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ABSTRACT 

A simple stochastic model is proposed which is capable of reproducing 

the observed short-term and long-term behaviour of annual streamflow. The 

model, a mixed autoregressive moving average or ARIMA (1,0,1) process, is 

specifically developed for generating synthetic flows for use in the design 

and operation of water resource systems. 

The application of stochastic streamflow simulation in the planning 

and management of water resources is outlined initially, and some of the 

associated problems are discussed. In a survey of existing models for 

generating synthetic flows, particular attention is paid to discrete-time 

fractional Gaussian noise (dfGn) which has been found in many cases to 

adequately describe observed long-term persistence in streamflow. The 

general complexity associated with the generation of approximations to dfGn 

on a digital computer underlines the necessity for a simple alternative 

model for generating synthetic flows with the desired short-term and long-

term properties. 

The ARIMA (1,0,1) process is found to have the necessary properties, 

and its elegant simplicity, as opposed to the complexity of available 

approximations to fGn, facilitates the quantification of its asymptotic 

and small sample properties through analysis and Monte Carlo sampling 

experiments, respectively. The model may be considered to be a reasonable 

approximation to dfGn, and is formulated so as to maintain the desired 

statistical resemblance between historic and synthetic flows. The impact 

of long-term persistence on reservoir design is illustrated using a simple 

design procedure. 

Some difficulties are encountered in obtaining solutions to the 

matrix equations which specify the multisite ARIMA (1,0,1) model. The 

conditions for an acceptable solution are identified and numerical techniques 



are employed to solve the equations in the general case. A modified multi-

site ARIMA (1,0,1) process is developed which allows an analytical solution 

to the matrix equations to be obtained. The modified process should prove 

adequate for the majority of applications. 

Parameter estimation for the ARIMA (1,0,1) process is explored using 

moment and maximum likelihood techniques applied to small samples generated 

by the process. In a considerable proportion of cases, solutions are 

unobtainable, and those obtained are found to be highly biased and variable 

for both estimation procedures. 

Finally, the physical bases for alternative stochastic models of 

streamflow are examined, and the ARIMA (1,0,1) process is found to have a 

reasonable basis. 
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a.. 

SYMBOLS AND ABBREVIATIONS 

Note: 	As far as possible, a continuous time variable has been 
denoted, for example, as X(t) while a discrete time variable 
has been denoted as X. An exception occurs in Chapter 4, where 
the symbol X(t) is used to denote a discrete time variable to 
simplify the notation for multisite processes. 
To accommodate the reader, an abbreviated list of the most 
frequently used symbols has been included on a pull-out page 
at the back of the thesis. 

V 
	

Backward difference operator 

A 
Denotes 'estimate of 

In Chapter 1, denotes 'estimate of'; elsewhere, denotes 
'approximate value of 

V 
	

Denotes 'for all' 

Denotes 'conditional expectation of ' 

A 	Abbreviation for Anderson 

A 	(m x m) matrix of coefficients for multisite generating process 

A' 	(m x m) matrix of coefficients for multisite log-normal 
generating process 

AR 	Abbreviation for 'autoregressive' 

ARIMA 	Abbreviation for 'autoregressive integrated moving average' 

ARMA 	Abbreviation for 'autoregressive moving average' 

a 	Lower bound of a log-normally distributed random variable 

a' 	Constant characterizing behaviour of population range 
R (T) of Brownian motion B(t) 

ah 	Constant characterizing behaviour of population range R (T) 
of fractional Brownian motion Bh(t)  

a. 	In Chapter 4, lower bound of a log-normally distributed 
random variable at site i; in Chapter 5, harmonic coefficient 
for frequency i 

Random variable denoting moving average component of ARMA 
(p,q) process 

Infiltration ratio for period i 

Element of matrix A 
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a.c. 

B 

BL 

B(t) 

B
h
(t) 

Wh(t05) 

B 

B' 

B* 

b' 

b
h 

b. 
1 

b. 

b
t  

bik,bik  

C
a 

Cm 

Cp  

C(j) 

C(f.) 

C
(hf)

(1) 

Ch(k) 

Chalk)  

Abbreviation for autocorrelation 

In Chapter 2, parameter of a fast fractional noise generator; 
elsewhere, backward shift operator 

Abbreviation for 'Broken Line' 

Random variable denoting Brownian motion at time t 

Random variable denoting fractional Brownian motion at 
time t 

'Derivative'-of fractional Brownian motion 

(m x m) matrix of coefficients in multisite generating 
process 

(m x m) matrix of coefficients in multisite log-normal 
generating process 

(m x m) lower triangular matrix of coefficients in multisite 
generating process 

Constant characterizing behaviour of the adjusted range R(T) 
for Brownian motion 

Constant characterizing behaviour of the adjusted range R(T) 
for fractional Brownian motion 

Harmonic coefficient for frequency fi  

Regression coefficient relating flow in month (j+1) with 
flow in month j. 

Random variable denoting autoregressive component of the 
ARMA (p,q) process 

Elements of matrix B 

Minimum reservoir storage to meet demands for sequence 
generated by ARIMA (1,0,1) process 

Minimum reservoir storage to meet demands for sequence 
generated by lag-one Markov process 

Minimum reservoir storage to meet demands 

Reservoir storage at end of period j 

Cumulative discrete periodogram at frequency f. 

Error in approximating Ch(1) with Dh(1) 

AUtocovariance'at lag k for discrete time fractional Gaussian 
noise 

Approximation to Ch(k) 
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C
h ' 

 (5) Autocovariance function at lag r for the 'derivative' of 
fractional Brownian motion Bh

'(t
'
(5) 

C.L. 	Abbreviation for 'confidence limits' 

1 
GP 	Abbreviation for cumulative periodogram 

C 	(m x m) matrix of coefficients in multisite generating 
process 

C' 	(m x m) matrix of coefficients in multisite log-normal 
generating process 

Distance in time separating values of E. in simple Broken 
Line process 

c . 

cik,cjk  

D 

DP 

th 
Value of c for i simple Broken Line process 

Elements of matrix C 

Differential operator 

Fractional differential operator with 0 non-integral 

D
k 	

Cumulative sum of the first k values of a random variable 
in a sequence of length n 

D*
k 	

Cumulative departure from sample mean 

Dn 	
Cumulative sum of a sequence of n values of a random variable 

D
h
(k) 	Approximation to Ch(k) 

D 	Matrix of second derivatives of log-likelihood function 

d 	Order of differencing for ARIMA (p,d,q) process 

d(j) 	Demand on reservoir in period j 

d.. 	Element of matrix D 
ij 

dfGn 	Abbreviation for 'discrete time fractional Gaussian noise' 

E(*) 	Expectation operator 

E[-]n 	
Denotes expected value of quantity within brackets in samples 
of size n 

e,exp 	The exponential 

e(t) 
	

Random variable denoting a simple Broken Line process 

F 
	

Forward shift operator 

F. 	Baseflow contribution to flow in period i from within period 
precipitation 
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F1(t/h,M) 

F2(t/h,M) 

Random variable at time t denoting Type I approximation 
to discrete time fGn with parameters h and M 

Random variable at time t denoting Type II approximation 
to discrete time fGn with parameters h and M 

Small sample correction factor for variance of ARIMA (1,0,1) 
process 

Probability density function 

f(T,O) 	Function of parameter sets cp and 8 in likelihood function 
for ARIMA (p,o,q) process 

fGn 	Abbreviation for 'fractional Gaussian noise' 

th In Chapter 3, inverse of 
.

root of polynomial cp(B); in 
Chapter 5, baseflow contribution to flow in period i from 
over-period storage 

g(n'P1)  

g(n01,0 

Small sample correction factor for standard deviation of 
lag-one Markov process 

Small sample correction factor-  for. standard deviation of 
ARIMA (1,0,1) process 

H 	Estimate of h 

H 	Mean of 10 values of H 

H. 	Inverse of j
th 

root of polynomial 8(B) 

h 	Hurst coefficient 

h. 	Hurst coefficient at site i 

I(f.) 	Periodogram ordinate at frequency f. 

(t 
Iric,(j+1)QJ) Indicator function for Broken Line process 
L  

I(a) 	Information matrix for set of parameters a 

Identity matrix 

Estimate of h 

K. 	Estimate of h at site i 

K
a 	

Factor determining width of confidence limits for cumulative 

K
h
(s) 

K
h(s, (5) ' 

Kernel for discrete-time fractional Gaussian noise 

Kernel for the derivative of fractional Brownian motion 
Bh1(t'6) 

f(111  VT)  

G. 
a. 

periodogram test 
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K110 ' lh M) 	Kernel for Type I approximation to dfGn 

.th 
k. 	1-1 

constant in partial fraction expansion of 
1 	(B) 

L(Z1 ,Z2' 
 ..Z n'  

'r) Likelihood function 

1
1 	

Loss associated with Type I error 

1
2 	

Loss associated with Type II error 

1(0 	Log-likelihood function for set of parameters j 

1(a,ore) 	Log-likelihood function for ARIMA (p,o,q) process 

1*(T,O,o) 	Conditional log-likelihood function for ARIMA (p,o,q) 
process 

M 	Memory parameter in Type I and II approximations to dfGn 

M. 	Total streamflow in period i 

M
n 	

Maximum of D1, D2,...,Dn  

M(t) 	Moment generating function for'real values of t 

M(t12) 	
Moment generating function for real values of t1  and t2 

Abbreviation for moving average 

(m x m) lag-zero cross-correlation matrix with elements 
( Pij 0)  

(m x m) lag-one cross-correlation matrix with elements 
p..(1) 
ij 

(m x m) lag-two.cross-correlation matrix with elements 
pii(2) 

M' 	(m x m) lag-zero cross-correlation matrix with elements 
—o. 	(0) Pli  

M ' 	(m x m) lag-one cross-correlation matrix with elements 
-1 

Pij 
. '(1) 

M ' 	(m x m) lag-two cross-correlation matrix with elements 
—2 

Pli'(2) 

m 	In Chapter 4, number of sites; in Chapter 5, number 
of backward or forward forecasts used in computing S(T,O) 

m. 	constant in partial fraction expansion of 0
-1 jth 	 (B) 

m
n 	

minimum of D1, D2,..., Dn 

m.s.e. 	Abbreviation for 'mean square error' 

MA 

-o 
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NIP 	Abbreviation for normal independent process 

n 	Sample duration in discrete time 

nm 	
Value of n at which break to h = 0.5 law occurs in 
pox diagram 

n
s 	

Sub-sample length in discrete time 

n
o 	

Minimum value of n
s 
used in calculating H 

P. 	Effective precipitation in period i 

P
n 	

Maximum of cumulative departures from sample mean 

P
r 	

r
th 

peak in sequent peak algorithm 

P(f) 	Cumulative continuous periodogram ordinate 

p 	Order of autoregressive process 

p(f) 	Continuous power'spectrum 

Q 	Parameter in fast fractional noise approximation 

Qn 	Minimum of cumulative departures from sample mean 

q 	Order of moving average process 

qi 	
Monthly flow at time point i 

R,R 	Adjusted range or range of cumulative departures from n   
sample mean in discrete time 

R
p 	

Range of cumulative departures from population mean in 
discrete time 

R
t 	

Tree ring width for year t 

R(T) 	Adjusted range in continuous time 

R (T) 	Population range in continuous time 

R/S 	Resealed range in discrete time 

R.. 	Element of matrix R 
ij  

R 	Matrix of second derivatives of sum of squares function 
S(a,W) with respect to elements of a 

-t Proportion of direct runoff for period i 

f.h.s. 	Abbreviation for 'right-hand-side' 

S 	Sample standard deviation 

•x 	
Estimate of standard deviation of sub-sample means 



Tt  

T! 1 

T 

th1  
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S(a) 	Sum of squares function for Set of parameters 
a = (T90) 

S(a,W) 	Sum of squares function for set of parameters 
a and set of observations W 

Sum of squares function for ARIMA (p,o,q) process 

Sum of squares function for ARIMA (1,0,1) process 

Conditional sum of squares function for ARIMA (p,o,q) 
process 

S 	(m x m) matrix of coefficients for multisite ARIMA (1,0,1) 
process 

s 	Backward shift operator 

st. dev. 	Denotes 'standard deviation of 

T 	Sample duration in continuous time 

Tr 	
r
th trough in sequent peak algorithm 

Trend component in tree ring width for year t 

Effective time of occurence of a storm equivalent to all 
storms recurring in period i 

(m x m) matrix of coefficients in multisite ARIMA (1,0,1) 
process 

Parameter in fast fractional noise approximation 

(m x m) matrix of coefficients in multisite ARIMA (1,0,1) 
process 

U. 

V
h 

V(a) 

V(T,O) 

th 
Value of matrix U after j iteration 

Variance of unit increments of fractional Brownian motion 

Variance-covariance matrix of set of parameters a 

Large-sample variance-covariance matrix of parameters of 
ARIMA (1,0,1) process 

Var 	Denotes 'variance of 

V 	(m x m) matrix of coefficients for multisite ARIMA (1,0,1) 
process 

th iteration Weight of matrix V after j Iteration 

Weight attached to m
th lag-one Markov process in fast 

fractional noise approximation 

Random variable at time t with zero expectation 

V. 

Wm 

wt 
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W 

W* 

w(j) 

X
t  

xt
(hf) 

In Chapter 4, (m x m) matrix of coefficients for 
multisite generating process; in Chapter 5, set of 
values [W

I
, W 	Wn] 2,—,  

Set of values [W 	
Wt-2'..., wt-p

] 

Waste-water in period j 

Discrete-time random variable at time t 

High frequency component of fast fractional noise 
approximation 

(1f) 
X
t' 	Low frequency component of fast fractional noise 

approximation 

Xt
(m)  General Broken Line process 

X
t
(w) 	Discrete-time random variable at time t, with co denoting 

an element in the sample space 

X(t,w) 	Continuous-time random variable at time t, with w 
denoting an element in the sample space 

X.(t) 
	

Discrete-time random variable at time t for site i. 

X 	Mean of a sequence X1, X2,..., Xn  

x(t) 
	

(m x 1) matrix of standardized discrete time random 
variables at time t 

x(j) 	Inflow to reservoir in period j 

Y
t 
	Normally distributed discrete time random variable at 

time t 

Y.(t) 

Yt(P1
(m)

) 

Normally distributed discrete time random variable at 
time t for site i 

Component lag-one Markov process of fast fractional noise 
approximation 

2(t) 	(m x 1) matrix of standardized discrete time normally 
distributed random variables at time t 

Z. 
	Discrete-time random variable at time t 

Za 	Standard normal deviate for probability level a 

z. 	Standardized monthly deviate for time point i 

a 	Level of significance 

a' 	Level of development 

a. 	Element of set [a] 
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a 	Set of parameters 

[a] 	Set of parameters 

Pii 	Element of matrix 0 

13* 	Element of matrix p* 

P 	(m x m) lower triangular matrix 

13* 	(m x m) lower triangular matrix 

17 	Denotes Gamma Function 

Roughness parameter of Broken Line process 

Y. 	Coefficient of skewness of random variable X.(t) 

Yk 	
Autocovariance for lag k 

Yx 	
Skewness of random variable Xt 

Yi 	Skewness of random variable 

At 	Increment of time 

Bh(t) 
	

Increment of fractional Brownian motion 

A 	(m x m) matrix such that416,2  = I 

Small positive quantity 

t 	
Normally and independently distributed random variable 
at time t with zero mean and unit variance 

Small positive time increment 

e 	Normally and independently distributed random variable 
at time t with zero mean and unit variance 

6 	Mean of sequence El , 	En  

Set of values [E E 	El 
1' 2' 	n 

e* 	Set of values E Et-2"." Et-q]  

c(t) 	(m x 1) matrix of normally and independently distributed 
random variables with zero mean and unit variance 

t 

0 

Independent random variable at time t with zero mean, 
unit variance and skewness y 

Parameter of first order moving average 

q
th moving average parameter 
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0(B) 	Polynomial in backward shift operator B with coefficients 
0. 
3 

0(F) 	Polynomial in forward shift operator F with coefficients 
6. 

A(1) 
Maximum likelihood estimate of 0 

(m) 0 	Moment estimate of 0 

0 	Set of parameters [0i, 02,-4., 04] 

a 	Average minimum reservoir storage for sample size n for 
ARIMA (1,0,1) process 

X
m 	

Average minimum storage for sample size n for lag-one 
Markov process 

A
i 	

Population mean of random variable X.(t) 

Aj 	Population mean flow for month j 

Ax Population mean of.random variable Xt  

A 	Population mean of random variable Y
t 

A 	(m x 1) matrix with elements pi  

(m x 1) matrix with elements.m'i  

Element of set L.  

Set of parameters 

Constant equal to 3.1416... 

rj 	Parameter of infinite autoregression 

r(B) 	Polynomial in backward shift operator B with coefficients 
r. 
3 

p,p1 
	

Lag-one autocorrelation coefficient 

P- 	Correlation coefficient between flow in month (j+1) 
3 	and flow in month j 

Pk 	
Lag-k autocorrelation coefficient 

Px 	
Lag-one autocorrelation coefficient of random variable Xt  

Py 	
Lag-one autocorrelation coefficient of random variable Yt  

(m) 
P1 	

Lag-one autocorrelation coefficient for m
th 

lag-one 
Markoy process in fast fractional noise approximation 

(hf) 
P1 	

Lag-one autocorrelation coefficient of high frequency 
component in fast fractional noise approximation 
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Estimate of p1  from synthetic sequence 

Corrected estimate of p1  

Cross-correlation coefficient between random variables 
X
. 

and Y
t 

Autocorrelation function at lag T in continuous time 

Autocorrelation function at lag T for general Broken 
Line process 

p"(0) 	Second derivative of autocorrelation function at origin 

p.
1
(k) 	. 	Lag-k autocorrelation coefficient of random variable X.(t) 

pi(k) 	Lag-k autocorrelation coefficient of random variable Y.(t) 

p..(k) 	Lag-k cross correlation coefficient between random 
ij variables X.(t) and X.(t) 

1 

Lag-k cross correlation coefficient between random 
variables Y.(0and Y.(t) 

1 

a 	Population standard deviation 

Population standard deviation of ARIMA (1,0,1) process 

In Chapter 2, population standard deviation for ith  
simple Broken Line process; in Chapter 4, standard 
deviation of random variable X.(t) 

Standard deviation of random variable Y.(t) 1 

a. 	Population standard deviation of flows in month j 

am 	
Population standard deviation of lag-one Markov process 

ax 	
Population standard deviation of the random variable Xt  

a 	Population standard deviation of the random variable Yt  

a_ 	Population standard deviation of sub-sample means 

QE  Standard deviation of the random variable Et  

Parameter of first order autoregressive process 

Ti 	Autoregressive parameter at site i 

Tp 	
p
th autoregressive parameter 

T(B) 	Polynomial in backward shift operator B with coefficients cpj 

p(F) 	Polynomial in forward shift operator F with coefficients. T3 

p..'(k) 
lj 

as 
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Maximum likelihood estimate of p 

Moment estimate of p 

Set of parameters [191, ya,..., yp] 

Value of chi-square for (K-p-q) degrees of freedom 

Parameter of infinite moving average 

Polynomial in backward shift operator B with coefficients 

P 

X
2
(K-p-q) 

1)4 

c't 	Sample space for random variable. 
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INTRODUCTION 

"On a multitude of rivers of the earth, long series of dry and wet 

years are observed that are practically incredible in successions of 

accidental values". 

Kritsky and Menkel (1970) 

The empirical observation embodied in the above quotation has inspired 

numerous investigations in the past to determine laws, either deterministic 

or probabilistic, which would quantify the persistence in annual streamflow. 

Among such investigations, the work of Hurst (1951, 1956) stands out. He 

made the remarkable empirical discovery that a host of geophysical time 

series, including streamflow, obeyed one universal, probabilistic law, 

specified by one parameter, 0 < h < 1, which governed the duration and 

intensity of periods of above and below average flow. Even more remarkable 

was the fact that the overall average value of h found by Hurst, 0.73, 

was in strong disagreement with the value of h of 0.5 predicted by all the 

'then available probabilistic theories. 

The result continued to baffle and intrigue statisticians and engineers 

for a number of years, until Mandelbrot (1965) and Mandelbrot and Van Ness 

(1968) evolved the necessary probability theory to explain Hurst's findings, 

and proposed discrete-time fractional Gaussian noise (dfGn) as a new model 

of annual streamflow. The theory is based on the existence of long-term 

persistence, measured by values of h in the range 0.5 < h < 1, suggesting 

that events in the distant past still influence present events and that 

long periods of high or low streamflow can be extremely long indeed. In 

contrast, short-term persistence, characterized by a value of h equali to 

0.5, refers to the belief that present events are not influenced by past 

events or are influenced only by very recent past events. 
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The application of Mandelbrot's theory to streamflow was strikingly 

illustrated by Mandelbrot and Wallis (1968, 1969a,b,c,d,e), who proposed 

algorithms for generating approximations to dfGn on a digital computer. 

Further approximations to dfGn, namely, fast and filtered dfGn, have since 

been developed by Mandelbrot (1971a) and Matalas and Wallis (1971b),respect-

ively. 

However, there are difficulties associated with the practical appli-

cation of dfGn in the design of water resource systems. Only one generating 

process, filtered dfGn, has been suitably documented for generating synthetic 

streamflows, but the process is rather cumbersome and expensive to use. 

Fast dfGn, as implied by its name, aims to achieve economy in computation, 

but the generating process itself is still rather complicated, and has not 

as yet been sufficiently documented for practical application. In addition, 

Matalas and Wallis (1974) have pointed out that the small,sample properties 

as well as the population properties of a generating process are needed 

before the correct resemblance can be maintained between historic and 

synthetic flows. 

A requirement thus exists for a simple generatiFg process with the 

necessary long-term behaviour which can easily be employed in practical 

design situations. This thesis is concerned with the development of the 

ARIMA (1,0,1) process, already proposed by O'Connell (1971) and shown to 

provide an alternative to the fGn model of Hurst's time series. As a 

result of its simplicity the small sample properties of the procpss can 

be obtained either through theoretical analysis or Monte Carlo sampling 

experiments. The new process is particularly suitable for the ipvestgation 

of the practical, consequences of long-term persistence ip the design of 

water-resource systems. 

Chapter 1 deals with the fundamentals of stochastic streamflow simu-

lation, and considers its potential in the-design og water resource systems. 



Associated problems are discussed under the headings of model choice, 

distribution choice and parameter estimation, and decision theory is 

suggested as a possible means of resolving some of the problems. 

Chapter 2 traces the historical development,of synthetic hydrology, 

and particular attention is paid to studies attempting to account for 

Hurst's findings. In this context, the failure of models possessing the 

properties of the increments of Brownian motion is noted. In contrast, 

fractional Brownian motion provides the correct basis for a model, and an 

attempt is made to give a logical integrated treatment of the properties 

of the increments of fractional Brownian motion (discrete-time fractional 

Gaussian noise) from mathematical theory through to computational algorithms. 

The main difficulties associated with the practical application of dfGn, 

namely, the formulation of generating processes and the estimation of h, 

the Hurst coefficient, are discussed. Some of the very recent contributions 

to synthetic hydrology are also reviewed. 

The properties -of a simple stochastic model of long-term persistence, 

the ARIMA (1,0,1) process, are explored in chapter 3, and its potential 

as an adequate and useful alternative to dfGn for simulation purposes is 

exposed. Some of the background material presented initially, relies on 

the exposition of Box and Jenkins (1970), and is included for completeness. 

Using the lag-one Markov or ARIMA (1,0,0) process and dfGn as foils, and 

extensive simulation experiments as evidence, the ARIMA (1,0,1) process 

is shown to possess both the better attributes of the alternative models, 

namely, elegant simplicity and the ability to model short-term and long-

term persistence adequately. The small sample properties of estimates 

of the variance, lag-one autocorrelation and h are established and are 

used in formulating the model to maintain the required resemblance between 

historic and synthetic flows. The preservation of skewness is also considered 
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as is the case of a log-normal ARIMA (1,0,1) process. Some simple simu- 

lation experiments are reported which illustrate the effects of long-term 

persistence and small sample biases on reservoir design. 

Multisite ARIMA (1,0,1) processes with the required temporal and 

spatial correlation structures are developed in chapter 4. Existing multi- 

site models are first reviewed and the absence of a manageable multivariate 

process for generating flows with the required long-term and short-term 

properties is evident. Some difficulties are encountered in finding 

solutions to the matrix equations which specify the multisite ARIMA (1,0,1) 

process. The conditions for an acceptable solution are established, and 

a simple, iterative, numerical procedure is used to solve the matrix 

equations. The properties of available analytical solutions are examined 

in detail and one particular solution is found to be acceptable if lagged 

cross-correlations of order greater than zero are not of interest. The 

latter formulation is found to have a convenient interpretation in terms 

of long-term persistence. The generation of multivariate log-normal 

sequences is also considered in addition to the standard case where attention 

is confined only to first and second order moments. 

The estimation of the parameters of the ARIMA (1,0,1) process using 

the techniques proposed by Box and Jenkins (1970) forms the subject matter 

of chapter 5. While these techniques may prove adequate for the longer 

time series frequently available in business and industry, their potential 

is shown to be somewhat limited when applied to shorter sequences. Some 

of the background material on parameter estimation using the Box and 

Jenkins approach is presented initially. The power of some of their goodness- 

of-fit tests in detecting long-term persistence is explored, and found to 

be rather low. Moment and maximum likelihood estimation techniques are 

applied to short to moderate length sequences generated by an ARIMA (1,0,1) 
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process, and, in a large proportion of cases, neither technique provides 

estimates lying within the parameter space of the process. When acceptable 

estimates are available, they are found to be characterized by excessive 

bias and variability for both techniques ; only when the sample size exceeds 

considerably the length of historic annual streamflow sequences do the 

better properties of maximum likelihood techniques tend to emerge. The 

application of the ARIMA (1,0,1) process to some records of annual stream-

flow is finally illustrated. 

In chapter 6, the main conclusions of the thesis are presented. In 

this context, the physical bases of fGn and the ARIMA (1,0,1) process are 

compared, as no clear recommendation for the use of either model can be 

made on statistical grounds. Some recent work suggests that the ARIMA 

(1,0,1) model has a reasonable physical basis, while the physical basis of 

dfGn has not been explored. In addition, the ARIMA (1,0,1) process has 

been formulated so as to achieve statistical resemblance between synthetic 

and historic sequences of equal length, which gives it an important advantage 

over approximations to dfGn. However, for any particular design situation, 

the model choice dilemma remains, and may be best approached using decision 

theory. With design periods of more than about 50 years becoming unreal-

istically long in present day circumstances, work should perhaps concentrate 

on determining the importance of long-term persistence in such cases. 
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Chapter 1 

THE RATIONALE AND FRAMEWORK OF SYNTHETIC HYDROLOGY 

Advances in stochastic modelling and simulation techniques in 

hydrology in recent years have led to the development of improved 

methods of water resource system planning. Stochastic techniques 

of flow synthesis or generation are frequently referred to collectively 

as operational or synthetic hydrology. 

In section (1.1) streamflow is viewed as a stochastic process, 

while section (1.2) outlines the basic assumptions underlying 

synthetic hydrology, and some of the difficulties associated with 

model choice, distribution choice and parameter estimation. Section 

(1.3) outlines briefly the potential of synthetic hydrology in the 

design and operation of water resource systems. Finally, in section 

(1.4) a decision theory framework is considered which may help to 

overcome some of the shortcomings of synthetic hydrology. 

1.1 Streamflow as a stochastic process  

Hydrological processes i.e. rainfall, streamflow, tend to behave 

in a rather complex fashion; the developing science of hydrology is 

primarily concerned with quantifying the temporal and spatial behaviour 

of such processes. As in other fields, such as fluid mechanics, the 
• 

study of complex natural processes has produced two distinct approaches. 

Those who have allied themselves to a deterministic approach have sought 

to explain the behaviour of streamflow and its natural component 

processes in terms of known physical laws. On the other hand, the 

apparently random nature of some hydrological processes have led the 

advocates of probability theory to suggest that a probabilistic 

mechanism underlies the evolution of such phenomena. The latter 
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approach is frequently conjectured, in particular by determinists, to 

be an admission of a state of ignorance: however, the argument for the 

application of either approach must surely revolve not around 

philosophical standpoints in hydrology but around how the design and 

management of water resource systems may best be approached. 

Probability theory affords a means of formulating an objective methodology 

for assessing the inherent risks and uncertainties associated with 

hydrological design in the face of inadequate data. Thus, the field of 

stochastic hydrology has emerged partly in response to the need for 

such a methodology, and partly in response to the need fora better 

understanding of the structure of hydrological processes. 

Within the field of stochastic hydrology, hydrological processes 

are hypothesised as stochastic processes; a definition of a stochastic 

process is, perhaps, pertinent. Within the literature on stochastic 

processes, a universal definition barely emerges. Some authors 

reserve the term stochastic process for random phenomena which change 

with time (Prabhu, 1965; Jenkins and Watts 1968); however, a more 

acceptable and general concept is obtained if change with respect to 

reference frames other than time is allowed (Bartlett, 1966; Cox and 

Miller, 1966). Hence, a stochastic process may formally be defined as 

an indexed or ordered set of random variables [X(s,W) : sES,WEQ] 

where s is an element of the index set S, and fl is the sample space 

for the random variable X(s,W) for each value of s. 

In dealing with hydrological processes, the reference frame will 

• 

generally be the time axis, although reference frames in space 

sometimes arise. In the former situation, the stochastic process will 

have as its index set T, the set of time points; further consideration 

can, without loss of generality, be confined to stochastic processes 

with time as a reference frame. For a continuous process, the index 
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set T may be specified as T'= 	: -co < t <00] while for a stochastic 

process in discrete time the index set may be specified as T = [0, 	1 	2...] 

or T = [0,1,2...]. Hence the continuous stochastic process for streamflow 

may be denoted by [X(t,W) : t e 	C SI], and a single realization of 

the process, an observed streamflow sequence may be denoted by 

[X(t,w0) : t E T, wo E Q]. In this notation, X(t,W) denotes the 

random variable associated with time t, and X(t,V denotes a variate 

value, for example, observed streamflow, of X(t,W). The indexing of 

the random variables implies that particular importance is attached to 

their order; ordering is necessary as interdependence will generally 

exist between the random variables X(t,W) and X(t 	,w) where 6 

represents a shift in the time origin. 

As already noted, a hydrological process may be hypothesised as 

a stochastic process; interdependence between the random variables at 

times t and t +6 may be attributed to the action of atmospheric and 

catchment storage. In this context, the stochastic process represents 

a mathematical or stochastic model of the hydrological process. In 

almost all cases, only a single realization of a stochastic process is 

available, and that for only a finite set of time points [ti ,...tn]. 

The available sample is generally termed a time series and represents 

a sample of size n from the n
th 

order multivariate process 

[Xt
(W) : t E T,W EP]. The principal aim of time series analysis is 

to infer the probability law of the stochastic process from a single 

realization of the process. 

For purposes of application, a stochastic model must be specified 

in terms of a set of parameters, which specify in turn the probability 

law of the stochastic process; in this form the model is sometimes 

referred to as a generating process. The values of the parameters will 
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be unknown, and statistical estimates of these parameters must be 

abstracted from the observed realization of the process. 

Stochastic modelling may be undertaken solely with the purpose of 

providing insight into the structure of hydrological processes. 

However, combined with simulation techniques on digital computers, the 

stochastic modelling of streamflow has realized its potential more 

fully, and has emerged as a powerful tool for use in water resource 

system planning. Today, stochastic simulatioh. techniques form an 

integral part of the methodology of water resource system design 

because they afford the planner a means of making realistic projections 

of future flows within the system and of assessing the risks involved 

in failing to meet the demands to be placed on the system. In order 

to give the technique of synthesising likely future flow sequences a 

proper identity, the proponents of this approach have coined the 

equivalent titles of operational and synthetic hydrology. 

Synthetic hydrology helps to overcome the inadequacies and uncertainties 

associated with the use of historic streamflow sequences only in the 

design of water resource systems. However, because the history of 

flows for a particular stream provides the only available information 

on the future behaviour of the stream, any projections of future 

flows must essentially be based on the historic sequence. Synthetic 

hydrology satisfies this criterion; it is important to note, however, 

that while very many synthetic flows may be generated, new information 

is not created. Synthetic hydrology is merely a sophisticated technique 

for 2444 utilising the information contained in historic records. 

The assumptions and the problems associated with the generation of 

synthetic sequences have come to be more fully understood within the 

last few years and there have been a number of further innovations in 

the field. 
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1.2 Synthetic Hydrology  

1.2.1 	Assumptions  

The successful application of synthetic hydrology in the design 

of water resource systems inevitably depends on a proper understanding 

by the planner of the underlying assumptions. To generate synthetic 

sequences certain assumptions about the statistical behaviour of the 

generating process of streamflow are necessary. A convenient assumption 

is that annual streamflow is a stationary stochastic process, i.e., the 

process is in a state of statistical equilibrium and its statistical 

characteristics are independent of absolute time. In essence, this 

assumption suggests that the variability of a historic record reflects 

the variability to be expected in a future flow sequence. Practically 

all the statistical literature dealing with stochastic processes 

pertains to stationary stochastic processes and a theory for non- 

stationary processes hardly exists. However, observed streamflow may 

not represent natural streamflow due to some artificial influences 

acting on the streamflow regime, causing the statistical characteristics 

of the flows to change with time. Such influences may however be 

difficult to quantify and there may, be no apparent reason for transient 

low frequency effects. Provided there are stationary stochastic 

processes which can adequately characterize observed annual streamflow 

behaviour, there seems to be no valid reason for invoking non-stationarity, 

in the presence of which nothing useful can be said about the future 

behaviour of the process. If monthly or daily streamflows are considered, 

a quantifiable source of non-stationarity arises, which can be coped with 

through considering that monthly flows, or daily flows within a month 

constitute a stationary stochastic process. 

Given the generating mechanism of streamflow, an ensemble of 



future flow sequences within a water resource system could be generated. 

Each synthetic sequence within the ensemble would, according to 

probability theory, have an equal chance of being realized over the 

design life of the system. However, the generating process of 

streamflow, is, unfortunately, unknown. The available historic sequence 

represents only one realization from the ensemble of flow sequences 

necessary to characterize a stochastic process. In this situation, 

the generating process must be approximated using information conveyed 

by a historic sequence. This approach invokes the assumption of 

ergodicity, which allows averages over the ensemble, which is not 

available, to be replaced by time averages over the historic sequence. 

The ensemble of future flow sequences, each spanning the economic life 

of the water resource system, may then be generated, and used to aid 

decision making in the planning of water resource systems. 

1.2.2 Model Choice  

As already noted, the generating process of streamflow is unknown, 

and a model must be chosen to approximate the underlying generating 

mechanism. In this situation, the planner must use all the quantifiable 

characteristics of a historic sequence to guide his choice. The 

generating process of streamflow may be specified by a set of population 

parameters [a] = (a1, a2
, 
..., ad), the values of which are unknown. 

Estimates of a. V i may be obtained from historic sequences. However, 

all the salient properties of historic sequences may not be captured 

by the set [a]. The system design will, in general, be insensitive to 

certain members of the set [a] which may be reduced accordingly. A 

generating process is now required which will generate synthetic 

sequences resembling the historic sequences in terms of the set [a]. 

At this stage a model may not be available with the required capabilities 

and a compromise may have to be adopted. The net result is that, until 
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recently, the designer has probably adopted a simple, widely used and 

will documented generating process and hoped that he has produced 

realistic design responses. The lag-one Markov process has filled 

precisely such a role in synthetic hydrology. For this process, the 

set [a] usually comprises means, variances, skewnesses and lag-one 

serial correlation coefficients of individual historic sequences and 

lag-zero cross-correlations between sequences. However, deficiencies 

in the Markovian generating process have recently called its widespread 

use into question; in this context, members of the set [a] pertaining 

to persistence warrant special discussion. 

Persistence is the tendency for high flows to be followed by high 

flows and low flows to be followed by low flows, and is present to a 

greater or lesser extent in most hydrological time series. The degree 

of observed persistence will obviously depend on the time interval of 

the observations. However, persistence is measured by. the autocorrelation 

coefficient, pk  which is a measure of the degree of linear dependence 

existing between observations separated by k time units. In the past, 

synthetic hydrology has relied almost entirely on pl, the first 

autocorrelation coefficient, to measure persistence in hydrologic 

sequences. Since persistence undoubtedly plays a major role in 

determining the sizes of storage reservoirs within a water resource 

system, adequate measures of persistence must be included in the set 

[a]. The lag-one autocorrelation coefficient, however, apparently 

measures only,high frequency behaviour in a time series and consequently 

cannot capture any long term persistence, which, if it exists, can be 

the critical factor in determining a reservoir design. The lag-one 

Markov process is not the designer's panacea in this situation; for 

this model, the only measure of persistence included in the set [a].  
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is the lag-one autocorrelation coefficient, which specifies the 

autocorrelation function of the process completely. Consequently, if 

long-term persistence exists in historic sequences, synthetic sequences 

generated by a lag-one Markov process will not reproduce such effects, 

and may well lead to underdesign of reservoirs, especially if high 

levels of development are being considered. (Wallis and Matalas, 1972). 

With the increasing demands on water resources throughout the world, high 

levels of development are to be expected, and consequently the correct 

modelling of long-term persistence constitutes an important issue. 

The most important innovation in synthetic hydrology in recent 

years has been the introduction of a new model, called fractional Gaussian 

noise (fGn)(Mandelbrot and Wallis, 1968, 1969a,b,c). Approximations to 

fGn enable long-term effects to be reproduced in synthetic sequences. 

With these approximations, an extra parameter, h, the Hurst coefficient 

is added to the set [a], where 0.5 < h < 1. h is a direct measure of 

long-term persistence and traces its origin in hydrology to the studies 

of Hurst (1951, 1956). Hurst's extensive studies, based on some 800 

time series pertaining to streamflow, rainfall, tree rings, mud varves 

and temperature yielded an average estimate of 0.73 for h, which suggests 

that designers must consider the matter of persistence and alternatives 

to simple Markovian processes for which h = 0.5. However, the simpler 

of the original approximations to fGn proposed by Mandelbrot and Wallis 

(1969a) called Type 2, possessed some deficiencies, resulting in 

undesirable low and high frequency properties. However, adequate 

approximations, called filtered fGn's have now been successfully 

developed for generating synthetic sequences by Matalas and Wallis (1971b). 

However, there have been deterrents associated with using fGn. As 

a generating process, it is more complicated' than the. lag-one Markov 
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process and demands a considerable investment in computer time. A fast 

fGn generator has been proposed (Mandelbrot, 1971a) but its adaptation 

for synthetic hydrology has not as yet been attempted. It is perhaps 

pertinent to pose the question, is the mathematical exactness of fGn, 

in preserving values of h explicitly, warranted? Perhaps simple 

approximations, computationally easier and incorporating alternate 

measures of persistence would yield design results not differing 

significantly from those provided by fGn. Contenders for such a role 

are low order ARIMA processes (Box and Jenkins, 1970), as one in this 

class, the ARIMA (1,0,1) process, has been shown by O'Connell (1971) to 

incorporate a measure of long-term persistence, and to provide an 

adequate model of Hurst's time series. From the standpoint of synthetic 

hydrology, low order ARIMA processes are simple to generate, and may 

be viewed as approximations to fGn. 

More recently, a new model, called the Broken Line (BL) process, 

has been proposed for use in synthetic hydrology, (Rodriguez et al 1 1972 ; 

Mejia et al , 1972 and Garcia et al ,1972 ), and a number of advantages 

are claimed for it over existing generating processes. However, the 

advantages quoted have been disputed (Mandelbrot, 1972). An interesting 

concept has been proposed by Garcia et al (1972) who suggested that 

synthetic sequences should contain observed historic sequences. However, 

this approach is not a unique advantage of BL methodology, and some 

evidence is required that it possesses distinct advantages over conventional 

approaches. 

While the modelling of daily streamflow is not of primary concern 

here, an important innovation, the shot noise model, has recently 

emerged in this field (Weiss, 1973). Foremost among the advantages of 

the shot noise model are (i) the ability to model recession effects 

adequately and (ii) the ability to generate synthetic flows which are 
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always positive without invoking transformations. 

A more detailed review of the various models available for 

generating synthetic flows is delayed until chapter 2, with particular 

emphasis laid on the modelling of long-term persistence. 

1.2.3 Choice of Distribution  

In the preceding section, attention revolved around choosing a 

model which would ensure that synthetic sequences resembled historic 

sequences in terms of the set [a]. Included in this set were the 

first three moments of the distribution function of the historic 

flows. However, this distribution function is again, unknown. This 

does not constitute any problem if the designer is merely interested 

in preserving the first three moments of historic sequences, as 

this may be achieved without invoking the assumption of any particular 

distribution. Consideration of the lag-one Markov process, 

X
t 	

pX
t-1 	

- p
2 
E
t 

where E
t 

is an independently distributed random variable, illustrates 

this point. For this process, relations may be established between the 

first three moments of the Xt  and those of the Et. Thus, given the 

moments of X
t' 

the moments of E
t 

may be found. In generating the 

process, et  may be sampled from any arbitrary distribution, provided 

that distribution has the required first three moments. The choice of 

distribution for the E
t 
will probably be dictated by available computational 

algorithms for generating Et. A similar strategy may also be employed 

with other generating processes if only the first three moments of the 

observed flows are to be preserved. 

However, if,in addition, the designer is interested in a specific 

distribution for the Xt' 
problems may arise. In general, the difficulty 
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arises in specifying the distribution of the et, given that of the 

X
. 

The case where X
t is normal presents no difficulty as the sum of 

normal variates with a given mean and standard deviation is normal, and 

Xt  may be written as an infinite summation of the Et. The case where 

X
t is distributed as log-normal or as gamma requires a different 

approach as the sum of two log-normal variates is not log-normal and the 

sum of two gamma variates is not, generally, gamma. In the case of 

the log-normal, normal variates, Yt  may be generated where Yt. log Xt  

and these may then be transformed to Xt  values. Relations have been 

established which enable the moments of the Y
t to be defined, given 

those of the X
t 
(Aitchison and Brown, 1957). Matalas and Wallis (1974) 

have shown that the Markov process cannot be used to generate flows 

X
t distributed as gamma, if Et 

is distributed as gamma. The 

distribution of E
t 
yielding a gamma distribution for X

t 
is unknown. 

The pertinent-issue here is whether or not the choice of 

distribution is going to influence the system design. Proof that 

streamflow conforms to any particular distribution is extremely 

difficult to establish using statistical tests, given the sample 

sizes usually available in hydrology. Consequently, some research 

is required on the impact of distribution choice for streamflow on 

water resource system design. 

1.2.4 Parameter Estimation  

Hydrology is usually afflicted with a paucity of data and a 

designer usually has to accept large standard errors and biases' 

associated with the statistical estimates he obtains. Estimates of 

A 
members of the set 	 a et [a], denoted by .V i, measured within historic 

sequences of size n suffer from such afflictions, and this situation 

necessitates formal definitions of the statistical resemblance to be 
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maintained between historic and synthetic sequences. Matalas and 

Wallis (1974) have provided definitions along the following lines. 

From a synthetic sequence of length n where n is the length of 

4-4 the historic sequence, estimates of a. V i, denoted by ai  are obtained. 

The synthetic sequence is usually said to resemble the historic sequence 

riu 	A if --o. a.Vi as n-4.00. This type of resemblance will be referred 

to as Type A. Resemblance between historic and synthetic sequences 

of size n will now be considered. An ensemble of N synthetic sequences 

of size n is generated. For each synthetic sequence of length n, 

parameterestimatesT.Viareobtained.TheNvaluesofW.Vi are 
1 

averaged over the ensemble for each value of i, yielding average values, 

a*. If c! -4-a. V i as N--.co, then each synthetic sequence of length 

n is said to resemble the historic sequence. This latter resemblance, 

referred to as Type B, would appear to be what the designer requires, 

although the difference between these two definitions of statistical 

resemblance has generally been unappreciated by hydrologists. Nevertheless, 

estimator properties and loss functions may determine which type of 

resemblance is the best to maintain. 

Ingeneratingsyntheticsequences,a 
A 
.,a parameter estimate 

obtained from the historic sequence of length n, assumes the role of 

a population value, and if Ai  is an unbiased estimate of ai, then the 

two definitions of statistical resemblance are equivalent. However, 

biased statistical estimates have been encountered in synthetic hydrology 

(Wallis and Matalas, 1971). In the presence of persistence, estimates 

of the variance and the lag-one autocorrelation in small samples will 

be biased downwards, regardless of what generating mechanism is 

postulated. In these cases resemblance of Type A is obtained but not 

ofTyperiforwhichcasea . V i. Pi 
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Unfortunately, a further source of bias, the magnitude of which 

will be unknown, must be tolerated in adopting synthetic hydrology for 

system design. The estimates of the parameters ai  V i from a historic 

sequence are quite unlikely to be equal to their respective population 

values. Corresponding parameter estimates derived from synthetic 

sequences will be distributed about k V i rather than about the true 

population values. Thus the system design must of necessity, be 

under or over-designed with respect to the design which would result 

if the population of flows were available. The parameter estimates 

A 
a. V i are said to be operationally biased with respect to the system's 

design; this bias is quite distinct from statistical bias in the parameter .  

estimates themselves. Even though estimates of the members of the 

set [a] may be statistically unbiased, operational bias will still 

arise, due purely to sampling variability in estimates of the set of 

parameters [a]. Operational bias is one of the limitations of 

synthetic hydrology; however, alternative design methods, inevitably 

based on the historic record, must also suffer to a greater or lesser 

extent from sampling variability in the historic record. 

Operational bias may be minimized, but never eliminated. Efficient 

estimation techniques, such as the method of maximum liklihood, 

should be used whenever poL.sible. Regionalization techniques have been 

suggested (Bens'on and Matalas, 1967) as a means of utilizing the spatial 

relations among the members of the set [a] to augment the lengths of 

the historic sequences, and thereby lessen the operational bias whose 

magnitude varies inversely with sequence length. However, a great deal 

more research is needed before the effects of various regionalization 

techniques upon the set [a] are known or fully understood. 

A further nuisance, again deriving its origin in statistical 
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estimation, may be encountered in generating synthetic sequences. The 

mathematical structure of the model may be inconsistent with the 

parameter estimates derived from historic sequences. (Matalas and Wallis, 

1971a ; Slack, 1973 ). However, more appropriate estimation techniques 

may be employed (Crosby and Maddock, 1970 ; Valencia and Schaake, 1972 ) 

to circumvent this problem. 

1.3 Water Resource System Design and Operation  

In the past twenty years there has been a tremendous increase in 

the world's population attended by a consequent threat of a shortage 

of a number of natural resources. Water resources are not an exception, 

and the demand for more accurate evaluation of water resource system 

design has become more acute in the face of increasing demands for 

water products and services: The design problem has in the past fallen 

largely within the domain of engineering hydrology; however, in recent 

years economic theory has come to play a major role in system planning. 

The interacting roles of engineering hydrology and economics can best 

be studied through the methodology of systems analysis or operations 

research, which has now become widely accepted in the planning and 

management of water resources. The increasing use of techniques 

of optimization and simulation, underlying systems analysis, in the 

field of water resources, has been closely linked with the development 

of high speed large memory digital computers. Techniques of 

simulation and optimization, which afforded a study of the interactions 

between engineering hydrology and economics, were perhaps first applied 

on a large scale by the Harvard Water Program (Maas et al., 1962). 

The general simulation procedure proposed by the Harvard group 

consisted.  essentially of the following steps: 



1. Define the probability distribution and temporal and spatial 

interdependency assumptions. Essentially this step represents 

the specification of a generating process in time and space. 

2. Abstract statistical estimates of the parameters of the generating 

process from historic sequences of natural streamflow. This 

step involves the approximation of the generating process. 

3. Use the approximated generating process in conjunction with a 

randomization routine to produce several equally likely sequences 

of synthetic streamflows of the required length. 

The alternative assumptions which can be made about interdependency 

assumptions and probability distributions have been discussed in 

sections (1.2.2) and 0.2.3) respectively. The length of each synthetic 

streamflow sequence depends on the operational horizon, and will 

generally be of the order of 50 - 100 years. 

An excellent review of the conjoint use of simulation and 

optimization techniques in water resource system planning and management 

has been given by Roefs (1968), who characterizes the planning process 

as the following sequence of decisions which the planner must take: 

1. the specific project to be built 

2. the time at which the project should be built 

3. the size tq which the project should be built 

4. the target output which should be set 

5. the operation rules for the project 

6. the "real-time" operational control decisions 

The first three decisions may be characterized as planning 

decisions. The fourth decision may be regarded as a risk allocation 

decision, while the fifth decision is the operation plan. The sixth 

decision may be viewed as a "real-time" management decision, which is 



the adjustment of decisions within a finer time scale to fit the 

operation rules. (Roefs, 1968). However, the planning process is 

complicated by the fact that the planning decisions are interdependent, 

and are also dependent on the fourth and fifth decisions. In other 

words the project size cannot be decided without considering the 

definition of an optimal target for that project and the definition 

of an optimal set of operating rules for that project and target. 

In the situation of an existing project with existing targets, 

the problem reduces to the manageable task of finding operating rules. 

A straight simulation approach may be adopted, or simulation may be 

combined with a deterministic optimization technique. The former 

approach is described, in block diagram form in figure (1.1) and may be 

summarised as follows (Roefs, 1968): 

1. simulate several sequences of streamflows 

2. define a set of operational decisions 

3. test the defined decision set against each of the simulated sequences 

4. repeat steps 2 and 3 several times 

5. compare the benefits and choose the best decision set of those run. 

However, if the project is large, the number of defineable 

decision sets may be such that the simulation scheme will not reach 

optimality within any reasonable time. 

Incorporation of a deterministic optimization routine into the 

simulation scheme results in a more attractive approach for defining 

operating rules which is given in block diagram form in figure (1.2) 

as the following sequence of steps (Roefs, 1968): 

1. simulate a sequence of streamflows 

2. find the optimal operation policy (set of releases)for that sequence 

3. save the results 
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Figure (1.1) (after Roefs, 1968) 
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Figure(1.2) (after Roefs, 1968) 
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4. repeat steps 1,2_and 3 several times 

5. perform a regression analysis in which release is the dependent 

variable and storage and inflow are the independent variables 

Suitable contenders for the role of optimization routine are 

linear and dynamic programming. It is worthwhile noting that given 

a streamflow sequence the problem of determining optimal opbrating 

rules using linear or dynamic programming is a deterministic one; the 

stochastic nature of streamflow is recognised through simulating 

several equally likely sequences. 

In the design situation where a water resource system does not 

already exist, the overall optimal design and operation of the system 

is sought. In general, the problem will be too formidable to permit 

a solution, although simulation affords a promising course of action 

which may be viable in certain cases. If, for example, in the case of 

a single reservoir system, the reservoir site and timing of construction 

happened to be known, then the reservoir size and target output could 

be defined through an iterative process suggested by Roefs (1968), 

which is given in block diagram form in figure (1.3) as the following 

series of steps: 

1. assume a reservoir size; 

2. assume a target output. 

3. For this reservoir size and target yield: 

a. simulate a streamflow sequence; 

b. find the best operation plan for that streamflow set , 

c. repeat steps a and b several times; 

d. use a regression analysis to determine the optimum operation plan 

4. estimate benefits for the assumed target output and size 

5. repeat steps 2 - 4 until the optimal target output for a given 
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Figure(1.3) (after Roefs, 1968) 
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size has been found; 

6. estimate benefits for the reservoir at this size 

7. repeat steps 1 - 6 until the optimal reservoir size is found. 

Essentially, the previously defined optimization-simulation technique 

for defining operating rules is embedded within the overall iterative 

process. 

In a more complex design situation, the number of alternative 

designs which can be defined will generally be enormous, and the 

design problem and problem of finding operating rules have generally 

been tackled separately. Nevertheless, in investigating alternative 

designs, the straight simulation approach has been widely used, 

mainly because the number of feasible designs can be reduced considerably 

through the skill and experience of the planner. However, it will 

generally be impossible to prove formally that the design is optimal. 

All the foregoing simulating schemes require a set of streamflow 

sequences, each having the same length as the operational horizon. 

The size of the set will depend on the level of statistical confidence 

required in the results, and on the inherent variability of the problem, 

which in turn is a function of the streamflow regime, the level of 

development and the shape of benefit or penalty functions. Large 

projects in arid regions with irregular benefit functions would be 

expected to exhibit a high inherent variability. 

A further technique for'finding operating rules is that of 

stochastic optimization, which does not require simulation. The 

stochastic nature of streamflow is taken account of through probability 

and interdependency matrices which are incorporated into a single 

step optimization algorithm. However, the scope of this approach is 

limited on the grounds of computational feasibility, even for a 
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single reservoir case; to a much lesser extent, the scope of dynamic 

programming is also limited on similar grounds. 

Recent advances in water resource system planning suggest that 

synthetic hydrology will continue to play an important role. Multi-

regional planning models are being formulated which utilize mixed 

integer programming for selecting and scheduling for construction 

a minimum cost configuration of water resources projects in Puerto 

Rico. (Moody, 1973). Uncertainties enter into the model from a 

number of sources, one of which is the stochastic nature of streamflow, 

and which may be handled through synthetic hydrology. Synthetic 

streamflow sequences are also being used in the design of water resource 

systems for England and Wales (Sexton and Jamieson, 1973). 

1.4 Decision Theory  

In the preceding sections, the main advantages and limitations 

of synthetic hydrology have been discussed. Some of the limitations 

arise from uncertainties resulting from lack of information, particularly 

with respect to model choice and distribution choice. Decision 

theory may help in the future to provide solutions to the designer's 

dilemma in these situations. 

Consider the issue of distribution choice. Sufficient information 

may not be contained in the historic sequence to distinguish between 

proposed alternative distributions. Fiering and Jackson (1971) 

advocate the following use of economic considerations and decision 

theory as a solution to this dilemma. Suppose the planner has narrowed 

the distributions under consideration to two. Designs using synthetic 

streamflows based on each distribution are then evolved. An optimal 

design corresponding to each distribution is identified via some 

economic objective function. The next step is to evaluate the consequences, 

in terms of economic loss, of accepting the design corresponding to 
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the first distribution, if the second were the true distribution. 

Conversely, the economic loss involved in assuming the second distribution 

when the first was, in fact, the true one must be evaluated. The optimal 

design will suggest the appropriate distribution for the flows. A similar 

strategy may be applied to the problem of model choice, and an attempt 

has been made to implement such a strategy by O'Connell and Wallis (1973). 

Indeed decision theory might also be applied to isolate the members of the 

set [ct:1 to which the design is insensitive. For example, what is the 

economic loss associated with the non-preservation of kurtosis in generated 

flows when a design has been evolved using flows preserving kurtosis? 

1.5. Summary 

Within the past decade, synthetic hydrology has become more sophisticated 

as a design procedure. New models have been introduced which enable the 

preservation of a broader spectrum of characteristics of historic 

sequences. In the future, the interaction of decision theory and 

synthetic hydrology may result in the emergence of a more powerful 

design methodology. 
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Chapter 2 

THE DEVELOPMENT OF SYNTHETIC HYDROLOGY 

Since the ploneering work of Thomas and Fiering (1962), there 

has been an explosive growth in the volume of literature pertaining 

to the use of simulation techniques within the field of stochastic 

hydrology. A considerable portion of the literature relates to the 

adoption, for simulating synthetic streamflows, of models which already 

existed within the literature on stochastic processes. Considerable 

emphasis has been laid on the ability of the models to preserve important 

properties of the historic flows within sequences of synthetic flows. 

On the other hand, stochastic hydrology has yielded some new models 

specifically developed because existing documented models were inadequate. 

Indeed, hydrologists all too frequently assume that models applicable 

within other fields are readily applicable to hydrological processes 

without giving due consideration to the physical context of the 

observed data. 

In this review, only literature pertaining to the development and 

application of stochastic models primarily for the simulation of 

synthetic streamflow sequences will be considered. Some historical pre-

computer attempts at generating synthetic streamflows are described 

in section (2.1) while section (2.2) traces early developments in 

generating synthetic flows on a digital computer. The range of 

cumulative departures, Hurst's law, the Hurst phenomenon and various 

theoretical studies of the range are discussed in section (2.3), while 

section (2.4) describes early attempts at studying the behaviour of the 

range through simulation. In section (2.5) fractional Gaussian noise 

is reviewed, under the headings of (1) theoretical properties (2) 

approximations proposed and simulation experiments carried out by 
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Mandelbrot and Wallis (1969a,b,c,e) and (3) estimation of h, the Hurst 

coefficient. Further approximations to fractional Gaussian noise, 

namely, fast fractional Gaussian noise, the ARIMA (1,0,1) process and 

the Broken Line process are discussed in section (2.6) while some further 

recent developments in synthetic hydrology are outlined in section (2.7). 

2.1 Historical Developments  

The problem of determining the reservoir capacity necessary to 

meet a given demand was studied almost a hundred years ago by Rippl 

(1883), and this same problem has been largely responsible for the 

advent and subsequent development of techniques for generating 

synthetic streamflows. Rippl's approach relies entirely on a mass 

curve analysis of the historic record, and while the approach may 

provide useful information on the behaviour of low yield reservoirs, 

the method is open to serious criticism when over-year storage is 

involved. Fiering (1967) cites some of the deficiencies of the Rippl 

method as follows: 

(1) the analysis is based solely on the historical record even 

though the same flow sequence is unlikely to recur in the 

future 

(2) the mass diagram provides no information on the risk of water 

shortages in periods of low flow; and 

(3) the length of the historical record and the'economic life of 

the structure under design are likely to differ; since the 

storage capacity indicated by a Rippl diagram tends to increase 

with length of record, the estimated capacity may not be 

compatible with the active life of the scheme. 

The deficiencies in Rippl's approach were recognised from an early 
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stage. Hazen (1914) attempted to increase the lengths of historic 

records by compiling a 300-year synthetic record through combining 

the data from 14 streams; each record of annual flows was standardized 

by dividing each value by the mean annual flow of the particular 

river; the records were then combined in order of increasing coefficient 

of variation. The synthetic record was then used in compiling design 

charts giving reservoir capacities for specific coefficients of 

variation of streamflow and projected level of development which 

attempted to overcome deficiencies (1) and (2) in the mass curve 

procedure. However, the synthetic record still only represented a 

limited range of conditions, and much more important, ignored and 

destroyed the autocorrelation structure of the flows. 

Sudler (1927), again grappling with the storage problem, wrote 

50 annual runoff values on to cards, shuffled and dealt the cards 

20 times to give a 1000 year record. While the sequence of occurrence 

of the flows is altered, the autocorrelation structure was again 

destroyed, and all 20 sequences had the same moments. 

Barnes (1954) was the first to use proper random sampling in 

simulating artificial streamflow sequences. He used a table of 

random numbers to sample from a normal distribution with the same 

mean and variance as the historical data. However, the approach again 

ignored the autocorrelation structure of the flows. 

2.2 Early Developments in Synthetic Hydrology  

Thomas and Fiering (1962) were apparently the first to combine the 

use of an electronic digital computer, the sampling of random numbers 

on the computer, and a model which took account of the dependence and 

seasonality in streamflow, in order to generate artificial sequences 
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of streamflows, called synthetic streamflows, for use in the design of 

water resource systems. The model, based on monthly streamflow, takes 

account of seasonality in the monthly means, standard deviations and 

lag-one autocorrelation coefficients through treating the flows for 

each month as a separate population. Thus, three parameters are 

required to specify the model for each month, which may be written as 

A = 	+ b.(q. - p..) + 	(1 - p.) 2  c .  
j+ 	j 1 j 	aj+1 	J 1+1 cli+1 	R * 1 

where qi+1  and qi  are the flows during the (i+1) and (i44)th  month, 

respectively; 1.1
J 
 and p

j+1 
are the mean monthly flows for month j and 

j+1 where j = 1,2,...,12, The term b.is a regression coefficient derived 
J 

4 
from regressing the flows of month (j+1) on those of month j, and e. 1+ 	u rf 

is the error term in the regression. If the flows are normal or have 

been transformed to assure normality, then ci+1 
is a standard normal 

deviate with zero mean and unit variance. Alternatively, the model may 

be written as 

q1. 	- g . 	- g 

	

+1 	3+1 	 2 
P 	 + (1 - pj) E.

1 
 n 

6 zi +1 	
+1 

or in terms of standardized deviates 

2 A 
z. 	p.z. 	+ (1 - p.)2  e. 

	

1+1 	j 	j 	1+1 

(2.2) 

(2.3) 

which emphasises the underlying Markovian nature of the model. 

In applying the models, estimates of 11j, 15j, and pi , j = 1,2,...,12, 

are derived from the historic flows, and are then used in generating 

synthetic flows together withei+ivalues which are sampled from a normal 

distribution with zero mean and unit variance, thus ensuring the stochastic 

nature of the flows. 

Thomas and Fiering (1962) also proposed a similar form to equation 

(2.1) for modelling the spatial correlations existing between concurrent 

(2.1) 



53 

streamflow records; this model, together with other multisite generating 

mechanisms, is discussed in chapter 4. 

In an important contribution, Matalas (1967) gave the methodology 

for generating synthetic streamflow a sound mathematical basis, and 

discussed some important issues such as operational bias and the importance 

of synthetic flows conforming to a particular distribution. The 

2 

lag- 

one Markov process, specified with mean ii3e  -variance o' x  and lag-one 

autocorrelation px  as 

- 2 I- 
Px(Xt-1 	I1X) 	( 1 	PX ; (SX e t (2.1+ ) 

was considered as the basic generating process for synthetic flows. 

Matalas illustrated how resemblance between historic and synthetic 

flows in terms of skewness could be achieved in a number of ways, 

illustrating the approach in all cases with the lag-one Markov 

process. One approach consisted of replacing the random component 

e
t 

in equation (2.4) with a random component 11
t 

defined as 

.1t 

	

e 	2 3 
2 	_ 	t - 	2 

k 

	

.1  6 	36 
(2.5) 

where the skewness of 1
t' 

denoted by y is related to the skewness 

of the process X
t 
 , Y 

x
, by 

Y x 

3 
(1 - p:)2  

(1 - p3 
	ii (2.6) 

Assuming that et  is a normal independent process with zero mean and 

unit variance, denoted by NIP(0,1), then Xt  will be approximately 

distributed as gamma with zero mean, unit variance and skewness Yx. 
A 

From an estimate of yx , denoted as y x, an estimate of yl  is defined via 

equation (2.6) whence the component It  may be generated using equation (2.5). 
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Equation (2.4) with Et  replaced by lt  then yields flows which are 

approximately distributed as gamma, Matalas (1967) also proposed a 

technique for generating flows which are exactly distributed as gamma, 

but only for particular values of Yx. 

Synthetic flows which conform to a three-parameter log-normal 

A 	A 
distribution, and which resemble historic flows in terms of p. , 6 , 

X X 
A 

Y
x 

and 	may be generated as follows (Matalas, 1967). If a is 

assumed to be the lower bound of a variate X
t' 

where (X
t 

- a) is log-

normally ditributed, then Yt  = ln(Xt  - a), where In denotes loge, is 

normally distributed. 

related to the lower bound 

= 

= 

Yx 	
= 

The mean 	, variance 

a and to the 

LC,/2 	g 
a+ e- 

[2(62
Y 

	µy)] 
e 

2 	2 

e
3c5
Y - 3: y  + 2 

62 and skewness 	are 

mean II 	and variance 
62 

of Y
t 

by 

(2.7) 

[0.2 	21  

e 	(2.8) 

(2.9) 2 
6 	3/2 

(e Y  - 	1) 

(Aitcheson and Brown, 1957). If the flows Y are generated by a lag-one 

Markov process with mean µy, variance 
62 

and lag-one autocorrelation p
y
, 

then px  is given as 

2 
d 
Y Y - 1  

px 2 

e6Y - 1 

(2.10) 

which may easily be inverted to yield p as a function of c and px; 

however, the flows in-X space will derive from a non-linear process, 

and thus will not constitute a lag-one Markov process. 

The procedure for generating synthetic flows such that they 

will resemble historic flows in terms of a x  , x  1) and 0x 
is as follows. 
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A 	A. 

Estimates of p
Y' 

5YI p and a are derived from the estimates II , x
, 

x  

y
A 

x 
and p 

x 
through solving equations (2.7 - 2.10). Using a lag-one 

A A A 
Markov process formulated in terms of p

Y' Y 
and  p

Y' 
 synthetic flows 

are generated in I-space, whence exponentiation and the addition of the 

constant a yields the flows Xt. 

An alternative approach would be to transform the flows into log-

space first before estimating gY' Y and p in the usual fashion from 

a sequence of Y-values. However, synthetic flows will then resemble 
A A 	A 

historic flows in terms of those estimates 11
Y
'K'
' Y  
d* and p* but not in. 

A 
x 

A 	A 
terms of 	, 6

x 
 and p

x
, which would appear to be the required resemblance 

from a physical standpoint. However, the choice of an estimation procedure 

must ultimately depend on the loss which may result from basing a decision 

on the incorrect value of a parameter rather than on its true value. If 

the question of which estimation procedure should be used cannot be 

resolved analytically i.e. the loss function cannot be formulated 

directly in terms of that parameter, then in a design situation, investi-

gation of either approach through simulation may be the only answer. 

Matalas (1967) discussed the issue of distribution choice for the 

flows, and suggested that the impact of alternative distributions . 

on the design situation be investigated in a similar fashion. In this 

context, a decision theoretic framework for assisting in resolving this 

issue has been proposed by Fiering and Jackson (1971) and has been 

discussed in section (1.4). 

Matalas (1967) also discussed problems relating to parameter 

estimation, and noted that the magnitude of the operational bias 

discussed in section (1.2.4) depends on the standard error of estimate 

of the parameter. Regionalization (Benson and Matalas, 1967) affords a 

means of reducing the standard error of a particular parameter through 

providing a regionalized estimate with smaller variance. However, the 
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relationships existing between streamfiow parameters and physiographic 

and meteorological parameters of a river basin have neither been 

adequately quantified or fully understood to date, so that the worth 

of this suggested method of reducing operational bias is largely unknown. 

Maximum likelihood techniques have also been suggested because they 

P 
provide large sample estimates which are asymptotically unbiased and have 

smaller variance than all other estimates. However, it does not 

necessarily follow that these properties hold within small samples, 

and indeed little is known of the small sample properties of maximum 

likelihood estimates. Further, the derivation of maximum likelihood 

estimates requires an assumption about the underlying probability 

distribution of the flows, and different assumptions will provide 

different numerical values for the parameters. Maximum likelihood 

estimates will generally be more difficult to derive than moment estimates, 

as a system of non-linear equations will frequently have to be solved 

numerically. 

Matalas (1967) also presented a multivariate lag-one Markov 

process for generating synthetic flows resembling historic'flows in 

terms of spatial as well as temporal correlations, but the details of 

this and other multivariate approaches will be presented in chapter 4. 

While low order moments provide a convenient means of structuring 

a generating process, the process may not perform satisfactorily 

from an operational viewpoint, i.e. long synthetic sequences may not on • 

average reflect more extreme events than short historical sequences. 

In the context of storage design, events might be the duration and 

intensity of drought periods, quantities for which an explicit 

resemblance between historic and synthetic sequences is generally 

very difficult to define. However, one such quantity which is closely 

related to storage design and which has been studied within the framework 
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of mathematical statistics is the range of cumulative departures from 

the sample mean, first introduced into hydrology by Hurst (1951, 1956). 

Some of the proponents of synthetic streamflow generation (Matalas and 

Huzzen, 1967; Fiering, 1967) attempted to examine the operational 

performance of the lag-one Markov process through comparing the behaviour 

of the range of cumulative departures for historic and synthetic 

streamflow sequences. A definition of the range of cumulative 

departures now follows, together with a brief review of the work done 

on the range up to the time when investigators sought to reconcile 

the behaviour of the range for observed historical sequences with the 

expected behaviour of the range for the then current models of streamflow. 

2.3 The Range of Cumulative Departures  

In order to help in the physical interpretation of the range, the 

following formulation is adopted. Let X1 , X2,..., Xn  denote a sequence 

of annual inflows into a reservoir over n years. Let X denote the 

sample mean and define 

n 
E X. 
i=1 1  

where D
n 
represents the total amount of water flowing into the reservoir 

in the n years. To maintain a constant outflow equal to the average 

rate of removal ,k E X. is the amount removed over the first k years. 
'k 
n. 
1=1 

Hence 

D* 	E .X. - 	E X. 
i=1 	n i=1  

Dk  - kDn/n 

represents the excess or deficiency relative to the amount removed up 

to the k
th 

year. Defining 

inflow would require the removal of 
1 	

X. each year. With such a ni=1  
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P
n 	

max D* 	1 < k < n 

and 
	

Qr, 
	min D* 	1 < k < n 

as the largest excess and greatest deficiency respectively over the 

steady outflow during the n years, the quantity 

R
n 	

P
n 
- Q

n 

is known as the range of cumulative departures from the sample mean. 

The "ideal" reservoir represented by this concept becomes extremely large 

over a long time span and accordingly is never economically justifiable. 

However, the variation of R
n 
with n provides an estimate of the yield 

that might be maintained from any given capacity of reservoir. Rn  

is sometimes referred to as the adjusted range, and, for notational 

simplicity, will be referred to as R. 

2.3.1 Hurst's Law and the Hurst Phenomenon 

Interest in the statistic R was stimulated by Hurst's studies 

(1951, 1956) of long-term storage requirements on the River Nile. For 

approximately 900 annual time series comprising streamflow and 

precipitation records, stream and lake levels, tree rings, mud varves, 

atmospheric pressure and sunspots, Hurst found R to vary with n as 

n 
	

(2.11) 

where S denotes the sample standard deviation of the time series of 

length n, and h is a constant. The quantity R/S will be referred to as 

the rescaled range so as to distinguish it from the adjusted range, R. 

The coefficient h was estimated through the following relationship 

R  
S 
.(7  (2.12) 

where K denotes the resulting estimate of the populatiofi coefficient, h. 
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Thus K was defined for each time series as 

K 
	Log R - Log S 	 (2.13) 

Log n - Log 2 

and ranged from 0.46 to 0.96 with a mean of 0.729 and a standard 

deviation of 0.092 over all phenomena. The records employed by Hurst 

varied in length from 30 to 2000 years. 

Hurst (1951) employed some simple coin tossing experiments to 

arrive at a theoretical value for the expected or mean value of R 

for a normal independent process, which he gave as 

E[R] n  10.5 
6 

L  2 -I  
(2.14) 

or 
E[R]  
6 

1.25 

Independently, Feller (1951), using the theory of Brownian motion derived 

equation (2.14) which is an asymptotic result, but without invoking 

the assumption of normality for the underlying process. The form of 

equation (2.12) which was used by Hurst for estimating h, was apparently 

suggested by equation (2.14) wherein the term (n/2) appears. 

The disagreement between the average value of K, 0.73, derived by 

Hurst and the value of the exponent in equation (2.14), 0.5, puzzled 

many statisticians and engineers alike at the time, and a number of 

suggestions were put forward as to the origin of the discrepancy. 

Hurst (1951) himself conjectured that non-randomness as evidenced by the 

tendency in natural time series for high values to follow high values 

and low values to follow low values might be a possible explanation. 

Langbein (1956), in a discussion on Hurst's (1956) paper, reinforced 

Hurst's work with the observation that the variance of the sample mean 

for Hurst s data tended to exhibit greater variation than if the data 

were random, and could be approximated by the relationship 

(2.15) 

n
0.28 
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where S- denotes the standard deviation of subsample means and S is 
x. 

the standard deviation of the sample. As the mean value of the exponent 

K found by Hurst was approximately 0.72, equation (2.15) suggested that 

	

S- 	
n
h - 1 	

(2.16) 
S 

Langbein also deduced that skewness was an unlikely explanation, as was 

serial correlation of a Markovian nature. He suggested that the 

persistence in Hurst's data was of a more complex nature. 

Feller (1951) suggested that the discrepancy might be accounted 

for by autocorrelation of a Markovian nature in the time series, but 

Barnard (1956) discredited this suggestion, pointing out that no simple 

set of correlations could account for Hurst's result. Skewness was at 

that time considered fleetingly as a possible reason, but Feller's 

result and the fact that a considerable number of Hurst's time series 

followed the Gaussian distribution tended to rule out this possibility. 

Hence, no acceptable explanation was forthcoming. 

Subsequent to the theoretical work of Feller (1951), a number of 

further theoretical results were derived for the adjusted range R 

and related statistics. Anis and Lloyd (1953) derived some results 

for finite n, but defined the range as follows. For the sequence 

X1, X2, ..., Xn, the sequence of partial sums D1' D2' 	
Dn was 

defined as 

	

D
1 
	X1  

	

.D
2 	

X
1 
+ X

2 

	

D
n 	

X
1 
+ X

2 
+ ... X

n 

From the partial sums the quantities 

	

Mn 	
max (0,1)1 , D2, 	Dn) 

	

mn 
	min (0,D1 , P2 , ..., Bn) 
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are defined whence a definition of the range, denoted as R emerges as 

p 	
M
n 

- m
n 
	 (2.17) 

R is sometimes referred to as the population range, as its definition 

implies knowledge of the population mean of the process. 

Feller (1951) had observed that the sampling properties of R were 

inferior to those of R, and in any case, R rather than R was the 

definition used by Hurst. However, Anis and Lloyd showed that the mean 

value ofR for finite n and independent variates with a common distribution 

was given as 

n-1 ,r,7  
p 
] 	 2  
n' 	

r - 
r=1 

(2.18) 

Anis (1955, 1956) derived the higher moments of Mn  for small n. Solari 

and Anis (1957) reverted again to working with R and derived the mean 

and variance of R for finite n for the case where the underlying 

process is normal. For the case of a common mean and unit variance 

for the underlying process and n > 2, they showed that 

n-1   
E[R]

n 	
= 	P-  E s-2  (n-s)-2  

2-fc 
s=1 	. 

' 	1 nlik-- 
which has the asymptotic value (7-)

2 
 derived by Hurst (1951) and Feller 

(1951). Feller's comment on the greater sampling stability of R over 

that of Rp  was also borne out by Solari and Anis' result for the variance 

of P1  when compared with the results derived by Anis (1955). 

However, while the work of Anis and Lloyd (1953), Anis (1955, 1956) 

and Solari and Anis (1957) was of some interest, it could not explain 

the discrepancy between the average value of 0.73 for the exponent K in 

equation (2.12) obtained from the extensive data analysis of Hurst. 

The assumption of h = 0.5 was inherent in all the analyses, and, in any 

(2.19) 
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case, Hurst had worked with the statistic R/S rather than R or R , 

but the importance of this point was not to be realised until much 

later. Nevertheless, the problem still continued to niggle statisticians 

such as Moran (1959) who wrote reinforcing Barnard's (1956) earlier 

contention, 	"the exponent 0.73 could not occur unless the serial 

dependence were of a very peculiar kind because with all the plausible 

models of serial dependence, the series of partial sums is always 

approximated by a Bachelier-Weiner process when the time scale or 

economic horizon is sufficiently large." 

Moran (1964), working again with the quantity Rp, deduced that for 

moderate n, Hurst's result could, after all, be explained by skewness, and 

used highly skewed distributions with very large second moments about 

the mean to buttress his argument. He noted that such distributions 

were unlikely to provide a good fit to Hurst's data, but suggested that 

distributions with large but finite second moments (such as a Cauchy 

distribution with a truncated density) would still provide the required 

behaviour in R . His analysis, however, did not permit any conclusions 

to be drawn about the behaviour of R/S, 

In a lucid summary of the work that had been done up to that time 

on the range, Lloyd (1967) noted that, .... "We are then in one of those 

situations, so salutary for theoreticians in which empirical discoveries 

stubbornly refuse to accord with theory. All of the researches 

described above lead to the conclusion that in the long run E[R1 should 

increase like n0'5, whereas Hurst's extraordinarily well documented 

empirical law shows an increase like n
K where K is about 0.7. We are 

forced to the conclusion that either the theorists interpretation of 

their own work is inadequate or their theories are falsely based: 

possible both conclusions apply." 
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Lloyd coined the term "Hurst phenomenon" to describe the 

discrepancy between Hurst's average value of 0.73 for K and the 

expected value of 0.5 for h deduced from theory. He examined closely 

the behaviour of equation (2.19) for small to moderate n and concluded 

that the asymptotic value of 0.5 was approached too quickly to explain 

Hurst's findings, but conceeded that for an underlying non-normal 

distribution there was a possibility that convergence to 0.5 might be 

extremely slow. This was in accord with Moran's (1964) explanation 

but both Lloyd and Moran had for some strange reason confined all 

considerations to the behaviour of R and R while Hurst had worked only 

with the resealed range R/S. Hence, any explanation based on R or R p 

would have to presume that the behaviour of R/S closely resembled that 

of R and R . 

2.4 Synthetic Hydrology and the Range  

Up to the time of Moran's (1964) contribution, studies of the 

range had been confined to the domains of data analysis and mathematical 

statistics. However, simulation had emerged as a new tool whereby the 

Thirst phenomenon could be investigated more exhaustively. Matalas 

and Huzzen (1967) and Fiering (1967) were the first to investigate 

some properties of the resealed range within the framework of synthetic 

hydrology, which was at that time in the early stages of development. 

Matalas and Huzzen carried out some sampling experiments on the resealed 

range R/S using the lag-one Markov process given in equation (2.4). 

Employing both normal and log-normal distributions for the process, they 

generated sequences of various lengths with lag-one autocorrelation in 

the range. 0 < pi  < 1, and estimated the Hurst coefficient h using the 

estimator proposed by Hurst as given by equation (2.13). The results 

of their simulations for the case of an underlying normal distribution 
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for the process are given in table (2.1). 

----------,Z1.1,  n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

5 .59 .6o .61 .62 .63 .63 .64 .65 .65 .66 
lo .66 .67 .69 .7o .73 .74 .76 .77 .79 .8o 
25 .64 .67 .7o .72 .74 .76 .79 .81 .84 .86 
5o .63 .66 .68 .71 .73 .75 .77 .8o .84 .87 
100 .61 .65 .66 .69 .71 .73 .75 .79 .82 .87 
500 .59 .61 .62 .64 .66 .68 .7o .73 .77 .82 
loon .58 .6o .61 .63 .65 .67 .69 .71 .75 .8o 

Table (2.1): Values of E[K] from 10000 realizations from a 
lag-one Markov Process. (Aftler Matalas and Huzzen, 1967) 

For sample size n in the range 25 < n < 100 and 0.1 < p1  < 0.4, the 

estimated expected value of K,E[K]n  is about 0.7, which the authors noted 

to be roughly compatible with results derived from some annual streamflow 

sequences assembled by Yevjevich (1963). However, the authors indicated 

that their results offered no substantial proof that the lag-one Markov 

process could be used to model annual streamflow. The variation of 

E[K] with n in table (2.1) suggests that the process cannot adequately 

model Hurst's law as given in equation (2.11), as a plot of log (R/S) 

against log (n) would not be linear. It is also evident from the '  

results corresponding to p = 0.0 that Hurst's method of estimating h 

results in a positive bias. 

The authors conducted the same set of experiments reported in 

table (2.1) for cases where the underlying distribution was log-normal 

with skewness coefficient y x  in the range 0.2 < yx  < 2. They observed 

that the effect of skewness on the values of E[K]n  was negligible and 

concluded that skewness offered no explanation of the Hurst phenomenon. 

Fiering (1967) carried out an extensive analysis of the behaviour 

of R/S for single lag and multi-lag autoregressive processes, as part 

of a general approach to reservoir design. Attempts to reconcile 

results derived from these models with the findings of Hurst, and the 
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behaviour of R/S for some U.S. streams proved futile. It was found that 

a 20-lag model was necessary to ensure that Hurst's law held for values 

of n up to about 60. As in the case of the Matalas and Huzzen 

simulations, a relationship giving R/S as an invariant power of n was 

not realized, in contradiction to Hurst's findings. Numerical problems 

prevented an extension of Fiering's approach to models with a higher 

number of lags than 20. 

Yevjevich (1967) performed some simulations involving the population 

range R , and extended Anis and Lloyd's (1953) result, equation (2.18), 

to embrace models exhibiting linear dependence, such as autoregressive 

and moving average schemes. He then verified some theoretical results 

using extensive simulation experiments. However, no attempt was made 

to relate this work to that of Hurst: indeed because of the definition 

of the range employed, this would have been very difficult. 

2.5 Fractional Gaussian Noise  

In a significant contribution to stochastic hydrology, Mandelbrot 

and Wallis (1968, 1969a,b,c,d,e) proposed'a rigourous theory which 

adequately accounted for the Hurst phenomenon, and also proposed 

computer orientated algorithms for generating observations for which 

R/S followed Hurst's law, equation (2.11), with h preselected to lie 

anywhere in the range 0 < h < 1 with the exception - of h = 0.5. 

The explanation of the Hurst phenomenon finds its roots in the 

concept of long-term persistence in the presence of which the interdependence 

between values of a process at points in time far distant from each 

other is small but non-negligible. A stochastic process which possessed 

the intensity of interdependence required to provide a precise model 

for the geophysical records examined by Hurst was first proposed by 

Mandelbrot (1965), and a mathematical foundation was laid by Mandelbrot 
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and Van Ness (1968), and Mandelbrot and Wallis (1969c). Some interesting 

theoretical properties of the process will now be presented. 

2.5.1 Some Theoretical Considerations  

(a) Brownian Motion  

Brownian motion, B(t), sometimes referred to as a Bachelier or Wiener 

process, forms a convenient starting point. The function B(t) is continuous, 

and its most significant property is that for every c > 0 the increments 

B(t+e) - B(t) (defined for t as a multiple of c) are Gaussian and independent 

with zero mean and variance equal to e. Hence, Brownian motion provides 

one framework for the definition of white noise. Brownian motion is also a 

"self-similar" process in that if the time scale is changed in the ration T 

where T> 0, the function [B(t) - B(0)] and T-0.5  [B(tT) - B(0)] are generated 

by the same probabilistic mechanism. (Mandelbrot and Wallis, 1969c). By 

letting t = 1, it may be deduced that the 

st.dev. [B(t+T) - B(t)] = TC).5 	 (2.20) 

for every T. A further consequence of self-similarity is that the population 

range R (T) and adjusted range R(T) of the continuous function B(t) obey the 

following laws asymptotically 

E[R (T)] = al  T0.5 	 (2.21) 
p 

E[R(T)J = b T0.5 	 (2.22) 

where a and bl are   constants. Feller (1951) derived equations (2.21) - (2.22) 

and evaluated the constants a and b. Feller also claimed that the population 

range and adjusted range of the function B(t) would be virtually identical 

to the corresponding respective quantities for the function B(t) sampled at 

discrete time intervals t = 1,2,3,...n ; hence the form of equation (2.14). 

Equations (2.20) - (2.22) are sometimes referred to as "T
0.5  laws", and their 

failure to account for the Hurst phenomenon has previously been noted. 
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(b) Fractional Brownian Motion  

In order to provide a mathematical basis for a suitable model for 

geophysical phenomena, Mandelbrot and Van Ness (1968) introduced fractional 

Brownian motion, the increments of which constitute a stationary Gaussian 

process, referred to as fractional Gaussian noise. Fractional Brownian 

motion (fBm),Bh(t), may be defined from ordinary Brownian motion B(t) 

by forming the integral 

B
h
(t) - Bh

(0) - 	
1 	[.)C3(t 	u)h -0.5 	(-11.11 -0.5 ) 	dB(u) 

f175.73 -03 

t+ 	 dB(u) 
0 

0 <h< 1 

(2.23) 

where dB(u) is an infinitesimal increment of ordinary Brownian motion. 

In order to maintain consistency with the notation of Mandelbrot and 

Van Ness (1968) and Mandelbrot and Wallis (1969c), the symbol H employed 

by those authors is equivalent to the symbol h employed here. An alter-

native definition of fBm is given by 

1 	[ 
.ft2 	h-0.5 

(t
2 
- u) 	dB(u) B

h
(t
2
) - B (t ) 

h 	T4,37 -0,  

(t1  - oh -5dB(u) ] (2.24) 
-co 

which is useful in illustrating that fBm is derived by weighting past 

h-0.5 
values of white noise by (t - u) 	. However, both integrals in 

equation (2.24) are divergent, even though their difference is convergent, 

so that equation (2.24) is mathematically incorrect. However, by putting 

t
2 

t and t1 	
0 and rewriting the first integral, equation (2.23) is 
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obtained, and the first integral on the rhs of equation (2.23) is now 

convergent. 

Fractional Brownian motion is a continuous process with self-similar 

increments such that if the time scale is changed in the ratio T, where 

T > 0, the functions [Bh(t) - Bh(0)] and Th  [B(tT) - Bh(Olare generated 

by the same probabilistic mechanism (Mandelbrot and Wallis, 1969c). 

By letting t = 1 and equating the variances of the two functions it may 

be shown (Appendix 2.1) that 

Var[B
h
(t + T) - Bh(t)] = T2h Vh 
	(2.25) 

0 < h < 1 

where Vh is a constant defined as the variance of unit increments of fBm. 

For h = 0.5, Vh  reduces to unity, Bh(t) becomes ordinary Brownian motion 

and equation (2.20) is obtained. 

A further consequence of self-similarity is that the population range 

R (T) and adjusted range R(T) of the continuous function Bh
(t) obey the 

following laws asymptotically 

E[R (T)] = a
h 
T
h 	

(2.26) 

E[R(T)] 	= b
h 
T
h 
	0 < h < 1 	

(2.27) 

where ah  and bh  are constants. Under the assumption that equation (2.27) 

holds for the discrete case, and that E[R] 	nh implies E[P/S] 	n
h 

asymptotically, then the increments of fBm form the necessary basis for 

modelling Hurst's law. 

(c) Continuous time Fractional Gaussian Noise  

In order to obtain a continuous time representation of the increments 

of fractional Brownian motion, it would appear logical to obtain the 

derivative of Bh
(t) to yield Bh(t) as stationary continuous time fractional 

Gaussian noise. However, the local behaviour of Bh(t) (and B(t)) is so 
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erratic that Bh
(t) does not have a derivative as 

Bh(t 	b) - B 
Lim 	h 	1 = 00  

b 	0 
(2.28) 

and, consequently, Bh(t) can exist only if some smoothing procedure is 

applied beforehand to Bh(t). A.smoothed process Bh(t,b) may be defined 

(Mandelbrot and Van Ness, 1968) as 

t+b 1 
Bh(t,b) =7-f 	Bh(v)dv ° t 

(6 > 0) 	 (2.29) 

whereupon the derivative of Bh(t,b) is derived as 

Bh(t,b) = 1 — h(t+6) - B (0] 
	

(2.30) 

where Bh(t,b) is stationary continuous time fractional Gaussian noise 

which is not differentiable. 

The autocovariance function of Bh(t,b) has been given by Mandelbrot 

and Van Ness (1968) as 

Ch(T'6)  = 	6  
2h-2 [ F.L.r + 112h 	,1 5_1

2h 
+ 11'*1 	112h 

L 6 1. 	 1 

(2.31) 

where c is the lag. For T = 0 the process has a finite variance given 

by 

Ch(0,6) = Vh 6
2h-2 	 (2.32) 

For 0.5 < h < 1, Ch(T1 b) is positive and finite for all T such that 

co 

	

Ch(T b) = 00 
	 (2.33) 

while, for 0 < h < 0.5 

	

h(T'b) = 0 	 (2.34) 

The distinctly different forms of Ch(T,b) for 0 < h < 0.5 and 0.5 < h < 1 

are illustrated in figure (2.1). 



0.5 < h < 1 

Figure (2.1) Sketche of Ch(T,b) 

C
h(T,o) TO, 	 6:0 

ti 

0=0 

0 < h < 0.5 

t 
1  	h1-0-u)h-0-5  - (t-u)h-0.5  ]dB(u) Bh(t ,b) - 

h +0.5 I: 
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If T >> 

Ch(T' 	^-• 	Vh h(2h - 1) IT
12h-2
1 
	 (2.35) 

and Ch(T,b) tends to zero as IT1-4co which means that the process WI(T,0) 

is ergodic. For 0.5 < h < 1, Bi!"(t,b) exhibits strong positive long-run 

dependence, with the intensity of this dependence increasing as h--0 1. 

The function Ch(T,o) approaches zero so slowly as to result in the diver-

gence of the integral of that function. Hence, while the dependence for 

large lags will be small the cumulative effect of this dependence is 

strongly felt in the behaviour of R(T) as shown by equation (2.27), which 

is an asymptotic result. 

In order to express BI'l(t,0) in a form suitable for extrapolation, 

the integral given in equation (2.23) may be re-written for time(t + 0) 

to yield the function [Bh(t+b) - Bh(0)1. By forming the difference 

ph(t+0) - Bh(0)]- ph(t) - Bh(0)] 	[Bh(t+b) - Bh(t)1 

0 

and substituting for EBh
(t+0) - Bh(t)] into equation (2.30, Bh

(t ,b) is 

defined as follows : 

t+b 

(t1-5-u)h-0.5  dB(u) 
	

(2.36) 
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By substituting (s+b) for u, BI:1(t,o) may be written as 

t-b 

WI(t,b) = 	
1 	[(t-s)h-0.5 	5  11B(s+b) 

o h + 0.5 	-co 

ft 
	(t_s)h-0.5 dB(s+b ) 1 	 (2.37) 

1 	 
Kh(t-s,b) dB(s+b) 	(2.38) 

h + 	_ co  

which corresponds to the form given by Mandeibrot and Van Ness (1968). 

The kernel Kh(t-s,b) may be defined as 

Kh(s,b) = 	h + 0.5 11 -1  sh-O.5 	(s < b) 

(2.39) 

h + 0.51.1  [s11-0.5  - (s-b) h-0.51  (s > b ) 

ft 

    

Kh(s,b) Kh(s,b) 

 

   

0 < h < 0.5 

     

Figure (2.2) Sketches of Kh(s,b) 

The kernal Kh(s,b) which is sketched in figure (2.2) assumes distinctly 
oo 

different shapes in the ranges 0 < h < 0.5, where 	J.  K(s,b) ds = 0, 
co 	o 

and 0.5 < h < 1, where 	Jr Kh(s,b) ds = oo . In the case of h = 0.5, 
o  

Kh(s,b) = 0. 
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In an examination of the :system which transforms white noise into 

fractional noise, Clarke (1971) has found the governing differential 

equation to be of the form 

DPy(t) = a(t) 
	

(2.4o) 

where a(t) and y(t) denote the input and output to the system, respectively, 

D denotes the differential operator 	andd p is a fractional power. 

However, some care is required in interpreting equation (2.40) as exemplified 

by Clarke, who showed that y(t) may be written as 

t 
y(t) - 	1 	(t - s)P -1  a(s) ds 

ri7 
 

_00 
( 2 . 4 1 

For p = h+0.5, equation (2.41) is identical to the Mandelbrot and Van Ness 

(1968) representation of Fractional Brownian motion. A value of p = h-0.5 

would correspond to the differential of fractional Brownian motion which 

does not exist. Clarke circumvents this problem by noting the equivalence 

of the discrete time form of equation (2.41) with p = h-0.5 to the discrete 

type 2 approximation to fractional Gaussian noise proposed by Mandelbrot 

and Wallis (1969a). Clarke also points out that while the representation 

of y(t) given in equation (2.41) is non-linear in the parameter 3, the 

system governed by equation (2.40) is linear in the systems theory sense 

as DP  is a linear operator. 

(d) Discrete-time Fractional Gaussian Noise  

By defining fyi(t,b) for integer values of t only and choosing E) = 1, 

discrete time fractional Gaussian noise (dfGn) is obtained. Mandelbrot 

and Wallis (1969c) have defined the sequence of increments of Bh(t) thus 

obtained as 

A Bh(t) = [Bh(t) - Bh(t-1)1 	 (2.42) 
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while equation (2.30) suggests 

A B
h
(t) = [B

h
(t+1) 	B (01 h (2.43) 

which is given by Mandelbrot and Wallis (1968). However, equation (2.43) 

is perhaps conceptually difficult to justify ; nevertheless, the statistical 

properties of either definition are identical. Thus X
t = A Bh

(t) may now 

be considered as a model of Hurst's geophysical time series. In order 

that Xt 
be an acceptable model, the relationships given by equations (2.25) 

and (2.27) must be shown to hold for the discrete case. 

Defining 
n 

Dn = E X t=1 t 

n 

= E [Bh
(t) - B

h
(t-1)] 

t=1 

= B
h
(n) - B

h
(0) 

whereupon, from equation (2.25) 

Var[B
h
(t+n) - Bh

(t)] = Var[B
h
(n) - Bh(0)] 

= n
2h 

V
h 
	 (2.44) 

where t and n assume integer values only. Consequently, equation (2.25) 

holds for the discrete case as noted by Mandelbrot and Wallis (1969c). 

From equation (2.44) 

Var[B
h
(t+1) - B

h
(t)] = Var Xt 

Thus, it may be deduced that 

Var (R) = 0
2 
n
2h-2 

where X = Dn/n or 

- 
= h -1 n  

6 

= V
h 

= 62 (2.45) 

(2.46) 



in contrast with low order autoregressive and moving average type models 
oo 

which are characterized by the property that E Ch(k) is finite. Hence, 
k=0 

the fractional noise model with h> 0.5 suggests that the effect of past 

events on present behaviour dies out extremely slowly as distinct from 

models for which E Ch(k) is finite when the effect of the past dies 
k=0 

out extremely quickly. Thus, long-term persistence is synonymous with 
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which is exactly equivalent to equation (2.16) deduced by Langbein (1956) 

for Hurst's data, and referred to as Langbein's corollary of Hurst's law 

by Mandelbrot and Wallis (1968). However, the validity of this relation-

ship for small n is unknown. 

The autocovariance function of A Bh(t) may be derived from equation 

(2.31) as 

Ch(k) = 	[ Ik+112h  - 2k2h  + ik_1 12h 1 	(2.47) 

which is defined for integer k, and which for large k may be approximated 

as 

1 
Ch(k) 	1 [Vh 

h(2h-1) 	
k2h-2 

 

An important property of Ch(k) is that it satisfies 

00 
E Ch

(k) = oo 
k=0 

(2.48) 

(2.49) 

0.5 < h < 1 and short-term persistence is synonymous with 0 < h < 0.5 

The behaviour of the range and adjusted range for dfGn will follow 

closely the form of equations (2.26) and (2.27), respectively, for large 

n and hence 

E[R]= ah nh 
	

0 < h < 1 	(2.50) 

E[R1 = bh  nh 
	

0 < h < 1 	(2.51) 

However, for small n, Mandelbrot and Wallis (1969c) have shown that the 

value of R will be less than the corresponding quantity in continuous 
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time, R (T), with the difference disappearing with increasing n. However, 

simulation experiments were necessary to examine the behaviour of R for 

small n, as well as the behaviour of R/S for both small and large n. 

2.5.2 Generating Processes and Simulation Experiments  

A generating process for dfGn may be formulated by writing equation 

(2.38) with 6 = 1 to yield 

Xt 
= Bh

(t + 1) - Bh
(t) 

1  - 	 Kh(t-s) dB(s+1) 
/171.75751):0  

(2.52) 

where the form of Kh(t-s) may be deduced from equation (2.39). Equation 

(2.52) cannot be evaluated exactly on a computer, and its accurate 

numerical approximation involves 3 approximations (Mandelbrot and Wallis, 

1969c). 

(i) The span -0o< s < t must be replaced by a finite span t - M < s < t, 

which introduces a low frequency error term. The parameter M then defines 

the memory of the process, and represents the time span over which 

equations (2.46),(2.50) and (2.51) are approximated. 

(ii) A discrete grid c must be selected for the variable of integration 

s, and the infinitesimal dB(s+1) must be replaced by a finite difference 

B(s+1+c) - B(s+1), which may be sampled as a Gaussian random variable with 

zero mean and variance c. 

(iii) The terms in the resulting summation must be evaluated to a finite 

number of decimals. 

Mandelbrot and Wallis (1969c) proposed a type I approximation with the 

grid e arbitrarily selected as c = 0.1 and defined the resulting approxi-

mation to dfGn as 

10t-1 
Fl(t1h,M) = 	K

1 
(t - -s- I h,M) c 10 	g 

g=10(t-M) 
(2.53) 

0 <h< 1 



F
2
(t1h,M) = (h-0.5) 	(t-i)

h-1.5 
6. 

i=t-M 	1  

t -1 
(2.54) 
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where the kernal K1(t - -11--) is the kernal K(t-s) evaluated at the points 10 
1 	2 

' 	
1 

(t 	
10  

- -0-) 	
10 10 

- — -- 
..., 

(M - 75), M, and c
g 
 are independent Gaussian 

- 	'  
1 random variables with zero mean and variance 775. 

Obviously the calculation of equation (2.53) is cumbersome, as 10M 

independent Gaussian random variables must be summed to generate each 

value of the type I approximation to dfGn. In an attempt to circumvent 

this:problem, Mandelbrot and Wallis (1969c) selected a coarser grid of 

c = 1 for the variable of integration and, noting that Kl(slh000) 

(h-0.5)R 	for large s, defined a type II approximation as 

0.5 < h < 1 

which involves a summation of M independent Gaussian random variables to 

generate each value. In defining the type I and II approximations to 

dfGn, Mandelbrot and Wallis have omitted the scaling constant (F7:3)
-1 

present in equation (2.52). 

Extensive computer experiments using the type I and type II approxi-

mations to dfGn were carried out by Mandelbrot and Wallis (1969a,b,e) to 

justify their use as generating processes, and to obtain further results not 

readily attainable through theoretical analyses. Using a digital graph 

plotter, Mandelbrot and Wallis (1969a) have illustrated that approximations 

to dfGn with h> 0.5 are characterized by a wealth of low frequency effects, 

with apparent periodic movements frequently perceptible which, without 

knowledge of the nature of the generating process, might lead to the 

belief that "hidden periodicities" were present. Low frequency movements 

tend to increase with h, with short-term movements becoming less pronounced. 

The low frequency nature of dfGn with h> 0.5 is exemplified by the sample 

variance S
2 which satisfies (Mandelbrot and Wallis, 1969a) 

E[S2] = 	
62 nth-2 	 ( 2.55) 
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which means that, for any given value of n, the sample variance'under-

estimates the population variance by an increasing amount as h increases 

from 0.5 to 1. Equation (2.55) has as a consequence that the variability 

of the sample mean increases with increasing h, as may be deduced from 

equation (2.46). The difficulties associated with using a past sample 

average as a predictor of a future sample average of dfGn have also been 

studied extensively by Mandelbrot and Wallis (1969a). 

The statistical properties of the resealed range R/S for approxi-

mations to dfGn were extensively investigated by Mandelbrot and Wallis 

(1968b,e). By generating sequences of 9000 values using a type I generating 

process with a preselected value of h, Mandelbrot and Wallis noted that, 

apart from a short initial transient for n < 20, the slope of plots of 

log(R/S) against log n was linear with slope h up to a value of n = M. M* 

is related to M, the span of the moving average in the generating process, 

or the memory, and M*/M is at least 1. Only computer storage limitations 

prevent making M infinite in accordance with theory. Hence, Mandelbrot 

and Wallis (1969b) claimed that 

0 <h < 1 

for dfGn which is asymptotically valid and is the exact form of Hurst's 

law as given by equation (2.11). They also claimed that the distribution 

of (R/S) n
-h 

was independent of n on the basis of the observed plots of 

log (R/S) against log n which seems strong in the light of the large 

skewness of R/S observed from further simulation experiments. They also 

noted that the type II approximation was inferior to the type I, except 

for values of h of the order of 0.9 and higher when the lack of high 

frequencies in the type II approximation passes unnoticed. 

The potential of the resealed range as a measure of long-term persis-

tence in time series was also established by Mandelbrot and Wallis (1969b,d). 
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In comparing the relative merits of the resealed range R/S and spectral 

analysis in detecting long-term persistence, they found R/S to be much 

more sensitive than spectral analysis in detecting long-term persistence, 

particularly when "log-spectral" plots are used. However, when very strong 

periodic cycles are present, spectral analysis would be superior. Thus, 

the frequent failure of spectral analysis to verify the presence of hidden 

periodicities in long geophysical records might be attributed to the fact 

that the low frequency movements observed are a characteristic of the 

random nature of the generating process. 

In assessing the robustness of the statistic R/S, Mandelbrot and 

Wallis (1969e) established that R/8 is distribution free for the case of 

an independent random process, such that Hurst's law with h = 0.5 is obeyed 

even for small n, no matter what the underlying distribution is. Thus, 

no explanation of the Hurst phenomenon could be based on skewness. 

However, both R and R are distribution dependent, and, in the presence 

of skewness, may exhibit long transients suggesting h> 0.5, as shown by 

Mandelbrot and Wallis (1969e). Moreover, R is also much more variable 

than R/S when the underlying distribution is skewed. Hence an erroneous 

explanation of the Hurst phenomenon such as that proposed by Moran (1964) 

could be based on skewness if attention is confined only to the statistics 

R or R . In the case where the underlying distribution is Gaussian, the 

scaling of R by. S is unimportant, and it is sufficient to work with R. 

Some non-linear transformations were also applied to sequences of approximate 

dfGn, showing that Hurst's law is invariant with respect to moderate non-

linearity, but in the presence of extreme non-linearity, this invariance 

breaks down, and the slope of the plot of log (R/S) against log n is 

depressed. However, if a tranSformation is applied to the variate eg  in 

equation (2.53) before applying the type I kernal to generate values of 
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F1(tlh,M), R/S was found to be invariant under such a transformation. 

Shortcomings in the procedure used by Hurst (1951, 1956) for the 

estimation of h (equation (2.13)) have been pointed out by Mandeibrot and 

Wallis (1968, 1969d). The method uses only the value of MS for the total 

sample length to estimate h, and assumes that the line defining the 

estimate of h always passes through the point of abscissa log 2 and 

ordinate log 1 = 0. The effect of this estimation procedure is to accentuate 

the effect of the initial transient when h < 0.72, yielding estimates of 

h which are too high, and to underestimate h when h> 0.72. The variability 

of estimates of h about the true value is also underestimated. 

A more general estimation procedure was proposed by Mandeibrot and 

Wallis (1969b,d) whereby R/S was computed for various subsample lengths 

of the record, and the origin of the plot was allowed to vary freely. The 

new method was then used to estimate h for a variety of geophysical records, 

resulting in a further reinforcement of Hurst's original conclusion that 

h > 0.5. The longest records analysed showed no tendency for estimates 

of h to tend to 0.5 as the record length increased. Thus the span of 

statistical dependence would appear to be as long as the longest geophysical 

records available. 

2.5.3 Estimation of h  

The fact that dfGn tends to be dominated by low frequencies (i.e. the 

spectrum has a large concentration of variance at low frequencies) means 

that small sample statistical properties will differ considerably from 

their corresponding population quantities. The properties of estimators 

of h are of primary importance, and have been investigated by Wallis and 

Matalas (1970) for independent processes, lag-one Markov processes and an 

approximation to dfGn. 
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Two estimation procedures were considered, one being the original 

procedure used by Hurst which provides an estimate denoted by K, and the 

other being an adoption of the method proposed by Mandelbrot and Wallis 

(1969b) which provides an estimate denoted by H. The latter method consists 

of the following steps : - 

(i) a record of length n is divided into N subsamples of length ns  

where 3 < ns < n. The subsamples may or may not overlap, and the 

selection of the subsample lengths ns  is made such that a uniform 

spacing of ns  is achieved on a logarithmic scale 

(ii) the resealed range R/S is computed for each subsample of length 

ns 

(iii) A least squares line is fitted to the mean R/S for each subsample 

size in the range no  < ns  < n, where no  is chosen on the grounds 

of an initial non-linear transient in the plot of log(R/S) against 

log n, as shown in figure (2.3). The slope of the fitted least 

squares line yields the estimate H. 

Figure (2.3). Schematic plot of ln(R/S) against ln(ns). Each value of R/S 

is denoted by a cross and the mean values of R/S for a given 

value of n
s are denoted by little squares. 
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For a Gaussian independent process, Matalas and Wallis (1970) found 

that both K and H are biased estimators, with K displaying greater bias 

than H ; however, K was found to have smaller variance than H. The bias 

in both estimators decreases slowly with n, the sample size ; for example, 

the mean value of K for n = 1000 was found to be 0.58. In calculating H, 

Wallis and Matalas (1970) generally used a value of n0  = 10 ; a higher 

value of n
0 
 would yield a less biased but more variable estimate. If 

only non-overlapping subsamples were used, a more biased and variable 

estimate resulted. The selection of n0, as well as the selection of a 

procedure for subdivision of a sample, is obviously subjective. 

Similar results were found for the case of a log-normal independent 

process although estimates were generally slightly less variable than for 

the Gaussian case. Sampling from a normal and log-normal lag-one Markov 

process showed that K and H have similar properties in the presence of 

Markovian autocorrelation and emphasised further the long-run deficiencies 

of the Markov process. Limited sampling experiments were carried out 

using a type I approximation to dfGn with values of h in the range 0.5 < h < 1. 

Again, K was found to be more biased than H ; for h less than about 0.7, 

both H and K are biased upwards, while for h > 0.7, H and K are biased 

downwards. Hence, H and K are approximately unbiased in the neighbourhood 

of 0.7. The sampling experiments were not sufficiently extensive to permit 

conclusions to be drawn about their relative variability, although H is 

probably a more variable estimator than_K for 0.5 < h < 1.0. Estimates 

of H and K on a monthly basis for 25 streams in the Potomac estuary with 

30-40 years of record tended to suggest that for the streams examined, 

h > 0.5, and that H is more variable than K. Both H and K were found to 

vary seasonally ; however, the excessive temporal and spatial variability 

of H and K did not allow a regionalization of h. 
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2.6 Further Approximations to dfGn  

2.6.1 Fast fractional Gaussian Noise  

In response to criticism of the initial type I and type II approxi-. 

mations, Mandelbrot (1971a)proposed a fast fractional noise generator for 

values of h in the range 0.5 < h < 1. The type I approximation, while 

following the theoretical form of the kernel of dfGn closely, proves 

expensive and cumbersome to compute while the type II approximation is 

deficient in high frequencies and the low frequency approximation is 

satisfactory only when h is close to 1. 

Rather than approximating the kernel Kh(s) given by equations (2.39) 

and (2.52), Mandelbrot worked with the autocovariance function of dfGn 

which is given by equation (2.47) and is an equivalent specification of 

dfGn. 

In approximating Ch(k)Mandelbrot first noted that Ch(k) is the 

k
2h 

2 second finite difference of the function -- which for large k may be 
' 

approximated by its second derivative which is h(2h-1
)k2h-2 

as given by 

equation (2.48). As C
h
(k) defines the autocovariance function for continuous 

time as well as discrete time fractional Gaussian noise, defined as 

AB
h
(t),  [Bh(t)  - B

h
(t-1)7 for all t and integer values of t, respectively, 

the function 
k2h-2 

may be expressed in terms of its Laplace transform as 

follows 

e
-ku 

u
1-2h 

du 

k
2h-2 

/( -2h + 2) 

whereupon 
co 

fp e 
	u -km 1-2h 

du 

h (2h-1) k21 2 
2IPIT 

 

 

co 
e-ku 

W(u) du (2.56) 

1-2h r----' where W(u) = u 	/2/ -2h. The integral in equation (2.56) is very 
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conveniently the autocovariance of a first order Gauss-Markov process for 

-u 
which the lag-one autocorrelation is e and the variance is infinitesimal 

and equal to W(u) du. The integral in equation (2.56) thus forms the basis 

for the approximation, which for practical purposes must be evaluated 

between finite limits on a discrete grid which means that approximate dfGn 

is derived as the summation of a finite number of suitably weighted and 

independent discrete time first order Gauss-Markov processes. Mandelbrot 

establishes an upper limit on the integral in equation (2.56) by neglecting 

high frequency effects, which are handled separately afterwards, and a 

lower limit by neglecting low frequency effects which will not be noticed 

within a finite sample, to yield the approximation 

Ca(k) - 
.1.  

-log (th1) e_ku u1 -2h 
du 

1/TQ  

21 /(-2h) I 
(2.57) 

where th1 is a high frequency threshold, T is the sample duration and Q 

controls the low frequency threshold. Following a change of variable from 

u to B
-v with B> 1, which results in a greater emphasis on low frequencies, 

the resulting integral is then evaluated over a discrete grid to give the 

final approximation to Ch(k) as 

B
1-h 

- B
71+h 

B -2(1 -h)m e
-kB-M  

D 	
L 

h(k) = E m=1 4(h-1) IF2111 
(2.58) 

with L defined as the nearest larger integer to [log (Qn)/log B] where n 

is the sample size. The generating process is defined by Mandelbrot as 

where 

Xt
(1f) 

= 	Wm y ( 	
(m)) 

M=1 	
1 

P(m) 

= e

-B-m 
1 

 

W2 	- 
B
1-h 

- B
-1+h 

B-2(1-h)m 
m 4(h-1 /7511 

(2.59) 

(2.6o) 

(2.61) 



1 - D
h
(0) = 1 - 

[5:a 
B-(1-h) h(2h-1) 
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and 

    

 

t 	( n) 	(m) 
 y 	( p 

(m)) 	1/ 	(m) 1 
Yt‘ 91 	= 	p1 	t-1 	1 	p1 	et,m (2.62) 

The factors B and Q control the quality of the approximation, which 

improves as B -4.1 and Q-+ co 	, while the number of variables y ( p t 	1
(m)) 

to be weighted and summed is proportional to log n rather than 10n and n 

as for the type I and II approximations, respectively. 

As some low and high frequencies have been neglected the approximation 

represented by equation (2.59) will have a variance less than unity which 

is given as 

L  
D
h
(0) = E W

m

2  

m=1 

and the residual variance is then 

(2.63) 

(2.64) 

It is perhaps worth pointing out that equation (2.64) is incorrectly 

printed in Mandelbrot's paper. 

Mandelbrot (1971a)suggests using white Gaussian noise with a variance 

of (1 - Dh(0)) to model the residual variance. However, a high frequency 

error, represented by the autocovariance 

c
(hf)(1)= c (1) - D (1) 
	

(2.65) 

still remains. Rather than using white Gaussian noise, a lag-one Gauss-

Markov process may be used with a variance of (1 - Dh(0)) and a lag-one 

autocorrelation given by Mandelbrot as 

91 
(hf) 

= 2
2h-1 	1 + 	ri 4_,,( m■(, Flm)) B-(1-h) h(2h-1)  

m=1 	J 3-2h 
(2.66) 

An attempt to reproduce this result has been made by deriving Dh(1) from 

equation (2.58) and defining the lag-one autocorrelation of the Gauss-Markov 
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(hf) 
p 1 
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C(1,h) - Dh( 
(2.67) 

 

1 -
h(1) 

2
2h-1 

- 1 - 	
W2 	(m) E m pl 

Tn=
,  

I 

L 
1 - E W

2 

m=1 m  

2
2h-1 2 (m) 

111 

- 1 	- [ 	Wm  pi  

=1  (2.68) 
B
-(1-h) 

h(2h-1) 1 
/ 3-2h.  

which does not appear to correspond with Mandelbrot's result. If 
L 	 L _ 2  2 	(m) 	 (m) 1 2] W p 	in equation (2.68) is written as 	11

,
L  Wm 

- 	W2(1-p1 	)j A  m 1 	 m m=1 	 m=1 

then the r.h.s. of equation (2.66) with W
m 
written as W

2 
is equal to the 

numerator of equation (2.68) 

The high frequency term is generated as 

X 
(hf) = P 
	+ 111 - (hf) x(hf) 	(hf)

2 

t1 	t-1 	 P1 	c
t 

(2.69) 

and finally approximate dfGn with zero mean and unit variance is given 

by 

X 	= Xt(1f) + 11 1 - D2 (0) Xt(hf) 
	

(2.70) 

Alternatively, the high frequency process may be used to fit observed 

high frequency characteristics of a historic sequence. However, details 

of how this might be achieved have not been given by Mandelbrot, and the 

necessary documentation for generating fast dfGn with prespecified 

statistical properties has not been given nor has the non-Gaussian case 

been treated. For example, if Xt  in equation (2.70) is to preserve a 

variance d
2 estimated from a historic sequence, how should this variance 

be divided between the low frequency and high frequency processes? One 
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method would be to replace C
h
(1) in equation (2.65) by Ap

1' 
the estimated 

lag-one autocorrelation, thereby defining pl
(hf)

, whence dfGn with zero 

mean and unit variance may be generated and scaled using 6. However, the 

problem of simultaneously modelling short run and long run effects needs 

to be more fully explored while the selection of B and Q needs more 

documentation. The quality of approximation should perhaps be viewed in 

the light of the sensitivity of Hurst's law to various values of B and Q. 

Further documentation of fast dfGn is required before it can be freely 

used in water resource system simulations. 

2.6.2. The ARIMA (1,0,1) Process  

In response to the need for a simple, fast, generating process which 

combines desirable short run and long run effects, O'Connell (1971) 

proposed a mixed moving average autoregressive process or in the terminology 

of Box and Jenkins (1970), an ARIMA (1,0,1) process expressed as 

X
t = p Xt-1 	

e
t 

- Oe
t-1 	

(2.71) 

which has the following autocorrelation function 

cp -0)(1-cp0).  

(14-02-2cp0 ) 

(2.72) 

Pk = "k -1 
oo 

Obviously 	pk  converges ; and therefore the ARIMA (1,0,1) process may 
k=0 

be said to lie "in the Brownian domain of attraction" for which h = 0.5. 

However, for suitably chosen values of p and a, the process maintains good 

agreement with Hurst's law with h> 0.5 for values of n considerably in 

excess of those necessary to constitute an explanation of the Hurst phenomenon. 

Short run and long run effects may be modelled simultaneously through 

matching estimates of p1  and h from historic records of length n with their 

corresponding expectations. As with the type I and II approximations, 

P1  
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Hurst's law is obeyed over a finite span which can be as large as n = 10000 

for the ARIMA (1,0,1) process ; ultimately, however h —40.5. In the case 

of the type I and II approximations, the parameter h is incorporated in 

the generating mechanism while for the ARIMA (1,0,1) process the value 

of h must be defined from plots of log (R/8) against log n up to very 

large values of n as demonstrated by O'Connell (1971). The ARIMA (1,0,1) 

process can thus be viewed as an approximation to dfGn, or as an explanation 

of the Hurst phenomenon in its own right ; only geophysical records longer 

than those currently available would rule out the latter possibility. 

As it is the purpose of this thesis to explain and develop more fully 

the properties of the ARIMA (1,0,1) process, it will not be expanded on 

further here. 

2.6.3. Filtered Fractional Gaussian Noise  

A further approximation to dfGn has been developed by Wallis and 

Matalas (1971) and Matalas and Wallis (1971b). Using the original type II 

approximation given by equation (2.54) as a starting point, they derived 

the autocorrelation function of the process as 

M-1-k 

	

E 	(M-i)(M-i-k)
h-1.5 

Pk = 

	

M-1 	 (2.73) 
(14-i)2h-3 

i=0 

and noted that the process yielded values of p 1  too high for modelling 

annual streamflow and also much in excess of values of p 1  for dfGn itself, 

resulting in undesirable high frequency properties. A filtered type II 

approximation to dfGn was proposed by Matalas and Wallis (1971b)as 

pt-1 
Xt = 	- 0.5) 	E 	(pt - 

i)h-1.5 
c. 

i=pt-M 
(2.74) 

where p> 1 is an integer. Thus, values Xt' Xt+1' 
Xt+2,... are generated 

by weighting and summing the sequences of independent random variables 
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Ecp-M' 	ep-11' E c2p-M, £2p-M+1 '"'E2 	 62p-11' 

c3p-m, e3p_m+1,...,e3p_2, e3p_11,..., respectively. It follows that the 

process Xt  given by equation (2.74) is equivalent to sampling values at 

times pt from the type II approximation given by equation (2.54). The 

mean, variance, and skewness of the filtered process are the same as for 

the type II approximation itself, and have been derived by Matalas and 

Wallis (1971b)as 

M-1 
Rx  = (h-o.5) E (M-i)

h-1.5 

i=0 

M-1 
gisc  = (h-0.5 	E (M-i)

2h-3 
6
2 

i=0 

M-1 
(m-i)3h-4.5 

1.0  
'x =  M-1 

2h-31
1.5  

[ 	(m-i) 
1=0 

(2.75) 

(2.76) 

(2.77) 

However, the autocorrelation function of the filtered process is given 

as pkp' 
k = 0,1,2,..., where pik  is given by equation (2.73). Increasing 

values of p yield successively decreasing values of p1  which allows the 

desirable flexibility of being able to preserve estimates of h and pi, 

simultaneously, although the fact that p is an integer means that p1  

does not vary continuously with p. Computation time for filtered fractional 

noise is only fractionally in excess of computation time for the type II 

approximation. 

Using filtered fractional noise with prespecified values of p1  and 

h, Wallis and Matalas (1971) conducted further sampling experiments which 

showed that H and K, estimators of h, are biased for small samples of the 

filtered type II approximation, with the bias for any given value of h 

decreasing with increasing . p and sample size n. The problem of detecting 
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long-term persistence in small samples was extensively investigated using 

simulation experiments, with the finding that available tests for independence, 

such as the Anderson test (1942) and a variety of runs tests, lacked power 

in the presence of persistence, both short-term and long-term, with the 

power decreasing as the intensity of persistence increased. The lack of 

A 
power in the case of the Anderson test of p may be largely ascribed to 

the fact that estimators of p1  are biased towards zero in the presence of 

persistence, with the bias increasing with increasing persistence. In any 

case, the Anderson test is only suitable for detecting high frequency non-

randomness, and no formal test of significance exists for a measure of 

long-term persistence. Wallis and Matalas (1971) also observed that oft-

noted fluctuations in sample correlograms for large lags may be consistent 

with underlying long-term persistence rather than being ascribed to chance. 

2.6.4. The Broken Line Process  

In a recent series of papers, Rodriguez,Mejia and Dawdy (1972) and 

Mejia, Rodriguez and Dawdy (1972) have presented a new model, the Broken 

Line (BL) process, which is claimed to have distinct advantages over 

Markovian and fractional noise models. The BL process, originally devised 

by Ditlevsen (1971) to check by simulation some results in first passage 

theory, is composed of a sum of a series of simple BL processes, each of 

which is given as 

Co 	(c
j+1 

-
j
)(t - jC) 

 e-(t - 13) = 	E 	[e 4  
j=0 	AG 

(2.78) 

where eo, el, e2,..., Ej,... are a series of identically and independently 

distributed Gaussian random variables with zero mean and variance 62, 1 

is a uniformly distributed random variable over the interval (0,1), c is 
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the distance in time separating values of ej,  and I 	(t) 
[jc,(j+l)c] 

is an indicator function which satisfies 

I 	(t) = 1 	 jc < t < (j+.1)c 
[jc,(j+1)c] 

	

= 0 	otherwise 	(2.79) 

A schematic representation of e (t) is given in figure (2.4). The 

process e (t) is a continuous time process with a mean, variance and auto-

correlation function as follows 

E [e (t)] 	= 0 

Var [ e (t)] 	= E [ e (02] 	= 
3 

62 

1 - 	(T/C)2  [2 - (T/C.)]  

(2.80) 

(2.81) 

0 ¶ 

p(r) if2 - (TA) ]3  c < T 	2c 	(2.82) 

0 	 T > 2c 

The general BL process is then defined as 

(N) 
X(t) = E e.(t) 

i=1 
(2.83) 

where e JO is a simple BL process with parameters c. and 6.. The 
(Ni) 	

1 	1 

variance and autocorrelation function of X(t) are given as 

(N) 2 	2 
Var [ X(t)] = — E 

3 	1 i=1 
N 

6.
2 p (T) i 

n (T) 	i 	
4  1 

=i 

E 	6..2 
i=1 1 

(2.84) 

(2.85) 

whereP:(T)clehotestheautocorrelationfunctiohofe.(t). The parameters 1 

c. and 6. are required to satisfy restrictions which are given by Mejia 
1 



At e(t) 

lc 

E
2 

91 

Figure (2.4) A schematic representation of a simple Broken Line process. 
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et al (1972) as 

c. 	c1 	
-I 1 

 

1 0.5 	 i-1 0.5 
= (1/4- ) c

i 
(2.86) 

Other restrictions may be specified, depending on the parameters to be 

preserved. The memory of the process, or lag T at which the autocorrelation 

function becomes zero is 2CNand is controlled by 1 andN. In general, 

the high frequency properties are governed by the "shortePlines and the 

"longer" lines control the low frequency properties. Mejia et al (1972) 

have shown how BL may be derived as an approximation to dfGn. 

In proposing the BL process as a model of geophysical time series, 

Rodriguez et al (1972) and Mejia et al (1972) have claimed distinct advantages 

for the model over Markovian and fractional noise models. The deficiencies 

of Markovian models quoted are largely those previously enunciated by 

Mandelbrot and Wallis (1968), while the main criticism levelled at fGn is 

that it does not possess a derivative, and, that, consequently, the second 

derivative of the autocorrelation function at the origin, denoted by 

p "(0), does not exist for fGn. The existence of p"(0) which measures the 

shape of p(T) at the origin, means that the process must be four times 

differentiable, which implies that the high frequency properties of the 

process must satisfy certain "smoothness" criteria. For the BL process 

p"(0) exists, and hence crossing properties, such as extreme events, run 

lengths and run sums, may be defined for the continuous time BL Gaussian 

process. However, the slight non Gaussian character of BL has been 

pointed out by Mandelbrot (1972) and consequently the applicability of 

crossing theory to continuous BL is somewhat dubious. 

In the context of modelling geophysical time series, which are 

sampled as discrete values at equi-spaced time points, or averages over 
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equal time intervals, the special advantages claimed for BL over fGn 

disappear. At the present, only the statistical properties of the continuous 

BL process are known, and these cannot be correctly matched with corres-

ponding quantities measured from discrete or averaged data. Furthermore, 

the crossing properties of a discrete or averaged BL process are unknown. 

However, assuming that p"(0) may be estimated from discrete time series, 

(which for the case of a monthly or annual time unit would appear to be 

extremely difficult) what are the grounds for preserving such an estimate? 

For daily flows, Weiss (1973) has shown that models with a Gaussian basis 

have limited application. Are simulations using approximations to dfGn 

(BL may be considered as an approximation to dfGn (Mandelbrot, 1972)) 

which preserve and do not preserve estimates of p"(0) liable to lead to 

very different results? Consideration of the original motivation behind 

BL and fGn permits some tentative conclusions to be drawn. 

Discrete time fGn was developed specifically as a model of.Hurst's 

1 
t annual time series, where frequencies higher than f = 2A where At = year 

are missed out in the data sampling procedure, and are therefore irrelevant 

as far as subsequent simulation modelling is concerned. Indeed successive 

smoothing of fractional Brownian motion as suggested by Mandelbrot and 

Van Ness (1968) would yield a version of fGn for which p"(0) existed but 

the long-run properties of which would be identical to those of the present 

version of fGn. As fGn was developed primarily with long-run properties 

in mind, the non existence of p"(0) for fGn is unimportant as pointed 

out by Mandelbrot (1972). Indeed the non existence of p"(0) is not 

particular to fGn ; continuous time white Gaussian noise itself does not 

possess a derivative but this does not hamper its use as a basis for 

discrete time models. While the motivation for dfGn is soundly based on 

the empirical law of Hurst, the motivation for the BL process as a model 
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of discrete time hydrological time series is somewhat obscure. The BL 

process has been shown to have potential in modelling turbulence phenomena 

(Nordin, McQuivey and Mejia, 1972) where the measurement of very high 

frequencies allows a very close approximation to the underlying continuous 

process, and p "(0) becomes measurable and may be modelled. In fact, 

P "(0) has a specific interpretation in turbulence theory as a measure of 

the microscale of turbulence, first defined by G.I. Taylor (1921). 

In the context of modelling long-term persistence in annual geophysical 

time series, p "(0) must be viewed in the following light. As its very 

existence derives from high frequency properties in the first place, it 

is difficult to view it as an effective measure of low frequency effects. 

Certainly, mathematical relationships may exist between p"(0) and run 

sums and run lengths for the continuous process, but do estimates of p"(0) 

represent an effective measure of such quantities? For example a mathematical 

relationship exists between pl  and h for fGn given by equation (2.47) 

but estimates of P
1 

could not sensibly be expected to effectively measure 

low frequency effects represented by h. As the very definition of h 

itself is based on the intensity and duration of periods of above (or 

below) average flow, it is highly unlikely that an alternative measure 

of droughts would be largely at variance with the run sums and run lengths 

implicitly and neatly preserved by h. If an alternative and better measure 

is to be found and accepted, then it must be shown to be readily measurable, 

and follow some well defined pattern of relationship such as Hurst's law 

within a large data base. The methods proposed by Mejia et at (1972) for 

measuring P"(0) within discrete time series are based on the sample 

spectrum and correlogram, both of which require lengthy computation and 

both of which are notorious for their sampling instability. No attempt 

has been made to show that the run sums and run lengths preserved through 



an estimate of p"(0) are consistently at variance with those preserved 

by a measured h. As far as high frequency short term effects are concerned 

there does not appear to be any strong evidence to suggest that such 

effects cannot be modelled through preserving p 1, the lag-one autocorrelation 

coefficient. 

A further issue relating to the methodology of BL requires clarification. 

Rodriguez et al (1972) argue that Mandelbrot and Wallis (1968, 1969a,b,c,d) 

did not study the Noah and Joseph effects as originally defined by them, 

but rather that they merely studied the Hurst phenomenon. This contention 

appears inaccurate, as the occurence of long periods of above (or below) 

average flow (the Joseph effect) is directly defined by Hurst's law which 

is the basis for dfGn. The Noah effect was shown to be both unnecessary 

and insufficient in accounting for the Joseph effect, and may be handled 

separately through skewed marginal distributions as shown by Mandelbrot 

and Wallis (1969e). The main use made of p "(0) by Mejia et al (1972) 

has been to define the Noah effect, based on the assumption of a Gaussian 

marginal distribution, through a roughness parameter y which is directly 

related to p "(0). However, as streamflow is bounded at or near zero, 

the Noah effect, if present, manifests itself through positive skewness, 

and can hardly be in accord with a Gaussian assumption. 

Perhaps the most important and useful concept to emerge from BL 

methodology is that synthetic sequences should preserve a "memory" of the 

historic sequence i.e. equally likely projections over an economic time 

horizon should all be conditional on a common past. (Garcia, Mejia and 

Dawdy 2 1972 ). However, some rather arbitrary procedures have been invoked 

by Garcia et al in applying this concept, which is not unique to BL 

methodology. A careful evaluation of the merits of this concept should 

prove extremely advantageous to users of synthetic hydrology. 
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2.7 Further Developments in Synthetic Hydrology 

In recent years, a number of new models have emerged for generating 

synthetic streamflows, and methodologies have been developed for ensuring 

that resemblance is maintained between historic and synthetic sequences 

in terms of statistical parameters which are thought to exert an important 

influence on system design. However, the question of how this statistical 

resemblance should be maintained is one of considerable importance parti-

cularly when small sample expectations of parameters differ greatly from 

respective population expectations. Such small sample biases are particularly 

severe for estimates of the variance and lag-one autocorrelation when low 

frequency effects are strong, as illustrated by Wallis and Matalas (1971). 

Thus, two types of statistical resemblance may be obtained, as defined by 

Matalas and Wallis (1974) and given in section (1. 2.4 ). Resemblance in 

terms of statistics measured in both synthetic and historic sequences of 

size n would appear to be the most logical goal to achieve, but knowledge of 

small sample properties of a process is necessary so that appropriate bias 

corrections may be administered. Wallis and O'Connell (1972) have considered 

small sample bias corrections for the lag-one Markov process, and noted that 

estimates of 	n-1 P1 	
E (X

t+1 - 5)(Xt  - R) defined as 	FA 	t=1  
'91'n 

E (Xt  - R)2 
t=1 

satisfy (Kendall, 1954) 

rA 	1, 
E Dyn  = 	- 7.1 1 4- 4p) 

(2.87) 

(2.88) 

For n = 20 and p1 = 0.4, E [1(') 11n  = 0.27, so that the bias is quite severe 

in small samples, even for a lag-one Markov process. If E [(3
A  1111  is replaced 

by its sample estimate and equation (2.88) is rearranged, an unbiased 

estimate of p1  is obtained as 

[P 1.(c)l 	
A 

n 	

n 	r 

n - 4 L P 11n  + n 4 (2.89) 



which, if used in the lag-one Markov generating mechanism will ensure that 

estimates of p1  derived from synthetic sequences of size n, denoted by 

CP -.111, will satisfy 
A 	A 

ELP *
1

In = [P 1-n 
(2.90) 

as required. However, the variance of [IP i n is larger than that of 

rp 
1'  1n  by a factor of (n/n-4)

2
, so a trade-off between bias and variance 

is implied. Nevertheless, application of the bias correction has been 

shown to reduce type II errors considerably when applying tests of significance 

to estimates of p1  (Wallis and O'Connell, 1972). In a design situation 

knowledge of a loss function can offer some guidance as to which estimator 

should be used, and perhaps resolve the issue as to which type of resemblance 

should be maintained between historic and synthetic sequences. 

Estimates of the sample variance from a lag-one Markov process are 

also biased and satisfy (Matalas, 1966) 

n p
1
(1- p )-p (1-p n) 

2 
E(S

2
) = 6

2 
[1 m 	\ 

	

n-1) 	
(1- p

1
)2 

1 	i] 	(2.91) 

An unbiased estimate of o
2 

may be defined from equation (2.91), provided 

P1 
is known. In practice however, only an estimate of p1 will be available, 

and complications arise which are considered in some detail by O'Connell 

and Wallis (1973)._ 

In the case of approximations to dfGn, small sample biases in estimates 

of p1, 0
2 and h have been shown to be acute ; however the complexity of 

the available approximations precludes the analytical derivation of small 

sample properties. Some results have been derived through Monte Carlo 

simulation (Wallis and Matalas, 1971), and techniques for applying bias 

corrections using analytical and Monte Carlo results have been considered 

by Matalas and Wallis (1974). The problem of biased estimates and the 
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application of bias corrections has been discussed by Slack (1972). 

With the availability of a number of models for generating annual 

streamflow, the problem of model choice presents itself, and constitutes 

an important issue, as some simulations by Wallis and Matalas (1972) have shown 

that approximations to dfGn yield reservoir sizes considerably in excess 

of those yielded by the lag-one Markov process when levels of development 

greater than 0.80 are considered. Historic sequences of the length usually 

available on an annual time scale cannot be relied upon to provide reliable 

guidance as to the presence or absence of long-term persistence. Using 

the distribution of R/S, the resealed range, derived through Monte Carlo 

simulations, Wallis and O'Connell (1973) have attempted to separate sequences 

generated by a long memory ARIMA (1,0,1) process from sequences generated 

by a short memory lag-one Markov process. For sample sizes n < 100 reliyole 

separation was not possible. 

The possibility of using Bayesian decision theory to assist in model 

choice and parameter estimation problems has already been considered in 

section (1. 4 ) , and an attempt to implement such an approach has already 

been made by O'Connell and Wallis (1973). A generating process is postulated 

as being that of the real world, and an optimal design evolved on this 

basis using the sequent peak algorithm. Assumptions are then made concerning 

the identity of the real world, and the expected regrets accruing from each 

assumption may be evaluated using an assumed loss function. The procedure 

is repeated for each postulated generating process for the real world, with 

the assumed generating process yielding the minimum overall regrets 

representing the appropriate choice. Considerable difficulties have however 

been encountered with the experimental design, and ultimate guidance on 

model choice would appear to be conditional upon the design process. 
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2.8 Summary  

The foregoing survey of models for generating synthetic flows shows 

that while the theoretical properties of fGn are entirely desirable, the 

application of fGn in the design of water resource systems is still a 

rather complex undertaking. The Broken Line process, while simple in 

concept, has not been developed sufficiently for practical application. 

The necessity is seen to exist for a generating process with the mathe-

matical and computational simplicity of the lag-one Markov process but 

the long-term properties of which are close to those of fGn. 
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Chapter 3 

A SIMPTE STOCHASTIC MODFL OF LONG-TERM PERSISTENCE 

Statisticians have been directing their attentions to the analysis 

of time series for over half a century. The realization that a 

Gaussian independent process did not adequately describe the irregular 

behaviour of a number of naturally occurring phenomena started a 

search for stochastic models which incorporated measures of dependence. 

In his historic contribution, Yule (1927) introduced the idea of 

representing such irregular phenomena as a linear aggregation of 

random shocks. Many of the models being widely used in time series 

analysis today embody this fundamental concept. 

With the advent of electronic computers, time series analysis 

entered a new era. Much of the theory previously formulated could 

now be applied and new areas of application emerged such as communications 

theory, econometrics, meteorology, and more recently, hydrology. As 

previously noted, a number of these models have been specifically 

adapted for use in synthetic hydrology. The present chapter is largely 

devoted to examining the properties of one of a class of linear 

stochastic models, called ARIMA models. The model, the ARIMA (1,0,1) 

process, is found to provide an adequate model of Hurst's law, and is 

accordingly developed for use in synthetic hydrology. 

Section (3.1) contains a brief appraisal of linear stationary 

models, and relies largely on the treatment of Box and Jenkins (1970). 

Specifically, the AR(p), MA(q) and ARMA(p,q) processes are presented 

under the headings of (a) stationarity and invertibility conditions, 

and (b) autocorrelation function. The general ARIMA(p,d,q) process 

which subsumes the AR(p), MA(q) and ARMA(p,q) processes is formulated. 
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Within section (3.2) the deficiencies of the ARIMA (1,0,0) process in 

modelling Hurst's law are noted, while in section (3.3) the closely 

related ARIMA (1,0,1) process is examined in considerable detail 

and found to be an adequate model of Hurst's time series. Extensive 

use is made of sample function plots and "pox diagrams", and some 

small sample properties are derived through Monte Carlo simulation, 

which are then used in formulating the process for generating synthetic 

sequences.. Some simple reservoir design experiments are reported in 

section (3.4) which illustrate the effects of long-term persistence and 

small sample biases on reservoir design. A brief reference to some 

experiments with higher order ARIMA models is made in section (3.5). 

3.1. Linear Stationary Models  

The following simple mathematical operators warrent definition as 

they facilitate a more concise presentation. Let X
t 
represent a stochastic 

process in discrete time. Define a backward shift operator B, (Box 

and Jenkins, 1970), as 

B X
t 
	

Xt-1 

whence 
	

BniXt 	Xt-m 

Define a backward difference operator V as follows: 

V Xt 	
X •- Xt-1 	= 	(1-13 )Xt  

The operator V has for its inverse the summation operator s given by: 

op 
V
-1
Xt 	

sX
t 	

E X
t-i 

i=0 

X
t 
+ X

t-1 
+ X

t-2 
+ 

= 	(1 + B + B2  + ...)X
t 
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3.1.1 Equivalent Forms for the General Linear Process 

Let et, e t-1' et-2'... be a series of uncorrelated random 

variables, termed white noise, with zero mean, variance E2, and 

autocorrelation function 

Pk 

{ 1 k = 0 

0 k> 0 

The process Xt, defined as 

X
t 	

c 	E 	(I) E Et 
	I t-1 	2 t-2 

OD 
q).6 	4 
3 t-j 	t 

j=1 

(3.1) 

c. 

is known as a general linear process, and constitutes a weighted 

summation of present and past values of the white noise process C. 

The process is linear in the parameters (Pj V j. Equation (3.1) 

suggests that Xt  can be written alternatively as 

X
t 	

n X 	+ n X 	+ 	E
t 1 t-1 	2 t-2 

(3.2) 
OD 
E n . Xt-3  . + et j  j=1 

where X
t 
is "regressed" on previous values of the process. As 

equations (3.1) and (3.2) are equivalent representations, relations 

may be obtained between the (1) weights and the ' weights. Using 

the backward shift operator, equation (3.1) may be written as 
co 

X
t 	

= 	(1 + E CBS) E
t j=1 

or 	X
t 	= 	CB) e t  

OD 
where 	4,(E) 	= 	1 + E (I) .Bi  

j=1 
oo 
E 	.B3 
j=0 3 

(3.3) 

with (t)0 
 = 1. B is treated as a dummy variable whose j

th 
power is 
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the coefficient of (1)j. Similarly, equation (3.2) may be written as 

ao 

(1 - E  it J3j)X, 
j=1 

or n (B)X 	 (3.4) 
t 

oa 

where 	it (B) 	= 	1 - E n .Bj  
j=1 

The application of (1)(B) to both sides of equation (3.4) yields 

((B)n (B)xt 	= 	4(B) c t 	= 	Xt  

(1)(B)11(B) 	= 	1 

or 	it (B) 	=
-1
(B) 

Consequentlytheweightsn.Vj may be defined from the weights (1)i  V j 

and vice versa (Box and Jenkins, 1970). To illustrate the duality 

between equation (3.1), termed an infinite moving average, and equation 

(3.2), termed an infinite autoregression, consider the case where 

1)1 	-0, (1)J  . 	0 for j > 1 

Therefore, Xt Et  -0 E
t-1 
	 (3:5) 

(1 - Be) E 
t 

and 	- BOY Xt. 	t 

Expanding (1 - B0)-1  yields 

(1 + OB + 0
2
B
2 
+ 0

3
B
3 + ...)x

t 	
= 	c 

t 

which is equivalent to 

Xt 	- x
t-1 	

2xt-2 - 0
3
xt-3 - 	+ e

t 	
(3.6) 

so that equation (3.5), which constitutes a first order moving average, 

may equivalently be expressed as the infinite autoregression of 

equation (3.6)., 

The autocovariance function of the general linear process of 

t 
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equation (3.1) may be expressed as (Box and Jenkins, 1970) 

Yk 	0
2 

.E, j(-1-) j+k 
J=U 

For k = 0, equation (3.7) reduces to 
03 

2 	y. 
j 

,2 
Z YO = 6 

E =vll 3 

(3.7) 

(3.8) 

which is the variance of the process Xt. For the process given by 

equation (3.1) to have a finite variance, the weights (1)i  must decrease 

rapidly enough to ensure that 

03 

E 
(P.; 

j=0 
(3.9) 

converges. 

3.1.2 Stationarity and Invertibility Conditions for a Linear Process 

The convergence of the series in equation (3.9) ensures that the 

process has a finite variance. In addition, the autocovariances and 

autocorrelations of the process must satisfy a set of conditions to 

ensure stationarity. These conditions can be embodied in the 

condition that the series Y(B) converges for B < 1. For example, 

consider equation (3.1) with 

0 

	

1 	= 	(P1' n 	
for j > 1 

 

	

Therefore Xt 	= 	T1Xt-1 + et  

(1 -Bpi)Xt 	t 

(3.10) 

whence 	
Xt 	

(1-Bp
1
)-1  e

t 

Consequently, for B < 1, the series 

1 + Bpi  + B2  p1  + 

diverges for pi  > 1. Consequently,stationarity requires pi  < 1. 

A restriction must be enforced on the it weights in equation 
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(3.2) to ensure that a condition known as invertibility be satisfied 

for this process. This condition for a moving average corresponds 

to the stationarity condition for an autoregression but the conditions 

are essentially independent. Consideration of the particular case of 

equation (3.5) serves to illustrate this point. The series 

1 4- 8 B + 0
2
B
2 
+ 

diverges for B < 1 and tel > 1. However, equation (3.6) represents 

a stationary process for all values of 0 . The condition that the 

series it(B) converges for B < 1 is known as invertibility. 

3.1.3 The AR(p) Process 

The representations in equations (3.1) and (3.2) are of little 

practical use insofar as estimating the infinite series of parameters 

(1).
J 
 and n. V j is concerned. Finite data series may only allow reliable 

estimatesof(1).
J 
 forj<qandofic.

J 
 for j < p where q and p are generally 

not greater than 2. Consequently only the properties of such processes 

are of practical interest. 

Thespecialcaseeequation(3.2)where n.=OVj>p is 

termed an autoregressive process of order p: or more succinctly, an 

AR(p) process. Equation (3.2) may now be written as 

X
t 	

T
1 
Xt-1  + p2 Xt-2  + 	+ ppXt-p + et 	

(3.11) 

where the symbols Tv... pp  are now used to denote the finite set of 

parameters. Using the backward shift operator B the process may be 

written as 

(1 - p
1 
 B - p

2
B2 	p

p
BP)X

t 
= 	et 

 

or 	P(B)Xt 
	ct. 

Consequently, 	X
t 	= 	p (B) ct 
	 (3.12) 

1 
represents the output from a linear filter with .transfer function p- (B). 
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(a) Stationarity and Invertibility 

The finite set of parameters p,,...,p must satisfy a set of 

conditions for stationarity.. Factoring the polynomial p(B) yields 

p(B) 	= 	(1 - GIB) (1 - G2
B) ... (1 	G B) 

Thus, in equation (3.12), y
-1
(B) may be expanded in partial fractions to 

yield 

k. 
1 	p 	

1 
X
t 	

(B)et i 	
6 
t (1 - G.B) =1 	1 

Stationarity requires that p(B) be a convergent series for BI< 1; 

asaresult,IG.k 1 for i = 1,2,...p. Equivalently, the roots of 

p(B) = 0, referred to as the zeroes of the polynomial p(B), must lie 

outside the unit circle. The equation p(B) = 0 is known as the characteristic 

equation for the AR(p) process. 

.Since the series 

p(B) 	= 	1 -p1B-cp2B2 -...-y BP  

is finite, no restrictions are imposed on the parameters pi, i = 1,...p, 

to ensure invertibility. 

(b) Autocorrelation Function  

The autocorrelation function of the AR(p) process is a function 

of the set of parameters pi, i 	p, and satisfies the 

following recurrence relationship:.  

Pk 
= pp

k-1 
+ 
cp2k-2 

+ 	+ pppk_p  > 0 	(3.13 ) 

A solution of the difference equation (3.13) shows that in general, 

pk  consists of a mixture of damped exponentials and damped sine waves. 

The parameters pi, i = 1,2,...p are related to the autocorrelations 

pi, i = 1,2,...p through a set of linear equations as follows: 
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p1 
	 p

1 
+ p

2
p
1 
+ 	+ T

p
p
p-1 

P2 
	G'1  P1 

+ p
2 
+ 	+ pppp-2  

(3.14) 

• 

pp  = T1Pp-1 T2Pp-2 --- T 

which may be solved for the parameters pi, i = 1,2,...p. 

3.1.4. The MA(q)• Process 

Thespecialcaseofevation(3.1)wherec1).=0Vj>q is 

termed a moving average process of order q, or, more succinctly, a 

MA(q) process. Equation (3.1) may now be written as 

X
t 	

e t - 01et-1 
- 
02et-2 -e 	

(3.15) 
qEt-q 

where the symbols -01,..., -0q  are now used to denote the finite 

set of parameters. Again using the shift operator B the process may 

be written as 

Xt 	
(1 - 01B - 02B2 - 	-

q
Bc1) 

Et 

or 	X
t 	

0(B) et  

Consequently Xt  represents the output from a linear filter with 

transfer function 0(B). 

(a) Stationarity and Invertibility 

The series 

0(B) 
	

1 - 0
1 
 B - 0

2
B
2 
- 	0 B 

is finite and consequently no restrictions are required on the parameters 

of the MA(q) process to ensure stationarity. However, the set of 

parameters E)., i = 1,2,...,q must satisfy a set of conditions to 

ensure invertibility. The polynomial 0(B) may be factored as follows 

0(B) 	= 	(1 - HOB) (1 - H2B) 	(1 - H B) 

=-1 (1 _ H.B) 
;= 
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Thus, in equation (3.16), 0
-1
(B) may be expanded in partial fractions 

to yield 

m. 
q 	

(1 - H.B) 't j=1 

Stationarity requires that 0
-1 
 (B) form a convergent series for 

IBI.<1:asaresult,(H.1< 1 for j = 1,2,...,q. This is equivalent 

to the specification that the roots of 0(B) = 0, referred to as the 

zeroes of the polynomial 0(B)., must lie outside the unit circle. The 

equation 0(B) = 0 is known as the characteristic equation for the 

process. 

(b) Autocorrelation Function  

The autocorrelation function of the MA(q) process is given as 

Pk 

-0
k 
+ 010k+1 + 	+ 0

q-k
0
q 

1 + 02 + 	+ 02 
k = 1,2,...q 

0 	k> q 
	 (3.16) 

and is a non linear function of the parameters 0i, i = 1,2,...q. Apart 

from the case where q = 1, equation (3.16) with k = 1,....,q, must 

be solved iteratively for the parameters 0., j = 1,2,...,q. 

3.1.5 The ARMA (p,q) Process 

Within section (3.1.1) it was noted that an infinite number of 

autoregressive parameters is required to achieve an equivalent 

representation of an MA(1) process. Similarly, an infinite number of 

moving average parameters is required to characterize an AR(1) process. 

Consequently, if a process were a mixture of autoregressive and moving 

average terms, then a minimal parameterization of such a process could 

not be obtained through either an AR(p) or an MA(q) process. Hence, a 

process consisting of a mixture of moving average and autoregressive 

terms must be considered. The process 
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X
t 	y1Xt-1 + 	+ 

ypXt-p 
+ e

t 
- 0

1
e
t-1 	

. . - 0
q
c
t-q 

which may be expressed as 

(1 - yiB - y2B2 	- ypBP)Xt  = (1 - 01B - 02B2  - 

or 	cp(B)Xt  = 0(B)et  

(3.17 ) 

- 0 Bc1)e 
q ' t 

(3.18) 

is termed a mixed moving average autoregressive process of order (p,q) 

which may be abbreviated to ARMA(p,q). Dividing through in equation 

(3.18) by y(B) yields 

xt 	
e(B) 
y(B) t 

suggesting that the ARMA (p,q) process may be considered as the output 

from a linear filter with transfer function 0(B) 
 when the input is 

y(B 

white noise et. There are two equivalent conceptions of the process: 

(a) an AR(p) process 

y(B)X
t 	

a
t 

where at  follows an MA(q) process a
t 	

0(B)e 
't 

(b) an MA(q) process 

xt 	= 	e(B)b
t 

where b
t follows an AR(p) process p(B)bt 

Consequently the ARMA (p,q) process may also be thought of as the 

output from two linear filters in series with transfer functions 

p
1
(B) and 0(B) when the input is white noise e

t. The order of the 

filters is immaterial.. 

(a) Stationarity and Invertibility 

The existence of moving average terms on the right of equation 

(3.17) does not affect the argument established in section (3.1.4) for 

stationarity of a process, provided that the roots of the characteristic 

equation 



110 

p(B) 	= 	0 

lie outside the unit circle. Similarly, the roots of 

0(B) 	= 	0 

must lie outside the unit circle to ensure invertibility of the process. 

Thus, the stationarity and invertibility conditions are essentially 

independent for an ARMA (p,q) process. 

(b) Autocorrelation  Function 

The autocorrelation function for an ARMA (p,q) process is defined 

as 

Pk 
	9)1Pk-1 + T2Pk-2  + 	TpPk-p 	

k > q + 1 
	

(3.19) 

or 

p(B)pk  = 0 

Consequently, for an ARMA (p,q) process, the values of the q autocorrelations 

pq, pq_1,...,pi  will depend on the parameters 0j, j = 1,2,...,q and 

Ti i = 1,2,...,p. Further, the p autocorrelations pq' 
p
q-1q-

104,
1 

provide the necessary starting values for the difference equation 

(3.19), which then determines the behaviour of the autocorrelation function 

entirely for higher lags. If (q-p) < 0, the entire autocorrelation 

function pk  for k = 0,1,2... will consist of a mixture of damped 

exponentials and/or damped sine waves, whose nature is determined by 

the polynomial p(B) and the starting values. If, however, (q-p) ) 0 

there will be(q-p),initial values p1, p2,...,pq_p  which do not follow 

this general pattern. 

Thus, in general, the parameters pi, i = 1,2,...,p may be obtained 

through solving a set of linear equations obtained from equation (3.19) 

with k = q+1, q+2,...,q+p. The parameters 0i may then be obtained 

through solving a set of q non linear equations in terms of pi, p2,...,pq, 

where pi , p2,...00,  are functions of the parameters pi  and Ai. 
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3.1.6 The ARIMA (p,d,q) Process  

The stationary ARMA (p,q) process may be operated on to obtain a 

non-stationary process which still involves only (p + q) parameters. 

This may be achieved by applying the simple summation operator 

SXt 	
X
t 
 + X

t-1 
 + 

t 
E Xh 

h.-co 

successively to the Xt  values which follow an ARMA (p,q) process. 

Reapplication of the operator s yields 

s2Xt 	SXt + sX
t-1 

 + 

t 
E 	E Xh  

i=- cx,h=- 00 

The operator s may be applied d times to the process Xt; this in 

turn implies that if the difference operator 

- 
V = 1  

is applied to the process 

zt 
	s

d
Xt 

d times, then the stationary process 

0 cp(B)X
t 	

(B) Et 
 

is obtained. Consequently, the process Z
. 

may be defined as 

T(B)V
d
Z
t 
	0(B) e t 	 (3.20) 

Equation (3.20) is termed an autoregressive integrated moving average 

process, or more succinctly, an ARIMA (p,d,q) process. The general 

ARIMA (p,d,q) process subsumes AR(p) models, MA(q) models, ARMA(p,q) 

models (d = 0), and the integrated forms of all three, and is represented 

in block diagram form in figure(3.1)as a succession of filtering operations 

on white noise.. The mathematical-statistical properties of the non- 
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Figure (3.1).Block diagram of ARIMA (p,d,q) process. 
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Figure (3.2) Plot of 1000 points from an ARIMA (1,0,0) or lag-one Markov 
process with p = 	= 0.3. The sample has been standardized 
to have zero mean and unit variance. 

v 

APIMAC1,0,0D 	PHI1 = 0.80 

Figure (3.3) Plot of 1000 point n from an ARIMA (1,0,0) or lag-one Markov 
process with y p1  = 0.8. The sample has been standardized 
to have zero mean and unit variance. 
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stationary ARIMA (p,d,q) process with d i 0 are unmanageable as 

these properties are a function of time. While a non-stationary 

ARIMA process may be used for forecasting applications,such a process 

cannot be used to generate synthetic sequences (Watts, 1972). 

While there may be physical grounds for claiming that annual 

streamflow should not be considered stationary, especially over long 

time spans, only stationary models can be used for generating synthetic 

sequences; in fact stationary processes can often model what appear 

to be non-stationary effects. This stems from the fact that there is 

no sudden transition from stationary to non-stationary behaviour; for 

example, a stationary ARIMA (1,0,1) process merges into a non-stationary 

ARIMA (0,1,1) across a boundary defined by the stationarity condition 

for the former process. As a result, finite realizations from either 

process with parameter values near the boundary may be statistically 

inseparable. Further, stationary ARIMA (p,d,q) processes (d = 0) with 

parameter, values near the boundary.  frequently possess autocorrelation 

functions which damp out rather slowly, suggesting that such processes 

might be useful in modelling long-term persistence. The simplest 

model in the ARIMA class which possesses such an autocorrelation 

function is the ARIMA (1,0,1) process. Closely related to the ARIMA 

(1,0,1) process is the ARIMA (1,0,0) or lag-one Markov process, which • 

has been unsuccessful in accounting for Hurst's findings. 

The ARMA notation is sufficient to describe stationary mixed 

models; however, as non-stationary ARIMA models will be referred to 

occasionally, the more general ARIMA notation will be adhered to. 

3.2 The ARIMA (1,0,0) Process  

The first order autoregressive or AR(1) process is defined as 

1
X
t -1 

+ e
t 
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or 	(1 - Byl)Xt  (3.21) 

Thus, 

y(B)Xt  

Equation (3.21) is frequently referred to as a lag-one Markov process. 

3.2.1 Parameter Space 

From the conditions established for stationarity in section 

(3.1.4) the expansion 

y-1(B) 	= 	1 + y
1  
B + cp2B

2 
+ 

must form a convergent series for B < 1 to ensure stationarity. 

Consequently, the corresponding parameter space is 

-1 <T1  <1 

As already noted, no conditions are imposed on AR(p) processes to 

ensure invertibility. 

3.2.2 Autocorrelation Function 

The autocorrelation function of the ARIMA (1,0,0) process 

satisfies the difference equation (3.13) with p = 1, resulting in 

Pk 
	

= 	T1  Pk-1 
	k> 0 

which reduces to 

P1 	T1 

Pk 	1 	k > 0 	(3.22) 

Thus, the autocorrelation function decays exponentially and when 

y1 < 0, 'oscillates in sign. Consequently y1 defines completely the 

shape of the autocorrelation function for higher lags, which greatly 

restricts the range of shapes that the function may assume. As a result 

only persistence of a special kind may be modelled adequately with 

this process. 
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3.2.3 Sample Functions  

Sample function plots of 1000 values standardized to have zero 

mean and unit variance for pi  = 0.3 and pi  = 0.8 are presented 

in figures (3.2) and (3.3) respectively. The high frequency behaviour 

in figure (3.2) is not unlike that encountered within annual streamflow 

sequences where an average value of pi  = pi  is about 0.3. However, 

the distinct absence of low frequency behaviour in figure (3.2) is 

noticeable, and while figure (3.3) portrays these effects, the "local" 

behaviour of the series is now too smooth to adequately represent annual 

streamflow. 

3.2.4 Behaviour of h 

As previously noted, a linear stationary stochastic process which 

has R/S-,n.
h  with h a constant in the range 0.5 < h < 1, possesses a 

unique autocovariance function i.e. that of dfGn. Accurate approximations 

to dfGn such as the type 1 proposed by Mandelbrot and Wallis (1969a) 

ensure that Hurst's law with 0.5 < h < 1 is closely followed within a 

finite transient which can be made arbitrarily long. Other generating 

processes which seek to model Hurst's law must be viewed in the light 

of how well the autocorrelation function of dfGn is approximated or 

equivalently, how well Hurst's law is modelled. In addition, some 

attention must be paid to ensure that the high frequency properties 

of observed streamflow are reproduced. 

The lag-one Markov process is traditionally fitted in the high 

frequency domain using an estimate of p1 , the lag-one autocorrelation 

coefficient which specifies the autocorrelation function uniquely. 

For values of p1  representative of annual streamflow, R/S grows faster 

5 
than n 

0. for small n and is a curvilinear function of n, but quickly 

0.5 
assumes proportionality to n 	thereafter. Even within the short 
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transient, Hurst's law is not closely followed; in fact, if this 

transient is described functionally by Hurst's law, h is then represented 

as varying with n. 

The Hurst estimator of h, K, was used by Matalas and Huzzen (1967) 

to define the expected value of K as a function of n and p1  for the 

lag-one Markov process using Monte Carlo simulation, and their results 

have already been reproduced in table (2.1). For values of p1  which 

are representative of annual streamflow, E[K]n  decreases monotonically 

towards 0.5 with increasing n, thus reflecting the short memory nature 

of the process. The value of ELK_In  for any particular n cannot be 

increased without increasing p1  which in most situations will result 

in the distortion of the high frequency characteristics of observed 

streamflow. 

The inability of the lag-one Markov process to model observed low 

frequency and high frequency properties of a record may be emphasised 

through reference to the observed annual flows of the Colorado River 

at Lees Ferry, where for n = 61 years, p1  = 0.22 and K = 0.82. Wallis 

andMatalas (1971) have pointed out that it is extremely unlikely that 

such estimates of K and p1  could be provided by a realization from a 

Markovian generating mechanism. In general, either p1  or K may be 

preserved in synthetic sequences but not both. 

3.2.5 Formulation for Synthetic Hydrology 

The lag-one Markov process has been extensively documented for 

synthetic hydrology by Matalas (1967) and Fiering and Jackson (1971), 

and a brief review of this documentation has been presented in 

section (2.2). 
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3.3 The ARIMA (1,0,1) Process  

The ARIMA (1,0,1) proc'ess incorporates one autoregressive term 

and one moving average term and may be defined as 

	

X
t 
- T

1
X
t-1 	= 	c

t 
 - 0 E 

1 t-1 

	

(1 - BT1)Xt 	= 	(1 - B0
1) e t 

	

T(B)Xt 	
0(B) e t  

(3.23) 

Conceptually, the process may be formulated in either of two ways: 

(a) as an ARIMA (1,0,0) process applied to the process at  as: 

X
t 	= 	

T
1
X
t-1 

+ a
t 

where 

a
t 	

6 - 0 c 
t 	1 t-1 

(b) as an ARIMA (0,0,1) process applied to the process b as 

X
t 	

b
t 
-

1
b
t-1 

where 

b
t 	1

b 	+ t-1 	t 

Thus, the mixed ARIMA (1,0,1) process may embody features of both the 

ARIMA (1,0,0) process and the ARIMA (0,0,1) process, thereby allowing 

the combination of low frequency properties of the former process 

with high frequency properties of the latter process. 

3.3.1 Parameter Space  

The stationarity condition for the ARIMA (1,0,1) process is 

identical to that for the ARIMA (1,0,0) process: i.e., 

-1 < T1  < +1 

'while the invertibility condition is as for the ARIMA (0,0,1) process: i.e., 

-1 .< 0
1 
< +1 

The parameter space is represented as a square as shown in figure (3.4). 
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For convenience the subscripts on yi  and 01 
will now be dropped. 

3.3.2 Autocorrelation Function  

The autocorrelation function for the ARIMA (1,0,1) process will, 

for lag-one, be determined by p and 0 jointly, as 

P1 
- 0) (1 - p0)  

1 + 02 - 2y0 
(3.24) 

whereas p determines the behaviour of pk  for k > 2 as 

Pk 
	

Cci Pk -1 
	k> 2 
	

(3.25) 

Depending on where p  and 0 fall within the parameter space shown in 

figure (3.4) the autocorrelation (a.c.) function displays different 

behavioural patterns and may conveniently be examined within the subregions 

1-6. The process offers considerable additional flexibility over 

the ARIMA (1,0,0) process with respect to the shape of the a.c. function. 

In general, the absolute value of the a.c. decays exponentially from 

.p
1 

onwards. For fixed p, 0 defines p
1 

and consequently determines the 

high frequency behaviour of the process. The sign of p1  is determined 

by the sign of (y-0) and dictates from which side of zero the exponential 

decay takes place. The line p = 0 represents the special case where . . 

the process degenerates to white noise. 

Subregion 1: 

Herein, while p is positive the sign of (y-0).is negative and 

consequently, so is the a.c. function for all lags. The process is 

consequently rich in high frequencies: however, high values of p 

allow a slow decay in the a.c. function thereby allowing a large 

"effective memory". 

Subregion 2:  

Within this area, p is negative and thus defines an oscillatory 

geometric decay in p
k 
for k > 1. p

1 
is always negative as dictated 
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Figure (3.4) Parameter space for the stationary invertible ARIMA (1,0,1) process. 

1 
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WHITE NOISE 
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WHITE NO 

Figure (3.5) Plots of 1000 points of discrete white noise. Each sample of 
1000 points has been standardized to have zero mean and unit 
variance. 

+1 
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by the sign of (9-0). Approaching the boundary p 	-1 the a.c. function 

decays slowly from the value of p1  which is jointly defined by p  and 8. 

Subregion 3: 

Here, 9 and 0 are both negative where 9 < 8 . As a result the 

process is highly oscillatory and thus rich in high frequencies; on 

the boundary 9 . -1 the a.c. function fails to damp out. 

Subregion 4:  

p > 0 and as a result p1 
is positive. However, the sign of 

9 dictates an oscillatory decay for the a.c. function and the resulting 

process is rich in high frequencies. 

Subregion 5:  

The shape of the a.c. function here is not unlike that of the 

ARIMA (1,0,0) process; high values of 9 result in high values of pi , 

which is positive. 

Subregion 6:  

This subregion is of particular interest from the viewpoint of a 

plausible model of annual streamflow. For all values of p  and 0, p1 

is positive and may assume any value in the range 0 < p1  < 9'. High values 

of 9 and 8 combine to yield low values of p1. For p fixed, decreasing 

e results in increasing p1. For 8 fixed, increasing 9 results in 

the autocorrelation function dying out more slowly and hence in a 

longer "effective memory". From the standpoint of modelling low and 

high frequency effects a desirable blend may be defined here. For example, 

. 0.90 and 8 = 0.80 combine to yield p1  = 0.14, Long run or low 

frequency effects result from the high value of 9 while pi preserves 

high frequency effects. 
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3.3.3 Sample Functions  

In order to illustrate the nature of the ARIMA (1,0,1) process 

graphically, a value of p = 0.94 has been chosen and successively 

decreasing values of 0 combined with p to generate sample function 

plots of 1000 values standardized to have zero mean and unit variance. 

The case of p = 0.94 and 0 = 0.94 in figure (3.5) corresponds to 

white noise and is included as a starting point. Neither low frequencies 

or high frequencies preponderate, the distribution of variance being 

independent of frequency. However, as 8 is decreased, pi  increases, 

and high frequencies gradually give way to low frequencies. Graphically, 

figures (3.6-3.9) illustrate ithe gradual emergence of low frequency 

behaviour as 0 decreases, and the mixing of low frequency and high 

frequency behaviour which is generally necessary to model annual 

streamflow. As 8.40 however, (3,1-,  p and the process degenerates into 

a "locally smooth" ARIMA (1,0,0) process. As p decreases the low 

frequencies give way to "medium" frequencies; examples of this behaviour 

are given in figures (3.10) and (3.11). The range of values of p1  

which may be modelled decreases as p decreases; p, in fact, represents 

an upper limit on pi  in the case where 0 = 0. In general, the sample 

functions of the ARIMA (1,0,1) process for p > 8 > 0 are very similar 

to those for filtered dfGn approximations with comparable values of p 

3.3.4 Behaviour of h  

The ARIMA (1,0,1) process is within the "Brownian domain of 

attraction", and theoretically, h equals 0.5 for this process. However, 

finite memory approximations to dfGn also fall within the Brownian domain. 

Nevertheless, the filtered approximation to dfGn developed by Matalas 

and Wallis (1971b)has the parameter h explicitly incorporated, thus 

ensuring that R/S--,nh  with 0.5 < h < 1 within a finite transient. 



122 

1 	 1000 
ARIMAC1,0,1) PHI1 = 0.94 THETA1 = 0.92 

1 	 1000 
PHI1 - 0.94 THETA1 = 0.90 

1 	 1000 

.PIMAC1,0,1) PHI1 = 0.94 THETA1 = 0.88 

Figure(3.6) Plots of 1000 points of an ARIMA (1,0,1) process with p = 0.94 
and 6= 0.92, 0.90, 0.88. Each 1000 points has been standardized 
to have zero mean and unit variance. 
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1000 

1) PHI1 = 0.94 THETA1 = 0.86 

1000 

fr,'IMAC1,0,1) PHI1 = 0.94 THETA1 = 0.84 

1000 

ARIMA(1.0,1) PHI1 = 0.94 THETA1 = 0.82 

Figure (3.7) Plots of 1000 points from an ARIMA (1,0,1) process with cp= 0.94 
and 0 = 0.86, 0.84, 0.82. Each sample of 1000 points has been 
standardized to have zero mean and unit variance. 
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1 
	

1000 

ARIMAC1,0,1) PHIl = 0.94 THETA1 = 0.80 

1000 

ARIMAC1,0, 	PHI1 = 0.94 THETA1 = 0.78 

1 
	

1000 

PHI1 = 0.94 THETA1 = 0.76 

Figure (3.8) Plots of 1000 points of an ARIMA (1,0,1) process with p 	0.94 
and 0 = 0.80, 0.78, 0.76. Each sample of 1000 points has been 
standardized to have zero mean and unit variance. 

3 
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1 
	 1000 

AR1MA(1,0,1) PHI1 = 0.94 THETA1 = 0.74 

1 
	 1000 

ARIMAC1,0,1) PHI1 = 0.94 THETA1 = 0.72 

1000 

ARIMA(1,0,1) PHI1 - 0.94 THETA1 = 0.70 

Figure (3.9) Plots of 1000 points of an ARIMA (1,0,1) process with p = 0.94 
and 6 = 0.74, 0.72, 0.70. Each sample of 1000 points has been 
standardized to have zero mean and unit variance. 



126 

Figure (3.10) Plot of 1000 points from an ARIMA (1,0,1) process with p= 0.85 
and a = 0.70. The sample has been standardized to have zero 
mean and unit variance. 

Figure (3.11) Plot of 1000 points from an ARIMA (1,0,1) process with p = 0.70 
and 0 = 0.50. The sample has been standardized to have zero 
mean and unit variance. 
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Provided that the sample size n is less than the memory of the process, 

sample estimates of h will have h as their population value. Thus, 

any process which approximates Hurst's law adequately within a finite 

span may also be considered to have an underlying (although explicitly 

unknown) population value of h where again 0.5 < h < 1. In the 

subsequent,analysis of the behaviour of h for the ARIMA (1,0,1) 

process, h is viewed in this latter sense. 

Agreement with Hurst's law  

Following Mandelbrot and Wallis (1969b), a simulation approach 

was adopted to examine the ability of the ARIMA (1,0,1) process to 

model Hurst's law accurately for values of n comparable with the 

longest geophysical records available. A detailed account of the 

simulation experiments conducted for this latter purpose has been 

presented by O'Connell (1971); only a brief description will be_- 

furnished here. A range of values of p and 8, p > 8, yielding pertinent 

values of p1  was selected, samples of length 9000 were generated for 

each combination of p and 0 and "pox diagrams" were constructed after 

the fashion of Mandelbrot and Wallis (1969b). The least squares 

procedure used by - Wallis.and Matalas (1970) for estimating the slope of 

a"pox diagram"was adopted, with the resulting estimate of h denoted 

by H. .0ver 250 "pox diagrams" corresponding to a number of combinations 

of p and 0 were constructed, and good overall agreement with Hurst's 

law was observed up to moderate to large values of n; figures (3.12)- 

(3.16) illustrate the agreement. Some curvature is however evident in 

the "pox diagrams" when p is greater than about 0.95. From the definition 

of the autocorrelation function. of the process for k > 2 given by 

equation (3.25), p obviously controls the "effective memory" of the 

process, which corresponds to the value of the lag, k, at which pk  

becomes effectively zero. As p  decreases, the values of R/S in the 
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Figure (3.12) Pox diagram of ln(Rn/Sn) versus ln(n) (time) for a series of 
9000 values from an ARIMA (1,0,1) process with T = 0.85 and 
e = 0.70. The mean values of Rn/Sn  have been plotted as little 
squares. Note that pl is designated as R1. 

The selected values of subsample lengths were 3,4,5,7,10,20,40, 
70,100,200,400,700,1000,2000,4000,7000,9000. For every value 
of ns < 500, the subsample starting time was made equal to 1, 
100, 200,..., 1400. For every value of ns  > 500, the subsample 
starting time was made equal to 100, 2000,..., 8000 or 
(9000 - ns + 1) whichever was the smaller (as used by Mandelbrot 
and Wallis 1969b). 
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Figure (3.13) Pox diagram of ln(Rn/8 versus ln(n) (time) for a series of 
9000 values from an ARYMA (1,0,1) process with p = 0.97 and  
e = 0.70. Details are as for figure (3.12).. 
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Figure (3.14) Pox diagram of ln(Rn/8n) versus ln(n) (time) for a series of 
9000 values from an ARIMA (1,0,1) process with T = 0.95 and 
0 = 0.85. Details are as for figure (3.12). 
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Figure (3.15) Pox diagram of ln(Rn/811) versus ln(n) (time) for a series of 
9000 values from an ARIMA (1,0,1) process with p = 0.97 and 
6 = 0.85. Details are as for figure (3.12). 
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Figure (3.16) Pox diagram of ln(Rn/Sn) versus ln(n) (time) for a series of 
9000 values from an ARIMA (1,0,1).  process with p = 0.99 and 
8 . 0.95. 	Details are as for figure (3.12). 



133 

"pox diagrams" tend to "tail off" at smaller values of n. The value 

n at which a deviation from Hurst's law occurs is denoted by nm  and 

is intimately related to the "effective memory"; for smaller values of 

H, n
m
, in general, tends to exceed the "effective memory"; however, 

for larger values of H, n
m 
approaches the "effective memory"; a 

similar result has been observed by Mandelbrot and Wallis (1969b) for 

the type 1 approximation to dfGn. 

While it must be realized that h equals 0.5 ultimately for the 

ARIMA .(1,0,1) process, figures (3.12) - (3.16) illustrate that for 

n < n
m
, H > 0.5, where n

m 
may under certain conditions be as large 

as 10,000. Consequently, the ARIMA (1,0,1) process offers an explanation 

of Hurst's findings in terms of long-term persistence typified by 

values of p approaching unity. The question as to whether or not h 

ultimately assumes a value of 0.5 in nature must await the availability 

of longer geophysical records. 

The foregoing explanation of Hurst's findings has been in terms 

of H, which is an estimator of h. Mandelbrot and Wallis (1969d) have 

verified Hurst's findings using H rather than K which Hurst himself 

used as an estimator. However, even for very large samples Wallis 

and Matalas (1970) have shown that H is a biased estimator of h for 

a normal independent process, a Markov process and a type 1 approximation 

to dfGn. Based on .the hypothesis that the generating mechanism in 

question is that of the real world, all estimates of h obtained from 

historic sequences must be treated as biased and consequently any 

explanation of Hurst's findings must be offered in terms of biased 

estimates of h. 

In an attempt to define h for the ARIMA (1,0,1) process for 

n < n
m 
an estimate, H, was derived as the mean of ten values of H, 

each defined as the slope of a "pox diagram" for n < nm, n =1000; such a 
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definition combats to some extent the large sampling variability 

exhibited by H, even for very large samples (Wallis and Matalas,1970). 

The results of these simulations are presented in table (3.1). There 

is evidence of some residual bias in H even for such large samples; 

for p = 0, h = 0.5 while H > 0.5. For a particular choice of p and 

8, Wallis (1971) illustrated the nature of the variation of the 

estimated expected value of H with n; from figure (3.17), E[H]n  

obviously changes with n. For smaller values of n, the variation in 

E[H]
n 

may be attributed to bias inherent in the estimator H; while for 

larger n a gradual approach to h = 0.5 is observed. This approach 

to h = 0.5 apparently commences at smaller values of n than individual 

"pox diagrams" suggest. A type 1 approximation to dfGn with h 	0.8 

and M = 500 would produce a similar plot, as. H is biased downwards 

when h > 0.7. However, if the memory parameter M is extended towards 

infinity then H tends towards its asymptotic value of h as n -4 M. 

Where design horizons of the order of 50 - 100 years are under consideration, 

then it should be sufficient to use approximations to dfGn with memories 

of the order of a few hundred years for generating synthetic sequences. 

For this purpose the ARIMA (1,0,1) process would appear to be quite 

sufficient. Extensive inspection of "pox diagrams" suggests that 

the best agreement with Hurst's law is achieved with values of p in 

the range 0.80 - 0.95, with the value of n
m 
generally being greater 

than 500. For any particular value of p, the value of nm 
decreases 

as 8 decreases, and the approximation to dfGn becomes poorer. 

3.3.5 Small Sample Properties of Estimates'of
2
, p

1 
and h 

For the purpose of generating synthetic sequences which reproduce 

observed long run effects, an estimate of h must be provided from an 
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p .99 .98 .97 .95 .90 .85 .8o 

0 	= .95 
pi  .11.1 .051 .026 .000 -.038 -.076 -.094 

R .737 .676 .634 .576 .490 .439 .403 

8 	. .90 
p1 .350 .205 .139 .073 .000 -.042 -.076 

R .839 .781 .737 .673 .576 .515 .472 

8 	. .85 
p1 .562 .384 .287 .179 .061 .000 -.044 

H .892 .84o .800 .738 .639 .576 .529 

0 	= .8o 
p1 .706 .540 .433 .300 .140 .057 .000 

R .92o .875 .839 .782 .687 .623 .576 

8 	= .75 
p1  .797 .659 .558 .418 .229 .126 .055 

H .937 .897 .864 .812 .723 .661 .614 

8 	= .70 
p1 .856 .745 .657 .523 .322 .203 .119 

R .947 .911 .881 .833 .750 .690 .645 

8 	= .65 
p1 .895 .807 .732 .612 .411 .282 .188 

H .953 .92o .892 .848 .770 .714 .670 

e 	= .6o 
p1 .921 .851 .789 .684 .493 .360 .260 

H .956 .926 .900 .858 .785 .732 .691 

(3 	= 	.55 
P1  .939 .883 .832 .742 .566 .435 .331 

H .959 .929 .904 .866 .797 .747 .707 

0 	= .5o 
P1 .952 .907 .864 .788 .629 .503 .400 

R .96o .932 .908 .871 .806 .759 .721 

Table (3.1) : Values of R and p1  for a selection of values of p  and 8 

Each value of H is the mean of ten values of H, each derived as the slope 

of a least squares line fitted to the mean values of Rn/81,1  for values of 

ns< 1000 given in figure (3.12). The total sample size in all cases was 9000. 
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historic sequence of length n. However, both K and H are known to 

be biased estimators and consequently, any historic record estimate 

of h requires a bias correction based on the assumption of a particular 

generating mechanism. In the case of approximations to df(n, the 

analytic derivation of small sample bias corrections for estimates of 

h would appear to be highly unlikely. The biases in estimates of h 

may be quantified through Monte Carlo simulation only if h itself 

is known; however, simulation experiments with accurate approximations 

to dfGn involve a prohibitive investment in computer time. In addition, 

the application of bias corrections sometimes implies a loss of 

efficiency in an estimate. 

The problem of bias corrections may be circumvented through 

defining E[K]n  or E[H]n, the expected value of K or H in samples of 

size n for a process. Preservation of an estimate of h within 

synthetic sequences then involves matching the observed estimate of h, 

either H or K, with E[H]n  or E[K]n  for the process. Invariably, 

Monte Carlo simulation will be necessary to define E[K]n 
or E[H]

n 
for 

a process, which is feasible in the case of the ARIMA (1,0,1) process 

because of its simplicity. The flexibility of the ARIMA (1,0,1) process 

also allows the preservation of estimates of p1  so that both low and. 

high frequency properties of observed sequences may be modelled. 

In defining the small sample properties of estimates of h for a 

process, a choice must be made between H and K. In general, H 

exhibits smaller bias but larger variance than K, so a trade-off 

between bias and variance is implied, and, in the absence of a loss 

function, no clear recommendation can be made. Mandelbrot and Wallis 

(1969d)shave pointed out the deficiencies in K; however, H alSo suffers 

from a major deficiency in that no universal rule exists for defining 

the set of sub-series to be used, or for estimating the slope of the 
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'pox diagram'. However, K does not suffer from such a deficiency and is 

also quicker to compute. Accordingly, K was used in the simulation 

experiments to define E[K]
n 

for the ARIMA (1,0,1) process. 

The simulation experiments for defining E[K]
n 

were extended to large 

values of n to help in assessing the quality of the approximation to dfGn 

afforded by the ARIMA (1,0,1) process for various values of p and 8. 

Samples of size n = 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000 were 

generated and estimates of the variance 6
2 
and the lag-one autocorrelation 

pi  in addition to K were derived from each sequence. The variance 
62 

was 

estimated as 

n11 
	 n 
 E (X. - 5-0

2 

i=1 

but has since been shown to satisfy 

2 	
2
P1 	r  n(1- ) - (1-e) 

]] E[O]n  = 	[1 n(n-1) L 	0_0)2 

(3.26) 

(3.27) 

where p1  is defined by equation (3.24). The lag one autocorrelation pi  

was estimated as 

	

n-1 	n-1 	n-1 	n-1 
1  

[ E x.1  - n-1 	1 
z x.1 	[ E Xi+1 - n-

1 
1 .

E X
i+1
]  

- 
A 	i=1 	i=1 	i=1 	1=1  

	

P1 -li n-1 	  
[ E (X. - 	1 	E X.ff][.  E (X. 	- 

i n-1 	i 

	

, n-1 	, n-1 

1+1 n-1 i+1 

1 n-1 
E X. )

2
] 

	

i=1 	i=1 	i=1 	i=1 

Estimates of E[K]n, E [fVn  and E[S2], denoted by EIK111, 3, [i),I]n  and E[S2]n, 

were then derived by averaging the respective statistics over the total 

number of realizations. 

For n < 100, 10000 samples of size n were generated; stability 

criteria necessitated such a large number of realizations which emphasizes 

the tremendous variability of statistics derived from small samples in 

the presence of low frequency effects. Even with 10000 realizations, 

(3.28 



139 

slightly unstable estimates were sometimes noted. For n > 100, extremely 

stable estimates were not required, and 100 realizations were generated 

to provide an overall assessment of the quality of the approximation to 

dfGn. 

The particular case of p = 0 or white noise was again used as a 

, 	1 starting point, and ELKj
n, ELp1

j
n 

and ELS2  j
n are presented in graphical 

form in figure (3.18). The bias in E[K]
n is evident, while ELp1

j
n 
is 

an approximation of 

r ELpA  i jn 	= 1  
(n-1) (3.29) 

which was derived by Anderson (1942). E[S ]11  is unbiased. The results 

of the experiments for p=0.98 and a series of values of 0 are presented 

in figures (3.19 - 3.21). Figure (3.19). corresponds to p=0.98 and 0=0.94, 

which is quite close to white noise; nevertheless, comparison with figure 

(3.18) shows that a distinct difference is observed in the behaviour 

of K for both processes. For p=0.98 and 0=0.94, p1=0.075; hence, even 

with minimal lag-one autocorrelation, the effects of long-term 

persistence are decidedly evident. A lag-one Markov process with p=p1=0.075 

would yield results indistinguishable from figure (3.18) because of 

the rapid decay of the autocorrelation function. It should be noted that 

in.figure (3.19) the values of K do not tend to 0.5; this observation 

is in line with the conclusion in the preceding section that for smaller 

values of h, the value of n at which a tailing off occurs is considerably 

in excess of n
m, the value of the lag at which the autocorrelation pk 

becomes effectively zero. Allowing for slight instability in some of 

the estimated expected values, slight biases downwards are noticeable in 

RS2]
n and in itt/D‘ n for small n, while E[K]n is relatively constant with 

n. However, because K is biased, this does not necessarily mean that 

h is constant with n. Nevertheless, K is known to be unbiased in 

the neighbourhood of 0.7, so the approximation to,dfGn is probably 
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quite reasonable. The results for p = 0.98 and 0 = 0.88 (figure (3.20)) 

illustrate that higher values of E[K]
n are now obtained, and that the 

biases in S , 
p1  and K are more severe which is a direct consequence of the 

increase in low frequencies. Because of the difficulty of assessing the 

bias in K, little can be inferred about the behaviour of h for the process. 

The biases in 	
1]n and E[S2]n decrease rather slowly with n. A further 

decrease in 8 to 0.76 yields a somewhat more extreme process with p1  = 0.630; 

from figure (3.21) the biases in 	and E[S2]n  are extremely severe 

and have barely disappeared at.n = 2500. Slightly higher values of K are 

observed than for 0 = 0.88; for n = 100 and 0 = 0.76, RK]n  = 0.807 while 

for n = 100 and 0 = 0.88,:aKln  = 0.729. A type 1 approximation to dfGn 

with h = 0.9 and M = 500 would probably produce a similar plot, although 

nothing definite can be said of the quality of the approximation to dfGn 

afforded by the ARIMA (1,0,1) process in this case. The experiments 

carried out in section (3.3.4) suggest the quality of the approximation 

diminishes when p exceeds' 0.95,, particularly for large values of p1. 

The results of a further set of experiments for p = 0.92 and 8 = 0.82, 

0.76, 0.60 are presented in figures (3.22 - 3.24). Inspection of figure 

(3.22) corresponding to p = 0.92 and 0 0.82 shows that EIK]n  is 

relatively constant when n <500, and is close to 0.7. As K is known to 

be unbiased in the neighbourhood of h = 0.7, the ARIMA (1,0,1) process 

provides a good approximation to dfGn in this case. Comparison of a 

process which has p = 0.92 and 0 = 0.76 (figure (3.23)) with a process 

with p = 0.98 and 0 = 0.88 (figure (3.20)) on the basis of approximately 

equal values of p1  shows that as p decreases, so too does E[K]n, and the . 

biases in E[S2]
n and 	with the latter statistics attaining their 

asymptotic values much more quickly. Figure (3.24) based on p = 0.92 and 

0 = 0.60 shows that as 0 decreases, the turnover point in the plot 

of E[K]
n 
against n tends to occur at smaller values of n. Nevertheless,  
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the process is still adequate for generating synthetic sequences of 

lengths used in design situations. 

A further decrease in p results in a smaller effective memory (figure 

3.25), and the ARIMA (1,0,1) process starts to exhibit some of the charac-

teristics of the lag-one Markov process, and E[Kln  is now a monotonic 

decreasing function of n. A type 1 approximation to dfGn with a value of 

h of the order of 0.6 would probably produce a similar plot to figure (3.25) 

for values of n up to about 500. Nevertheless, comparison of figure (3.26) 

which corresponds to p = 0.82 and 6 = 0.58 with a plot for a lag-one Markov 

process (figure (3.27)) on the basis of approximately equal values of pi  

illustrates that higher values of E[K1
n 
are observed for the ARIMA (1,0,1) 

"•-•  
process, with the biases in E[S

2 
 1
n 
 and E 0 

1  1  n 
 disappearing more slowly, 

emphasising the presence of low frequencies. 

For a selection of values of p  and 0, tables of E[K111  and E 	1
1
n 
 have 
 

- 
been abstracted for sample sizes n = 25, 50, 100, while ELS

2 
 1n 

 is given 
 

by equation (3.27). Within the parameter space covered, the long-term 

properties of the ARIMA (1,0,1) process should be close to those of a 

type 1 approximation to dfGn for the values of n considered. The values 

e'a r A 
of E[K]n and E [p1]n' each derived from 10000 samples of size a are 

presented in tables (3.2 - 3.7). Even for such a large number of realizations 

some slight instability is still noticeable in some of the estimates. For 

sample size 25, the range of K values which can be modelled for all the 

selected values of P and 0 is approximately 0.65 - 0.80 while for sample 

sizes 50 and 100, the corresponding ranges are 0.65 - 0.85 and 0.65 - 0.871  

respectively. These somewhat restricted ranges are a consequence of the 

nature of the estimator K ; nevertheless, the majority of observed values 

of K and p1 should fall within the bounds of the tables. In the following 

section the use of the tables is illustrated in formulating the ARIMA (1,0,1) 
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p 	= 	0.96 

EI
L
K1 
n 

E 	Cpl 1 

8 
Pi 	

n 25 50 100 25 50  100 

0.92 0.058 0.654 0.661  0.65? -0.005 0.005 0.025 

0.88 0.146 0.683 0.679 0.698 -0.005 0.038 0.080 

0.84 0.250 0.681 0.704 0.724 3.060 0.083 0.132 

0.80 0.357 0.693 0.737 0.767 0.069 0.160 0.227 

0.76 0.457 0.718 0.752 0.781 0.099 0.196 0.264 

0.72 0.545 0.735 0.776 0.811 0.144 0.259 0.366 

0.68 0.620 0.756 0.796 0.827 0.219 0.310 0.444 

0.64 o.683 0.763 0.818 0.843 0.243 0.382 0.504 

0.60 0.734 0.791 0.823 0.855 0.300 0.424 0.567 

0.56 0.776 0.803 0.825 0.861 0.353 0.475 0.621 

0.52 0.810 0.801 0.852 0.866 0.377 0.565 0.647 

Table (3.2) Values of E[K]n  and E [111111  for selected 
values of cp and 8 

T 	= 	0.92 

it Ki n E [ 1111  

8 , n  P1 25 50 100 25 50 100 

0.88 0.049 0.657 0.664 0.654 0.001 0.012 0.028 

0.84 0.114 0.687 0.680 0.686 0.005 0.046 0.079 

0.80 0.189 o.686 0.705 0.709 0.072 0.093 0.123 

0.76 0.269 0.699 0.735 0.745 0.082 0.160 0.208 

0.72 0.349 0.725 0.751 0.756 0.116 0.199 0.240 

0.68 0.426 0.740 0.782 0.783 0.169 0.269 0.332 

0.64 0.496 0.772 0.783 0.800 0.218 0.309 0.390 

o.6o 0.560 0.773 0.796 0.803 0.273 0.364 0.437 

0.56 0.616 0.774 0.820 0.825 0.285 0.432 0.516 

0.52 0.665 0.794 0.825 0.828 0.335 0.467 0.532 

rA 
Table (3.3) Values of si[K1In and E Lp1 11,1  for selected 
values of P and 0 
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T 	0.88 

ii' [lc 1 
n k 0 1 - i 

n  
25 50 100 25 50 100 

e Pi 

0.84 0.046 0.659 0.665 0.651 0.005 0.014 0.029 

0.80 0.1.02 0.689 0.678 0.676 0.012 0.050 0.078 

0.76 0.176 0.688 0.703 0.696 0.080 0.097 0.117 

0.72 0.233 0.703 0.728 0.728 0.091 0.158 0.196 

0.68 0.302 0.729 0.745 0.737 0.126 0.198 0.225 

0.64 0.370 0.742 0.772 0.764 0.176 0.262 0.309 

0.60 0.435 0.771 0.773 0.778 0.223 0.302 0.363 

0.56 0.495 0.771 0.788 0.782 0.278 o.356 0.407 

0.52 0.550 0.774 0.808 0.802 0.291 0.416 0.481 

Table (3.4) Values of EMK1n  and 	CP1711  for selected 

values of p and 0 

p 	= 	0.84 

KO
n i [Pi in 

25 50 100 25 50 100 
e 

0.80 o.o44 0.660 0.663 0.647 0.007 0.016 0.029 

0.76 0.096 0.690 0.676 0.668 0.016 0.052 0.077 

0.72 0.154 0.688 0.699 0.687 0.086 0.099 0.113 

0.68 0.214 0.705 0.720 0.714 0.098 0.156 0.189 

o.64 0.277 0.725 	, 0.746 0.733 0.142 0.203 0.237 

0.60 0.325 0.753 0.749 0.747 0.180 0.245 0.290 

0.56 0.409 0.753 0.766 0.753 0.240 0.298 0.332 

0.52 0.454 0.761 0.784 0.773 0.254 0.355 o.4o6 

Table (3.5) Values ofETK and E-11n for selected 

values of T and e 



149 

T 	. 	0.80 

E[K1n E Ipl ln  

(3 p 	n l  25 50 100 25 50 100  

0.75 0.055 0.666 0.657 0.649 -0.006 0.022 0.041 

0.70 0.119 0.685 0.694 0.678 o.o56 0.079 0.098 

0.65 0.188 0.708 0.698 0.708 0.114 0.103 0.166 

0.60 0.260 0.736 0.727 0.719 0.139 0.192 0.227 

0.55 0.331 0.737 0.750 0.741 0.175 0.247 0.289 

0.50 0.400 0.756 0.764 0.746 0.263 0.315 0.343 

Table (3.6) Values of E[Kln  and E [Pi 1n  for selected 

values of p and 8 

T 	= 	0.75 

i" ricin L.  
- A 
E  [P1in 

8 
4.‘NNNN.N 

25 50 100 25 50 100 
rI I)1 

0.70 0.054 0.666 o.655 0.645 -0.004 0.023 0.041 

0.65 0.115 0.684 0.689 0.671 0.059 0.079 0.096 

0.60 0.179 0.707 0.691 0.698 0.117 0.102 0.161 

0.55 0.246 0.733 0.719 0.707 0.141 0.189 0.219 

0.50 0.313 0.734 0.740 0.728 0.177 0.240 0.277 

0.45 0.377 0.751 0.754 0.732 0.264 0.307 0.329 

-.. A 
Table (3.7) Values of ITIOn  and E [plln  for selected 

values of P and 8 
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process to maintain the required statistical resemblance between historic 

and synthetic sequences. 

3.3.6 Formulation for Synthetic Hydrology 

For the purpose of generating synthetic sequences, the ARIMA (1,0,1) 

process may be formulated as 

Xt  - gx  = q)(Xt_i  - gx) + dx  ae(st  - e ct_i) 	(3.29) 

whereµ and csx  are the mean and standard deviation of the process, 

respectively. The term et  is an independent random variable with zero 

mean and unit variance, and d is defined by 

(1 - c?2)  
dc
2 - 2 

0+8 -20) 

which ensures that X
t 
will have variance ax

2
. 

(3.30 

If the process Xt  is required to have a skewness Yx  then this may 

be achieved through replacing the term st  in equation (3.29) by an indepen-

dent random variable It  which may be defined by the Wilson-Hilferty 

transformation as follows : 

Ti t  
3 

(3.31) 

where et  is NIP(0,1). The random component 'lit  will have zero mean, 

variance unity and skewness Y1  . However, for values of yl  in excess 

of about 3.0, MacMahon and Miller (1971) have found that the transformation-

given by equation (3.31) is inadequate. A modified transformation has 

been proposed by Kirby (1972) which overcomes the problem. The skewness 

of the process Xt, Y x, is related to the skewness of the term lt  as 

follows : 

	

y

x 

= E[ (1 -03 + 3 	rp - j --8) 1 [ 	- 2TO /2 

	

(1 - 	) 	 (1 - 9i) 
(3.32) 
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Estimates of u , 	, i
x 	

p
x 
and h can be derived from a historic 

x x 

sequence of length n ; the question then arises as to which type of resem-

blance is required between synthetic and historic sequences. As outlined 

in section (1.2.4), two types of resemblance are possible, Type A and 

Type B. Both types of resemblance will now be considered. 

(i) Resemblance of type A  

In this case, resemblance is to be maintained between the estimates 

A 	A 2 	A 	A 	A 
P.X, CYX , p x

, Y
x 
and h derived from a historic sequence of length n, 

and the corresponding estimates which would be obtained from a synthetic 

A 

x 

	A 	 A 
sequence of infinite length, i.e. u ,dx

2 	
x' 

	

,Y 	p 
Ax 
 and h assume the role 

of population quantities. However, the population value of h for the 

ARIMA (1,0,1) process is 0.5 so that resemblance of type A cannot be 

maintained in terms of h ; this is true of any finite memory approximation 

to fGn. However, resemblance in terms of an estimate of h can be maintained 

within finite synthetic sequences. The overall procedure is as follows : 

A 	A 2 	A 
(a) Derive estimates µx' 

 d
x ' 

p
x 
 and K from a historic sequence of length n. 

(b) From tables (3.2) - (3.7), identify values of p and 0 such that 

ilK1
n 	

K 

A 
and 
	

P1 	Px 

where P
1 
is defined by equation (3.24). Some interpolation will invariably 

be involved here. 
A 

(c) The estimated skewness Ix 
is then used to define an estimate of Y 

1 

using equation (3.32). The term It  can then be generated using equation 

(3.31) or the modified transformation suggested by Kirby (1972). 

A 	 A 
(d) The quantities go, 0, x and dx 

are then incorporated into equation 

(3.29), whence synthetic flows may be generated. 

(ii) Resemblance of type B  

In this case, resemblance is maintained entirely in terms of para-

meters estimated from historic and synthetic sequences of length n. As 
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A 

the small sample properties of Yx  are unknown, it will be excluded from 

consideration. If necessary, resemblance of type A can be maintained 

for this parameter. 

The overall procedure is as follows : 

A A A 
(a) Derive estimates µx,  6x , px 

(using equation 3.28) and K from a 

historic sequence of length n. 

(b) From tables (3.2) - (3.7), identify values of T and 6 such that 

E[K]la 	K 

rA 	A 
and 	E LP1 	

Px 

Again, some interpolation will invariably be involved here. 

(c) By re-writing equation (3.27) as 

2 1 
E,S i

n 	
0
2 
f(n P1  (P) x 	' 

(3.33 ) 

r 	A 
where p and 4' have been defined under (b), and equating ELS

21
n 	0 with 

1 	 x2 ' 

an unbiased estimate of 6
x
2 

may be defined as 

A 2 
6* 	= 

A

x

2 
	f(n, P1' Y) 

(3.34) 

A 	A 
(d) The quantities 'Ix, 6;, 9 and 6 are then incorporated into equation 

(3.29), whence synthetic flows may be generated. 

Resemblance of type B would appear to be the more logical type to 

achieve ; however, only consideration of the benefits and regrets associated 

with maintaining each,type of resemblance can throw light on which resem-

blance is "best" to achieve. 

Because of the nature of the estimator K, the estimates P1 
and K may 

, 
occasionally fall outside the range of.  E LP1 

In 
and 

ELKIn 
values in tables-

(3.2) - (3.7), thus preventing the exact required resemblance from being 

maintained. In such cases, only approximate resemblance can be maintained. 

In addition, estimates of P1 
and h may be in conflict with each other, 

such that the required match cannot be achieved, even though each parameter 
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falls within the bounds of tables (3.2) - (3.7). In such cases, resemblance 

could probably be achieved in terms of either parameter but not both. 

3.3.7 A log-normal ARIMA (1,0,1) process  

If synthetic flows conforming to a log-normal distribution are required, 

then the process Yt  = ln(Xt  - a), where Xt  is log-normally distributed 

with a lower bound a is assumed to be a Gaussian ARIMA (1,0,1) process. 

The relationships between the mean µy  and standard deviation 6y  of the 

process Y
t 
and the lower bound and first three moments of the distribution 

2 
of X

t 
are given by equations (2.7) - (2.9). Thus estimates of g 	6x  x 

and p
x 

may be used to solve for estimates of g
Y'  6Y 

 and a. If the process 

Y
t 
is assumed to be generated by an ARIMA (1,0,1) process with parameters 

within the parameter space covered by tables (3.2) - (3.7), then long-term 

persistence will also exist in X-space. The parameters cp and 0 of the 

process Y
t 

may be defined using either of the procedures previously out-

lined to achieve resemblance of type A or type B ; in either case, K is 

derived from a sample of the process Yt  and an estimate of the lag-one 

autocorrelation of the flows in Y-space, p
Y' 
 is required which may be 

defined from the following equation (Appendix 3. 1) 
2 

e
6y Py 

- 1 
2 

e 	- 1 

where PX is replaced by its sample estimate. The estimate of 15y
2 

derived 

from solving equations (2. 7) - (2. 9) may be corrected for bias using 

the procedure outlined previously for the variance 6
x
2
, if resemblance of . 

type B is desired. 

While resemblance of type B can be maintained for certain parameters 

in Y-space, there is no guarantee that such resemblance will be maintained 

in X-space because of the non-linear transformations relating Yt  and Xt. 

(3.35) 
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The observed estimate of K in X-space may not be preserved as Mandelbrot 

and Wallis (1969e) have noted that estimates of h derived from a type 1 

approximation to dfGn are not invariant under-highly non-linear trans-

formations. 

3.4 Impact of Long-term Persistence on Reservoir Storage Design 

While the lag-one Markov and ARIMA (1,0,1) processes can display 

very distinct long run effects, it is of primary interest to a designer 

to know under what design conditions long-term persistence becomes 

important. For the design of a storage reservoir, it is to be expected 

that as level of development and length of design period decrease, then 

so too will the importance of long-term persistence. For a design period 

of 100 years, Wallis and Matalas (1972) have shown through simulation 

experiments that, for levels of development greater than 0.8, approxi-

mations to dfGn yield significantly greater storage requirements than 

those corresponding to the lag-one Markov process. Similar experiments 

to those of Wallis and Matalas (1972) are carried out here to provide a 

further comparison of a formal approximation to dfGn with the ARIMA (1,0,1) 

process. In addition, the experiments are extended to cover design 

periods .of 25 and 50 years. 

3.4.1 Simulation Experiments  

In comparing design results such as reservoir storages obtained from 

different generating processes, considerable care must be exercised. An 

obvious approach is to select equal population parameters (e.g. mean, 

variance, skewness, lag-one autocorrelation etc.) for each generating 

process, and compare design storages evolved from synthetic sequences of 

length equal to the design period. However, because different small 

sample biases operate for each generating mechanism, such studies may 
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result in fallacious conclusions as to the impact of generating mechanism 

on a design. The following example illustrates this possibility. 

Markov and ARIMA (1,0,1) generating processes are to be compared 

on the basis of the following population parameters : 

p = 10 

= 3 

= 0.3 

which yield typical values of Cv  = 6,/p, the coefficient of variation, 

and p
1 
 for annual streamflow. Reservoir storages for a 100 year design 

period are to be used for comparison purposes. As various values of T 

can yield p1  = 0.3, a value of 0.88, which corresponds to a process 

exhibiting a moderate intensity of long-term persistence, will be used 

in the example. 

For the lag-one Markov generating process, the expected values of 

estimates of 6
2 
and p

1 
in samples of size n are given by equations (2.91) 

and (2.88), respectively, which, for the example quoted, reduce to 

E L 
rS100 
2 

= 8.91, and E [p11100  - 0.278. Correspondingly, for the ARIMA 

(1,0,1) process, E[82111  is given by equation (3.27), while an analytical 

rA 
result for E Lplin  does not exist. However, reference to table (5.4) 

shows that, for p = 0.88, E 011100  P...d 0.225, while from equation (3.27), 

r 21 
100 ELS I 	= 8.59. The overall effect of the larger biases in estimates 

.  

of 6
2 
and p

1 
for the ARIMA (1,0,1) process might well be to suggest that, 

contrary to expectation, the lag-one Markov process would require larger 

storages over a 100 year design period. Consequently, valid comparisons 

can only be made on the basis of equal values of ELS
2
1
n 
(or E[S1 

n
) and 

rA 
E IA)

1
I
n 
for each process. 

Accordingly, in comparing expected storage requirements for the 

ARIMA (1,0,1) and (1,0,0) or lag-one Markov processes, comparisons were 
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based as far as possible on equal values of E[S1 and E 011n' so as to 

allow comparisons with the results of Wallis and Matalas (1972). Estimates 

of 6 for the lag-one Markov process satisfy 

*On  = 6m  g(n, pi) 	 (3.36) 

and, for the ARIMA (1,0,1) process 

E[Sa  in  = da  g(n, P1, T) 	 (3.37) 

where g(n, p1) and g(n, Pi,T ) are small sample bias factors for the 

standard deviations 6
m 
and 6

a 
respectively. If the analytic forms for 

g(n
' 
 P1 ) and g(n, P1  T ) were known, then for a given value of Et I S 111  for 

both processes, the corresponding population variances could be defined 

as 

6m 	E[Slien, P1) 
	

(3.38) 

and 

6a 	= E[Slig(n' P1' 97) 	 (3.39) 

However, in the absence of analytic forms for g(n, pl) and g(n, pl,p ), 

the following generating procedure was adopted. 

For each process, synthetic sequences were generated with 11 = 10 

and 6 = 3 which represents a typical value of Cv  for historic streamflow 

sequences. The lag-one autocorrelation pi  was allowed to assume values 

which adequately covered the range 0 to 1 for both processes. For the 

ARIMA (1,0,1) process the parameter p was used to control the intensity 

of long-term persistence, and was given 3 values, 0.70, 0.80 and 0.90. 

For each design sequence length, n = 25, 50 and 100, for each value of 

p1  (and p in the case of the ARIMA (1,0,1) process), 1000 sequences were 

generated, and the sequent peak algorithm (Appendix 3.2) was used to 

derive a reservoir design storage corresponding to each sequence, denoted 

by Cm  in the case of the lag one Markov process and Ca  in the case of the 
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ARIMA (1,0,1) process, for a given level of development. In applying 

the sequent peak algorithm, levels of development of 0.80, 0.90 and 0..99 

were considered, with a uniform draft pattern over the design period. 

The following procedure was adopted for correcting the bias in the 

standard deviation. 

For each process, approximate values of g(n, p1) and g(n, p 	) 

were defined as 

g(n, pi) = m
/a 
	 (3.40) 

and 

g(n, P1' (19)  = a/6 	 (3.41) 

where g
m 
and g

a 
denote the average standard deviation for each process 

defined from 1000 samples for each value of n. However, separate experi-

ments were not required to estimate g(n, p1) and g(n, R1 ,9) ) beforehand 

so that they might be used to define the appropriate values of 6m  and da  

from equations (3.38) and (3.39), respectively. If a scaling factor is 

applied to the flows to be operated on by the sequent peak algorithm,then 

the storage, C
m 
or C

a
, which would result from the unsealed flows will 

have the same scaling factor applied because of the linearity of the 

operations in the sequent peak algorithm (Appendix 	Hence, the mean 

storage corresponding to equal expected values of the standard deviation 

in samples of size n for each process may be defined as 

m = m(a/ 171) 

for the lag one Markov process, and 

A
a = a(dfia) 

where 6
m 
and

a
-are the mean storages calculated from a 1000 successive 

realizations of each process generated with the same population standard 

deviation a. 
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r A 
The problem of different values of ELpl in  for each process corres- 

ponding to a given value of p1  may be obviated through comparing A
m 
and 

X
a 

values graphically on the basis of equal Eq
'I  1 

 values. 
1-   

c 
11,ilues of E 

for various values of p1  may be obtained from equation (2.88) while 

estimates of E[VIII  for the ARIMA (1,0,1) are available from the sampling 

experiments conducted in section (3.3.5). A comparison of A
m 
and A

a 

for n = 100 and a = 0.99 is presented in figure (3.28). It should be 

noted that A
m 
and A

a 
are plotted against

1In 
rather than against p

1
. 

While there is a one-to-one relation between A
m 
and ElIn 

for the lag-one 

Markov process, different values of T lead to a family of curves for A a, 

one for each value of T. For the values of T considered, A
a 

is at all 

TA 
times greater than A m, even for small values of ELp1  In, with the difference 

between A
a 
and A

m 
increasing with increasing T. The parameter p 

essentially controls the intensity of longterm persistence. As cp decreases 

for a given value of p , p1  increases, eventually attaining an upper 

limit of P , when the process becomes Markovian. Hence the A
m 
and A 

a 

curves converge eventually at a value of EOl in  corresponding to a value 

of p
1 
= T . The clear separation between the A

m 
and A a values is similar 

to that obtained by Wallis and Matalas (1972) for the filtered fractional 

noise approximation, which is further evidence of the suitable approximation 

to dfGn represented by the ARIMA (1,0,1) process. Obviously, for high 

levels of development, use of the correct generating process in a design 

situation is desirable. 

If the level of development is dropped to 0.90 and 0.80 (figures (3.29) 

and (3.30)), the ratio of A and A
a 

does not decrease very much, suggesting 

that the effect of long term persistence on required storage is significant, 

even for a moderately high level of development of 0.80. 
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o 0 = 0.60 
x 0 = 0.80 
A 0 = 0.70 
+ MAR KOV 

0-2 	0'4 	0.6 	0 8 	1-0 

Figure (3.28) The average minimum storage for.ARIMA (1,0,1) and lag-
one Markov processes as a function of the approximate 
expected value of (31, the lag-one autocorrelation in 
samples of size 100. Each point is based on 1000 
realizations of length 100 with A = 10 and E(S)n  = 3 
and a% the level of development, equal to 0.99. 
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Figure (3.29) The average minimum storage for ARIMA (1,0,1) and lag-
one Markov processes as a function of the_ approximate 
expected value of pl, the lag-one autocorrelation in 
samples of size 100. Each point is based on 1000 
realizations of length 100 with p = 10 and E(S)n  = 3 
and a, the level of development, equal to 0.90. 

Figure (3.30) The average minimum storage for ARIMA (1,0,1) and lag-
one Markov processes as a function of the approximate 
expected value of pl, the lag-one autocorrelation in 
samples of size 100. Each point is based on 1000 
realizations of length 100 with p = 10 and E(S)n  = 3 
and a, the level of development equal to 0.80. 
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If the length of the design period is decreased to 50 years, the 

same pattern emerges as for n equal to 100 (figure (3.31)). The absolute 

magnitudes of A and A
a 
have obviously decreased relative to their 

values for n equal to 100, but the relative magnitudes of A m 
and

a 

have altered little. Decreasing the sample size still further to n equal 

to 25 results in a somewhat different picture (figure (3.32)). The 

separation between A
a 
and A

m 
ceases to be as distinct as for the larger 

sample sizes, a reflection of the fact that low frequencies can barely 

manifest themselves in such small sample sizes. Further, the Aa  curves 

for the higher values of p tend to collapse on those curves corresponding 

to the lower values of T. Apparently, the reason for this behaviour is 

that a considerable proportion of the C
a 

values tend to be zero for larger 

values of T i.e. a reservoir is not needed. The reason for this rather 

surprising behaviour is that the small sample bias in the standard deviation 

in sample size 25 is so severe as to render the variability of the flows 

about the sample mean so small in a number of cases that the resulting Ca  

values are zero. Had the correction for bias in the standard deviation 

been applied to the flows before the Ca  values were computed, the effect 

of the zero C
a 

values on the Aa 
curves would have been diminished ; 

however, separate experiments would have been required to define g(n, pl ,T) 

beforehand. Again, the results presented in figure (3.32) emphasise the 

care that is needed in designing small sample experiments involving 

processes exhibiting long-eterm persistence. Results for levels of devel-

opment less than 0.99 and sample sizes less than 100 showed that zero Cm  

and C
a 

values again played too dominant a role to allow representative 

A
m 
and A

a 
values to be presented. 

In the foregoing experiments, the effects of length of design period, 

level of development and generating process on required reservoir storage 
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Figure (3.31) The average minimum storage for ARIMA (1,0,1) and lag-one 
Markov processes as a function of the approximate expected 
value of p1 , the lag-one autocorrelation in samples of size 
50. Each point is based on 1000 realizations of length 
50 with y = 10 and E(S)n  = 3 and a', the level of, development, 
equal to 0.99. 

Figure (3.32) The average minimum storage for ARIMA (1,0,1) and lag-one 
Markov processes as a function of the approximate expected 
value of pl, the lag-one autocorrelation in samples of size 
25. Each point is based on 1000 realizations of length 
25 with m = 10 and E(S)n  = 3 and a', the level of development, 
equal to 0.99. • 
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have been investigated. The results of the experiments are relevant only 

to reservoir designs based on an annual time unit, and a level of varia-

bility of Cv = 0.3 has been chosen accordingly. As sample size decreases, 

long-term persistence becomes less important. However, for a design 

rA 
period of 100 years, the ratio N,

a
/A,

m 
for any given value of ELpi  In  does 

not vary much for the three levels of development considered -; presumably 

levels of development less than 0.8 would need to be considered before 

long-term persistence would cease to influence storage design. The 

experiments have also illustrated that care is required in designing such 

experiments where small sample properties differ markedly from the popu-

lation properties of a process. 

3.5 Higher Order ARIMA Processes  

The long-term persistence of stationary higher order ARIMA processes, 

in particular, the ARIMA (2,0,1) and ARIMA (1,0,2) processes, have also 

been explored using similar experiments to those conducted in sections 

(3.3.4) and (3.3.5) ; however, lack of space does not allow a detailed 

description to be furnished here. Briefly, for each model, regions in 

the parameter space (as defined by stationarity and invertibility conditions) 

were identified which gave autocorrelation functions which decayed slowly, 

but with the restriction that the high frequency behaviour of the process 

should be similar to that of annual streamflow. The approximation to dfGn 

afforded by either process was not found to be significantly better than 

that provided by the ARIMA (1,0,1) process ; for the added complexity of 

an extra parameter, the only apparent advantage of the two higher order 

processes is to allow some extra flexibility in fitting estimated lag-one 

and lag-two autocorrelations. 

In addition, some limited experiments were carried out on the 

behaviour of Hurst's law for some non-stationary ARIMA processes. While 
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such processes cannot be used to generate synthetic streamflows, the 

possibility that annual streamflow is generated by a non-stationary process 

cannot be ruled out. There are a vast number of ways in which a process 

can be non-stationary ; however, in the experiments which were conducted, 

only the cases of non-stationary ARIMA (0,1,1) and (0,1,2) processes 

were considered. While reasonable agreement with Hurst's law was achieved 

for small to moderate values of n (roughly < 400) a value of h = 1 then 

appeared to govern the behaviour of R/S for larger values of n, resulting 

in divergence from Hurst's law. In the absence of such behaviour among 

long geophysical records, the type of non-stationarity which characterizes 

the ARIMA (0,1,1) and (0,1,2) processes is hardly plausible for such 

records. 

3.6. Summary  

The long-term behaviour of the ARIMA (1,0,1) process has been examined 

using extensive simulation experiments, which showed that the process can 

be used to approximate the behaviour of the resealed range R/S for long 

geophysical records. In addition, the process can model the short-term 

properties of such records, as measured by the lag-one autocorrelation 

coefficient. The small sample properties of estimates of the variance, 

lag-one autocorrelation and Hurst coefficient for sample sizes 25, 50 and 

100 have been derived through simulation, illustrating that large disparities 

exist between the small sample and population expectations of those 

quantities in the presence of long-term persistence. The small-sample 

properties of the ARIMA (1,0,1) process have been used in formulating the 

process to maintain the required resemblance between historic and synthetic 

sequences. Some simple reservoir design experiments suggest that, for 

moderate to high levels of development, long-term persistence would 

influence reservoir storage sizes for design periods of 25 - 100 years. 
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Experiments with higher order stationary ARIMA models suggest that the 

complexity introduced by extra parameters does not provide any 

significant improvement over the long-term properties of the ARIMA 

(1,0,1) process. 
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Chapter 4 

MULTISITE STOCHASTIC MODELS OF LONG-TERM PERSISTENCE 

The design of a water resource system will invariably demand the 

generation of synthetic sequences at a number of sites within a river 

basin or river basins. If the historic sequences in such a situation 

are spatially uncorrelated, then an appropriate univariate generating 

mechanism may be used at each of the m sites within the system, and no 

representation of spatial correlation is necessary. However, significant 

cross-correlations will usually exist between historic events measured 

at neighbouring sites at the same time point. Such correlations are 

referred to as lag-zero cross-correlations between sites. Because of 

serial correlation at each individual site, significant correlations 

will also exist between sites where the flows at each site are lagged 

k time units with respect to all other sites where k = 1,2,3,...; such 

correlations are referred to as lag-k cross-correlations. The preservation 

of such cross-correlations between synthetic sequences is of primary 

importance, particularly in the design of storage systems, where the 

simulation of simultaneous periods of critical low flows at all sites 

must be attempted. Generating processes which preserve cross-correlations 

between sites in addition to the appropriate properties at individual 

sites are referred to as multivariate generating processes. 

In section (4.1) the development of multivariate generating 

processes is reviewed, with particular attention paid to the multivariate 

lag-one Markov process, a multivariate fractional noise model, and 

distributional properties of the flows. The multivariate ARIMA (1,0,1) 

process is formulated in section (4.2), and an iterative computational 

procedure is found to be necessary for obtaining a general solution to 
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the matrix equations which specify the coefficients of the generating 

process. An analytic solution is also derived, shortcomings of the 

solution noted, and a modified multivariate ARIMA (1,0,1) process is 

developed which is suitable for generating synthetic flows preserving 

a measure of long-term persistence at each site. Distributional 

properties of multivariate ARIMA (1,0,1) flows are considered in 

section (4.3). 

4.1 Development of Multivariate Models  

The first attempt at presenting cross-correlations between synthetic 

sequences was perhaps that of Thomas and Fiering (1962), when they 

attempted to model observed cross-correlations between pairs of sites. 

If X
t 
and Y

t 
denote the flows at each of two sites, then the generating 

processes for X and Y
t 
are as follows: 

X
t 	= 	

p
x
X
t-11/

1 - p
: 

E
t  

Y
t 	

p
xy
X
t 
+1 - p
:y  bt 
	 (4.2) 

The above strategy endeavoured to preserve estimates of the lag-zero 

cross correlation pxy 
 between X

t 
and Y

t 
and of the lag-one autocorrelations 

p
x 
and p at each site. However, while the procedure ensures that 

estimates of p and p
x 
are preserved, the flows Y

t 
will have p p 

xy 	 xy x 

as lag-one autocorrelation coefficient rather than the observed estimate 

of p . Fiering (1964) pointed out this deficiency and presented a 

modified bivariate generating process which preserved px  py 
 and p xy. 

While the above approach may be extended to generate synthetic flows 

at a third station from Y
t' 

and so on, the technique necessitates the 

selection of a key station Xt 
and as a result, all inter-station correlations 

will not be preserved. Fiering (1964) proposed a technique based on 
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principal components whereby all inter-station correlations might be 

preserved in addition to means, variances and lag-one serial correlations 

at individual sites. However, Matalas (1967) subsequently showed that 

while all cross-correlations between sites were indeed preserved, 

the serial correlations at individual sites were not, and suggested 

how the generating process might be modified to preserve lag-one serial 

correlations. 

Beard (1965) presented a technique based on a multiple linear 

regression for generating synthetic sequences, where the dependent 

variable being generated is the flow at a particular site at time t, 

and the independent variables are the flows at times t, t-1,..., t-k 

at the remaining sites. A set of transformations are effected 

initially on the historic flows to assure normality; as a result only 

statistics of the transformed variates are preserved rather than those 

of the actual flows and consequently generated flows may not be 

representative of historic flows. 

4.1.1 A Multivariate Autoregressive Process  

Matalas (1967) presented a weakly stationary lag-one autoregressive 

process defined as 

x(t) 	= 	A x(t-1) + B e(t) 
	

( 4.3) 

In equation (4.3), x(t) and x(t-1) are (m x 1) matrices whose elements 

arex.(t).=x.(t)-11.aricix.(t-1) = X.(t-1) - g., respectively, where 

i = 1,2,...,m and m is the number of sites; Xi(t) and Xi(t-1) denote the 

flows for site i at times t and (t-1) respectively and Ili  is the mean 

flow at site i. The random component e(t) is an (m x 1) matrix whose 

elements are independent of the elements of x(t-1). A and B are (m x m) 

matrices whose elements must be defined in such a way that multivariate 

synthetic sequences generated by equation (4.3) will resemble multivariate 
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A A A A 	A 	A 
historic sequences in terms of !I., 0., y., p

i 
 (1), pi

. 
(0) .(0) and p .(1), 
1j 

A A A 
i,j = 	where 0., y. and p

i(1) represent estimates of the 

standard deviation, skewness and lag-one autocorrelation at site i, and 

A 	A 
p..(0) and p..(1) represent estimates of the lag-zero and lag-one cross- 

correlations correlations between sites i and j, i,j = 1,2,...,m. Matrix notation 

permits a more concise presentation, and a lag-zero variance-covariance 

matrix M
o 
 for the process is defined as follows: 

T 

o 
= 	E[x(t) x(t)] 

2 
. 1 

2 
2 

• 
. • .p.

J
.(0)0.0.. . . 
1 	J 1  

• 
2 • • • o" 

where 

 

E[x.(t) x.(t)] 	= 	6 . 
2 i =j 

and E[x.(t) x.(t)] 	= 	p..(0)6.C. 

 

The lag-one covariance matrix is defined as follows: 

1 	
= 	E[x(t) x(t-1)] 

P1(1)a1
2  

o 0-2
2  ''2(1) 	' 

. . .p. .(1) a. a.. . . ij 	j 

p ..(1)a.a . • 

• 

• 2 
. • .Pm(1)am 

• 
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where 

and 

E[x.(t) x.(t-1)] 	= 	Pi(1) ci 	
i = j 

E[x.(t) x.(t-1)] 	= 	p..(1) i.5. 	j ij  

If the process is standardized as 

x.(t) 1 	6. 1 

then M
o  becomes the lag-zero cross-correlation matrix of the flows 

1 • • • 

1  

. 	(o) Mo  

and M
1 
 becomes the lag-one cross-correlation matrix 

pi (1). . . 
. . .,2(1). . . 

. . .p. i(1). . J 

.pm(1) 

In practice, estimates of the elements of Moand M1  must be provided 

from the historic sequences, and A and B subsequently defined such that 

the generated multivariate synthetic sequences will resemble historic' 

sequences in terms of the estimated Mo  and 141. Note that as Mo  is - 

symmetric, only 
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m(m+1) 	
m
2 

2 

conditions may be imposed on the elements of A and B. Matalas has 

shown that A and B may be derived as 

-1 
A 	M -1-o 

BB
T 	

M 	
-1 T 

-MM 
1 -o -1-o

M 
 

(4.4) 

(4.5) 

The elements of the matrix B are given by the solution of equation (4.5). 

As BB
T 
 is symmetric a unique solution does not exist for B and any matrix 

= B 

where _A, is an (m x m) matrix such that SAT = I, where I is the 

identity matrix, will satisfy equation (4.5). The method of principal 

components was advocated by. Matalas (1967) as a means of solving for 

the elements of B. In a discussion on the generating process given in 

equation (4.3), Young (1968) suggested that, as BBT  is symmetric, B* 

might more conveniently be considered a lower triangular matrix, 

allowing simple recursive solutions for the elements of B*. 

The matrices A and B may only be solved for in terms of the 

estimated M
o 
 and M

-1 
 under certain conditions. Firstly, M

-o 
 must be -  

positive definite; provided M
o 
 is estimated from records of equal 

length, this condition will be satisfied. However, Fiering (1968) 

has pointed out that if records of unequal length are used to estimate 

M 
o 
 , then M

o 
 may not be positive definite; Crosby and Maddock (1970) 
 

have presented a technique based on monotone samples of data which 

ensures that the estimated M
o 
 will be positive definite. 

However, the fact that Mo  is positive definite does not ensure that 

BBT  will be positive definite (Matalas and Wallis, 1971a). Unless 

T i BB is positive definite, the elements of B, solved for by principal 

component techniques or by lower triangularisation will be complex 
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numbers and as a result the generated flows will themselves be complex 

numbers. The fact that BB
T 

is not positive definite when computed 

from finite historic sequences may be attributed to the estimators 

used for the matrices M
o 
 and Ml. Crosby and Maddock (1970) and Valencia 

and Schaake (1972) have proposed estimators for Mo  and Mi  which ensure 

that BB
T  will always be positive definite when computed from finite 

data samples. 

Matalas and Wallis (1971a)have shown that the condition that BB
T 

be positive definite for the process given by equation (4.3) corresponds 

to a set of constraints imposed on the elements of Mo  and M1. If the 

generating process of streamflow possesses correlations which lie 

outside these constraints then it is not entirely clear how the techniques 

of Crosby and Maddock (1970) and Valencia and Schaake (1972) can provide 

a positive definite estimate of BBT  based on the hypothesis that the 

generating process is equation (4.3). Such a premise is based on the 

fact that in the limiting case of infinite historic sequences, the correlation 

of the real world generating process must converge to their respective 

population quantities which by definition lie outside the constraints 

for equation (4.3). Only if the estimators provided by Crosby and 

Maddock (1970) and Valencia and Schaake (1972) converge to population 

quantities which lie inside the constraints, will BBT be positive 

definite in the limiting case for equation (4.3). 

4.1.2 A Multivariate Markovian Process  

If the elements of the matrix A in equation (4.3) are defined in 

a particular fashion, then the autocorrelation function at each of the 

sites and the lag-k cross correlations between sites assume a lag-one 

Markovian form. Matalas (1967) has shown that if the matrix A is 

defined as a diagonal matrix with the lag-one serial correlations for 
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the n sites along the diagonal. i.e. 

p
1 
 (1). . 

. .p2(1). . . 

0 

0  

. . .pm(1) 

then the elements of M1 
 must be defined as 

p..(1) 	= 	pi(1)pij(0) 
ij 

i,j = 1,2,...,m 	(4.6) 

Such an approach precludes taking the inverse of M
o 
 and BBT may now 

be defined as 

BB
T  

M - A M
T 

-o 	-1 (4.7) 

As a result, only Mo  and the lag-one serial correlations at all sites 

have to be estimated; provided the lag-one cross-correlations are not 

required to be preserved explicitly, then the amount of computation is 

reduced, M
o 
 will be preserved as observed and the elements of M1  will  

be preserved as defined by equation (4.6). Hence multivariate synthetic 

sequences will resemble multivariate historic sequences in terms of 

A A A 	 A 	 A 
1.1_,0..,pi.(0)and 	

i 
pi(1) 	for i / j. For 

higher lags the autocorrelation function at each of the sites may be 

shown to be 

pi(k) A.(1) lid p  (4.8) 

while the lagged cross-correlations between sites may be shown to be 

A 
(10 	 . p..(0) 

ij 	1  
(4.9) 

A 

Consequently the multivariate lag-one Markov process suffers from the 
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same deficiencies with respect to modelling h as the univariate Markov 

process. Even if A and B are defined via equation (4.4) and (4.5), 

the long-term properties of the process will be similar to those of the 

multivariate lag-one Markov process. 

4.1.3 Multivariate Fractional Noise Models  

As already noted, multivariate lag-one Markovian processes are 

characterized by values of h = 0.5 at each site. Consequently, 

Matalas and Wallis (1974) have proposed a multivariate filtered 

fractional Gaussian noise process as 

pt-1 	h.-1.5 i 
x.(t) 	(h. - 0.5) E 	(pt - 	1 	E b. E (b) (4.10) 
1 	1 r=1 b.pt-Mi 	

it  r 

where 

x.(t) 	X.(t) - 
1 	1 	1 

and Er(t)  is a normal independent random variable. By considering 

E[x.(t) x.(t)] for ilj = 1,2,...,m then m(m + 1)/2 equations with m(m + 1)/2 

unknowns may be solved recursively for the b's. As a result, multivariate 

synthetic sequences will resemble multivariate historic sequences in 

terms of estimates of 11., C., h.1 
 and p..(0). However, Matalas and 

1 1 	13 

Wallis (1971b)have noted that different values of p, the filtering 

parameter, may not be assumed at each of the sites; otherwise the 

process will not be stationary with respect to the cross-correlations. 

Consequently, difficulty may be encountered in preserving estimates of 

p.Minconjunctionwithestimatesofh.at each site. 

4.1.4 Distribution of Flows 

Resemblance between multivariate historic and synthetic sequences 

in terms of the elements of Mo 
 and M1 

 may be achieved through any 
 

choice of distribution for the element E(t) in equation (4.3) provided 
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e(t)isanindependently distributed random variable with zero mean 

and unit variance. If, in addition, the distribution of c(t) is 

assumed normal then the distribution of the flows will be multivariate 

normal and the process will be strictly stationary. 

If the skewness at each individual site, yi, is of interest, 

multivariate synthetic sequences may be generated which resemble 

multivariate historic sequences in terms of yi, [i = 1,2,...,m]. 

Matalas and Wallis (1974) have shown how the skewness of the random 

element in equation (4.3) may be defined in order to achieve resemblance 

in terms of yi, i = 1,2,...,m. The Wilson-Hilferty transform defined 

by equation (2.5 ) may be used to generate the random element c(I) of 

each site with the required skewness. 

If a particular choice of distribution for the flows is of interest, 

then the log-normal distribution may be considered. Let 

Y.(t) 	it.n.(X.(t) - a.) 	 (4.11) 1 	1 

then the lag-one autoregressive generating process in terms of Y.(t) is 

defined as 

y(t) 
	

A'y(t-1) + B'' 
	 (4.12) 

Y.(t) - 
where e(t) is NIP(0,1) and yi(t) - 	

d 	. The matrices A' and B' 
I 

must be defined from the correlation matrices M' 
o  -and M'1  of the - 	-  

process Y(t). The elements of the matrices M'
o  and M'1'  may be defined 

as follows (Matalas, 1967). *Let. pij(0) and plj(1) denote typical elements 
, 

of M and M which may be defined from the elements of M and M -o 	-1' 	 -o 	-1 

through the following equations 

exp [6! 	p.' JO)] - 1 
P- .(0) 	

1 j 1 j  

13 [exp (6!
2
) - 1]2  [exp 	1]2  1 

(4.13) 
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exp[6.! 0'. p.' .(1)] - 1 
p..(1) 	= 	1 j 1 j  

1 	1 1j  
[exp (6! 

2  
-) - 1]2  [exp (6'.

2
) - 1 ]2  

J 

(4.14) 

Consequently, the elements of M;)  and PIS may be defined through inverting 

equations (4.13) and (4.14). The mean, variance and skewness of the 

flows X.(t) at each site are defined by equations (2.7) - (2.9 ), 

fromwhichthemeanil
a
l,the'variance6.2 ofY.(t) and the lower bound 

a-ioftheflowsX.(t) at each site may be defined. IfM' and M' 
1 	 - -o -1 

are thus defined where la' is an (m x 1) matrix consisting of the means 

of the Y1(t), and A' and B' are calculated using equations (4.4) and 

(4.5) formulated in terms of M' and 	 ' M' multivariate synthetic sequences -o 	 1 
A A2  A 

will resemble multivariate historic sequences in terms of p., a., y., 
A 	A 

p..(0) and p..(1) [i,j = 1,2,...,m], and the distribution of the flows 

will be multivariate log-normal. 

If, however, the lag-one cross-correlations of the flows are not 

of interest, needless computation may be avoided, by defining 

A 	A 

pi .(1) 	= 	p..'(0) 
ij 

(4.15) 

A 

Thus, A' will be a diagonal matrix with (DIM, Ei = 1,2,...,m] along the 

diagonal and the process will be lag-one Markovian in Y-space.  Note, 

however, that in general 
A 	A 

p..1(1) 	p.(1).p..(0) 1j 	1 	ij 

4.2 The Multivariate ARIMA (1,0,1) Process 

4.2.1 Formulation of Matrix Equations  

Following the sign convention adopted for the univariate ARIMA (1,0,1) 

process the multivariate ARIMA (1,0,1) process may be formulated as 

x(t) - A x(t-1) 
	

B c(t) - C e(t-1) 
	

(4.16) 

where x(t) and x(t-1) are (m x 1) matrices whose elements are 
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x.(t).=(X.(0-pjandx.(t-1)=(X.(t-1) - pi) respectively, for 

i = 	where m is the number of sites. The terms c(t) and 

c(t-1) represent vectors of independent random variables at time points 

t and (t-1) respectively, and A,B and C are (m x m) matrices of  

coefficients.Intheunivariatecase,pi,6i,p.(1) and p.(2) are 

required to define the process; hence M 
o  , M1  and M2  are required to  

define the elements of the matrices A, B and C where M
o  and M1  are as - 

previously defined for the multivariate ARIMA (1,0,0) process and M2  

is the lag-two covariance matrix defined as 

p1 (2)g1 

• "P2‘
(-) 6

2
2  
" 

▪ .ij 	1 a.. . . 
2. . .p..( 	. . 	• 

J 
• 

• .pm(2)(511  

However, if the elements of x(t) are defined as 

then the matrix M
2 
 becomes the lag-two cross-correlation matrix 

••• 

131(2). . . 

. . 42(2) • . . 
• p 	(2) • . • 

. . .p 
i
(2). 	. 

J 

• . .pm(2) 

In the following development, the matrices Mo, Mi  and M2 
 will,  without 

2 

2 
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loss of generality, be taken to be the lag-zero, lag-one and lag-two 

correlation matrices. Re-writing equation (4.16) gives 

x(t) 	= 	A x(t-1) + Be (t) - Cc (t-1) 
	

(4.17) 
T 

Postmultiplying in equation (4.17)by the (1 x m) matrix x(t) and taking 

expectations yields 

T 	 T 	 T 	 T 
E[x(t) x(t)] 	= 	AE[x(t-1) x(t)] + B4E:(t) x(t)] - 	x(t)] 

(4.18) 

Defining 
T 

o 	E[x(t) x(-0] - 

T 

1 	E[ ( ) x(t-1)] 

T 	 T 

1 	= 	E[x(t-1) x(t)] 

T 

2 	= E[x(t) x(t-2)] 

T 	 T 

2 	= E[x(t-2) x(t)] 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

T 
and noting that E[c(t)e(t)] = I, where I is the identity matrix, the 

terms on the r.h.s. of equation (4.18) may be evaluated as follows: 

T 
	

T 
AE[x(t-1) x(t)] 
	

M1 

The second and third terms on the r.h.s. of equation (4.18) may be 

evaluated by taking the transpose of equation (4.17) and substituting 
T 

for x(t) to give 

T T 	T T 	T ] 
BE[c(t) x(t)] 	= 	Bpc(t) x(t-1)]A + E[e(t) c (t)]B - E[e(t)E(t-1)]C 

= BB
T  

and 
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T 	T 
CE[E(t-1) x(t)] 	= 	C[E[c(t-1) x(t-1)]A 	+ E[ (t--1) Fj(t)1B 

T 	T 
- E[c(t-1).5(t-1)]C 

T CB AT  - CCT 

Hence equation (4.18) reduces to 

o 	AMA + BBT - CB
T
A
T 

+ CCT 

or 

BB
T + Mo  - AM

T + CBTAT - 	-1 (4.24 ) 

T 
Postmultiplying in equation (4.17) by the (1 x m) matrix x(t-1) and 

taking expectations yields 

T 	 T 	 T 
E[x(t) x(t-1)] 	= 	AE[x(t-1) x(t-1)] + BE[c(t) x(t-1)] 

T 

- CELE(t-1) x(t-1)] 

Hence 

or 

1 A M-o  - CBT 

CBT 	= 

- 	-  

A M - M - 0 	-1 (4.25) 

T 
Postmultiplying in equation (4.17) by the (1 x m) matrix x(t-2) and 

taking expectations yields 

T 	 T 	 T 
EN(t) x(t-2)] 	= 	AE[x(t-1) x(t-2)] + BE[c(t) x(t-2)] 

T 
- CE[e(t-1) x(t-2)] 

or 

2 
	

= 

Hence 

A = M2- M 1
-1 

 (4.26) 



180 

Substituting for A in equation (4.25) and for CB
T 

and A in equation 

(4.24) yields: 

BBT  + CCT  
-1 	T-1 T 	T-1 T  -1 

Mo -M21M
-1

M-1 +M21 	1 M MM M2 -M
1M1 M-2 (4.27) o- 	-  

Hence the r.h.s. of equation (4.27) may be compiled into a symmetric 

matrix S which is a function of M
o' M-1 

and  M
-2 

 • 
-. 

BB
T 

+ CC
T 

(4.28) 

Equation (4.25) provides a further equation for C and B in terms of 

M 
o 
 , M

1 
 and M2  and may be re-written as 

CBT 
	

T 
	

(4.29) 

where T is a non-symmetric matrix which is a function of Mo, M1  and M2. 

Equations (4.28) and (4.29) must now be solved simultaneously for the 

matrices B and C. The matrices M 
o   
, M

1 
 and M2  provide 

m(m + 1) 	2 	2 
+ m + m 2 

conditions for defining the elements of the matrices A,B and C. A is 

non-symmetric and may be solved for via equation (4.26), as a result 

m(m * 1) 	2 
+ m 

2 

conditions remain to define the elements of B and C. This suggests 

that a lower triangular form may be assumed for either B or C but not 

both, in order to ensure that the process will have M
o'  M1 

 and M
2 
as 

its correlation matrices. 

In order that equations (4.28) and (4.29) may be solved to yield 

real valued coefficients for B and C the matrices S and T must satisfy 

certain conditions. Extra equations derived from equations (4.28) and 

(4.29) allow the specification of these conditions: 
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(B + C)(B + C)T 	= 	BBT  + OCT  + CBT  + BCT  

S + T + T 
	

(4.3o) 

(B - c)(B - c)T 
	

S - T -TT 
	

(4.31) 

Necessary and sufficient conditions that the matrices (B + C) and 

(B- C) be real valued are that the matrices (S + T + TT) and 

(S- T - T
T
) be positive semidefinite. Note that (S + T + TT) and  

(S - T - T
T
) are symmetric. If (B + C) is a real valued matrix and (B - C) 

is a real valued matrix then 

(B + C) + (B - C) = 2B 

must be a real valued matrix. Similarly 

(B + C) - (B - C) = 	2C 

must be a real valued matrix. Consequently, both BB
T 

and CC
T 

must 

be .positive semidefinite. 

4.2.2 Iterative Solution of Matrix Equations  

An analytic solution to equations (4.28) and (4.29) can be found 

through assuming lower triangular forms for the matrices (B + C) and 

(B - C) in equations (4.30) and (4.31), respectively, which implies 

lower triangular forms for both B and C. As a result the process will 

not, in general, preserve the estimated Mo, Mi  and M2  matrices. 

A general analytic matrix solution of equations (4.28) and (4.29) 

which permits a lower triangular form for either B or C has not been 

found possible and an iterative numerical approach has been adopted. 

Equation (4.29) may be rearranged as: 

T 
C = T(B)-1 	 (4.32) 

T 	T i TT 
C 	= 	[(B)-  ] T 

B
-1 

T
T 

Substituting for C and C
T in equation (4.28) gives 
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T 	
T- 

1 	1 
BB + T(B)-  B T 

or 
T 	T 	T 

BB + T(BB)-1  T 

By letting BB
T 

= U an iterative solution for U may be defined as 

T 
U. = 	S -TU -j-1 T -1 (4.33) 

th i where U. represents the value of U obtained on the jteration, and is 

a function of U. , S and T. An arbitrary form must be assumed for U 

initially; the identity matrix I may be used. Convergence occurs when 

U. stabilizes. The matrix U may then be solved for B through assuming 

a lower diagonal form; as already noted BBT  must be positive semidefinite 

to obtain a solution. The matrix C may then be obtained from equation 

(4.32). 

Alternatively, a substitution may be made for B from equation (4.29) 

into equation (4.28) as follows 

  

T 	T 
T (C ) (4.34) 

B 
T 

C-1 T 

 

T 1  T 	1 T 
T (C-  ) C-  T + CC 

T T 1 T 
T (CC)-  T + CC 

By letting CC
T 

= V an iterative solution for V may be defined as 

T 
V. S -T Y31..1 
	 (4.35) 

V may be solved for in a similar fashion to U and a lower triangular 

solution evolved for C. B may then be derived from equation (4.34). 

Both iterative solutions are equivalent and either B or C may be 

assumed to be lower triangular without any loss of generality; in either 

case the process will have the estimated M 
o 
 , M-1 

 and M
2 
 as correlation 

-  
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matrices. 

Problems may be encountered in solving either of equations (4.33) 

or (4.35) for U or V, respectively. The convergence properties of the 

iterative procedure have been examined for a number of different cases 

and the following points have been noted: 

(i) The convergence properties of equations (4.33) and (4.35) are 

virtually identical. 

(ii) In certain cases neither U or V may converge to a solution, 

even though the matrices (S + T + TT) and (S - T - TT) are positive 

definite, and both U and V may oscillate from iteration to iteration. 

A damping coefficient A may be inserted into equation (4.33) or (4.35) 

to define .a new iterative procedure as 

T 
U. = 	S-XT U .1  T 
-J 	 -1 

T 
V. = 	S -X T V 	T -j-1 

(4.36) 

'(4.37) 

where 0.0 < X < 1.0 

Convergence may now be achieved but the equations which have been solved 

are 

T 	T 
BB +XCC 

T 
CB 

T 	T 
XBB + CC 

T 
CB 

(4.38) 

(4.39) 

whereas a solution for A = 1 is required. 

In cases where convergence is obtained with A = 1, the values 

obtained for the coefficients of the matrices B and C may, under 
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certain conditions, be checked to ensure that the solution is correct 

and that the required correlations will be preserved. Provided that 

the preservation of the off-diagonal elements of the estimated M2  

matrix is not required, the inversion of the estimate of the matrix 

M
1 
 in equation (4.26) is avoided through defining A as a diagonal 

matrix. 
••• 

a11' . 

• • .a • • • 
22 

• 
A (4.4o) 0 

0  

a 
mm 

with elements a.., i = 	defined as 
it 

A 	A 
a ..
11 	= 	pi(2)/pi(1) 	 (4.41) 

A 	A 
provided pi(2) < pi(1). Thus, aii  is in fact the moment estimate of the 

parameter pi  of a univariate ARIMA (1,0,1) process at each site. Under 

these conditions the process will preserve lag-zero, lag-one and lag-

two cross-correlations as follows (Appendix 4.1) 

r .(0) .= 	 
ck 	(4.42) 

	

11 jj 	i 	jk 

- a.. E c 	b
j 
 + E c. .cj  jj k=1 ik k k=1 1k k 

ij(1) = a
3_
.
_1 1 	1 k=1 

p..(0) - 	
c.k j  bk 

p..(2) 	a..11 p..(1) 
lj 	lj 

( 4.43) 

(4.44) 

Provided the matrices B and C have been correctly defined by the 

j 
i-torativeprocedure,p..(0),p

1
.(1), will equal their corresponding 

ij  
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A 	A 
historic record estimates p

ij 
 (0) and p

ij 
 (1), respectively, while 

A 
p..(2) will equal p

i
.(2) only for i = j. 

As far as modelling estimates of the Hurst coefficient at each site 

is concerned, a diagonal form for the matrix A is convenient. This 

permits the selection of a value of pi  at each site such that estimates 

of p.(1) and hi  are preserved. The procedure recommended in section 

(3.3.6)fortheselectionofthecP.values may be applied at each site 

on the basis of the observed estimates of p.(1) and h.. 

4.2.3 Analytic solution of the Matrix Equations  

A less general solution for the matrices B and C may be obtained 

by assuming lower triangular forms for the matrices (B + C) and (B - C) 

in equations (4.30) and (4.31) respectively. Such a solution entails 

lower. triangular. forms in turn for B and C. As a result, only 

m(m + 1) 	+ 	m(m + 1)  
2 	2 

conditions are then available to define the 

m2 + 2 	m(m + 1)  
2 

coefficients of the matrices B and C. As a result,.the process will 

- - 
have correlation matrices M

o' - 
M
1 
 and M

-2 
 which, in general, will not 

equal any arbitrary estimates of Mo, Mi  and M2  which satisfy conditions 

for the solution; however, under certain conditions M will equal M , -o 	-o 

and M
1 
 and 

112 
will have diagonal elements which will equal the corresponding 

elements of M and M 
1 	-2' 

From equations (4.25) and (4.27) the r.h.s. of equations (4.30) 

and (4.31) may be evaluated as 

S+T+TT  = M MM-114M-1M
-1  
, 

	

-o 	2-1 -o-1 -2 -2-1 o 
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+MM
-1
M -M MM M 

T-1T 	T 	-1T 
M 	 M1  

T 

-2 -1 - -1-1 -2 - 	- -1 -2-1 1 

,-1 
= (I + M M

-1 
 ) M (1 + M_N ) - M (I + M -1  ) 

-2-1 -o - 	-1 	-2-1 

1 T  
- 	M2-1'1 1 ) 111 

T 	 T 	 T 
= (I + A) Mo  (I+ A) - M1(I + A) - ( 	A) M1  

T T 1 
S 	 TT  =M+MMMM-MMM  

--o 	-2-1 1M -o-1 -2 	-2-1 -o 

T-1T T -1 -MM
-I
M +M -MM M +M -MM 

-o-1 	 -1-1 -2 	-1 	-2-1 1 

T - 	 - = (I - M21 M1 ) Mo  (I - M2-1  M 1) + M-1  (I - M21
1  

M ) - 	 -  

(4.45) 

- 
112M1

1 
 ) 

T 	 T 	 T 
= (I - A) Mo  (1 - A) + Ml(I - A) + (I - A)M1  (4.46) 

Equations (4.45) and (4.46) are now in computationally convenient 

form. Lower diagonal forms may now be assumed for the matrices (B + C) 

and (B - C), assuming that (S + T + T) and (S - T - T) are positive 

semidefinite. Thus, 

T 	 T 
PP 	= 	S + T + T ( . 7) 

T 	 T 
and 
	r = 	s - T - T 	 (4.48) 

where 13 and 13* represent the lower diagonal forms assumed for (B + C) 

and (B - C). The matrices B and C may then be evaluated; a simple 

(2 x 2) case illustrates the procedure. 

B + C 

b21 + c21 	
b
22 

+ c22 1321 1322 
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b
11 

-
11 11 

B - C = 

b
21 

- c
21 

b22
- c22 j  1321 

The elements of B and C may. now be evaluated through simultaneously 

solving pairs of equations provided by (B + C) and (B - C) as follows 

1311 (4.49) 

b11 C11 = fl 
	 (4.5o) 

whence 

b
11 	= 	2[1311 	1311 1  

e
11 	= 	2113.11 - 11;11  

The remaining coefficients of B and C may be solved for in a similar 

fashion. 

If the matrix A in equation (4.16) is assumed to be a null matrix 

the multivariate ARIMA (1,0,1) process reduces to a multivariate 

ARIMA (0,0,1) process. Such an assumption will not be of great interest 

insofar as generating multivariate synthetic streamflow sequences is 

concerned; however, the nature of the restriction imposed on the correlation 

matrices of the process by lower triangular forms for both B and C can 

now be illustrated more easily. 

(a) The Multivariate ARIMA (0,0,1) Process  

The process is defined as 

x(t) 	= 	B e(t) - C E(t-1) 
	

(4.51) 

with the same notation as for the multivariate ARIMA (1,0,1) process. 

The matrices B and C must be defined so that the process will have Mo  

and k as its correlation matrices. The conditions under which B and C 

may be solved for are identical to those for the ARIMA (1,0,1) case as 

specified by the conditions imposed on the matrices (S + T + T) and 

1322 
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T 
(S - T - T). From equations (4.45) and (4.46) 

T 	 T 
S T T 	= 	M - M -M -o -1 -1 

T 	 T 
S - T - T 	= 	M 	M 	M 

-o -1 -1 

(4.52) 

(4.53) 

where S = M
o 
 and T =-111. If B and C are solved for using the iterative - - 

procedure described for the ARIMA (1,0,1) case then the process will 

have m and M
1  as its correlation matrices. If lower triangular forms 

are assumed for both B and C then the process may be shown to have Mo  

as its lag-zero correlation matrix and will have a lag-one correlation 

matrix M*
1 
 with diagonal elements equal to those of M

1
° A simple (2 x 2) 

 

case illustrates this fact. Let 

  

M -o (4.54) 

   

a 

(4.55) 

without any loss of generality. The process may be shown (Appendix 4.2) 

to preserve the elements of Mo  as 

P11(0)  

P22(0)  

1 

= 	1 	 (4.56) 

P12(0) 	P21(0)  

and the elements of M
1 
 as 

P11(1)  

P22(1)  

(4.57) 
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1 r L 	4 	
)V11-2p  

p12(1) 	= 	
(2p - 2a) - (R+ f3+a )41-2p 	(R-f3-a  

-141 2p 	NF1-27 
(4.58) 

1 r 	 (R-p-a›,  1+2 	(R+13+a)\F2p] 
p21(1) 	L( 213 	2a) _ 

	

41 - 2p 	+ 2p 

However, note that 

p12(1)  + P21(1)  a + p (4.59) 

Consequently the off-diagonal elements of Mi  will not be individually 

preserved as sufficient conditions are not available to define all the 

elements of M
o 
 and M1. Note that only 

2[M(M2+ 1)1 	= 	6 

conditions are imposed on the elements of 
110 

and M1. The foregoing results 

for the (2 x 2) case may be shown to be true for the general (m x m) case. 

For the multivariate ARIMA (1,0,1) process, it can be shown that lower 

triangular forms for both B and C do not permit the preservation 

of any of the estimated matrices Mo, Mi  and M2. 

(b) A Modified Multivariate ARIMA (1,0,1) Process  

Under certain conditions lower triangular forms can be assumed for 

both B and C, and still yield an acceptable solution. If the matrix A 

is restricted to be a diagonal matrix with a constant, p, -1 < cp < 1 

along the diagonal, 

(4.60) 0 

0  

A 

then the process will have Mo  as its correlation matrix, and will have 
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a lag-one correlation matrix T_11  with diagonal elements identical to 

M
1 
 (Appendix 4.3). Hence, if lag-zero cross-correlations and lag-one 

serial correlations are only of interest then the matrices B and C 

may be solved for without recourse to an iterative procedure. Further, 

the inverse of M
1  is not required and the diagonal matrix A may be 

substituted for M2-1 
-1 

in equations (4.45 and (4.4*. 

The definition of the matrix A given by equation (4.60) means that 

the flows at each site are generated by a univariate'ARIMA (1,0,1) 

process, with parameter p and the preservation of estimates of p1  and 

h at each site may be attempted using the procedure outlined in section 

(3.3.6). However, the fact that cp is constant from site to site 

represents a constraint on the preservation of observed K. values at 
1 

each site. From tables (3.2) - (3.7), i[Pi]n  and p define '-i[K]n  

uniquely, and as estimates of p1  will vary between sites, the value of 

r 	 A 
ELK.jdefinedateachsitebyyandp.(1) may not necessarily be equal 

n 	 1 

to the observed values of K. at each site. However, reliable estimates 
1 

of K are not available for individual sequences. If the observed 

values of K. at each site are averaged over all sites, an average 
1 

value K is obtained; using tables (3.2) - (3.7) a value of p could 

then be chosen such that 

m 
E EEK.1 n 	 (4.61) 

which means that an average measure of long-term persistence is 

preserved over the m sites, together with the estimated Mo  matrix and 

lag-one autocorrelations. Such an approach might well be more 

reliable than modelling individual estimates of h at each site. If, 

however, the preservation of the observed values of Ki, i = 1,2,...,m, 

is required, this may be.achieved using a constant value of cp, but 
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the observed estimates of pi(1) will not be exactly preserved. 

If the observed values of K. and p.(1) are to be preserved at 

each site, then different values of T are required at each site, 

and the matrices B and C must be solved for using the iterative 7 
 

procedure outlined in section (4.2.2) to ensure that the estimated 

Mo  matrix will be preserved. 

4.3 A Multivariate Log-Normal ARIMA (1,0,1) Process  

In situations where the distribution of the flows at each 

site is assumed to be log-normal with lower bound ai  at each site, 

such that the process Yi(t) = ln(Xi(t) - ai) follows a multivariate 

normal distribution, the ARIMA (1,0,1) process in terms of Yi(t) may 

be written as 

y(t) 	= 	Aly(t-1) + B's(t) - C'e(t-1) 	(4.62) 

wherez(t) and y(t-1) are vectors of standardized normal variates 

1 	 r 

	

with elements yi(t) = (Yi(t) 	and yi(t-1) = CYi(t-1) - p, 

respectively, and [Li  and qi  are the mean and standard deviation of 

the process Yi(t). The matrices A', B' and C'must be defined from 

1 	* 

 

, 

the correlation matrices Mo'  M1  and M2  of the process Y(t). The  
1 	 1 	 1 

elements of the matrices Mo, M1  and M2, pij(0), p..(1) and pij(2), 
ij 

respectively, may be defined from the corresponding elements of 

the matrices Mo' 
 M and M2 through the following equations (Appendix 4.4). 

1 	1 	r 
[exp(a.a.p..(0)) - 11 

p..(0) ij 

   

(4.63) 
'2 	

' 
0.5 	0.5 

[exp(ai  ) - 11[exp(ai2) - 11 

[eXp(c.C.p. .0)) - 11 
P13 . 	

1 j ij  
13 	 0.5 	0.5 

[exp(6
!2

) - 11[exp(0) - 11  

(4.64) 
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I 	I 	I 

[exp(0.0.p..(2)) - 

p..(2) 
 

ij 	
'2 	

0.5 	I-) 	0.5 

[exp(6„ ) - 1][exp(s.4-) - 1) 

J 

(4.65) 

In the general case, estimates of the elements of ?ID , Ml  and 

M
2 
 may be inserted into equations (4.63-4.65) to yield estimates of 

the elements  ()I'Mo' 
	and M2. The quantities µi

, 1 1 	
and a. at 

each site may be defined from the mean, variance and skewness of 

X.(t) as outlined in section (3.3.7). The iterative procedure 

outlined in section (4.2.2) may then be used to solve for the 

matrices A', B'  and C'  in terms of 14:0 , 	and M. Synthetic flows 

will then conform to a multivariate log-normal distribution, and 

will resemble historic flows in terms of the temporal and spatial 

statistical properties of the flows, rather than in terms of the 

properties of the logarithms of the flows. 

If a diagonal form is assumed for the matrix A; with elements 

T. along the diagonal, then the procedure outlined in sections 

(3.3.6) and (3.3.7) may be applied to the process Yi(t) to ensure 

that both short-term and long-term properties in Y-space are 

preserved at each site. Attention is thus confined only to 

preserving estimates of the elements of the matrix Mo  which can be 

used to define the elements of M
0 
 frbm equation (4.63), and the 

diagonal elements of the matrix M/  which can be used to define the 

diagonal elements of N1  from equation (3.35). 	Again, the assumption 

is made that the value of K
. 
preserved in Y-space at each site 

will be invariant under the non-linear transformation, which may 

not be a valid assumption. 
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4.4 Summary  

A review of multisite stochastic models of annual streamflow has 

shown that no simple multisite model with the ability to model long-

term persistence has appeared in the literature. A multisite ARIMA (1,0,1) 

process has been formulated which allows the preservation of short-

term and long-term properties at each site in addition to the appropriate 

cross-correlations between sites. A simple iterative procedure can be 

used.to solve the matrix equations in the general case. A less general 

solution can be.obtained analytically which should be sufficient for 

the majority of applications. A multivariate log-normal ARIMA (1,0,1) 

process has also been developed. 
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Chapter 5 

ESTIMATION OF THE PARAMETERS OF THE ARIMA (1,0,1) PROCESS 

The approach outlined in section (3.3.6) represents an indirect 

method of estimating the parameters T and 0 of the ARIMA (1,0,1) 

process using estimates of p1  and h. Such an approach seeks to 

fulfill the aims of synthetic hydrology in attempting to achieve the 

"correct" statistical resemblance between historic and synthetic 

sequences in terms of parameters which are thought to exert an 

important influence on the water resource system design process. 

However, in the presence of long-term persistence, estimates of 

p1  and h are biased, and probably do not yield very efficient estimates 

of T and 0. Alternative methods of estimating the parameters of a 

general ARIMA (p,d,q) process have been proposed by Box and Jenkins 

(1970) which rely on more classical statistical methods and which are 

particularly suited for forecasting applications. The Box-Jenkins 

approach involves a series of techniques for model identification, 

parameter estimation and diagnostic checking in order to establish 

the appropriate ARIMA (p,d,q) model for the sample of data. In the context 

of water resource system design, a good approach would be one yielding 

(a) the model and (b) parameter estimates for that model which would 

minimise the expected loss and hence the risk associated with decisions 

to be taken by a designer on the basis of the observed parameter estimates. 

Due to the impossibility of assessing whether or not these, specifications 

are satisfied, a general approach such as that of Box and Jenkins (1970) 

may be adopted which attempts to identify the correct model for the 

data and then derive maximum likelihood estimates of the parameters of 

the model. 
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A selection of observed time series from industry and economics 

have been employed by Box and Jenkins (1970) to illustrate their 

methodology. In general, each observed series contained between 

200 and 300 observations, which perhaps allows some reliable conclusions 

to be drawn as to the correct model for the data. However, observed 

hydrological sequences of annual data, on average, may be only of the 

order of 30-50 years, and, in the presence of long-term persistence, the 

information content (Matalas and Langbein, 1962) of such sequences will 

be rather small. Consequently, the ability of the Box and Jenkins 

methodology to provide reliable guidance as to the appropriate model 

for annual streamflow cannot, perhaps, be readily accepted and merits 

some investigation. In addition, the properties of maximum likelihood 

estimates from small samples are largely unknown. 

Section (5.1) reviews the moment and maximum likelihood parameter 

estimation techniques employed by Box and Jenkins (1970) and 

illustrates how such estimates may be obtained for the ARIMA (1,0,1) 

process. Some of the diagnostic tests for model inadequacy are 

reviewed in section (5.2) and the problem of type II errors is 

discussed. Some Monte Carlo sampling experiments are carried out in 

section (5.3) to investigate the power of some of the diagnostic 

tests described in section (5.2) and to investigate some of the 

properties of moment and maximum likelihood parameter estimates in 

small samples for the ARIMA (1,0,1) process. The results of some 

sampling experiments with higher order ARIMA models are reported briefly. 

In section (5.4) the ARIMA (1,0,1) model is fitted to some observed 

time series of tree ring indices and to some shorter series. of annual 

stream flow data. 
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5.1 	Parameter Estimation Techniques 

The parameters of ARIMA models may be estimated using the method 

of moments or the method of maximum likelihood (ML). In general, 

moment estimates of parameters are easier to obtain, and do not require 

any assumption as to the distribution from which the data derives. On 

the other hand, moment estimates do not, in general, possess the 

desirable property of asymptotic efficiency which ML estimates possess. 

Nevertheless, the derivation of maximum likelihood estimates requires 

an assumption about the underlying distribution, and frequently entails 

the solution of some complicated non-linear equations. 

While the large sample or asymptotic properties of moment and 

maximum likelihood estimates can generally be derived analytically, 

the extent to which these properties hold for small sample estimates is 

largely unknown. Some large sample properties of ML estimates of 

autoregressive and moving average parameters have been derived by Box 

and Jenkins (1970) who have shown that moment estimates of autoregressive 

(AR) parameters closely approximated fully efficient (asymptotically) 

ML estimates, while moment estimates of moving average (MA) parameters 

do not. Box and Jenkins suggest using moment estimates of AR and MA 

parameters as initial. approximations to ML estimates which must be 

solved for using iterative numerical procedures. Little is apparently 

known of the properties of both moment and ML estimates of AR and MA 

parameters in small samples. However, from the simulations performed 

in section (3.3.5) estimates of p1  for the ARIMA (1,0,1) process are 

biased in the presence of long-term persistence, which implies that 

estimates of plc  (k > 1) will also be biased. Consequently, moment estimates 

of the parameters of the ARIMA (1,0,1) process will be biased in small 

samples. A similar conclusion cannot as yet be drawn about maximum 
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likelihood estimates. 

ARIMA models have already been applied to a small number of 

annual streamflow sequences, for the purposes of forecasting 

(Carlson, McCormick and Watts, 1970), and the validity of using such models 

for annual streamflow has been questioned (Mandelbrot, 1971b). The 

contention that forecasting is essentially a short-run problem (Carlson 

and Watts, 1971) as distinct from the generation of synthetic streamflows, 

where long-run effects can be important, may not be valid, as small 

sample estimates of the parameters of ARIMA models can be expected to 

suffer from the effects of long-term persistence. 

5.1.1 Moment Estimates for the ARIMA (1,0,1) Process  

Moment estimates of the sets of parameters p= [pl , p2,...,ppl 

and 0 = [01, 02,...,0] for the stationary ARIMA (p,o,q) or APMA (p,q) 

process may be defined from estimates of the (p+q) autocorrelations 

pl , p2,...,pp+q. Jenkins and Watts (1968) suggest using the algorithm 

n-k 

Y 
A 

k 	

1 	(xt-50(xti-k A 	 n i=1  (5.1) 
Pk 	Yo 1 

E (X -7)2 
n  i=1 t  

for estimating pk  on the grounds that it provides an estimate with 

smaller mean square error than estimators with (1/n-k) in the numerator 

of equation (5.1). Having thus derived the estimated autocorrelations 

A A 	A 
pi , p2,...,p

p+q 
(or equivalently the estimated autocovariances 

A 	A 	A 
y
0' 

yl' ...,yp+q) a general two-stage procedure which is essentially 

based on the two-stage specification of the process in section (3.1.5), 

is employed by Box and Jenkins (1970) for estimating the elements of 

the sets q and 0. The elements of the set p are estimated from 
A A 	 A A 	A 

the estimated autocovariances y q-p+1' Yq-p+2' ""Yq+1'Yq+2'''''Yq+p by 
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solving the set of p linear equations 

A 	A A 	A A 	A A 

Yq+1 	= 	T1Yq T2
1
q-1 + 	+ (PpYq-p+1 

A 	AA 	XA 	A A 
Yq+2 T1Yq+1 Y2Yq 	TpYq-p+2 

(5.2) 
• • • 

A 	A A 	A A 	A A 

	

Yq+p 	T1Yq+p-1 T2Yq+p-2 ... yq 

Using estimates of the members of the set p, the first (q+1) 

At 

autocovariances yk (k = 0,1,...,q) of the derived series 

	

1 	A 	A 
X
t 	

= 	X
t 
 - p1 Xt-1  ...   - p

p
X
t-p 	(5.3) 

Al 	At 	AY 
are calculated. The autocovariances y0'  y ... y are then used in 

I 
A A A 

place of y0'  y1  ... yq 
 in equation (3.16) to solve iteratively for the 

parameter estimates of 0
1 
... 0

q' 
an estimate of the residual variance, 

d 
2
, also being obtained. 

At 	Al 	At 

	

In obtaining the autocovariances y
0' 

y
l' 
...,y 	it is not necessary 

to obtain the derived series Xt, and subsequently estimate ylic, k = 0,1,...,q 

therefrom as Box and Jenkins (1970) have defined the relations between 

A 	At 

yk and yk as: 

	

At 	P A2A A A 

TlYk 

	

yk 	
PAA AA 
E (Yogi 	T1Yi+1 	T  'p-i Tp ) dk 

i=0 	i=1 
(5.4) 

where k = 0,1,...,q 

A 	A 
d
k 

= 	Y 	+ y 
k+i k-i 

(Po 

For the ARIMA (1,0,1) process, equations (5.3)  and (5.4) reduce to 

	

A 	A 
Y2 = 	T 1 	 (5.5) 

and 

At 	A 	A2 	A A 

Yo 	Yo(1 + 	) - 2T yi  

Ar. 	A 	A2, 	A ,A 	A 

1 11(1  + y ) - y1kY2 4. o) 
(5.6) 
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respectively where the subscripts on Ti  and 01  have been omitted. 

The parameter 0 is then estimated through solving the following equations 

iteratively A, 

A 2 	Yo = 
42 

1 + 02  
(5.7) 

A 2 
0 

2 
The iteration is commenced with 0 = 0 and an estimate of e 	the residual 

A 
variance, is obtained. d

2 
 is then substituted into the second equation 

to yield an updated estimate of 0. The iteration is repeated until 

convergence takes place. The procedure converges linearly; however, 

quadratic convergence can be obtained through using a Newton-Raphson 

algorithm. 

4 
Equivalently, equation (3.25) can be solved for the parameter cp 

while equation (3.24) then reduces to a quadratic in 0 which yields two 
A 

estimates of 0; nevertheless, only one estimate will satisfy the 

invertibility condition -1 < 0 < +1. However, in the case of higher 

order ARIMA models, the more general two-stage procedure is necessary. 

5.1.2 Maximum Likelihood Estimates for the ARIMA (1,0,1) Process  

The limiting properties of Maximum Likelihood (ML) estimates are 

usually established for independent observations (Rao, 1965), but 

Whittle (1953) has shown that the theory may be extended to cover 

stationary time series. The likelihood function forms the basis 

whereby ML estimates may be obtained, and, for n random variables 

Z1 , Z2,...,Zn, is their joint density L(Z1,Z2,...,Zn; 	2,..., k) which 

is a function of the vector of parameters= 	In 

particular, if Z , Z ,...,Z is a random sample from the density 
1 	2 	n 	 function 

f(z;) then the likelihood function is 

A 
0.  

A, 
Y1 



(5.10) 1(Z Z 	Z .0 
1' 2" n' 
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L(Z1 , Z2,...,Zn; s) = f(Z1;'). f(Z2;s)... f(Z ;s) 

(5.8) 
n 
E f(z

1
.;0 

i=1 

and the maximum likelihood estimates of the parameters 1' 

are obtained by solving the set of k equations 

2,...,Ek) 
	

0 	(j = 1,2,...,k) 
	

(5.9) 

R, • 

A A A 
to yield the estimates 	Frequently, it is more convenient 

to work with the log-likelihood function 

from which ML estimates of t' r,2,...,r4c  are obtained by solving the 

equations 

al 	a(111L) a 
—( L

) 	= 	0 	(j = 1,2,...,k) (5.11) 
a i 	Or,j 	L 

3 

The values of the ML estimates are those which maximize the probability 

of obtaining the given sample. 

In the case of a stationary ARIMA (p,d,q) process, the parameters 

to be estimated are the mean g , the variance 02 (or equivalently the 

residual variance 0 2), the p AR parameters p1, p2,...,pp  and the q  MA 

1 n 
parameters 81' 

 82'...,8q. The mean g  can be estimated as 7 . E X 
nt=1 t 

and a new sequence of observations defined as 

W
t = x

t 
- 	 (5.12) 

with E[Wt] = 0. Alternatively, the mean g  may be included in the 

vector of parameters s, which otherwise comprises p autoregressive 

parameters, q  moving parameters and d2, or equivalently, 6 2, the 

variance of the residual white noise Et. The term Et  may now be 

defined as: 
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Wt 	1Wt-1 -  
t 	

W - p 	- 2Wt-2 	PpWt-p 
(5.13) 

+ 
01et-1 

+ 
02ct-2 

+ 	+ 8
q
c
t-q 

However, for any particular s, the starting values of Et  cannot be 

calculated from equation (5.13), as the p values Wt-1' 
W
t-2, '" '1t-p' 

denoted as W*, and q values et-1, et_2,..., et_q,denoted as e*, will be 

unknown. However, for a particular choice of W* and E*, the vector 

e of length n may be calculated from equation (5.13). Assuming that 

the 6
t values are normally distributed the likelihood function is 

n 
L(e 	) —6 n  ex 	6  2/2(y  2)1 

1 
, c 	' 2' 	n 	P L-'

( 	
t / 	E 1 ' 

t=1 

(5.14) • 

whence the log-likelihood function, conditional on the choice (W*, c*), is: 

, 1*(cp ,e ,de) 	-n in d - S* (p 2 
e )  

26 

where p and 0 denote the sets of parameters pi , p2,...,pp  and 

e1, 82,...,0q, respectively and 

(5.15) 

n 
2 	, = 	, 	,u IX* E* 

t=1 t - - - - - 
(5.16) 

Hence the conditional likelihood function given by equation (5.15) 

involves the data only through the conditional sum of squares 

(equation 5.16), and contours of 1* for any fixed value of cle  in the 

space (2 ,e ,de) are contours of S*. Thus, values of the elements of 

p and 0 which minimize S* maximize 1*, and the resulting least squares 

estimates represent ML estimates. 

Ideally, the unconditional likelihood function should be used for 

parameter estimation (Box and Jenkins, 1970), but suitable choices of 

W* and 6*  allow a sufficient approximation to the unconditional 

likelihood function for moderate to large n by using the conditional 

likelihood function. One choice for the elements of c* and W* would 



S(T ,0  ) 	= 	E 	t 12 8 	WI - t=-co 
(5.18) 
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be the unconditional expectations of e t, and Wt, respectively, which are 

zero. However, if the values of some of the autoregressive parameters 

lie near boundaries, then this approximation may not be sufficient. A 

more reliable procedure is to calculate the values of E t from equation 

(5.13) for p+1  onwards, setting previous et values to zero. Hence 

the sum of squares S* will then be derived from n-p values of E
t 

but 

the- slight loss of information would be unimportant for long series 

(Box and Jenkins, 1970). However, for short series, the best approach 

is to work with the unconditional log-likelihood function. 

The unconditional log-likelihood function for a sequence of n 

observations assumed to have been generated by an ARIMA (p,o,q) 

process is given as 

1(T ,0  , 6e ) 	= 	f(! ,° ) -n ln 0c  S(59-  ;2" ) 	(5.17) 
20—  e 

where f(p,0 ) is a function of p and 0 (Box and Jenkins, 1970). The 

unconditional sum of squares function is given as 

where 6
t I p, 8, W  I = 	

E le 
t  1 p, 0, W }denotes the expectation of Et 

conditional on p, 0 and W, and thus may be abbreviated toj Ed. As 

f(p,O) is usually unimportant for moderate to large n, contours of 

S(c) , 0) closely approximate contours of log-likelihood. Hence, least 

squares estimates obtained through minimizing S(p,0) in equation (5.18) 

will usually provide close approximations to ML estimates. 

5.1.3 Maximizing the Likelihood Function  

A popular procedure in obtaining ML estimates is to set the first 

derivatives of the log-likelihood function with respect to the parameters 

equal to zero, and to solve the resulting equations analytically or by 
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some numerical procedure. However, if the analytic form of the log- 

likelihood is intractable, recourse must be had to iterative numerical 

optimization techniques which may or may not necessitate the calculation 

of derivatives. 

While the conditional expectation-let t is linear in the elements 

of the parameter set p  , it may be shown to be non-linear in the elements 

of the set 0  . Consequently, techniques which rely on S(cp , 0) being 

quadratic in the parameters, such as linear least squares, are not 

strictly applicable. Box and Jenkins (1970) suggest howl E
t 

may be 

suitable linearized, and how linear least squares techniques may then 

be applied iteratively to obtain ML estimates, provided reasonable initial 

guesses at the parameter values are available. However, more general 

optimization techniques for finding the greatest or least value of a 

function without calculating derivatives are now widely available 

(e.g. Rosenbrock, 1960), and may be readily applied to minimize the 

function S(cp , e). In calculating S(cp , 0), conditional expectations 

are taken in equation (5.13) to yield the values of 16t I P' e' WI' 

As the recurrence relationship starts with t = 1 and proceeds forward, 

values W. , j = 0,1,2 are required to start off the forward 

recurrence relationship. In order to provide these values, Box and 

Jenkins define an ARIMA (p,o,q) process using a forward shift operator 

F W
tt+1 
	 (5.19) 

and define the value of the process W
t 
at time t in terms of a set of 

random shocks St,  bt+1't+2
,... whence 

T(F)Wt  = 0(F)bt 	 (5.20) 

which may be written in recurrent form as 

b
t 	 Wt P1Wt+1 P2Wt+2 	PpWt+p 

(5.21) 
+ 81t+1 + 02t+2 + 	

+ 0
qt+q 
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Equation (5.21) is used to provide the values W j 	j = 0,1,2 

needed to start off the forward recurrence defined by equation (5.13). 

The procedure may be illustrated by considering an example with 

n = 12 successive values given in table (5.1) (Box and Jenkins, 1970). 

t 1 2 3 4 5 6 7 8 9 10 11 12 

Wt  2.0 0.8 -0.3 -0.3 -1.9 0.3 3.2 1.6 -0.7 3.0 4.3 1.1 

• Table 5.1  

An ARIMA (1,0,1) process with T = 0.3 and 0 = 0.7 serves to illustrate 

the calculations for which the recurrence relationships (equations 

(5.13) and (5.21)) reduce to 

t Wt • - 0. 	+ 0.7e 
3Wt-1 	t-1 

(5.22) 

t 	w
t 
- 0.3Wt+1 

+ 0.7b
t+1 
	(5.23) 

respectively. As W1, W2,...,Wn  are distributed independently of 

0' -1' -2' 
... in equation (5.23) then 

1 ,0 	= 	= 	= • • • 0 

The series of observations W t' 
 t=1, n are first of all entered in 

table (5.2) and the iteration then proceeds as follows: 

(i) Starting p steps from'the end of the series, where p = 1, 

calculate 611 610"." 61. 	b12  is set to zero, while bo, b_i, 

are zero by definition. 

(ii) Equation (5.23) is now rearranged as 

W
t 	

b + 0.3W 
t+1  - 0.7b t+1 
	(5.24) 

whence values Iwo }, 11.4_11, 	 may be calculated until 

mil has become sufficiently small. 

(iii) Using equation (5.22) values c -m ' c-m+1 ' 	
Co

E-m+2" 	' 61 	6 n 

are calculated, assuming thati W_mlis effectively zero, which means that 
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1 e 
-
.k0 for j > m - 1. The unconditional sum of squares S(cp ,O) 

= S(T,0) = S(0.3,0.7) is obtained through summing the squares of all 

the calculatediet} values. Thus, from table (5.2) 

12 
S(T,0) = S(0.3,0.7) = 	et t2  = 89.2 (5.25) 

t=-4 

The successive entries in table (5.2) corresponding to steps (i) - (iii) 

have been suitable labelled. 

t t i Wt f 1 	 tt 

-4 -0.01 -0.01 0 
-3 -0.04 -0.03 (ii) 0 
-2 -0.11 -0.09 0 
-1 -0.36 -0.31 0 
0 -1.20 -1.04 0 

CV
 K\

 -I-  U
\\D

 C- 0 9
 

C
\
0
  N

  

1.47 2.00 2.34 
1.23 0.80 0.83 
0.32(111)  -0.30 -0.08 
0.02 -0.30 0.18 
-1.80  -1.90 -0.13 
-0.39 0.30 2.66(i) 
2.84 3.20 4.74 
2.63 1.60 2.89 
0.66 -0.70 1.54 
3.67 3.00 4.49 
5.95 4.30 3.97 
3.99 1.10 

Table 5.2  

In general, the foregoing cycle will be sufficient to define 

S(c9,0) accurately. However, the convergence of the procedure may be 

checked by applying a second iterative cycle. 

(i) 	Using the value ofic121 = 3.99 computed from the previous cycle, 

and noting that lel, j = n+1, n+2,...,n+m equal zero as 1E .1, j = n+1,... 

are independently distributed of W, equation (5.24) may be used to 

calculate 1141, j = n+1, n+2,...,n+m until the 1 W.1 values are 

essentially zero for j > m - 1. 

(ii) 	Using equation (5.23) 114111 ' 	bi  may then be evaluated 
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recurrently noting again thati 	. -31 = 0 for j = 1,2,... The sum of 

squares may then be defined as 

18 
S(0.3,0.7) 	2 bt  = 89.3 

t=1. 
(5.26) 

which compares closely with the value obtained from the first cycle. 

Table (5.3) contains the entries corresponding to the second cycle. 

t i -t 1  1 Wt t 1 	61 	1 1 	t 

0 o 
1 2.00 2.34 
2 0.80 0.83 
3 -0.30 -0.09 
4 -0.30 0.17 
5 -1.90 -0.14 
6 0.30 2.64 
7 3.20 4.72 
8 1.60 2.86 (ii) 
9 -0.70 1.49 
10 3.00 4.42 
11 4.30 3.89 
12 3.99* 1.10 _ -0.14 
13 0 -2.46 -2.84 
14 0 -0.74 -0.85 
15 0 -0.22 (1)  -0.26 
16 0 -0.07  -0.08 
17 0 -0.02 -0.03 
18 0 -0.01 -0.01 . 

Initial entry from first cycle 

Table 5.3  

Box and Jenkins (1970) advocate graphical plotting and subsequent 

inspection of the likelihood function as important steps in obtaining ML 

estimates, and warn against the danger of obtaining incorrect results 

if an automated procedure is blindly followed in minimizing the sum of 

squares function s( p, 0). In certain situations, the likelihood function 

may have multiple maxima (Box and Draper, 1965), and may exhibit other 

characteristics such as sharp ridges and spikes. Multiple optima of 

approximately equal height suggest that a number of sets of values exist 
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for the parameters which might explain the data. Oblique ridges suggest 

interaction between the parameters, where parameter values considerably 

different from their ML values may correspond to practically identical 

values of the likelihood function. 

5.1.4 Variances of ML Estimates  

Expressions for the large-sample variances and covariance. of ML 

estimates for the parameters of ARIMA (p,o,q) models have been derived by 

Box and Jenkins (1970). Assume that the log-likelihood function is quadratic, 

for example, over a 95% confidence region, and that a vector a is defined 

to contain the (p+q) autoregressive and moving average parameters contained 

in the sets p and e . Thus, the ARIMA (p,o,q) model is, apart from the 

mean, which may be estimated beforehand, completely specified by the 

(p+q+1) parameters a and d or, as previously denoted, r . Then 1( 0 may 

be expanded as 

k 	k A 
1( i) = l(,d 

6  ) 	1(a,6 E) + 	ij E d(a.-1c.)(a
j 
 4.) 	(5.27) 

i=1 j=1 	I, 	j 

where k = (p+q). Under the assumption that 1( 0 is quadratic, the 

derivatives 

(3
2
1(a,6e) 

	

d.. 	 (5.28) 

	

1J 	aoc. j 

are constant. For large n, the influence of the term f( y, 0) in equation 

(5.17) may be ignored, and 1(a,6e) will be approximately quadratic in a 

if S(a) is. As already noted, S(a) will be essentially quadratic in a 

if the conditional expectations / ct i a, W I are approximately locally 

linear in the elements of a. 

The (k x k) matrix I(a) whose elements are defined as -ED.
ij 

is 

referred to as the information matrix for the parameters a, where the 

expectation is taken over the distribution of W. For a given value of 66, 



n( T-  0)2 
A 	(1- TO )

2 
(1-T

2
)  

Var [T] - 
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A 
the variance-covariance matrix V[a] for the ML estimates for large samples 

is given by 

V Cr] 	- [D] 
	

(5.29) 

where, from equation (5.17), the elements of D are approximated by 

_
E[R..] 

2 
26 

where 

E[d..1 
lj 

(5.30) 

R ij (5.31) 

An estimate of o
e 
2 
 is provided by 

A 
2 	S(U) 	

(5.32) 

while, within large samples, estimates of a
c
2 
and a are uncorrelated. 

Consequently, the variance-covariance matrix may now be estimated as 

V[(;̀,!] 
	

26E2  [R1 -1 
	

(5.33) 

Hence, approximate confidence regions may be calculated from the standard 

errors of the parameters. For the particular case of the ARIMA (1,0,1) 

process, the variance-covariance matrix may be shown to be (Box and Jenkins, 

1970) 

1 - 	0  V [ , 	 (5.34) 
n( T-  0)2 	(1-T

2
)(1-0

2
) 	(1-0

2
)(1-0) 

A 	A 
The large-sample variances of T and 8 are thus 

(5.35) 

A  
Var [0] - (1- TO )

2 
 (1-0

2
)  

n( T- 0)
2 

(5.36) 

(1-T2)(1- pe) 	(1-T2)(1-02) 

[ 
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5.2 Goodness-of-fit Tests 

Once a stochastic model has been fitted to a time series through 

estimating the elements of the set of parameters r, goodness-of-fit tests 

may be applied to check the adequacy of the model. In the context of 

ARIMA models, this procedure is called diagnostic checking by Box and 

Jenkins (1970). A wide variety of goodness of fit tests have been developed 

for stochastic models, with tests for the adequacy of an autoregressive 

scheme receiving considerable attention (Quenouille, 1949 ; Whittle, 1952 ). 

Diagnostic checking is frequently applied to the residual term et,  which,  

if the model is adequate, should be completely random. Some tests are now 

considered here, a number of which have been employed by Box and Jenkins 

(1970). 

5.2.1 The Anderson Test  

A well known test for randomness of a time series is Anderson's (1942) 

test of significance based on the estimated lag-one autocorrelation 

A 	
A coefficient, p. For a random normal process, pi  i s normally distributed 

with mean - ( 
	

and variance 	. Consequently, confidence limits 
n-1) 
1 	n-2 

A 	 (n-1)
2 

for p
1 
are given by 

A 
C.L.(p 

1
) .= 	[-1 ± Z

a 
 V77-7 ]/(n-1) (5.37) 

. where Z
a 

is a standard normal deviate corresponding to a probability level 

A 
a. If p 1 falls outside the confidence limits, then the hypothesis that 

1 =
0 is not accepted. As the test is based on p 1, it is predisposed 

towards detecting departures from randomness attributable to high frequency 

effects, and does not represent an adequate test for low frequency effects. 

In the presence of low frequencies, estimates of P 1  will be severely 

biased, and consequently the power of the Anderson test will be low as 

evidenced by a large percentage of type II errors (Wallis and Matalas, 1971). 
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5.2.2 Cumulative Periodogram Test 

A test based on the integrated periodogram derived through a harmonic 

analysis of the residual term et 
has been given by Box and Jenkins (1970). 

The periodogram of-a time series et, (t = 1, 	n) where n is odd, may 

be defined as 

= 	(a-2 .2) 1 	(ail  + 13 2  
(5.38) 

where i = 1,2, ..., r and r = (n-1)/2. The harmonic coefficients a. and 

b. are given by 
1 

2 
 n 

a
1  
. = 	E 	e

t 
Cos 2n f. t 

1 t=1 
(5.39) 

n 
b. = 2  E 	c

t 
Sin 2n f. t 

1 t=1 

where f. = i/n. If n = 2r is even, then equations (5.38) and (5.39) apply 
• 

for i = 1,2,. 	(r-1), but 

n 
ar 	

1 
	

(-1)
t 
et t=1 

(5.40) 
b
r 	

0 

and 

I(fr) = I(0.5) = nar
2 	 (5.41) 

The summation of the periodogram ordinates I(fi) is related to the sample 

variance S2  estimated with a divisor of (1/n) as 

n 	 r 
nS2 = E 	(e -E)2 = 	I(f.) 

t=1 	i=1 	1 

- 	1 n 
where 	e 	= — E et 

t=1  t=1 
t 

(5.42) 
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As the power spectrum p(f) for white noise has a constant value 

26 
2 
 over the frequency range 0 - 0.5 cycles, the cumulative spectrum for 

white noise may be defined as 

P(f) = f p(g)dg 
• o 

(5.45) 

and is a straight line joining (0,0) and (0.5, 6c2). Hence a standardized 

cumulative spectrum may be defined as P(f)/(5 
2 
 and forms a line joining 

(0,0) and (0.5,1). By analogy, the cumulative periodogram C(fi) with 

range (0 - 1) may be defined as 

J 
E 	I(f.) 

1 
C(f.) - i=1 	 (5.44) 

nS
2 

If the correct model were known together with the population values of 

the parameters, then the series e
t 
would constitute a pure white noise 

and a plot of C(f.) against f. would be scattered around a line joining 

the points (0,0) and (0.5,1). Systematic deviations from this line would 

represent a suggestion of model inadequacy. Even if the correct model 

were applied, only estimates of the parameters will be available and the 

A 
e
t 

values obtained
't' 

 will themselves represent estimates of E
t. 

However, 

for large samples, the periodogram of the E
t 
will have similar properties 

to those of the e
t 
(Box and Jenkins, 1970). 

The probability relationship between the cumulative periodogram C(f.) 

, 2 
and the integrated spectrum P(f)/6 is identical to that between the 

empirical cumulative frequency function and the cumulative distribution 

function. Hence a Kolmogorov-Smirnov test may be applied to C(f.) to 

detect departures from the theoretical form P(f)/6 
2
. However, the test 

A 
is approximate as only et  values rather than et  values may be calculated, 

even if the correct model were known. Confidence limits may be placed 

on the line defined by P(f)/6e
2 such that for a purely random series, 



K 	A. 
Q=nE 	p k 

k=1 
(5.45) 

nlo 

C(f.) would cross them a% of the time. The confidence limits are drawn 
J 

at a distance - K
a
/ g where g = (n-2)/2 for n even and g = (n-1)/2 

for a odd. Values of Ka are given by Box and Jenkins (1970). 

5.2.3 Autocorrelation Test  

The estimated autocorrelation function pk, k = 0,1, ... may be used 

to check departures from randomness in the et  values after a model has been 

A 
fitted to an observed series. However, the sampling properties of the pk  

A 
values are difficult to quantify, as neighbouring estimates pk  will in 

general be highly correlated. Only if the parameter values of the correct 

model are known exactly will the calculated ct  values constitute a white 
A 

noise series, whence the pk, k = 1,2, ... will be uncorrelated and 

approximately normally distributed with mean zero and variance 1/n, and 

hence, standard error 1A/17. However, as only estimates of the et  will be 

available, and the correct model will be unknown, the application of 

A 
confidence limits based on a standard error 1A/if applied to the pk  values 

may be inappropriate. Durbin (1969) has shown that if the c
t 
are derived 

A 
from an AR(1) process with parameter p, the variance of p1 is T

2
/n 

which may be considerably less than 1/n , and the use of 1,4,/n as a standard 

A 
error could underestimate the variability of the pk, particularly for 

low k. 

A 
If the first K autocorrelations pk  (k = 1,2, ..., K) are derived 

from a series of ct 
values obtained by fitting any ARIMA (p,o,q) process 

to an observed sequence of length n, and if the fitted model is appropriate, 

the quantity 

2 
is approximately distributed as X2  (K - p - q) (Box and Jenkins, 1970). 
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If the model is inappropriate then the average values of Q will tend to 

be inflated. Hence an approximate test may be applied be testing observed 

Q values against the appropriate percentage points of the X
2 
distribution. 

One of the apparent problems associated with the test is the choice Of a 

suitable value for K. 

5.2.4 Type II Errors and Power of Tests  

The tests for randomness of the et 
values discussed in the preceeding 

sections (5.2.1), (5.2.2) and (5.2.3) may all be applied at some preselected 

level of significance. Associated with each test is a power, defined as 

1 - w where w is the proportion type II errors. In general, as a increases, 

w decreases and vice versa. Usually, w cannot be determined analytically 

for any particular test. As type II errors with respect to autocorrelation 

may prove more costly in hydrologic applications than type I errors, a 

value of a should ideally be chosen such that the expected loss resulting 

from either a type I or type II error is minimal. Invariably, a value of 

0.05 is chosen for a in hydrologic studies, but such a level may not be 

warranted in applying tests for detecting long-term persistence, where 

the economic losses associated with type II errors may be high. 

The power of the tests already described may be assessed through 

sampling experiments. The ARIMA (1,0,1) process is of particular interest, 

and a large number of sequences exhibiting varying degrees of persistence 

and of lengths usually encountered in hydrology may be generated, and w 

estimated as the proportion of times that a test fails to detect the 

existence of persistence. 

5.3 Sampling Experiments  

5.3.1 Power of Tests for Independence  

Initially, some small sample experiments were carried out in order 

to assess the performance of the cumulative periodogram (CP) tes4-presented 



in section (5.2.2) in detecting the non-randomness which characterizes 

long-term persistence. The simple and widely used Anderson (A) (1942) 

test for independence was used as a basis for comparison, and the relative 

powers of the two tests compared as follows. 

For sequences of length 25, 50 and 100, 1000 realizations were 

generated by an ARIMA (1,0,1) process with T = 0.90 and for each of a 

range of values of 0 yielding a suitable coverage of values of p1  in 

the range 0.0 to 0.9'. Each sequence was subjected to the A and CP tests 

both applied at a 5% level of significance, and the proportion of sequences 

identified as non-random noted for each value of p
1
. Hence the proportion 

of type II errors may be.obtained and plotte.d against p1. The A test 

was 	to have greaterTower for the sample sizes considered; this is 

illustrated for sample sizes 25 and 100 in figure (5.1). Consequently, in 

the presence of long-term persistence, the CP test performs poorly. This 

latter finding would appear to be in line with those of Mandelbrot and 

Wallis (1969b) who found that the sample spectrum was rather insensitive 

to long-term persistence. As previously noted by Wallis and Matalas (1971) 

the Anderson test lacks power because estimates of p 1  are biased downwards 

in addition to the fact that p
1 
measures high frequency behaviour only. 

Nevertheless, in this instance, the Anderson test, with its computational 

simplicity is apparently superior to the cumulative periodogram test which 

involves greater computation. The CP test may well perform better in 

detecting other types of non-randomness. 

The effect of sample size on type II errors for the A test is more 

clearly illustrated in fig. (5.2) for an ARIMA (1,0,1) process with 

P = 0.90, which maybe considered as a moderately persistent process. 

However, for small samples, the proportion of type II errors is high, even 

for moderately large values of p l, while for small values of p i  the 

power of the test is almost zero, with the proportion of type II errors 
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Figure (5.1) Power of:CP and A tests, expressed as the percentage of 
type II errors in 1000 samples of size n, with n = 25 
and 100, for an ARIMA (1,0,1) process with p = 0.90. 
The tests were applied at a level of significance of 
a = 0.05. 
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Figure (5.2) Power of A test, expressed as the percentage of type II 

errors in 1000 samples of size n, with n = 25, 50 and 100, 
for an ARIMA (1,0,1) process with p = 0.90. The test was 
applied at a level of significance of a = 0.05. 
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approaching (1 - a). For a given value of p 1, a decrease in p represents 

a decrease in long-term persistence with a consequent decrease in the pro-

portion of type II errors as illustrated in figure (5.3). Type II errors 

for the ARIMA (1,0,1) process will always exceed those for the lag-one 

Markov process for a given value of p 1, the latter process being the 

limiting case of the ARIMA (1,0,1) with p = p 1. 

Figures (5.4)-(5.6) illustrate the effect of level of significance, 

a, on type II errors for the ARIMA (1,0,1) process. As is to be expected, 

an increase in the level of significance leads to a decrease in type II 

errors. In applying tests of significance, hydrologists tend to adhere 

to a level of significance of 0.05, with little regard for what the effect 

of such a level may have on the decision-making process. Suppose that an 

observed record is available which could have come from an independent 

process ( p 1  = 0) or, for example, an ARIMA (1,0,1) process with a particular 

value of p 1. If, when tested for randomness, the record is pronounced 

persistent when p i  = 0, then a type I error with an associated loss 11  

results. Likewise, if the record is pronounced random when p 1  > 0, then 

a type II error with an associated loss 1
2 

ensues. If type I errors occur 

with probability p1  and, if type II errors occur with probability p2, then 

the overall expected losses E(11) and E(12) associated with type I and 

type II errors are pill  and p212, respectively, and are represented schemat-

ically as a function of a in figure (5.7). 

Figure (5.7) 

A value of a.for which the expected loss associated with both types 

of error is minimal would appear to be desirable. 
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Figure (5.3) PoWer of A test, expressed as the percentage of type II 

errors in 1000 samples of size n with n = 25 and 100, for 
an ARIMA (1,0,1) process with p = 0.90 and 0.80. The 
test was applied at a level of significance of a = 0.05. 
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Figure (5.4) Power of A test, expressed as the percentage of type II 

errors in 1000 samples of size 25 for an ARIMA (1,0,1) 
process with p = 0.90. The test was applied at levels of 
significance of a = 0.05, 0.10 and 0.25. 
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Figure (5.5) Power of A test, expressed as the percentage of type II 
errors in 1000 samples of size 50 for an ARIMA (1,0,1) 
process with T = 0.90. The test was applied at levels 
of significance of a = 0.05, 0.10 and 0.25. 
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Figure (5.6) Power of A test, expressed as the percentage of type II 
errors in 1000 .samples of size 100 for an.ARIMA (1,0,1) 
process with p = 0.90. The test was applied at levels of 
significance of a = 0.05, 0.10, and 0.25. 
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5.3.2 Moment and ML Estimates of p and 0 from Synthetic Data  

The purpose of the experiments performed herein was to study the 

performance of the moment and ML techniques discussed in sections 

(5.1.1) and (5.1.2) when applied to sample sizes of less than 100 

generated by an ARIMA (1,0,1) process with various values of p and 0.. 

Initially, it was hoped to obtain some of the sampling properties of 

moment and ML parameter estimates, in order to assess the applicability 

of some of the "large sample" results derived theoretically by Box and 

Jenkins (1970) and given in section (5.1.4). In the face of the large 

variability synonymous with long-term persistence, the excessive 

computation time required for ML estimation prevented such an assessment, 

as a sufficient number of realizations could not be generated to obtain 

a stable estimate of the expectation and standard error of each parameter. 

However, some of the difficulties associated with deriving moment and 

ML estimates from small samples were revealed, and some evidence of 

the ability of a particular model to identify itself using the Box-

Jenkins methodology was obtained. 

(m) A 
The moment estimates of the parameters p and 0 denoted as y 

4  and 0(m)  were used to provide initial estimates for the iterative ML 

technique, and the initial' value of the unconditional sum of squares 

S(cp,O) was computed as outlined in section (5.1.3). The derivation of 

A(1) 	A( 1) 
ML estimates, denoted as p 	and 0 	involves a two-dimensional search 

for the minimum of the function S(p,0). A number of general non-linear 

estimation algorithms exist, such as that of Marquardt (1963) which has 

been used by Box and Jenkins (1970). A reliable technique, due to 

Rosenbrock (1960), which does not require the calculation of derivatives, 

was, however, employed here. Preference for the Rosenbrock technique 

resulted from previous experience with the algorithm, which performed 
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satisfactorily on some difficult problems (O'Connell et al., 1970). 

A brief description of the algorithm is given in Appendix (5.1). 

As a stationary, invertible ARIMA (1,0,1) process was used to 

generate synthetic samples, the search for the minimum of the function 

S(p,6) was confined within the limits defined for the parameters 

by the stationarity and invertibility conditions resulting in a 

constrained search in 2-dimensional space. Suitable transformations were 

employed (Appendix 5.2) which enabled solutions in the constrained, space 

to be derived. Further numerical problems encountered in obtaining 

ML solutions are also discussed in Appendix (5.2). The computer program 

was initially checked through reproducing ML parameter estimates found 

by Box and Jenkins (1970) for a number of time series from business and 

industry. 

(a) Sampling experiments  

For the experiments involving the ARIMA (1,0,1) process, two sets 

of parameter values were chosen, and these are given in table (5.4) 

Set p 0 

1 0.90 0.80 
2 0,80 0.50 

Table 5.4 

For each set, 500 realizations of size n were generated with n = 25, 50, 

100 and 250. The moment estimation procedure described in section (5.1.1) 

was then applied to each sequence, and assuming that estimates within 

the admissible parameter space were found, maximum likelihood estimates 

were derived using moment estimates as starting values for the non-linear 

search routine used to minimize S(cp,0). If the moment estimates did not 

lie within the admissible parameters space, either an ML solution was 

not sought, or the following strategy was followed. 



-Y-)1 t_Z-1 

Assume that a moment estimate of p with absolute value greater than 

unity has been found. Nevertheless, the possibility that an ML solution 

exists cannot be ruled out. However, if a value of p equal to or greater 

than unity is used in computing the sum of squares function S(p,0), the 

values ildo t„ 	1, 	1W_ml will form a divergent series.-2 

Hence, the search must at all times be confined within the limits 

-1 + e< p < 1-e, where e is some small positive quantity. Details 

of the limits imposed are given in Appendix (5.2). Consequently, any 

search for an ML solution must commence within these limits. If an 

admissible moment estimate was not available for either p or 0,' a 

starting value with absolute value 11- blwhere S > E, was chosen for 

initiating the non-linear search, with the sign of the initial value 

determined from the sign of the out-of-bounds moment estimate. Details 

of this rather empirical procedure are given in Appendix (5.2). In 

addition, if the ML solution was found to lie on or near a boundary, the 

solution was rejected as detailed in Appendix (5.2). 

(b) Results of sampling experiments  

Tables (5.5) - (5.9) give the results of the sampling experiments 

carried out with the ARIMA (1,0,1) process. Table (5.5) gives the 

number of moment and maximum likelihood estimates'of p and 0 obtained 

from 500 realizations for parameter set 1, together with the means and 

variances of those estimates. The percentage of moment solutions found 

ranges from approximately 5C% for sample size 25, to 58% for sample 

size 250. 	Figures (5.8) and (5.9) illustrate one of the reasons 

why only a percentage of solutions may be expected. The parameter 

space -1 < p < 1, -1 < 0 < 1 illustrated in figure (5.8) maps into 

the corresponding space for pi  and p2  in figure (5.9). However, in 

random sampling, moment estimates of p1  and p2  may range between +1 and -1. 
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n 25 50 100 250 

No. of Mom. Sol. 

No. of ML Sol. 

247 

188 

249 

209 

261 

240 

291 

288 
_....-. 

A 
T (m)  Mean 	T 

A   Variance 	y(m)  

M.s.e. 	y(m)  

0.186 

0.219 

0.729 

0.224 

0.219 

0.676 

0.364 

0.193 

0.480 

0.528 

0.126 

0.264 

Mean 	T
(1) 

A 

Variance 	T(1) 

M.s.e. 	T
A(1)  

0.205 

0.234 

0.717 

0.293 

0.51 

0.619 

0.420 

0.244 

0.474 

0.677 

0.158 

0.208 

A(m) Mean 	0 
 

Variance 	
0 (m) 

A 
M.s.e. 	0(0  

0.098 

0.203 

0.696 

0.072 

0.194 

0.724 

0.227 

0.186 

0.514 

0.389 

0.124 

0.293 

Mean 	0(1) 

  
Variance 	

Ale1) 
 

A  
M.s.e. 	

0(1)  

0.062 

0.171 

0.716 

0.129 

0.220 

0.670 

0.287 

0.238 

0.501 

0.555 

0.159 

0.219 

A  
Mean 	pi 

(m) 

' 
Variance 	p1

(m) 

 M.s.e. 	p1 (m) 

0.096 

0.072 

0.074 

0.164 

0.04 

0.035 

0.152 

0.017 

0.017 

0.161 

o.006 

0.006 

A  
Mean 	pl

(1) 
 

A 	(1) 
Variance 	pl  

A 	(1) 
 

 
M.s.e. 	p 1  

0.158 

0.096 

0.096 

0.192 

0.041 

0.044 

0.164 

0.018 

0.019 

0.163 

o.006 

0.007 

Table (5.5) Properties of moment and ML estimates for 500 samples of 

size n from an ARIMA (1,0,1) process with p = 0.90, p = 0.80 

and p1  = 0.14. If a moment solution was not found, an ML 

solution was not sought. 
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0 

- Figiare (5.8) Parameter space for a stationary invertible ARIMA 
(1,0,1) process. 

P -+ 

Figure (5.9) Feasible region. (shown hatched) for pi and P2 for 
the ARIMA (1,0,1) process with parameter space 
-1 < 0 < +1, -1 < y < +1. 
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Hence, correlation constraints exist for the ARIA (1,0,1) process which 

manifest themselves particularly strongly for small samples; as the 

sample size increases, the sample estimates tend to converge on their 

population values which of course, lie within the constraints. While 

p1  and p2  are not estimated explicitly by the ML technique, the 

correlation constraints still operate as the admissible parameter space 

for p and 0 still exists. 

The fitting problem is aggravated whenever 101 approaches Ip I. In 

this situation, the generated series are approaching white noise, for 

which case estimation of p and 0 is obviously impossible. When p = 0.90 

and 0 = 0.80 (corresponding to p1  = 0.14) the high frequency fluctuations 

overwhelm the low frequency movements, which tend to emerge only for 

very large samples. In addition, values of p close to positive unity 

tend to yield sequences which will be classified as non-stationary, 

as there is no clear division between stationary and non-stationary 

behaviour when autoregressive parameters lie near stationarity boundaries. 

A 	A 	A  From table (5.5), the mean values of y(m)  , 0A(m)  , y(1)  and 8(1)  

illustrate that both moment and ML estimates are biased. Convergence of 

the sample estimates to their respective population values is slow 

A() 	A(1) 
because of the closeness of 8 to T. The mean y 	and 8 	values 

A 
display smaller biases than the mean values of y(m)  and 0

(m) 
 , with the 

A 	A bias in y
(1) 

 and 8
(1) 
 disappearing more rapidly with increasing sample 

size. Occasional reversals of this general trend may be explained by 

the lack of stability of the estimates. 

Inspection of the estimated variances of moment and ML estimates in 

table (5.5) shows that ML estimates tend to have marginally larger 

variances which is in contrast with the asymptotic properties of ML 

estimates. While this result might be explained by the fact that the 

estimated variances of the ML estimates is based on a different.  (and 
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samller) number of estimates than the corresponding moment figure for the 

smaller sample sizes, the fact that the estimated variances for sample 

size 250 are essentially based on the same number of estimates tends to 

reject such a hypothesis. Nevertheless, it should be remembered that 

the results cannot be considered stable, and that the sampling experiments 

had as a principal aim the assessment of the ability of the moment and 

ML fitting techniques to fit the "correct" model. The mean and variance 

of the estimated lag-one autocorrelations derived from moment and ML 

estimates are also given in table (5.5) and these values tend to reflect 

the biases and variances of the parameter estimates themselves. The fact 
A 

that some of the mean values of p
1

(m) 
 and p1

u) 
 tend to be larger than the 

population value of pi  = 0.14 may be explained by the preference of the 

ARIMA (1,0,1) process for fitting positive correlations as evidenced 

rA 
by figure (5.9). However, the sampling distribution of Lpi _in  must of 

necessity encompass a large proportion of negative values in this case. 

In situations where decisions are to be based on the estimated parameter 

values, the estimation procedure which minimises the expected loss accruing 

from the decisions is desirable. In cases where the loss function is 
A 2  

quadratic and defined, for example, for the parameter 0 as (0 - 0)2, then 

the estimator which minimises the expected loss is that which minimises 

A 2 
the mean square error (m.s.e) E(0 - 0)2. The m.s.e. may be expanded as 

A 	 A 
E(0 - 0)

2 
	= 	Var (0) + [0 - E(0)]2  (5.46) 

which is the sum of the variance of the estimate and bias squared. The 

m.s.e. has been computed for the moment and ML parameter estimates in 

table (5.5), showing that ML estimates of p and 0 yield smaller m.s.e. 

than moment estimates. The value of m.s.e. is a convenient indicator 

in situations where consideration of bias and variance together cannot 

lead to any clear recommendation for an estimator. However, only 
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tentative con clusions can be drawn here, as the values of m.s.e. in 

table (5.5) are not, again, strictly comparable because of the different 

number of moment and ML estimates used for computing the values of m.s.e. 

The results for parameter set 2 are given in table (5.6). As the 

value of p is not as close to the boundary as for set 1 of parameter 

values, and the difference between p and 8 is larger, the fitting 

situation has improved with a larger proportion of solutions. Again, 

MI, solutions are apparently not always available when moment solutions 

are. The bias in the ML estimates is again smaller than that for the 

moment estimates but by a relatively smaller amount. In general, the 

convergence to the population parameters is better over the range of 

sample size considered, while the overall variability of estimates is 

less than in the case of parameter set 1. However, in contrast to the 

results for set 1, the variances of the ML estimates are smaller than 

those of the moment estimates, apart from occasional reversals in this 

general trend, which may be attributed to instability. In general, the 

values of m.s.e. are smaller for the ML estimates thah for the moment 

estimates. The estimates of p1  derived from the parameter estimates 

(1) 
	"(1) 
and e 	have apparently slightly larger variance than those 

A 
derived through the moment estimates p

(m) 
 and 8

A(m) 
 

(c) 	Diagnostic checks  

While the Box-Jenkins methodology for model fitting consists of 

identification, estimation and diagnostic checking, only the estimation 

procedures have been used so far, the correct model being known a 

priori. In these circumstances, diagnostic checking may be considered 

superfluous, as the residuals should closely resemble white noise. The 

low power. of the cumulative periodogram test in the presence of long-

term persistence has already been noted, but the test may well be 

useful in detecting departures from randomness which result from high 
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n 25 50 100 250 

No. of Mom. Sol. 

No. of ML Sol. 

319 

270 

357 

339 

394 

391 

460 

460 

A (m) 
Mean 	p 

A  
Variance 	

p (m) 

M.s.e. 	T (m) 

0.359 

0.186 

0.375 

0.544 

0.105 

0.171 

0.655 

0.058 

0.079 

0.751 

0.018 

0.020 

 
Mean 	

9 (1) 

A  
Variance 	9 (1) 

 

A  
M.s.e. 	

p (1) 

0.420 

0.159 

0.303 

0.550 

0.120 

0.183 

0.673 

0.055 

0.071 

0.768 

0.011 

0.012 

Mean 	0(m)  

Variance 	
A 
0 (
m) 

A  
M.s.e. 	0 

(n)  

0.057 

0.174 

0.370 

0.227 

0.116 

0.191 

0.357 

0.075 

0.095 

0.455 

0.030 

0.032 

A  
Mean 	

0 (1) 

A  
Variance 	

0 (1) 

A (1) 
M.s.e. 	(3 

0.062 

0.137 

0.329 

0.199 

0.125 

0.216 

0.362 

0.065 

0.084 

0.465 

0.016 

0.017 

A  
1

m)  Mean 	p( 

A 	(m) 
Variance 	p i  

A  
M.s.e. 	p i

(m) 
 

0.314 

0.048 

0.055 

0.364 

0.023 

0.024 

0.367 

0.012 

0.013 

0.388 

0.006 

0.006 

A 
Mean 	pi

(1) 
 

A 	(1) 

Variance 	p 1  
A 	(1)  

M.s.e. 	p 1  

0.380 

0.060 

0.060 

0.407 

0.027 

0.027 

.0.387 

0.013 

0.013 

0.396 

0.006 

0.006 

Table (5.6) Properties of moment and ML estimates for 500 samples of 

size n from an ARIMA (1,0,1) process with p = 0.80 0 = 0.50 

and P1 = 0.40. If a moment solution was not found, an ML 

solution was not sought. 



frequency or periodic movements. 

The autocorrelation and cumulative periodogram tests reported on 

in section (5.2) were incorporated into the experiment reported in 

table (5.6). Hence, for each sample for which an admissible ML 

solution was found, both tests were applied to the final set of 

residuals at a 5% level of significance. If either test yielded a 

significant result then the ML solution was rejected; obviously such 

a test has larger power than either test applied individually. The 

results are given in table (5.7), with the moment results quoted in 

table (5.6) presented for comparison purposes. Comparison of table (5.7) 

and table (5.6) shows that the tests reduce only slightly the percentage 

of ML solutions found, as might be expected. As the level of significance 

of the overall test should be greater than 0.05, then the percentage of 

rejections is somewhat smaller than would be expected due to chance alone. 

However, a larger number of samples would be necessary before any firm 

conclusions could be drawn. 

(d) 	ML estimates when moment estimates unobtainable  

Rather than abandon the search for an ML estimate when a moment 

solution was not found, a new set of ML results were generated through 

starting the search for an ML solution in the neighbourhood of the 

boundary (or boundaries) which the unacceptable moment solution lay 

closest to. If the search for an ML solution terminated too close to the 

boundary, the result was rejected.. For details of the procedure reference 

can be made to Appendix (5.2). Table (5.8) gives the results for this 

strategy for parameter set 1, together with the moment results already 

presented in table (5.5), but reproduced here for comparison purposes. 

The proportion of ML solutions found has now increased significantly, 

A(1) 
ranging from 66% to 99% over sample size. While the bias in the mean 0 
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n 25 50 100 250 

No. of Mom. Sol. 

No. of ML Sol. 

319 

266 

351 

333 

394 

381 

460 

452 

A(m) Mean 	p 
A 

Variance 	p(m) 

A 
M.s.e. 	y

(m) 
 

0.359 

0.186 

0.375 

0.544 

0.105 

0.171 

0.655 

0.058 

0.079 

0.751 

0.018 

0.020 

A 

Mean 	p
(1) 

A  
Variance 	

p(1) 
 

A  
M.s.e. 	

p(1) 
 

0.425 

0.160 

0.301 

0.550 

0.121 

0.184 

0.673 

0.055 

0.071 

0.767 

0.011 

0.012 

A 
Mean 	

0(m) 
 

 Variance 	0(m)  

M.s.e. 	
0(m) 

 

0.057 

0.174 

0.370 

0.227 

0.116 

0.191 

0.357 

0.075 

0.095 

0.455 

0.030 

0.032 

A 
Mean 	0(1)  

 
Variance 	0

(1) 
 

M.s.e. 	0
(1) 

 

0.063 

0.138 

0.329 

0.199 

0.127 

0.218 

0.362 

0.064 

0.083 

0.465 

0.016 

0.017 

A  
Mean 	p

1

(m) 

 
A 	(m) 

Variance 	p
1 
(m)  

P

(m)  
M.s.e. 	1 

0.314 

0.055 

0.364 

0.023 

0.024 

0.367 

0.012 

0.013 

0.388 

0.006 

0.006 

11 	 . Mean 	p 1
(1) 

 
A  

Variance 	p
(1) 

 1 
A  

M. s.e. 	p 1 (1)  

0.383 

0.060 

0.060 

0.408 

0.027 

0.027 

0.386 

0.013 

0.013 

0.396 

0.006 

0.006 

Table (5.7) Properties of moment and ML estimates for 500 samples of 

size n from an ARIMA (1,0,1) process with p = 0.80, 0 = 0.50 

and p1  = 0.40. If a moment solution was not found, an ML 

solution was not sought ; if an ML solution was found, tests 

were applied to the residuals. 
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n 25 50 100 250 

No. of Mom. Sol. 

No. of ML Sol. 

247 

332 

249 

415 

261 

456 

291 

494 

A ( m ) 
Mean 	c 0.186 0.224 0.364 0.528 

 
Variance 	cp

(m) 
 0.219 0.219 0.193 0.126 

 
M.s.e. 	p

(m) 
 0.729 0.676 0.480 0.264 

Mean 	
cp (1) 0.183 0.283 0.414 0.699 

Variance 	q) 
(1) 0.288 0.345 0.335 0.170 

A  (1) 
 M.s.e. 	p 0.802 0.726 0.571 0.210 

 
Mean 	

0 (m) 
0.098 0.072 0.227 0.389 

A  (in) 
Variance 	0 0.203 0.194 0.186 0.124 

A (m)  
M.s.e. 	0 0.696 0.724 0.514 0.293 

A  (1) 
Mean 	0 0.065 0.154 0.305 0.590 

A  (1) 
Variance 	0 0.236 0.297 0.300 0.159 

A  (1) 
M.s.e. 	0 0.776 0.714 0.545 0.203 

 
Mean 	p1

(m)  
0.096 0.164 0.152 0.161 

 
Variance 	p1

(m) 
 

0.072 0.034 0.017 0.006 

1

m ) 
 

 
M.s.e. 	p

( 
0.074 0.035 0.017 0.006 

 
Mean 	p (1) 0.137 0.157 0.143. 0.153 

1 
A 	(1) 

Variance 	p 1(1)  0.079 0.035 0.019 0.007 

M.s.e. 	p 1
(1) 
 0.079 0.035 0.019 	• 0.007 

Table (5.8) Properties of moment and ML estimates for 500 samples of 

size n from an ARIMA (1,0,1) process with p = 0.90, 0 = 0.80 

and p 1  = 0.14. If a moment solution was not found the 

search for an ML estimate was started in the neighbourhood 

of a boundary as described in section (5.3.2). 



A 
and y(1)  has not changed appreciable, the variance of the ML estimates 

has increased appreciably over the figures in table (5.5) as reflected 

by the estimated variances. Hence, while the procedure guarantees 

that a larger proportion of ML solutions will be found, the solutions are 

A 	A 
apparently more variable. The values of m.s.e. for y

(1) 
 and 0

(1) 
 are 

A 
also larger than those for y

(m) 
 and 0(1D). The reasons for this 

increased variability have not been closely investigated. Multiple 

minima for S(p,0) might exist as observed by Box and Draper (1965) but 

this would appear unlikely as the samples were known to be generated by 

an ARIMA (1,0,1) process. Some close inspection of the behaviour of the 

function S(p,0) over the admissible parameter space when moment 

solutions do not exist may provide some insight. 

As in the case of paramater set 1, a search for an ML solution 

was initiated even when a moment solution was not available for parameter 

set 2, and the results, together with the corresponding moment results 

from table (5.6) are presented in table (5.9). The biases in the ML 

results have decreased slightly over those shown in table (5.6). While 

the variability of the estimates has again increased, the increase over 

the corresponding figures in table (5.6) tends to disappear with increasing 

sample size. As a result, moment estimates may be more efficient for 

sample sizes 25 and 50 but less efficient for sample sizes 100 and 250. 

A Indeed, apart from sample size 25, the values of m.s.e. for p(1)  and 8(1)  

in table (5.9) are less than the corresponding figures in table (5.6),  

and, apart from occasional reversals which might be attributed to 

sampling variability, are always less than the moment values. However, 

tentative conclusions can only be drawn because of the disparity in the 

number of estimates contributing to the values of m.s.e. 



232 

n 25 50 100 250 

No. of Mom. Sol. 

No. of ML Sol. 

319 

377 

351 

481 

394 

494 

460 

- 	500 

A 
(m)  

Mean 	cp 0.359 0.544 0.655 0.751 

A 
(m) 

Variance 	T 0.186 0.105 0.058 0.018 

 

M.s.e. 	

T(m) 

 0.375 0.171 0.079 0.020 

Mean 	T
(1) 

0.403 0.580 0.697 0.772 

 

Variance 	

T (1) 

0.212 0.132 0.058 0.010 

M.s.e. 	T 
 (1) 

0.370 0.180 0.069 0.011 

Mean 	
0 (m) 

0.057 0.227 0.357 0.455 

A 	 ) ( 

' Variance 	0 0.174 0.116 0.075 0.030 

A  (m) 
M.s.e. 	0 0.370 0.191 0.095 0.032 

 

Mean 	
0 (1) 

0.099 0.265 0.405 0.475 

Variance 	
0 (1) 

 0.181 0.135 0.067 0.017 
 

M.s.e. 	

e (1) 
0.342 0.190 0.076 0.018 

A 

1m

)  

Mean 	p
( 

0.314 0.364 0.367 0.388 

Variance 	p 1(m) 0.048 0.023 0.012 0.006 
A 	(m)  

0.006 M.s.e. 	P
1 

0.055 0.024 0.013 

A  
Mean 	p 	

(1) 

1 0.334 0.380 0.373 0.391 

Variance 	P 	

(1) 
1 

0.068 0.029 0.016 0.007 

M.s.e. 	p 	
(1) 

0.072 0.029 0.017 0.007 

1 

Table (5.9) Properties of Moment and ML estimates for 500 samples of 

size n from an ARIMA (1,0,1) process with cp= 0.80, 0 = 0.50 

and pi  = 0.40. If a moment. solution was not found, the 

search for an ML estimate was started in the neighbourhood 

of a boundary as described in section (5.5.2). 
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5.3.3 Moment and ML Estimates for Higher Order ARIMA Models 

A limited number of experiments similar to those reported in 

section (5.3.2) were conducted for the ARIMA (1,0,2) and (2,0,1) 

processes. Sets of parameters were chosen such that the autocorrelation 

function decayed slowly. Where possible, moment and ML estimates 

lying within the admissible parameter space were derived from synthetic 

sequences of length 25, 50, 100 and 250. In general, the fitting 

problem was found to be more acute than for the ARIMA (1,0,1) process, 

with smaller numbers of moment and ML solutions found under similar 

conditions. This suggests that, for moment estimates, the correlation 

constraints on the estimates of yo, 
y1, 

 'y2 and y3  imposed by the 

stationarity and invertibility conditions probably become more restrictive 

as the order of the model increases. It could be expected that ML 

estimates would also be more difficult to obtain. 

In order to gain some insight into the effects of over and under-

parameterization in fitting models, some incorrect model fitting was 

carried out. An ARIMA (2,0,1) model was fitted to sequences generated 

by itself and by an ARIMA (1,0,1) model, while an ARIMA (1,0,1) model was 

fitted to sequences generated by an ARIMA (2,0,1) model. For these 

experiments, an ML solution was not sought if no moment estimate was 

available. The results obtained when the simpler ARIMA (1,0,1) model 

was fitted to sequences generated by the ARIMA (2,0,1) model showed that 

a much larger number of both moment and ML solutions were found than 

when the ARIMA (2,0,1) model was fitted to sequences generated by itself. 

Hence, for small samples, the data will generally tend to suggest the 

simpler model. 

When the ARIMA (2,0,1) model was fitted to sequences generated by 

the ARIMA (1,0,1) model, the number of moment and ML solutions obtained 

was considerably less than the number obtained in fitting the ARIMA (1,0,1) 



model to sequences generated by itself. This suggests that, in small 

samples, the simplest model has a better chance of fitting the data, 

irrespective of the underlying model; such a result is perhaps, to be 

expected. In the experiments where the incorrect model was fitted to 

the generated sequences, no diagnostic tests were applied to the residuals 

because of the excessive computation time involved; however, it seems 

unlikely that the CP or Anderson test would indicate any non-randomness 

in the residuals because of the apparent low power of these tests in 

small samples. 

5.4 Moment and ML Estimates of T and 0 from Historic Data 

In the light of the results obtained in section (5.3.2), it appears 

that little can be learned about the applicability of the ARIMA (1,0,1) 

process to observed data if sample sizes less than 100 in length are 

available. Unfortunately, on an annual time scale, the majority of 

streamflow records rarely span more than 50 years. Nevertheless, the 

fact that streamflow records are sometimes spatially correlated suggests 

that if an ARIMA model is found to fit a sequence of observations from 

one stream, the same model may be found to adequately describe other streams 

with similar characteristics and governed by related climatic regimes. 

Hence, better results may be obtained in terms of model fitting than 

suggested by random sampling experiments of the type described in section 

(5.3.2). Further, the physical mechanism of streamflow suggests that 

positive values of p1  are to be expected because of storage effects, which 

would favour the fitting of the ARIMA (1,0,1) model. 

While streamflow records in excess of 100 years in length are rare, some 

considerably longer records of related geophysical phenomena are 

available. Rainfall fluctuations are probably closest to those of runoff 

but long rainfall records are also rather rare. Tree ring growth, for 
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example, is less closely related to runoff, but nevertheless can be 

expected to reflect long-term climatic movements. Long records of tree 

ring indices have been compiled and studied (Schulman, 1956; Matalas, 1962). 

In applying the ARIMA (1,0,1) model to real data, 10 records of 

annual streamflow were abstracted from Yevjevich (1963), while ten records 

of tree ring indices were abstracted from Schulman (1956). The streamflow 

records ranged in length from 70 years to 150 years, while the length of 

the records of tree ring indices ranged from 301 to 669 years. 

5.4.1 	Results from Annual Streamflow Data  

The values of mean annual discharge for the 10 selected rivers were 

abstracted from Yevjevich (1963). The name of each river, together with 

the name of the gauging station, the period of record, the record length, 

the catchment area in km
2 
and the average annual discharge in m/s' over 

the period of record are given in table (5.10). The records were 

selected primarily because of their length, and because they represent 

a wide range of hydrological regimes. The values of mean annual discharge 

given by.Yevjevich (1963) represents natural or virgin average flow over 

a water year as far as possible. An index number has been assigned to 

each river in table (5.10) for ease of reference. 

Estimates of yo, y/  and y2  were derived from each record using equation 

(5.1) and moment estimates of the parameters pp and 6 of the ARIMA (1,0,1) 

model were then derived from equations (5.5) and (5.7). When moment 

estimates lay within the admissible parameter space, they were used as 

initial estimates of p and 8 in the search for the ML estimates, which 

were derived by minimising S(p,O) as reported in section (5.3.2). In 

the case of records where moment estimates lay outside the parameter 

space, the procedure described in section (5.3.2) and in Appendix (5.2) 

was used in an attempt to locate ML estimates within the admissible 

parameter space. Finally, the Anderson test described in section (5.2.1) 



No. River Station Period Length Catchment Area(km2) Mean Ann. Dis(m3/s) 

1 Gota, Sweden Sjotorp-Vanersburg 1807-1957 150 46816.7 535.7 

2 Nemunas, U.S.S.R. Smalininkai 1811-1943 132 80030.7 545.1 

3 St. Lawrence, U.S.A. Ogdensburg 1860-1957 97 764565.0 6817.6 

4 Tennessee, U.S.A. Chattanooga 1874-1956 82 55425.8 1044.0 

5 Neva, U.S.S.R. Petrokrepost 1859-1935 76 271949.0 2589.3 

6 Dnieper, U.S.S.R. Dnieperpetrovsk 1881-1954 74 416988.4 1611.0 

7 Goulburn, Australia Murchison 1881-1954 73 10722.6 89.9 

8 Kiewa, Australia 1885-1957 72 1165.5 20.7 

9 Thames, England Teddington 1883-1954 71 9873.0 62.9 

10 Dal, Sweden Norslund 1852-1922 70 24889.8 346.8 

Table (5.10) Details of annual streamflow records selected for analysis from 

Yevjevich (1963). The records are tabulated in order of decreasing length. 
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was used to check the residuals for randomness. 

The results of the model fitting are given in table (5.11). The 

index number assigned to each record in table (5.10) is used for 

reference purposes. The moment estimates of p1  and p2  are also presented. 

A 
The confidence limits on p

1 
used to apply the Anderson test to the 

residuals, may also be applied to the estimates of p1  for each of the 

observed records, suggesting that only records 1,2,3,and 5 are non-random. 

However, because of the low power of the Anderson test in the presence of 

persistence, the ARIMA (1,0,1) model was applied to all of the ten records. 

Moment estimates of p and 0 within the admissible space were 

obtained for all the records, except in the case of rivers 5 and 7. In 

the case of river 5, inspection of the successive values of 0(m) defined 

by equation (5.7) showed that the last value of 0
(m) 

 within the parameter 

space was - 0.987, so the initial values for the ML search were taken as 

A(1) 
p 	= 0.025. and e

(m) 	
-0.95, resulting in an ML solution at p 	0.275 

A 
and 0

(1) 
= -0.454. In the case of river 7, the initial moment estimates 

A 
used to start the ML search were p

( m) 
 = -0.751 and e

A(m)
" = -0.95, 

A 	A 
resulting in ML estimates of p

(1) 
 = -0.525 and 0(1)  = -0.755. Thus, 

the empirical procedure used to define initial values for the ML search 

in these cases appeared to work satisfactorily. 

The percentage of moment and ML estimates obtained is perhaps 

greater than might be expected on the basis of the sampling  experiments; 

this might be due to chance or to related climatic regimes. The 

overall moment and ML estimates of p and 0 are rather randomly scattered 

in the parameter space and are hardly indicative of long-term persistence, 

as few of the estimates lie in region 6 of figure (3.4). However, on the 

basis of the sampling experiments conducted in section (5.3.2) these 

results would not be inconsistent with the presence of long-term 

persistence. Hence, in general, no conclusions can be drawn on the basis 

A( m) 	 A 



River No. n 
A 

P 1 
A 
P 2 

A 
cl) (171) 

A 
8 (m) 

A 
cp (1) 

A , 
O L 1) 

A 
pi  for residuals with 
95% con. limits 

1 150 0.459 -0.004 -0.009 -0.673 0.157 -0.440 -0.005 (0.153, 	-0.167) 

2 132 0.185 -0.008 -0.045 -0.239 0.066 -0.129 -0.010 (0.163, 	-0.178) 

3 97 0.695 0.498 0.716 0.041 0.797 0.168 -0.011 	(0.189, 	-0.209) 

4 82 0.177 0.083 0.470 0.303 0.324 0.133 -0.037 (0.204, -0.229) 

5 76 0.531 0.013 0.025 - 0.275 -0.454 0.018 	(0.211, 	-0.238) 

6 74 0.110 0.105 0.952 0.877 0.350 0.232 -0.014 (0.214, 	-0.242) 

7 73 0.169 -0.127 -0.751 - -0.525 -0.755 -0.005 (0.216, 	-0.243) 

8 72 0.190 -0.085 -0.296 -0.675 -0.418 -0.888 0.008 (0.217, 	-0.245) 

9 71 0.140 -0.012 -0.087 -0.232 -0.008 -0.153 -0.005 (0.218, 	-0.247) 

10 70 0.101 -0.100 -0.990 -0.987 -0.306 -0.441 -0.001 	(0.220, 	-0.249) 

A 	A 
Table (5.11) Values of 	 1 	r 

p n and n 2  and moment and ML estimates of 

and e for the 10 rivers listed in table (5.10). 
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of the present evidence about the presence or absence of long-term 

persistence in these records. An exception, perhaps, is river 3, 

(the St. Lawrence) which has an unusually large value of pi  and which would 

be expected to display strong long-run effects because of the very large 

storage in the Great Lakes. 

Inspection of the estimates of the lag-one autocorrelations for 

the residuals obtained from the ML fitting procedure shows that they 

are highly insignificant according to the Anderson test. A large 

proportion are negative in accordance with theory. 

5.4.2 Results from Annual Tree Ring Indices  

The. radial growth of trees may be measured by the widths of annual 

rings. The tree ring widths are characterized by a tendancy for the 

ring widths and the variation in the ring widths to decrease with the 

age of the tree (Matalas, 1962). Thus, the series of ring widths is a 

non-stationary time series. If Rt  denotes the ring width for any year, 

and T
t 

denotes the trend component during that year, then the ring widths 

may be transformed into a stationary series of ring indices (Schulman, 

1956) as 

X
t 	

R
t
/T

t 
	 (5.47) 

Series of tree ring indices have been studied by Matalas (1962) and 

found to be non-random, with rather larger values of p1  observed than for 

annual runoff or rainfall. Because of the lengths of the records of tree 

ring indices, this result could be explained by bias in estimates of p1. 

Evidence of long-term persistence in tree ring indices is reflected 

in estimates of h > 0.5 presented by Mandelbrot and Wallis (1969d). The 

presence of long-term persistence could be attributed to long-term 

fluctuations in rainfall, to soil moisture carry-over and to biological

properties of tree growth in the form of storage of food products from 

one year to the next. 
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The ARIMA (1,0,1) model was fitted to 10 records of tree ring 

indices abstracted from Schulman (1956). The records are referenced 

through the table numbers as in Schulman (1956), which are given in 

table (5.12), and which are ordered therein in terms of decreasing record 

length. Estimates of h for the records are reproduced from Mandelbrot 

and Wallis (1969d), and range from 0.69 to 0.91, suggesting that long-

term persistence is present. Moment and ML estimates of p and 0 were 

obtained for the records of tree ring indices as for the annual streamflow 

records, and are presented in table (5.12). The residuals were checked 

for randomness using the Anderson test, and results are also presented 

in table (5.12). 

In contrast to the streamflow records, all of the moment and ML 

estimates of p and 0 lie in region 6 of the parameter space given in 

figure (3.4), which is consistent with the presence of long-term 

persistence. None of the ML estimates of p are greater than 0.80, 

which suggests that the intensity of long-term persistence is moderate, 

or that the estimates of p
(1) 

and 0(1) are biased which would be 

consistent with a stronger intensity of long-term persistence. The 

estimated lag-one autocorrelations of the residuals are again highly 

insignificant according to the Anderson test. Bearing in mind the record 

lengths in question, there is reasonable evidence that the ARIMA (1,0,1) 

model is appropriate for describing the type of persistence present in 

the data. 

5.5. Summary  

The simulation experiments described in section (5.3.2) have illustrated 

the difficulty of obtaining representative results from small samples in 

the presence of long-term persistence, when the ARIMA (1,0,1) model tends 

to fit samples generated by itself on only a proportion of possible 

occasions. The main reasons for this are the existence of correlation 



TABLE* n H 
A 
p1 

A 

P 2 

A (m) 
9 

A (m) 
8 A (1) 

9 & (1) p1 	for residuals, with 
' 95% con. limits 

36 669 0.770 0.418 0.281 0.669 0.317 0.729 0.391 0.010 (0.074, 	-0.077) 

43 661 0.700 0.359 0.266 0.744 0.452 0.664 0.352 -0.010 (0.075, 	-0.078) 

77 589 0.720 0.527 0.326 0.616 0.125 0.626 0.138 0.003 (0.079, -0.083) 

79 582 0.720 0.416 0.214 0.523 0.121 0.517 0.121 0.001 	(0.080, 	-0.083) 

66 537 0.690 0.470 0.289 0.608 0.193 0.632 0.209 0.002 (0.083, 	-0.087) 

76 447 0.780 0.494 0.404 0.823 0.454 0.762 0.362 -0.010 (0.191, 	-0.095) 

30 411 0.750 0.356 0.247 0.687 0.388 0.687 0.384 -0.005 	(0.0914, 	-0.099) 

85 378 0.910 0.600 0.414 0.690 0.142 0.770 0.280 0.033 (0.098, 	-0.104) 

81 304 0.860 0.474 0.291 0.614 0.181 0.725 0.341 0.027 	(0.109, 	-0.116) 

73 301 0.710 0.191 0.172 0.904 0.774 0.669 0.484 -0.00 (0.11o, 	-0.116) 

from Schulman (1956) 
A 	A 

Table (5.12) Values of p 1  and p 2  and moment and ML estimates of 

and e for 10 records of tree ring indices 
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constraints implied by the structure of the model, and the estimation 

techniques which pronounce sequences generated by a stationary 

invertible process as either non-stationary or non-invertible or both. 

ML estimates are apparently more difficult to obtain, and may be more 

variable in some cases than moment estimates, particularly when the 

parameters of the underlying process lie close to boundaries. Firm 

conclusions, however, cannot be drawn about the sampling properties of 

moment and ML estimates from the sampling experiments reported in 

section (5.3.2). However, the problem of correct model identification 

and fitting through applying the Box-Jenkins methodology to sample sizes of the 

order of streamflow sequence lengths would appear to be a very difficult task, 

particularly in the presence of long-term persistence. Only for much 

longer records, such as tree rings indices, can more reliable results 

be obtained. 
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Chapter 6 

PHYSICAL CONSIDERATIONS AND CONCLUSIONS 

In formulating models for generating synthetic flows, attention 

is invariably confined to the observed statistical characteristics 

of the data, as demonstrated in Chapters 3 and 4, with only cursary 

consideration being given to the physical processes which give rise 

to the observed historic flows. This may be explained by the fact 

that techniques of stochastic streamflow synthesis derive their 

origins within the fields of operations research and statistics, 

rather than within the field of hydrology. As a result, hydrologists, 

when developing models for generating synthetic flows, frequently lose 

sight of the physical context of the observed data, the main aim being 

the attainment of the correct statistical resemblance between historic 

and synthetic sequences, which can invariably be achieved to the 

exclusion of any physical considerations. Sometimes, this approach 

may be sufficient, although hydrologists have in the past tried to 

reconcile the probabilistic structure of a stochastic model with the 

physical structure of streamflow. (Yevjevich, 1963; Fiering, 1967). 

This latter approach would appear to be more desirable than a purely 

statistical approach, as results obtained from stochastic models with 

a sound phySical basis are likely to be more acceptable to engineering 

hydrologists. 

Section (6.1) discusses the physical basis for long-term persistence 

and fGn, while section (6.2) is concerned with a physical basis for 

the ARIMA (1,0,1) model. In section (6.3) the main conclusions of 

the thesis are presented and some suggestions for further work are 

put forward in section (6.4). 
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6.1 Physical Basis for Long-Term Persistence and  Fractional Noise  

If fractional Gaussian noise (fGn) is to be accepted as a realistic 

model of annual streamflow, then the hypothesis that streamflow possesses 

an infinite memory must be considered. In practice, sufficient 

evidence obviously does not exist to validate or invalidate this 

hypothesis; however, the evidence that is available suggests that the 

memory of streamflow (and of other geophysical processes) is at least 

as long as the longest records available. Hence, observed records do 

not negate the infinite memory hypothesis, which in physical terms 

suggests that events which occured in the very distant past exert a 

small but non-negligible influence on present events. In the case of 

streamflow, groundwater storage in a catchment undoubtedly induces some 

persistence but it is difficult to conceive how finite capacity 

aquifers could induce the long-term persistence implied by the fGn 

model. However, an explanation in terms of groundwater storage is not 

necessary as long rainfall records have also been found to exhibit the 

Hurst phenomenon. 

It has long been recognised that long-term movements in temperature 

and precipitation have taken place in the past; such low frequency 

movements are frequently referred to collectively as "climatic change" 

by climatologists. Attempts to establish any regular pattern in these 

fluctuations have met with little success, as indeed have efforts to 

attribute climatic change to physical causes. If climatic change is 

governed by large scale oceanic and storage precesses, then long-term 

persistence and climatic change would be synonymous. However observed 

annual data support but do not prove the argument for a long-term 

persistence explanation of long-term climatic movements. 

Attempts are frequently made to link climatic change with. solar • 



activity, sometimes referred to as sunspot activity, and these have met 

with some measure of success, (King, 1973). However, the relationship 

between solar and meteorological activity is not simple, and no 

plausible mechanism has been advanced which can explain why solar 

activity should influence meteorological response. The suggestion is 

sometimes made that some "trigger" mechanism operates, and if this is 

the case, then climatic change on Earth would appear to be ruled by 

extraneous influences rather than by internal storage processes. 

A possible alternative probabilistic explanation of the Hurst 

phenomenon could be some form of non-stationarity or time variance, as 

suggested by Nash (1971: personal communication). Hurst (1957) originally 

suggested an explanation of his findings in terms of non-stationarity 

in the mean. This raises the question as to whether it is reasonable 

to entertain the notion of a long-term mean for streamflow when river 

basins are known to be evolutionary systems. Again, this argument 

must also be applied to precipitation, where evolutionary influences 

are, however, less obvious. 

A non-stationary ARIMA (0,1,1) model for Hurst's time series was 

examined briefly by O'Connell (1971) but some simulation experiments 

showed that the required behaviour in the resealed range could not be 

achieved with this type of non-stationarity. In any case, such a model 

would be unsuitable for operational purposes (Watts, 1972). 

More recently, Klemes (1974) has presented a thoughtful and thorough 

analysis of the possible underlying physical reasons for the Hurst 

phenomenon. In so doing, he has contended that non-stationarity may 

be the underlying reason, and notes that present techniques of time 

series analysis would suggest that long-term persistence existed when, 

in fact, true non-stationarity was the underlying reason for low 
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frequency effects. He has presented plots of ln(R/S) against ln(n) 

for simulations where the process possessed no memory and the mean and 

the period over which it operates were allowed to vary randomly in 

such a fashion that Hurst's law with 0.5 < h < 1 was obeyed, thus lending 

weight to the non-stationarity hypothesis. However, for operational 

purposes, such models would be very difficult to implement, so that the 

flexibility of stationary approximations to dfGn for operational uses 

remains unchallenged. However, Klemes (1974) rightly points out that 

the long-term persistence explanation of the Hurst. phenomenon may not 

be correct physically, and that, similar to the Ptolemaic planetary model, 

fGn and other models founded on the hypothesis of long-term persistence 

may fit observed patterns of behaviour very well without representing 

the correct physical explanation. However, it should be remembered 

that apparent Observed non-stationarities may still be governed by long-

term persistence. 

6.2 Physical Basis for the ARIMA (1,0,1) Process  

The questions raised about the plausibility of long-term persistence 

in section (6.1) also apply in the case of the ARIMA (1,0,1) model. 

However, the concept of an infinite memory does not arise, as the 

ARIMA (1,0,1) possesses an autocorrelation function which decays 

exponentially, but nevertheless, sufficiently slowly to allow an 

adequate approximation to dfGn as shown in section (3.3). Thus only 

a large but finite memory is hypothesised. 

A comprehensive study of the causal factors contributing to 

dependence in annual streamflow has been made by Moss (1972a), who has 

formulated a physical model to describe the transfer mechanism which 

converts a stochastic input of precipitation into an output of streamflow. 
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In formulating his model, Moss has pointed out that the time-

distribution of the inputs (precipitation) within each time unit affects 

significantly the magnitudes of the outputs (streamflow) and as a result, 

daily, monthly or annual streamflow volumes should not strictly be 

treated as discrete time processes. Moss uses the term discretized 

streamflow to describe the process resulting from summing or averaging 

continuous streamflow. The distinction between discretized processes and 

discrete time processes is discussed before describing the model for 

annual streamflow proposed by Moss (1972a). 

6.2.1 Approximation of Continuous-Time Processes 

In simulating synthetic streamflows, discrete time processes based 

on the increments of Brownian motion are invariably used to model what 

are strictly discretized processes as defined by Moss (1972a); the 

error introduced by this type of approximation has apparently not been 

extensively investigated. The increments of Brownian motion, defined as 

B(t) 
	

B(t) - B(t-1) 
	 (6.1 ) 

do not take any account of the variation of B(t) over the unit time 

interval. However, as noted in section (2.5.1), because of self-

similarity, the function B(t) is so locally erratic in its behaviour that 

it does not possess a derivative, which is in contrast with the smooth 

behaviour of continuous streamflow. 

Mandelbrot and Wallis (1969c) have argued that fractional Brownian 

motion represents a suitable model for precipitation because of its 

considerable irregularity in continuous time; however, this argument 

cannot readily be applied to streamflow. Mathematical smoothing 

procedures can be introduced as artificial means of ensuring smoothness 

but such procedures hardly add to the physical plausability of models 

based on'the increments of Brownian motion. The same criticism 

applies to models based.on the increments of fractional Brownian motion, 
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although "smoothness" properties would not appear to be of primary 

importance in modelling long-term persistence. Rodriquez et al (1972) 

have argued for smoothness properties mainly from the viewpoint of 

applying crossing theory; the Broken Line process possesses certain 

properties of smoothness but it would appear to be difficult to give any 

physical interpretation to the parameters of the BL process or to its 

method of construction. 

6.2.2 A Physical Model for Annual Streamflow 

Moss (1972a) has postulated a model for discretized streamflow as 

fbllows. A stochastic input of effective rainfall (rainfall less 

evapotranspiration) is imposed on a physical system, the drainage basin; 

the resulting streamflow over a period is described in terms of three 

components: (i) direct runoff rIPi  where rl represents the proportion 

of direct runoff for period i, (ii) baseflow caused by over period 

storageGi  and (iii) baseflow caused by within period precipitation Fi. 

A schematic representation of these components is given in figure (6.1) 

ri  P. 

G. 

Time 	 1 

Figure (6.1) (after Moss, 1972a) 

Total streamflow within a period is thus defined as 

M. 	= 	G. + F. -+ r!P. 
1 a. (6.2) 

In order to include the effect of the within-period distribution of 

precipitation, Moss (1972a) introduces an additional variable T1 

which represents the time of occurence of a storm with a magnitude 

M. 
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equal to the sum of the individual storms that occured in the ith  

period and whose baseflow contribution within that period is equal in 

magnitude to the baseflow contributions of the individual storms. No 

correlations are assumed to exist between the magnitudes or between 

the times of occurence of the individual storms, and the magnitudes are 

treated as instantaneous pulses. Using a continuity equation and equation 

(6.2)mossthenshowsthatstreamflowicin the current time period can 

be expressed as a function of precipitation in the current time 

period, and of streamflow and precipitation in the previous time 

period; thus, if precipitation is equated with the ,1._ndependent random 

term, the exact form of the ARIMA (1,0,1) process results. The 

parameters p and 0 are related to the parameters of the physical 

model proposed by Moss through the following equations 

P 
	e-k 
	

(6.3) 

.. 1 	-1) 
a! 	

C.T 
e • i-1 	- e-k  

0 	
1-1 

k(T'-1) 
ale 	i 	- 1 

(6.4) 

where a! = (1-r!) and k is the baseflow recession constant characterizing 

a linear reservoir. Because of stationarity, Moss assumes the values 

of a! and T! to be constant between periods and equal to at  and 

T' respectively. 

For a particular stream suited to the basic assumptions of the 

model, estimates of a', which represents the ratio of infiltration to 

effective precipitation and of k, the recession constant, were obtained 

by Moss (1972a) from a previous work and through conventional analysis. 

An estimate of the parameter T' was obtained from an analysis of 

precipitation and evapotranspiration records. For annual flows, 

comparison of the estimates of p1  obtained using equations (6.3), (6.4) 



250 

and (3.24) with those obtained from the observed record showed poor 

agreement, no matter what month was taken to start the water year. 

Autocorrelation in the annual effective precipitation values, 

sampling errors and seasonality in the infiltration ratio r' were 

suggested as possible explanations (Moss, 1972b). A slight source of 

error might arise from the fact that equations (6.3) and (6.4) pertain 

to a discretized process while equation (3.24) pertains to a discrete 

process. However, sufficient verification of this model has not as 

yet been performed. 

6.2.3 Justification for Parameter S ace 

The parameter space of the ARIMA (1,0,1) process was defined in 

section (3.3.1) as -1 < p < +1 and -1 < 0 < +1. While stationarity is 

a necessary requirement insofar as generating synthetic flows is 

concerned, the form of the equation of the ARIMA (1,0,1) process 

xt 	
pX

t-1 
+ E

t 
- 0 E 

t-1 
(6.5) 

also suggests that the restriction -1 < p < +1 is a sensible requirement 

for streamflow. 

The restriction imposed on the parameter 0 to ensure invertibility, 

as defined in section (3.3.1) requires some justification in the case 

of streamflow. Moss (1972a) has examined the invertibility restriction 

on 0 from a physical standpoint, but found no obvious physical 

justification. 

In section (3.1.2) the invertibility condition for a simple MA(1) 

process 

(6.6) 

was shown to be -1 < 0 < +1 which implies that if the process is 

written in the equivalent form of an infinite autoregression, 



251 

Xt 	= 	- 
8Xt-1 

- 82X
t-2 

03X
t-3 
	 + 6

t 
	(6.7) 

then invertibility ensures that the effects of past values of the process 

die out in a sensible manner. Nevertheless the process would still 

be stationary if 0 > 1. 

The same argument may be shown to hold for the ARIMA (1,0,1) 

process which can also be written as an infinite autoregression. Using 

the backward shift operator, the process may be written as 

	

(1 - Bp)Xt 	= 	(1 - B0) Et 

or 

BAP  v  = 	(  1 - B  

	

6t 	1  t 1 - B8 

Expanding 1/(1-B0) gives 

6't 
	(1-Bp)(1'+ BO + B202  + 	)Xt  

(1 + BO + B202  + 	- (Bp + B2p0 + B3p02  + ...)Xt  

or 

xt  + (e-oxt-1 + (e
2
-(0)X

t-2 
3 2 
P-TO )Xt-3 + 

(y-e)xt_i  + (0-02  ) t_2  + (TO2-a3)Xt..3  + 	+ et  (6.8) 

The infinite series of coefficients (p-0), (042), (02-03),... forms 

a convergent series for 0 < 1 with no condition imposed on the value of 

the parameter p, which gives an empirical justification'for maintaining 

the invertibility condition. 

6.3 Summary and Conclusions  

The stochastic modelling of long-term persistence has been reviewed 

comprehensively in Chapters 1 and 2, with particular emphasis placed 

on the simulation of synthetic streamflows. In Chapter 3, a simple 

stochastic model with desirable short-term and long-term properties 
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was proposed and developed for simulation purposes, while the multivariate 

extension of the same model was derived in Chapter 4. Techniques for 

estimating the parameters of the model were examined in Chapter 5, 

while physical interpretations for the paraMeters and for long-term 

persistence in general have been considered in the preceding sections 

of this chapter. 

The primary conclusions to be drawn from this thesis are: 

1. While the discrete-time fractional Gaussian noise (dfGn) model has 

precisely the right mathematical structure for modelling Hurst's law, 

no simple adequate approximation to dfGn has been suitably developed for 

simulation purposes. 

2. The observed long-term persistence in geophysical records can be 

successfully modelled by the simple ARIMA (1,0,1) process, as evidenced 

by the good agreement shown with Hurst's law within large simulated 

sequences. In addition, short-term persistence, as measured by estimates 

of the lag-one autocdrrelation coefficient can also be modelled simultaneously. 

3. For simulation purposes, the ARIMA (1,0,1) process has been formulated 

to maintain the required resemblance between historic and synthetic 

sequences in terms of both short-term and long-term properties. In 

achieving this resemblance, it is necessary to distinguish clearly 

between the small sample and population properties of the process. 

4. Because of the computational ease associated with using the- ARIMA 

(1,0,1) process to generate synthetic sequences, - the process should be 

useful as a simulation tool and should prove attractive to engineers 

who wish to assess the effects of long-term persistence on water resource 

system performance. 
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5. A multisite version of the ARIMA (1,0,1) process has been developed 

for generating synthetic sequences which reproduce the observed 

temporal and spatial correlations. In contrast Lo other multisite 

models of long-term persistence, the application of the multisite 

ARIMA (1,0,1) model should not raise any major difficulties. 

6. The reliable estimation of the parameters of the ARIMA (1,0,1) 

process from annual streamflow sequences of moderate length would appear 

to be a very difficult task. It can be concluded from the simulation 

experiments conducted in Chapter 5 that such sequences cannot be expected 

to provide much supporting evidence for the applicability of the ARIMA 

(1,0,1) model, or indeed of other models of long-term persistence. 

7. 'A physical basis for the infinite memory hypothesis associated 

with the dfGn model has not as yet emerged. However, consideration 

of the physical processes which determine annual streamflow tends to 

suggest that the ARIMA (1,0,1) model has a reasonable physical basis. 

While observed properties of streamflow can be reproduced in synthetic 

sequences without reference to physical considerations, a model which 

also reflects physical reality should be more desirable. 

8. The development of stochastic models for simulating synthetic 

flows would appear to be an important area for research in the light 

of the growing potential of simulation as a powerful tool in planning and 

operating water resource systems. The ARIMA (1,0,1) process should add 

to this potential and make the simulation of synthetic sequences with 

desirable short-term and long-term properties easier than has heretofore 

been possible. 
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6.4 Recommendations for Further Study 

There would appear to be considerable scope for further research 

involving the ARIMA (1,0,1) process, both on properties of the 

process and on its application as a simulation tool in the planning 

of water resources. Specific recommendations can be made as follows: 

(i). The properties of moment and maximum likelihood estimates of the 

parameters of the ARIMA (1,0,1) process in small samples require 

further exploration. 

(ii). A Bayesian approach to the estimation of the parameter p might 

prove more reliable than more classical approaches. 

(iii). Because the Hurst coefficient h is theoretically defined as 

0.5 for the ARIMA (1,0,1) process a simulation approach had to be adopted 

to define the expected value of h in small samples, and hence other 

small sample properties, such as the variance and lag-one autocorrelation 

could also be readily obtained. However, it might be possible to derive 

expected values for the standard deviation and lag-one autocorrelation 

analytically and thus to avoid the use of tables to achiravo the desired 

resemblance between historic and synthetic sequences in terms of these 

properties. 

(iv). The problem of model choice requires further study, and could 

proceed along two separate lines: 

a) If the distribution of the resealed range R/S in small samples 

could be derived for various processes, this should allow the 

formulation of more powerful tests of significance for long-term 

persistence and for discriminating between alternative models. 

b) Bayesian decision theory could be applied where the choice 
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of model is ruled by the expected losses accruing from an incorrect 

choiCe of model. Such an approach could only be used where the 

form of the loss function is specifically known. 

(v). The application of the ARIMA (1,0,1) process to monthly and daily 

streamflows has not been attempted here and could be achieved through 

applying the model directly or through disaggregating previously 

generated annual flows as suggested by Valencia and Schaake (1972). 

(vi). Some investigations into the importance of long-term persistence 

in various design situations would be desirable. Synthetic sequences 

used in such investigations should perhaps maintain a memory of the 

historic record as suggested by Garcia et al (1972). 

(vii). Long-term persistence, a term used to describe the occurence of 

long series of wet and dry years, may not be synonymous with autocorrelation 

as pointed out by Klemes (1974). Given that the Hurst phenomenon can 

be explained by a stochastic process characterized by time variance or 

autocorrelation, only physical considerations may ultimately decide 

which is the correct explanation, and some work is definitely necessary 

in this area. Indeed, the further advancement of stochastic techniques 

of streamflow synthesis can probably only come from a better understanding 

of the physical laws governing streamflow itself. 
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The variance of the increments of fractional Brownian motion  

Var [Bh(t+T) 	Bh(t)] = Var [E
,h  (T) - Bh

(0)1 

2hr T gar Bh(1) Bh
(0)1 

From equation (2.23) 
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(A2.1.2) 

= Vh 

As the integral on the r.h.s. of equation (A2.1.2) exists, Vh  is finite 

and is a function of h. Thus, from equation (A2.1.1), 

Ph 
Var [Bh(t+T) - B

h(t)] 	= T-  Vh 
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Appendix 3.1  

120-one Autocorrelation for a Log-Normal Process  

Let 

Y
t  = In (Xt  - a) 
	

(A3.1.1) 

where In denotes loge  and a is the lower bound of the process X . Therefore 

Xt = a + exp(Yt
) 	 (A3.1.2) 

The lag-one autocorrelation of Xt  is defined as 

E [Xt  Xt_11 - (E [Xt1)
2 	

(A3.1.3) 

E [X
t
2
1 - (E [Xt1)

2 

The moment generating function for a normally distributed random 

variable with mean g and variance 62 is defined, for real values of t, 

as (Parzen, 1960 ; p. 221) 

M(t) = E [exp(tx)1 

= exp(tg + 2  62t2) 
	

(A3.1.4) 

The moment generating function for jointly normal random variables X1  

and X2 with means g1 
and g

2 and standard deviations 61 
and 6

2 
respectively 

and correlation p is defined as (Parzen, 1960 ; pp. 357-58) 

M(t1,t2) = E [exp(t1  X1  ) exp(t2  X2  )1 

= exp Et1g1  + t2112  + 
1, 2 

61
2 
 + 2 p6162t1t2  + 

	2
)1 

(A3.1.5) 

for all real values of t1  and t2. 

Thus, from equations (A3.1.2) and (A3.1.4) it can be deduced that 

E [X
t
l = a + exp(g

y 
+ 6

y
2/2) 
	

(A3.1.6) 

r E LXt
21  = a2 + 2a exp(g + 6 2/2) + exp [2(g + 6 

2)1 	(A3.1.7) 
Y Y 	y y 



(exp [6 	p 	- 1) 
Px  = 	

2 

7  

(exp 6y2  - 1) 
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• 
- 2

1 
	

r 7)2 	 , 
E

t 	
(E

t 	
= exp [2(11 +6 

2
) - exp(211 +6 

2 
 ) 

Y Y 	Y Y 

r 	, 	, 
= exp j2gy+6y 

2,
1 expt6y

2 
 ) - 1 1  (A3.1.8) 

By letting Yt  = X1  and Y= X
2 

in equation (A3.5), and letting 

t1  = t2  = 1, it follows that 

E [Xt X
t-1 	. 

1 = E [(a + eYt)(a + eYt-1)1 

/,,N 
a
2 
+ 2a exp(g

Y 
 + 

Y
2
/) 

+ exp [2p. +6 2  p +6 21 
 

Y Y Y Y 
(A3.1.9) 

E [X
tt-1 1  - (E [Xt  1)2  = exp [211 + d 

2 	2, 
p + 6 	exp [21.1 + c 21 

YYYY 	Y Y 

= exp [211
Y 
 + 6 Y 

21
[ exp (6

Y
2 
 p 
Y
) - 11 

(A3.1.10) 

(A3.1.11) 

The relationship between p
x and p given by equation (A3.1.11) 

apparently holds regardless of the process employed to maintain the correlation 

P between Y
t 
and 

Yt-1.  The approach could also be extended to higher 

lag autocorrelations in X and Y space. 
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D = a j  E x(j) 

j=1 
(A3.2.3) 
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Appendix 3.2  

The segELLJILL21zorithm 

The following formulation follows that of Wallis and Matalas (1972). 

Let [x(j) : j c J1 and [d(j) : j E J1 denote time sequence of flows 

and demands, where J = [1,2,..., n1 refers to the set of equally spaced 

time points over which the reservoir is to operate. If there is partial 

development, 

n 	 n 
E x(j) > E d(j) 

j=1 	j=1 

then there will be a sequence of wastes [w(j) : j c J1 , where 

n 	 n 	 n 
E w(j) = 	E x(j) - E d(j) 

j=1 	j=1 	j=1 

n 
The total demand D = E d(j) is related to the total flow by 

j=1 

(A3.2.1) 

(A3.2.2) 

where 0 < a< 1 denotes the level of development. Let the minimum 

capacity required to meet all demands be denoted by C . If C(0) denotes 

the initial storage necessary to avoid storage deficiencies, the storage 

at the end of the 
jth 

 time period, C(j), is given by 

C(j) = min [Cp  , (x(j) - d(j) 	C(j-1))1 	(A3.2.4) 

and the waste water at time j, w(j) is given by 

w(j) = max [0, (x(j) 	d(j) - Cp  + C(j-1))]  
j 

(A3.2.5) 

Let 

z(i) = 	E [x(j) - d(j)1 
	

E I = [1,...,n1  (A3.2.6) 
j=1 

Let the minimum and maximum values of z(i) be denoted by Z' and Z", 

respectively. The range of cumulative departures from the sample mean 
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or adjusted range R is defined as 

R = Z" - Z' 	 (A3.2.7) 

Hence, for a = 1, C = R and C(0) = Z'. 

The solution for C may be obtained by the sequent peak algorithm 

(Thomas and Burden, 1963) as follows. In order to obtain the solution, 

the two time series [x(j) : j e Jl and Ld(j) : j c J1 are assumed 

cyclic ; this strictly operational assumption is imposed to carry out the 

solution for C and has no physical significance. The solution requires 

the use of only two cycles ; in this case the time span for the two time 

series is defined as J' = [1,...,2n1, where x(j) = x(j+n) and d(j) = d(j+n) 

for j = 1,...,n. The solution for C is obtained through the following 

steps. 

1. Calculate x(j) - d(j) V j e J' 

2. Calculate z(i) V i E 	= [1,...,2n1 

3. In [z(i) : i e 	locate the sequence of peaks [Pr  : r c R ] 

where R = [1,...,m] such that P1 
< P

2 
< 	< P

m
. 

4. Between sequent peaks locate the sequence of troughs [Ts 
: s e Si 

where S = E1,...,m-11  

5. Form the sequence [(Ps 
- Ts

) : s e 

C is given by 

C = max (P - T) p 	5 s  

. The minimum design capacity 

The values C(j) and w(j) V j e J may be derived using equations (A3.2.4) 

and (A3.2.5), while C(0) may be determined as follows. Set C(0) = 0, 

and using equation (A3.2.4) determine C(j) V j e J. If C(j) > OVjeJ 

then C(0) = O. If C(q) < 0 V q e Q < J, then C(0) = max IC(q)I. 
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Appendix 3.3  

Alicationo: lent peak algorithm  

If a constant p is applied to each of the flows [x(j) : j c J1 

and demands [d(j) : j e JI , and if the level of development is maintained 

at a, then the steps in the sequent peak algorithm are as follows. 

1. Calculate Px(j) - Pd(j) V j c J' 

2. Calculate Pz(i) V i e I' 

3. In 	z(i) : i c I' 	locate the sequence of peaks [pi)
r 
: r e R1 

where R 41,...,m1 such that PP1  < pP2  < 	< Pipm  

4. Between sequent peaks locate the sequence of troughs [pT
s 
: s e Si 

where S = [1,...,m-11 

5. Form the sequence [(PP
s 
- PTs) : s c Si. The minimum design capacity 

C' is given by 

C' = max (PPs 
- PT

s
) 

= p max (Ps 
- T

s
) 

p c 
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Appendix 4.1  

Correlations Preserved by the Multisite APIMA (1,0,1) Process  

The case of 3 sites will be used to illustrate the derivation, 

which can then easily be generalized to the case of m sites. A 

diagonal form will be assumed for the matrix A. In expanded matrix 

notation, equation (4.17) may be written as 

        

      

- 
. a22. 

. . a32 

b11 b12 b13 
+ b21 b22 b 21 22 b23 

b
31 

b
32 

b3 

c11 e12 e13 

- coo 
21 22 23 

031 c
32  033  

 

C 1 (t) 

E 
2
(t) 

c 3(t) 

  

       

       

   

(A4.1.1) 

The generating processes at each of the 3 sites are as follows: 

x1  (t) 	= 	a11x1(t-1) + b11 9(t) + b12 E-2(t) + 1313 E3(0 
(A4.1.2) 

- ell 9(t-1)  - e12E2(t-1) - c13 
 c3(t-1) 

x
2
(t) 	= 	

a22x2(t-1) + b21e1(t) + b22c2(t)  + b23 E3(t) 
 

( A4.1.3) 

- c21  9(t-1)  - e22E2(t-1)  - e23 E-5(t-1)  

x3(t) 	. 	a33x3(t--1 ) + b31  ,(t) + b32 E2(t) + b33  E-3
(t) (A4.1.4) 

- c31  9(t-1) - c32e2(t-1). - c33c3(t-1) 

Cross-multiplication by x2(t) in equation (A4.1.2) yields: 

x1(t)x2(t) a1x1 (t-1)x2(t) + b11 e1(t)x2(t) + b12c2(t)x2(t) 

63(0x2(t) 	c119  (t-1)x2(t) 	c12'2 (t-1)x2(t) (A4.1.5) 

- c
13
E3(t-1)x2(t) 

Application of the expectation operator in equation (A4.1.5) requires 
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the evaluation of the following terms: 

E[x2(09(t)1 	= 	b21 

E[x2(t)E2(t)1 	= 	b22 

E[x2(t)s3(t)] 	= 	b23 

E[x2(09(t-1)] 	= 	a22E[x2(t -1)e
(t-1)] 

E[x2(t)c2(t-1)] 	= 	a22Kx2(t-1)E2(t-1)] 

ELx2(t)E3(t-1)] 	= 	a22E[x2(t-1)63(t-1)] 

- c21 

- c22__.  

- c
23 

= 

 = 

= 

a22b21 

a22b22 

a22b23 

c21 

e22 

c23 

whence 

P12(0) 	a11P21(1)  
+ b1/b21  + b12b22  + b13b23  

c12(a22b22 - c22) (A4.1.6) c11(a22b21 c21)  

- c (a b 	- c- ) 13 22 23 	3 

In a similar fashion it may be shown that 

p13(o) p31
(1) + b11b 	+ b12b 	+b 11 31 	12 32 	13b  33 

-  c11(a33b31 	c31) 	c12(a33b32 - c
32)  (A4.1.7) 

- c13(a33b33  - c33) 

P23(0)  a22p32
(1) +bb + b22b + b

23 
 

21 31 	22 32 	25 53 

- c21(a33b31 c--)  51' - c
22(a33b

32  - c32) (A4.1.8) 

- c (a b 	
c33) 23 33 33 	33 

The expression for p..ij
(0) in the general case of m sites can now be 

deduced from equations (A4.1.6) - (A4.1.8) as: 

p..(0) 1j 
a.. 
11 

m 	 m 
.(1) +Ebb 	- a.Ec b 
1 	ik jk 	jjk=1 ik jk k=1  

(A4.1.9) 
.m 

+ E ci  ck jk k=1 
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The variances at each of the m sites are given by equation (A4.1.9) 

with j set equal to i, [i = 1,2,...,m1. 

Cross-multiplication by x (t-1) in equation (A4.1.2) gives: 

x1(t)x2
(t-1) 	= 	a11x1

(t-1)x
2
(t-1) + b11c1(t)x2(t-1) 

+ b
122(t)x2

(t-1) + b133  e(t)x2  (t-1) 

(A4.1.10) 
- c11 1(t-1)x2(t-1) - c12

E
2
(t-1)x

2
(t-1) 

- c13e3(t-1)x2(t-1) 

Application of the expectation operator in equation (A4.1.10) gives: 

p12(1) 	= 	a11P12(0) 	c11b21 	c12b22 	c13b23  (A4.1.11)  

Similarly it may be shown that 

p
13
(1) 	= 	a11 p13(0) - c11b31 - c12b32 

- c
13

b
33 (A4.1.12) 

p
23
(1) 	= 

a22p23(0) - c21b31 - c22b32 
- c23b33  (A4.1.13) 

The expression for p. .(1) in the general case of m sites can now be 
ij 

deduced from equations (A4.1.11) - (A4.1.13) as 

m 
p..(1) 	=a..p..(0) - E 	c

i 
 b ij 	11 ij 	k jk k=1 

(A4.1.14) 

The lag-one autocorrelations at each of the m sites are given by 

equation (A4.1.14). with j set equal to i, [i = 1,2,...,m1. 

Equations (A4.1.9) and (A4.1.14) may now be solved simultaneously 

to give 

p. .(0) ij 

1 

(1 - a..a..) [-a  ii E c. b. 	E b  
jj 	11k=1 jk ik 	

i bkjk 
k=1 

- a.. E c. b. + E c. c. 	1 
33k=1 ik jk k=1  ik jk 

whence pij(1) may be calculated from equation (A4.1.14) 

The lag-two autocorrelations may easily be shown to be: 

(A4.1.15) 

p . .(2 ) 
	

ai.i_ p..(1) 
	

(A4.1.16) 
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Appendix 4.2  

Correlations preserved by the Multisite ARTMA (0,0,1) Process  

The case of 2 sites will be used to illustrate the nature of the 

constraints involved in assuming lower diagonal forms for both of the 

matrices B and C. Equation (4.5.1) may be written in expanded form as 

[11 [x1(t) 	b11 	0 	611 

x2(°  
b21 	b22 	c2(0 ]  c 	

€1(t-1) 

21 	

] 

c22 ] c2(t-1)  

c11 	0 

(A4.2.1) 

Let the observed lag-zero and lag-one correlation matrices be denoted by 

M1 =  

p 	a 

From equations (4.52) and (4.53) 

[(1-2p) 	(R-a-13)] 
M - M - M 
-10 -1, 1 (R-a-p) 	(1-2r) 

= LE
T  (A4. .2) 

[(1-1-2p) 	(Ri-a+p)] 
M M M o -1 1 (R+a+(3) 	(1+2r) 

= ET.*T (A4.2.3) 

Using lower triangularization equations (A4.2.2) and (A4.2.3) may be solved 

to yield the matrices 11 and E. as 

0 

1/(1-2r)(1-2p) 	_p-a)2  

(1-2p) 

0 

R+p+a 	(1+20(1+2P) - (R+(3+a)2  
(1+2p) 

1-77 



1  F(R-p-a) 	(R+p+a)1  
c21 - 

z 1-2p 	-/1+2p 

b22 
_ 
- 

(1-20(1-2p) - (R-p-a)2  
1-2p 
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Recalling that 

(B + C)(B + C)1  = ILPI 
	

(.A 4.2.4) 

(B - C)(B - 0)11  = 2. T 
	

(A4.2.5) 

the elements of B and C are formed by solving pairs of simultaneous 

equations 

b21 - 

(A4.2.6) 

(A4.2.7) 

(A4.2.8) 

(A4.2.9) 

(1+2_r) (1+2p) 	(R+P+02  
1+2p 

(A4.2.10) 

b1  = z V1+2 p + V1-2p 1 

c11 
	[ -v 1-2 p - -V1+2p 	I 

2 L 
r(R-(3-a) 	(R+P+a)1 

V1-2p 	T  N/1+2p 

1(1-2r)(1-2p) - (R-(3-02 	11(1+20(1+2p) - (R+p+u)
2 

c
22 

= 	[4 	1-2p 	 1+2p 
(A4.2.11) 

By applying expectation theory to equation (A4.2.1) it may be shown that 

	

r 2 i 	2 	2 
E Lx1 

(t)j = b
11 

+ c11 

1 r = TIT  1.1+2p + 1-2p + 2j1-2p 1+2p 

+ 1-2p + 1+2p - 2-‘11-2p.q1+2p 

= 1 

on substitution from equations (A4.2.6) and (A4.2.7). 

Similarly 

2 	1 	2 	2 + c 
	2 	2 

x (t) = b21 
+ b22 

+ c21 + c21 
+ c22 

( A4.2.12) 

(A4.2.13) 



co( 

which, on substitution from equations (A4.2.8) - (A4.2.11) reduces to 

2, 	1,(R4-a)
2 	(R+Q+a)2 	(1-2r)(1-2P) - (R-p-y)-  E [x2 (t)1 - 2L 1-2p 	

+ 1+2p 	+ 1-2p 

(1+20(1+2p) - (R+p+a)2 

1+2P 

= 1 

Again applying expectation theory in equation (A4.2.1) it may be shown 

that 

E [x1(t) x2(0] = E [x2(0 x1  (0] = b21 b11 + c21 e11 	(A4.2.14) 

E [x1  (0 x 1
(t-1)]= - c

11 
b
11 	(A4.2.15) 

E [x2(t) x2(t-1)]= - c21 b21 - c22 b22 	
(A4.2.16) 

E [x1  (0 x2(t-1)]= - e11 
b
21 	

(A4.2.17) 

E [x2( ) x1(t-1)1= -c21 b11 	 (A4.2.18) 

On substitUtion from equations (A4.2.6) - (A4.2.11), equations (A4.2.14) - 

(A4.2.18) reduce to 

P12(0) = P21(0) = R 	 (A4.2.19) 

P1(1) = P 	 (A4.2.20) 

P2(I) = r 	 (A4.2.21) 

)1T75-  

(R-p-a) "Sj 1+2p   (A4.2.22) 
-\11-2p 

p21(1) 	

- 	

1(213. -2a) r 	1-1-2p (n-p-a)  +14t1-2p (R-0-1-) 	(A4.2.23)  

1-20 

Hence, the observed lag-one cross-correlations will not be preserved, 

although their sum 

P12 (1)  + P 21(1) 	a  + 13  

will be preserved. This result is also true in the general case f m sites. 

(R++a)1 -2p 
P12(1) = T147 [ (213+2a) 	P 	),(  
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Appendix 4.3 

Correlations Preserved by the Modified Multisite ARIMA (1,0,1) Process  

The case of 2 sites will again be used to illustrate the derivation. 

The modified multisite ARIMA (1,0,1) process is then written as 

[x1(t)] 	[-P  

x2(t) 

 

b22] [c2(0 

c1(1 0 

61(  
- 

0 

c22 c2(t-1)

1 

 

 

(A4.3.1) 

Let the observed lag-zero and lag-one correlation matrices be denoted by 

[ 1 	R 
M = 	M = 0 	-1 1 

From equations (4.45) and (4.46) 

p 	a 

[(11-02  - 2p(141?) 	(1-1419)2R - (a+P)(1+0 

= W = luLET  (A4.3.2) 

 2r(1-.p) 

2 
[ 0-T) + 2p(14) 	(1-T)2R + (a+P)(1-0 

= w. = T 	(A4.3.3) 

Using lower triangularization, equations (A4.3.2) and (A4.3.3) may be 

solved for the coefficients of the matrices B and C as illustrated in 

Appendix (4.2) to give 

bli = (p11 1311)/2  = (1;11 /;;1)/2  

c11 = (P11 - 13 11)/2  = 14711 - 4;1)/2  

b21 = (p21 + 
	)/2 	w21)/2  

21 	21 	Pil 	P11 

S + T + TT = 
(1+T)2R - (a+(3)(1+0 	(1+T)2 - 2r(1+0 

S - T - TT  = 
(1-T) 	+ vx+P)O-T) 	(1-02  + 
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c
21 

= 

b22 = 

c22 = 

/, 
(p 	p* )/2 = 	/ 21 	21 

"21 	21,

11 	11  

r- 	 I 
(P22 	2 P*2 )/2  = (4°22 	

2 
c.1 -1-11WL 	Pg)/2  

(R - 
 822

)/2 = (14 	- p 	-p*)/2 
22 22 	22 21 	22 21 

From equation (4.42), 

PI2(0) = - all c21 b11 	a22 c11 b21 	b11 b21 	c11 c21 1-a1 

 

lla22 
(A4.3.4) 

c b 	
= —1 	- 

w
21Y -11 	1447;1  

21 11 	4 [ w21 	r-- 	w 2 

	

11 	11 

c b = 
w 	v* /7,7 
21 11 	21 	11  -1  [w - 	w* 11 21 	4 21 	 21 

	

11 	11 

f7; 	JTAT  
b b 	= —

1 
 [w + 

N 	w 	w 
11 21 	11 21  + w* 11 21 	4 21 4 	21 7  

	

11 	11 

_ 	17-11 14 1 N1-1471 1'1'21 
c11 c21 = -1  	

+ w* 
11 21 	4 21 	 21 

	

1/77-11 	1711 

Noting that a
ll = a22 = 	

equation (A4.3.4) reduces to 

p (0) - 	1 	
[- (w 21 1.2  2(1-T

2
) 

) +w21 +w21 	(A4.3.5) 

Substitution for w21 and w*21 
 from equations (A4.3.2) and (A4.3.3) gives 

, 
p
12
(o) - 	1 2 [2(1-T )R 

] 
, 

2(1-(1) ) 

Similarly, it can be shown that the variances at each site will be 

preserved as unity. From equation (4.43) the lag-one autocorrelation at 



site 1 is given as 
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P11(1) 
	= cp (A4.3.6) 

which, on substitution, reduces to 

P11(1) = P 

Similarly, 

p
22
(1) = T - c

21 b21 
	c 	b 	

= 	(A+.3.7) 
21 21 

- 
22 22  

Thus, the modified ARIMA (1,0,1) multisite process preserves the observed 

M
o 
 matrix and the observed diagonal elements of the M

1 
 matrix in the case 
 

of 2 sites. 

The foregoing treatment can readily be extended to verify the result 

in the general case of m sites. 
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Appendix 4.4  

Cross correlations for a multisite log-normal process 

Let 

Y.(t) = In (X.(t) - a.) 
1 	1 	1 

whereiridenoteslogelanda-1  deriotesnelowerboundonC.(t) at site i.  1 

Thus, 

x.(t)= 	exp 	(t)  1 (A4.4.1) 

The lag-zero cross-correlation between X.(t) and X (t) is defined as 

	

E [X.(t) 	.(t) ] 	[X.1(t)] E I
(t)] 

ij 
p(0) _ 	j 
	 , 0.5 	0  

[E [xi(t) ] - (E [Xi(t)])] 	[XPt)] - (E [Xj(t)pc-] 

(A4.4.2) 

Using the moment generating function defined by equation (A3.1.4) in Appendix 

(A3.1), it may be shown that 

E [X.2(t) - (E [X.(t) ])2] = exp [211! + 6!2] [exp(6!2) - 1] 1 	1 	1 	1 	1 

(A4.4.3) 

r 2 	.1 21 	21 r 	, 2 
E LX. 	- (E [X.lt)J) J = exp [2111 + 61 	Lexpl61. ) - 1] 

J 	J 

(A4.4.4) 

Using the moment generating function defined by equation (A3.1.5) in Appendix 

(A3.1) it may be shown that 

E [Xi(t)] [X.(t)] = a. a.
J 
 + a. exp(q + 6!2/2) 
 1 

+ a. exp(t + 612/2) 
1 	J 

+ exp [p.! + 	+ i(6!2  + 2pT (0) 6! 61. + 612)] 
1 j 	i 	ij 	1  J 	J 

(A4.4.5) 
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whence 

E [Xi(t) Xj(t)] - E [Xi(t)] E [Xj(t)] 

1 = exp 	+ 	+ 	+ 2 p!.(0) 6! a 	(1!2)1 
1 	

2 	
13 	j  

- exp [p! + R! + 0!
2
/2 + 6!

2
/2] 

j 	1 	J 

= exp 	+ 11.1 + a' 
2/2. 4. 0„.2/2].  

j 

[exp 6! 16 1. p!.(0) - 1] 
1 j ij 

p..(0) lj 

  

(A4.4.6) 
12,2 	0.5 

[e(51  - 1] [e6i - 1 ] 

Again, equation (A4.4.6) would appear to be independent of the process 

used to model the cross-correlations 	p!.(0). Similarly, it can be shown 
ij 

that 

p..
13 (1) 

	- 
exp [6! 61 p!.(1) 	- 1] 

3 13  

12 0.5 t2 0.5 
[e61  - 1] [e(1J - 1] 

(A4.4.7) 

p..(2) - 13 

exp [0!
j 
 p!.(2) - 1] 
 13  

,2 0-5 t2 0.5 
[ecll - 1] [e (5J - 1] 

(A4.4.8) 
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Appendix 5.1  

Details of the optimization process  

The optimization process developed by Rosenbrock (1960), with 

modifications by McConalogue of Imperial College, was employed to minimise 

the sum-of-squares function S(p ,0 ). Some minor modifications were 

also introduced during the course of a previous study (O'Connell et al, 

1970). The search geometry of Rosenbrock's original method remains 

unchanged but modifications have been made in the manner in which a 

minimum is found in each of the orthogonal directions. The search is also 

conducted in unconstrained space, and consequently constraints or trans-

formations must be applied to the parameters to ensure that the minimum 

of S(p ,0 ) lies in the stationary invertible region. 

The initial directions searched correspond to the axes of the 

variables. When all the directions have been searched once, new directions 

are defined, one of which is the direction of advance during the first 

iteration (i.e. the vector joining the initial and final points) and the 

others are orthogonal to this. New searches are made in these directions 

and when new minima have been estimated the directions are redefined as 

before and so on. 

The minimum along each direction is estimated by calculating S(cp ,0 ) 

at a series of points. At the start of each linear search, the variable 

is altered by 2 per cent and S(cp ,0 ) is computed again. If an initial 

failure (i.e. an increase in the value of ,S(cp ,0 )) is registered, the 

direction of search is reversed. If a success is indicated by a decrease 

in S(cp ,0 ), the last value of the parameter is altered by 3 per cent, 

then by 4.5 per cent and the magnification of the steps continues until 

a failure is registered. The minimum is predicted by quadratic inter-

polation of the three best values'of S(cp ,0 ) using finite difference 



274 

approximations; if the estimation of the minimum is found to be within 

a certain tolerance the next direction is searched from this point. A 

search of all the current directions constitutes an iteration. When the 

function S(T ,E) ) ceases to change significantly, a minimum is assumed 

to have been found, and the search is terminated by means of a convergence 

criterion. Convergence is assumed to have taken place when the change in 

S(p , 6) between iterations is less than 1 x 10-6  of its current value. 
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Appendix 5.2 

Constraints on the parameters p and O.  

As pointed out in Appendix (5.1), the Rosenbrock search technique 

conducts an unconstrained search for a minimum (or maximum) in n-dimensional 

space. However, the search for the minimum of the function S(P,O ) must 

be confined to the parameter space defined by the stationarity and invert-

ibility conditions. 

A number of techniques exist whereby constraints may be placed on 

parameters during an optimization search. A straightforward approach is 

to employ transformations (Box, 1966) which allow a search to be carried 

out in an unconstrained space which corresponds to the required constrained 

space. If the search for the minimum of a parameter vi  is to be kept 

between a lower limit g. and an upper limit m
i 

then a transformation on 

thecorrespondingunconstraineciparameterti.is carried out as 

v 	=.4-(111  - g.) Sin
2 
u 
	 (A5.2.1) 

Hence an unconstrained search may be carried out inu-space, while the 

value of 'v. ranges between g. and 111. according as Sin
2 u, ranges between 

0 and 1. Box (1966) has observed that for equation (A5.2.1) the neighbour-

hood of any point U in u-space mapto the neighbourhood of V in v-space, 

where U maps into V. While equation (A5.2.1) does not represent a 1 : 1' 

transformation, additional local optima cannot be introduced. The 

periodicity of optimal solutions kn. u-space should not cause any difficulty 

provided the optimization process does not take steps so large that it 

jumps from peak to peak. 

As noted in section (5.3.1), parameter limits -1 + c < 	< 1 - c, 

where c is some small positive quantity, are necessary for the autoregressive 

parameter 	to avoid numerical problems. For the sake of consistency, 

similar limits were imposed on the moving average parameter O. A value 
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of c = 0.01 was arbitrarily selected yielding limits 

	

(1) = -0.99 	1.98 Sin2  u1 	 (A5.2.2) 

	

0 = -0.99 	1.98 Sin2  u2 	 (A5.2.3) 

As initial estimates of p and 0 are available, the inverses of equations 

(A5.2.2) and (A5.2.3) are obtained to define initial values for ul  and u2  

to initiate the search. 

In situations where no acceptable initial moment estimates are 

available for either p or 0 or both, an empirical approach to providing 

initial estimates is employed. For example, suppose that the initial 

	

A 	A 
moment estimates are y

(m) 
 = 1.56 and 0

(m) 
 = 0.43. The initial value of 

p for the ML search is set to 0.95 while the value of 0 remains at 0.43. 

These values are then used as initial estimates. A similar strategy is 

employed for the parameter 0. The search is initiated at a distance equal 

to 0.05 from the boundary in all cases in order to allow the search technique 

room to manouvre. Even if either or both the moment estimates are within 

the admissible region, but are closer than 0.05 to a boundary, the initial 

estimates are set to values within 0.05 of the boundary. Whenever both 

parameters are out of bounds, only the signs of those parameters can be 

used for guidance on initial estimates. 

In order to guard against solutions being found on or very close to 

boundaries, which would probably indicate that the ML estimates lay out 

of bounds in any case, solutions were accepted only if both parameters 

were not any Closer to a boundary than 0.015. Extensive inspections of 

computer printouts of parameter searches suggested that these rather 

arbitrary procedures worked satisfactorily. 

Obviously most of the rules considered here are empirical but they 

should help to ensure that only valid solutions are found. Because of 
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the nature of the experiments conducted, detailed examination of each 

S(P.,0 ) surface as advocated by Box and Jenkins (1970) was not possible, 

and a certain price may perhaps have been paid for the benefit of the 

automated procedure employed. However, in this situation the identity 

of the process generating the observations is known and perhaps the auto-

mated procedure may be justified on these grounds. 
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SHORTENED LIST OF SYMBOLS AND ABBREVIATIONS 

ARIMA 	Abbreviation for 'autoregressive integrated moving average' 

dfGn 	Abbreviation for 'discrete-time fractional Gaussian noise' 

E(') 	Expectation operator 

H Estimate of h 

h Hurst coefficient 

K Estimate of h 

n 	Sample duration in discrete time 

p 	Order of autoregressive process 

q Order of moving average process 

R,Rn 	Adjusted range or range of cumulative departures from 
sample mean in discrete time 

Range of cumulative departures from population mean in 
p 	discrete time 

R/S 	Rescaled range in discrete time 

S Sample standard deviation 

S(p,O) 	Sum of squares function for ARIMA (1,0,1) process 

X
t 	Discrete-time random variable at time t 

Yx 	Skewness of random variable X
t 

E 	 Normally and independently distributed random variable at 
time t with zero mean and unit variance 

0 	Parameter of first order moving average 

12x 	Population mean of random variable X
t 

p,p1 	Lag-one 'autocorrelation coefficient 

Pk 	Lag-k autocorrelation coefficient 

Px 	Lag-one autocorrelation coefficient of random variable Xt  

p..(k) 	Lag-k cross correlation coefficient between random 
variableS X.(t) and X.(t) 1 

o x 
	 Population standard deviation of the random variable Xt  

(I) 
	

Parameter of first order autoregressive process 

1J 


