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ABSTRACT 

Kinetic energy levels associated with a mean fluid flow are many orders 

of magnitude larger than those in a sound field. Mechanisms that are 

capable of converting kinetic energy to sound energy, however inefficient 

they appear to bei cannot be ignored. That a mean flow driven jet 

instability leads to an enhanced sound field is already well recognised. 

The radiation field generated by the interaction of compliant surfaces 

and a mean flow (with the possibility of a mean flow driven surface 

instability) is investigated here. We also outline a simple scheme which 

enables us to estimate the noise field radiated by systems in which changes 

take place rapidly, such as impulsive mdions. These noise fields are quite 

substantial, a fact that is highlighted by the approximation scheme. 



CONTENTS 

3 

Page number  

INTRODUCTION 

Chapter I 
	

Sound radiation into uniformly 
flowing fluid by compact surface 
vibration 

Chapter II 	The scattering of aerodynamic noise 
by a semi-infinite wave-bearing 
plate 

Chapter III 	The scattering of aerodynamic noise 
by a finite plate carrying a mean-
flow driven instability wave 

Chapter IV 	Impulse noise 

ACKNOWLEDGMENTS 

4,  4- 



9- 

INTRODUCTION  

Our main interest is the investigation of interactions between aerodynamic 

noise generating mechanisms and subsonic mean fluid flows. Some of the 

mean flow effects, such as the Doppler effect, are simply small 

perturbations to the zero flow situations and are well understood. Great 

care must be taken in these situations, however, since kinetic energy' 

levels in the fluid are many orders of magnitude higher than those in 

sound fields. Consequently we cannot afford to ignore any process, 

however inefficient it may appear to be, that is converting mean flow 

kinetic energy into sound. 

A configuration which is of practical concern is that of a fluid flowing 

over a compliant boundary in the pressence of acoustic sources. In 

many practical situations, such as in ventilation ducts and aero-

engines,surfaces which are effectively rigid are lined with a 

compliant material with the aim of attenuating the transmitted noise. 

There is always the possibility of the mean flow inducing an 

instability wave in a compliant wall, a phenomenon well known as panel 

flutter. 

If this unstable wave is well coupled to a sound wave, as it will be 

if scatterers are present, then a disastrously large sound field will 

be generated! 

There is always a difficulty in finding a model problem, which, whilst 

rendering itself susceptible to straightforward analysis, retians 

the characteristic physical properties we wish to describe. The work 

of the first three chapters investigates problems of this type. In 

the first a compliant surface is modelled by an array of vibrating 

pistons. This idea was first suggested by Lord Raleigh and has been 

recently extended by Ffowcs-Williams, The changes brought about by 

mean flow in the characteristic properties of a single piston are easy 

to catalogue, and use of the work of Ffowcs-Williams clarifies the role 

of a mean flow in a stable interaction situation. Little insight of the 

qualitative or quantitative effects of the instability can be gained from 

this model but the fact that instability must take place at a high 

enough flow speed emerges. In order to discover further properties of 

the instability we, must consider a continuous compliant wall. In 

chapter II we discuss the scattering at the interface of a semi-infinite 

wave bearing wall and a semi.-infinite rigid wall in the pressence of 

stagnant fluid, 



Using the417rener-Hopf technique an exact solution (at all levels, of 

fluid loading) is obtained, relating the scattered intensity to the 

incident surface wave energy due to an acoustic line source situated 

far from the interface. In particular, in the heavy fluid loading 

limit the energy scattered at the interface exceeds the 'direct' 

energy radiated by the source, even in the case when the driving 

source is a line source in the wall. This is not surprising since the 

wave'bearing wall transfers near field energy from the source to the 

interface without attenuation. In practtee, with panels which are 

necessarily finite and scattering must occur, we can already see that 

surface compliancy may greatly increase the radiation due to sources 

close to the wall. 

It would obviously be convenient if we were able to apply these results 

to the corresponding problem with flow. However we find that the growth 

and decay (rates of the unstable modes are not equal, and therefore we 

cannot model a finite panel, even one which is many plate wavelengths 

long by considering two independant semi-infinite problems. In chapter 

III there is a broad discussion of the difficulties in selecting an 

appropriate model for the problem of a finite panel with flow. 

We choose a method involving conjugate modes on an infinite wall, whose 

amplitudes are arranged so that only a finite section of the wall is 

vibrating. 

This highly idealised problem does reveal the important process of the 

instability removing kinetic energy from the fluid and then being 

scattered with a resulting substantial sound field. 

The final chapter is a self-contained one describing a method of 

approximating the sound'field radiated in situations where rapid 

accelerations of a compact body take place. Ray theory, a high 

frequency approximation, is used to estimate the pressure at the surface 

in terms of the normal velocity there. Curie's theorem is then used to 

determine the sound field. The accuracy of the scheme is checked in the 

case of the impulsive motion of a single sphere, a problem which can 

be solved exactly, and the agreement is found to be good. The 

application to the impulsive motion of a cylinder is also given and 

compared to results obtained by crude experiments using model piledrivers. 

The agreement again appears to be good, but the experimental results 

indicate that 'ringing', due to internal vibration of the piston, 
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dominates the noise field in this case. Whilst recognising that this 

impulse does not form the dominant term in the noise field radiated 

from an impact, we must recognise that it cannot be removed. We expect 

this type of scheme to give a useful estimate of the scattered 

potential of many diffraction problems provided events take place on 

a time scale which is small compared to the time taken for sound to 

travel a typical length scale of the body. 
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CHAPTER 1 

INTRODUCTION  

Compliant surfaces are widely employed as noise attenuators in situations 

where a mean flow interacts with an acoustic field. Thus whenever there 

is a flow in a duct, the duct may be lined in an attempt to reduce the noise 

output as in the case of an aircraft engine or a ventilation duct. A 

conformal sonar array which consists of a series of vibrating panels in a 

nominally rigid baffle is another application of a compliant surface that 

may give rise to an acoustic flow interaction. 

At first sight the effect of low Mach number flow is likely to produce only 

small pertubations to static fluid results. In practice one can find many 

problems where flow effects are small and are simply accounted for by 

phenomena such as the Doppler effect. 

However, it is becoming increasingly widely recognised that mean flow 

instability effects can be large in many cases, and in this context we 

mention the work done on orderly jet structures by Crow and Champagne (1971), 

Ronneberger (1967) and Dean (1972).With incompressible fluid we find that 

flow can induce flutter in compliant surfaces - Rayleigh waves and fluttering 

flags (see Lamb (1932) for example). We consider that it is still an open 

question whether or not there is an important coupling between sound and 

flow instabilities. Practical experience seems to suggest that it is safe 

to ignore instabilities. On the other hand some modes are known to grow 

in the preLence of a flowing fluid (Dean (1972) and Tester (1973) so it 

is not an entirely academic point. 

The instability problems such as panel flutter are straightforward enough 

when the boundary conditions are uniform, and one usually finds that 

instability speeds are too slow to be well coupled to sound waves. 

Scattering is a feature that is capable of coupling the waves so, if linear 

theory is relevant, instabilities and sound are always coupled whenever 

scatterers are present. The compact surface is a most efficient scatterer 

and this is the problem we treat below. 

The flow velocity is considered constant and we assume that the effects 

of the vibration have no bearing on the overall mean flow. The fluid is 

inviscid. Boundary layer effects are obviously important in practice but 

they are too difficult to treat analytically. Our model will consequently,  

have limited application but should be valid whenever the boundary layer 
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thickness is much smaller than the characteristic scale of surface vibration. 

Since this problem can be solved exactly the model forms a useful base from 

which we can gain an understanding of the mechanics underlying the more 

complex situation. 

Our problem can be sensibly divided into two sections. There is the purely 

acoustic effect of a compact source (of constant strength) moving uniformly 

at low Mach number relative to a fluid. We treat this problem without 

specifying the details of the source but assuming that the monopole strength 

is independent of motion. Motion is known to increase the radiated energy 

by an amount which is proportional to MI' (Lighthill (1952), Morse and 

Ingard (1968)). We show in our problem that the increase is 5Ma  times the 

energy radiated in static fluid. This energy is provided by two distinct 

effects. Firstly, there is an increased mechanical damping, and secondly, 

energy is extracted from the mean flow in overcoming the mean (compressible) 

drag on the vibrating surface. These increases contribute energy in the 

ratio 2:1. The flow will also have a non-acoustic effect on the surface 

vibration (the response amplitude, the resonance frequency and the effective 

mechanical damping will all be affected, and this in turn alters the acoustic 

source strength. The effect is usually bigger than the purely acoustic 

effect described above. 

The problem we consider is that of a circular piston which is free to vibrate 

normally in an otherwise rigid plane wall. This is probably a fairly good 

but obviously simplified model of one element of a sonar array, but we do 

not expect even this local problem to be simple. There are easily foreseen 

difficulties associated with the singularities of two dimensional potential 

flow at the sharp edges of the piston and baffle, Batchelor (1967) shows 

that the included suction force is logarithmically singular. He goes on 

to say "what we learn .,. is that the total force depends on the precise 

shape of the two boundaries close to their intersection". We emphasise this 

point by considering "pistons" which do not have discontinuities at their 

edges, and draw conclusions about the effect of the degree of edge 

curvature on the magnitude of this force. The actual magnitude of the 

force will be difficult to find, but we expect it to be governed by a length 

scale on which our potential theory model has failed, possibly a boundary 

layer scale or the finite curvature of practical 'sharp' edges. 

The local effects of motion are obvious and can be classified as: 

1. Increased mass and damping due to the fluid loading. 

2. Decreased stiffness due to the flow, 

3. Increased radiation damping due to Mach number effects. 
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These effects are quantified below, and are shown to be quite substantial. 

The greatest effect occurs when the flow brings the piston close to 

resonance (or detunes a resonating piston), and there is indeed the 

possibility that the flow can lead to an instability. We deal only with 

the stable case although the possibility of the instability leads ,to a 

limiting value of the flow velocity for which the work is valid. That 

limit is reached when the flow induced suction force on the piston exactly 

balances the stiffness of the restoring spring. 
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SOUND RADIATED INTO MOVING FLOW BY COMPACT SURFACE VIBRATION  

We consider homogeneous inviscid fluid in uniform motion parallel to a plane 

boundary surface, S. The fluid occupies the upper half-space and moves with 

velocity cM,c being the speed of sound, Aremilaipy'." 	section of the boundary 

vibrates, radiating sound to infinity. We choose a co-ordinate system X fixed 

in the fluid, and write p(X, t) for the sound pressure far away from the 

vibrating part of the surface 

	f j2
( ./)  T,)  "(r 	-I- 1 —II  ) 	41-1 

Z7Tf X, 	 c s lc 	 (1.2) 

Lis Dirac's delta fundtion, primes denote differentiation with respect to 
the argument, 	is the density of the undisturbed fluid andlis the small 

displacement of the surface from its mean position. S is finite only within 

a compact region moving relative to this co-ordinate system with velocity 

-cM. We therefore choose a co-ordinate system x, whose origin moves with 

the centre of the vibrating region, and writelVx -0 for the surface 
elevation at time'. 

EQ, 	 (1.3) 

	 r &  	ce_Y, (1.1) 
2 "7/ J 	" 

X 	11 

The Jacobian of this transformation is unity, so that, 

GLzY_ - GC-  y 

and 	

p(w) - 1(4-)-c.  

(1.4) 

(1.5) 
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This equation can now be integrated by parts with respect to t, and on 

making use of the fact that, 

(1:-  6 	/ = I -i-M. 	 
a n / 	 C. 	 1)S-1/ co-ms 

We now restrict our attention to very compact surface sources, so that the 

small changes in retarded time are negligible. The wave field is then 

determined by the instantaneous source strength Q, 

(1.7) 1 	 -1_ 

r(6" 	— zgli_qlr+mcase,13772-  - )  
c5 	6 -pt i 	6 — IX -Y1)4  s 0- 4 

(1.8) 

G,( 	11<c 1 ) =S 	(4-  ) 	LX-Yi  °L14- _ 	a-c-L- 
(1.9) 

The sound radiated to large distances in the moving flow is therefore 

	

given by: 	

CA( L- 1 44-1 ) 	(1.10) 

	

t 	2171,  25/ 	i-  M C-0-58 / 3  

ca1 	- (_o,c) 
Wicose / 3  

The overbar denotes an average taken over many cycles 

We now examine conditions on the distant hemisphere S. , that lies 

parallel to the phase fronts radiated by the vibrating surface (see figure). 

The centre of the hemisphere, of radius IX(,  has drifted with the fluid a 

distance MIX 'downstream of the vibrating section. On this surface the 

radiation is statistically stationary in time, because the surface vibration 

(x,t) is supposed stationary. 

Sound energy crosses Spo  at a mean rate, 

per unit area, 
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The first term represents the rate of working of the sound pressure and 

the second the rate at which the mean flow convects the energised fluid 

across So  . The mean radiation energy density is 	(the sum of equal 
Kuc 	C M. A,  

kinetic and potential parts) and the volume flux out of So  is  
I X( 	

9 
 

or cM cos e, per unit area. 

The total acoustic power, P, radiated by the surface vibration into 

the moving stream is therefore: 

and because 

P 
	 14. N co-se ) 00-00 

Stut6c. 	
(1.12) 

PL  .--= j3-7-  (?!-ctb,E)= F-(2i. ) 0) = 	x )0), 
(1.13) 

p 	 67. 	(I+  hik-ast))-  7r1 )(11S0=41  ecla 
0+7711611. 	c 	(1.14) 

CrI  I I -i- 5-P4 -4- 	( fri+) 

2-TC- 	(1.15) 

Low Mach number flow evidently increases the sound energy radiated from 

a vibrating surface, the increase being 5e times the power radiated into 

fluid at rest, Where does this extra energy come from? There are two 

potential sources as can be seen by considering the rate at which energy 

crosses the boundary surface So 

P =f (X e) a(x,00e)suo.  

But, et 

    

411 	01(c, 
-&-ct TFI x 

al- C M . 	. 
. 	d L. 

 

      

       

      

(1.17) 

so that, 

70 _4_ 	-- t-- 	 ce2s  66. 	 _ ,   
S 	(1.18) 
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The first of these is the definition of the power extracted from the surface 

vibration, Pv  say, and the second is the power extracted from the mean flow 

to overcome the steady drag force on the boundary surface, for p 
	is the 

c 
resolved component of the surface stress in the i direction. We will 

denote this drag induced power by Pd, and evaluate it by determining the 

steady drag on the surface Spo, which must equal the boundary drag on S. 

The distant pressure, with its zero mean value, cannot contribute to the 

drag on Spa, which is therefore comprised entirely of terms arising from the 

mass flux times the unsteady part of the momentum per unit mass, (the 

steady part amounting tp zero by mass conservation). The drag on Spo  is 

1)  :::-.1-," (' ti __2___ cos c; cok 
- 0 c 

500 . 

1 
fro 	  f)  4– 44:  . c 14 co s (9 1  F  co , 6 ci:TA 

s 14 	o  c 	C 	 oc 

13.4:1. 	0,  •i-  ivicios 61) cos. a di-3e  

o,o t) 

ETr , 5  
o  Q-1:  0 4- MC6s e ) 	 rs& e V skrt e ei E) 

4 7T le 	' 	 (1.20) 0   

1  ----- —516 M  i're  F- ( ( + 	0 (IVI I-  ) ) 	(1.21) 

The power absorbed from the mean flow to overcome this drag is therefore, 

r.t = cMD 6 
Mz 

By difference, since P =
v 	

Pd 
	(1+542")r,6 Q1 

 

	Z iT c  

(1.22) 

(1.23) 

therefore, 

(1,19) 

f v 	P.n s 	a?` 
3 fJJ z ITG  (1.24) 

   

Evidently then, the increased radiation induced by the mean flow draws 

its energy from both the surface and fromthe mean flow, the two parts being 

in the ratio 2:1. The radiation damping of the surface motion will thus be 

increased by the flow to a value (1 + 
1p 

M70 times its value in stagnant 
3 

fluid. 
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sound field is stationary on this 
constant phase surface So, 

vibrating section of surface S 

Figure 1 Diagram of the co-ordinate system. 
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THE LOCAL INTERACTION BETWEEN A FLOW AND A COMPACT VIBRATING SURFACE 

We continue to consider homogeneous inviscid fluid in uniform motion parallel 

to a plane boundary surface. The fluid occupies the upper half-space, and 

moves with velocity cM, c being the speed of sound. A compact circular 

section of the boundary vibrates, and we refer to this section.as the piston. 

The remainder of the boundary, which is rigid, is described as the baffle. 

The piston is held in place by a spring, whose undisturbed length keeps the 

piston face flush with the baffle. 

To investigate the local effect of the flow on the piston, we first 

calculate the force exerted on the piston, due to its own small oscillations. 

We choose a co-ordinate system X, fixed in the fluid, and write the 

pressure at X as 

scz,0  
	,X_ 	y/ 
	(2.l) 

Here Rais the density of the undisturbed fluid and I is the (small) 

displacement of the surface from its mean position Fis non-zero only on 

the piston face, which is moving relative to this co-ordinate system with.  

velocity-cM. The force on the piston, due to its motion is thus given by 

F7(t) 	p(Y, otlx 
s()Se)  

We evaluate the integrals required by expending the retarded time in a 

(2.2) 

Taylor series about the point X Y, and this procedure is valid provided 

3 (4,) << I 7)E  (2.3) 

We now transfer the integrals to the piston-fixed co-ordinate system x, where 

z( = 

and we write the surface displacement 

s (z)o= 	(y, 4-) 
	

(2.5) 

then we formally write down the result as 
 

sop st_y) 	 (2,6) 

(2.4) 



which states,that 
zd 4_ 	cL  .1- 'h. • --- r 	rc,,,sse) 

0 
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where the conditions for the validity of this expression are now 

( 	7) /) 1 ‹;<: 1 ci -L.  
(2.7) 

and 

41m-aaa-411)1<< (2,8) 

The first of these tells us that the piston must be compact with respect 

to a typical sound wavelength, the second that the flow Mach number be 

small or that the surface remain nearly plane. Both of these limits are 

satisfied for sufficiently large c, so it is sensible to consider F(t) as 

an expression in this form. 

The terms which are independent of c (ie the terms remaining non-zero 

on letting c.o) are the "incompressible" flow terms, and they are 

111-- 	 1 2  (4, ctly 
s(x) 3(y)11' 	k e 	 (209) 

The Xintegration can be performed immediately, and the result is 

ex 	cx E 
where a is the radius of the piston,E(k) is the elliptic integrdl of.the 

second kind.. This result is obtained by the use of Copson's formula, (1947) 

As we have already indicated, we do not expect to be able to evaluate the 

exact value of the force in the case of a piston whose angle of contact is 

. In this case we can write 
2. 	?(yo = ii(a-11) 	(2.10) 

and we indeed find that the expression for the incompressible force has a 

singularity arising from the integral 

f 	 11 (a-i.Y-91 E (1-41 ) °42J ) 	
(0)  L a3,l 	a / 	(2,11) 

We can see that if we integrate by parts once we obtain 

f d  El-14 G91  dy 2- 

leading to the term E°(k) as 	. The singularity is negative and 

logarithmic. 
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As we indicated in the introduction, the singularity has arisen through the 

inability of our potential theory model to deal with the discontinuity at 

the piston edge. This point can be demonstrated by the following examOies. 

Suppose there is a flexible piston which is flush with the baffle at its 

edge, rising to a peak at its centre. During an oscillation the peak varies 

from +// to -//, but the edge remains flush. The elevation of the 

'piston° can be represented,for example, by the functions 

--- 	0,U),(0 	fatJ 
:3 

respectively, for the mean flow force. It is evident that this term is a 

mean flow effect. It represents a suction (when the piston is proud of 

the boundary). The magnitude of the force is highly sensitive to any variation 

in the piston geometry, 

One way to allow for the non-linearity of the problem would be to perform 

one of the integrations required along the actual surface of the piston, 

ie.at a height? above the undisturbed height. The integral required is then 

f L 	1/(a 410 d, et 
and this limits the previous singularity to a value 	(2.1 ) 

•=1. U 	iv] _t _ 0(7 ) 
provided 

/7/<< CL . 
In truth we cannot hope to get a true value for this mean flow suction, as 

we would have to attempt to solve the full viscous problem. The actual 

magnitude of this force is of little concern, especially as we can write it 

in the form 

7 4.1  (I-) 

	

(2.14) 

s(z) S (a) 

Where ,e is the length scale on which our potential modelling has broken 

down. The presence of the logarithmic function ensures, that although our 

estimate of may not be very accurate, the error will have little effect 

on the value of the force. We write the suction force as 

L7 lt) At, 	 (2.1,5) 

where A is a constant. 

( / --Lie/P(0-450(0  —/411114-4* 

01-  , 	 0- / 
and these 'pistons' lead to values 

(2,13) 
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The remainder of the terms required in (206) can be evaluated, to give us 

the expression as accurately as we require. The majority of these terms 

do not pose any difficulty of the type discussed, indeed it is only terms 

of the form 	

fri 2r1  12(-- 	 7-1:4  

which are singular. These terms all have singularities of the same type 

as that discussed, and must be treated in the same way. Of course each 

such term is at least of order M-4  smaller than the first. 

WeLinally obtain 

P-(0=cJql"(k) 
3 	' 

no 
(50  ca. DI", (e) A 	0, 	(t) 

Z c 
g 

7 "(t) 41- 	4 'Qa 	 cc)(4 L)  
afs 

A. a 11 '72(0 c-1.417 Int) 1\11'..i. 	 _) 

 2 c3 	 3 c 	(2016) 

where 

 5 IA— 
a- six) 5-(-} 

/10 
d3 ,4" 

this integral has a singularity, and must be regarded as a constant 

whose magnitude is not determined by our potential modelling. 

We shall now examine the significance of these terms. 
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THE EFFECT OF THE FLOW ON THE MECHANICAL PROPERTIES OF THE PISTON 

The piston has mass m , and we imagine that it is restrained by a 

spring  whose stiffiness is K. The damping  in the system is/ . More 

generally we can define the impedance of the piston to be 

(3.1) 

where w is the frequency under consideration (time dependence e x 

The piston is excited by some external forcing, which in the absence of 

any piston response, would induce a force Fs  (t) on the piston. This 

force could be exerted mechanically, via the support system, or it could 

be produced by 4n acoustic source in the fluid. 

Then the equation of motion for the piston is 

F (t) F's  (L)—I-- at ?"(t) 	_fr Klo = 0  (3.2 ) 

and bearing in mind the nature of F(t) as given in (2.16) this is the 

required equation, telling  us the effect of flow upon the piston response 

as represented by the amplitudelt(t). 

Defining  the Fourier transform fi  (44)) of 4.1(t) in the usual manner, where 
' 

1(0=  I  r  7(6) c-xp ( -- Lw6) °Lb 

then the transform of equation (3-.2) is r  

{PI 6). 	 --Fp, 	 F5-  ( L̀ )  

(3.3) 

(3.4) 

We have rearranged the terms to show the way in which the flow has affected 

the piston constants, with the motion being  ferced externally. 

In equation (3.4). the constants 4,„ Ku  and f1t, are defined to be 
= 	g 	c 3  —52 p„ et3(1.2L411.4_, 4 c. ck3  141" 

Tsk kc.) (3.5) 
ccs\ct 

Cp J cf ri 1( 11-  
(10  = ft_t_ /7r  + 5.0.4w1717,1`  

correct to the order ML and (k2' 

3 
Now the meaning  of the terms becomes clear .1.40a- is the traditional virtual 

3 
mass of a baffled piston oscillating  into a fluid of densityz, 
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The terms 

_ 45 
3Z 9, 0.3  (W04'

\  
	 4 (2 M 

are respectively the lowest order compressible fluid correction to the 

virtual mass and the Mach number correction because of the Doppler effect. 

Similarly in the second of expressions (3.5) the terms represent a mean 

flow suction of the lowest order Doppler correction to it. The additional 

terms for the damping are all compressible effects. The term 

pa1L71- 
 

\ z c. 
 

is the radiation damping, the others again being small corrections to it. 

At this stage we can see that the most important effect of the flowing 

fluid has been the reduction of the effective stiffness of the spring. 

Another effect which we note at this stage is that the radiation damping 

is increased by a factor 

() 	i 0 A1:1  

over the static fluid value, confirming our general result of the first 

section. 

Equation (3.4) tells us that the system is stable to small oscillations 

provided that 

When this condition fails, the piston—spring system becomes unstable 

and the equations break down. This condition then defines a critical 

velocity, U say, and we are restricted to cases where 
t, 

Qa 
U<U 	 K  

A 

Equation (3.4) also tells us that, provided U<U, the resonance 

frequency of the piston has been reduced from its zero velocity value 

0  
rrt + 8  ci3, 

3 \ 
to a value at velocity U of 

1 ti 

_„- f( t̀ ul4  -
Hitt Y`'5 

and we see that one effect of flow is that it will always detune a 

vibrating piston. 

(3.6) 

(3.7) 

(3.8) 
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In the case of the sonar array, the surface impedance will have been 

arranged to resonate at a given frequency, in the presence of still water. 

The questions we must answer quantitatively are therefore:- 

1. Assuming a value for the mass of the resonator and an operating 

frequency, what can we deduce about the magnitude of the critical 

velocity? 

2. Assuming that the operating velocity is significantly below critical, 

what effect does the flow have on the resonance of the piston? 

The mass of the piston is given approximately as 

where (is the piston density, and this leads to a value of critical velocity 

)A 
at the expected frequency -l1-0= 

The quantity within the square root is 0(1,), and so if we assume values 

Of cc 	io 	.s 	fL,e, 	/02cis- 

A 	4 
this leads to a critical velocity of () > IV Cms/rec-.. 200 knots 

Thus we should not expect any instability to occur in most nautical 

situations. A typical value of4is thus around 0.1, implying that the 

maximum change in resonance frequency is likely to be around 1%. 

These points are discussed further in the conclusion. 

Turning now to the acoustic source strength, this is given by equation 

(1.9) as 

a (L-  C ) 	L'97  ( ) L-- 	 ) 

and as before provided the source is compact we can neglect variations 

in retarded time. Thus the mean square acoustic source strength is 

	

)1  IFS 	11-  W4  

	

( ti 	 (3.9)(3.9) 

	

Trct /-  Irs 	ti 	
4 

L I/1 +-1 .5 	PC-1.—  (1 --mot i.+  Xt1; at 
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In this second expressionNis a non-dimensional frequency defined by 

-==- ..51, 	 (3.10) 

and4is a non-dimensional damping parAmeter, defined by 

8 2  

.14(r1A+,24Q:5 ) 	 (3.11) 

If the piston is being irradiated above its no-flow resonance frequency 

(K)4), the source strength is dominated by the mass term, and the flow 

will have little effect on the acoustic energy output. However if the 

forcing is below resonance (V<I) there exists a flow velocity which 

brings the piston to resonance. At this point the radiation energy of 

course goes up enormously as it is controlled only by the damping. The 

flow velocity will have to be very near to the critical velocity before 

any appreciable shift in frequency, and consequent energy gain is 

obtained. 

Perhaps the most significant change occurs when the piston is initially 

set to resonate in the no-flow situation. Now any flow immediately 

detunes the piston, with a consequent reduction in radiated energy. 
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CONCLUSIONS  

We have seen that the flow has two distinct effects on sound radiation from 

a compact vibrating surface. Firstly, whenever linearised boundary 

conditions are appropriate, a finite and constant mass displacement by the 
-3 

source gives rise to pressure increase proportional to (1-Mccae) . This 

implies an energy increase of 5M times the energy radiated into static 

fluid, The increased energy, is drawn in the ratio 2:1 from the surface and 

mean flow respectively. However this is only one application of a 

general result for a vibrating surface characterised by 	Then the 

increase in radiated pressure is (1-Mth 	
-(n4I)

se) 	, the increased energy 

being drawn in the ratio 

Thus the effect of flow on the acoustics of vibrating surfaces is often 

substantial, even when the amplitude of vibration is not altered by the 

flow. 

This brings us to the second flow effect. The amplitude is altered, and 
A A 

there is a critical flow velocity, U, ( U = (K ) see equation (306) ),above 
F-4  

which local instability sets in. The flow also changes the effective 

stiffness and alters the resonance frequency and these effectS can be 

substantial. 

Although the problem treated is only an idealised model it contains the 

basis for anticipating definite trends in flow-acoustic vibration problems. 

Ffowcs Williams (1972) models a compliant surface by several isolated 

pistons, and following his method we may anticipate:- 

a) reduced absorption 

b) a change in tuning 

c) instabilities 

This model is thought to represent practical acoustic liners. Therefore 

the effect of flow is far from a small perturbation and is inevitably so 

when surface motions can be unstable and are coupled to sound by a 

scattering mechanisms. 
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CHAPTER 2 

INTRODUCTION 

The first person to discuss the effects of boundaries upon Lighthill's 

(1952) theory of aerodynamic noise was Curie (1955). He showed that the 

action of a rigid boundary was equivalent to that of a distribution of 

surface dipoles. His work was not deductive since it required independent 

knowledge of the quadrupole and dipole strengths. Theories linking 

quadrupole and dipole strengths have perforce been developed to avoid 

paradoxes arising through mis-application of Curie's results, Considerable 

progress has been made; thus in the theory of rigid surface scattering 

we have the work of Powell (1960, the infinite rigid plate), Ffowcs-Williams 

and Hall (1970, the rigid semi-infinite plate) and Leppington (1970, the 

semi-infinite rigid circular duct). 

In practice, especially in underwater applications, solid surfaces cannot 

truly be considered rigid and research must develop theories allowing for 

wall compliancy. Such work is indeed being performed and we mention papers 

by Ffowcs-Williams (1965, infinite flexible wall and 1966, infinite flexible 

wall with simple (rigid) supports). A paper by Crighton and Leppington 

(1970, semi-infinite compliant plate) introduces the Wiener-Hopf technique 

to scattering problems. This technique is a powerful tool in dealing with 

two-part boundary conditions. 

When a compliant wall is capable of sustaining travelling waves an interesting 

possibility of long-range interaction between an acoustic source and the edge 

is opened up. In the case of two dimensional fluid motion the energy 

arriving at the edge via surface waves is independent of the separation 

distance, h, of the source and the edge, whereas the direct energy (via the 
, 

fluid) is decreasing at least as quickly as(kh)
°I  , where k is the acoustic 

wavenumber. Heckl (1967, 1969) has shown that the power generated in a 

surface by a point source close to the surface may greatly exceed that 

radiated into space. Even when the edge scattering is relatively inefficient 

the edge can thus provide a large increase in sound power. Both these points 

have been raised by Crighton (1972) who discussed the scattering problems 

by ignoring the presence of the fluid except in the determination of the 

radiation. 

It is the aim of the paper to give an exact treatment of this mechanism, 

using the simplest model situation which contains the essential features 

and yet which is susceptible to exact and complete analysis. 
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The scheme adopted in this paper is simple. Far from the interface between 

a rigid wall and a wave-bearing  wall we have a mechanism generating  both 

surface waves and radiated sound (we consider both a line force situated in 

the wall and a line quadrupole adjacent to the wall in the fluid). Both 

mechanisms excite surface waves as if the wall were infinite rather than 

semi-infinite. The scattering  process at the interface is treated by the 

Wiener-Hopf technique. 

It is perhaps worth emphasising  the type of problem we expect to be able to 

solve by this method. We are specifically excluding  problems with direct 

interaction between the forcing  mechanism and the edge. Problems 

involving  sources close to the edge may be solved, employing  the reciprocal 

theorem. The interested reader is referred to Crighton and Leppington 

(1971) for a full discussion of this point. Wherever the source is situated 

there is, of course, the possibility of interaction of the source with the 

wave reflected from the interface. This is also specifically excluded from 

the problem, although we could regard our problem as the steady-state out-

come of such an interaction. 

Wiener-Hopf problems are notoriously liable to extreme algebraic complexity.. 

In the interests of clarity we will specify particular physical conditions 

describing  the compliant surface. Crighton and Leppington (1970) 

considered the "locally reacting" mass-loaded plate and they noted the 

absence of surface waves. Provided that we can find a physical interpretation 
by 

for it,Lthe simple mathematical step of reversing  the sign of "m" (mass/unit 

area) surface waves become an important feature. The model thus obtained 

may be interpreted physically as involving  a locally reacting  plate 

(locally reacting  in a vacuum, that is) with each element restrained by 

a spring, of stiffness K, say. For excitation at frequency w, the mass 

term will be replaced by the term 

(
K— mu)') 

1.4)4 

with m again representing  the areal density. Provided excitation is below 

the in vacuo resonance frequency of the wall, then the presence of the fluid 

ensures the existence of surface waves. 
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We first perform the full Wiener-Hopf calculation for the case of the 

line force. Details of the edge scattering and the reflection coefficient 

of the surface waves are obtained. The problem with the point quadrupole 

can then be treated fairly easily, since we will only require comparision 

of the incident surface wave amplitudes, and these are the same as if the 

flexible wall were infinite. An appendix shows that we can derive simple 

expressions for both the scattered energy and the reflection coefficient 

at all levels of fluid loading. 
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THE BASIC EQUATIONS AND THEIR SOLUTION  

An inviscid fluid occupies the half space. cs. The two-part boundary 

consists of a rigid wall occupying xxi,jr.es and a compliant wall occupying 

x(c..10 	A harmonic line force, of strength F0, is situated in the wall 

at )07-41. The Dome excites small disturbances in the wall and the fluid 

and we describe the motion,  by the velocity potentialcf(X,. Suppressing 

the time factor exp(-II40throughout, then the equations to be satisfied 

by are 

	

1/471# 	= 0 	 (1.1) 

Fa 	

(1.2) 

1Y- 

	

SottPi) — Lw 	a 4, 	 (1.3) 

Herekis the fluid density and z is the wall impedance, and in fact 

	

k- m 	 (1 . 4) 
14.) 

where the significance of K and m has been explained in the introduction. 

The equations (1.1)-(1.3) are solved in the standard D.S. Jones method 

(Noble (1958)). We follow the notation of Noble as far as is possible. 

	

Introducing half range transforms 	pd  
=-. 	 6, 	 ax 

(va-P4. 60  
Iv  4 tx, y) p ( ocx) d x 	(1.5) 

and 	 -f- 
the original equations become 

	

-IL 	(ce— 	F pe, 

	

3.4 	
(1.6) 

	

af t 	 4.7) 
(o(  0)-4- cki, ari(zr)-  exp(- ; c< 

	

frt. 	co Lus 	
(1.8) 

(1.9) 

Provided that the excitation is below the in vacuo resonance frequency 

for the wall, we see that 	> O. 

The equation (1.6) has the solution 

(ot )3) =-- iVoc) c-xe (- Voq 	(1.10) 

where t(0() is the branch of (0(1-k)1/1  chosen to ensure a sensible radiation 

condition away from the wall. Thus if p( and k are real then (D('-k1.1 "denotes 

the positive root when 10(1>k, whi le (0e--12114....= (AL- Or) When AO< . The 

boundary conditions alone with the solution (1.10) can be rewritten in the 

form, 

e y 	Y(a) 	I (1.11) 

with the 'notation 
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This equation is in the standard form for solution by the Wiener-Hopf 

procedure (Noble pp 36 - 38). The kernel of the equation 	is given by 

K (DO —  — 	- TA 	 (1.12) 

and it is now obvious that the kernel contains zeros within thegplane. 

We assert that these zeros correspond to free surface waves, a'fact which 

we justify later. Essentially the zeros of g(g) correspond to simple 

poles in the 0( plane when we perform the inverse transform, giving rise 

to outgoing waves in the normal way. The zeros present little analytic 

difficulty to the Wiener-Hopf calculation and the required split is 

obtained by first isolating the zeros, writing 

(1.13) 
with 
The multiplicative split for the function)LLf )5 has been given by Crighton 
and Leppington (1970) and if 

we can write 

with 

and 

(pc) 	K g+,(x) 

K(Ix) = Kt  (x) K-(ix) 

K + (DO 	(v+11)(cci-11) 67:112-  K 1+60 
k_ (DO = 	0- p)(Dc 12)-14:frc" I<1- (0) 

(1.14) 

(1.15) 

Further details of the Kit*, i0()functions are given in the appendix. 

We see that the strip in which both the plus and minus functions are regular 

is limited by the position of the poles De=t-p. 

[In using the Wiener-Hopf technique we introduce a small damping factor k, 
writing the wavenumber as k=kct-ht. Then the poles corresponding to T:fk.41%k4  
can be written as')mrpor Lpv  and for kl iki‹.< I we see that pL4 ki, and then 
the poles lie within the strip's"' k2  <7.frakitt] 

It is the step of obtaining the multiplicative split K(0() =KM g.00 which 
presents algebraic difficulty for more "practical" surfaces, although it can 

be shown formally that the required split functions can be obtained in the 

form of the integrals similar to those in the appendix. 

Use of the functions k-1-(() X4)enables us to rewrite (1.10) as 

17..5 k, 	_ 	(60 L (k) 	 (1.16) 
ay Kt — 

where i.,+.(m) and L. 00 are the two functions forming the additive split of 

-(k-r)(X+ 	r 	 
•T=clu z+k li;i1  

the function Ib expl—iocit)  
LL0(2..Try•s. 	t  (ix) 
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Alternatively, we separate the plus and the minus functions and write 
b 	60 — L_ (oe)  ,== -  W+00 _f_ 	m) ,=== cr(a) . 

:114, the entire function, is the common representation of both the plus 
and the minus functions within the strip where both are regular. 

From the appendix we see that 

and that 

L-1- (e)=-- 0 (0( - ) 	or 1 0(1-- 	(4 ) 

K+ 	0 ( 1) 	as (of I --5" (4  • 

A simple application of Liouville's theorem shows that, provided 4= co, 
and 	C7-0 	( 	- Pe) 	a 	1) 

then the entire function is identically zero. Thus the boundary conditions 

(K, 	L_ (K) k _ (04 ) 
1-I 

1+  (ce, 0) 	Li- (a0 Kt (0) . 
The final expression for 1(X)..91)/is obtained as the inverse Fourier transform 

of (1.10). 11(0)is obtained from the boundary conditions, (1.17) and (1.18), 

enabling us to write 	of) 
1 	L - (a)6ip (-;r4 61) 1-1(3) dix 

04, 	la) If (00 	(1.19) 

yield the relationships 
(1.17) 

(1.18) 



contour 
----- K .  contour 

cuts 
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EVALUATION OF THE INTEGRALS  

The equation (1.19) contains all the essential information which we expect 

to obtain from the investigation. A stationary phase integration tells us 

the far field radiation, whilst differentiation with respect to y leads to 

an expression for the surface velocity. We must first obtain a useful 

expression for the function L-N. Noble (p13) gives the expression for 

L-Was 
of.)-t 

6 	ARL 4 	 tr 
re!, (2.1) L- (a) 

4. 	
0.6.) (2.70 4% - 4 	x)  

where d is a constant chosen such that the path of integration lies within 

the overlapping strips of regularity of the plus and the minus functions, 

and also such that the path of the integration lies above the path for the 

X integration. The plane of the ilandKintegration is shown in fig. 1. 

Our goal is to evaluate the integral by stationary phase. 

Figure (1) 
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The integral is the limiting form of the integral 

11( (s) C-Ap (-113kc.cm ems(- 	IA 2)  
as (7)-4(). Following the argument of Noble (pp 31-35) we see that the 
integral should be deformed on to a (degenerate) hyperbola around -k. 

Before we can do this, the path of integration must cross two poles, 

one at 13=0( and the other atf3=t. Including the contribution from these 

poles, we obtain the result 

L 

	

	= 	w T
exp(-Lo<10 	GxpLpi-L)K-(-- P),  

aTrY'L 	(0( ) 	 p(p + 

	 1%  exe(-4, k) K-(0)  
Lw(2.7r)%1 	1<((1) (11- 00 

Where the path of the (?)integration may now be deformed around the cut as 

required. 

The leading term of the stationary phase integration is zero since, in 

general, the integral (2.2) when evaluated is 

-tite 	(- ko-s 	CLOT) 	'11--  

with A independent of e. The next term in the stationary phase estimate of 

the integral is proportional to 06I) 	and is negligible compared with 

the polar contributions. 

Consideration of this zero indicates that it will occur whenever a compliant 

surface is present. _;Thus the direct field at the edge will in fact decay 
it-  I in proportion to(4) and not(kk) as it would for a rigid wall. 

The outcome is that we have 

	

L— (DO - 	— F- 	f G)(p (- ; g IA) 	i.?. e.,k15(ifk) K- 6'fl 
and 	

(4()3) 

2 Trol,L.J 

	

Fr 	Lo4.1.)10    

‘ „,,_,,,) K(k) YGO 
e... 

.1.1.L'tiro'tl- 1 	k +  (x) 

	 )K -  F41 t". 	it  4; - Y-i9-  t<  2.g 64 
. A, (..::.P 1,t:  ite:1, (2.3) 

Expression (2.3) has been written deliberately to show the two distinct 

effects. The first integral is exactly that which would occur if the compliant 

wall were infinite, whereas the second contains all the information about the 

edge scattering and reflection processes. 
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The surface velocity is given by ecl'A'" 4:3  . The integrals are evaluated 
by closing contours in the appropriate half planes and, apart from a near 

-4% 
field correction term (decaying in proportion to x 	or(x+Wc ) we obtain 

(x) 	.41 Q-45  fc Kr) (i..p lx+0) 1. 14( 	1-11x)+ 644 46e.1-)) H  

(2.4) 

—?121:"‘- xe( 'Ip(k- x))14-0( 15 ) 
Here H is the unit Heaviside function. As required the surface velocity is 

zero forx>o, On the flexible boundary we can recognise the waves generated 

as if on an infinite flexible wall, plus the wave reflected -from the 

interface at3LOD. The reflection coefficient is given by 

= 	/AI 3  R 	K  (2.5) 
2 pz  

where we have used the result from the appendix that K (0) = _ (— 

Equation (204) has confirmed our assertion that the wavenumber is given by 

the zeros,:q, of the equation 14).4 The waves are always subsonic. This 

is a useful restriction (it may not be the case on a bending plate) because 

supersonic waves are capable of radiating sound without the aid of a 

scattering process. 

Returning to the expression (203) we evaluate the radiation by the stationary 

phase method. Writing 

X + = r I c.crs e' 
9 	 . = r gtrLe f 

 

x= (car 0 
9 	t- ,e.444 

the stationary phase integral gives, with no difficulty, 

Fe) Eq(1,114)1■Ak Trt■Aet  C.-St tikr1)  
(e2-70111- 	(itA 	iiRs-1.„"' 00 (kt- ) 	 (206) 

cm_ F2, 

 

	

Ems 	Evf 	 K ( - e et kt-)  

	

(2704 R 	- cicrt e)(p kc,0—“vi<— (--kccr, o)(fi  1-) 

Again, we recognise this as being due to two fundamentally different sources. 

The first term,44_say, represents radiation as if from a line force in an 

infinite compliant wall. In the light fluid loading limit4<C1 we see 

that. 0(') (except nearel=0), whereas in the heavy fluid loading case 

we have 	4,, 
Thus the fluid loading is inducing a dipole in place of the in vacuo monopole. 
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In fact the energy radiated directly as sound by the force is 

 

c7.2  

2ec-- (ID VA) 

  

(2.7) 

  

As with most problems with non-compact scatterers, the edge radiation, 

given by'the second term in (2.6) cannot be pictured as a simple 

combination of compact multipole sources. We do see, however, that the 

directivity of the "edge" scattering is independent of the forcing 

term. 

The form of the expressions in (2.5) and (2.6) may appear alarming, but 

we show in the appendix that simple exact expressions may be obtained 
Iritr 

for botheand forA(.4is the scattered potential represented by the 

second term of(Z.6)]. 

These quantities are of prime importance as far as energy transfer is 

concerned. In fact we obtain 

41' ( p 
and 

FtsZitA,St pZ*AO+ p 

953  P + 

(2.8) 

(209) 

SP°41E.  
The reflection coefficient varies from zero to one as the fluid loading 

parameterrnk varies from zero to infinity. 

Comparing the energy scattered from the edge with the energy radiated from 

the force itself we see that the ratio of the energy output is given by 

a factor which is close to,Plikin both the light and heavy fluid loading 

limits. 
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EXCITATION OF SURFACE WAVES BY A POINT MULTIPOLE  

The equivalent problem for excitation by a point quadrupole situated in the 

fluid far from the interface follows fairly easily. The results of the 

previous section indicate that the details of the edge scattering process 

depend -only on the amplitude of the incident wave, that is, the incident 

wave that would be induced were the flexible wall infinite, 

We consider a problem where a line monopole lies just above an infinite 

flexible wall. Results for a line,quadrupole can.be obtained by 

differentiation with respect to the source position. Once again we 

formulate the problem in terms of the velocity potentialthWhich consists 

of a direct and scattered potential +aand 4,, respectively, CNis the field 

radiated if the wall was not present. Suppressing the harmonic time 

dependence the scattered potential satisfies 

7 s  k 2$ = 0 	 (3.1) 

° 
	 (3.2) 

where the source is situated at the point (-41,90). The impedance z is 

identical to that used in the previous section, 

Taking Fourier transforms as previously defined the equations (3.1),(3.2) 

_ER 	 e) 
(3,3) 

,4  17/ 	_ gtG)4)(- DC 11) ex7)(- yo) 	
(304) skT  -I- 7 - 	9 — 	rot t 

Again choosing  choosing the solution of (3.3) which gives a sercsible radiation 

condition away from the wall, the inverse Fourier transform yields 

oU 

cks()_5.9) CiLf CKp (- ix(x-fh zAp( - 9 _t y„)J 1_' ctpc  
+T (g= DO 	(tO 	6C),1 	(3.5) 

The form of (3.5) suggests that ets  is centred on the image point (-- 1*1-jo) of 

the point source. 

The field due to a point quadrupole is obtained by differentiation with 

respect to either k or..9., depending on the orientation of the quadrupole. 
The procedure in each case is the same and the working is not difficult. 

We deal with the case of a yy oriented quadrupole. The scattered 

potential is 	 PO 

 j 
(A  

#1r 
 

pc=7-0c, 

yield 
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leading to a surface disturbance 

4  s 	ir(x) 	'04 	[ C.Z 	t 11) 
(X+1) y. 	 2.p 	 (N) 

a 	A.")11( -  (x4i)) 

plus, once again, near field corrections decaying as ((.1 k) 

  

Comparison with (204) indicates that the action of the quadrupole is 

equivalent to a line force the strength of which is 

() p  e 1"4 tu,  
2. ( 3 . f3) 

The radiation from the edge, by comparison with (2,9) is 
170. 	 ?./ty 

(A) e. 	 c(?'+,4'-.  pk) 

   

  

(3.9 ) 

The factor e. 
7/".!/e. 

 indicates that when the quadrupole is far away from the 

wall virtually no surface wave is excited. This is what we would expect. 

The near field energy of a quadrupole is much greater than the far field 

energy, and it is the near field energy which we expect to drive the 

surface waves. 

We compare the edge scattering with the radiation which is produced by a 

point quadrupole above an infinite flexible wall. This comprises the 

direct field and the scattered field, the latter being given by the 

stationary phase estimate of the integral (3,6). This estimate is 

4)(K E3)= 	e.xp ( ;le 1. ) Gxgki-LIT/4 	- /2SiWe  

2 (239'4  R 	 i kci"U 
and the direct field is 

ae4P(1# ).EXP(.-11/4) 	Ovls,i4Le 

l ( ur) k kkgo -  
where the overbar means that the position is measured relative to the image 

point. Provided the quadrupole is fairly close to the wall we may safely 

ignore the differences between source and image point, and the total direct 

energy is thus 	 4. 	3. 7  
3012-vA)l-k 	I 	 A4- , sc. 	53 	ale- 	kat 	PP+  

Thus in the high fluid loading limit the edge radiation is greater by a 
/ a factor/k) than the direct field from the quadrupole alone. We also see 

from (309) that the energy scattered from the edge tends to zero as /4 

approaches zero. This is a necessity sincepx0 implies the absence of surface 

waves. 



Thus, bearing in mind the results (2,8) and (2.9), the conservation 

principle implies that 
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CONSERVATION OF ENERGY  

Obviously the principle of conservation of energy must hold within a 

large control surface surrounding the interface. We consider the limit 

when the driving force lies well outside the control surface, and then we 

see that the difference between the incident and reflected energy 

associated with the plate waves must be equal to the scattered energy. 

In general, the energy'associated with the plate waves is carried in both 

the plate and in the fluid. If we call the incident energy I, then the 

energy in the reflected wave is 

(4.1) 

(4.2) 

In the particular case of the "locally reacting" wall which we are 

describing, no plate waves are possible in vacuo. In this case all the 

incident energy is contained in the fluid. The incident energy crossing 

the control surface is thus given by 
4 

r 	 t, 	( 	acir, )(**cit,, 

	

A sa 	21t; 	x 
whereckis the potential corresponding to the incident wave. This part of 

the potential can be isolated from expression (2.3); in fact 

•••11= F;),1'  e  ry  
° 	

x-wej 
(4.4) 

Inserting this expression for in equation (4.3) yields, as expected, 

2- 3 

e 
The significance of the principle of conservation of energy would be seen 

in problems of greater analytic complexity. In general the scattered 

intensity will depend upon a function equivalent to the?(-6WXunction defined 

	

in (A.6). Rather than evaluating both 1 	
- 	 2. 

/4:-(7401c4and pc-(- 
/ 

1>1 1 in order 

to find the scattered field and the edge reflection coefficient, it may be 
Ai  

simpler to evaluatelk:...(4:63004, perform the integration to find the 

total scattered energy and use the conservation principle to eliminate the 

unknown IA: (7 &f 
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CONCLUSION  

As would be expected, we have seen the possibility of enormous increases 

in radiated sound levels due to this edge effect. Although we have a very 

simple wall impedance condition we might expect that the characteristics 

of the results would hold for problems with more realistic impedance 

condition. This seems likely to be the case at least in the high fluid 

loading limit. At low fluid loading the surface waves vanish in our problem, 

which is certainly not the case in a practical situation. However, the 

approach of Crighton (1972) appears to deal with problems in this limit 

very successfully. 

One related problem which is of great interest is that of a wave bearing 

wall adjacent to a fluid with a mean flow. Under certain conditions wall 

waves will grow (especially when the wall has damping ) and during this 

growth the wail is drawing energy from the fluid. When the surface wave 

is scattered into sound (for example by the type of interface described above) 

a very substantial noise field can result. Great care is required to 

formulate a useful mathematical model to deal with problems of this type. 

If the surface were slightly damped (as in practice it might well be) the 

method we have used would not be significantly affected. Of course, the 

zeros of the kernel are no longer on the real axis, but in fact this is 

merely the situation we seek to attain by the introduction of the complex 

wavenumber kf +Lkz.  

We again emphasise that in the problem we have described, we are insisting 

that the separation of the driving quadrupoles and the edge must be several 

wavelientths It is at this stage an open question whether a point quadrupole 

near the interface would radiate more or less efficiently than the quadrupole 

we have described. We cannot merely compare the results of Crighton and 

Leppington (1970) because they did not have a wave bearing surface. It may 

well be the case that with a wave bearing surface all the near field energy 

is scattered into outgoing surface waves and not into increased radiation. 

It is clear, however, that there is only a finite volume of fluid available 

in which to place quadrupoles near the edge (within a fluid or plate 

wavelength), whereas there is an unlimited volume available for quadrupoles 

whose near field energy can be scattered by the process we have described, 

It is also the case that any multipole source placed close to a wave bearing 

surface cannot be prevented from radiating noise in this fashion. The 

introduction of any rigid strut simply acts as a scatterer (Ffowcs-Williams 

1966). The only apparent way of preventing noise of this type (assuming 

that the quadrupoles cannot be removed from the proximity of the surface) 

may be the introduction of large (but continuous) damping 'mechanisms into 

wave bearing walls. 
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APPENDIX 

■. I 

We require the multiplicative split of the function fp 	(DCA , 

This was obtained by Crighton & Leppington (1970), who actually 
treated 	4 t(00 The result in our case is 	- De) 

K,— 	 — p) -14- 	yet (P'1,xr 	p_( 	,ILL 	(Al ) 
0, 6 p  
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imply the important relation that 

(AO 

Ptot 
I pPt(t) 	 r 	  

= 	  (A8) 
p1p4k), 	g p 	(0( 	p Pt (p) 

The limitK-01)is obtained by setting 	=- 	EEKplieo) 
and taking the limit at E--"),  O. The integral required in (A.6) is performed 
by contour integration and we c ose the contour as shown in Fig. 2 

Fig z 

(A3)  

(A4)  

(A5)  

(A6)  

(A7)  

The reflection coefficient, R, is given as 
7  { K4. (p) 3 2  

® z  
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The only pole affecting the 

around the chosen contour in 

the integrand is of order(n 

n 
zero. Around the large quadrant, when t= 1Se.. 

le and the contribution tends to zero as 

integration is at t = p. The total integral 

R 41,0. The integral can therefore be rewritten as 
kJ 	Op 	c- 	G. ) 	.- ; 9 1 ,- I- 

p+ c.71.1  - p 	 Lo ,,,)  d 
IL — 	

p÷  (pt. c... e / 1r  to e, ./ r- .e, 	ate 

Theaintegration can be performed immediately in the limit E-0c3 and the 
result is simply 

— L P+0.0 (30  
2 

Thus the expression for R becomes 	r,pd NV*/  7 
	(2__?)✓ P

-P 
(r) Pit  64p 	2J4 J 	-  

(p `ti) 	LE-› 0 	 4.44 e.t.(40) 

and R is independent of 	as expected° The remaining integral in (A9) will 

not in general be simple to evaluate. We note, however, that throughout 

the (real) range of integration P.i.Whas the form 

P+.(1/) 	Cc:-.Z_T-142.)1 	607/11-1(/1/12) 	(A10) 

The advantage of the second expression is that it is now obvious that through-

out the range of integration (in fact for allqp,A) Cosh-1(110 is a real 

function. Consequently the contents of the square brackets in equation 

(A.9) can be expressed in the form ex? 	, where 	some undertermined 

real constant. We also write 

(2?)1P+tr,_ 6xp f L I., (2_ p) c4,-311 -  (-11 
ir 

and then it is apparent that 1.. 
JA Exo1e 11  
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Or 
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The integral required in (A.9) may be usefully approximated in the high 

fluid loading limit and in this limit we find that 

g 	e.xp (- 11/4 	 (A14) 

The expression (2.6) which we obtained for the scattered field demands 

knowledge of K-014 We have 

(-k e) 
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Fig. 3 

Figure 3 shows the path of integration and the method. of closing the contour. 

Once again the only pole which concerns us is at p and we avoid this pole 

as shown. Contributions from the large arc are again of the order/2 9 

and vanish as 

The contribution fromthe integral along the real axis is once again of the 

form exp(t6), where5is a real constant. On the real axis, when .7? >0 It 
we write 	

P4/ 	ce-sA -/ ( 17 	(e)12— hc) 2  

whereas forn4kwe write 

P4- ( ) 
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The remaining contribution to the integral is from the small semi-circle 

around the pole. In the limit it is not difficult to show that this 

contribution is 
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Equation (206) thus implies that the edge scattering has an intensity 

given by 
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with the total power 
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CHAPTER 3 

INTRODUCTION  

There has been a great deal of recent research to study interactions-

between turbulence generated noise fields and various solid surfaces 

(Ffowcs-Williams (1965) and (1966), Crighton and Leppington (1970) and 

Leppington (1972) etc). That work is motivated by aircraft noise 

problems, although it sometimes finds an underwater application. The 

theoretical framework is usually founded upon Lighthill's (1952) 

description of aerodynamic noise generation. It is usual to seek an 

exact Green's function for the particular geometries rather than use 

Curie's (1955) general equations that describe the effects of rigid 

surfaces. That technique was first used by Powell (1960) and later 

applied by Ffowcs-Williams and Hall (1970) and Leppington (1972) to 

more complex geometries, all involving simple impedance conditions. 

In practice, and especially in underwater applications, practical 

surfaces cannot be regarded as rigid and relevant theories must allow 

for wall compliancy. In this context we mention the papers by Ffowcs-

Williams (1965) and (1966) and Crighton and Leppington (1970). When 

the compliant wall is capable of sustaining travelling waves the 

possibility of long range interaction arises. Crighton (1972) has 

discussed one such case and an exact problem is presented by the author 

in Chapter 2 of this thesis. 

The majority of the work in this field is concerned with situations where 

the fluid containing the turbulence has no mean flow relative to the 

boundary surface. Low Mach number meat flow effects have been treated 

in some cases as small corrections to the no-flow results. 

Such a view is probably valid in a large number of applications, but 

workers are becoming increasingly aware of situations in which the effects 

of mean flow cannot be represented in this way. (See, for example 

Orszag and Crow (1970)). 

One mean flow effect which cannot be described as a no-flow perturbation 

is the onset of a flow-driven instability. Recently we have seen 

experimental work investigating instabilities of shear layers, both in 

the case of the jet exhaust (Ronneberger (1967) and Crow and Champagne 

(1971)) and in the flow through a duct (Dean (1972)). In Chapter 1 of 

this thesis, the author has indicated that instability might always be 

an important feature whenever a compliant wall interacts with a mean 

flow. In that work the compliant wall is modelled by an array of 

vibrating pistons in a rigid baffle, in principle an idea due to Raleigh 

and recently applied by Ffowcs-Williams (1972). 
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The analysis is easily extended to include mean flow effects and the 

possibility of an instability of this type is always present and would 

give rise to flutter. Great care must therefore be exercised in 

describing situations with mean flow. Kinetic energy levels in a 

mean flow can be many orders of magnitude larger than energy levels 

associated with sound fields and we cannot afford to dismiss any 

process which is converting that energy to sound however inefficient 

it may appear to be. 

The possible modes of instability are many and various. In a set of 

papers by Brooke Benjamin (1959, 1960 and 1963) anci, a companion paper 

by Landahl (1962), for example, the charactertetics of temporalAy 

unstable modes on infinite flexible walls have been comprehensively 

investigated. In particular they isolated a class of wave LicLass 'A') 

which exhibits temporal instability- due to the action of positive 

damping,' However in practice the relevance of instability problems 

is not well understood. Investigation of modes does tot reveal a 

sufficiently reliable indication of whether or not a particular mode 

will be excited in a particular situation. Neither,  is there a 

compelling reason for choosing between spatially or temporally growing 

modes, (thus we may compare the results of Howe, (1970) and Jones and 

Morgan (1972)). Except in a few cases, such as convective flow due to 

temperature gradients in an otherwise stagnant fluid it is probably 

more realistic to talk of excitation at a given frequency and to 

consider spatial growth. The work of Landahl gives a particularly 

instructive discussion of the energy transfer processes involved and we 

shall be forced to rely heavily on the results obtained there. 

The situation that we wish to describe is relatively straightforward. 

A harmonic line force, situated in a compliant wall will excite time 

harmonic surface waves. In certain circumstances, which include the 

action of positive damping in the wall, a downstream travelling spatially 

growing wave is generated. In practically interesting situations we may 

not know the complete details of the disturbances which excite the waves. 

The practical significance of this model is therefore that it forms a 

canonical probleM in which the interaction of unstable waves with discrete  
scattering centres produces a secondary sound field. 

It is at present an open question whether the potential associated with 

a spactially growing wave represents a true sound field or net. 

• 
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At large distances downstream the growth of the waves-must be limited by 

some process. Whether or not a particular limiting process is noisy forms 

an interesting and novel question. Two contrasting examples may help to 

clarify this point. 

We first consider a rigid sphere moving with a uniform subsonic velocity 

in an inviscid fluid. This problem which has been treated by Longhorn 

(1952) is also discussed in Chapter 4. There is a near-field energy 

associated with the passage of the sphere and we ask; as the sphere is 

brought to rest does the near field energy represent a sound field or not? 

It seems that if the sphere is stopped abruptly, all the near field energy 

is eventually radiated as sound, whereas if the sphere is slowed sufficiently 

gradually, no sound is radiated. 

On the other hand, Crow (1972) has pregented a simple model problem 

based on the experimental results of Crow and Champagne (1971) 'in which 

he included a factor exp (-X
2
/b
2
) to allow for the amplification, 

levelling off and subsequent decay of the 'preferred' mode (the mode 

undergoing the greatest amplification). 	A large sound field is 

generated although the growth limiting process is exponentially 

smooth. 

The situation is obviously much simpler if scatterers are present. In 

practice all surfaces are necessarily finite and their edges will-act as 

scattering devices. That is a feature we include in our model, 

Despite the simplicity of the physical picture it is still no easy matter 

to produce a useful mathematical model which, whilst retaining enough 

physical information, lends itself to straightforward analysis. In 

discussing a finite panel which is many plate wavelength long an-  obvious 

approach is to treat the scattering problem at either end as though 

the flexible wall were semi infinite. Each of the problems would then 

involve a twa-partNiener•Hopf calculation, although Crighton 

and Leppington (1974) have shown that the extension to include flow 

in general is not trivial and consequently the results of Chapter 2 

will not have great relevance here. 

A step which brings about a great simplification t the neglect of viscous 

effects and the assumption that the motion is a linear perturbation about 

the steady state. Of - course unstable modes arise, and according to 

linear theory grow indefinitely downstreamAas long as the flow is 

s 
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parallel)which leads to an inevitable breakdown of the linear model. 

Since the governing equations are elliptic, departure from linearity may 

have a significant effect everywhere. Orszag and Crow (1970) and 

Crighton (1972) have shown however that neglect of this difficulty leads 

to results which agree with experimental data. There are also several 

current papers dealing with modes in slowly diverging jets which show 

growth before they level off and decay, these do not necessarily violate 

the linearity principle (see e.g. Bouthier (1972) and (1973') and 

Gaster and Crighton (1974)). 

One way of avoiding any such problem is to deal with two conjugate 

modes. Their relative strengths are set to ensure cancellation of the 

growing downstream mode by the Action of a second surface disturbance 

of a suitable phase and amplitude placed downstream of the first. 

This model will also produce a significant analytic simplification. 

We would like to solve this forcing problem by Fourier transforms, 

That technique is satisfactory for problems involving neutrally stable 

or decaying modes, as the necessary integrals converge at least in the 

generalised function sense. In most situations involving growing modes 

the technique breaks down. Jones and Morgan (1972) have solved a 

causal problem on an infinite vortex sheet using ultradixtributions 

(delta functions of complex argument, these being defined. formally 

by 

See Jones (196-6)). Crighton and leppington (1974) discussed the forcing 

of growing modes upon a semi-infinite vortex sheet. They employed 

analytic continuation to solve a harmonic- problem, and again found'that 

in real time a solution(could only be obtained within the framework of 

ultradistributions. 

Of course the procedure using conjugate modes is very specifically a 

mathematical tool used in order to manufacture a tractable problem. 

One would have great difficulty in visualising from it a physical 

situation of the kind we describe. The essential feature which we are 

incorporating in our model is the finite length of surface that supports 

a growing wave. The remainder of the plane surface- carries only 

residual exponentially decaying modes and algebraically decaying near 

fields. From the model we believe we can isolate the essential 

properties to be expected in the physical problem where flow and sound 



interact with a definite bounded section of an otherwise rigid boundary. 

The model is significant, we think, because it transpires that the surface 

instabilities that are in general weakly coupled to sound are extremely 

well coupled by surface discontinuities. The physical process of flow 

driven instabilities formed on compliant surfaces with exponentially 

growing energy being coupled effectively to the sound heralds the 

possibility that sound absorbent walls of flow carrying ducts can lead 

to strong noise fields that are not present in the rigid wall case, 



4) 
THE BASIC E UATIONS AND A DISCUSSION ON THE 
NATURE OF THEIR SOLUTION  

We consider an inviscid fluid occupying the half space y>o. The fluid 

flows parallel to the x-axis, at a subsonic speed U. and is bounded by 

a locally reacting compliant wall whose impedance is given by 

( co) 	K—  m w"'"  4_ (s, 
—Lw  

at the frequency 100. 

M 
[This simple choice of impedance condition may appear to be unrealistic. 

It is necessary because even in the problem without flow, determination 

of the free wave numbers for a "practical" surface such as a fluid loaded 

plate or membrane is no easy matter. One impedance condition - which-does 

lend itself to easy manipulation is that of a locally reacting compliant 

wall whose impedance is given by (1.1). Physically we interpret m as a 

mass/unit area, whilst K represents a restoring force/unit area, f; is a 

small, strictly positive, term which represents damping. In the absence 

of fluid, of course, such a wall could not support a wave, but provided 

that fluid is present it is fairly easy to show that waves. exist whenever 

• K> mw 	 (1.2) 

ie. provided the excitation is being carried out below the in vacua 

local resonance frequency] 

Two harmonic line forces, of frequency exp (-WO are situated in the 

wall at x-.-h and x=o and they excite disturbances in both the wall and 

the fluid. Assuming that linearisation is valid everywhere, the equations 

to be satisfied by the potentiallS(x-'0-, ) and the surface displacement 

onit  92.(x,t) are the convected wave equati, within the bulk of the fluid 

v 2 	— CI  L  ( ,-.' lE -± U )X )1 	
(1.3) 

ci)  
plus two boundary conditions, to be applied at the mean- position of the 
wall y=o. They are the continuity of normal displacement 

a ci) ____ 	 ÷ U'  1 
9 	k ?, t 	.)( 

and the pressure condition 	 ( 1 . 4) ' 

a. -4-- U 	)± F:S(x-i-k)x 	g(x)exp(-LwE).---  zc)e_g.  
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In these equations R represents undisturbed fluid density, c is the speed 

of sound (relative to the static fluid) and Fo is the strength of the line 

force at )0-Me, the strength of the other line forte, is to be 

determined as a function of Fo. 

We assume a time dependence exp(-iwt) throughout. The equations are 

formally solved by taking Fourier transforms in the X-direction.use of 
the inverse Fourier transform leads without any algebraic difficulty to 

the solution 

(1)(y)  ,0t),.=  elxpr  (--.1iA)0 	vi) e 	I.L4 	e 	x t 	N, (4,  i.oe .,.) - "-K —73(45  (t.)+U )  
I. 	(Li +L. i De) — w 1-44') 	

V. 

and 	co-06 
00  

_ ieli 
U60.__ 6 	w zix ► 4,40 t; e.  -t- Q i  	(.73 ( 00 (l e(  

dt (.1 (0 t U. — v-z(to  
0.(--D, 	i 

Here we have introduced the notation 

(1.5) 

(1.6) 

and 	fri2-(00 	0(.1—  (Lt)  

C' 

The convergence of the integral at large distances downstream is ensured 

by the choice of Q, a point which we discuss later. We first examine the 

nature of the possible modes by considering the zeros of the kernel of the 

integrands in (1.5) and (1.6) 

The branch of 6) (V) is chosen to ensure that the potential obeys a 

radiation condition away from the wall. Formally this branch can be 

chosen by the following procedure. If we make the Lorentz transformation 

defined by 

ix' 	IzN 	--1‘446 	°( 
it 	k © 	w ) 

1

. where ee 	- 61e- 	A> 0 ; 

then the expression for to(01)9 (1.8), is transformed into 

2
(g):-7 

(1.9) 

z 
Following the notation of Noble (1958), this can be written as 6 (00) and 

Noble discusses the selection of the branch of 3 (w) in order to satisfy 
a radiation condition at infinity. In future the symbolt;(00 implies 

that branch Of 174:60 chosen according to this procedure. 
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An estate of the distant plate disturbance (outgoing travelling waves) 

depends upon the zeros of the dentvin.atorof  the integrand in (1.6). 
Defining 

k(00.=((i1 14.0'1"-  (42-  CU(Ad 
	

(1.10) 

we require the zeros of K( V). Despite the simplifying choice of the wall 

impedance an exact solution for the zeros of K(K) will be far from trivial. 

We see that zeros again occur fo9)).o, corresponding once again to the 

condition (1.2) that we found for the existence of 'no-flow° waves. In 

discussing the modes of the surface disturbance, a useful 

approximation is given- by formally allowing the sound speed to become 

infinite, since the outgoing travelling waves will be only slightly 

affected by compressibility. 

The zeros of K(K) are then of (i=1...4) where, 

and 

= t - 0 	£F''.! U 

L41 	(e÷?, s) 14-1 

o(3 	I— -E-) (Ei-zE) I 
-17 
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with the notation 	E 
U 

The modes given by (1,12) correspond to upstream travelling waves and are 

only valid when 

E > 2 
Physically this condition indicates that -Waves cannot travel against 

the flow whenever its velocity is greater than a maximum critical velocity, 

Umax, defined by 

U 	Uri-taw= GJ 	a 	 (1.14) 

i/tA 

The modes given in (1.11) correspond to downstream travelling modes and 

are valid for all flow speeds. In the absence of damping all these waves 

are neutrally stable and consideration of the integral (1.6) indicates 

that all modes are excited by a purely harmonic source. 
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Inclusion of the damping, which means that we must now write 

E = +LEz 	Ex‘O (1.15) 

shows that the waves represented by the wavenumber X, and g4 grow in 
their respective directions of travel, whereas the other two modes will 

decay. Our physical insight of the problem indicates that although we 

might expect a growing wave to travel downstream, we would not expect 

a growing wave to travel against the flow, as this would contradict 

energy principles. It would be extremely convenient if we were able to 

solve a causal problem exactly'but the formal analysis required is 

extremely complicated. We can however give a strong indication that 

causality will lead to the exclusion of the upstream travelling mode 

by reconsidering the problem with a loss-less wall. 

Lighthill (1964) has shown that wave energy will be found along the line 

if an only if the component of the group velocity along I is positive. 

EThe result depends on the direction in which a pole, originally lying on 

the real axis, moves when we introduce the complex wavenumber, k=ki-fik2, 

k2/ki‹<1] 

The group velocity for the K4 mode is given by 

( 0e4  
c)0( 4, 	\ 	/ 

(1.16) 

and bearing in mind thater-1(14), so that 

we obtain 

now 

E K+ m( 1-  
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Thus we have given some indication that the Oc4 mode will not be excited, 

although, of course, Lighthill's argument only applies to neutrally stable 

or decaying modes. 

[We must, of course, also ensure that this causality argument does not 

exclude any of the other modes. It is easily seen that the decaying modes 

must always be included in a causal problem. The Xl mode, however, will 

only obey causality if 

> 	Kmj  

 

(1.18) 

  

It may be of interest to ask whether the conditions (1.14) and (1018) can 

be satisfied simultaneously. If we define the in vacuo resonance 

frequency (4, such that 

2 

and then define the non-dimensionalised radiation frequency by 

(„j 	u.) 	( o < 	.1)  
then the conditions become 

	

I - 2 > 	no 4,.), 

and 

	

mwo  > 	 
U 	1 - 

We must have, therefore, 

.40  „A < )c  7:27_ N/4 -- 

Figure 1 shows the possible values of U 
	U  , corresponding to both 

a 
the conditions (1.14) and (1018) 



It is perhaps worth pointing out that the nature of the surface disturbances, 

as indicated by the modes Al, A2, A3 are qualitatively consistent with the 

class 'A° and Kelvin-Helmholtz waves of Brooke-Benjamin and Landah1J 

In order to make progress then we must assume that the contribution from 

the k4 root can be safely ignored. The choice of the line force strength 

Oo is such as to cancel the contribution from the 4(1 mode at large x. It 

is easy to see that this is achieved by setting 

(1.19) 

The integrals (1.5) and (106) can now be regarded as convergent. 

Estimating the surface velocity from expression (1.6) in the normal way 

leads to 

) 	 •  Lr(x, 6) 	 L.)  e, 	
u) r 

Q, 	(x40 H (x)i 
Cft. 	xi -42 

(1.20) 

plus exponentially decaying waves corresponding to the 0(2 and g3 modes and 

near field algebraically decaying fields. In order to emphasise the 

growing nature of the wave we write 

04 T 	— 	R 	K/2- ; 01/ 0 g >0 ffir  > 	 (1.21) 

and 

. 	1160,7 

(1.22) 
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THE RADIATION FROM THE LINE FORCES, AND AN  
OBSERVATION ON THE DIRECTION OF ENERGY TRANSFER  

We first consider the sound field being radiated by the single force at 

That field is given by an estimate of the expression (1.5) for large 

distances from the force. We retain the flow effects, and by 

employing the transformation indicated in (1.9) find that the expression 

for the potential becomes 

k(A/).1)/e 	_ (,p(100/11 	1 )j 
Ck (19) 	C 	e 	e 	Ch< ) 

d '. (2.1) 
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We evaluate this integral by stationary phase in-the manner indicated by 

Noble. In deforming the contour we will cross a pole correspOnding to the 
(growing) downstream mode. Taking due account of this contribution, the 

sound field is given by 

Mic ricas 	, 	h 'r! 	K4r 	f 
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The polar co-ordinates (r3,04) are related to a-stretchedx-co-ordinate 

given by 

• 

• 

• 

Rewriting (2.2) in terms of the conventional polar co-ordinates (rP) 

based on the position of the force, and retaining terms correct to 

order M, we obtain 
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Examination of the result shows that it is simply that radiation-which 

would have been obtained without flow, modified by the-usual flow 

Convection factors. 

The radiation from the lime force at the origin is given in an identical 

fashion and is 

54'04 

where (ro,(5o) are polar co-ordinates based on the origin. 
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The result (2.5) is essentially that which we have been striving 

to achieve. 

The radiation from the downstream end of a growing plate wave is greater, 

by a factor exp(growth rate x length of plate), than the radiation 

from the upstream end. We visualise that as the wave grows it is 

trapping energy from the mean flow, the increase being dependent 

on the growth rate of the waves. The force at the downstream end 

merely ensures that this energy does not continue to travel indefinitely 

in the wall and its adjacent fluid layer. It remains for us to 

show that the energy in the radiation field is supplied by the fluid, 

rather than by the support. At the downstream support, the energy 

which is being lost by the plate wave could be simply transferred 

back into the mean flow, with the force actually supplying energy to 

support this process and also to drive the radiation field. 

To clarify this important question of the transfer of energy we 

note that energy crossing into the fluid from the wall is given by 

(rossurt)()_11.1c1, 7t, 	 (2.6) 

S(Y) 	6 b 
• where S(x) represents the whole of the wall. 

The pressure near the downstream force is due to two independent 

effects, the pressure from the incident travelling wave 94,4  
and that pressure which is induced locally by the force itself.)  
pi,,kSimilarly the velocity near the force comprises two terms the 

incident velocity due to the travelling wave titn‘and the velocity 

induced by the force itself,u,4, 

We have the relationships 

— Z (1.„, = 

a 611(1  
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rZULnd = (2.7) 
and thus the energy transfer into the fluid is given by 
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The first term represents the energy loss by the fluid in overcoming the 

mechanical damping in the wall. The remaining term represents the 

energy transfer locally. The contribution to the energy transfer from 
-0E the term v. 	is Inc 

2-tcr 
F; 	Rt. 1  "  

(-) 	1)( 	0(1 9 

 

(2.9) 

 

We may as well ignore the effect of - the- damping,except in the 

exponential growth rate factor, and write this as 

F0  2. 	20( 	
(2.10) 
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The contribution to the energy transfer from the term viZi  is-somewhat 

more difficult to evaluate. The expression for v,Nd is 
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and we require the behaviourof this integral expression for small X. 

The method we use to evaluate this integral for small u was first 

suggested by Crighton (1972(3)). The integrand in (2,11) is split, in 

a manner familiar in the Wiener-Hopf technique, into a sum of 

functions analytic in upper and lower half-planes, and the response near 

the site of the forCe is then readily obtained by the behaviour of the 

split functions in their respective domains of analyticity. 

One fundamental difference is that the presence of the flow removes 

the 6 function singularity found by Crighton (see equ.(7) p>211) at the 

site of the force. This -is due to the replacement of a factor (.42  by a 

factor 	in the denominator of our integrand. Thus the addition 

of flow to a response problem of the kind is a singular perturbation, 

since in the absence of flow there is an apparent singular energy 

transfer at the site of the force. 

Another feature of the flow is that we now no longer expect the response 

to be symmetric about the force. 

As in the argument leading up to the neglect of the upstream travelling 

wave, the analysis here will be somewhat suspect, as it is relying 

heavily upon the use of generalised function theory in -an application 

for which it was not intended. The analysis is valid in the lidit of 

zero damping and we must assume that once again we may use results 



obtained in this limit. 

5)3 

The procedure then, following Crighton,is mechanical and leads to 

the result 

.()E tri.„.1(K, = 	 q. 
(/` 

;ow 	 v%.  

(2012) 

and the point to note here is that A is purely real and so plays no 

part in the energy transfer -computation. Similarly it is only the 

imaginary part of B,C. that is of interest and close inspection reveals 

that B = 	+ BR P C = i, + C R  , leading to an expression for the energy 

transfer of 

(2.13) 

Thus we have indicated that at the downstream end - of the wall energy is 

actually being transferred into the support from the fluid, which 

indicates in particular that it is the mean flow which is driving the 

radiation field. 



CONCLUSIONS  

The aims of this paper have not been to attempt to describe a 

particular physicalsituation. They have 'been directed towards 

emphasising that a mean flow induced instability couplecLwith a 

wave scattering process rep-resents a fundamental conversion of 

flow energy into sound energy. Even in this, a most idealised 

problem, the mathematical analysis is far from straightforward. 

The firmest conclusion that one can draw from this work along with 

papers concerning instabilities on jets is that pne cannot afford 

to ignore instability problems, There is now,for example,enough 

clear theoretical and experimental evidence to indicate that at 

frequencies and angles characteristic of'jet mixing noise' the jet 

instability can act as A 30dE amplifier of tailpipe disturbances 

(Crow (1972)). We can therefore see the importance of developing 

the theory of ultradistributions which will allow-us to treat problems 

with unstable modes in the same way that generalised functions allow 

us to treat neutrally stable modes. 

In particular in this problem it is apparent that the instability 

is dependent upon the damping in the wall, and indeed the larger_the 

damping, the larger the growth rate of the waves and the radiated 

field. Unfortunately large damping in compliant walls is exactly the 

requirement for acoustic energy absorption as used, for example, 

in the acoustic lining of ducts. Obviously the significance of these 

two contrasting trends will be difficult to quantify. As an example 

though we may compare the radiated power from the downstream edge of the 

plate with the energy lost in overcoming the damping in the equivalent 

problem without flow. 

The power radiated from the downstream -edge in the high fluid loading 

limit can be obtained from the expression for the scattered potential 

(equation (2.5)) in the appropriate limit, and is 

1. Exp 124yriAl 1".0 LOU  

The energy lost through internal damping can be evaluated from the 

equation (4.6) of chapter II. We find that the energy loss for a plate 

6  

length 	is ti 
Fc,  

	27T Ili xe 
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• 

Thus there is a parameter 

k1  

/42 

1 

which, if> / means that more energy is generated than absorbed by 

a compliant plate of this type. 

S 
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CHAPTER 4 

INTRODUCTION  

There has been suprisingly little attention paid to the details of the 

source process responsible for impact noise although the topic is obviously 

one of great practical importance. No doubt this is due in part to the 

extreme complexity of most impulsive problems, and also that the impulse 

itself is often not the immediate source of acoustic waves. They are 

usually generated as a result of impulsively excitedstructural vibration. 

There are at least three distinct sources contributing to the total noise 

411 	field, The first is the ringing due to resonant vibration of the impacting 

bodies. Immediately prior to impact, the action of viscous forces cannot 

be neglected, and we recognise that this leads to a second source 

concentrated on the body surfaces. The final term is that due to the 

discontinuous change during impact in both the surface velocity and 

pressure. It is this final term, which we shall call impulse noise, that 

is investigated here. This term is not necessarily the dominant one in 

the total noise field. We concentrate on it because this impulse noise 

forms an irremovable contribution to the total field and as such forms a 

lower bound on the noise of impulsive body motions. Furthermore our 

approximation technique by which this noise can be determined may well have 

• 
	significance in other problems. For example we would expect it to hold 

in situations where the body dimension is large on the important acoustic 

scales, as is inevitable in high speed aerodynamic flows. 

Curie (1955) showed how the pressence of solid surfaces modified the 

sources identified in Lighthill's (1952) general theory of aerodynamic 

noise generation. Application of Curie's work, however, is dependent on 

a knowledge of the (local) surface pressure and velocity fields and this, 

in turn, is dependent on a solution being available to the equations of 

fluid motion, or that the surface terms be known from experiment. 

Alternatively to Curie's technique we require knowledge of the Green's 

function for the particular geometry. With that, Lighthill's theory can 

be used to write down the field exactly. Neither of these schemes is 

susceptible to simple analysis, except for the very simplest of 

geometries. 

We propose here an approximation scheme which enables us to find this 

local pressure in the grossly non compact limit, concentrating on the 

impulsive case. Since the changes which then take place do so instantan-

eously, ray theory, a high frequency approximation, will be relevant 

• during the period immediately following impact. Since it is events at 

this time which control the sound field we expect the approximation to 



be an accurate one Two schemes are considered: one assumes that the 

surface is locally plane and the other that the surface is locally curved. 

In this second example the surface pressure is approximated to by that 

pressure which would have been induced had the surface instantaneously 

been part of a radially growing sphere of the same radius of curvature. 

The impulsive motion of a sphere is one of the few problems -which can be 

solved exactly (Taylor .(10.) and Longhorn (1952)). Comparison of these 

exact results with those obtained through our approximation schemes 

• 
	provided a useful check on their accuracy. The schemes are shown to be 

as accurate as is likely to be needed in most practical applications of 

impulsive sound sources. 

In the final chapter a brief description is given of a crude experiment 

which was performed using 'model' piledrivers. The results appear 

to verify the linear, plane ray theory estimate of the pressure pulses 
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MOTION OF A SINGLE SPHERE  

When a body moves unsteadily through an inviscid but compressible medium 

it is subject to a drag force opposing the motion. In discussing the field 

induced by an impulsively accelerated sphere we recognise two distinct 

model situations; in the first an additional external force is supplied 

to balance the drag exactly so that the subsequent motion of the sphere 

is steady. In the second there are no external forces so that the 

subsequent motion is to be determined allowing for the retarding effects 

of drag. 

Longhorn (1952) discussed a problem of the first kind and for easy 

accessibility we reproduce some of his results. He gave the velocity 

potential, 0, measured in spherical polar coordinates (r,O,K) fixed. 

in the centre of the sphere as: 

c4 (1; 	caos e 	 r- 	11 	. 	(1.1) 
Zr 	\ 	O. 

U is the steady velocity of the sphere, a, its radius and c is the 
speed of sound in the stagnant fluid. t is the retarded time; 

(1.2) 

Differentiation of (1.1) with respect to r confirms that the potential 

satisfies the condition 

aci) 	cos 6 H( 
a r 

at the spherical_ boundary, r=a. 

The pressure in the fluid is given by the linear term in Bernouilli's 

equation as, 

f= 
	 (1.3) 

where 	is the mean fluid density. The radiating part of the sound -field 

is given by that part of (1.3) which decays as t' 	as r--,› DOI  i.e. 

-1)Saun of e Uac cosh {cos 	ster, c  ow( 	y (7/ ( 1°4)  
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and 

(1.8) 
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The total radiated energy is found by integrating the acoustic intensity 

over a distant sphere and all time, and those integrals can be evaluated 

to give 

(1.5) 

It is already apparent that this impulsive source of sound is highly 

efficient, because the sound energy is not dependent upon the flow Mach 

• number. In fact all the change in the virtual energy in the flow around 

the, body is radiated as sound. 

The problem in which the drag force is allowed to retard the sphere 

after its initial impulsive acceleration has been solved by Taylor 

(1971) in the particular case of equal fluid and sphere densities. The 

velocity potential for the general problem of a solid sphere moving 

with varying speed U(t) is 

—accas&  
r7- 

O 
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as a result which was given by Longhorn. Once again the pressure is 

obtained through Bernouilli's equation and is then used to determine the 

subsequent motion of the sphere. In fact the equation of motion is 

	 fih,G,(1)(-)nmp)11(E) 
V.C1/4 	

Ck 4-- 
 I L' 

as 
 6xpil(&-slle-crs_E(&-9 dd. 	(1 0 7) 

BE 	a 

where ea  is the density of the sphere and U0  its initial speed. The 

equation yields the solution 

(106) 

The sphere's speed actually decays to a value 1)0  , and does not as Longhorn 

erroneously stated come to rest. 
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Once we have the equation of motion (1.8), the sound pressure and total 

radiated energy follow simply. In fact we find that 

= r,3 t101 
	

(1.10) 

The limitirocorresponds to the limit of an infinitely heavy sphere. 

In that case we would expect the (finite) drag to have no effect on its 

motion and that it simply continues at its starting velocity (see equ. • 
(2.6)). In fact the limitfr•ocompletely reproduces Longhorn's steady 

case and this is a feature which will be exhibited by each of our future 

approximation schemes. 

We note also that the final kinetic energy of the sphere is 

	 Qe cx3  U0(1tA) - 
_3 

compared to the initial value of 

111   D oil  U01  
3 V )  

The remaining energy has been partitioned in amounts 

I I  
p 	L./  

\ 3( 1-r0 
a-11  3 ( 1-q3P' 

 

 

between the sound field and the energy stored as local or virtual kinetic 

energy. This local energy is the kinetic energy associated with the 'virtual 

mass° of the sphere. If, once the sphere has settled down to its final 

speed, (4(1-13 )-I  , it is impulsively stopped then all this local energy 

will be radiated as sound, The ratio of the radiated energy to the near 

field energy is unity only in the limit(S->o, which is the special case 

when the sphere continues t? travel at its initial speed. 
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APPROXIMATION SCHEMES: THE IMPULSIVE MOTION OF A SPHERE 

We will first discuss the accuracy of two approximation schemes which we 

test by application to the known problem of radiation from a single moving 

sphere. 

Lighthill (1952) rewrote the equations of fluid motion in a form which 

isolated the sources of aerodynamic sound. Curie (1955) and Powell (1960) 

have extended this theory to include the effects of solid boundaries, work 

which has been generalised by Ffowcs-Williams and Hawkings (1969) to surfaces 

moving arbitrarily. In particular Curle,s result for the perturbation 

pressure, when only the linear boundary terms are retained is 

OP-10.42s, 	I J. 	 01 ' 	 S (4)
J  +ii 	 f 

	

r r 	ciscw  (2.1) 

4-77 	L 
The familiar Lighthill quadrupole term has'also been disregarded as being 

negligible.TLis the force per unit area exerted on the fluid by the surface 

in the 1. direction. 

The square brackets imply that the contents are to be evaluated at the 

retarded time e — 
C 

In the problem concerning the motion of a sphere, both the surface velocity 

and pressure are known exactly and their use in equation (2,1) leads to the 

exact expression for the pressure field. 

We propose now,as an approximation scheme,that the surface pressure be 

estimated according to linear ray theory. There, the velocity normal to 

the surface, which alone determines the wave field, is taken as part of 

a high frequency acoustic motion and set equal to 	c. This is a scheme 

that will be precisely correct for sufficiently rapid accelerations and 

we wish to determine its usefulness in cases where the boundary motion is 

started impulsively. 

Accordingly we set 

C (2.2) 

and this leads to an -expression for the radiated pressure 

PSourt.d. f.Q. pr.]  d 	 ) 0.0.1r.1  00-  	(2.3) 
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Green's theorem allows us to rewrite this integral as a volume integral 

throughout the interior of the sphere V. 

We can fix the axes so that the motion of the sphere is in thel direction 

in which case throughout the sphere we have 

u-t 	S r c V H ( t) 
	

( 2.4) 

where ail 
 is the Kronecker symbol. Thus the expression for the radiated 

pressure becomes 

row, 44. 

gi H(6)1 0(  ) 
c)x iv 	L 141 

The sound field is obtained by taking the far-field limit as /x/-000, when 

variations of
4r.
/
-1  are negligible. Similarly we can replace the 

derivative 

I 
C d 

The integration over the sphere is carried out as shown in Figure 1. We ' 

consider a disc whose centre is Q lying perpenditular to the line GP joining 

the centre of the sphere 0- to the observation point P.: Any point within 

the disc is defined by its polar co-ordinates a, a ) relative to the centre, 
the reference lineA=Olying in the plane OPF 

u  
4-r 

41r 

(01  ct V (1-) 
25 - id 
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The sphere travels in the positive 4 direction and 6 and m are the spherical 
polar co-ordinates of the observation point P. If the distance 062 is s, then 

the range of integration is 

    

O s: A :‹ 271" 

o (c - sj  

— 	.s- 

   

 

1 

(2.6) 

The advantage of performing the integral in this form is that since the 

observer is many sphere diameters from the surface, we can regard the 

• retarded time as constant throughout the disc and in fact to be taken at 

6 	l—ri—s  
The direction cosines are 

yi  =—_ s cos 8 -e cos) strt e 
y 	(ssifie,  + iczscos e) --11 in Cos A' 	(2.7)  

J3 =_—. coso((s s t +icos),cose)--..siAt) Sin( 

The integrals are then straightforward and yield the following 

approximate forms for the sound field 

psouv, 	UCoS c  (c& —14(c & 4141  ii)qa—IcE-14 (2.8) 
2 1K1 

This corresponds to a total energy radiation of 

E- 	) 	 1 
/5" 

(2.9) 

Thus the estimate for the total power is too high by a factor of: 

only 16/15. Comparison of equations (2.8) and (1.3) shows that our 

approximation predicts the -correct 'switch-on' value of the pressure 

field. However the model predicts that the sound pressure is non zero, 

only for a finite time, in fact the time taken for a sound wave to cross 

the sphere. The exact field decays exponentially. This is only to be 

expected. Ray theory is correct only instantaneously following the 

initial impulse. It is probably the effects of -'source spreading which 

account for the discrepancies. 

In the second example where the sphere is unconstrained we require 

knowledge of the time-history of the sphere's motion. The only self- 

consistent approach is to use the ray theory estimate of pressure to 
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calculate the drag on the sphere. The ray theory pressure at a point 

defined by the polar angle y'` is 

c 	= pc U(0 cos 	. 	 (2.10) 

The equation of motion of the sphere is thus 

— pt Z7C U(0 'Cos?" IP Si rt. 1° 	- 477  p c1,3 	. 

th: 0 	-25 	\c' 	t 

with the solution 

• U(&) 	Li°  cxp— 	1-1(0. 
(2.11) 

One obvious draw-back of this simple scheme is that it implies that 

the sphere eventually comes to rest. This is overcome, as we shall see 

later, by including the effects of ray front curvature in the model. 

The integration necessary to obtain the pressure field is performed as 

before, and after some labourious algebra we obtain 

(1(j 	CZSZ ÌC cq(4-151  -t-  31e #e p (-41)  ( -1241' c)) 
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(1151+ 1- 	exp( 
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leading to a total radiation 

E 	e0.317  u 	44-  -243  —p t+ 1- (4.? 4--F4 -19+1) -491. 
\ 2.4p $ 	 3 	 (2.13) 

asrOthe total /radiation can be written 

7 , 

3 	15 (2.14) 
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Once again we have recaptured the result corresponding to steady motion 

in the limit =c:). 

Taylors problem is given by13=1, and our model gives the approximate 4 
result as 

z 	R(11 — 3 exp 0)1 
9 

(2,15) 

a result which is too high by some 24%. Once again this failure is due to 
• 	

effects at large time where ray theory is inappropriate and it is for 

this reason that we suggest our second approximation scheme. 

In this scheme we take account of the effects of local curvature, and hence 

some account of the spreading of the pressure field away from the sphere. 

The pressure is approximated by the pressure in the neighbourhood of 

a radially growing sphere. The potential in the fluid surrounding a 

radially growing sphere is 

VGL  -=-11-Exp(-0-r-m)0 
	

(2.16) 

where V is the (constant) radial velocity of the surface. We have 

applied the boundary -conditionN)— V at the initial position -of the 
dr 

surface r:=0., rather than the true position, r= a Vt. Provided we are 
restricting our analysis to cases of small subsonic speeds, the 

difference will be negligible since once again we expect that all the 

characteristics of the sound field are determined on a time scale (a/c). 

Locally, the radial velocity at a point on the surface defined by the 

polar angle if is Ckosf). Thus the pressure here is, from (2.16) 
Uc.c_os'e 	 W-i(&,L 	(2.17) 

Green's theorem is again employed- to convert the surface integrals 

required in expression (2.1) into integrals throughut the volume of 

the sphere. We obtain 

Ts-by n 	cx.c COT 0 I) 115 kei-Scx ( 6 	 ict - 	+ 
zi 	 0, 

(k—ri-k9}} 11(k—hi*" (2.18) 

3: 	 c 
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with the total radiated energy 

E= 

 

5-15exp (-0  
3 (2.19) 

3 

The result (2.19) now provides an estimate of the total radiation which is 

accurate to within 1%. The pressure profile (2.18) agrees very closely 

with the exact result since not only are the 'switch-on,  values identical 

but so also are the instantaneous pressure decay rates. The estimate also 

features an exponentially decaying tail. 

The last stage of the approximation schemes is to apply the improved 

ray theory approximation to the unsteady problem. The potential due to 

a radially growing sphere of varying velocity,V(Ois 

Cks( t) 	 V-(6— —r-)E 	 ("C— f---=1;`=) 4(t-  C=5.)-  ( 2.20) r ‘jr,o 
	—Q 
	/ 

Once again we set up the equation of motion for the -sphere and the 

solution for the time-history of the sphere is 

	

(t)=  Uc)  	I+ 	exp 	( 1 -FitA H(0. 
(2.21) 

The introduction of a term to include the effect of local curvature has 

produced a more realistic estimate of the time history of the sphere. 

The velocity decays to a non-zero value though unfortunately still not the 

correct -value. La fact the predicted final velocity is too low 

by a factor 

(I --fg) a-s• p -3).° 
i t Z tg  

On performing the integrals over the surface of the sphere we find the 

radiated pressure 

sound 
= 	C COS e Uot  t(5+ lag■-PI)EXpi-4L-(11)(  

/Xl (1 ÷ZiS) 

-+- 401H c t -  t 	÷ 
(Z. Z2 ) 

÷.  c.ctrcose3 Uo  [45- .1. f2fg 4.gt1-6)exp[_i ( ii.zo( 6. 

	

ZI 	 4  
(11-2.(3) Ex p 	4-20( -r-:.*c91] ff(6- iA) 

• 
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corresponding to a total energy output 

(t÷zW_F  1(5"-f- /Zt gptf-  1-(54.4 +8f3114-2p)÷ 
30.44.05L 3 

( 1+203"P) (1; 2454-12(3  +-2(11)(1+2p) 

which for small can be expanded as 

0;5  11"  .[ 	.-exp(4,)-p (If .... g exp(- z))+ (pl,) 

Once more we see that the limitrPorecaptures the result for the steady 

problem. The estimate of the total energy for Taylors° problem is 

about 10% high. 

The results of this section are summarised by the graph (Figure 2) which 

shows the true radiated pressure profile against the results of both 

of the approximation schemes, in the steady case. 

• 

Fey 



APPROXIMATION SCHEME: APPLICATION TO THE MOTION OF A SEMI-

INFINITE  CYLINDER  

If we are to make good use of the scheme we should now use the scheme 

in a situation where an exact solution is impossible to find. A geometry 

which is obviously of practical interest is that of a piston moving 

impulsively along its axis. Not only does this model describe an 

inevitable element of several physically important noise generating 

mechanisms, such as piledriver noise, but, armed with both the spherical 

and this plane problem we should have a good 'feel' for other impact 

problems by noting the types of changes induced by geometrical factors. 

We expect that the duration of the pulse will be the time taken for 

sound to cross the face of the piston. Thus effects from either end of 

the piston will be independant provided its length is much greater than 

its diameter, and in that case we may as well study the impulsive motion 

of a semi-infinite cylinder. Contributions from the side walls is 

negligible, since there is no discontinuity in the motion here and in any 

case the first order ray theory term implies that the pressure is 

proportional- to the (zero) normal velocity. 

In the direction of travel, li near ray theory predicts a pressure pulse 

which is not decaying as / / but is of constant amplitude. This is an 

obvious failure of our model, since a beam of this type can only be 

supported by a high frequency oscillating piston. In this problem the 

beam must collapse. Off this central axis, the noise field can be 

estimated in the normal way. 

The piston of radius a is given an impulsive velocity UI-1(0in the 

positive f direction. Using plane ray acoustics to calculate the 
pressure term in Curie's theory the radiation at an observation point 

C(r,„E!,0 can be determined to be 

e 	
4R140  bt: 
	d SLY) 

(3.1) 
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THE AXIS SYSTEM 

The reference axis )=Ois chosen arbitrarily to be in the direction of the 

observation point. 

Over the face of the piston the direction cosines are simply 

(1,, gz.) P3) = (1, ©, 0 (3.2) 

• 

and the surface velocity 

Finally, writing 

we obtain 

= (5,L UH(t) 	 (303) 

— 	c ae 
	 (3.4) 

-Psound 	Q
u417-7,1?m e) 	[r.f1 E)1 ci,s(4) 

(3.5 ) 

The integration over the face of the cylinder is carried out in terms of 

the polar variables (S, A), It is easily seen that the retarded time is to 

be evaluated at 

C. 
(except at 6)-4. o) 

6 	r0 - ssi:rx C3 cos  (3.6) 



and that 

f )Soymal ,c) (.1( I -Fcase)  
4.77 re, 

2. 

S
I 	ssul ecos 

. 
(3.7) 

Concentrating on the A integration and writing 17= t: 	, we have 
C. 

.f S 	 +ssifte,,4 	a 

_=-45 (EirL,.rs,;tec„5 1  _ 
On making the transformation 

Cos 21 = 2 

we finally obtain 	00 

'(O {'r-' s 	f7---ss'ir,ccsj) 440)0,ir  c 	vik 
where H is the unit Heaviside function. 

0 	Now 5t.:61 d5 3= C?)  

so upon evaluating this integral we obtain 

2c  
(s-2 	c' T1-) '12 

Tiles integration may now be performed without difficulty giving 
p2  

cos 6) c 01,s6,1`16 — , / 	Le., 	t  T 'SP 	,   

2 77 re, ?sound 
(3.7) 

The pressure profile is thus a pulse of finite duration There is no 

associated shock since the pulse switches on and off with-zero 

ft 	amplitude. The profile of the pulse is elliptical with a peak at 

() c 	gut'  
277/0- 	—cos 	 (3.8) 

The total radiated energy can be found simply and is in fact 

(3,9) 
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In an attempt to verify the existence of a pressure pulse of the type 

indicated by expression (3.7) the following, crude, experiment was 

carried out by the author (with the assistance of Mr P Growcott of the 

Building Research Centre and Mr J Ludlaw of I.S.V.R). A steel cylinder, 

of diameter 20 ems and length 200 cms, was dropped on to a section of 

a pile embedded in sand. The resulting sound pressure profile was 

recorded on an oscilloscope. A similar experiment was carried out 

using a much smaller hammer, of approximately 2 ems diameter. The 

chief difficulty is the extremely small duration of the pulse, typically 

of the order of a millisecond for the larger hammer. In both cases 

• the recorded pressure profile had the form indicated in Figure 4. The 

initial pulse showed the duration, peak pressure level and general 

profile appropriate to the dimensions of the hammer And in agreement 

with the expression (3.7). In both cases the pressure profile 

corresponding to ringing was also discernible, and always appeared 

following the completion of the impulse noise effect. 

• 

impt4N6 >4 	r rt3irt3 
not.s6 

4/5 f, frofiLe 0 b 	pak- 

xp6r-ir frit 

411 
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CONCLUSIONS 

• 

The results of the second section of this work indicate that ray theory 

gives an accurate estimate of the sound field radiated by the impulsive 

motion of a single sphere. The application of this type of estimate to 

a general impact problem is not always straightforward. In the case of 

the piston and in fact for all plane surfaces impulsively moved, there is 

an inevitable difficulty in that an acoustic beam is formed. This is 

spurious and would not be found at large distances if the accelerations 

were finite. Results of our crude experiments appear to indicate that 

ray theory is giving a good estimate for the noise field at an 

observation point not on this axis. Also Sears, in a private commun-

ication with Professor JE Ffowcs Williams, has shown that the noise field 

from the impact of two spheres is given by a suitable combination of the 

fields from both of the impacting spheres taken independently. 	This 

indicates to us that theat first sight complicated impulsive noise 

problems can be usefully approximated and we think that our method offers 

a powerful tool for the evaluation of noise fields in those situations 

where a high frequency limit is relevant. High frequency in this case 

means that events are changing instantaneously in comparison with the 

time taken for sound to travel a distance comparable to a typical lrlgth 

scale of the body. Noise generated by high speed rotating machinery, 

propeller noise, for example, could be estimated in this way. 



gel 

REFERENCES 

Curie N (1955) The influence of solid boundaries upon aerodynamic 

sound". Proc. Roy. Soc. London A23I 505 - 514. 

Ffowcs-Williams J E and Hawkings D L (1969) "Sound generation by 

turbulence and surfaces in arbitrary motion". Phil. Trans. Roy. Soc. 

London A 264 321 - 342. 

Lighthill M J (1952) "On sound generated aerodynamically,I General 

theory" Proc. Roy. Soc. London A 211 564 - 587. 

Longhorn A L (1952) The steady, subsonic motion of a sphere in a 

compressible inviscid fluid". Quat. J. of Mechs and Applied Maths. 

5 64 - 81. 

Powell A (1960) "Aerodynamic noise and the plane boundary". JASA 

32 982990. 

Taylor G I (1971) "Scientific Papers of G I Taylor" Vol 3 Aerodynamics 

and the Mechanics of Projectiles and Explosions" pp 50 6 -3,!) 
Ed. G K Batchelor, G.U.P 



ACKNOWLEDGMENTS 

The author is grateful to Professor J.E. Ffowcs-Williams of 

Cambridge University and Dr. D.G. Crighton of Imperial College for 

many hours of stimulating discussion related to both the work in 

this thesis and the subject of aerodynamic noise in general. He 

also acknowledges the support of an S.R.C. research grant. Finally 

he greatly appreciates the efforts of Mrs June Morrison who typed 

the manuscript. 


