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Abstract

The dynamic system exéeriment design problem is treated from a
Bayesian viewpoint. It is sﬁown how egperiments may be designed using
available prior informétion to optimise some measure of goodness of the
experiment. The measure of goodness may be an information measure or,
if a decision theoretic approach is adopted, a measure of the. ultimate
use of the experimental data. It is further shown that experiments
may be designed for joint structure determination and parameter
estimation.

Design algorithms for the realization of optimal input seguences
are described for general linear discrete time dynamic systems.
Characterisation theorems are obtained for amplitude and energy
constrained inputs for general lineaxr disérete time and éontinuous
time dynamic systems. Stronger results are obtained’for scalar output
systems. |

The problem of optimal sampling rate determination is also
formulated and a simple design algorithm is described.

Several examples of designs carried out in the time and frequency

domains are given.



- ii -
Acknowledgements

I would like to expreés my sincere thanks to my'supervisor,
Dr. G.C. Goodwin, for his coﬁstant help and inspiration throughout
the past three years, -I‘would also like to thank him for his
valuable suggestions and comments on the first draft of this thesis.
Thanks are also due to my fellow students for thelr interest
and comments, to B.M.N. Clarke for proof reading, and to Linden Rice

for her efficient typing of the thesis.

The work that led to this thesis was supported by the Association

of Commonwealth Universities.



To Kiren



- iii -

CONTENTS
Page
<Abstract ' ‘ i.
Acknowledgements ' ii.
Contents : iii.
CHAPTER 1 PRELIMINARIES
1.1 Introduction to the Thesié 1.
1.2 Originality and Significance : 2.
1.3 Conventions and Symbols X 6.
CHAPTER 2 BACKGROUND
2.1 Introducticn ' 10.
2.2 Design of Identification Experiments - Some General '
Congiderations . 7 lo.
2.3 Optimal Design of Inputs o 14.
2.4 Concluding Remarks . 18.
CHAPTER 3 BAYESIAN PRCBILEM STATEMENT
3.1 Introduction - - © 19,
3.2 Decision Theoretic Design 20.
3.3 Information Theoretic Design ] 25.
3.4 Design for Structure Determination ) 28.
3.5 Concluding Remarks ' 30.
APPENDICES
3.A An Example of Ultimate Model Use 32.
3.B A Criterxion for Structure Determination 33.
CHAPTER 4 TIME DOMAIN DESIGNS
4.1 Introduction : 37.
4.2 Model Structure _ 38.
4,3 The Likelihood Function 39.
4.4 Fisher's Information Matrix 41.
4.5 Optimality Criteria . 51.
4.6 Necessary Conditions for Optimality 59.
4.7 General Design Algorithm . 70.
‘4.8 Computational Aspects 75.
4.9 DesignAlgorithm.for Single Output Systems 81.
4,10 Concluding Remarks : 84.
APPENDICES
4.A Amplitude Constrained Examples 85.

4.B Energy Constrained Examples 9l.



CHAPTER 5

[SARRSA RN, RS N, RS, S, RS, Y
e« ¢ ¢ ¢ ¢ 2 ¢« & @
W oSN OUT D W

o

APPENDIX

5.A

CHAPTER 6

= iv -

FREQUENCY DOMAIN DESIGNS

Introduction

Characterisation of Test Signals
Frequency Domain Representation

Tests for Optimality

Optimal Spectra for Single Output Systems
Design Algorithms

Realization Procedures

Extension to Continuous Time Systems
Optimal Sampling Rate Determination
Concluding Remarks ' ‘

Examples of Frequency Domain Designs

SUGGESTIONS FOR FURTHER RESEARCH

REFERENCES

AUTHOR'S TECHNICAL PUBLICATIONS

Page

94.
95,
99.

106.

114.

118.

119.

121.

126.

128.

130.
136.
137.

143.



- 1.1 - . 1.
CHAPTER 1
Preliminaries

-1, Introduction to the Thesis

In this thesis aspects of the problem of Optimél planning of
experiﬁents for dynamic system identification are considexed. The
problem is approached from a control theoretic point of view and much
of the notation and terminology reflects this. The results obtained
are, however, applicable in many time series analysis applications
where the experimentexr has a degree of control over the methods of

data generation and ccllection.

In general the experimenter must decide which variables (inputs,
outputs, intermediate outputs etc.) to measure and how to measure
them. It may also be possible to introduce input signalé to further
excite the system under test and the experimenter must deéide upon
the form of these test signals. These decisions’will in general
depend on a large number of factors (physical and economic constraints,
current engineering practice, methods avallable for data analysis,
purpose of experiment, etc.). In this thesis it is assumed that only
the form of the test inputs and of the measurement system are left to
be decided. It is further assumed that there are amplitude or energy
(power) constralnts on the test inputs, that the data collected
consists of a fixed number of samples equally spaced in time, and that
efficient use is made of the data. Subject to these constraints,‘test
inputs and measurement system (sampling rate} are chosen to optimise
some suitable measure of goodness of the experiment. This measure of

goodness may be related to the purpose of the experiment which might,
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for example, be the design of a controller or simulator for the
dynamic system under test.

Oﬁvious applications for'the results obtained are in areas where
the carrYing out of an.experiment is expensive. For example, alrcraft
'flight tests and production line tests usually have costs proportionél
to experiment time and it is important to cbtain the required
information as quickly as possible, However, the results may also be
applied advantageously in less critical appiications since there will
usually be savings due to smaller experiment.and'analysis times, or
perhaps due to superior performance of a controller or simulator

designed using information obtained from the experiment.

2. Originality and Significance

The results in this thesis which are believed by the author to
be original are listed below, together with the chapter and‘éection
in which they appear.

1. The experiment design problem for dynamic system identification
is formulated from a Bayesian decisiﬁn theoretic viewpqint. The
Bayesian approach answers the criticism that is often levelled at
alternative formulations; viz. that, in order to design an experiment
it is necessary to know the parameters that the experiment is being
designed to find. The decision theoretic approach is conceptually
pleasing since the experiment is designed to optimise a measure of the
ultimate use to which the experimental data is to be put. (Chapter 3,
section 2.)

2. A new optimality criterion is proposed. This is of the form:



J = traceb{TM—l} (1)

where I' is a positive semi-definité matrix and M is the "posterior
information matrix" which is.related to the expected posterior.
covariance, It is shoﬁn that I' may be chosen so that J reflects the
ultimate use to which the data is to be put. (Chapter- 3, Section 2,‘
theorenm 1,)

3. Several properties of information matrices for general innovations
models are derived. These prove to be useful for experiment design
purposes. In particular, they allow minimum identifiability
conditions to be stated, and reduce the dimensionality of the design
problem considerably. (Chapter 4, Section 4, results 1 to 7.)

4. Methods for evaluating the expected values of the posterioxr cost
and posterior information based on first and second moments of the
prior probability distribution are described. These methods offer
significant reductions in computational effort over altexnative
approaches. (Chapter 4, section 5.)

5. Necessary conditions for optimality for both amplitude and

power constrained inputs are derived for the general innovations
model. (Chaptexr 4, section 6.)

6. A theorem on amplitude constrained optimal inputs is\stated and
proved. It is shown that optimal amplitude constrained inputs for
linear systems are binary. This allows attention to be restricted to
binary signals when performing an amplitude constrained design.
(Chapter 4, section 6, theorem 2.)

7. A theorem showing that it is sufficient to‘consider only a subset
of the parameters is stated and proved. (Chapter 4, section 6,

theorem 1.)
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8. A general design algorithm based on the necessary conditions for
optimality is described, A‘number-of design examples based on the
algorithm are presented, (Chapter 4, section 7.)

9. A theorem on the choice of Lagrange multiplier for energy‘
.constraints in systems with disjoint system and noise modes is stated
and proved. It is shown that the design can be performed with any
value of the multiplier provided that the input is lgter scaled in
amplitude. This fact leads to reductions in the computational éffort.
(Chapter 4, section 7, theorem 1.)

10. A detailed analysis of storage and computaticnal requirements of
the algorithm is made and methods proposed for reducing these
regquirements. For a typical model, it is éhown that a 90% reduction
is possible. (Chapter 4, section 8.)

11. It is shown that the computational reguirements may be further
reduced by exploiting the special structureg of single output systems.
(Chapter 4, section 9.)

12. A spectral characterisation theorem is stated and proved, showing
that the average information matrix depends only on the spectral
properties pf the input. (Chapter 5, sectioﬁ 2, theorem 1.)

13. It is shown that the information matrix may be specified to any
desired accuracy by considering only the first few shifts of the
input autocovariance. (Chapter 5, section 2, theorem 2.)

14. Expressions for the information matrix are obtainéd in the
frequency domain for general multi-input innovations models. This
extends Mehra's frequency domaln results which were restricted to
single input dlscrete time systems having known disturbance
characteristics. (Chapter 5, section 3.)

15. It is shown that for complete identifiability, the input spectrum
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must contain at least p'/2m lines, where p' is the number of B and D
parameters (B and D are the input gain matrices) and m is the number
of outputs. (Chapter 5, seétion 3, theorem 2.)

16. It is shown that optimaliinputs may be found by optimisation in

a rp"(p"+l) -1 dimensionél space where r is the number of inputs and p"
is the number of system (A, B, C, D) parameters. (Chapter 4, section
3, theorem 4; section 4, result 8.)

17. Tests for optimality of test signals are derived using a theorem
due to Whittle. The tests enable signals obtained by any means to be
tested for optimality. (Chapter 5, section 4, theorems 2 and 3, results
3, 4, 5 and 6.)

18. It is shown that, for single output systems, it is sufficient to
consider input spectra containing not more than (2n+l)r2 lines where n
is the state dimension and r the number of inputs. (Chapter 5,
section 5, rxesult 1,) |

19. Frequency domain algorithms and corresponding time domain
realization procedures are described. It is further demonstrated

that amplitude constraints may be handled in the frequency domain.
(Chapter 5, sections 6 and 7.)

20. It is shown that the results of the thesis can be épplied to
continuous time linear systems. (Chapter 5, section 8.)

21. A theorem is established showing that, for single input-single
output linear systems, it is sufficient to consider input spectra
containing not more than p" lines, where p" is the number of system
parameters which may include a pure time delay for céntinuous time
systems. (Chapter 5, section 8, theocrem 1.)

22, The problem of optimal sampling rate determination for the case of

a fixed number of samples is formulated. It is shown that joint
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optimal design of sampling rate and input may be carried out. (Chapter

5, section 2.)

3. Conventions and Symbols

The system of numbering and cross-referencing is a standard
one and is described as follows: within each section, equations,
theorems, lemmas, results, definitions and so forth are given a éingle
number. When refered to from within the same section only this number
is used, but when refered to from another section the section number
is also given. A similar convention applies to the numbering of
sections within chapters. The chaptex and section nuﬁber appear at
the top of each page.

The end of a proof or thé end of a particular train of thought is

denoted by #. The usage of other symbols is indicated in table 1.

Table 1 - Symbols

A nXn state transition matrix

A nth_order polynomial in z or z-_l
B. nXy matrix

B n™ order polynomial in z or 2t
Bz nth order polynomial in z or z_l
c mXn output matrix

C nth order polynomial in z or z-_l
D mXr matrix

D ‘polynomial in z

D —an/aﬁj



D(E)

det

w,B

exp

log

=z]
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maximal rate of descent

determinant

total energy (power)

E

w,R

expectation over p(w,B); similarly E

exp

» exponential

sensitivity state transition matrix
sensitivity input matrix for z'
sensitivity output matrix (Bwk/SB)T

gradient vector - dimension r

(g0,
gradient Iy projected onto constraint surface
(4.6.13); also Hgl), HFZ), Hf3)

i i i

Hamiltonian

unit matrix

general cost

i = 1: log det; i = 2: trace

Y=1; dummy suffix

nXm Kalman filter galn matrix

sensitivity input matrix for z"

noise sequence; { - dummy suffix

natural logarithm (base e)

information matrix. Also M', M", Mda etc.
average information matrix,'§' ~ part affected by u
output dimension (yk,wk)

experiment length

state dimension

8’ Buss’ Berw’ Fu
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PRBN PRBS pseudo random binary noise (sequence)

P prior information matrix. Also P', Pda etc.
PB prior covariance matrix for B
P number of parameters, dimension of B. (08,a)

p(-) generic symbol for probability density function
Q steady state covariance of z"

osterior covariance; Q, = E, .
Q@ P i Qg = B, -Qp

qw(B) p(B/wW); g, g': dummy suffix

Re{'} real part of

r dimension of input (uk)

s Laplace operatcr; jw

s complex conjugate of s

Sy A-parameter sensitivities

T as a superscript: transpose -
2 2 atosas ‘ .

tk B parameter sensitivities; t: dummy suffix

input at time k - dimension x
(e’
17y

(w)y

e B o

W symmetric PD weighting matrix

% state vector at time k - dimension n
§£ conditional mean

Yy ogtput vector at time k - dimension m
Z system transfer function

Zy sensitivity state vector; also z!, zﬁ
z uﬂit shift operator; ejw

o parameters in A, B, C, D and K

g full parameter vector

maximum likelihood estimate

w?



Wy i

=

(&3]

g
9
o(g,n)
¢

X
¥
2
w

%k
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prior mean
posterior mean
welghting matrix (3.2.14)

initial conditions

© a measure assigning.all the power to w

nolse gequence

a measure € E

parameters in o and Y

. th )

i component of @ or generalised polar cpordinate
set of all possible frequencies, w (design space)
Lagrange multiplier

nolse variance (scalar)

a measuxe

set of all measures defined on the Borel field generated by the
open sets of A

noise covariance

parameters in X

nolse spectral density

directional derivative

derivative of J w.r.t. M'

X'x = %

noise transfer function

space of all possible innovations sequences, {wk}
radian frequency; vector of innovations
innovations at time k

ith compohent of -; also (-)ij
sequence

as a superscript - optimal path or complex conjugate transpose
end of proof or current discussion

modulus
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CHAPTER 2

Background

1. Introduction

In this chapter the problem of identification experiment design
iskbriefly discussed. PFor details of various identification methods
the reader 1s referred to the survey papers Ey Astrém and Eykhoff,
[431, [44]. A survey of applications of identification in physical
and chemical processes is given by Gustavsson [42]1. This latter
paper and that of Bohlin [40}, present general experiment design
principles. This is also the topic of section 2 of this chapter.

In section 3, various techniques for-optimal test signal desigﬁ

are discussed.

2. Design of Identification Experximents - Some General Considerations

It is generally true that efficient experiments for dynamic
system identification can only be designed if the system dynamics and
disturbance characteristics are fairly well known. It is also true
that the expefiment should be designed with the ultimate purpose in

mind. The first two steps of the design should be:

(a) Specify the purpose of the experiment. For example to
design a control strategy, to build a simulator, or just to gain

knowledge about the process.

(b) Perform a physical analysis on those parts of the process

and disturbances which are relevant to the purpose. I1f possible
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perform simple preliminary experiments to determine gross characteristics

of the process and disturbances.,

Steps (a) and (b) are possibly the most important aspects of
experiment design. A good knowledge of the physics of the process is
not only essential for designing an experiment but also for inter—

pretation of the results. The remaining steps of the design are:

(¢) Choose variables, That is, choose the inputs aﬁd outputs
to be measured. This choice depends on the purpose of the
experiment, for example, for control purposes'the inputs and outputs
should be the same as those used by the controller. In general, it
is advisable to measure as many variables as possible, as the purpose
of the experiment may change after preliminary analysié of the data.
In cases where it is uncertain whether a variable is an -input or an
output, it may be treated as an output and the model adjusted

accordingly [421].

{d) Choose a class of model structures. This choice depends °
primarily on the purpose of the identification; for example, if the
model is required to design a regulator, a linear model of a non—
linear process is often adequate. If, however, a controller valid
over a wide range of operating conditions is desired, then the non-
linearities should be included in the model. The results of the
physical analysis also affect the choice of structure. Sometimes
the model structure is well defined by this preliminary analysis and

it only remains to find several undetermined parameters. Often,
however, the model obtained from physical considerations is far too

complex, and model reduction techniques or simulations have to be
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used to obtain simpler models that are adeguate for the purpose. The
model structure must alsc be suitable for the identification method

chosen.

(e) Choose identification method. This choice depends basically
on the cost involved in relation to the ultimate purpose. Sophisticated
procedures which make use of prior information and eétimate
disturbance characteristics are generally much more expensive and
difficult to use than the simpler, more restrictivé methods. The
choice also depends on the model structure chosen and on the form of

the inputs, [421, [431, [441].

(f} Choose sampling rate. Most computer programs require the
data to be in the form of samples equally spaced in time. Furthermore
it is usually the case that the number of samples is limited due to
the increased cost of analysis witn large amounts of data. There is,
therefore, the problem of choosing a suitable sampling rate. 1In
practice this choice has not been found to be critical and the sampling
period is usually chosen to be qf the same order of magnitude as the
smallest +time constant of interest, [42], [46]. In order to prevent
loss of acecvacy elve do collection of poov data
inefficiant-esbimation 1t is necessary in most cases to include an
"aliasing filter" before the sampler [42]. This is a low-pass filter
with steep cut—off characteristics at half the sampling freguency.

The problem of optimally choosing the sampling rateyhas been
investigated by Astrdm , [45], and zarrop, [501.

A disadvantage of equifspaced samples is that it is difficult to

find process characteristics over more than a few decades. To

overcome this, non-uniform sampling may be used but special

identification procedures are necessary. The problem of optimally
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placing non-uniform samples has been investigated by Goodwin and

Zzarrop [49].

(9) Specify the input. Whenever possible a perturbation signal
should be introduced. -The source of the perturbation should be
independent of the process disturbances [40]1, [41]., The form of the
input is often determined by the identification method. For example,
pseudo-random binary sequences for cross—éorrelation methods [421.
For non-~linear systems, the form of the input should apéroximate
normal operating signals, The amplitude of the input should be as
large as possible subject to constraints, Constraints may be technical
(non-linearities}, economic (quality of output of procesé) or
political. The frequency spectrum of the input should be chosen with
reference to the characteristics of the the process and disturbances,
and to the ultimate purpose of the experiment, Minimal'éroperties of
test signals are discussed by Astrdm, [44], Staley and Yue, [511, Tse,
[52), and Ljung, [54]. Simple and robust procedures f£or generating
binary sequences whose€ properties are related to tﬁe estimation
accuracy have been described by Keviczky [20], [21] and Arimoto and
Kimura, [8]. The generation of random signals with prescribed,
amplitude probability density function andprescribgﬂpower density
spectrum has been described by Veltman et al, [53], and Gujér and
Kavanagh , [55]. Care must be taken when using deﬁerministic signals
with line spectra due to "confounding". For example it would be
unwise to use a test signal with a component at 150 Hz in an
environment containing third harmonic interference from power
transformers, or to use a signal with one day period on a process

that may depend on ambient temperatures, In the next section the
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optimal choice of input is discussed.

Problems that arise due to poor deéign of experiments and other

reasons are discussed by Bohlin, [40]1, [411].

3. Optimal Design of Inputs

The choice of optimal inputs for static systems has received a
great deal of attention during the last fifteen years. (For example
Kiefer and Wolfowitz, [33], Karlin and Studden, [34], Federov, [38]
and Whittle, [56]1.) A linear (in the parameters) multiple input single

output static system is described by egquation (1):
T .
Y =6f(xj) +2'jrAJ =1, esu, N | (1)

where yj is the jth observation and Ql,u..., QN have zero mean,
variance U, are uncorrelated with one another and are statistically
independent of the xj. The design of an experiment consists of
choosing the vectors xj from a set of allowable inputs, X. From the
corresponding observations yj, 3 =1, ¢eo, N a minimum variance
unbiased linear estimate, 6, of the parameters, ©, may be calculated
and can be shown to have covariance matrix given by:

~ N

cov(®) = ul ¥ £(x)f (x)1
e 3

1 (2"

The optimal design of the experiment thus consists of choice of Xy
ceer Xy from X, to maximise some scalar function of cov{®). Algorithms

have been devised which converge to optimal designs, [381, [57].

Typical applications of this theory are in the design of reaction
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experiments in chemistry where x is a vector of reagent concentrations
and y the yield, or in the design of agricultural experiments where x
might represent fertilizer composition and y the dry wéight of the

crop.

Much less attention has been devoted to the design of optimal
inputs for dynamic systems.

Turin (1957, [391) considers the design of optimal signals for
the estimation of the weighting function of a linear system in the
case that the estimate is obtained as a convolution of the system
output (matched filtexr).

Levin (1960, [1]) considers the same problem as Turin but uses
a Markov estimator of the system weighting function, In the case of
white ocutput noise, the’important result that an input with impulsivé
autocorrelation is optimal with respect fo several common optimality
criteria, is obtained.

Levadi (1966, [31) considers a linear time varying system with
non~stationary coloured output noise. (The time variations in both
system and noise are known.) The system output is assumed to be
linear in the parameters\and,a Markov estimator is employed.

Necessary conditions for optimality are obtained but no raealization
procedure is given. |

BAoki and Staley, [221, [231, [24], Nahi and Wallis, [12], Mehra,
{01, Schmidt, [63] and Napjus, [25], [26] alluse the trace of Fisher's
information matrix (or slight variants) as an optimality criterion.
This choice of cost function-leads to a standard quadratic performance
index optimal control problem-to which numerical solutions may be found.

However, as has been pointed out by Goodwin, [17}, [37], Reid, [18] and
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Tse [52], the use of the trace of the information matrix can lead to
inputs with little engineerxing appeal. (In fact the optimal inputs
obtained may not even be "persistently exciting” in the sense of [44],
[71.) |

Goodwin (1970, [3%], [16]1, [171) treats the case of a general
time varying, discrete-time, non~linear system with coloured non-
stationary output noise (known time variations). The trace of the
inverse of Fisher's information matrix is used as an optimality
criterion. Necessary conditions for optimality are derived and a
realization algoriﬁhm capable of handling state inequality constraints
is described. The algorithm §olves the two point boundary value
problem by a steepest descent method, and is able to handle moderately
complex systems, but at the cost of vefy long computation times.

Reid (1972, [lS]),lobtains results simiiar to Goodwin's for the
linear continuous-time case. Reid's realizations algorithm generates
a binary signal by searching on a fixed number of switching times.

The algorithm appears to be limited to rather simple systems and
inputs with few switches.

Box and Jenkins, [11], and Minnich, [59] cbtain interesting
results. for simple first order linear models. Minnich shows that an
optimal input for a first order, two parameter model with least
squares structure is a first order autoregressive process.

An approach which ignores the statistical aspeéts of the problen
is the so-called “"sensitivity approach". (Rault et al, [14], Inoue,
ét al, [13], sawaragi et al, [19], Kalaba and Spingarn, [60].) "If

the system can be represented by

y(t) = hiu(t),t,0) (3)
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where u(t), y(t) are the input and output at time t and © is a vector

T
of parameters, 07 = (0 Qp), then the "sensitivity equations" are

l,-o-

defined by:

oT(r) = dntult) ,t,0) (4)

30 ~
0=0,

where OO is some nominal value of O. The output sensitivity is
usually measured by some scalar function of the matrix:
T
¢ = fgtrg (nat (5)
O
where T is the experiment time, If, in fact, there is white gaussian
observation noise with variance 02, G can be interpreted aé 02M where
M is Fisher's information matrix, Litman énd Huggins, [2], follow:
a related approach and find the optimal prcbing signal, within the
space matched to that spanned by the elements of g(t), t € [0,»),
for a simple two parameter system,
A problem closely related to the problem of optimal input design
for identification is that of optimally selecting probing signals,
from a finite set of allowable signals, to determine which of a finite
number of possible systems is in fact present. A multiple hypothesis test
is used for the identification and the input is selected to optimise
in some sense the power of the test. Details may be found in the
papers by Smith, [10], Gagliardi, [4], Mosca, [61] and Eposito and

Schumer, [62].
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4. Concluding Remarks

In this chapter the engineering problems associated with the
design of identification exéeriments have been briefly indicated. The
problem of optimal input desién has also been discussed and a short
survey of relevant mate¥ial has been presented. In the next chapter a

more concise statement of the problem is given.
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CHAPTER 3

Bayesian Problem Statement

1. Introduction

As has been pointed out in chapter 2, efficient experiment design
depends upon a knowledge of the characteristics of the system. 1In
fact, as the problem is usually stated, optimal designs depend ﬁpon a
complete knowledge of the system characterxistics - a situation in which
it is hardly necessary to perform an experiment! This/point has been
made by Box and Jenkins [11]. In this thesis the problem is reform-
ulated in a Bayesian framework which is shown to resolve the above
paradox, [241, [253, [261. There has been a good deal of controversy
in statistical literature regarding the use of Bavesian methods due
mainly to the subjective nature of choosing prior probability
distributions. (See for example chapter 1 of [64].) The methods are,
however, gaining in popularity, [65], and are finding acceptance in
contrxol engineering applications where-the choice of prior distributions
is often uncontroversial, [66].

In section 2 it is shown how Bayesian Decision theory may be
employed to design experiments which are optimal with respect to the
ultimate purpose of the experiment. In many caées, however, a concise
mathematical statement of the purpose is not possible or is far too
complicated. In these cases it is proposed to use an information
measure. This will be discussed further in section 3.

Design for structure determination is discussed in section 4 from

both decision theoretic and information theoretic viewpoints.
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Examples of decision theoretic design criteria are given in

appendices A and B.

2. Decision Theoretic Design

Optimal experiment designs which are independent of the systeﬁ‘

and noise parameters eiisﬁ for simple classes of systems, [1]1, [38].
In general, howeﬁer, this is not true for dynamic systems. Hence it
is appropriate to adopt a Bayesian viewpoint and to express the prior
knowledge regarding the parameters B € B as a probability distribution
p(B). This prior information can be obtained from physical reasoning
or a preliminary experiment.

For any experiment, the posterior distribution p(Bf/w), summarises
all the information contained in the data, w, and the prior distribution

p({B). The postericr distribution is obtained from Bayes' Rule:

_ p(w/B)p(B)
p{B/w) () (1)
where
pw) = E,Ip(w/B)1 = [p(w/B)p(B)aB ' (2)
B B

P/
is a scaling factor which ensures that p(e#8) integrates to unity.

The distribution p(w/B) of the data given the parameters is completely
gspecified by the model structure and experimental conditions, €.
When regarded as a function of B8, p{w/B) is called the likelihood
function of B for given w.

In order to design an optimal experiment for parameter estimation,
a measure of the return from the experiment is required. In principle,

the measure should reflect the use to which the model will be put,
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and, in general, will be a scalar function of the posterior distribution,
p(B/B). Let qw(B) = p(B/w). Then the cost associated with the density

function p(+/w) when the true parameter value is B is given by:
s = s(q,(),B) (3)

For example s might be the output variance of a linear optimal
regulator designed using p(*/w) when the true parameter is B. (See
appendix A.) Thus after the experiment, a measure of the return from

the experiment may be defined as:

s = T . k
s EB/m's(qw( ) .81 (4)

whexre E denotes expectation over the distribution p(R/w).

B/w

E,, [*1 = f(-)p(B/w)aB : (5)
B

B/w

§ is a function of qw(-) only.

Before the experiment, the expected value of § is given by

s = Ew[s] = Ew[EB/w[s(qw(~),B)]3 (6)

where Ew[-] denotes expectation over p(W). From Bayes' rule, (1), it

follows that:

[S(qw(-),B)] =E [Ew

5= EU)IB I

/B[S(qw('),ﬁ)]] (7)
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It can be seen that E.depends upon the functional form of the likelihodd
function which in turn depends on the experimental conditions, €. Thus
the experiment can be designed to minimise s, the expected cost before
the experiment of using the data to be obtained from the experiment.

In oxder to perform this minimisation it is preferable to have
parametric forms for the likelihood function and posterior distributions.
Thése are readily obtained by making use of the large sample properties
of the likelihood function, [27]1, [47], viz.: subject to mild
regularity conditions, the likelihood, p(w/B} is asymptotically normal
with mean E and covariance M—l where M is Fisher's information,matrix
defined-by: (€. 109 ploy/p) is a qw.wbah'c foncton Of(? ) and

,Blogp(@/B) T 3logp (w/B)

M=ot e ) g

)1 (8)

AlsG:

[R1 = B (9)

For a normal prior distribution it is readily shown that the mean B
asyw»]n-hﬁemﬂw'

and covariance of the posterior distribution are given/gy:
-1,-1 ;
= (M+P 10
QB ( 8 ) , (10)
and
B = o, (B2 'B) (11)
B g

where E) PB are the mean and covariance respectively of the priox

distribution, p(B8). Equations (10) and {(11) are true for large
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samples even in the case where p(B) is not .normal, provided p(B) is
well behaved, [68]. Since a normal distribution is completely
described by its mean and covariance, (7) may be written as:

s = Ew,B[S(B'QB'B)] . (12)

A theorem that allows s to be implemented as a design criterion is
now stated and proved:
Theorem 1l: For experiment designs based on the first and second
moments of the prior end posterior distribution functions, and for
large samples, the following design criteria are eguivalent:

(1) J, =8 = EL'J;B[S(B’QB'B)] (13)

where s is a function such that the first and second derivatives of s
with respect to B and B, and the first derivative with respect to QB

exist, and that:

2
e i 1 s
I'' =75 T =5 |_ (14)
RplfrFe 2 08% |gp,
is positive semi-definite (PSD).
(ii) J2 = trace [FQB] (15)
where

QB = E 2 ' ‘ (1e)
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”~ : —
Proof: Expand s(B,QB,B) in a Taylor series about the prior mean B and

covariance PB :

A To O 3s
S(BrQBrB) = S(B’PB'B) + BB(B B) + 88(8 B) + trace[aQB(QB—PB)]
1,5 TB s
+ E(B -B) -——-(B ~B)
38
+ (B- B)Ta 5 (3-B)
BBBB
2
+ %(6—3’)'1'3-%(8-'8') + o
a8
. ds
Ew B[S(B QB,B) = s (B, PB'B) + trace[aQB(QB—PB)]
1 3%s 52
+ = tracei-—-—-Q 3+ trace [P 1]
2 B as B
B o8
a2
+ tracel As PB}
3B oB
1 2
+—trace[ P +....
2 382 B
- = 2% 13% 19% 9
= s(B,PB,B) + tracel (== +5 ;+2 ; Bs )PB]
9898 08 a2 g

2
+ trace[(-gi-%%-aﬁ%)a] + ...
) % 23p% B

(17)

where the derivatives are evaluated at E_, PB' The high order terms
depend only on moments of third order and higher and may, therefore,

be neglected since only first and second moments are of interest.
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Equations (15) and (17) are therefore equivalent apart from an additive
constant. The theorem is proved. , #
To proceed further it is necessary to specify the model structure

describing p(w/B). In the next chapter, the criterion, J

5 = trace [Tﬁé]

is used to design optimal inputs for the class of linear time

invariant dynamic systems with stationary disturbances.

3. Information Theoretic Design

The Bayeslan decision theoretic approach to experiment design
described in section 2 is conceptually very pleasing, but unfortunately
there are many cases where it is difficult or impossible to implement.
The major problem is in describing the ultimate purpose of the
experiment in a suitable mathematical form. For example, if the
purpose is just to gain knowledge about the process, there is no
ohvious mathematical statement of the ultimate purpose. Thus, there
exists the need for a measure of the return from an experiment which
does not depend directly upon the ultimate purpose, but which does
indicate how "good" the experiment is in some well defined sense.

A suitable measure for this purpose is the average information
increment provided by an experiment as defined by Lindley [68]. This
quantity is now defined:

Definition 2: The amount of information provided by the experiment,

€, with prior knowledge p(B), is

Tte,p(+)) =B [T (w)-I] | (1)



- 3.3 - 26.

where Yl(w) is the amount of information about B contained in the

posterior distribution and is defined by:
I, = [p(B/w)logp(B/w)dB (2
B :
and IO is the prior information defined as:

= [p(8)logp (B)aB (3)

I
° 3

I(e,p(*)) is called the average informaﬁion increment for the
experiment, €, with prior distribution p(Bi. It has also been called
the mutual information between parameters and data, L8], and the
sensor channel transmittance, [70].

An coptimal experiment, €%, may now be defined by:
I(e*,p(+)) > T(e,p(1)) ¥ € (4)

If p(B) and p(R/w) are assumed to be normal with covariances PB
and QB respectively, it is possible to obtain an expression for
I(E,p(;)) in terms of these covariances.

Result 1

IO = %"logdet[Pél] - %-log(ZWe) ' (5)

where p is the dimension of B.
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Proof: PFrom (3)

- fi- B 1. -1, 1 ;T -1 T
I, Ij;[ 5109 (24 S1logdetlPg 1 o(B-B) "Po~ (B-B) Ip(B) aB
_ £ -1, p. _l T'l = AT
=3 logdet‘[PB }-zlog(27r) Etrace[PB .EB[(B B) (B-B) "11
Y -1, p. _RP
= 2logdet[PB ] 2log(2'rr) 5 » #
Result 2:
I (w) = *logdet[o 11-E10g(2ms) (6)
1 29 g -~ 2% '
Proof:
Follows immediately from {2} and (5) by analogy. #
Result 3:
T(c,p(s)) = lﬂﬂ [logdetir Q—l]] {(7)
! 2w o9 " BB
Proof:
From (1), (5) and (6). #

As was discussed in section 2, the assumption of normality of
p(B/w) is realistic for large samples. If p(B/w) is not normal then

the following inequality holds [70]:

B

G log(2ﬂé) ' (8}

1 -1
Il(w) 2.§i°gdet[93 1~

so that (7) becomes:
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1 4 -
I(e,p(*)) 3§~Ewtlogdet[PBQB 13 (9)

Thus, use of the optimality criterion, J, defined by:

: -1
J = E [logdetlP 11 10
w9 %8 (10)
is sensible even in the case of non-normal posterior distribution.
Non~normal prior distributions do not usually cause any concern,
since, for long experiments, Ii(w) dominates IO'

In the next chapter it is shown how J defined in (10} may be

used as an optimality criterion for linear systems.

4, Design for Structure Determination

In this section the results of sections 2 and 3 are extended
to the case where there is the need to design an experiment to
discriminate between alternative model structures. For simplicity,

only the case of two alternative structures, H., and H2, is

1

considered. It is assumed that one of Hl’ H2 is the true structure

and that the prior probabilities of H H, are p(Hl), p(H2)

ir 2
respectively (P(HZ) = l—P(Hl)).

Following section 2 define cost functions:

1 2 .
Si = Si(qw(‘)r qw(’)yBi)r i=1, 2 (1)

where Sy is the cost associated with posterior distributions:



1 , :
q,(B)) p(Bl/w,Hl)p(Hl/w) , (2)

it

2 B .
qw(Bz) p(Bz/w,Hz)p(Hz/w) (3)

when the true structure is Hi with parameters Bi. After the

experiment, the expected cost is:
A 1 2 )
= H_ . - . .
8 §p< 1O /10,8 15 (0,0 900 By (4)

Before the experiment, the expected cost is:

S =E & =% [Vpl(H /OE Y
s Ews EwLép‘Hi'w)bB,/w,H,{sill {5)
i i i
which, from Bayes' rule, gives:
- 1 2
s = Jp(H,)E (E o Es (@ (+),q(+),B, 1] (6)
R Bi/H.l “w/ﬁi'ﬂi it 0w i

In general, the use of s as a design criterion would be extremely
complicated. However, as in section 2, it is possible to simplify
the form of g'considerably by considering large samples and
parametric forms of S, - In appendix B an example illuétrating a
decision procedure for controller design is given. Even for the
simple case considered, the problem of cptimal experiment design is
very complicated.

The information theoretic approach of section 3 can also be .

_extended by redefining the information [381:
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I, =Ip,) [ p(B,/H,)logp(B, ,8,)aB, 7)
i Bi
I, = gp‘Hi/‘”’ {; P (B, /H, ,wlogp (B, ,H, /w)aB; (8)
i

In the case where Bi is known for i = 1, 2, then the divergence, J,

as defined by Kullback, [67] is also a suitable measure:

J p(H,/w) : p(H,/w)
(€,p(-)) = Ew/Hl[logm]+Ew/H2[log;(-H—lm] (9)

The design of experiments to increase the power of commonly used
experimental tests such as F~tests is also theoretically possible,
although more work needs to be done in this area. A detailed

discussicn of the problem is given in [38]1.

5. Concluding Remarks

In this chapter two alternative formulations of the experimental
design problem have been given. Both formulations base the design on
the informatlon contained in the prior distributions of model structdre
and parameters. The decision thecoretic approach assumes the existence
of a scalar function of the experimental data related to the ultimate
purpose of the experiment, and leads to a cost function of the form:

Jl = E[traceTQB] » (1)

The information theoretic approach does not make use of a knowledge
of ultimate purpose (except perhaps in the initial choice of

structure and parameter set) and leads to the following cost:



J, = E[detQB] - (2)

This latter cost function has another interpretation as the expected
volume of the posterior highest probability density region for B.
Other cost functions such as the expected value of the maximum eigen-—
value of QB {(major diagonal of highest probability density ellipsoid)
are possible but are not discussed further here.

Since @(, s f.ju)@m cxs7mh4—o+ica.[{1_ L.:) » (m 1—;)[,—-1)»', ( fqya"'&";‘ {(2-0)) N
wheve M ;5 cvalvaled ot £ the Thue' parametes vale , it suffiies
o -i-adce vhe e,c}q,u@a.%'o«a l‘;\oltc.awleal '~" ()1 and ) over tle /""b"

distriby from af F) F(f)n
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APPENDIX A
An Example of Ultimate Model Use
A simple first order linear system undexr minimum variance

control is considered.

System Structure:

where {U‘k}' {Yk} are the input and output sequences regpectively and
{wk} is a sequence of independent identically distributed random

variables having zero mean and variance U.

Minimum Variance Control Law:

(2)

o
H]
1
Eopifi)
<

where (&,0) is the mean of the posterior distribution for (a,b).
(The posterior covariance information has been discarded - see [48]
for a general treatment.)

Measure of Ultimate Model Performance:

It

S(érﬁ) S(a,ﬁ,ﬁ,a,b,\))

{y2

k+l} (3)

%»/a,b,u

Finally from (1} and (2) s(é,B) beconmes:
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A U
s(B,B) = ——mx— (4)
1—[a—2312 :

b

The weighting matrix, ', may be readily evaluated from (4) and (2.14).

APPENDIX B
A Criterion for Structure Deterxrmination

Firstly the (non-optimal) decision function is described for a
simple minimum variance control application:

Structure 1l:
=g.u + € (1)

where {Ek} is a sequence of independent identically distributed
random variables having zero mean and variance 82.

Structurxe 2:

H, : =0

1Y%

+ G)zuk + Wy | (2)

wherxe {wk} is a sequence of independent identically distributed
random variables having zero mean and variance @3.
From analysis of a given finite set of data, {d}, the random

'variable (Bl,Bz) has posterior distribution (given Hl) with mean
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(ﬁl;éz) and covariance RB. From the same set of data the random
variable’(@l,GZ,GB) has pogterior distribution (given H2) with mean
(61,62,63) and covariance RG'. It is assuméd that p(Hl/{d}) and
p(Hz/{d}) cannot be foqnd with the analysis program available.
Two controller structures aré proposed, the parameters of which>
are based only on the posteriof means of the parameters in the

corresponding model structure:

Controller l:

w, = o) {3)

This is the minimum variance control law corresponding to Hl.

Controller 2:

v {4)

This is the minimum variance control law corresponding to H2.
Now the costs sij assoclated with true structure i and

controller 3j are calculated:

A 2
s),(B/B) = EE/B[yk+l]

-8, (5)

it

]

A 2
5.,B/0) =E_ olyy

\ B
= .__——g—— (6)
[148, (=51
e2



521(61'6) =

The average risk of controller i is now defined:

r, =
1

which yields (neglecting moments of third order and higher):

K
]

lad
It

- 3.B -

1
EEEB/{d},HlSli(B) * E(—)/{d},H2S2i

2 11 2 134
0 Re (1+30l) 2R, 0

%){l+ T+ 0 _1

1

Lg + -
2 1-6

S

0

A 3Rll (x—l~) 2
62 B '8,

oy {l+

N

A @ } A @
[1+Bl(-61-)32 [1+ gl(gi)l2
: 2 5

) o
12 1 +Rg2(x302}
2 0

11_,

+ 63{1+RG R

8
e e
892

0
[l+61(€53]3
2

(0)1

1
A2 2.2°
(1-87) (1-@1) .

35.

(7)

(8)

(9)

(10)

(11}
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where REJ and jo refer to elements in RB' Re respectively.

The decision rule is: choose controller i such that ;£=min(zi,;é).
The experiment may now be designed to minimise the expected
average risk or some other suiltable criterion. 1In spite of the

simplifying assumptions and the very simple model structures, it can

be seen that this is far from triviall
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CHAPTER 4

Time Domain Designs

1. Introduction

In this chapter the problem of optimal input sequence design for
linear discrete time systems with stationary disturbances is cqnsiderad.
In section 2 the "innovations” model of such systems is introduced and
in sections 2 and 4, the likelihood function and Fisher's information
matrix are derived. Several properties of the information matrix which
will prove to be useful for design purpoées are stated and proved.

In section 5, a method for computing the expectedrreturn from
an -experiment is presented. The method is based on first and/or
second moments of the prior probability density function p(8).

In section 6, a theorem onthe equivalence of optimality criteria
is stated and proved and is shown to lead to simplified designs.
Necessary conditions for optimality are alsc stated and proved via
the Minimumn Principlg, for both energy and amplitude constraints. It
is further shown that an optimal amplitude constrained input is
binary.

In section 7, a general design algorithm based on the necessary
conditions for optimality is described. A theorem which leads to
simplification of energy constrained designs is stated and proved.
Section 8 contains a discussion on the computaticnal aspects of the
algorithm and it is shown that significant simplifications can be
obtained by exploiting the structure of the sensitivity equations.

In section 9 it is shown that even greater simplifications are
possible for single output systems. Several examples cf optimal

designs obtained using these algorithms are given in the appendices.
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2. Model Structure

The model considered is for a system having r-dimensional control
input sequence,'{uk}, and ﬁ-qimensional output sequence,'{yk}. The
output (with no control input) has spectral denéity ®(z), assumed to
be rational, having fuli rank and.no poles on‘the unit circle.

Youla , [29], has shown that there exists a factorisation of &(z) such
that

o(z) = ¥V(z)T¥ (2 D) : Y

vl : . .
where ¥ and V¥ are stable. The spectral density given in (1) can
be realized by the follcwing noise model:

Y, = Yz} (2)

k
where {Qk} is a sequence of zero mean, R-dimensional independent

random variables having covariance X. The complete model is thus:
Ve = Z(z)uk + W(z)&k (3)

where Z(z) is the rational transfer function from input to output.
(Note: =z may be interpreted either as the unit shift operator:

Zxk=xk+1' e.g. (2) and (3), or as z=€gm as in (1).) . The transfer
function model, (3), has a minimal n-state space representation of

the form:
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X = Axk.+ Bu, + K%k | (4)
¥y = Cx + Dup+ Rk (5)
X, =Y | ' (6)

where both A and A-KC are stable (i.e. have eigenvalues with negative
real parts). See for example [71].

This is a general model for a linear time invariant discrete
dynamic system and igqludes.the special canonical structures

proposed, for example, by Mayne, [3Cl, and Caines, [31].

3. The Likelihood Function

For the purpose of constructing the likelihood function, the
noise sequence, {Rk,kzl,,..,N}, is assumed to be normally distributed.

L _ is of the form:

That ig, the joint probability distribution of 21,..., N

N2

N
exp{—-;-'- ¥ SL:Z lﬁlk} (1)

. -
PR, e 8 = ((2T)mdetd)
! A k=1

Now equations (2.4}, (2.5) and (2.6) may be rewritten in the form}-

y = E& + Fx, + Gu _ (2)

¥

T T T P X
= (gl,...,zN) and E, F, G, are NmxXNm, Nmxn

where yT = (yf""’yg)' L
and NmXNr matrices respectively and may be derived from (2.4)-(2.6).
The important thing to note however, is that the diagonal elements of
E are unity and that all elements above the diagonal of E are zerxo.
Thus the Jacobian of the transformation from £ to y given by (2) is

det E = 1 and it can be shown that:



- 4.3 -~ ’ 40.

‘N
- N
A —_— - —
2opl=T ) 70 B ey, T (3)
k=1

ply/u,B) = ((Zanﬁetz)

where ;L, the conditional mean given yk—l""’yl' 1s given by:

§% = CEL + 5uk 4y

;£+1 = AE% + Bu, + K(yk~§L) | (5)

Ei =y (6)
and

u = (ui,...,ug)T 4 ' (7)

Thus the likelihood function for B is given by

N
2

1ik(B/u,y) = ((2mdets) Zexpl-L Y wir lw} (8
2k k k

| ~122
o

where the innovations sequence {wk}, [74], is given by:
w, = Yy k=1, ..., N (9)

The sequence {wk,k=i,...,N} is a sequence of independent
normally dist%ibﬁted random variables with“joint'distribution:
-1

T
lwkZ mk} (10)

=

1
expi{- 5
k

plw/B) = ((2m)Pdetl)

i o~12

where:
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T.T :
0= (W] e ) | (11)
_ Comparison of (8) and (10) yields:
1ik (B/u,y) = p(w/B) a2

This ties in with the notation used for the likelihood function

throughout the rest of this thesis.

4. Fisher'’s Information Matrix

Fisher's information matrix, M, is defined by:

Elogp(M/B))
3B

T(alogp(m/B)

M=E [ 56

)1 _ (1)
where the likelihood function for 8, p(Ww/R), is given by (3.10) and
[.] is the mathematical expectation defined by:

Ew/B

E

wygltd = é(~)p(w/8)dw (2)

{ is the space of all w defined by (2.9), (2.4)-(2.6).
For the purposes of calculating the derivatives indicated in (1),

the following partition of B is considered:

8T = ©%,00) (3)
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where O is taken to be that part of B which contains elements of A, B,
K,C,D and'Y, and 0 is the vector of elements of XL. Thus M may be

partitioned in an obvious manner:

-
Yoo 1 Moo
t
M= |---d--=- (4)
. .
L Moo Mcc_‘

To obtain expressions for the submatiices in {(4) , the following
lemmas will prove useful:
Lemma 1:

For any random variables X, Y, and Z with Y independent of X and

Z, it is true that:
E[A(X)B(Y)C(2)] =E[A(X)E[B(Y)]C(Z)] | (5)
where A, B, C are .matrix functions of X, Y, Z respectivedy.

Proof:

The ijth element of EfABC] denoted dij’ is given by:

It
v~

E[ SV § bl :
a5 = L IBlag g (0P (¥ 05 (2)]

= Efa, . ‘
g'q {glp (X)ch(Z)]E[bp,q(Y)]

since Y is independent of X and Z. Thus dij is also the ijth term

of E[A E[BJC]. #
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Lemma 2:

The random variables & _, k = 1, ...N, defined by (3 9)are functions
o
of © and have derivatives ——=— 35, which are independent of Wy for all £

i
greater than or egual to k.

Proof:

Equations (3.9) and (3.4) - (3.6) may be rewritten in the form:

W, =y, - Cx_ - Du (6)
= 1 ¥ ’

Fepy T OB OB 4 KW ‘ (7)

x, =Y (8)

It is obvious that w, depends on O (the elementsof A, B, K, C, D, Y)

o

and the derivatives — 89 may be obtained by differentiating (6) - (8).

ou d
k__. % 3 _ 3D
5. C 30, ~ 30 *x ~ 30, % (9)
1 1 i 1
e e, @A dc, e op ax
0, ( ?aa_ 26, 50, % © 38, T 90, % *
(10)
ox
3 .
EE% =30 ' (11
i i

Now, from (7), it can be ssen that x_ depends only on wz for & <k

axk k
and similarly from (10) 89 depends only on wR for & < k. #
Result 1:

a 2w
)Tz 1(——35>1 (12)

00 ~ w/B

H e~
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Proof:

44,

Differentiating the log of (3.10) with respect to Oi yields:

dlogp (w/B) _ _ 1§ SOyl Sy
a0, k 00
i =1 i
Thus, from (1):
N 9w ow
k. T.—1 -1 4
M), . = [) G 2w ) Wl (w91,
Q0" ij w/B ko1 39; kg=1 L 8@3
Nz* § Y opor 7o-1
= E , [{x="2 WLE (5 ]
x=1 L=k+1 /B 96, kLT gy
N-1 N aw ouw
-1 T.—1 2
+ )y ) D) 2 wa (=51
2=1 k=04+1 w/ﬁ ae k aej
N 8w Bw

+ Z Ew/s'(ae y T~ Ly X0 Ts- (ae )J

N Bwk 3mk
_ Ty-1
=0+ 0 + kfl /Bt(ae (ae

where lemmas 1 and 2 togethef with the results:

T
Ew/B[wk] =0 ; Ew/B[wkwk] =

have been used.

(13)

(14)
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Result 2:

Lt , .
The 1ij h element of MU is given by:

o

1)' -1 1 1

N - - -
M_).. =={(Z (2 , T (2 , (2 15
(00)13 4‘{ pp( )qq ( )pq( )piq} (1)
where o, corresponds to (Z)pq and Gj corresponds to (Z)p,q,.
Proof:
Differentiating the log of (3.10) with respect to g, = (Z)pq
yields:
9logp (w/B) N, -1 1 -1, ¥ a1
Poleotuti--F -0 Suaall A Al G A —
%, (% )pq+2(2 '(kzlwkwk)z )pq (16)

Taking Oj to be the p'c'th elements of % it follows from (1) that:

Mse 15

2 2

N -1
= = b
4 (Z )Dq( )p'

m W m

[ I =]
E:“I
s
™~
L
™~
S

.
s=1lt=1ls'=1t'=1
N-1 N

. {k£m=;§+1Ew/3[ () g W) (o) o (o) ]
N-1 N

k

N
+ ] ;+1Ew/6[(wk)s(wk)t(wl)s. (W) o1+ Z Bypl @) s ) @) o w) 3Y

L=1k=

2
N ..l . ..l (N _N) _l —
e —— % ¢ gt ) %) .
4 (> )pq( )D q 4 ( )Dq( pa
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m m o m _' B B
y Yy yaeh oeh eh e

N m R
+=) ' R 0 NN 020 SE
4 s=lt=1ls'=1t'=1 Ps tg P's t'g st s't
+'(Z)ss‘(Z)tt'+(z)stf(2)ts'}
N -1 -1/ N -1 -1 - -1 -1 -1
= - = (X ) N e X z T 0  (Z L+ (T
7 ¢ )pq( ) o 4{( )pq( Jprgr e )pp ( )qq +( Yy , (2 )p
N -1 -1 -1 -1
= ~{ (% z +(Z z .
4{( )pp'( )qq' ( )pq'( )p'q}
where again lemmas 1 and 2 together with (14) have been used. #
Result 3:
Mec =0 (17)
Proof:
..th . \
From (13), (16} and (1), the 1j element of M@G is:
N aw -1
Mogd i3 = By Z (ae R w -3 ) oq
N
18 % -1 -1
+= ) ) (BT, ) ) _(wy), () 1]
2 oo 1tm1 isg”) Ls¥ 8t 3
N-1 N au)
k, Te—1
—o+~22(2 {Z ZE =) 2w (W) _(w
s=1t=1 ‘ k=12=k+1 ei ks
Nol I§ a“’k T-1
[ T w w ]
N aw .
+ } E
L E gl 5, o0 () () 1)
1 § Yo 1
== (), (27N {o+o+o
zs=lt£1 t] }

where lemmas 1 and 2 together with the additional result:
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Ew/B[(mk)i(wk)j(wk)R,] =0 for all i, i, k, %

(which is a result of the normality of w) have been used. #

A furthex partition of B is now considered:

T T T 7T

B™ = (o ,y ,07) : (19)
where O.contains elements of A, B, X, C, D; 7Y is the initial state
vector and O contains elements of £ as in (3). The partition of B,
(19), corresponds to a partition of O:

0 = (o ,Y ) (20)

and the matrix MGG- may therefore be partitioned in an obvious way:

M UM [
| w1 oy
Mag = E T T (21
T t
Yoy 1 My |
| : |

Result 4:

The limits as N approaches infinity of the submatrices MYY
a M re finite.
nd oy are

Proof:

The elements of M and M are readily obtained by substituting

‘BmaY YY
the expressions for §5E-obtained from (9) - (11) into (12). For this
i

case, however, where @j = Yq' say, the equations (9) - (11) may be

written as:
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Bwk ox
e
q q
ox A3x
8Yk+l (A-KC) §§E
q q
sy
oy ™
Yq Yq.

Now, since (A~KC) has eigenvalues with negative real parts, [711, and

since g;T is bounded for bounded v, u the resﬁlt follows frém the
converge;ce of the series zetbkcos(vk+¢) for arbitrary v, ¢ and

1
positive b. - #
Result 5:

The information matrix M, may be expressed as the sum of a matrix
Mu depending on the input and a matrix Mc independent of the input.
Proof:

It is immediately obvious that MGO is independent of the input.

Further, by superposition, equations (6) - (11) may be rewritten as:

awk 3(”1; aw"

56, ~ 30, 30, (22)
. 1 .
where
! ax' :
k * ac , 3D
36, =~ © %0, " 90, *k ~ 36, k (23)
Bxé ox!
+1 kx . ,9A oc . 3B 3D
39 - (AKQ) §EE+ Ggm - Kggo) X+ (5T - K 5g)
i 1 1 1 L
(24)
ox!
= k. gg (25)



- 4.4 - 49,

Xopp T BY o+ Bu (26)
x =Y » (27)
and
By B!
- .~k _0oC
E R R R (28)
1 L 1
BX" axll )
ksl k, 8B _ 3. . 9K
36, ~ (AKC) w4 (5Em - Koy xy MO (29)
L L 1 L .
a 1
agk =0 (30)
i
X}'r:+l - AX}: * Kwk (31)
X; = QO (32)

Thus, from {(12) and (22):

1§ 8(»}'{ p -1 P aw' 8w' aw};\

3 8“; Ty-1 3 8wk T.-1 awﬁ
+ Zle/B =) (86)] + EE/B ) | (ae

M.__l?;.A,.s_*,;_,.i,A_:,__..' (33)
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where
N dw' . dw!
k. T.~-1 k
M)= J I 5] (34)
5= Lt 0,
N ow" aw!" :
k. -1 k
(.= ) E ols59L (5501 (35)
Wb uset (38" (TR
Since M" is independent of {uk}, the result is proved. #
Result 6:

The matrices Mu depending on the input and MC independent of the

input may be written as

- 1 r L
1 ! orﬁ‘ )0
il = ;T
eocR 1o L,
- - __ A ‘.gfﬁ oY
= ' ! 1 S
Mu =N | o i Q ;O { O
AU SR N I
1 r \
NI"ﬁY : O » O
b R
o 0 o i 0o
[0 1 olo | olo ]
i i I
— e MCAK i__._:._._.—__ .
M = |0 | I 0,0 (36)
c e
I
o ‘o 0olM o0
XYY L
i i i !
o O © o' M
R A R A

where the partitions correspond to the partition of B symbolised by
B~[B, DiCc, A K;Y,0Jora~[B, DiC, Al

Proof:

(i) The form of Mu follows from (33), (21) ana Fhe fact that

w,"

—é—é;-: O for @i = an element of K.
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(ii) The form of MC follows from (33) and the facts that MYY
awll
is independent of {uk} and that ==— = O for Gi an element of B or

90,
i
D. _ #

Resgult 7:

As. N approaches infinityf,Mu may be written as:

~ , , \ -
t o ' o
2y ‘ b
N BDCA ! { t
t O 1+ O : le)
) : ilh_——]"_'_:———_(""‘h-"
™M M = O « O t O '
o W SF O O 1O 10 10 (37)
1 t t .
O to to ;0 o
t !
SRR T R
o 0 ,0 'O e

Proof:
The result follows immédiately from result 4, i.e. that M&Y is
finite so that %MQY tends to zero as N tends to infinity. #

5. Optimality Criterion

It was shown in chapter 3 that suitable criteria for optimality

are:
-1
= (L)
(a) | gy EB[logdet(MB+P) ]
= ¥ : (2)
(b) J2 EB[t:ace{T(MB+P) 113 |

1 .
where MB denotes M evaluated at B, P = P8 , and EB denotes expectation

over the prior distribution p(B).
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Definition:

A segquence {uk} which minimises Ji is said to be Ji—optimal,
i=1, 2, , #

The evaluation of either.J1 or J2 poses a problem in general
due to the expectation thch involves integration over a p-dimensional
space. A common approach to this type‘of problem is to use a discrete
approximation for the prior distribution so that integration is
replaced by summation, [28]. This can, however, lead to a prohibitively
large number of calculations, even for small systems and with coarse
quantization of the prior distribution, [72]. An alternative approach
using only first and second moments of the prior distribution is now
proposed.

From Taylor's Formula:

- - P
logdet(MB+P) o logdet (M _+P) . ) trace{ (M_+P) -1 BM}(B B )
B i=1
p p |
+ %‘Z Z [trace{(M;+p) -1 EM(M +P) lgggﬁ
i=1 j=1 B B - "

+tracef(M +p) lag DSB arar ) BB BB

(3)
and

Trace{f(MF+P)_l} = trace{T(M_fP)—l}

g
f tracel (1 +2) "I T (u +py "1 (8;7B,)
i=1 aBl i i
B B
p Pl _ :
%‘2 Z‘ [trace{(M_+P) T4 +P) " lagMcm +P) 15_2_&
+ trace{(NLjP)-lagM(M +P) r(M;fP)“lsgﬂ_}r
B B B !



- 4.5 - 53.

2
-1 -1 ‘M = -
+ trace{(Mng) T(Mng) §E;§§;}](Bi—8j)(3j Bj)

I - (4)

Taking expectations as indicated in (1) and (2) and neglecting high

order terms in (3) and (4) leads to:

Jl = logdet (M +P)—l + itrace{v P,} (5)
g‘ 2 ST1TB
T : \...l l
J.. = trace{lT'M +P) ~} + =trace{v p,} (6)
2 E- 2 2°8
where
2
; -1-3M -1 3 "M
(v.),. = tracel (M +P) ~l=z—(M +P) + 10 (N
1743 g BBi g 3Bj 35138.
and
V), = trace{(M_+P)-1?(M_+P)_l[——égM(M~+P)—l—-BgM + ——BSM(Mw+P)~1ngM
J B B i B %%y 5 i
2
a°M
+ w1} (8)
38138:.'

Thus, it can be seen from equations (5)-(8) that an approximation
to Jl and J2 based on first and second moments of p(B), can be obtained
from the information matrix and its first and se&ond derivatives with
respect to B (all evaluated at the prior mean E}. Expressions fork

these derivatives are now obtained for the case Bie(x (For simplicity

i
of exposition Y is assumed to be zero and 0(Z) is assumed to be known.)

Differentiating the expression for (M)ij given by (4.12) and using the

fact that the third moments of pl{w/B) are zero for Gaussian W leads to:
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aszc,i

o

o2 2
a;:)ij - § Ew/é{(§§~;§—QTZ-l(zgk) + (::k)Tz'l(az zg )1 (9)
L k=1 2F3 3 i 2P
and
2 c a3 3
"21.3'(;{)3;'1 = Ig% E‘“aéaa:kas >TZ'1<2:"> * ‘z:k’Tz—l‘“‘asa‘a:k’“ae )
2 g k=1 / L2 7g "4 j i L75g 73
2, 2 2 2
T g 3T w gy, O
+ (o) L ) L (e} ] (10)
B 98,08,

BBanj aﬁqaﬁi

The derivatives of wk are obtained from the following sets of equations:

Xl = Axk + Buk + Kwk (L1
xl = Q {12)
e = (A*Kc)——-——axk + {-8-‘75— K §—-C-—}x
3Bi BBi oB B,k
OB 3D . 9K
{86 K %6, + %, Wy (13)
X,
g*i = 0 (14}
By
2 2
9°x 9 X ox
e - POt e - xS - - o
B985 BioBy OBy 9By 9By T OBy
ox
oA oC oK k
+ {zz— - K - c} (15)
98, 3. OBy B, ,
Sle )
=0 {16
3Bi88j



—495"'

33j§ 33x7
.........1‘..'!'2:.....: (A—-KC)———*—']E—-'“—
93B3 38438y 083 0B59Bg
‘ | 32xk
oA ac oK
+ {5~ - K - C}
9B, 98; 3B, 98,38,
32x
oA oC K k
PR g X 4
BBy T %y W ey
32xk
dA oC oK
+ {z— - K - c}
BBq BBq o0, 9B;08,
33x
L o)
R BB .38
i3 g
e S - " TN
3B 58, x o8, ~ BB, x
2 2
BBiBB. 38; 383 BBiOBj
3 2 2
" 3c. % ac U% ac

55.

(17)
(18)
- (19)

(20}

2
] Xy

:::——.:3 = -
BBiBBjBBq 3B, BbjBBq 35j BBiBBq 9B 96,98

3

] X
- C rpmmm——
3Bi33j35q

(21)

The "sensitivity equations", (11)-(18) can now be combined into a

single state equation as follows:

z = Fz. + Gu

k+1 k k * ka

where 5

T
zT = [xT Eis "E"i£“

- re e LA L B LI LA 2 4
k k aB,; asiasj

33x§

BTN

l.']

(22)

(23)

(24)
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The form of the matrices F, G and L follow immediately from equations
(13), (15) and (17). The derivatives of wk given in (19), (20) and

(21) can now be expressed as:

oW
k (1) oD
s = H, 'z - e (25)
2B, i % T OB, Yk |
2
T @ -
3,08, i3 %k (26)
5 .
_3_3‘11..___- - HS;ZK (27)
3 , Of -
B, 38,38,
p . (1} _(2) (3) 4 ]
where matrices Hi ’ l] R qu foilow from equations {19), . (20) and

(21).
The expressions for the first and second derivatives of M given

in (9) and (10) may now be written as:

B(M)" N

o (L. (1)
'—"a"'BT = EUJ/B[ Z Z [R .Q,Zk S 2, k]] {28)
k=
2
(M), . N
3 Miy 2 (@) 1
3898, w/B Z “k ([} 13007 51500 29

where
(2)

R(1) | (2Tl (LTt
ljl B ﬁl % _j z P%j ' (302
(1) _ g(@7-1 3D (2)Tp-1 dp
Sige = Hey % ae +HYZ 36, (31)
(2) (371 (L) (L)T~1_(3)
lﬂq ngl ) Hj + H/ X Hqu

s g @TmL @), ()Tl (2) 32

L4 qai Ql 23
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(2) _ .(3)T.~1 3D (3)T.-1 3D
i3%q " Mhar t e T Mgy P GE; (33

Note that, from equation (4.12) for M :
' B

N
_ (1) oD (1) oD
(mé)i. = E, /g Z ("2, - BN u, ] Tl w N 86 uk]] (34)

To perform the expectation operations indicated in (28), (29) and
(34) it is convenient to split z) into deterministic and stochastic

components:

z, = z' 4+ zﬂ (35)

where, from (22) and (23}:
zi+l = Fzé + Guk (36)
zi =0 | (37)
T | (38)
z; =0 (39)

Equations (28) and (29) for the derivatives of MB and equation (34)

for M_ now reduce to:

B

N
A v, T (1), _
(M), = E {a; " 2 38 ) Z {H zy a8, w }

(LT

I (40)

+ N trace{H l ;l) }
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o(M), N

Wiy 0§ T, () (1)

7, kZle [Rijzzk Sijguk] + N trace{RijZQ} (41)
2

o M (2)

N
A S T (2) ,(2)
aﬁg‘aﬁq, kzlzk ITRJ.'jQquk Sijlquk] + N trace{Riij} (42)

where Q is the steady state covariance of z"

X and satisfies a simple

linear eguation:

Q - FQF~ - LIL =0 (43)
#

Remark 1l: Egquation (40) for M _ corresponds to expressing M as the

B B

sum of a constant matrix, Mc, and a matrix depending on the input,

Mu. (c.f. result 4.5.) #
Now substituting (40), (41) and (42) back into (5), £6), glves

a computational procedure for evaluating the costs, J, and J,. 1In

1 2

principle the segquence {uk} which minimises Jl or J2 could now be
obtained by applying a standard optimisation technigue such as
differential dynamic programming, [361. 1In practice, however, the
complexity of the resulting algorithm would probably restrict its use
to critical situations where the economics demand the maximum possible
return from the experiment. Usually, however, the added complexiﬁy
incurred by inclusion of the second order terms cannot be economically
justified and it is sufficient to base designs on the mean of the

prior distribution. For this case, the cost functions Jl and J2

reduce to:
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log det (M_}P)—l (44)

B

o
i

o
i

trace {F(M_&P)—l} (45)
B

where M 1s given by (40).

B

In the next section, necessary conditions that must be satisfied
by any {ui} which minimises either (44) or (45), are given. Sectioﬁ
8 contains a discussion of the computational requirements of the
various methods for evaluating J which have been described in this

section.

6. Necessary Conditions for Optimality

Following the discuseion in the last section, the following two

p

cost functions are defined:

J. = log det (M +P) © ' (L)
1 i 5
| B
!
J, = trace {T(m +P)—l} ’ (2)
B

Throughout this section attention will be restricted to the ¢
parameters, that is, the parameters in A, B, C, D and K. The
justification for this comes from the following theorem:

Theorem 1:
Provided P has the samé "structure" as M _, the cost functions

B

Jl’ J2 defined in (1) and (2) lead to the same optimal designs as the

cost functions:
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-1 : ’
v =
Jl log det (Mdu+Paa) (3)
-1
[ T
J) = trace {r (Maa+Paa) } (4)

respectively, where I'' is the principle submatrix of I' corresponding
to O.
Proof:

It was shown in results (4.6) and (4.7) that, for large N, M

8
has the structure:
i { 1
Maa i O : o
oA N U
_I ( i §
ME_iO : MYN'!{ o (5)
R S
o v+ o0 1 oM |
L ‘ i 00}
Assuming that P has the same 'structurd’, that is,
IVP "o fo]
ag, |
R e s
P ={0 | P o} {6)
R L A S TR
{ t
O [0} P i
‘, | “og]
enables Jl and J2 given by (1) and (2) to be written
. -1 -1
= M +P + d M +P
Jl log det ( - aa) log det ( vy YY)
-1
+ log det (M_ +P ) (7}

gg o0
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and
J., = trace {I'"(M_+P )_l} + trace {I_(M 4P )“l}
2 oo oo - YOXY O YY
+ trace {I'_(M__+P )—l} (8)
: g 00 o0
where T, I' are the principle submatrices of I' corresponding to

Y o

Y, O respectively. Now, since MYY and Maa are independent of the
input, the result follows. | #
Remark l: The restriction on the structure of P in the above theorem
is unnecessary if there is little prior information, that is P is

small compared with M .
B
Remark 2: If P=Pé is obtained from a previous long experiment it will

as M (since PS approaches MBl for. long

have the same ¥structure

B .

experiments). . ) : #
Now making use of result (4.5) and equation (5.41), equations
(7) and (8) may be rewritten as:

log det (M'4p')"% (9)

g
H

trace {F'(M'+P')—l} (10)

O
n

where M' is given by:

N T -1
(M‘)ij = k=l(Hizk+Diuk) hX (szk+Djuk) | (11)
where
) (12)
i o0
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_ aC ! ) ) | [ ) )
Hi—[ Bulxo ©1-co0 oJ (13)
> i &
and
Z i1 T Z, = Alzk + Bluk; z, = 0. {(14)
where
Al =F -1
and B _
{
A 1 (@] } O---0 : [e)
*““—--—~~§“‘~~-*:~j—*“*”!“—’-v*
9B i axe L o---0 ! o
Bonl o, | i
) e
b |
F = | 0 ; | 0] (15)
! : t .
I . { | .
{ O I | o)
i [ U S
eI e ' :
@B g€ |\ 6 i o---0 | axc
3 12) ) i :
L. P - ! I | _
B
0B __ oD
ey %%
By = (16}
RS T
P P
The matrix P' is given by:
P' =P o+ M amn
oo

and
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T.—1

M )ij'= N.trace {HiZ HjQ} (18)
where Q satisifes:
. T T ‘
.9 - (I+Al)Q(1.+Al) - K'JK'" =0 (19)

where

X' = (20)

(c.f£. eguations (5.41) and {5.44).)

Remark 1: All functions which depend upon B8 are evaluated at B = E: #
The discrete minimum principle, [73], will now be used to obtain

necessary conditions for optimality of {uk,k=l,...N} in the case of

generalised power oxr energy constraints:

Result 1:

The necessary conditions for J-optimality of {uﬁ,kél,...N}

subject to the total energy constraint: .
3 T
) uWa =E : (21)
k=1

where W is symmetric positive definite and E is positive, are given by:

GH e iy 97 Aty
Buk

=0 (22)

=11%
U™
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where:
T
H(zk,Yk+l,¢,A,gk) = Yk+l[Alzk+Bluk} + Aus S
+ Z Z (H,z, +D, y T (H.z +D.u )¢, .
i=14=1 uk 3k 3k"Tij
(23)
* pu— * = %
ZRel T ER T B T Byw (24)
* = ’
z¥ =0 (25)
T PR -1
ok = Sk v
Yi ~ Y 1Yt 2 ) L HT T (HozED uk) O (26)
i=13=1
* =
Yi,g =0 (27
-1 .
§* = —(M'*4+P) it J =4,
, -1, . -1,
= ~(M'*+P) ~T{(M'*+P) if J = J, (28)
- Z
= 5T + 2 Z Z (H z¥D u*) ¢, .} (29)
2By Yice i=1j= l k juk +J
N -1
LI - * * * *
M g (B, 2*+D, uk) % (szk+Djuk) (30)
k=1
Proof:

The energy constraint, (21) 1s first adjoined to the cost function

via a Lagrangian multiplier:

g =3+ M E u Twa -E} (31)

k*l k
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Introducing the £following state equations:

Zevl Pk T By f By ©(32)
GL ). - ). = (A2 +D,u) TS L.z +D

Mernlig T Mday T WYY e (HyE D) (33)
— = TW .

Mg W = W (34)

equation (31) can be expressed in the form:
J =J + Afj -E
c }\{u'ﬂ+l } _ (35)

and

N

= log det (M1\r+1+P')—l ifg=2a

o
{

1

trace {I'(M_, +p')‘l} ifJ =4 (36}
+1 2

The following Hamiltonian function may now be defined:

T
Hizy Moy Yy g e By iy gy ry) = Ay yu i

T o [a,z +B ]+§§H +D,u ) 8t (H.z 4D u ) (®
Y %P1 % (H; 2, D3 ¥ 3% P %

)
k+1 1k 1 i=14=1

k+1’ i3

(37)

If uﬁ, k=1, «.. N igs an optimal input and z

]’:IM;;rU]trk:l, ees N+ 1

are the corresponding states, then the discrete minimum principle

B* Ax such that

here exist costate variables
states that ti ’ k41" k41

*
Yie1?

the following relations hold:
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zx - z¥ = nzr 4 Blui (38).

_ . T -1
(M]:_l_l)ij (M]’{f)ij = (HiZ§+Diu;) z (sz§+Dju§) (39)
WX - uF = uk Wuk )
k+1 x © Yk "% ' (40)
P P
s AT To-1
b T Ve o= CRADYSL* 2.2 .Z HZ (sz}t+Dju}t)(Hk;l-l)ij (41)
i=17j=1
Bga ~ BE O (42)
SREREL | (43
zi = O : (44)
BJC\
SRR Pl | )
+1
BJC -
H;].[_l = BM* = d)* » (46)
N+1
)
A* < ES A_ (47)

= x
N+1 3uN+l

For every {uk,k=l,...N} and each k = 1, «.., N

% M* U¥,VF H* * *) < * M* ¥ ,vE * *
H g Yy B A g ) S H e M ey s B A )
(48)
That is, an optimal input {u]:,k=1,...N} minimises the Hamiltonian at
each time instant. If {uk} is unconstrained as it is in this case,

the following eguivalent necessary condition for optimality holds:
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3
§5f'{H(zﬁ'Mﬁ'uﬁ'Yﬁ+1'EI§+1'A§+1'uk)} =0 (49}

sk -
%k

From eqguations (42), (43), (46) and (47) it follows that:

kﬁ = A for all k (50)
H]’é = ¢* for all k ‘ (51)

Equation (492) may now be written as:

: P B
2huF W F AL B, 42 ) ) (H,zED ut) % 'D g%, = 0 (52)
Yk e T A e T 1% 3P15

Postmultiplying by u§ and summing from 1 to N yields:

N P P T -1
v 1k * * %y % -
22 + ) {yp  Bowr + 2.2 .Z (B, 2#+D, u*) "% Djuk¢ij} o
k=1 i=1j=1
(53)
which may be rearranged to give (29). The remaining equations
follow immediately. The result is proved. #

Result 2:

For constrained inputs. the necessary conditions for optimality

are:

Uy o) S WO 07 ) 5

for every {uk} and each time instant k = 1, ... N, where =z}, Yﬁp ¢*

satisfy equations (26) to (28).
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Proof:
From (48) with A = O, #
Theorem 2:

For amplitude constrained inputs, that is
< < :
61 <u __62 for each Kk (55)

optimal input seguences {uﬁ} have the property that:

either (uﬁ)i == (61)i
(56)
or ' (uﬁ)i = (62)i

for each i and k. [(-)i denotes ith component of -1. That is, each
of the m components of the optimal input forms a binary seguence with
values on the constraint.

Proof:

From (54), u*

is the which minimises:
k e

Hiw) = Yk+l(Alz*—rBluk) + l}:ljgl(ﬁ z*+D, 1, ) Tslim, z*+Djuk)(b

==Ck + dkuk + u Q'uk | ’ (57}

where
— * *
c, = Yk+lAlzk Z Z z¥ H, Z HJ * 13
i=1j= l
T T Ty 1y,
oot * *
I = Vi B * 2 Z Z 2 D505 5

i=1j= l
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and
P P
Q'= Y ) D D,¢E. (58)
j=1g=1 T - 3

) is negative semi definite as is readily shown:

Let x be an arbitrary vector. Then:

, P P
S T T.-1
$TQ'x= )} X D5 D, x¢%, | (59)
PR 1 3 13
i=1j=1
. T -
Let X(:L) - XDiX where Y X = 5 1, Then (59) becomes:

x Ox

Hi
il T~0

i
™~
It bt

m.
T
= 7 x(£)¢*x(£\ , . (60)

where X(k) is a vector with ith component (x(l))g. But from (28), ¢*

is negative definite so (60) implies that

so that @' is negative semi definite. Now it is an elementaxy property
of quadratic forms with negative definite weighting matrices, that
the minimum is achieved on the boundary. Theorem 2 follows immediately
from the form of (57). #

In sections 7 and 9, algorithms are proposed for finding

{uﬁ,k=l,...N} which satisfy the necessary conditions for optimality.
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There is, of course, no guarantee that the sequences satisfying these
conditions are in fact optimal. In chapter 5, tests for global
optimality are derived, but these require a Fourier analysis of the

input sequence.

7. General Design Algorithm

In section 6 it was shown that a necessary condition for
optimality of {uﬁ,k—;,...d} is that uﬁ minimise the Hamiltonian'H(ui)
for every k. A simple steepest descent- algcrlthm based on this

principle is now described:

i. Evaluate the matrix M" from (6.18) and hence P' from (6.17).
ii. Choose a suitable value for A. (=0 if no energy constraint,)
3 3 (O) 2
iii. Choose any non-zero input sequence {uk t; set L =

iv. Evaluate'{zk};
z - 2z =A =z + B U.(Q,) (1)

Ve Evaluate M' and J:

o)

I

) Z ( +D.,u (L)

(") E(HZ+D jkjk) (3)

ij

[
!
oG
i

log det (M'+P')—l (4)

ox
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Jg=4J, = trace‘{F(M'+P')"l} . (55

vi. Evaluate ¢:
-1

- (M'+P") if J = Iy (6)

o
I

-
I

—(M'+P‘)_1P(M'+P')_l i€ 3 =3, (7)

vii. Evaluate {Yk}:

v = oaT § E T -1 %) '
Yk+1 Yk = A1Yk+l + 2i=lj=lHiZ< (szk+Djuk )(bij (8)

viii. Evaluate gradient:

oH (u, ) p
~ k' T T ‘ To-1
9 =TT 2AukW + Yk+lBl ¥ 2 z § (Hizk+Diuk3 X Dj¢ij (10)

U

THe i=14=1

ix. Move in negative gradient direction:

(241) _ _(R)
Y = Yy

_ n v .

Sy9p I (11)
where g!' is the gradient 9 suitably projected onto the constraint
surface. 62 is a positive scalar chosen so that a decrease in J

oCcurs.

x. Stopping condition:

gﬂ = 0 for all k. : (12)
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If (12) is satisfied, go to  xi; else go to iv;
xi. If there are energy constraints check whether these are
satisfied; 4if not choose a new value of A and repeat from iii.

If the constraint is satisfied, stop. #

There are many possible strategies for choosing the scalar 62 in

{11) but the following has been found to work well in practice with

amplitude constraints:

i. Try GQ = {i,e. saturate in negative gradient direction)?i
ii. If there is no decrease in J with Gg = o, perform a linear

search until a decrease in J occurs. #

In the energy constrained case, the Lagrange multiplier, A,

must be chosen so that the constraint:

N

) wrWuk = E (13)
= 2

is satisfied. Often it suffices to choose an arbitrary value for
A. This is justified as follows.
Theorem 1:

If the matrix P' is the null matrix, and if the input'{ui,k=l,...N}-
is optimal subject to power constraint E, then the input {auﬁ,k=1,...N}
is optimal subject to power constraint a2E.

Proof:
Suppose {uﬁ} has corresponding information matrix M'* where:
N 1

M'* = GiTZ_ G (14)
k=1
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Gﬁ is a matrix with elements that are the outputs of linear eguations
forced by.{uﬁ}-
Suppose now that an input {ﬁk} where'uk = au; for all k is used.

Then it follows that the corresponding M' is given by

Ml

]
| 112

aG;Tzan;a = a’mr (15)
k=1

Suppose that {uﬁ} has enexgy B:

,§ ]
S WF Wu* = B (16}
kzldk k h
Then

N

Z uTWu = azE (17)
. k 'k
k=1

Consider now the costs associated with {u }:
k

g (u) = log et (my L
.1
= log det (M'*) - 2p log a
= Jl(u*) - 2p log a (18)
. L
J2(u) = trace (M')

= ii-trace (M'*)'—l
a
I S |

2
a
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Clearly if'{uﬁ} minimises J, (u*) subject to (16), then'{uk} minimises
Ji(u) subject to (17). o #
Corollary:

If the matrix P' is the null matrix, then to find an optimal
energy constrained input with specified energy, it is sufficient to
"find an optimal energy constrained input with arbitrary energy and then
scale it by the square root of the ratio ' of the energies. #
Thus when the conditions ofrtheorem 1 are met, that is P' = O, any
non-zero A will suffice. There are many cases when P' is small
compared with M' and the theoxem may be applied with little error.

In particular, the result applies tc the important class of models
with disjoint system and noise modes. (Thésexnodelslnave been used
very extensively in the literature, see faor example [3], [7],‘[93,
[121, [15], (161, [251.) The result is also valid in all cases where
high input energy is used since M' then dominates P'. #

If for some reason the conditions of the theorem are not met
then a seqguence of A's must be chosen to satisfy the constraint. An
alternafive approach is to use generalised polar cocrdinates, for

example, for a scalar input:

uN—l = E.sin SN_2 cos eN—l
u2 = E.sin 91 cos 62 ces COS eN—l
uy = E.cos 81 cos 92 ve. COS eN—l {20)
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(Ei’i)T
1 99

0
g 9 (21)

©
It
o~

k

gk is given by (10) and gée) is the gradient in polar coordinates. The

input is thus constrained to lie on the surface of an N-dimensional
hypersphere of radius E, the total energy.
In the next section, computational aspects of the general

algorithm described above are discussed.

8. Computational Aspects

For all but very shert sequence lengths, the most time consuming
parts of the general.algorithﬁzare steps iv}vand vii. viz. the'ﬁalchlation
of the state z, and the costate Yk' It is élso usual to store Zy for
every k as these are needed for the calculation of Yk' It is possible,
however, to recalculate the 2y in reverse time concurrently with Yk
but this is very time consuming and requires storage of many intermediate
values‘of z. to prevent divergence of errors due to the reverse time

k

instability of the z,_ equation. A fairly accurate indication of the

k
computational effort and storage requirements is given by the dimension

of the sensitivity state vector, z Reference to the previous section

e
indicates that the requirements of the general algorithm are considerable.
(A simple two input-two output four state system in Caines' canonical
form, [31], requires the solution of a 116 dimensional state equation

and for N = 100 requires about 12,000 storage locations.) However,

these requirements can be vastly reduced by exploiting the structure

of the sensitivity equations. The following theorem will prove useful

in establishing these simplifications.

Theorem (Denery) [32]:

If X, is the solution to a controllable single input set:



Ky = FX F O % =0 (1)

then the solution to the set:

= v - .
2y 01 sz + g uk, zq 0 (2}

(where G' is arbitrary) is related to Xy by the linear transformation:
n-1
— v a F'Q'X, (3)

Z e L m

k 9m0 A 4
where:

-.T 4 Aot ) - '

la _,seeca b = e lgf een Jol 1g' (4)

Proof:

Follows from superposition and the fact that g' may be expressed
as a linear combination of the columns of the controlliability matrix
for (1). * ‘ #
Now, in section 6, it was shown that the sensitivity equations could

be written in the form:

Z g = sz + Bluk; zy = o} (5)

where F and By are given by (6.15) and (6.16). The important thing

to notice is that there are only two types of dynamics, viz.:

il

k4l Azk + Buk (6)

and
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Zey1 T (A--KC)Zk + sz + Buk ‘(7)
Applying Denery's result to (6) and (7) it is obvious that the whole
gensitivity state vector may be cbtained from linear combinations

of the states of the following (r+n+l) nth corder equations:

—;k+l = Azk * Buk o | (8)

'E}iii = (A—Kc)E]iﬁ te (W), i &=l (9)

21‘(:2 = {A-KC) ?iﬂ + <—3n('z'k)_,fL i i=1,..0m (10)
where

e = [0,...0,1] | (11)

Thus the storage requirements will be considerébly reduced. The
computational requirement will also be reduced since the linear
combinations required can be absorbed into Hi (6.13).

Using the above results, the storage requirements of the simple
two input-two output four state system drop te about 3,200 storage

locations for N = 100,

Still further reductions may be ocbtained by transforming A and

A - KC to campanion form:

I
T AT T = | O I i = A ' (12)
|
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;o
1 T '
-1 | B
T2(A KC)T2 = o : = A2 (13)
_-ll—i-——_‘__l—l--
am:- ay
Equations (8) to (10) may now be replaced by:
=) _ , —={i) A
Zrel T Alzk + en(uk)i f i=1, ... r - (14)
~{i) _ , =(d) -
zk+l = A2ak+l + en(un)i y 1 =1, 0 ¥ (15)
~(1) ~{i) Ry _ :
zk+l = A22k+l + en\zk)i ' ; ~hl, ese T (16)

It is still true that the whole sensitivity state vector may be
obtained from linear combinations of the states of the (2r+n) nth
order equations, (14) ~ (16). A fundamental property of eguations
(14) ~ (16) is that the state vectors are such that:

)

( = (z.) ,i=1, oo, n -1 (17)

41’ i k' i+l

so that in order to store the complete state vector z

" for k= 1, N

it is necessary to store only (zk)n for k = 2, ...N together with zy -
Thus only (2r+n) uectors of length (N-1) are needed to store the
complete state information. The storage requirements for the simple
example previously considered are thus approximately 1,200 (allowing
for inputs and gradients).

Since the transformation matrices need be calculated only once

and the number of iterations of the algorithm is large, the number of

computations will also be reduced. In practice, the full sensitivity
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state and costate are never calculated; the onl§ effect on the
algorithm as stated in section 7 is to reduce the dimension of the
matrices Hi which will include'the transférmation matrices described
above.

In particular cases, the transformation matrices may be
particularly simple: This is demonstrated in the next section where a
aesign algorithm for multiple input-single output syséems in Caines'
‘canonical form is described. It is shown that, for thils case, only
{r+1) nth order difference eguations need be solved'and that only {(xr+l)
vectors of length N are neéded foi the sensitivity states.

In teble 1 the state dimension and storage requirements éré given
for the various methods discussed in section 6 and in this sectioq.
Figures are'aiso glven for the two input-two output four statelsysteﬁ

discussed earlier.
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companion form

Example:
Sensitivity State Storage n=4, m=r=2, d=2
Method . . . :
Dimension nZ Required
Dimension | Storage
discrete prior 5 p 9 - 11
distribution {(n"+nr+l)d (n +2r)N 7x10 7x10
z
d levels/parameter
straightforward o 3 6
274 poment n{l+p+p +p7) (nz+2r)N 91,060 o9x10
method
)
2nd moment n{l+p+ D€§+l' 6
exploiting 2 {n +2x)N 16,468 1.6x10
: pip +5) z
symmetry + : )
nd 3 2
2 moment n{n 4n 4n+l) + , 4
s s 508
exploiting nr(l+n+n2) (nz+2r)N 1 5.1xl0
structure
prior mean
exploiting n{n+r+l) (n_+2r)N 28 | 3,200
structure ’
prior mean with n (n+2r) (n+4x) N 32 | 1,200

Table 1
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9_ Design Algorithm for Single Output Systems

A canonical model for multiple input-single output systemé is

conveniently represented in pulse transfer function form, [441:

X
- £ - -1
Az l)y = z B (z l)u.'Q' + C(z e ’ (1)
k k k
2=1 .
where
-1, -1 N _
Az 7)) = a, + alz + ...t anz ioa, = 1 (2)
L, -1, _ % . 2 -1 2 -n :
B{z ) = bo : blz + ... + bnz A (3)
-1 -1 -n _
C(z 7)) = CO + Clu + ees + an R CO = 1 (4)

ui is the lth component of . (i.e. the lth input), {yk} is the output

sequence andi{zk} is a ssquence of independent norially distributed

random variables with zero mean and variance 02. The model (1) is

equivalent to the innovation model described by (2.4) — (2.5} in

which ¢ = [1, 0, ..., O] and A is in companion form, [44]. N
It is readily shown that the matrix (M') defined by (6.11) may

be written as:

N
1 T
mo==5 ) 9.9, (5)
o“ k=1 » -

where

1 , x
9 = [tk, tk,—n' N I Sk“n+l] (6)

C(z )t]2=-u]z; =1, ... r; t =0V k<O (7)
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A(z 1)sk = 3 Bj(z—l)tgw s, =0OVk<O (8)

It is also not difficult to show that the corresponding costate

egquations are:

. , n
J _ o3 - .8 = .
C(z))\k B (z)Yk i£l¢1+n(j—l)gk+i' 3 l,e..%;
xﬁ =0Vk>N (9)
n-1
= -5 ¢ . = k>N '
A(z)Yy é§l$i+nrgk+i' N =0¥ (10)
tcgether with the additional beoundary condition:
= o SN .
g, =0 ¥ k>N , (11)
The gradient of J with respect to ui is given by:
J = )\d ' (12)

9 k

The row vector ¢i is the ith row of the matrix ¢ defined by{(7.6)
and (7.7).
The equations (7), (8), (9) and (10) are shown diagrammatically

in figure 1, and can be seen to have a particularly simple form:
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ti.
u]]; O —El t Bl(z—.l)
C(z )
..l s
- g
g aizh k
k
u; O] -El T Br(z_;)
Ciz ™)
Tl
k
3. “l : 2 l
] B~
A XS O (z)
. Sk
X Tk Az [0
"k
N e -a~-—§)~a-'—-— B (2)
k C(z)
Figure 1
The quantities Tﬁ and Sk are obtained from:

n

1t

= U

i=1

n-1

it

s

J

which are functions of tk' 3 -

L 3 4n (5-1) Fxri

X .Z s tnrIx+i
i=1

C(13)

(14)

1, ... r, sk, k=1, ... N, These nmay

be stored in (x+1)N storage locations. Allowing x¥N more locations
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for the input sequence yields a total requirement of (2r+1}N storage

locations. (C.£. (4r+n)N required by the general algorithm.)

10. Concluding Remarks

In this chapter neéessary conditions for the qptimality of inputs
have been developed. Algorithms have been given and severxral theorems
and results which lead to simplifications have been stated and proved.
The computational requirements of the algorithm ha&e been discussed
and methods for vastly reducing these @escribed. It has also been
proved that optimal amplitude constrained inputs are binary. Examples

indicating the viability of the algorithms and the improvements -

that can typically be chiained have been given.



- 4.A - 85.

APPENDIX A™ ™"

Amplitude Constrained Examples

Three examples of amplitude constrained designs for models with

the following structure are glven:

— l .
- B(z_ )u + P(z_l)Ek (0
a(z 7) c{z M)

where {uk},'{yk} are the input and output sequences, respectively.
and {Ek} is a sequence of independent normally distributed random

. 2 | ‘ S
variables with zero mean and variance ¢°. A, B, C and D are polynomials

in z”l and the parameter vector is. defined by:

T

B™ = {al,...a ,bo,bl,...bn,cl,...cn,dl,...dn,U}(Z)

n
The design algorithm used was a single input version of that
described in section 9 suitably modified to treat the output noise
case glven by (1). The identification procedure used to ocbtain the
parameter estimates was Clarke's generalised-least-squares algorithm,
[751.
The criterion for optimality of a test signal'{ui}”&&s‘that'{uﬁ}

should minimise J defined by:
L .
J = trace {(M"') "} )]

where M' is defined by (6.11l). (Note that this corresponds to

little prior information: P = 0.)
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Example 1:

This example (table 1) was suggested by élarke, [751. fThe
number of data points was 100 and ¢ was 0.1l. The optimal test
signal design procedure gavé a predicted improvement of 1.4 to 1

in the sum of the variances of the A and B parameters compared with

‘the estimates obtained using a PRBN test signal (63 bit, with clock

rate equal to sampling rate - see fig. 1l). (The optimal test signal
for this example is shown in fig. 2.) Table 1 shows the true
parameter values and the estimates obtained from both PRBN and

optimal test signal

4]

°

tim

Figure 1, PRBN for Example 1



ta

-ix

- 4.A -

87.

Figure 2, Optimal Test Signal

for Example 1

True
Parameters

Parameters Estimated
using PRBN
+ Standard Deviations

Parameters Estimated
using Optimal Test Signal
+ Standard Deviations

~1.2241 + 0.0645
0.5446 + 0.0634
0.1207 + 0.0325
0.2070 + 0.0347

~0.7145 + 0.0836

0.1208 + 0.1310

-1.2935 + 0.0541
0.5904 + 0.0544
0.1275 + 0.0300
0.1799 + 0.0306

-0.7272 +-0.0858

0.0670 + 0.1319

Table 1

Estimated Parameters and Standard Deviations

for Example 1

time
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_4_A_

88.

For this example the number of data points was again 100 with

0 = 0.1. The design procedure gave a predicted improvement of 4.5

to 1 in the sum of the variances of the A and B parameters compared

with those obtained using the PRBN of example 1. Table 2 shows the

true parameter values and the estimates obtained from both PRBN and

optimal test signals.

Parameters Estimated Parameters Estimated
True using PRBN using Optimal Test Signal

Parameters + Standard Deviations + Standard Deviations
a; 1.0 1.00856 + 0.0L670 0.99060 + 0.00940
a, 0.85 0.85434 + 0.01643 0.84525 + 0.00874
b 0.15 0.13785 + 0.00784 0.15283 + 0.00668
bl O.l-5 0.14210 + 0.00823 0.14550 + 0.00714
¢y -0.95 ~0.70463 + 0.07835 -0.72011 + 0.07706
a4, 0.0 0.13838 + 0.11954 0.12197 + 0.11583

|
Table 2

Estimated Parameters and Standard Deviations

for Example 2

Example 3:

In this case 200 points of a 63-bit PRBN (fig. 3) were used as a

starting input for a simple two parameter system:

(4)
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The predicted improvement was

where the prior mean of a was 0.9.

1 (see fig. 6 which shows cost versus iteration of the

-

about 10

linear search in the first gradient direction, where almost all the

decrease occurred).

figure 4 shows the optimal test signal and

It is readily seen that the necessary

figure 5 the gradient.

conditions for optimality are satisfied.

L BRESE2

4.83E-91

igure 3, PRBN for Example 3
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Figure 4, Optimal Test Signal for Example 3
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cost,,
R

b3

iteration

" PY 2. P & 2 A o e
- ¥ ¥ 2 e s < ]

>
<
-

Figure 6, Cost v. Iteration for Example 3

Note: The cost in this case was taken to be var (g.) .
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APPENDIX B
Energy Constrained Examples

Three examples of énergy constrained designs for models having
the same structure.as in appendix A are presented. - The cost function
used is again the trace of the posterior covariance matrix. The
number of data points in all three cases was 50.

Example 1:

Fig. 1 shows the optimal energy constrained input for a simple
first order model 1/{1~O.952~1} with white output noise. The predicted
improvement in the trace of the parameter covariance compared with the
use of a test signal having impulsive autccorrelation is 11 to 1. It\

is observed from fig. 1.that the input energy is primarily low

frequency which is consistent with the slow response of the system.

1. G4E-01 | ‘//
[
2.63E-02 |
L
1.08E+0¢ 2.ss€f§: 3.808+31 $.98E+21 5.9¢0Ee88
-7.83E-32 4
.!‘
y ’;!:
N Iy
5 £
-1 .854E~81 | \\\ <
“ V'
“ ped
- -\‘" '/{

Figure 1, Optimal Input for Example 1
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Example 2:

Fig. 2 shows the. optimal input for'the‘model l/(l—O.Szwl) with
white noise. The predicted improvement in the trace of the covarjance
matrix compared wiﬁh the use of a PRBN having impulsive autocorrelation
is 1.7 to 1. It is observed that the optimal input has high frequen;y‘

compeonents which is consistent with the fast response of the system.

-

2.84E-61 )

|

i

i'

: I
$.276-61 | /

v ] % . - R o 4 .
fi.eez*a% b.aersel 3.BoE+21 4,065488 B.26E431

\

“1,27E-81 ) \
\ . L

«2.54C-01 | '

Figure 2, Optimal Input for Example 2
Example 3:

To show the effect of the noise model on the optimal test signal,
a weighting sequence system model was chosen with noise model

l/(l-0.952_l). The optimal test signal is shown in fig. 3. It is also
/Las “an  aundocorreladion Wnokion whid.

to be noted that the optimal test signal’is significantly different
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from the well known impulsive autocorrelation wesudt for the weighting

sequence model with white output noise. (Levin, 1960, [1].)

6,93E-91 H
L 4 1
| B.99E-81 ,
| Ji
!
. 3.09E-01
~\
\ /\
. A s .
1 7 o ’ ) :
l 1.40z+81 2.588481 3.89E+84 $.88Ee58  B.28%e8d
i
3 \
. H ‘jl
~3.998-81 1
L {

Figure 3, Optimal Input for Example 3
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CHAPTER 5
Frequency Domain Designs

1. Introduction

In the last chapter, design ., procedures for determining test
signals as functions of time were:describéd. In section 2 of this
chapter, it is shown that it is only the spéétral properties of the
input that are important. It is'shown, in fact, that it is only the a
Laite number of shifts 7
-firet—few—vatues of the input autocorrelation which have a significant
effect on the cost functicn. In section 3 the freguency domain
properties of. test signals for multiple input-multiple output
innovations models are de;ived, and identifiability conditions are
described, |

In section 4, Whittle's general eguivalence theorem is shown to
lead to tests for optimality of input signals. It is further shown
that optimal spectra exist having not more than p" (p"+1)/2 lines
where p" is the number of parameters in the A, B, C and DAmatrices.
In section 5 it is shown that the maximum number of lines necessary
can be further reduced by exploiting the special structure of single
output systems.

Sections 6 and 7 discuss various design algorithm; and methods
for realizing both power and amplitude constrained test signals.

In section 8, the extension of the results contained in both
chapters 4 and 5 of this thesis to continuous time éystems is
indicated. It is shown in section 9 how the results of section 8 can

be modified to allow joint optimal design of test signal and sampling

rates. Several examples of designs in the frequency domain are given

in the appendix.
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2. Characterisation of Test Signals

In this section, large sample properties of test signals are
investigated. Since the information will in general grow without
bound as N increases, it is natural to consider the average information

matrix, M, defined by:
— 1 .
= lim =¥
M = lim =M . (1)

where M is Fisher's information matrix, (4.4.1). Some properties of
M are now stated and proved:

Result 1:

The average information matrix, M, is independent of the initial
conditions, Y, provided ¥ is finite.
Proof:

From equation (4.4.33):

_ My 0| M* |0
M= {--~=---1 + S (2)
| ,
Lo OJ Lo 1 My
where

- L1

M' = lim ﬁ-M (3)
N0 :

M" = lim = M" (4) -
N0 ‘

My = lim M : : (5
N->c0

where M', M" and MOO are given by (4.4.34), (4.4.35) and (4.4.15)

respectively.
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it was shown in chapter 4, result (4.4.7), that the submatrices of
%‘I—M' corresponding toy tended to zero as N + ®. Now the subhatrices of
%‘I-M' corresponding to the parameters in A and C also depend on ¥, but
similar reasoning to th.at of result (4.4.7) shows that these also tend
to zero as N -+ «, The result follow's. #

It is now possible to prove the followincj ﬁh‘eofem which
shows that it is only the spectral properties of the test signals which
affect the estimation accuracy: |
Theorem 1:

The average information matrix, —ﬁ, depends only on the auto-
covariance function, R(T), and the mean, ?1_, of the input sequence.
Proof:

From (4.4.34), an expression for the ijth element of M' is

‘given by:

N ow' ow’

- k. Tl k
Z =)L (*a‘é’.“) (6)
= l J .

i

where {-Z—L:Ti{-} is the output of a linear equation driven by {uk}.

(Equationjs: (4.4.23)-(4.4.27).) Since the choice the initial conditions,

Y, does not affect -l:/l—' (result 1), it is permissible to choose Y such

that the output (-2—;—:——) , k=1, ..., N is the same as if the input were
i ,

periodic with period N. Thus:

8

I o D" md)

u (7}
O0t=0 £t k-t

(M') .. = lim
1] N0

Z
I~

|} ©~1

1s

where u_ = ¥ k < N and where {h:;, t=0,1, . ..} is the weighting

U-N

sequence of the sensitivity equations for @i. Exom{ti- prseummej Hat

dhe nput 05 sdadionary it Sollows from 1> Yhat :
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M) ,. = 7 7 trace {[R(s-t)+ua 1l (x5 "z md) 1} (8)
T s=ot=0 S t

where R(T) is the input autocovariance defined by:

. N
C 1 - - T
R(T) = lim T ) (w -u) (u___-u) (9)
N Vk=1
and
N
u = lim —Il\; Yo
© Npw k=l -
The result follows from (8}). » #

It will now be shown that it is only the first few wvalues of the
autocovariance function that are important for»experiment design:
Theorem 2:

Given any autocovariance function Rl(T), T =.O, + 1, ... and for

any € > O there exists a finite A(€)such that if:

R, (T) = R, (T), -A(e) < T < A(g) , : - (10)

and R2(T) is arbitrary otherwise, then

IR IR AN I i3 BREEY

where Ml' M, correspond to Rl’ R2 respectively.

Proof: From (8):
M)y = M),y = Y ) trace {[Rl(s-—t)—Rz(s-—t)][(hs) z (ht)l}
s=0t=0
‘ , (12)

Let X be the maximum modulus of the eigenvalues of the sensitivity
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equations (4.4.23)-(4.4.27}. (A<l,sin¢e the equations are stable.)

Then there exists a b > O such that:

[h, | <oa® wi, e, 2,k (13)

o

th
Let rpq(T) denote the pg  element of Rl(T) - R2(T), and qu(s,t)
the bqth element of (hl)TZ l t). Then: i

[ee] [ee] b Y
().~ .| = - ol
L) 5=y 51 = ZOtZ pzlpzlrpq(s B hogsie]
c © ¥ r .
<y F 5 )lr ,,(s t}HA (s,t)} , (14)
TemOt=Op=1gq=1 P13
Now
_ 1 ’ i -1
A st ] = ;%}émS)Rp(z ’zk‘ht’kql
2 +t) -
< I T,
ok
2. {s+t) '
< 1P (15)

{15) following from boundedness of Z—l.

= T A< T <A
if R2(T) Rl( Y >t

o, A< T <A | (16)

i

T
]rpq( ) |
|rpq(T)| < trace {rR (@}, |T] > A (17)

(17) follows from the properties of autocovariance functions.

Substituting (15), (16) and (17) into (14) yields:
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(o]
- = 2 » 2. (T+2t)
I(Ml)ij (Mz)ijl 5'2T=§+1F trace{Rl(O)}.bll
o T
<) b (18)
L T=A+L ’

e v A>AE

since (18) is the remainder of an absolutely convergent series.
The implications of this thecrem are discussed further in
section 7.
Remark 1:
if {uk} is a stationary stochastic process satisfying certain

regularity conditions, (35}, then:
u=E [u] (19)
R(T) = E [(u -u)( —G5T] ' 20
= Rtk Y1 - (20

where Eu denotes expectation over the distribution of u.
Remark 2:

There is a one to one correspondence via the Fourier transform
between R(T) and the power density spectrum of the input. Thus it is
only the spectral properties of the input which are importaﬁt. This

fact is exploited in the next section.

3. Frequency Domain Representation

h —
From equation (2.6), the th element of M' (the part of the

average information matrix, E} that depends on the lnput) is given by:
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. N Jw* ow

- L1 k Ta—1 'k

M), =lmz [ (759 L (=5 (1)
g N N el 20 faeq

i . -
Pre{R N TPt (oot o S9N :
NSRS Q/q s = A 7 g;'
-7
~f, = 2+
h k
~%, L .
g =B {abal () <4
be{rh#m’n:
2
H (z) is the transfer function of the sensitivity egquation corresponding
- ] 1 -, =~ L]
_ to @k', R
43 )—pields: ,
Applicahor of Fursevalls dheoveum | £173, do @) 34‘e1c(; ¢
p L —jw, T -1 jw
(M.)Q,q = f trace {I8"(e 2 'z HY(e?™) 1. dc(w) } (5)
T

where G(Ww) is the enpulatbive—energy-disteibution—function—ofi—the

i.npu-*a7—a}—'<-,—-bh-a‘e:—-é=s-p—‘éh-e‘ cumulative power distribution function of'uk.

The following generalised power constraint is considered:

N
, lX T .
1im —=ju Uk = B , (6)
N->o0 Nk"k

Hence, introducing %B(w) a& (wy for ac(w) , .'equation {(5) can be rewritten

asg:
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- 1 : L, -jw, -1 j
@ty = 5 [ trace {1n (e Wy s 1 @I 15w JaEw) ()
=T
where £(w) satisfies: .
17 '
7 [ agw =1 | (8)
-

or, by exploiting the symmetry of &(w) about w = O:

ki
M' = [ M(w)dE(w) (9)
o :
where
Gaw) g = B lexace {2 H eI B W 1) (10)
and £ (w) satisfies:
m .
faEw) =1 (11)
0
Notation:
Denote the set of all £{w) satisfying (11} by Z. - #

Remark 1:

The fraction of the total power in the range w to ®w + dw is
FLov o goeneral Stashenary ;nlm.f freocess | the matrix Blw) ean

a = hared—i cerx—the

given by d&(w). = = -

hove vank | do b, Heve oiewdion is  vesdnidecl do the case wheve rank Bl‘w‘)':—a‘
: : , S tho £ . A byt 3 i,

Twis includes  all eleterminishe  inputs  and  stochastic inpwt  wit  mulipheiry 1, [82]

Hbr—The—properties—of H{l—areq ' «

FLe (woptrtes of B Afor ohis case are

(i) The diagonal elements of Xi(w) = (B(w))ii are real and
positive. Xi(w)dg(w) is the power of input.i in the frequency range

W to w + dw.
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. . :
(1) trace {Bw} = } A, (@) = E. That is, the total power in
i=1
the range W to w + dw is EAE(w).

(iii)

‘ L L.
(Bw) g, = g (@A (@) eXp{J(¢2(w)-¢q(w))} (12)

where ¢i(w)’¢q(w) are the phases of inputs £ and g with respect to
some reference phase (taken for convenience to be ¢l = 0). #
Remark 2:

The matrix M(w) given by (10} is the matrix M' corresponding to
an input satisfying (6) and containing only one freguency component,
that is an input having a (one sided) spectrum with a single line. #

It is now possible to state apd pro&e theorems on fhe properties
of the information matrix and input power density spectrum. Analogues
of these theorems for the case of static regression expériment desién
are well known, (for example [38]), and have recently been extended
by Mehra, [78], to the case of single input dynamic systems with
measurement noise of known characteristics. Here they are’extended
to the general multiple input innovations model:’

Theorem 1:

The submatrix EéDCA” of M' corresponding to the B, D, C and A
matrix parameters, is singular if the input spectrum contains less
than p"/2m lines, where P" is the number of B, D, C and A parameters
and m is the number of outputs.

Proof:

From results (4.4.6) and (4.4.7):

M=H + N | | - (13)
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where: i‘
| P
— l“
- ‘io
w =) "eoca 1 (14)
1 1
o | o'!o0
O, 0! 0}
I T S
— P o~
Mn = _‘ewi M . (15)
:
QO

where M is a constant matrix and the partitions indicated correspond

to the partition of B8 symbolised by:
B~ IB, DiC, A, K, vy, o} . (16)

Freom equation (3):

m
— i =W, Tamly, jw
M A=2Re{joc(e TG (%) aw} ‘ (17)

~ th A
where G is a (mXp") complex matrix with g column ;q as defined by

(4).

For a spectrum with £ lines, (17) redﬁces to:

2 -Jw

Mypca = 2 L RelGee
i=1

Jjw,

LTy G 4} (18)

From (18) the maximum possible rank of M is 28.min(m,p"). Thus

BDCA
ﬁgDCA is singular if 2%.min(m,p") < p". The result follows. #
Theorem 2:

. The average information matrix, ﬁ, is singular if the input

spectrum contains less than p'/2m lines, where p' is the number of

B and D parameters and m is the number of outputs.
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Proof:

From (13), (14) and (15) it can be seen that M will be singular
if EEDCA has rank < p'. That is, if 2%.min(m,p") < p'. The result
follows. #

Remark 2:

Theorem 2 gives a minimum condition that must be satisfied by
tﬁevinput for identifiability of all the parameters. #
Theorem 3: |

The set of all average information hatzices corresponding to
the power constraint: {6), and fixed B{W), w e [-m,m) is convex.
Further, if B(w) is continuous and & 6'['MM,MM3 where w, is any
frequenéy in the range (-T,7), then the sef of average information
matrices is clcsed.

Proof:

Let El(w), Ez(w) € E. Then £(w) € £ where
Ew) = o0&, (@ + (1~} (w) ; o e [0,1]
The corresponding matrices M' are related by:
M' () = oM' &) + (1-c) M' (€,) (19)

as is readily verified.

From (19) and. (2.2) it follows that:

M(E) = a E(El) + (1-oc>ﬁ(£2) 4 (20)
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Thus convexity is proved. Closure follows from the continuity of Hi
and B and the closure of [—wM,wM]. #
Theorem 4:

For any B{w), w e [fﬂ,ﬂf and gl(w) € E with corresponding average g
information matrix, ﬁi;, there is always a Ez(w)'e Z, the spectrum of

which contains at most p" (p"+1)/2 + 1 lines and ﬁi ='M2, where p" is

the number of B, D, C, and A parameters and M2 cofresponds to Ez(w).
Proof:

Equations (9) and (11) define the convex hull, C! of all matrices
M{w) corresponding to the spectrum with asingle line at w. Since M(Ww)
is symmetric, it can be represented as a point in a p"(p"+1)/2

dimensional space. It follows froma classical theorem of Caratheodory,

[34], that M' may be represented as:

'
M= Z M) E, (21)
i=1
where
§ _
g, =1 : (22)
=1
and ‘
% = p"(p"+1)/2 + 1 | (23)

Defining Ez(w) as a measure which assigns a fraction Ei of the total
power at freguency wi for i = 1, .... %, leads to the required result. #

Remark 3:

From theorem 4, any average information matrix, M, may be
achieved with an input having a line spectrum with no more than

p" (p"+1) /2 + 1 lines. 1In particular, there exists an optimal spectrum
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with no more than this number of *ines. The search for an optimal

spectrum thus reduces to a search for 2r(p" (p"+1)/2+1)~1 quantities

namely:
wp ey B A, 605 3 =2,z = 2,...p" (P"+1) /241
(24)
NOTE :
: r A .
o) =0; A(w) =%~} Ay & =1- ] & (25) #
j=2 i=2

4. Tests for Optimality

Whittle, [56]1, has stated a general équivalence theorem for
concave optimality criteria. Special cases of this theorem for
J = det M and J = trace M_-l where M is Fisher's info?maﬁion mnatrix,
have been discussed at length by Kiefer and Wolfowitz, [33]1, Karlin
and §tudden, [34], Fedorov, [381, and others. Here Whittle's general
theorem is stated for convex differentiable optimality criteria and
is shown to apply to the criteria Jl and J2 previously defined. First

some definitions needed for the statement of the theorem are given:

Definition 1:

The cost function J(§) corresponding to any E(w) € E is convex

1F:

(1)

{n

\ s{(1-o) E+on} < (1-@)JT(E) + aT(m) ¥ &, 1 €

Definition 2:

The directional derivative ®(£,n) of J at & in the direction of

n for all £, N € E is given by:
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B(E,m) =

=== [3{(1~0) E+an}1| (2)

o = o

Definition 3:

The maximal rate of descent of I from € is defined as:

D(E) = inf $(E,8)) (3)
wel "

is a design which contains only one fregquency component

[13

where § ¢
© W

at w.

Theorem 1: (Whittle):

If J is convex, then a J-optimal design, £&*, can be eguivalently

characterised by any of the three conditions:

(i) E* minimises J : - {4)
(ii) &* minimises D{(E) (5).
(iii) D(E*) =0 (6) #
The applicability of this theorem to Jl and J2 is now investigated:
Result 1:
Jl = log det (ﬁf¥;')_l is a convex cost function, where P' is a

constant positive semi-definite matrix.
Proof:

Let El(w). Ez(w) € F and let E{(w) = u&l(w) + (1~u)gz(w). Then

It

W (E) = oM'(E)) + (L-o)M'(E,) (7)

L]

therefore

]

I, (E) = - log det (a(M'(£))+F") + (1-0) (M (,)+F"))
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o 1-
But det (aA+(1-0)B) > (det A) (det B) o for A, B any positive

definite matrices, [38]. fThus:

3, () < -olog det (M'(E))+P") - (1-a) log det (M'(E,)+P")

=aJ, () + (1-a)J, (§,) #
Result 2:
— T M aDpt _ll . ) , oy
J, = trace {I'(m'+P') "} is a convex cost function where I', P' are

positive semi-definite matrices.

Proof:
From (7%):
3,(E) = trace {T(a(@ (£)+7") + (1-a) (" (Ez>+3'>)‘l}
But

1

(aA+(1-a)B) < ocA—l + (l—oc)B—l

for any A, B positive definite matrices, f38]l. So:. since T is

positive semi-definite, it follows that:
3,(8) < a trace {T (F,l)+§')—l} + (1-0) trace {T(M (52)45')"1}
=a J,(8)) + (1-a)J,(E.) - #

Since J. and J

1 5 satigfy the conditions for theorem 1 the following

equivalence theorems may be stated:
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Theorem 2:
A Jl—optimal design, g*, can be equivalently characterised by

any of the three conditions:

1

(i) &* minimises log det (M'(E)+P') (8)
(ii) &* minimises sup trace {(M}(E)ﬁg')~l(ﬁ1w)¥g')} (2)
we A
(iii) sup trace {(M'(E%+3") T ({Mw)+P)} =p (10) -

. wel
where p is the total number of parameters and M(W) is the matrix

M (8,)- (Bquation (3.10).)
Proof:

Jl 1s convex’ from result 1. Also,.from (2):

9(E,m) = trace {(H' ()43 ™% (0 (&)1 ()} (11)

p - trace {(M' (g)+'1>")“l(ﬁ' (M +2") } (12)

Putting 1} = 6w and substituting (12) into (5) and (6) leads to (9) -
and (10). #

Theorem 3:

A J,-optimal design, £*, can be equivalently characterised by
any of the three conditions:
(i) &* minimises JZ(E) = trace {r(ﬁ‘(g)¥ﬁ')'l} {13)
(ii) &* minimises sup trace {(Eﬁ(€)+§“)~lf(ﬁkg)+§3)(ﬁ(w)+§“)}
wel ) )
(iii) sup trace {(H(E)+F") T GT (Ex+F) T (@ B } =3, (En)
: we
Proof: %

J2 is convex from result 2. Also, from (2):

a(grm) = trace {(M'(g) B0 " (g)+’i5')'l(ﬁ' (£)-M" (1))

(14)

(15);’

(16)



- 5.4 -~ 110.

R |

= trace {I'(M'(E)+P') "}
- trace {(M"(&)+F") Trar @) T ar 4B} (17)

Putting n = 6w and substituting (17) into (5) and (6) yields (14) and
(15). #
Notation:

Let Vl(g,w) and V2(£,w) be defined as follows:

V. (E,0) = trace {(M' (£)+F") T (M(w)+E") } (18)
v, (E,w) = trace (' (5)+F) T T@ (€))L MWD} A9
#

Tests for optimality and non-optimality of test signals based on
‘theorems 2 and 3 are now given:

Result 3 - Test for Jl—Optimalitg:

' A design, £, is J,-optimal if V,(E,w) defined by (18) is less
than or equal to p for every W € A.

Proof:

The result follows from part (iii) of theorem 2. #

Result 4 - Test for Jz—Ogtimalitg:

A design, &, is J2~optimal if VZ(E,w) defined by (19) is less
than or equal to JZ(E) for every W ¢ A.
&

Proof:

The result follows from part (iii) of theorem 3. #

Result 5 - Necessary Condition for Jl—-Optimality:

If E* is a Jl—optimal design, then Vl(E*,w) = p for every W to
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which £* assigns non zero measure.
Proof:
Suppose that Vl(E*,w) < p for some ® with non zero measure.
Then since Vl(E*,w) <p ¥ w by (10), it follows that:
ﬂ

fv (E*waE*(w) < p
O

But by integrating (18) it is readily shown that:

™
[V (EwaEw =p (20)
o |

for any &; Contradiction. ¥

Result 6 - Necessary Condition for J ~Optimality:
o -

If £* ig a J2—optimal design, then VZ(E*,w) = JZ(E*) for every W
to which £* assigns non zero measure.
Proof:

Suppose that V2(£*,w)<|32(£*) for some w with non zero measure.

Then since VZ(E*,w)_i JZ(E*) ¥ w by (15, it follpws.that:-

T
JV, (E* W) dE* (W) < 3, (E%)
0

But, integrating (19) it is readily shown that:

il .
[V, (€, dE(w) = 3,(8) (21)
O

for any &§; Contradiction. F
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Remark 1:

Results 5 and 6 allow non-optimal designs to be detected and
discarded. The test is very easy to perform wheﬁ the input has a line
spectrum containing few lines. ) #
Remark 2:

The erroxr in the frequency response estimate due to estimation

errors is given to first ordexr by:

7 jw ~
Ay(ejw) = §l§§-lv<8-8)

where B the posterior mean and v{z} is the z~transform of the output,

{yk}, given by:

Thus the posterior covariance of this error at w is:

_ ay (e oy )

where QB = (l\'l'(?;)ﬂ?")"l is the pPosterior covariance. Taking as a

measure of the error covariance the guantity:

U(E,w) = trace {Z”lv(i,w)}
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it is not hard to see that:

V(E,w) « trace {(ﬁ'(€)+53)—lﬁkw)} (23)

e

Defining W(E)‘as:
w(E) = trace {(E‘(E)%E“)-LE'} (24)
it can be seen from thecrem 2 that:

(i) £* is any design & that minimises sup {U(E,w)} + w(E) (25)
. wel
(ii) £&* is optimal if sup {V(E*,w)} + w(E*) =p (26)
wel
#

In section 3 it was shown that any information matrix could be
achieved with an input having a line spectrum no morxe than p"(p"+1)/2+i
lines. The next result enables this to be reduced to p" (p"+1) /2.
Result 7:

The information matrices corresponding to either Jl~optimal

designs or J_-optimal designs are boundary points of the set of all

2
possible information matrices.
Proof:

Let Mo be the matrix'ﬁ'(g*) corresponding to the optimal design
£* and assume that MO is an interior point of the set M of all
possible matrices M'. Then thers exisfs an-0. > O such that
M, = (l+0)M_ also belongs to the set M-

1
Jl-optimality:
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Jl = log det ((l+a)MO+P,)

. 21y 1
= - trace {(MO+P) Mo}

Jz“optimality:
— ]
J, = trace {I‘((l+a)MO+P') “}

IaY
0J2 1

e — _’ _l -' -
= " = -~ trace {(MO+P ) F(MO+P ) MO}

< 0 (provided T > 0)

Thus in both cases the derivative of the cost function is strictly
negative s0 an ¢ > O exists such that é decrease in cost coccurs -~ bﬁt
MO corresponds to an optimal design ~ conpradiction. #
Result 8:

-Jl—optimal and J,-optimal designs exist having an input spectrum

2
containing no more than 7p"(p"+l1)/2 lines.

Proof:

Follows from Caratheodory's theorem, [34]. #

In the next section it is shown that this number may be still
%

further reduced by exploiting the structure of single output systems.

5. Optimal Spectra for Single Cutput Systems

In section 4.9 it was shown that the matrix M' was given by:
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T
M == ] g9
7 L %%

'_l

where

T 1 1.2 2 r

gk = [tk"'jtk-n'tk""tk—-n".‘tk-n'sk""sk-—n+l]
and

...l . .
C(z )ti = - ui ;i 3= 1l,ec.x
x . .
atz hs = Y rIhe?

A(z—l)C(z" )vJ = -
k
3 =1, 3
= A
tk {(z }v
X . .
s, = 2 B (2 l)vJ
k . k
=1

Now, from (1) emd assvming sdadovary inpuds |

il ! . ) AT
T : v TT
P e e e - e e - —

. i

| ¥ !

- ‘ '

| {

\ {

= ; '
| {

i |
U PO OO TSR
’ | ] rr
r;if ! Fopp

e e
1| | Tt
Top! ST
L. T '

115.

(1)

(2)

(3)

- (4)

(5)

(6)

(7)

(8)

(9}
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i

' . . o th ij i
TS’ PSS are matrices with 29~ elements YTT(q L, YTs(q 2),

i3
where FT%' T

Yss(q—ﬂ) respectively. The elements are given by:

ij - -1 i3, 5 oao Lo
Ypp (T = Az DALY (1) i,3=1,...x; T=0,#1,...4n. (10)

r r . . . ) ‘

Yes® = 1 1B @y =01, 2y (D)
i=lg=1

i S B P L. C

Yos (T = 1 2tz B 2)Y (1) #,=1,...x; T=0,#1,...%(n-1),-n: (12)
j=1

Remark 1:

Y;%(T), 1=0,1,2... is the cross-covariance of t; and ti; Yo (T)

sS

i, i . i
is the auto-covariance of Sy ¢ YTS is the cross-covariance between tk

and Sy i Yig is the cross-covariance between vi and vﬁ. ‘ #
Result l:

For single output systems in Caines' canoqical form, the average
information matrix ﬁ'lies in a (2n+1)r2~dimensiona1 subspace of the
space of all average information matrices.

From (10), (11) and (12) it can be seen that only Yii(T)’

T=0, 1, +2, ... i?n; i, 3 =1, ... r are needed to specify M

completely. Making use of the fact that Yii(T) % Ygi(-T) leads to the

conclusion that M' is completely specified by the (2n+l),r2 quantities:

(ij) . _ e s s
va (t); T=0, 1,%.. 2n; i, j =1, ... ¥ (13).
The result follows. B #

Corollary to Result 1:

For single ocutput systems, Jl—optimal and Jz—optimal designs exist
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having an input spectrum containing no more than (2n+l)r2 lines.
Proof:

The result follows immediately from Caratheodory's theorem. #
Remark 2:

In the last section it was shown that not more than p"(p"+1)/2
lines were needed in general. For the single output model considered
here, p" = r(n+l) + n. To see under what conditions (2n+1)r2 is

less than p"{p"+1)/2 define A as

.

A = p™(p"+1)/2 - (2n+l)r> , L (14)

%[rz(n2-2n—l)+r{2n2+3n+1)+(n2+n)]

I

A is positive if:

(1) n=1, r <3
(1) n =2, r <15

(1ii) n

[v
w
~
[at

any finite integer.

Thus result 1 represents a decrease in the number of lines necessary
for all but pathological cases. In particular, for r = 1, the
decrease ig very significant. This is brought éut in result 2. #
Result 2:

For single input-single output systems, Jl—qptimal and J2~optimal
designs exist having an input spectrum containing no more than p" lines.
Proof:

From the corollary to result 1 it can be seen that only (2n+l)

lines are needed, Since p" = 2n + 1 the result is proved. #
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Remark 3:

Although result 2 was proved for single input-single output
systems in Caines' canonical form, it is in fac£ true for systems
with A and B polynomials ©of different oraer. Also, for continuous
" time models the time deiay may be included in the parameter list with-
out affecting the result. Both these points will be taken up again in

section 8.

6. Degign Algorithms

In section 4, Whittle's general equivalence theorem was given.
Thig theorem states that a J-optimal design, &, is one which minimises

the maximum rate of descent defined by:

D(E) = inf @'(g,'éw). ()
wel ,
where
0
BE0) =gy tatGraabeed Y - (2)

1t further states that any design, £, for which the maximal rate of
descent is zero, is J-optimal.

From this theorem the following algorithm naturally suggests
itself, (see also [381, [561, [57]):

1. Start with any design~io. Set £ = 0.

é. Calculate @(Eg,5w) for all w e A,

3. Findlﬁ(gg) and the corresponding minimising w = Wp -

4. Let EZ+1 = (l—ag)ig + azéw where O is chosen so that a

L

decrease in J occurs.
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‘5. & =2 + 1; >if Bkiz) = O stop; else go to 2.

The convergence of this algorithm is evident, [56], but unfortunately
its applicability to the pfoblem at hand is limited for the following
reasons:

(i) The number of points in the optimal design is in general
large even if "rounded-off" designs, [38]1, are used. This can pose
realization problems.

(ii) It requires a knowledge of the matrix B(w), defined in
section 3, for all w. This is not a restriction for single input
systems since B{w) is simply E. However, for multi-input systems the
algorithms cannot be directly applied. |
An alternative approach is to use a steepest descent algorithm in the

{2rf—-1)-dimensional space of the design variables:
w, - Aj(@i), ¢j(mi); i=1, ...0; 3 =2, ...r, Ei, i=2, ..%

where % is the number of lines in the input spectrum,kj(mi), ¢j(wi)
define the elements of B(wi), i=1, ... %

The essential point is that the dimension of the space of
design variables is small and hence the above algorithms should present
gzgcomputational difficulty. In fact, for some systems analytic

designs are possible as will be shown in appendix A.

7. Realization Procedures

For power constrained inputs there is little prcblem in
realizing a signal with the required power density spectrum. For

spectra consisting of a finite number of lines a suitable realization
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is obtained by simply adding sinusoids of the required frequencies,
although this could be tedious for large numbers of lines. Fo%1continuous
rational spectra a suitablé realization procedure is to pass Gauésian
white noige through a filter'with rational transfer function H(z) where:

o* (z) = H(z)H(z 1) (1)

and @*(ejw) is the required power densify spéctrum.

In general, the theory presented in this chapter for power
constrained inputs is not strictly applicable to other types of
constraints. However, as will be brought out presently, amplitude
(and other) constrained inputs can often be found with spectra closely
approximating the spectra of optimal power constrained inputs of the
same power. ; » V
Result 1:

If, for a single input system with amplitude constraints, iﬁ, on
the input, a +§ binary signal exists with power density spectrum
equal to an optimal 62-power constrained input, then the binary
signal is an optimal amplitude constrained. Iinput.

Proof:

It was shown in theorem (4.6.2) that with amplitude constraints
the optimal input‘must be binary. Further in theorem (2.1} it was
shown that it is only the spectral properties of the»input which -
matter. The result follows. . #

Under fairly general conditions, binary signals do exist with
arbitrary continuous spectra and are readily geherated by means of a

linear filter driven by Gaussian white noise followed by an infinite

gain amplifier and clipper. The autocgorrelation of the output of the
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clipper is related to the input of the amplifier via the arcsine law,
{35]. In fact, it is possible to generate signals with almost any
continuous power density speetrum and amplitude probability
distributioﬁ, {531, [551]. |

For line spectra, héwever, binary signals do not in general exist
having only the required lines, [79]. 1In section 2, it was shown that
it was possible to achieve any desired accuracy by considering only a
finite portion of the input autocorrelation, R(T), -T < T < T,
say. The implication is that periodic inputs may be used with period
> %, or, in the frequency domain, it is permissable to conéider
spectra with lines only at multiples of %n The optimal spectrunm may
thus be approximated by such aspectfum. Van den Bos, [80], has
described methods for generating periodic binary signals with specified
line spectra. It is also possible to approximate liﬁe spectra witﬂ
continuous spectra. This is achieved by matching autocorrelation
functions of the two spectra over an interval [-T,T] where %-is the
highest significant frequency in the line spectrum. The remainder of
the autocorrelation function may then be arbitrary, (for example,
maximum entropy extrapolation, £531). The input may then be realized
as described above for continuous spectra.

A point in favour of line spectra is that subsequent data

analysis is greatly simplified, [151.

%

8. Extension to Continuous Time Systems

An appropriate model for a continuous model is the continuous

analogue of the innovations model described in chapter 4:
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dx

+

Axtdt + Butdt Kdet_ (1
= dt + Du +

ay Cxt t tdt det (2)

where Et is a Wiener Process. Care must be taken with this
representation, especially for sampling problems, [81], but most of

the results presented in this thesis have continuous time analogues

which may be obtained formally by:

(i} xreplacing summations over time by integrations,
(idi) replaciné integrations over {—ﬂ,ﬁ)}myintegrations over
(-2,»}, (or {o,m) by [Q’oo)) ’

(iii) replacing z = e ¥ by s = jw.

‘As aﬁ illustration, result 5.2 on the maximum number of spectral
lines necessary for single input-single output systems is rederived
for continuocus time systems with unequal numerator and denominator
ordexrs and with the time delay in the parameter list.

The system may be médelled as follows:

sT
~ _ B(s)e

y(s) N a(s) + n(s) (3)

where G(s), §(s) are the Laplace transforms of the input, u, and the

t

outpuﬁ; Yo respectively and H(s) is the Laplace transform of the
L

noise which is assumed to be Gaussian and to have spectral density

expressible as:

D(s)D(s)
c(s)c(s)

O(s) = (4)
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where s denotes complex conjugate, A(s), B(s), C(s), D(s) are finite
polynomials in s. The orders of A and B are n and m respectlvely.
Fisher's information matrix, M, for this model is given by

([51, [151):

‘o
M, O |
M = ~_,-‘_-,_[ (5)
{
(M
o MzJ
where M2 is a constant matrix and Ml is given by:

ff(aa<t) T ae(t)
20 8@

ydat ‘ (6)

where © is a p" vector of coefficients:

. o -
6" = £ao"'°arwl'bo""bm'T] , (7}

H

tf is the experiment time and is assumed to be large, and the functions

aeégL are obtained as the outputs of the following linear equations:
(\~ ) ~
03;8) = s"X(s)B(8)uls); i = O,...,n-1 (e
i
3§éé) = -s*X(s)A(s)U(s); & = O,...,m )
1.
E%.’.é.s.’_).. = sx(s)A(s)B(s)E(S) (10)
&
where .
x(s) = —8l .
D(s)A° (s) -

A direct application of Parseval's theorem, [771, to (6) leads
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to the result:

7 Be(=3w). T, de (5w)
M, = {m< o) O M@ (12)

where U(w) is the appropriate measure on the frequency space.

Substituting (8)-(11) into (12) leads to:
T . \ . T :
M () = £ F=30)X(-30) X(30)F () dE (w) (13)

where E(w) is the cumulative power distribution of the input and

where F(s} is a p" vector having kth element:

sk_lB(s); k=1,...n

Fk(S)

= —sk”nmlA(s); k = n+l,...n+m+l

sA(s)B(s); k = p" = n+m+2 (14)

The total input power is constrained, that is:
o0
fagw) =1 _ - (15)
(o)

Theorem 1:

For the siﬁgle Iinput-single Sutput continuous time system, (3),
Jl—optimal and Jz—optimal power constrained designs exist having no
more than p" lines where p" is the number of sgstem parameters.
Proof:

From equations (13) and (14), Ml can be expressed as:
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[oed

M, () = 2tffR'{v(jw)}x(~jw)x(jw)dg(w) (16)
Oe

i

where V(jw) is a p" %X p" matrix having ikth element:

DY o % (5w B(G® 5 i=l...n; k=l...n

Vi (30

it+k-n-2

T (w) B(~jWA(JW)  ; i=l...n; k=n+l...n+m+l

= (-1)

- (_l)l-l

.

GO TBI=3W B (JWA(JW) 5 i=l...n; k=n+m+2

gy FRT2R2  Sda(ie) 5 isntl...ndmdl, ke=n+l...nemel

= (-1)

= DY EO T A (- A G B(3W) 5 i=n+l...ndm+l, kensme2

WP (~50) A (W) B (~JW)B(50) 3 i = n+m2, k=ntm+2 (17)

Careful inspection of equations (16) and (17) shows that M

1 may be
expressed as:
p"
M = tf_i oLy (18)
i=1

 where Ll""Lp" are constant matrices depending only on the coefficients
of the polynomials A(s), B(s) and al,...ap" are scalars which depend
uponn the input spectrum and are given by
%
feed

a; = ({X(—jw)x(jw)w

Since Ml is completely specified by the p" quantities~al,...ap"and
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since information matrices corresponding te J,-optimal and J,—~optimal

1 2

designs are boundary points of the set of all information matrices,

the result follows from Caratheodory's theorem, -[34]. #

9. Optimal Sampling Rate Determination

In the last section it was seen that Fisher's information matrix,
M, for single input~single output systems given by equation (8.3), was

of the form:

i i

SR | (1)
AREILS

{M:L:O]

M =

where M, ig the information matrix for the A and B parameters and

dépenﬁs on the input spectrum and M2 is the information matrix for the

C and D parameters and is independent of the input spectrum.
Suppose that the cost function is a function of Ml only. For
example:

1

J. = log det (M1+Pl) (2)

oY

[
I

trace {T(M1+Pl)_l} . (3)

where Pl is the prior information matrix for the A and B parameters.

Suppose further that the measurements of the system output are of
%

the form of N uniformly spaced samples, with sampling rate wsgnnThe

total experiment time t_ is therefore given by:

£

t, =~ . (4)
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Now it is well known that a signal with no frequency component
above-wh, say, can be sampled without loss of information at any

frequency greater than 2wh (Nyquist rate, [421). Furthermore, My is
unaffected by any frequency components in the output which are above
the highest fregquency in the input spectrum. Thus all the information
about the system parameters is contained in the sample values of the
filtered output yé provided:

¢ > > \
Wy > 20, > 2wy (5)

where Wy is the cut—-off freguency of a filter with transfer function

H{s) such that:

il
=]
-

[E(5w) | W <o

=0, W>Ww A , (6)
[o] - B

The inclusion of this filter is necessary to prevent aliasing, [42].

Letting ws +'2mc -+ 2wh, (4) becomes

LR (7N

l

and hence, from (8.18):

prad

_ TN o :
Ml = M . (8)

=3

whexre
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— b
M= ) oL, | (9)

The joint problem of optimal sampling rate and input spectrum

determination may now be stated as:

' min {min J(E}E-ﬁ (£)} (10) -
whe[O,M) Eek h
A=[O,wh]

Since the optimal M is specified by p" lines the optimisation
indicated in (10) may be carried out in a 2p"-1 dimensional space.

Remark 1:
Conditions under which it is meaningful to use cost functions

which are functions of M1 only are:

(a) The purpose of the experiment is to determine only the

system parameters, the noisepgiémetersbeing of little or nb‘interest.

(b) The noise spectrum has predominantly low fregquency components

so that there is little information loss due to filtering and sampling.

Remark 2:

Constraints on the number of samples are common when a digital
computer is used for analysis.
Remark 3:

The more general problem in which the noise parameters are also
regquired to be estimated could be solved if suitable expressions

for the information loss due to filtering and sampling were considered.

10 Concluding Remarks

In this chapter it has been demonstrated that it is only the
spectral properties of the input which affect the identification

accuracy. Furthermore, it has been shown that it is sufficient to

#
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consider only line spectra of low dimensionality. Realization
procedures whichjare simple and robust have been described for both
power and amplitude constraints. Tests for optimality of inputs .
have been described. It has élso been demonstrated that the results
of this thesis may be réadily extended to include continuous time
systems. For these systems, the additional problem of optimal
sampling rate determination also arises. A suitable method fof joint

optimal design of input and sampling rate has been indicated.



- 5.A - 130

APPENDIX A

Examples

1. Single Time Constant with Coloured Noige

Model:

4

y(s) =27 uls) + e(s) (1)

where e(s) 1s ccloured noise with spectral density:
1 o
P(w) = 55— , (2}
" .

Sensitivity eguation:

s{as+l ’
gpls) = - S22l () (3)

(Ts+1)

Average information matrix corresponding to a line at w:

2 2 2
— (a w +1l)w

M(w) (4)

2
(T w +1)
From theorem 8.1 it is not necessary to consider spectra containing
more than one line. Therefore let M = ﬁ(w).
For the single parameter case Jl—optimality is egquivalent to
Jz—optimality and both correspond to maximising M. To find the

maximum value of ﬁfw) and the corresponding w, differentiate (4) with

respect to W and equate to zero:
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— 23 2
oM (4daw +2w)(T2w +l)2—412w3(a2w2+l)(T2w2+l)
— =] 1 =0
ow 22 4
(T w o+
L.,
w =0
ox
2 2 2
(a w2+l) (T w+1) - 21’2 wz(a2w2+1) = 0
l.e.

Thus the optimal input freguency is:

.
w* = (T-2a") % if 2a° < T (5)

w* = ® gf 2a > 1 (6)

Remark:
As a > O (i.e the noise becomes "white") the intuitively pleasing
result w* - %, the 3dB frequency, is obtained. Tu f#wﬁ'ce,(() T #

mphes <hat o L“-SL‘ p€7vewc7 stoo bl e wused .

2. Simple Gain in Coloured Nolse

Model:

v(s) = Ku(s) + e(s) (7)

-

where e(s) is coloured with spectral density given by:
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o) = HGWH(-I) = |H(w |

Sensitivity equation:

u(s)

_ 1

Average information matrix corresponding to a line at w:

Mw) = __~_3;*_,3;
[B (o) |

132.

(8)

(9)

- : s s 12
Thus M(W) is maximised for w* such that [H(jw*)l is a minimum. Thus

the cptimal frequency is at the point where the noise power density is

a minimum.

3. Simple Two Iﬁput System

Model:

yv(s) = b uL{s) + b u2(s) + e(s)

1 2

where e(s) has spectral density given by (8).

Sensitivity equations:

gl(s) = Hig) © (s)

gz(S) =

Average information matrix corresponding to a line at w:

#

(10)

(11)

(12)
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-/

U / y
ikl i (A1A2) cosd
i

M(w) = R (13)

|8 (jw) l2

3 f _
L(Allz) cosd ; A ]

From theorem 8.1 it is not necessary to consider spectra cqntaining;
more than two lines. It is possible, however, from theorem 3.1,
that an optimal input spectrum with Jjust one line exists. This
possibility is now investigated for the case.of Jl = log det ﬁ}' Now

for fixed Xl, A, and ¢, det M(w) is obvlously maximised for w = w*

2
. g 2 .
where W% minimises !H(}&)} . Introduce the test guantity Vl(w*,m)

defined by:
fig* = { * -l
v, (w ) = trace {M{w*) "M(w)} (14)

Again it is obvious that sup Vl(w*,w) occurs for w = w* and when

w
w = w*, Vl(w*,w) = 2. 8ince 2 is the number of parameters, it
follows from theorem 4.2 that ® = w* is the optimal spectrum for all
Al' A2, ¢- It thus only remains to maximise det ﬁkw*) with respect
to Al and ¢. (A2=l—kl):

det H(w¥) = ——=—— . A (1-A) (L-cos2d)

|G |4

il " X
which is maximised for Al =% and ¢ = i.}‘ Hence the optimal inputs

ul(s) and u2(s)have the same frequency W* which minimises the noise

power density, they are of equal power and are 90O out of phase. #
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4. Optimal Sampling Rate Determination
Model:
(8) = —— u(s) + e(s)
Y T Ts+l. +oels FlS)
where e(s) has spectral density
1
O(w) = 25 - {16)
a w +1

This is the same model as for example 1. The optimal input spectrum

containg only one line and the corresponding information matrix is

.1\71'(0.)) :

22 2
M(w) = (Eu‘%ﬂlg—— : (17)
(T w +1) i

For a fixed number of samples, at the Nygquist rate, 2w, the information

1~ . . .
is proportional to M where M = E’M(w). Maximisation of M with

respect to W is carried out as in example 1:

oM _ [(T2w2+l)2[(a2w2+l)+2a2w2]—w(a2w2+l)(T2w2+l).4T2w] -

Bw P ©
lL.e.
(T2w2+l)(3a2w2+l) - 4T2w2(a2w2+l) =0
l.€.
3a2T w4 + T2w2 + 3a2w2 + 1 - 4a2T2w4 ~ 4T2w2 = 0.
i.e.
22

_2Pet s 3wt v 1 =0
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2 1

2a2’l'2

2.2%

Tz)

[3(a2-72) + (9(a%-15? ¢ 2a 1 (18)

: 1 . , . .
For a > O, W > — , 1.e. somewhat less than in the first example. This
V3T
is to be expected since, for lower sampling rates, the experiment time,

and hence the input energy, increases.
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CHAPTER 6
Suggestions for Further Research

In this thesis the experiment design problem has been tackled
in both the time domain and fhe frequency domain. The time. domain
approach, although leading to viable design algorithms, offers little
insight into the problem. On the other hand, the/frequency domain
approach leads toc a number of elegant mathematical results giving
considerable insight. It is felt by the author that further research>
in this area could be very rewarding. Also, because of the success
of the frequency domain technigques in deaiing with the experiment
design problem, it seems highly likely that further interesting
results may be possible for the related probiems of identif;cation
and control. In both cases this would entail a new look at some of
the classical methods.

another avenue of further research is the probleﬁ of optimal
sampling rate determination in the case where sysﬁem and noise modes
are not distinct. Also the problems of optimal design of non-
uniform sampling systems and the optimal choice of presampling filter

are yet to be studied in depth.
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