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ABSTRACT  

This thesis records the outcome of the search for models of 

turbulence which are applicable to a wide range of turbulent 

swirling boundary layers. 

The scientific and engineering relevances of swirling flows 

are discussed, and the governing partial differential equations for 

the transport of momentum, mass and enthalpy are presented. The 

numerical accuracy of the procedure employed to solve the finite - 

difference forms of the transport equations is demonstrated. 

Four different models of turbulence are developed and tested. 

In the first, the traditional mixing-length hypothesis is adapted 

to swirling flows, and leads to an isotropic viscosity formulation. 

In the second the turbulence is characterised by its kinetic energy 

and a length scale, both obtained from the solution of their own 

differential equations. A new term involving the Richardson number 

is introduced in the length-scale equation to account for the effect 

of swirl body-forces. The third model is based on the mixing-length 

concept, but it accounts for the near-wall anisotropy of viscosity 

by postulating two mixing lengths suitably modified by Van Driest's 

expressions. Algebraic relations for all six Reynolds-stress 

components in terms of the time-average velocities and the turbulence 

quantities are derived in the fourth and last model for high 

Reynolds number flow. This model accounts analytically for the 

non-isotropic features of swirling boundary layers, and does not 

require the use of the effective viscosity concept; the Reynolds 

stresses are directly calculated. 
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The four turbulence models are tested by comparing the predictions 

, with a large number of existing experimental data as well as 

data from two new experiments which were performed. 

Of the models, the algebraic stress model exhibits the most 

promising improvement in universality of predictive power. The 

extension of its applicability to low Reynolds number flow to 

permit the prediction of the sublayer region represents an urgent 

future task. 
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CHAPTER 1 

INTRODUCTION  

1.1 The Problem Considered  

Swirling boundary layers are characterised by a 

circumferential component of velocity about a symmetry axis in addition 

to a main component of velocity in the dominant direction of flow. 

The presence of this circumferential velocity sets up centrifugal and 

Coriolis forces which strongly influence the structure of the flow. 

It is therefore not surprising that analytical work and experimental 

investigations have been, and still are, restricted to simplified 

models and approximate simulations of the geometrical and flow structure 

of real rotating systems. 

The present work is confined to swirling flows of the 

boundary-layer class, where there is a single predominant direction 

of flow and where the diffusive fluxes are significant only normal to 

this direction; consequently there are no regions of recirculation. 

Within the context of the boundary layer restrictions the fluid flow 

situations considered here all fall within the general flow 

configuration illustrated in figure 1.1. 

Fi . 1.1 General flow confiauration 
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The geometry is axisymmetrical and body R rotates about the 

symmetry axis. The enclosure S may or may not be present, and the 

system is correspondingly termed 'shrouded' or 'unshrouded'. The 

fluid surrounding body R may be at rest, or it may move relative to 

R in one or more axially-directed streams issuing from the region E. 

The flow may be either laminar or turbulent, but most practical flows 

are turbulent. 

Information about the dependent variables of.the problem is 

known at the surfaces of R and S and constitutes the boundary 

conditions. If stagnation enthalpy is one of the dependent variables 

for example, then the temperature, heat flux, or heat-transfer 

coefficient at the surfaces is prescribed. The boundary conditions 

may vary with x, the coordinate measuring distance along the surface 

of. R; but for fixed x, they are invariant with respect to the 

circumferential coordinate. Consequently, the dependent variables 

also possess axial symmetry throughout the flow field. The problem 

is, therefore, a tw•ro-dimensional one since it is completely specified 

by reference to two independent, variables. 

1.2 Scientific and Engineering Importance  

Swirling axisymmetrical boundary layers are of considerable 

scientific interest; this arises from the fact that the shear stress 

possesses two main components. In this respect swirling boundary 

layers are akin to three-dimensional ones; the distinction. is that, 

whereas the cross flow in the three dimensional layer is the result 

of pressure variations, the circumferential velocity component of the 

swirling boundary layer is not pressure driven but a result of the 

rotation of either a surface of revolution, or of the free-stream. 

Because of the two-dimensionality and the consequent ease with which 
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the governing partial differential equations may be computed, 

axisymmetrical swirling boundary layers represent a useful 

intermediate stage in the development of prediction procedures for 

three-dimensional boundary layers. 

In addition to their important scientific significance 

swirling boundary layers are also of considerable engineering 

importance. Recent years have witnessed ever increasing interest 

in the flow and heat transfer characteristics of rotating systems. 

There are numerous examples of industrial applications where swirling 

flows are present either as a consequence of the design, or where they 

are purposely introduced to achieve desired results. Rotating machines 

and systems such as electric motors, turbines, and gas bearings, fall 

into the first category; engineers are primarily concerned with 

economical cooling arrangements which will prevent temperature 

limitations from being exceeded and which, ideally, will also result in 

size reduction. Other systems like rotating condensers and heat 

exchangers make use of the properties of swirling flows to obtain 

enhanced transfer of heat. The role played by swirling flows in some 

of these industrial applications is described in the following examples. 

Furnace burners often employ swirl to promote rapid mixing 

of the fuel and air and to assist in stabilising the flame. In this 

case the flow is rotating relative to a stationary surface and if the 

swirl is not so large as to cause recirculation, the flow is of the 

boundary-layer type. 

The heat transfer to the walls of a pipe containing a flow of 

hot fluid is greatly enhanced when the pipe is fitted with a twisted-

tape swirl generator. Of course, the pressure drop experienced by the 

fluid increases as well, but twisted tapes are often employed where 
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compactness is essential, notably in gas-cooled nuclear reactors and 

sometimes in industrial boilers. 

Another example of the industrial applications of swirling 

flows relates to high speed rotating evaporator-condensers. Through 

the action of centrifugal forces liquid is maintained in the form of 

thin films on both sides of the rotor surfaces, and large rates of 

heat transfer from the heated rotor are achieved. This rapid and 

efficient evaporation process is used for the distillation of sea 

water. The rotors are usually a geometrical hybrid of discs and cones, 

and the flow is of the two-phase, boundary-layer type. 

The last example covers a sector which has received much 

publicity lately. The gas-turbine industry is concerned with the 

thermal fatigue and creep fatigue characteristics of the disc-blades 

system. The analysis of theLhermal stresses in the metal requires 

" knowledge of the temperatures, and hence the local heat-transfer rates 

at the fluid/metal interfaces. The continuing demand for higher output 

has necessitated separate cooling of the turbine discs, as distinct 

from cooling of the blades, since efficient cooling allows the turbine 

to be operated at a higher temperature, a critical factor for improved 

performance. Unlike the previous three cases where the flow was of 

the boundary-layer type, the flow in turbines is usually of the 

recirculating type. 

These examples illustrate the wide range of practical 

application of swirling flows and also demonstrate the complex nature 

of these flows. Consequently, empirical information is of limited 

value, and there is therefore a great need for reliable prediction 

methods in order to improve existing systems, to extend their limits 

of operation, and to design completely novel systems. 
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1.3 Previous and Current Prediction Procedures  

A comprehensive survey of the various prediction procedures 

in existence up to about 1958 has been provided by Dorfman (1963). 

Another extensive review of subsequent advances in the field has been 

made by Krieth (1968). Both publications contribute substantially 

to the understanding of rotating systems and are standard references. 

In Appendix 1 the most relevant prediction procedures covered by 

these surveys are described in some detail, and the coverage is extended 

there to include recent contributions. This analysis of the previous 

theoretical work reveals that all the predictions methods solve the 

boundary-layer forms of the governing equations, with the exception of 

a few cases for which the full elliptic forms of the governing equations 

reduce to ordinary differential ones. Furthermore, the predictions can 

be-  classified into three distinct groups: similarity, integral-profile, 

and finite-difference methods. 

1.3-1 SiEilaritillethods 

For the laminar flow on axisymmetric rotating bodies, all the 

procedures, apart for a few integral-profile methods, are for those 

geometries and boundary conditions for which similarity solutions exist. 

Laminar flow solutions are of limited value because in most engineering 

applications the flow is turbulent. For turbulent non-swirling flows, 

it is well known that similarity solutions can only be satisfied for 

very special boundary conditions, see Schlichting (1968) for example; 

the same remark also applies to flows having a swirl component of 

velocity. 

1.3-2 Integral-ProfileMethods  

All of the early methods developed for turbulent swirling 

flows were of the integral-profile kind, and as such they were 
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restricted to simple geometries, constant-property fluids, and 

uncomplicated boundary conditions. Using the modern digital computer, 

however, the computational work associated with extending the integral-

profile technique to more complex flows is no longer a problem. But 

as the generality increases, the number of profile parameters increases 

correspondingly and most often the relevant ones cannot, in the absence 

of extensive experimental investigations, be clearly identified. 

Further, integral-profile methods involve a matrix inversion and the 

risk of singularities increases rapidly with the number of profile 

parameters. Although, for example, Cham and Head (1969-1971) have 

recently predicted with some success the flow near rotating discs, 

cylinders, and streamline-shapes using integral-profile methods, these 

procedures are clearly unsuited for the general problem illustrated in 

_Fig. 1.1. Integral-profile methods are even less attractive When 

three-dimensional flows are considered. 

1.3-3 Finite-Difference Methods  

Integral-profile methods are losing their popularity in two-

dimensional non-swirling flows; the same trend is also evident for 

swirling flows. The review in Appendix 1 reveals that finite-difference 

techniques are favoured by the majority of contemporary research workers. 

There can be little doubt that finite-difference methods, which solve 

the governing partial differential equations ddrectly, are the only 

ones of sufficient potential to be of real interest to design engineers. 

The computer-based finite-difference procedures completely 

master the mathematical problem of solving the time-average differential 

equations. However, when the flow is turbulent, these procedures 

require explicit information about the turbulent transport properties: 

the Reynolds stresses for the momemtum equations, and the effective 
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Prandtl and Schmidt numbers for the heat and mass transfer equations. 

The development of relations to represent the Reynolds stresses is 

usually referred to as turbulence modelling. Hence, authors who 

employ finite-difference procedures concentrate on the search of 

turbulence models appropriate to their respective problems. 

1.4 Previous Experimental Work  

The previous experimental work relevant to the present class 

of boundary layer flows is reviewed in Appendix 2. The measurements 

surveyed relate to unshrouded rotating geometries, since the flow 

associated with shrouded systems is usually of the recirculating 

type. Only turbulent flow conditions are considered and the data 

reviewed are: mean flow quantities for rotating discs, cones and 

cylinders, and for swirling jets; turbulence quantities for rotating 

discs and swirling jets; heat and mass-transfer from discs and cones. 

The most reliable measurements, and the limitations and gaps in the 

available data are summarised below; the hydrodynamic, turbulence, and 

heat and mass-transfer measurements are considered in turn. 

1.4-1 Hydrodynamic Measurements  

For the case of mean velocity measurements the most useful 

data are probably those of Cham and Head (1969) on a free disc, and by 

Parr (1963) and Furuya and his co-workers (1966) on a cylinder rotating 

in a uniform axial stream. The circumferential drag data of Theodorsen 

and Regier (1944), and Owen (1969) for a free disc, are also well 

established. 

Several authors have investigated the free swirling jet which 

is a boundary-layer type flow when the degree of swirl is not large. 

The most comprehensive measurements are those of Rose (1962), and 

Chigier and his co-workers (1966, 1967) of the velocity field. 
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1.4_2 Turbulence Measurements  

Except for one incomplete set of turbulence measurements 

near a disc rotating in stagnant- air, by Erian and Tong (1971), there 

exist no data of turbulence quantities for the swirling boundary layer 

near bodies of revolution. This dearth of data is mainly due to the 

experimental difficulites associated with accurate positioning of the 

measuring probe from, and the restricted access to rotating surfaces. 

For the case of free swirling jets however, measurements of 

the six Reynolds stresses have been reported by Craya and De.rrigol (1967), 

and Pratte and Keffer (1972). But very little of the data of the 

former authors have been published, while the data of the latter 

authors show considerable scatter. Pratte and Keffer (1972a) indicated 

that their data should not be relied on for more than trends and 

magnitudes. 

1.4-3 Heat and Mass-Transfer Measurements 

The data of Cobb and Saunders (1956), McComas and Hartnett 

(1970), and Dennis, Newstead and Ede (1970) for the average heat 

transfer from isothermal discs, and the data of Krieth, Taylor and Chong 

(1959), and Tien and Campbell (1963) for the average mass transfer 

from cones rotating in stagnant air, are the most comprehensive ones 

available. 

The range of heat transfer data for non-isothermal surfaces 

is very narrow, being limited to the uniform heat flux results of Subba 

Rao (1967) for a disc, and the step-change mass transfer measurements 

of Tien (1965) for a cone. In particular, no direct measurements of 

local heat-transfer coefficients have been reported. 

1.5 Purpose and Scot of the Present Stud' 

In the four preceeding sections, the general swirling-flow 
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problem of the boundary-layer class was presented, and the scientific 

and engineering importance of swirling flows described. The ,carious 

prediction methods employed to solve the differential equations governing 

these flows were discussed. The finite-difference procedures emerged 

as the most promising ones with sufficient potential and generality to 

be of real interest to design engineers. These procedures require, 

however, information about the turbulent transport properties, and in 

this area there is a major lack of knowledge. Lastly, the review of 

experimental work has focussed attention on the reliable measurements 

as well as the gaps in the existing data. 

The main objective of the present work is, therefore, the 

development of turbulence models for swirling boundary layers. The 

search is for models which will give reasonably accurate predictions 

for several flow situations without changes in the empirical constants 

appearing in these models. The governing equations are solved by the 

finite-difference procedure of Patankar and Spalding (1970). 

In addition, the present work has two secondary objectives: 

the provision of (a) mean velocity data for a rotating cone, and 

(b) local heat transfer measurements for a disc rotating in stagnant 

air. 

1.5-1 Theoretical Work 

(a) Choice of Prediction Procedure  

The choice of a prediction method must be governed both by its 

proven capabilities and its potential for future development to tackle 

more complex flows. The extension of integral-profile methods to 

complex flow situations offers few advantages, but many disadvantages, 

compared with finite-difference methods. These latter methods have 

been shown to be flexible and general. In particular, the finite- 
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difference procedure of Patankar and Spalding (1970) has been applied 

by several workers to swirling flow problems, namely: rotating discs, 

Bayley and Owen (1969), free swirling jets, Siddartha (1971), Lilley 

(1973) and swirling flow in pipes, Roberts (1972). All these flows 

were efficiently and accurately handled by the procedure. The same 

method was chosen to solve the partial differential equations 

governing the class of swirling flows considered in the present study. 

(b) Turbulent Transport Properties  

Computers of the current generation, and probably those too 

of the next, are not large enough to permit the calculation of the 

turbulent fluctuations by solution of the time-dependent equations for 

any problem of engineering importance. Consequently, when the time-

averaged equations are solved it is necessary to construct mathematical 

models which relate the turbulent transport properties to time-averaged 

values of the variables of the flow. These models of turbulence have 

been proposed in varying degrees of complexity. For example, Prandtl's 

(1925) mixing-length hypothesis simply relates the shear stress directly 

to a mean velocity gradient, while Daly and Harlow's model (1970) 

employs differential transport equations for all six Reynolds stress 

components. 

Four different models of turbulence are developed and assessed 

in the present work: 

1. A mixing-length model, which is an extension of Prandtl's 

hypothesis to swirling flows, leading to an isotropic 

effective viscosity. 

2. A two-equation model, where the flow structure is 

characterised by two parameters determined from their own 

differential equations. These parameters are the 

turbulence energy and a length scale appropriate to the 
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energy containing motions. 

3. A mixing-length model, modified in the near-wall region 

to provide anisotropic effective viscosity formulations. 

4. An algebraic Reynolds stress model which provides six 

algebraic equations for the six Reynolds stress components, 

and which is employed in conjunction with the above two-

equation model. 

1.5-2 Experimental Work  

(a) Mean Velocity Measurements on a Cone  

Since the main objective of the present study is the 

development of turbulence models, measurements of turbulence quantities 

would provide the ideal data for validating the proposed models. 

However, these measurements, as well as presenting considerable 

experimental difficulties as the survey of experimental work revealed, 

also require expensive measuring and recording equipment. The financial 

resources available for the work reported in this thesis excluded such 

costly equipment. 

The survey of experimental work also indicated a lack of data 

for the turbulent mean velocity field near a rotating cone. For the 

well documented cases of discs, and cylinders and jets, the centrifugal 

forces resulting from the swirl act along and normal to the predominant 

direction of flow respectively; but for the case of a cone, these 

forces have components both in the streamwise and cross-stream 

directions. Experimental mean velocity data for the cone therefore 

provide a useful test of the generality of the proposed turbulence 

models. 

Hence an experimental investigation was initiated to obtain 

mean velocity data for a cone rotating in stagnant air, and also in a 

longitudinal air stream issuing from a concentric annulus near the 
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cone's apex. The dimensions and speed of the cone were large enough 

to ensure a substantial length of fully turbulent flow. The 

'apparatus and experimental measurements are presented in Appendix 5. 

The results are compared in Section 3 of Chapter 6 with predictions 

obtained using a mixing-length model of turbulence. 

(b) Local Heat Transfer Measurements on a Disc 

In almost all situations of engineering importance, the 

designer wants to be able to calculate the local heat-transfer rate 

from a specified distribution of temperature or heat flux. However, 

. experiments have so far been concentrated on measurements of average 

heat-transfer coefficients. The present experimental programme is 

therefore focused on obtaining information about the local heat-

transfer coefficient on a disc rotating in stagnant air, for any 

arbitrary distribution of surface heat flux. The construction of the 

apparatus and the experimental techniques used are described in 

Appendix 7. Predictions are compared with the measurements in Chapter 

8, Section 4. 

1.6 Outline of Remainder of Thesis  

Chapter 2 commences with the presentation of the coordinate 

system and the governing differential equations for the transport 

of momentum, enthalpy and chemical species. These equations are 

subsequently reduced to their parabolic forms which are appropriate 

to the present work. 

The finite-difference method employed to solve the differential 

equations is briefly reviewed in Chapter 3. The accuracy of the 

procedure is demonstrated by comparing predictions for a laminar 

flow with its analytically exact solution. 

The main objective of the present work, the development of 

suitable relations for the turbulent transport properties for flows 
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near rotating bodies, is covered in Chapters 4 to 7. Four models 

of turbulence are developed, and each is evaluated by comparing 

'predictions with'the results of experiments. At the end of each 

chapter, the best values of empirical parameters in the turbulence 

model under consideration are tabulated, and the findings are discussed. 

The first model is an isotropic viscosity model, based on 

an extension of the mixing-length concept to swirling flows. It is 

employed to predict the flow near rotating free discs and cones, 

cylinders in axial streams, and between two parallel discs, one 

stationary, with radial outflow. The mixing-length is subsequently 

made a function of the swirling flow Richardson's number, and the 

predictions for the above four flows are repeated. 

A two-equation energy-length model is developed in Chapter 5, 

where the effective viscosities are calculated from two turbulence 

parameters: the kinetic energy of turbulence and a length-scale, both 

determined from differential equations. The viscosities are assumed 

to be in a constant ratio. The model is evaluated by comparing 

predictions with experimental data for the flow near a cylinder rotating 

in an axial stream. 

Chapter 6 deals with a mixing-length based anisotropic 

viscosity model. The effective viscosities are calculated from two 

separate Van Driest's expressions which are made functions of the 

corresponding Reynolds stress. These expressions are applicable to 

the near-wall region only; in the outer region the viscosities are 

assumed to be equal, and the mixing length made proportional to the 

boundary-layer thickness. Predictions are obtained for the free disc 

and cone, as well as the rotating cylinder. 

A high turbulence Reynolds number model is developed in 

Chapter 7, where algebraic expressions are derived for all six 
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Reynolds stress components. Each of the two main shear-stress 

components, implicitly, the corresponding effective viscosity, is 

obtained from the mean-velocity field, the energy dissipation rate, 

and one or more of the remaining stresses. The model is employed 

to predict a free swirling jetjas well as rotating free disc and 

cylinder wall flows. When applied to the wall-flows, where the 

assumption of high Reynolds number is not valid in the near-wall 

region, the algebraic stress model is matched with the anisotropic 

mixing-length model in this region. 

In Chapter 8, some calculations are presented for the 

heat and mass transfer from free spinning discs and cones. For these 

cases, where only a single quantity is required, namely the heat or 

mass flux, the simple isotropic mixing-length model is used to 

calculate the flow. The effective heat and mass exchange coefficients 

are made linear functions of the effective viscosity. 

The principal conclusions which are the outcome of the 

thesis are enumerated in Chapter 9. The likely nature of the most 

profitable areas for further research are also discussed. 

• The descriptions and results of two experiments carried 

out as part of the present research are presented.in Appendices 5 and 

7. The two experiments concern the measurements of the velocity field 

near a cone, and the local heat transfer rate from a disc, both 

spinning in air. Appendices 1 and 2 are reviews of past theoretical 

and experimental work on swirling boundary-layer flows, while the 

remaining Appendices, 3, 4 and 6 are concerned with 'wall-functions', 

streamwise pressure gradient, and transport equations for Reynolds 

stresses. 
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CHAPTER 2  

THE GOVERNING DIFFERENTIAL EQUATIONS  

2.1 Introduction  

The majority of swirl flows present in engineering systemt are 

turbulent and therefore unsteady in Character. These turbulent flows 

consist of a mean motion and a fluctuating motion, irregular velocity 

fluctuations being superimposed on the main stream. The resultant 

turbulent mixing process exerts a considerable influence on the transport 

of energy in the flow; and the diffusive action of the turbulence 

results in an apparent or eddy viscosity giving rise to large stresses, 

termed Reynolds stresses. Except for the occurrence of the Reynolds-

stress terms, the components of the mean velocity satisfy the same 

equations as those which describe the corresponding velocity components 

in laminar flows. Schlichting (1968) reports predictions of turbulent 

flow in free jets and wakes, in pipes, and in boundary layers on walls, 

which show that the time-average character of turbulent flows can be 

predicted by.solving the equations for steady laminar flows if the 

transport properties of the fluid are appropriately increased. 

Section 2.2 introduces a two-dimensional curvilinear and 

axisymmetrical coordinate system which possesses two main features: 

it is general and therefore covers all axisymmetric flow configurations; 

it is orthogonal, hence the equations are compact. The general forms of 

the governing conservation equations are presented in Section 2.3, and 

these equations are reduced in Section 2.4 to their parabolic forms. 

2.2 The Coordinate System  

A general axisymmetrical coordinate system is illustrated in 

Fig. 2.1. The coordinates are02.  andS3 ; the first two designate two 

orthogonal families of surfaces of revolution while the last designates 



reference plane 
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axis of symmetry 
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planes through the axis of symmetry. The distance ds between two 

neighbouring points in the field is related to the incrementsingog 2  

and g 3 by: 

2 
(ds)

2 
= 	ci.g )

2
÷ (€ cif t 	cc dg )

2 
1 1 	2 2 	3 3 (2.1) 

when / /2 and £3 
are the metric cofficients. Wheng3 is measured 

in radians, /3 
is identical with the radius of curvature r

3. 

Derivatives with respect tog3  are zero because of axial symmetry. 

Fig. 2.1 General orthogonal coordinate system for  axisymmetric flow 

Geometrical Relationships  

The radii of curvature can be related to a, 1 and 22 
as follows: 

)(X 	I  )P,  
6 g1 	e2 ) 2 

(2.2) 
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ez 

vi 	e as 	el ez  ag, ( 2 .3 ) 

dr3 —  e1 	 cos y 	(2.4) 

2.3 General Forms of the Conservation Eauations  

The general elliptic forms of the conservation equation for 

mass, momentum, stagnation enthalpy and chemical species which describe 

the present axisymmetrical flows are now presented in vectorial 

notation, see for example Gosman and co-workers (1969). All symbols 

are defined in the nomenclature. The continuity equation: 

div G = 0. 	 (2.5) 

The momentum equation for each of the coordinate directions: 

5ra 	
rr . 	_ 	 -T v - •3ractp -f-(VG-T$JrcirActi- 3 3 I 	2 	

3.3  • sirta 	(2.6) civ 
e3  

Gjra.c1V= 
	

(vic -T, jra,,c1 	V3G-3 2-13 )3  Cosct (2.7) 
 03  

G.7aci vy3  = cifv( P3 T3) 
	

(2.8) 

The first Law of Thermodynamics: 

(V,T4-v;11-4-1/31+t—&.5 (2.9) 
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The equation for the conservation of chemical specieS j: 

3ra.ct tn. 	_ d v 	Rj 	 :2.10) 

this is also the mass transfer equation when there is no reaction and 

only one chemical component present. All of these equations with the 

exception of the continuity equation have the common form: 

Brad 0 	— d iv Ji6 	+ 	2 	 (2.11) 

where 6 represents a dependent variable, and 4a "source" term. The 

symbol JS may stand for the diffusive fluxes of heat, mass and 

turbulence energy; for laminar flows they are given by the following 

gradient-type laws: 

= cp  3ra.c1 T (2.12) 

7 (2.13) 

.11 k (cad 	 — k grad (2.14) 

In the case of the momentum equations, 2.6 to 2.8, the diffusive fluxes 

correspond to the shear stresses and are given the symbol T. For 

laminar flow see for example Aris (1962), the components of the shear 

stress vectors are: 

WI 2 Vz 
ti 

[ Frz  .61/s27.  2Vri  

ri;j3 	114 [I- (VI  Since- V2  cosy)_div V 
a 

= 

T2)2, = 

3 chvV] 

_ 2 div 
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r (vi + ,_0 (l Tim = 	 e) Ti r12,1 = 	LT ' 	eT) 	°5' "1  
T = rr,1 = 	['et 

11 	C3 T2,3  = T3,2  = 	 .y7,  (+33  

(2.18) 

i2.19) 

(2.20) 

In terms of the coordinates g 1,g2  and c, the common form 

of the conservation laws, equation 2.11, expands to give: 

)cb t  G 	[1 (eel 	(es9s  4_ 	(2.21) e7 g 	eele3 3g, 	3  A' 	Sx  ' 8 )1  

2.4 Parabolic Forms of  the Governincj Equations  

2.4-1 Requirement for a  

The general elliptic conservation equations presented in 

Section 2.3 may be considerably simplified for the special case of 

boundary-layer flow. Before making these simplifications it is 

important to clarify the requirements which must be fulfilled if a 

flow is to be of the boundary-layer kind. 

Patankar and Spalding (1970) have given this particularly 

useful definition: "a boundary layer is a region of fluid where there 

is a single predominant direction of flow and where the diffusive 

fluxes are significant only at right angles to this direction". A 

consequence of this statement is that regions of recirculation must be 

absent. 

2.4-2 The Boundary Layer. Equations  

Direction-1 is chosen to be the predominant direction of 

flow. Diffusive fluxes are therefore negligible in that direction. 

The equations for the conservation of momentum in the cross-stream 

direction, equation 2.7, is normally ignored for non-swirling 
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flows unless the surface curvature is large. But for swirl velocities 

common in engineering  practice, the last term in this equation is 

significant except for the special case of a rotating  disc, ;':Zen it is 

zero since cos a = 0. The convection term is probably negligible in 

the absence of strong  wave systems which may occur in compressible 

flows, and the diffusion term is certainly negligible, since V2. is 

everywhere small. The following  approxiMations are therefore valid: 

( /2  G — 	„ct at Ai, V2C4 	) ?   
(2.22) 

G d_ V • 3 ra 	z  0 1 (2.23) 

and (VI  G • y ract a_ (2.24) 

With these considerations equations 2.5 through to 2.10 become: 

	

'Ti c-,24q)4(42- (11136,) =0 , 	 (2.25) 

Ci 	4__G:2)\11 	 ge 	3)9 4V2Of ace VA 4_ 	irz a (2 26 ) 

7(7-di 	-3T1 —4Y3  g2.1--e-2 -  '2 3§2 J 	ei FIT 	s  
= _ 	p

c's 
V @a 	ce 	(2.27) 

()Ai 	()§i 	e3 ' 

a(49  GAv3) 	ee 	(P3v3) 	iivcoscej,(2.28) 
±e2 ql ei4 t93 g2L 	3)2 at, 	3)2  3 3  

Crg 	 RE°3 (1-k 	_vi 1, 2 _■/, 13'2)] • (2.29) 
e2 	44441- 	acct  
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G2 rLv  _ 
(1 H1 	3 g2 

(2.30) 

Equations 2.26, .28, .29, and .30 possess the common form: 

ci )0 	G2 )0 = 	• 	z ] + 
e1ag1 	ez Hz 	eim3 az i- 	3  

(2.31) 

where 0)2  = rob 	)1(p being the exchange coefficient appropriate 

to the variable 0; 4> is a source term. 
The radiation, gravitational energy, and turbulence diffusion 

terms have been omitted from the stagnation enthalpy equation; they are 

not significant in the present work. For the circumferential 

momentum equation the choice of 	as as the dependent variable 

preserves the common form of the equations. However, it is numerically 

simpler and more convenient to use another form of equation 2.28, (see 

Patankar and Spalding (1970)); by employing V3/63  instead of £31/3  as 

the dependent variable on the right hand side, the diffusion and 

source term are replaced by a single diffusion term:. 

6, )(e3v3) 	G2 )(6v,) 	g,6 rt )(v3/4)1 . (2.32) 

-F  )gi 	gz 	47 2 7 3 3g21- (7 12 /3 3  

The Geometrical Angle a  

The present work is confined to rotating cylinders, discs and 

cones, and swirling'jets; for these geometries and flow situations 

the angle a in the general orthogonal coordinates system has a constant 

value. Then the metric coefficients 	and %2  are both made equal 

to unity while the radii r1  and r2  extend to infinity; the coefficient 

3 r3 
r. Inc coordinates g l' g2' and S3  become x1, x2, and x3 

which are respectively the streamwise, cross-stream and 
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circumferential directions. Equations 2.25 to 2.30 then take on the 

familiar forms: 

OU 	 W2_ + 	Sin o 	 V2 cos a -.7 

wi pv± i x avi 0 
6x, 	I 2  Tx 	r 3r2  1_ 1)2  3X2 	Tc, 

\13z  o — 	p cosy 
6)(z  

I 	\ 	3)(2  =7572 1! 2,3  Tc, 
v)(rV3) 	v *V3) 	r 31-1 	(v3) 

V2 	()<if  ( --be.2  4- VI Tit ÷ 	 12 ).7 

P/1-3-Since 
r 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

Vamp  e2 
Xi  

3 ir r 311717 
r 3xx  J x2  (2.38) 

In theabsenceofthenticalreactionthegenerationtermR.
3 
 in equation 

2.30 is zero, and the contribution 	of the chemical components 

to the stagnation enthalpy equation is neglected. 

2.5 Closure of the Eauations 

The differential equations 2.26 to 2.30 do not alone specify 

the problem; two kinds of additional information are required: initial 

and boundary conditions for all the dependent variables (V1, V2' 
rV
3' 

1!;, m.), and auxilliary equations allowing the shear stresses and diffusion. 

fluxes to be computed in terms of the dependent variables at each point 

in the field. Boundary conditions and initial values are usually 

readily available and present no special problem. The shear stresses 

and diffusion fluxes are related to the dependent variables through the 
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dxz  

IY)  
aX 2  2,3 

(2.39), 

(2.40) 
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quantities 
	rh, 	 rand 	which have to be specified either 

	

1,2' 2,3' h' 	j 

from known properties of the fluid or by theoretical proposals, or 

through empirical information. The provision of this additional 

information for P ' 2 
I'

,3' 
rh  and 1-7 is referred to as 'the closure 1,2  

of the equations'. 

For laminar flows 
r1  " 2 	2 

and r" 3  represent the molecular 7 ,  

viscosity /X, while r: and Pi  are equal to thqk and /y15:  respectively; 
the Prandtl and Schmidt numbers, CT and Cr, are well determined 

properties of the fluid. The molecular viscosity/fps itself a real 

property of the fluid, present whether.the fluid is at rest or moving. 

For turbulent flows,'"1,2 
	2 
and  ri,3  represent the 'effective 

viscosities t p1,2  and
/ 2,3,  
A 	in the main direction and in the 

circumferential direction of flow. These effective viscosities, 

however, only arise when the fluid is in motion, and are distinctly 

not physical properties of the fluid. They are nonetheless a useful 

concept to relate the turbulent stresses to the time-average velocity 

gradients in a flow field. Analogous to laminar flow (see equations 

2.18 and 2.20), they have been defined as: 

the 	
3 

stresseST1 2 
	Tand 	correspond to the Reynolds-stress components 

,  

evil/2 and -eV2V3 respectively, see for example Hinze (1959) or 

Schlichting (1968). 

As opposed to non-swirling two-dimensional flows for which 

only the Reynolds stress --QVM is dominant since the velocity 
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component V3  is everywhere zero, axisymmetrical swirling boundary layers 

present special difficulties because both stress components -ell/2 

 ;e 	
a 

V- Ii- will not be equal and - ?vat/3  are important. In general -- 	
h 

21613M 	. 
to-TA r=,--  ; that is, the effective viscosities /1.4 , and 42.- 3  / ox,„ 	 ,,4  

must be considered to possess different values at a given location in 

the flow. Several hypotheses relating P41.2  and Pio  to other variables ,  

of the flow are described later in Chapters 4, 5, 6 and 7. 

The turbulent mixing motion also increases the transfer of 

heat and mass in flows associated with temperature or concentration 

gradients; consequently further assumptions are also needed concerning 

. theeffectivevalueofthetransportcoefficieritsrh andr.fcx heat 
_I 

and mass. These assumptions are discussed in Chapter 8. 

However, before the turbulent transport hypotheses are 

considered, it is necessary to test the purely numerical accuracy of 

the prediction procedure. The next Chapter, therefore, briefly 

describes the Patankar and Spalding (1970) finite-difference procedure 

'and compares predictions of some laminar flows with established 

accurate analytical solutions obtained by other methods. 
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CHAPTER 3  

THE PREDICTION PROCEDURE  

3.1 Introduction  

The choice of the Patankar and Spalding (1970) finite-

difference procedure to solve the present class of swirling boundary 

layers was governed by its proven successes for two-dimensional non-

swirling flows. The method is easy to use, numerically stable, and 

very economical of computer time. Its main features are summarised 

in Section 3.2. 

In Section 3.3 the numerical accuracy of the solution 

procedure is tested by comparing predictions with exact analytical 

solutions for the case of.a disc rotating in a uniform axial stream 

under laminar flow conditions. The two asymptotic cases: a disc 

rotating in stagnant surroundings and an axisymmetrical stagnation 

flow with the disc stationary, are also considered. The hydrodynamic 

and heat transfer predictions areshown to be in excellent agreement 

with the analytical results. 

3.2 Outline of the Solution Procedure  

The boundary-layer calculation method of Patankar and 

Spalding (1970) is well documented and it is only necessary to outline 

its main features here. 

The governing partial differential equations for the transfer 

of momentum heat and mass in swirling boundary layers have already been 

presented, they are equations 2.25 to 2.30 of Section 2.4-2. It was 

demonstrated there that these equations all possess the common form, 

repeated here for convenience: 

G, 
	

G,)5 
e

I 	 4 6 — b 
ei 	ag, 	 r 46 

 
 ?? 

(3.1) 



YE•-• 

- T § 	w= 	x. 
2 	- ( 3 . 2 ) 
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This similarity of the equations allows a common numerical treatment 

ofthevariablesVi,handm.,with minor modifications for V
3
; only 

the exchange coefficient 	and the source term § are different for 

each dependent variable. 

3.2-1 Cross-stream Variable  

The central feature of the Patankar and Spalding method 

is the novel specification of the cross stream t2 coordinate. The 

coordinate is a dimensionless stream function W defined as: 

The quantities $ and S are the values of the stream function Sat 

the interior and exterior edges of the boundary layer; they are 

functions of tl  and are chosen so that the main variations in the 

dependent variables lie at S values between 	and to  . Thus, 

regardless of the width of the flow under consideration, the 

coordinate always lie between zero and unity. This practice 

confines the finite-difference grid to the region of flow where the 

changes in the values of the dependent variables are relatively large 

and results in great economy of computer time. Changes of the width 

of the finite-difference grid, hence changes in the thickness of the 

boundary layer, are determined from the rate of entrainment of fluid 

from the surroundings into the boundary layer. 

3.2-2 The Common Differential Equation  

The stream function S is defined by: 

, _ 1 	3S 	1 LI 
vi= IT-  67 and G ----- - r-7-- ag • 

2 	
(3.3) 

2 	-2 	1 
These relations together with equation 3.2 result in the following 

expressions for -62 
and G2: 



and 

G2 = 
_ 	a 	) 	w  

2 	14,
1 	a1 dgi  (3.5) 
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2 
-T E I 

rG
1  

(3.4) 

The remaining metric coefficient 
l' 

see equation 2.2, can be 

determined from the geometry of the general orthogonal coordinate 

system as: 

This relation allows X1 
to be determined as a function of the cross-

stream coordinate when the streamlines are highly curved. 

For the class of swirling boundary-layers considered in 

the present work curvature effects were not important and therefore 

1 was given the value of unity. The coordinate 	becomes identical 

with x, the streamwise coordinate, and the difference between x as 

measured along the inner and outer edges of the boundary layer is 

ignored. Substituting the values of A2  and G2  into the common 

differential equation 3.1 yields:  

))1)=. 	)_j_B1C6  	 , (3.7) _____ + co  
TE- 	

dx &.) (yi-y.y• 6co 
This equation is the starting point of the finite-difference 

procedure. The meanings of the source term .1 can be deduced by 

comparing equation 2.34 to 2.38 for the transport of momentum, 

stagnation enthalpy and mass, with equation 3.7. The source terms are 

given in the following table: 

1 	3  P
a.- • 
51  2 a w 	 (3.6) 
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When 0 represents: The expression for § is: 

V
1  

4 0a  
"/ h 

m - 3 

GI 1 

- - ap 	V3G3 sin a 
+   8x 	± 

0 	,the diffusion term is however 
different 

NAll Val 
'CI-G./VT 4.VT 	!I:cif' +"3  )11 ---7 i 	1 	i2 • 	3 	23 3 T To   

0 

Table 3.1 
	

Significance of the source term  

3.2-3 Finite-difference Form of the Common Equation  

The finite-differenceequivalentof equation 3.7 is obtained 

by means of a micro-integral method. Each term of the equation is 

integrated over a small control volume around each node bounded by 

adjacent constant-x'and constant-W lines. On the assumption that 0 

varies linearly with W between grid nodes and stepwise in the x-

direction, each term appears as an integrated average over the small 

control volume. The use of the micro-integral method ensures that the 

integral forms of the conservation equations are satisfied over any 

part of the boundary layer. The result of the integration yields the 

following finite-difference equation: 

1+1 	0i-1 
+ C 	7 
	 (3.8) 

where the subscript i designates a particular grid node. A, B and C 

are functions of the cross-stream grid spacing, and the upstream 

values of 0 and the coefficients of the differential equation 3.7. 

The set of equations 3.8 are solved to yield the values of the 

dependent variables in turn at each successive downstream grid 

location using a simple recurrence formula. In this way the solution 

progressudownstream in a marching fashion. The complete derivation of 

the finite-difference equations have been published by Patankar and 

Spalding (1970). 
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3.2-4 The Streamwise Pressure Gradient  

The pressure gradient term which appears in the streamwise 

momentum equation- 2.34 is determined at any cross-stream location, 

W. say, from the cross-stream momentum equation 2.35 integrated from 

the edge of the layer to Wi, and differentiated with respect to x: 

-6)1 	 2. 

(")• = (")4,) L 	

6x  	cosc e  

A similar result can be derived ifS instead oft-Kv
,i is known. /up 

The boundary values of the pressure gradients are determined from 

potential flow analyses. 

3.2-5 Wall boundary  layers  

In the region near to a stationary or moving wall, the 

gradients of velocity and, if there is heat and mass transfer, of 

temperature and concentration are large. These steep variations are 

much more pronounced for turbulent flows than for laminar flows. 

Consequently, many grid lines must normally be deployed in such regions 

in order to obtain acceptable accuracy with a finite-difference 

procedure.. Patankar and Spalding have, however, succeeded in 

eliminating this disadvantage by the use of a special practice. 

Very close to solid boundaries convection is small since 

the velocities are low. When the convection terms are neglected the 

partial differential equations reduce to a set of ordinary ones, often 

referred to as Couette-flow equations. These equations are solved, 

employing known fluid properties for laminar flow and plausible 

relations for the effective transport coefficients for turbulent flow, 

to give algebraic relationships for the drag coefficient and the Stanton 

and Sherwood numbers in terms of the local properties of the flow; namely, 

(3.9) 
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the Reynolds number, and the mass injection and pressure gradient 

parameters. These algebraic expressions, usually called wall functions, 

provide inner boundary conditions to which the finite-difference 

computations, now confined to the remainder of the boundary layer, are 

matched. The wall functions used in the present study are discussed in 

Appendix 3. 

3.3 Numerical Accuracy of the Solution Procedure  

Before the solution procedure is applied to turbulent flows 

for which assumptions are required for the transport properties, it is 

- necessary to establish its numerical accuracy.. This is accomplished 

by comparing the predictions with available exact analytical solutions. 

The test cases chosen are the hydrodynamic predictions of Hannah (1947) 

and the heat transfer results of several workers for a disc rotating in 

a uniform axial stream. All these reference solutions are for the 

laminar flow of fluids of uniform density and viscosity. 

The problem under consideration is illustrated in Fig. 3.1; 

the general coordinate system described in Section 2.2 reduces to 

cylindrical coordinates with the angle megual to 90 degrees, x1  

equivalent to the radius r, and x2  the normal distance y from the disc's 

surface. The disc rotates at a constant angular speed 0 in a free 

stream of uniform velocity V. The boundary conditions of the problem 

are: 
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V1(r,o) = o , V1(r,0 = ar, 

V3(r,o). = Or, V3(r,00 = o, 

T(r,o). 	.-Arm, T(r,;'010 = o. 

The free stream velocity boundary condition for the radial velocity V1  

is obtained from the potential flow solution, see for example Homann 

(1936); the constant a is equal to 2',,,/nro
, where r

o 
is the radial dimension 

of the disc. The surface temperature of the disc is assumed to 

follow a power-law distribution, for which similarity solutions exist)  

to facilitate comparison with the present predictions; the symbol A 

represents a constant. 

The momentum and energy equations (2.34, 2.36 and 2.37) were 

solved for three flow conditions: 

(1) the disc rotating in stagnant surroundings, i.e., 0/a .00, 

(2) the disc rotating in an axial stream with 0/a = 2, and 

(3) the axisymmetrical stagnation flow without rotation of the disc, 

i.e. CVa = 0. 

Initial Profiles  

The circumferential velocity was assumed to decrease linearly with 

the distance y from the disc surface; the radial velocity was presumed 

to increase to a maximum and then decrease linearly with y: 

V3 = (1 - y/b) Or, 

V
1 
. or y/b, 	0 < y/b < 0.2 

V
1 	

.25 0r (1 - y/b), 0.2 cy/b F1.0 

The boundary layer thickness b, Schlichting (1968), is calculated from: 

= 4.43 (V/0)2  . 

The initial cross-stream profile temperature was assumed linear in y: 

(T 	- T ) = (1 - ) (T r,y 	b 	r,o 

7 



-42- 

Grid and Step Size  

The numerical accuracy of the solution depends on the 

distribution of the cross-stream grid nodes, and on the size of the 

step chosen to advance the solution downstream. Twentyone grid nodes, 

concentrated near the disc surface, were found to give hydrodynamic 

predictions in good agreement with the exact solutions; the results 

are presented in Section 3.3-2 below. The step size was equal to 

5% of the boundary-layer thickness. Marginally improved accuracy was 

obtained, at the expense of a large increase in computing time, by 

employing smaller steps and a larger number of grid nodes in the 

region of steep gradients, near the surface. 

For'the case of heat transfer for fluids of large Prandtl number, 

100 in the case tested, the thermal boundary layer lies well within 

the velocity boundary layer, in a very thin region near the surface. 

Thirty grid nodes were then used, :twenty covering the thermal layer 

and concentrated near the surface. 

3.3-2 Hydrodynamic Predictions 

The profiles of V
1 

and V
3 
 computed by means of the finite-

difference procedure are in excellent agreement (less than 0.1% 

maximum difference) with the analytical results of Hannah (1947) as 

revealed by Fig. 3.3. 
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Analytical results of Hannah (1947) 

oo,s • Present finite-difference predictions 

V sir 
	1. 0 

Fig. 3.3 	Velocity  profiles for three values of C/a 

(a2/ 
The drag coefficient defined as cf 	 7 

ay y.O/C)r VI  

with Tta 	+ 02 7  is compared with the exact results of Hannah in 

Fig. 3.4. 

0/a cf 

0 	Stagnation flow 

2 

*3 	free rotating disc 

Hannah 

1.075 

0.800 

0.616 

Present Predictions 

1.075 

0.801 

0.616 

Fig. 3.4 Circumferential drag coefficient 
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For the case of a free rotating disc Cochran (1934) also 

reported a value of cf  equal to 0.616. It should, be remarked that, since 

the analytical solutions pertain to the elliptic form of the governing 

equations, the closeness of the present predictions to them supports 

the validity of the boundary-layer assumptions for the swirl flow on a 

rotating disc. 

3.3-3 Heat Transfer Predictions  

The energy equation 2.37 was solved for the three flow 

conditions considered in the preceeding section for an isothermal and a 

quadratic surface temperature distribution; that is, the index m=0 and 2. 

As was the case for the velocity profiles, the predicted temperature 

profiles were in excellent agreement with the analytical results. The 

 
local Nusselt number, defined as: NU -(7) 	21 	- T 

	

of y.0 / 	Y=u 	Y=0.0) ' 

is proportional to the Reynolds number Or2/V to the 0.5 power. In Fig. 

3.5 the predicted constant of proportionality is compared with the 

analytical results of several workers. 

m 
0/a 

Analytical predictions of: Pr 0 2  co 

0 a .762 .557 .396 (1,2)*; 	(3,4) for 0/a .00- 

.762 .558 .397 Present predictions. 

2 1 1.075 .800 .616 (1,2); 	(5) for Cia .co 	only. 

1.075 .801 .615 Present predictions. 

2 100 5.19 4.18 3.79 (1)  

5.32 4.21 	• 3.74 (2)  

5.35 4.24 3.74 Present predictions. 

Fig. 3.5 
	

Nusselt number/Reynolds number
0.5  

(1) Tien and Tsuji (1964) , (2) Nabuchi, Tanaka and Sakakibara 

(1967) , (3) Hartnett and Deland (1961) , (4) Sparrow and Gregg 

(1959) , (5) Hayday (1965). 
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For Prandtl numbers of order unity the discrepancy 

between the present predictions and the conventional analytical 

results is less than 0.25%. 

3.4 Conclusions  

The finite-difference procedure of Patankar and Spalding 

has been shown to be an accurate method for solving the partial 

differential equations governing swirling flows of the boundary-layer 

class. For the laminar flow test cases considered, with the grid 

distribution and step-size employed, the circumferential drag was 

predicted to within 0.1%, and the Nusselt number to within 0.25% of 

established analytical results. 

In addition to its numerical accuracy, the procedure is 

efficient in terms of computing time. The solution of three equations 

(two momentum and energy), for a grid of 20 nodes, progressed through 

80 steps in 1 second on a CDC6600 computer. 

In the following four chapters attention is focussed on 

the physical problem. The Patankar and Spalding procedure is combined 

with various models of turbulence and applied to diverse turbulent 

flow problems. Predictions are compared with experimental data to 

assess the validity of the assumed turbulence models. Chapter 4 

covers a mixing-length model leading to an isotropic effective viscosity 

formulation. Chapters 5, 6 and 7 deal respectively with a 'two-equation' 

model, a mixing-length based approach, and an algebraic stress model, 

all three resulting in formulations for the two effective viscosity 

components. 
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CHAPTER 4  

AN ISOTROPIC VISCOSITY MIXING-LENGTH BASED MODEL OF TURBULENCE  

4.1 Introduction  

Prandtl's (1925) mixing-length hypothesis is one of the 

earliest proposed models of turbulence and it has been widely used to 

compute turbulent boundary layers without swirl. Considering the extreme 

simiplicity of the mixing-length model and its consequent meagre 

physical justification the results of these computations are surprisingly 

accurate; see for example Schlichting (1968) and Patankar and 

Spalding (1970). Tolerable predictions are also obtained for 

boundary layers for which the mixing-length concept is apparently 

fundamentally unsuited, boundary layers in strong adverse pressure 

gradients for example; see Ng, Patankar and Spalding (1968). 

However, the mixing-length model suffers from a number of drawbacks; it 

presumes that the generation and dissipation of turbulence energy 

'are in balance and therefore excludes any influence of convection and 

diffusion of turbulence energy; furthermore it implies zero turbulent 

exchange coefficients in regions of zero velocity gradients. These 

limitations are obviously a direct consequence of the over-simplification 

of the turbulence which is assumed to be dependent on the mean velocity 

field, and only one other parameter, the mixing length. 

Although the physical picture based upon the mixing-length 

concept is not correct in all details, the mixing-length model is, 

because of its inherent simplicity, still an attractive and useful 

proposition for the design engineer. For the case of swirling flows 

the validity of the mixing-length formulation has not been extensively 

explored. The present work therefore undertakes a systematic evaluation 

to establish the validity of the mixing-length concept when applied 

to the prediction of swirling boundary layers. 
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In Section 4.2, a viscosity formula is deduced, in terms of 

a mixing-length and gradients of mean velocity, from a transport 

equation for the kinetic energy of turbulence. The viscosity ratio 

/11 242 3' which appears in this formula, is assumed equal to unity; 

that is, the viscosity is presumed to be isotropic (a scalar quantity). 

This is followed by the specification of the mixing-length distribution. 

Comparisons are made between predictions and experimental 

data in Section 4.3, where the isotropic viscosity model is employed 

to predict the following flow configurations: 

1. A disc rotating in stagnant surroundings, 

2. A cone rotating in stagnant surroundings, 

3. A cylinder rotating in a uniform axially-directed stream, 

4. The radial outflow between a. rotating and a stationary disc. 

For each flow configuration and for several conditions, the optimum 

values of the empirical constants K and X in the mixing-length 

formulation are deduced from the comparisons of predictions with 

experimental data. 

An overall assessment of the usefulness of the isotropic 

viscosity mixing-length based model of turbulence is made in Section 4.4. 

4.2 A Viscosity Formulation  

Until recently most authors have simply used reasonable or 

arbitrary extensions of the mixing-length hypothesis from two-

dimensional non-swirling to swirling flows; see for example, Bayley 

and Owen (1969), Siddhartha (1971), Lilley (1973). The present 

approach to obtain a mixing-length formula is based on an analysis 

of the transport equation for k, the kinetic energy of turbulence. 

This equation, derived later in Chapter 7, comprises terms which 

represent four distinct physical processes: the convection, diffusion, 

production and dissipation of turbulence energy. 
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If a local balance between the production and dissipation 

of k is supposed (sometimes termed 'local -equilibrium'), equation7.20 

reduces to: 

av1 	a(V
3
A.) 

- v 	-v2v3   vl 2 ax2 
v2v3  r ax2 

(4.1) 

   

Production 	Dissipation 

In terms of the turbulent viscosities defined previously by equations 

2.39 and 2.40, equation 4.1 can be expressed as: 

2 

111,2 (ax2  

aV3)2 	

/12,3 ( . 8 -4113c22,) 
. 	(4.2) = e 

Now, dimensional considerations reveal that a characteristic value 

3  A 

of viscosity is proportional to 0.E, e
3  , where 2 has the dimensions 

of a length-scale. If it is assumed that the constant of proportionality, 

although directionally dependent, has a unique value for each direction, 

then p"1 can can be arbitrarily expressed as: 
iv4 

A -.14- n  3 eg (4.3) 
/11 2 	m 

where 2m  is a mixing-length referenced to the 111,2  viscosity. 

Equations 4.2 and 4.3 can then be combined to produce the final form  

of the mixing-length formulation: 	1 

2 

/11,2 	m 	)() 

L
a
3v1\ 1 

a (v3/4 
ax2 	

. (4.4) 
2 	2 , 3 

2 

The viscosity ratio 6
2 3 has been introduced for convenience; it is 
, 

defined by: 

cr2,35-111,2 	 3 /12, 	• (4.5) 

This simple mixing-length formulation can be used for the prediction 

of swirling flows if the functional relationships for 2m and 
cr 
2 3 

can be determined. 

2 y 
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4.2-1 An Isotropic Viscosity Model  

. The basic assumption of this model in terms of the 

`Reynolds stresses-  is that: 

av1/ a(if3/r) 

	

-v1v2/-v2
v
3 - ax 	ax 	 (4.6) 

2 	2 

The mixing-length expression, equation 4.4, then simply reduces to: 

avl  [() 2 	a(v3  n 2 

	

P1,2 = p2,3 = P1
m 

	ax
2 	

ax2 	I  

] 

, (4.7) 

where the viscosity ratio 62,3  is equal to unity. This formulation 

retains the basic simplicity of the mixing-length hypothesis since 

no new empirical constants are introduced. 

4.2-2 The Mixing-length Distribution  

Close to a wall, but outside the sublayer, all evidence 

indicates that the mixing-length -gm  is proportional to the normal 

distance y from the surface. Very near the wall Lm  is presumed to 

diminish in accordance with Van Driest's (1956) expression: 

m = Xy[l - exp(-y1P7/42)] 	 (4.8) 

This formulation adequately describes the main characteristics of plane 

two-dimensional incompressible boundary-layers, and allows the field 

of calculation to be extended to the laminar sublayer. For two-

dimensional non-swirling flows the constant A is about 26, and T is 

the local value of the shear stress. However, it is not evident 

how the damping effect in the sublayer should be incorporated into 

a formulation for two-dimensional swirling flows or three-dimensional 

boundary layers, since in this case it is likely to influence the rate 

of change of the direction of the shear stress vector as well as the 

rate of change of its magnitude. 

It is presumed, for the present isotropic viscosity model, 

that the appropriate form of the Van Driest expression for swirling 
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boundary layers is: 

/m = Ky [1 - exp (-ypi
1/4.1)] 	(4.9) 

The local value of the shear-stress vector TR  appears in the damping 

term; the constant A is, based on non-swirling flow work, and some 

swirling-flow work, Bayley and Owen (1969), Cooper (1971), ascribed 

the value 26. 

Further from the wall, in the wake portion of the boundary 

layer, /111  is found to scale approximately with the thickness 5 of the 

boundary layer, see Escudier (1965), Schlichting (1968). It is 

therefore assumed that: 

.e
m 

X5 , X5/K < y S • (4.10) 

The mixing-length constants It and X are adjustable ones to be 

determined from experimental information. 

4.3 Comparisons'of Predictions with Experimental Data  

4.3-1 Disc in Stagnant Surroundings  

The flow induced by a disc rotating in a stagnant medium, 

Fig. 4.1, is the simplest flow in the class of swirling boundary-layers 

near walls. The flow in the central region of the disc is laminar, and 

undergoes transition to turbulent flow of some radial distance from 

the centre. 

ro 

It 

Fig. 4.1 	Disc rotating in stagnant surroundings  
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The present computations were commenced in the region of 

laminar flow. The turbulent transport formulae 4.7, 4.9 and 4.10 

were introduced at the radial location where the transition Reynolds 

number Retran  is first attained; a value in the range 1.8X10
5 
and 2.8X105 

was assumed, depending on experimental evidence. No claim is made of 

physical realism for this simple transition procedure; the predictions 

in the vicinity of Retran clearly lack significance. 

(a) Average Drag Coefficient  

In Fig. 4.2 the predictions of average drag coefficient Cf  

are plotted against Reynolds number Re, and compared with the results 

of three experiments. The three panels (a), (b) and (c) display 

respectively the influence on the predictions of varying )(A, and 

Re
tran. The effect of varying Xis rather less than that for comparable 

variations in K; the near-wall turbulence has a much larger influence 

on the wall drag than the outer layer turbulence. Varying the 

transition Reynolds number in-the range 1.8X105 to 2.8X10
5 
only 

influences the drag predictions in the area where the experimental 

data exhibit the typical scatter associated with transition from 

laminar to turbulent flow. 

The values of K and which allow the best fit with the 

data are 0.42 and 0.085 respectively. These values agree with those 

which very often provide good prediction of plane, non-swirling 

boundary layers. They contrast with the values 0.50 and 0.13 which 

have been found to give the best results for the axially symmetrical 

wall jet, Spalding (1967), a non-swirling flow which is geometrically 

comparable with the present flow. It is evident that the dominance 

of the swirl component of velocity and the absence of a strong axial 

flow directed towards the disc at its centre are sufficient to cause 

the present flow to be more akin to a plane one. The mean transition 
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.2 	 .5 	Re 	1.0 	2 	5)106  

Predictions* full lines Experiments 

Panel X. X Retran 
(a) 1 .38 

2 .42 .08 2.3X105 o Theodorsen (1944) 

3 .46 

(b) 1 .08 t Kreith (1966) 

2 .42 .09 2.3X105 

3 .10 x Owen  (1969) 

(c) 1 1.8X105 

2 .42 .08 2.3X105 

3 2.8X105 

Fig. 4.2 Average drag on a disc rotating in stagnant air  



-537 

Reynolds number 2.3X10
5 recommended in the experimental studies, 

Kreith (1966), results in predictions which correspond fairly well with 

'the mean of the experimental data. 

(b) Shape Factor  

Predictions of the shape factor H for the circumferential 

velocity profile are compared with the data of Cham and Head (1969) 

in Fig. 4.3. The results of varying )<, X, and Retran  are shown 

'respectively on panels (a), (b) and (c). Since the influence of the 

parameter K is felt mainly in the near-wall region, the development of 

the shape factor is more dependent on variations in X than K. The 

effect of varying Retran  is not noticeable at the high Reynolds 

numbers. On panel (d) predictions obtained withR=0.42 and V--0.085, 

the values which result in the best predictions of the circumferential 

drag, compare favourably with the data and integral-profile predictions 

of Cham and Head. 
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(b) . 

1.0 Re 1.0 Re 15xl06 

Panel ){ A Re
tr 

(a) 

(b) 

(c) 

(d) 

an 

1 .38 0000 Experimental data 

2 .42 .08 2.3XIO
S of Cham and Head (1969 ) 

3 .46 

1 .oa Present predictions 

2 .42 .09 2.3XIO
S 

3 .10 -- -Predictions of 

1 1.aXI05 Cham and Head 

2 .42 .08 2.3XIO
S 

3 2.8XIO 5 

.~42 .085 2.3XI0
5 

Fig. 4.3 Development of shape factor for the circumferential 

component of velocity 
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(c) Volumetric Flow Rate 

Fig. 4.4 displays the present predictions along with the 

predictions and experimental data of Cham and Head for a 

dimensionless radial volumetric flow rate. The overall agreement is 

good. The mixing-length constants were K.0.42 and X.0.085. The 

present solutions exhibit values of clwhich are too high at the larger 

Reynolds numbers, but nevertheless the predictions show the correct trend, 

and the discrepancy is less than 10%. 

       

.004 

Q. 

 

 

 

.002 

  

0000 Experimental data of Cham and Head (1969) 

----Predictions of Cham and Head 

Present predictions 

 

   

   

       

 

.5 
	

1.0 	Re 	 2x106  

 

  

Fig. 4.4 Volumetric flow rate in the radial direction  

4.3-2 Cone in Free Surroundings  

The cone illustrated in Fig. 4.5 rotates in stagnant 

surroundings. The centrifugal forces on the fluid resolve into two 

components, one acting in the longitudinal direction and the other 

acting normal to the surface. The latter component gives rise to a 

cross-stream pressure gradient. 

Fig. 4.5 Cone rotating in stagnant surroundings  
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The predictions of the average circumferential drag 

coefficient Cf  for a cone of vertex angle 60
o are shown in Fig. 4.6; 

the experimental data are those of Kreith (1966). The value of 0.085 

found appropriate for the disc calculations is ascribed to A . The 

corresponding best value for K appears to be 0.47 instead of 0.42. 

The transition Reynolds number, based on the studies of Kreith, Ellis 

and Giesing (1962), was assumed to be 9X104. 

C 
f 

.5 	 .7 .5 	 1.0x106 
Re = p 00sina4.1 

Fig. 4.6 Average circumferential drag  

Within the Reynolds number range 5X105  to 12X105, when the 

influence of the laminar region near the vertex is negligible, Kreith 

was able to correlate his data to within 5% as: cf 
0.157Re

-0.2 
 . 

For the present predictions the constant of proportionality relating 

cf 
to Re can be represented by 0.156. 
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4.3-3 Cylinder in an Axially-Directed Stream  

The turbulent boundary layer on a cylinder rotating in an 

axially-directed stream of uniform velocity, see Fig. 4.7, ppssesses 

some interesting characteristics. For example, the velocity vector 

twists through a right angle in tracing the velocity across the flow 

field. Furthermore, the flow is subjected to cross-stream centrifugal 

forces, and in this respect it is different from the disc flow which 

has no cross-stream pressure variation. As the speed of rotation 

increases, instabilities resulting from the large cross-stream 

centrifugal forces cause higher velocity fluctuations which in turn 

give rise to augmented turbulence intensities in the boundary layer. 

Fig. 4.7 Cylinder in Axially-directed stream  

Experimental measurements of the velocity field have been 

reported by Parr (1963) and by Furuya  and his co-workers (1966). 

The present predictions are for the fully turbulent downstream region 

of the flow; they were initiated from the furthest upstream profiles 

reported by the experimenters. 
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(a) Average Circumferential Drag Coefficient  

A comparison of the average circumferential drag is made in 

Fig. 4.8 between one set of Parr's data and the present predictions. 

The values of the mixing-length constants determined from the disc 

studies were used. The curves marked 2 and 3 denote the effect of 

increasing W. and Xrespectively. 

.010 

C 
• f 

.004 

20 x /R 2.8 

Fig. 4.8 Effect of varying mixing-length constants on  

the avera e dra• for a rotatin c Linder 

Since the influence of X is proportionately larger than that 

of 	it was decided to adjust X to obtain agreement with the 

experimental data, while keepingX at the disc-value of 0.085. Fig. 

4.9 displays predictions of the average circumferential drag coefficient 

for six experimental conditions. The agreement obtained between the 

predictions and the data is surprisingly good. However, the value 
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of K depends on the free stream Reynolds number as well as the ratio 

of rotational speed to free-stream velocity. 

•020 

.010 

o 
Predictions Data 	000,xxx 

Re,, Q R/14, x Ref. 
.... 

3 	

.x 
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1 0.6X105  1 .49 Furuya 

2 1.2X1d
5  

1 .50 II 	• 

• 

3 0.6X1C 2 .50 II 

_ 
4 1.2X105  2 .53 I, 

. 
5 3.0X105 3 .48 Parr 

.005 — 6 3.0X10
5 

 4 .52 ti 

4 xIR 6 
	

2.0 xJR 

Fig. 4.9 Average circumferential drag for a cylinder  

rotating in an axially-directed stream  

(b) Momentum Thicknesses  

Predictions of the circumferential momentum thickness as 

well as the axial momentum thickness are compared in Fig. 4.10 with 

Parr's data for a velocity ratio of 4. The dependence of the 

predictions on K and Xis shown by the curves marked 2 and 3. 
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Fig. 4.10 Effect of varying the mixing-length constants  

on the axial and circumferential momentum  

thicknesses for a rotating cylinder  

It is evident that accurate predictions of the overall 

flow field, that is, both momentum thicknesses, cannot be obtained 

by any combination of the constants X and )\. The same remark also 

applies to the other experimental conditions of Parr and of Furuya. 

The explanation of the failure to predict the complete flow field 

lies in the original assumption of isotropic viscosity. Consequently, 

if the mixing-length constants are determined from the data for the 

circumferential velocity distribution for example, it does not follow 

that the same set of constants will give good predictions for the 

axial velocity distribution. Turbulence models which account for 

the non-isotropic nature of the effective viscosity are presented 

later in Chapters 5, 6 and 7. 
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4.3-4 Radial Outflow Between a Rotating and a Parallel Stationary Disc  

The most comprehensive hydrodynamic study of this flow is 

probably that of Owen (1969) and Bayley and Owen (1969). They 

provide experimental results for an extensive range of conditions, and 

present predictions obtained using the Patankar and Spalding procedure. 

In order to ensure that the flow is of the boundary-layer kind, sufficient 

fluid must be supplied through the centre of the stationary member, as 

shown in Fig. 4.11, to avoid recirculation of the inter-disc fluid. 

The parameters governing this problem are therefore the disc Reynolds 

number, Re=f2 r
2 
 /v' 

 the mass inflow coefficient, C .M/rb , and the 
o  

inter-disc gap to disc radius ratio, G = s/ro. 

Fig. 4.11 Radial outflow between two discs  

Bayley and Owen's measurements of average drag coefficient 

for the rotating disc, velocity profiles and radial pressure distribution 

for typical flow conditions are displayed in Fig. 4.12 (a), (b) and 

(c), along with both their own and the present predictions. As 

described in Section 3.1(a) of Appendixl , Bayley and Owen presumed, 

in contrast to the present study, that the effective viscosities in 

the radial and circumferential directions are different. 
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Predictions of Bayley and Owen 

Fig. 4.12 Radial  outflow between a rotating and  

a parallel stationary disc  
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The present predictions were initiated at r/r0=0.35 

where the experiments of Bayley and Owen indicated the reattachment 

of a separation bubble on the stator. The radial pressure gradient 

was calculated from the following equation: 

2 
CUI 	rrrrotor 4-'tstator) 	0 

v 	nn  
3 	

V1 	
5A 	(4.11) + 	+ dr - 	rs 	r • flow 	(rsfld,

2 or 

An explanation of the symbols and origin of this equation is given 

in Appendix 4. 

The present predictions were obtained using the same 

values of K. and X as Bayley and Owen, respectively 0.40 and 0.12. 

These values appear to be the optimum ones for the gap ratio and mass 

inflow shown in Fig. 4.12. The values of X. and \ differ unfortunately 

from the optimum values determined for the unshrouded disc. Further 

exploratory comparisons with Bayley and Owen's data revealed that 

AL-ter values of X. and X are required for other flow conditions. 

It is evident that the present predictions for the average 

drag are superior to those of Bayley and Owen. There is little to 

choose betwen the two procedures in respect of the profiles and radial 

pressure coefficient predictions. It is indeed strange that neither 

procedure properly predicts the peak in the profile of radial velocity; 

there is no obvious explanation for this discrepancy. 
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4.4 Correlation of the Change in Mixing-Length Due to Swirl  

When the geometrical angle a is less than 90 degrees in the 

present coordinate system, the circumferential component of velocity 

through the action of centrifugal forces may significantly alter the 

structure of the boundary layer. The tendency of the fluid to be 

flung away from the surface is balanced by the normal pressure gradient. 

Such a flow has an analogy with a free-convection boundary layer in 

which the gravitational vector crosses the heated wall boundary. 

4.4-1 The 'Monin-Oboukhov' Formula  

, Bradshaw (1969) has presented a rather penetrating 

analysis of the analogy between the effect of swirl and that of 

buoyancy on turbulent flow. He suggests the 'Monin-Oboukhov' formula: 

M C 	
2 (l-13.Ri) 	, 	 (4.12) 

, 	M 

as a particularly simple approximate means of correlating the effect 

of the centrifugal body forces on the mixing-length. The symbol 

m,c represents the correctd value of the mixing-length 2m to account 

for centrifugal effects. 13 is an adjustable parameter of the 

turbulence model, and the Richardson number Ri, normally of 

meteorological interest, characterises here the ratio of the centrifugal 

forces, instead of the buoyancy forces, to the inertia forces. Because 

of the tenuous physical content of the Monin-Oboukhov formula, 13 

cannot be expected to exhibit a refined degree of universality. 

The Richardson number, as Bradshaw pointed out, can be 

regarded as the ratio of the square of a typical frequency scale of 

the circumferential velocity fluctuations to the square of a typical 

eddy in the boundary layer. For the former the appropriate quantity is: 
1 

	

p

2V, 	r V3 	)} 2 
cos (4 	 ; while for the latter, consistent with 

	

T2 	a x2  
the viscosity formulation (equation 4.7), the resultant of the velocity 

gradients is the appropriate choice. Hence, 
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Ri = 

2V3 	a(rV3) 

r
2 cosa ax2 (4.13) 

(

av 2 	a(v3/1 
ax2  (r  ax2 

Cham and Head (1970) have examined the suitability of the 

Monin-Oboukhov formula by comparing their predictions obtained using 

an integral-profile method with Parr's (1963) cylinder flow. Their 

findings indicate that, for that particular flow, p is not constant 

but varies in the range 0.25 to 60 across the boundary layer. In a 

recent paper, Hughes and Horlock (1971) obtained equations 4.12 and 4.13 

by simple physical reasoning, and suggested a value of p between 

7 and 8. 

4.4-2 Cone and cylinder flow  

The Monin-Oboukhov formula was used with the present 

isotropic viscosity model, equations 4.7, 4.9 and 4.10, to predict 

the circumferential drag for the cone experiments of Kreith (1966) 

and the cylinder experiments of Parr (1963). The value of /m  is, of 

course, that appropriate to disc flow since the Richardson number is 

zero, the geometrical angle a being equal to 90 degrees; consequently 

the reference values of X and X are respectively 0.42 and 0.085. The 

value of p was adjusted until the best overall predictions were 

obtained. Fig. 4.13 presents the results for the cone and Fig. 4.14 

provides those for the cylinder. 
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Predictions with x,) 
and p . .42, .085 and 5.0 
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predictions, see Fig. 4.6 
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Fig. 4.13 Average circumferential drag on a 60o rotating cone  
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Quite good predictions are obtained when. is 5.0 for both 

the cone and cylinder. Also shown on the figures are the predictions 

for the unmodified mixing-length distribution for the previ-msly 

found best values of the constants A and )%. For these latter predictions, 

A-was equal to .085, but )(had to he varied in the range .48 to .53. 

This serves to demonstrate the -useul generality of the simple 

recommendation of a single set of constants, 	and P-5.0. 

4.5 Conclusions  

The folowing conclusions, on the usefulness and limitations 

of the isotropic viscosity mixing-length based model of turbulence, 

can be drawn from the comparisons which haVe been made of the predictions 

with the experimental evidence: 

1. For the four flow configurations considered, free disc and cone, 

cylinder in axial stream, and parallel discs with outflow, the 

variation of average circumferential drag with rotational Reynolds 

number was very well predicted. However, the magnitude of the two 

empirical constants in the mixing-length formulation is not universal, 

but dependson the particular flow configuration as well as flow 

condition under consideration. The values of the constants, )S. and )% 

are summarised in Table 4.1 below; they are those which, within the 

limitations imposed by the accuracy of the data, predict best the 

experiments of the specified reference. The assumed value of Retran  

is also given where appropriate; it always lies within the reported 

experimental range of transition Reynolds number. 
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Experiments 
)

Predictions 

)= .085 all cases 

K Re 
Iran 

Disc in stagnant surroundings: 

Theordorsen and Regier(1944) .42 2.8X105 

Owen. 	(1969) .42 1.8X105 

Cham and Head 	(1969) .42 2.3X10
5 

Cone, 60°  vertex, in stagnant surroundings: 

Kreith 	(1966) .47 0.9X105 

Cylinder in axially-directed stream: 

OR/V.3  V.,,R/v 

Parr 	(1963) 3 3.0X105 .48 

4 3.0X105 .52 
fully 

Furuya and co-workers (1966) 1 0.6X105 .49 
turbulent 

2 0.6X10
5 .50 

1 1.2X10
5 .50 

2 1.2X105 .53 

Radial outflow between two discs, one stationary; K = .40 
X= .12 turbulent 

 

fully 

Owen (1969), Bayley and Owen (1969) 

Table 4.1 	Optimum values of the mixing-length constants  

for several flow configurations  
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2. A simple modification to the mixing-length, which was correlated 

to a Richardson number to account for the effects of the swirl body-

force, improved the universality of the mixing-length approach. A 

single set of constant, X = .42, ›■ . .085, and p = 5.0, resulted in 

predictions which accorded well with the experimental data for the 

circumferential drag for the disc, cone, and cylinder flows. 

3. The concept of an isotropic viscosity is not generally valid for 

swirling boundary layers (and in consequence, for non-swirling three-

dimensional layers). For the case of a cylinder rotating in an 

axially-directed stream, where the axial and circumferential components 

of velocity were of the same order of magnitude, the model failed to 

predict the overall velocity field. If the mixing-length constants 

were determined from matching predictions with experimental data for the 

circumferential drag, then the agreement between predictions and data 

for the axial drag was poor, and vice versa. 

4. The mixing-length concept, leading to an isotropic viscosity formula, 

lacks universality. This is the inevitable drawback of a model which, 

although conceptually simple, is lacking in physical reality. The 

mixing-length hypothesis implies that the local structure of the flow 

is determined by local conditions alone, in other words that the 

generation and dissipation of turbulence energy are in local equilibrum. 

While the equilibrium condition is satisfied near a wall, it is not 

satisfied, for most flows, in the outer part of the boundary layer 

(in practice the outer four-fifths of the layer thickness). In this 

region the size of a typical turbulent eddy is of the same order as 

the boundary-layer thickness and its lifetime corresponds to a downstream 

travel of several boundary-layer thicknesses. Thus, the boundary layer 



-70- 

has a history which is not accounted for by the mixing-length theory. 

More general and physically plausible models of turbulence 

allow for the convection and diffusion of turbulence. In Chapter 5 

which follows, the transport of turbulence is taken into account, and 

it is characterised by its kinetic energy and length scale; these 

two quantities are determined from differential transport equations. 
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CHAPTER 5  

A TWO-EQUATION MODEL OF TURBULENCE 

5.1 Introduction  

The mixing-length model of turbulence described in the 

previous chapter can be considered a 'zero-differential-equation' model 

since the turbulence structure of the flow is uniquely related to the 

local mean flow conditions and is not characterised by any transport 

equation. The model works well for the boundary layers considered, but 

the empirical constants which it contains depend on flow configuration 

and flow condition. This inadequate generality of the constants was 

attributed to the simplified representation of turbulence by a zero-

equation model. 

Turbulence hypotheses which are more physically plausible than 

the mixing-length concept have been proposed by Kolmogorov (1942), 

Prandtl (1945), Chou (1945), and Rotta (1951). The local state of the 

fluid is assumed to depend on one or more turbulence quantities 

determined from the solution of transport equations. These equations 

are, however, complex and only ameanable to analytical solution after 

numerous assumptions are made, correlating these turbulence quantities 

(double and triple fluctuating velocity correlations) and the mean 

flow field. Nonetheless, these simplified equations constitute 

turbulence models which exhibit greater generality of application than 

the mixing-length model for non-swirling boundary layers, see for 

example Ng (1972), Hanjalic and Launder (1972), Rodi (1973). 

These authors, following the work of Kolmogorov (1942) and Rotta (1951), 

assumed that the local state of the fluid is characterised by two 

parameters: the kinetic energy of turbulence k, and a length scale / 

which represents the time-averaged diameter of the energy containing 
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eddies; both k and 2 are determined from the solution of their own 

differential equations, and the model is consequently referred to as a 

'two-equation, energy-length' model. An important outcome of the 

work of Ng (1972) and Rodi (1973) who respectively investigated 

boundary layers near walls and free jets, is that a single set of 

empirical constants was found to be capable of accurately predicting 

several flow situations; this ability is not possessed by the mixing-

length model. 

The present work extends the two-equation energy-length model 

to swirling boundary layers. The equations governing the transport of 

k and 2 are presented in Section 5.2, together with expressions 

relating the effective exchange coefficients to k and 2. 

In Section 5.3, comparisons are made between predictions and 

experimental data for the flow field near a cylinder rotating in an 

axially-directed stream of uniform velocity. The results of Lilley's 

(1973) investigation of free swirling jets, using the model developed 

here, are also presented. 

Lastly, Section 5.4 concludes with a summary of the present 

studies of the two-equation model of turbulence, and an evaluation of 

the findings. 

5.2 The Turbulence Energy and Length Scale Equations  

The differential equations governing the transport of 

turbulence quantities like k and 2, or other combinations such as k2  

1.5A-1 
or k 	, are developed by a combination of physical reasoning and 

intuitive guess work. Discussion of these matters can be found in 

Rotta (1951), Rodi and Spalding (1970), and Ng and Spalding (1972). 

In the present work the equation for k is derived later in Chapter 7; 

it is equation 7.20. Following Spalding and his co-workers, and also 

Rotta, an equation for k times 2  rather than an equation for 2  is 
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solved. Rodi (1970) presents a partially-modelled equation for k2  in 

cylindrical coordinates and this constituted the Starting point for 

the derivation of-the fully-modelled form . The boundary-layer forms 

of the equations for k and kA, are presented in Chapter 7; in the 

curvilinear orthogonal system of coordinates described in Section 2.2, 

they are: 

3 
014 04 

I 1-  = 
)X1 	aXz 

convection 

rr a
axz 

1 	v,)(v3/  c  
-L" 4;21-  2 .3 );,(2. 	T 2  

diffusion 	production 	dissipation 

t 	 

( 5 .1 ) 

P vakk take 
6x, 6x, 	c)x, 

r, nil  aid 
r bx2i 	,)xa.  Cg  ekV2aVI  NI2V Y')N3g1  (2 	3 	)(e 

dissipation 	wall-damping effect 	body-force effect 

The last term of equation 5.2, an outcome of the present 

work, is introduced to account for the influence of the centrifugual 

forces on the turbulence structure. Close to a wall there is no net 

effect from the production and dissipation of the kinetic energy of 

turbulence; the flow is in equilibrum. The production and dissipation 

terms of equation 5.1 are then equal, and the length scale A is 

proportional to the mixing length Am c 
 defined by equations 4.7 and 

4.12. When A 	is substituted for A in the Couette flow form of 
m,c 

Rodi's (1970) equation for kL, compatibility and dimensional 

considerations indicate that an additional term, a body-force term, is 

required. Although this term is derived from an analysis of the flow 

close to a wall, it is presumed valid across the whole layer. 

The equations for k and kL are similar to the momentum 
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equations; they contain convection and diffusion terms, with the 

remaining terms regarded as source terms. They possess the same form 

as the general equation 2.31 and consequently are also solved using 

the Patankar and Spalding procedure. 

5.2-1 The Effective Exchange Coefficients  

Kolmogorov (1942) and Prandtl (1945) suggested on 

dimensional considerations that, for a non-swirling two-dimensional 

boundary layer, the main Reynolds shear stress -p v1v2 is given by: 

IN WI  
axz 

This relation is only valid for homogeneous turbulence at high 

Reynolds number; these conditions usually prevail, at least locally, 

in many flows,see for example Rodi (1973). For non-swirling boundary 

layers, equation 5.3 combined with the definition of effective viscosity, 

equation 2.39, leads to: 

- vivz (5.3) 

(5.4) 

The effective viscosity is thereby related to the intensity of 

turbulence via k, and to the structure of turbulence via £. 

For swirling boundary layers, the present work assumes 

that the Reynolds shear stresses 

--ey/9/ 	= 
))(2. 

v2y Nilr) = and 

))(2.  

These two equations also represent, through the definitions 2.39 and 

2.40, the effective viscosities 11172  and .116,0   respectively. The 

viscosity ratio a23, defined by equation 4.5, is then equal to 

yol. In a similar way, the exchange coefficients appearing in the 

turbulence equations 5.1 and 5.2 are presumed to be: 

are given by: 

(5.5) 

(5.6) 
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and 

1(-Lze/0-1<  

1.12-f 
• Kt  

(5.7) 

(5.8) 

the origin of these formulations is discussed in Sections 7.3-5 and 7.3-6. 

The parameters or empirical constants al' a3' ak  and a fi are assumed 

constant, and their values are determined from matching predictions 

of mean-flow and turbulence quantities with experimental data. 

5.2-2 The Empirical Constants  

In total the two-equation energy-length model contains 

11 empirical constants: CB, CD, CR, Cs, Cw,K,Cq, a1, a3, ak, and akL. 

The constants CB, CD and C have a strong influence on the level and 

rate of spread of turbulence energy; the main influence of ak  and akA  

is felt as a change in the shape of the profiles of the dependent 

variables, see Ng and Spalding (1972). The parameters a, and a3, 

see equations 5.5 and 5.6, allow for the anisotropic nature of the 

effective viscosity, but the assumption that they are constant implies 

that the ratio u1,2412,3  is a constant over the flow field under '  

consideration. This is no more likely to be the case than the 

assumption df isotropic viscosity, namely that the ratio II1,2/112,3 

is unity; short of devising elaborate empirical functions for a1 
and 

a3, the assumption that they are constants provides a simple, but 

useful, approach for extending the two-equation model to account for 

anisotropic viscosity. 
• 

The turbulence model, represented by equations 5.1, 5.2, 5.5 

to 5.8, was used to predict the flow field near a cylinder rotating 

in an axially-directed stream of uniform velocity. The choice of the 

empirical constants was guided by the values found by Ng (1972) to 

give good predictions for non-swirling boundary layers near walls. 

These values, recorded in Table 5.1 below, offer the only available 
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indication of the starting point for swirl-flow computations. 

5.2-3 The Near-Wall Region  

The above system of equations approximate to the physical 

situation only in the fully turbulent part of the boundary layer. The 

exclusion of molecular viscous terms precludes their application to 

the sub-layer, that is, the near wall region where the influence of 

the laminar viscosity predominates. To overcome this restriction the 

finite-difference solution is matched to values of the dependent 

variables, determined form 'wall-functions', at a small distance from 

the wall, yet in the fully-turbulent region. In practice the matching 

point is the first grid-node away from the surface. 

The resultant velocity VR, from the experimental findings 

of Backshall and Landis (1969), is presumed to obey the conventional log - 

law: 

(5.9) 

the resultant shear stress T
R 
is constant in this near-wall region, 

and acts in the same direction as the resultant velocity. The axial 

and circumferential shear stress components are then obtained by 

straightforward resolution. 

The length scale 2  is proportional to the distance from 

the wall, see for example Ng and Spalding (1972), and Launder and 

Spalding (1972): 

(5.10) 

No general recommendation have yet been made about the 

behaviour of the turbulence energy k in the sublayer. It is presumed 

that, in this region, the production and dissipation of turbulence 

energy are in balance; the near-wall value of k is then proportional 

Pressure gradient effects are not included in equation 5.9; the 
influence of pressure gradient for the flow for which this 
equation is used, see Section 5.3, is negligible. 
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to the resultant wall shear stress TR  given by equation 5.9. The 

relation between k and TR  is derived in Appendix 3 and is: 

k 	E-10 1 2' R 
	 (5.11) 

5.3 Comparisons of Predictions with Experimental Data  

5.3-1 Cylinder Rotating in Axially-Directed Free Stream  

The case of a cylinder rotating in an axially-directed 

free stream of uniform velocity, already illustrated in Fig. 4.7, is 

a particularly interesting one. The mixing-length studies of Chapter 4 

reveal that the range of experimental data for this flow presents a 

trying test of the generality of the empirical constants of the 

assumed turbulence model, and also of the capability of the model to 

predict the overall flow field for a given flow situation. 

Predictions of circumferential and axial momentum 

thicknesses for two of Parr's (1963) experimental conditions were 

compared with his data; these two cases were found to be a sufficient 

test of the generality of the model. To procure as much consistency 

as possible between the present work and those for non-swirling flow, 

the empirical constants employed are those which work well for the 

non-swirling flows. Consequently, all the constants in equations 5.1 

and 5.2, with the exception of CR  which appears in the body-force term, 

are those proposed by Ng (1972). The value of CR, as well as al  and a3, 

were adjusted to values giving the overall best agreement with the 

data. These values and those of the remaining constants are shown in 

Table 5.1 below; the comparisons between predictions and experimental 

data are presented in Fig. 5.1. 



•01 

• 23 
R 

.005 

0 

.008 

1,2 
R 

.004 

0 

- 	I 	I 

-78- 

• CB  = '.985 	CD  = 	.09 	CS  = 	.0585 	Cw  = 	.078 

K = .4 	Cq 	. 4.0 	a
k 
. 1.0 	ak1  = 1.0 

Fig. 5.1 
below 

Ct 12/171,. CR a.1 63 

1 3 0 3.0 0.2 

2  3 2 3.0 0.3 

3 4 0 3.0 0.3 

4 4 2 - 	4.0 0.6 

Table 5.1 Constants for the energy-length turbulence model  

for the cylinder flow  

2.0 	30
XAR 

2.0 	2.5 

circumferential momentum thickness 

20 0 3.0 
	2.0 25 

axial momentum thickness 

	 predictions (see also Table 5.1 above) 
o o o 	data of Parr (1963) 

Fig. 5.1 Axial and circumferential momentum thicknesses for  

the cylinder flow  
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The results are marginally better with the body-force term 

included and CR 
 = 2.0. The axial and circumferential momentum 

thicknesses are bOth well predicted, although different values of 

a
1 
and a

3 
are required for the two flow conditions considered. These 

values are substantially different from unity, confirming the findings 

of other workers, for example Lilley and Chigier (1971), that the 

turbulence of highly swirled flows is very anisotropic. It should 

also be noted that the predictions of circumferential momentum thickness 

on the whole do not compare very favourably with the predictions 

obtained using the much simpler isotropic mixing-length model of 

turbulence. These matters are further discussed in Section 5.4 below. 

5.3-2 Free Swirling Jet  

The two-equation energy-length model developed here has 

also recently been used by Lilley (1973) in his studies of free 

swirling jets issuing into stagnant surroundings. These jets, when 

the degree of swirl is not so large as to cause recirculation, combine 

the interesting characteristics of a swirling boundary layer with the 

mathematically simple boundary conditions associated with a free jet. 

There are no influences from solid surfaces, and consequently the wall-

damping term in equation 5.2 for k2 vanishes. 

Lilley's choice of constants was based on the work of 

Rodi and Spalding (1970) on non-swirling round jet flows. Having 

retained the same values for these constants, Lilley assumed a value 

of unity for a1 
and made a3 

a function of the local swirl number; 

he then determined CR by optimising his predictions of the decay of the 

maxima of the axial and swirl components of velocity with the 

experimental data of Chigier and Chervinsky (1967). The recommended 

function for a3 
is: 
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(5.12 ) 

where the local swirl number S
x 
is defined as: 

co 	 co 

sx  = cviy3y-2- ar/0- 01,f(em2-4 — ?co) r dry 	(5.13) 
0 	 0 

.01 is the radial distance where V1 
drops to .01 of its maximum 

value. The constants and function employed by Lilley are summarised 

in Table 5.2 below; he obtained good predictions of the non-swirling 

jet, and two swirling jets of swirl numbers 0.2 and 0.4 measured at 

the orifice, with the same set of parameters. 

CB  = .98 
	

C
D 	.055 	C

R 
= .06 	Cs  = .0397 

a = 1.0 	aiA  = 1.0 	a1 
= 1.0 	a3 = 1 + 2S

1/3 

Table 5.2 Constants for the energy-length turbulence model  

for the swirling jet. 

5.4 Conclusions  

1. A two-equation, energy-length model of turbulence was developed 

for swirling boundary layers, and a new term, a body-force term, was 

introduced to account for the effects of swirl on the turbulence 

structure. The empirical constants of the model were those found by 

other workers to result in good agreement between predictions and 

experimental data over a wide range of conditions, for non-swirling 

boundary layers. The introduction of the body-force term, and the 

assumption of non-isotropic viscosity, led to three new additional 

parameters, CR, al  and 0-3. 

2. For the cylinder flow, the ratio of the effective viscosities was 

presumed constant, and good predictions were obtained for the entire 
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flow field under consideration. Two flow conditions were investigated, 

and a value of 2 was found appropriate for CR; however, al  had to be 

adjusted from 3 to 4, and the ratio yal  from .07 to .15. The degree 

of variation in these parameters, for two flow conditions of the same 

geometrical configuration is not acceptable for a generally applicable 

model of turbulence. 

3. For the free jet, Lilley's predictions of axial and swirl velocity 

decay compared well with the experimental evidence for a non-swirling 

jet, and jets with swirl numbers of .2 and .4. He used a single set 

of parameters; CR  was equal to .06, al  equal to unity, and u3  was 

made a function of the local swirl number. 

4. Clearly, for the case of wall-flows, a more sophisticated approach 

than embodied by the turbulence model tried here is required to procure 

a satisfactory degree of universality. The principal task is to 

determine suitably general functions for a1 and 63 since the 

anisotropic nature of the turbulence appears to have a larger 

influence on the flow than the effect of the body-forces. 
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CHAPTER 6  

AN ANISOTROPIC VISCOSITY MIXING-LENGTH BASED MODEL OF TURBULENCE  

6.1 Introduction  

For the cylinder flow investigated in the preceeding two 

chapters, the two-equation energy-length model of turbulence gave 

better predictions of the overall flow distribution than the simpler 

mixing-length, isotropic viscosity model. However, there were still 

variations of the order of SO% in the values of the empirical 

parameters in the energy-length model from one flow condition to 

another. 

The bold assumption that the effective viscosity ratio is a 

constant is certainly not correct for the majority of swirling flows; its 

use was justified as a first step in the absence of better information 

on the cylinder flow. The studies of Lilley and Chigier (1971) and 

Syred and his co-workers (1971) have established that the ratio of the 

effective viscosities can vary appreciably, in the range 1 to 30 for 

swirling jets issuing into stagnant surroundings. 

Furthermore, experimental evidence has shown that in three- 

dimensional non-swirling boundary layers, the assumption that the shear-

stress and velocity vectors are parallel in the near-wall region is not 

in general valid; see for example Johnston (1970) and East (1972). It 

is reasonable to presume that these two vectors are also not aligned in 

two-dimensional swirling boundary layers. It seems likely therefore that 

if a generally applicable model of turbulence is required, attention 

must be focused on determining the anisotropic nature of the viscosity. 

In particular, since the transfer processes in the near-wall region have 

a very pronounced influence on the remainder of the flow, a proper 

account of the anisotropy of the viscosity in this region is indispensable. 

Consequently, the main purpose of this chapter is to present and assess 

a near-wall anisotropic vicosity model of turbulence. 
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A way of determining the two effective viscosities 111,2  and 

11,2,3 from mixing-length expressions modified by van Driest's (1956) 

damping functions is presented in Section 6.2. Predictions of flow 

development are compared with the experimental data in Section 6.3; 

three cases are considered: 

1. A cylinder rotating in an axial stream; 

2. A disc rotating in stagnant surroundings; 

3. A cone rotating in a longitudinal stream. 

Section 6.4 summarises the investigations and shows that the near-wall 

anisotropic viscosity mixing-length based model is capable of accurately 

predicting the flow configurations mentioned above, with relatively 

minor adjustments to the empirical constants. 

6.2 The Effective Viscosity Formulae  

A combination of intuition and computer trials led to the 

following procedure in which the two effective viscosities are 

determined from two mixing-length expressions modified by van Driest's 

Z 

/42 71# i-CXY .--exP(tAiz/2‘tA [(6) J-6r)613/r))  0z3 	6x 	(6.1) 
2- 	J. 

The modifications pertain to the use of the local values of the 

shear-stress components T
1,2 

and T
2 3 

in the respective damping functions. 

It should be noted that if the viscosity ratio 62,3 
previously defined 

by equation 4.5 as u is assumed equal to unity, and if the 

shear-stress components are replaced by the total shear stress, 

equation 6.1 and 6.2 are identical and revert to the isotropic 

viscosity model presented in Section 4.2. 

Bayley and Owen (1969) and Owen (1969), in their investigation 

of the radial outflow between a rotor and a stator, are the only other 

(1956) functions: 

t[ -1-.V-V [1 -ezp(-sir2)3/ 261tdi (f_xL)Ii_a_12_3 	$(.%1,,(.3/r7 
	• 

(6.2 )

2 
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workers who have employed expressions like those above. However, 

they used the gradients of individual velocity components instead of 

the combined gradients of velocity components used here as the term 

multiplying the damping functions; their approach is described in 

Section 1.3-1(a) of Appendix 1. 

Equations 6.1 and 6.2 are, of course, only valid in the 

near-wall region; further from the wall, in the wake portion of the 

boundary layer, the effective viscosities are presumed to be equal. 

This assumption is quite acceptable since it is the transfer processes 

in the near-wall region of the boundary layer which have most influence 

on the rest of the layer. In the outer region the assumed isotropic 

- viscosity is given by equations 4.7 and 4.10; these equations can be 

rewritten as: 

„ A 
d+ 	14 + (y- (13/r11  )for 

)c2. 	k 
(6.3) 

The combination of expressions 6.1 to 6.3 with the momentum equations 

forms a closed set from which the viscosity ratio Cr 3  can be evaluated. 

In the present solution procedure, the variation of 0-  , across the 40 

boundary layer is calculated explicitly from the known information 

about the effective viscosities at the upstream station. This 

distribution is then used at the downstream station; the error thereby 

introduced is negligible when the forward-step size is less than 5% of 

the boundary-layer thickness. 

6.3 - Comparisons of PredictionswithExperimental Data  

6.3-1 Cylinder in an Axially-Directed Stream  

Predictions for the growth of the axial and circumferential 

momentum' thickness are shown compared with experimental results in 

Fig. 6.1; the data are those of Parr (1963) and Furuya (1966). 
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Axial momentum thickness 

Circumferential momentum thickness 

Fig. 6.1 Axial and circumferential momentum thicknesses  

for the cylinder flow  
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The values of the constants and X , displayed later in Table 6.1, vary 

by leSs than 20% over the complete range of flow conditions considered. 

The agreement between predictions and data for both momentum 

thicknesses is very good. Referring back to the predictions obtained 

with the isotropic viscosity mixing-length, Fig. 4.10 and with the 

energy-length model, Fig. 5.1, the enhanced universality of the present 

model is evident. 

Fig. 6.2 shows the predicted near-wall distribution of the 

viscosity ratio a2 3' • its departure from unity is considerable. There 

exists no experimental information from which a
23 can be deduced for ,  

the cylinder flow; however, the variation of a 	across the sublayer 47..1 

is acceptable in so far as it results in excellent agreement between 

the predictions and the measurements of velocity field. 

0 R 	= 4 
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V coR/v = 3.0X10 
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0 	.5 oip  1.0 

Fig. 6.2 Viscosity ratio in the sublayer for the cylinder flow  

6.3-2 Disc in Stagnant Surroundings  

The flow induced by a disc rotating in stagnant surroundings 

i was predicted in Section 4.3 using the isotropic viscosity mixing-

length model. The average circumferential drag variation with 

rotational Reynolds number, the development of shape factor, and 
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entrainment of fluid into the boundary layer, were all well predicted 

with a single set of constants: X. = 0.42 and X= 0.085. These 

computations were repeated with the anisotropic viscosity mixing-length 

model, and the predictions are compared with the experimental 

measurements of Theodorsen and Regier (1944), Owen (1969), and Cham 

and Head (1969) in Fig. 6.3, 6.4 and 6.5 below. 

predictions 

0000 data of Theodorsen (1944) 

XXXX data of Owen (1969) 

Fig. 6.3 Average circumferential drag for disc  

Fig. 6.4 Development of shape factor for disc  
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000 data of Cham and Head (1969) 

Fig. 6.5 Radial volumetric flow rate for disc  

The optimum values found for X and A to give best 

agreement between predictions and experimental data were 0.34 and 

0.085. The former value is surprisely low compared with the values 

of K found appropriate for the cylinder flow and also with those 

suitable for non-swirling boundary layers, usually between 0.40 and 

0.45. It may be that a relatively small adjustment to the van Driest 

damping constant would result in a more usual value of X. being 

appropriate. It was preferred, however, in the present predictions 

to adjust only K and A with the damping constant fixed at its accepted 

'flat-plate' value of 26. 

The computed variation of a2 3 
in the near-wall region 

is shown in Fig. 6.6 and it is seen to depart substantially from unity. 

Yet good predictions of the disc flow are possible with mixing-length 

formulations which presume an isotropic viscosity all the way to the 

wall; see Chapter 4 and also Cooper (1971). The reason must be that 

since the circumferential component of velocity is much larger than 

the radial one, the flow is akin to a two-dimensional plane flow in 

that it is dominated by one shear stress, the circumferential one in 

this case. 
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Fig. 6.6 Viscosity ratio in the sublayer for the disc flow  

6.3-3 Cone in Longitudinal Stream  

It was stated in Chapter 1 that the survey of previous 

experimental work revealed a lack of data for the turbulent mean 

velocity field near a rotating cone. It was therefore decided that 

an experimental investigation of the mean velocity field would be a 

useful contribution to the data on swirling boundary layers near walls, 

especially for assessing the generality of turbulence models. 

Mean velocity measurements were therefore made for the 

configuration shown in Fig. 6.7. The cone rotated in stagnant 

surroundings and had provision for injection from an annular slot 

near its apex; the experimental apparatus and procedure are described 

in Appendix 5. Data were collected for a variety of rotational 

speeds, slot heights, and mass injection rates. Representative 

predictions, based on the anisotropic viscosity mixing-length model, 

of the growth of the axial and circumferential boundary layers, and the 

decay of axial velocity profiles are shown in Fig. 6.8 and Fig. 6.9 for 

three sample experimental conditions. 
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Fig. 6.7 Cone rotating in longitudinal stream  

y
s  = .00381 m, xs = .094 m, 

V
1 s = 13.5 m/s. 

XXXX Data for Q . 562.5 rpm, 	 predictions with}C=.42,A=.10. 

0000 Data for 2 = 1111 rpm, 	 predictions with K=.42, A=.09. 

Fig. 6.8 Comparisons of predictions with experimental  

data for a rotating cone with slot injection. 



0 
0 

0 
I 	1 

Vi m  
Vies  

333-,3 
, 
, 3 

Ys 

.3 .4 

1 	I 	I 	I 	 t 	I 	I 	I 

0 

- 91 - 

5— 
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x/ys  
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1,s 
= 17.0 m/s. 

0000 Data for Q = 1111 rpm. 

	Predictions with k = .46, >t = .09. 

frg 

YS 

2 

40 	120 

Fig. 6.9 Comparisons of predictions with experimental  

data for a rotating cone with slot injection. 

Fairly good predictions are obtained; the appropriate 

values of the constants are given in Table 6.1. The maximum variation 

in both X and X is about 10%. The influence of an increase in X and X 

on the axial and circumferential boundary layer growths, and on the axial 

velocity decay, is illustrated in Fig. 6.10 below for one of the 

experimental conditions. It is seen that the influence of Xis 

largest on the axial growth, while the influence of X is most felt by 

the growth of the circumferential velocity profile. The decay of 

maximum axial velocity is hardly affected. 
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ys = .00381m, xs 	
.094m, 7/1s = 13.61-

0,C2 = 1111 rpm. 

1 	2 	3 
X .42 	.42 	.50 
A .09 	.11 	.09 

Fig. 6.10 Influence of mixing-length constants on the  

mean velocity field for the cone flow  

Two typical predictions of the variation of the viscosity 

ratio across the sublayer are shown in Fig. 6.11. A significant 

departure from unity is again displayed in the near-wall region, and 

a2,3 is revealed to be strongly dependent on the degree of swirl. 

st=1111 	s1=562.5 
.4 

'Y 

Ys 

ys 	.00381m, xs 	
.094m, 

V1 s 
= 13.6m/s. 

Distribution of 0r2 3  at x/ys = 60. 

X= .42, 	.09. 

I  
X23 1.0  2,3 

Fig. 6.11 Viscosity ratio in the sublayer for the cone flow  

0 
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6.4 Conclusions  

1. In summary, although the present anisotropic viscosity mixing-length 

based model of turbulence required some adjustments of )4 and A to cope 

with the range of experimental conditions considered, the model 

nonetheless exhibited a fairly satisfactory level of universality. 

It is substantially more general than the isotropic mixing-length model 

and energy-length model considered previously. The values of g and A 

for the three flow configurations investigated are tabulated below. 

Flow configurations V. X Experimental reference 

Cylinder 0 R2/v 

0.6X105 

0.6X105 

1.2X105 

1.2X105 

3.0X105 

3.0X105 

0 R/V1  0 , 

1 

2 

1 

2 

3 

4 

.45 

.47 

.47 

.50 

.435 

.425 

.34 

.42 

.42 

.46 

.10  

.10 

.10 

.10 

.115 

.085 

.085 

.10 

.09 

.09 

1 Furuya and co-workers 

(1966) 

Parr (1963) 

Theodorsen and Regier 

Owen (1969) 
Cham and Head (1969) 

Appendix 5 

Disc 

Cone y /R 
s 	c 

.0166 

.0166 

.0113 

Q R
c
2  sina/v 

1.30X10
6 

2.56X106 

2.56X106 

7 	/0 R 
lls 	c 

1.0 

.51 

.64 

Table 6.1 Optimum values of the mixing-length constants for the  

anisotropic viscosity model for several flow configurations  
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2. In the sublayer, for all the cases investigated, the viscosity 

ratio a2,3 differed substantially from unity. The velocity vector in 

this region 'twists', relative to the shear-stress vector and they do 

not act in the same direction as implied by isotropic viscosity 

assumptions. 

3. Admitedly, the model presented here is not based on extensive 

physical reasoning, but is a result of intuition and trials. However, 

two aspects of the results are worthy of note. First, the model is 

simple and sufficiently general to be of immediate practical use to 

design engineers who are interested in the calculation of swirling 

boundary layers near rotating bodies. Second, the results positively 

indicate that attention must be focused on the near-wall region where 

2,3 
is not close to unity. If the goal of universal application 

and truly unified treatment is to be attained, the behaviour of the 

two effective viscosities, implicitly the two main Reynolds shear 

stresses -p v1v2 and -P v
2
v
3 , 

in the near-wall region must be 

comprehensively investigated. 
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CHAPTER 7  

, AN ALGEBRAIC REYNOLDS STRESS MODEL OF TURBULENCE  

7.1 Introduction  

The turbulence models considered in the previous three 

chapters employed the concept of turbulent viscosity to relate the 

Reynolds stresses to the time-average properties of the flow, namely: 

(7.1) 

where the subscript i denotes either the streamwise or circumferential 

direction, and j denotes the cross-stream direction. The turbulent 

viscosity lit  was calculated from extensions of the mixing-length 

hypothesis, and from a two-equation energy-length model. For all 

the flows considered, the viscosity was found to be anisotropic, and 

that the anisotropy is particularly important in the near-wall region. 

This vectorial nature of the turbulent viscosity has also been 

experimentally demonstrated; for example, the measurements of Reynolds 

stresses and velocity distribution by Syred, Beer and Chigier (1971) 

of a swirling recirculating flow, have indicated that the implied 

value of the turbulent viscosity varies with direction by several 

orders of magnitude. 

In the present chapter, the anisotropic nature of the 

viscosity is determined from an analysis of the differential (transport) 

equations for the Reynolds stresses themselves. The present approach 

lies between the two-equation energy-length model with an algebraic 

relation for the viscosity ratio, and the seven-equation kind of model 

where all six Reynolds stresses and a length-scale are calculated from 

differential equations. In short, transport equations are solved for 

the energy and length-scale, but the Reynolds stresses are expressed 
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in terms of implicit algebraic relations derived under certain 

assumptions from their own transport equations. This approach combines 

the economical advantage of solving only two differential equations 

for turbulence quantities with the improved generality obtained from 

employing the algebraic relations for the Reynolds stresses; it will 

subsequently be referred to herein as the algebraic stress model of 

turbulence. 

The algebraic stress relations are derived from an analysis 

of the transport equations for the Reynolds stresses themselves. This 

treatment owes its origin to the discussions of Prandtl and 

Weighardt (1945), Chou (1945), and Rotta (1951). Hanjalic and 

Launder (1972) and du P. Donaldson (1972) have recently proposed and 

tested turbulence models of this variety for two-dimensional, non- 

swirling boundary layers. The first two authors solve differential 

equations for the turbulence kinetic energy, turbulence dissipation 

rate, and the Reynolds stress -v1v2  ; the third author and his 

colleagues solve differential equations for the turbulence energy 

and -viv2  , but they employ an algebraic formulation for the energy 

dissipation rate. The extension of this type of procedure to swirling 

boundary layers represents the primary purpose of this chapter. 

The equations for the Reynolds stresses, also called double 

velocity correlations, are presented in Section 7.2. The Cartesian 

forms of the equations are first introduced and discussed, followed 

by a derivation of the equations in curvilinear orthogonal coordinates. 

The boundary layer forms of these last equations are then determined, 

and they are subsequently reduced to algebraic equations in Section 

7.3 through the modelling of the convection, diffusion, pressure-

strain and dissipation terms. The turbulence energy equation is also 

derived and the length-scale equation presented in Section 7.3. 
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In Section 7.4, comparisons are made between experimental 

measurements and predictions obtained from the algebraic stress model. 

Both free flows and wall flows are considered; namely: a swirling 

jet issuing into stagnant surroundings, a cylinder rotating in an 

axial stream, and a disc rotating in free surroundings. The outcome 

of these studies is discussed in Section 7.5. 

7.2 Transport Equations for the Double Velocity Correlations  

7.2-1 Equations in Cartesian Coordinates  

It is both necessary and instructive to consider here the 

Cartesian-coordinate form of the exact equation for the double 

velocity correlations; see for example Hinze (1959): 

vyv,J6 	S v.)1_9 	 \.'cvJ*1 [0\13 "TiTW 	[1,)vL 	w:  

	

k 	-Av 	10- % jk 1-+  ik e 	 + 	 - 	• 

	

`.*- 	
ePle 	axe  

(7.2). 
convection 	diffusion 	production pressure-strain dissipation 

The transport of the double velocity correlations is 

governed by convection and turbulent viscous diffusion due to 

inhomogeneties in the flow field, by energy transfer from the main 

motion through the turbulence shear stresses, by energy redistribution 

due to the correlations between the pressure fluctuations and the 

derivatives of the velocity fluctuations, and finally by viscous 

dissipation. The terms representing each of these physical processes 

have been classified into distinct groups in equation 7.2. 

The origin of these groups of terms can be traced if one 

considers the parents: the Navier-Stokes equations; for incompressible 

flow these latter equations, Aris (1962),.are: 

2 
(V•V)V = _ 1..Vp + 9 .\1 (7.3) 

1 	2 J 	3 

where 1, 2 and 3 represent the convection, pressure, and viscous 

diffusion effects. When equation 7.2 is compared with 7.3 some 
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important facts emerge regarding the Navier -Stokes parentage of the 

terms appearing in the double-velocity correlations equation. Term 1 

of the Navier -Stokes equation gives rise to terms which express 

convection, diffusion and production of the double-velocity 

correlations; term 2 leads to pressure diffusion.and pressure-strain• 

terms; while term 3 leads to diffusion and viscous dissipation terms. 

Equation 7.2 has introduced two new and unknown variables, 

the pressure fluctuation 	and the triple-velocity correlation 

viv.3vk . A differential equation for the triple correlation will give 

rise to a fourth order correlation and so on. Equation 7.2 is therefore 

not soluble in its present form. Most authors have chosen to model 

the diffusion, pressure-strain, and dissipation in terms of known , 

quantities, namely the time-average velocity-components, the double 

correlations themselves, the turbulence energy and the energy 

dissipation rate. The modelled form of equation 7.2 can be symbolically 

expressed as: 

	

vivkghic  +vivil 	Modelled [Diffusion, Pressure-strain, 
lc 	 k 	Dissipation]. 

(7.4) 

7.2-2 Equations in Curvilinear Orthogonal Coordinates  

For the coordinate system illustrated in Fig. 2.1 of 

Chapter 2, the equations for the double-velocity correlations are 

required in curvilinear orthogonal forms. Rodi (1970) has performed 

a term by term transformation of the correlations from Cartesian to 

cylindrical coordinates; however, for the more general curvilinear 

orthogonal system such transformations are not straightforward and are 

usually very lengthy. A simpler route is to start directly from the 

Navier-Stokes equations as outlined by Hinze (1959), and used by 

Wislicenus and Yeh (1952) in order to derive the equations in 

cylindrical coordinates. 



-99- 

The derivation of the double-velocity correlations from 

the Navier -Stokes equations in curvilinear orthogonal coordinates is 

presented in Appendix 6. The constituent terms of the diffusion, 

pressure-strain, and dissipation are not formally determined; these 

three transport processes are instead modelled in Section 7.3 below 

in terms of known quantities. Consequently, only term 1 of the 

Navier -Stokes equation is analysed to yield the convection and 

production terms: 

v aT,T, v [ ae. 	e. 
—11 .1+1(174( L. 4. 	2(R- 'Cc vv- 
ek 	ek 	7(k 	kcsi 	l""k 	4  Ilk ek0Xk  

lodelled [Diffusion + Pressure-strain + Dissipation]; 	(7.5) ' 

the 2's are the metric coefficients, and equation 7.5 must be 

summed for k = 1, 2 and 3 for each of the six values of V7:. It 

should be noted this equation reduces to its Cartesian coordinates 

form, equation 7.4, when the metric coefficients are all equal to 

unity. 

7.2-3 Boundary-Layer Forms of the Equations  

For the class of boundary layers considered here, that is, 

flow near discs, cones and cylinders, and free jets, the metric 

coefficients 21 
 and 22 of equation 7.5 are equal to unity. The 

coefficient £
3 
is equivalent to the distance r from the axis of 

symmetry, x3  being the circumferential coordinate. After invoking 

the boundary layer assumptions, with x1 
and x2 corresponding to 

the mainstream and cross-stream coordinates, (see Sections 3 and 4 of 

Appendix 6), there result the following equations for the double 

correlations: 

7 
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v,%7 ax, aXz  

V \/LI_V 
I 	2  

4Y3-73  _ 77WI 
r bx)  2:T172  

V3 )r A — V2y3  
r 	dxx  

.4 (14 Ps +D) y (7.6) 

1-0P4-PS4- 1))2;4. (7.7) 

	

0/ 4.v _/3- 	 3,3 t.7.8) --4\13Y-Or  41,70r 	 )0/3/r)  1C C- 
I  ?at  - 2  ex/.  - 	3 	r 2 3W 2V2. 31- axz  

51V2 ..-Tt )\/1 4. 2 YI 	1V3 	)r 	rPF P Th 

	

6X1 2  bX2 	2 	r 2 3  )xi  +- viv3 7-57i2 	S 	1,1 (7.9) 

VR3_1_ V iViV3=  "Fly:60/31r) 	1Y3y, _'litxt-2Y21...(17_;13.1)).1:14)P4.. Ps 	1,3 (7.10) 
X 	2  )(2. 	

I 
t .6X2. 	a); 

V )21.13 V vo'3 

I 
+ 

	

ZI7 	 - 	- - 2 	 • 	• /p 	)1' 	27T% )r ..L(Dr -4- q 4-1)2,3 (7.11) 

	

2 	 bxx 	r ax, 
II 
	

DI 

where the symbols'stand for: 

Df 	diffusion; 

Ps 	pressure-strain; 

D 
	

dissipation; 

I 	convection terms arising from term 1 of equation 7.2; 

II 	production terms arising from term 1 of equation 7.2; 

III diffusion (velocity, pressure, viscous), pressure-strain, 

and dissipation effects arising from terms 1, 2 and 3 of 

equation 7.2. 

The following sections of the text describe the restrictions 

accepted and the assumptions made in order to model the dissipation, 

pressure-strain, and diffusion transport processes, and consequently 

simplify the stress equations to a practically useful form. 

7.3 The Algebraic Stress Equations  

7.3-1 Dissipation  

It is the small scale eddies which are primarily responsible 

for the turbulence dissipation. In the regions of the flow where the 

local turbulence Reynolds number is high, these eddies are isotropic 

even though there may be anisotropy in the larger scales of motion. 
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Consequently, the dissipation is expressed as (see Hinze (1959) or 

Hanjalic and Launder (1972)): 

Q. = 	2  S.. 
3 U 	(7.12) 

where 	in the Kronecker delta, and e is the total dissipation rate 

of turbulence kinetic energy. 

7.3-2 Pressure-strain  

The pressure rate-of-strain correlations Nj arise from 

two physical sources: the mutual interaction of the fluctuating 

velocities, and the interaction of the mean rate of strain with the 

turbulence, Hinze,(1959). The effect of the pressure-strain terms is 

to transfer energy from the higher-intensity to the lower-intensity 

normal stress components. 

Most authors have adopted Rotta's (1951) proposal to 

model the first-mentioned part of the correlation, and the same 

practice is followed here. Rotta has also proposed an approximation 

for the second-mentioned part, as have Hanjalic and Launder (1972), and 

Naot, Shavit and Wolfshtein (1970). None of these has however been 

much tested, so the formulation of the latter authors is employed here 

because of its simplicity. The full form of the pressure-strain model 

is therefore: 

. 	_ c 	(v.v.  
1 1; t i 3 11 	2  Lij 3 k 11 	(7.13) 

Rotta (1951) 	Naot (1970) 

where P6:1  represents the production terms of equations 7.6 to 7.11, and 

P
k 

stands for the production of turbulence energy. 

It should be remarked that the main source of doubt in 

current turbulence-modelling practice is associated with lack of 

knowledge about adequate, let alone accurate representation of the 

pressure-strain correlation especially for the second part, even for 

non-swirling flow. 
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7.3-3 Convection and Diffusion  

The differential nature of equations 7.6 to 7.11 can be 

very conveniently eliminated by extending the modelling one stage 

further through the adoption of a further, and not unreasonable, 

suggestion of Rodi (1973) that the local convection less the diffusion 

of a double velocity correlation v.v. is proportional to the 3 

convection less the diffusion of turbulence kinetic energy k in the 

ratio v.v./k. This approximation permits equations 7.6 to 7.11 to be 

represented by: 

(Pi< 7  C) viyj/i< 	(P 3)) td 	(7.14) 

where it has been recognised that the convection minus the diffusion 

of k is equal to the production minus the dissipation of k. 

7.3-4 The Algebraic Stress Equations  

When the modelled expressions 7.12 and 7.13 are inserted 

in equation 7.14, there results an algebraic equation for the double 

velocity correlations: 

q .91 	

P

k  	tC2:Pk _i_E(C.1.1)-}CC:i  

j 	 C - I) 5  
k 	

H 

+E( 
 

(7.15) 

It is convenient to write this equation in the concise form: 

2. L. j 
	

(7.16) 

the expressions corresponding to 
)'r]. 

and y2 are evident. 

ThestressproductiontermsP..are the corresponding 
173 

ones of equations 7.6 to 7.11 and they are expressed wholly in terms 

of the stresses themselves and known mean-flow. quantities. Consequently, 

closure of the set of stress equations necessitates only the 

additional knowledge of the production Pk  and the dissipation rate c 
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of the turbulence energy. This information is obtained by solving 

the transport equation for k, defined as half the sum of the normal 

stresses, and the- equation for e. 

The dissipation e , from dimensional arguments, can be 

expressed in terms of a length-scale 1  which is proportional to 

the energy containing eddies; namely: 

1 1  -1 
CDV 7 	 (7.17) 

where CD is a further constant to be determined. Now, since an 

equation for k is solved, it is clearly not necessary to solve an 

equation for e itself; any variable of the form ka  e b  or  k
a4b 

 will be 

suitable. Thus, for non-swirling boundary layers, Hanjalic and 

Launder (1972) chose to solve an equation for e itself, while 

Rodi and Spalding (1970) and Ng and Spalding (1972) have preferred an 

equation for the energy-length-scale product lc/. The latter approach 

is adopted in the present work. 

7.3-5 The Turbulence Energy Equation  

The transport equation for the kinetic energy of turbulence 

has already been employed together with an equation for k/ in 

Chapter 5. This equation for k is obtained from the summation of 

equation 7.6 to 7.8 for the three normal stresses, and division by 

two: 

V )1‹  + V )1<  = - TO1  4- V2V3 )(V3/ r))  4-  TF1, 

	

V 	))( 2 	X 

	

1 	 (7.18) 

convection 	production 	diffusion dissipation 

It should be noted that the troublesome pressure-strain terms vanish 

from the equation for the turbulence kinetic energy. 

Following the practice suggested by Spalding and his co- 

workers (see for example Launder and Spalding (1972)) for non-swirling 
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) 

two-dimensional boundary layers, it is presumed that the diffusion of 

k obeys a gradient-type law: 

	

1) ( ,r  1<it 	\ 

	

— cF 	) ), x2. 
where oic  is a parameter which is close to unity. 

(7.19) 

The dissipation of k, which is half the sum of the 

dissipation of the normal stresses, is from equation 7.12 simply 

equal to -e . With the diffusion and dissipation terms so modelled, 

the final form of the equation for k is: 

V )1<  _t_V )( _ (Ti -6 Tv-r)(\13/r 	 )_ E . 2 	— 	I 2 	± 2 3 
0 X 1 	ox.). 	6y 	ax 	/ 	bx.\ 	1)( 	 (7.20) 

convection production 	diffusion dissipation 

7.3-6 The Energy-Length-Scale Equation  

As mentioned earlier, an equation for the energy-length-

scale product k2  is solved in place of an equation for the dissipation. 

This equation was originally proposed by Rotta (1951) and subsequently 

used by Rodi and Spalding (1970) and Ng and Spalding (1972) in 

calculating two-dimensional non-swirling boundary layers. 	The 

of Rotta's equation in curvilinear orthogonal coordinates is: 

ilp 	 0 
	C  ] V )1e V 	I 1 [r 21_-  u"Tc6e[w_.4 	—v )(v31 csIL cw[xcil 4 1 2 	± V2 3 r 	 ---+ 2—  = 	 D I  bx 	h 	r  4 	o-o )Y 	x2 ,----„-----/ ,------,---, ,------..„----, '----....--/ ,------,..-----, 

form 

 3 

ii<2'  . ( 7.21 

convection 	diffusion 	production 	dissipation 	wall-damping 

Following the practice for the k equation, the diffusion transport 

is again represented by a gradient-type law with the exchange coefficient 

equal to k2//akl  . The wall-damping term was proposed by Ng and 

Spalding (1972) and found by these authors to result in much improved 

predictions for boundary layers close to stationary walls. This term 

is, of course, absent for the case of free flows. 
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7.3-7 The Empirical Constants  

The complete turbulence model comprising the six algebraic 

stress relations represented by equation 7.15, along with equations 

7.20 and 7.21 for k and k/, contains 10 empirical constants: 

C1, C2, CB, Cs, CD, CleCq, K  , °k'  oil. 

The model is used to predict the free swirling jet and rotating cylinder 

test flows, and the values assigned to the constants are given in 

Table 7.1 below, along with those established by other workers far.  

non-swirling flows. It is seen that, apart for C2, the present choice 

of values for the constants has been guided by those values found by 

others to give good predictions for related, but non-swirling flows. 

It should also be noted that some of the constants are common to the 

present model and to the energy-length model developed in Chapter 5. 

Unfortunately, even without swirl, changes in the constants between 

the wall flows and the round-jet flow are required as Table 7.1 reveals. 

At best, one might hope that the introduction of swirl would not give 

rise to any further lack of universality; whatever the case, the 

non-swirling flow constants are the only available indication of the 

starting point for swirl-flow computations. 

The constant C2, which appears in the model for the second 

part of the pressure-strain terms was, on the basis of tentative 

evidence, assigned the value 0.8 by the proposers of the model, Naot, 

Shavit and Wolfshtein (1970). Because of the uncertainty of the model, 

this parameter is allowed in the present work to assume either of two 

values C2 n 
and C27t' 

depending on whether it occurs in an equation 
7 

for a normal or a tangential double correlation. Both values have been 

determined 	_ by comparing predictions with 

experimental data. They turn out to be rather closer to the value 0.4 

which Rodi (1973) has recently found applicable to non-swirling jets, 
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than to 0.8. The assigning of two values to C2  is an unappealing 

feature of the present turbulence model, but is represents a useful 

stop-gap measure in the absence of better knowledge for the simulation 

of the pressure-strain terms. 

• 
C
1 

C
2 

C
B 

C
S  CD  

D k 
cro a C 

kdu W  
CK 
1 

Wall flows without swirla  

2.8 

2.8 .4b,.2
c 

.84 

.98 

.98 

.055 

.058 

.058 

.10 

.09 

.09 

2. 

1. 

1. 

1.2 

1. 

1. 

.056 

.078 

.078 

4 

4 

4 

.4 

.4 

.4 

Ng and Spalding (1972);  

Ng (1972)- 

Hanjalic and Launder (1972) 

Flow near a rotating cylinder 

Present study 

Free shear flows without swirl 

2.8 

2.8 

2.5 

2.8 

.8 

.4 

.4
b 
/ .5

c 

.98 

.98 

.98 

.98 

.0397 

.0397 

.0397 

.0397 

.055 

.055 

.055 

.055 

1. 

1. 

1. 

1. 

0.3 

1. 

1. 

1. 

Rotta (1951) 

Naot and co-workers (1970) 

Hanjalic and Launder (1972) 

Round free jet without swirl 

Rodi and Spalding (19.70) 

Rodi (1973) 

Free swirling jet 

Lilley (1973) 

Present study 

aThese studies have all been based on plane geometries; possible radius 

effects in the present rotating cylinder study will, however, be negligible 

since the boundary layer thickness is much less than the radius of the 

cylinder. 

b,c
Values of C2, referred to in the text as C2 n 

and C
2 t' 

applicable to 

normal and tangential double correlations respectively. 

Table 7.1 Values of turbulence-model constants of present study 

compared with those of other workers 
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7.3-8 The Near-Wall Region  

It has been stated that the algebraic stress model of 

turbulence described herein is restricted to regions where the _local 

turbulence Reynolds 'number is.high. This condition is not satisfied 

in the near-wall region. To overcome this restriction the near-wall 

values of the two main Reynolds stresses -pv1v2  and -pv2v3  are 

determined from the modified mixing-length based expressions 6.1 and 6.2 

using the constitutive equations 2.39 and 2.40. 

7.3-9 Examination of the Viscosity Ratio  

The viscosity ratio a
4  
, ,, previously defined by equation 

3 

4.5, was shown to be an important parameter in the turbulence models 

developed in Chapters 5 and 6; it accounted for the anisotropic nature 

of the viscosity. This ratio was either assumed to be a constant, or 

was obtained as an empirical function of the swirl level. It is 

therefore interesting to deduce an analytical expression for a
23 7 

from equation 7.15 in terms of local time-mean velocities and stress 

components. 

Now, from the definitions of the effective viscosities 11172  

and 11273, equations 2.39 and 2.40, the ratio u  2412,3 can be 

written as: 

0- 	' 	9, 
I  

2)3 	
bX 

 (7.22) 
cv73/r  )( Vr)  

From equation 7.15 for the double-velocity correlations -viv2  and 

-v2v3  it follows that: 

Substituting for the production terms P12  and P 	from equations 7  
G 7 3 

7.9 and 7.11 results in: 
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- 	(7.24) 

The behaviour of 0
23 

for two special cases is worthy of note: 
, 

 

flows for which the mainstream direction is parallel to the axis of 

symmetry, such as a swirling jet or a rotating cylinder in an axial 

stream; and flows for which the mainstream direction is normal to the 

axis of symmetry, for example a rotating disc. 

For the former, r = x2  and ar/axi.O. Further, the 

correlation _pv 
1
v 3 is the shear stress T1 3• For laminar boundary 

layers of the kind considered here, this stress is small. It seems 

reasonable to expect that it is also small when such layers are 

turbulent, in which case equation 7.24 reduces to: 

2,3 - (7.25) 

    

The parameter p is defined by (V3
2 
/V2

2 
- 1), and Ri is a Richardson. 

number defined as 2Nr"°  . Equation 7.25 can be recognised 
r 	Z)(2. 

as a relative of the Monin-Oboukhov formula which modifies the 

turbulence length-scale when a body force acting normal to the 

streamline direction exists ; see for example Bradshaw (1969), 

Hughes and HorlOck (1971), and also Section 4.4. The equation reveals 

that, when a body force is due to swirl, the modification is more 

properly applied to the viscosity ratio 02 3
. 

For the latter of the above-mentioned cases, xl  is the radial 

coordinate r, and 3r/Dx?=0. For fully turbulent flow, above a Reynolds 

number of 106, 	and 	are of the order 0.1 and 2 respec- 

tively in the outer four-fifths of the boundary layer, see Dorfman (1963). 

Generally, the correlations v1V2  and v2V3  are of the same order or 

less than V
2
2  , see for example Erian and Tong (1971); it can 	therefore 
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be surmised that a2,3 
is probably near to unity. 

7.4 Comparison of Predictions with Experimental Results 

7.4-1 The Free Swirling Jet  

Strictly, the algebraic Reynolds-stress model of 

turbulence developed in Section 7.3-1 to 7.3-7 is applicable to 

two-dimensional high-Reynolds-number swirling boundary layers. The 

only flow which does not violate any of these restrictions is a free, 

fully turbulent, axisymmetrical swirling jet for which the degree of 

swirl is not sufficient to cause recirculation; unfortunately here, 

as in many other areas of fluid mechanics today, the potential of 

computer-based prediction methods has outstripped the supply of 

established experimental data. Comparisons are made with the 

experimental results of Pratte and Keffer (1972) and of Chigier and 

Chervinsky (1967). The former authors have measured all six double-

correlations in a swirling jet using hot-wire techniques, a task which 

.is by no means easy; and these authors have remarked (1972 a) that one 

should not attempt to rely on their data for more than trends and 

magnitudes. 

In Fig. 7.1 the predicted Reynolds stresses are compared 

with those measured by Pratte and Keffer at stations 6 and 12 

diameters downstream from injection respectively. Comparisons for the 

stress v1
v3 

are not shown because there is now some doubt surrounding 

those values measured by Pratte and Keffer (1972 a). With the notable 

exception of the stress v2v3  at 6 diameters downstream, the agreement 

is on the whole quite good, better than might have been expected 

considering the uncertainties in the turbulence modelling and the 

data. 



— 110 — 

x /d 
	

predictions 	data of Pratte and Keffer (1972) 

6 0 0 o 0 

12 0 00 0 

Fig; 7.1 Free swirling jet. Predictions of Reynolds  

stresses for a swirl number of 0.3. 



Shown in Fig. 7.2 are the predicted profiles of the 

viscosity ratio o23. It is noted that a rather large maximum 7   

value of about 3 occurs at the axis for x/d=6, and that this maximum 

falls off rapidly with downstream distance due to the rapid decay of 

the swirl component of velocity. The radially-averaged values of 

2 3 are roughly the same as those found by Lilley (1973) by computer , 

optimization to give satisfactory predictions of mean quantities. 

It should be remarked that the degree of anisotropy of turbulence 

displayed by the predicted normal stresses is less than that which 

the values of the viscosity ratio u
2 3 would suggest. The latter 7 

quantity appears, therefore, to exaggerate the actual level of 

anisotropy, emphasising the fact that the 'effective viscosity' concept 

is a rather bad one for turbulent swirling flows. 

.Fig. 7.2 Predicted profiles of the viscosity ratio 0'2,3  

for a swirl number of 0.3  

In Fig. 7.3 some predictions of mean velocity distribution 

and mean-velocity decay are compared with the measurements of Pratte and • 

Keffer, and also with those of Chigier and Chervinsky. Since the Reynolds 

stresses are reasonably well predicted, not unexpectedly the predictions 

of mean quantities are also quite good.  The decay of both the axial 

and the swirl velocities are well predicted and this is particularly 
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heartening since the less sophisticated effective-viscosity based 

turbulence models do not possess this universality, Lilley (1973). The 

piediction of the circumferential velocity V
3 
for the Pratte and 

Keffer experiment stands out as being in poor agreement with the data. 

The V
3 profile of Chigier and Chervinsky is however well predicted. 

S predictions data 

	

.30 	0000 Pratte and Keffer (1972) 

	

.416  	0000  Chigier and Chervinsky (1967) 

Fig. 7.3 Free swirling jet. Predictions of velocity profile  

and velocity decay for two values of the swirl  

,number S.  



V2V3 
2  

SI r
2, 
 

1  
•6 	1 x1(53  

2,3 

I 	1 	I  
75 1.25 

- 113 - 

7.4-2 Swirling Flows Near Walls  

• (a) Rotating Disc  . Erian and Tong (1971) have measured the mean-

velocity components and the stresses viva  , v1
2 

and v3
2 

near a 

free rotating disc. Using this data in the stress relations 7.15 alone, 

the remaining stresses: v
1
v
2 , 

v
2
v
3 and v2

2 
can be 

determined, along with the ratio of (1-C2 n) upon (1-C2 t), without 

the need to specify the value of any of the adjustable constants. 

The outcome of this exercise is presented in Fig. 7.4 for a rotational 

Reynolds number of 9.93X105. It is seen that (1-C2,n)/(1
-C2,t) does 

depart from the constant value of unity in the outer part of the flow, 

but perhaps this departure is not unacceptable. The viscosity ratio 

0
2,3 

has also been calculated and it is, as expected from the arguments 

of Section 7.3-9, near unity; but in contrast to the free-jet situation, 

the normal stresses now indicate significant anisotropy of turbulence. 

32 

r-7.1  3  
\-; .n. r 

\\ \\ 

16 
\ 

nr 	ks-Tr--, 
I 	1  
I 

•02 	.04 

--- Experimental measurements of Erian and Tong (1971) 

Calculated from equation 7.15. 

Fig. 7.4 Calculated results applying algebraic stress  

relations for a free rotating disc.  
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(b) Rotating Cylinder. Mean flow data for a cylinder rotating in a 

co-axial stream have been provided by Parr (1963) and by Furuya and 

his co-workers (1966). Predictions of the growths of the axial and 

circumferential momentum thicknesses, obtained using the Reynolds-stress 

turbulence model matched near the wall to the relations 6.1 and 6.2 as 

explained in Section 7.3-8, are shown compared with the data in 

Fig. 7.5. The values of the constants of the stress model are those 

recorded in Table 7.1 for the full range of data. In the near-wall 

expressions 6.1 and 6.2 two values of the constant K, 0.43 and 0.48, 

were respectively required to predict the data of Park.  and Furuya. 

The enchanced universality of the present turbulence model is revealed 

by the predictions previously obtained in Section 4.3-3, and reproduced 

in Fig. 7.5, with the isotropic viscosity mixing-length model. 

Although neither Parr nor Furuya made measurements of any 

turbulence quantities, the predictions of these quantities are 

nonetheless of interest. Fig. 7.6 shows the predicted profiles for one 

of Parr's conditions of the turbulence kinetic energy, length scale, 

Reynolds stresses, ratio of dissipation to production of energy, and 

the viscosity ratio. Two aspects of these predictions are worthy of 

note. Firstly, the ratio of dissipation to production (e/p)k  is 

nowhere far from unity, as would be expected for a near-equilibrium 

flow, so that the rather approximate way in which the convection and 

diffusion contributions to the stress equations have been modelled should 

not. be of great consequence. Secondly, the stress ratio
2 3 

is near 
7 

unity where the local Reynolds number of turbulence is high, as 

surmized in Section 7.3-9; the considerable departure from unity within 

the sublayer was discussed in Section 6.3-1. Since both (c/p)k  and 

a
2,3 

are close to unity in the outer part of the boundary layer, 

application of the mixing-length formulation in place of the stress 

model in this region would not result in a loss of universality; the 
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computations performed in Section_6.3 -1 and displayed in Fig. 6.1 

g2,3 
/ 

.012 

2 	.005 

I 	I 	I  
4 x/R 6 

000 Experimental data 
0 R/VI,m  VilmR/v 

	

1 	2 	0.6X10
5  
5 

	

2 	2 	1.2X105 
--predictions obtained with isotropic 	3 	3 	3.0X10 

mixing-length model. 	4 	4 	3.0X10
5 

predictions obtained with stress 
model and near-wall relations 
based on anisotropic mixing-length 
model 

Reference 

Furuya (1966) 

Parr (1963) 

Fig. 7.5 Predictions of axial and circumferential momentum  
thicknesses for a cylinder rotating in an axially-directed  

stream. 

Fig. 7.6 Predictions of turbulence quantities for a cylinder 	3, 

rotating in an axially-directed stream:_n.R/V, ja,:.-4 1\tii,,RA)=3xto)x/R=2-8 . 
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7.5 Summary and Conclusions  

1. An algebraic Reynolds stress model of turbulence has been 

developed which is applicable to swirling boundary layer flows 

where the local Reynolds number of turbulence is high. All six 

Reynolds stress components were expressed in terms of the time-

average velocity components, the turbulence energy and its rate of 

dissipation, and the stresses themselves. 

2. An analytical expression for an important parameter, the viscosity 

ratio a
2 3' 

has been determined from the equations for the two 

main Reynolds shear-stress components -pviv2  and -Pv2v3 	Examination 

of this expression suggested that a2,3 
is near unity in the fully 

turbulent outer part of swirling boundary layers near walls. 

3. For wall-flows, the condition of high turbulence Reynolds number is 

not satisfied in the near-wall region; for these cases, the stress 

model was matched in this region to the modified mixing-length 

expressions described in Section 6.2. The model was subsequently 

employed to predict both free flows and wall flows. 

4. For the free swirling jet, the predicted Reynolds stresses and 

mean-velocity components were in satisfactory agreement with the 

data within the probable accuracy of the measurements. The viscosity 

ratio was found to depart significantly from unity near the axis 

and less than about la diameters from injection. 

5. For the case of a cylinder rotating in an axial stream, the complete 

velocity distribution was accurately predicted. The viscosity 

ratio a
23 

was found to be near unity away from the surface; this 

was also the result of calculations for a free rotating disc. 
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6. The algebraic stress model derived herein suffers from two 

drawbacks. First, the constant C2 is not universal, a feature 

which is attributed mainly to the inadequacy of the pressure-strain 

simulation. Secondly, the model is not applicable to the near-

wall region; it was matched with mixing-length based expressions 

in this region. 

_ 7. However, the stress model obviates the need to use the effective 

viscosity concept, the Reynolds stresses being determined 

. directly. Furthermore, for cases where experimental data are not 

available, for example the rotating cylinder, the predictions of 

the Reynolds stresses are a useful guide to further analytical 

and experimental investigations. 



- 118 - 

CHAPTER 8  

HEAT AND MASS TRANSFER 

8.1 Introduction  

The preceeding four chapters have been concerned with the 

development of models of turbulence, and these were employed to predict 

the hydrodynamic behaviour of several cases of swirling boundary layers. 

The present chapter deals with the prediction of heat and mass 

transfer from discs and cones rotating in unconfined surroundings. 

The equations governing the transport of heat and mass are 

introduced in Section 8.2, followed in Section 8.3 by the formulae 

for the effective exchange coefficients. Predictions of heat and 

mass transfer are compared in Section 8.4 with the experimental results 

for the following cases: 

1. An isothermal disc rotating in stagnant air. 

2. A non-isothermal disc rotating in stagnant air. 

3. An isothermal cone rotating in stagnant air. 

.4. An isothermal cone rotating in an axially-directed air stream 

of uniform velocity. 

The comparisons are subsequently summarised and conclusions 

drawn in Section 8.5. 

8.2 Conservation Equations  

The equations which govern the transport of heat and mass 

in laminar swirling boundary layers were introduced in Chapter 2. 

They are, in curvilinear orthogonal coordinates: 

v 01-[-(141  'V ,2 4- V 3't 2) 	 (8.1) 3 
axe  bxz  r 

am. 
cv , 

bx, 	\ 6x/ 	r Oxi 	J )x2.  
(8.2) 
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For turbulent flow, in analogy with laminar flow, it is 

presumed that the diffusive transport of heat and of mass obey 

Fourier's and Fick's laws, but with the laminar exchange coefficient 

replaced by an effective exchange coefficient which is usually much 

larger than the laminar counterpart. 

8.3 Effective Exchange Coefficients  

The available experimental data for two-dimensional non-swirling 

flows, see for example Kestin and Richardson (1963), and the 

analytical work of Patankar and Spalding (1970), suggest that the 

effective exchange coefficient is proportional to the effective viscosity 

via the relation: 

crp = Par AreFF 	 (8 .3 ) 

( 	 t! 	re number for laminar flow, namely -1,  1= -..7- 
Ca 
	

or e d =- :-. . Consequently, 
P Pr Sc 

for turbulent flow o
h eff and aj,eff are respectively the effective 7 

Prandtl and Schmidt numbers. 

Kestin and Richardson (1963) found that a
h,eff 

remains 

roughly constant at a value of 0.8 across the fully turbulent part of 

the flow in pipes. In free turbulent flows the values of ah
,eff and 

appear to be lower; a value around 0.7 has been reported by a
j,eff 

Forstall and Shapiro (1950) for axisymmetrical jets. Patankar and 

Spalding (1970) used a value of 0.9 to predict several wall boundary 

layers. 

In the region close to a wall, Patankar and Spalding (1970) 

have established that the effective exchange coefficient can be 

represented as the sum of its laminar and turbulent components: 

This variable a
eff is obviously analogous to the Prandtl or Schmidt 

(8.4) 
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This expression can be written in terms of the laminar and turbulent 

viscosity, and laminar Prandtl or Schmidt number as: 

r:FF = hFrPrew = 	+ itia 	• 
	(8.5 ) 

In the fully-turbulent region the value of at 
is, of course, the 

same as a
eff 

because ILA  is much less than lit. In the laminar sublayer, 

however, the laminar contribution is predominant since the turbulent 

viscosity tends to zero. 

For swirling boundary layers the calculation of the effective 

exchange coefficient through equation 8.5 presents a special problem 

because of the anisotropic nature of the turbulent viscosity. An 

alternative formulation which would remove this problem would be to 

specify the turbulent exchange coefficient rt  in terms of the 

turbulence energy k and length scale / calculated from the turbulence 

model described in Chapter 5. Thus, 

rerr = Vo-e  + e kz yo-E-  . 	(8.6) 

However, in Chapter 5, it was revealed that the behaviour 

of 1,‹ in the near-wall region is not well established even for 

non-swirling two-dimensional boundary layers; equation 8.6 is 

therefore not useful under present circumstances. 

Since the more complex algebraic-stress model of turbulence 

of Chapter 7 is at an early stage of development, and is in its 

present form not directly applicable to the low turbulence near-wall 

region, it was decided to employ the isotropic mixing-length model of 

Chapter 4 to determine the turbulent viscosity. It should be noted 

that the hydrodynamic predictions obtained there for the disc and 

cone flows were in excellent agreement with the experimental data. 
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Since the present chapter is restricted to predictions of heat and 

mass transfer from discs and cones spinning in free surroundings, 

the assumption of isotropic viscosity, see also the report of Cooper 

(1971), is acceptable. 

The relevant mixing-length based equations for the turbulent 

viscosity, equations 4.7, 4.9, 4.10 and 4.12, are repeated here for 

convenience: 

"i 2 
e 	 ( r) ( V))  I 

rT7 C 	>c  z 	
X1. 

(8.7) 

xy  [--exP C y  R I2Gt )1 For 	),Elx- (8.8) 

e„ d For XSbc < 	S 	 (8.9) 

_ p ec) 	. 	(8.10) 

Together with equation 8.5, and equations 2.34 to 2.38 for the transport 

of momentum and heat or mass, they form a closed set containing four 

empirical parameters: X, X, p and at. Predictions are compared with 

the experimental heat and mass transfer data in the following section; 

the values of X., X, and p found appropriate for the disc and cone 

studies of Chapter.4 are again used, and the optimum values of at  

are determined by matching the predictions with the data. 
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8.4 Comparisons of Predictions with Experimental Data  

8.4-1 Isothermal Disc in Stagnant Air  

(a) Heat Transfer  

Fig. '8.1 (a), (b) and (c) show the predictions of 

average Nusselt number for an isothermal disc compared respectively 

with the experimental data of Cobb and Saunders (1956), McComas 

and Hartnett (1970), and Dennis, Newstead and Ede (1970). The value 

of 0.85 was assigned to the turbulent Prandtl number for each of the 

three experiments. Good agreement with the data was obtained by 

adjusting the value of the transition Reynolds number 
Retran  within • 

the range quoted by the authors. 

The most interesting information is contained in Fig. 

8.2; here7  the influence of varying Retran  for a fixed value of 6h 
t 7 

is exhibited along with the collected experimental data. The predicted 

curves converge at large Reynolds numbers to yield a single result 

for fully turbulent flow which is not influenced by the transition 

assumption. Unfortunately, the data barely extend to the fully 

turbulent region and, in consequence, the suggested value of agn
;_ , of 
L 

0.85 must be considered as tentative. 

The data over-estimate the confirmed heabLtransfer 

predictions in the purely laminar-flow region. This is probably due 

to heat losses which are inevitable in heat transfer experiments. 

Notwithstanding the remarks of the preceeding paragraph, it may be • 

seen that a slightly higher value of 0-
h ,t 

than 0.85 is appropriate. 

Predictions displaying the influence of the turbulent 

Prandtl number aht are compared in Fig. 8.3 with the collected 

experimental data for a single assumed value of Re
tran 

for a
ht 

equal to 0.6, 0.85 and 1.0. 
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X=.42, 	X= .085, 	p.o.o, 	6ilt .85 

Predictions 000 Experiments 

Cobb et al. (1956) 

McComas et al.(1970) 

Dennis et al.(1970) 

Re
tran 

 Panel 

(a)  

(b)  

(c)  

1.8X105  

2.5X105 

1.5X105 

Fig. 8.1 Average heat transfer from a free rotating disc  
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K=.42, 	X= .085, 	p=0.0, 61,7t .85 

Predictions 
Ipso 
ooOlCollected 
XXX 

Re data; see 
tran Fig. 8.1 

1 1.4X105 

2 1.8X105 

3 2.8X105 

1 1 	I 	1 	1 	1 	1 	I 	1 	1 	I 	1 	I 	I 	I6  
10

5 
	Re 	 10 

Fig. 8.2 Average heat transfer from a free rotating disc;  
influence of transition Reynolds number.  

k.=.42, 	=.085, 	p=o.o 

Reiman  =1.8X105 

9 00 
Predictions 000 Collected 

XXX 
a
h,t data; see 

Fig. 8.1 

1 .60 

2 .85 

3 1.00 

Fig. 8.3 Average heat transfer from a free rotating disc;  
influence of turbulent Prandtl number.  
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(b) Mass Transfer  

Predictions of the average Sherwood number are compared 

4th the experimental- mass-transfer data of Tien and Campbell. (1963), 

and Krieth, Taylor and Chong (1959) in Fig. 8.4 	. The optimum 

values of X and X, with p.o.o, determined from the hydrodynamic 

investigation have again been utilised to obtain the predicted 

curves. In Fig. 8.4(a) predictions are shown for a turbulent Schmidt 

number of 0.45 for three values of the transition Reynolds number: 

1.8, 2.3 and 2.8X105. It is again evident that data at higher 

Reynolds number is required if a., is to be determined independently 
37 -c. 

of the transition assumption. 

This point is given further illustration in Fig. 8.4 (b). 

The same data are again predicted witha
j 
 =0.35 and Retran=2.6X105, 
,t 

and with a. ,=0.85 and Retran=2.0X105. The agreement for both sets of 37L 

turbulent Schmidt number and transition Reynolds number is as good 

as that exhibited by the best predictions of Fig. 8.4 (a) obtained for 

a a. 	of 0.45 and Re
tran 

of 2.3X10
5
. 

JO: 

In the laminar-flow region, it is of interest to note 

that, in contrast to the heat transfer comparisons of Fig. 8.3, the 

agreement with-the data is good. Mass transfer experiments conveniently 

avoid the errors due to extraneous heat losses which are unavoidable 

in heat transfer experiments. 



3 
10 

Re 	 10 10 

K=.42, 	x=.085, 	p.o.o, 	u. 	,=2.4 

Panel ---- Predictions Experiments 
a. 	, 
3,-c 

Ret
__ r an 

ooao 5  
(a) 	1 .45 1.8X10 Kreith et al. 

5 
(1959) 

2 .45 2.3X10 
5 0000 

3 .45 2.8X10 Tien et al. 
5  (1963) 

(b) 	1 .35 2.6X10$  

2 .85 2.0X105 
(b ) 

Sh 

2 
10 

-126- 

Fig. 8.4 Average mass transfer from a disc rotating in still air  
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8.4-2 Non-isothermal Disc in Stagnant Air  

Part of the experimental programme into the research for 

turbulent transport properties undertaken in-the present thesis was the 

investigation of local heat transfer rate from a non-isothermal disc 

rotating in free air. The experimental apparatus and procedure are 

described in Appendix 7, and the measured and reduced data for four 

experimental conditions are recorded there. 

Predictions are compared with the data in Fig. 8.5 (a) to 

(d). The measured temperature of the disc's surface was specified 

for r/r
o
< 0.45, and the measured heat flux for 0.45<r/r

o 
< 1.0; the 

reasons for this choice of boundary conditions are explained in 

Appendix 	7. The heat flux distributions, constant for each of five 

concentric annular segments of the disc's surface, are also shown in 

Fig. 8.5. They demonstrate the wide range of heat flux which can be 

achieved by the apparatus. 

For all four cases the predictions were started in the 

laminar region, and immediate transition was assumed at a Reynolds 

number of 2 X10
5
; the value of the turbulent Prandtl number was 0.85. 

The values of the mixing-length constants X , X and p were the same 

ones used in Section 8.4-1 for the isothermal disc. The influence of 

a lower transition Reynolds number, 	105, and of a lower turbulent 

Prandtl number, 0.6, are illustrated in Fig. 8.5 (b). It is seen that 

the influence of the transition Reynolds number disappears after a 

Reynolds number of 2.5X105, while the lower aht results in an increase 

of about 15% in the heat transfer predictions. 

The predictions do not compare very favourably with the 

measured data; the rather large errors in the experimental measurements, 

discussed in Appendix 7, preclude any meaningful assessment of the 

predictions. 
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Fig. 8.5 Local Nusselt number for a free rotating disc with  

non-uniform surface heat flux.  
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Notwithstanding the uncertainty of the data, the predictions 

serve to demonstrate the potential and flexibility of the prediction 

procedure and turbulent transport hypotheses. 

8.4-3 Isothermal Cone in Stagnant Air  

(a) Heat Transfer  

The predicted average Nusselt number for a 60 degree 

vertex angle isothermal cone is compared with the data of Kreith (1966) 

in Fig. 8.6 (a) for three values of the transition Reynolds number. 

The empirical parametersIt , X and p were the same ones used in the 

preceeding section in the study of heat transfer from discs. The 

agreement between predictions and data is good for Re
tran

..9X105 up 

• 
to the value of 2X105 for the cone Reynolds number, above which the 

predictions underestimate the data by about 10%. 

Better results are obtained, as Fig. 8.6 (b) reveals, 

when the Richardson term correction is introduced with 3=5.0. This is 

the value found appropriate for the hydrodynamic cone flow study in 

Section 4.4-2. The transition Reynolds number was 105. 

It should also be noted that the laminar heat transfer 

data are again underestimated. 
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10 	Re =Qsixo;lyt 	5x104  

K.=.421 	X ..085, 	6i
l,A=.72, 	oh,t=.85 

Predictions 000 Experiments 

Panel p Retran 

(a) 	1 0 0.7X105 Kreith (1966) 

2 0 0.9X105 

3 0 1.1X105 

(b),  5 1.0X105 

Fig. 8.6 Average heat transfer from a free rotating cone  



=.42,A=.085, 

a. 0.2.4, P=5.0, 

Retran
=1.1X105 

— predictions 

000 Data of Tien and 
Campbell(1963) 

10 	Re .Q.n.xo  r,„ 

Fig. 8.7 Average mass transfer from a 60°  free rotating cone  
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(b) Mass Transfer  

Average mass-transfer predictions of Tien and Campbell's 

(1963) data for a 60 degree vertex angle cone are displayed in 

Fig. 8.7 with Retran=1.1X105. The data deviate above the calculated 

values for Re > 4X10
5. The relatively different behaviour of the 

heat and mass transfer data is probably associated with the different 

molecular Prandtl/Schmidt numbers for the processes: .72 and 2.4 

respectively. 
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8.4-4 Cone in Uniform Axial Stream  

Predicted local Nusselt and Sherwood numbers for a 30 

degree vertex angle isothermal.cone:spinning in-a uniform-ve.ocity 

air stream are compared with the data of Ruggeri and Lewis (1957), and 

of Salzbergand Kezios (1965) in Fig. 8.8 (a) and (b) respectively. 

The predictions were, as for all the previous cases, commenced in 

the laminar region and immediate transition to fully turbulent flow 

was assumed to occur at a specified Reynolds number. Both the 

longitudinal velocity at the edge of the boundary layer and the 

transition Reynolds number were deduced from the experimental data. 

It is probable that the flow near the cone is akin to 

that near a cylinder rotating in an axial stream, and consequently 

the effective viscosity is highly non-isotropic. Since no 

hydrodynamic data exist for a 30 degree cone spinning in an axially- 

directed stream, the simple isotropic viscosity model was again 

employed, and the valuesof), X and p were rather arbitrarily chosen. 

The turbulent Prandtl and Schmidt numbers were 0.9 and 0.6 respectively. 

The agreement between the predictions and the experimental 

data is good. However, since the hydrodynamic constant K, X and p 

were assigned arbitrary values, they are not physically meaningful; 

the primary role of Fig. 8.8 is to provide additional evidence of the 

generality of the calculation procedure. 
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Predictions 000 Experiments 

Ruggeri et al. (1957) 

Salzberg et al. (1965) 

Or
o
/V,,, x X al,  at  Re

tran 

a 0.35 .4 .085 .72 .9 8X104 

b 2.29 .4 .10 2.4 .6 10
4 

Fig. 8.8 Local heat and mass transfer from a 300  
vertex angle cone in an axial stream of  
uniform velocity  
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8.5 Conclusions  

1. The values of the turbulence model constants K , X and p, the 

values of the turbulent Prandtl and Schmidt numbers a
ht 

and 

0),t, and the transition Reynolds numbers found to give the best 

overall agreement between predictions and experimental data are 

summarised in Table 8.1. The values for the non-isothermal disc 

are not included because of the doubt surrounding the experimental 

data. 

2. The present enquiry has shown that use of the isotropic viscosity 

mixing-length hypothesis leads to generally satisfactory results 

provided the mixing length is made a linear function of the 

equivalent 'swirling flow' Richardson number. 

3. The predictions, over the range of experimental data considered, 

were dependent upon the assumed value of the transition Reynolds 

number as well as the turbulent Prandtl or Schmidt number. However, 

at the relatively high Reynolds number outside the data range, the 

transition assumption did not influence the predictions. The 

turbulent Schmidt number was generally lower than the turbulent 

Prandtl number. 

4. In order to explain the difference between the turbulent Prandtl 

and Schmidt numbers, present experimental data should be extended 

to fluids of larger laminar Prandtl and Schmidt numbers. It would 

be valuable 'to make these measurements at Reynolds numbers large 

enough for transition to have very minor influence on the flow. 
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K=.42, 	X= .085, 51,1..72, ai,e2.4 al
h,t 3 

a. 
,t e

tran 

Disc in still air (0=0.0): 

Average heat transfer: 

Cobb and Saunders (1956) 0.85 -- 1.8X105 

McComas and Hartnett (1970) 0.85 -- 2.5X105 

Dennis, Newstead and Ede (1970) 0.85 -- 1.5X10
5 

Average mass transfer: 

Tien and Campbell (1963) -- 0.45 2.3X105 

Kreith 	Taylor and Chong (1959) 0.85 2.0X105 

Cone of 60 degree vertex angle in still air ((3=5.0): 

Average heat transfer:  
Kreith (1966) 0.85 -- 1.0X105 

Average mass transfer: 

Tien and Campbell (1963) -- 0.85 1.1X105 

Cone of 30 degree vertex angle in axially-directed 
air stream (P=0.0): . . 

Local heat transfer: ro/V1,6„ X  ) 

Ruggeri and Lewis (1957) 0.35 .40 .085 0.9 -- 8.0X104 

Local mass transfer: 

Salzberg and Kezios (1965) 2.29 .40 .10 -- 0.6 1.0X104 

Table 8.1 Empirical parameters in the turbulent transport hypothesis  

used for calculating heat and mass transfer from discs and  

cones spinning in free surroundings.  
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CHAPTER 9  

CONCLUSIONS AND RECOMMENDATIONS 

In this final chapter, the principal conclusions are summarised, 

with emphasis on the generality of application of the different models 

of turbulence. Recommendations are then made on the most promising 

path for future work. 

9.1 Conclusions  

(a) The mixing-length model  
(i) The first model of turbulence considered was based on the use of 

the mixing-length concept, suitably extended to swirling boundary 

layers, to determine an isotropic effective viscosity. The 

average circumferential drag could be well predicted for four 

flow configurations: free disc and cone, cylinder in axial 

stream, and closely spaced parallel discs with outflow. However, 

it was found that the magnitude of the empirical constants in the 

mixing-length formulation depends on the particular. flow 

configuration as well as the flow condition. 

(li) When the mixing length is augmented to account for the effect of 

swirl body-forces by making it a linear function of the swirl 

Richardson number, a marked improvement in the universality of the 

constants is shown. Reasonably good predictions of the average 

circumferential drag were obtained for the cases mentioned above 

with a single set of constants. 

(iii) The concept of an isotropic effective viscosity is, however, not 

generally applicable to swirling boundary layers. If the mixing-

length variation is determined from matching predictions with 

experimental data for the circumferential drag, then the 

agreement between predictions and data for the longitudinal drag 
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is poor, and vice versa. An isotropic viscosity model is quite 

unable to predict the complete flow field and the model suffers 

a serious drawback in this respect. 

(b) The energy, Length—scale model  
(i) The mixing-length concept implies the local structure of the 

flow is determined by local conditions alone, and'neglects any 

upstream influences on the flow. A more realistic model was 

developed in which the turbulence features of the flow are 

characterised by the kinetic energy of turbulence and a length 

scale, both quantities being determined from differential equations. 

A body-force term was introduced in the length-scale equation to 

account for the effects of swirl on the turbulence structure. 

Furthermore, the ratio of the effective viscosities in the 

mainstream and swirl directions was presumed constant. 

(II) Prediction of the entire flow field near a cylinder spinning in 

an axial stream were in good agreement with experimental data, 

but there were large variations in the adjustable parameters of the 

turbulence model for the two flow conditions considered. This 

lack of generality reflects the main deficiency of the model; 

namely, that the ratio of effective viscosities is not a constant 

across the boundary layer. 

(c) The anisotropic mixing-length model  
(I) 	The anisotropic nature of the effective viscosity was considered 

more closely, especially in the near-wall region, in the third 

model of turbulence. The two effective viscosities were 

calculated from a mixing-length based formulation, modified by 

Van Driest's expressions which were made functions of the local 

shear-stress components corresponding to the effective viscosities. 

Away from the wall the viscosities were assumed equal. This model 
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was based mainly on intuition and trials; but it is justified by 

the good agreement between the predictions and the data and by 

the fairly satisfactory level of generality of the empirical 

parameters. 

(II•) For all the cases investigated, free disc and cone)and cylinder 

in axial stream, the predictions based on this model suggest that 

the viscosity ratio differed substantially from unity in the 

sublayer. The velocity vector in this region twists relative to 

the shear-stress vector; that is they do not act in the same 

direction as implied by isotropic viscosity assumptions. 

(III) Although the anisotropic mixing-length model lacks a sound physical 

basis, it nonetheless shows that it is the anisotropic nature of 

the viscosity in the near-wall region which plays an important part 

in the development of the whole flow field. The anisotropic 

nature of the viscosity also appears to have a larger influence on 

the flow than the effects of swirl body-forces. 

(d) The algebraic Reynolds stress model  
(i) The fourth, and last, model of turbulence developed provided 

algebraic relations for all six Reynolds stress components for 

fully turbulent flow. The stresses were expressed in terms of the 

time-average velocity components, the dissipation rate of turbulence 

energy, and the stresses themselves. They also yield an analytical 

expression for the ratio of the effective viscosities. 

(li) The algebraic Reynolds stress model was employed to predict free 

swirling jets, and good agreement with the mean-flow data as well 

as data for the Reynolds stress components was obtained. The 

calculated variation of the viscosity ratio was in close accord 

with the empirical formulae used by other workers. 



-139- 

(ii) For wall flows, the assumption of high Reynolds number is not 

satisfied in the near-wall region; the algebraic Reynolds stress 

model was matched with the anisotropic mixing-length based model 

in this region. The complete flow field near free spinning discs 

and cylinders rotating in axial streams was well predicted. This 

is an encouraging pointer to the generality of this approach. 

(e) Heat and mass transfer  
Finally, the heat and mass transfer from spinning discs and cones 

was investigated. The effective heat and mass exchange coefficients 

were made linear functions of the effective viscosity, the 

latter being calculated from the isotropic mixing-length model. 

The agreement between predictions and data was generally satisfactory 

over the range of experimental conditions considered. However, for 

those cases where the data barely extends into the fully turbulent 

region, the predictions were dependent upon the assumed transition 

Reynolds number. 

9.2 Recommendations  

The simplest model of turbulence considered, the isotropic 

mixing-length model with the Richardson term addition, is probably 

the most useful one under present circumstances to design engineers, when 

all that is required is a single overall quantity such as the 

circumferential drag or the longitudinal drag, but not both. A judicious 

choice of empirical constants will result in good agreement between 

predictions and measurements. It is important, however, to appreciate 

the limits of the model, and to realise that frequent and arbitrary 

adjustments of the constants lower its universality and attractiveness. 

As such, it is of limited use when operating conditions are extended 

much beyond the range for which it has been developed. 
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The non-isotropic features of turbulent swirling flows require 

characterisation by many variables. Increased universality can only be 

obtained by increasing the number of differential equations employed 

in a model of turbulence, at the expense of increased complexity of the 

analytical and computational problems. 

Short of solving the complete Reynolds stress differential 

equations, the algebraic Reynolds stress model offers itself as a 

practicable and economical intermediate stage, and also provides a 

useful degree of universality. In particular, the extension of the 

algebraic stress model to the near-wall region is of special importance 

if the goal of reasonably wide application and unified treatment is to 

be attained. 

For the more practical and realistic problem of three - 

'dimensional recirculating flow, the effective viscosities corresponding 

to the three Reynolds shear-stress components can differ by an order 

of magnitude or more. To develop a model of turbulence which possesses 

a satisfactory level of universality for this problem will require the 

abandonment of the effective viscosity concept. The algebraic Reynolds 

stress approach, because of its small demand of computer time compared 

to that required for solving the differential equations for the 

Reynolds stresses, offers the most promise for future research. 
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NOMENCLATURE  

Symbols 	 Definitions  

a 	 acceleration vector. 

A 
	 area. 

ccccc Ca CB, CD, R' s' w' 

C
1, C2' 

C
2,n' 

C
2,t 

cf 

C 
p 

constants in the energy-length-scale 
equation. 

constants in the algebraic Reynolds 
stress model of turbulence. 

t.-.81rSin je#3 	f , V V,  /64. %l eo  2  average drag o i, 
coeffilient for free disc and cone, and for 
cylinderrespectiliely. 

'erol(Pck,1)/it. 	, pressure coefficient for 

cw 

parallel discs. 

ITS erNi ct3 
I o' 	t 

parallel discs. 

, mass flow coefficient for 

orifice diameter. 

dissipation. 

diffusion coefficient in Fick's law. 

diffusion. 

gravitational acceleration. 

mass velocity vector. 

component of a 
specific enthalpy. 

stagnation enthalpy. 
g 

-- S ...4-a3/f g113-( 1 — v-i—) ott.i 	, shape factor 
o
J14-  Jlr o 

for disc. 

i 	 unit vector. 

diffusional flux. 

= Yiz+1/ -  4- V37' ) 	, turbulence energy. 

ka, kd 	thermal conductivity. 

D 

Df 

g 

h 

h 
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m 

m,c 

length scale of turbulence; metric length. 

mixing-length. 

mixing-length modified by Richardson 
function. 

L 	 length of cone measured in the xl-direction. 

A 	 mass flow rate. 

m. 	 mass fraction. 
.ir 

Nu 	 =LX okticp( 	) 1-1-t 	, local Nusselt 

number. 
x. 

.11 	, 
Nu 	 ..-Ffrlwoixhord Xcpilie/ercrirc:04t , average 

Nusselt number. 

pressure. 

production. 

Pr 	 Prandtl number. 

Ps 	 pressure-strain. 

41! 	 heat flux. 

Q 	 =. I VI  ctilirr2; radial volumetric flow `o 
 
VI 

 for disc. 

Arad 	 radiation heat transfer per unit volume. 

r 	 distance from axis of symmetry. 

R 	 radius of cylinder. 

Rc 	 radius of base of cone. 

Re 	 Reynolds number for free disc 

and cone; 
V le 	, Reynolds number for cylinder. C R/ 

Ri 	 Richardson number. 

Rj 	 rate of generation of chemical species. 
09 	 2 

= 
0

V,V3  d /IS V, 	, swirl number 

for free jet. 

Sc 	 Schmidt number. 

Sh 	 .-rnW 	w ,Pc/ x07/11,1( rn. 	) 	local Sherwood JA  ,e    

number. 
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Sh lrt
Xo  

roVxordwe/r (Trt.  - )' o 	 6td jam)'  
Sherwood number. 

average 

T. 	 temperature. 

T,' 	 shear-stress. 

V, v 	 fluctuating velocity. 

V 	 time-average velocity. 

\ir 	
instantaneous velocity vector. 

V 	 average velocity across boundary layer or 
slot exit; time-average value of 
instantaneous velocity. 

x 	 coordinate direction; 
:ix1' coordinate measured along the surface. 

y 	 5 x,), coordinate measured normal to the 
surface. 

a 	 angle made by direction-1 with symmetry axis. 

13 
	 parameter in the Monin-Oboukhov formula.. 

exchange coefficient. 

1,2 

23 , 

or 

,4 

boundary 

Jo Vol 
for 

layer thickness where V/Vm=0.01, 

0.99. 

	

( 	YE ) 013 	, axial momentum thickness 

cylinder. 

	

VIV3 	/.12. \la) 	circumferential momentum  

thickness for cylinder. 

5.. 

8 

0- 

x, X 

Kronecker's delta. 

dissipation. 

dimensionless radial coordinate for free jet. 

angle of revolution about symmetry axis. 

mixing-length constants. 
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11  

a a 
h' j 

a a l' 2 

viscosity 

11/ 

coordinate in orthogonal systeli.. 

density. 

Prandtl number and Schmidt number.. 

diffusion constants in energy-length 
model. 

a2,3 
	 effective viscosity ratio. 

shear stress. 

gS 
	

dependent variable. 

source term. 

stream function. 

w 	 dimensionless stream function. 

rotational speed. 

Subscripts 	Definitions 

1,2,3 	 coordinate directions in orthogonal system. 

151 	 where the velocity is 1% or 99% of some 
• reference value. 

eff 	 effective value. 

i,j,k 	 indices relating to the i, j and k directions 
respectively. 

I, E 	 inner and outer edges of boundary layer. 

h 	 enthalpy. 

i,j i,k etc. 	denote the ij plane, the ik plane, etc. 

j 	 chemical species. 

k 	 energy of turbulence. 

kA 	 energy-length scale product. 

2 	 laminar. 

m 	 maximum value. 



R 

t 

w 

co 

.01, .99, 11 -1- 
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outer or maximum value. 

dependent variable. 

resultant value. 

slot value; surface value. 

turbulent. 

wall value. 

free stream. 

relate to point where V/Vm  is equal to 

.01, .99, 2  and 1 respectively. 

Superscripts 
	

Definitions  

fluctuating value. 

per unit area. 

time-average or space-average value. 



- 146 - 

REFERENCES 

1. ARIS, R. (1962) 'Vectors, tensors, and the basic equations of 

fluid mechanics'. 

Prentice Hall Int., London. 

2. BACKSHALL, R.G. and LANDIS, F. (1969) 'The boundary layer velocity 

distribution in turbulent swirling pipe flow'. 

J. Basic Engineering, Trans. ASME, Vol. 91, pp. 728-733. 

3. BAYLEY, F.J. and OWEN, J.M. (1969) 'Flow between a rotating and 

a stationary disc'. 

Aeronautical Quarterly, Vol. 20, pp. 333-352. 

4. BAYLEY, F.J. and OWEN, J.M. (1970) 'The fluid dynamics of a 

shrouded disk system with a radial outflow of coolant'. 

J. Eng. Power, Trans..ASME, Vol. 92, p. 335. 

5. BRADSHAW, P. (1969) 'The analogy between streamline curvature and 

buoyancy in turbulent shear flow'. 

Journal of Fluid Mechanics, Vol. 36, pt. 1, pp. 177-191. 

6. BRYER, D.W. and PANKHURST, R.C. (1971) 'Pressure-probe methods 

for determining wind speed and flow direction'. 

H.M.S.O., National Physical Laboratory, London. 

7. CHAM, T-S. and HEAD, M.R. (1969) 'Turbulent boundary-layer flow 

on a rotating disk'. 

J. Fluid Mechanics, Vol. 37, pt. 1, pp. 129-147. 

8. CHAM, 'T-S. and HEAD, M.R. (1970) 'The turbulent boundary layer 

on a rotating cp.linder in an axial stream'. 

J. Fluid Mechanics, Vol. 42, pt. 1, pp. 1-15. 



- 147 - 

9. CHAM, T-S. and HEAD, M.R. (1971) 'The turbulent boundary layer on 

a rotating nose-body'. 

Aeronautical Quarterly, Vol. 22, Pt. 4, pp. 389-402. 

10. CHIGIER, N.A. (1972) 'Gasdynamics of swirling flow in combustion 

systems'. 

Astronautica Acta, Vol. 17, pp. 387-395. 

11. CHIGIER, N.A. and BEER, J.M. (1964) 'Velocity and static pressure 

distributions in swirling air jets issuing from annular and 

divergent nozzles'. 

J. Basic Engineering, Trans ASME, Vol. 86, Pt. 4, pp. 788-796. 

12. CHIGIER, N.A. and CHERVINSKY, A. (1966) 'Experimental and 

theoretical study of swirling jets issuing from a round orifice'. 

Israel J. Technology, Vol. 4, No. 1, pp. 44-54. 

13. CHIGIER, N.A. and CHERVINSKY, A. (1967) 'Experimental investigation 

of swirling vortex motion in jets'. 

J. Applied Mechanics, Trans ASME, Vol. 89, pp. 443-451. 

14. CHERVINSKY, A. and LORENZ, D. (1967) 'Decay of turbulent 

axisymmetrical free flows with rotation'. 

J. Applied Mechanics, Trans. ASME, Vol. 89, pp. 806-812. 

15. CHOU, P.Y. (1945) 'On velocity correlations and the solution of 

the equations of turbulent fluctuation'. 

Quart. Appl. Math., Vol. 3, p. 31. 

16. COBB, E.C. and SAUNDERS, 0.A. (1956) 'Heat transfer from a rotating 

disk'. 

Proceedings Royal Society, Vol. A236, pp. 343-351. 



-148- 

17. COCHRAN, W.G. (1934) 'The flow due to a rotating disk'. 

Proc. Camb. Phil. Soc., Vol. 30, pp. 365-375. 

18. COOPER, P. (1971) 'Turbulent boundary layer on a rotating disk 

calculated with an effective viscosity'. 

AIAA Journal, Vol. 9, No. 2, pp. 255-261. 

19. CRAYA, A. and DARRIGOL, M. (1967) 'Turbulent swirling jet'. 

The Physics of Fluids Supplement, pp. S197-199. 

20. DALY, B.J. and HARLOW; F.H. (1970) 'Transport equations in 

turbulence'. 

Physics of Fluids, Vol. 13, p. 2634. 

21. DAVIES, D.B. (1959) 'On the calculation of eddy viscosity and 

heat transfer in a turbulent boundary layer near a rapidly 

rotating disk'. 

Quart. J. of Mech. and Appl. Math., Vol. 12, Pt. 2, pp. 211-221. 

22. DENNIS, R.W., NEWSTEAD, C. and EDE, A.J. (1970) 'The heat 

transfer from a rotating disc in an air cross flow'. 

4th Int. Heat Transfer Conference, Paris-Versailles, Vol. III, FC 7.1 

23. DONALDSON, C. DU P. (1972) 'Calculations of turbulent shear flows 

for atmospheric and vortex motions'. 

AIAA Journal, Vol. 10, pp. 4-12. 

24. DORFMAN, L.A. (1963) 'Hydrodynamic resistance and the heat loss 

of rotating solids'. 

Oliver and Boyd, London. 



- 149 - 

25. DORFMAN, L.A. (1965) 'Calculation of the boundary%layer on an 

arbitrary axisymmetric surface rotating in a still medium'. 

.J. Appl. Mech. and Tech. Phys., No. 3, pp. 62-65. 

26. DORFMAN, L.A. and MIRONOVA, V.A. (1970) 'Solutions of equations 

for the thermal boundary layer on a rotating axisymmetric surface'. 

Int. J. Heat Mass Transfer, Vol. 13, pp. 81-92. 

27. DORFMAN, L.A. and SERAZETDINOV, A.Z. (1965) 'Laminar flow and 

heat transfer near rotating axisymmetric surface'. 

Int. J. Heat Mass Transfer, Vol. 8, pp. 317-327. 

28. EAST, L.F. (1972) 'A prediction of the law of the wall in 

compressible three dimensional turbulent boundary layers'. 

Royal Aircraft Establishment TR72178. 

29. ERIAN, F.F. and TONG, Y.H. (1971) 'Turbulent flow due to a 

rotating disk'. 

The Physics of Fluids, Vol. 14, No. 12, p. 2588. 

30. ESCUDIER, M.P. (1965) 'The distribution of the mixing length in 

turbulent flows near walls'. 

Imperial College, Mech. Eng. Dept. Rep., TWF/TN/1. 

31. FORSTALL, W. and SHAPIRO, A.H. (1950) 'Momentum and mass transfer 

in coaxial jets'. 

J. Appl. Mech"Trans. ASME, Vol. 17, p. 399. 

32. FURUYA, Y., NAKAMURA, I. and KAWACHI, H. (1966) 'The experiment 

on the skewed boundary layer on a rotating body'. 

Bull. JSME, Vol. 9, No. 36, pp. 702-710. 



-150- 

33. GOLDSTEIN, S. (1935) 'On the resistance to the rotation of a 

disc immersed in a fluid'. 

Proceedings Camb. Phil. Soc., Vol. 31, pp. 232-241. 

34. GOSMAN, A.D., PUN, W.M., RUNCHAL, A.K., SPALDING, D.B. and 

WOLFSHTEIN, M. (1969) 'Heat and mass transfer in recirculating 

flows'. 

Academic Press, London. 

35. GREGORY, N., STUART, J.T. and WALKER, W.S. (1955) 'On the stability 

of three-dimensional boundary layers with application to the flow 

due to a rotating disk'. 

Phil. Trans. Royal Soc., Vol. A248, pp. 155-199. 

36. HANJALIC, K. and LAUNDER, B.E. (1972) 'A Reynolds-stress model of 

turbulence and its application to thin shear flows'. 

J. Fluid Mechanics, Vol. 52, Pt. 4, pp. 609-638. 

37. HANNAH, D.M. (1947) 'Forced flow against a rotating disk'. 

ARC report R&M No. 2772, London. 

38. HARTNETT, J.P. and DELAND, E.C. (1961) 'The influence of Prandlt 

number on the heat transfer from rotating non isothermal disks 

and cones'. 

J. Heat Transfer, Trans. ASME, Vol. 83, pp. 95-96. 

39. HARTNETT, J.P., TSAI,S. and JANTSCHER, H.N. (1965) 'Heat transfer 

to a nonisothermal rotating disk with a turbulent boundary layer'. 

J. Heat Transfer, Trans. ASME, Vol. 87, pp. 362-368. 

40. HAYDAY, A.A. (1965) 'On heat transfer from isothermal and 

nonisothermal spinning bodies of revolution'. 

J. Heat Transfer, Trans. ASME, Vol. 87, pp. 445-451. 



-151- 

41. HINZE, J.O. (1959) 'Turbulence'. 

McGraw-Hill, London. 

42. HOMANN, F. (1936) 'Der Einfluss grOsser Zahigkeit bei der 

StrOmung um den Zylinder und um die Kugel'. 

Z. angew. Math. Mech., Vol. 16, p. 153. 

43. HUGHES, D.W. and HORLOCK, J.H. (1971) 'Effect of rotation on 

the development of the turbulent boundary layer'. 

Symposium on internal flows, U. of Salford, England, Paper 18, 

pp. B.78-B.88. 

44. JOHNSTON, J.P. (1970) 'Measurements in a three-dimensional 

turbulent boundary layer induced by a swept, forward-facing step'. 

J. Fluid Mechanics, Vol. 42, pp. 823-844. 

• 45. KARMAN, T. VON (1921) tiler laminare und turbulent Reibung'. 

Z. angew. Math. Mech., Vol. 1, pp. 233-252. 

Translated as NACA TM 1092, 1946. 

46. KESTIN, J. and RICHARDSON, P.D. (1963) 'Heat transfer across 

turbulent, incompressible boundary layers'. 

Int. J. Heat Mass Transfer, Vol. 6, pp. 147-189. 

47. KOH, J.C.Y. and PRICE, J.F. (1967) 'Nonsimilar boundary layer 

heat transfer of a rotating cone in forced flow'. 

J. Heat Transfer, Trans. ASME, Vol. 89, pp. 139-145. 

48. KOLMOGOROV, A.N. (1942) 'Equations of turbulent motion in an 

incompressible fluid'. 

Izv. Academy of Sciences, USSR, Physics, Vol. 6, No. 1, 2, 

pp. 56-58. 



-152 - 

49. KOOSINLIN, M.L. and LOCKWOOD, F.C. (1971) 'The prediction of 

boundary layers on rotating axially-symmetrical bodies'. 

Imperial College, Mech. Eng. Dept., HTS/71/6. 

50. KREITH, F. (1966) 'Frictional drag and convective heat transfer 

on rotating cones in mixed and turbulent flow'. 

Proceedings of the 1966 Heat Transfer and Fluid Mechanics Institute, 

Stanford University Press. 

51. KREITH, F. (1968) 'Advances in heat transfer'. 

Vol. 5,Academic Press, New York. 

52. KREITH, F., ELLIS, D. and GIESING, J. (1962) 'Boundary layer and 

transition characteristics of a rotating cone'. 

ASME paper No. 62-WA-105. 

53. KREITH, F., ELLIS, D. and GIESING, J. (1962).  'An experimental 

investigation of the flow engendered by a rotating cone': 

Appl. Sci. Res., Vol. All, p. 430. 

54. KREITH, F., TAYLOR, J.H. and CHONG, J.P. (1959) 'Heat and mass 

transfer from a rotating disk'. 

Journal of Heat Transfer, Trans. ASME, Vol. 81, pp. 95-105. 

55. LAUNDER, B.E. and SPALDING, D.B. (1972) 'Mathematical Models 

of turbulence'. 

Academic Press, London and New York. 

56. LEE, M. (1966) 'Effect of boundary layer control on heat transfer 

from a rotating disk'. 

D.I.C. Thesis, Imperial College,-London. 



153 - 

57. LEWIS, J.P. and RUGGERI, R.S. (1956) 'Investigation of heat 

transfer from a stationary and rotating ellipsoidal forebody of 

fineness ratio 3'. 

NACA TN 3837. 

58. LILLEY, D.G. (1973) 'Prediction of inert turbulent swirl flows'. 

AIAA Journal, Vol. 11, No. 7, pp. 955-960. 

59. LILLEY, D.G. and CHIGIER, N.A. (1971) 'Nonisotropic exchange 

coefficients in turbulent swirling flames from mean value 

distributions'. 

Combustion and Flame, Vol. 16, pp. 177-189. 

60. LILLEY, D.G. and CHIGIER, N.A. (1971) 'Nonisotropic turbulent 

stress distribution in swirling flows from mean value distributions'. 

Int. J. Heat Mass Transfer, Vol. 14, p. 573-585. 

61. LIU, K.T. and STEWART, W.E. (1972) 'Asymptotic solutions for 

forced convection from a rotating disk'. 

Int. J. Heat Mass Transfer, Vol. 15, pp. 187-189. 

62. MABUCHI, I., KOTAKE, Y. and TANAKA, T. (1971) 'Studies on the 

convective heat transfer from a rotating disk'. 

Bull. JSME, Vol. 15, No. 84, pp. 766-773. 

63. MABUCHI, I, TANAKA, T. and SAKAKIBARA, Y. (1967) 'Studies on 

the convective heat transfer from a rotating disk'. 

Bull. JSME, Vol. 10, No. 37, pp. 104-112. 

64. MCCOMAS, S.T. and HARTNETT, J.P. (1970) 'Temperature profiles 

and heat transfer associated with a single disk rotating in still air'. 

4th Int. Heat Transfer Conference, Paris-Versailles, Vol. III, 

FC7.7. 



- 154 - 

65. MILLSAPS, K. and POHLHAUSEN, K. (1952) 'Heat transfer by 

laminar flow from a rotating plate'. 

J. Aeronautical Sciences, Vol. 19, pp. 120-126. 

66. NAOT, D., SHAVIT, A. and WOLFSHTEIN, M. (1970) 'Interactions 

between components of the turbulent velocity correlation tensor 

due to pressure fluctuations'. 

Israel J. Technology, Vol.. 8, pp. 259-269. 

67. NG, K.H. (1972) 'Predictions of turbulent boundary-layer 

developments using a two-equation model of turbulence'. 

Ph.D. Thesis, U. of London. 

68. NG, K.H., PATANKAR, S.V. and SPALDING, D.B. (1968) 'Proceedings 

of the 'Conference on computation of turbulent-boundary layers-1'. 

Ed. Kline, S.J 	Morkovin, M.V., Sovran, G. and Cockrell, D.J., 

Standford University. 

69. NG, K.H. and SPALDING, D.B. (1972) 'Turbulence model for 

boundary layers near walls'. 

Physics of Fluids, Vol. 15, pp. 20-30. 

70. OSTRACH, S. and THORNTON, P.R. (1958) 'Compressible laminar flow 

and heat transfer about a rotating isothermal disk'. 

NACA TN 4320. 

71. OWEN, J.M. (1969) 'Flow between a rotating andastationary disc'. 

Ph.D. Thesis, U. of Sussex, England. 

72. OWEN, J.M. (1971) 'The effect of forced flow on heat transfer 

from a disc rotating near a stator'. 

Int. J. Heat Mass Transfer, Vol. 14, p. 1135-1147. 



-155- 

73. OWEN, J.M., HAYNES, C.M. and BAYLEY, F.J. (1972) 'Heat transfer 

from an air-cooled rotating disk'. 

Mech. Eng. Lab., School Appl. Sci., U. of Sussex, Rep. 72/Me/43 

and /44. 

74. PARR, VON O. (1963) 'Untersuchungen der dreidimensionalen 

Grenzschicht an rotierenden DrehleOrpern bei axialer AnstriOmung'. 

Ing. Arch., Vol. 32, pp. 393-413. 

75. PATANKAR, S.V. and SPALDING, D.B. (1970) 'Heat and mass transfer 

in boundary layers'. 

Intertext Books, London. 

76. PRANDTL, L. (1925) 'Bericht caber Untersuchungen zur 

ausgebildeten Turbulenz'. 

Z. angew. Math. Mech., Vol. 5, p. 136. 

77. PRANDTL, L. and WEIGHARDT, K. (1945) silber ein neues Formelsystem 

fur die ausgebildete Turbulenz'. 

Nach. Akad. Wiss., Goettingen, Math. Phys., Vol. 19, p. 6. 

	

.78. 	PRATTE, B.D. and KEFFER, J.R. (1972) 'The swirling turbulent jet'. 

J. Basic Engineering, Trans. ASME, Paper No. 72-FE-18. 

79. PRATTE, B.D. and KEFFER, J.R. (1972a) 'Private communication'. 

80. RICHARDSON, P.D. (1958) 'Some studies of the flow and heat 

transfer associated with a rotating disk'. 

Ph.D. Thesis, U. of London. 

81. ROBERTS, L.W. (1972) 'Turbulent swirling flows with recirculation'. 

Ph.D. Thesis, U. of London. 



- 156 - 

82. RODI, W. (1970) 'Basic equations for turbulent flow in 

Cartesian and' cylindrical coordinates'. 

Imp. Col., Dept. of Mech. Eng., Rep. HTS/70/4. 

83. RODI, W. (1973) 'The prediction of free turbulent boundary layers 

by use of a two-equation model of turbulence'. 

Ph.D. Thesis, U. of London. 

84. RODI W. and SPALDING, D.B. (1970) 'A two-parameter model of 

turbulence, and its application to free jets'. 

Wgrmeund Stoffiibertragung, Vol. 3, pp. 85-95. 

85. ROSE, W.G. (1962) 'A swirling round turbulent jet'. 

J. Applied Mechanics, Trans. ASME, Vol. 29, Pt. 4, pp. 615-625. 

86. ROTTA, J.C. (1951) 'Statistiche Theorie nichthomogener Turbulenz'. 

Zeit. Phys., Vol. 129, pp. 547-572. 

87. ROTTA, J.C. (1962) 'Turbulent boundary layers in incompressible flows'. 

Progress in Aeronautical Sciences, Macmillan, Vol. 2, pp. 1-221. 

87a. RUGGERI, R.S. and LEWIS, J.P. (1957) 'Investigation of heat 

transfer from a stationary and a rotating conical forebody'. 

NACA TN 4093. 

88. SALZBERG, F. and KEZIOS, S.P. (1965) 'Mass transfer from a 

rotating cone in axisymmetric flow'. 

J. Heat Transfer, Trans. ASME, Vol. 87, pp. 469-476. 

89. SCHLICHTING, H. (1953) 'Die laminare StrOmung um einen axial 

angestromten rotierenden Drenkorper'. 

Ingenieur-Archiv, Vol. 21, No. 4, pp. 227-244. 

Translated as: 'Laminar flow about a rotating body of revolution 

in an axial airstream'. 

NACA TM 1415, 1956. 



- 15:7 - 

90. SCHLICHTING, H. (1968) 'Boundary layer theory'. 

McGraw-Hill, London. - 

91. SCHLICHTING, H. and TRUCKENBRODT, E. (1952) 'The flow around 

a rotating disk in a uniform stream'. 

J. Aero. Sci., Readers Forum, Vol. 18, p. 639. 

92. SCHNURR, N.M. (1964) 'Heat transfer from a rotating disk with 

a stepwise discontinuous surface temperature'. 

J. Heat Transfer, Trans. ASME, Vol. 86, pp. 467-468. 

93. SIDDHARTHA, V. (1971) 'Boundary layers with swirl'. 

Ph.D. Thesis, U. of London. 

94. SPALDING, D.B. (1967) 'Theories of the turbulent boundary layer'. 

Appl. Mech. Review, Vol. 20, p. 735. 

95. SPARROW, E.M. and GREGG, J.L. (1959) 'Heat transfer from a 

rotating disk to fluids of any Prandtl number'. 

J. Heat Transfer, Trans. ASME, Vol. 81, pp. 249-250. 

96. SPARROW, E.M. and GREGG, J.L. (1960) 'Mass transfer, flow and 

heat transfer about a rotating disk'. 

J. Heat Transfer, Trans. ASME, Vol. 82, pp. 294-302. 

97. SPARROW, E.M. and HARTNETT, J.P. (1961) 'Condensation on a 

rotating cone'. 

J. Heat Transfer, Trans. ASME, Vol. 83, pp. 101-102. 

98. SUBBA RAO, B.K. (1967) 'Heat transfer from a disc with uniform 

wall heat flux rotating in air'. 

J. Institution of Engineers (India), Vol. XLVII, No. 7, Pt. ME4, 

pp. 289-304. 



- 158 - . 

99. SYRED, 'N., BEER, J.M. and CHIGIER, N.A. (1971) 'Turbulence 

measurements. in swirling recirculating flows'. 

Proceedings of Salford Symposium on Internal Flow, Institution 

of Mechanical Engineers. 

100. THEODORSEN, T. and REGIER, A. (1944) 'Experiments on drag of 

revolving disks, .cylinders,  and streamline rods at high speed'. 

NACA. Rep: 793. 

101. TIEN, C.L. (1960) 'Heat transfer by laminar flow from a rotating 

cone'. 

J. Heat Transfer, Trans. ASME, Vol. 82, pp. 252-253. 

102. TIEN, C.L. (1965) 'Heat transfer by the induced flow about a 

rotating cone of non-uniform surface temperature'. 
• 

Int. J. Heat Mass Transfer, Vol. 8, pp. 411-418. 

103. TIEN, C.L. and CAMPBELL, D.T. (1963) 'Heat and mass transfer 

from rotating cones'. 

J. Fluid Mechanics, Vol. 17,.pp. 105-112. 

104. TIEN, C.L. and TSUJI, J. (1964) 'Heat transfer by laminar 

forced flow against a non-isothermal rotating disk'. 

Int. J. Heat Mass Transfer, Vol. 7, pp. 247-252. 

105. TIEN, C.L. and TSUJI, J. (1965) 'A theoretical analysis of 

laminar forced flow and heat transfer about a rotating cone'. 

J. Heat Transfer, Trans. ASME, Vol. 87, pp. 184-190. 

106. TRUCKENBRODT, E. (1952) 'Method of quadrature for calculation 

of the laminar and turbulent boundary-layer in case of plane 

and rotationally symmetrical flow!. 

Ing. Arch., Vol. 20, pp. 211-228. 

Translated as NACA TM 1379. 



-159 - 

107. VAN DRIEST, E.R. (1956) 'On turbulent flow near a wall'. 

J. Aeronautical Sciences, Vol. 23, pp. 1007-1011. 

108. WAGNER,. C. (1948) 'Heat transfer from a rotating disk to 

ambient air'. 

J. Applied Physics, Vol. 19, pp. 837-839. 

109. WISLICENUS, G.F. and YEH, H.A. (1952) 'A program of research 

in the field of turbulent flow in ducts, in a space of 

revolution, and in turbo-machinery'. 

John Hopkins University, Mech. Eng. Dept., Internal Flow 

Research Report 1-8. 

110. WU, C.S. (1959) 'The three dimensional incompressible laminar 

boundary on a spinning cone'. 

Appl. Sci. Res., Vol. 8, pp. 140-146. 

111. YU, J.P., SPARROW, E.M., ECKERT, E.R.G., HENNECKE, D.K. and 

SHAMSUNDAR, N. (1972) 'Experiments on a shrouded, parallel 

disk system with rotation and coolant through flow'. 

Heat Transfer Laboratory, Mech. Eng. Dept., U. of Minnesota, 

Rep. HTL TR No. 105. 



- 160 - 

APPENDIX 1  

Previous Theoretical Work  

1.1 Introduction 

1.2 Laminar Flow 

1.2-1 Discs 

(a) Hydrodynamics 

(b) Heat Transfer 

1.2-2 Cones 

1.2-3 Other Geometries 

1.3 Turbulent Flow 

1.3-1 Hydrodynamics 

(a) Discs 

(b) Cones 

(c) Cylinders 

(d) Nose-body 

(e) Free Swirling Jet 

1.3-2 Heat Transfer 

(a) Discs 
(b) Cones 

1.1 INTRODUCTION  

A comprehensive survey of the various prediction procedures 

in existence up to about 1958 has been provided by Dorfman (1963). 

Another extensive review of subsequent advances in the field has 

been made by Kreith (1968). From these two reviews, which appear in 

book form, it is evident that the field of rotating flows is extremely 

vast, even when only boundary-layer flows are considered. The present 

review, therefore, does not cover all the previous work on swirling 

boundary-layer flows, but focuses on the principal theoretical 
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approaches for unshrouded flow situations. However, it adequately 

summarises the present status of the subject for other geometries 

as well since the theoretical methods developed for shrouded 

geometries are mostly extensions of methods which work well for the 

unshrouded cases. 

In Section 1.2 the previous theoretical work on laminar 

flow hydrodynamics and heat transfer is covered. Consideration of 

the laminar flow solutions represents an essential step in the study 

of any class of flows. These solutions serve two main purposes: 

firstly, they provide exact or near exact solutions with which the 

accuracy of proposed prediction procedures can be tested; and secondly, 

they provide an insight into the physical nature of the flow under 

consideration. The flow configurations reviewed are: discs, cones 

and axisymmetrical bodies of arbitary geometry rotating in unconfined 

surroundings. 

The turbulent flow work is surveyed in Section 1.3-1. All 

of the early theoretical procedures have been comprehensively 

summarised by Dorfman (1963) and Kreith (1968). The present review 

extends the coverage to 1972, and shows the gradual shift in prediction 

procedures from integral-profile to finite-difference methods. The 

turbulence models associated with the latter procedures are described. 

The flows covered range from free discs, parallel discs, free cones 

and cylinders, to free swirling jets. 

Lastly, Section 1.3-2 is concerned with the analytical work 

on the heat transfer from discs and cones rotating in stagnant 

surroundings. 
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1.2 LAMINAR FLOW  

1.2-1 Discs 

(a) Hydrodynamics  

The first theoretical analysis of the flow near a 

rotating body was performed by von Karman .(1921). He considered the 

induced flow near a disc, and showed that the general forms of the 

momentum equations reduce to a set of ordinary differential 

equations. Using Pohlhausen's integral-profile method von Karmen 

solved these for the drag on the disc and showed that the boundary 

layer was of uniform thickness. Cochran (1934). obtained very 

accurate solutions of the same equations for the velocity field and 

the drag by means of a numerical integration procedure. For the case 

where the surrounding fluid moves with uniform speed towards the disc 

parallel to its axis, Schlichting and Truckenbrodt (1952) used an 

integral-profile method similar to von Karman's to obtain an 

approximate solution for the drag. Hannah (1947) showed that 

similarity solutions also exist for this case; she used a numerical 

integration method like that of Cochran, and presented exact solutions 

for the velocity and pressure distributions, and for the drag. 

(b) Heat Transfer  

Wagner (1948) and Millsaps and Pohlhausen (1952) 

made use of Cochran's (1934) results and solved the energy equation 

to determine the heat transfer from an isothermal disc rotating in 

stagnant surroundings. This work was extended by Ostrach and 

Thornton (1958) to include the influence of variable fluid properties, 

and to fluids of any Prandtl number by Sparrow and Gregg (1959). 

Asymptotic solutions for large and small Prandtl numbers have been 
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Obtained by Liu and Stewart (1971). 

The influence of injection or suction, or phase 

change at the disc surface, on the heat transfer and velocity field 

have been examined by Sparrow and Gregg (1960). The heat transfer 

from a disc with a stepwise discontinuous surface temperature has 

been studied by Schnurr (1964); he used Fohlhausen's integral 

method to obtain an energy balance in the thermal boundary layer. 

For the more general problem of a disc rotating in 

a uniform axial stream, Tien and Tsuji (1964) have extended the 

flow analysis of Hannah (1947) to the heat-transfer problem. Their 

analysis was based on power-law wall-temperature distribution, 

with the isothermal wall boundary condition as a special case. They 

also presented results for a wide range of Prandtl numbers. Nabuchi 

(1967) included viscous dissipation effects in the energy equation 

and obtained similar results to Tien and Tsuji. 

1.2-2 Cones  

WU (1959) demonstrated that, by appropriate transformations, 

the hydrodynamic solution for the flow on a disc rotating in stagnant 

surroundings can be used to determine the flow on a rotating cone 

(the disc is, of course, a special case: a cone of 180 degree vertex 

angle). Tien (1960) subsequently showed that, under boundary-layer 

approximations, heat transfer obtained for an isothermal disc, with 

viscous dissipation included, can be applied to the rotating cone. 

Hartnett and Deland (1961) obtained solutions in this way for the 

case of cones having a power-law variation of surface temperature, 

and for fluids of different Prandtl number. Sparrow and Hartnett 

(1961) reported solutions for the case of condensation on the surface 

of a cone. 
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The more general problem of. a cone spinning in a uniform 

axial stream is not amenable to a similarity type of treatment, 

Schlichting (1953, 1968). Tien and Tsuji (1965) obtained asymptotic 

solutions of the'velocity and temperature distributions for a slow 

rotating cone using a perturbation scheme, and for a fast rotating 

cone by means of a series-expansion procedure. The general problem 

was successfully analysed by Koh and Price (1967) by means of a 

finite-difference technique. They solved the boundary-layer form 

of the momentum and energy equations to determine the flow and heat 

transfer on an isothermal cone. They presented results for various 

Prandtl numbers, for several ratios of the rotational to free stream 

velocity, for a disc and for a cone of 53.5 degree vertex angle. 

1.2-3 Other Geometries 

Hayday (1965) showed that similarity solutions of the 

boundary-layer equations exist for a body of revolution rotating in 

quiescent fluid, the radius of which varies according to a power-law 

with respect to distance measured along its surface; urnen there is 

heat transfer; the surface temperature must also obey a power-law. 

He further showed that the technique of superposition can be employed 

to extend similarity solutions for the temperature field to the case 

where the surface temperature varies in an arbitrary way. 

The work of Dorfman and his coworkers (1965, 1970) 

probably represents the ultimate in usefulness of the similarity 

approach. They described an approximate procedure in which the 

boundary-layer similarity solutions are employed to obtain solutions 

for a rotating body of revolution of arbitrary shape. The body is 

divided into finite segments by planes at right alleles to its axis 

and the flow over each surface element is determined approximately 
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by assuming that the similarity solution corresponding to a power-law 

variation of radius applies. 

1.3 TURBULENT FLOW  

1.3-1 Hydrodynamics  

(a) Discs 

Von Karman (1921) solved the integral forms of the 

momentum equations to obtain the frictional resistance and 

,boundary-layer thickness on a disc rotating in stagnant surroundings. 

'He assumed velocity profiles of the 1/7th power-law form and a wall 

shear stress relation from Blasius' friction formula for smooth 

pipes. Goldstein (1935) and later Dorfman (1963) obtained the overall 

drag on the, disc using logarithmic velocity profiles in place of the 

1/7th power-law. Of these three, Dorfman's method gives the best 

agreement with the experimental data. 

Cham and Head (1969) also calculated the velocity 

field using an integral-profile method and an auxiliary equation for 

entrainment. The circumferential velocity profiles were represented 

by a two-parameter family, and the radial profiles by a quadratic 

expression. The entrainment was governed by the circumferential 

velocity. They obtained excellent agreement with their experimental 

measurements of entrainment and velocity distributions. 

Recently, several workers have made use of finite-

difference procedures to predict swirling flows. Bayley and Owen (1969, 

1970) and Owen (1969), in connection with the gas-turbine disc-

cooling problem, have integrated the turbulent boundary-layers which 

form on the stator and rotor of a parallel discs  system with radial 

outflow. These authors used the original finite-difference method 

of Patankar and Spalding (1970) for the numerical solution of the 
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equations governing their problem. The radial and circumferential 

shear stress components in the momentum equations were respectively 

expressed as: 

\f/ 	and 7 

The effective viscosities At and U were calculated from the /2,3 
following extension of Prandtl's (1925) mixing-length hypothesis: 

   

d" 
4' 	c n 

  

au ay 
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In the regions close to the rotor and stator, the van Driest (1956) 

damping function was employed with ?IC =0.4: 

r2,Yz  [ — 	(— Ukri2.726  1,e-  2-  

rRzyz 	exP (3212:37/2  

In the region remote from the solid boundaries the mixing-length 4, 

was assumed equal to half the spacing between the rotor and the 

stator. The authors obtained qualitative agreement of circumferential 

drag and radial pressure distributions between their predictions and 

their experimental measurements over the whole range of data. However, 

quantitative discrepancies of certain flow conditions led Bayley and 

Owen to remark that the simple mixing-length hypothesis used in their 

analysis is not universally adequate. 

Cooper (1971) solved the continuity and momentum 

equations for the case of a free rotating disc by a two-dimensional 

finite-difference method, modelling the Reynolds stress terms by a 

two-layer scalar effective viscosity. In the layer close to the 

wall the effective viscosity was computed from the resultant of the 

radial and circulrential velocity gradients, and from Prandtl's 

ay 
)1/3 
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(1925) mixing-length modified by van Driest's (1956) damping function: 

• Z 	
2 Buz 
	I] 

= /4  = 	xy [f- exp(4-7264 
/).Z. 	 ay 	cly 

where X = 0.4, and V is the local effective shear stress calculated as 

the product of the effective viscosity and the resultant of the 

velocity gradients. For the outer part of the layer Cooper assumed 

that the viscosity was proportional to the circumferential velocity 

displacement thickness and an intermittency factor. He initiated his 

predictions at the centre of the disc and assumed a step transition 

from laminar to turbulent flow at a rotational Reynolds number of 

3.04x10
5 

His predictions compared well with the circumferential 

drag and velocity field data. 

(b) Cones  

The integral profile analysis of von Karman (1921) 

for a disc was generalised by Kreith (1966) to calculate the drag 

on cones of arbitrary vertex angles. He obtained satisfactory 

agreement with his drag measurements for a cone of 60 degree vertex 

angle. 

(c) Cylinders  

For the case of a cylinder in a uniform stream 

flowing parallel.to its axis of rotation, Parr (1963) used a 

momentum integral approach to predict the axial and circumferential 

momentum thicknesses. Cham and Head (1970) extended their method 

for the disc flow to the cylinder flow. The velocity profiles 

were assumed from a two parameter family, and the auxiliary equation 

for entrainment was made a function of the velocity defect in the 

outer part of the layer and of the ratio of rotational to free stream 

velocity. They obtained very good agreement with the drag and 
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velocity field measurements of Parr. Furuya, Nakamura and Kawachi 

(1966) represented the velocity components by fourth order 

polynomials; they achieved fair agreement with their data for the 

Velocity field. 

(d) Nose-Body  

Cham and Head (1971) have recently applied their 

entrainment method (based on the use of momentum integral equations 

in the streamwise and cross-stream directions) to the study of the 

boundary layer on a nose-body rotating in an axial stream of uniform 

velocity. The problem was formulated in orthogonal coordinates which 

were then transformed to a system of streamline coordinates appropriate to 

their solution procedure. They present solutions of the velocity field, 

and axial and circumferential drag coefficients, for a single set of 

conditions based on the free-stream Reynolds number and a rotational 

velocity parameter. Experimental measurements are not available for 

their geometry. 

(e) Free Swirling Jet  

The most comprehensive study of axisymmetrical 

swirling jets in stagnant surroundings is undoubtedly that of Chigier 

and his coworkers. Chigier and Chervinsky (1966, 1967) used an 

integral-profile method and assumed that, at some distance from the 

jet orifice a fully developed flow field is established in which the 

velocity profiles have similar shapes. The axial and swirl components 

of velocity were specified as third order polynomials. Their 

analysis was extended by Chervinsky and Lorenz (1967) to general 

axisymmetrical free swirling flows: a jet issuing into a stagnant 

medium, a jet issuing into a co-axial stream, and a wake behind a 

rotating body. The solutions are, again, only valid in the region of 
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the flow where the assumption of similarity holds. The predictions 

of axial and swirl velocity decay compared well with the data for 

jets in stagnant surroundings. 

Lilley (1973) adopted a different approach; he 

employed the finite-difference procedure of Patankar and Spalding 

(1970) to solve the equations governing the jet swirling in a 

stagnant medium. He assumed that the effective viscosities are 

related via a viscosity ratio, Cr", =fh 	, and evaluated 
-74 	 2 / 2,3 	it 

ya 
2. 

from an extension of Prandtl's mixing-length hypothesis: 

/11 

I. 
 

aX2/ 

e„ 	.08 ( 	.6-5) .os 

Cr2;3 = 1 +5S3 

is the value of V" where the axial velocity decays to 5% of .05  

its value at the axis. Both the mixing-length (nand the viscosity 

ratio c3were made functions of the local swirl number SI  a measure 
2.1  

of the axial flux of swirl and axial momenta. Lilley's predictions 

of jet growth, entrainment and decay were in good agreement with 

the data of Chigier and ChervinskY (1966, 1967). 

In addition to the mixing-length formulation, Lilley 

also employed a different model of turbulence to repeat his predictions. 

The effective viscosity CL was calculated in terms of the kinetic 

energy of turbulence 4c and a length scale 	appropriate to the 

energy containing eddies :// 
At  Z. = 	2, 3  

where 0;3  7f-t-  2 s 3  . The two turbulence quantities 4 and 
were determined from their own differential equations. These 

equations were developed by Rodi and Spalding (1970) and Ng and 

Spalding (1971) for non-swirling boundary layers, and;extended during 

2. 
= perti( 

3
V1 

1:2 	/ — L )(2 	' 
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the course of the present research to swirling boundary layers; this 

latter work was reported in an internal report at Imperial College: 

Koosinlin and Lockwood (1971). Since these equations are described 

in the main text of the present thesis, it is sufficient here to note 

that Lilley's predictions were in good agreement with the data. 

1.3-2' Heat Transfer  

(a) Discs  

Dorfman (1963) presented predictions of the Nusselt 

number for a disc rotating in stagnant surroundings and having an 

arbitrary distribution of surface temperature. He employed von 

Karman's (1921) results for the frictional drag, assumed a quadratic 

variation of surface temperature, and applied Reynoldt analogy. He 

then solved the energy equation assuming an one parameter family of 

temperature profiles; the constants in this equation were determined 

from the Reynolds analogy results. Dorfman found that the Nusselt 

number varies with Reynolds number to the 0.8 power, and with Prandtl 

number to the 0.6 power. 

A procedure for the case of an isothermal disc in 

air was proposed by Davies (1959). He assumed 1/7th power velocity 

profiles, and solved the integral radial momentum equation alone, 

making use of von Karman's results to obtain the radial component 

of shear stress. The diffusivity of the radial momentum was then 

equated to the diffusivity of heat, and the temperature equation 

solved to determine the heat transfer; the Nusselt number was found 

to vary as the Reynolds number to the power 0.8. 

Hartnett, Tsai and Jantscher (1965) pointed out that 

the analytical procedure of Davies is also applicable when the 
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surface temperature of the disc is a power-law function of the 

radius. They extended Davies' solution to non-isothermal discs, 

but equated the circumferential instead of the radial diffusivity 

of momentum to the diffusivity of heat. Their own predictions, along 

with those of Dorfman and Davies, were compared with the experimental 

heat and mass transfer data for isothermal discs rotating in still 

air; the predictions of Dorfman were the most reliable. 

(b) Cones  

Tien (1965) showed that the analytical heat-transfer 

prediction for non-isothermal discs can be applied to obtain solutions 

for non-isothermal rotating cones, and also for discs and cones 

having a step distribution of surface temperature. Kreith (1966) 

determined that the Nusselt number for an isothermal cone varies with 

Reynolds number to the 0.8 power, and with Prandtl number to the 0.75 

power. This result was derived from the earlier work of Kreith, 

Taylor and Chong (1959) who assumed a 'law of the wall' type profile, 

and solved the mass-transfer equation. 
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APPENDIX 2 

Previous Experimental Work  

2.1 Introduction 

2.2 Hydrodynamic Experiments 

2.2-1 Disc 

2.2-2 Cones 

2.2-3 Cylinders 

2.2-4 Free Jets 

2.3 Turbulence Measurements 

2.3-1 Discs 

'2.3-2 Free Jets 

2.4 Heat and Mass Transfer Experiments 

2.4-1 Laminar Flow 

2.4-2 Turbulent Flow 

2.1 INTRODUCTION  

The availibility of reliable experimental data is paramount 

to the successful development of prediction procedures; in particular, 

they are essential to the framing of a proper model for the turbulence 

structure of the flow under consideration. These data play a major 

role in the determination of the constants or functions appearing in 

the turbulence models, and in assessing the general validity of such 

models. It is therefore necessary to identify the most reliable 

experimental data. However, for many swirling flow configurations the 

data are limited or unreliable; but they are none-the-less the only 

ones available for comparison with predictions. The following review 

therefore covers the most reliable experimental measurements for the 

7 
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few cases when several sets of data are available; it also indicates 

the limited amount, the unreliability, and the plain lack of data for 

several flow situations. 

The experimental measurements of mean flow quantities for 

rotating discs, cones and cylinders, and for free swirling jets in 

stagnant surroundings, under conditions of turbulent flow, are 

reviewed in Section 2.2. The laminar flow data have been 

comprehensively covered by Dorfman (1963) and Kreith (1968). 

Section 2.3 covers the measurements of turbulence quantities 

for rotating discs and swirling jets in stagnant surroundings. These 

are the only two flows for which turbulence measurements have been 

reported. 

Section 2.4 deals with the heat and mass transfer from discs 

and cones rotating in stagnant air. Also reviewed are isothermal 

discs and cones rotating in co-axial air streams. Both laminar and 

turbulent flows are considered. 

2.2 HYDRODYNAMIC EXPERIMENTS  

2.2-1 Discs  

One of the earliest reported experiments is that of 

Theodorsen and Regier (1944) who measured the drag on a disc rotating 

in still air. At high Reynolds numbers, when turbulent flow prevailed 

over most of the disc surface, their results and the more recent drag 

measurements of Owen (1969) confirm Dorfman's (1963) turbulent flow 

predictions. ' 

Measurements of the velocity field near a disc in the 

laminar, transitional and turbulent flow regions were made by Gregory, 

Stuart and Walker (1955); they found that the transition Reynolds 

number lies between 2.7 x 10
5 
and 3 x 10

5
. Their circumferential 
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velocity profiles were in good agreement with Cochran's (1934) 

predictions for laminar flow, but the agreement for the radial 

velocity profiles was not good. For turbulent flow, both thc' 1/7th 

power profile assumed by von Karman (1921) and the logarithmic profile 

assumed by Goldstein (1935) represented well the circumferential 

velocity measurements. The radial velocity profile was in good 

agreement with von Karman's power-law assumption close to the surface, 

but Goldstein's logarithmic profile was superior away from the surface. 

Recently, Cham and Head (1969) have reported comprehensive 

measurements of the velocity field and entrainment into the boundary 

layer on a free rotating disc. These authors obtained excellent 

agreement with their calculations using the circumferential and radial 

momentum equations with an auxiliary equation for entrainment. 

2.2-2 Cones  

Kreith, Ellis and Giesing (1962) investigated the transition 

characteristics of cones rotating in a motionless medium, and found 

a rapid increase in the transition Reynolds number with increasing 

cone vertex angle. They further measured the velocity field on a 

cone of 53.5 degree vertex angle for laminar flow; the results 

confirmed their predictions based on boundary-layer theory. Kreith 

(1966) has also performed a few measurements of the drag on a 60 

degree cone rotating in stagnant air in turbulent flow conditions; the 

experimental data substantiate well his theoretical predictions. 

2.2-3 Cylinders  

Parr (1963), and Furuya, Nakamura and Kawachi (1966) have 

measured the velocity distribution on a cylinder having a streamline 

fore-portion rotating in an axial air stream of uniform velocity. The 

measurements were carried out on the cylindrical part of the body, and 
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have been well predicted by Cham and Heads' (1970) integral-profile 

method. 

2.2-4 Free Jets  

The first reliable experimental velocity measurements of 

an axisymmetrical swirling jet were reported by Rose (1962) for a 

weak degree of swirl relative to the axial velocity; the jet issued 

from a rotating pipe. The same technique was used by Pratte and 

Keffer (1972) to generate a jet of moderate swirl. Chigier and Beer 

(1964), and Chigier and Chervinsky (1966, 1967) obtained jets for a 

wide range of degrees of swirl by injecting air through tangential 

slots into ah axial flow in a pipe. The results of all these 

experiments showed a rapid decay of the swirl component of velocity 

to less than 5% of the orifice value at 10 diameters downstream; they 

also showed that the-mean velocity profiles and pressure profiles were 

effectively similar from an axial distance of 4 orifice diameters for 

low and moderate swirl. Chigier and Chervinsky (1966, 1967) found 

good agreement between the experimental mean velocity data and their 

predictions based on an integral-profile method. 

2.3 TURBULENCE MEASUREMENTS  

2.3-1 Discs 

The only experimental measurements of turbulence quantities 

for the flow over axisymmetrical rotating bodies are those recently 

reported by Erian and Tong (1971) for a disc rotating in stagnant air. 
v?- and vt • 

They measured the Reynolds stresses
A 
 associated with the radial and 

circumferential directions, but not the cross-stream normal stress N1E2, 

v,vz  
nor the radial-normaland circumferential-normalAshear stresses 

because of experimental difficulties. This is rather unfortunate 

since these latter three stresses are the most significant ones in the 



- 176 - 

boundary layer on the disc. 

Erian and Tong's work has however exposed several 

experimental problems; for example, as a result of manufacturing 

tolerances, the movement of the surface in the cross-stream direction 

is usually of larger magnitude than the scale of fluctuating motions. 

Accurate positioning of the measuring probe from the surface is not 

easily achieved, leading to inaccurate measurements owing to the steep 

gradients of flow properties. Direct measurement of the two significant 

shear stresses on a disc would require positioning a hot wire in-a 

plane normal to the disc surface, thus sensing average values over 

most of the boundary-layer thickness, rather than local values. 

2.3-2 Free Jets  

The turbulence characteristics of axisymmetrical jets 

swirling in stagnant surroundings have been investigated experimentally 

by Rose (1962), Craya and Darrigol (1967), and Pratte and Keffer (1972). 

The measurements of Rose were restricted to the turbulence energy for 

a jet having a low degree of swirl, whereas the measurements of Craya 

and Darrigol covered all three normal stresses as well as two shear 

stresses for degrees of swirl varying from weak to very strong. However, 

very few of their data have been published. 

The only other measurements of all the stress components 

have been made by Pratte and Keffer for a jet having a moderate degree 

of swirl. They found that the normal turbulence intensities tended 

towards a self-similar state downstream of the orifice, long after 

the mean flow had achieved a self-similar state. The data for the 

shear stresses however, showed a considerable degree of scatter and 

precluded anything more than a simple order of magnitude estimate. 

Pratte and Keffer also reported appreciable experimental difficulties 
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in measuring. the Reynolds shear stresses; these measurements involved 

Eulytraction of hot wire signals, with increasing errors as these 

differences became small. 

2.4 HEAT AND MASS TRANSFER EXPERIMENTS  

2.4-1 Laminar Flow  

Measurements of the average heat transfer from an 

isothermal disc rotating in still air under conditions of laminar 

flow have been performed by Cobb and Saunders (1956), Richardson 

(1958), Lee (1966), McComas and Hartnett (1970), and Dennis, Newstead 

and Ede (1970). All the results show that the average Nusselt number 

is proportional to the Reynolds number to the power 0.5, but they 

differ in the proportionality constant. These results are summarised 

in Table 2.1 below in which the measured values of the constant are 

recorded for a fluid of Prandtl number 0.72; the proportionality 

constant determined in the various theoretical studies are also given. 

Experimental Work Theoretical Work 

Cob and Saunders (1956) .0.36 Millsaps and Pohlhausen (1952) 0.35 

Richardson 	(1958) 0.40 Sparrow and Gregg 	(1959) 0.33 

Lee 	(1966) 0.35 Hartnett and Deland 	(1961) 0.33 

McComas and ' Dorfman and 
Hartnett 	(1970) 0.34 Serazetdinov 	(1965) 0.33 

Dennis, Newstead 
and Ede 	(1970) 0.40 

-- 0.5 Table 2.1 	Proportionality constant determind from Nu/Re 
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The experimentally measured constants are generally higher than the 

predicted ones. These discrepancies arise from the inevitable errors 

due to extraneous heat losses associated with heat-transfer experiments. 

In order to avoid the heat-loss problem, and also the 

experimental difficulty of obtaining an isothermal surface condition, 

several workers have preferred to perform mass-transfer experiments. 

Most have studied the mass transfer from naphtalene coated surfaces 

for which the Schmidt number is 2.4. The earliest work of this kind 

seems to be that of Krieth, Taylor and Chong (1959) who made 

measurements for the mass transfer from a disc rotating in stagnant 

air. Similar experiments were carried out by Tien and Campbell (1963) 

for cones with vertex angles ranging from 60 to 180 degrees. The 

results of both groups of workers are consistent, and are closely 

approximated by the expression Sh=0.625 Re0.5  predicted by Millsaps 

and Pohlhausen (1952), Sparrow and Gregg (1959), and others in their 

theoretical analyses. The Reynolds number is defined as Re=11.rx/O 

and the expression for the Sherwood number is valid for discs and 

cones; x is the distance measured from the centre or apex along the 

surface. 

Salzberg and Kezios (1965) investigated the mass transfer 

from a 30 degree cone under laminar flow conditions for the case 

where the surrounding air flows axially past the cone. Their data 

confirmed the predictions of Schlichting (1953). A step-change in 

the surface temperature of cones of vertex angles 60 to 180 degrees 

was simulated by Tien (1965) by allowing mass transfer to occur from 

part of the surface only; the results are well represented by Tien's 

predictions. Mabuchi, Kotake and Tanaka (1971) measured the local 

and the average mass transfer from a disc, with a stepwise discontinuous 
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naphtalene covered surface, rotating in an uniform axial laminar air 

stream. The measurements supported their analytical predictions very 

well. 

2.4-2 Turbulent Flow  

The average heat transfer from an isothermal disc rotating 

in still air under conditions of turbulent flow has been investigated 

by Cobb and Saunders (1956), McComas and Hartnett (1970), and Dennis, 

Newstead and. Ede (1970); mass-transfer measurements were reported by 

Kreith, Taylor and Chong (1959). Similar mass-transfer experiments 

have been made by Tien and Campbell (1963) for cones of 60 to 180 

degrees vertex angles. 

For an isothermal surface all of the theoretical analyses 

reviewed in Appendix 1, Section 1.3, were based on the assumption 

that turbulent flow prevailed over the whole cone or disc surface. 

The analyses resulted in an expression for the average Nusselt (or 

Sherwood) number of the form Nu = CoARe0.8; C and A are constants and 

a is the Prandtl (or Schmidt) number. The Reynolds number is, as in 

the laminar flow case, defined as Re . Ofk /v. The theoretical 

results together with the experimental ones are summarised in Table 

2.2 below. 

■ 
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Theory 

- 

Constant 

C A 
- 

Cr. .72 

co A 
Cr= 2.4  
corA 

Davies 	 (1959) .0166 1.0 .012 .040 

Dorfman 	 (1965) .0184 .6 .015 .031 

Hartnett, Tsai and Jantscher 	(1965) .025 1.0 .018 .060 

Dorfman, modified by Hartnett et al(1965) .0198 1.0 .014 .047 

Kreith 	 (1968) .020 .75 .015 .038 

McComas and Hartnett 	(1970) .0154 .33 .014 .021 

Experiment 

Cobb and Saunders 	(1956) 	Heat transfer .015 

Kreith, Taylor and Chong (1959) 	Mass transfer .040 

Tien and Campbell 	(1963) 	Mass transfer .042 

McComas and Hartnett 	(1970) 	Heat.transfer .014 

Dennis, Newstead and Ede (1970) 	Heat transfer .015 

1 

• 
Table 2.2 Constants in the average Nusselt number expression for 

isothermal discs and cones in turbulent flow: Nu = C6
A
Re0.8 

The predictions of Dorfman, Kreith, and Hartnett and his 

co-workers, display good agreement with the three sets of heat-transfer 

data; and those of Davies, and Kreithyare well supported by the mass-

transfer data. It should however be remarked that none of these 

experiments reached a sufficiently high Reynolds number for fully 

turbulent flow. Consequently, the extrapolation of the data to the 
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limiting condition of turbulent flow over-the whole surface is 

subject to some uncertainty. 

The case of uniform surface heat flux for a disc rotating 

in air has been studied by Subba Rao (1967) who measured the average 

heat transfer. From his measurements of heat flux and surface 

temperature distribution, Subba Rao deduced the local heat transfer 

rate by applying a local heat balance over annular segments, for 

several radii. The results are closely represented by the following 

empirical formulae: 

Nu
r 

.0416Re
°.8 	

and 	Nu = .0148Re0'8 . 

The subscripts r and R refer to the local and maximum radii respectively; 

Nur 
and Nu are the local and average Nusselt numbers. Since the 

average Nusselt number is in close agreement with that for isothermal 

discs, Subba Rao concluded that the difference between the two 

boundary conditions does not influence the average heat transfer. A 

similar result can be inferred from the work of Lewis and Ruggeri (1956, 

1957); they investigated the heat transfer for these two boundary 

conditions for an ellipsoidal-nose body and a conical-nose body which 

were rotated in a co-axial air stream of uniform velocity. 

In order to simulate a step-change in the surface temperature 

of cones, Tien (1965) allowed mass-transfer to take place from only 

part of the surface. His measurements are well represented by his 

own predictions. The experimental investigation of Salzberg and 

Kezios (1965) of the mass transfer on a:30 degree cone rotating in a 

'co-axial air stream confirms the analytical predictions of Truckenbrodt.  

(1952). 

Recirculating Flow  

Owen and his co-workers (1972) have recently reported measurements 
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of average heat transfer for a shrouded parallel discs system with a 

" radial outflow of coolant. Their data cover a wide range of 

rotational Reynolds number, coolant flow rate, discs spacing, and 

shroud-disc spacing. Yu and his co-workers (1972) measured the local 

as well as the average heat transfer for a different shrouded parallel 

discs system, see Fig. 2.1. They investigated much larger inter-disc 

. spacing to radius ratio than Owen. 

shroud 
	 shroud 

              

              

  

rotor 	rotor 

   

Coolant 

    

Coolant 

     

              

            

-►, 

   

                   

                   

Owen's system 
	Yu's system 

Fig. 2.1 Shrouded parallel discs systems 

Although they do not fall into the present class of swirling 

boundary-layer flows, since they are of the recirculating flow class, 

these two experimental investigations are briefly reviewed because they 

are comprehensive and have been accurately performed. They will play 

an important part in the extension of turbulent transport hypothesis 

from boundary-layer to recirculating flows. 
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APPENDIX 3  

Wall-Functions  

3.1 Introduction 

3.2 Laminar Flow 

3.3 Turbulent Flow 

3.3-1 Mixing-Length Based Models 

3.3-2 Energy-Length-Scale Model 

(a) Velocity 

(b) Turbulence Energy and Length Scale 

3.3-3 Algebraic Stress Model 

3.1 INTRODUCTION  

Close to a wall, the fluxes of mass, momentum and energy 

are only significant in the direction normal to the wall. The 

transport of these quantities by convection is negligible since the 

streamwise and cross-stream velocities close to the wall are small. 

Consequently, this is a region of one-dimensional or Couette flow. 

A finite-difference grid covering this region has to be closely spaced, 

on account of the steep gradients of the dependent variables, and is 

therefore uneconomical in terms of computer time. 

However, Patankar and Spalding (1970) showed that, since - 

the partial differential equations reduce to ordinary equations in the 

Couette region, they could be solved with appropriate assumptions for the 

exchange coefficients to yield algebraic formulae which relate the 

values or fluxes of the variables at the wall to conditions at the 

grid node adjacent to the wall. These algebraic relations are known 

as 'wall-functions'. 
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3.2 LAMINAR FLOW  

When the-  convection terms in the momentum, heat and mass 

transfer equations (Chapter 2, equations 2.34, 2.36, 2.37 and 2.38) 

are neglected, the equations reduce to: 

The symbol y represents the cross-stream x2-coordinate, and 

x is the streamwise x
1
-coordinate. In the thin Couette-flow region, 

the terms on the right hand side of the above equations, and also the 

distance r from the axis of symmetry, are assumed constant between the 

wall and the grid-node adjacent to the wall at the average of their 

values at the wall and at the near-wall node. With these assumptions, 

the solutions to equations 3.1 to 3.4 are: 

= 	 
eV, y 

( 3.6 ) 

CA/ 
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The subscript w refers to wall values,. the overscore to the 

average of the wall and near-wall node values, while all the remaining 

variables are evaluated at the near-wall grid-node. EquatioLs 3.5 to 

3.8 are the laminar flow wall-functions for the two momentum, the 

stagnation enthalpy and the mass-transport equations. 

3.3 TURBULENT FLOW  

For turbulent flow the grid-node adjacent to the wall can, 

without significant loss of accuracy, be located beyond the edge of 

the laminar sublayer, provided information about the effective exchange 

coefficients r94eff is available. For many non-swirling two-dimensional 

wall flows, these coefficients are established to high degrees of 

accuracy; see for example Patankar and Spalding (1970), and Ng and 

Spalding (1972). Unfortunately, this is not the case for turbulent 

swirling boundary layers. The present thesis deals with four proposals 

to model turbulent swirling flows, and hence to determine the exchange 

coefficients. The near-wall procedures adopted for the different models 

are explained in the following subsections. 

3.3-1 Mixing-Length Based Models  

For the Prandtl mixing-length based models developed in 

Chapters 4 and 6, turbulent wall-functions are not employed simply 

because these models are applicable to fully turbulent flow, as well 

as the near-wall region and the laminar sublayer. Instead, the finite-

difference grid is extended right into the laminar sublayer and 

consequently, the laminar wall-functions are used to determine the 

shear stresses, and when there is heat or mass transfer, the heat or 

mass fluxes at the wall. 

• 
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3.3-2 Energy-Length-Scale Model  

(a) Velocity, 

The two-equation energy-length-scale model under 

consideration in Chapter 5 is only applicable to fully turbulent flow. 

For this case, the resultant velocity VR  relative to the wall is 

presumed to obey the conventional log-law; see for example Backshall 

and Landis (1969), and also F. 76: 

vR ictg,w 	F51( L  = ► irL 
	

(3.9 ) 

The axial and circumferential shear-stress components are then obtained 

by straightforward resolution, assuming that the resultant shear-stress 

at the wall,' R,14, acts in the same direction as the resultant velocity 

evaluated at the near-wall node. It should be noted that this 

assumption is only made for the Couette region, and not for the 

remainder of the flow, in order to determine the components of the 

shear-stress at the wall; namely, 

1)W - 
	w 	\IR 
	 (3.10) 

l'31W = TR, w (V3-  V3,WOR • 	(3.11) 

The assumption implies that the effective viscosity is isotropic in 

the region between the wall and the near-wall grid node. 

(b) Turbulence Energy and Length Scale  

Very little is known of the behaviour of the energy of 

turbulence, k, in the near-wall region of swirling wall flows. However, 

the information available for non-swirling wall flows, see Hinze (1959), 

indicates that the diffusion as well as the convection of k are 

negligible in that region. It is assumed that the same situation 

applies for swirling boundary layers. Consequently, when 
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the convection and diffusion terms are removed from the transport 

equation for k, equation 7.20 of Chapter 7, and the dissipation is 

expressed in terms of k and the length scale through equation 7.17, 

there results: 

The turbulent viscosity, assumed in the proceeding 

subsection to be isotropic in the region between the wall and the 

first near-wall node, is given in Chapter 5 as: 

(3.13) 

Furthermore, equation 3.12 implies that the production and dissipation 

of k are in balance, and leads, see Chapter 4, to the following 

expression: 

et rfav, 	(y. )(v3/r)1  z  
= m 	 I 

(3.14) 

where A
m 
is 

bxx  

the mixing length. 

Algebraic solution of equations 3.12 to 3.14, with 

and-ft/21/3.714r  (1(3/r)  
6xx  

, results in the following explicit 

relations for k and 2: 

and 
	

e_ c31 en, 

(3.15) 

(3.16) 

and T
3 , 

correspond to the values of -eV,V2.  and - ev2V3 at the wall, 
1,w 

and are the components of the resultant wall shear-stress TRw. 
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Also, in the turbulent region outside the sublayer, the mixing-length 

is simply proportional to the distance from the wall (see Schlichting 

(1968)). Hence, equations 3.15 and 3.16 can be rewritten as: 

= 
	 (3.17) 

e 	. 	 (3.18) 

These expressions for k and L  are evaluated for the 

. near-wall node, and serve as the inner boundary conditions to the 

solution of the differential equations for k and the combined 

variable k2. Consequently, the grid node adjacent to the wall must 

always be located outside the sublayer in the turbulent part of the 

flow for the above analysis to remain valid. This treatment was 

employed by Ng and Spalding (1972) for predicting several non-swirling 

wall boundary layers, and is also adopted in the present work. 

3.3-3 Algebraic Stress Model  

The algebraic stress model presented in. Chapter 7 is 

applicable to fully turbulent flow, but is matched near the wall to 

the anisotropic mixing-length model developed in Chapter 6. This 

procedure allows the use of the laminar wall-functions to obtain the 

wall shear stress components T1viand T
3 vl 

 and furthermore, it does 

not necessitate any assumption about the behaviour of the shear 

stress and velocity vectors in the near-wall region. 

An analysis similar to that in Section 3.3-2 (b) above 

now shows that the near-wall value of k, to be used as the inner 

boundary condition to the solution of its transport equation, is 

given by: 
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e.1 	
ee. \Z 

)141  	Cr2-j.3   4-3)0)/ ecz . (3.19) 

The parameter 0.2,3 
is the effective viscosity ratio obtained from 

the anisotropic mixing-length model for the near-wall region. For the 

length scale,equation 3.18 remains valid. 
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APPENDIX 4  

STREAM-WISE PRESSURE GRADIENT FOR SHROUDED FLOWS  

The pressure gradient is 

estimated from a one-dimensional 

analysis of the flow. The mass 

flow rate, with the density and 

velocity averaged across the 

stream, is given by: 
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where the symbol A represents the calculated area of the flow. 

A force balance in the stream-wise direction yields: 
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For a steady flow of constant density, dm and dp are zero; hence, 

equations 4.2 and 4.3 result in the following final form of the 

pressure gradient equation: 

. 
dp 	( ri.Tr+ rE ZE  ) 	

+ 
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(4.4) 

The term bA is a measure of the difference between the calculated area 

of the flow and the geometrical area between the shroud and the 

rotating.body, and is calculated from: 

A . ( A
geometrical,D 	AU) 

	
(4.5) 

&X is simply equal toUU . The subscripts U and D symbolise the 

upstream and downstream stations. This formulation always causes the 
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pressure gradient to alter such that the discrepancy between the 

calculated flow area and the geometrical area is reduced. The need 

to iterate in order to obtain exact agreement between the two areas 

is eliminated. The fraction f controls the magnitude of the area 

correction; (a value of 0.05 was used for the shrouded disc geometry 

described in Section 4.3-4 of Chapter 4). 

k 
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APPENDIX 5  

Turbulent Mean Velocity Measurements on a Rotating Cone  

5.1 Introduction 

5.2 Apparatus 

5.2-1 Air Supply and Cone 

5.2-2 Instrumentation 

5.3 Results 

5.4 Nqmenclature 

5.5 Reduced Numerical Data 

5.1 INTRODUCTION  

Measurements of the mean velocity within the boundary layer 

on a rotating cone, of half angle 40 degrees, are reported. The 

measurements are intended to augment the rather limited available data, 

as revealed in Appendix 2, for boundary layers near axisymmetric 

rotating bodies. The experiment was designed to ensure the provision of 

a significant number of data for fully turbulent Reynolds number since 

these are particularly scarce. 

The chosen geometry was that of a rotating cone with provision 

for a wall jet issuing from a concentric annular slot near the apex. 

A wide range of conditions were obtained by varying the rotational 

speed, and the slot height and slot Reynolds number. The dimensions 

and speed of the cone were large enough to ensure a substantial length 

of fully turbulent flow. 

5.2 APPARATUS  

5.2-1 Air Supply and Cone  

The overall arrangement of the apparatus is shown in 

Fig. 5.1. Air from a radial fan passes into a large settling chamber, 



- 193 - 

'containing two wire-mesh filters. The air leaves the chamber to flow 

through a length of pipe which terminates in a circular diffuser 

placed concentrically over the cone apex. At the diffuser exit, 

velocity fluctuations were less than 5% for velocities lower than 

3 m/s, decreasing to less than 1% for velocities greater than 10 m/s. 

The lip of the diffuser was machined to a thickness of 

0.1 mm to minimise its downstream influence. The axial position of the 

diffuser was adjustable allowing the slot height, between the 

diffuser lip and the cone surface, to be varied. The alignment of 

the diffuser was such that the maximum circumferential variation in 

slot velocity was 3% at the maximum experimental velocity of 20 m/s 

decreasing to less than 1% for velocities of less than 3 m/s. 

The cone was machined from 4 layers of 76 mm aluminium 

platest secured together by internal screws. The maximum variation 

recorded when the cone was slowly rotated and its surface 'clocked' 

was + .025 mm. The cone was driven by a synchronous motor through 

a timing belt and pulley arrangement offering a wide selection of 

precise rotational speeds. 

The cone half-angle of 40°  was sufficiently large to 

ensure the development of a boundary-layer on its surface when 

rotating in stagnant surroundings. The substantial length of its 

conical surface of 0.356 m permitted a significant range of fully 

turbulent Reynolds numbers to be attained. Fig. 5.2 shows the 

Reynolds numbers provided by the apparatus as a function of surface 

position and rotational speeds up to the maximum safe speed for the 

cone of 1500 rpm. The extent of the laminar transitional and 

turbulent regimes as established by Kreith and his co-workers (1962) 

are indicated on the figure. 
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E E 

.70 m 
1 Radial fan 

2 Filters 

3 Settling chamber 

4 Diffuser 

5 Cone 

2.20 m 

Fig. 5.1 General arrangement of apparatus  

•25 	.50 	-75 	1.0 x / L 

Fig. 5.2 Flow regimes and Reynolds numbers attainable 

with the apparatus  
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5.2-2 Instrumentation  

The magnitude and direction of the resultant velocity 

were measured using the three-hole Pitot probe shown in Fig. 5.3. 

The design and construction of the probe were based on the 

recommendations of Bryer and Pankhurst (1971). A traversing 

mechanism allowed the probe to be moved parallel to the conical 

surface, normal to the cone surface in steps of 0.02 mm, and to be 

rotated about an axis normal to the cone surface. 

The three pressures sensed by the probe were measured 

using an electronic micromanometer to an accuracy of .5%. The 

response of the probe to misalignment with the resultant velocity was 

determined by a wind-tunnel calibration. The direction of the 

resultant velocity could be measured to an accuracy of + 0.2°  for 

velocities larger than 5 m/s, decreasing to + 0.5°  for velocities 

lower than 2 m/s. 

5.3 RESULTS  

Measurements were made for the eight sets of condition given 

in Table 5.1 below. The full reduced numerical data are presented in 

Section 5.5. 

Run 0 (rpm) Yslot(mm)  xslot (pm) 
-1 Reslot

X103 ReL  X10
5 

Vi,slot(ms)  

1 892.9 5.00 
' 	slot absent (i.e. free rotating 

2 1111.1 cone in stagnant surroundings) 
6.22 

3 1428.6 8.00 

4 0 2.59 95.5 17.1 2.93 

5 1111.1 2.59 95.5 17.0 2.90 6.22 

6 0 3.81 94.0 13.5 3.38 

7 562.5 3.81 94.0 13.4 3.36 3.15 

8 1111.1 3.81 94.0 13.6 3.42 6.22 

Table 5.1 Experimental conditions 
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23 

4 	 

tid 

1.14 	169 

Fig. 5.3 Dimensions (mm) of 3-hole Pitot probe  
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A selection of these results is presented in graphical 

form in Fig. 5.4 to 5.6. Panels (a) and (b) of Fig. 5.4 show the 

longitudinal and circumferential velocity profiles for Run 2 in 

which the cone was rotating in stagnant air at 1111 rpm, while panel 

(c) displays the variation of the angle between the resultant velocity 

and a plane through the axis. Fig. 5.5 shows plots of similar 

information for Run 5 where the cone was rotating in the presence of 

a finite slot flow. Fig. 5.6 displays some features of the 

developing boundary layer: the growth of longitudinal (direction.- 1),  

and circumferential (direction - 3) profiles for Runs 6, 7 and 8. 

5.4 NOMENCLATURE 

L 
	

length of cone surface = 0.356 m 

radius; r •=x sino.  

V
3' 

V
3,8 

Reynolds numbers: V 	and C2 L
2sin4o7v 

1, slotYs 

longitudinal velocity, average slot value; 

V, = VR  cost?) 

circumferential velocity, value at surface; 

V3  = VR  sin 13  

resultant velocity 

distance from apex along cone surface, value at 

diffuser exit 

normal distance from cone surface, slot height 

values of y at which velocity has fallen to i and 

1/5 of its maximum value 

• Re
slot' 

ReL 

vlIslot 

VR 

x, xslot 

p 
	

angle between resultant velocity and an axial 

plane 

0 	rotational' speed in rpm 



- 198 - 

O 

— 

• 

• 

o 

- 

o 

o 

o 

..._ 

1 - 

0 

(a) 

_ 

0 

. 

. 

6. 
, 0----0-G° 0 

• 

. 	(b) 

0 	. 
 c'°-G-r-o--o---i____ 

. 

. 

(c) 

1 

co 0 
c'bo 0.0„0..0.....  1 

50 

y strx 
r V 

30 

1 

•05 
VI/ V315  

40 FO 50 70 90 

Fig. 5.4 Cone rotating in stagnant air: Run 2, x/L = .857 

(a) profile of longitudinal velocity V1  

(b) profile of circumferential velocity V3  

(c) angle between resultant velocity and an 
axial plane 
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slot 

2.5 

Fig. 5.5 Distributions of V
1, 
 V3, and p for Run 5 

4 

3 

2 

40 	60 	80 	60 	80 
	

40 
	

60 
	

80 
xl Yslot 

Fig. 5.6 Boundary layer development for Runs 6, 7,  

(a) Growth of longitudinal boundary layer 

(b) Growth of circumferential boundary layer 

(c) Decay of longitudinal maximum velocity 
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5.5 REDUCED NUMERICAL DATA  

Distances are measured in 10 3  metres (millimetres), 

velocities in metres per second. 

x/L = .64 x/L = .715 x/L = .785 x/L = .855 x/L = .93 

y VR  p y VR  p y VR  p y VR p Y VR P 

.356 10.82 83.0 .343 11.04 83.2 .317 11.92 84.3 .432 10.13 83.4 

.406 10.17 82.0 .394 10.18 81.8 .356 10.98 83.6 .457 9.76 82.5 .368 12.28 82.8 

.457 9.59 81.0 .444 9.42 80.8 .406 9.93 82.3 .483 9.36 81.7 .394 11.78 82.6 

.533 8.58 79.0 .571 7.34 78.6 .457 9.07 81.1 .508 9.04 81.0 .419 11.05 81.6 

.660 7.19 76.0 .698 6.69 76.1 .508 8.39 80.1 .559 8.54 80.1 .444 10.71 81.2 

.787 6.07 74.0 .825 5.97 75.1 .635 7.24 78.5 .686 7.43 78.0 .495 9.82 80.2 
1.04 4.54 72.5 1.08 4.96 72.4 .762 6.41 77.1 .813 6.92 76.5 .521 9.50 79.7 
1.30 3.95 69.3 1.33 4.35 72.3 .889 6.04 76.4 .940 6.49 75.7 .546 9.16 79.3 
1.55 2.85 70.9 1.59 3.93 72.5 1.02 5.63 75.7 1.07 6.12 75.0 .673 8.13 77.6 
2.18 2.00 72.2 2.22 2.91 75.5 1.27 5.12 73.9 1.32 5.85 73.5 .927 6.98 75.7 
3.45 0.58 75.5 2.86 2.54 76.9 1.65 4.57 73.2 1.57 5.18 72.5 1.18 6.41 74.3 
4.72 0.57 65.0 3.49 2.08 77.5 2.29 3.89 71.9 1.83 4.84 71.9 1.44 5.90 72.8 

4.13 1.73 77.5 2.92 3.31 71.4 2.21 4.42 70.0 1.69 5.48 72.1 
5.40 1.41 72.0 3.56 2.96 71.5 2.59 4.05 69.2 1.94 5.15 71.6 
6.67 1.00 70.0 4.19 2.64 71.0 3.10 3.73 68.5 2.20 4.82 71.2 
7.94 0.82 66.5 4.83 2.30 70.6 3.73 3.36 67.0 2.45 4.71 70.2 
9.21 0.41 64.0 5.46 2.04 70.6 4.37 2.96 66.5 3.09 4.09 68.9 

6.10 1.82 70.3 5.00 2.70 66.0 3.73 3.64 67.3 
6.73 1.63 70.0 5.64 2.37 65.7 4.36 3.38 66.7 
7.37 1.35 69.0 6.27 2.19 65.5 4.99 3.10 66.0 
8.64 0.91 67.0 6.91 1.95 65.0 5.63 2.88 66.0 
9.91 0.71 65.0 7.54 1.73 64.1 6.26 2.54 65.3 
11.2 0.58 63.0 8.18 1.58 63.9 6.90 2.41 65.0 
12.4 0.41 61.0 8.81 1.41 63.5 7.53 2.19 64.0 

9.45 1.15 62.5 8.80 1.82 63.5 
10.7 1.00 61.5 10.1 1.52 62.0 
12.0 0.81 60.5 11.3 1.22 62.0 
13.3 0.41 59.5 12.6 1.00 61.0 

13.9 0.91 60.0 
15.2 0.71 57.0 

RUN 1: n = 892.9 rpm., ReL  = 5.0.'105 
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x/L = .57 x/L = .715 x/L = .785 x/L = .855 x/L = .93 

Y 
VR P Y VR p y VR P y VR   :43 y VR P 

.317 10.72 86.8 .317 14.05 86.5 .343 13.73 84.5 .317 15.64 86.0 .394 14.42 83.5 

.343 10.14 85.7 .368 11.95 84.0 .394 11.97 82.1 .368 13.63 83.5 .444 12.48 80.5 

.394 9.24 83.7 .495 9.24 79.0 .521 9.67 78.1 .495 10.96 79.5 .571 10.69 77.5 

.470 7.74 82.5 .662 7.93 76.0 .648 8.57 75.5 .622 9.47 76.5 .698 9.67 75.5 

.597 6.59 77.0 .876 6.66 73.0 .902 7.29 73.0 .749 8.69 74.7 .825 9.03 74.2 

.851 5.57 73.0 1.13 5.89 71.0 1.16 6.57 71.0 1.00 7.67 72.5 .952 8.53 73.5 
1.10 4.61 71.5 1.77 4.84  68.0 1.41 6.01 70.0 1.26 7.00 70.7 1.08 8.11 72.5 
1.61 3.80 69.0 2.40 4.15 66.0 1.92 -5.29 67.2 1.51 6.54 70.0 1.33 7.58 70.6 
2.12 3.18 67.3 3.67 3.18 62.5 2.55 4.61 65.0 1.77 6.11 68.5 1.59 7.03 70.0 
3.39 2.51 63.5 4.94 2.61 60.5 3.19 4.07 63.0 2.02 5.76 67.5 1.84 6.62 68.5 
4.66 1.68 59.5 6.21 1.95 58.5 4.46 3.21 61.5 2.27 5.45 66.5 2.10 6.16 68.0 
5.93 1.15 57.5 7.48 1.58 56.5 5.73 2.58 59.5 2.78 4.87 65.0 2.35 5.96 67.0 
7.20 0.81 49.0 8.75 1.29 54.5 7.00 2.15 58.0 4.05 3.93 62.9 2.98 5.31 65.0 
8.47 0.58 44.5 10.0 1.00 50.5 8.27 1.82 57.0 5.32 3.28 61.0 3.62 4.80 63.6 

x/L = .64 11.3 0.58  49.5 9.54 1.41 55.3 6.59 2.76 60.0 4.25 4.35 62.5 
.330 11.94 85.5 10.8 1.15 54.5 7.86 2.41 59.5 4.89 4.05 61.5 
.457 9.08 80.5 12.1 0.81 50.8 9.13 2.00 58.5 5.52 3.73 61.0 
.584 7.51 77.0 13.3 0.41 49.5 10.4 1.73 57.5 6.16 3.41 61.0 
.711 6.63 74.5 11.7 1.41 57.0 6.79 3.15 60.8 
.838 6.10 73.5 12.9 1.22 56.5 7.43 3.02 60.1 
1.09 5.39 71.0 14.2 1.15 51.0 8.70 2.61 59.5 
1.60 4.44 68.5 15.5 1.00 49.5 9.97 2.34 59.0 
2.87 3.28 65.5 16.8 0.71 44.5 11.2 2.08 58.5 
4.14 2.51 62.0 12.5 2.00 58.5 
5.41 1.82 59.5 13.8 1.78 58.5 
6.68 1.52 55.5 15.0 1.68 58.5 
7.95 1.15 53.5 16.3 1.52 58.5 
9.22 0.81 51.5 17.6 1.41 55.5 

RUN 2: n = 1111 rpm, ReL  = 6.22.105 
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x/L = .57 x/L = .715 x/L = .785 x/L = .855 x/L = .93 

Y V
R P Y V

R 
p y V

R P y V
R P Y V

R P 

.381 11.90 82.6 .432 11.95 81.0 .381 14.67 82.9 .381 16.21 83.0 .406 15.30 81.2 

.432 11.22 80.1 .457 11.38 80.1 .432 13.15 80.8 .432 14.19 80.6 .432 14.99 80.5 

.483 9.88 78.2 .508 10.75 79.0 .483 12.27 79.5 .483 13.24 79.1 .483 13.84 79.0 

.610 8.36 75.6 .559 10.08 78.0 .533 11.66 78.7 .533 12.68 78.0 .533 13.23 78.0 

.737 7.30 73.7 .686 9.18 76.4 .660 10.30 76.5 .635 11.66 76.4 .610 12.39 77.0 

.991 6.03 73.0 .940 7.95 74.2 .914 8.97 74.1 .762 10.77 74.8 .737 11.45 75.5 
1.24 5.17 73.0 1.19 7.13 73.0 1.17 8.03 72.7 1.02 9.48 73.1 .864 10.82 74.3 
1.75 4.05 75..5 1.45 6.62 71.7 1.42 7.46 71.4 1.27 8.71 71.2 1.12 9.85 72.5 
2.39 2.99 77.3 1.83 5.97 70.0 1.80 6.78 70.0 1.52 8.03 70.1 1.37 9.08 71.0 
3.02 2.19 76.0 2.46 5.09 68.4 2.44 5.72 67.8 1.90 7.39 68.5 1.63 8.47 70.0 
3.66 1.63 77.0 3.10 4.42 67.0 3.07 5.20 66.0 2.54 6.41 66.8 2.13 7.50 68.0 
4.29 1.41 76.0 3.73 3.89 66.0 3.71 4.50 65.0 3.17 5.61 65.5 2.64 6.85 66.5 
5.56 0.81 58.0 4.37 3.53 65.0 4.98 3.60 64.0 4.44 4.59 63.0 3.28 6.08 64.5 

x/L = .64 5.64 2.58 63.5 6.25 2.91 63.0 5.71 3.84 62.0 3.91 5.51 63.2 
.343 13.81 86.2 6.91 2.00 63.0 7.52 2.37 62.0 6.98 3.18 61.2 4.55 5.01 63.0 
.394 12.32 83.8 8.18 1.41 62.0 8.79 1.78 61.0 8.25 2.54 60.5 5.18 4.70 61.6 
.444 11.00 81.8 9.45 0.81 58.0 10.1 1.47 59.0 9.52 2.15 60.0 6.45 3.86 60.3 
.495 10.08 80.3 10.7 0.71 54.0 11.3 0.81 58.0 10.8 1.52 59.5 7.72 3.38 60.5 
.622 8.76 77.7 12.0 0.41 53.0 12.6 0.58 58.0 12.1 1.41 57.0 8.99 2.70 59.5 
.749 7.97 76.0 13.3 0.71 55.0 10.3 2.23 59.0 
1.00 7.02 74.4 14.6 0.41 55.0 11.5 1.78 58.5 
1.26 6.31 73.0 12.8 1.52 58.0 
1.64 5.51 71.5 14.1 1.08 58.0 
2.02 4.96 70.8 15.3 0.81 58.0 
2.40 4.59 69.5 
3.67 3.28 66.5 
4.94 2.41 65.0 
6.21 1.68 63.0 
7.48 1.08 61.0 
8.75 0.71 54.0 
10.0 0.41 50.0 

RUN 3: Q = 1429 rpm, ReL  = 8.0*105 
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x/Yslot=36.9  x/Yslot=49.0  x/Yslot=58.8  x/Yslot=68.6 x/ysiot.78.4 

y VR Y VR Y VR 	. y VR Y VR 

.305 17.52 .305 12.62 .305 8.75 .305 6.18 .356 4.91 

.432 18.80 .356 13.14 .432 9.64 .356 6.38 .483 5.66 

.559 19.58 .432 13.81 .813 10.74 .483 7.22 .737 6.39 

.813 20.57 .559 14.40 1.07 10.80 .737 7.85 .991 6.67 

.940 20.81 .686 14.57 1.32 10.68 .991 8.11 1.24 6.88 
1.07 20.93 .940 14.57 1.70 10.41 1.24 8.19 1.50 6.89 
1.19 20.81 1.57 13.51 2.34 9.63 1.88 8.11 2.01 6.88 
1.32 20.69 2.21 11.81 2.97 8.57 2.51 7.60 3.28 6.30 
1.57 20.00 2.84 9.85 3.61 7.87 3.15 7.27 4.55 5.63 
1.83 18.93 3.48 7.83 4.24 6.67 3.78 6.74 5.82 4.94 
2.08 17.57 4.11 5.90 4.88 5.66 5.05 5.49 7.09 4.09 
2.21 16.24 4.75 4.07 5.51 4.70 6.32 4.27 8.36 3.46 
2.34 13.93 5.38 2.51 6.15 3.78 7.59 3.18 9.63 2.34 
2.44 11.08 6.78 . 2.85 8.86 2.12 10.9 1.63 
2.49 9.02 7.42 2.00 10.1 1.22 12.2 0.81 
2.59 6.69 8.05 1.29 

x/Yslot=88"2  x/Yslot=98.°  x /ysiot=107.8 x /Yslot=117n8  x /Yslot=127.5  

Y VR  Y VR Y VR Y VR Y VR 

.305 3.71 .305 3.13 .305 2.30 .356 2.30 .356 2.12 

.356 4.01  .381 3.38 .559 3.36 .737 3.15 .991 3.07 

.483 4.52 .508 3.91 1.19 3.93 1.37 3.59 1.63 3.48 

.737 5.25 .762 4.42 1.83 4.17 2.01 3.84 2.26 3.55 

.991 5.51 1.02 4.68 2.46 4.25 2.64 3.89 2.90 3.62 
1.50 5.80 1.65 4.92 3.10 4.19 3.91 3.82 3.53 3.53 
2.13 5.72 2.29 5.10 4.37 4.11 5.18 3.78 4.80 3.46 
2.77 5.66 3.56 4.75 5.64 3.84 7.72 3.21 7.34 3.21 
4.04 5.25 4.83 4.50 6.91 3.53 10.3 2.76 9.88 2.70 
5.31 4.70 6.10 4.15 8.18 3.28 12.8 2.19 12.4 2.30 
6.58 4.19 7.37 3.73 9.45 2.94 15.3 1.73 15.0 2.08 
7.85 3.69 8.64 3.31 10.7 2.51 17.9 1.35 17.5 1.73 
9.12 3.18 9.91 2.82 12.0 2.27 20.4 0.81 20.0 1.22 
10.4 2.58 11.2 2.51 13.3 2.00 
11.7 1.95 12.4 2.04 14.5 1.73 
12.9 1.35 13.7 1.77 15.8 1.29 

RUN 4: n = 0 rpm, v 	2.59 " 
	

.17.1 
' -lot 	V1 slot 

. 95.5 xslot 
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x/Yslot=36.9  xlYslot=49.°  x/Yslot=58.8 x/yslot.68.6 x/yslot=78.4 

y VR  13 y VR  13 y VR P y VR P 1 VR P 

.305 17.66 
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 r4

 r-1
 0

  0
  0

  0
  0

  0
  

.330 12.62 7.2 .356 9.98 17.0 .356 8.42 45.8 .356 9.19 60.5 
.432 18.97 .406 13.51 7.1 .432 10.53 15.0 .406 8.15 38.8 .406 8.31 50.5 
.559 19.79 .533 14.29 6.6 .813 10.76 9.2 .483 7.97 27.5 .483 7.73 41.2 
.813 20.69 .660 14.52 6.0 1.07 10.80 7.2 .737 8.34 17.1 .737 7.27 26.3 
.940 20.93 .914 14.57 4.0 1.32 10.71 5.9 .991 8.49 13.5 .991 7.21 19.8 
1.07 21.09 1.55 13.45 2.0 1.70 10.41 4.2 1.24 8.49 11.0 1.24 7.15 16.6 
1.19 21.01 2.18 11.66 1.1 2.34 9.54 2.5 1.88 8.44 5.8 1.50 7.11 14.0 
1.32 20.77 2.82 9.72 0.7 2.97 8.57 1.2 2.51 7.86 4.7 2.01 7.00 10.5 
1.57 19.53 3.45 7.73 0.3 3.61 7.71 0.7 3.15 7.27 3.3 3.28 6.30 5.3 
1.83 18.35 4.09 5.83 0.0 4.24 6.69 0.5 3.78 6.77 2.2 4.55 5.51 3.3 
2.08 16.84 4.72 4.07 0.0 4.88 5.58 0.3 5.05 5.46 1.5 5.82 4.63 2.5 
2.21 15.51 5.36 2.51 0.0 5.51 4.57 0.2 6.32 4.25 0.0 7.09 3.86 1.7 
2.34 13.14 6.15 3.60 0.0 7.59 2.99 0.0 8.36 2.88 1.5 
2.44 10.46 6.78 2.76 0.0 8.86 2.30 0.0 9.63 2.12 1.0 
2.49 8.74 7.42 1.78 0.0 10.9 1.29 0.0 
2.59 6.44 

xlYslot=88.2  xlYslot=98.0 x/yslot.107.8 x/yslot.117.6 x/ysiot 127.5 

Y VR  p y VR  p y VR  p y VR p y VR P 

.330 10.97 74.5 .330 11.89 78.6 .330 12.12 79.5 .381 11.86 76.5 .381 12.4479.0 

.381 9.73 66.5 .406 10.27 72.0 .457 9.64 68.0 .508 9.78 69.0 .635 9.5169.7 

.508 7.89 51.0 .533 8.30 57.3 .584 8.23 59.8 .762 8.15 59.7 1.02 7.9261.0 

.762 6.90 46.5 .787 6.96 45.8 1.22 6.41 44.4 1.40 6.64 49.5 1.65 6.6353.7 
1.02 6.56 39.5 1.04 6.47 39.0 1.85 5.72 35.4 2.03 5.85 42.5 2.29 5.8747.3 
1.52 6.30 21.0 1.68 5.83 28.7 2.46 5.15 27.9 2.67 5.28 35.5 2.92 5.2642.0 
2.13 6.07 16.0 2.31 5.25 21.7 3.10 4.78 22.5 3.91 4.44 26.5 3.53 4.7737.0 
2.77 5.77 11.8 3.56 5.07 13.6 4.37 4.31 15.0 5.18 3.93 19.1 4.80 4.1131.0 
4.04 5.15 7.4 4.83 4.50 9.2 5.64 3.83 10.3 7.72 3.21 10.5 7.34 3.1519.0 
5.31 4.55 4.2 6.10 4.07 7.0 6.91 3.50 9.0 10.3 2.58 8.5 9.88 2.3416.5 
6.58 4.01 3.0 7.37 3.60 5.0 8.18 3.02 6.8 12.8 2.04 7.0 12.4 1.9512.0 
7.85 3.33 2.0 8.64 3.23 4.5 9.45 2.73 6.5 15.3 1.58 6.0 15.0 1.47 8.0 
9.12 2.76 1.5 9.91 2.79 4.0 10.7 2.34 6.0 17.9 1.22 5.0 17.5 1.08 2.5 
10.4 1.95 1.0 11.2 2.27 3.0 12.0 1.82 5.5 
11.7 1.82 0.5 12.4 1.82 2.0 13.3 1.58 4.5 

14.5 1.35 2.0 

= RUN 5: 0= 1111 rpm, Irslot=2.59'Vl ,slot 17.00  

xslot.95.5 
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x yslot=24.7 x/yslot=33.3 x/yslot.40.0  x/yslot.46.7 x/y dot=5 

Y VR Y VR y VR Y VR Y VR 
0.305 12.35 0.305 10.70 0.305 5.85 
0.356 12.88 0.432 11.9 5 0.432 9.03 0.381 6.16 0.356 4.89 
0.406 13.48 0.559 12.59 0.559 9.68 0.457 6.63 0.483 5.54 
0.457 13.87 0.686 12.88 0.686 10.06 0.584 7.25 0.610 5.92 
0.508 14.23 0.813 13.01 0.813 10.26 0.838 7.71 0.737 6.08 
0.559 14.52 1.07 13.17 .  1.07 10.40 1.09 7.92 0.864 6.30 
0.686 15.13 1.32 13.14 1.32 10.40 1.73 7.98 1.12 6.53 
0.813 15.56 1.57 12.88 1.57 10.32 2.36 7.69 1.37 6.61 
1.07 16.22 1.83 12.49 1.83 10.16 3.63 6.69 1.63 6.61 
1.32 16.50 2.08 11.98 2.08 9.91 4.90 5.73 1.88 6.59 
1.57 16.47 2.34 11.48 2.34 9.70 6.17 4.64 2.13 6.57 
1.83 16.19 2.84 10.26 2.84 9.04 7.44 3.55 2.51 6.45 
2.34 15.19 3.48 8.74 3.48 8.17 8.71 2.54 3.15 6.16 
2.84 13.69 4.11 7.23 4.11 7.37 9.98 1.68 3.78 5.86 
3.05 13.01 4.75 5.75 4.75 6.47 4.42 5.51 
3.30 11.95 5.38 4.39 5.38 5.49 5.69 4.84 
3.56 9.55 6.65 1.59 6.65 3.80 6.96 4.09 
3.78 4.73 7.92 2.31 8.23 3.31 
3.81 2.88 9.50 2.73 

. 10.8 2.04 
12.0 1.29 

x/Yslot=6°.°  x/YsloC66.7  x/Yslot=73.3  x/Yslot=8°.°  x/Yslot=86.7  

Y VR Y VR Y VR y 
VR Y VR 

0.305 3.02 0.305 2.54 0.305 2.04 0.305 1.87 
0.356 .3.97 0.356 3.16 0.356 2.61 0.356 2.19 0.356 2.04 
0.483 4.57 0.406 3.59 0.406 2.79 0.483 2.61 0.406 2.12 
0.610 4.87 0.533 3.91 0.533 3.21 0.610 2.96 0.533 2.41 
0.864 5.28 0.660 4.07 0.660 3.55 0.737 3.15 0.787 2.82 
1.12 5.46 0.914 4.42 0.914 3.86 0.991 3.43 1.42 3.23 
1.37 5.55 1.17 4.61 1.17 4.17 1.24 3.62 2.06 3.36 
1.63 5.61 1.55 4.80 1.68 4.37 1.50 3.69 2.69 3.43 
2.01 5.64 2.18 4.85 2.31 4.46 1.88 3.82 3.33 3.48 
2.64 5.58 2.82 4.78 2.95 4.41 2.51 3.89 3.96 3.46 
3.91 5.22 3.45 4.64 5.49 3.99 3.78 3.84 4.60 3.38 
5.18 4.71 5.99 4.05 8.03 3.36 5.05 3.71 5.23 3.31 
6.45 4.19 8.53 3-.31 10.6 2.73 7.59 3.36 7.14 3.02 
7.72 3.71 11.1 2.51 13.1 2.15 10.1 2.67 9.68 2.73 
8.99 3.18 13.6 1.82 15.6 1.58 12.7 2.19 12.2 2.27 

10.3 2.64 16.2 1.15 18.2 1.00 15.2 1.68 14.8 1.73 
11.5 2.30 17.8 1.35 17.3 1.47 
12.8 1.53 20.3 0.71 19.8 1.29 
14.1 1.15 

RUN 6: n = 0 rpm. xslot=94  Irslot.=3.81 	1,slot=13.47 
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x/ysiot.24.7 x Yslot=33.3  x/Yslot=4°.°  xtyslot =46.7 x/yslot =53.3 
y VR  P y VR 13 Y VR p y VR p y VR  
.330 13.51 2.5 .432 12.08 3.9 .432 9.17 

co
o

co
s

c
o

o
tn

o
tn

o
tn

N
0

0
0

0
0
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•
 
•
 
•
 II
•
•

•
•
•

•
•
•
•

•
•

•
  

(o
  ko 	

cr)
 (*I
 

N
H

H
0

0
0
0

0
0
0
 

.3881 6.23 16.0 .368 5.53 35.0 
.432 14.34 2.0 .559 12.62 3.1 .559 9.79 .457 6.67 13.0 .483 5.69 21.0 
.559 15.08 2.0 .686 13.04 2.7 .686 10.12 .584 7.25 10....) .610 6.01 14.0 
.686 15.56 1.6 .813 13.23 2.4 .813 10.26 .838 7.71 7.8 .737 6.22 12.5 
.813 15.93 1.5 1.07 13.39 1.7 1.07 10.40 1.09 7.94 6.5 .864 6.34 11.0 
1.07 16.45 1.2 1.32 13.39 1.5 1.32 10.40 1.73 7.99 4.6 1.12 6.56 8.5 
1.32 16.75 1.0 1.57 12.95 1.2 1.57 10.26 2.36 7.73 3.1 1.37 6.66 7.0 
1.57 16.70 0.6 1.83 12.49 0.8 1.83 10.06 3.63 6.82 0.4 1.63 6.69 6.0 
1.83 16.24 0.5 2.08 12.02 0.5 2.08 9.87 4.90 5.83 0.0 1.88 6.67 5.5 
2.08 15.67 0.4 2.34 11.52 0.3 2.34 9.57 6.17 4.70 0.0 2.13 6.61 4.5 
2.34 14.97 0.3 2.84 10.22 0.1 2.84 8.94 7.44 3.55 0.0 2.51 6.48 3.0 
2.84 13.51 0.2 3.48 8.71 0.0 3.48 8.17 8.71 2.58 0.0 3.15 6.28 2.0 
3.35 11.52 0.0 4.11 7.13 0.0 4.11 7.25 9.98 1.73 0.0 3.78 5.93 1.0 
3.81 2.88 0.0 4.75 5.69 0.0 4.75 6.34 4.42 5.61 0.0 

5.38 4.39 0.0 5.38 5.42 5.69 4.85 0.0 
6.65 1.73 0.0 6.65 3.69 6.96 4.07 0.0 

7.92 2.12 8.23 3.35 0.0 
10.8 1.95 0.0 

x/Yslot=6°.°  x/Yslot=66.7 x/yslot=73.3 x/yslot=80.0 x/yslot=86.7 

Y VR  p y VR p y VR 13 y VR P Y V
R 

p 

.343 7.00 70.0 .343 7.62 74.0 .356 8.35 78.0 .356 8.47 77.0 
.381 5.63 49.0 .394 6.42 64.0 .381 6.86 66.5 .406 7.41 72.0 .406 7.62 72.0 
.508 5.29 33.5 .432 5.87 53.5 .432 6.14 59.5 .533 5.99 59.5 .444 6.89 68.0 
.635 5.29 24.0 .559 5.18 40.0 .559 5.45 47.5 .660 5.28 50.0 .571 5.82 59.0 
.889 5.49 16.5 .686 5.06 32.0 .686 4.96 37.5 .787 4.94 42.5 .825 4.94 46.5 
1.13 5.60 13.5 .927 4.99 23.2 .940 4.78 27.5 1.03 4.55 33.0 1.45 4.25 32.5 
1.38 5.75 11.5 1.18 5.05 18.4 1.18 4.73 21.5 1.27 4.39 28.0 2.07 4.03 26.0 
1.64 5.80 10.0 1.55 5.05 14.0 1.69 4.64 16.5 1.52 4.29 24.5 2.71 3.86 20.5 
2.02 5.77 8.5 2.18 4.99 11.0 2.31 4.59 12.5 1.90 4.23 21.0 3.33 3.80 17.5 
2.65 5.66 6.0 2.82 4.97 8.3 2.95 4.46 10.0 2.54 4.15 15.0 3.96 3.64 15.0 
3.92 5.36 3.5 3.45 4.78 6.5 5.49 4.03 4.0 3.78 3.91 11.0 4.60 3.60 12.5 
5.19 4.78 2.5 5.99 4.15 3.0 8.03 3.36 1.0 5.05 3.61 8.0 5.23 3.50 10.5 
6.46 4.33 1.0 8.53 3.36 2.0 10.6 2.73 0.0 7.59 3.26 3.0 7.14 3.10 6.0 
7.73 3.73 040 11.1 2.54 1.0 13.1 2.12 0.0 10.1 2.67 2.0 9.68 2.76 5.0 
9.00 3.18 0.0 13.6 1.87 0.0 15.6 1.58 0.0 12.7 2.19 1.0 12.2 2.23 4.0 
10.3 2.61 0.0 16.2 1.15 0.0 18.2 1.00 0.0 15.2 1.68 0.0 14.8 1.73 3.0 
11.5 2.15 0.0 17.8 1.29 0.0 17.3 1.41 2.0 
12.8 1.58 0.0 20.3 0.71 0.0 19.8 1.29 1.0 

RUN 7: n = 562.5 rpm.Y 	1,slot= 13.40slot=3.81 	7 	, xslot=94 
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x/Yslot=24.7 x/yslot=33.3 x/ys1ot=40.0 x y 	=46.7 slot x/yslot 53.3 

y VR  13 y VR 13 Y VR 13 y VR 13 y VR P 

.330 14.11 2.5 .432 12.08 10.5 .356 9.47 24.5 .356 8.87 57.0 .356 -9.95 65.0 

.457 14.91 1.5 .559 12.69 10.0 .406 9.65 19.0 .406 8.15 42.5 .406 8.90 56.0 

.711 15.98 1.0 .686 13.07 9.0 .660 10.22 12.0 .533 7.62. 28.0 .457 8.10 47.5 

.965 16.65 0.5 .813 13.26 8.0 .914 10.40 9.0 .635 7.75 21.5 .559 7.26 34.5 
1.22 16.89 0.4 1.07 13.45 6.5 1.17 10.38 7.0 .889 7.99 15.5 .813 6.89 22.5 
1.47 16.79 0.3 1.32 13.39 6.0 1.42 10.38 5.5 1.14 8.04 13.0 1.07 6.84 16.5 
1.73 16.39 0.2 1.57 12.95 5.0 1.68 10.23 4.8 1.40 8.10 10.3 1.32 6.82 13.5 
1.98 15.83 0.1 1.96 12.29 4.3 1.93 9.99 3.7 1.65 8.02 8.6 1.57 6.77 11.0 
2.24 15.24 0.0 2.59 10.93 3.5 2.18 9.73 2.6 1.90 7.94 7.5 1.96 6.72 8.5 
2.49 14.69 0.0 3.23 9.29 2.0 2.69 9.20 2.0 2.29 7.81 6.0 2.59 6.45 5.5 
2.74 13.87 0.0 8.86 7.83 1.5 3.33 8.40 1.0 3.56 6.88 3.0 3.23 6.24 2.5 
3.00 13.14 0.0 4.50 6.18 1.0 3.96 7.51 0.5 4.83 5.90 1.5 4.50 5.44 1.0 
3.25 12.08 0.0 5.13 4.99 0.0 5.23 5.61 0.0 6.10 4.73 1.0 5.77 4.70 0.0 
3.51 9.98 0.0 5.77 3.64 0.0 6.50 4.03 0.0 7.37 3.60 0.7 7.04 3.97 0.0 
3.81 3.15 0.0 6.40 2.30 0.0 7.77 2.58- 0.0 9.91 2.08 0.0 8.31 3.43 0.0 

8.41 1.29 9.58 2.67 0.0 
12.1 1.68 0.0 

x/Yslot=6°.°  x/Yslot=66.7 x/yslot 73.3 x/yslot=80.0 x/yslot=86.7 
 

Y VR 13 y VR 13 y VR p y VR 13 y VR P 

.356 10.82 72.5 .356 12.19 72.0 .317 14.29 80.5 .343 14.49 75.5. .381 14.63 74.5 

.381 9.59 64.0 .457 9.14 58.5 .343 13.07 78.0 .457 10.91 65.0 .432 12.78 71.0 

.432 8.52 56.5 .711 7.17 42.0 .394 11.54 72.0 .584 9.30 59.5 .483 11.52 68.0 

.508 8.07 51.5 .965 6.52 34.0 .521 9.31 62.5 .838 7.87 51.2 .559 10.62 65.5 

.559 7.42 45.5 1.47 5.93 25.0 .635 8.24 56.5 1.09 7.15 47.0 .686 9.55 61.5 

.686 6.83 37.5 1.85 5.69 19.5 .762 7.61 51.5 1.35 6.61 42.5 .940 8.39 56.5 

.914 6.56 29.0 2.24 5.45 15.5 1.02 6.90 44.5 1.60 6.16 39.5 1.19 7.60 52.5 
1.30 6.16 21.5 2.87 5.22 10.0 1.65 5.99 34.5 1.98 5.76 35.0 1.45 7.14 50.0 
1.93 5.82 14.5 3.51 5.01 7.0 2.29 5.43 26.5 2.62 5.14 29.0 2.08 6.11 43.5 
2.57 5.54 9.5 4.78 4.55 2.5 2.92 5.02 22.0 3.25 4.78 25.0 2.72 5.51 38.0 
3.84 5.15 4.5 6.05 4.03 1.5 3.56 4.82 17.5 3.89 4.44 21.5 3.35 4.85 32.0 
6.38 4.07 1.0 7.32 3.60 0.5 5.46 4.15 8.5 5.16 4.07 15.0 4.60 4.27 24.5 
8.92 3.02 0.0 8.59 3.21 0.5 7.98 3.38 3.0 6.43 3.78 10.5 7.11 3.50 14.5 
11.5 1.95 0.0 9.86 2.85 0.5 10.5 2.64 1.0 7.70 3.28 8.0 9.65 2.61 9.0 
14.0 1.35 0.0 11.1 2.44 0.5 13.1 2.19 0.0 8.97 3.02 5.0 12.2 2.12 5.0 

12.4 2.12 0.0 15.6 1.58 0.0 10.2 2.76 4.0 14.7 1.73 3.0 
13.7 1.78 0.0 11.5 2.44 3.0 17.3 1.41 2.0 
14.9 1.58 0.0 14.0 2.08 1.0 

16.6 1.29 0.0 

RUN 8: 	= 1111 rpm., v -slot=3.81 	, V1,slot=13.60 	7 

xslot=94.0 
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APPENDIX 6  

Derivation of the Transport Equations  

for the Double Velocity Correlations  

6.1 Introduction 

6.2 Equations in Curvilinear Orthogonal Coordinates 
• 

6.3 Axisymmetric Cases with Constant Angle a 

6.4 Boundary Layer Equations 

6.1 INTRODUCTION  

It is shown in Section 7.2-1 of Chapter 7 that the 

convection and production terms of the double velocity correlation 

can be deduced from the Navier -Stokes equations by algebraic 

manipulation of only the convection terms of the latter equations. 

The exact expressionsrepresenting the diffusion, pressure-strain 

and dissipation processes are not at present solved.. Consequently, 

in the following derivation of the transport equations for the 

double velocity correlations the complete expressions for these three 

processes are not deduced. 

The Navier-Stokes equations for steady incompressible flow 

are in vector notation, Aris (1962): 

V.V) V = - Vp& 	(6.1) 
convection 	pressure viscous diffusion 

The term (V.17)Vr can be expressed in short as an acceleration term 

symbolised by a,. In the curvilinear orthogonal system of coordinates 

illustrated in Fig. 2.1 of Chapter 2, the components of the convection 

terms in, for example, the i -direction are: 
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a. ay  \Coei. )/ 
b)('. 1-  eax -- A -c&-  k 

(6.2) 

The acceleration term a and all the velocity components V re3resent 
instantaneous values. 

6.2 EQUATIONS IN CURVILINEAR ORTHOGONAL COORDINATES  

If for example v.v. is the double velocity correlation 3 

being considered, then the relevant Navier -Stokes equations are those 

for the i and j directions: 

a c  = [ !NJ? 	Nev 	( 6.3 ) 

a. 	p_vp 	VV- 	(6.4) 

The sequence of algebra necessary to obtain the desired transport 

equation for the double velocity correlation from equations 6.3 and 

6.4 is now described: 

(a) Equations 6.3 and 6.4 are multiplied by V. and V.
1 
 respectively, 

and the products summed; after some simplifications:

Q.
tNcylijk. 	_ 	ti+f  

 Vj[\f]chVi 	YV2Vli  ( 6.5  ) 

The instantaneous values of V 	separated 	their mean component 

V and their fluctuating component v': 

[V  
V.V.÷  v!V..4_ v V. v!v! 4. KV 4 v.T. [wk{L ., 	 L j 	nx  

(6.6) 
_R4..

jilfe2i)ek 	)ek AT 
ti 	e. 	vy_ 	wlv)i  ff+.10(_ye t  v):  

J 

(b) Equations 6.3 and 6.4 are multiplied by the mean values of V. 

and V. respectively, and the products summed: 

71_41-A +)_ii 	_ )ek -v j + yk [by,. 	_ A )eki 
)xi, 	e, axic 	et , axe 	 • ei  )xk 	e:, axs  

+ dv1+ V 	9V211) 

(6.7) 
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The instantaneous values of V are once again separated into mean 

and fluctuating components: 

1\71c+  F) (V-,v1 Vi4q 	\4+vk )ekl .4-VIVk+Vk) X J 	C k 	LX1< \ I' 	 ez 	 ik j 
1—"V. , 	 Ps„1„.:c 	.R2y)+ 	+ V1 ( 6 .8 ) 

VCIA Cr. 	ej 	)(ic 

(c) Equations 6.6 and 6.8 are time-averaged; from the definition of the 

fluctuating velocity component it follows that v' = 0, so that only 

double and triple velocity correlations now remain. The overscores 

and primes for the velocity components on the left side of the 

following equations are omitted for convenience. The time-average 

of equation 6.6 gives: 

eTxlc± 	
1<-1-v.ivk 	

\fey!, )Qk 
YIL 	 (vv 	)( 	)e. 	v v 

ek k\
L i i ji t k 	 )(c. 	Es dxj 

k 	 1( 	 + 

vk1/2 vivk \I= 
ti 

The time-average of 6.8 gives: 

(ViVk 	Vi,Vk 	N.Ln Vk pa +vv. (1_ez 
ek )%k ts) ax 	 )%'1', e; axi 	Zoci, 	?ix), 

aez 	yJV 	_YiNi)ek _v04 aek 
PL aXk es 

 
J 	

4:7, c 71/.12 ofe \t) 
\ L 

(6.10) 

(d) Finally, equation 6.10 is subtracted from equation 6.9 giving: 

(VI4+ Vk) [ bViyj 	y. ( 

+ I< Fv.Wj 	v.Wi, 
Tc-L 	b)7-ck 	TY>Tk 

_ 	y., )t, \-1 
(ceac 	.1< ei)xi 

_ <)ek _ „y,. )t),
e! axe 

(v-V. v.V 	) (yji. yfiz viyj) bet: .4. 	(VM ÷VjA +YjVk aek 
Oxk eib)94 	 >ct + 

(V:+1
(_Y2+ \72\r) 	N74. (.3.4 PV 2V) 
k 	 \ " 

(6.9) 

(6.11) 
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The left hand side of equation 6.11 comprises the convection 

and production terms for the double velocity correlations, as well as 

'some turbulent diffusion terms represented by the triple velocity 

correlations. These diffusion terms together with the right hand side 

terms representing viscous diffusion, pressure diffusion, pressure-

strain and dissipation are not considered in the remainder of the 

present analysis. Section 7.3 of Chapter 7 describes how they are 

modelled. 

The transport equation can therefore be represented as: 

Convection = Production + Diffusion .+ Pressure-strain + Dissipation. 

6.3 AXISYMMETRIC CASES WITH CONSTANT ANGLE a  

In the present work the stress equations are only employed 

for cases when the geometrical angle a is a constant, see Figure 6.1. 

Fig. 6.1 

The metric coefficients 1 
and 22 

are then equal to unity, and for 

axisymmetrical flow 1
3 
is equivalent to the radius r. Furthermore, 

derivatives with respect to the circumferential direction x3
, are 

zero. Equation 6.11 is considerably simplified and can be expanded 

for each of the six double velocity correlations as: 

Nov 	v3 r 	gyv 	( IF Ps 
"T"-xk 	 ± D)111  

)Yk 	
r  

V011 	4 v  
axk 	

2v3vii., 1_7(Y-2, 4_ x2vk bv2- (DF +Ps +D)2 2 

(6.12) 

(6.13) 



viv3 	 2V,Y, 	2y1 

= r  

= (1)F + Ps -1-)2,2. 	(6.19) 

(1F -1-  Ps +T) 1, 	(6.18) 

r 
if Via — 

r ax 
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V
bxk   r   6 (   	3  f   .b)(4  	)31.3 
  .4—..204-11+ 2V   Vp  	r    )= xff Ps+ D  

V (6.14) 

Vi.)\11\12  2V3  (vy)r  +vv 	 + vvk)Y1 of+ rs 0
)1,1 41( 	r 2 3  bx1 	13  bx2 	k  ,))1( 	2  b)(1,  (6.15) 

V V 	 V 	 114. R. +1) ,v0VIV.3.t.. viv3 r)_2„V31._,1 	ViVk V ÷ VA -1 M 	= 	' 	) (6.16) 
dxj, 	r wek 	r 	axic 	 r 	 1,3 

vi pmNylfdLVm12.11..ir 	i_vv 	Y3)r -(Df i'lls +j) (6.17) 3 l< 	+ 
r bxki 2  r 	2  b)qc 	oxk 	 2,3 

6.4 BOUNDARY LAYER EQUATIONS  

For boundary layer flows, if direction -1 and -2 are assumed 

to be the predominant and cross-stream direction of flow respectively, 

the following approximations are valid: 

V3  -21-. 

o(e) 7V/ )xl 	0( i/e) 	e << 1 • 

When these approximations together with the continuity equation 

a ox (ry + — (rV2) 0 are applied to equations 6.12 to 6.17, the 8x2  

following boundary layer equations are obtained: 

4;4  

	

V 	 V3 

	

k 	/6%5_ )r  A v,v3 	+ 9.v Y 1 6631r)..4.21?-% 	 P 

.)xk 	r eoei 	r ,))( 	2 3 	z,x 	317. K = 	+ .5 	(6.20) 
2. 	 3? 



(£Z'9) 	

\E 

4 56-1-jC 

lyo A 
WA 

t• 

T 

1, 1  
tAIA-c 	tx-̀ 	+ (,1x€AjQ 	EArq A • 

(ZZ'9) 
j, 

Ecl 	

/11/■-t" 
IA I  m 

IKg 	
5(2 	zxiz 	

IAR m IN 
1  + 	+ 	 (z 

 

EA 	titr 	E-T\  Az 
(-Mg 7ASA cAm 

Ixg 	zxQ 	) J. • In 
	'axe 

	

(-2-9) 241(c 4_ q+ja) = 	72q  fAIA J47Z% _Ap.--e--Imz^ -T- zA4IA 
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APPENDIX 7  

Local Heat Transfer Measurements from a Disc of  

Non-Uniform Temperature Rotating in Stagnant Air  

7.1 Introduction 

7.2 Apparatus 

7.2-1 Disc and Heaters 

- 7.2-2 Motor and Speed Transmission 

- 7.2-3 Electrical Power Input 

7.2-4 Temperature Measurement 

7.2-5 Extraneous Heat Sources 

7.3 Experimental Procedure 

7:4 Experimental Results 

7.5 Assessment of Experimental Programme and Suggestions for 
Improvement 
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7.1 INTRODUCTION  

The local heat transfer by convection from the surface of a 

disc rotating in stagnant air was investigated, for a range of 

rotational speeds and arbitrary radial distributions of heat flux. The 

local heat transfer coefficients were found directly by measurements 

of the heat input to and the temperature of the disc's surface. 

The experimental apparatus is described in Section 7.2, and 

the experimental procedure and results are presented in Sections 7.3 

and 7.4. The local Nusselt numbers, determined from the experimental 

measurements, are compared with predicted values in Section 4.2 of 

Chapter 8. 

7.2 APPARATUS  

The experimental apparatus is sketched in Fig. 7.1; it 

-consisted of a vertically mounted disc driven by an electric motor 

through a variable pulley arrangement. The construction and function 

of the main components are described in the following subsections. 

7.2-1 Disc and Heaters  

The local heat transfer coefficients were determined 

using the thin, electrically heated sheet technique. The thin-sheet, 

concentric, annular strips of stainless steel, .254 mm thick and 

50.8 mm wide, were glued to the front face of the disc at intervals 

of 2.5 mm. There were a total of 8 of these annular strips, hereafter 

'referred to as the heaters, located at the radii as shown in Fig. 7.2. 

The heaters were, for convenience, identified by the numbers 1 to 8 from 

the centre outwards, and their electrical resistances, measured using 

a potentionmeter, were .038, .056, .074, .093, .111, .130, .148 and 

.166, 	.0005 ohm• 

The heaters could be independently heated and a wide 

range of non-uniform surface temperature or heat -flux 
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4, 3 

7\ 6 

1 
12 

10 

1.-. Concentric annular heaters. 

2. Disc. 

3. Slip-ring assembly for heaters current. 

4. Holder for current carrying brushes. 

5. Roller bearing. 

6. Thrust ball bearing . 

7. Pulleys. 

8. Slip-rings for thermocouples. 

9. Digital voltmeter for reading thermocouples output. 

10. Synchronous motor. 

11. Movable pulley assembly. 

12. Mild steel frame, .025 m square section, supported on 

dampers and bolted to the floor. 

Fig. 7.1 Lay-out of apparatus  
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---- .53350 

__- .45720 

.40386 

.35052 

.29718 

—.24384 

--- .19050 

.13716 

.08382 

Fig. 7.2 Location of heaters 1 to 8 (dimensions in metres)  
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distribution could be achieved. The maximum power output was 35 watts 

for heater-1, rising to 150 watts for heater-8; these corresponded 

to a maximum heat flux of 1000 watts/m
2
. 

In order to minimise the error in the heat-transfer 

measurements due to heat loss, the disc on which the heaters were 

mounted was made of glass fibre. This material possessed a satisfactory 

combination of two properties required by the experimental design: 

it had a low thermal conductivity, thereby limiting the heat-loss by 

conduction; and it had adequate strength to withstand the stresses 

induced by rotation. The fibre-glass disc• was 0.0254 m thick and 

1.067 m in diameter. 

7.2-2 Motor and Speed Transmission  

A synchronous motor of 4.47kW(6hp) running at 1500 rpm 

was used to drive the apparatus. The motor-speed could be stepped-

down through a two stage timing-belt and pulley set-up to provide 

disc speeds in the range of 140 to 1500 rpm; these speeds correspond 

to rotational Reynolds numbers based on disc radius of 2.5X10
5 to 

2.6X106. At the highest Reynolds number 90% of the disc surface would 

be covered by fully turbulent flow. 

The drive system guaranteed that there was no slip 

in speed transmission between motor and disc, and thereby ensured a 

constant and known speed for any preset experimental condition. The 

driven shaft, onto which the disc was mounted, was 50.8 mm in diameter 

* The disc was cut from a .0254- m thick sheet of "Scotchply reinforced 

plastic, Crossply Type 1002", manufactured by the Minnesota Mining and 

Manufacturing Co. of Minnesota 55101, USA. The properties of the 

material were: Tensile strength: 5X10
8
N/m

2
, Tensile Modulus: 2.55X10

10 

N/m
2
, Thermal conductivity: .339J/msdegK, Thermal coefficient of linear 

expansion: 1.278X10 -5 m/m/degK, Specific gravity: 1.84 
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machined from mild steel. 

7.2-3 Electrical Power Input 

The heaters were electrically heated from a low 

voltage (5 to 15 V) transformer capable of supplying a total current 

of 250 A. The electrical circuit to one of the heaters is sketched 

in Fig. 7.3. 

From the transformer, the current was conducted through 

Smm square copper leads to a 30A fuse, a variable resistance*, and a 

0-50A ammeter with an accuracy of +0.5A for currents less than 10A and 

+0.2A for currents between 10 and 50A1 The current was transmitted 

to the rotating heaters through spring loaded, water-cooled, copper/ 

carbon (95%/5%) brushes making contact with concentric brass slip-rings. 

From the slip-rings the leads were fixed radially to the back of the 

fibre-glass disc, and then connected to bus-bars through the disc to 

the heaters. 

The slip-ring assembly, see Fig. 7.3, consisted of an 

.18 mm thick Tufnol disc with machined concentric grooves into which 

6.5 mm wide brass slip-rings were fixed) mounted on a 7.5 mm mild steel 

backing plate. 

The path of the coolant through a copper/carbon brush is 

shown in Fig. 7.4. The coolant, tap water, was circulated from a 

central reservoir through individual flexible tubes to each brush, then 

to a common sink. 

• Variable resistances were 'Zenith' CLrbonPlateType Rheostats capable 

of dissipating 200 watts to the surroundings. 
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current lead bus bar 
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mild steel backing plate 

tufnol slip-ring holder 	 

brass slip-ring 

tufnol brush-holder assembly 
copper sleeve for brush 	 
spring arrangement 	 

Fig. 7.3 Current path and slip-ring assembly 

Fig. 7.4 Coolant path in copper/carbon brush  
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7.2-4 Temperature Measurement  

The.  temperature of the heaters could be continuously 

measured by means of 40 copper-constantan thermocouples of 0.5 mm 

diameter. The thermocouples were fitted in grooves flush with the 

surface of the fibre-glass disc, led along a circumference for about 

50 wire-diameters to minimise lead conduction, channelled in the 

radial direction towards the centre of the disc, and thence into the 

hollow shaft. The thermocouple leads were, on emerging from the shaft, 

/ connected to silver-coated slip-rings*, and the outputs transmitted 

to a digital voltmeter (DVM). The location of one of the 

thermocouples and its leads are sketched in Fig. 7.5; the figure is not 

drawn to scale. 

1. disc 
'2. heater 
3. thermocouple hot-junction 
4. leads 
5. digital volt-meter 
6. slip-ring assembly 
7. thermocouple cold-junction 
8. coupling between shaft and 

slip-rings 
9. drive pulley 
10. bearing 
11. hollow shaft 

	

7 
9

10 	10 n 
	 41- 	 HE 	1-1  

Fig. 7.5 Thermocouple lay-out  

* Thermocouple slip -rings were twelve-channels Type PL12 from IDM 

Electronics Ltd. 

f2  
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The 'cold' junctions of the thermocouples were, as 

shown in Fig. 7.5, located close to the thermocouple slip-rings. 

These junctions rotated with the disc, and consequently ambient 

temperature was used as the reference temperature. 

The signal (voltage) obtained from the thermocouples 

was calibrated, .0389 mV corresponding to a temperature difference of 

1 degree K, and ranged between 0„,and .6 mV.. The electrical noise at 

1000 rpm from the slip-rings was negligible; it was specified by the 

manufacturers as 51111//mA. The digital voltmeter recording the signals 

from the thermocouples could be read to an accuracy of +51N. The 

maximum error in temperature measurement was therefore 12% decreasing 

to less than 2% for temperature differences between'the heaters and 

ambient of 1 and 10 degrees K respectively. 

7.2-5 Extraneous Heat Sources  

When the apparatus was run without any power input to 

the heaters, frictional heating generated in the bearings, and between 

the brushes and slip-rings, caused an increase in temperature above 

ambient of 10 deg K for heater-1 decreasing to 1 degree for heater-8. 

This heat source was estimated to be in the region of 100 watts, which 

is far above the maximum heat input to heaters 1 to 4. 

Furthermore, when the current was switched on to the 

heaters, the contact resistance between the brushes and slip-rings was 

measured to be between .05 and .15 ohm. With the maximum currents 

employed in the experiment, the heat generated at these sliding contact 

points was of the order of 90 watts. 

The total, these extraneous heat sources were about 

5 times the maximum electrical power input to heater-1, and of the same 

order as the power input to heater-8. 
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To overcome the problem of these large unwanted heat 

sources, it was decided to disregard the innermost two heaters since 

they were the worst affected and to keep the temperatures of heaters 

3 and 4 constant by adjusting their current supply. Under these 

conditions, the radial conduction in the annular segment of the 

disc covered by heaters 3 and . 4 was minimised, thereby insulating the 

remaining four outermost heaters from the effects of the heat 

sources. In other words, the heat from extraneous sources conducted 

to that part of the disc where r > .30 m was minimized. 

7.3 EXPERIMENTAL PROCEDURE  

Pulley ratios were selected to provide the desired speed, 

the motor was switched on, followed by the power input to the 

heaters. The apparatus achieved a steady state after about 3 hours, 

when the thermocouples outputs from the heaters had settled to a constant 

value. 

The readings of the ammeters were recorded, and the outputs 

from the thermocouples were read in turn from a digital voltmeter. 

7.4 EXPERIMENTAL RESULTS  

Four experimental conditions were investigated for only 

two rotational speeds, 458.5 and 781 rpm; the reasons why only these 

few conditions were considered are explained later in Section 7.5. The 

temperatures and current inputs are recorded in the tables below, for 

each of the four experimental runs. The data are shown graphically in 

Fig. 7.6 and 7.7 and illustrate the non-uniform temperature or heat-

flux distribution achieved by the apparatus. 
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-3 	 .4 
	 -5 ---,,r(m) 

Fig. 7.6 Electrical heat flux distributions for Runs 1 to 4  

Fig. 7.7 Temperature distribution of heaters for Runs 1 to 4 
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The heat transfer by conduction through the disc was accounted 

for by a simple heat conduction calculation, neglecting any conduction 

in the radial direttion in the disc material as well as the metal heater. 

no conduction 

The temperature T2  of the rear face of the disc, at the radial position 

corresponding to a value Tw measuredfor the heated face, was obtained 

from the recorded radial temperature distribution for the rear face. 

The heat conducted through the disc was then calculated as : 

kd Tw T2-  , and consequently, the convective heat flux was computed as: 

4convective I
2R/Area of heater - kd(Tw-72)/t 
	(7.1) 

The local Nusselt number was subsequently determined from the known 

convective heat flux and surface temperature: 

Nu - k
a(Tw

-T) 
	 (7.2) 
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7.5 ASSESSMENT OF EXPERIMENTAL PROGRAMME AND SUGGESTIONS FOR 

IMPROVEMENT 	_ n  

The extraneous heat sources mentioned_in Section 7.2-5 were . 

the cause of the major set back to the experimental programme; the 

magnitudes of these sources were reduced by extensive cooling of the 

brushes and slip-rings transmitting the electrical power, but they 

were still rather large. Despite the attempt to isolate that part of 

the disc where the measurements were made from the influence of 

the heat sources, the temperature of the rear face of the disc was not 

constant and furthermore, different from the front face (heater) 

temperature. This was, of course, to be expected since heat conduction 

in the disc proceeded in the axial as well as the radial direction. 

This means that the effects of frictional and extraneous electrical 

heat sources on the disc for a radius larger than 0.30 m were not 

entirely eliminated. 

The heat conduction in the disc can, in principle, be 

accurately calculated provided the radial surface temperature distribution 

for the heated and rear faces are measured. In the present experiment, 

a few temperatures were recorded for reasons explained in the 

following paragraph; consequently, an accurate two-dimensional heat 

conduction analysis was not performed. 

Forty thermocouples were originally glued in channels flush 

with the fibre-glass disc's surface, under the heaters. However, when 

the measurements were made only 16 were functioning, and by the time 

Run 4 was made only 12 remained in working order. The design of 

the apparatus did not allow for replacement of failed thermocouples. 

Failure resulted from two main causes: (i) the 40 cold junctions 

were spinning in air and were therefore exposed to damage; and, (ii) 

since the thermocouple slip-ring assembly had only twelve channels, 

a selector switch, rotating with the disc, was incorporated between 
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the thermocouples and the slip-rings. The numerous lead-connections 

involved were very prone to failure. 

In view of the uncertainty in the heat-flux and temperature 

measurements, they were not considered accurate enough. to be of use 

and of lasting value. Under these circumstances, and also because of 

the long time and expenses required, but unavailable, to modify and 

improve the apparatus, it was decided to'curtail the experimental 

programme to four runs only. 

Further, these runs were restricted to speeds below 800 rpm 

because of large vibrations during the start-up period at speeds above 

800 rpm. A resistance-type starter was used in conjunction with the 

synchronous motor to bring the apparatus from rest to the desired speed 

in a time interval of 10 seconds. This interval should be extended 

to over 60 seconds in order to have a gradual and slow build-up of 

speed, and therefore suppress the start-up vibrations. 

In retrospect, the experimental programme was not successful 

in its main objective: the accurate measurements of surface heat flux 

and temperature to determine the local heat transfer rate. 

The existing apparatus will only achieve the above objective 

after extensive modification and reconstruction to: (i) arrange for 

a large number of thermocouples to monitor the complete temperature 

distribution of the disc, connected directly to an equivalent number 

of slip-rings, with easy access for replacements in case of failure; 
• 

(ii) locate the brushes and slip-rings assembly for electrical power 

transmission, at present fixed to the back of the disc, away from the 

disc, and arrange for extensive cooling; (iii) cool the bearings. 

These modifications will undoubtedly present several complex 

design problems and it may be, that a new approach to the problem can 

be more fruitful. Remote sensors could be placed facing the disc's 
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heated face to record both the local temperature and the heat flux; 

these sensors could be automatically traversed in the radial direction 

recording acontinuous distribution of heat flux and temperature. 

The existing apparatus would then not require any modifications 

whatsoever. The extraneous heat sources would contribute to the 

surface heat flux, and the current to the heaters would be adjusted 

to increase or decrease the heat flux for one or more of the 8 heaters, 

and thereby simulate any arbitrary heat flux. 
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Local heat transfer measurements for a rotating disc  
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4 .263 12.2 161.1 42.5 118.6 7.63 4.45 2.17 1.58 

.275 39.3 121.8 7.24 4.30 2.37 1.79 

5 .315 12.5 168.4 37.9 130.5 6.58 3.74 3.11 2.41 

.329 38.4 130.0 6.44 3.56 3.40 2.56 

6 .371 13.2 188.8 25.3 163.5 5.05 3.16 4.32 4.64 

7 .423 11.0 130.7 13.4 117.3 3.10 2.10 5.62 6.18 

.448 12.3 118.4 2.80 1.88 6.30 7.32 

8 .463 10.85 126.8 14.9 111.9 2.90 1.78 6.73 6.90 

Run 1 : Too  = 20.75°C , rpm = 458.5 
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7 .423 19.85 425.6 29.5 396.1 4.81 2.60 5.62 13.45 

.448 28.6 397.0 4.74 2.60 6.30 14.49 

8 .463 22.0 521.5 41.5 480.0 5.71 2.60 6.73 15.03 

Run 2: Too  = 21.80°C , rpm = 458.5 
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Run 3: Tm  = 21.00°C 	rpm = 781 
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