki  +Du

k  )
T
E
-1
(H.zkj  

+D.0
k 

 ) 
j  

k=1 

0 

(9)  

(10)  

where 

D. - 
aD 

(12) 



(15)  

(16)  

.(17) 
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{ DC I 

	

- 	 0 H. 	— 10••• - 0 t-C 

	

1 	3a. 1 
1 • 	• i - 	- 	- 	- p 

zk+1 - zk  = Alzk  + Biuk; z1  = 0 

F - I 

 

 

(13)  

and 

where 

(14)  

and 
A 	0 	0 - - 0 	0 

_ 
1 aA , ac 	 1 1  A-KC ; 0 . . - 0 	0 

aCt 	'-kt, 	1 	I 
I 	a. - —_ _ _ .__ _ _ __ 

I I 

	

0 	0 I 	I 
i 	1 
I1 
i 	0 	i 	0 

- t - _ - - -*- - _ 
9A 	DC 	i 	 t 

1 

	

K7,-- 	0 	0 - - - 0 t  A-KC 9a OU p 	D 	I I  
I 	 1 _ 

aD 
K--- au Da 1 _ _ _ _ _ 

aB 	BD 
K--- 

@a 	Da 

The matrix P' is given by: 

P' = P 	+M" aa 

F= 

B1= 

and 
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r 	, (M")
ij = N trace tH.

T  Z
-1

3  H.Q1 

where Q satisifes: 

Q - (I+A
1 
 )Q(I+A1 )T K'EK1T = 0 

where 

K 

3x 

(18)  

(19)  

K` (20) 

(c.f. equations (5.41) and (5.44).) 

Remark 1: All functions which depend upon $ are evaluated at S = 13. # 

The discrete minimum principle, [73], will now be used to obtain 

necessary conditions for optimality of fuk,k=1,...N1 in the case of 

generalised power or energy constraints: 

Result 1: 

The necessary conditions for J-optimality of {upek=1,...N} 

subject to the total energy constraint: 

N m  

X 114.kWuk 
= E 

k=1 
(21) 

where W is symmetric positive definite and E is positive, are given by: 

3H(z*k.Yk*+1' elXruk) 

auk 
=0 

u =u* k k 

(22) 
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where: 

H(zk  Y ''k+14'A'uk)  = Yk+1[Alzk+Bluk3 + AukWuk 

P P 
y y (HizkIRj  

+D.u.)T-1
(Hzkj 

+Duki 
 

)4)j 
i=lj=1 

(23) 

zicia  zZ = Alqc + BluZ 

z* = 0 

vP P  v T -1 - = 	+2L LELE (Hz*+D.u*)(Ple k 3 k ij 
i=lj=1 

Y* = 0  N+1 

(I)* = (M' *+P) -1 	if J = J1 

= - (M' *+P) 1I' (M' *+P)-1  if J = J2 

N 	P P T T -1 1 	 f,.:„T B 	.4. 2 	y 
* 111).E 	(H.z*+D.u!1)(15..1 	(29) 2E 	lx+1 lk 	3 k D K 13 

k=1 	i=lj=i 

M'* = X (H.IkI z*+D, u?) 
T
E
-1 

(H ,
k  

z*+D .u*
k
) 

k  
k=1 

Proof: 

The energy constraint, (21) is first adjoined to the cost function 

via a Lagrangian multiplier: 

N 
Jc 

= J + Af X uk
Wu
k
-El 

k=1 

(24)  

(25)  

(26)  

(27)  

(28)  

N 
(30)  

(31)  
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Introducing the following state equations: 

z
k+1 

- zk  = A
l
z
k 

+ B
l
u
k 
	 (32) 

(Mk+1)ij 	(Mk)ij  = (Hizk+Diuk)T E
-1 

 (Hizk+Djuk) 	(33) 

Pk+1 - Pk = 
	

(34) 

equation (31) can be expressed in the form: 

J = J + A{PN+1 -E} 	 (35) 

and 

J = log det (MN+1+P')-1  if J = J1  

= trace 	(MN+11-p ) 
-1,  

5 if J = J2 	(36) 

The following Hamiltonian function may now be defined: 

Tw  
H(zk'Mkilikilk+1°Ei k+l'Xk+l'uk)  = Ak+luk-uk 

p p 
+ y

T 
[11 z +B u.] + 	(Hz +Du )

T
E
-1
(H.z +D.u) (E 	) k+1 lk lk 	ik ik 	3k 3k 	k+1 ij 

i=lj=1 

(37) 

If uj, k = 1, 	N is an optimal input and zZ, M. 11, k = 1, 	N + 1 

are the corresponding states, then the discrete minimum principle 

states that there exist costate variables, yrc+1, E1 3*(+1, Apc.1.1  such that 

the following relations hold: 



- 4.6 - 	 66. 

zpc.+1  - zi =A1zk+ 
 Blupc 	 (38) 

(Mni  = (HizZ+Diupd
T-1

(Hizpc+Djupd 
	

(39) 

1-11*(+1 - uk = uk Wulf 
	

(40) 

P Pc T,-1 y 	y - -A y* 
	+ 2 y L  H.L 	z*+D u*) (H 	) . (41) k+1 	k - 1 +1 	k j k 	k+1 ij i=lj=1 

El* k+1 	
H* = 0 

X* - X* = 0 k+1 k 

z* = 0 

%J. 
y* - 	 - 0 
N+1 cz* N+1 

H 	 - (I)* 
N+1 atil* 

N+1 

33c  
X 	 - X N+1 D11* 

N+1 

For every tuk,k=1,...N1 and each k = 1, ..., N 

Bk+11XZ+1 1̀11c7 < H(zk'MPtiP1('YZ+11HZ+11 1t+l'uk)  

(48) 

That is, an optimal input lq,k=1,...N1 minimises the Hamiltonian at 

each time instant. If {Ilk} is unconstrained as it is in this case, 

the following equivalent necessary condition for optimality holds: 

(42)  

(43)  

(44)  

(45)  

(46)  

(47)  
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au {H (z* . k 4.1* ,-Y* 	H 	,X 	,11  )} k k+1 k+1 k+1k k = 0 

uk=ui*,. 
(49) 

   

From equations (42), (43), (46) and (47) it follows that: 

X* = X 	for all k 
	

(50) 

H* = 4)* for all k 	 (51) 

Equation (49) may now be written as: 

p p 
2AukTW  + y*

T
,
1
B, + 2 X X (E.z*+D.unTZ

-1
D.q 	= 0 	(52) k+ 	lt 	7 17 i=lj=1 

Postmultiplying by uK and summing from 1 to N yields: 

N 	P P 
2XE + X Iv* B 1.1!,- + 2 y y (H.z*+D.u;'0T-1D.u*0.1 = 0 'k+1 1 k 	k 	7 	13 

)c=1 	i=1j=1 
(53) 

which may be rearranged to give (29). The remaining equations 

follow immediately. The result is proved. 

Result 2: 

For constrained inputs the necessary conditions for optimality 

are: 

H(zitiq+1,q,1110 H(zk,-q+14*,uk) 	 (54) 

	

for every {uk} and each time instant k = 1, ... N, where ql 	(1) 

satisfy equations (26) to (28). 
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Proof:  

From (48) with X E 0. 

Theorem 2: 

For amplitude constrained inputs, that is 

61  < uk  < 6 2  for each k 	 (55) 

optimal input sequences {q} have the property that: 

either 	(ur)1 = (61)  i 

(56) 

or 	(u3V = (82) i  

for each i and k. [(-)i denotes i
th 

component of -7. That is, each 

of the m components of the optimal input forms a binary sequence with 

values on the constraint. 

Proof: 

From (54), u* is the uk  which minimises: 

R R 
Hoak) = 1 	(A z*+B 	+ 	k 	)

T-1
(1-1.z*+D.u,1)* k+1 lk lk 

	

	i ik 	x)( k 3 ij 
i=lj=1 

= Ck  dkuk  uk  -uk 	 (57) 

where 
p p L  

Ck  = 	+ 	L z*(
T  HiE

-1 
 Hiqqj  

i=13=1 

P P T T -1 
dk  = 	2 	L zk i * H E D cre j ij 

i=lj=1 
4 
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and 
PP 	-1 

0' = X X DBE-1D E D*Y. 
. 	1 	3 13 i=13=1 

Si is negative semi definite as is readily shown: 

Let x be an arbitrary vector. Then: 

P P 
x
T E xVE-lp.xciY 

	

i=lj=1 	7 17  

Let x(j) 	)(D2: where X
T
X = 	. Then (59) becomes: 

x
T (i)T 

x
(j) 

i] 

Y, 	(x(i)) (x(i))2,11)ij 
k=ii=lj=1 

m. 
v 
L ..'"(k)w 
k1 

is a vector with i
th 

component (x(i)) . But from (28), e where x
(Z) 

is negative definite so (60) implies that 

T 
x 	< 0 

so that leis negative semi definite. Now it is an elementary property 

of quadratic forms with negative definite weighting matrices, that 

the minimum is achieved on the boundary. Theorem 2 follows immediately 

from the form of (57). 

In sections 7 and 9, algorithms are proposed for finding 

{q,k=1,...N} which satisfy the necessary conditions for optimality. 

(58)  

(59)  

(60)  
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There is, of course, no guarantee that the sequences satisfying these 

conditions are in fact optimal. In chapter 5, tests for global 

optimality are derived, but these require a Fourier analysis of the 

input sequence. 

7. 	General Design Algorithm  

In section 6 it was shown that a necessary condition for 

optimality of { k=1,...N} is that uk minimise the Hamiltonian H(q) 

for every k. A simple steepest descent-algorithm based on this 

prinCiple is now described: 

i. Evaluate the matrix M" from (6:18) and hence P' from (6.17). 

ii. Choose a suitable value for X. (=0 if no energy constraint.) 

r 	, 
iii. Choose any non-zero input sequence tuk(0 ) f; set t = 0. 

iv, Evaluate {zk 

z -z = 	+B (k) 
k+1 k Alzk Bluk (1) 

21  = 0 

v. Evaluate M' and J: 

N 
X (H.z A-D.u""))TE-1(H z 4-1) u(k)) 13 k=1  1 k 1 	jk jk 

J = J1  = log det (14
1 -1-101)

-1 

(2)  

(3)  

(4)  

or 
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J = 32 = trace {r(141 4-P1 )-1} 
	

(5).  

vi. Evaluate cp: 

(I) = 	if 
	
= ji 	 (6) 

(1) = -(M'+.1:0) 1r(M'-i-P')-1  if j = J2 	(7) 

vii. Evaluate fykl: 

, 
1k41-yk = -A Ty.1,-.+1 + 2 	H,L-1j (Hzkj 

 
40u(k))0

ij  
. 	(8) 1 

	

	 k  i=lj=1 

;4-1 = 0 
	

(9) 

viii. Evaluate gradient: 

DH(u
k
) 	p 2 

gk 	
auk 

- 2AukW ik+1B1 2 X  1 (Hi  zk 
 tEt.0 	

3
4) k" 

	

TE-1D.. 	(10) 
i=lj=1 

ix. Move in negative gradient direction: 

(k+1) = u(i)  - 	g" uk 	k k 

where gk is the gradient gk  suitably projected onto the constraint 

surface. d is a positive scalar chosen so that a decrease in J 

occurs. 

x. Stopping condition: 

g" = 0 for all k. 	 (12) 

11, 
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If (12) is satisfied, go to xi; 	else go to iv. 

xi. If there are energy constraints check whether these are 

satisfied; if not choose a new value of A and repeat from iii. 

If the constraint is satisfied, stop. 

There are many possible strategies for choosing the scalar ot  in 

(11) but the following has been found to work well in practice.with 

amplitude constraints: 

Try (Sz  =00 (i.e. saturate it negative gradient direction)t 

ii. If there is no decrease in J with St  = co, perform a linear 

search until a decrease in J occurs. 

In the energy constrained case, the Lagrange multiplier, A, 

must be chosen so that the constraint: 

u T  pWat = E 

is satisfied. Often it suffices to choose an arbitrary value for 

A. This is justified as follows. 

Theorem 1: 

If the matrix P' is the null matrix, and if the input {q,k=1,...N} 

is optimal subject to power constraint E, then the input {auZ,k=1,...N} 

is optimal subject to power constraint a
2
E. 

Proof: 

Suppose fql has corresponding information matrix Mt* where: 

 
Mi* 	L G*

T-1 
 G* 
	

(14) 
k=1 

(13) 
k=1 
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G* is a matrix with elements that are the outputs of linear equations 

forced by {u0. 

Suppose now that an input {ilk} where uk  = aupc  for all k is used. 

Then it follows that the corresponding M' is given by 

N . 
M' = 	aG*

kT 
E
-1  G*a = a

2
M'*  k=1 

Suppose that fu0 has energy E: 

u* u*
k  =E k  k=1 

Then 
N 
u
k
'Wu

k  = a
2E 

k=1 

Consider now the costs associated with {u
k}: 

J (u) = log det (M') -1 1 

= log det (M'*)
-1 

- 2p log a 

= 1  (u*) - 2p log a 

J
2(u) = trace (M')

-1  

= 12 trace (M1 *) 
a 

= 22 (u*) a  

(15)  

(16)  

(17)  

(18)  

(19)  

• 
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Clearly if {u0 minimises Ji(u*) subject to (16), then 	minimises 

J.(u) subject to (17). 

Corollary: 

If the matrix P' is the null matrix, then to find an optimal 

energy constrained input with specified energy, it is sufficient to 

-find an optimal energy constrained input with arbitrary energy and then 

scale it by the square root of the ratio' of the energies. 

Thus when the conditions of theorem 1 are met, that is 	= 0, any 

non-zero X will suffice. There are many cases when P' is small 

compared with M' and the theorem may be applied with little error. 

In particular, the result applies to the important class of models 

with disjoint system and noise modes. (Thesemodelshave been used 

very extensively in the literature, see for example [3], [7], [9], 

[12], C15], [16], [25].) The result is alS-o valid in all cases where 

high input energy is used since M' then dominates P'. 

If for some reason the conditions of the theorem are not met 

then a sequence of X's must be chosen to satisfy the constraint. An 

alternative approach is to use generalised polar coordinates, for 

example, for a scalar input: 

u
N 

= E.sin 0
N-1 

u
N-1 

= E.sin eN-2 cos eN-1 

u
2 

= E.sin 0
1 
 cos 02 ... cos 0N-1 

u1  = E.cos 01  cos 02 ... cos 0N-1 
	(20) 



• 

- 4.8 - 	 75. 

(0) 
gk  

14 auk T 

k11 
(TT)

k  g
k 

=  
(21) 

( 
gk  is given by (10) and gt0)  is the gradient in polar coordinates. The 

input is thus constrained to lie on the surface of an N-dimensional 

hypersphere of radius E, the total energy. 

In the next section, computational aspects of the general 

algorithm described above are discussed. 

8. Computational Aspects  

For all but very short sequence lengths, the most time consuming 

parts of the general algorithm are steps i and vii.. viz. the -calculation 

of the state zk  and the costate yk. It is also usual to store zk  for 

every k as these are needed for the calculation of yk. It is possible, 

however, to recalculate the zk  in reverse time concurrently with yk  

but this is very time consuming and requires storage of many intermediate 

values of z
k 

to prevent divergence of errors due to the reverse time 

instability of the zk 
equation. A fairly accurate indication of the 

computational effort and storage requirements is given by the dimension 

of the sensitivity state vector, zk. Reference to the previous section 

indicates that the requirements of the general algorithm are considerable. 

(A simple two input-two output four state system in Caines' canonical 

form, [313, requires the solution of a 116 dimensional state equation 

and for N = 100 requires about 12,000 storage locations.) However, 

these requirements can be vastly reduced by exploiting the structure 

of the sensitivity equations. The following theorem will prove useful 

in establishing these simplifications. 

Theorem (Denery)  L32,1 

If xk is the solution to a controllable single input set: 
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xk+1 = Fxk  + gu
k; x1 = 0 
	

(1) 

then the solution to the set: 

0 	 zk+1 = Fzk giuk' zl = 
	

(2) 

(where g' is arbitrary) is related to xk  by the linear transformation: 

n-1 0  
zk = L  a F-x, 1 K 

2=0 

where: 

 -1 
[a 	!T  = 	.. 	Ig) g' 

Proof: 

Follows from superposition and the fact that g' may be expressed 

as a linear combination of the columns of the controllability matrix 

for (1). 

Now, in section 6, it was shown that the sensitivity equations could 

be written in the form: 

zk+1 = Fzk  + Bluk; zl  = 0 
	

(5) 

where F and B1  are given by (6.15) and (6.16). The important thing' 

to notice is that there are only two types of dynamics, viz.: 

z
k+1 

= A;; Buk 
	 (6) 

(3)  

(4)  

and 
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zk+1 
= (A-KC)zk 

+ Bz
k 

+ Bu
k 
	 (7) 

Applying Denery's result to (6) and (7) it is obvious that the whole 

sensitivity state vector may be obtained from linear combinations 

th 
of the states of the following (r+n+1) n order equations: 

z
k+1 

= Azk  + Buk 
	 (8) 

	

= (A-KC)z' 	+ e 	; 	= 1,...,r 	(9) zki.1 	k+1 	n K 

A(i) 	A(i
k+
) 
1 

	

k+1 
= (A-KC)7,' 	+ en  z. ' 	

i = 1,...,n 	(10) 

where 

en 
= [0,-0,1] 

Thus the storage requirements will be considerably reduced. The 

computational requirement will also be reduced since the linear 

combinations required can be absorbed into Hi  (6.13). 

Using the above results, the storage requirements of the simple 

two input-two output four state system drop to about 3,200 storage 

locations for N = 100. 

Still further reductions may be obtained by transforming A and 

A - KC to companion form: 

T1 AT1
1  = 

	

	- Al 	 (12) 

-an'.,.,-al 
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T
2
(A-KC)T

2
1  = O 

-a" ..- • -a" 
m' 	1 

_ 	! 

Equations (8) to (10) may now be replaced by: 

= -(1) 	+ en (uk ), 	= 1, 
k+1 	k  

	

z
k+1 

= A2
z
k+1 

+ e n  (u n). 	, i = 1, 	... 

A(i) 

	

zk+1 = A2 zk+1 
 + e

n 
 (z
k 
 ). 	= 1, 

r 

r 

n 

(14)  

(15)  

(16)  

It is still true that the whole sensitivity state vector may be 

obtained from linear combinations of the states of the (2r+n) n
th 

order equations, (14) - (16). A fundamental property of equations 

(14) - (16) is that the state vectors are such that: 

(zk+1 ). = (zk)i+1 
, i = 1, 	n - 1 
	

(17) 

so that in order to store the complete state vector zk  for k = 1, N 

it is necessary to store only (zk)n  for k = 2, ...N together with zl. 

Thus only (2r+n) vectors of length (N-1) are needed to store the 

complete state information. The storage requirements for the simple 

example previously considered are thus approximately 1,200 (allowing 

for inputs and gradients). 

Since the transformation matrices need be calculated only once 

and the number of iterations of the algorithm is large, the number of 

computations will also be reduced. In practice, the full sensitivity 

= A
2 (13) 
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state and costate are never calculated; the only effect on the 

algorithm as stated in section 7 is to reduce the dimension of the 

matrices H. which will include the transformation matrices described 
1 

above. 

In particular cases, the transformation matrices may be 

particularly simple; This is demonstrated in the next section where a 

design algorithm for multiple input-single output systems in Caines' 

canonical form is described. Tt is shown that, for this case, only 

th (r+1) n order difference equations need be solved and that only (r+1) 

vectors of length. N are needed for the sensitivity states. 

In table 1 the state dimension and storage requirements are given 

for the :Various methods discussed in section 6 and in this section. 

Figures are - also given for the two input-two output four state system 

discussed earlier. 
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0 

Method 
Sensitivity State 
Dimension n

z 

Storage 
Required 

Example: 
n=4, m=r=2, d=2 

 

Dimension Storage 

discrete prior 
distribution 
d levels/parameter 

(n2+nr+1)dP  (n
z
+2r)N 7x10

9 
7x10

11  

straightforward 
2nd moment 
method 

n(l+p+p
9 
 +p-

1  
) (n

z
+2r)N 91,060 9x10

6 

2nd moment 
exploiting 
symmetry 

p(p+1) 

'Inz
+2r)N 16,468 1.6x10

6 
n(l+p+ 

2 

+ 
p(p2+5)

) 
6 

2nd moment 
exploiting 
structure 

n(n
3
+n
2
+n+1) + 

nr(1+n+n
2
) 

(n
z
+2r)N 508  5.1x10

4 

prior mean 
exploiting 
structure 

n(n+r+l) (nz
+2r)N 28 3,200 

prior mean with 
companion form n(n+2r) (n+4r)N 32 1,200' 

Table 1  

0 
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g 	Design Algorithm for Single Output Systems 

A canonical model for multiple input-single output systems is 

conveniently represented in pulse transfer function form, [441: 

r 
k 

A(z-1)17k= r B(z-1), uk
k 
 +C(z

-1 
 )E 

k=1 

k -1) 	
0  

B (z 	= b
t 
+ b

k
z
-1 	

... 	bn
z -n 

0 I 

C(z
-1) =-0 + C1

z 1 + 	+ C
n
z n  

(1)  

a
n 
= 1 (2)  

(3)  

C0= 1 (4)  

where 

-1 	-1 A(z ) = a0  + al  z
-1  + 	+ a

n
z n 

uk  is the k
th component of uk  (i.e. the k

th 
input), {yk} is the output 

sequence and{ek} is a sequence of independent normally distributed 

.random variables with zero mean and variance a
2. The model (1) is 

equivalent to the innovation model described by (2.4) - (2.5)4. in 

which C = [1, 0, ..., 0] and A is in companion form, [443. 

It is readily shown that the matrix (M') defined by (6.11) may 

be written as: 

M' = 1 
2 	s ks4k 
k=1 

(5) 

where 

g 	k = Ct
1' .. t

k-n
1 
 ' 	- 

t 	,r2 
k-n1 	sk-n+13 (6)  

and 

j 	. 
3 C(z

-1 
 )tk  = -uk; 	= 1, ... r; tjk  = 0 V k < 0 (7) 
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L A(z
-1
)sk  = L B (z-1  )tk7 sk  = 0 V k < 0 

j=1 

It is also not difficult to show that the corresponding costate 

equations are: 

C(z)Xlic  = -Bi(z)yk  - .1 4) k+i;  j = 1,...r; 
11 

Ai  = OVk> N 

n-1 
A(z)Y. = - 	6 gk+i7 yk 

= 0 V k'> N 
=1 

together with the additional boundary condition: 

gk  = OVk> N 	 (11) 

The gradient of J with respect to uk is given by: 

g= k k (12) 

The row vector (Pi  is the i
th 
 row of the matrix (I) defined by(7.6) 

and (7.7). 

The equations (7), (8), (9) and (10) are shown diagrammatically 

in figure 1, and can be seen to have a particularly simple form: 

(8)  

(9)  

(10)  



Xr  

Sk 

C(z) 
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ml 
'k  

Figure 1 

The quantities Tj  and Sk are obtained from: 

n 
Tk  = X i 1(Pi+n(j-1)9k+i 

= 

n-1 
Sk = 

i=  X 1  Cbi+nrgk+i 

which are functions of tk, j = 1, 	r, sk, k = 1, ... N. These may 

be stored in (r+1)N storage locations. Allowing rN more locations 

(13)  

(14)  
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for the input sequence yields a total requirement of (2r+1)N storage 

locations. (C.f. (4r+n)N required by the general algorithm.) 

10. Concluding Remarks  

In this chapter necessary conditions for the optimality of inputs 

have been developed. Algorithms have been given and several theorems 

and results which lead to simplifications have been stated and proved. 

The computational requirements of the algorithm have been discussed 

and methods for vastly reducing these described. It has also been 

proved that ortimal amplitude constrained inputs are binary. Examples 

indicating the viability of the algorithms and the improvements - 

that can typically be obtained have been giVen. 
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• 

APPENDIX 

Amplitude Constrained Examples 

Three examples of amplitude constrained designs for models with 

the following structure are given: 

B(z
-1
) 	D(z

-1
) 

Yk = 
A(z-1) 

uk 	-1 6k 
C(z ) 

(1) 

where {uk}, k
} are the input and output sequences, respectively. 

and {Ek
} is a sequence of independent normally distributed random 

variables with zero mean and variance 0"
2. A, B, C and D are polynomials 

in z
-1 

A the parameter- vector is. defined by: 

T = fa 	b 	c 	,d 	...d 1(2) 
1' 	an bo' 1 	bn' 1' 	cn 

The design algorithm used was a single input version of that 

described in section 9 suitably modified to treat the output noise 

case given by (1). The identification procedure used to obtain the 

parameter estimates was Clarke's generalised-least-squares algorithm, 

C753. 

The criterion for optimality of a test signal {q} was that fu0 

should minimise J defined by: 

J = trace f(W)-11 	 : (3) 

where m' is defined by (6.11). (Note that this corresponds to 

little prior information: P = 0.) 
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4IP 

Example 1: 

This example (table 1) was suggested by Clarke, [751. The 

number of data points was 100 and a was 0.1. The optimal test 

signal design procedure gave a predicted improvement of 1.4 to 1 

in the sum of the variances of the A and B parameters compared with 

the estimates obtained using a PRBN test signal (63 bit, with clock 

rate eaual to sampling rate - see fig. 1). (The optimal test signal 

for this example is shown in fig. 2.) Table 1 shows the true 

parameter. values and the estimates obtained from both PRBN and 

optimal test signals, 

4n 

a 

                               

n 	1-1 

                              

                              

                              

                              

                              

                            

t rn 

                              

                              

                              

                              

                              

                               

Figure 1, PRBN for Example 1 

• 
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to 

time 

Figure 2,-Optimal Test Signal for Example 1 

True 
Parameters 

Parameters Estimated 
using PRBN 

+ Standard Deviations ..... 

Parameters Estimated 
using Optimal Test Signal 
+ Standard Deviations 

a1 

a2  

b 

bl  

cl 

dl  

-1.3 

0.6 

0.15 

0.15 

-0.95 

0.0 

-1.2241 + 0.0645 

0.5446 + 0.0634 _ 

0.1207 + 0.0325 

0.2070 + 0.0347 _ 

-0.7145 + 0.0836 

0.1208 + 0.1310 

-1.2935 + 0.0541 

0.5904 + 0.0544 _ 

0.1275 + 0.0300 

0.1799 + 0.0306 _ 

-0.7272 + 0.0858 

0.0670 + 0.1319 

Table 1 

Estimated Parameters and Standard Deviations 

for Example 1 
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Example 2: 

For this example the number of data points was again 100 with 

5 = 0.1. The design procedure gave a predicted improvement of 4.5 

to 1 in the sum of the variances of the A and B parameters compared 

with those obtained using the PRBN of example 1, Table 2 shows the 

true parameter values and the estimates obtained from both PRBN and 

optimal test signals. 

True 
Parameters I I 

I 

Parameters Estimated 
using PRBN 

+ Standard Deviations - 

Parameters Estimated 
using Optimal Test Signal 
+ Standard Deviations _... 

a1 
 

bo 

bl  

c1  

d1  

1.0 

0.85 

0.15 

0.15 

-0.95 

0.0 

1 

i 

1.00856 

0.85434 

0.13785 

0.14210 

-0.70463 

0.13838 

+ 0.01670 _ 

+ 0.01643 

+ 0.00784 

+ 0.00823 _ 

+ 0.07835 
- 

+ 0.11954 
- 

0.99060 

0.84525 

0.15283 

0.14550 

-0.72011 

0.12197 

+ 0.00940 
- 

+ 0.00874 

+ 0.00668 
-  

+ 0.00714 

+ 0.07706 
- 

+ 0.11583 - 
1 

Table 2 

Estimated Parameters and Standard Deviations 

for Example 2 

Example 3: 

In this case 200 points of a 63-bit PRBN (fig. 3) were used as a 

starting input for a simple two parameter system: 

bz
-1  

Yk 	-1 
+ c

k 
1-az 

(4) 

0 



0 	 Figure 4, Optimal Test Signal for Example 3 

2.01E-tit 

' 1.90E-1 

4.6 

-1.96E-11 

-2.92E-11 
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where the prior mean of a was 0.9. The predicted improvement was 

about 10 : 1 (see fig. 6 which shows cost versus iteration of the 

linear search in the first gradient direction, where almost all the 

decrease occurred). figure 4 shows the optimal test signal and 

0 

	

	 figure 5 the gradient. It is readily seen that the necessary 

conditions for optimality are satisfied. 

4.000-01 

2.00E-01 

-2,5E-S2 

-4.00E-01 

"41.12 

0E402 

  

Figure 3, PRBN for Example 3 

PS7.4 '-'7751------rnC 4 fi 

I 

I 
I 

0 	 Figure 5, Gradient for Example 3 
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costs 

iteration 

Figure 6, Cost v. Iteration for Example 3 

Note: The cost in this case was taken to be var (a). 



-7.69E-22 

7.69E-02 

I.;4E-01 

-1.z4r—ps 

• 
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APPENDIX B 

Energy Constrained Examples 

Three examples of energy constrained designs for models having 

the same structure.as in appendix A are presented. The cost function 

used is again the trace of the posterior covariance matrix. The 

number of data points in all three cases was 50. 

Example 1: 

Fig. 1 shows the optimal energy constrained input for a simple 

first order model 1/(1-0.95z
-1) with white output noise. The predicted 

improvement in the trace of the parameter covariance compared with the 

use of a test signal having impulsive autocorrelation is 11 to 1. It 

is observed from fig. 1.that the input energy is primarily low 

frequency which is consistent with the slow response of the system. 

0 	 Figure 1, Optimal Input for Example 1 



4.11n+el 	5.00E+31 
1 

-1.27E-ki 

-2.64E-01 

• 
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Example 2: 

Fig. 2 shows the optimal input for the model 1/(1-0.5z
-1 

 ) with 

white noise. The predicted improvement in the trace of the covariance 

matrix compared with the use of a PRBN having impulsive autocorrelation 

is 1.7 to 1. It is observed that  the optimal input has high frequency 

components which is consistent with the fast response of the system. 

Figure 2, Optimal Input for Example 2 

Example 3: 

To show the effect of the noise model on the optimal test signal, 

a weighting sequence system model was chosen with noise model 

1/(1-0.95z
-1  ). The optimal test signal is shown in fig. 3. it is also 

/110. CO" a4,t4-0 co ere-ia4;e14 44, 	„mt. 
to be noted that the optimal test signal is significantly different 

• 
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from the well known impulsive autocorrelation rcoult for the weighting 

sequence model with white output noise. (Levin, 1960, [A.) 

4.00E-01 

5.99E-as 

3.00E-01 

-3.00E-81 

Figure 3, Optimal Input for Example 3 
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CHAPTER 5 

Frequency Domain Designs 

1. 	Introduction  

In the last chapter, design procedures for determining test 

signals as functions of time were described. In section 2 of this 

chapter, it is shown that it is only the spectral properties of the 

input that are important. It is shown, in fact, that it is only tho  
gv1,4e vt avv.bet,  n4 ski-F-4.s 
-f-irst-few-velteee- of the input autocorrelation which have a significant 

effect on the cost function. In section 3 the frequency domain 

properties of.test signals for multiple input-multiple output 

innovations models are derived, and identifiability conditions are 

described. 

In section 4, Whittle's general equivalence theorem is shown to 

lead to tests for optimality of input signals. It is further shown 

that optimal spectra exist haVing not more than p"(p"+l)/2 lines 

where p" is the number of parameters in the A, B, C and D matrices. 

In section 5 it is shown that the maximum number of lines necessary 

can be further reduced by exploiting the special structure of single 

output systems. 

Sections 6 and 7 discuss various design algorithms and methods 

for realizing both power and amplitude constrained test signals. 

In section 8, the extension of the results contained in both 

chapters 4 and 5 of this thesis to continuous time systems is 

indicated. It is shown in section 9 how the results of section 8 can 

be modified to allow joint optimal design of test signal and sampling 

rates. Several examples of designs. in the frequency domain are given 

in the appendix. 
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2. Characterisation of Test Signals  

In this section, large sample properties of test signals are 

investigated. Since the information will in general grow without 

bound as N increases, it is natural to consider the average information 

matrix, M, defined by: 

M = 	M 
	

(1) 
N+00  

where M is Fishees information matrix, (4.4.1). Some properties of 

M are now stated and oroved: 

Result 1: 

. a i The average information matrix, m, is independent of the initial 

conditions, y, provided y is finite. 

Proof:  

From equation (4.4.33): 

M' , 6 1 	m" ; o 

— 
0 1 0 [0 tM GU, 

where 

1 
M' = lim 7,TM 

N400 - 

iv" = lim 1  —M" 
N±co 

%7 = lim M UCT 
N÷00  

where M', M" and M
U 
 are given by (4.4.34), (4.4.35) and (4.4.15) 

G 

FA= 
L 

(2)  

(3)  

(4)  

(5)  

respectively. 



- 5.2 - 	 96. 

It was shown in chapter 4, result (4.4.7), that the submatrices of 

1 
iiM'  corresponding toy tended to zero as N 00. Now the submatrices of 

-1= MI  corresponding to the parameters in A and C also depend on y, but 

similar reasoning to that of result (4.4.7) shows that these also tend 

• 

to zero as N Co. The result follows. 

It is now possible to prove the following theorem which 

shows that it is only the spectral properties of the test signals which 

affect the estimation accuracy 

Theorem 1: 

The average information matrix, M, depends only on the auto-

covariance function, R(T), and the mean, u, of the input sequence. 

Proof: 

.th 
From (4.4.34), an expression for the . 

	
element of M'  is 

given by: 

N aW 
T -1 aw'  

= lim 	E 
13 	N 	ae 	ae. N-  k=1 i 

(6)  

aw l  

30. 
k,  

where 	.1' is the output of a linear equation driven by {uk}. 

(Equations (4.4.23)-(4.4.27).) Since the choice the initial conditions, 

y, does not affect M'  (result 1), it is permissible to choose y such 
aw 

that the output (ao 	), k = 1, 	N is the same as if the input were 

411 	 periodic with period N. Thus: 

N 	
r c

o 00  
lv T i j 

(T')
ij 

= lim —LLzu
k-s

(h
s 

T_ -1 (h

t
)u
k-t 

N400 Nk=ls=0t=0 

r i 

' 
where uk  = u

k-N 
V k < N and where th

t 
 t = 0, 1, ...} is the weighting 

sequence of the sensitivity equations for e.. From (7): Asstimi.K5 4elut 

4 	LI+4-+ is 	i4 -Agows cwol el) •fetat : 

(7)  
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W 03 
, 

(i').. = I / trace f[R(s-t)+uU-T  ][(h)
T-1 

 (h
j
)].t 	(8) ij s=Ot=0 	s 	t  

where R(T) is the input autocovariance defined by: 

1 
R(T) = lim . (uk-u)(uk-T  17)

T 

N4-co k=1. 
(9) 

and 
N 

= lim 
N N±:* k=1 

The result follows from (8). 

It will now be shown that it is only the first few values of the 

autocovariance function that are important for experiment design: 

Theorem 2: 

Given any autocovariance function R1(T) , T = 0, A- 1, . . and for 

any C > 0 there exists a finite A(c)such that if: 

R2  (T) = R
1(T) , -A(6) < T < A(E) 
	

(10) 

and R2
(T) is arbitrary otherwise, then 

1(:711 ij  ) 	- 	2)..I < 6 V i r  j 

where Ml, M2  correspond to R1, R2  respectively. 

Proof: From (8): 

co co 
j 

(M1 )
1.]  „ - 6/2ij  ) 	= 	I trace { R (s-t)-R2(s-t)][(hs

i )T 
 E (ht)31 

s=Ot=0 

(12) 

Let A be the maximum modulus of the eigenvalues of the sensitivity 

• 
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equations (4.4.23)-(4.4.27). (1<1 since the equations are stable.) 

Then there exists a b > 0 such that: 

h
i
) 	V 	t, 	k 	 (13) 
t k 

• 

Let rPq 	denote the pq
th element of R

1 
 (T) - R2(T), and A (s,t) 

th 	T -1 j 
the qth element of (h

s
) E (h

t
). Then: 

c000rr 

I 6711 	
-(3-21 )

ij  
.1 =II I 	Ir 

Pq
(s-t)A (s,t 
 Pq s=0t=0p=lp=1 

co co r r 
< L 2 y I Jr (s-t)11A (s,t)I 	(14) 
s=ot-Op-- q=1 Pq 	Pq 

Now 

IA (s,t)I = I22(hs)kp (E-1)kk  (hi)kq 
 I 

Pq   kk 

< 17
b2
1
(s+t) (40  

kk 

< yy302x(s+t) 

kk 1  

(15) following from boundedness of E-1. 

If 2
(T) = R1 

	' 
(T) 	-A < T_< A 

Irpg(T)1 = 0, -A 	T :SA 

Ir (T)I < trace IR (0) }, ITI > A 
Pq 

(17) follows from the properties of autocovariance functions. 

Substituting (15), (16) and (17) into (14) yields: 

(15)  

(16)  

(17)  
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00 

m1)ij- (m2)ij 2 y r2 traceIR1 	1 
(0).t.b

2  X (T1-2t) 

T=A+1  

< y b
2
XT  

T=A+1 

<EVA>A(E) 

since (18) is the remainder of an absolutely convergent series. 

The implications of this theorem are discussed further in 

section 7. 

Remark 1: 

If {uk} is a stationary stochastic process satisfying certain 

regularity conditions, [35], then: 

u - = E
u
[u
k
] 

— , 
R(T) = E

u
[(u

k-u)- (u,K-T  -u)
T 

 J 

where Eu 
denotes expectation over the distribution of u. 

Remark 2: 

There is a one to one correspondence via the Fourier transform 

between R(T) and the power density spectrum of the input. Thus it is 

only the spectral properties of the input which are important. This 

fact is exploited in the next section. 

3. Frequency Domain Representation  

From equation (2.6), the kgth element of M' (the part of the 

(18)  

(19)  

(20)  

average information matrix, M, that depends on the input) is given by: 



- 5.3 - 	 100. 

N aW 
= 1i 	L 

v 	
C) 
k)TE-1( 	"k) ( 	kg 	m N 	D 

N 	k=1 	PO 
(1) 

00 

- X (g
kT -1 

(gk

q  
) 

k=1 

r  whwhere -1.4gtl  is the output of the aeacitivity cquationc corresponding to 

     

z.- 

    

         

    

-jw T-- q 

 

4-34- 

   

—7t 

     

k 
z 	(a)u 1 (1) 

bef, h  

HQ  H (z) is the transfer function of the sensitivity equation corresponding 

to 0 	and 111 (z) is the z transform f fu'lk'' 
 substituting (1) into  

(3) yields: 
App//r_44-1-rs of Pcaseva,1!„4- .4-4.e.eri•e&v, 	r113)  as 0 ) 1;elets 

(71')
kg 
 = t trace t[ii (e 	) E H (e )].dG(w)} 

"ff 	 -jet) T -1 q jw 	
(5) 

where G (w) is the olamulat-ivc cacrgy di-tribiatiea function f the 

.1..upi.14,-,--iz,—t-izrat---i-s-7—t-hre.' i 	cumulative power distribution function of uk. 

The following generalised power constraint is considered: 

14 

N400 1(., 
lim —N  ukuk  = E 

T 	 (6) 

Hence, introducing 18(W)dE(W) for dG(w),.ecluation (5) can be rewritten 

as: 

+44- 

• 



• 

• 

- 5.3 - 101. 

(M' ) 
TT 1 j 	1. , 	9, 	 j 	-1 	j )7 = 	trace [H (e 	)E Hq  (e 	13 (jW)}d(W) 2 	 (7) 

where (w) satisfies: 

-1 j clE(W) = 1 2 _Tr  

or, by exploiting the symmetry of (w) about (Ai = 0: 

Tr 
M° = j M(w)dE(w) 

0 

where 

.4  (M(w)) 	= Re{trace {H 	jw (e 	) -1q  (eja1  )3(w) }} 

and (w) satisfies: 

'Tf 
dE (CO) z  1 

0 

Notation:  

Denote the set of all (c.0) satisfying (11) by  

Remark 1: 

The fraction of the total power in the range w to co dw is 
cpayt e.rci 	s46,4-,.`cer, ej in 1) of fro ous )Le ."4 4h'- 	g44.9 eaM 

given by dE(W). 
regiAk 	1 -o  v‘.  . Pie-re 0-4-4-e-v-4-iev, 	ves-4-4_4e_c( 4 -1-he ca se cc> i)ee e rank 8f4 • 

11. 

--(14';‘ iKr-fides 	ete-4-a-eoN:ni ;5 4,:c- in/ ‘4,4-5 	tuna 5'40 cias-Wc an 	 . 	 [423 

e 	ht,-44e-5 	(40) for 441-5 care 	t 

w(i) The diagonal elements of X, (w) = (3(w))ii are real and 

positive. 	 wositive. X. ( )g(w) is the power of input.i in the frequency range 

w to w dw. 

(8)  

(9)  

(10)  

0 
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(ii) trace {$(6))} = 	X.(w) = E. That is, the total power in 
i=1 

the range w to w dw is Ed(w). 

(13(w)) tc, = (A(w)Xel (w))12 expiJ(h(w)—(fyw))1 
	

(12) 

where cp (W),O 
q(w) are the phases of inputs t and q with respect to k  

some reference phase (taken for convenience to be (I)
1 
= 0). 

Remark 2: 

The matrix M(w) given by (10) is the matrix.  M' corresponding to 

an input satisfying (6) and containing only one frequency component, 

that is an input having a (one sided) spectrum with a single line. # 

It is now possible to state and prove theorems on the properties 

of the information matrix and input power density spectrum. Analogues 

of these theorems for the case of static regression experiment design 

are well known, (for example C38]), and have recently been extended 

by Mehra, [78], to the case of single input dynamic systems with 

measurement noise of known characteristics. Here they are extended 

to the general multiple input innovations model: 

Theorem 1: 

The submatrix, BDCA  of M' corresponding to the 
B, D, C and A 

matrix parameters, is singular if the input spectrum contains less 

than p"/2m lines, where p" is the number of B, D, C and A parameters 

and m is the number of outputs. 

Proof: 

From results (4.4.6) and (4.4.7): 

M = my 	M" 	 (13) 
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where: 

, 
MBDCA 

0 	, 	0 1 0 

0 ; 0 ; 0 

0 i M 

0 

where M is a constant matrix and the partitions indicated correspond 

to the partition of 13 symbolised by: 

(k) [33, D i  C, A: K; yr  a] 	 (16) 

From equation (3): 

11)3DCA=2Re{fu(e-- )
T -1 G(ejw  )dw} 

0 
(17) 

where G is a (mxp") complex matrix with qth column g as defined by 

(4) . 

For a spectrum with k lines, (17) reduce's to: 

T -1- jw 

MBDCA = 2 Ree 

-jw
i(e 	) 	G(e ) I 

i=1 

From (18) the maximum possible rank of MBDcA 
is 22.min(m,p").. Thus 

M
B
Dc
A 
is singular if 2Z.min(m,p") < p". The result follows. 

Theorem 2: 
. 2 The average information matrix, M, is singular if the input 

spectrum contains less than p'/2m lines, where p' is the number of 

B and D parameters and m is the number of outputs. 

= 

= 

(14)  

(15)  

(18) 
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Proof: 

From (13), (14) and (15) it can be seen that M will be singular 

if MlaDcA  has rank < p'. That is, if 2R-min(m,p") < p'. The result 

follows. 

Remark 2: 

Theorem 2 gives a minimum condition that must be satisfied by 

the input for identifiability of all the parameters. 

Theorem 3: 

The set of all average information matrices corresponding to 

the power constraint, (6), and fixed 8(W), w. E [-ff,ff) is convex. 

Further, if 8(w) is continuous and w E [-W
mF
W
m
3 where w is any 

frequency in the range (-ff,7), then the set of average information 

matrices is closed. 

Proof: 

Let yw), 2(W) e E. Then E(w) EEE where 

(w) = etE
1
(w) + (1-a)E

2
(w) 	a E [0,1] 

The corresponding matrices M' are related by: 

() = 	 (1-06 ) (E2) 
	

(19) 

as is readily verified. 

From (19) and (2.2) it follows that: 

M() = 	+ (1-a) M(E2) 
	

(20) 
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Thus convexity is proved. Closure follows from the continuity of H 

and and the closure of [-W
M  ,WM 

 7. 

Theorem 4: 

For any 13(w), W E -ff,ff) and 1(w) e E with corresponding average 

information matrix, M1, there is always a E2(W) E E, the spectrum of 

which contains at most p"(p"+1)/2 + 1 lines and M
1 
= M2

, where p
t  is 

the number of B, D, C, and A parameters and M
2 
corresponds to w). 

Proof: 

Equations (9) and (11) define the convex hull, C, of all matrices 

M(w) corresponding to the spectrum with- a singleline at w. Since M(w) 

is symmetric, it can be represented as a point in a p"(p"4-1)/2 

dimensional space. It follows froma classical theorem of Caratheodory, 

[347, that 	may be represented as: 

M' = I M(w.);.  
i=1 

where 

X E. =1 
1.=1 1  

and 

R, = p"(p"+l)/2 + 1 	 (23) 

Defining 2(03) as a measure which assigns a fraction Ei  of the total 

power at frequency wi  for i = 1, .... 2,, leads to the required result. 

Remark 3: 

From theorem 4, any average information matrix, M, may be 

achieved with an input having a line spectrum-with no more than 

(21)  

(22)  

p"(p"+1)/2 + 1 lines. In particular, there exists an optimal spectrum 
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with no more than this number of ;lines. The search for an optimal 

spectrum thus reduces to a search' for 2r(p"(p"+l)/2+1)-1 quantities 

namely: 

	

,w., 	i, 	31w., 	A.(w.), (P.(W.); 	j = 2,...r; 	i 	2,...p" (p"-1-1) /2+1 1 1   
(24)  

NOLE: 

= 0; X,(w.) = E - XA.(w.), 	= 1- y E. 
j=2 
	1 

i=2 1  
(25) # 

4. 	Tests for Optimality  

Whittle, [56], has stated a general equivalence theorem for 

concave optimality criteria. Special cases of this theorem for 

J = det M and J = trace M
1 
where M is Fisher's information matrix, 

have been discussed at length by Kiefer and Wolfowitz, [33], Karlin 

andStudden, [34], Fedorov, [38], and others. Here Whittle's general 

theorem is stated for convex differentiable optimality criteria and 

is shown to apply to the criteria 	and J2  previously defined. First 

some definitions needed for the statement of the theorem are given: 

Definition 1: 

The cost function J(E) corresponding to any (w) E E is convex  

if: 

J{(1-c)E+ara < (1-c)J(E) + co(n) T./ E, rl e E 	(1) 

Definition 2: 

The directional derivative  (11(,71) of J at 	in the direction of 

fl for all E, fl E E is given by: 
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.1)(E in) 	[J.( (1-a) Eq-an 1] 	 (2) 
la = o 

Definition 3: 

The maximal rate of descent of J from is defined as: 

D() = inf (1)(E,(5(0) 
well 

(3) 

where Sw  E E is a design which contains only one frequency component 

at w. 

Theorem 1: (Whittle): 

If J is convex, then a J-optimal design, 	can be equivalently 

characterised by any of the three conditions: 

(i) minimises J 	 - (4) 

(ii) minimises D(E) 	 (5)- 

(iii) ( 	= 0 
	

(6) # 

The applicability of this theorem to Jl  and J2  is now investigated: 

Result 1: 

 
1 = 

log det (141 +PI)
-1 

 is a convex cost function, where 	is a 

constant positive semi-definite matrix. 

Proof: 

Let yw), 2(w) e E and let E(W) = aCI(W) + (1-a) 2(W). Then 

= caq' ( 	) + (1-a)1\1' ( 2) 	 (7) 

therefore 

Ji() = - log det (a(M-1(y4i171) 	(1-a)(7,12)+51)) 
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But det (aA+(l-a)B) > (det A)a(det B)
1-a 
 for A, B any positive 

definite matrices, [38]. Thus: 

Ji() < -a, log det 	( 3..)+T.) - (l-c) log det (1711( 2)+1`) 

= aJ
1
(E1) + (1-a)J12) 

Result 2: 

— 	 , 
J2 = trace {F(M1 -i-P') -1  } is a convex cost function where r, P' are 

positive semi-definite matrices. 

Proof: 

From (7): 

J
2
() = trace -Cr(a(Tr'( )+5') + (1-a)(ii(C

2
)+5'))-1) 

But 

(aA+(l-a)B)
-1 

 < aA
-1 

 + (1-a)B
-1 
 

for any A, B positive definite matrices, [381. So:. since F is 

positive semi-definite, it follows that: 

J2(E) <a trace 
{r64.( 1 	+ (1-a) trace 	

2
)i-T')-1} 

= a 
J2 (E1)('-a)j2( 2)  

Since J
1 

and J2 
satisfy the conditions for theorem 1 the following 

equivalence theorems may be stated: 
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Theorem 2: 

A J1-optimal design, 	can be equivalently characterised by 

any of the three conditions: 

 (i) E* minimises log det (M' (E) 4-1) ) -1 

{ 	(E) +F' ) -1 
(Tim +i=' ) } 

1  (ii(w) 	) = p 

where p is the total number of parameters and M(w) is the matrix 

M' (Ow) 	(Equation (3.10) . ) 

Proof: 

J1 is convex from result 1. Also, _ from (2) : 

(D(,n) = trace CR.  () 	) -1  (R. 	(n)) }  

= p - trace { (Nit (E) 	) 	(ivt (n) 4: 1 ) } 

Putting n = (303  and substituting (12) into (5) and (6) leads to (9) 

and (10) . 

Theorem 3: 

A J2-optimal design, 	can be equivalently characterised by 

any of the three conditions: 

(i) E* minimises J2  (E) 	= trace fr(M'() 	) -1} 	(13) 

(ii) * minimises sup trace { (R' (E)+F' ) 	(R(E) +1' ) (M(w) +P') 1 
wEA 

(iii) sup trace 

	

	{ (i(E*) -1-Ft  ) -117(M' ( *)+71i. ' ) -1  (11(0) 	) 	= 	 2 3' ( E*) 
WE A 

(14)  

(15)  

Proof: 

J
2 
is convex from result 2. Also, from (2): 

(ii) * minimises sup trace 
2.1.1EA _ 

(iii) sup trace 1 (MI  ( E*) +P ) 
WEA 

(8)  

(9)  

(10)  

(12) 

(,n) = trace f(M' () +171) -1r  (Tv ()+P')-1(M' ()-M' (n) ) 	(16) 
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= trace Ir(TV(E)+1 ;)-11 

- trace { 	() 	) -1r 	 (n)+1• ) } (17) 

Putting fl = 6w  and substituting (17) into (5) and (6) yields (14) and 

(15). 

Notation: 

LetVI(EMand,w) be defined as follows: 

V (,,w) = trace {(Ti'(E)45')-1(M(w)+P')) 
	

(18) 

v2(E,W) = trace 1:(M 4- )-11;(q1 (E)-1-T1 )-1(71(w)4TI )1 	(19) 

Tests for optimality and non-optimality of test signals based on 

theorems 2 and 3 are now given: 

Result 3 - Test for J.  -Optimality: 

A design, 	is J1-optimal if Vi(E,w) defined by (18) is less 

than or equal to p for every w E A. 

Proof: 

The result follows from part (iii) of theorem 2. 

Result 4 - Test for J2-Optimality: 

A design, 	is J2-optimal if V2(E,w) defined by (19) is less 

than or equal to J2() for every w E A. 

Proof: 

The result follows from part (iii) of theorem 3. 

Result 5 - Necessar Condition for J1-Optimality: 

If E* is a J1-optimal design, then V1(E4c,w) = p for every W to 
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which E* assigns non zero measure. 

Proof: 

Suppose that V1(*,W) < p for some w with non zero measure. 

Then since V1(*,W) < p V w by (10), it follows that: 

f\I (*,W)g*(W) < p 
0 

But by integrating (18) it is readily shown that: 

0 V
1  (,,w) g (w) = p 
	 (20) 

	

for any 	Contradiction. 

Result 6 - Necessary Condition for J2-Optimality: 

	

If 	is a J2-optimal design, then V2(Elc,w) = J2(E*) for every (0 

to which E* assigns non zero measure. 

Proof: 

Suppose that V2  (*,,W) <J2
(E*) for some w with non zero measure. 

Then since V2  (*,w) < J2  (Y) V W by (15), it follows that:. —  

iV2
(*,w)g*(w) < j

2 
 (E*) 

0 

But, integrating (19) it is readily shown that: 

0 
jV2(Erw)dE(w) a) 2 ' 
	 (21) 

for any E;  Contradiction. 
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Remark 1: 

Results 5 and 6 allow non-optimal designs to be detected and 

discarded. The test is very easy to perform when the input has a line 

spectrum containing few.  lines. 

Remark 2: 

The error in the frequency response estimate due to estimation 

errors is given to first order by: 

jw 	y(ejw)  Ay(e ) = 	(R-0) 

es• 

where the posterior mean and y(z) is the z-transform of the output, 

{yk}, given by: 

= Cxk 
+ Du, 

xk+1 = Axk Buk 

x
1 
= 

Thus the posterior covariance of this error at w is: 

jW  V( ,w) = 2R {(3Y(e))Q 3y(e- 
e 	13( n  

whereQr;e5  = (M1()+P')
-1 is the posterior covariance. Taking as a 

measure of the error covariance the quantity: 

1.)(,W) = trace {E-1V(E,W)} 

(22) 

0 



r 
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it is not hard to see that: 

1.)(E,w) oc trace { 	(E)+5')-1174(w)} 	(23) 

Defining w(E) as: 

w (E) = trace {(M' (E) +11 ) 	1 	 (24) 

it can be seen from theorem 2 that: 

(i) E* is any design E that minimises sup {U(E,w) } + w(E) (25) 
WEA 

(ii) E* is optimal if sup {U(E*,W)} + w(E*) = p 	(26) 
wEA 

In section 3 it was shown that any information matrix could be 

achieved with an input having a line spectrum no more than pH (p"+1)/2-4-i 

lines. The next result enables this to be reduced to p"(P"+1)/9-. 

Result 7: 

The information matrices corresponding to either J1-optimal 

designs or J2-optimal designs are boundary points of the set of all 

possible information matrices. 

Proof: 

Let Mo 
be the matrix M' (E*) corresponding to the optimal design 

E* and assume that Mo  is an interior point of the set M of all 

possible matrices M'. Then therp exists an•a > 0 such that 

M
1 
= (1+a)Mo 

also belongs to the set M. 

J1-optimality: 
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J
1 = log det ((1+a)m+i.1) 

= - trace { (Mo-FY)
-1 

 Mo} 

< 0 

J
2
-optimality: 

J2  = trace {r((1.-1,1)Mo4-P') 

= - trace 1(MoZ')-1r(Mo
-4.F1 )-1Mo1 

< 0 (provided r > 0) 

Thus in both cases the derivative of the cost function is strictly 

negative so an a > 0 exists such that a decrease in cost occurs - but 

Mo corresponds to an optimal design - contradiction. 

Result 8: 

J
1
-optimal and J2-optimal designs exist having an input spectrum 

containing no more than p"(pu+1)/2 lines. 

Proof: 

Follows from Caratheodory's theorem, [34]. 

In the next section it is shown that this number may be still 

further reduced by exploiting the structure of single output systems. 

5. Optimal Spectra for Single Output Systems  

In section 4.9 it was shown that the matrix M' was given by: 

33-1  
as 

a=0 

IT2 
as ot=0 
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N 
M' 1 v T 

2 L  gkgk a k=1 

where 

g k = itk ' 	k1 ' 	
...t2 , 	

tr ... k_n,sk,...s k-n+1) 1 
 

and 

j C(z 1  )tk = 	uk  ; j = 1,...r 

r 	i  
A(z

-1) s  = BJ(zThtj  
t=1 

Equations (3) and (4) may be rewritten in the form: 

A(z
-1)C(z-1)vj = -uj  

t
j 
= A(z

-1
)v
j  

L j -1 
sk = L 	(z )vk 

j=1 

Now, from (1)o.4,,d (x59,44,;15 1-443.6:0-m6^ 4-i ■044.4.45 

t"' = lim 
1 	X g g

T 
2 	k k 

N-  NU k=1 

(1)  

(2)  

(3)  

(4)  

(5)  

(6)  

(7)  

(8)  

 

rlr 

 

 

TS 

 

rr 
FTT rTS 

TT 

1  
rST 

r rS , r T  SS 

(9) 



M 
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° where rij, ri 	ki r are matrices with kith  elements yij (q-x), yTS
(
q-A,), TT TS SS 	 TT 

ySS (q-2,) respectively. The elements are given by: 

ij 
yTT(T) = A(z

-1
)A(z)y

ij
(T); i,j=1,...r; T=0,+1,...+n. 	(10) vv 

r r  

SS 	 vv 

_; 
(T) = 

	

	/ lii-(z-j-)BJ(Z)Yii(T); T=0,+1,...+(n-1) 	(11) 
i=lj=1 

ij yTS(T) = 

	

	A(z 
1 
 )B
jt 
‘z)y 

vv
(T); 	T=0,+1,...+(n-1),-n, (12) 

j=1  

Remark 1: 

y
i
T T(T), T=0,1,2... is the cross-covariance of tk  and tk; 	'SS(T) 

is the auto-covariance of sk' yTS 
i 

is the cross-covariance between tk 

and sk' yvv 
ij 

is the cross-covariance between vk and vi  

Result 1: 

For single output systems in Gaines' canonical form, the average 

information matrix M lies in a (2n+1)r
2
-dimensional subspace of the 

space of all average information matrices. 

Proof: 

From (10), (11) and (12) it can be seen that only y
ij
(T), vv 

T = 0, +1, +2, ... +2n; i, j = 1, 	r are needed to specify 

completely. Making use of the fact that yij  (r) = yji  (-T) leads to the vv 	vv 

conclusion that M' is completely specified by the (2n+l)r2 quantities: 

j) (T); T = 0, 1,1,—. 2n; 	j = 1, 	r 	(131. vv 

The result follows. 

Corollary to Result 1: 

For single output systems, (3i -optimal and (32-optimal designs exist 
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having an input spectrum containing no more than (2n+l)r
2 
lines. 

Proof: 

The result follows immediately from Caratheodory's theorem. 

Remark 2: 

In the last section it was shown that not more than p"(p"+l)/2 

lines were needed in general. For the single output model considered 

here,p" = r(n+l) + n. To see under what conditions (2n+1)r
2  is 

less than p"(p"+l)/2 define A as: 

A = "(p"+1)/2 - (2n+l)r
2 	 (14) 

= 1/2[r
2
(n
2
-2n-1)+r(2n

2
+3n+1)+(n2+n)] 

A is positive if: 

(i) n = 1, r < 3 

(ii) n = 2, r < 15 

(iii) n > 3, r any finite integer. 

Thus result 1 represents a decrease in the number of lines necessary 

for all but pathological cases. In particular, for r = 1, the 

decrease is very significant. This is brought out in result 2. 

Result 2: 

For single input-single output systems, J1-optimal and .32-optimal 

designs exist having an input spectrum containing no more than p" lines. 

Proof: 

From the corollary to result 1 it can be seen that only (2n+1) 

lines are needed, Since p" = 2n + 1 the result is proved. 
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Remark 3: 

Although result 2 was proved for single input-single output 

systems in Caines' canonical form, it is in fact true for systems 

with A and B polynomials of different order. Also, for continuous 

time models the time delay may be included in the parameter list with-

out affecting the result. Both these points will be taken up again in 

section 8. 

6. 	Design Algorithms 

In section 4, Whittle's general equivalence theorem was given. 

This theorem states that a J-optimal design, E, is one which minimises 

the maximum rate of descent defined by: 

D() = inf (M;ow). WEA 

where 

(1.(,(Sw  ) 	[J{(1-a)E-paw}] 
a = 0 

It further states that any design, F, for which the maximal rate of 

descent is zero, is J-optimal. 

From this theorem the following algorithm naturally suggests 

itself, (see also [38], [56], [57]): 

1. Start with any designs o. Set 37., = 0. 

2. Calculate (1)(Ek,6w) for all W e A. 

3. Find D( Q) and the corresponding minimising w = wk. 

4. Let 2„.1.1.  = (1-a )E
k 	

a
k
6
w 

where a is chosen so that a 
Q 

decrease in J occurs. 

(1)  

(2)  
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5. Q= 	1; if 5(y = 0 stop; else go to 2. 

The convergence of this algorithm is evident, [56], but unfortunately 

its applicability to the problem at hand is limited for the following 

reasons: 

(i) The number of points in the optimal design is in general 

large even if "rounded-off" designs, [38], are used. This can pose 

realization problems. 

(ii) It requires a knowledge of the matrix BM, defined in 

section 3, for all w. This is not a restriction for single input 

systems since B(w) is simply E. However, for multi-input systems the 

algorithms cannot be directly applied. 

An alternative approach is to use a steepest descent algorithm in the 

(2r1-1)-dimensional space of the design variables: 

w., A. (w.), 	j 
 (w.); i = 1, ...t; j = 2, ...r, 	i = 2, ...t 

(3) 

where t is the number of lines in the input spectrum,X.(W.
1
), (I). 3(w.1

) 
3   

definetheelementeoffl(w.1), i = 1, ... 
X. 

The essential point is that the dimension of the space of 

design variables is small and hence the above algorithms should present 

fie computational difficulty. In fact, for some systems analytic 

designs are possible as will be shown in appendix A. 

7. Realization Procedures  

For power constrained inputs there is little problem in 

realizing a signal with the required power density spectrum. For 

spectra consisting of a finite number of lines a suitable realization 

S 
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is obtained by simply adding sinusoids of the required frequencies, 

although this could be tedious for large numbers of lines. For continuous 

rational spectra a suitable realization procedure is to pass Gaussian 

white noise through a filter with rational transfer function H(z) where: 

O*(z) = H(z)H(z 1) 
	

(1) 

and 4:(e3t')) is the required power density spectrum. 

In general, the theory presented in this chapter for power 

constrained inputs is not strictly applicable to other types of 

constraints. However, as will be brought out presently, amplitude 

(and other) constrained inputs can often he found with spectra closely 

approximating the spectra of optimal power constrained inputs of the 

same power. 

Result 1: 

If, for a single input system with amplitude constraints, +6, on 

the input, a +6 binary signal exists with power density spectrum 

equal to an optimal 6
2
-power constrained input, then the binary 

signal is an optimal amplitude constrained. input. 

Proof: 

It was shown in theorem (4.6.2) that with amplitude constraints 

the optimal input *must be binary. Further in theorem (2.1) it was 

shown that it is only the spectral properties of the input which 

matter. The result follows. 

Under fairly general conditions, binary signals do exist with 

arbitrary continuous spectra and are readily generated by means of a 

linear filter driVen by Gaussian white noise followed by an infinite 

gain amplifier and clipper. The autocorrelation of the output of the 

• 
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clipper is related to the input of the amplifier via the arcsine law, 

[35]. In fact, it is possible to generate signals with almost any 

continuous power density spectrum and amplitude probability 

distribution, [53], [55]. 
• 

For line spectra, however, binary signals do not in general exist 

having only the required lines, [79]. In section 2, it was shown that 

it was possible to achieve any desired accuracy by considering only a 

finite portion of the input autocorrelation, R(T), -T < T < T, 

say. The implication is that periodic inputs may be used with period 

> T, or, in the frequency domain, it is permissable to consider 

1 
spectra with lines only at multiples of 7. The optimal spectrum may 

thus be approximated by such a spectrum. Vanden Bos, [80], has 

described methods for generating periodic binary signals with specified 

line spectra. It is also possible to approximate line spectra with 

continuous spectra. This is achieved by matching autocorrelation 

functions of the two spectra over an interval [-T,T] where 1 — is the 

highest significant frequency in the line spectrum. The remainder of 

the autocorrelation function may then be arbitrary, (for example, 

maximum entropy extrapolation, [53]). The input may then be realized 

as described above for continuous spectra. 

A point in favour of line spectra is that subsequent data 

analysis is greatly simplified, [15]. 

8. Extension to Continuous Time Systems  

An appropriate model for a continuous model is the continuous 

analogue of the innovations model described in chapter 4: 

• 
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a 

dxt 
= Ax

t
dt + Bu

t
dt + Kde

t 
	 (1) 

dY
t 
= Cxt

dt + Du
t
dt + dct 
	

(2) 

where E
t 
is a Wiener Process. Care must be taken with this 

representation, especially for sampling problems, [81], but most of 

the results presented in this thesis have continuous time analogues 

which may be obtained formally by: 

(i) replacing, summations over time by integrations, 

(ii) replacing integrations over [-W,W)byintegrations over 

(-00,00), (or [0,70 by [10,00)), 

(iii) replacing z = ejw  by s = jug. 

As an illustration, esult 5.2 on the maximum number of spectral 

lines necessary for single input-single output systems is rederived 

for continuous time systems with unequal numerator and denominator 

orders and with the time delay in the parameter list. 

The system may be modelled as follows: 

y(s) - 
B(

A( 	
u(s) + 

s)e
s

s)

T 	
(3) 

where u(s), y(s) are the Laplace transforms of the input, ut  and the 

output, Yt, respectively and n(s) is the Laplace transform of the 
% 

noise which is assumed to be Gaussian and to have spectral density 

expressible as: 

(s) - D(s)n(s) 

 C(s)C(s) 
	 (4) 



ae(s) 
@T 	

- sX(s)A(s)B(s)u(s) 
'NJ 

0 
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where s denotes complex conjugate, A(s), B(s), C(s), D(s) are finite 

polynomials in s. The orders of A and B are n and m respectively. 

Fisher's information matrix, M, for this model is given by 

([57, [157): 

Ml 	0 1 

0 1 M2] 

where M2 
is a constant matrix and M1 

is given by: 

rf ae(t) T ae(t)  
M = f 	 ( 	%dt 1 	ae 	DO ' 

where 0 is a p" vector of coefficients: 

0T = [ao,...en-1,bo,...bm,T3 

tf 
is the experiment time and is assumed to be large, and the functions 

ae(t)  are obtained as the outputs of the following linear equations: ao 

ae(s) 	s
i
X(s)B(s)u(s); i = 0,...,n-1 
	

(8) 
i 

ae(s) 	
s'X(s)A(s)u(s); i = 0,...,m 
	

(9) 
i 

M = (5)  

(6)  

(7)  

(10) 

where 

X(s) 
D(s)A

2
(s) 

A direct application of Parseval's theorem, [773, to (6) leads 

C(s) 
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to the result: 

M = f  ,aec-J4 -T,aeow),,,,(w)  
1 	aa " ao '" _00 

where p(w) is the appropriate measure on the frequency space. 

Substituting (8)-(11) into (12) leads to: 

M1() = tff F(-jw)X(-jw)X(jw)F
T
(jw)dE(w) 

-00 

where (w) is the cumulative power distribution of the input and 

where F(s) is a p" vector having kth  element: 

Fk(s) = s
k-1

B(s); k = 1,...n 

= -sk-n-1A(s); k = n+1,...n+m+1 

= sA(s)B(s); k = p" = n+m+2 	(14) 

The total input power is constrained, that is: 

00 

fd(w) = 1 	 (15) 
0 

Theorem 1: 

For the single input-single output continuous time system, (3), 
4 

J1-optima/ and J2-optimal power constrained designs exist having no 

more than p" lines where p" is the number of system parameters. 

Proof: 

From equations (13) and (14), Mi  can be expressed as 

(12)  

(13)  

0 
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co 

M1
(0 = 2tPR.  fV(jW)1X(-jW)X(jW)d(W) r

0 
 e 

(16) 

where V(jW) is a p" X  p" matrix having ik
th  element: 

Vik(iW) = (-1)
i-1

(jw)
i+k-2

B(-jw)B(jw) 	; i=1...n; k=1...n 

= (-1)i(jw)il-k-n-2B(-jw)A(j c1.1) 	; 1=1...n; k=n+1...n+m+1 

(-1)i-1(jW)iB(-jw)B(jw)A(jW) 	; i=1...n; k=n+m+2 

= ) 	i=n+1...n+m+1, k=n+1...n+m+1 

= ( -1)i -n(jw)i -nA( -jw)A(jw)B(jW) 	i=n+1...n+m+1, k=n+m+2 

= 2 A(-jw)A(jW)B(-jw)B(jw) 	; i = n+m+2, k=n+m+2 	(17) 

Careful inspection of equations (16) and (17) shows that MI may be 

expressed as: 

M

1  t

f 

 a.L. 
i=1 

where 	„ are constant matrices depending only on the coefficients 

of the polynomials A(s), B(s) and ay...ap. are scalars which depend 

upon the input spectrum and are given by 

co 
a. = {X(-jw)X(jw)W

2(i-1)dE(w) 
	 (19) 

0 

Since M1 
is completely specified by the p" quantities a ,...a ,and 1 P„ and 

(18) 
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since information matrices corresponding to J1-optimal and J2-optimal 

designs are boundary points of the set of all information matrices, 

the result follows from Caratheodory's theorem, [34]. 

9. Optimal Sampling Rate Determination  

In the last section it was seen that Fisher's information matrix, 

M, for single inputsingle output systems given by equation (8.3), was 

of the form: 

M = (1) 

where M is the information matrix for the A and B parameters and 

depends on the input spectrum and M2  is the information matrix for the 

C and D parameters and is independent of the input spectrum. 

Suppose that the cost function is a function of M1 only. For 

example: 

J = log det (MI-FPI
) -1 

1 

or 

J
2 = trace fr(M1--FF1)-11 

where P1 
is the prior information matrix for the A and B parameters. 

Suppose further that the measurements of the system output are of 

the form of N uniformly spaced samples, with sampling rate wslixThe 

total experiment time tf  is therefore given by: 

tf 
= 27N 

w- 
	 (4) 
$ 

(2)  

(3)  

• 
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Now it is well known that a signal with no frequency component 

above'Wh' 
 say, can be sampled without loss of information at any 

frequency greater than 2wh  (Nyquist rate, [42]). Furthermore, M/  is 

unaffected by any frequency components in the output which are above 

the highest frequency in the input spectrum. Thus all the information 

about the system parameters is contained in the sample values of the 

filtered output 17., provided: 

ws 
> 2wc  > 2w

h 	 (5) 

where we 
is the cut-off frequency of a filter with transfer function 

H(s) such that: 

111(jW)1 = 1, w < wc  

= 0 , 	> we 
	 (6) 

The inclusion of this filter is necessary to prevent aliasing, [423. 

Letting Ws 
2W ÷ 2wh'  (4) becomes 

t = ITN  f
h 

and hence, from (8.18): 

ffN M— 
M =  
1 wh 

(7)  

(8)  

where 
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psi 

= 	a.L. 
i=1 

1 1 

The joint problem of optimal sampling rate and input spectrum 

determination may now be stated as: 

TrN- min 	{min 	J( —m ()} 
wh

cLO,c0) EEE 	wh 
A=Eo,wh] 

(10) 

Since the optimal M is specified by p" lines the optimiSation 

indicated in (10) may be carried out in a 2p"-1 dimensional space. 

Remark 1: 

Conditions under which it is meaningfUl to use cost functions 

which are functions of M1 only are: 

(a) The purpose of the experiment is to determine only the 

system parameters, the noiseparametersbeing of little or no interest. 

(b) The noise spectrum has predominantly low frequency components 

so that there is little information loss due to filtering and sampling. 

Remark 2: 

Constraints on the number of samples are common when a digital 

computer is used for analysis. 

Remark 3: 

The more general problem in which the noise parameters are also 

required to be estimated could be solved if suitable expressions 

for the information loss due to filtering and sampling were considered. # 

10 	Concluding Remarks  

In this chapter it has been demonstrated that it is only the 

spectral properties of the input which affect the identification 

accuracy. Furthermore, it has been shown that it is sufficient to 

(9) 
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t 

consider only line spectra of low dimensionality. Realization 

procedures which are simple and robust have been described for both 

power and amplitude constraints. Tests for optimality of inputs 

have been described. It has also been demonstrated that the results 

of this thesis may be readily extended to include continuous time 

systems. For these systems, the additional problem of optimal 

sampling rate determination also arises. A suitable method for joint 

optimal design of input and sampling rate has been indicated. 

Alk 
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APPENDIX A 

Examples 

1. 	Single Time Constant with Coloured Noise 

Model: 

1 
y(s) - 

Ts+l 
 u(s) + e(s) 

where e(s) is coloured noise with spectral density: 

(I)(w) - 	
1  

Sensitivity equation: 

s(as+1)  g
T
(s) = 	 u(s) 

2 
(Ts+1) 

Average information matrix corresponding to a line at w: 

ii(w) _ (a
2
W
2
+1)w

2 

(T2032+1)2 

From theorem 8.1 it is not necessary to consider spectra containing 

more than one line. Therefore let M = M(w). 

For the single parameter case J1-optimality is equivalent to 

J2
-optimality and both correspond to maximising M. To find the 

maximum value of M(w) and the corresponding w, differentiate (4) with 

respect to W and eauate to zero: 

22 
 

a w +1 

(1)  

(2)  

(3)  

(4)  
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aM 	(4a2  w3 	
2 2 	2 	2 3 2 2 E 	+2w) (T co +1) -4T w (a w +1) (T2w2+1, 

') = 0 Dw - 
(T 2w2

+1)
4 

0 

(a
2
w
2
+1)(T

2
w
2
+1) - 2T

2 
w
2
(a
2
w
2
+1) = 0 

• 

(2a2-T
2
)w

2 
+ 1 = 0 

2
-2a

2 

Thus the optimal input frequency is: 

w*  = (T2_2a2)- 

w* = c cif 2a
2 
> T

2 	
(6) 

Remark: 

As a 0 (i.e the noise becomes "white") the intuitively pleasing 

result w* - 
1 

the 3dB frequency, is obtained. lo toac.*(ce,a) 

ty1931,-.e.* 	44,,vr • 	f.recreptc.-7 	st•o6, lot 	 fie ase c( 

2. 	Simple Gain in Coloured Noise  

Model: 

y(s) = Ku(s) + e(s) 	 (7) 

2 w- 	 

12  if 2a2  < T2 
	

(5) 

where e(s) is coloured with spectral density given by: 
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(1)(w) = Ii(jw)H(-jw) = 1H(jw) 12 
	

(8) 

Sensitivity equation: 

g(s) 	H(s1 ) u(s) 
	

(9) 

Average information matrix corresponding to a line at co: 

14(w) 	1 
 12 111(jw) 1 

Thus M(w) is maximised for w* such that IH(jw*) I2 is a minimum. Thus 

the optimal frequency is at the point where the noise power density is 

a minimum. 

3. 	Simple Two Input System  

Model: 

y(s) = b u
1
(s) + b2u

2
(s) + e(s) 
	

(10) 

where e(s) has spectral density given by (8). 

Sensitivity equations: 

gl(s) 	1 u1 (s) 

g
2
(s) 	

1 
H(s) u

2
(s) 
	

(12) 

Average information matrix corresponding to a line at CO: 



1 = 

- 5.A - 

(A
1 A2 )1/2cosq) 

L 

(A1A2)1/2coscb 

133. 

(13) 
IH(jw) 	

2 
 

From theorem S.1 it is not necessary to consider spectra containing: 

more than two lines. It is possible, however, from theorem 3.1, 

that an optimal input spectrum with just one line exists. This 

possibility is now investigated for the case of J
1 
= log det M: Now 

for fixed A
1
, A

2 
and 	det M(w) is obviously maximised for w = w* 

)2 
where w* minimises 1H(jW)!Introduce the test quantity V

1
(w*,w) • 

defined by: 

 
V
1 	

-L (w*,w) = trace M(w*) 
-1—  

M(w),r 
	

(14) 

Again it is obvious that sup V1(w*,w) occurs for w = w* and when 

W = w*, V1
(w*,w) = 2. Since 2 is the number of parameters, it 

follows from theorem 4.2 that w = w* is the optimal spectrum for all 

A
1,  A2' 

lq). It thus only remains to maximise det M(w*) with respect 

to Al  and 4). (A2=1-A1): 

det M(w*) = 	
1 

14 
.

1
(1-A

1
)(1-cos

2 
 (1)) 

IH(jwfli 

which is maximised for Al 
= 1/2 and = + 7% Hence the optimal inputs 

u
1
(s) and u

2(s)have the same frequency W* which minimises the noise 

power density, they are of equal power and are 900  out of phase. # 

0 
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4. Optimal Sampling Rate Determination 

Model: 

1 
Y(s) 	Ts+1.u(s) + e(s) 

4 

where e(s) has spectral density 

(1)(w) - 
a
2
W
2
+1 

This is the same model as for example 1. The optimal input spectrum 

contains only one line and the corresponding information matrix is 

ii(w) 	(a
2
w
2
+1)w

2 

(T
2
w
2
+1)

2 
	 (17) 

For a fixed number of samples, at the Nyquist rate, 2w, the information 

is proportional to M where M = 1 — M(w). Maximisation of M with 

respect to W is carried out as in example 1: 

, 
311 	E(T

2
w
2
+1)

2[(a2w2+1)+2a
2
w
2
J-w(a

2
w
2
4-1)(T

2
w
2
4-1).4T

2 
 WJ  

= 0 
&A) (T

2
w
2
+1)

4 

(T
2
w
2
+1)(3a

2
w
2
+1) - 4T

2
w
2
(a
2
w
2
+1) = 0 

3a
2
T
2
w
4 

+ T
2
w
2 + 3a2w

2 
+ 1 - 4a

2
T
2
w
4 
- 4T

2
w
2 = 0 

2 2 4 	2 2 ,2 
-a T W + 3(a -T )W + 1 = 0 

1 
(16) 

OF 
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4 

i.e. 

W2 
	1 	2 
2 2 

[3(a --T ) 	(9(a
2
-T
2
)
2 	

4a
2
T

2)3 
2a T 

(18) 

For a 0, W 	
1

, i.e. somewhat less than in the first example. This 
15T 

is to be expected since, for lower sampling rates, the experiment time, 

and hence the input energy, increases. 
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CHAPTER 6 

Suggestions for Further Research 

In this thesis the experiment design problem has been tackled 

in both the time domain and the frequency domain. The time.domain 

approach, although leading to viable design algorithms, offers little 

insight into the problem. On the other hand, the frequency domain 

approach leads to a number of elegant mathematical results giving 

considerable insight. It is felt by the author that further research 

in this area could be very rewarding. Also, because of the success 

of the frequency domain techniques in dealing with the experiment 

design problem, it seems highly likely that further interesting 

results may be possible for the related problems of identification 

and control. In both cases this would entail a new look at some of 

the classical methods. 

Another avenue of further research is the problem of optimal 

sampling rate determination in the case where system and noise modes 

are not distinct. Also the problems of optimal design of non-

uniform sampling systems and the optimal choice of presampling filter 

are yet to be studied in depth. 
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