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ABSTRACT

This thesis records the outcome 6f the search for models of
turbulence wﬁich'are applicable to a wide range of turbulent
swirling boundary layers.

The scientific and engineering rélévancés of swirling flows
" are discussed, and tﬁe governing partial differential equations for
the transport of moméntum, mass and enthalpy are presentéd. The
nume;ical accuracy of the procedure employed to solve the finite-
Vdiffereﬁce forms of the transport equations is demonstrated.

Four different models of turbulence are developed and tested.
In the first, the traditional mixing-length hypothesis is adapted
to swiriing flows, and leads to an isotropic viscosity formulation. .
In the second the turbulence'is characterised by its kinetic energy
and a 1ength scale, both obtained from the solution of their own
differential equations..-A new term involving the Richardson number
is introduced in the length-scale equatioﬁ to account for the effect
of swiri body-forces. The third model is based on the mixing-length
concept, but it accounts for the near-wall anisotropy of viscosity
‘hy postulating two mixing lengths suitably modified by Vap Driest's
expression;. Algebraic relations for all six Reynolds-stress
components in terms of the time-average velocities and the turbulence
quantities are;derived in the fourth and last model for high
Reynolds number flow. This model accouﬁts analytically for the
non-isotropic features of swirling boundary layers, and does not
require the use of the effective viscosity concept; the Reynolds

stresses are directly calculated.



The four turbulence models are tested by comparing the predictions
.%with a large number of existing experimental data-as well as
data from two new experiments which were performed.

Of the models, the algebraic stress model exhibits the most
promising improvement in universality of predictive power. VThe
extension of its applicability to 1ow-Reynold$ number flow to
permit the prediction of the sublayer region represents an ﬁrgent

future task.



ACKNOWLEDGEMENTS

ﬁf. F.C. Lockwood deserves my warmest thanks for his invaluable
assistance and his continuous enthusiasm during the four years he
supervised my work. I am also grateful to Dr. J.H. Whitelaw and
Prof. D.B. Spalding for many useful suggestions, and to members of
the Heat Transfer Section for their contribution to the work
resulting from discussions which I had with them.

Mr. R. Church helped in the design of the experimental apparatus,
which he subsequentiy built. Mr. R. King was always available to
iron out teething problems with the apparatus and ins£rumentation,
while Mr; S. Kasinathan helped with £he assembling of the appara£us.
I am deeply indebted to them for their assistance.

The excellent work of Miss M. Schertzer who typed the mamuscript
is very much appreclated. Finally, I would like to acknowledge my
graditute to my wife, Christina, for her understanding and
encouraéement of my worke.

- The work was carried out during the tenure of a Scholarship from
the University of London for the first three years. The Ministry of
befence provided financial assistance during my fourth year, and

also financed the experimental programme.

M.L. Koo Sin Lin
London, March 1974.



—

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
CONTENTS
CHAPTER 1
INTRODUCTION
1.1 The Problem Considered
1;2 Scientific and Engineering Importance
1.3‘ Previous and Current Prediction Procgdures
1.3-1 Similarity Methods
1.3-2 Integral-Prof?le Methods
1.3-3 Finite-Difference Methods
l.4 éreﬁious Experimental Work
1l.4-1 Hydrodynamic Measurements
l.4-2 Tufbulence Measurements
1.4-3 Heat and Mass Transfer Mgasurements
1.5 Purpose and Scope of the Present Study
1.5-1 Theoretical Work
- (@) Choice of Prediction Procedure
(b) Turbu.lent Transport Properties
1.5-2 Experimental Work
(a) Mean Velocity Measurements on a Cone
(b) Local Heat Transfer Measurements on a Disc
1.6 Outline of Remainder of Thesis

11
11
12
15
15
15
16
17
17
18

18
18
19
19
20

21

21

22

22



CHAPTER 2

THE GOVERNING DIFFERENTIAL EQUATIONS

) 2.1
2.2
2.3

2.4

2.5

. CHAPTER 3

Introduction .

The Coordinate System

General Forms of the Conservation Equations
Parabolic Forms of the Governing Equations
2.4-1 Réqui;ements for a Boundary-Layer Flow
2.4~2 The Boundary-Layer Equations

Closure of the Equatiohs

THE PREDICTION PROCEDURE

3.1

3.2

3.3

3.4

Introduction

Outline of the .Solution Procedure

3;2—1 Cross—-Stream Variable

3.2-2 The Common Differential Equation

3.2-3 Finite Difference Form>of the Common Equation
3;2;4 The Streamwise Pressure Gradient

3.2-5 Wall Boundary Layers

Numerical Accuracy éf the Solution Procedure
3+3-1 The Problem Considered

3.3-2 Hydrodynamic Predictions

3.3-3 Heat Transfer Predictions

Conclusions

25
25
25
27
29
29
29

32

35
35
35
36
36
38
39
39
40
40
42
44

45




CHAPTER 4

| ‘AN ISOTROPIC VIS;OSITY MIXING-LENGTH BASED MODEL OF TURBULENCE
4.1 Introduction o |
4.2 A Viscoéity Formulation
4.2-1 An Isotropic Viscosity Model
4.2-2 The Mixing-Length Distribution
4.3 Comparisons of Predictions with Experimental Data
4.3-1 b;sc in Stagnant Surroundings
(a) Average Drag Coefficient
(b) Shape Factor
(c) Volumetric Flow Rate
4,3-2 Coné in Free Surroundings
4.3-3 Cylinder in an Axially-Directed Stream
(a) Average Circumferential Drag Coefficient
(b) Momentum Thicknesses
4.3-4 Radial Outflow between a Rotating and a Parallel
Stationary Disc
"4.4 Correlation of the Change in Mixing-Length Due to Swirl
4.4-1 The Monin—Oboukhov Formula
"4.4-2 Cone and Cylinder Flow.

4.5 Conclusions

46

46
47
49
A49
50
50
51
53
55
55
57
58

59

61
64
64
65

67



Page
CHAPTER 5 .

‘A TWO-EQUATION MODEL OF TURBULENCE 7 . n

5.1 Introduction - ' | | - 71

5.2 The Turbulence Energy and Length Scale Equations 72

5.2-1 The Effective Exchange Coefficients .74

5.2-2 The Empirical Constants 75

5.2-3.The Near-Wall Region v ’ 76

5.3 Comparisons of Predictions with Experimental Data 77

5.3-1 Cyiinder Rotéting in Axially-Directed Free Stream 77

5.3-2 Free Swirling Jet 79
5.4 Conclusions .80
CHAPTER 6

AN ANISOTROPIC VISCOSITY MIXING LENGTH BASED MODEL OF TURBULENCE 82

6.1 Introduction : 82

6.2 The Effective Viscosity Formulae 83
6.3 Comparisons of Predictions with Experimental Data ’ 84
6.3~1 Cylindeg in an Axially-Directed Stream 84
6.3-2 Disc in Stagnant Surroundings 86
6+.3-3 Cone in Longitudinal Stream ‘ ' 89

6.4 Conclusions . 93



CHAPTER 7

AN ALGEBRATC REYNOLDS STRESS MODEL OF TURBULENCE

7.1 Introduction

7.2 Transport Equations for the Double Velocity Correlations

7.2"‘1

7.2-3

Equations in Cartesian Coordinates
Equations in Curvilinear Orthogonal Coordinates

Boundary Layer Forms of the Equations

7.3 The Algebraic Stress Egautions

7.3-1
7.3-2
7.3-3
. 7.3-4
7.3-5
7.3-6
7.3-7
7.3-8

7.3_9

Dissipation

Pressure-strain

Convection and Diffusion

The Algebraic Stress Equations
The Turbulence Energy Equa£ion
The Energy-Length-Scale Equation
The Empirical Constants

The Near-Wall Region,r

Examination of the Viscosity Ratio

7.4 Comparison of Predictions with Experimental Results

7-4"‘1

7.4-2

The Free Swirling Jet
Swirling Flows Near Walls
(a) Rotating Disc

(b) Rotating Cylinder

7.5 Summary and Conclusions

95
95
97
97
98
99

100

100

101

102

102

103

104

105

107

107

109

109

113

113

114

116



- 10 -~

CHAPTER 8 .

MASS TRANSFER

"HEAT AND
8.1
8.2
8.3

8.4

8.5

Introduction
Conservafion Equaﬁions
Effective Exchange Coefficients
Comparisons of Predictions with Experimentgl Data
8.4-1 Isothermal Disc in Stagnant Air

(a) Heat Transfer

(b) Mass Transfer
' 8.4-2 Non—isothermai Disc in Stagnant Air
8.4-3 Isothermal Cone in Stagnant Air

(é) Heat Transfer

(b) Mass Transfer
8.4-4 Cone in Uniform Axial Stream

Conclusions

CHAPTER 9

CONCLUSTIONS AND RECOMMENDATIONS

9.1 Conclusions
9.2 Récommendations
NOMENCLATURE
REFERENCES
APPENDICES
l. Previous Theoretical Work
2. Previous Experimental Work
3. Wall-Functions
4, Streamwise Pressure Gradient for Shrouded Flows
5. Turbulent Mean Velocity Measurements on a Rotating Cone
6. Derivation of the Transport Equations for the Double
Velocity Correlations
7. Local Heat Transfer Measurements from a Disc of

Non-Uniform Temperature Rotating in Stagnant Air

118
118
118
119
122
122
122
125
127
129
129
131
132

134

136
136
135

141

146

160

160
172
183
190

192
208

214



-11 -

CHAPTER 1

. ' - . INTRODUCTION

l.l The Problem Considered

Swirling boundary layers are characterised by a
circumferential component of velocity about a symmetry axis in addition
to a main component of velocity in the dominant direction of flow.

The presence of this circgmferential velocity sets u§ centrifugal and
Corioclis forces which strongl& influence the structure of the flow.

It isltherefore not .surprising that analytical work and experimental
investigations have been, and still are, restricted to simplified
models and approximate simulations of the geometrical and flow structure
‘'of real rotating systemse.

The present work is confined to swirling flows of the
boundary-layer class, where there is a single predominént direction
of flow and where the diffusive fluxes are significant only normal to
this direction; consequently there are no regions of recirculatione.
Within the context of the boundary layer restrictions the fluid flow
situations considered here all fall within the general flow

configuration illustrated in figure l.l.

E ——
S \
' ’///f : )

== o Ll

Fige l.1 General flow cbnfiguration
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VThe geometry is axisymmetrical and body R rotates about the
‘symmetry axis. The enclosure S may or may not be present, and the
;ystem is correspoﬁdingly térmed 'shrouded' or 'unshrouded'. The
fluid surrounding body R may be at rest, or it may move relative to
R ;n one or more axially-directed streams issuing from the region E.
The flow may be either lamiﬂ;r or turbulent, but most practical flows
are turbulent.

Information about the dependent variables of the problem is
known at the surfaces of R ané S aﬁd constitutes the boundary
conditions. If stagnation enthalpy is one of the dependent variables
for example, then the temperature, heat flux, or heat-transfer
'_coefficient at the surfaces is prescribed. The boundary conditions
may vary with x, the coordinate measuring distance along the surface
of R; but for fixed x, they are invariant with respect to the
circumferential coordinate. éonsequently, the dependent variables
also poséess axial symmetry throughout the flow field. The problem
is, therefore,‘a two-dimensional one since it is completely specified

by reference to two independent, variables.

1.2 Scientific and Engineering Importance

Swirling axisymmetrical boundary layers are of considerable
scientific interest; this arises from the fact that the shear stress
possesses two main components. In this respect swirling boundary
layers are akin to three-dimensional ones; the distinction is that,
whereas the cross flow in the three dimensional layer is the result
of pressure variations, the circumferential velocity component of the
swirling boundary layer is not pressure driven but a result of the
rotation of either a surface of revolution, or of the free-stream.

Because of the two-dimensionality and the consequent ease with which
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“the governing.partial differential equations may be computed,
axisymmetrical swirling boundary layers represent a useful
intermediaté stage in the development of prediction procedures for
three-dimensional boundary layers.

In addition to their important scientific significance
swirling boundary layers are also of considerable engineering
importance. Recent years have witnessed ever increasing interest
in the flow and ﬁeat transfer characteristics of rotating systemse.
There are numerous examples of industrial applicétions where swirling
.flows are present either as a consequence of the design, or where they
are purﬁosely introduced to achieve desired resultse. Rotating machines
and systeﬁs such as electric motors, turbines, énd gas bearings, fall
into the first category; engineers are primarily concerned with
economical cooling arréngements which will prevent temperature
limitationé from being exceeded and which, ideally, will also result in
size reduction. Other systems like rotating condensers and heat'
exchangers make use of the properties of swirling flows to obtain
enhanced transfer of heat. Thé role played by swirling flows in scme
of these industrial apblications is descriked in the following examples.

Furnaée burners often employ swirl to promote rapid mixing
of the fuel and air and to assist in stabilising the flame. In this
case the flow is rotating relative to a stationary surface and if the
swirl is not so large as to cause recirculation, the flow is of the
boundary-layer type.

The heat transfer to the walls of a pipe containing a flow of
hot fluid is greatly enhanced when the pipe is fitted with a twisted-
tape swirl generator. Of course, the pressure drop experienced by the

fluid increases as well, but twisted tapes are often employed where
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cdmpagtness is essential, notably in gas-cooled nuclear reactors and
'sémetimes in industrial boilers.

| Another ;xample'of the industrial applications of swirling
flows relates to high speed rotating evaporator-condensers. Through
the action of centrifugal forces liquid is maintained in the form of
thin films on both sides of.the rotor surfaces, and lérge rates of
heat transfer from the heated rotor are achieved. This rapid and
efficient evaporation process.is used for the distillation of sea
water. The rotors are usually a géometrical hybrid of discs and cones,
and the flow is of the two-phase, boundary—layer type.

The last example covers a sector which has received much
jpublicity'lately. The gas-turbine industry is concerned with the
thermal fatigue aﬁd creep fatigue characteristics of the disc-blades'
éystem. The analysis of the thermal stresses in the metal requires
knowledge of the temperatures; and hence the local heat: transfer rates
at the fiuid/metal interfaces. The continuing demand for higher output
has necessitated Sepérate cooling of the turbine discs, as distinct
from cooliné of the blades, since efficient cooling allows the turbine
to be operated at a hicher temperature, a critical factor for improved
performance. Unlike the previous three cases wvhere the flow was of
the boundary~layer type, the flow in turbines is usually of the
recirculating type.

These examples illustrate the wide range of practical
application of swirling flows and also demonstrate the complex nature
of these flows. Consequently, empirical information is of limited
value, and there is therefore a great need forreliable prediction

methods in order to improve existing systems, te extend their limits

of operation, and to design completely’novel‘systems.
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"1e3 Previous and Current Prediction Procedures

. A comprehensive survey of the various prediction procedures

in existence up to about 1958 has been provided by Dorfman (1963).
Another extensive review of subsequent advances in the field has been
made by Krieth (1968). Both publications contribute substantially

to the understanding of rotating systems and are sténdard references.,

In Appendix 1 the most relevant prediction procedures covered by

these surveys are described in some detail, and the coverage is extended
there to include recent contributions. This analysis of the previous
theoretical work reveals that all the predictions methods solve the
boundary-layer forms of the governing equations, with the exception of

a few casés for vhich the full elliptic forms of the governing equations
reduce to ordinary differential ones. Furthermore, the predictiéns can
be classified into three distinct gfoups: similarity, integral-profile,

and finite-difference methodse.

1.3-1 Similarity Methods

For the laminar flow on axisymmetric rotating bodies, all the
procedures, apart for a few integral-profile methods, are for those
geometries and boundary conditions for which similarity soiutions existe.
Laminar flow solutions are of limited value because in most engineering
applications the flow is turbulent. For turbulent non-swirling flows,
it is well known that similarity solutions can only be satisfied for
very special boundary conditions, see Schlichting (1968) for example;
the same remark also applies to flows having a swirl component of

velocity.

1l.3-2 Intearal-Profilelethais

All of the early methods devcioped for turbulent swirling

flows were of the integral-profile kind, and as such they vere
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‘restricted to.simple geometries, constant-property fluids, and
uncomplicafed boundary conditions. Using the modern digital computer,
however, the computational work associated with extending the integral-
profile technique to more complex flows is no ionger a problem. But

as the generality increases, the number of profile parameters increases
correspondingly and most often the relevant ones cannot, in the absence
of extensive experimental investigations, be clearly identified.
Further, integral-profile methods involve a matrix inversion and the
risk of singularities increases rapidly with the number of profile
parameters. Although, for example, Cham and Head (1969- 1971) have
recently predicted with some success the flow mear rotating discs, .
cylinders, and streamline—shapesvusing integral—profile methods, these
prpcedures are clearly unsuited for the general problem illustrated in
_Fié. 1;1. Integral-profile methods are even less attractive when

three-dimensional flows are considered.

1.3-3 Finite-Difference Methods

Integral-profile methods are losing their popularity in two-
dinensional non-swirling flows; the same trend is also evident for
swirling flows.. The review in Appendix } reveals that finite-difference
- techniques are favoured by the majority of contemporary research workers.
There can be little doubt that finite-difference methods, vhich solve |
the governing partial differential eguations directly, are the only
ones of sufficient potential to be of real interest to design cngineers.

The computer-based finite-difference procedures completely
master the mathematical problem of solving the time-average differential
equations. However, when the flow is turbulent, these procedures
require explicit informéfion about the turbulent transport properties:

the Reynolds stresses for the momertum equations, and the effective
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Prandtl and Schmidt numbers for the heat and mass transfer equationse.
The development of.relations to represent the Reynolds stresses is

usually referred to as turbulence modelling. Hence, authors who

employ finite~difference procedures concentrate on the search of

turbulence models appropriate to their respective problems.

l.4 Previous Experimental Work

The previous experimental work relevant to the present class
of boundary layer flows is reviewed in Appendix 2. The measurements
surveyed relate to unshrouded rotating geometries, since the flow
associated with shrouded systems is usually of the recirculating
type. Only turbulent flow conditions are considered and the data
reviewed are: mean flow cuantities for rotating discs, cones and
cylinders, and for swirling jets; turbulence quantities-for rotating
" discs and swirling jets; heat and mass-transfer from discs and cones.
The most reliable measurements, ané the limitations and gaps in the
avaiiable data are sunmarised below; the hydrodynamic, turbulence, and

heat and mass~transfer measurements are considereq in turne.

1.4-1 Hydrodynamic Measurements

For the case of mean velocify measurements the mést usefui
data are probably those of Cham and Head (1969) on a free disc, and by
Parr (1963) and Furuya and his co-workers (1966) on a cylinder rotating
in a uniform axial streame. The circumferential drag data of Theodorsen
and Regier (1944), and Owen (1969) for a free disc, are also well
established.

Several authors have investigated the free swirling jet which
is a boundary-layer type flow wvhen the degrece of swirl is not large.
The most comprehensive measurements are those of Rose (1962), and

Chigier and his co-workers (1966, 1967) of the velocity field.
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1l.4.2 Tufbulence Measurements

v Exgépg for ocne incomplete set of turbulence measurements
near a disc rotating in stagnant air, by Erian and Tong (1971), there
exist no data of turbulence quantities for the swirling boundary layer
near bodies of revolution. -This dearth of data is mainly due to the
experimental difficulites associated with accurate positioning of the
measuring probe from, and the restricted access to rotating sﬁrfaces.

For the case of free swirling jetshowever, measurements of
the six Reynolds stresses have been reported by Craya and Darrigol (1967),
and Pratte and Keffer (1972). But very little of the data of the
former authors have been published, while the data of the latter
authors show considerable scatter. Pratte and Keffer (1972a) indicated
that their data should not be relied on for more than trends and

magnitudes.

1.4.3 Heat and Mass-Transfer Measurements

The data of Cobb and Saunders (1956), McComas and Hartnett
(1970), and Dennis, Newstead and Ede (1970) for the average heat
transfer from isothermal discs, and the data of Krieth, Taylor and Chong
(1959), and Tien and Campbell (1963) for the average mass transfer
from cones rotating in stagnant air, are the most comprehensive ones
available.

The range of heat transfer data for non-isothermal surfaces
is very narrow, being limited to tﬁe uniform heat flux results of Subba
Rao (1967) for a disc, and the step-change mﬁss transfer measurements
of Tien (1965) for a cone. In particular, no direct measurements of

local heat-transfer coefficients have been reported.

1.5 Purpose and Scope of the Present Study

In the four preceeding sections, the general swirling-flow
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problem of the boupdary—layer class was preseﬁted, and the scientific

énd engineering imbortance of swirling flows described. The various
prediction methods employed to sélve the differential equations governing
these flows were discussed. The finite-difference procedures emerged

as the most promising ones with sufficient potential and generality to
be of real interest to design engineers. These procedures recquire,
however, information about the turbulent transport properties, and in
this area there is a major lack of knowledge. Lastly, the review of
experimental work has focussed attention on the reliable measu?ements

as well as the gaps in the ekisting data.

'The main objective of the present work.is, therefore, the
development of turbulence models for swirling boundary layers. The
search is for models which will give reasonably accurate predictions
for several flow situations without changes in the empirical constants
appearing in these models. The governing equations are solved by the
finite-difference procedure of Patankar and Spalding (1970).

In addition, the present work has two secondary objectives:
the provision of (a) mean velocity data for a rotating cone, and
(b) local heat transfer measurements for a disc rotating in stagnant
air.

1.5-1 Theoretical Work

(a) Choice of Prediction Procedure

The choice of a prediction method must be governed both by its
proven capabilities and its potential for future development to tackle
more complex flows. The extension of integral-profile methods to
complex flow situalions offers few advantages, but many disadvantages,
compared with finite-difference methods. These latter methods have

been shown to be flexible and general. In particular, the finite-
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difference procedure of Patankar and Spalding (1970) has béen applied
by several workers to swiriing flow-pféblems, namely: rotating discs,
‘Bayléy and Owen (1969), free swirling jets, Siddartha (1971), Lilley
-(1973).and swirling flow in pipés, Roberts (1972). All these flows
were efficiently and aécurately-handied by the procedure. The same
method was chosen to solve the partial differential equations )

governing the class of swirling flows considered in the present study.

(b) Turbulent Transport Properties

Computers of the current generation, and probably those too
of the next, are not large enough to permit the calculation of the
turbulent flﬁctuations by solution of the time-dependent equations for
any éroblem of engineering importance. Consequenfiy, when the time-
‘averaged equations are solved it is necessary to construct mathematical
models which relate the turbulent transport properties to time-averaged
values of the variables of the flow. These models of turbulence have
been proposed in varying degrees of complexity. For example, Pfandtl's
(1925).mixing—length hypothesis simply relates the shear stress directly
to a mean velocity gradient, while Daly and Harlow's model (1970)
employs differential transport equations for all Six‘Reynolds stress
components.A |

Four different models of turbulence are developed and assessgd

in the present work:

1. A mixing-length model, which is an extension of Prandtl's
hypothesis to swirling flows, leading to an isotropic
effective viscosity. |

2. A two-equation model, where the flow structure is
characterised by two parameters determined from their own
differential equations. These parameters are the

turbulence energy and a length scale appropriate to the
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energy containing motions.

3. A mixing-length model, modified in the near-wall region
to provide anisotropic effective viscosity formulations.

4, An algebraic Reynolds stress model which provides six
algebraic equations for the six Reynolds stress components,
and which is employed in conjunctionrwith the above two-

equation model.

1.5-2 Experimental Work

(a) Mean Velocity Measurements on a Cone

Since the main objective of £he present study is the
development of turbulence models, ﬁeasurements of turbulence quantities
would provide the ideal data for'validating the proposed models.
However, these measurements, as @ell as presenting considerable
éxperimental difficulties as the survey of experimental work revealed,
also require éxpensive measur?ng and recqrdipg equipment. The financial
resources available for the work reported in this thesis excluded such
costly equipment.

The survey of experimental work also indicatéd a lack of data
for the turbulent mean velocity field near a rotating cone. For the
well documented cases of discs, and cylinders and jets, the centrifugal
forces resulting from the swirl act along and normal to the predominant
direction of flow respectively; but for the case of a cone; these
forces have components both in the streamwise and cross—stream
directions. Experimental mean velocity data for the cone therefore
provide a useful test of the'generality of the proposed turbulence
models.

Hence an experimental investigation was initiated to obtain

mean velocity data for a cone rotating in stagnant air, and also in a

longitudinal air stream issuing from a concentric annulus near the
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cone's apex. -The dimensions and speed of the cone were large enough
to énsufe a substantial length of fully turbulent flow. The
apparatus and expérimental measufements are presented in Appendix 5.
The results are compared in Section 3 of Chapter & with predictions

obtained using a mixing-length model of turbulence.

(b) Local Heat Transfer Measurements on a Disc

In almost all situations of engineering importance, the
designer wants to be able to calculate the local heat-transfer rate
from,a specified distribution .of temperature or heat flux. However,
experiments have so far been concentrafed on measurements of average

heat-transfer coefficients. The present experimentai programme is

" therefore focused on obtaining information about the local heat-

transfer coefficient on a disc rotating in stagnant air, for any
arbitrary distribution of surface heat flux. The construction of the

apparatus and the éxperimental techniques used are described in

Appendix 7. Predictions are compared with the measurements in Chapter

8, Section 4.

1.6 Outline of Remainder of Thesis

Chapter 2 commences with the presentation of the coordinate
system and the governing differential equations for the transport
of momentum, enthalpy and chemical species. These equations are
subsequently reduced to their parabolic forms which are appropriate
to the present work.-

The finite-difference ﬁethod employed to solve the differential
equations is briefly reviewed in Chapter 3. The accuracy of the
procedure is demonstrated by comparing predictioné for a laminar
flow with its analytically exact solution.

The main objective of the present work, the development 6f

suitable relations for the turbulent transport properties for flows
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near rotating bodies, is covered in Chapters 4 to 7. Four models

of turbulence are developed, and each'is evaluated by comparing
predictions with‘£he results of experiments. At the end of each
chapter, the best values of emﬁiricel parameters in the turbulence
model under consideration are tabulated, and the findings are discussed.

The first model is an isotropic viscosity model, based on
an extension of the mixing—iength concept to swirling flows. It is
employed to predict the flow near rotating free discs and cones,
cylinders in axial streams, and between two parallel discs,-one
stationary, with radial outflow. The mixing-length is subsequently
made a function of the swirling flow Richardson's number, and the
predictions for the above four flows are repeated.

A twb—equation energy-length model is developed in ChapEer 5,
where the effective viscosities are calculated from two turbulence
-parameters: the kinetic energy of turbulence and a 1ength—sca1e; both
determined from differential equations. The viscosities are assumed
to be in a constant ratio. The model is evaluated by comparing
predictions with experimental data for the flow near a cylinder rotating
in an axial stream.

Chapter 6 deals with a mixing-length based anisotropic
viscosity model. The effective viscosities are calculated from two
separate Van Driest's expressions which are made functions of the
corresponding Reynolds stress. These expressions are applicable to
the near-wall region only; in the outer region the viscosities are
assumed to be equal, and the mixing length made preportional to the
boundary-layer thickness. Predictions are obtained for the free disc
and cone, as well as the rotating cylinder.

A high turbulence Reynolds number model is developed in

Chapter 7, where algebraic expressions are derived for all six



- 24 -

Reynolds stress compqnents. Each of the two main shear-stress
'compénents, implicitly, the corresponding effective viscosity, is
"obtained from the mean-velocity field, the energy dissipation rate,
and one or more of the remaining Stresseé. The mo&el is employed
to predict a free swirling jet,as well as fotating free disc and
cylinder wall flows. When applied to the wall-flows, where the
assumption of high Réynolds number is not valid in the near-wall
region, the algebraic stress model is matched with the anisotropic
mixing-length model in this region.

In Chapter 8, some calculations are presented for the
heat and mass transfer from free spinning discs and cones. For these
cases, where only a single quantity is required, namely the heat or
mass flux, the éimple isotropic mixing—length model is used to
calculate the flow. The effective heat and mass exchange coefficients
are made linear functions of the effective viscosity.'

The principal conclusions which are the outcome of the
thesis are enumerated in Chapter 9. The likely nature of the most
profitablenareas for fﬁrther research are also discussed.

The descriptions and results of two experiments carried
out as part of the present research are presented .in Appendices 5 and
7. The two experiments concern the measurements of the velocity field
near a cone, and the local heat transfer rate from a disc, both
spinning in air. Appendices 1 and 2 are reviews of past theoretical
and experimental work on swirling boundary-layer fiows, while the
remaining Appendices, 3, 4 and 6 are concerned with 'wall-functions',
streamwise pressure gradient, and t;ansport equations for Reynolds

stresses.
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CHAPTER 2

THE GOVERNING DIFFERENTIAL EQUATIONS

2.1 Introduction

The majority of swirl flows present in engineering systems are
turbulent and therefore unsteady in character. These turbulent flows
consist of a mean motion and a fluctuating motion, irfegular velocity
fluctuations being superimposed on the main stream. The resultant
turbulent mixing process exerts a considerable influence on the transport
of energy in the flow; and the diffusive action of the turbulence
results in an apparent or eddy viscositf giving rise to large stresses,
termed Reynolds stresses. Except for the occurrence of the Reynolds-
stress terms, the components of the mean velocity satisfy the saﬁe
_ equations as those which describe the corresponding velocity components
in-laminar flows. Schlichting (1968) reports predictions‘of turbulent
flow in free jets and wakes, in pipes, and in boundary layers on walls,
wﬁich show that the time-average character of turbulent flows can be
predicted by solving the equations for steady laminar flows if the
transport properties of the fluid are appropriately increased.

Section 2.2 introduces a two-dimensional curvilinear and
axisymmetrical coordinate system which poésesses two main features:
it is general and therefore covers.all axisymmetric flow configurations;
it is orthogonal, hence the equations are compact. The general forms of
the governing conservation equations ére presented in Section 2.3, and
these equations are reduced in Section 2.4 to their parabolic forms.

2.2 The Coordinate System

A general axisymmetrical coordinate system is illustrated in
Fige 2.1. The coordinates areg',gz and_gs; the first “‘c.wo designate two

orthogonal families of surfaces of revolution while the last designates
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planes through the axis of symmetry. The distance ds between two

neighbouring points in the field is related to the incrementsin g‘,g >

andg3 by:

2 2 2 2
s = (€ dE )+ (UdE) + (f3d§3> (2.1)

when '61’ £, and 33 are the metric cofficients. When§3 is measured

in radians, £, is identical with the radius of curvature Lqe

3

-Derivatives with respect to are zero because of axial symmetry.
3 . ymmetry

reference plane

p
\ lines of constant

%3 IE gl andg2

' axis of synung_try .

Fig. 2.1 General orthogonal coordinate system for axisymmetric flow

Ceometrical Relationsnips

The radii of curvature can be related to a, '61 and 52 as follows:

T T g% L4 0, -
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—_— = T (2.3)
2

_‘_
¢,

(ﬁo

dr. = gl ,,Igl sine 4 - fzJ@z Cosa (2.4)

2.3 General Forms of the Conservation Ecquations

The general elliptic forms of t’ﬁe conservation equation for
masé, momentum, stagnation enthalpy and chemical species which describe
the present axisymmetrical flows are now presented in vectorial
notation, see for example Gosman and co-workers (1969). All symbols

are defined in the nomenclaturece. The continuity equation:

div G = O. ' (2.5)

The momentum equation for each of the coordinate directions:

G Srad.v dth—i Srud]) +(VG T) y’ °¢+\éGE’ T’3 Sina (2.6)

G-gra.czvz: Jwv;-iz-graal?— (\{G —T )'3"0—4“ + \-—IB%E’QC"S“' (2.7)
3 .

G‘.graal (@.Yg ) = J!’V( pa‘-[%) (2.8)
The first Law of Thermodynamics:

G-gmc{ h:—d:’vl}&-{-ﬂf{? ij],:l +I}(- (\/,TH/QT-'-\QT)]%PM—Gg (2.9)
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The equation for the conservation of chemical species j:

G’ sr"—d nf, = - C"'V ‘7:) -+ T\>J 5 - +2.10)
this is also the mass transfer equation when there is no reaction and
only one chemical component present. All of these equations with the

exception of the continuity equation have the common form:

G-gra-dyi = - divly o+ $ , (2.11)

" where & represents a dependent variable, and @ a "source" term. The
symbol J¥ may stand for the diffusive fluxes of heat, mass and
turbulence energy; for laminar flows they are given by the following

gradient-type laws:

Ih = - TI: ck sradT ’ , (2.12)

I

—-‘J—-l 3“14 mJ- ) (2.13)

and Tz - gad ko (2.14)

In the case of the momentum equations, 2.6 to 2.8, the diffusive fluxes
correspond to the shear stresses and are given the symbol T. TFor
laminar flow see for example Aris (1962), the components of the shear

stress vectors are:

_ -E_M _\L 2 J;
r]|—:| - rLLﬂl ag'-‘- (.lz—go[v\!} (2.15)
r':,z = M L%%;P%— %J‘VV] (2.16)
,'T;)B = ]:L L-EZ;(\/ISma_,.VZCoso:)_ %JNV] (2.17)
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T =FE,: =¥ LTE(T) + A 357,(?;) (2.18)
"T,3=3=g'__é.l_\’;)_ ,
’ 5 i el ‘)gi fJ | (2.19)
23 = a2 = S E-%:-S%l (—\é) . (2.20)

In terms of the coordinates g 12 €2 and @3, the common form

of the conservation laws, ecquation 2.11, expands to give:

G Gag 1 | ) > g")
TRt agle\ O ) g W) B e

2.4 Parabolic Forms of the Governing Equations

2.4-1 Requirement for a Boundary-Layer Flow

“ The general elliptic conservation equations presented in
Section 2.3 may be considerably simplified for the speciai case of
boundary-layer flow. Before making these simplifications it is
important to clarify the requirements which must 5e fulfilled if a
flow is to be of the boundary-layer kind.

Patankar and Spalding (1970) have given this particularly
useful definition: "a boundary layer is a region of fluid where there
is a single predominant direction of flow and where the diffusive
fluxes are significant only at right angles to this direction". A
consecquence of this statement is thatvregions of recirculation must be
absent. |

2.4-2 Thne Boundary-Laver Equations

Direction-l is chosen to be the predominant direciion of
flow. Diffusive fluxes are thercefore negligible in that direction.
The equations for the conscrvation of momentum in the cross-sticam

direction, equation 2;7, is normally ignored for non-swirling
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- flows unless the surface curvature is large. But for swirl velocities

common in engineering practice, the last term in this equation is

significant except for the special case of a rotating disc, vhen it is

zero since cos 0. = 0. The convection term is probably neqgligible in
the absence of strong wave systems which may occur in compressible
flows, and the diffusion term is certainly negligible, since Vz is

everywhere small. The following approximations are therefore valid:

(VQG - FE) 3mci X A \/2{@‘ %;; 3 (2.22)
1 1 ‘

G’ . 3r‘ac£ \4 & 0 p) (2.23)

and (VG‘ ) 3rcwl0(_ r"é\_%_gl—g% ° (2.24)

With these considerations equations 2.5 through to 2.10 become:

i({/;@)_;_a_(é/;%) 20 s _ © (2.25)

of, %,
G VY G—M__l__a_[g_g E}/L‘J_Laf +\_/2_Gié_“_+v3_gé_smac,(2.26)
438, T4, %, {2 VAR L A L 4
- — J_QE VG’gﬁ \/GJ o I —
0 = &al__z_gi_;._z_csq’ (2.27)

Cosa’})(Z .28)
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- _'__i[é/;(f“i}bﬁf. VT,-Y “)J  2.29)
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Gidm; +szm ‘__,_@_[441]4.’% : (2.30)

Equations 2.26, .28, 29, and .30 possess the common form:

98 | G g _ 90T |
€;6€1+€20§ B Nfag['s‘} ]Jr@ ’ (2.31)

d
f’?g )[; being the exchange coefficient appropriate
2952

to the variable d&; is a source term.

where -ziz E-*I:ﬁ

The radiation, éravitational‘energy, and turbulence diffusion
terms have been omitted from the stagnation enthalpy equation; they are
not significant in the present work. For the circumferential
- momentum equation the choice af'fghg as the dependent variable
preserves the common form of the equations. However, it is numerically
simpler and more conveniéht to use another form of equation 2.28, (see
Patankar and Spalding(l970));by,employiné Vs/ﬁ instead of «CBV3 as
the dePendent variable on the right hand side, the diffusion and
source term are replaced by a single diffusion tefm:.

66 Gy 9[

4+ = —= = 9_
b8 & 204,

3
zé):ga(\/a//a) . (2.32)

A3 98,

The Geometrical Anale o

The present work is confined to rotating cylinders, discs and
cones, and swirling'jets; for these geometries and flow situations
the angle o in the general orthogonal coordinates system has a constant

value. Then the metric coefficients 31 and 52 are both made equal

to unity while the radii r. and r, extend to infinity; the coefficient

1 2

f =1r, =re. The coordinatesgl, 52, and §3 become Xy oy and X,

37 73

which are respectively the streamwise, cross-stream and
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circumferential directions. Equations 2.25 to 2.30 then take on the

' familiar forms:

M .\

e Ts.-na+?s_\é+\/72mm -0 (2.33)
WM M1 VR I ATAR
U g a TS e
a A
0 ___a_z; +e\éwsoc (2.35)
WVs) v ) [3 3 7V
()V 3%, Q 3, =_:15;2_ YCB _3T<;<—;3—) (2.36)

(Eb_’l—+\/,7?2 + \/37;'3)] (2.37)
.é_[r J' ini] o (2.38)

In the absence of chemical reaction the generation term Rj in equation
2.30 is zero, and the contributionfijﬁJj of the chemical components

to the stagnation enthalpy equation is neglected.

2.5 Closure of the Equations

The differential equations 2.26 to 2.30 do not alone specify
the problem; two kinds of additional information are required: initial
and boundary conditions for all the dependent variables (Vl, VZ’ rV3,

'i;, m,), and auxilliary equations allowing the shear stresses and diffusion,

fluxes to be computed in terms of the dependent variables at each point
in the field. Boundary conditions and initial values are usually

readily available and present no special problem. The shear stresses

and diffusion fluxes are related to the dependent variables through the
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quantities r' ’ r' ’ r' y and F which have to be specified either
1,2 2,3 ' h j
from known properties of the fluid or by theoretical proposals, or
through empirical information. The provision of this additiuvnal
information for rl ’ r' ’ I—' and F is referred to as 'the closure
1,27 2,37 'h j

of the equations'.

For laminar flows I: > and f;' 3 represent the molecular

4 ’

viscosity M, while [’ and r; are equal to the /;4/07; and /}lr/q/— respectively;

/2 h

the Prandtl and Schmidt numbers, O h and O'j, are well determined
properties of the flﬁid. The molecular viscosity }(f»’lis itself a real
property of the‘ fluid, present whether the fluid is at rest or moving.

. For turbulent flows, [—'1,2 and [;’3 represent the 'effective
viscosities! /11’2 and/LLz,B, in the main direction and in the
circumferential direction of flow. These effective viscosities,
however, only arise when the fluid is in motion, and are distinctly
not physical properti_es of the fluid.. They are nonetheless a useful
concept to relate the turbulent stresses to the time-average velocity
gradients in a flow field. Analogous to laminar flow (See.equatioﬁs_

2.18 and 2.20), they have been defined as:

N

/%2 = g Y , (2.39)
and = rM ; (2.40)
2,3 2,3 g

the stresses'T; 2 and correspond to the Reynolds-stress components
?

—evl—\/z and — evg_\é respectively, see for example Hinze (1959) or
Schlichting (1968).

As opposed to non~-swirling two-dimensional flows for which

only the Reynolds stress —P%Y, is dominant since the velocity
Y yn 2
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component V, is everywhere zero, axisymmetrical swirling boundary layers

3
present special difficulties because both stress components — @MV
) . ) — /W
and - Q%Y; are important. In general,—e"lvz —~— will not be equal
Xy,
—_ /30h/9)

to —QWY /¥ ; that is, the effective viscosities f& 2 and
’ ]

Mg 2,3

must be considered to possess different values at a given location in

the flow. Several hypotheses relating f& > and fé to other variables
I

+3
of the flow are described later in Chapters 4, 5, 6 and 7.

The turbulent mixing motion also increases the transfer of
heat and mass in flows associated with temperature or concentration
gradients; consequently further assumptions are also needed concerning

h

and mass. These assumpltions are discussed in Chapter 8.

‘thé effective value of the transport coefficients T’ and r} for heat

However, before the turbulent transport hypotheses are
considered, it is necessary to test the purely numerical accuracy of
the prediction procedure. The next ghapter, therefore, briefly
describes the Patankar and Spalding (1970) finite-difference procedure
‘and compares predictions of some laminar flows with established

accurate analytical solutions obtained by other methods.
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CHAPTER 3

THE PREDICTION PROCEDURE

'3-1 Introduction

The choice of the Patankar and Spalding (1870) finite-
difference procedure to solve the present class of swirling boundary
layers was governed by its proven successes for two-dimensional nén—
swirling flows. The method is easy to use, numerically stable, and
very economical of computer time. Its main features are summarised
in Section 3.2. | -

In Section 3.3 the numerical accuracy of the solution
procedure is tested by comparing predictions with exact analytical
solutions for the case of_a-disc rotating in @ uniform axial stream
under laminar flow conditions. The two asymptotic cases: a disc
;otating in stagnant surroundings and an axisyﬁmetrical stagnation
flow with the disc stati;nary, are also considered. The hydrodynamic
and heat transfer predictions -are shown to be in excellent agreement
with the analytical results.

3.2 Outline of the Solution Procedure

The boundary-layer calculation method of Patankar and
|
Spalding (1870) is well documented and it is only necessary to outline
its main features here.

The governing partial differential equations for the transfer
of momentum heat and mass in swirling boundary layers have already been
pfesented; they\are équations 2+25 to 2.30 of Section 2.4-2. It was
demonstrated there that these equations all possess the common form,
repeated here for conveni.ence:

Gog  Gop _ 3 [Lhd ERY
[ % 08 lEG%, |/ [,: + 0
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This similarity of the equations allows a common numerical treatment
of the variables Vi,'ﬁ and mj, with minor modifications for Vg; only
the exchange coefficient IB and the source term § are different for

each dependent variable.

3.2-1 Cross-stream Variable

The central feature of the Patankar and Spalding method
is the novel specification of the cross stream §2 coordinate. The

coordinate is a dimensionless stream function @ defined as:

' Y-V
- x=
§2_ w

ﬁ;;f‘?;: (3.2)
The quantitiesi#x and ¢E are the values of the stream function ¥ at
the interior and exterior edges of the boundary layer; they are
functions of,gl and are chosen so that the main variations in the
dependent variables lie at ¥ values between Wx and ié + Thus,
regardless of the width of the flow under consideration, the
coordinate ¢ always lie between zero and unity. %This practice
confines the finite-difference grid ‘o the region of flow where the
changes in the values of the dependent variables afe relatively large
and results in great economy of computer time. Changes of the width
of the finite~difference grid, hence changes in the thickness of the
boundary layer, are determined from the rate of entrainment of fluid

from the surroundings into the boundary layer.

3.2-2 The Cowron Differential Ecuation

The stream function { is defined by:

— 1 By R
G, E ~—— = and G = - T . (3.3)
L 13 &3
1 r > 5-2 2 r 1 §l

These relations together with equation 3.2 result in the following
- - -

expressions for 52 and GZ:
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£ = - % . :
2 YE__YE ’ (3.4)
rGl
and
G2 = - 'rrjl’:— (1 —w) S‘ll. + W ,cl‘KE_' .
1 a8, a8 (3.5)

The remaining metric coefficient 51, see equation 2.2, can be

determined from the geometry of the general orthogonal coordinate

- 29,5 sw -
= “/‘ag1 2° : (3.6)

This relation allows 31 to be determined as a function of the cross-

system as:

stream coordinate when the streamlines are highly éurved.

For the class of swirling boundary-layers considered in
the present work curyature effects were not important and therefore
gl was given the value of:unity. The coordingte §l becomes identical
with x, the streamwise coordinate, énd the difference between x as
measured along the inner and outer edges of the boundary layer is
ignored. Substituting the values of 32 and G2 into the common
differential equation 3.1 yields:

Y ¥ "F__] @ (3.7
3}—? ly‘:( )bx ax]bw (q; t{)) de 568(»

This equation is the starting point of the finite-difference
proceaure- Thé meanings of the source term § can be deduced by
comparing equation 2.34 to 2.38 for the transport of momentum,
stagnation enthalpy and mass, with equation 3.7. The source terms are

given in the following table:
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When ¢ represents: The expression for @ is:
v ~3p V3% sina
1 p .33
ox ¥
r\% - 0 gthe diffusion term is however
different
2 1
o oV
" ——q—i‘l [Y.QGI{VJIT,Q'I‘\{E,’:' “‘Eh -éayl- +-é% }]
- )
@fs W) 0w |
m,
3 0
Table 3.1 Significance of the source term

3.2-3 Finite-difference Form of the Common Equation

The finite—diffcrenceequivalehtQf equation 3.7 is obtained
by means of a micro-~integral method. .Each term of the equation is
inteérated ovér a small control volu&e around each node bounded by
adjgcent constant-x 'and éonstant—w lines. On the assumption that &
varies linearly witﬁ_w between grid nodes and stepwise in the x-
‘direction, each term appears as an integrated average over the small
control volume. The use of the micro~integral method ensures that the
integral forms of the conservation equations are satisfied over any
'part of the boundary léyer. The result of the integration yields the

following finite-difference ecuation:
+ B¢i + C 5 (3-8)

where the subscript i designates a part?cular grid node. A, B and C
are functions of the cross-stream grid spacing, and the upstream
values of»é and the coefficients of the differential equation 3.7.

The set of equations 3.8 are solved to yield the values of the
dependent variables in turn at each successive downsltream grid
location using a simple recurrence formula. In this way thie solution
progressgdovnstream in a marcning fashion. The complete derivation of
the finite—differehce equations have been published by Patankar and

Spalding (1970).
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3.2-4 The Streamvise Pressure Gradient

The pressure gradient term which appears in the streamwise
‘momentum equation 2.34 is determined at any cross-stream location,
wi say, from the cross-—stream momentum equation 2.35 integrated from

the edge of the layer to W, X and dlfferentlated with respect to x:

(%5) _ (5}) f( % é;g- cosec deo . (3.9)

A similar result can be derived 1f(——3 instead of( %: is known.
The boundary values of the pressure gradients are determined from
potential flow analyses.

3.2-5 Wall boundary lavyers

In the region near to a stationary or moving wall, the
gradients of velocity and; if there is heaf and mass transfer, of
temperature.and con;éntration are large. These steep variations are
auch more pronounced for turbulent flows than for laminar flows.
Consequently, many grid lines must normally be deployed in such regions
in order to obtain acceptable aécuracy with a finite-difference
procedure. . Patankar and Spalding have, however, succeeded in
eliminating this disadvantage by thé use of a special practice.

Very close to solid boundaries convection is small since
the velocities are low. Vhen the cpnvection terms are neglected the
partiél differential equations reduce to a set of ordinary ones, often

referred to as Couette-~flow ecuations. These equations are solved,

employing knovn fluid properties for laminar flow and plausible
relations for the effective transport coefficients for turbulent flow,
to give algebraic relationships for the drag coefficient and the Stanton

and’Sherwoqq'numbers in terms of the local properties of the flow; namely,



the Reynolds number, and the mass injection and pressure gradient

parameters. These algebraic expressions, usually called wall functions,

proVide iﬁner boundary conditions to which the finite-difference
computations, now confined to the remainder of the boundary layer, are
matched. The wall functions used in the present study are discussed in
Appéndix 3.

3.3 HMNumerical Accuracy of the Solution Procedure

Before the solution procedure is applied to turbulent flows
for which assumptions are required for the transport properties, it is
- necessary to establish its numerical accuracy. This is aécomplished
by comparing the predictions with available exact analytical solutions.
The test caseslchosen are the hydrodynamic predictions of Hannah (1947)
and the heat transfer resuits of several workers for a disc rotating in
a uniform axial stream. All these reference solutions are for the

laminar flow of fluids of uniform density and viscosity.

3.3-1 The Problem Considered

_—s %
Veo |
LN .
_— s L
- - - A—1L -
— | e
—_—
. <X2=y
—_——
Pig. 3.1 Disc rotating in a uniform axial strean

The problem under consideration is illustrated in Fig. 3.1;
the general coordinate system described in 3ection 2.2 reduces to
cylindrical ccordinates with the angle « equal to 90 degrees, x,
equivalent to the radius r, and %, the normal distance y from the disc's
surface. The disc rotates at a constant angular speed {0 in a free

stream of uniform velocity V,. The boundary conditions of the problem

are:
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Vl(r,o) =0, Vl(r,w) = ar,
V3(r,o),;£ Qr, V3(r,w) = 0, .
T(r,o) =-Arm, T(r,e) = O

The free stream velocity boundary condition for the radial velocity Vi
is obtained from the potential flow solution, see for example Homann
(1936); the constant a is equal to ZYn/nro, vhere r 1is the radial dimension
of the disce. The surface téﬁperature of the disc is assumed to
follow a power-law distribution, for which éimilérity solutions'exist,
-to fécilifate_comparison with the present prediétions; the symbol A
represents a constante.

The momentum and energy equations (2.34, 2.36 and 2.37) were
solved for three flow conditions:
(1) the disc rotating in stagnant surroundings, i.e., {(/a =o,
(2) the disc rotating in an axial stream with /a = 2, and
(3) the axisymmetrical stagnation flow without rotation of the disc,

i.e. /a = 0.

Initial Profiles

The circumferential velocity was assumed to decrease linearly with
the distance y from the disc surface; the radial velocity was presumed

to increase to a maximum and then decrease linearly with y:

V3 = (1 - y/5) Qr,
v, = Cr y/s, 0 <y/6 <0.2

The boundary layer thickness &, Schlichting (1968), is calculated from:
3
6 = 4.43 (v/n)‘! °
The initial cross-stream profile temperature was assumed linear in y:

- = - X o
(Tr,y T,) = (1 5) (Tr,o T,)
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Grid and Step Size

The numerical accuracy of the solution depends on the
distribution of tﬁe cross—-stream grid nodeé, and on the size of the
step chosen to advance the solution downstfeam. Twentyone grid nodes,
concentrated néar the disc surface, were found to give ﬁydrodynamic
predictions in gobd agreément with the exact solutions; the results
are presented in Section 3.3-2 below. The step size was equal to
5% of the boundary-layer thickness. Marginally improved accuracy was
obtained, at the expense of a large increase in computing time, by
employing smaller steps and a larger number of grid nodes in the
region of steep gradients, near the surface.

For 'the case of heat transfer for fluids of large Prandtl number,
100 in the case tested, the thermal boundary layer lies well within
| the velocity boundary layer, in a very thin region near the surface.
Thirty grid nodes were then gsed, twenty covering the thermal layer
and éoncentrated near the surface.

3.3-2 Hydrodynamic Predictions

The profiles ofVl and V3 computed by means of the finite-
difference procedure are in excellent agreement (less than 0.1%
maximun difference) with the analytical results of Hannah (1947) as

revealed by Fig. 3.3.
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Analytical results of Hannah (1947)

co,0 & Present finite-difference predictions
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Fig. 3.3 Velocity profiles for three values of {/a

The drag coefficient defined as c.

£

av /m
- 3 Qr 'l ’
(37) Y=0/ v

with 155 a2 + (22 , 1s compared with the exact results of Hannah in
Fig. 3.4. :

0

/a f

; Hannah Present Predictions

0 Stacnation flow 1.075 1.075

2 0.800 0.801

®  free rotating disc 0.616 0.616

Circumferential drag coefficient

Fig. 3.4
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For the case of a free rot?ting disc Cochran (1934) 5150
'feported a Value‘of ce equal to 0.616. It shouid_be remarked thaf, since
“the analytical sqlutions pertain to the elliptic form of the governing .
equétions? the cioseness of the present predictions to them supports.
the validity of the boundary-layer assumptions for the_swirl flow on a
rotating disce.

3.3-3 Heat Transfer Predictions

The energy equation 2.37 was solved for the tﬁree flow
conditions considered in the preceeding section for an isothermal and a
quadratic surface teﬁperature distribution; that is, the index m=0 and 2.
As was the case.for the velocity profiles, the predicted temperature

profiles were in excellent agreement with the analytical results. The

' . aT » \ '
local Nusselt number, defined as: Nu = —{3= - T - T s
‘ dy/ y=0 \1 y=0 =00

is proportional to the Reynolds number Qr~/¥ to the 0.5 power. In Fig.

3.5 the predictéd constant of proportionality is coﬁparéd with the

/

analytical results of several workers.

. /a
m Pr 0 5 . < Analytical predictions of:
ol 1 | .762 .557 .396 (1,2)"; (3,4) for O/a =es-
« 762 «558 «397 Present predictions.

2 11 1.075 .800 .616 (1,2); (5) for {i/a =« only-

1.075 - .801 015 ‘Present predictions. ’
2 100 5.19 4.18 3.79 (1)

5.32 4.21 | 3.74 (2)

5.35 4,24 . 3.74 Present predictions-

Fig. 3.5 Nusselt number/Reynolds num‘bero'5

i .
(1) Tien and Tsuji (1964) , (2) Habuchi, Tanaka and Sakakibara

(1967) , (3) Hartnett and Deland (1561) , (4) Sparrow and Gregg

(1959) , (5) Hayday (1965).
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For Prandtl numbers of order unity the discrepancy
between the present predictions and tﬁe conventional analytical
‘results is less than 6.25%.

3.4 Conclusions

The finite-difference procedure of Patankar énd Spalding
‘has been shown to be an'acéurate method for solving the partial
differential equations govérning swirling fiows of the boundary-layer
class. For the laminar flow test cases considered, with the grid
distribution and step-size employed, the circumferential drag was
predicted to within 0.1%, and the Nusselt number to within 0.25% of
established analytical results.

In addition to.its numerical accuracy, the procedure is
efficient in terms of computing time. The solution of three equations
(two momentum and energy); for a grid of 20 nodes, progressed through
80 steps in 1 second on a CDC6600 computer. |

In the following four chapters attention is focussed on
the physical problem. The Patankar and Spalding procedure is combined.
with various models of turbulence and apﬁlied to diverse turbulent
flow problems. Prediqtions are compared with experimental data to
assess the validity of the assumed turbulence models. Chapter 4
covers a mixing-length model leading to an isotropic effective viscosity
formulation. Chapters 5, 6 and 7 deal }espectively with a 'two-equation’
model, a mixing-length based approach, and an algebraic stress model,
all three resulting in formulations for the two efféctive viscosity

components.
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CHAPTER 4

L3

AN ISOTROPIC VISCOSITY MIXING-LENGTH BASED MODEL OF TURBULENCE

4,1 Introduction

Prandtl's (1925) mixing;length hypothesis-is one of the
earliest ﬁroposed models of turbplence and it has been widely used to
compute turbﬁlent boundary layers Withoﬁt swirle. Considering the extreme
simiplicity of the mixing-length model and its consequent meagre
physical justificatioh the results of these computations are surprisingly |
acéurate; see for example Schlichting (1968) and Patankar and
Spalding (1970). Tolerable predictions are also obtained for
boundary layers for which the mixing-length concept is aﬁparently
fundamenfally unsuited, boundary layers in strong adverse pressure
gradients for example; see Ng, Patankar and Spalding (1968).

However, the mixing-length model suffers from a number of drawbacks; it
presumes thét the generation and dissipation of turbulence energy

:are in balance and therefore excludes any influence of convection and
diffusion of turbulence enerqgy; furthermore it implies zero turbulent
exchange coefficients in regions of zero velocity gradients. These
limitations are obviously a direct consequénce of the over—simﬁlification
of the turbulence which is assumed to be dependent on the mean velocity

- field, and only one other parameter, the mixing length.

Although the physical picture based uﬁon the mixing-length
concept is not correct in all details, the mixing-length model is,
because of its inherent simplicity, still an attractive and useful
proposition for the design engineer. For the case of swirling flows
the validity of the mixing-length formulation has not been extensively
explofed. The present work therefore undertakes a systematic evaluation
to establish the validity of the mixing-length concept when applied

to the prediction of swirling boundary layers.
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In Section 4.2, a ;iscosity formula is deduced, in terms of
a mixing-length and gradients of mean velocity, from a transport
"equation for the kinetic energy of turbulence. The viscosity ratio‘
“1,2/“2,3’ which appears in this formula, is assumed equal to unity;
that is, the viscosity is presumed to be isotropic (a scalar quantity).
This is followed by the specification of the mixing-length distribution.
Cohparisons are made between predictions and experimental
data in Section 4.3, where the isotropic viscosity model is employed
to predict the following flow configurations:
l. A disc rotating in stagnant surroundings,
2. A cone rotating in stagnant éurroundihgs,
3. A cylinder rotating in a uniform axially-directed stream,
4, Thg radial outfiow between a. rotating and a stationary disc.
For each flow configuration and for several conditions, the optimum
values of the-empirical constants X and,x in the mixing-length
formulation are deduced from the comparisons.of predictions with
experimental data.
An overall assessment of the usefulness of the isotropic
viscosity mixing-length based model of turbulenqe is made in Section 4.4.

4.2 A Viscosity Formulation

Until recently most authors have simply used reasonable or
arbi£rary extensions of the mixing-length hypothesis from two-
dimensional non-swirling to swirling fléws; see for example, Bayley
and Owen (1969), Siddhartha (1971), Lilley (1973 The present
approach to obtain a mixing-length formula is based on an analysis
of the transport equation for k, the kinetic energy of turbulence.

This equation, derived later in Chapter 7, compriseé terms which
represent four distinct physicai processes: the'convection, diffusion,

production and dissipation of turbulence energy.



If a local balance between the production and dissipation

"of k is supposed (sometimes termed 'local-equilibrium'), equation 220

reduces to:

v, - . (V. /n)
-V, Vv —L -V,V, I —3 = € . (4.1)
12 ax 2°3 ax
2 2
L - l - g ‘ ’
Production Dissipation

In terms of the turbulent viscosities defined previously by equations

2.39 and 2.40, equation 4.1 can be expressed as:

AN 2 (vym) \
» veun + ! r '—a—_ = € . (4.2)
1,2 ax2 2,3 Xy e

Now, dimensional considerations reveal that a characteristic value
4 L
) 3 3
of viscosity is proportional to Q'z € , where 4 has the dimensions
of a length-scale. If it is assumed that the constant of proportionality,

although directionally dependent, has a unique value for each direction,

then “1,2 can be arbitrarily expressed as:

7 3%
=04 '
pl,z._e m € ’ (4.3)

where 3m is a mixing-length referenced to the ¥ oo viscosity.
)

Equations 4.2 and 4.3 can then be combined to produce the final form

of the mixing-length formulation: 1
2 2
32 (E)Vl) 2 i ( G] (V3/r)>
) = -_— + r =—m - ( 4.4 )
1,2 ( m sz 05,3 sz

The viscosity ratio o, 3 has been introduced for convenience; it is
]

defined by:

O'é,3§ '}],1’2/'}],2’3 . (405)

This simple mixing-length formulation can be used for the prediction

" of swirling flows if the functional relationships for ﬂm and S, 3
?

can be determined.
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4.2-1 An Isotropic Viscosity Model

. The basic assumption of this model in terms of the

Reynolds stresses is that:

: : avl a(VB/r) . .
V12V = /TR y (4.6)

2 2

- The mixing-length expression, equation 4.4, then simply reduces to:

2

: ' 2 |4

ov. Sa(v, /r)

B =1 = p£2 _1 + ’——3_ (4.7)

1,2 2,3 m sz axz k

where the viscosity ratio o, 3 is equal to unity. This formulation
?

retains the basic simplicity of the mixing-length hypothesis since

no new empirical constants are introduced.

4.2-2 The Mixing-length Distribution

Close to a wall, but outside the sublayer, all evidence
indicates that the mixing-length ﬁm is proportional to the normal

distance y from the sﬁrface. Very near the wall ﬂm is presumed to

.diminish in accordance with Van Driest's (1956) expression:

},m = xy['l - exp(—y\/;?/Ap,z)] . (4.8)

This formulation adequately describes the main characteristics of plane
two-dimensional incompressible boundary-layers, and allows the field
of calculation to be extended to the laminar sublayer. For two-
dimensional non-swirling flows the constant A is about 26, and T is
the local value of the shear stréss. However, it is not evident
how the damping effect in the sublayer should be incorporated into
a formulation for two-dimensional swirling flows or three-dimensional
boundary layers, since in this case it is likely to influence the rate
of change of the direction of the shear stress vector as well as the
rate of change of its magnitude.

It is presumed, for the present isotropic viscosity model,

that the appropriate form of the Van Driest expression for swirling
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boundary layers is:

Lm = Xy [1 - exp (—y‘/PTé/Apzi] . . (4.9)

The local value of the shear-stress vector TR appears in the damping
term; the constant A is, based on non—swifling flow work, and some
swirling-flow work, Bayley and Owen (1969), Cooper (1971), ascribed
the value 26.

Further from the wall, in the wake portion of the boundary
1ayer; Lm is found to scale.approximately with thé thickness & of the
boundary layer, see Escudier (1965), Schlichting (1968). It is

therefore assumed that:
,e,m: Ao, )\5/)( <y b (4.10)
The mixing-length constants K and ) are adjustable ones to be

determined from experimental information.

4.3 Comparisons’ of Predictions with Experimen£a1 Data

4.3-1 Disc in Stagnant Surroundings

The flow induced by a disc rotating in a stagnant medium,
Fig. 4.1, is the simplest flow in the class of swirling boundary-layers
near walls. The flow in the centr;I regién of the disc is laminar, and
undergoes transition to turbulent flow of some radial distance from

the centre.

Xy
<

fx

(9
W

%_

L

Fig. 4.1 Disc rotating in stagnant surroundings
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The present computations were commenced in the region of
laminar flow. The turbulent transporf formulae 4.7, 4.9 and 4.10
"were introduced at the radial location where the transition Reynolds
number Retran is first attained; a value in the rénge 1.8X1O5 and 2.8X105
was assumed, depending on experimental evidence. No claim is made of
physical realism for this simple transition procedure; the predictions

in the vicinity of Re clearly lack significance.

tran

(a) Average Draqg Coefficient

In Fig. 4.2 the predictions of average drag coefficient-éf
aré plotted against Reynolds number Rg, and compared with the results
of three éxperiments. The three panels (a}), (b) and (c) display
respectively the influence on the predictions of varying X, )\, and
Retran' The Fffect of varying )\is rather less than that for comparable
variations in K; the near-wall turbulence has a much larger influence
on the wall drag than the outer layer turbulence. Varying the
transition Reynolds number in. the range 1.8X105 to 2.8X105 only
influences the drag predictions in the area where the experimental
data exhibit the typical scatter associated with transition from ‘
laminar to turbulent flow.

The values of K and A\ which allow the best fit with the
data are 0.42 and 0.085 respectively. These values agree with thase
which very often provide gqod prediétion of plane, non-swirling
boundary layers. They contrast with the values 0.50 and 0.13 which
have been found to give the best resﬁlts for the axially symmetrical
wall jet, Spalding (1967), a ﬁop—swirling flow which is geometrically
comparable with the bresent flow. It is evident that the dominance
of the swirl component of velocity and the absence of a strong axial

flow directed towards the disc at its centre are sufficient to cause

the present flow to be more akin to a plane one. The mean transition
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1 l 1
2 Re 10 5x108
Predictions: full lines Experiments

Panel M ) Retran

(a) 1 .38
2 .42 .08 2.3X10° Theodorsen (1944)
3 .46

(b) 1 .08 Kreith (1966)
2 .42 .09 2.3X105
3 .10 Owen ' (1969)

(c) 1 1.8X105
2 .42 .08 2.3X105
3 | 2.8X10°

Fig. 4.2 Average drag on a disc rotating in stagnant air
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Reynolds number 2.3X105 recommended in the experimental studies,
Kreith (1966), results in predictions which correspond fairly well with

" the mean of the experimental data.

(b) Shape Factor

Predictions of the shape factor H for the cifcumferential
velocity profile are compafed with fhe.data éf Cham and Head (1969)
. in Fig. 4.3. The results of varying X, k, and Retran are shown
‘respectively on panels (a), (b) and (c). Since the influence of the
parameter K is felt mainly in the near—wgll région, the development of
the‘shape factor is more dependent on variations in A than X. The

effect of varying Re is not noticeable at the high Reynolds

tran
numbers. On panel (d) predictions obtained with K=0.42 and A=0.085,
the values which result in the best predictions of the circumferential

drag, compare favourably with the data and integral-profile predictions

of Cham and Head.
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|
15x106

| |
10 Re 15x106

10 Re 5
Panel K ) Retran
(a) 1 .38 00 0o Experimental data
2 | .42 .08 2.3X10° of Cham and Head (1969)
3 .46
(b) 1 .08 Present predictions
2 .42 .09 2.3X105
3 .10 — — —Predictions of
(c) 1 1.8X105 Cham and Head
2 | .42 .08 2.3%10°
3 2.8X105
(@) 42 .085 2.3X10°

Fig. 4.3 Development of shape factor for the circumferential

component of velocity
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(c) Volumetric Flow Rate

'Fig. 4.4 displays the preseﬁt predictions along with the

"predictions and experimental data of Cham and Head for a

dimensionless radial volumetric flow rate. The overall agreement is

good. The mixing-length constants were K=0.42 and )\=0.085. The

004

002

present solutions exhibit values of lehich are too high at the larger

Reynolds numbers, but nevertheless the predictions show the carrect trend,

~

and the discrepancy is less than 10%.

oooo Experimental data of Cham and Head (1969)

——— Predictions of Cham and Head

Present predictions

1 : ' 7 1 i
- T 10 Re 2x10P

Fig. 4.4 Volumetric flow rate in the radial direction

4,3-2 Cone in Free Surroundings

The cone illustrated in Fig. 4.5 rotates in stagnant
surroundings. The centrifugal forces on the fluid resolve into two
components, one acting in the longitudinal direction and the other

acting normal to the surface. The latter component gives rise to a

cross-stream pressure gradient.

b

Fig. 4.5 Cone rotating in stégnant surroundings
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The predictions of the average circumferential drag
coefficient Ef foF a cone of vertex angle 60° are shown in Fige. 4.6;
"the experimental data are those of Kreith (1966). The value of 0.085
found appropriate for the disc calculations is ascribed to,x « The
corresponding best value for K appears to be 0.47 instead of 0.42.
The transition Reynolds numbef, based on the studies of Kreith, Ellis

and Giesing (1962), was assumed to be 9X104-

2 0000 Data of Kreith (1966)
—~14%10

Present predictions

-5 . '7 5 1‘0)(]06
Re = P Ql?sina/pz

Fig. 4.6 Average circumferential drag

Within the Reynolds number range 5X1O5 to 12X105, when the

influence of the laminar region near the vertex is negligible, Kreith

was able to correlate his data to within 5% as: Ef = 0.157Re—0'2.

For the present predictions the constant of proportionality relating

E} to Re can be represented by 0.156.
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4.3-3 Cylinder in an Axially-Directed Stream

The tgrbulent boundary layer on'a cylinder rotating in an
‘axially-directed stream of uniform velocity, see Fig. 4.7, possesses
some interesting characteristic;. For example, the velocity vector
twists through a right angle in tracing the velocity acfoss the flow
field. Furthermore, the flow'is subjected to cross-stream centrifugal
forces, and in this respect it is different from the disc flow which
has no cross-stream pressﬁre variation. As the speed of rotation
increases, instabilities resulting from the large cross-stream

centrifugal forces cause higher velocity fluctuations which in turn

give rise to augmented turbulence intensities in the boundary layer.

Fige. 4.7 Cylinder in Axially-directed stream

.Experimental measurements of the velocity fiéld héve been
reported by Parr (1963) and by Furuyg and his co-workers (1966).
The present predictions are for the fully turbulent downstream region
of the flow; they were initiated from the furthest upstream profiles

reported by the experimenters.
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(a) Average Circumferential Drag Coefficient

A comparison of the average circumferential drag is made in
'Fig. 4.8 between one set of Parr's data and the present predictions.
The values of the mixing-length constants determined from the disc
studies were used. The curves marked 2 and 3 denote the effect.of

increasing K and )\respectively.

0 oo Data of Parr (1963)
Present predictions
‘0101~ 5
f
SN
1 .42 .085 (disc)
2 .52 .085
004k 3 .42 .125

1 |
20 x/R 28

<

Fig. 4.8 Effect of varying mixing-length constants on

the average drag for a rotating cylinder

Since the influence of K is proportionately larger than that
of A, it was decided to adjuét K to obtain agreement with the
experimental data, while keeping,x at the disc-value of 0.085. Fig.

4.9 displays predictions of the average circumferential drag coefficient
for six experimental conditions. The agreement obtained between the

predictions and the data is surprisingly good. However, the value
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of X depends on the free stream Reynolds number as well as the ratio

of rotational speed to free-stream velocity.

Predictions ———— | Data oo0o0,xxx
Req, Q R/ Vs, X Ref.
‘020
1 0.6X105 1 .49 Furuya
5.
211.2X10 1 «50 "oe
c.
,f 3 O.GXIdS 2 50 "
5
41 1.2X10 2 <53 "
5
010 51 3.0X10 3 .48 Parr
' 5
6| 3.0X10 4 «52 n
l 1 | ] 1 |
4 x/R 6 20 x/R 28

Fig. 4.9 Average circumferential drag for a cylinder

rotating in an axially-directed stream

(b) Momentum Thicknesses

| Predictions of the circumferential momentum thicknéss as
well as the.axial momentum thickness are compared in Fig. 4.10 with
Parr's data for a velocity ratio of 4. The dependence of the

predictions on K and.%\is shown by the curves marked 2 and 3.
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Re, = 3.OXlO5
QRNe = 4
010
§é§ predictions
R

ocoo o data of Parr

1 .42 .085
2 .52 .085

\ 1
20 - 28 24 28
x/R x[R

Fige. 4.10 Effect of varying the mixing-length constants

on the axial and circumferential momentum

thicknesses for a rotating cylinder

It is evident that accurate predictions of the overall
flow field, that is, both momentum thicknesses, cannot be obtained
by any combination of the constants X and AN . The same remark also
applies to the other experimental conditions of Pérr and of Furuyae.
The explanation of the failure to predict the complete flow field
lies in the original assumption of isotropic viscosity. Consequently,
if the mixing~-length constants are determined from the data for the
circumferential velocity distribution for example, it does not follow
that the same set of constants will give good predictions for the
axial velocity distribution. Tﬁrbﬁlence models which account for
the non-isotropic nature of the effective viscosity are presented

latef in Chapters 5, 6 and 7.
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4,3-4 Radial Outflow Between a Rotating and a Parallel Stationary Disc

The most comprehensive hydrodynamic study of this flow is
Vprobably that of bwen‘(1969) and Bayley and Owen‘(l969). They
provide experimental results for an extensive range of conditions, and
present predictions obtained using the Patankar and Spalding procedure.
In order to ensure that the flow is of the boundary-layer kind, sufficient
fluid must be supplied through the cen£re of the stationary member, as
shown in Fig. 4.11, to avoid recirculation of the inter-disc fluid.
The parameters governing this problem are therefore the disc Reynolds
number, Re=( ri/v, the mass inflow coefficient, Cw=ﬁ/%rb y and the

inter-disc gap to disc radius ratio, G = s/ro.

)

" stationary disc /////rotating disc

£ :
¥ — ,

[\

Fig. 4.11 Radial outflow between two discs

" Bayley and Owen's measurements of average drag coefficlent
for the rotating disc, velocity profiles and radial pressure distribution
for typical flow conditions are displayed in Fig. 4.12 (a), (b) and
(c), along with both their own and the present predictions. - As
described in Section 3.1(a) of Appendix} , Bayley and Owen presumed,
in contrast to the present study, that the effective viscosities in

the radial and circumferential directions are different.
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S : 4 4
C . = 8.8X10 . C. = 5.4X10
O\ W _ 0 W
. Re = 3.4x10°
151 o
\
- Ak
N\ \¥.
No \I
OF N
10 o\
AN
[ o\ \
\ )
sl \
o
| i I ! | L
5 %0  Re 2 3 4406 0 5 Y/s 10
(a) Average drag on rotating disc (b) Velocity profiles
-9\ c, = 8.6x10"
5x10 T\ o
R Re = 2.6x10°
C
pl
10—
5 /e 75 1-:0
(c) Radial pressure coefficient
oo Experimental data of Bayley and Owen (1969), G = .03

Present predictions

Predictions of Bayley and Owen

Fig. 4.12 Radial outflow between a rotating and

a parallel statiocnary disc
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Therpreéent predictions were initiated at r/ro=d.35
wﬁere the experiments of Bayley and Owen indicated the reattachment
of a separation bugble on the statof. The radial pressure gradiént
was calculated from the following equation:

2 ’

dp _ _ E(Trotor * Tstator) . Ql’i N mVy 5A  (4.11)
dr TS ow N r (rs )2 5r
: flow -

An explanation of the symbols and origin of this equation is given
in Appendix 4. '

The present predictions were obtained using the same
values of K and \ as Bayley and Owen, fespectively 0.40 and 0.12.
These values appear to be the optimum ones for the gap ratio and mass
inflow shown in Fig. 4.12. The values of K and N\ differ unfortunately
from the optimum values defermined for the unshrouded disc. Further
e*ploratory comparisons with Bayley and Owen's data revealed that
éther values of X and A are required for otheF flow conditions.

It is evident that tge present predictions for the average
drag are superior to those of Bayley and Owen. There is little to
choose betweén the two procedures in respect of the profiles and radial
pressure coefficient predictions. it is indeed strange that neither
procedure properly predicts the peak in the profile of radial velocity;

there is no obvious explanation for this discrepancy.
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4.4 Correlation of the Change in Mixing-Length Due to Swirl

When the geometrical angle o is less than 90 degrees in the
bresent coordinate;system, the circumferential component of velocity
through the action of centrifugal forces may significantly alter the

structure of the boundary layer. The tendency of the fluid to be

flung away from the surface is balanced by the normél pressure gradient.
Such a flow has an analogy with a free-convection boundary layer in
which the gravitational vector crosses the heated wall boundary.

4,4-1 The 'Monin—~Oboukhov' Formula

. Bradshaw (1969) has presented a rather penetrating
analysis of the analogy between the effect of swirl and that of

buoyancy on turbulent flow. He suggests the 'Monin-Oboukhov' formula:

£ =% (1-B.Ri) ) : (4.12)
m,c m .

as a particularly simple approximate means of correlating the effect
of the centrifugal body forces on the mixing-length. The symbol

Lm,c represents‘the correctd value of the mixing-length zm to account
for centrifugal effects. B is an adjustable parameter of the
turbulence model, and the Richardson number Ri, normally of
meteorological interest, characterises here the ratio of the centrifugal
forces, instead of the buoyancy forces, to the inertia forces. Because
of the tenuous physical content of the Monin-OCboukhov formula, B
cannot be expected to exhibit a refined degree of universality.

The Richardson number, as Bradshaw pointed out, can be
regarded as the ratio of the'squafe of a typical frequency scale of

the circumferential velocity fluctuations to the square of a typical

eddy in the boundary layer. For the former the appropriate quantity is:

2V, d(rv,y)) 2

—3 cos 37 ; while for the latter, consistent with
r2 0 Xy

the viscosity formulation (equation 4.7), the resultant of the velocity

gradients is the appropriate choice., Hence,
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2V3 a(rV3)
2 0x
r 2

. (4.13)

(av1)2 ( | a(vg’/;:))2
=, - 0x
2 2

Cham and Héad (1970) have examined the suitability of the
Monin-Oboukhov formula by comparing their predictions obtained using
an integral-profile method with Parr's (1963) cylinder flow. Their
findings indicate that, for that particular flow, B is not constant
but varies in the range 0.25 to 60 across the boundary layer. In a
recent paper, Hughes and ﬁorlock (1971) obtained equations 4.12 and 4.13
by simple physical reasoning, and suggested a value of B between
7 and 8.

4.4-2 Cone and cylinder flow

The Monin-Oboukhov formula was used with the present
isotropic viscosity model, equations 4.7, 4.9 and 4.10, to predict
the circumferential drag for the cone experiments of Kreith (1966)
and the cylinder experiments of Parr (1963). The value of Lm is, of
course, that appropriate to disc flow since the Richardson number is
zero, the geometrical angle a being equal to 90 degrees; consequently
the reference values of X and A\ are respectively 0.42 and 0.085. The
value of B was adjusted until the best overall predictions were
obtained. Fig. 4.13 presents the results for the cone and Fig. 4.14

provides those for the cylinder.
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]

Predictions with X, A
and B = .42, .085 and 5.0
respectively.

5 _ —— — Unmodified mixing-length
° N predictions, see Fig. 4.6

o o0 Data of Kreith (1966).

0.6x106 Re= PCL2sina /4 1.0X106
£ .

Fig. 4.13 Average circumferential drag on a 60° rotating cone

e— Predictions with X, A and B = .42, .085 and 5.0
respectively.

~—— —Unmodified mixing-length predictions, see
Fig. 4.9.

oooo Data of Furuya (1966) for 2 = 1 and 2, and
of Parr (1963) for Q = 3 and 4.

‘ 5
Re,,=0.6X10° Re,,=1.2X10° Reg,=3.0X10

X/R
Fig. 4.14 Average circumferential drag for a cylinder

rotating in an axially-directed stream
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Quite good predictions are obtained when.B is 5.0 for both
the éone and cyl%pder. Also shown on the figures are the predictions
" for the unmodified mixing-length distribution for the previsusly
found best values of the conétanté K and ). For these latler predictionsg
A was eqﬁal to .085, but K had to be varied in the range .48 to .53.
This serves to demonstrate the usciéul generality of the simple
recommendation of a single set ol cqnstants,)(:.dQ,-kchBS and P=5.0.
4.5 Conclusions

The folowing conélusions,’on the usefulness and limitations

of the isotropic viscdsity mixing-length based model of turbulence,

can be drawn from the comparisons which have been made of the predictions

with the experimental evidence:

l. For the four flow configurationé considered, free disc and cone,
cylinder in axial stream,'and parallel discs with outflow, the
variation of average circumferential drag with.rotational Reynolds
number was very well predicted. However, the magnitude of the two
empirical éonstants in the mixing-length formulation is not universal,
but dependson the particular flow configuration as well as flow
condition under consideration. The values of the constants, X and A ,
are summarised in Table 4.1 below; they are those which, within the
limitations imposed by the accuracy of the data, predict best the
experiments of the specified reference. The assumed value of Retran

is also given where appropriate; it always lies within the reported

experimental range of transition Reynolds number.
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Experiments Pre41Ctl°ns
A= 085 all cases
K Re
tran
Disc in stagnant surroundings:
Theordorsen and Regier(1944) 42 2.8X10°
Owen . (1969) .42 | 1.8X10°
Cham and Head (1969) ' .42 2.3X10°
Cone, 60° vertex, in stagnant surroundings:
Kreith (1966) .47 | 0.9x10°
Cylinder in axially—directéd stream:
(R/Vy | Vo R/V
Parr (1963) | 3 |3.0%10°| .48
4 |3.0x10°| .52
' 5 fully
"Furuya and co-workers (1966) 1 0.6X10~ | .49
: 5 turbulent
2 0.6X107 | 50
5
1 1.2X107| .50
5
2 L.2X107| .53
Radial outflow between two discs, one stationary; [X = .40| fully
Owen (1969), Bayley and Owen (1969) M= -12| turbulent
Table 4.1 Optimum values of the mixing-length constants

for several flow configurations
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2. A simple modification to the mixing-length, which was correlated
to a Richardson number to éccount for the éffects of fhe swirl body-
force, improved thé uniVersaiity of the mixiné—length approach. A
s;ngle set of constant,vK = .42,-% = .085, énd B = 5.0, resulted in
predictions which accorded well with the experimental data for the

circumferential drag for the disc, cone, and cylinder flows.

-3. The cohcept of an isofropic viscosity is not genefally valid for
SWirling boundary layers (and in consequence, for non-swirling three-
dimepsional layers). For the case of a éyliﬁder rotating in an
axially-directed stream, where the axial and circumferential components
of veiocity were of‘the same order of magpitude, the model failed to
predict the overall velocity;field.' If the mixing—length constants
were determined from matching predictions with experimental data for the
circumferential drag, then the ag{eemént between predictions and data

for the axial drag was poor, and vice versa.

4. The mixing-length concept, leading to an isotropic viscosity formula,
lacks universality. This is the iﬁevitable drawback of a model which,
although conceptually simple, is lacking in physical reality. The
mixing-length hypothesis implies that the local structure of the flow

is determined by local conditions alone, in other words that the
generation and dissipation of turbulence energy are in local equilibrum.
While the equilibrium condition is satisfied near a wall, it is n;t
satisfied, for most flows, in the Quter part of the boundary layer

(in practice the outer four—fiffhs of the layer thickness). In this
region the size of a typical turbulent eddy is of the same order as

the boundary-layer thickness and its lifetime corresponds to a downstream

travel of several boundary-layer thicknesses. Thus, the boundary layer
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has a history which is not accounted for by the mixing-length theory.

More general and physically ﬁlausiﬁle models of turbulence
allow for the conv;ction and diffusion of turbulence. Ip Chapter 5
which follows, the transport of‘turbulence is taken into account, and
it is characterised by its kinetic energy and length scale; these

two quantities are determined from differential transport equations.
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CHAPTER 5

A TWO-EQUATION MODEL OF TURBULENCE

A5;1 Intreduction

| The mixing-length model of furbulence described in the
,previoué chapter can be considered a 'zero—differential—equétion‘ moedel
since the turbulence structuré of the flow is uniquely related to the
local meaﬁ flow conditions and is npt characterised by any transport
equation. ' The model works well for the boundary layers coﬁsidered, but
the empirical constants which it contains depend on flow configuration
and flow condition. This inadequate generality of the constants was
attributed to the simplified representation of turbulence by a zero-
eqﬁafion model.

Turbulence hypotheses which are more physically plausible than

the mixing—length-concept have been pgoposed by Kolmogorov (1942),
Prandtl (1945), Chou (1945), and Rotta (1951). The local state of the
fluid is assumed to depend on éﬁe or more turbulence quantities
determined from the solution of transport equations. These ecuations
are, however, complex and only ameanable to analytical solution after
numerous assgmptions are made, correlating these turbulence quantities
(double and triple‘fluctuéting velocity correlations) and the mean
flow field. Nonetheless, these simplified equations constitute
turbulence models which exhibit greater generality of application than
the mixing-length model for non-swirling boundary layers, see for
example Ng (1972), Hanjalic and-Léunaer (i972), Rodi (1973).
These authors, following the work of Kolmogorov (1942) and Rotta (1951),
assumed that the local state of the fluid is characterised by two
paraméters: the kinetic energy of.turbulence k, and a length scale £

which represents the time-averaged diameter of the energy containing
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eddies; both k and 4 are determined from the solution of their own
differential équations, aﬁd the model is consequently referred to as a
'two-equation, energy-length' model. An important outcome of the

work of Ng (1972) and Rodi (1973), who respectively invéstiéated
boundary layers near walls and free jets, is that a single set of
empirical constants wés found to be capable of accﬁrately predicting
several flow situations; this ability is not possessed by the mixing-
length model. .

' The present work extends the two-equation energy-length model
to swirling boundary layers. The equations governing the transport of
k and £ are presented in Section 5.2, together with expressions
relating the effective exthange coeffi;ients to k and £.

-In Section 5.3, comparisons are made between predictions and
experimentalvdata for the flow field near a cylinder rotating in an
aXially—directed stream of uniform Qeiocity. The results of Lilley's
(1973) investigation of free swirling jets, using the model developed
here, are also presented.

Lastly, Section 5.4 concludes wiﬁh a summary of the present
studies of the two-equation model of turbulence, and an evaluation of
the findings.

5.2 The Turbulence Energy and Length Scale Equations

The differential equations governing the transport of
turbulence quantities like k and £, or other combinations such as k4

or k1’5£_1

, are developed by a combination of physical reasoning and
intuitive guess work. .Discussion of these mafters can be found in
Rotta (1951), Rodi and Spalding (1970), and Ng and Spalding (1972).
In the present work the equation for k is derived later in Chapter 7;

it is equation 7.20. Following Spalding and his co-workers, and also

Rotta, an equation for k times £ rather than an equation for 4 is
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solved. Rodi (1970) presents a partially-modelled equation for k4 in
~cylindrical coordinates and this conétituted the starting péint for
the defivation of-%he fully-modelled form . The boundary—layer forms
of the equations for k and k£, are presented in Chapter 7; in the
curvilinear orthogonal system of coordinates described in Section 2.2,

they are:

R A <’

convection diffusion productlon dissipation

%{ Qaw] ot ]

| Xz bxz
J _L ~— J
convection diffusion Bfoductlon
3
z
e - ( X {) L — R k (5.2)
s = e Gy R€ *} -
\__v_/ —_—
dissipation wall—damplng effect body-force effect

The last term of eqﬁation 5.2, an outcome of the present
work, is introduced to account for the influence of the centrifugual
forces on the turbulence structure. Close to a wall there is no net
effect from the prodﬁction and dissipation of the kinetic energy of
turbulence; the flow is in equilibrum. The production and dissipation
terms of equation 5.1 are then equal, and the length scale L is
proportional to the mixing length ﬂm c defined by equations 4.7 and

?
4.12. When ﬁm c is substituted forlﬂ in the Couette flow form of

3
Rodi's (1970) equation for k#, compatibility and dimensional
considerations indicate that an additional term, a body-force term, is
required. Although this term is derived from an analysis of the flow

close to a wall, it is presumed valid across the whole layer.

The equations for k and k& are similar to the momentum
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equations; they contain'cqnvection énd diffusion terms, with the
remaining tegms regarded as source terms. They possess thé same form
as the-genefal eqﬁétion 2.31 and consequently are also solved using
the Patankar and Spalding procedure.

5.2-1 The Effective Exchange Coefficients

Kolmogorov (1942) and Prandtl (1945) suggested on

dimensional considerations that, for a non-swirling two-dimensional

boundary layer, the main Reynolds shear stress -p viVsy is given by:

: LA
__ 12/ WV
-V =¢ — (5.3)
X
0%y |
This relation is only valid for homogeneous turbulence at high

Reynolds number; these conditions usually prevail, at least locally,
. in many flowsssee for exampie Rodi (1973). For non-swirling boundary
layers, equation 5.3 combined with the definition of effective viscosity,

‘equation 2.39, leads to: _
ki
}v‘ e . (5.4)

The effective viscosity is thereby related to the intensity of
turbulence via k, and to the structure of turbulence via £.
For swirling boundary layers, the present work assumes

that the Reynolds shear stresses are given by:

_ev,v,_ BV; (’k (/ (5.5)
and 7 /0 Vi r) *
._6\/23/\(‘}2_(_5‘;/1_26‘(6/0; 5

(5.6)
These two equations also represent, through the definitions 2.39 and
2.40, the effective viscosities ¥ 5 and By 3 respectively. The
? ?
viscosity ratio Oy 4 defined by equation 4.5, is then equal to
3

03/01. In a similar way, the exchange coefficients appearing in the

turbulence equations 5.1 and 5.2 are presumed to be:
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| Pekl/e s e
and | F( ekl{/ Ol:e ;o ~ (5.8)

the origin of these formulations is discussed in Sections 7.3-5 and 7.3-6.

]

The parameters or empirical constants s O,y O and sz are assumed

%1 %3 %
constant, and their values are determined from matching predictions
of mean-flow and turbulence quantities with experimental data.

5.2-2 The Empirical Constants

In total the two-equation energy-length model contains

¢

C X

C

11 empirical constants: C R

B’ vcwsK':CQa C and @ 2

17 %30 G X

The constants CB’ CD and CS have a strong influence on the level and

D’

" rate of spread of turbulence energy; the main influence Of.ok and okﬂ
is felt as avchange in the shape of the profiles of the dependent
variables, see Ng and Spalding (1972). The parameters o and'03,

see equations.S.S and 5.6, al;pw for the anisotropic nature of the
effective viscosity, but the assumption that they are consfant implies
that the ratio ul’z/u2,3 is a constant over the flow field under
consideration. This is no more likely ta be the case than the
assumpﬁion 8f isotropic viscosity, namely that the ratio ul,z/u2’3

is unity; short of devising elaborate empirical funétions for Ul and

(0}

3 the assumption that they are constants provides a simple, but

useful, approach for extending the two-equation model to account for
anisotropic viscosity.

| The turbulence model,Arepresented by equations 5.1, 5.2, 5.5
to 5.8, was used to predict the flow field near a cylinder rotating
in an axially-directed stream of uniform velocity. The choice of the
empirical constants was guided by the values found by Ng (1972) to
give good predictions for non-swirling boundary layers near wallse.

These values, recorded in Table 5.1 below, offer the only available
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indication of the starting point for swirl-flow computations.

5.2-3 The Near-Wall Region

The abéve system of equations approximate to thé physical
situation only in the fully turbulent part of the boundary layer. The
exclusion of moleéular viscous terms precludes their application to
the sub-layer, that is, the near wall region where the influence of
the laminar viscosity pﬁedominates. To overcome this restriction the
finite-difference solution is matched to values of the_dependent
variables, determined form 'wall-functions', at a small distance from
the wall, yet in the fully-turbulent region. In practice the matching
point is the.first grid-node away from the surface.

The resultant velocity VR, from the experimental findihgs

of Backshall and Landis (1969), is presumed to cbey the conventional log-

X
VR//_T_R_ _ ._‘_Ln{ai ER_]
| e 04 rei e

law:
the resultant shear stress TR is constant in this near-wall region,

(5.9)

e

and acts iﬁ the same direction as the resultant velocity. The axial
and circumferential shear stress components are then obtained by
- straightforward resolution. .
The length scale £ is proportional to the distance from

the wall, see for example Ng and Spalding (1972), and Launder and

/’: K C

Spalding (1972):

0 -

y oo (5.10)

No general recommendation have yet been made about the
behaviour of the turbulence energy k in the sublayer. It is presumed
that, in this region, the production and dissipation of turbulence

energy are in balance; the near-wall value of k is then proportional

* Pressure gradient effects are not included in equation 5.9; the
influence of pressure gradient for the flow for which this
equation is used, see Section 5.3, is negligible.
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to the resultant wall shear stress R given by equation 5.9. The

relation between k and T. is derived in Appendix 3 and is:

R
-1

k - C;'e— Te . . (5.11)

5.3 Comparisons of Predictions with Experimental Data

5.3-1 Cylinder Rotating in Axially-Directed Free Stream

The case of a cylinder rotating in an axially-directed
free stream of uniform velocity, already illustrated in Fig. 4.7, is
a particularly interesting one. The mixing-length studies of Chaptef 4
reveal that the range of experimental data for this flow presents a
trying test of the generality of the empirical constants of the
assumed turbulence model, and also of thé capability'of the model to
predict the overall flow field for a given flow situation.

Predictions of circumferential and axial momentum
thicknesses for fwo of Parr's (1963) experimental conditions were
compared with his data; these two cases were found to be a sufficient
test of the generality of the model. To procure as much consistency
as possible between the present work and those for non-swirling flow,
the empirical constants employed are those which work well for the
non-swirling flows. Consequently, all the constan£s in equations 5.1
and 5.2, with the exception of CR which appears in the body-force term,
are those proposed by Ng (1972). The value of Cgs a@s well as 0, and 0,
were adjusted to values giving the overall best agreement with the
data. These values and those of the remaining constants are shown in
Table 5.1 below; the comparisons between predictions and experimental

data are presented in Fig. 5.1.
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Cp = =985 Cp= +09  Cg= -0585 Cy = -078
K=. Cq = 4.0 o, = 1.0 0 g = 1.0
Figioa.l flR/Vl,m | Ca . o) oy
1 3 0 3.0 0.2
2 .3 | 2 ’ 3.0 0.3
3 4 o 3.0 0.3
4 4 2 © 4.0 0.6

Table 5.1 Constants for the energy-length turbulence model

for the cylinder flow

o]
01 2 .008
o
4
623 ! 17
R L R 3
-004
005
[«
1 5 1 I - ] | | !
20 30 2.0 25 20 30 20 25
xﬁ? >¢R
circumferential momentum thickness axial momentum thickness

predictions (see also Table 5.1 above)
coo data of Parr (1963)

Fig. 5.1 Axial and circumferential momentum thicknesses:for

the cylinder flow
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The results are marginally better with the body-force term
included and CR = 2.0. The axial and éircumferential momentum
thicknesses are both well predicted; although different values of
o and o, are required for the tﬁp flow conditions considered. These
values are substantially different from unity, confirming the findings
of other workers, for example Lilley and Chigier (1971), that the
turbulence of highly s@irled flows is very anisotropice. It should
also be noted that the predictions'of circumferential momentum thickness
on the whole do not compare very favourably with the predictions
obtained using the much simpler isotropic mixing-length model of

turbulence. These matters are further discussed in Section 5.4 below.

5.3-2 Free Swirling Jet

The two-equation energy-length model developed here has
a;so recently been used by Lilley (1973) in his studies of free
swirling jets issuing into stagnant surrouhdings. These jets, when
the degree of swirl is not so large as to cause recirculation, combine
the interesting characteristics of a swirling boundary layer with the
mathematically simple boundary conditions associated with a free jet.
There are no influences from solid surfaces, and consequently the wall-
damping term in equation 5.2 for k4 vanishes.

Lilley's choice of constants was based on the work of
Rodi and Spalding (1970) on non-swirling round jet flows. Having
retained the same values for these constants, Lilley assumed a value
of ﬁnity for 0; and made 0, a function of the local swirl number;

he then determined CR by optimising his predictions of the decay of the
maxima of the axial and swirl components of velocity with the

experimental data of Chigier and Chervinsky (1967). The recommended

function for 03 is:
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L - .
o L
G =)+ 25 o (5.12)

where the local swirl number Sx is defined as:

SX =J€\4\{3Y1dr Cor (e\/lz1P—?w)r dr; (5.13)
° ' 0 '

r is the radial distance where V

01 drops to .0l of its maximum

1
value. The constants and function employed by Lilley are summarised
in Table 5.2 below; he obtained good predictions of the non-swirling

jet, and two swirling jets of swirl numbers 0.2 and 0.4 measured at

the orifice, with the same set of parameters.

CB = 98 CD = 4055 CR = 406 CS = .0397'
1/3
Gk = 1.0 Ckz = 1.0 cl = 1.0 03 =1 + 25x

Table 5.2 Constants for the energy-length turbulence model

for the swirling jet:

5.4 Conclusions

l. A two-equation, energy-length model of turbulence was developed
for swiriing boundary layers, and a new term, a body-force term, was
introduced to account for the effects of swirl on the turbulence
structure. The empirical constants of the model were those found by
other workers to result in good agreement between predictions and
experimental data over a wide range of conditions, for non-swirling
boundary layers. The introduction of the body-force term, and the
assumption of non-isotropic viscosity, led to three new additional
parameters, CR, Ul ana 03.

2. For the cylinder flow; the ratio of the effective.viscosities was

presumed constant, and good predictions were cbtained for the entire



flow field under‘cohsideration.' Two flow conditions were investigated,
and a value of -2 was found appropriate for CR; however, Gl had to be
adjusted from 3 to 4, and thé ratio 03/01 from .07 to .15. The degree
of variation in these parameters, fér two flow conditions of the same

geometrical configuration,; is not acceptable for a generally applicable

model of turbulence.

3. For the free jet, Lilley's predictions of axial and swirl velocity
decay compared well with the experimental evidence for a non-swirling
jet, and jets with swirl numbers of .2 and .4. He used a single set

of parameters; C_ was equal to .06, O, equal to unity, and o, was

R 1l 3

made a function of the local swirl number.

4., Clearly, for the case of wall—flows,‘a more sophisticated approach
than embedied by the turbulence>model tried here is requiréd to procure
a satisfactory degree of universality. The principal task is to
determine suitably general functions for oy and Oé since the

anisotropic nature of the turbulence appears to have a larger

influence on the flow than the effect of the body-forces.
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P . CHAPTER 6

AN ANISOTROPIC VISCOSITY MIXING-LENGTH BASED MODEL OF TURBULENCE

6.1 Introduction

For the cylinder flow investigated in the preceeding two
chapters, the two-equation energy-length model of turbulence gave
better predictions of the o&erail flow distribution than the simpler
mixing—lengtﬁ, isotropic viscosity model. However, there were still
variations of the order of 50% in the values of the empirical
parameters in the energy-length model from one flow condition to
another.

The bold assumption that the effective viscosity ratio is a
constant is certainly not correct for the majority of swirling flows; its
use was justified as a first step in the absence of better information
on the cylinder flow. The studies of Lilley and Chigier (1971) and
Syred and his co—woréers (1971) have establishéd that the ratio of the
effective viscosities can vary appreciably, in the range 1 to 30 for
swirling jets issuing into stagnant surroundings.

Furthermore, experimental evidence has shown that in three-
dimensional non-swirling boundary layers, the assumption that the shear-
stress and velocity vectors are parallel in the near-wall region is not
in general valid; see for example Johnston (1970) and East (1972). It
is reasonable to presume that these two vectors are also not alignéd in
two~-dimensional swirling boundary layers. It seems likely therefore that
if a generally applicable model of turbulence is required, attention
must be focused on determining the anisotropic nature of the viscosity.
In particular, since the transfer processes in the near-wall region have
a very pronounced influence on the remainder of the flow, a proper

vaccount of the anisotropy of the viscosity in this region is indispensable.
Consequently, the main purpose of this chapter is to present and assess

a near-wall anisotropic vicosity model of turbulence.
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A way of determining the two effective viscosities “1,2 and

u2,3,from mixing-length expressions modified by van Driest's (1956)
Adamping functions is presented in Section 6.2. Predictions of flow
development are compared with the experimental data in Section 6.3;
three cases are cénsidered:

1. A cylinder rotating in an axial stream;

2. A disc rotaéing in stagnant surroundings;

3. A cone rotating in a longitudinal stream.
Section 6.4 summarises the investigations and shows that the near-wall
anisotropic viscosity mixing—length-based model is capable of accurately
predicting the flow configurations mentioned above, with relatively

minor adjustments to the empirical constants.

6.2 The Effective Viscosity Formulae

A combination of intuition and computer trials led to the
féllowing procedure in which the two effective viscosities are
determined from two mixing-length expressions modified by van Driest's

(1956) functions:

b om0 o

3 0 X2 n
M\ (V,ﬁ)
+x [ez 8 /26%][ ( 3 . (6.2)
The modifications pertain to the use of the local values of the
shear-stress components Tl 5 and T2 3 in the respective damping functions.

It should be noted that if the viscosity ratio o, ,, previously defined

’3
by equation 4.5 as pl,2/u2’3, is assumed equal to unity, and if the
shear-stress components are replaced by the total shear stress,
equation 6.1 and 6.2 are identical and revert to the isotropic
visgosity model presented in Section 4.2.

Bayley and Owen (1969) and Owen (1969), in their investigation

of the radial outflow between a rotor and a stator, are the only other
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workers who have employed expressions like those above. However,
they used the gradients of individual velocity components instead of

the combined gfadiéntg of velocity componenté uséd hére as the term
multiplying the éamping functions; their apﬁfoaéh is déscribéd.in
Section 1;3—1(a) éf Appendix 1. - |

Equations 6.1 aﬁd 6;2 are, of course, only Qalid in the
near-wall rggion; further from the wall; in the wake po;tion of the
boundary 1éyer, #he effective viscosities are presumed to be equal.
This assumption 1s quite acceptable since it is the transfer processes
in the near-wall region of the boundary layer which have most influence
on the rest of the layer. In the outer region the aésumed isotropic
~viscosity 1s given by equations 4.7 and 4.10; these equations can be

rewritten as:

) 7

2.2 2 2% ' )
/;/i:fzt‘;: /};‘ _,..(0)\5 (%\)/(L)_i_(\rb_(_gi_/:;).) )for‘ A(S/K(ljég . (6.3)

The combination of expressions 6.1 to 6.3 with the momentum equations

forms a closed set from which the viscosity ratic>0a can be evaluated.

+3
In the present solution proceduré, the variation of 05)3 across the
boundary layer is caiculated explicitly from the known infdrmation
about thé effective viscosities at the upstream stétionf This
distribution ié then used at the downstreamvstatioﬁ; the error thereby
introduced is neéligible when the forward-step size is less than 5% of

the boundary-layer thickness.

6.3 ~ Comparisons of Predictions with Experimental Data

6.3-1 Cylinder in an Axially-Directed Stream

Predittions}for the growth of the axial and circumferential
momentum thickness are shown compared with experimental results in

Fig. 6.1; the data are those of Parr (1963) and Furuya (1966).
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The values of the constants K. and \ , displayed later in Table 6.1, vary

.by less than 20% over the complete range of flow conditions considered.

The agreement between predictions and data for both momentum
thicknesses is very good.' Réferring‘back to the predictions obtained
with the isotropic viscosity mixing-length, Fig. 4.10 and with the
energy-length model, Fig. 5.1, the enhanced universality of the present
model is evident.

Fige. 6.2 shows the predicted near-wall distribution of the
viscosity ratio 02,3; its departure from unity is considerable. There

exists no experimental information from which o, 3 can be deduced for
. 2

c .
the cylinder flow; however, the variation of o across the sublayer

2,3

is acceptable in so far as it results in excellent agreement between

the predictions and the measurements of velocity field.

‘003 ' 0 R/Vl o = 4
' V, R/V = 3.ox105
y Ly
—R— | X/R = 2.8
001
| 1 ] ]
0 5 0'2,3 +0

Fig. 6.2 Viscosity ratio in the sublayer for the cylinder flow

6.3-2 Disc in Stagnant Surroundings

The flow induced by a disc rotating in stagnant surroundings
was predicéed in Section 4.3 using the isotropic viscosity mixing-
iength model. The average circumferential drag variation with

rotational Reynolds number, the development of shape factor, and
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entrainment éf fluid into the béundary layer, were all well predicted
with a single set of constants: K = 0.42 and A = 0.085. These
computations were';epeated with the anisotropic viscosity mixing-length
model, and the predictions are compared with the experimental

measurements of Theodorsen and Regier (1944), Owen (1969), and Cham

and Head (1969) in Fige. 6.3, 6.4 and 6.5 below.

02—
predictions
C 0000 data of Theodorsen (1944)
f X x X
X y - XXXX data of Owen (1969)
X XX, X
ph ¥

Fig. 6.3 Average circumferential drag for disc

16— predictions
— 0000 data of Cham and Head (1969)
H v
13_-1 1 ] | I
2 3 5 10 2x10°

Fig. 6.4 Development of shape factor for disc
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005/

predictions

000 data of Cham and Head (1969)

001

1 1 ] ‘ | l 5
2 3 | 5 Re +0 2x10

Fige. 6.5 Radial volumetric flow rate for disc

The optimum values found for X and A to give best
agreement between predictions and experimental data were 0.34 and
0.085. The former value is surprisely low compared with the values
of X. found appropriate for the cylinder flow and also with those
suitable fér non-swirling boundar§ layers, usuaiiy between 0.40 and
0.45. It may be that a relatively small adjustment to the van Driest
damping constant would result in a more usual value of X being
approbriate. It was preferred, however, in the present predictions
to adjust only X and A with the damping constant fixed at its accepted
'flat-plate! value of 26.

The computed variation of in the near-wall region

9,3
is shown in Fig. 6.6 and it is seen to depart substantially from unity.
Yet good predictions of the disc flow are possible with mixing-length
formulatipns which presume anhisétropic viscosity all the way to the
wall; see Chapter 4 and also Cooper (1971). The reason must be that
since the circumferential component of velocity is much larger than
the radial one, the flow is akin to a two~-dimensional plane flow in

that it is dominated by one shear stress, the circumferential one in

this case.
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Re=10

Fig. 6.6 Viscosity ratio in the éublayer for the disc flow

6.3-3 Cone in Longitudinal Stream

It.was stated in Chapter 1 that the survey of previous
experimental work revealed a lack of-data for the turbulent mean
vélocity field near a rotating cone. It was therefore decided that
an experimental investigation of the mean velocity field would be a
useful contribution to the data on swirling boundary layers near walls,
especially for assessing the generality of turbulence modelse.

Mean velocity measurements were therefore made for the
configﬁration shown in Fig. 6.7. The cone rotated in stagnant
surroundings and had provision for injection from an annular slot’
near its apex; the experimental apparatus and procedure are described
in Appendix 5. Data were collected for a variety of rotational
speeds, slot heights, and mass injection rates. Representative
predictions, based on the anisotropic viscosity mixing-length model,
of the growth of the axial and circumferential boundary layers, and the
decay of axial velocity profiles are shown in Fige. 6.8 and Fig. 6.9 for

-three sample experimental conditions.
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Fig. 6.7 Cone rotating in longitudinal stream

8L
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O
f 1 L i |
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y, = -00381 m, x_ = .094 m, Vl,s - 13.5 m/s.

predictions withX =.42, A=.10.
predictions with X=.42, A=.09.

XXXX Data for Q = 562.5 rpm,

oooo Data for = 1111 rpm,

Fig. 6.8 Comparisons of predictions with experimental

data for a rotating cone with slot injection.
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1 1
120 40 - 120

Yg = +00259 m, x_ = .0955 m; V) = 17.0 w/s.

oooo Data for £ = 1111 rpm.

Predictions with K= .46, » = .09.

Fig. 6.9 Comparisons of predictions with exﬁerimental

data for a rotating cone with slot injection.

Fairly good predicfions are obtained; the appropriate
values of the constants are givég in Table 6.1. The maximum variation
in both ¥ and A is about 10%. The influence of an increase in % and A
on the axial and circumferential boundary layer growths, and on the axial
velocity decay, is illustrated in Pig. 6.10 beiow for one of the
experimental conditions. It is seen that the influence of \ is
largest on the axial growth, while the influence of X is most felt by
the growth of the circumferential velocity profile. The decay of

maximum axial velocity is hardly affected.
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y = -00381m, x_ = .094n, Vl’é = 13.6m5,Q = 1111 rpm.
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Fige 6.10 Influence of mixing-length constants on the

mean velocity field for the cone flow

Two typical predictions of the variation of the viscosity
ratio across the sublayer are shown in Fig. 6.11. A significant

departure from unity is again displayed in the near-wall region, and

O, 4 is revealed to be strongly dependent on the degree of swirl.
b
n=5625
04""
Yg = .00381m, X, = .094m,
_},— v = 13.61'[1/8.
%5 1,8
B Distribution of 0. at x/y_ = 60.
2,3 s
X= .42, A= .09.
) L 1 | I
0 0. :
23 10

Fig. 6.11 Viscosity ratio in the sublayer for the cone flow
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6.4 Conclusions

1. In summary, although the present anisotropié viscosity mixing-length
based model of turbulence required some adjustments of X and X to cope
with the range of eﬁperimental conditions considered, the model
nonetheless exhibited a fairly sétisfactory level of universality.

It is substantially more general than the isotropic mixing-length model
and energy-length model considered previously. The values of X and A

for the three flow configurations investigated are tabulated below.

Flow configurations K A Experimental reference
. 2
Cylinder| QR /v | Q R/Vl o
3
0.6X105 1 45 .10 N
. .
0.6X10 2 47 | <10 Furuya and co-workers
1.2X10° 1 | .47 | .10 (1966)
1.2X10° 2 .50 | .10 |J
3.0X105 3 «435( .115
5 Parr (1963)
3.0X10 4 «4251 085
Theodorsen and Regier;
. (1944)
Disc <34 «085 Owen (1969)
Cham and Head (1969)
2 —
ino/V
Cone yS/RC Q RCSLna/ Vl,s/ﬂ RC
.0166 1.30X106 1.0 A2 .10
.0166 2.56X106 51 .42 09 Appendix 5
.0113 | 2.56x10° 64 | .46 | .09

Table 6.1 Optimum values of the mixing-length constants for the

anisotropic viscosity model for several flow configurations
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2. In the sublayer, for all the cases investigated, the viscosity

ratio bé 3 differed substantially from unity. The velocity vector in
, :

this region 'twists', relative to the shear-stress vector and they do

not act in the same direction as implied by isotropic viscosity

assumptions.

3. Admitedly, the model presented here is not based on extensive
physiﬁal reasoning, but is a result of intuition and trials. However,
t&o aspects of the results are worthy of note. First, the model is
simple and sufficiently general to be of immediate practical use to
design engineers who are interested in the calculation of swirling
boundary layers near rotating bodies. Second, the results positively
indicate that attention must be focused on the near-wall region where
02,3 is not close td unity. If the goal of universal application
and truly unified treatment is to be attained, the behaviour of the

two effective viscosities, implicitly the two main Reynolds shear

stresses -p Vv, and —p VoV s in the near-wall region must be

comprehensively investigated.
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CHAPTER 7

. AN ALGEBRAIC REYNCLDS STRESS MODEL OF TURBULENCE

7.1 Introduction

The turbulence models considered in the previous three
chapters employed the concept of turbulent viscosity to relate the

Reynolds stresses to the time-average properties of the flow, namely:

‘ M |
—QVYy = Vt(@g‘) ’ (7.1)

where the subscript i denotes either the streamwise or circumferential

direction, and j denotes the cross—stream direction. The turbulent
viscosity By was calculated from extensions of fhe mixing-length
hypothesis, and from a two-equation energy-length model. For all

the flows considered, the viscosity was found to be anisotropic, and

" that the anisotropy is particularly important in the near-wall region.
This vectorial nature of the turbulent viscosity has also been
experimentally demonstrated; for example, the measurements of Reynolds
stresses and velocity distribution by Syred, Beer and Chigier (1971)
of a swirling recirculating flow, have indicated that the implied
value of the turbulent viscosity varies with direction by several
orders of magnitude.

In the present chapter, the anisotropic nature of the
viscosity is determined from an analysis of the differential (transport)'
equations for the Reynolds stresses themselves. The present approach
lies between the two-equation energy-length model with an algebraic
relation for the viscosity ratio, and the seven-equation kind of model
where all six Reynolds stresses and a length-scale are calculated from
differential equations. In short, transport equations are solved for

the energy and length-scale, but the Reynolds stresses are expressed
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in terms of implicit algebraic relations derived under certain
assumptions %rom their own transport equations. This approach coﬁbines
-the economical aanntage of solving only two differential eqﬁations

for turbulence quantities with the improved generality obtained from
employing the algebraic relations for the Reynolds stresses; it will
subsequently be referred to herein as the algebraic stress model of
turbulence.

The algebraic stress relations are derived from an analysis
of the transport equationsAfor the Reynolds stresses themselves. This
treatment owes its origin to the discussions of Prandtl and
Weighardt (1945), Chou (1945), and Rotfa (1951). Hanjalic and
Launder (1972) and du P. Donaldson (1972) have recently proposed and
tested turbulence models of this variety for two-dimensional, non-—
swirling boundary layers. The first two authors solve differential
_ eéuations for the turbulence kinétic energy, turbulence dissipation
rate, and the Reynolds stress —QGI;; ; the third author and his
colleagues solve differential equations for the turbulence energy
and —é;;;; , but they employ an algebraié formulation for the energy
dissipation rate.. The extension of this type of procedure to swirling
boundary layers represents the primary purpose of this chapter.

The equations for the Reynolds stresses, also called double
velocity correlations, are presented in Section 7.2. The Cartesian
forms of the equations are first introduced and discussed, followed
by a derivation of the equations in curvilinear orthogonal coordinates.
The boundary layer forms of these last equations are then determined,
and they are subsequently reduced to algebraic equations in Section
7.3 through the modelling of the convection, diffusion, pressure-
strain and dissipation terms. The turbulence energy equation is also

derived and the length-scale equation presented in Section 7.3.
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Iﬁ Section 7.4, comparisons are made between experimental
measurements and predictions obtained from the algebraic stress model.
Both free flows ana wall flows are considered; namely: a swirling
jet issuing into stagnant surroundings, a cylinder rotating in an
axial stream, aﬁd a disc rotating iﬁ'free surroundings. The oﬁtcome

of these studies is discussed in Section 7.5.

7.2 Transport Equations for the Double Velocity Correlations

7.2-1 Eqguations in Cartesian Coordinates

It is both necessary and instructive to consider here the
Cartesian—-coordinate form of the exact equation for the double
velocity correlations; see for examplé Hinze (1959):
VE:—-B_[-;—V.{.(6 )'P 93"‘/] lEVWJ W‘ + P(BVL a"J) _ao| 20 ¥ |
Kax, |, on L0 b QT ¥

convection diffusion production pressure-strain dissipation

The transport of'the-double velocity correlations is
governed by éonvection and turbulent viscous diffpsion due to
inhomogeneties in the flow field, by énergy transfer from the main
motion through the turbulence shear stresses, by energy redistribution
due to the correlations ﬁetween the pressure fluctuatibns and the
derivatives of the veldcity fluctuations; and finally by viscous
dissipation. The terms representing each of these physical processes
have been classified into distinct groups in equation 7.2.

The origin of these groups of terms can be traced if one
considers the parents: the Navier—Sﬁokes equations; for incompreésible

flow these latter equations, Aris (1962),.are:

' 9
(\Y_:]ZL = —%‘VP +’LY,_\_I; ’ (7.3)
2 3

where 1, 2 and 3 represent the convection, pressure, and viscous

diffusion effects.” When equafion 7.2 is compared with 7.3 some
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important facts emerge regarding the Navier-Stokes parentage of the
terms appearing in .the double—velocity‘correlations equation. Term 1
of the Navier-Stokes equation gives rise to terms which express
convection, diffusion and production of the double-velocity
correlationé; term 2 leads to pressure diffusion .and pressure-strain:
terms; while term 3 leads to diffusion and viscous dissipation terms.
Equation 7.2 has introduced two new and unknown variables,
the pressure fluctuaﬁion p, and the triple-velocity correlation
;;;3;; « A differéntial equation for the triple correlation will give
rise to a fourth order correlation and so on. Equation 7.2 is therefore
not soluble in its present form. Most authors have chosen to model
the diffuéion, pressure-strain, and dissipation in termé of known ,
qgantities, namely the time-average velocity-components, the double
correlations themselves, the turbulence energy and the energy
dissipation rate. The modelled form of equation 7.2 can be symbolically
expressed as: ‘ |

(A
va X [ \/ + Vv“b ]: Modelled [Diffusion, Pressure-strain, (7.4)
k o) *J Dissipationl.

7.2~2 Equations in Curvilinear Orthogonal Coordinates

For the coordinate system illustrated in Fig. 2.1 of
Chapter 2, the equations for the double-velocity correlations are
required in curvilinear orthogonal forms. Rodi (1970) has performed
a term by term transformation of the correlations from Cartesian to
cylindrical coordinates; however, for the more general curvilinear
orthogonal system such transformations are not straightforward and are
usually very lengthy. A simpler route is to start directly from the

Navier-Stokes equations as outlined by Hinze (1959), and used by

Wislicenus and Yeh (1952) in order to derive the equations in

cylindrical coordinates.
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The derivation of the double-velocity correlations from

~ the Navier;Stokes equations in curvilinear orthogonal coordinates is

‘presented in Appeﬁdix 6. The constituent terms of the diffuuion,
vpressuré—strain, éné dissipation are not formally determined; these

'three transport processeslare instead modelled in Section 7.3 bélow
in ferﬁs of known quéntities. Consequently, only term 1 of thg

Navier-Stokes equation 1s analysed to yield the convection and

production terms:

N, k_(afi ¥, ) af o Wkaé ) dlfh) o 2

AR 2 AVRR L) BT L T
= Modelled [Diffusion + Pressure-~strain + Dissipation]; (7.5) *

the 4'5 are the metric coefficients, and equation 7.5 must be

summed for k = 1, 2 and 3 for each éf the s?k values of ?;73. It
should be noted this equation reduces to its Cartesian coordinates
form, equation 7.4, when the metric coefficients are all equal to

unity.

7.2=3 Boundary-Layer Forms of the Equations

For the class of boundary layers considered here, that is,
flow near discs, cones and cylinders, and free jets, the metric
coefficients ﬁl and 12 of equation 7.5 are equal to unity. The
coefficient 23 is equivalent to the disténce r from the axis of
symmetry, Xq being the ciréumferential coordinate. After invoking

the boundary layer assumptions, with Xy and X, corrésponding to
the mainstream and cross-stream coordinates, (see Sections 3 and 4 of
Appendix 6), there result the following equafions for the double

correlations:
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.__.

M _ Vo W-}V
Vlaxi vzb)(z, 4 3£]— 3):1' + DF+p5+D) Iy (7.6)
WE bF V d . D
Y b:|+v A%y Y,?_VVB at(z +(:DF+]%+ )2’1 e

-z . I
vlbg_@)ﬁv 5 ‘_4V3vv3 », 4\_;"3\9 A% 2_\"7‘5(;(2) (1":4-1%4-]7) 33 \7.8)

Vb_azf Vzéwi vzgv’ + 2 yrﬁ_v%- V3vv3b‘; (1’F+PS+3),2 (7.9)

Vv Vo oo OGN W o Vadr Al A
Va-" Vaz)":’ v )(31 vvbz lw\“ax :(\’ )a +@OF 8.9, (7.10)

3V1V3+V5V2"3-I/fr&/3_/") 2y, V")\éb‘“ ZW;\Q or +(OF 4 B WD), (7.11)
X YOy | e 5
L ‘ I i

where the symbols'stand for:

Df diffusion;

Ps pressure-strain;

D dissipation;

I convection terms arising from term 1 of equation 7.2;
IT production terms arising from term 1 of equation 7.2;

III diffusion (velocity, pressure, viscous), pressure-strain,
and dissipation effects arising from terms 1, 2 and 3 of
equation 7.2.
The fbllowing sections of the text describe the'restrictions
accepted and the assumptions made in order to model the dissipation,
pressure-strain, and diffusion transport processes, and consequently

simplify the stress equations to a practically useful form.

7.3 The Algebraic Stress Ecuations

7.3-1 Dissipation
It is the small scale eddies which are primarily responsible

for the turbulence dissipation. In the regions of the flow where the

local turbulence Reynolds number is high, these eddies are isotropic

even though there may be anisotropy in the larger scales of motion.
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Consequently, the dissipation is expressed as (see Hinze (1959) or

Hanjalic and Launder (1972):

where Sﬂ in the Kronecker delta, and € is the total dissipation rate

of turbulence kinetic energy.

7.3-2 Pressure-strain

The pressure rate-of-strain correlations Fg%j arise from
two physical sources: the mutual interaction of the fluctuating
velocities, and the interaction of the mean rate of stfain with thel
turbulence, Hinze (1959). The effect of the pressure-strain terms is
to transfer energy from the higher-intensity to the lower-intensity
normal stress components.

| Most authors have adopted‘Rotta's (1951) proposal to
‘model-the first-mentioned part of the correlation, and the same
practice is followed here. Rotta has also proposed an approximation
for the second-mentioned part, as have Hanjalic and Launder (1972), and
Naot, Shavit and Wolfshtein (19705. None of these has‘however been
‘much tested, so the formulation of the latter authors is employed here
because of its simplicity. The full form of the pressure-strain model

is therefore:

Ps, — fi:_(vv_—kg-) %(PLJ—%FIZSU) 7 (7.13)

T N—

v

Rotta (1951) Naot (1970)
where Rd represents the production terms of equations 7.6 to 7.11, and

Pk stands for the production of turbulence energy.

' It should be remarked that the main source of doubt in
current turbulence-modelling practice is associlated with lack of
knowledge about adequate, let alone accurate representation of the

pressure—sfrain correlation, especially for the second part, even for

non-swirling flow.
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7.3=-3 Convection and Diffusion
) S
; The differential nature of equations 7.6 to 7.1l can be

very conveniently eliminated by extending the modelling one stage
further through the adoption of a further, and not unreasonable,

suggestion of Rodi (1973) that the local corwection less the diffusion

of a double velocity correlation vivj is proportional to the
convection less the diffusion of turbulence kinetic energy k in the
ratio vivj/k. This approximation permits equations 7.6 to 7.1l to be

represented by:
(Pk_s:)T\g‘ k = (P-*-% -,LD),;,J' , (7.14)

where it has been recognised that the convection minus the diffusion

of k is equal to the production minus the dissipation of k.

7.3-4 The Algebraic Stress Equations

When the modelled expressions 7.12 and 7.13 are inserted
in equation 7.14, there results an algebraic equation for the double

velocity correlations:

et s o] - oo

It is convenient to write this equation in the concise form:
—T/.a — _I_YS' ’Pu' . '
(] Y {z yj + b | 7 (7.16)
) .

the expressions corresponding to }1 and Xé are evident.

The stress production terms Pi 3 are the corresponding
’
ones of equations 7.6 to 7.1l and they are expressed wholly in terms

of the stresses themselves and known mean-flow quantities. Consequently,

closure of the set of stress equations necessitates only the

additional knowledge of the production Pk and the dissipation rate ¢
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of tﬁe turbulence energy. This information is obtained by solving
the transport eqﬁation for k, defined as half the sum of the normal
'stresées,vand the;equation for e. S |

The dissipation ¢ ,,from dimensional arguments, can be
expressed in terms of a length-scale £ which is proportiohal to

the energy containing eddies; namely:
-1

3

e=c k (7.17)
where CD is a furthervconstant to be determined. Now, since an
equation for k is solved, it is clearly not necessary to solve an
equation for ¢ itself; any &ariable of the form kaéb or kaﬁb will be
suitable. Thus, For non—swirlihg boundary layers, Hanjalic and
Launder (1972) chose to solve an equation for € itSélf, while
Rodi and Spalding (1970) and Ng and Spalding (1972) have preferred an
eéuation for the energy—length—séale product kf. The latter approach

is adopted in the present work.

7.3-5 The Turbulence Energy Equation

The transport equation for the kinetic energy of turbulence
has already been employed together with an equation for k£ in
Chapter 5. This equation for k is obtained from the summation of

equation 7.6 to 7.8 for the three normal stresses, and division by

two:
vk, lék=_(mbﬂ+mrﬂsl‘:)>+®Fk F D
PBXI g bxlj 5 X, - BXxJ (7.18)

convection production diffusion dissipation

It should be noted that the troublesome pressure-strain terms vanish
from the equation for the turbulence kinetic energy.

Following the practice suggested by Spalding and his co-

workers (see for example Launder and Spalding (1972)) for non-swirling
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two-dimensional boundary layers, it is presumed that the diffusion of

k obeys a gradient-~type law:
(7.19)

where Ok is a parameter which is close to unity.
The dissipation of k, which 1s half the sum of the
dissipation of the normal stresses, is from equation 7.12 simply

equal to -e¢ . With the diffusion and dissipation terms so modelled,

the final form of the equation for k is:

2
bx 3, ax °T< bx,
‘———~w ~ )
convection production dlffu51on dissipation

v

7.3-6 The Energy-Length-Scale Equation

As mentioned earlier, an equation for the energy-length-
scale product k4 is solved in place of an equation for the dissipatione.
This equation was originally proposed by Rotta (1951) and subsequently
used by Rodi and Spalding (1970) and Ng and Spalding (1972) in
calculating two—dimensionai non-swirling boundary layers. The form

of Rotta's equation in curvilinear orthogonal coordlnates is:

bke &‘_ez_l’:a_x[ kzg bW] CGF{W Wl B(V/‘ﬁ} c|< [){C“S{—’] l(. (7.21)

.‘.
Pax, T tax ¢ X ><2 3%, \ )
convectlon diffusmon production  dissipation wail—damping

Following the practice for the k equation, the diffusion transport

is again represented by a gradient-type law with the exchange coefficient
equal to kgz/o « The wall-damping term was proposed by Ng and

Spalding (l972)‘and found by these authors to result in much improved
predictions for boundary layers close to stationary walls. This term

is, of course, absent for the case of free flows.
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7.3-7 The Empirical Constants
The complete turbulence model comprising the six algebraic
stress relations répresehted by equation 7.15, along with equations

7.20 and 7.21 for k and k4, contains 10 empirical constants:
Cys Cy Cps Cgs Cpy CCay X 5 Gy O y-
The model is used to predict the free swirling jet and rotating cylinder
test flows, and the values assigned to the constants are given in
Table 7.1 below, along with those established by other workers for

non-swirling flows. It is seen that, apart for C_, the present choice

27
of values for the constants has been guided by those values found by
others to give gooé predictions for related, but non-swirling flows.

It should alsovbe noted that some of the constants are common to the
present model and to the energy-length model developed in Chapter 5.
Unfortunately, even without swirl, changes in the constants between

the wall flows and the round-jet flow are required as Table 7.1 reveals.
At best, one might hope that the introduction of swirl would not give
rise to any further lack of universality; whatever the case, the
non-swirling flow constants are the only available indication of the
starting point for swirl—flow computations.

The‘consfant C2, which appears in the model for the second
part of the pressure-strain terms was, on the basis of tentative
evidence, assigned the value 0.8 by the proposers of the model, Naot,
Shavit and Wolfshtein (1970). Because of the uncertaintybof the model,
this parameter is allowed in the present work to assume either of two
'values CZ,n and C2,t’ depending on whether it occurs in an equation
for a normal or a tangential double correlation. Both values have been
determined | | "© . by comparing predictions with

experimental data. They turn out to be rather closer to the value 0.4

which Rodi (1973) has recently found applicable to non-swirling jets,
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than to 0.8. The assigning of two values to C2 is an unappealing
feature of the present turbulence model, but is represents a useful

stop-gap measure in the absence of better knowledge for the simulation

of the pressure-strain terms. - .o
Sl S %S | S| %% % |G|k
Wall flows without swirl®
Ng and Spalding (1972). 1.2 | .055/.10(2. |1.2 |.056]4 |.4
Ng (1972). .98 .0581.09{1. |1. .078{4 }.4
Hanjalic and Launder (1972) 2.8 |
Flow near a rotating cylinder
Present study 2.8].4°,.2%| .98 | .058{.00|1. |1. |.078/2 |.2
Free shear flows without swirl
Rotta (1951) b 2.8
Naot and co-workers (1970) .8
Hanjalic and Launder (1952) 2.8
Round free jet without swirl
Rodi and Spalding (1970) ' .98 |.0397.055 1.10.3
Rodi (1973) 2.51.4 .98 |.03971.055 1. |1«
Free swirling jet |
Lilley (1973) | .98 |.0397].055 1.]1.
Present study © |e.8].4?, 59| .98 |.0397].055 1. [1.

®These studies have all been based on plane geometries; possible radius
effects in the present rotating cylinder study will, however, be negligible
since the boundary layer thickness is much léss than the radius of the

cylinder.

b’CValues of C2, referred to in the text as C and C2 £ applicable to
?

2,n
normal and tangential double correlations respectively.

Table 7.1 Values of turbulence-model constants of present study

compared with those of other workers
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7.3-8 The Near-Wall Region

It has been stated that the algebraic stress model of
turbulence describéd herein is restricted to regions‘whereAthewlocal
turbulence Reynolds number is high. This condition is not satisfied
in the near-wall region. To overcome this restriction the near-wall
values of the two main Reynolds stresses —ﬁVIV; and -pVZV3 are
determined from the modified mixing-length based expressions 6.1 and 6.2

using the constitutive equations 2.39 and 2.40.

7.3-9 Examination of the Viscosity Ratio

The viscosity ratio 02,3, previously defihed by equation
4.5, was shown to be an important parameter in the turbulence models
developed in Chapters 5 and 6; 1t accounted for the anisotropic nature
of the viscosity. This ratio was either assumed to be a constant, or
Qas obtained as an empirical function of the swirl level. It is
therefore interesting to deduce an analytical expre551on for ©, 2 3
from equation 7.15 in te€rms of local time-mean velocltles and stress
components.

Now, from the definitions of the effective viscosities pl,Z

and LYY equations 2.39 and 2.40, the ratio pl,z/p2’3 can be

written as:

Y,

__QV
Mg
0;3 A * (7.22)
BX'L
From equation 7.15 for the double-velocity correlations —ViYs and
-v,v, it follows that:
2°3 6\/1
o B2/ xa
3 b(\//f‘) * . (7.23)
R /r /AR
Bxl
Substituting for the production terms P, 5 and P2 3 from equations
’ ’

7.9 and 7.11 results in:
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——mr g

+ VV

Bx,_

|— 2 V3 r [ v, Bv-

- . v’-W/bx R
.213 l + 2 \/3/'_'

' V“ rB(Va/'r') P .

oXg L

The behaviour of O,

2,3

Vv, or + (V2 V’*)

ar

VX,

1

- (7.24)

for two special cases is worthy of note:

flows for which the mainstream direétion is parallelAto the axis of

symmetry, such as a swirling jet or a rotating cylinder in an axial

stream; and flows for which the mainstream direction is normal to the

axis of symmetry, for example a rotating disc.

For the former, r = X

correlation

layers of the kind considered here, this stress is small.

—pV.V_

13

2

is the shear stress T

1,

3°

Further, the

reasonable to expect that it is also small when such layers are

turbulent, in which case equation 7.24 reduces to:

= (1_ @ ’)21)4

For laminar boundary v

It seems

(7.25)

The parameter B is defined by (V32 /v 2 _ 1), and Ri.is a Richardson .

-
number defined as 2§e/ﬂr§£2§.__

Xy, .
as a relative of the Monin-Oboukhov formula which modifies the

turbulence length-scale when a body force acting normal to the

streamline direction exists ;

Hughes and Horlock (1971),
that, when a body force is due to swirl, the modification is more

properly applled to the viscosity ratio ©

see for example Bradshaw (1969),

2,

and also Section 4.4.

3’

/ ) . Equation 7.25 can be recognised

The equation reveals

For the latter of the above-mentioned cases, x. is the radial

2

1

coordinate r, and 9r/0x,=0. For fully turbulent flow, above a Reynolds

6

number of 107, and

are of the order'O.l and

2 respec-

tively in the outer four~fifths of the boundary layer, see Dorfman (1963).

Generally, the correlations v v2 and Vv,V

S—

less than v2

2

23

are of the same order or

y see for example Erian and Tong (1971); it can

therefore
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be surmised that Oy o is probably near to unity.
: ?

7.4 Comparison of Predictions with Experimental Results

7.4-1 The Free Swirling Jet

Strictly, the algebraic Reynolds-stress model of
turbulence developed in Section 7.3-1 to 7.3-7 is applicable to
“two~-dimensional high;Reynolds—number swirling boundary layers. The
only‘flow which does not violate any of these restrictions is a f;ee?-
fully turbulent,:axisymmetriéal swirling jet for which the degree of
swirl is not sufficient to cauée recirculation; unfortunately here,
as in many other areas of fluid mechanics today, the potential of
computer-based prediction methods has outstripped the supply of
established experimental data. 'Comparisons are made with the
experimental results of Pratte and Keffer (1972) and of Chigier and
Chervinsky (1967). The former authors have measured all six double-
cOrrelations in a swirling jet using hot-wire techniques, a task which
is by no means easy; and these authors have remérked (1972 a) that one
should not attempt to rely on their data for more than trends and
magnitudes.

In Fig. 7.1 the-predicted Reynolds stresses are compared
with those measured by Pratte and Keffer at stations 6 and 12

diameters downstream from injection respectively. Comparisons for the

stress v,vy are not shown because there is now some doubt surrounding
those values measured by Pratte and Keffer (1972 a). With the notable
exception oflthe stress ;;;; at 6 diameters downstream, the agreement
is on the whole quite good, better than might have been expected

considering the uncertainties in the turbulence modelling and the

data.
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(&

x/d predictions data of Pratte and Keffer (1972)
6 —_— 9coo
12 e © 00O

Fig: 7.1 Free swirling jet. Predictions of Reynolds

stresses for a swirl number of 0.3.
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Shown in Fié. 7.2 are the predicted profiles of the
viécoéity ratio 02,3' It is noted that a rather large maximum
value of about 3 occurs at the axis for x/d=6, and that this maximum
falls off rapidly with downstream distance due to the rapid decay of
the swirl component of velocity. The radiallyjaveraged valueé of
02’3 are roughly the same as those found by Lilley (1973) by computer
optimization to give éatisfactory predictions of mean quantities.
It should be remarked that the degree of anisotropy of turbulence
displayed by the predicted normal stresses-is less than that which

the values of the viscosity ratio would suggest. The latter

92,3
quantity appears, therefore, to exaggerate the actual level of
anisotropy, emphasising the fact that the 'effective viscosity' concept

is a rather bad one for turbulent swirling flows.

3._
%23 x/d=6
x/d=12
]__
. ! 1 1 |
0 1 4

.Fig. 7.2 Predicted profiles of the viscosity ratio Ty 4
. bl

for a swirl number of 0.3

In Fig. 7.3 some predictions of mean vélocity distribution
and mean-veloclty decay are compared with the measurements of Pratte and
Keffer, and also with those of Chigler and Chervinsky. Since the Reynolds
stresses are reasonably well predicted, not unexpectédly the predictions
of mean quantities are also quite good. ~The decay of both the axial

and the swirl velocitles are well predicted and this is particularly
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heartening since the less sophisticated effective-viscosity based
turbulence models do not possess this universality, Lilley (1973). The

prediction of the circumferential velocity V. for the Pratte and

3

Keffer experiment stands out as being in poor agreement with the data.

';‘he V3 profile of Chigier and Chervinsky is however well predicted.

S  predictions data
30 ——— — oooo Pratte and Keffer (1972)
Al —— 060 Chigier and Chervinsky (1967)

Fige. 7.3 Free swirling jet. Predictions of velocity profile

and velocity decay for two values of the swirl

- pumber S.
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7.4-2 Swirling Flows Near Walls

- (a) Rotating Disc . Erian and Tong (1971) have measured the mean—

2
and v near a

belocity components and the stresses ViVa s vl2 3

free rotating disc. Using thisidata in the stress relations 7.15 alone,

the remaining stresses: ViV, s VoUg and v,” ‘can be

determined, along with the ratio of (1-C

2

), without

2,t"?

2,n? upon (1-C

the need to specify the value of any of the adjustable constants.

The outcome of this exercise is presented in Fig. 7.4 for a rotational

Reynolds number of 9.93X105. It is seen that (1-C n)/(l—C

2, does

2,t)

depart from the constant value of unity in the outer part of the flow,

but perhaps this departure is not unacceptable. The viscosity ratio

Oy 4 has also been calculated and it is, as expected from the arguments
?

of Section 7.3-9, near unity; but in contrast to the free-jet situation,

the normal stresses now indicate significant anisotropy of turbulence.

321 | - - | -
= o u
—JT 1—C2,n
- Coy
16 - u
®23
0 I 1 I I | 1 | 111
:02 04 2 ‘6 1x1° 0 15 75 15

— — — Experimental measurements of Erian and Tong (1971)

Calculated from equation 7.15.

Fig. 7.4 Calculated results applying algebraic stress

relations for a free rotating disc.
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(b) Rotating Cylinder. Mean flow data for a cylinder rotating in a
co-axial stream have been provided by Parr (1963) and by Furuya and
his co-workers (1966). Predictions of the growths of the axial and
circumferential momentum thicknesées, obtained using the Reynolds-stress
turbulence model matched.near the wall to the relations 6.1 and 6.2 as
explained in Section 7.3-8, are showrn compared with the data in .
Fig. 7.5. The values of the constants of tHe stress model are those
recorded in Table 7.1 for the full range of data. In the near-wall
expressions 6.1 and 6.2 two values of the constant K, 0.43 and 0.48,
were respectively required to prédict the data of Parr and Furuya.

The enchanced universality of the presént turbulence model iéArevealed
by the predictions previously obtained in Section 4.3-3, and reproduced
in Fig. 7.5, with the isotropic viscosity mixing-length model.

Although neither Parr nor Furuya made measurements of any
tﬁrbulence quantities, the prédictions of £hese quantities are
‘nonetheless of interest. Fig. 7.6 shows the predicted profiles for one
of Paff's conditions of the turbulence kinetic energy, length scale,
Reynolds stresses, ratio of dissipation to production of energy, ana
the viscosity ratio. Two aspects of these predictions are worthy of
note. Firstly, the ratio of dissipation to production (e/p)k is
nowhere far from unity, as would be expected for a-near—equilibrium
filow, so that the rather approximate way in which the convection and
diffusion contributions to the stress equations have been modelled should
not. be of greét consequence. Secondly, the streg ratio 02,3 is near
unity where the local Reynolds number of turbulence is high, as
surmized in Section 7.3-9; the considerable departure from unity within
the sublayer was discussed in Section 6.3-1. Since both (e/p)k and
62,3 are close to unity in the ogter part of the boundary layer,

application of the mixing-length formulation in place of the stress

model in this region would not result in a loss of universality; the
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-computations performed in Section .6.3-1 and displayed in Fig. 6.1

substantiate_this.

B 012

01

] 1 1 [ !
4 XR 6 20 X/R 28

I i | l
4L XIR 6 20 xIR 28

predictions obtained with stress

ocoo Experimental data

model and near-wall relations QRN o Vy,oR/V Reference
based on anisotropic mixing-length 1 5 0;6X105 Furuya (1966)
model 2 2 . 1-2X102 "o L
——-—predictions obtained with isotropic 3 3 3.0X105 Parr (1963)
4 4 3.0X10 " "

mixing-length model.

"Fig. 7.5 Predictions of axial and circumferential momentum
thicknesses for a cylinder rotating in an axially-directed

- stream.
*08 — / 004—
i
R -
£
| —=
0 ] | | [ [ L
+002 004 9 M 5 _ 10
%3
Energy and length-scale Reynolds stresses Dissipation 7
Production

Fig. 7.6 Predictions of turbulence guantities for a cylinder

rotating in an axially-directed stream:.ﬂ.R/V,P:4)v,,wR/v:3mo )x[R=2-8 .
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7.5 Summary and Conclusions

1.

ratio ©

An algebfaic Reynolds stress model of turbulence has been
developed which is applicable to swirling boundary 1ayer(f10ws
where the local Reynolds number of turbulence is high. ‘All six
Reynolds stress Componenﬁs were expressed in terms of the time-
average velocity components, the turbulence energy and its rate of

dissipation, and the stresses themselves.

An analytical expression for an important parameter, the viscosity

5 31 has been determined from the equations for the two
, :

main Reynolds shear-stress components —pvl';/2 and —pv2v3 + Examination

of this expression suggested that O is near unity in the fully .

2,3

turbulent outer part of swirling boundary layers near walls.

For wall-flows, the condition of high turbulence Reynolds number is
not satisfied in the near-wall region; for these cases, the stress
model was matched in this region to the modified mixing-length
expressions described in Section 6.2. The model was subsequently

employed to predict both free flows and wall flows.

For the free swirling jet, the predicted Reynolds stresses and
mean-velocity components were in satisfactory agreement with the

data within thg probable accuracy of fhe measurements. The viscosity
ratio was found to depart significantly from unity near the axis

and less than about 10 diameters from injection.

For the case of a cylinder rotating in an axial stream, the complete
velocity distribution was accurately predicted. The viscosity
ratio 02 3 was found to be near unity away from the surface; this

k)

was also the result of calculations for a free rotating disc.



- 117 -

The algebraic stress model derived herein suffers from two
drawbacks. First, the constant C2 is not universal, a feature
which is attgibuted mainly to the inadequacy of the pressure-strain
simulation. Secondly, the model is not applicable to the near-
wall region; it was matched with mixing-length based expressions

in this region.

However, the stress model obviates the need to use the effective
viscosity concept, the Reynq}?s stresses being determined
directly. Furthermore, for cases where experimental data are not
availabie, for example the rotatiﬁg cylinder, the predictioné of
the Reynolds stresses are a useful guidé to further analytical

and experimental investigations.
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CHAPTER 8

HEAT AND MASS TRANSFER

8.1 .Introduction
The preceeding four chapters have been concerned with the
development of models of turbulence, and these were employed to predict
the hydrodynamic behaviour of several cases of swirling boundary layers.
The present chapter deals with the prediction of heat and mass
transfer from discs and cones rotating in unconfined surroundings.
The equations governing the transport of heat and mass are
introduced in Section 8.2, followed in Section 8.3 by the formulae
for the effective exchange coefficients. Predictions of heat and
mass transfer are compared in.Section 8.4 with fhe experimental results
for the following cases?~
1. An isothermal disc rotating in stagnant air.
2. A non-isothermal disc rotating in stagnant air.
3. An isothermal cone rota£ing in stagnant air.
A An isothermal cone rotating in an axially-directed air stream
of uniform velocity.
The comparisons are subsequently summarised and conclusions

drawn in Section 8.5.

8.2 Conservation Equations

The equafions which govern the transport of heat and mass
in laminar swirling boundary layers were introduced in Chapter 2.

They are, in curvilinear orthogonal coordinates:

(‘7\/, %&- + (—’Vb—;:-(- = —#%J}-(Ph-a\—i +\/]{f,)2 +V3Tg,3)] (8.1)
| 2 : 2
I [ 'Bm-]

(»Vl _bx_,d+ Q\/zb%‘é =_%&.1 r(;_b_;i_ (8.2)
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For turbulent flow, in analogy with laminar flow, it is
presumed that the diffusive transport of heat and of mass obey
Fourier's and Fick}s laws, but with the laminar exchange coefficient
replaced by an effective exchange coefficient which is usuélly much

larger than the laminar counterpart.

8.3 Effective Exchange Coefficients

| The avallable experimental data for two-dimensional non-swirling
flows, see for example Kestin and Richardson (1963), and the
analytical work of Patankar and Spalding (1970), suggest that the
effective ekchange coefficient is propoftional to the efféctive viscosity

via the relation:

CFF = /UEFF/OEFF  (8.3)

This variable o© is obviously analogous to the Prandtl or Schmidt

eff " F
number for laminar flow, namely —% = =4 or (39:—4—
¢ P - Se
o . >
for turbulent flow oﬁ,eff and 3,eff are respectively the effective

Prandtl and Schmidt numbers.

. Consequently,

Kestin and Richardson (1963) found that Oh of remains
b

roughly constant at a value of 0.8 across the fully turbulent part of

the flow in pipes. In free turbulent flows the values of Oh’eff and
?
cj off @PPear to be lower; a value around 0.7 has been reported by
H

Forstall and Shapiro (1950) for axisymmetrical jets. Patankar and
Spalding (1970) used a value of 0.9 to predict several wall boundary
layers.

In the region close to a wall, Patankar and Spalding (1970)
have established that the effective exchange coefficient can be

represented as the sum of its laminar and turbulent components:

PFC = F+TE (8.4)

e
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This expression can be written in terms of the laminar and turbulent

viscosity, and laminar Prandtl or Schmidt number as:

l:;Ff-’ = /éFF/OEFF = /’gL/OZ + }'Lf/oz, . - (8.5)

In the fully-turbulent region the yéiue of ct is, of course, the
same as O because y, is much less than pt; In the laminar sublayer,
however, the laminar contribution is prédominant since the turbulent
viscosity tends to zero. N

For swirling boundary layers the calculation of the effective
exchange coefFicient through equation 8.5 presents a special problem
because of the anisotropic nature of the turbulent viscosity. An
alternative formulation which would remove Ehis problem would be to
specify thé turbulent exchange coefficient Ft in terms of the

turbulence energy k and length scale # calculated from the turbulence

model described in Chapter 5. Thus,
7
Cﬂ-’ - }’2 0+ (DL €/OE : " (8.6)

However, in Chapter 5, it was revealed that the behaviour
of k in the near-wall region is not well established even for
non-swirling two-dimensional boundary layers; equation 8.6 is
therefore not useful under present circumstances.

Since the more complex algebraic-stress model of turbulence
of Chapter 7 is at'an early stage of development, and is in its
present form not directly applicable to the low turbulence near-wall
region, itvwas decided to employ theliéotropic mixing-length model of
Chapter 4 to determine the turbulent viscosity. It should be noted
that the hydrodynamic Qredictions obtained there for the disc and

cone flows were in excellent agreement with the experimental data.
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Since the present chaptef is restricted to predictions of heat and
mass transfer féom_discs and cones spinning in free surroundings,
the aséumption of isotropic viscosity,'see also the report of Cooper
(1971), is acceptablé.

The relevant mixing-length based equations for the turbulent
viscosity, equations 4.7, 4.9, 4.10 and 4.12, are repeated here for

convenience:
L
<

He= féic (%)2 +<f3(a——v3xzﬁ)—27 : (8.7)

Zm = Xy IE_eIP (“3@1/261‘27 > FO"‘j\<>‘S/X-7 (8.8)

-

£~ XS fr \§/x <y €9, (8.9)

C{hc;- €m (l—ﬁ96> . - (8.10)

Together with equation 8.5, and equations 2.34 to 2.38 for the transport

of momentum,and heat or mass, they form a closed set containing four

empirical parameters: K, A, B and 0{. Predictions are compared with

the experimental heat and mass transfer data in the following section;
the values of ¥, A, and B found apprépriate for the disc and cone

studies of Chapter. 4 are again used, and the optimum values of Gt

are determined by matching the predictions with the data.

-
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8.4 Comparisons of Predictions with Experimental Data

8.4-1 Isothermal Disc in Stagnant Air

(a) Heat Transfer

Fig. 8.1 (a), (b) and (c) show the predictions of
average Nusselt number for an isothermal disc compared respectively
with the experimental data of Cobb and‘Sagnders (1956), McComas
and Hartnett (1970), and Dennis, ﬁewstead and.Ede (1970). The value
of 0.85 was assigned té the turbulent Prandtl number for each of the
three experiments. Good agreement with the data was obtalned by
adjusting thg value of the transition Reynolds number Retran within
the range Quoted by the authors.

The mosf interesting information is contained in Fig.

8.2; here, the influence of varying Re n for a fixed value of ©

h,t
is exhibited along with the collected experimental data. The predicted

tra

curves converge at large Reynolds numbers to yield a single result
for fully turbulent flow which is not influenced by the transition
assumption. Unfortunately, the data barely extend to the fully
turbulent region and, in cénsequence, the suggested value of Oh’£ of
0.85 must be considered as tentative.

The data over-estimate the confirmed heatitransfer
predictions in the purely laminar-flow region. This is probably due
to heat losses whiéh are lnevitable in heat transfer experiments.
Notwithstan@ing the remarks of the preceeding paragraph, it may be
seen that a slightly higheg‘value of Oh,t than 0.85 is appropriate.

Predictions displaying the influence of the turbulent

Prandtl number O  are compared in Fig. 8.3 with the collected
?
experimental data for a single assumed value of Retran for Oh,t

equal to 0.6, 0.85 and 1.0.
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(a) l.8XlO5 Cobb et al. (1956)
) Nu (b) 2.5X105 McComas et al.(1970)

(c) l.SXlO5 Dennis et al.(1970)
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Fig. 8.1 Average heat transfer from a free rotating disc
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K=.42, A= .085, B=0.0,

O-h, t=.85
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Predictions ogg}Collected
X
Re data; see
- tran Fig. 8.1
1| 1.4x100°
2 | 1.8x10°
3| 2.8x10°
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Fig. 8.2 Average heat transfer from a free rotating disc;

influence of transition Reynolds number.
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Fig. 8.3 Average heat transfer from a free rotating disc;
influence of turbulent Prandtl number,
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(b) Mass Transfer

vPredictions of the average Sherwood number are compared
'with the experimental- mass—traﬁsfer“data of Tien and Campbell (1963,
and Krieth; Taylor and Chohg (1959) in Fig. 8.4 . The optiﬁum
values of X and A, with B=0.0, determined from the hydrodynamic
investigation have agéin been utilised to cbtain the predicted
curves. In Fig. 8.4 (a) predictions are shown for a turbulent Schmidt
number of 0.45 for threé values of the transition Reynolds number:
1.8, 2.3 and 2.8X10°. It is again evident that data at higher

Reynolds number is required if O,
. ?

j,t is to be determined independently

of the transition assumption.

This point is given further illustration in Fig. 8.4 (b).

The same data are again predicted with Gj ¢
?

and with o, ,=0.85 and Re =2.OX105. The agreement for both sets of
- j,t tran

5
=0.35 and Retran=2'6X1o ’

turbulent Schmidt number and transition Reynolds number is asAgood
as that exhibited by the best predictions of Fig. 8.4 (a) obtained for
a cj,t of 0.45 and Retran of 2.3X105. |

In the laminar-flow region, it is of interest to note
that, in contrast to the heat transfer comparisons of Fig. 8.3, the
agreement with.the data is good. Mass transfer experiments conveniently

avoid the errors due to extraneous heat losses which are unavoidable

in heat transfer experiments.
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Fig. 8.4 Average mass transfer from a disc rotating in still air
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8.4-2 Non-isothermal Disﬁ %n Stagnant Air

Part of the exéérimental prégrémme into the research for
turbulent transpof£ properties undertaken in-the present thesis was the -.
investigation ofllocal heat tranéfer rate from a non-isothermal disc
rotating i; free air. The experimental apparatus and procedure are
described in Appendix 7, and the measured and reduced data for four
experimental conditions are recorded there.

Predictions are cohpared with the data in Fig. 8.5 (a) to
(d). The measured temperature of the disc's surface was specified
for r/roé 0.45,7and the measured heat flux for 0.45< r/rO £ 1.0; the
reasons for this choice of boundary conditions are explained in
Appendix . 7. The heat flux distributions, constant for each of five
concentric annular segments of the disc's surface, are also shown in
Fig. 8.5. They demonstrate the wide range of heat flux which can be
achieved by the apparatus.

For all four cases the predictions were started in the
laminar region, and immediate transition was assumed at a Reynolds
number of 2 XiO5;.the value of the turbulent Prandtl number was 0.85.
The Qalues of the mixing—length constants X, X and B were the same
ones used in Section 8.4-1 for the isothermal disc. The influence of
a lower transition Reynolds number, 105, and of a lower turbulent
Prandtl number, 0.6, are illustrated in Fig. 8.5 (b). It is seen that
the influence of the transition Reynolds number disappears after a
Reynolds number of 2.5X105,.whi1e the lower oh,t results in an increase
of about 15% in thé heat transfer predictionsa.

The predictions do not compare verf favourably with the
measured data; the rgther large errors in the experimentai measurements,

discussed in Appendix 7, preclude any meaningful assessment of the

predictions.
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Fig. 8.5 Local Nusselt number for a free rotating disc with

non-uniform surface heat flux.
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Notwithstanding the uncertainty of the data, the predictions
serve to demonstrate the potential and flexibility of the prediction

procedure and turbulent transport hypotheses.

8.4-3 Isothermal Cone in Stagnant Air

(a) Heat Transfer

The pfedicted average Nusselt number forAa 60 degree
vertex angle isothermal cone is compared with the data of Kreith (1966)
in Fig. 8.6 (a) for three values of the.tranéition Reynolds number.
The empirical parameters){, A and B were the same ones used in the
preceediné section in the study of heat transfer from discs. The
agreement between predictions and data is good for Retran=.9X105 up
to the value of 2X105 for the cone Reynolds number, above which the
predictionsAunderestimate the data by about 10%.

Better results are obtained, as Fig; 8.6 (b) reveals,
when the Richardson term correction is introduced with P=5.0. This is
the value found appropriate for the hydrodynamic cone flow study in
Section 4.4-2. The transition Reynolds number was 165.

It should also be noted that the laminar heat transfer

data are again underestimated.
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Fig. 8.6 Average heat transfer from a free rotating cone
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(b) Mass Transfer

Average mass~transfer predictions of Tien and Campbell's
(1963) data for a 60 degree vertex angle cone are displayed in
5

Fig. 8.7 with Retran=l'leo . The data deviate above the calculated

values for Re > 4X105. The relatively different behaviour of the

heat and mass transfer data is probably assoclated with the different
molecular Prandtl/Schmidt numbers for the processes: .72 and 2.4

respectively.

{

K =.42, A =.085,
o, ,=2.4, B=5.0
jed » P ’

: 5
Retran=l°leo

1C§ —— predictions

— ooo Data of Tien and
= Campbell (1963)

2
2x10 —

1 |Ql||l | 1 ! I\I‘l_l
10° Re=pax.g /it 10

Fig. 8.7 Average mass transfer from a 60° free rotating cone
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.~ 8.4-4 Cone in Uniform Axial Stream

Predictgd local Nusselt and.Sherwood numbers for a 30
degree vertex angie isothérmal.cone;spinning in-a uniform-ve’ocity
air stream are compared with thé data of Ruggeri and Lewis (1957), and
of Salzbergand Kezios (1965) in Fig. 8.8 (a) and (b) respectively.

The predictions were, as for all the previous cases, commencéd in
the laminar region and immediate transition to fully turbulent flow
was assumed to occur at a specified Reynolds number. Both the
longitudinal velocity at the edge of the boundary layer and the
transition Reynolds number were deduced from the experimental data.

It is probable that the flow near the cone is akin to
that near a cylinder rotating in an axial stream, and consequently
the effective viscosity is highly non-isotroric. Since no
hydrodynamic data exist for a 30 degree cone spinning in an axially-
directed stream, the simple isotropic viscoslty model was again
employed, and the valuesof ¥, A énd B were rather arbitrarily chosen.
The turbulent Prandtl and Schmidt numbers were 0.2 and 0.6 respectively.

Th; agreement between the predictions and the experimentai
data is good. However, since.the hydrodynamic constant X, X and B
were assigned arbitrary values, they are not physically meaningful;
the primary role of Fig. 8.8 is to provide additional evidence of the

generality of the calculation procedure.
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8.5 Conclusions

1. The values of the turbulence model constants K , A and B, the

values of the turbulent Prandtl and Schmidt numbers,oh £ and
- ) ) ]

oj,t’ and the transition Reynolds numbers féund to give the best
overall agreemenf between predictions and experimental data are

. summarised in Table 8.l. The values for the non-isothermal disc
are not included because of the doﬁbt surrounding the experimental

data.

2. The present enquiry has shown that use of the isotropic viscosity
mixing-length hypothesis leads to generally satisfactory results
provided the mixing length is made a linear function of the

equivalent 'swirling flow' Richardson number.

3. The predictions, over the range of experimental data considered,
were dependent upon the assumed‘value of the transition Reynolds
number as well as the turbulent Praﬁdtl or Schmidt number. However,
'at the rglatively'high Reynolds number outside the data range, the
transition assumption did not influence the predictions. The
turbulent Schmidt number was generally lower than the turbulent

Prandtl number. ' ’ \

4. In order to explain the difference between the turbulent Prandtl
and Schmidt numbers, present experimental data should be extended
to fiuids of larger laminar Prandtl and Schmidt numbers. It would
be valuable ‘to make these measurements at Reynolds numbers large

enough for transition to have very minor influence on the flow.
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K-=.42, )\— 0085 c £— 72, cj,ﬂ/=2.4

Re

h,t st tran
Disc in still air (B=0.0):
Average heat transfer:
Cobb and Saunders (1956) 0.85 | = 1.8X1O5
McComas and Hartnett (1970) 0.85 | -~ | 2.5x10°
Dennis, Newstead and Ede (1970) 0.85 | - 1.5X105
Average mass transfer:
Tien and Campbell (1963) — |o0.45 | 2.3x10°
Kreith, Taylor and Chong (1959) — |o0.85| 2.0x10°
Cone of 60 degreevvertex angle in still air (B=5.0):
Average heat transfer:
Kreith (1966) 0.85 - l.OXlO5
Average mass transfer:
Tien and Campbell (1963) -~ 10.85 l.leO5
Cone of 30 degree vertex angle in ax1a11y—d1rected
air stream (B=0.0):
A
Local heat transfer: 'O'r"/v\ ) K
Ruggeri and Lewis (1957) 0.35 .40 | .085] 0.9 - 8.OX1O4
Local mass transfer:
Salzberg and Kezios (1965)| 2.29 .40 |1 .10 | —— | 0.6 1.OX1O4

Table 8.1 Empirical parameters in the turbulent transport hypothesis'

used for calculating heat and mass transfer from discs and

cones spinning in free surroundings.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

In this final chapter, the principal conclusions are sumnarised,

with emphasis on the generality of application of the different models

of turbulence. Recommendations are then made on the most promising

path for future work.

9.1

(@)
()

(i)

(iii)

Conclusions

The mixing-length model
The first model of turbulence considered was based on the use of

the mixing-length concept, suitably extended to swiriing boundary
layers, to determine an isotropic’effective viscosity. The
average circumferential drag could be well predicted for four
flow configurations: free disc and cone, cylinder.in axial
stream, and closely spaced parallel discs with outfiow. However,
it was found that the magnitude of the empirical constants in the
mixing-length formulation depends on the particular flow

configuration as well as the flow condition.

When the mixing length is augmented to account for the effect of

swirl body-forces by making it a linear function of the swirl

Richardson number, a marked improvement in the universality of the

constants is shown. Reasonably good predictions of the average
circumferential drag were obtained for the cases mentioned above

with a single set of constants.

The.concept of an isotropic effective viscosity is, however, not
generally applicable to swirling boundary layers. If the mixing-
length variation is determined from matching predictions with
experimental data for the circumferential drag, then the

agreement between predictions and data for the longitudinal drag



(b)
(i)

(1)

- 137 -

is poor, and vice versa. An isotropic viscosity model is quite
unable to predict the complete flow field and the model suffers

a serious drawback in this respect.

The energy.length-scale model
The mixing-length concept implies the local structure of the

flow is determined by local conditions alone, and neglects any
upstream influences on the flow. A more realistic model was
developed in which the turbulence features of the flow are
characterised by the kine£ic energy of turbulence and a length
scale, both quantities being determined from differential equations.
A body-force term was introduced iﬁ the length~scale equation to
account for the effects of swirl on the turbulence structure.
Furthermore, the ratio of the effective viscosities in the

mainstream and swirl directions was presumed constant.

Prediction of the entire flow field near a cylinder spinning in

an axial stream were in good agreement with experimental data,

but there;were large variations in the adjustable parameters of the
turbulence model for the two flow cqnditions considered. This

lack of generality reflects the main deficiency of the model;

"namely, that the ratio of effective viscosities is not a constant

across the boundary layer.

The anisotropic mixing-length model

The anisotropic nature of the effective viscosity was considered

more closely, especially in the near-wall regidn, in the third
model of turbulence. The two effective viscosities were
calculated from a mixing-length based formulation, modified by

Van Driest's expressions which were made functions of the local
shear~stress components corresponding to the effective viscosities.

Away from the wall the viscosities were assumed equal. This model
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was based mainly on intuition and trials; but it is justified by
the good agreement between the predictions and the data and by
the fairly satisfactory level of generality of the empirical

parameters.

For all the cases investigated, free disc and cone,and cylinder
in axial stream, the predictions based on this model suggest that
the viscosity ratiovdiffered substantially from unity in the
sublayer. The velocity vector in this region twists relative to
the shear-stress vector; that is they do not act in the same

direction as implied by isotropic viscosity assumptions.

Although the anisotropic mixingélength model lacks a sound physical
basis, it nonetheless shows thét it is the anisotropic nature of
the viscosity in the ngar—wall region which plays an important part
in the development of the whole flow field. The anisotropic

nature of the viscosity also appears to have a larger influence on

" the flow than the effects of swirl body-forces.

The algebraic Reynolds stress model
The fourth, and last, model of turbulence developed provided

algebraic relations for all six Reynolds stress components for
fully turbulent flow. The stresses were expressed in terms of the
time-average velocity components, the dissipation rate of turbulence

energy, and the stresses themselves. They also yield an analytical

.expression for the ratio of the effective viscosities.

The algebraic Reynolds stress model was employed to predict free
swirling jets, and good agreement with the mean-flow data as well
as data for the Reynolds stress components was obtained.v The
calculated variation of the viscosity ratio was in close accord

with the empirical formulae used by other workers.
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(jj) - PFor wall flows, the assumption of high Reynolds number is not
' satisfied in the near-wall region; tﬁe algebraic Reynolds stress
" model was matéhed with.thé anisotropic mixing-length based model
in this regioh. The complete flow field near free spinning discs
and cylinders rotating in axial streams was well predicted. This

is an'encouraging pointer to the generality of this approach.

(e) Heat and mass transfer

—... Finally, the heat and mass transfer from spinning discs and cones

was inveétigated. The effectivé heat and mass exchange-coefficients
were made linear functions of the effective viscosity, the

‘latter being calculated from the iéotrﬁpic mixing-length model.

The agreement between predictions and data was generally satisfactory
over the range of experimental conditions considered. However, for
those cases where the data barely extends into the fully turbulent
region, the predictions were dependent ﬁpon the assumed transition

Reynolds number.

9.2 Recommendations

The simplest model of turbulenée considefed, the isotropic
mixing-length model with the Richardson term addition, is probably
the most useful one under present cirqumstances-to design engineers, when
all that is required is a single overall quantity such as the
circumferential drag or the longitudinal drag, but not both. A judicious
choice of empirical constants will result in good agreement between
predictions and measurements. It is important, howevér, to appreciate
the limits of the model, and to realise that frequent and arbitrary
ad justments of the constants lower its ﬁniversaiity and attract%veness.

As such, it is of limited use when operating conditions are extended

much beyond the range for which it has been developed.
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.The'non—isotropic features of turbulent swirling flows require
.gharacterisation'by many variables. Increased universality can only be
obtained by increasing the number of differential equations employed
in a model of tufbulence,.at the expense of incﬁeased complexity of the
analytical.and computational problems.

. Short of solving the cdmplete Reynolds stress differential
equations, the algebraic Reynolds stress model offers itself as a
practicable and economical intermediate stage; and also provides a
useful degree- of universality. In particular, the extension of the
algebraic stress model to the near-wall region is of special importance
if the goal of reasonably wide application and unified treatment is to
be attaihéd.

For the more practical and realistic problem of thrée—
-dimensional recirculating flow, the effective viscosities corresponding
to the three Reynolds shear-stress components can differ by an order
of magnitude or more. To develop a model of turbulence which possesses
a satisfactory level of universality for this problem will require the
abandonment of the effective viscosity concept. The algebraic Reynolds
stress approach, because of its small demand of computer time compared
to that required for solving the differential equations for the

Reynolds stresses, offers the most promise for future research.
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' NOMENCLATURE

Definitions

acceleration vector.

areae

constants in the energy-length-scale ,

equation.

constants in the algebraic Reynolds

stress model of turbulence.

_811’$mn(jef WV, vlg/,(ff‘ 5,V Jﬂ/ﬂﬂ ipo 5 average drag

coefflﬁlent for free disc and cone, and for

cylinder respectively.

-0 (/1

parallel discse.
§
-wrferidy [t
o {
parallel discs.
orifice diameter.

dissipation.

, pressure coefficient for

, mass flow coefficient for

‘diffusion coefficient in Fick's lawe.

diffusion.

gravitational acceleration.

mass.velocitf vector.

component of Cr.

specific enthalpy.

stagnatlon enthalpye.
dﬂ/j Vj(l Vs)oh

for disc.

.unit vectorf

diffusional flux.

L
2

thermal conductivity.

(VY + V'), turbulence

shape factor

energy.
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L _— : length scale of turbulence; metric length.
'Lm | o mixing-length.

ﬁm c . miging—length modified by Richzrdson

? function.

L _ length of cone measured in the xl—direction.
m : mass flow rate.

mj majs fraction.

Nu : ) _ =7.H;"C %{/SP(TW'L ) "2 s local Nusselt

' nunber .

Nu =[7~j;(:;ileX/(ofJ *Sh,¢ / "—f(T“‘,' T;o))" , average

' Nusselt number.

P pressure.

P ' production.

Pr Prandtl number.

Ps pressure-strain.

g ' heat flux.

Q =-2f£j% Jﬂ/hfi radial volumetric flow

rate for disc.

radiation heat transfer pér unit volume.

rad
r distance from axis of symmetry.
R radius of cylinder.
Rc ‘ : radius of base of cone.
Re =eﬁIX/Wé , Reynolds number for free disc
and cone;
= w‘g/ J; , Reynolds number for cylinder.
2 e
Ri , Richardson number.
Rj rate of generation of chemical species.
0 Q - 2
2
S =5QV'V3Y‘ o[r‘ _;L\fevlrglr , Swirl number
o ()
for free jet.
Sc Schmidt number.
gl
= - .M
ShA =M, X %—,F/}'?(m.bw J,m) , local Sherwood

number.
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Xo

- ]'"-' olx/x

[’lomwf X9 /tl(m“, JF’)’ average
Sherwood number .

température.
shear—st:esé.
fluctuating velocity.
time-average velocity.
instantaneous velocity vector.
average velocity across boundary layer or

slot exit; time-average value of
instantaneous veloeity.

~ coordinate direction;

= X, coordinate measured along the surface.

£ x,, coordinate measured normal to the
surface.

angle made by direction-l with symmetry axis.
parameter in the Monin-Oboukhov formula.
exchange coefficient.

boundary layer thickness where V/Vm=0.01,
or 0.99.

jvv' ([_ )ol:j , axial momentum thickness
for cylinder.

=j\’|\l:> Jj /J’lRVw , circumferential momentum
t;ickness for cylinder.

Kronecker's delta.

dissipation.
dimensionless radial coordinate for free jet.
angle of revolution about symmetry axis.

mixing-length constants.
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1,2,3

6

eff

i,k
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viscosity

w/e

h/R

coordinate in orthogonal systen..
density.

Prandtl number and Schmidt number..

diffusion constants in energy-length
model .

effective viscosity ratio.
shear stresse.

dependent variable.

source term.

stream function.
dimensionless stream function.

rotational speed.

Definitions

coordinate directions in orthogonal system.

where the velocity is 1% or 99% of some
reference valuee.

effective value.

indices relating to the i, j and k directions

" respectively.

inner and outer edges of boundary layer.
enthalpy.

denote the ij plane, the ik plane, etc.
chemical species.

energy of turbulence.

energy-length scale product.

laminar.

maximum value.
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o : , outer or maximum value.

d ) dependent variable.

R . ‘ - resultant value.

s . slot value; surface value.
t turbulent.

w ‘ wall value.

© free stream.

.01, .99, 4,

G-

relate to point where V/Vm is equal to
.01, .99, % and .é. respectively.
- Superscripts Definitions

! fluctuating value.
" per unit area.

- . -time-~-average or space-average value.
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APPENDIX 1

Previous Theoretical Vork

1.1 Introduction
1.2 Laminar Flow

l.2-1 Discs
(a) Hydrodynamics
(b) Heat Transfer

l1.2-2 Cones
1.2-3 Other Geometries
1.3 Turbulent Flow

1.3-1 Hydrodynamics
(a) Discs
(b) Cones
(¢) Cylinders
(d) Nose-body
(e) Free Swirling Jet

1.3-2 Heat Transfer
(a) Discs
(b) Cones

1.1 INTRODUCTION

A comprehensive survey of the various prediction procedures
in existence up to about 1958 has becn provided by Dorfman (1963).
Another extensive review of subsecuent advances in the field has
been made by Kreith (1968); From these two reviews, which appear in
book form, it is evident that the field of rotating flows is extremely
vast, even when only boundary~layer flows are considered. The present
review, therefore, does not cover all the previous work on swirling

boundary-layer flows, but fecuses on the principal theoretical
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approaches for ﬁnshrouded flow situations. However, it édequétely
’ Summafises the,pre§entbstatus of the subject for other geometries
%s well since the theoretical methods developed for shrouded
geometries are mostly extensions of methods which work well for the
unshrouded cases. |

In Section 1.2 the previous theoretical work on laminar
flow hydrodynamics and heat transfer is covered. Consideration of
the laminar flow solutions represents an essenﬁial step in the study
of any class of flows. These solutions serve two main purposes:
firstly, they provide éxact or near exact solutions with which the
accuracy of proposed prediction procedures can be tested; and secondly,
they provide an insight into the physical nature of the flow under
consideration. The flow configurations reviewed are: discs, cones
and axisymmetrical bodies of arbitary geometry rotating in unconfined
surroundings.

The turbulent flow work is surveyed in Section 1.3~1. All
of the early theoretical procedures have been comprehensively
summarised by Dorfman (1963) and Kreith (1968). The present review
extends the coverage to 1972, and shows the gradual shift in prediction
procedures from integral-profile to finite-difference methods. The
turbulence models associated with the latter procedures are described.
The flows covered range from free discs, parallel discs, free cones
and cylinders, to free swirling jets.

Lastly, Section 1.3-2 is concerned with the analytical work
on the heat transfer from discs and cones rotating in stagnant

surroundings.
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1.2 LAMINAR FLOW
1.2-1 Discs ) » .

(a) Hydrodynamics

The first theoretical analysis.of the flow near a
rotating body was performed by von Karman .(1921). He considered the
induced flow near a disc, and showed that the general forms of the
momentum equations reduce to a set of ordinary differential
equations. Using Pohlhausen's integral-profile method von Karman
solved these for the drag on the disc and showed that the boundary
layer was of uniform thickness. Cochran (1934) .obtained very
accurate solutions of the same equations for the velocity field and
the drag by means of a numerical integration procedure. TFor the case
vhere the surrounding fluid moves with uniform speced towards the'disc
parallel to its axis, Schlichting and Truckenbrodt (1952) used an
integral-profile method similar to von Karman's to obtain an
approximate solution for the drag. Hannah (1947) showed that
similarity soiutiOns also exist for this case; she used a numerical
integration method like that of Cochran, and presented exact solutions
for the velocity and pressure distributions, and for the drage.

(b) Heat Transfer

Wagner (1948) and Millsaps and Pohlhausen (1952)
made use of Cochran's (1934) results and solved the energy equation
to determine the heat transfer from an isothermal disc rotating in
stagnant surroundings. This work was extended by Ostrach and-
Thornton (1958) to include the influence of variable fluid properties,
and to fluids of any Prandtl number by Sparrow and Greqg (1959).

Asymptotic solutions for large and small Prandtl nunbers have been
ymr a
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.

obtained by Liu and Stewart (1971).
" The influence of injection or suction, or phase
change at the disc surface;, on the heat transfer and velocity field
have been examined by Sparrow and Gregg (1960). The heat transfer
from a disc with a stepwise discontinuous surface temperature has
been studied by Schnurr (1964); he used Pohlhausen's integral
method to obtain an energy balance in the thermal boundary layer.

For the more general problem of a disc rotating in
@ uniform axial stream, Tien and Tsuji (1964) have extended the
flow analysis of Hannah (1947) to the heat-transfer problem. Their
analysis was based on power-law wall-temperature distribution,‘
with the.isothermal wall boundar& condition as a special case. They
also presented résults for a wide range of Prandtl numbers. Mabuchi

(1967) included viscous dissipation effects in the energy ecuation

and obtained similar results to Tien and Tsuji.

1.2-2 Cones

i (1959) demonstrated that, by appropriate transformations,
the hydrodynamic solution for the flow on a disc rotating in stagnant
surroundings can be used to determine the flow on’a‘rotating cone
(the disc is, of course, a special case: a cone of 180 degree vertex
angle). Tien (1960) subsequently showed that, under boundary-layer
approximations, heat transfer obtained for an isothermal disc, with
viscous dissipation included, can be applied to the rotating cone.
Hartnett and Deland (1961) obtained solutions in this way for the
case of cones having a power-~law variation of surface temperature,
and for fluids of different Prandtl numbcr. Sparrow and Hartnett
(1961) reported solutions for the case of condensation on the surface

of a cone.
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The more general problem of a cone spinning in a uhiform
axial stream is not amenéble fo a similarity type of treatment,
Schlichting (1953, 1968). Tien and Tsuji (1965) obtained asymptotic
solutions of the velocity and temperature distributions for a slow
rotating cone using a perturbation scheme, and for a fast rotatiﬂg
cone by means of a series-expansion procedure. The general problem
was successfully analysed by Koh and Price (1967) by means of a
finite-difference technique. They solved the boundary-layer form
of the momentum and energy equations to determine the flow and heat
transfer on an isotherﬁal cone. They presented results for various

Prandtl numbers, for several ratios of the rotational to free stream

velocity, for a disc and for a cone of 53.5 degree vertex angle.

1.2-3 Other Geometries

Hayday (1965) showed that similarity solutions of the
boundary-layer equations exist for a body of revolution rotating in
quiescent fluid, the radius of which varies according to é povier-law
with respect to distance measured along its surface; when there is
heat transfer,' the surface temperature must also obey a power-lawe.
He further showed that the technicque of superposition can be employed
to extend siﬁilarity solutions for the temperature field to the case
where the surface temperature varies in an arbitrary way.

The work of Dorfman and his coworkers (1965, 1970)
probably represents the ultimate in usefulness of the similarity
approache. They described an approximate procedure in which the
boundary-layer similarity solutions are enployed to obtain solutions
for a rotating body of revolution of arbitrary shape. Tac body 1is
divided into finite segments by planes at right angles to its axis

and the flow over eacn surface element is determined approximately
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by assuming that the similarity solution corresponding to a power-law

variation of radius applies.

1.3 TURBULENT FLOW

1.3-1 Hydrodynamics

(a) Discs

Von Karman (1921) solved the integral forms of the
momentum equations to obtain the frictional resistance and
boundary~layer thickness on a disc rotating in stagnant sﬁrrounaings.
‘He assumea'velocity profiles of the 1/7th power-law form and a wall
shear stress relation from Blasius' friction formula for smooth
pipes. Goldstein (1935) and later Dorfman (1963) obtained the overall
drag on the disc using logarithmic velocity profiles in place of the
1/7th power-law. Of these three, Dorfman's method gives the best
agreement with the experimental data.

Cham and Head (1969) also calculated the velocity
field using an integral-profile method and an auxiliary equation for
entrainment. The circumferential velocity profiles were represented
by a two-parameter family, and the radial profiles by a quadratic
expression. The entrainment was governed by the circumferential
velocity. They obtained excellent agreement with thelr experimental
measurements of entrainment and velocity distributions.

Recently, several workers have made use of finite-
difference procedures to predict swirling flows. Bayley and Owen (1969,
1970) and Owen (1969), in connection with the gas—turbine disc-
cooling problem, have integrated the turbulent boundary-layers which
form on the stator and rotor of a parallel discs system with radial
outflow. Thesé authors used the original finite-difference method

of Patankar and Spalding (1970) for the numerical solution of the
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equations governing their problem. The radial and circumferential
shear stress components in the momentum equations were respectively

expressed as:

= a\/l = vii
TeThaSy 0 BT Hay

The effective viscosities /5'(7_ and /213 were calculated from the
2 7

following extension of Prandtl's (1925) mixing-length hypothesis:
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In the regionsclose to the rotor and stator, the van Driest (1956)

damping function was employed with 2 =0.4:

toop ey - ey |
75—’@(—3@/%/; ) 124 .

“~

ﬁf H
ls ©7% 7
In the region remote from the solid boundaries the mixing-length {zx
was assumed equal to half the spacing between the rotor and the

stator. The authors obtained qualitative agreement of circumferential
drag and radial pressure distributions betwecen their predictions and
their experimental measurements over the whole range of data. However,
quantitative discrepancies of certain flow conditions led Bayley and
Owen to remark that the simple mixing-length hypothesis used in their
analysis is not universally adequate.

Cooper (1971) solved the continuity and momentum
equations for the case of a free rotating disc by a two-dimensional
finite-difference method, modelling the Reynolds stress terms by a
two~layer scalar effective viscosity. In the layer close to the
wall the effective viscosity was computed from the resultant of the

radial and circun&rential velocity gradients, and from Prandtl's
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(1925) mixing-length modified by van Driest's (1956) damping function:

- 2 2 2 2 2] =
tomts g o[- oo )| (B0+(32)) -
vhere X =0.4, and T is the local effective shear stress calculated as
the product of the effective viscosity and the resultant of the
velocity gradients. For the outer part of the layer Cooper assuﬁed
that the viscosity was proportional to the circumferential velocity
di§p1acement thickness and an intermittency factor. He iﬁitiated his
predictions at the centre of the disc and assumed a step transition
from laminar to turbulent flow at a rotational Reynolds number of
3.O4~105. His predictions compared weil with the circunferential
drag and velocity field data.
(b) Cones

The integral profile analysis of von Karman (1921)
for a disc was generalised by Kreith (1966) to calculate the drag
on cones of arbitrary vertex angles. He obtained satisfactory
agreement with his drag measurements for a cone of 60 degree vertex
angle.

(c) Cylinders

For the case of a cylinder in a uniform stream
flowing parallel .to its axis of rotation, Parr (1963) used a
momenturn inteqral approach to predict the axial and circumferential
momentum thicknesses. Cham and Head (1970) extended their method
for the disc flow to the cylinder flow. The velocity préfiles
vere assumed from a two parameter family, and the auxiliary equation
for entrainment was made a function of the velocity defect in the
outer part of the layer and of the ratio of rotational to free stream

velocity. Tney obtained very c¢eood agreement with the drag and
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velocity field measurements of Parr. Furuya, Nakamura and Kawachi
(1966) represented the velocity components by fourth order
polynomials; they achieved fair agreement with their data for the
velocity field.
(d) Nose-Body

Cham and Head (1971) haverrecentlQ applied their
entrainment method (based on the use of momentum integral equations
in the streamwise and cross-stream directions) to the study of the
boﬁndary layer on a nose-body rotating in an axial stream of uniform
velocity. The problem was formulated in orthogonal coordinates which
were then transformed to a system of streamline coordinates appropriate to
their solution procedure. Théy present solutions of the velocity field,
and axial and circumferential drag coefficients, for a single set of
conditions based on the free-stream Reynolds number and a rotational
vélocity parameter. Experimental measurements are not available for
their geometry.

(e) Free Swirling Jet

The most_comprehensive study of axisymmetrical
swirling jets in stagnant surroundings is undoubtedly that of Chigier
and his coworkers. Chigier and Chervinsky (1966, 1967) used an
integral-profile method and assumed that, at some distance from the
jet orifice a fully developed flow field is established in which the
velocity profiles have similar shapes. The axial and swirl components
of velocity were specified as third order polynomials. Their
analysis was extended by Chervinsky and Lorenz (1967) to general
axisymmetrical ffee ;wirling flows: a jet issuing into a stagnant

medium, a jet issuing into a co-axial stream, and a wake behind a

rotating body. The solutions are, again, only valid in the region of
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— the fiow v‘:heré the assuinption of simj_la'rity holds. The predictioﬁs

of axial and swirl velocity decay compared well with the data for

s
3

jets in stagnan't surroundings.

Lilley (1973) adopted a different approach; he
: @éloyed the ‘finite-—difference procedure of Patankar and Spalding
(1970) to solve the equations governing the jet swirling in a
stagnant medium. He assumed that the effective ifiscosities are
related via a viscosity ratio, O, 5 //u. L and evaluated_ /uz
from an extension of Prandtl's m:.x:mg-length hypothesis.

2 e 1Y - (2 1

2’

/m =-08(1'+ 'GS)Qs . )

i
. - 3 .
0;13 =1 + 5§ .
Y is the value of Y where the axial velocity decays to 5% o

oos
its value at the axis. Both the mixing-length {nand the viscosity

ratio (g:swere made functions of the local swirl number 5, a measure
of the axial flux of swirl and axial momenta. Lilley's px;:edictions
of jet growth, entrainment and decay were in gocd agreement with
the data of Chigier and Chervinsky (1965, 1967).

In addition to the mixing-length formulation, Lilley
also employed a different model of turbulence to repeat his predictions.
The effective viscosity /CL was calculated in terms of the kinetic
energy of turbulence ’é and a 1enoth scale / aoarom:*éte to the
energy containing eddles. /)Lz /01( / and /ﬂs /f‘ /0’2 3
where 0;) 3° 7+285 E . The two turbulence guantities % and /
were determined from their own differential ecuations. These
equatioﬁs were developed by Rodi and Spalding (1970) and Ng and

Spalding (1972) for non-swirling boundary layers, and.extended during
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the course of the present research to swirling boundary layers; this
lattér work was reported in an internal report at Imperial College:
Koosinlin and'Lockﬁood (1971). Since these equations are described
in the main text of the present'thesis,vit is sufficient here to note

that Lilley's predictions were in good agreement with the data.

le3-2 Heat Transfer

(a) Discs

Dorfman (1963) presented predictions of the Nusselt
number for a disc rotating in stagnant surroundings aﬁd having an
arbitrary distribution of surface temperature. He employed von
Karman's (1921) results for the frictional drag, assumed a quadratic
variation of surface temperature, and applied Reynolds énalogy. He
then solved the energy equation assuming an one parameter family of
temperature profiles; the constants in this equation were determined
from the Reynolds analogy results. Dorfman found that the Nusselt
number varies with Reynolds number to the 0.8 power, and with Prandtl
number to the 0.6 power.

A procedure for the case of an isothermal disc in
air was proposed by Davies (1959). He assumed 1/7th power velocity
profiles, and solved the integral radial momentum equation alone,
making use of von Karman's results to obtain the radial component
of shear stress. The diffusivity of the radial momentum was then
equated to the diffusivity of heat, ana the temperature equation
solved to determine the heat transfer; the Nusselt number was found
to vary as the Reynolds number to the power 0.8.

Hartnett, Tsai and Jantscher (1965) pointed out that

the analytical procedure of Davies is also applicable when the
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surface temperature of the disc is a power-law function of the
;adius. They extgnded Davies' solution to non-isothermal discs,
but equated the circumferential instead of the radial diffusiQit;
of momentum to the diffusivity of heat. Their own predictions, along
with those of Dorfman and Davies, were compared with the experimental
heat and mass transfer data for isothermal discs rotating in stili
air; the predictions of Dorfman were the most reliable.
(b) Cones

Tien (1965) showed that the analytical heat-transfer
prediction. for nonnisbthermal discs can be applied to obtain solutions
for non-isothermal rotating cones, and also for discs and cones
having a step distribution of surface temperature. Kreith (1966)
determined that the Nusselt number for an isothermal cone varies with
Reynolds number to the 0.8 power, and with Prandtl number to the 0.75
power. This result was derived from the earlier work of Kreith,
Taylor and Chong (1959) who assumed a 'law of the wéll' type profile,

and solved the mass-transfer equation.
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APPENDIX 2

Previous Experimental Vork

2.1 Intrpductioﬂ
2.2 Hydrodynamic Experiments
242-1 Disc
2;2-2 Cones
2+2-3 Cylinders
2.2-4 Free Jets
2.3 - Turbulence Measurements
2+3-1 Discs
" 243-2 Free JE£s
2.4 Heat and Mass Transfer Experiments
2+.4-1 Laminar Flow

2.4-2 Turbulent Flow

2.1 INTRODUCTION

éhe availibility of reliable experimental data is paramount
to the successful development of prediction procedures; in particular,
they are essential to the framing of é proper model'for the turbulence
structuré of the flow under consideration. These data play a major
role in the determination of the constants or functions appearing in
the turbulence models, and in assessing the general validity of.such
models. It is therefore necessary to identify the most reliable
experimental data. However, for many swirling flow configurations the
data are limited or unreliable; but they are none-the~less the only
ones available for comparison with predictions. The following review

therefore covers the most reliable experimental measurements for the
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few cases when several sets of data are available; it also indicates
the limited amount, the unreliability,.and the plain lack of data for
several flow situa£i0ns. -

The experimental measurements of mean flow quantities for
rotating discs, cones and cylinders, and for free swirling jets in
staghant surroundings, under conditions of turbulent flow, are
reviewed in Section 2.2. The laminar flow data have been
comprehensively covered by Dorfman (1963) and Kreith (1968).

Section 2.3 covers the measurements of turbulence quantities
for rotating discs and swirling jets in stagnant surroundings. These
are the only two flows for which turbulence measurgments have been
reported.

Section 2.4 deals with the heat and mass transfer from discs
and cones rotating in stagnant air. Also reviewed are isothermal
discs and cones rotating in co-axial air streams. Both laminar and
turbulgnt flows are considered. |

2.2 HYDRODYNAMIC EXPERIMENTS

2.2-1 Discs

One of the earliest reported experiments is'that of
Theodorsen and Regier (1944) who measured the drag on a disc rotating
in still air. At high Reynolds numbers, when turbulent flow prevailed
over most of the disc surface, their‘results and the more recent drag
measurements of Owen (1969) confirm Dorfman's (1963) turbulent flow
predictions. '

Measurements of the velocity field ﬁear a disc in the
laminar, transitional and turbulent flow regions were made by Gregory,
Stuart and Walker (1955); they found that the transition Reynolds

number lies between 2.7 x 105 and 3 x 105. Their circumferential
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velocity profiles were in good agreement with Cochran's (1934)
predictions for laminar flow, but the égreement for the radial
Velocity profiles_was not good. For turbulent flow, both the 1/7th
power profile assumed by von Kafman (1921) and the logarithmic profile
assumed by Goldstein (1935) represented well the circumferential
velocity measurements. The radial velocity profile was in good
agreement with von Karman's power-law assumption close to the surface,
'but Goldstein's logarithmic profile was superior away from the surface.

Recently, Cham and Head (1969) have reported comprehensive
measurements of the velocity field and entrainment into the boundary
layer on a free rotating disc. These authors obtained excellent
agreement with their calculations using the circumferential and radial
momentum equations with an auxiliary equation for entrainment.
2+2-2 Conmes

Kreith, Ellis and Giesing (1962) investigated the transition
characteristics of cones rotating in a motionless medium, and found
a rapid increase in the transition Reynolds number with increasing
cone vertex anéle. They further measured the velocity field on a
cone of 53.5 degree vertex angle for laminar flow; the results
confirmed their predictions based on boundary-layer theory. Kreith
(1966) has also performed a few measurements of the drag on a 60
degree cone rotating in stagnant air in turbulent flow conditions; the
experimental data substantiate well his theoretical predictions.
2.2-3 Cylinders

Parr (1963), and Furuya, Nakamura and Kawachi (1966) have
measured the velocity distribution on a cylinder having a streamline
fore-portion rotating in an axial air stream of uniform velocity. The

measurements were carried out on the cylindrical part of the body, and
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have been well predicted by Cham and Heads' (1970) integral-profile

method. -

2.2-4 Free Jets

The fifst reliabié experimental velocity measuremenfs of
an axisymmetrical swirling jet were repprted by Rose (1962) for a
wéak degree of swirl relative to the axial velocity; the jet issued
from a rotating pipe. The same technicque was used by Pratte and
Keffer (1972) to generate a jet of moderate swirl. Chigier and Beer
(1964), and Chigier and Chervinsky (1966, 1967) obtained jets for a
wide range of degrees of swirl by injeéting air through tangential
slots intp an axial flow in a pipe. The results of ail these
.experiments showed a rapid decay of the swirl componeﬁt of velocity
to less than 5% of the orifice value at 10 diameters downstream; they
aiso showed that the.mean velocity frofiles and pressure profiles were
effectively similar from an axial-distance of 4 orifice diameters for
low and moderate swirl. Chigier and Chervinsky (1966, 1967) found
good agreemenﬁ between the-experimental mean velocity data and their

predictions based on an integral-profile method.

2.3 TURBULENCE MEASUREMENTS

2.3-1 Discs
The only experimental measurements of turbulence quantities
for the flow over axisymmetrical rotating bodies are those recently

reported by Erian and Tong (1971) for a disc rotating in stagnant air.
Viand v} -

They measured the Reynolds stresseﬁAassociated with the radial and

. ; ; . A
circumferential directions, but not the cross-stream normal stress Y%,

ViVy . . VaVa
nor the radial-normal, and circumferential-normal, shear stresses

because of experimental difficulties. This is rather unfortunate

since these latter three stresses are the most significant ones in the
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boundary layer on the disc.

_ “Erian and Tong's work has however exposed several

experimental problems; fdr examplg, as a result of manufacturing
tolerances,.the‘mévement of the surface in the cross-stream direction
is usually of larger magnitudé than the scale 6f fluctuating motions.
Accurate positioning of the measuring probe from the surface is not
easlly achieved, leading to inaccurate measurements owing to the steep
gradients of flow properties. Direct measurement of thé two significant
shear stresses on a disc would require positioning a hot Qiré in"a

plane normai,to the disc surface, thussensing avérége-values over

most of the boundary-layer thickness, rather than locél values.

2¢3-2 Ffee Jets

The turbulence characteristics of axisymm;trical jefs
swirling in stagnant surroundings have been investigated experiméntally
by Rose (1962), Craya and Darrigol (1967), and Pratte and Keffer (1972).
The measurements of Rose wefe restricted to the turbulence energy for
a jet having a low degree of swirl, whereas the measurements of Craya
and Darrigol covered all three normal stresses as well as two shear
stresses for degrees of swirl varying from weak to very strong. However,
very few of their data have been published.

The onlyvother measurements of all the stress components
have been made by Pratte and Keffer for a jet having a moderate degree
of swirl. They found that the normal turbulence intensities tended
tovards a self-similar state downstream of the orifice, long after
the mean flow had achieved a self-similar state. The data for the
shear stresses however, showed a considerable degfee of scatter and
precluded anything more than a simple order of magnitude estimate.

Pratte and Keffer also reported appreciable experimental difficulties
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in'measuring.the‘Reynolds shear stresses; these measurements involved
* subtraction of hot wire signals, with increasing errors as these

differences became small.

2.4' HEAT AND MASS TRANSFER EXPERIMENTS

2.4~1 Laminar Flow

- Measurements of the avefage heat transfer from an
isothermal disc rotating in still air.under conditions of laminar
flow have been performed by Cobb and Saunders (1956), Richardson
(1958), Lee (1966), McComas and Hartnett (1970), and Dennis,-Newstead
and Ede (1970). All the results show that the averége Musselt number
is proportional to the Reynolds number to the power 0.5, but they
' differ in the proportionality constant. These results are summarised
in Table 2.1 belowrin which the measured values of the constant are
recorded for a fluid of Prandtl number 0.72; the proportionality

constant determined in the various theoretical studies are also given.

Experimental Work Theoretical VYork

Cob and Saunders (1956) | 0.36 Millsaps and Ponlhausen (1952) | 0.35
Richardson (1558) | 0.40 Sparrow and Gregg (1955) | 0.33
Lee ' (1966) | 0.35 Hartnett and Deland (1961) | 0.33
McComas and Dorfman and

Hartnett (1970) | 0.34 Serazetdinov (1965) | 0.33
Dennis, Newstead

and Ede (1970) 0.40

Table 2.1 Proportionality constant determind from’ﬁG/Reo'5
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The éxperimentally measured cénétants aré génerally higher than the
' predicted ones. These discrepancies arise from the inevitable ekréﬁs
.due_to extraneous-heat.losses associated with heat~transfer experiments.

In order to avoid the heat-loss problem, and also the
'gxperimental'difficulty of obtaining an isothermal surface condition,
several workers have preferred to perform mass-transfer experiments.
Most have.studied the mass-tfansfer from naphtalene coated surfaces
for which the Schmidt number is 2.4. The earliest work of this kind
seems to be that of Krieth, Taylor and Chong (1959) vho made
measurements for the mass transfer from a disc rotating in stagnant
aif. Similér experiments were carried out by Tien and Campbell (1963)
for cones with vertex angles ranging from 60 to 180 degrees. The
results of both groups of workers are consistent, and are closély
approximated by the expression Sh=0.625 Reo'5 predicted by Millsaps
and Pohlhausen (1952), Sparrow and Gfegg‘(l959), and others in their
theoretical analyses. The Reynolds number 1is defined as Reﬁxlfzy/b
and the expression for the Sherwood number is valid for discs and
cones; x is the distance measured from the centre or apex élong the
surface. '

Salzberg and Kezios (1965) investigated the mass transfer
from a 30 deéree cone under laminar flow conditions for the case
where the surrounding air flows axially past the cone. Their data
confirmed the predictions of Schlichting (1953). A step-change in
the surface temperature of cones of vertex angles 60 to 180 degrees
was simulated by Tien (1965) by allowing mass transfer to occur from
part of the surface only; the results ére well represented by Tien's

predictions. labuchi, Kotake and Tanaka (1971) measured the local

and the average mass transfer from a disc, with a stepwise discontinuous
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naphtalene covered surface, rotating in an uniform axial laminar air -
'stréam._ The measurements supported their analytical predictions very

well.

2.4-2 Turbulent Flow

The average heat transfer from an isothermal disc rotating
in still air under conditions 6f turbulent flow has been investigated
by Cobb and Saunders~fl956), McComés and Haftnett (1970), and Dennis,
Newstead and Ede (1970); mass—transfer measurements were reported by
Kreith, Taylor and Chong (1959). Similar mass-transfer experiments
have been made by Tien and Campbell (1963) for cones of 66 to 180
degrees vertex angles. '

For an isothermal surface all of the theoretical analyses
reviewed in'Appendix 1, Section 1.3, were based on the assumption
that turbulent flow prevailed over the whole cone or disc surface.
The analyses resulted in an expression for the average Nusselt (or
Sherwood) number of the form Nu = COAReO’s; C and A are constants and
0 is the Prandtl (or Schmidt) number. The Reynolds number is, as in
the laminar.flqw case, defined as Re = X /v, The theoretical

results together with the experimental ones are summarised in Table

2.2 below.
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Theory“' Constant 10 = .72|0= 2.4
i ' c A co® | gt
Davies (19591 .0166 | 1.0 | .012 .040
Dorfman (1965)} .0184 <6 | 015 /.031
Hartnett, Tsai and Jantscher (1965) .025 1.0 | .018 .060
Dorfman, modified by Hartnett et al(1965) .0198 | 1.0 | .0l4 .047
Kreith | (1968) .020 5| .01 .038
McComas and Hartnett (1970)[ .0154 | .33| .014 .021
Experiment

Cobb and Saunders (1956) Heat transfer .015

Kreith, Taylor and Chong (1959) Mass transfer .040
Tien and Campbell "(1963) Mass transfer .042
McComas and Hartnett (1970) Heat . transfer .014

Dennis, Newstead and Ede (1970) Heat transfer .015

Table 2.2 Constants in the average Nusselt number expression for

jisothermal discs and cones in turbulent flow: Nu = CG'ARQ

0.8

The predictions of Dorfman, Kreilth, and Hartnett and his

co-workers, display good agreement with the three sets of heat~transfer

data; and those of Davies, and Kreith,are well supported by the mass—

transfer data. It should however be remarked that none of these

experiments reached a sufficilently high Reynolds number for fully

turbulent flow. Consequently, the extrapolation of the data to the
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limiting condition of turbulent-fiow over-the whole surface is

' éubjéct to some uncertainty.

. The cése of uniform surface heat flux for a disc rotéting
in air has been studied by Subﬁa Rao (1967) who measured thé average
heat transfer. From his measurements of heat flux and surface
temperaturé diéfribution, Subba Rao deduced the local heat transfer
rate by applying a local heat balance over annular segments, forr

~several radii. The results are closely represented by the following
empirical formulae: |

Nu = .0416Re?"8 and Mo = .0148re?°8 .
r r R

The subscripts r and R refer to the local and maximum radii respectively;
Nur andlﬁa are the local and averaée Nusselt numbers. Sincg the
average Nusselt number is in ciose agreement with that for isothermal
discs, Subba Rao concluded that the difference between the two
boundary conditions does not influence the average heat transfer. A
similar result can be inferred from the work of Lewis and Ruggeri (1956,
1957); they investigated the heat transfer for these two boundafy
conditions for an ellipsoidal-nose body and a conical-nose body which
were rotated in a co-axial air stream'of uniform velocity.

In order to simulate a step-change in the surface temperature
of cones, Tien (1965) allowed mass-transfer to take place from only
part of the surface. His measurements are well represented by his
own predictions. The experimental investigation of Salzberg and
Kezios (1965) of the mass transfer on a: 30 degree cone rotating in a
‘co-axial air stream confirms the analytical predictions of Truckenbrodt’

(1952).

Recirculating Flow

Owen and his co-workers (1972) have recently reported measurements
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of average heat transfer for a ;hrouded pérallél discs system with a
’ fadial outflow of‘coblant. Their data cover a wide range of
‘rotational Reynolés number, cdolant flow rate, discs spacing, and
shroud-disc épaciné. Yu and his co—workeré (1972) measured the local
as well as the average heat transfer for a different shrouded‘parallel

discs system, see Fige. 2.1. They investigated much 1arger inter-disc

spacing to radius ratio than Owen.

shroud ' . shroud

INIIIIT)| ' yI7II IV

y —_—

y

#

/]

/]

/]

/

Y,

/]

' .
/]

stator y rotor rotor stator

y

Y,

/]

y

Coolant _ Cooclant

Owen's system Yu's system

Fige 2.1 Shrouded parallel discs systems

Although they do not fall into the present class of swirling
boundary-layer flows, since they are of the recirculating flow class,
these two experimental investigations are briefly reviewed because they
are comprehensive and have been accurately performed. They will play
an important part in the‘extension of turbulent transport hypothesis

from boundary-layer to recirculating flowse.
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APPENDIX 3

' ﬁall—Functions
3.1 Introduction
3.2 Laminar Flow
3.3 Turbulegt Flowv
3.3—1'Mixing—Leng£h Based Models
3.3-2 Energy-Length-Scale Model
(a) Velocity . .
(b) Turbulence Energy and ﬁengﬁh Scale

3.3-3 Algebraic Stress Model

3.1 INTRODUCTION

Close to a wali, therflukes of mass, momentum and energy
are only significant in the direction normal to the wall. The
transport of these éuantities by convection is negligible since the
streamwise and cross-stream velocities~close to the wall are small.
Consequently, this is a region of onefdimgnsional or Couette flow.
A finite—difference grid covering this region has to be closely spaced,
on account of the steep gradients of the dependent variables, and is
therefore uneconomical in terms of computer time.

Howe;er, Patankar and Spalding (1970) showed that, since-
the partial differential equations reduce to ordinary equations in the
Couette region, they could be solved with appropriate assumptions for the
exchange coefficients to yield algebraic formulae which relate the
values or fluxes of the variables at the wall to conditions at the

grid node adjacent to the wall. These algebraic relations are known

as 'wall-functions'.
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3.2 LAMINAR FLOW

r

~ When the convection terms in the momentum, heat and mass
transfer equations (Chapter 2, equations 2.34, 2.36, 2.37 and 2.38)

are neglected, the equations reduce to:

P, R/ - EB_ \_I;_. u‘noc.] . |
-3’—5-Er 65] _T[bx p-ds | y | (3.1)
d33Y W\ o, - .
35_}2.1‘33_(?>] _o,» | | o (3 2)
l’_ﬁ_fﬂ‘] = _b_.'l:TV’L’,_ Vit ] (3. )'
Yyl Yy 1
l-ﬁrﬁ] -0 . - G
YLGe o | -

The symbol y represents the cross-stream x2-coordinate, and
X is the streamwise xl-coordinate. In the thin Couette-flow region,
the terms on the right hand side of the agove equations, and also the
. distance r from the axis of symmetry, are assumed constant between the
wall and the grid-node adjacent to the wall atrthe average of their
values at the wall and at the near-wall node. With these assumptions,
the solutions to equations 3.1 to 3.4 are:

Tw Yo _ 32<‘b_‘; - Eslnd), (3.5)
eVt QWY 2pV v

T3 _ Y | (3.6)
€V|O@~\qu) (Aﬂﬂ

“{

) " ae e F(Can

2 24V, w Y osa (V, V2 ] 3.7
— Vi T) el (3 3“") /(3:7)

(3-8)
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. The subscript w refers to wall values,. the overscore to the
" average of the wall and near-wall node values, while all the remaining
variables are evaluated at the near—wall grid-node. Equatiors 3.5 to

3.8 are the 1aminér flow wall-functions for the two momentum, the

stagnation enthalpy and the mass-transport equations.

" 3.3 TURBULENT FLOW

For turbulent flow the grid—néde adjacent to the wall can,
wi£hout significant loss of accuracy, be located beyond the eage of
the laminar sublayef5 provided inform%tion about tﬁe effective exchange
coefficients F¢,eff is availablé. For-many nonrswirling.two—dimensional
wall flows, these coefficients are established to high degrees of’
‘accuracy; see for example Patankar and Spalding (1970), and Ng and
Spalding (1972). Unfortunately, this is not the case for turbulent
s&irling boundary 1a¥grs; The éfesent thesis deals with four proposals
to model turbulent swirling flows, and hence to determine the exchange

coefficients. The near-wall procedures adopted for the different models

are explained in the following subsections.

3.3-1 Mixing-Length Based Models

For the Prandtl mixing;leﬁgth based medels developed in
Chapters 4 and 6, turbulent wall-functions are not employed simply
‘because these models are applicable to fully turbulent flow, as well
as the near-wall region and the laminér sublayer. Instead, the finite-
difference grid is extended right into the laminar sublayef and
consequently, the laminar wall-functions are used to determine the
shear stresses, and when there is heat or mass £ransfert the heat or

mass fluxes at the wall.
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3.3~2 Energy-Length-Scale Model |
(a) Velocity o
Thé th—eéuatidn energy-length-scale model under
consideration in Ch;pter 5 is only applicable tovfﬁllyrturbulent flow.
For this case, the resultant velocity VR relative to the wall is
presumed to obey the conventional‘log—law} see for example Backshali

and Landis (1969), and also p- 76

\/R/<’tn,'w/€>—%: ;‘.4_ ln[s_?‘{— <ﬁﬁéﬂi)—‘i:| | (3.9)

The akial and circumferential shear-stgess components are then obtained
by straightforward resolution, assuming that the resultant shear-stress
at the‘wall,f}%w, acts in the same direction as the resultant velocity
evaluated at the near-wall node. It should be noted that this
‘aééumption 1s only made for the Couette region, and not.for the
remainder of the flow, in order to determine the components of the

shear~stress at the wall; namely,

(RY,

v = TR’W \/'/VR ) : (3.10)

Ta,w = Tﬂ,w <V3_\/3,W)/V ' (3.11)

The assumption implies that the effective viscosity is isotropiec in

the region between the wall and the near~wall grid node.

(b) Turbulence Enerqgy and Length Scale

Very little is known of the behaviour of the energy of
turbulence, k, in the near-wall region of swirling wall flows. However,
the information available for non-swirling wall flows, see‘Hinze (1959),
indicates that the diffusion as well as the convection of k are

negligible in that region. It 1s assumed that the same situation

applies for swirling boundary layers. Consequently, when
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the convection and diffusion terms are removed from the transport
. equation for k, equationA7.20 of Chapter 7, and the dissipation is
expressed in terms of k and the length scale through equation 7.17,

there results:

| L |
My a0a) _ c Kt . (3.12)
0%z X,

The turbulent viscosity, assumed in the proceeding
subsection to be isotropic in the region between the wall and the

first near-wall node, is given in Chapter 5 as:

}LL. = e):vf ] j | (3.13)

Furthérmore, equation 3.12 implies that the production and dissipation
of k are in balance, and leads, see Chapter 4, to the following

expression:
iR

2 z
é,c - GF'" [ 3\/‘> ¢ \é;/r )] ’ (3.14)
2 i
where 1m is the mixing length.

Algebraic solution of equations 3.12 to 3.14, with

—
e
t Oy

relations for k and £:
X L
: 2 2 \Z 2
k. (ﬁ,w + "‘a,w) /Qcm C (3.15)

and {=ci? : (3.16)

A ,
and - fVV fé‘rM , results in the following explicit

rPpm

T w and T3, w correspond to the values of -PVV, and -gvpl3 at the wall,

and are the components of the resultant wall shear-stress TR w
H
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Also, in the turbulent'region outside the sublayer, the mixing-length
zm is simply proportional to the distance_from the wall (see Schlichting

(1968)). Hence, equations 3.15 and 3.16 can be rewritten as:
| ok
f k- ’CR,W/QC.D > (3.17)
- xchy ‘
= KC.D 5 . ' (3.18)

These expressions for k and 4 are evaluated for tﬁe

" near-wall néﬁe, and serve as the inner boundary conditions to the
solution of the differential equations.for k and the combined

variable kl.‘ Consequently, the grid node adjécent to the wall must
always be located outsidé the sublayer in the turbulent part of the
f}ow for the above analysis té remain valid. This treatment was
employed by Ng and Spalding (1972) for predicting several non-swirling

wall boundary layers, and is also adopted in the present worke.

-3.3-3 Algebraic Stress Model

The algebraic stress model presented in.Chapter 7 is
applicable to fully turbulent flow, but is matched near the wall to
the anisotropic mixing-length model developed in Chapter 6. This
procedure allows the use of the laminar wall-functions to obtain the
wall shear stress components.Tl,M/and T3,yf and furthermore, it does
not necessitate any assumption aBouf the behaviour of the shear
stress and velocity vectors in the near-wall region.

An analysis similar to that in Section 3.3-2 (b) above
now shows that the near-wall value of k, to be used as the inner
boundary condifion to the solution of its transport equation, is

given by:
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) ‘ - : ' . -
. 2 2 \Z L '
. k = (1’" W + 6;)3 ’ra,w)/ e C::' . (3.19)

The parameter cé is the effective viscosity ratio obtained from

3
X ?
the anisotropic mixing-length model for the near-wall region. For the

length scale,equation 3.18 remains valid.
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APPENDIX 4

" STREAM~WISE PRESSURE GRADIENT FOR SHROUDED FLOWS

. The pressure gradient is
estimated from a'one—dimensiohal
-analysis ofbthe flow. ?he mass
flow rate, Qith the density and

velocity averaged across the

vsheuuisghmﬂby:
ms= §V1A (4.1)
That is, dM = éV‘dA + QAJVI + V;Adq ) (4.2)

where the symbol A represents the calculated area of the flow.

A force balance in the stream-wise direction yields:

yx —
9p A & +(r}’l’1+r51;)8x —Q\_/lsinocA&—-d-(ﬁﬁV,)cshO‘ (4.3)
dx r dx

For a steady flow of constant density, dm and dp are zero; hence,
equations 4.2 and 4.3 result in the following final form of the

pressure gradient equation:

7 Y
dp_ (8T%ei%) | oMo oy , My OA (4.4)
dx A r AL Ex

The term 8A is a measure of the difference between the calculated area
of the flow and the geometrical area between the shroud and the

rotating body, and is calculated from:

= (Ageometrical,D - Au)fi (4.5)

68X is simply equal toX.-X . The subscripts U and D symbolise the

upstream and downstream stations. This formulation always causes the
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pfessure éradient to -alter such that the disc¢repancy between the
Falculated flow area and the geometrical area is reduced. The need
to iterate in order to obtain exact agreement between the two aréas
is eliminated. The fraction f controls the magnitude of the area
correcﬁion; (a value éf 0.05 was used for thé shroﬁaed‘disc geometry

described in Section 4.3-4 of Chapter 4).
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APPENDIX 5

, Turbulent Mean Velocity Measurements on a Rotating Cone

5.1 Introduction

5.2 Apparatus
5.2-1 Air Supply and Cone
5.2-2 Instrumentation

5¢3 Results

5.4 Ngmenclature

5.5 Reduced Numerical Data

5.1 TINTRODUCTTION

Measurements of the mean velocity within the boundary layer
on a rotating cone, of half angle 40 degrees; are.reported. The
measurements are intended to augment the rather limited available data,
as revealed in Appendix 2, for boundary layers near axisymmetric
rotating bodies. The experiment was designed to ensure the provision of
a significant number of data for fully turbulent Reynolds number since
these are particularly scarce.

The chosen geometry was that of a rotating cone with provision
for a wall jet issuing from a concentric annular slot near the apex.
A wide rangerf conditions were obtained by varying the rotational
speed, and the slot height and slot Reynolds number. The dimensions
and speed of the cone were large enough to ensure a substantial length

of fully turbulent flow.

5.2 APPARATUS

5.2-1 Air Supply and Cone

The overall arrangement of the apparatus is shown in

Fige. 5.1. Air from a radial fan passes into a large settling chamber,
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" containing two wire-mesh filters. The air leaﬁes the chamber to flow
through a length of pipe whiqh terminates in a circular diffuser
placed concentricaily over the cone apex. At the diffuser exit,
velocity fluctuations were less than 5% for velocities lower than

3 m/s, decreasing to less than 1% for velocities greater than 10 m/s.

The 1lip of the diffuser was machined to a thickness of
0.1 mm to minimisé its downstream influence. The axial position of the
diffuser was adjustable allowing the slot height, between the
diffuser lip and the cone surface, to be varied. The alignment of
the diffuser was such that the maximum circumferential variation in
slot velocity was 3% at the maximum exﬁerimentél vélocity of 20 m/s
decreasing to less than 1% for velocities of less than 3 m/s.

The cone was machined from 4 layers of 76 mm aluminium
plates, secured together by iqternal screws. The maximum variation
récorded when the cone was slowly rotated and its surface ‘'clocked'’
was i_.02$ mm. The cone was driven by a synchronous motor through
a timing belt and pulley arrangement offering a wide selecfion of
precise rotational speeds.

The cone half-angle of 40° was sufficiently large to
ensure the development of a boundary-layer on its surface when
fotating in stagnant surroundings. The substantial length of its
conical surface of 0.356 m permitted a significant range of fully
»tufbulent Reynolds numbers to be attained. Fig. 5.2 shows the
Reynolds numbefs provided by the apparatus as a function of surface
position and rotational speeds up to the maximum safe speed for the
cone of 1500 rpm. The extent of the laminar,transitional and
turbulent regimes as established by Kreith and his co-workers (1962)

are indicated on the figure.
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Fig. 5.2 Flow regimes and Reynolds numbers attainable
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5.2;2 Instrumentation

The magnitude and direction of the resultant velocity
;e:e measured usiﬂg the three—hoie Pitot probe shown in Fig. 5.3.
The design and construction of the probe were based on the
recommendations of Bryer and Pankhurst (1971). A traversing
mechanism aliowed the probe to be moved parallel to the conical
surface, normal to the cone surface in steps of 0.02 mm, and to be
rotated about an axis normal to the cone surface.

The three préssures sensed by the pfobe were measured
using an electroﬁic micromanometer to an accuracy of «.5%. The
response of the probe to misalignment with the resultant velocity was
determined by a wind-tunnel calibration. The direction of the
resultant velocity could be measured to an accuracy of i_O.Zo for
velocities larger than 5 m/s, decreasing to_I_O.So for velocities

lower than 2 m/s.

5.3 RESULTS
Measurements were made for the eight sets of condition given

in Table 5.1 below. The full reduced numerical data are presented in

Section 5.5.

—_— -1 3 5
0~ |Re. X10
Run Q (rpm) Yslot(mm) gslot(mm) W ,slot(ms ) ReslotXl e
1 892.9 ) 5.00
slot absent (i.e. free rotating
. 6.22
2 11ll.l cone in stagnant surroundings)
3 1428.6 ' 8.00
4 0 2.59 95.5 17.1 2.93
5 1111.1 2.59 95.5 17.0 2.90 6.22
6 0 3.81 94.0 13.5 3.38
7 562.5 3.81 94.0 13.4 3.36 3.15
8 111l.1 3.81 94.0 13.6 3.42 6.22

Table 5.1 Experimental conditions
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Fig. 5.3 Dimensions (mm) of 3-hole Pitot probe
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Aﬁselection 6f these results is presented in gréphical-
;form in Fig; 5.4 to 5.6. Péngls (a) and (b) of Fig. 5.4 show the
longi£ﬁdinal and circumferential velocity profiles for an 2 in
. thch the cone was rotating in stagnant air at 1111 rpm, while panel
(c) displays- the variation of the angle between the resultant Qelocity
and a=plané throﬁgh the axis. Fig. 5.5 shows plots of similar
information for Run 5 where the cone was rotéting in the presence of
a finite slot flow. Fig. 5.6 displays some featufes of the
developing boundary layer: the growth of long;;udinal'(directiond— 1).

and circumferential (direction - 3) profiles for Runs 6, 7 and 8.

5.4 NOMENCLATURE

L length of cone surface = 0.356 m
r radius; r =x sin 4o
' — 2 .. ,9
: Y
Reslot’ ReL . Reynqlds numbers Vl,slotyslopﬁ’and Q2 L™ sindo/
Vl, Vl,slot longitudinal velocity, average slot value;
Vl = Vp cos?
V3, VB,S circumferential velocity, value at surface;
V3 = VR Sln'%
VR resultant velocity
Xy X0t distance from apex along cone surface, value at
diffuser exit
Ys yslot normal distance from cone surface, slot height
Y1 ¥y s ' values of y at which velocity has fallen to % and
2
1/5 of its maximum value
B : angle between resultant velocity and an axial

plane'

Q rotational speed in rpm
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Fig. 5.4 Cone

rotating in stagnant air: Run 2, x/L = .857
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angle between resultant velocity and an
axial plane
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Fig. 5.5 Distributions of Vl, V3, and B for Run 5
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Fig. 5.6 Boundary layer development for Runs 6, 7, 8

(a) Growth of longitudinal boundary layer
(b) Growth of circumferential boundary layer

(c) Decay of longitudinal maximum velocity
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5.5 REDUCED NUMERICAL DATA
. ~ Distances are measured in 10-3 metres (millimetres),

velocities in metres per second.

10.82}83.0].34311.04 |83.2}.317]11.92 | 84.3} .432}10.13] 83.4
10.17|82.0|.394110.18 [81.8].356(10.98 | 83.6| .457] 9.76| 82.5| .368|12.28] 82.8
9.59|81.0|.444] 9.42 |80.8|.406| 9.93 | 82.3|.483} 9.36] 81.7| .394|11.78| 82.6
8.5879.0|.57L| 7.34 | 78.6|.457} 9.07 | 81.1|.508| 9.04} 81.0| .419|11.05| 81.6
7.19|76.0|.698 | 6.69 |76.1|.508| 8.39 | 80.1|.559} 8.54| 80.1| .444}10,71| 81.2
6.07|74.0].825| 5.97 }75.1|.635]| 7.24 | 78.5|.686] 7.43| 78.0( .495| 9.82|80.2
4,54|72.5|1.08 | 4.96 |72.4|.762| 6.41 | 77.1|.813} 6.92| 76.5].521] 9.50| 79.7
3e95([69.3[1e33 ] 4.35 [72.3].889( 6.04 | 76.4|.940| 6.49] 75.7| «546] 9.16] 79.3
2485170.911.59 | 3.93 |72.5{1.02| 5.63 | 75.7|1.07| 6.12 75.0| .673] 8.13] 77.6
2.00{72.212.22 | 2.91 [75.5[1e27] 5.12 | 7349[{1.32| 5.85| 73.5[.927] 6.98|75.7
0.58]75.5{2.86| 2.54 |76.9]1.65| 4.57 | 73.2(1.57| 5.18| 72.5(1.18| 6.41| 74.3
0.57{65.03.49 | 2.08 |77.5{2.29| 3.89 { 71.9|1.83] 4.84| 71.9)1.44| 5.90}72.8
4,13 1.73 |77.5{2.92] 3.31 | 71.4]2.21| 4.42| 70.0{1.69| 5.48]72.1
5.40 | 1.41 }|72.0(3.56| 2.96 | 71.5{2.59] 4.05| 69.2]1.94 5.15|71.6
6.67 | 1.00 |70.0|4.19} 2.64 | 71.0[3.10| 3.73| 68.5{2.20| 4.82|71.2
7.94 | 0.82 |66.5]4.83| 2.30 | 70.6}3.73| 3.36| 67.0(2.45] 4.71]|70.2
9.21 | 0.41 |64.015.46| 2.04 | 70.6|4.37| 2.96| 66.5|3.09| 4.09(68.9
6.10{ 1.82 | 70.3|5.00| 2.70| 66.0|3.73| 3.64{67.3
6.73| 1.63 | 70.0([5.64| 2.37| 65.7}4.36| 3.38(66.7
7.37| 1.35 | 69.0|6.27] 2.19} 65.514.99| 3.10{66.0
8.641 0,91 | 67.0{6.91{ 1.95{ 65.0{5.63 2.88|66.0

9.91| 0.71 | 65.0{7.54| 1.73| 64.1|6.26| 2.54|65.3
11.2} 0.58 | 63.0/8.18| 1.58 ] 63.9|6.90} 2.41}65.0
12.4] 0.41 | 61.0{8.81| 1.41 | 63.5|7.53| 2.19|64.0
9.45} 1.15] 62.5]8.80{ 1.82]63.5
10.7) 1.00| 61.5{10.1} 1.52|62.0
12.0} 0.81 | 60.5{11.3| 1.22|62.0
13.3| 0.41§ 59.5|12.6| 1.00}61.0

13.91 0.91|60.0
15.2 | 0.71]157.0

RUN 1: = 892.9 rpm., Re; = 5.0‘105
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X/L = .57  x/L = 715 x/L = .785 x/L = .855 x/L = .93
ly Vp B Y Ve B y |%q B y |Vq B Yy Vg B
«317 | 10.72(86.8}.317 | 14.05|86.5|.343]| 13.73| 84.5| .317{15.64| 86.0| .394]14.42}85.5
.343 | 10.14(85.7|.368 | 11.95/84.0|.394| 11.97| 82.1}| .368]13.63| 83.5|.444(12.48|80.5
«394 | 9.24|83.7{.495 | 9,24/ 79.0{.521] 9.67| 78.1] .495[10.96| 79.5( .57L{10.69|77.5
<470 | 7.74182.5].662 | 7,93} 76.0{.648| 8.57| 75.5( .622| 9.47| 76.5| .698| 9.67{75.5
.597 | 6.59/77.0|.876 | 6.66|73.0/.902| 7.29| 73.0{ .749} 8.69| 74.7| .825| 9.03|74.2
«851 | 5.57|73.0|1.13 | 5.89|71.0|1.16| 6.57| 71.0{1.00{ 7.67| 72.5(.952| 8.53|{73.5
1.10 [ 4.61|71.5{1.77 | 4.84|68.0{1.41| 6.0l 70.0[1.26{ 7.00{ 70.7{1.08| 8.11|72.5
1.61 | 3.80|69.0[(2.40 | 4.15|66.0[1.92| .5.29| 67.2| 1.51| 6.54| 70.0|1.33} 7.58|70.6
2.12 | 3.18[67.3|3.67 | 3.18]62.5[2.55| 4.61| 65.0{1.77| 6.11| 68.5(1.59( 7.03|70.0
3.39 | 2.51163.5|4.94 | 2.61160.5(3.19| 4.07 63.0/2.02] 5.76| 67.5|1.84| 6.62|68.5
4.66 | 1.68|59.5(6.21 { 1.95[/58.5|4.46| 3.21} 61.5/2.27| 5.45| 66.5|2.10| 6.16[68.0

5.93 | 1.15[/57.5(|7.48 | 1,58|565|5.73 | 2.58] 59.5|2.78| 4.87| 65.0/2.35| 5.96[67.0
7.20 [ 0.81}49.0(8.75 | 1,29|54.5]7.00} 2.15 58.0}4.05| 3.93| 62.9}2.98| 5.31|65.0
8.47 ! _0.58144.5110.0 | 3,00/50.5(8.27| 1.82 57.0[5.32| 3.28| 61.0[3.62| 4.80|63.6

X/L = 64 111.3 | o.58/49.5/9.54| 1.41 55.3|6.59| 2.76| 60.0]4.25] 4.35]|62.5
330 | 11.94|85.5 10.8| 1.15| 54.5|7.86| 2.41| 59.5|4.80| 4.05|61.5
.457 | 9.08|80.5 12.1| 0.81} 50.8/9.13| 2.00{ 58.5|5.52| 3.73|61.0
.584 | 7.51|77.0 13.3| 0.41 49.5/10.4 1.73| 57.5/6.16{ 3.41}61.0
.711 | 6.63|74.5 11.7| 1.41{ 57.0/6.79| 3.15{60.8
.838 | 6.10{73.5 | 12.9} 1.22}| 56.5|7.43| 3.02|60.1
1.09 [ 5.39(71.0 ‘ ' 14.2{ 1.15( 51.0{8.70| 2.61|59.5
1.60 | 4.44|68.5 15.5| 1.00| 49.5{9.97| 2.34|59.0
2.87 | 3.28[65.5 16.8| 0.71| 44.5/11.2| 2.08|58.5
4.14 { 2.51{62.0( 12.5| 2.00|58.5
5.41 | 1.82|59.5 13.8| 1.78{58.5
6.68 | 1.52|55.5 15.0| 1.68|58.5
7.95 | 1.15(53.5 : , 16.3] 1.52|58.5
9.22 | 0.81|51.5 17.6| 1.41|55.5

5

RUN 2: Q= 1111 rpm, ReL = 6.22*10
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x/L = .57 x/L = .715 x/L = .785 x/L = .855 x/L = .93
Y Ve By Ve B |y [Vg |B y - |V |P s v |B
.381| 11.90|82.6(.432 | 11.95{81.0|.381|14.67{82.9 | .381|16.21|83.0| .406|15.30{81.2
.432 | 11.22|80.1| .457 | 11.38{80.1| .432{13.15/80.8 | .432|14.19|80.6| .432|14.99|80.5
.483| 9.88|78.2| .508 | 10.75| 79.0| .483{12.27|79.5| .483]13.24| 79.1| .483|13.84(79.0
.610| 8.36|75.6].559 | 10.08| 78.0| .533|11.66|78.7 | .533|12.68| 78.0| .533|13.23|78.0
.737| 7.30|73.7} .686 | 9.18|76.4|.660{10.30|76.5| .635|11.66} 76.4] .610|12.39(77.0
.991| 6.03[73.0|.940| 7.95|74.2|.914| 8.97|74.1| .762|10.77| 74.8] .737|11.45|75.5
1.24| 5.17/73.0{1.19 | 7.13|73.0{1.17| 8.03|72.7| 1.02| 9.48| 73.1| .864|10.82(74.3
1.75| 4.05{75.5{1.45| 6.62|71.7|1.42| 7.46|7L.4| 1.27| 8.71| 71.2| 1.12| 9.85(72.5
2.39| 2.99[77.3|1.83| 5.97/70.0{1.80| 6.78{70.0| 1.52| 8.03|70.1| 1.37|-9.08|71.0
3.02| 2.19|76.0|2.46 | 5.09|68.4|2.44| 5.72|67.8| 1.90| 7.39|68.5| 1.63| 8.47[70.0
3.66| 1.63|77.0]3.10| 4.42|67.0|3.07| 5.20|66.0| 2.54| 6.41|66.8] 2.13| 7.50{68.0
4.29| 1.41|76.0|3.73 | 3.89|66.0{3.71| 4.50{65.0| 3.17| 5.61|65.5| 2.63| 6.85|66.5
5.56| 0.81[58.0/4.37| 3.53[65.0/4.98| 3.60|64.0| 4.44| 4.59|63.0| 3.28| 6.08|64.5
x/L = .64 5.64| 2.58|63.5|6.25| 2.91(63.0( 5.71| 3.84|62.0] 3.91| 5.51|63.2
.343] 13.81]86.2|6.91| 2.00|63.0|7.52| 2.37{62.0| 6.98] 3.18|61.2 4.55| 5.01[63.0
.394| 12.32|83.8|8.18 | 1.41|62.0|8.79| 1.78|61.0| 8.25| 2.54|60.5| 5.18] 4.70|61.6
.444| 11.00/81.8/9.45]| 0.81]58.0|10.1| 1.47|59.0| 9.52| 2.15{60.0| 6.45| 3.86|60.3
495 10.08|80.3|10.7| 0.71|54.0{11.3] 0.81|58.0 10.8] 1.52|59.5| 7.72] 3.38|60.5
.622| 8.76|77.7|12.0| 0.41]53.0{12.6| 0.58|58.0| 12.1} 1.41{57.0| 8.99| 2.70}|59.5
.749| 7.97[76.0 13.3| 0.71{55.0| 10.3| 2.23{59.0
1.00| 7.02|74.4 14.6| 0.41]55.0 11.5| 1.78|58.5
1.26| 6.31]73.0 | 12.8] 1.52|58.0
1.64| 5.51]71.5 14.1| 1.08|58.0
2.02| 4.96|70.8 15.3| 0.81}58.0
2.40| 4.59(69.5
|3.67| 3.28|66.5
4.,94| 2.41[65.0
6.21| 1.68{63.0
7.48| 1.08|61.0
8.75| 0.71[54.0
10.0| 0.41{50.0

El

RUN 3: Q= 1429 rpm, Re, = 8.0%10

5
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{

x/yslot=36.9 x/yslot=49.0 x/yslot=58.8 x/ys]ot=68.6 x/yslot=78.4
y |V, Y Ve Y Vi Y Ve Y Vi
«305]17.52 «305 12.62 «305 8.75 .305| 6.18 «356 4.91
.432}18.80 | .356 [13.14 .432 9.64 .356| 6.38 .483 5.66
.559/19.58 | .432 |(13.81 |.813 | 10.74 «483 | 7.22 <737 | 6.39
.813]20.57 | 559 {14.40 |1.07 | 10.80 737 | 7.85 <991 | 6.67
«940) 20.81 «686 |14.57 1.32 10.68 991 ] 8.11 1.24 6.88
1.07)20.93 | .940 |14.57 }|1.70 | 10.41 1.24 | 8.19 1.50 | 6.89
1.19/20.81 | 1.57 {13.51 |[2.34 9.63 1.88 | 8.11 2.01 | 6.88
1.32{20.69 2.21 11.81 2.97 8.57 2.51 [ 7.60 3.28 6.30
1.57/20.00 | 2.84 9.85 |[3.61 7.87 3.15 | 7.27 4.55 | 5.63
1.83/18.93 | 3.48 7.83 [4.24 6.67 3.78 | 6.74 5.82 | 4.94
2.08[17.57 4,11 5.90 4.88 5.66 5.05 | 5.49 7.09 4,09
2.21116.24 | 4.75 4.07 |5.51 4.70 6.32 | 4.27 8.36 | 3.46
2.34113.93 5.38 2.51 6.15 3.78 7459 | 3.18 9.63 2.34
2.44111.08 6.78 | 2.85 8.86 | 2.12 10.9 | 1.63
2.49]| 9.02 7.42 2.00 10.1 | 1.22 12.2 | 0.81
2.59| 6.69 8.05 1.29
x/yslot=88.2 x/yslot=98.0 X/yslot=107'8 x/yslot=1l7.8 x/yslot=127.5
Y |Vy Y Ve Y Vi y Vi Y VR
«305|3.71 «305 3.13 «305 2.30 =356 2.30 «356 2.12
+356/4.01 | .381 | 3.38 |.559 3.36 «737 | 3.15 |.991 3.07
-483|4.52 .508 3.91 1.19 3.93 1.37 | 3.59 1.63 3.48
«737|5.25 762 | 4.42 |1.83 4.17 2.01L | 3.84 |[2.26 3.55
«99115.51 1.02 4.68 2.46 4,25 2.64 3.89 2.90 3.62
1.50|5.80 1.65 4.92 3.10 4,19 3.91 3.82 3.53 3.53
2.13(5.72- 2.29 5.10 4.37 4.11 5.18 3.78 4.80 3.46
2.77|5.66 3.56 4.75 5.64 3.84 7.72 3.21 7.34 3.21
4.04|5.25 4.83 | 4.50 [|6.91 3.53 10.3 | 2.76 |9.88 2.70
5.3114.70 6.10 | 4.15 |8.18 3.28 12.8 | 2.19 |12.4 2.30
6.5814.19 7.37 | 3.73 [9.45 2.94 15.3 | 1.73 |15.0 2.08
7.85(3.69 8.64 | 3.31 |10.7 2.51 17.9 | 1.35 |[17.5 1.73
9.12{3.18 9.91 2.82 12.0 2.27 20.4 0.81 20.0 1.22
10.4|2.58 11.2 2.51 13.3 2.00

11.7}1.95 12.4 | 2.04 |14.5 1.73

12.9]/1.35 13.7 1.77 |15.8 1.29

RUN 4: Q = 0 rpm, Yeiot = 2.59 , vi,slot =17.1 ’

xslot =

95.5
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x/yslot=58.8 x/y =68.6 x/ySlo =78.4 -

X/¥ 1 64=36-9 XY y0t=49 0 slot t

Yy Y% B Yy |Vg B |y (%2 |B v Ve 1B s Ve

.305| 17.66| 3.0 | .330{12.62 | 7.2 | .356| 9.98{17.0| .356|8.42 | 45.8| .356] 9.19

.432| 18.97{3.0 | +406|13.51 | 7.1 | .432|10.53] 15.0| .406|8.15 | 38.8] .406| 8.31

.559| 19.79{3.0 | .533{14.29 | 6.6 | .813]|10.76] 9.2| .483| 7.97|27.5| .483| 7.73

.813| 20.69|2.1 | .660/14.52 | 6.0 | 1.07|10.80 7.2} .737|8.34|17.1| .737| 7.27

.940| 20.93{1.8 | .914{14.57 | 4.0 |1.32|10.71] 5.9] .¢91|8.49 | 13.5| .991| 7.21
1.07{ 21.09|1.5 [1.55/13.45 | 2.0 {1.70|10.41| 4.2| 1.24|8.49 | 11.0[ 1.24[ 7.15

1.19( 21.01|1.3 {2.18/11.66 |1.1 |2.34| 9.54{ 2.5| 1.88/8.44| 5.8 1.50| 7.11|14.0
1.32] 20.77| 1.2 |2.82| 9.72 | 0.7 |2.97| 8.57| 1.2| 2.517.86 ] 4.7| 2.01] 7.0010.5
1.57| 19.53{1.1 [3.45| 7.73 | 0.3 |3.61| 7.72| 0.7} 3.15|7.27 | 3.3| 3.28] 6.30]| 5.3
1.83| 18.35/1.0 [4.09| 5.83 | 0.0 |4.24| 6.69| 0.5{ 3.78|6.77 | 2.2| 4.55| 5.511 3.3
2.08| 16.84{ 0.9 [4.72] 4.07 [0.0 [4.88] 5.58] 0.3{ 5.05{5.46 | 1.5{ 5.82| 4.63| 2.5
2.21| 15.51{0.7 |5.36| 2.51 0.0 |5.52] 4.57| 0.2] 6.32|4.25 | 0.0{ 7.09| 3.86| 1.7
2.34| 13.14|0.5 6.15| 3.60| 0.0| 7.59|2.99 | 0.0| 8.36| 2.88| 1.5
2.44| 10.46{0.3 6.78| 2.76| 0.0| 8.86/2.30 | 0.0| 9.63| 2.12| 1.0
2.49| 8.74|0.1 7.42| 1.78] 0.0 10.9| 1.29] 0.0
2.59| 6.44/0.0

x/yslot=88.2 x/yélot=98°0 x/yslot=107.8 x/yslot=ll7.6 x/yslot=127.5
Y Ve B Y Ve B Y Ve B Yy Ve | P Y Vo

.330| 10.97{74.5{.330|11.89 | 78.6|.330[12.12{79.5] .381|11.86| 76.5| .381| 12.44
2381 | 9.73]66.5|.406{10.27 |72.0{.457| 9.64|68.0| .508( 9.78]| 69.0| 635} 9.51

«508| 7.89[51.0{.533| 8.30 |57.3]|.584| 8.23|59.8{ .762| 8.15/59.7| 1.02] 7.92
«762 ) 6.90146.5|.787| 6.96 {45.8|1.22 6.41|44.4| 1.40| 6.64/49.5| 1.65| 6.63
1.02] 6.56{39.5|1.04| 6.47 |39.0|1.85| 5.72|35.4| 2.03] 5.85]42.5| 2.29| 5.87
1.52| 6.30{21.0{1.68| 5.83 |28.7|2.46( 5.15|27.9] 2.67| 5.28| 35.5| 2.92| 5.26
2.13} 6.07|16.0|2.31| 5.25 [21.7{3.10| 4.78|22.5] 3.91| 4.44]26.5| 3.53| 4.77
2.77| 5.77|11.8]|3.56| 5.07 |13.6|4.37| 4.31|15.0| 5.18| 3.93/19.1| 4.80| 4.11
4.04| 5.15| 7.4(4.83| 4.50 | 9.2{5.64| 3.83|10.3| 7.72| 3.21|10.5| 7.34| 3.15
5«31 | 4.55| 4.2]6.10| 4.07 | 7.0|6.91| 3.50] 9.0 10.3| 2.58| 8.5| 9.88| 2.34
6.58 4.01| 3.0{7.37| 3.60 | 5.0{8.18| 3.02| 6.8 12.8| 2.04{ 7.0| 12.4| 1.95
7.85| 3.33| 2.0|8.64] 3.23 | 4.5{9.45| 2.73| 6.5| 15.3| 1.58] 6.0| 15.0| 1.47
9.12| 2.76| 1.5|9.91| 2.79 | 4.0|10.7| 2.34| 6.0 17.9| 1.22| 5.0 17.5| 1.08
10.4( 1.95| 1.0|1%.2| 2,27 | 3.0}(22.0] 1.82] 5.5
1.7 1.82| 0.5[/12.4{ 1.82 | 2.0|13.3| 1.58| 4.5

14.5) 1.35] 2.0

RUN 5: Q= 1111 rpm, y_, ,=2.59, ?ﬁ s1op=17+00

xslot=9



X y =24- = - = ™ = —_

MY 047247 %Y g =333 /v, =40-0 XY 0t=46] X1y g =5
Y . R A N O - B oY %R
0.305 | 12.35| 0.305|10.70 0.305| 5.85

0.356 | 12.88 | 0.432}11.95 -}0.432 | 9.03 {0.381| 6.16 | 0.356{4.89
0,406 | 13.48 | 0.559]12.59 [0.559 | 9.68 | 0.457| 6.63 0.483} 5.54
0.457 | 13.87 | 0.686/12.88 [0.686 | 10.06 | 0.584)} 7.25 0.610) 5.92
0,508 | 14.23 | 0.813| 13.01 {0.813 | 10.26 | 0.838| 7.71 | 0.737]6.08
0.559 | 14.52| 1.07 | 13.17 |1.07 | 10.40 |1.09 | 7.92 0.864] 6.30
0.686 | 15.13| 1.32 {13.14 {1.32 | 10.40 {1.73 | 7.98 | 1.12 |6.53
0.813 | 15.56| 1.57 |12.88 [1.57 | 10.32 |2.36 | 7.69 1.37 | 6.61
1.07 [16.22] 1.83 |12.49 |1.83 | 10.16 | 3.63 | 6.69 1.63 | 6.61
1.32 116.50] 2.08 | 11.98 [2.08 | 9.91 [ 4.50 | 5.73 | 1.88 | 6.59
1.57 | 16.47| 2.34 {11.48 [2.34 | 9.70 [ 6.17 | 4.64 | 2.13 | 6.57
1.83 |16.19] 2.84 | 10.26 |2.84 9.04 | 7.44 | 3.55 | 2.51 | 6.45
234 | 15.19{ 3.48{ 8.74 [3.48 8.17 [8.71 | 2.54 | 3.15 | 6.16
2.84 [13.69| 4.11 7.23 [4.11 7.3719.98 | 1.68 | 3.78 | 5.86

3.05 |13.01] 4.75 | 5.75 |4.75 | 6.47 4.42 |5.51
3.30 |11.955.38 | 4.39 [5.38 | 5.49 5.69 | 4.84
[3.56 | 9.55] 6.65| 1.59 |6.65 | 3.80 6.96 | 4.09
3.78 | 4.73 7.92 | 2.31 8.23 |3.31
3.81 | 2.88 | 9.50 | 2.73
| 10.8 |2.04
12.0 |1.29

X/Y 5104700 K1Y 1 4=66+T | X/¥ gy 1=73-3 |x/¥y, =80-0 | x/y ; ,=86.7

Y R Y R Y ' Y R ! R

0.305{ 3.02 | 0.305| 2.54 |0.305 | 2.04 | 0.305]| 1.87

0.356] '3.97 | 0.356]| 3.16 | 0.356| 2.61 |0.356 | 2.19 | 0.356] 2.04
0.483| 4.57 | 0.406| 3.59 | 0.406| 2.79 |0.483 | 2.61 | 0.406| 2.12
0.610| 4.87 | 0.533] 3.91 | 0.533| 3.21 ]0.610 | 2.96 | 0.533| 2.41
0.864| 5.28 | 0.660| 4.07 | 0.660| 3.55 |0.737 | 3.15 | 0.787| 2.82
1.12 | 5.46 | 0.914| 4.42 | 0.914| 3.86 |0.991 | 3.43 |1.42 | 3.23
137 | 5.55 [ 1.17 | 4.61 | 1.17 (| 4.17 {1l.24 3.62 [2.06 | 3.36
1.63 | 5.61 | 1.55 | 4.80 |1.68 | 4.37 |1.50 3.69 | 2.69 | 3.43
2.01 | 5.6412.18 4.85 [2.31 | 4.46 (1.88 3.82 {3.33 | 3.48
2.64 | 5.58 [2.82 | 4.78 |2.95 | 4.41 |2.51 3.89 {3.96 | 3.46
3.91 | 5.22 | 3.45 4.64 (5.49 | 3.99 |3.78 3.84 {4.60 | 3.38
5.18 | 4.71 | 5.99 4.05 18.03 | 3.36 [5.05 3.71 15.23 | 3.31
6.45 | 4.19 | 8.53 3.31 ]10.6 | 2.73 [7.59 3.36 )} 7.14 | 3.02
772 3.71 1 11.1 2.51 {13.1 | 2.15 (10.1 2.67 19.68 | 2.73
8.99 | 3.18 |13.6 | 1.82 [15.6 | 1.58 |12.7 2.19 | 12.2 | 2.27
10.3 2.64|16.2 | 1.15 |18.2 | 1.00 [15.2 l1.68 |14.8 | 1.73
11l.5 2.30 17.8 1.35 |17.3 | 1.47
12.8 1.53 20.3 0.71 | 19.8 | 1.29
14.1 1.15

el

RUN 6: Q= 0 rpm., y_, .=3.81 13,47, x_, =94

? V1,slot=
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x/yslot=24.7 X/yslot=33'3 X/yélot=40'0 X/yslo£=46'7 x/ySl
Yy R p Y Ve B Y Ve p y | VR B Y
330 | 13.51] 2.5 | .432112.08] 3.9 | .432] 9.17| 6.8 .381| 6.23] 16.0| .368
2432 | 14.34 2.0 | .559]12.62] 3.1 | .559] 9.79]| 6.0 457 6.67| 13.0].483
.559 | 15.08 2.0} .686{13.04| 2.7 | .686{10.12] 5.3 | .584{ 7.25| 10.9|.610
686} 15.56 1.6 | .813]/13.23| 2.4 | .813}10.26] 4.7 | .838] 7.71 7.8] .737
813 | 15.931 1.5 |1.07{13.39( 1.7 | 1.07]10.40} 3.8 | 1.09| 7.94| .6.5|.864
1.07 | 16.45] 1.2 |1.32|13.39| 145 | 1.32{10.40| 3.0 | 1.23| 7.99 4.611.12 8.5
1.32 | 16.75 1.0 |1.57(12.95] 1.2 |{1.57{10.26( 2.5 | 2.36] 7.73| ..3.1]|1.37 7.0
1.57 | 16.70 0.6 |1.83|12.49| 0.8 | 1.83]{10.06| 2.0 | 3.63] 6.82} "0.4]1.63 6.0
1.83 | 16.24 0.5 [2.08|12.02] 0.5 [ 2.08] 9.87| 1.5 | 4.90} 5.83 0.0]1.88 5.5
2.08 | 15.67 0.4 [2.34}11.52| 0.3 | 2.34| 9.57| 1.0 | 6.17| 4.70 0.0{2.13 4.5
2.34 1 14.97 0.3 |2.84(10.22] 0.1 | 2.84} 8.94| 0.5 | 7.44| 3.55 0.0|2.51 3.0
2.84 | 13.51] 0.2 |3.48] 8.71| 0.0} 3.48| 8.17{ 0.2 | 8.71| 2.58 0.013.15 2.0
3.35 | 11.52( 0.0 |4.11]| 7.13| 0.0 | 4.11| 7.25| 0.0 [ 9.98] 1,73 0.0(3.78 1.0
3.81 2.88 0.0 [4.75] 5.69| 0.0 | 4.75| 6.34| 0.0 4.42 0.0
5.38| 4.39] 0.0 [5.38| 5.42] 0.0 5.69 0.0
6.65] 1.73| 0.0 |6.65| 3.69] 0.0 6.96 0.0
7.92] 2.12} 0.0 8.23 0.0
10.8 0.0
x/yslot=60.0 x/yslot=66.7 x/yslot=73.3 xfyslot=80.0 x/yS
Yy |Vg P |y Ve | By YR B |y Ve | B Y
«343] 7.00| 70.0[ .343| 7.62| 74.0] .356| 8.35! 78.0]|.356| 8.47
«381] 5.63 | 49.0f .394| 6.42 | 64.0| .381| 6.86| 66.5{ 406} 7.41| 72.0|.406] 7.62
«508] 529 | 33.5].432| 5.87 | 53.5) «432| 6.14 | 59.5] .533| 5.99| 59.5]|.444( 6.89
«635| 5.29 | 24.0} .559| 5.18 | 40.0| .559| 5.45| 47.5| .660] 5.28| 50.0|.571| 5.82
»889| 5.49 | 16.5]| .686] 5.06 | 32.0} .686]| 4.96| 37.5|.787| 4.94] 42.51.825] 4.94
1.13] 5.60 | 13.5|.927| 4.99 | 23.2| .940| 4.78 | 27.5]1.03| 4.55| 33.0{1.45| 4.25
1.38 5.75 | 11.5[1.18| 5.05 | 18.4{1.18]| 4.73| 21.5|1.27| 4.39| 28.0[2.07| 4.03
1.64 5.80 | 10.0{1.55| 5.05 | 14.0{1.69| 4.64 | 16.5]1.52| 4.29| 24.5|2.71| 3.86
2.02| 5.77 8.5/2.18] 4.99 | 11.0{2.31| 4.59 | 12.5{1.90} 4.23]| 21.0(3.33} 3.80
2.65! 5.66 6.0/2.82| 4.97 8.3(2.95| 4.46 | 10.0|2.54| 4.15] 15.0(3.96| 3.64
3.92| 5.36 3.5/3.45| 4.78 6.5]5.49| 4.03 4,0/3.78| 3.91| 11.0|4.60] 3.60
5.19| 4.78 2.5{5.99| 4.15 3.0{8.03{ 3.36 1.0]5.05| 3.61 8.0(5.23} 3.50
6.46] 4.33 1.0{8.53] 3.36 2.0110.6( 2.73 0.0} 7.59| 3.26 3.0({7.14] 3.10
7.73| 3.73 040[11.1} 2.54 | 1.0/13.1] 2.12 0.0{10,1| 2.67 2.0]19.68| 2.76
9.00] 3.18 0.0{13.6| 1.87 0.0[{15.6| 1.58 0.0|12.7} 2.15 1.0112.2| 2.23
10.3| 2.61 0.0[16.2} 1.15 0.0{18.2| 1.00| 0.0}15.2| 1.68 0.0|14.8| 1.73
11.5] 2.15 0.0 17.8] 1.29 0.017.3}| 1.41
12.8{ 1.58 0.0 20.3] 0.71 0.0]19.8] 1.29

RUN 7: Q= 562.5 rpm., y_; ,=3.81 , vy =13.40 , x__ =94

,slot slot
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XY g =247 x/yslot=33.3 x/yslot=4o.0 X/Yslo£=46'7 X/yslot=53'3
y |Vr B y | Vg B Y Ve B y |Yg B y | B
»330114.11| 2.5 [.432 ]| 12.08|10.5| .356] 9.47 | 24.5 .356{ 8.87] 57.0} .356] 9.95!65.0
<457 1 14.91}1.5 |.559 | 12.69|10.0} .406] 9.65 | 19.0| .406] 8.15| 42.5| .406| 8.90]|56.0
.711 115,98/ 1.0 | .6861 13.07| 9.0| .660]10.22 | 12.0| .533| 7.62.| 28.0] .457 . 8.10(47.5.
965 | 16,650 0.5 |.8131 13.26] 8.0| .914{10.40| -9.0] 635 7.75 1 21.5] .559| 7.26{34.5
1.22 | 16.89| 0.4 [1.07 ] 13.45] 6.5/1.17]10.38 7| «889| 7.99} 15.5] .813} 6.89{22.5
1.47 | 16.79] 0.3 [1.32} 13.39] 6.0{1.42(10.38 5.5/1.14} 8.04} 13.0[1.07] 6.84116.5
1.73] 16.39| 0.2 [1.57 ] 12.95| 5.0{1.68(10.23 4.8/1.40] 8.10] 10.3|1.32] 6.82]|13.5
1.98 | 15.83| 0.1 [1.96 | 12.29| 4.3{1.93 9}99_ 3.7/1.65| 8.02 8.6/ 1.57| 6.77|11.0
2.24 | 15.24] 0.0 |2.59 ] 10.93! 3.5{2.18]| 9.73| 2.6/1.90| 7.94 7.5]1.96} 6.72} 8.5
2.49 | 14.69| 0.0 [3.23 9.29| 2.0/2.69]| 9.20 ] 2.0]2.29| 7.81 6.0] 2.59| 6.45} 5,5
2.74 | 13.87} 0.0 [8.86 7.831 1.5{3.33] 8.40 1.0{3.560| 6.88 3.0] 3.23| 6.24| 2.5
3.001] 13.14| 0.0 }|4.50 6.18| 1.0]3.96| 7.51 0.5/4.83] 5.90 1.5/ 4.50] 5.44} 1.0
3.25112.08{ 0.0 |5.13 4,99 0.0|5.,23] 5.61 0.0{6.10| 4.73 1.0l 5.77{ 4.70} 0.0
3.51 9.98| 0.0 [|5.77 | 3.64| 0.0}{6.50] 4.03 0.0|7.37} 3.60 0.7} 7.04] 3.97{ 0.0
3.81 3.15{ 0.0 |6.40 2.30| 0.0|7.77| 2.58| 0.0{9.91] 2.08 0.0{ 8.31] 3.43| 0.0
8.41| 1.29|. 9.58} 2.67] 0.0
- ‘ 12.1] 1.68} 0.0
X/Yslot=60’0 x/Yslot=66'7 X/yslot=73'3 x/yslot=80'o x/yslot=86'7
Y VR |B Y Ve |B Y VR By % B |y [ B

¢356 ] 10.82| 72.5]| «35612.19 | 72.0] «317[{14.29 | 80.5| .343[14.4975.5.] .381|14.63|74.5
«381| 9.59| 64.0] +457 | 9.14 | 58.5| .343{13.07 | 78.0] .457|10.91(65.0 | .432[12.78|71.0
“e432 | 8.52|56.5|.711| 7.17 | 42.0| .394{11.54| 72.0| .584| 9.30{59.5 | -483|11.52}68.0
«508| 8.07|51.5|.965| 6.52 | 34.0| .521| 9.31| 62.5| .838| 7.87|51.2 | .559]|10.62|65.5
o559 | 7.42 45.5[1.47| 5.93 {25.0| 635 8424 | 56.5[1.09] 7.15[|47.0 | -686| 9.55(61.5
.686| 6.83]37.5|1.85| 5.69 |19.5|.762| 7.61| 51.5/1.35| 6.61{42.5 | «940| 8.39|56.5
.914| 6.56[29.0|2.24| 5.45 |15.5{1.02| 6.90| 44.5{1.60| 6.16|39.5 1.19 | 7.60}52.5
1.30| 6.16/21.5[2.87| 5.22 {10.0/1.65| 5.99 | 34.5/1.98] 5.76|35.0 | 1.45| 7.14]50.0

1 1.93] 5.82[14.5/3.51| 5.01 | 7.0/2.29| 5.43| 26.5|2.62] 5.14(29.0 | 2.08| 6.1143.5
2.57| 5.54 9.5|4.78| 4.55 | 2.5|2.92| 5.02| 22.0| 3.25| 4.78.[25.0 | 2.72| 5.51(38.0
3.84| 5.15| 4.5{6.05| 4.03 | 1.5/3.56| 4.82| 17.5|3.89| 4.44|21.5 | 3.35| 4.85{32.0
6.38| 4.07| 1.0{7.32| 3.60 | 0.5|5.46] 4.15| 8.5|5.16| 4.07{15.0 [ 4.60f 4.2724.5
8.92| 3.02 0.0|8.59| 3.21 | 0.5/7.98| 3.38| 3.0/ 6.43| 3.78/10.5| 7.11} 3.50|14.5
11.5| 1.95 0.0/9.86| 2.85 | 0.5/10.5| 2.64| 1.0/ 7.70| 3.28| 8.0} 9.65| 2.61| 9.0
14.0| 1.35 0.0{11.1| 2.44 | 0.5/13.1] 2.19| 0.0[8.97| 3.02| 5.0 12.2] 2.12| 5.0

12.4] 2.12 | 0.0{15.6] 1.58| 0.0[10.2| 2.76| 4.0 14.7| 1.73} 3.0
13.7{ 1.78 | 0.0 11.5| 2.44| 3.0 17.3] 1.41| 2.0
14.9| 1.58 | 0.0 14.0| 2.08} 1.0
16.6] 1.29} 0.0
RUN 8: = 1111 rpme, yslot=3'81 , V1,slot513.60 ,
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APPENDIX 6

Derivation of the Transport Equations

for the Double Velocity Correlations

6.1 Introduction
6.2 Equations in Curvilinear Orthogonal Coordinates

6.3 Axisymmetric Cases with Constant Angle «

6.4 Boundary Layer Equations

6.1 INTRODUCTION

It 1is shown in Section 7.2-1 of Chapter 7 that the
convection and production terms of the double velocity correlation
can be deduced from the Navier-Stokes equations by algebraic
manipulation of only the convection terms of the latter equations.
The exact expressionsrepresenting the diffusion, pressure-strain
and dissipation processes are not at present solved. Consequently,
in the following derivation of the transport equations for the
double velocity correlations the complete expressions for these three
processes are not deduced.
| The Navier-Stokes equations for steady incompressible flow

are in vector notation, Aris (1962):

| 2
WY = - Vplo + VY, (6.1)
convection pressure viscous diffusion

The term (V.V )V can be expressed in short as an acceleration term
symbolised by 3. In the curvilinear orthogonal system of coordinates
illustrated in Fig. 2.1 of Chapter 2, the components of the convection

terms in, for example, the i-direction are:
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= Y [ M,y 134 |
(V-v)\ﬂ — a; = VI( L —}—v' V k (6.2)
[ : | k=,,3 €k b)(k ‘(bxl( Z bX

The acceleration term a and all.the velocity components V renresent

instantaneous values.

6.2 EQUATIONS IN CURVILINEAR ORTHOGONAL COORDINATES

If for example vivj is the double velocity correlation
being considered, then the relevant Navier-Stokes equations are those

for the i and j directions:

2
3 = r——éﬂ}’ y»VV - (6.3)
- Y
3 = |- VP_,_ »VV ] (6.
; 1;

!
The sequence of algebra necessary to obtain the desired transport

equation for the double velocity correlation from equations 6.3 and -

6.4 is now described:

(a) Equations 6.3 and 6.4 are multiplied by Vj and V, respectively,
i

and the products summed' after some simplifications:

l’t[b_\’_i!f v”{bew kiv %, V"Xkﬂ

T } 63
L e V[Yp’i.w\l] +V[YF+VVV] o

The 1nstantaneous values of V are separated into thelr mean component

V and their fluctuating component v':

S e i T Tl )
Gt T A Y

(b) Equations 6.3 and 6.4 are multiplied by the mean values of Vj

and Yi respectively, and the products summed:

'MPM Yk _ ﬁ_b_f’q A/ [bv S a&}

4 bxk+ R B A k™ '—ix—k_e—aTJ

:Y(%Q + »V V)i_). L(_%F. + QVQV?J'

(6.7)
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The instantaneous values of V are once again separated into mean
and fluctuating components:

V Vk-l-Vl!( 2 Y. V +VL -b_{ . Vk+Vk b(’)( V (Vk+Vk>
I ( (i ) [a"k( -w) 2 P 0 Ly *

P—(?+§)+M¥’;_V_k+._vkﬁ_‘f] (zg+gvv) (1€g+9v"v>i (6.8)

(c) Equations 6.6 and 6.8 are time—-averag»edr; from the definition of the
' fluctuating velocity component it follows that v' o= 0, so that only
double and triple velocity correlations now remain. The overscores
and primes for the velocity components on the left side of the
foliowing ‘equations are omitted for coﬁvenience. The time-average

of equation 6.6 gives:

Vi | v bf ViV v b@ A v,vkhfk]
¥ [ e) + (V%-m-)(gaxk m) (s ey

et o veon)f - (et
kangka;vk g%)]z (_V;+‘5) (—YQEP’V \()i +( - )( VP, vV \l) (6.9)

The time—avérage of 6.8 gives:
Ve[ Y v % ¥ \/J-V,(B(]k Vi ¥ } Vi [\/,Bva R |
.?k[bxk ] (faxk-i—ng]() ({‘ b—)?.;_'. 6 —> +Zl—<- Jﬂ—*— "bX’(+
v;\(,‘ch Y VVL V ka a& vk\/ ?s&]

._..._.__..__._..__._.--._.._-—

b, oxy, % i ™ 6
= V[ V) LV (LR V) (6410)
AN Q3 :
L
(d) Finally, equation 6.10 is subtracted from equation 6.9 giving:

V’('?'Vk)[bvgvj v E’_PJ_ W ) )]

( A T (fbxk:(w) gv"( bxtzv'v-k—%‘_&i g
\6\/‘1 Wi vV 9% J V otk vV, k.
[ Mﬂ by £ R ‘:.’M l‘(M K kfiib"J

' 2
=V (_V_/eff+>7v V)z 4+ v ( Vg+vv v) ' (6.11)
J
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The left hand side of equation 6.1l eomprises the convection
and production terms for the double veiocity correlations, as well as
‘some turbulent diffusion terms represented by the triple velocity
correlations. These diffusion terms,together with the right hand side
terms representing viscous diffusion, pressure diffusion, pressure-—
strain and dissipation are not considered in the remainder of the
present analysis. Section 7.3 of Chapter 7 describes how-they are
modelled. |

The transport equation can therefore be represented es:

Convection = Production + Diffusion + Pressure-strain +'Dissipation.

6.3 AXISYMMETRIC CASES WITH CONSTANT ANGLE o

In the present work the stress equations are only employed

for cases when the geometrical angle o is a constant, see Figure 6.l.

Fige. 6.1
The metric coefficients Ll and 12 are then equal to unity, and for

axisymmetrical flow £_ is equivalent to the radius r. Furthermore,

3

derivatives with respect to the circumferential direction x,, are

3’
zero. Equation 6.1l is considerably simplified and can be expanded
for each of the six double velocity correlations as:

Vk%—i _ 4W\{~§; 4 2w B\/lk._ (DF+%+TD),J, (6.12)

Vo, v ¥ or Mo_ (pf +R +D (6.13)
“axl"‘z' rbx*'”*v“axk( - s (o2
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. _
\/,((b_‘f*+2vzh")+ 2\5vk(?L.VJ + Yaf.): (3(:”'.' %"‘3)9,3 | (6.14)

Ve V( dr _) oV VBV. —(DF+E<.+3) (6.15)
k 3, S %, 4% A, % axk+v k oy, Iy2 >

V, (us mar) 2V M v <DF+PS+D)
k ox|, T N, % r 0¥ T vkbxk-‘- v“bx;(-r rbxk (6.16)

J

V(_bﬁ‘é ﬂ?b") av’_zé\” AY M vy W A/ %é‘“ (F'*‘Ps"'])) (6.17)
"axfr ), rbx2+ kbxk+ l‘bxl‘+ “rox, 12, ~

6.4 BOUNDARY LAYER EQUATIONS

For boundary layer flows; if direction -1 and -2 are assumed
to be the predominant and cross-—stream direction of flow respectively,

the following approximations are valid:

Vo Y, = ‘OV/bx, - o(l1)
V aofe) ,0V/ %, =olife) , e <<1
When these apf.)r'oximations together with the continuity equation

5 (£V,) = 0 are applied to equations 6.12 to 6. 17, the

.following boundary layer equations are obtained:

W Vs or I AAY M wr M ) (6.18)
\{:—b_xlk AN Y ™ : '2'S§2+ % o, (DF+ B +D N

W Vi 9 - '
Vk_a_xzk - 4y, 2 5 = (DF.;. % +ZD)2’1 (6.19)

V. Oy Yadr Y; or 10 f-yl &
g+ W23 A 2 4 PUr S0 - (364943, 6,20
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V,(bVNz vlbvl Y?(vvs__ +vv3— )-i- W — 3\/; (DF‘*% + D>|,2. (6.21)

bxk X,. \

va,v3 6(\/3/\') 2 Wb o ViV vt) &
k + Wy == bx1+ W Y‘ng,+ f( 3) le

o (202 (3me0),

I, T

v v SO a2 A Vs dr Vo dr
Vkﬁ .,_ Ve __;1_.,. z(g_vs)_;_z + Ay 2 =

3V VSY_B_Y‘ = (DF+?5+]>)23

(6.22)

(6.23)
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APPENDIX 7

Local Heat Transfer Measurements from a Disc of

Non-Uniform Temperature Rotating in Stagnant Air

7.1 Introduction
- 7.2 Apparatus
7;2—1 Disc and Heaters
"7.2-2 Motor ana Speed Transmission
- 7.2-3 Electrical Power Input
71.2~-4 Températﬁre Measurement
v7.2;5 Extraneous Heat Sources
7.3 Experimental Procedure
7.4 Experimental Results

7.5 Assessment of Experimental Programme and Sugdestions for
Improvement
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7.1 INTRODUCTION

i The local heat:tranéferbyfconvectionvfrom the surface of a
disc rotating in stagnant air was investigated, fof a range of
rotationai speeds.and arbitrary radial distributions of heat flux. The
local heat transfer coefficients were fouﬁd directly by measurements
of the heat input to and the temperatufe of ‘the disc's surface.

The experimental apparatus is described in Section 7.2, and
the experimental procedure and results are presented in Secéions 7.3
and 7.4. The local Nusselt numbers, determined from the experimental

measurements, are compared with predicted values in Section 4.2 of

Chapter 8.
7.2 APPARATUS

The experimental apparatus is sketched in Fig. 7.1; it
‘consisted of a vertically mounted disc driven by an electric motor
through a variable pulley arrangement. The construction and function

of the main components are described in the following subsections.

7.2-1 Disc and Heaters

The local héat transfer coefficients were determined
using the thin, electrically heated sheet technique. The thin-sheet,
concentric, annular strips of stainless steel, .254 mm thick and
50.8 mm wide, were glued to the front face of the disc at intervals
of 2.5 mm. There were a fotal of 8 of £hese annular strips, hereafter
‘referred to as the heaters, located at the radii as shown in Fig. 7.2.
The heaters were, for convenience, identified by the numbers 1 to 8 from
the centre outwards, and their electrical resistances, measured using
a potentionmeter, were .038, .056, .074, .093, .111, .130, .148 and
+166, + .0005 ohm.

The heaters could be independently heated and a wide

range of non-uniform surface temperature or heat -flux
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12,

Concentric annular heaters.

Disc.

Slip-ring assembly for heaters current.
Holder for current carrying brushes.
Roller beariné.

Thrust ball bearing .

Pulleys .

Slip-rings for thermocouples.

Digifal voltmeter for reading thermocouples output.
Synchronous motor.

Movable pulley assembly.

Mild steel frame, .025 m square section, supported on

dampers and bolted to the floor.

Fig. 7.1 Lay-out of apparatus
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—— 53350

L —— +45720

| .40386

— +35052

.~ .29718

—— 224384

—— 19050

—_ .13716

—— 08382

Fige. 7.2 Location of heaters 1 to 8 (dimensions in metres)
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distribution could be achieved.' The maximum power output was 35 watts
for heater-1l, rising to 150 watts for heater-8; these corresponded
to a maximum heat flux of 1000 watts/m?.

| | In order to minimise the error in the.heat—transfer
measurements due to heat loss, the disc on which the heaters were
mounted was made of glass fibre. This material possessed a satigfactory
combinétion of two properties required by the experimental design:
it had a low thermal conductivity, thereby limiting the heat~loss by
conduction; and it had adequate strength to withstand the stresses
induced by rotation. The fibre-glass disc* was 0.0254 m thick and
1.067 m in diameter. - '

7.2-2 Motor and Speed Transmission

A synchronous motor éf Lph7 KW(6hp) running at 1500 rpm
was'used to drive the apparatus. The motor—épged could be stepped-
down through a two stage timing-belt and pulley set-up to provide
disc speeds in the range of 140 to 1500 rpm; these speeds correspond

to rotational Reynolds numbers based on disc radius of 2.5X105 to

2.6X106. At the highest Reynolds number 90% of the disc sﬁrface would
be covered by fuliy turbulent flow.

The drive system guaranteed that Ehere was no slip
in speed transmission between motor ané disc, and £hereby ensured a

constant and known speed for any preset experimental condition. The

driven shaft, onto which the disc was mounted, was 50.8 mm in diameter

* The disc was cut from a .0254-m thick sheet of "Scotchply reinforced
plastic, Crossply Type 1002", manufactured by the Minnesota Mining and
Manufacturing Co. of Mingesota 55101, USA. The properties of the
material were: Tensile strength: 5X108N/m2, Tensile Modulus: 2.55X1O10
N/mz, Thermal conductivity: .339J/msdegK; Thermal coefficient of linear

expansion: 1.278X107° m/m/degK, Specific gravity: 1.84
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machined f:om mild steel.

?.2—3 Electrical Power Input

o The heaters weré‘electrically heated from a low
voltage (5 to 15 V) transformer.capable of supplying a total current
of 250 A. The electrical circuit to one of the heaters is sketched
in Fig. 7.3.

From fhe transformer, the current was conducted through
5mm square copper leads to a 30A fuse, a variable resistance‘,'and a
0-50A ammeter with an accuracy of * 0.5A for currents less than 10A and
40.2A for currents between 10 and 50A. The current was transmitted
to the rotating heaters through springvloaded, water-cooled, copper/
éarbon'(95%/5%) brushes making contact with concentric brass slip-rings.
From the slip-rings the leads were fixed radially to the béck of the
fibre-glass disc, and then connected to bus-bars through the disc'to
the heaters.

The slip-ring assembly, see Fig. 7.3, consisted of an
«18 mm thick Tufnol disc with machined concentric grooves into which
6.5 mm wide brass slip-rings were fixed,mounted on a 7.5 mm mild steel
backing piate.

The path of the coolant through a copper/carbon brush is
shown in Fig. 7.4. The coolant, tap water, was circulated from a
cehtral reservoir through individual flexible tubes to each brush, then

to a common sinke.

s Variable resistances were 'Zenith' Carbon Plate Type Rheostats capable

of dissipating 200 watts to the surroundings.
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" 7.2-4 Temperature Measurement

.The'temperétUre of -the heaters could be continuously

measured by means.of 40 copper-constantan thermocouples of 0.5 mm
diameter. The thermocbuples were fitted in grooves flush with the
surface of the fibre-glass disc, led along a circumference for about
50 wire-diameters to minimise lead conduction, channelled in the
radial direction towards the centre of the disc, and thence into the
hollow shaft. The thermocouple leads were, on emerging from the shaft,

5 ' . : _ :

, connected to silver-coated slip-rings*, and the outputs transmitted
to a digital voltmeter (DVM). The location of one of the
thermocouples and its leads are sketched in Fig. 7.5; the figure is not
drawn to scale.

disc

heater .
thermocouple hot-junction
leads
digital volt-meter

slip-ring assembly
thermacouple cold-junction

coupling between shaft and M
slip-rings i
drive pulley

bearing : 2

hollow shaft .

5

7 2 10 10
le g [y oLl
N J-az:éa;?waﬁw?ﬁ#“wwavﬂ/n—-

= o

Fig. 7.5 Thermocouple lay-out

* Thermocouple slip-rings were twelve-channels Type PL12 from IDM

Electronics Ltd.
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The rcold’ junctions of the thermocouples were, as
shown in Fig. 7.5,.16cated cloSe to'the thermocouple slip-rings.
&hese junctions retated with.the disc, and consequently ambient:
temperature was use& eé the reference temperature.

The signal (yoltege) obtained from the thermocouples
was calibrated, .0389 mV corresponding to a temperature difference of
1 degree K, and ranged between O.and .6 mV.. The electrical noise at
1000 rpm from the slip-rings was negligible; it was specified by the

= .
manufacturers as 5pV/mA. The digital vqltmeter recording the signals
from the.thermocouples could be read to an accuracy of +5uV. ihe
maximum error in temperature measurement was therefore 12% decreasing

to less than 2% for temperature differences between *the heaters and

ambient of 1 and 10 degrees K respectively.

7.2-5 Extraneous Heat Sources

When the apparatus was run without any power iﬁput to
the heaters, frictional heating generated in the bearings, and between
the brushes and slip-rings, caused aﬁ increase in temperature above
ambient of 10 deg K for heater-l decreasing to 1 degree for heater-8.
This heat source was estimated to be in the region of 100 watts, which
is far above the maximum heat input to heaters 1 to 4.

Furthermere, when the current was switched on to the
heaters, the contact resistance between the brushes and slip-rings was
measured to be between .05 and .15 ohm. With the maximum currents
employed in the experiment, the heat generated at these sliding contact
points was of the order of 20 watts.

The total, these extraneous heat sources were about
5 times the maximum electrical power input to heeter-l,‘and of the-same

order as the power input to heater-8.
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To overcome the problem of these large unwanted heat
: éourcés, it Qas decided to disregard the innermost two heaters since
%hey were the worst affeéted and to keep the temperatures of heaters
3 and 4 constant by adjusting their current supply. Under these
conditions, the radial conduction in the annular segment of the
disc covered by heaters 3 and,4.wés minimised, thereby insulating the
remaining four outermost heaters from the effects of the heat
sources. In other- words, the heat from éxtraneous sources conducted

to that part of the disc where r > .30 m was minimized.

7.3 EXPERIMENTAL PRCCEDURE

Pulley ratios were selected to provide the desired speed,

the motor.was switched on, followed by the power input to the
heaters. The apparatus achieved a steady state after about 3 hours,
when the thermocouples outputs from the heaters had settled to a constant
value.
The readings of the ammeters were recorded, and the outputs

from the thermocouples were read in turn from a digital voltmeter.

7.4 EXPERIMENTAL RESULTS

Four experimental conditions were investigated for only
two rotational speeds, 458.5 and 781 rpm; the reasons why only these
few conditions were considered are explained later in Section 7.5. The
temperatures and current inputs are recorded in the tables below, for
each of the four experimental runs. The data are shown graphically in
Fig. 7.6 and 7.7 and illﬁstrate the non-uniform temperature or heat-

flux distribution achieved by the apparatus.
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Fig. 7.7 Temperature distribution of heaters for Runs 1 to 4
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The heat transfer by conduction through the disc was accounted
.for by a simple heat conduction calculation, neglecting any conduction

in the radial direction in the disc material as well as the metal heater.

no conduction

conduction

rear—-face, T,

2

convection
T.sheated-face

The temperature T2 of the rear face of the disc, at the radial position
corresponding to a value T, measured for the heated face, was obtained
from the recorded radial temperature distribution for the rear face.

The heat conducted through the disc was then calculated as :

T T
IH wt Z. | and consequently, the convective heat flux was computed as:
3 “R/Ar heater - k(T =T )/t (7.1)
Yeonvective = © ea of heater - lytl1,~1; * ‘

The local Nusselt number was subsequently determined from the known
convective heat flux and surface temperature:

q,

—_— (7.2)
k_(T _-Tg)

Nu =
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7.5 ASSESSMENT OF EXPERIMENTAL'PROGRAMME AND SUGGESTIONS FOR
IMPROVEMENT . . .... . .—oo. . ... .

.The eitréneous heat sources mentioned in Section 7.2-5 were .
the cause of the'maj'or set back to the experimental programme; the
magnitudes of thesé sources were reduced by extensive coéling of the
brushes and slip-rings transmitting the elec£rical power, but they
were still rather large. Despite the attempt to isolate that part of
the disc where the measurements were made from the influence of
the heat sources, the temperature of the rear face of the disc was not
constant and furthermore, different from the front face (heater)
tehperature. AThis was, of céurse, to be expécted since heat conduction
in the disc.pr0qeeded in the.axial as well as the radial direction.
This means that the effects of frictional and extraneous electrical
hgat sources on the disc for a radius larger than 0.30 m were not
entirely eliminated. |

The heat conduction in the disc can, in principle, be
accurately calculated provided the radial surface temperature distribution
for the heated and rear faces are measured. In the present expefiment,
a few temperatures were recorded for reasons explained in the |
following paragraph; consequently, an accurate two—dimensional heat
conduction analysis was not performed.

Forty thermocouples were originally glued in channels flush
with the fibre-glass disc's surface, under the heaters. However, when
the measurements were made only 16 were functioning, and by the time
Run 4 was made only 12 remained in working order. The design of
the apparatus did not allow for replécement of falled thermocouples.
Failure resulted from two main causes: (i) the 40 cold junctions
were spinning in air and were therefore exposed to démage; and, (ii)

since the thermocouple slip-ring assembly had only twelve channels,

a selector switch, rotating with the disc, was incorporated between
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the thermocouples and the slip-rings. The numerous lead-connections
Ainvolved were vefy prone to failure. “

) In vigw of the uncertainty in the heat;flux‘and temperature
measurements, they were not.coﬁsidered accurate enough, to be of use
and oft lasting value. Under these circumstances; and alsoc because ofl
the long time and expeﬁses required, but unavailable, to modify and
improve the apparatus, it was decidéd to curtail the experimental
prograﬁme to four runs onlye.

Further, these runs were restricted to speeds below 800 rpm
because of large vibrations during the start-up period ?t speeds above
800 rpm. A resistance-type starter was'used_in conjunction with the
synchronodus métor to bring the apparatus from rest to the desired speed
in a time interval of 10 seconds. This interval should be extended
to over 60 seconds in order to have a gradual and slow build-up of
speed, and therefore suppress the start-up vibrations.

In retrospect, the experimental programme was not successful
in its main objective: the accurate measurements of surface heat flux
and temperature to determine the local heat transfer rate.

" The existing apparatus will only achieve the aﬁove objective
after extensive modification and reconstruction to: (i) arrange for
a large number of thermocouples to monitor the complete temperature
distribution of thé disc, connected directly to an équivalent number
of slip-rings, with easy access for replacements in case of failure;

(ii) locate the bfushes and slip-rings asse%bly for electrical power
transmission, at present fixed to the back of the disc, away from the
disc, and arrange for extensive cooling; (iii) cool the bearings.

These modifications will undoubtedly present several complex

design problems and it may be, that a new approach to the problem can

be more fruitful. Remote sensors could be placed facing the disc's
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heated face to record both the local temperature and the heat flux;

" these sensors could be automatically traversed in the radial direction
fecordihg acontinuous dist%ibution of heat fluxland temperature.

The existing apparatus would then not require any modifications
wﬁatsoever. The extraneous heaf sources would contribute to the
surface heat flux, and the current to the heaters would be adjusted

“to increase or decrease the heat flux for one or more of the 8 haateré,

and thereby simulate any arbitrary heat flux.
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Local heat transfer measurements for a rotating disc

Heat flux (W/m2)

(Twnqb)degK

wn
o o
- o
—
X
. b
-~ ) Q .
e | S 9 -c @ @ = &
~ [} @ W - U [}
2 + ¥y @ s H
4 @ o [§) . v o W — ~
B2 Ele |88 | & e | 3%
sl 3 1B 1515 |8| 8|5/ 88
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{.245 10.20(11.05
4| .263 ) 12.2 {161.1}42.5 118.6| 7.63] 4.45| 2.17 1.58
275 39.3 | 121.8| 7.24} 4.30} 2.37 1.79
5] .315| 12.5 | 168.4(37.9 130.5| 6.58( 3.74| 3.11 2.41
«329 38.4 130.0f 6.44| 3.56| 3.40 2.56
6] 371 13.2 | 188.8]25.3 163.5| 5.05] 3.16| 4.32 4.64
71 .423 | 11.0 {130.7{13.4 117.3) 3.10| 2.10]| 5.62 6.18
+«448 12.3 118.4] 2.80| 1.88] 6.30 7.32
8 | «+463 | 10.85(126.8|14.9 111.9] 2.90| 1.78| 6.73 6.90

Run 1: T, = 20.75°C, rpm = 458.5
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Heat £lux(W/m2)

(T _-T,)degK
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275 -8.3 | 123.1| 2.48| 3.10 | 2.37| 5.27
5 | .315|11.1 | 132.8|-2.7| 135.5 | 2.46] 2.66 | 3.11| 6.70
.329 -2.9|135.7 2.32| 2.54 | 3.40| 7.43
6 | «371|16.0 | 277.3|26.0 | 251.3 | 4.47| 2.52 | 4.32| 8.05
7 | .423|19.85| 425.6(29.5 | 396.1 | 4.81| 2.60 | 5.62 | 13.45
.448 28.6 | 397.0 | 4.74| 2.60 | 6.30| 14.49
8 | .463(22.0 | 521.5|41.5 | 480.0 | 5.71] 2.60 | 6.73 | 15.03
Run 2: T, = 21.80°C , rpm = 458.5
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Heat flux (W/m%) [(T -T, )degk
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Run 3: T, = 21.00°C , rpm = 781
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Heat flux (W/mz) (Tw—ﬁn)degK
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Run 4* T, =21.00C, rpm=




