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ABSTRACT 

A study of the phenomenology of electrical conduction in single 

crystal alumina platelet and boule slices is described. Crystals of 

8-260 microns thickness, flux and Czochralski grown, and contacted 

with sputtered platinum electrodes were investigated. 

A series of electrical properties of these crystals was 

investigated over the temperature range 600
o
-1500

o
C and an oxygen 

partial pressure range from 1 to 2x10
-2 atm. with d.c. and a.c. 

methods in order to understand the conduction mechanisms. The results 

are mainly exhibited as plots of log 
ad.c. 

versus 1/T at p
o 	

const., 2  

log ad.c. versus log po 
at T = const., and log a(f) and loge(f) versus 2  

log f with T and p
o 

constant. 2  

The a.c. characteristics are interpreted in terms of an electrode 

effect and a bulk effect. The electrode effects are analysed in terms 

of a two layer model, and, with the help of the Kramers-Kronig relations, 

approximate values of the surface layer thickness and conductivity 

are determined. The bulk effect is analysed by a new theory, which 

considers the motion of a charged defect in a periodic potential due 

to the lattice, on which is modulated a longer period potential due to 

interaction with the oppositely charged defects, considered as largely 

immobile. 

The d.c. conductivity dependence on oxygen partial pressure and 

temperature is compared in detail to previous results and interpretations. 
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CHAPTER 1 	INTRODUCTION 

Alumina crystals in the form of ruby have important applications 

in masers and lasers and as substrates in microelectronic devices and 

also as microwave windows in microwave devices. 

They have extremely good electrical properties. However, there 

is no general agreement in the literature as to some of the values of 

their physical parameters, or which are the most important conduction 

processes. 

One is also interested in determining the conduction mechanisms 

involved in single crystal alumina as a basis to understanding poly-

crystalline alumina. This is another very important material tech-

nologically being used for high temperature and high voltage work. 

Polycrystalline material will show the processes present in single 

crystals and also others due to grain boundaries and dislocations. 

Conduction processes may be classified as intrinsic or extrinsic; 

eleCtronic or ionic; if electronic, band or hopping type. 

The published literature still does not allow unambiguous 

decisions as to which of these processes are predominant at different 

temperature ranges in single crystal A1203, and a main objective of 

the work described here is to contribute to resolving these questions. 

Effects at the contacts must also be carefully considered in 

deriving bulk parameters from measurements. It does not seem possible, 

for various reasons, to eliminate them with certainty by d.c. experi-

mental techniques (e.g. 4- terminal measurements). Two main features 

of this work have, therefore, been to exploit a.c. measurements 

of conductivity and permittivity to try to separate bulk and 

electrode effects, and to make a more thorough theoretical analysis 

1 
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of the relationship of a.c. properties to conduction processes. 

A necessary preliminary to the study of electrical conduction 

phenomena in insulating materials like sapphire is a discussion of 

point defects. In a defect free insulator (i.e. a pure, stoichio-

metric single crystal with a perfect lattice), the electrons may be consid-

ered as either bound to the individual atoms so having localized wave 

function or else as located in a filled electron band, having distri-

buted or Bloch type wave function. There is no mechanism for ionic 

species or electrons to diffuse and hence no current can flow. For 

ionic conduction there must be defects and defect migration. Point 

defects are responsible for lattice diffusion which is also often 

termed volume or bulk diffusion. 

In chapter 2, theoretical discussion shows that the ionic con-

ductivity of A1203  should depend on the ambient atmosphere and temperature. 

The principles of calculating the energy levels of the charge 

carriers and the dependence of their densities on atmosphere and temp-

erature are discussed. Later macroscopic relations between the polariz-

ation and the permittivity and conductivity in a sinusoidal field, and 

the idea of complex permittivity are discussed and then the relationship 

between the time response to a step electric field and the variation 

with frequency of the response to a sinusoidal field is developed. 

Finally the well known simple "double potential well" model and "simply 

periodic multiple potential well" model are reviewed and a new "multi-

pair potential well" model (Mason, to be published) is presented. 

In Chapter 3, the design of the apparatus and the experimental 

procedure are discussed. The resistivity of Al203 
is very high and 

ambient dependent as just mentioned. These are the factors to be 

considered in the design of the sample holder in which conductivity 

will be measured as a function of temperature and oxygen partial 
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pressure at d.c. and varying frequency. It must also avoid erroneous 

electrical measurements due to leakage paths and other effects. 

As this was'a new field of research in the Electrical Engineer- 

ing Department at Imperial College, all the required equipment had 

to be either constructed or bought before any conductivity measurements 

could be made. A great deal of time was spent on this preparatory 

work, which is described in detail in the following chapters. 

In Chapter 4 the results are presented. Measurements in the 

c-direction only of conductivity a and permittivity E were made on 

boule sapphire slices and also on flux grown platelets over a temperature 

range of 700°C to 1500°C, an oxygen partial pressure range from 1 to 

2x10 2 atm., at d.c. and at a.c. over a frequency range from 70 Hz to 

5 MHz. 

The results are chiefly exhibited as plots of log ad.c.  vs 
1/T 

at p02 
= const., log ad .c. 	log po 

at T = const., and log a(f) and„ 
uc. 2 

loge(f) versus log f with T and po constant. 2  

In Chapter 5 the results are discussed in comparison to previous 

work and interpretations and in the light of the new theory described 

in Chapter 2. 

Final conclusions are drawn in Chapter 6. 

In the remainder of this chapter a brief outline of previous 

work will be given, but critical discussion of its significance will 

be left until Chapter 5. 

A review of the work up to 1959 was given by Cohen (1959) who 

commented then upon the wide disparities between the results of different 

workers. 

Pappis and Kingery (1961) measured conductivity from 1300°C to 

1750°C at p values from 1 to 10
-10  atm., mostly at 104 Hz, but also 

02 
with two and four-terminal d.c. methods. They claimed little difference 
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between the results of the different methods at the same temperature 

and pressure. They measured the thermoelectric effect at 1500°C. 

Champion (1964) investigated the conductivity of sapphire with 

. 
varying chromium content below 850°C in air employing the two-terminal 

d.c. method which is especially susceptible to surface effects. The 

same remarks apply to the four-probe method of Dasgupta and Hart (1965). 

Harrop and Creamer (1963) used a two terminal method to measure d.c. 

conductivity of pure and chromium doped single crystal alumina between 

800°C and 1500°C, in an unspecified atmosphere, presumably air. 

Matsumura (1966) studied the conductivity and the ionic transport 

number at po 
= 0.2 atm. (air) from 1000°K to 1750°K. He used a three- 

2 

terminal method for conductivity, but without a physical gas phase 

guard, and galvanic cell e.m.f. measurements with a po difference 2  

across the crystal for transport numbers. 

Peters et al (1964) demonstrated that for high resistance materials 

at temperatures above 1100°C the conductivity of the gas phase around 

'the sample can be comparable to or greater than that of the sample. 

Moulson and Popper (1968) have also found gas phase conduction important 

at relatively low temperatures. 

Ozkan and Moulson (1970) devised a three-terminal apparatus 

incorporating a physical gas guard which makes the electrical leakage 

path in the gas phase pass through the cool region of the sample holder 

envelope. All work mentioned here subsequent to that date, including 

our own, has used a similar arrangement. They made d.c. measurements 

in dry air in the temperature range 600-1573°K. 

Brook et al (1971) made d.c. measurements on undoped and doped 

single crystal alumina applying a voltage less than the decomposition 

voltage in the range 1000°C to 1600°C in air. 

Yee and KrOger (1973) showed that the ionic transference number 
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of single crystals of A1203  is unity up to 1450°C and at higher temp-

eratures t. decreases slightly, reaching a value of 0.8 at 1650°C. 

They measured the e.m.f. of a concentration cell with pure 02 
and air 

on the two sides and elimination of thermal e.m.f.'s,surface and gas 

conduction effects. 

The values of conductivity and activation energies reported by 

these workers vary widely. The values of the activation energies are 

perhaps the more important in interpretation. They range from 0.5 eV 

to 5.8 eV. High values are most likely attributable to gas phase 

conduction. The values of 4 to 5 eV reported by some authors cannot 

be' due to intrinsic conduction as sapphire has been found completely 

ionic at least up to 1450°C (Yee and KrOger, 1973). 

It would appear that the wide spread in values for conductivity 

and activation energies reported are most likely due to the lack of a 

standardized procedure in the measurement and in the wide variation in 

impurity levels. However, it also appears that such a method is slowly 

evolving. It is highly probable, on the other hand, that lack of samples 

of a sufficient degree of purity may continue to give widely varying 

results from different sources. 

A great deal less work aimed specifically at the variation of 

conductivity with frequency as well as temperature and oxygen partial 

pressure has been reported. None of it has been done with a physical 

gas phase guard. 

Tallan and Graham (1965) made measurements on pure and doped 

single crystals of Alumina between 10
2 and 105 Hz and between 700° 

and 1200°C, using a 3-terminal technique with no physical gas phase 

guard. They explained their results by an interfacial polarization 

mechanism, with a surface layer up to 4011 thick, having a resistivity 

5 orders of magnitude greater than the bulk. 
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As previously mentioned, diffusion in ionic crystals also 

depends upon defect migration, and some diffusion coefficient 

measurements are of interest to the present work. 

Paladino and Kingery (1962) measured the tracer diffusion 

coefficient of Al in polycrystalline A1203  over the range 1670°  

to 1905°C, using A1-26 as a tracer. They found, by comparison of 

the diffusion data, that aluminium ion mobility is greater than 

oxygen ion mobility, as would be expected from ionic size consider-

ations. 

Jones et al (1969) determined a defect diffusion coefficient 

in single crystal aluminum oxide from 1400°  to 1850°C by measuring 

the movement of the colour boundary in a Ti34-  doped single crystal. 



CHAPTER 2 THEORY OF ELFCTRICAL CONDUCTION IN IONIC SOLIDS 
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Electrical conduction in any material consists of the transport 

of electrical charge by the motion of charged carriers under the 

influence of an electric field. In ionic solids the charge carriers 

are point defects of the crystal lattice. The defect chemistry of 

the solid state deals with the relative densities of differenct 

possible types of defects in a crystal as a function of the ambient 

atmosphere and temperature, and their distribution in the allowed 

energy levels, and this is discussed first in section 2.1. Principles 

of calculating the actual energy levels are then discussed in terms 

of the Born-Mayer theory in section 2.1.3. 

Defect motion also takes place under the influence of a concen- 

tration gradient, i.e. diffusion occurs in solids. The microscopic 

processes involved are closely related to these in conduction, and 

diffusion and d.c. conductivity are therefore discussed together in 

section 2.2. 

In a time varying field, some modes of charge carrier trans-port 

are active that would cease in the steady state (i.e. in d.c. conduction). 

For example, some carrier motions stop after a finite distance in a 

d.c. field due to the carrier meeting energy barriers so high as to 

be virtually insurmountable in ordinary experimental times. The relative 

displacement of oppositely charged carriers in this way results in the 

material acquiring a dipole moment per unit volume, or polarisation, 

which will be time varying in a time varying field. This time varying 

polarisation necessitates that a varying current flow in the external 

leads applying the potential across the crystal, and hence it leads to 

an a.c. conductivity. In section 2.3. the macroscopic relationships 
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between the polarisation and the permittivity and conductivity in a 

sinusoidal field, and the idea of complex permittivity are first 

discussed, and finally the relationship between the time response 

to a step electric field and the variation with frequency of the 

response to sinusoidal fields is discussed. This last topic has 

important application to the calculation of the frequency response 

of models of carrier motion, since it is often easier to analyse the 

model for the step field time response and obtain the frequency 

response from these general relationships. 

The results of sections 2.2 and 2.3. are then finally applied 

in section 2.4 to the analysis of microscopic models of charge trans-

post for their d.c. conductivity dependence on ambient atmosphere and 

temperature and their a.c. conductivity dependence on the same factors 

and additionally as a function of frequency. The well known simple 

"double potential well" model is presented, but in addition a new 

"multi-pair potential well" model 	(Mason, to be published) is 

presented. This predicts much smaller maximum slopes on the log a - 

logco plot than the value of 2 given by the simple double well model, 

and these values are more in accord with general observations and the 

results presented later here. 
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2.1. Defect ChemiLajafSolid State  

2.1.1. liatLzasj:221,2a c,iconduct 

The electrical conductivity, a, is given by 

a = X Cc. e. 

where ci  is the concentration of charge carrier type i, ei  is its charge 

and pa  its mobility. The charge carriers will be point defects. In a 

pure crystal the point defects are: vacancies, interstitials and mis-

placed atoms, while in an impure crystal there are also impurity atoms. 

In addition to these atomic defects, there are also electronic defects: 

the electron and the hole. 

These are the basic defects. There are further point defects 

that result from interaction between these basic types, called associates. 

If the crystal is ionic in character, these defects may ionize by 

losing or collecting electrical charges. ConSider, for example, an oxygen 

vacancy in an ionic oxide. On removing the oxygen atom, two electrons 

are left in the region of the vacancy. The vacancy can then ionize with 

one or both electrons leaving the vacancy. See Figure 2.1. 

M 	0 	m 	0 	m 	0 
r-n 
iml r--1 	r--I 

	

0 	M . 	1 . 	i 0 	I 
I_ ..._ 

I 
i 	M 	Vacancy Vm,V0  

r----. 
M 	0 	M 	1 L I 	M 	0 impurity L 

1...._...! 

0 	M- 	0 	M 	0 	M 

L
---1 

	

M ,M 	0 	1
i 0 1 	0 misplaced atoms M0,0m  ---J 

0 	M 	0 	M 	0 

Figure 2.1.  Point defects in an oxide, MO 

Interstitial Mi  
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Ionization of defects can occur by movement of electrons to 

either higher or lower energy levels and the ionized state may be the 

more stable. Another situation occurs when electrons are thermally 

excited from a lower energy level to a higher one. Point defects can 

occur in thermal equilibrium within the material and hence can be 

treated as chemical species in terms of equilibrium constants and the 

mass action law. 

2.1.2. Formation of Defects and Equilibrium Concentration  

In principle, all types of defects may be present in an oxide, 

but in general, one will predominate. The defect formation may either 

occur internally in the solid or through reactions with the environment. 

There are various rules which must be followed and obeyed in writing the 

correct defect reactions. 

i) The ratio of the number of regular cations and anion sites in 

a crystalline ionic oxide is constant. Thus in a compound MO the ratio 

of regular M and 0 sites is 1:1 regardless of whether the actual composit-

ion is stoichiometric or nonstoichiometric. 

ii) The total number of regular sites may change in a defect reaction, 

and therefore, the defect equation may include the creation or annihi-

lation of sites. No sites are created in the formation of electronic 

defects. 

iii) The defect equation must balance with respect to the mass, namely 

the number of atoms involved in the defect reaction must be the same 

before and after the defect formation. Vacancies have zero mass. 

Electronic defects do not affect the mass balance. 

iv) The compounds are electrically neutral. The total effective charge 

is the same before and after the formation of defects. 

The symbols and system used by KrOger and Vink will be employed 

in this thesis. In this system the type of imperfection is indicated 
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by a major symbol and the site occupied by a subscript. Effective 

charges are shown by superscript, where a cross, x, means a normal 

atom with zero effective charge, a dash, i , shows a negative effective 

charge and a dot, ., shows a positive effective charge. Negative - 

and positive + designate real charges. The neutral indication is 

sometimes omitted. For electrons and holes the effective and actual 

charges are the same. 

Schottky disorder: This involves the presence of equivalent 

amounts of cation and anion vacancies. If one starts with a pair of 

cations and anions on regular sites within the crystal MM  and 00, in 

writing the reaction one must also take into account that the formation 

of a Schottky pair results in the formation of two new lattice sites; 

hence 

# 	44, Mm  + 00.-4,== Vm  Vo  + Mm  + 00  (2.1) 

in this equation MM and 0
0 
 may be cancelled and the net reaction becomes 

0 	VM + V0 
	

(2.2) 

Frenkel disorder: In the formation of a Frenkel defect pair, a 

cation on a normal site is transferred to an interstitial position and 

no new lattice sites are created. 

MME m"i 	v" 
	

(2.3) 

Under conditions where a crystal is in equilibrium with the partial 

pressure of one of its components in an atmosphere above it, adjustments 

of the partial pressure will alter the composition of the crystal. Taking 
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as an example a binary oxide, MO, under equilibrium conditions so that 

the chemical potential of oxygen in the gas phase and in crystal are 

equal, we are saying the variations in oxygen pressure p , will cause 
02 

variations in the ratio M:0 in the solid. To see this, first suppose 

at the value pi where the oxide is stoichiometric so o
2 

p
o2 

to be fixed 

that [M] Total - [01 -Total. 	bq  Total is the overall M concentration to 
contributing terms such as 	and 

E40 1. If po 	Tot is increased CO] al  will be increased relative to 
2 

 

The excess oxygen is incorporated by-defect reactions. Two 

of the many possible mechanisms are the incorporation of 0 atoms in 

interstitial positions according to 

1 x V
1 2 

V. 4. -- 0 (g) -->- 0.1x  2  
(2.1+) 

or incorporation onto 0 sites with creation of M vacancies according 

to 

1 02 
 
( 
61---* 

OOx 
 VWC 

	
(2.5) 

00x  has real charge 0
= and V has real charge VM 	The mass action 

law (see appendix 1) may be applied to these reactions and it follows 

that 

M = ph. 
02 

(2.6) 

PJTotal 

or 

[V xj  = K 
M 	2 02 

(2.7) 

showing that the defect concentrations depend on the environmental oxygen 

pressure. In writing these equations it has been assumed that the defect 
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concentrations [0.1 andK7] are small and hence the concentrations 

[V.x] and[0(lof the normal lattice constituents are essentially constant. 

If p
o2 falls below pi , an oxygen deficit occurs in the crystal 02  

which may, for example, be achieved as follows; 

2 
I 0 0

o
x  --> 	x  

2 
(g) V 

0 (2.8) 

V
0  x  is neutral because two electrons are left bound at V0, maintaining 

the lattice nuetrality. 

In this case the defect concentration dependence on p is 
02 

[V 	= K3  p 1 0 	3 o2 
(2.9) 

The existence of an impurity, L, in solution in a crystal, MO, 

gives rise to point defects which may be substitutional (L Mx  or L0  x) 

orinterstitial(L.x) or both. These defects may also occur in the 

ionised form. The impurity may occur in quasi-equilibrium or complete 

equilibrium. In the former, the impurity is a species having low volatility 

and the crystal contains a fixed total quantity of the impurity which 

may be divided into a number of different defect types, for example 

[LI
Total = Constant = 	xi 	U, 	(2.10) 

In the complete equilibrium situation, a partial pressure of the impurity 

is maintained in the atmosphere in equilibrium with the concentration 

of impurity in the crystal. Some simple possible reactions for the 

incorporation of the impurity are as follows: 



11+ 

L(g)---> L
b
x + V

M 
	 (2.11) 

L(g) 	Lmx  + Vo  x (2.12) 

L(g) 	Lix 	 (2.13) 

The mass action law may be applied to these equations to give the con-

centration dependence of the impurity defect in the crystal on the 

partial pressure of L in the atmosphere. 

In an ionic oxide, the effectively neutral oxygen ion, 00x, carries 

a real charge, 0, so that its movement would apparently imply charge 

transport and hence conduction. However, as an 00  x 
 moves one way, a 

vacancy moves the other. If the vacancy is effectively neutral, Vox  

it carries a real charge of -2 (from two localized electrons) so that 

exchange with the oxygen ion has 67 moving one way and two electrons 

localized at a vacancy moving the other, with no resultant charge trans-

fer. In order to produce any charge transport by their motion, defects 

must carry an effective charge relative to the lattice. 

Consistent results are achieved either by working with real charge 

or with effective charges. The latter is mostly adopted here because it 

shows readily the effect of defects on the overall charge neutrality of 

the crystal, as well as indicating where coulombic interactions are 

possible between defects. 

All defects formed may ionize. For example, oxygen vacancies act 

as donors and become singly or doubly charged. Consider the defect 

reactions 

00  V 0' 0 	
1 4- -2- 02  (2.14) 



et 

followed by 

Vox T Vo' 	e/ 
	

(2.15) 

I 

If Vo' ionized once more 

Vo' 	Vo 	e/  

Or combining the equations (2.14), (2.15) and (2.16) yields 

1 00 	V0  " 	7 02 2e/  

(2.16) 

(2.17) 

Next consider the following defect reaction in a metal deficient oxide. 

A metal vacancy may be formed through the reaction of oxygen with the 

oxide 

7  02  = VMx ± 00 
	 (2.18) 

If V ionizes one or both of the holes then this is represented 

as 

VM = V/ 	h' 
	

(2.19 ) 

and 

V
M  VM 

 h" 
	

(2.20) 

Combining the equations (2.18), (2.19) and (2.20) one gets 
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1 -2- 02  . Vm 	00  2h. 	 (2.21) 

The above examples of ionization reactions lead to charged point defects 

and (charged) electronic defects, both of which can act as carriers, and 

so in general would lead to mixed, i.e. electronic plus ionic, conductivity. 

However in many materials at ordinary temperatures the electronic 

defect mobility is much higher than the ionic defect mobility and these 

reactions still lead to the observation of almost pure electronic conduction. 

Pure ionic conduction may be observed as the temperature is raised 

if the electronic mobility is very low and the ionic mobility increases 

more rapidly with temperature. 

It may also be observed if the charged defects are formed by reactions 

which do not produce electronic defects. There are many possibilities 

for this to be achieved by the incorporation of impurities of valency 

different from the pure crystal constituents. It could also be achieved 

in a pure crystal by the formation of Schottky or Frenkel defects, as 

discussed for MO in section 2.1.2. 

In principle also, a mixture of Schottky and Frenkel defects could 

occur, plus the possibility of interchange of ions between sites (Anti- 

structure) (KrOger (1964) p. 411, Van Gool (1966) p.57) but in practice 

one type will usually predominate in a given situation, due to the 

differences in free energy of formation (see section 2.1.3). 

This situation in which the ionic defects are produced in pairs 

without impurities being involved may be referred to as intrinsic ionic 

conductivity, while when the presence of impurities is involved (to give 

the necessary charge balance without electronic defects) the conductivity 

produced may be called extrinsic ionic. Again, the situation may change 

from extrinsic to intrinsic with rising temperature if the concentration 

of defect pairs produced by the intrinsic reaction becomes overwhelmingly 
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greater than the impurity concentration. 

2.1.3. Energy band struc 

In a single atom, the possible states for electrons occur at 

distinct and separate energies; as the atoms are brought together 

to form the solid, those electron states which do not overlap with the 

neighbouring atoms remain as narrow local levels so that electrons in 

• 
	 these states are localized around particular atoms in the solid. The 

outer electron states of the individual atoms which overlap with their 

neighbours, are transformed into a set of new states in the solid which 

taken together cover a band of energy values. The extent of overlap of 

the electron states on the individual atoms, determines the width of 

the energy band; this width is the range of energies covered by the 

electron states in the solid contributed by the one particular level of 

the free atoms. The overlap also influences the size of the energy gaps, 

which are ranges of energy for which there are no electron states in 

the solid and which are as a consequence inaccessible to electrons. 

The outer occupied-level in the isolated atom forms the valence band 

in the solid; the lowest unoccupied level in the isolated atom forms 

the conduction band. The gap between the two is the band gap (Fig. 2.2). 

In a band, the electrons are not localized and move through the 

crystal as free electrons subjected to a small perturbing potential 

provided by atoms on their sites. Electrons may also exist in states 

localized around particular atoms and move by jumping from the pot-

ential well around one atom to that around another. The electron 

mobilities for the two types of motion are very different. When a 

defect is added to the crystal, it destroys the periodicity locally 

and introduces such local electron states, which are different from 

the perfect crystal states and may lie Within the band gap. Whether 

these states are occupied by electrons or not depends on the particular 
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Fig. 2.2(a) 	Electron energy state in an elemental 

solid as a function of interatomic spacing. 
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Fig. 2.2(b) Electron energy states at equilibrium inter-

atomic spacing ro, are plotted against a 

general space co-ordinate in the solid. 
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defect. If the neutral defect provides an occupied level within the 

band gap, then it is termed donor-like since the electron occupying the 

level can be donated to a state in the conduction band; if the neutral 

defect provides an unoccupied level in the gap then it is termed acceptor-

like, since an electron may be excited from a state in the valence band 

of the host into the defect level. 

Let us illustrate these considerations by an example, for which 

it is convenient to choose an ionic compound; since the electrons are 

predominantly associated with particular ions, the electron band that 

an electron occupies can be described in terms of the ion to which the 

electron is attached. Let us consider an ionic oxide, MO (Brook (1974)). 

For the oxygen ions, d, the inner electrons occupy distinct local 

levels in the solid, whereas the outer electrons, by partially interacting 

with other 0 ions give rise to an electron band. The energy of the 

highest occupied band arising from the oxygen ion level is given by the 

energy of the reaction 

0-  (lattice) + e (free space) —a- 0=  (lattice) 	(2.22) 

which is the energy needed to attach the outermost electron to the oxygen 

ion in the solid. The energy for this equation (2.22) contains three 

main terms: 

(1) the electron affinity of the 0 ion which is EA, the energy of 

the reaction 

0 (free space) + e (free space) -3g- Cr (free space) 	(2.23) 

(2) the electrostatic energy, EM, gained by adding an electron into 

the positive potential region in the unrelaxed crystal 
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* 

e (free space)--›- e (vacant anion site) 	(2.24) 

(3) local_ion movements following reaction (2.24), which reduce the 

electrostatic energy contribution by an amount Ep. 

In sum, the energy of the band measured with respect to an electron in 

free space is 

E
0 	

E
A 
- Em  + Ep 	 (2.25) 

The convention is to label a band or level with the species that is 

formed when the level is occupied; Eo. thus gives the approximate energy 

of the 0
7 

band. Similarly the outer electrons of the cation M
++ 

 will 

give rise to bands. The energy of the highest occupied band arising 

from the cation level is given by 

M+++ (lattice) + e (free space)-4.M
++ 

(lattice) 
	

(2.26) 

which is the energy needed to attach the outermost electron to the cation 

in the solid. For a non-transition metal ion, this is 

E
m
++ = 	E + E

m 	
E 
	

(2.27) 

where E
I 
is the third ionization potential of the metal M, and where E 

enters with changed sign since the electron is now added to a region of 

negative potential within the crystal. 

The highest occupied band at absolute zero temperature is fully 

occupied in MO and is the valence band. Since the 0 and M++  bands are 

the highest occupied bands contributed by the constituents of the oxide, . 
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the nature of the valence band depends on the relative values of Eo= 

and Em++. 

The conduction band in MO is the lowest empty band and could in 

principle be either the next higher oxygen band or the next higher 

cation band. These have energies given by 

= 
0
= 
(lattice) + e (free space) 	(lattice) (2.28) 

and 

M++ (lattice) + e-  (free space) --> M
+ 
(lattice) 
	

(2.29) 

The electron affinity of 6.2  is large and positive, so Em+ <Eos, and 

M+ band forms the conduction band. 

A similar technique can be applied to the location of a defect 

level within the band gap provided the electron is strongly localized 

around the defect. 

So far we have considered the perfect lattice; turning to defects 

V0 x  and M. act as a donor/  - VMx  and O.
x act as acceptors. Substitutional 

impurities generally act as donors or acceptors depending on whether they 

have more or less valence electrons than the species they replace. 

So far we have discussed the consequences of the periodic structure 

of the perfect crystal and the presence of the point defects in producing 

a set of energy levels in which the electronic defects may be distributed. 

The same question must now be considered for the point defects themselves, 

since they act as the charge carriers when the conductivity is ionic. 

In section 2.1.2. it was pointed out that the Mass Action Law 

may be applied to relate the equilibrium ratios of the concentrations 

of a set of defects which may participate in a defect reaction to the 

reaction constant K. However, in order to calculate the absolute con-

centration of the various defects and the variation of K with temperature 
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it is necessary to calculate the energy of formation of each type of 

defect relative to the perfect lattice. These may be thought of as a 

set of energy levels for the ionic defects, analogously to the energy 

levels for the electronic defects. 

Further, the energy of formation of a particular defect will vary 

with its proximity to other defects, particularly if they carry a 

charge of opposite sign. In principle, therefore, a defect, for example 

a cation vacancy, will have a whole series of formation energies depending 

on how many lattice sites it is away from, for example, oppositely 

charged anion vacancies. 

Usually, however, the energy of formation is taken to refer to the 

energy needed to form the defect in the perfect lattice with no other 

defects present. This is of course the limiting value of the series just 

discussed where the charged defect is considered associated with the 

charge compensating oppositely charged defect. 

The general principle of calculating the energy of defect formation 

is to find it as the difference between the complete energy of formation 

of the perfect lattice and the energy of formation of the lattice con-

taining one of the required defects. 

In order to illustrate the method we follow the presentation given 

by Swalin (1962), of the calculation for a vacancy. 

The lattice energy of the crystal, Wx, is given by the reaction 

Mt (g, 1 atm) X (g, 1 atm) = MX (s, 1 atm) 

and may be found as follows: 

In an ionic crystal, the forces holding the ions together in the 

crystal are coulombic in nature. Thus the energy of two univalent ions 

separated by a distance r is 

I 
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e2  W
a 
= — 

r (2.30) 

where e is the electronic charge. A given ion is not affected by only 

one ion but by many. The net coulombic energy of this ion in the crystal 

is thus the sum of the repulsive and attractive interactions with all 

the other ions which may be written 

• 
2 

W
a 

= - A 2-- 
r (2.31) 

where A is the Madelung constant. When the ions approach each other 

closely a strong repulsive interaction Wr  occurs. This repulsive term 

is not as easy to calculate as the attractive term. In order to evaluate 

this term Born assumed an exponential relation of the type 

B 
r 

where B and n are-constants for a given system. The total lattice energy 

for N
o positive ions and No negative ions is 

A 2  B N  W = N
o 
(W
a 
+ W

r) = No (- re 	
) 

r  (2.32) 

at!  
The equilibrium atom spacing will be ro, where 37 _ 0. Therefore, 

differentiating equation (2.32) with respect to r, setting the result 

equal to zero, and solving for B, we find 

B  A e2 ron-1 

n 
(2.33) 

Substituting equation (2.33) into (2.32), we find 
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N Ae2  
(W) 	_ 	o

r 	(1 - 4  
X=Ir 	- 

o 

(2.34) 

Since there are No atoms in the crystal, the binding energy per atom 

is 

A e2 W = 	(1-1)  ro 
(2.35) 

The process of vacancy formation on the cation sublattice may be divided 

into three steps: 

(i) le (interior of crystal) = le(g) 	W1 

(ii) le(g) = le (surface) 	W2 

(iii) Relaxation of atoms around vacancy 3 

The energy for the process (i) is the negative of equation (2.35). 

Thus 

A e2 W = 	(1 - 1 

0 
1 r 

(2.36) 

Upon completion of process (ii), one-half of the energy expended in process 

(i) will be regained. Thus 

W2 
= A e2 (1  

2 	2 ro  
(2.37) 

The energy for vacancy formation, excluding relaxation of atoms around 

the vacancy, will be (W1  + W2) or 

2 1 W + W = A e 	
(1 - 3,7) 

1 	2 2 ro  
(2.38) 

Let us now examine what happens in the region of the crystal where the 
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vacancy has been created. This is shown schematically in Fig. 2.3. 

In most ionic crystals, the nearest neighbours to a cation will be 

anions. Removal of the positive ion will have the same effect on the 

neighbours as the substitution of a negative charge. The interatomic 

distances in the crystal are governed by the balance of positive and 

negative charges. Removal of a positive ion will allow positive ions 

surrounding the vacancy to relax inward because of repulsion from 

neighbours surrounding the ions. Conversely the negative ions will 

move outward. This will result in polarization of the ions in the 

vicinity of the vacancy since the field about them is now asymmetric. 

The vacancy behaves as if it has negative charge. The cation vacancy 

in the crystal is treated as a spherical cavity of charge -e inside a 

homogeneous material of dielectric constant . The radius of the 

spherical cavity will be the radius of the positive ion R.I.. The exist-

ence of the charge -e in the cavity will result in the polarization of 

the material around the cavity. Jost calculates the polarization energy, 

using classical dielectric theory, to be given by 

2 1 
W
P+ 

= 2 R+ (1 - zr) 
(2.39) 

The energy of vacancy formation will thus be reduced by Wp  upon polar-

ization. The energy of vacancy formation is therefore 

e2 
2 

W
V
+ 	

2(R+  e
+ R) (1 - 1) 2 eR+ (1 - - 	n  

(2.40) 

In this equation the interatomic distance ro  has been replaced by the 

sum of the radii R + R . Similarly, the energy of formation of an anion 

vacancy is 
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Figure 2.3. 	Relaxation of atoms around vacancy 

in an ionic crystal. 
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e2 	2 
W 	A 	

- 	- —2 i)  V 
2(R 	R ) 	n 	2 R  

(2.41) 

The polarization term may be very important and, in fact, may reduce the 

defect formation energy by several electron volts. 

The method described above is in essence the Born-Mayer theory, 

except that this theory uses a repulsive potential given by 

W = Be -r/P  

which is known from wave mechanical considerations to be more appropriate 

than the original suggestion of Born described here. 

This approach has been used with considerable success in alkali 

halides, and even extended successfully to the calculation of association 

energies between a vacancy and a substitutional cation impurity (Bassani 

and Fumi, 1954). 

It has so far however been less successful in the case of metal 

oxides (Boswarva, 1967). This is believed (Boswarva, 1967) to be due 

to the fact that the short range oxygen-oxygen ion interaction energy 

cannot be described accurately by either Br -n  or Be-rip, rather than to 

any basic error of the method. This difference in the form needed for 

W
r 
arises because the less ionic nature of the bond in metal oxides means 

that the outer electron shell of the oxygen ion approximates less closely 

to being closed. 

2.1.4. Population of bands and defect states  

At temperatures above 0°K, it is possible for electrons occupying 

low levels to be thermally excited into higher empty levels. Each 

excitation from the valence to the conduction band for example will give 

rise to a free electron e', in the conduction band, and free hole, h.,' 

in the valence band. Using chemical representation for defect reactions, 
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and since the number of electrons in the valence band and of un-

occupied states in the conduction band are virtually unchanged, we 

may for small defect concentrations write this process as 

e
x 
valence 

+ hx 
conduction --- conduction 

e. 	+ h°
valence 	(2.42) 

band 	band 	band 	band 

and by the mass action law 

teahl = n p = Ki  

where 

-AE. 
K. = C exp ( 1/kT) (2.44) 

andAEi  is the band gap. 

The electronic species are assumed to have negligible mass, so that ex  

and hx  in equation (2.42) and others can be dropped. Then (2.42) can 

be rewritten 

0 	e' + h 
	 (2.45) 

If the process (2.42) dominates other electron and hole formation 

processes, and the concentration of charged atomic defects is small, 

then charge neutrality may be achieved by equal concentration of electrons 

and holes 

(2.43) 

n = p 
	 (2.46) 



K = K exp (- --- x 	x 	kT ) 

Ex  
(2.51) 
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which is the condition for intrinsic electronic disorder. 

If electrons and holes are generated predominantly by the ionis-

ation of defects, then the electronic carriers are extrinsic. Electrons 

arise by excitation from donor defects, e.g. 

m. x 	e, 
1 

[M7] n 
+ M.' 	(2.47) 1  1x - Km .x  (2.48) ; 1 	 m.  

and and holes arise by excitation of electrons from the valence band into 

acceptor levels, e.g. 

1 x 	h' + 0. 	 (2.49) 

by the mass action law 

E0/.1 p 
	- K x 0. (2.50) 

The various equilibrium constants are given by expressions of the type 

where21Ex 
is the energy separation between the defect level and the 

energy band involved in the excitation. According to semiconductor 

type statistics (Kofstad 1972) the number of electrons in the conduction 

band 

eat  
n = ( 	 

h2 	
exp - (Ec  - EF),/kT (2.52) 

and the number of holes in the valence band 
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8n )21(1. kT 3/2 	E - E 
F V  

P - 	exp - ( 	) kT 
h2 

(2.53) 

where me,and mh. are the effective mass of the electron and hole 

respectively. Then the equilibrium constant 

8n mx, kT 3/2 8n mx° 	C 	V \ 
kT 3/2 	E - E 

K. = np 	( 	e
2 	

) 	( 	h 	) 	exp - ( 	 (2.54) kT h 
 

The product np is constant at a given temperature. 

Whether a given level is occupied or not depends not only on its 

location in the band diagram but also on the.Fermi level, EF, in the 

solid. From Fermi statistics, the probability that a given level, 

energy E, is occupied is given by 

P(E) _ 1 '  
E 	 (2.55) 

1 + exp ( 	 kT 

For E = E p(E) 1 
F' 

The position of the Fermi level on the band diagram depends on 

how many electrons are available for filling the levels. In general, 

reduction processes, which are removal of oxygen atoms from the crystal, 

leaving electrons behind, increase the electron concentration and raise 

the Fermi level; and oxidation processes lower the Fermi level. 

We can assume small concentrations of defects so that activities 

may be replaced by concentrations in the mass action equations. 

Similarly to section 2.1.3 where we firstly discussed the energy 

level structure for the electronic defects and secondly for the ionic 

defects, we now go on to discuss the distribution of the ionic defects 

among the available levels. 

Since the ionic defects are massive particles, their behaviour 

is described by Maxwell-Boltzmann statistics. 
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Fig. 2.4 The Fermi-Dirac distribution function; the probability, P(E) that an electron state 
of energy, E, will be occupied is shown for two temperatures. 
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th 
For the 

. type of defect there will be a set of k energy 

levels W. 	j = 1 	k. By this we mean that there are k different 

types of site which the defect of type i may occupy, each with a 

different energy. There will in general be different number densities, 

N., of each type of site. 

The probability f. of an ion occupying a site of energy W.. is 13 

given by 

exID 1 le103/ 

	 (2.56) 

where A is a constant to be evaluated, as explained below. 

th 
The number density of ions in the 

. type of site will therefore 

be 

/1.
J  =

Ni. 	exp 	1AT-3/la) 	 (2.57) 
J 	3.  

Ifthefactorsli.andW..are known, then the values of A and 

hence n. may be determined from the two conditions 

k 

n. = c 
	 (2.58) 

j=1 	1  

and 

k 

N. = Ns  
8  

(2.59) 

where c. is as before the total concentration of defects of type i and 

N
s 

is the total number of sites available to them. 
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.2.2. Diffusion and d.c. Conductivia 

2.2.1. Macroscopic description of diffusion by Fick's Laws and  

Their Microscopic Basis  

Experiment has shown (Kofstad, 1972) that diffusion in solids 

obeys Fick's Laws, the first of which is 

8e j 	- D () 
ax t (2.60) 

where j represents particle flow rate per unit area of the diffusing 

)c t 	/ species across a plane, c is the concentration at the plane, ■ /x/
t 

is the concentration gradient normal to the plane, and D is called the 

diffusion coefficient. The minus sign implies that the flow takes 

place from regions of high to low concentration. 

The second law is a direct mathematical consequence of the first 

and of the conservation of the diffusing particles. It describes the 

situation when c is a function of time also, and the equation is (Kofstad, 

1972) 

8c 2  nde 
-37 ax2 

(2.61) 

However, this law will not be much used in this thesis. 

Fick's first law may be derived as follows (Kofstad,1972) let us 

consider a series of parallel planes separated by a distance a. Let 

two neighbouring planes lie 1 and 2, and the volume concentrations of 

particles in the plane be cl  and c2  respectively, with c14( c2  and a 

dc 	de corresponding concentration gradient -u, so that c2  = el  + a (.). The 

number of particles per unit area in the plane 1 and 2 are given by 

act and act 
respectively, and the particles in planes 1 and 2 may jump 

from one plane to another at a jump frequency p. The particles in 
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plane 1 have an equal probability of jumping to plane 2 or to the 

neighbouring plane in the opposite direction. The total number of 

particles jumping out of plane 1 per unit time is Imo]:  As the 

particles may jump in one of two opposite directions, the number of 

1 
particles jumping from plane 1 to 2 is given by 7  pact. Similarly, 

the number of particles jumping from plane 2 to 1 is given by 

-2- 1 	
1 	 ,dc‘l 

pc2a = 7  p [ c1a + a2  v,Ti-J 

The difference in jump rates is equal to the net flow of particles 

	

2 dc 	1 	2 do j  = 	p ac, - ,-n 1 	1  (c a + a — dx)  = 	P 
a 

Comparing equations (2.60) and (2.62) we get 

D = 2 
 p a2 

(2.62) 

(2.63) 

for one-dimensional flow. D has units cm
2/sec. If one considers a 

large number of jumps, n, between neighbouring planes which occurs 

during time t, then 

P 
	n 	 (2.64) 

and substituting this value in equation (2.63) 

2Dt = n a
2 	 (2.65) 
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2.2.2. Diffusion Mechanisms and Models 

Lattice diffusion takes place through the movement of point 

defects. The presence of different types of defects gives rise to 

different mechanisms of diffusion. The important ones are illustrated 

schematically here. 

Vacancy Mechanism: The diffusion is said to take place by the vacancy 

mechanism if an atom on a normal site jumps into an adjacent unoccupied 

lattice site. This is illustrated schematically in Fig. 2.5. It 

should be noted that the atoms move in the opposite direction to the 

vacancies. 

Interstitial Mechanism: 	If an atom on an interstitial site moves to 

one of the neighbouring interstitial sites, the diffusion occurs by 

an interstitial mechanism. This is shown schematically in Fig. 2.6. 

Such a movement of the interstitial atom involves a considerable dis-

tortion of the lattice, and this mechanism is probable only when the 

interstitial atom is smaller than the atoms on the normal lattice 

positions. 

2.2.3. Motion of Charged Defects in an Electric Field  

When an electric field, E, is applied across a crystal, a force 

is exerted on all the charged particles. If an ion or a defect has 

a charge qi, the force Fi  is given by 

F.
1  = qi  E 
	

(2.66) 

This force causes a directional transport of the charged particles in 

addition to their random thermal motion. For low enough fields, the 

resulting current density is given by 

J.
1 
 = a.

1  E 
	

(2.67) 
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Fig. 2.5 	Vacancy diffusion in solids 
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Fig. 2.6 
	

Schematic illustration of interstitial 

diffusion in solids 
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where a. is the conductivity of particles of type i. If a crystal 

contains different types of charged carriers, the total current 

density J is given by 

J = a E 	 (2.68) 

where a represents the total electrical conductivity, and is given by 

= Z. a. 1 

Also a. is related to a through 

a.=t. 
	 (2.69) 

Where t. is called the transference or transport number of the species i. 

In an inorganic compound the total electrical conductivity is given by 

the sum of the electronic and ionic conductivities, 

a=c1. -1- (1 	= 	(t. 	 (2.70) 
ion 	 ion 

where t.  and tee 
 represent the transference numbers of ions and electrons 

ion  

respectively. It may be noted that tion teL  1. The current density 

J. of the particles of type i, is related to their drift velocity, v., 

through 

J. = c. q. v. = c. z. e v. 
1 a. a. 1 1 

(2.71) 

where c. is the concentration of the particles and z. is the valence. 

The charge mobility pa  is defined as the velocity in unit electric 



field 

v. 
1 

= (2.72) 

-4R 

so that the conductivity is also given by 

a. = z. e c. 1 1 1 i 
(2.73) 

2.2.4. A Simple Model for Ionic Mobility and Conductivity  

A simple model, which relates the mobility of the defect to the 

height of the energy barrier it must surmount in moving between equivalent 

neighbouring sites, has long been used in the theory of ionic conductivity 

(Karstad, 1972). 

Once again as in section 2.2.1. a series of atomic planes at spacing 

a is considered. In jumping from a position in one plane to an equivalent 

site in the next, a defect has to surmount an energy barrier of height 

AW, as shown in Fig. 2.7. In the absence of any applied external perturb-

ation, a carrier in any plane has a probability per unit time of jumping, 

or an average jump frequency, of p, which is given by 

p = A exp (- 410107kT) 	 (2.74) 

where A is a constant related to the frequency of the highest active 

lattice vibration mode of the crystal at temperature T. The number of 

defects jumping from plane 1 to 2 and from 2 to 1 per unit time per 

unitvolumeareequalandareeachgivenby— 
1 pc.a. In a homogeneous 
2 

system there will thus be no net transport of particles. 

If an electric field E is applied normal to the planes, a force 



a 

4 z.e a E 	 1 	,•-‘ 
2 

N 

z.1
e a E 
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z. e E is exerted on the defects, and accordingly the jump frequencies 

of the charged defects are changed. The jump frequency in the positive 

direction will be enhanced by the factor exp (zi  e aE/2 kT) and in 

the negative direction it will be decreased by the factor exp (zie aE/2 kT). 

As illustrated in Fig. 2.7 the electric field may be considered to cause 

a decrease in activation energy for migration in the positive direction 

by zie a E/2 and an increase by the same amount in the negative direction. 

The net flow of particles is given by 

Figure 2.7.  Effect of electric field in a homogeneous crystal 

zie a E 	z.e a E 
j 1 = 1Fp ci a2 lexp 

( 12 kT) - exp ( 12 kT ) 	(2.75) 

and for weak fields z. a E 1. 2 kT 1 

z. e E 
j p a2 ci 2 kT (2.76) 

The net flow of particles may also be expressed by 

j 	c. v. = c. 	E 1 1 1 1 

comparing equations (2.76) and (2.77) one sees that 

(2.77) 
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z.e a2 p 
1 

 

(2.78) 
- 2 kT 

  

  

and hence by substituting (2.78) in (2.73) that 

c. z.2 e
2 a2 

a. 	c. z. e= 

	

1 1 1 1 	 2 KT 
(2.79) 

In view of equation (2.74) p and hence 111T and aiT are all 

activated with energy AW0, the inter-site barrier height. 

In addition, however, one must remember that the defect concen-

tration c. also varies with temperature and the activation energy of 

c. is therefore added to that of p when considering a. 
1 

2.2.5. The Nernst-Einstein Relationship between la and D  

The above simple derivation for µi  may be combined with the 

considerations of section 2.2.1. to yield the Nernst-Einstein relation-

ship. Combining eqns. (2.78) and (2.63) one sees that 

e1  z. 	- Pi  

D. 	kT 
1 

(2.80) 

which is the required relationship. 

One may note that all the parameters of the particular microscopic 

model which was used have been eliminated in this relationship, and 

indeed by general thermodynamic arguments it may be shown to be 

universally applicable regardless of the model used for calculating 

v. and D (Shewmon, 1963). 

Experimentally determined diffusion coefficient are usually 

expressed as 

D = D exp (- Q/T) 
	

(2.81) 
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where Q is called the activation energy. 

From (2.80) one sees that the activation energies of 1AT and 

D should be the same, while from (2.79) the activation energy of oT 

is increased above their common value by the activation energy of ci. 
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2.3. Macroscopic Description of Time Varying Electrical Properties  

It was mentioned in the introductory paragraphs of this chapter 

that the occurrence of polarization due to the movement of charge 

carriers over limited distances is significant for the frequency 

variation of conductivity and the time variation of currents under 

constant applied potential. Hence in the next section we revise the 

formal macroscopic ideas of polarization, susceptibility and permittivity, 

and go on in subsequent sections to review the ideas of complex per-

mittivity and conductivity, their relationships to ordinary permitt-

ivity and conductivity, and to the time response of the material to a 

step function field. Finally the relationship between the real and 

imaginary parts of complex parameters is discussed. 

2.3.1. Polarization, Susceptibility and Permittivity  

These basic ideas will be described by referring to a parallel 

plate capacitor, as shown in Fig. 2.8, 

consisting of a pair of plates area A spaced 

distance d apart, across which a potential V 

is applied, resulting in total charges +Q 

being stored on the plates. Hence the capa-

citor has capacitance C = Q/V. For this 
x  =  

discussion of principle , we shall neglect 

fringing effects and assume that a uniform 

field E is set up between the plates. 

It is well known that if a dielectric medium is placed between the 

plates the capacitance will be increased to C' = E'C, where CI  is known 

as the (relative) permittivity of the medium. It will be shown in this 

section that this result may be explained on a macroscopic basis by the 

simple assumption that every elemental volume of the material takes up 

a dipole moment per unit volume, or polarization, P, which is given by 

Figure 2.8 
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P = E X.'E where E 3e is a constant called the absolute susceptibility 

and Xis the relative susceptibility. 	is a constant occurring 

in the M.K.S. system of units which is called the permittivity of free 

space and has the value 8.854x10-12 F/m. 

Considering the empty capacitor, the charge densities on the 

inside surfaces of the plates are 

+q= 
	

(2.82) 

By Gauss Theorem of Electrostatics (i.e. eventually as a consequence 

of Coulomb's Law) the field due to a surface charge density q on the 

surface of a conductor is perpendicular to the surface and of magnitude 

q/2 0, and hence in the space between the plates, adding the contributions 

from the two plates, it follows that 

E = 	= Q/A(7t. 	 (2.83) 

By the definition of V in terms of E it also follows that 

E = V/d 

Combining these equations it follows that 

Q Eo A 
V d 

(2.84) 

(2.85) 

and since Q/V is the definition of capacitance C then 

C Eo A 	 (2.86 ) 



-Qb  = -qtdxdy 

Figure 2.9 
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for the empty parallel plate capacitor. 

Now consider the capacitor filled with a medium. Consider a 

volume element dxdydz of the medium, as shown in Fig. 2.9, which takes 

up a dipole moment Pdxdydz under the influence of a field E where we 

assert, as mentioned above, that 

P = E XiE 
	 (2.87) 

If the dipole moment is due to the separation of "bound" charges 

through a limited distance then if + qt  are the bound charges per unit 

area appearing on the upper and lower elemental faces of area dxdy, 

then the dipole moment of the volume element is also given by (qtdxdy)dz 

and it follows that 

q
b 
= 
	(2.88) 	 +Qt = +qtdxdy 

If now we consider the piling up of 

the elemental blocks until they fill the 

capacitor as shown in Fig. 2.10, then 

clearly there will be a charge density qt  

over the whole face of the dielectric 

facing the metal electrode. (The charges 

+ qt  on the neighbouring faces of elements 

piled in the z-direction add to give zero 

volume charge density.) 

If the potential difference between the plates is maintained at 

the same value as for the empty case, then the field E = V/d also still 

remains the same. However, this field must _still, according to Gauss' 

Theorem, be given by 
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E = 2(q/2 Ed 	(2.89) 

-(qu 	q ) 
where q is the total sheet charge density 

•Ite"°"" - 
at the interface of the metal elect- 

1 	'd 
rode and the dielectric. Hence it 

is clear that extra charge numerically 

equal but of opposite sign to qb  is stored 
	Figure 2.10 

on the metal surface in addition to the 

previous charge stored with no medium, which is now referred to as qu, 

the unbound charge, so that the total charge surface density on the plate 

is 

q = q 	q 
t u b (2.90) 

Hence from an external point of view, on applying potential V the capacitor 

stores charges + Q1  in the plates where 

Q' = A (qu  + qb) = Qu  + Qb 	 (2.91) 

A E V 
But Qu  = CV _ ° 

A -XI  EV 
and Qb  = Aqb  = AP = A Ea  E - 	d  

9, 

(2.92) 

AC 0  
Hence — = d xl+ 1) . x14- i)c 

and, since C' = Q /V it has been shown as stated at the beginning that 

C' 

where e= DC'+ 1 	 (2.93) 
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2.3.2. Complex PermittivItlEllyiLL 

The concepts of complex permittivity and conductivity are a 

special case of the idea of a complex admittance or impedance which 

arises from the use of the complex notation for the harmonic response 

of a linear system. In the case of a linear electrical system, 

harmonic currents and voltages are represented by complexors of the 

form 

v = 11Vin  ei(cat+01)  = RTm [Cos(Zt+01  ) + j Sin(wt+0)1 

= v cos(ult+0 ) (2.94) 

and 

i = m ej(cAA+02)  = Ta [Cos(0A+02  ) + j Sin(44t+02)] 

= I
m 
Cos(Wt+02) (2.95) 

where Rmeans "the real part of", Vm and Im are the maximum values 

of V and I respectively, u)= 2nf where f is the frequency and 01  and 

02 are phase angles referred to some arbitrary zero. The use of this 

complex notation is explained in many text-books on electrical engineer-

ing (e.g. Cassell, 1964). It is customary to drop the symbol R from 

the equations, and also to drop the qualifying term "complex" from 

voltages and currents when it is clear that harmonic quantities are 

being dealt with by the complex notation. 

If a(Camplex) voltage v applied across a circuit element, as in 

Fig. 2.11, causes a (complex) current i to flow through it then the 

element is said to have (complex) impedance Z or equivalently (complex) 

admittance Y given respectively by 

J(wt451) 

Z _ v 	 
- V e 	

VM eiWt+(61-02) 
egot+02

) - T; (2.96) 



and 

i+7 

Y= i 	
I
m 	j(cot 02 - 01) e 

- V m 

Equivalent forms of writing these results 

are 

element 

= IZI//01  - ;02  = R + jX 	
(2.98) Figure 2.11 

Y = IYI/402  - 03.  = G + jB 	(2.99) 

where R =1Zicos (0-1  - 02) is called the resistance 

X =14sin (01 -- 0 ) is called the reactance 

G :Oleos (02  01) is called the conductance 

and B =hi sin (9f
2 
- 0) is called the susceptance. 

In electrical engineering (and in linear systems theory more 

generally) ideal elements are defined which impose a certain relationship 

between stimulus and response. An ideal capacitor is one for which the 

relationship 

Q = CV 

applies instantaneously. Since the definition of current is i = dQ/dt 

it follows that for an ideal capacitor 

i = Cdv/dt 
	 (2.100) 

(lower case letters imply variation with time). 



48 

The translation of this relationship into complex notation shows 

immediately that for an ideal capacitor defined in this way the 

impedance and admittance are in fact a reactance and susceptance 

(i.e. the real parts are zero) and in fact 

Z
c 
= - jX

c where c 
= 1AC 

or 	Y
c 
= jB

c 	where Bc 
=u)C 

Similarly the ideal resistor is defined to have v-i relationship 

v = iR 	 (2.101) 

from which it follows that 

ZR = R 

Y
R 
= 1/R = G 

i.e. the impedance and admittance are entirely real. 

It also follows by the simple application of Kirchoff's Laws that 

an ideal resistor and capacitor connected in series and considered as a 

single element has an impedance Z = R - j/C4C, while if connected in 

parallel they behave as a single element of admittance Y = 1/R j44C. 

The admittance of a parallel plate capacitor filled with a medium 

of permittivity E(o.)) and having a conductivity c/(6.)) will now be used to 

develop the concepts of complex permittivity and conductivity. The not-

ation (w) and o'Ca0 emphasises that these quantities themselves may 

vary with frequency. 

The capacitor will have a capacitance C = E(w) oA/-d and a con-

ductance G = al(w) A/d. The geometry of the situation ensures that the 
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current density throughout the slab is uniform, like the field, and 

externally the total current observed will therefore be the sum of the 

currents which C and G would pass separately alone, i.e. the admittance 

of the capacitor is the parallel combination of its capacitive suscept-

ance and its conductance; 

Y = G 	jco0 _ 	cl/(ca)  j w EtuE0* 
o 

(2.102) 

If, in a purely formal manner we were to define a material to have 

a complex (relative) permittivity E* with real and imaginary parts El  

and - e so that 

Ea 
	

(2.105) 

then the admittance of a parallel plate capacitor filled with this material, 

proceeding formally, would be 

;)E.  A 
Y = 	E* E. A fi 	CL/6.11. °d (2.104) 

Comparing real and imaginary parts of these expressions it follows 

that 

a (cA3) =cof E il 
	

(2.105) 

and Chas the ordinary meaning of relative permittivity previously 

attributed to it. 

Similarly, defining a complex conductivity c*(0)) with real and 

imaginary parts o f  and e" so that 
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(2.106) 

then the admittance of a slab sample between parallel plate electrodes would 

be 

a*A  
Y = 	- (a' 	ja") (2.107) 

Comparing this to Eqn. 2.104 we see that the real part is the conductivity 

as previously defined while 

(2.108) 

Briefly, we may lump together the conductivity and permittivity into 

either a complex permittivity or a complex conductivity. These are alter-

native descriptions of the material, neither containing more or less 

information than the other, and in fact from the above it is clear that 

a*(4.4)) = ja)c)  6*(0) 
	

(2.109) 

The real point of this notation, as we shall show in the next section, is 

that it is straightforward to derive either e` or a* from the response of 

the slab sample to a time step function of electric field, and in turn it 

is often simpler to analyse microscopic models for their time step function 

response than to analyse them directly for their harmonic response. 

The ideas of complex permittivity and conductivity have been developed 

above by considering the properties of a macroscopic slab sample in which 

the field and current density are uniform throughout. In other words, the 

current density J and field E at each point are connected by the relations 
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J
= '16>6*€o E  

or equivalently 	J = atE 

As a practical point, it must be mentioned that if the conditions 

are not uniform throughout the sample (e.g. because of effects at the 

electrodes) then it may not be justifiable to derive 6* or a* from a 

measurement of Y for a slab sample and inversion of Eqn. 2.104. One 

may have, for example, to consider that E.* or 5*  varies with position in 

the slab, and try to deduce the overall dependence of Y on E* and 0*. These 

aspects will be considered further in the discussion of the results. 

2.3.3. Current and Polarisation Step Time Function Responses and  

Their Relationship toe and 0*.  

Again, the behaviour we are considering here is a particular example 

of linear system behaviour as applied to charge transport in materials. 

We shall therefore proceed by discussing the response of a linear system 

to a time varying Stimulus in general terms and finally specialising to 

the electrical case. If F(t) is an arbitrarily time varying stimulus we 

shall show that r(t), the response to F(t), may be derived from A(t), 

the response to a special stimulus function u(t), the unit step function, 

provided the system is linear. 

The unit step function is defined by 

u(t) = 0 for t < 0 

and u(t) = 1 for t > 0 

and is represented graphically in Fig. 2:12, with a typical step response 

function A(t). 
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The system is said co be linear 

or have a linear region for a certain 

range of F(t) if for that range it is 

found that 

(a) The response to a u(t) is a A(t). 

(b) The response to a u(t-t1) 

b u(t-t2
) is a A(t-t1) 	b A(t-t2). 

The compounding of a response r(t) as a 

result of applying two step functions at 

successive times is shown in Fig. 2.13. 

An arbitrary function F(t) can be 

approximated by adding incremental step 	
F(t) 

	

1 	! When dt approaches zero, the increment 

functions starting at intervals dt along 

the time axis, as shown in Fig. 2.14. 	

a 

	l b u(t-t2) 

bI a uCt-t1) 

in F(t) tends to the product of the slope 	r(t) 
tI  t2  

of F(t) in the given interval and dt. 	I  r(t) 

b A(t-t2) 

cdF(
t
t)  I dt dF(t) - j  [ d 

The response r(t') at a time t', due 	
(t-t1)  

to the step dF(t) at time t, will be 	
Figure 2.13 

 

proportional to the step height and to the value of the unit step response 

ge-t) at the elapsed time t' -t later, as shown in magnified detail in 

Fig. 2.14. 

Hence dr(t') - dF( t) A(t/ -t) dt dt 

Figure 2.12 

and 	r(tI 
	

dF(t) ge-t) dt 
dt 
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t 

t 	 tf  

Figure 2.14 

4 
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Let us substitute 'r = t i - t 

0-  

r(t') = 	dF(e-T) 
 A(T) dT dt 

00 

oo 
dF(t i -T)  A(T)dT 	(2.112) dT 

0 

if 	F(t) = Fm  est  where s = p jco then 

r(t) = -m dt IL_ (est e_ 
sT) A(T) dT 

o- 

 

 

= sFM est  Sa°  e-st  A(T) dT = 
sFm 

esty 
[A(T)] 

0- 
(2.113) 

since the integral is the Laplace transform of A(T) by definition. 

If p 	0, F(t) becomes F ejult and we get r(t) for a sinusoidal excit- 

ation, and it is of the form rm* e jwt . Hence 

rm* e jtdt  = Fm e jult  lim {sX[AL(T)] JF 
p--). 0 

Defining A*(W) as rm */Fm , i.e. the complex parameter related to A(t), then 

r * 
A*(w) 	- lim [s A(s)] 	 (2.115) 

m 	0 

In particular, if A(t) is the step response of the polarization A then 

P 
A*(4 ) = Em  _ Ej.* 
	

(2.116) 

the absolute complex susceptibility. On the other hand if A(t) is the 

step response of the current Aj(t), then 

J * 
aA*(e4) E  - * 
	

(2.117) 
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the complex conductivity. 

In the above development the limits 	and 0- were used rather 

than simply t and 0 to take account of the possibility of A(t) containing 

a delta function at t = 0. The necessity for this will become apparent 

in what follows. 

In applications of the above theory we shall be interested in two 

sorts of step response: (i) The polarization step response, to be 

denoted A (t) hereafter, corresponding to thee description of a material, 

andWiThecurrentdensitYstepresponsedenote"-(t), corresponding 

to the a* description. These step responses tend to be used in association 

with different idealised microscopic models, for which they are particularly 

convenient, but some practical difficulties arise with real materials, 

and we now discuss these aspects. 

(i) Polarisation step responses characteristic of models with limited 

charge displacement only. 

Generally since P is due to limited charge displacement, which takes 

some time to occur after the application of E, then as shown in Fig. 2.15, 

A (t) will approach a limit X as t goes to oo, whe.re X is the static 

susceptibility. Charge displacement may be monotonic as in (1) or may 

overshoot the final value giving curve (2). There may also be a very 

fast initial displacement which we may be able to call instantaneous for 

the range of speeds we are interested in, giving an initial step rise to 

)C . 00 

(ii) Current density step responses characteristic of models with unlimited 

charge displacement. Typical responses are illustrated in Fig. 2.16. 

By definition Lim A.(t) = as
, the static or d.c. conductivity. Usually 

t-0.0  *3  
A.(t).> c because as time goes on space charge builds up and reduces E 

in part of the sample thickness, so that J reduces there also. Since as 



Figure 2.15 

Figure 2.16 

56 

t 	J becomes continuous across 

the sample thickness then if J 

reduces where E reduces it has 	Ap(t) 

finally to reduce everywhere. 

Another way of saying this 

is that there is a contribution 

to J proportional to dP/dt, 

but as we have just seen 

dP/dt 	0, as t 

In actual observation of 

step responses we tend to apply 

a step voltage across a slab sample and observe I(t), as shown in 

Fig. 2.17. Then we assume that 

V I d 
A.( t) = A

I(t) /cr 
V A  

t 

and we deduce A (6 as Ap 	= (t) - VA 	I(t/) de 

0 

In practical materials P(t) 

will contribute to A.(t) 

observed as follows and 

illustrated in Fig. 2.18. 

P d 
A current density - d

—has to 
t 

flow on to the plates to 

supply the compensating 

charges for P. At t = 0, 

dP ..--.1)-0o because of X and 
dt 

the current necessary 



A (t) 

Fig. 2.19 
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to supply the unbound charges, that 

is, to charge the vacuum capacitance. 

This means a very short, high pulse of 

current, whose integral with time is 

1, must flow just after t = O. 

Mathematically, this can be represented 

by a current 

  

I(t) 

 

  

= 1 

= 1 17- = Vu(t) 

 

 

Fig. 2.17 

 

bc.0.3+ 	S 

where8(t) is the delta function. 

In addition any dA /dt due to 

electronic or lattice polarisability 

contributes a charging current to A. 

in addition to space charge build up 

 

—4-  t 

 

Fig. 2.18 

or dynamic properties of conduction 

processes. On the other hand, the 

final steady current in a real material 

would make the polarization step 

response deduced by integrating the 

current tend to a linearly rising 

function of time as shown in Fig. 2.19. 

In analysing a microscopic model 

for .A.(t) or A (0 in order to find 

(W) or o*(ca) by applying the Laplace 

Transform relation just deduced, due 

account must be taken of these compli-

cations. The actual procedures adopted in this work will be explained 

where they are applied. 



2.3.4. The Inter-relationshi of  e and
1
- The Kramers-Kronig  

Relations 

In the preceding section we showed that the absolute complex 

susceptibility E7i0)(1qt) is given by 

6 )(w) = lim s Z- Ap(t)/' 
p-,-0 

00 
= lim s 	e-st  A (t) dt 	(2.118) 

This complex susceptibility has real and imaginary parts, i.e. 

OX1  jo DC" 
	

(2.119) 

Since 3C and ,X// 
 are each related by an integral transform to the same 

function A (t) there must in turn be a direct relationship between them, 

which again turns out to be an integral transform. 

To demonstrate this relationship Eqn. 2.118 can be considered, 

before taking the limit, as stating that 

00 
60)(*(s) = s f e-st  A (t) dt (2.120) 

where :(*(s) is a generalised complex susceptibility, which is a function 

of s = p 	jc4.1 and reduces to:K*(w) as p 	0. 

This equation may be written 

dA (t) 
'101;xf,(s) = 	e-st 	dt 

li}
dt =e

-st  B (t) dt 
0 

(2.121) 

using the Laplace transform theorem relating the Laplace transform of a 
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function and its derivative (Cassell, 1964, p. 58) which is 

dA 
dt 
	se(A ) - A (0) 
	

(2.122) 

dA (t) 
In the above, B(t) - 	dt 	

is actually the impulse function response 

of the polarisation, but this need not concern us further. 

For the applications we shall be considering, if we exclude 

lattice and electronic polarizability from A (t), then A (0) = 0, 

and there is no step or delta function at t = 0. The relationships 

we shall derive between 3C and DCd  willthen strictly apply to the con-

tributions to X* from defect motion only,,which is sufficient for our 

purposes. In fact, the contribution to X from lattice and electronic 

polarisation can be added into the equations after. A more sophisticated 

approach (see Section 2.3.3.) would be to leave a step function in A (t) 

at t = 0, and a delta function in B (0 at t = 0, and define the Laplace 

transform with lower limit 0. 

For the class of B (0 corresponding to A (t) with no step or 

delta functions, the limit of p 	0 may be taken inside the integration 

in Eqn. (2.121) giving 

(IDG  
.0  .)C*(‘.a) = Co  JC,  - jE0Xll= y  e- j wt Bp(t) dt (2.123) 

or, separating real and imaginary parts 

cx:() 	14"3 	
co 

B (t) Cosuit dt = 	B (x) Cos (c4x) dx (2.124) 
0 

and 	(.6)(0) = 	B (t) sincot dt = 	Bp(x) Sin (toc) dx (2.125) 
0 

where the second forms may be written since t is only a "dummy" variable 

• 
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which disappears after integration*. 

Eqns. (2.123) and (2.124) are one-sided cosine and sine Fourier 

transforms respectively, and according to the Fourier inversion theorem 

may be inverted to give 

.0 

B (x) = 	4c0) Coscox dw = 	f co xi(p.) Cos vx dll (2.126) 
p 	-ft 	o 0 	 0 

and Bp(x) = 
n 

00 

XII(44)) Sincux duri = 	EX "(11) Sin tx dv (2.127) 
Jo  u  

where again the dummy variable has been changed in the second form*. 

Substituting Eqn. (2.127) into (2.124) one gets 

rr 00 	 00 w  
Ddp) 	.[cost,ox f 3C(11) Sin 1144 

= 2 	dp f AIL) f Cos cox Sin vx 	dx
n 

J
0. 	00 

OM= 
0 0 

(2.128) 

where firstly Coscox has been taken inside the integration w.r.t. v., and 

then the order of integration interchanged. 

The inner integral is improper, since its value oscillates contin-

uously as the upper limit leads to infinity. However, Eqn. (2.127) may 

be written as 

X(c) = 	lim f dvI,X(p.) f Cos Gox Sin vx}dx 
R--)-00 0  

2 lim 
	
x(11)  12 (1 - ICIo:(4(3.11 +CLOR 	1-Cosa -00)4  

R---).-0° 0 

(2.129) 

_ Ji SinceA,(10 is a slowly varying function, then the product ofX(v) and 

* The reason for making these variable changes is to avoid confusion 
between variables in Eqn. (2.128), as will become clear on reaching 
it. 
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either of the cosine terms becomes, for large R, a rapidly alternating 

function with slowly decreasing envelope as 11-).0o , and the integral 

from 11, = 0 tow is zero. Hence Eqn. (2.129) becomes 

00 

3e(w) = n J 3(11(0 	11  
o 	11 -6  2 02 

(2.130) 

'A similar manipulation of Eqns. (2.126) and(2.125) leads to 

f,00 

Xi(w) = 	 Xi(1,) 	2  (AI  2  dp. - p, 
(2.131) 
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2.4. Microsco is Models for A.C. Electrical Properties of Ionic  

Conductivity  

In this section the analysis of some models for ionic charge 

carrier motion in solids is discussed. Two well-known much used 

models are reviewed, and a more detailed analysis given of a new model 

(Mason, to be published). 

2.4.1. Motion of Ionic Defects  

The concept of charged ionic defects moving around randomly in 

a crystalline lattice by thermal activation over energy barriers between 

equivalent sites has already been introduced. in section 2.2. The con- 

sequences for diffusion in a concentration gradient and drift in a d.c. 

electric field were also analysed. 

It will be shown in section 2.4.3. that this model predicts no 

variation of a with W except a monotonic decrease setting in at extremely 

high frequencies ("/1013  Hz). This is quite contrary to general experi- 

mental experience, in which a()) shows an increasing trend withid, at 

least up to the MHz range. The model must therefore neglect at least' 

one feature of ionic defect motion essential to the occurrence of fre- 

quency variation in a. 

The essential shortcoming seems to be the over-simplifying assumption 

that the depth of the potential well is the same at every site available 

to the defect. There are several reasons why this is not so. 

Since the crystal is electrically neutral (at any rate with no 

field applied at electrodes to inject space charge) then there must be 

equal numbers of oppositely charged defects. If those of one sign and 

type are the predominantly mobile ones, then the sites available to them 

as nearest neighbours of the oppositely charged ones constitute a set 

of sites of lower potential energy. Similarly the next nearest neigh- 

bours form another set, of energy intermediate be tween that of nearest 
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neighbours and of still further removed sites. Again, uncharged defects 

may also provide sites of different energy. 

Once the sites are no longer all considered to be equivalent, the 

one-dimensional nature of the treatment in section 2.2 is no longer 

justified, since drift in the field direction occurring as a result of 

jumps both along and across the field may differ from that in which jumps 

are constrained along the field direction. In the former case some mobile 

defects may avoid ever falling into lower energy wells as they traverse 

the crystal, but in the latter all mobile defects will in turn be compelled 

to pass through low energy sites in their path. 

However, the treatments given in this section will be essentially 

one-dimensional as a first approach to the problem. They show that once 

a variable well depth is assumed then a c(J) which is finite at W. 0 and 

increases with w is predicted, even for a one-dimensional treatment. 

The one-dimensionality may well be, however, a factor in the rather poor 

numerical agreement with the experimental results, although there are 

various other possible causes which will be examined in Chapter 5. 

The basic physical reason why assuming a variable well depth leads 

to frequency variation of c is as follows. With no field applied, the 

depths of energy wells for mobile defects on opposite sides of an attractive 

centre (oppositely charged immobile defect) will be the same, although 

lower than for further removed sites. Their average occupation numbers 

will therefore be equal. 

If a step field is applied, the average occupation numbers for the 

up-field and down-field neighbouring sites will change with time until 

they reach a new steady state consistent with the jump probabilities and 

occupation densities at each site giving the product necessary to provide 

the final steady state current. In short, a polarization builds up with 

a time transient, and the arguments of section 2.3 show this will lead 
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to frequency variation in a. 

We now go on to consider the three models mentioned above. 

2.4.2. The Isolated Double Potential Well Model  

This model has long been used as a simple picture of relaxation 

processes in dielectrics. For our purposes it has the defect that it 

predicts no d.c. conductivity. It is assumed that a particle of charge 

potential 
energy 

 

 

   

   

Fig. 2.20 	Double potential well: the two wells contain one charged 
particle which may occupy either well. 

e may be in one or other of two sites 1 and 2, located at distance a 

apart in the field direction. These sites are defined as minima of the 

potential energy as shown in Fig. 2.20 and the potential rises on each 

side to a very high value, in effect, goo 	An electric field E acting on 

the system causes a difference in the potential energy of the two sites 

and the figure is drawn with solid lines for the condition without field, 

and with dotted lines for the presence of a field. 

The potential difference due to the field E is 

V
1 

- V
2 
= eaE 
	

(2.132) 



65 

This model is equivalent to a dipole in that a movement of the charge 

from 1 to 2 or vice versa is equivalent to a turn by 180°  of the angle 

of a dipole of moment 

1 
=2 ea (2.133) 

• 
	 which one might imagine to be hinged about the centre point between 1 

and 2. (There will, of course, be a compensating charge of opposite 

sign somewhere, providing the other half of the dipole.) There will be 

N
d 
bistable dipoles, where N

d is the number of defects of one sign per 

unit volume. We also assume equal potential energy for the sites 1 and 

2 in the absence of an electric field. The model described would have 

no dynamic properties if it were on a macroscopic scale because the 

charged particles would not have the energy to jump the potential hill 

between the two potential wells 1 and 2. However, in a microscopic 

assembly the Nd  bistable dipoles must be imagined as being located in 

a heat reservoir which consists of spontaneously active particles which 

exchange energy with each other and the dipoles. Hence the directions 

of the dipoles fluctuate. A charge carrier situated in a well 1 occasion-

ally acquires an energy sufficient to lift it over the potential barrier, 

and drops into the well 2 associated with it. On arrival in 2 the energy 

of the carrier is returned to the heat reservoir, and the carrier then 

stays in 2 until such time as it acquires enough energy from the reservoir 

to return over the hill to 1. The probability of a jump by a charge in 

a double potential well can be derived from statistical thermodynamics. 

The number of dipoles jumping per unit time from 1 to 2 is given in terms 

of the difference of potential energy between the two wells as 

W -  
p
12 

= A e 	kT 
	

(2.134) 
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where T is the absolute temperature, k is the Boltzmann constant and 

A a factor which may or may not depend on temperature. The equation 

presupposes that W>kT; the energy W is usually described as an 

activation energy. On the other hand, in general 

kT 
	1 
	

(2.135) 

and the expression for the frequency of jumps can be simplified to 

where 

P12 = Po (1  - 

p = A e-WAT 
0 

(2.136) 

(2.137) 

is the frequency of jumps in the absence of an applied field. The jump 

frequency in the opposite direction from 2 to 1, is given in the case 

sketched by 

P21 =  po (1 21) 
kT (2.138) 

The average population of charges in wells 1 and 2 of the Na  bistable 

dipoles will not change with time if the number of charges jumping per 

unit time, from left to right, equals that jumping from right to left; 

namely, if 

N1p12 = N2P21 
	 (2.139) 

where N
1 

is the number of occupied wells 1 and N
2 
that of occupied wells 

2. Since the total number of occupied wells per unit volume, that is 
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the total number of bistable dipoles, is constant, we have 

N
1 
+ N

2 
= N

d 
	 (2.140) 

Equations (2.139) and (2.140) permit the calculation of N1  and N2  in 

equilibrium, and hence the polarization in equilibrium. In general, 

• 
	 the polarization per unit volume is given by that number of dipoles 

in one direction which is not compensated by dipoles in the opposite 

direction, namely 

P = (N
1 N2) 
	

(2.141) 

In the steady state N
1 N2 and hence P = Ps can be calculated from 

equations (2.139) and (2.140), using equations (2.136) and (2.138), we 

get 

N
1 po (1 - 1') = 

kTN2 po (1 + 21) kT 

which yields 

N
1 
 - N

2 
 = (N

1  + N2  )  kT 

Substituting (2.143) and (2.140) in (2.141), gives 

217  
P 	N d kT 

(2.142) 

(2.143 ) 

(2.144) 

The time-dependent properties of the model follow from the fact that the 

change in the number of dipoles in 1 is equal to the outflow to 2 less 

the inflow from 2, thus 



1 d(N1 N2) 

2dt 
	 _ - 

N1p12 
+ N

2
p
21 

(2.148) 

dt 	
_ N

1
po (1 - 

1E) + N
2
p
o 
(1 + 11) 

kT 	kT 

d(N
1 - N2) 
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dN1  
dt 	N1P12 N2P21 (2.145) 

On the other hand, differentiatinc,  equation (2.140) with respect to time, 

yields 

dN
2 dN1  

dt 	dt 

d(N1 - N2) 
dN1 or dt 	dt 

(2.146) 

(2.147) 

and substituting (2.147) in (2.145) we have 

using equations (2.136) and (2.138), then 

= - po  (Ni  - N2) + po  (Ni  + NJ e kT 

Combining the last equation with equation (2.141) yields 

1 dP 	
Nd

2E Nde
2Ea2 

2p
0 

dt P _ kT - 4 kT 

Rewriting equation (2.151) for E = E1(t) 

dP 	Nde2a2poE1 
dt 	(2po)P - 2 kT 

4 

(2.149) 

(2.150) 

(2.151) 

(2.152) 

The general solution of this equation is 
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-2p t Nd
e2a2E

1  P= Le  
4 kT 

Using the initial condition, P = 0 when t = 0, yields 

Nde2a2E1 L _ - 

Hence 

Nde2a2 	-2poti 

E = Ap  _ 	4 kT 	1 - e 
1 

On the other hand, 

Ce= lim {6.424 
° 	pa- o 

and remembering that 

ZLeati  j = s 1  a  and Z[u(t)] = 

therefore 

Ne2a2 1 	Nde
2a2 2po  lim _ 

4 kT s s 2po - 4 kT j604-2po o 

This equation may also be written 

EXie= 
K1 1 1 1 -EJ-c2/2 

4 kT 

(2.153) 

(2.154) 

(2.155) 

(2.156) 

where-a= Wpo  is the applied electric field angular frequency normalised 

to the spontaneous jump frequency of the carriers over the barrier in the 
Nde2a2  absence of any field and K1- 4 kT . (Using this "mixed" normalisation 

of an angular to ordinary frequency yields neater equations in later 



2 (2.159) II - a 4- Jo' 

22/4 

a/ 	K
2 1 +22/4 

(2.160) 
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developments.) 

The real and imaginary parts of this equation are 

1  
1 +Q.2/4 

(2.157) 

and 

	

a,!,c;)  K 
D-2P+ 
	 (2.158) 

where 

= 	- . M 

The complex conductivity a* is given by ja.)F0(,* (see section 2.3.2) 

and hence 

with real and imaginary parts 

and 

a" = K
2 

D./2 E.Osi 1 
1 + 2 /4 

2 	.1 (2.161) 

where 
2N

d
e2a2p

o K
2 4 kT 	?",PoK1 

Measuring instruments are generally calibrated directly in terms 

of conductivity a/  and permittivity E. The characteristics of equations 

(2.160) and (2.157) for a/  and Ei  may be most conveniently displayed on 

log-log plots. In Fig. 2.21 are shown plots of log(41/K1) vs logC). and 
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log (a//K2) vs loges. 

This model predicts zero d.c. conductivity (on setting c2_=0 

in eqn. (2.160)) and the log-log plot rises from -0° with a constant 

1 slope of 2 untilgar,a 7, when it flattens out rapidly and remains constant 

as 2. ---)">°. The log-log plot of E/  shows an inverse type of behaviour. 

In general, real materials also show a d.c. conductivity. If we 

suppose for the moment that this has the arbitrary value K2/K, then this 

value of cdc  plots as a horizontal line at - log K on the log(a /K2) 

plot, as shown by the dotted line for K = 50 in Fig. 2.21. The total 

conductivity is the arithmetic sum of cdc and a', and becomes as shown 

by the chain dotted line. The combined plot may also be considered 'as 

a plot of (a/ dc
),/C.,, where a is the limiting total conductivity 

as 	Similarly, a plot of (a/ adc
)/C

dc 
would have exactly the 

same shape but be shifted up the axis by log K. Note also that 

K  = (a°°- adc)/c(dc dc).  

2.4.3. Multiple Identical Wells  

The steady state properties of this model have been discussed in 

section 2.2.4. It can be shown simply that this model does not predict 

a conductivity rising with frequency, so a full mathematical analysis 

will not be given. 

Consider the transient response to a step electric field. 

Fig. 2.22(a) shows the energy diagram before the field is applied. 

The probabilities of a defect occupying any one of the wells are all 

equal, with common value, say f. The probability per unit time of a 

particle in well n jumping to well n 4. 1 or n - 1 is also the same for 

all wells, say with value p. Hence the forward and reverse defect fluxes 

are the same over each barrier, and the same for all barriers with value 

fp. 

• 
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azure 2.21 	Isolated double well 



n - 1 n 

- - _ 

2AW 

n+ 1 
	

n + 2 

a 
	 Fig. 2.22(a) 

7 3 

Fig. 2.22(b) 

On applying the step electric field, the energy diagram takes on 

an average slope, as shown in Fig. 2.22(b). The heights of the barrier 

for downfield and upfield jumps are decreased and increased respectively 

by AW = zeaE, where z is the effective charge of the defect, and hence 

the jump probabilities become p(1 + 6), for the downfield and upfield 

jumps, where Ss = exp (1W/kT). 

The change in the energy diagram slope and hence the variation of 

p follows the applied field instantaneously. Since f does not change 

immediately, at first sight there is an instantaneous increase of 2f6 

in the downfield particle flux above the upfield particle flux over 

energy barrier. 

In fact, one must consider that a defect cannot be considered to 

have joined the flux until it has actually crossed the barrier. The 

itt 
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defects which are enabled or prevented to cross the barrier by the 

change in height must be considered as vibrating within the potential 

well. Hence, those which are just approaching the barrier as it is 

lowered will be immediately able to cross, whereas those which have 

just turned will not cross until one period of the vibration later. 

Hence the differential flux and hence the electric current will build 

    

    

    

   

t 

Fig. 2.23 
	

T = period of defect vibration in well. 

up to its final value in one period of the vibrational frequency of 

the defects in the wells, as shown in Fig. 2.23. 

Since the differential flux is the same over all the barriers, 

it follows that f cannot change in any well, and hence there is no 

changing polarization. The current also remains constant after the 

initial build up. 

Neglecting the initial rise, it is clear that the current will 

follow a harmonic field effectively.instantaneously, and maintain the 

same value for a given field, up to frequencies approaching that of the 

defect vibration. Since this is of the order 10
12 

to 10
13 

Hz, this 



model predicts constant conductivity up to such frequencies. 

If a harmonic field of frequency higher than this is applied, 

one must imagine the potential diagram of Fig. 2.22(b) tipped back 

and forth from the position shown to one with equal and opposite 

slope at this rate. Clearly few, and eventually none of the defects 

which would be affected by the barrier height change will have time 

to cross the lowered barrier, and the conductivity will fall off to 

zero. 

In fact, this effect will operate at high enough frequencies 

whatever distribution of barrier heights one postulates, and one must 

always expect conductivity to decrease at high enough frequencies. 

However, at this stage the treatment would have to be done in terms 

of quantised lattice vibrations (phonons) interacting with the defects. 

2.4.4. A New Varying Depth Multi-Well-Pair Model  

In this section a new multi-well-pair model is described and 

analysed. The well depths are given a variation to account for the 

interaction between (mobile and immobile) defects mentioned at the 

opening of this chapter, and the analysis yields an a.c. and a d.c. 

conductivity which are both related to the numbers of defects, and the 

jump probabilities over the various barrier heights between the wells. 

2.4.4.1. The General Model and Particular Cases  

The general model is that mobile charged defects move in a 

potential distribution of the type shown in Fig. 2.24. 

In this figure the short periodicity represents the barriers 

between equivalent lattice sites for the mobile defect, spaced at 

distance a, whereas the superimposed slower longer range variation 

represents the attractive potential of a relatively immobile defect 

situated between the wells -1 and 1. The immobile defect is here 

pictured as being on a lattice site belonging to the opposite constituent 
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ro-dWll  1 

a 

Fig. 2.24 

of the crystal from that to which the mobile defect belongs, e.g. at an 

0 site if we consider mobile VM  in MO. 

The barrier height far from the immobile defect is taken asAW0, as 

is also the average of the barrier heights for jumps to right and left 

over barriers closer in, except for barrier -1 to +1. This barrier is 

taken to be of height2W0  - AW11  so that reasonable assumptions may be 

made according to what the immobile defect is considered to be. The 

th 

	pot- 

ential difference between the bottoms of the a. and i + 1th wells is 

labelledff
iT.14+1.  The barrier height for jumps away from the centre is 

1 	1 thereforeo 
2  WIT 	

14+1 	o ) = (W + 2 AW-i,-(i+1) .) and for jumps towards 

the centre it is (w - 	Lvid- 
o 2 	i,i-1)  = (ANo 	©W-i,-(i-I))•  

Thenaturalexpectationisthat&V..will become smaller and 1,1+1 

smaller as i increases, becoming eventually negligible for some value of 

m+1. It will be seen that the mathematical analysis results in an 
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6 

m x m matrix which has to be inverted to give 6*(W) or o*(-4). 

For real attractive potentials4VWi,i+1 
--> 0 only as 

but some arbitrary decision has to be made to "cut-off" the variation 

at some value of m and tak 	thereafter. 

In the following sections the general analysis for any value 

of m is given, and the results for E* and o* expressed in terms of the 

solution to the m x m matrix inversion in ,section 2.4.4.5. The evalu-

ationofE*MoreMforarbitrarymand AW1,1+1  —variation would 

then best be done by numerical matrix inversion on a computer. This 

has not been undertaken yet. 

The particular cases m = 1 and m = 2 with arbitrary 4lAii,i+1  

variation have been solved algebraically and the results with some 

numerical evaluations are given in sections 2.4.4.6. and 2.4.4.7. 

It is also possible to solve algebraically to arbitrary order 

1  A in m the caseilw11 = 	
TJ 	

= 
Const, with the spacing between wells 

-  

-1 and 1 increased to 2a. The results are given in section 2.4.4.8. 

with a numerical evaluation from m = 6. These parameters allow the 

solutions for the m
th order to be built up as recurrence relations with 

the m-1 and m-2 order solutions, and are chosen solely for this mathe-

matical convenience. However, this case could be considered to perhaps 

have some relevance to an immobile defect sitting in a site usually 

available to a mobile defect, e.g. an immobile M3+ in MO with mobile 

VM. 
 

2.4.4.2. Zero Field Conditions  

The transition probabilitiesidthout field are as follows: 

/1W -4W 
= p11  = A exp (- 	1  

P-11 
PCO exp kT 	1411 
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dl 
 

where p00  = A exp (- -g) and Wil  = kT 

Similarly 

AW 	[1W o 2 12. 1 
P-1-2 

= p
12 = A exp (- 	

J p exp (- 	W12) 00 	2 12)  

1 1 AW - LIW  
P-2-I = p21 = A 

exp  (- 
o 
 kT 

 12
) p00 exp (72- W12)  

(2.162) 

p_2_3  = p23  = low  exp- (- w23) 2 23 

P-3-2 = p32 = p
00  exp (2 W23) 	etc. 

On the other hand, the relative probabilities of occupancy of the 

sites are given by Maxwell-Boltzmann statistics as 

f-1 = f1 = fm exp (W12 
+ W

23 
+ 	 + W m-1,m 

f_2  = f2  = fm  exp (w23  + 	 + Wm-1m
) 

, 
 (2.163) 

f 	= f 	f exp Wm-1,m -km-li m-1 m 

and one notes also that 

*I1  f. Ni  = (Nd)
1/3 
 

1=1 

where Ni  is the number of sites of type i and Nd is, as before, the 
volume  

density* of mobile (and hence also immobile) defects. 

*Since the model is one-dimensional the linear density of defects along 
the "lattice" is (N )l/3  

a 
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Hence 

N.f exp (W
12 + 	+ Wm-1,m)  + N 	ex p (W + 	+ W 	) + 1 m 

+ Nm-1fm exp Wm -1,m + Nmfm = (Nd)
1/3  

and N1 
= N

2 
= . . = N

m -1 = 2(Nd
)1/3  

and therefore also 

Nm = (NS)
3 - 2 (m - 1) (Nd)

1/3 
 (2.166) 

where N is the volume density of lattice sites available to the mobile 

defect and Nm is the linear density of sites with "normal" potential. 

Solving eqn. (2.164) for fm  and using equations(2.165) and (2.166) 

then 

fm 1
/3N  1/3 

1 - 2(m -1)(-21) 	+2(NS)  ilexp (W12 + 	W -1,m + 	)+ +exioN m 	m -1,m 

(2.167) 

Then f
1 and f2, etc. may be found by substituting eqn. (2.167) in equations 

(2.163). 

The relationships 

f
1  
. p.

1j  = fj pji 
	 (2.168) 

1
/3 

(Nd/Ns) 

may also be noted for future use. They follow directly from (2.162) and 
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(2.163). Their physical meaning is that the flux from the ith  to jth  

th 	.th well is equal to that frOm the j to 1 as must be the case in 

equilibrium, or in fact in a steady state. 

2.4.4.3. Steady State Condition with Constant Applied Field  

The total probability per unit time that a defect is in any one 

of (N
S/Nd)

1/3  = n wells and jumps to the right is 

ns  

3 
	 f.1  p1

.. 	where j = i + 1 
i=1 

Similarly the total probability per unit time of a jump to the left is 

ns 
	 f. p. 	where k = - 1 

ik i=1 

Hence the total differential probability of a jump to the right is 

n 	n 

	

s 	s  

f. pi. - 	  
f. p 	p 

i=1 	j 1=1 I k t 

when the field is zero, then pt  = 0. The applied field will increase 

	

pij 
. . to pij 

	ij 
= p 	(1 +6") and decrease pik  to p& = pik  (1 -8 ) where 

6_  zea E  

	

The differential 2kT 	probability 

	

- 	+ f 	+ f 	+ f' / 	+ f  13:4  - 	-2 
p 
 -2,-1 	- p

-1,1 	1 
p 
 1,2 	2 

p 
 23 	 

p-1,-2 
 - f p/ 	- f/  p/  - f' pi  -1 	1 1,-1 	2 21 	3 31 

or 
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pt  = 	+[ f' p 
-2 -2-1 (1  +6  ) 	f.11 P-1,-2 (1 - S)]+[fl1  p -1,1 (1 + b ) - 

f/1 p1,1  (1 - & )14f/1 - D12 	4. (1 	) 	p21 (1 -8.)] + 
	+ 

+1 q+1 , q (1  - )1 + 	 F f
q  r  P 6" q  ) - f/ 	p 

L 	chq+1 (1 
+ 

Each term in square brackets is the differential flux rate of defects over 

a barrier, and in the steady state these are all equal, otherwise the well 

populations would still be changing. Also far from the defect, i.e. 

	

i = m + 1 onwards, then 	= frin+2  = 	= fil(0), the probability before 

applying E and pm+1,m4.2  = D 
-m+2,m+1 = poo  so that 

fi 	p 	 f (0) p00  m+1 m+1 ,m+2 (1 + 	- f  m1+2 Pm+2,m+1 (1 	) = 2  m+1 
(2.169) 

and since all terms equal this at the steady state and there are (
N
S/Nd)1/3 

terms then 

N 1 
p = 	/3 25 f(0) p 
t 
(NS)1/3 
 m+1 p00 

Also mobility 

N a pt  
= E 	zat2 (4)1 /3 f(°) POO m+1 

then d.c. conductivity* 

2 2 Nzea2  N 1/3 

ad.c. 
. N

d
ze .11 	d 

kT 	(IFS) 	f(0) p 
d m+1 00 

(2.170) 

(2.171) 

(2.172) 

*The bulk volume density is used here to give a bulk conductivity. 
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For m = 0 which is the elementary multi-well model with no 

differences in well depths then 

f(0) = d 
1
/3 

m+1 	NS 

Hence 

IL 
2 

zoa 
kT POO (2.173) 

and 

22 2 z e a 
d.c. = 

d kT -00 (2.174 ) 

and the elementary result of section 2.2.4. is recovered. 

0 
	2.4:4.4. Equations for Transient Conditions  

The time rate of change of the number of carriers in sites type 

i is 

dn. 
1 

dt 	Pki nk (Pik Pij)ni Pjinj (2.175) 

where k = i 1 and j = i +.1. Since 

n.
1 
 = N.

1
f.
1 
 and Ni  = 2N

d 	 (2.176) 

then substituting these into the above equation gives, 

dt pk1 
.f
k 
 - (13ik  + p

ij) f.1 	p..f. 	(2.177) 
ji 

df. • 
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Without field, from Eqn. (2.168) 

	

pki 
.f
k  = p. f. and p..f. 

	
p. f.  ik 	1j 1 	ja. 

df. 
and therefore dt1  - 0 as expected. 

The probabilities of occupancy with field fi  will not be written 

with primes since fi(0) will be written for fi  when E = 0 for t 40. 

Now in particular 

df1  
dt 7 P11,1f-1 Pi,-1f1 P12f1 p21f2 

= p-1,1(1+S)f-1 - p1,-1(1- (5)f1 - p12(1+S)f1 + p21(1-5)f2 

= p-1,1
f
-1 

- p1,-1f1  - p12f2  + p21
f2 -14P-1,1f-1 + p1,-1f1 

-ID12f1 - 21f2] 
	

(2.178) 

and 

df-1 
dt - p1,-1(1-8)f1 - p-1,1(

1+Of-1 - p-1,-2(1-Of-1 
+ p-2,-1(1+8)f-2 

=p f -p f -p 	f + 	f 1,-1 1 	-1,1 -1 	-1,-2 -1 	-2,-1 -2 

- p-1,1f-1  + p-1,-2f-1  + p-2,-1f-2] 
	

(2.179) 

Due to the symmetry of the potential pattern, fi  will be, greater 

than f.(0) by the same amount as f-i is smaller,so
-that in particular 

if 
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f
1 
+ f

-1 
= 2f1(0) 

Defining also 

g. = f. - f • 1 	1 	-i 

(2.180) 

(2.181) 

and using pij  = p_i_j, then Eqns. (2.178) and (2.179) lead to 

dt - p-1,1g=1 	(p1,-1  + -12  )g1  + p21  g2  + 4g (p1,-1 - 1312)(0)  

(2.182) 

Since g...1  = _gr  this can also be written 

dgi  

dt = (2P1,-1 P12)gl 132162 46(1°1,-1 P12)fl(0) 	(2.183) 

dgi  
but this simplification is not available for Fc- with i > 1. Proceeding 

similarly 

dg
2-  dt 	P12g1 - (p21  p23)g2 P32g3 4g(P21 p23)f2(0) 	(2.184) 

and in general with k = i - 1 and j = i + 1 then 

_ p
ki
g
k 

- (p. + p..)g. + p..g. + 48(p. - p..)f.(0) 	(2.185) 
dt 	2.3 1 	33. j 	ik 	1j 

dg 

dtm For an m-well-pair model we assume gm = 0 and hence 	7--  0, so 
• 

dgi  

dgi  

that 
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dgm_i  

dt 	Pm-2,m-lam-2 	(Pm-1,m-2 1- Pm-1,m) gm-1 

4S( Pm-1,m-2 Pm-1,m)fm-1(0) 
	

(2.186) 

Hence the gi(t) are the solutions to a set of simultaneous first 

order linear differential equations. Each gilt) results in a time 

dependent dipole moment given by 

.(t) = (2i - 1) ate  gilt) 111 	2 (2.187) 

and hence the dipole moment associated with one immobile defect will be 

m 1.1
(t) = aze 	(2i -. gilt)  

i=1 

and for N
d defects per unit volume the polarisation will be 

m 
zae •N. 

d 2 	gi )  
1=1 

(2.188) 

If gilt) and hence P(t) were the response to a unit step function 

applied field, then P(t) would be in fact A (0 and the theory of section 

2.3.3. could be applied to find 

Ap(s)fAp  (t 	 (2.189) 

and hence 

C 5(s) = s Ap(s) 
	 • (2.190) 

and eventually 

44" 



86 

C X.*(je )) = lim {s Ap(s) 	( 2.191) 
p 	>0 

However, assuming E = E1(t) in Eqn. (2.188) and Laplace transforming 

shows that 

A (s) = Nd 
2  

z.aa 

   

  

(2i - 1)gi(s) 	(2.192) 

 

i=1 

• 

Inotherwords,wecanfinde.)C(j0))ifwecancontrivetofindthe.(s) 

without necessarily finding gi(t). In fact, this is done in the next 

section. 

2.4.4.5. General Solution in the Frequency DomainlyLIalace Transform  

The simultaneous equations of the type of Eqn. (2.185), with 

particular cases Eqns. (2.183) and (2.186) may all be Laplace Transformed 

bearing in mind that 	
dgi 2175  —] - s gi(s) - gi(0) and that all gi(0) = 0. 

The equations may then be re-arranged by collecting the coefficients of 

gi on to the right and the constants on to the left to yield, in matrix 

form 

[f J= 1: 1.] [ g] 
	

(2.193) 

where 

   

 

f 48 

(P1,-1 - p12)  fl(°) 

(p21 - p23) f2(0)  

(Pik - Pij) fi(°)  

(Pm-1,m-2 - Pm-1,m)  fm-1(0) _ 

(2.194) 

    

S 



N z2e2a2 P f (0) 
cX*(6) = s A (s) = d 	

kT 
00 1 	G(s) 

where 
m  

G(s) => 	(2i - 1) gi(s) 
1=1  

and therefore 

z2e2a2  P00 
f
l
(0) 

(co) 	u 	00  
kT G(ju)) 

• (2.196) 

(2.197) 

(2.198) 
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and [g] is a column vector with elements [g1 	gm-1J and 

[P1= 

• 

(411+1312+s)  

- P12 

1 
1 
, 
I  
1 

0 

- p21 

(P2111323+6) 

1 
1 
1 
1 
1 , 

0 

0 

-p32 	0 	
0 
1 
I 
1 
1 
1 

1 
Pm-2,m-1 

1 

0 

0 
I  
1 
1 
I 
1 

(pm-1,m-2+pm-1,m4-s) 

(2.195) 

The gi(s) may thus be found by matrix inversion of Eqn. (2.193). 

Once theg .(s) are found then A (s) is given by Eqn. (2.192), and con-e 

sequently E)Ce(w) and a*(03) may be found as previously noted. 

All the gi(s) contain the factor 46/s= 2z eaWkTs and may also be 

manipulated by the use of the f.p.. = f.p.. relationships to contain 
1J 	J JI 

the factor p005(0), i.e. each gi(s) may be written in the form 

[2zea E p00  flOWIers] Gi(s) where the actual form of Gi(s) depends 

on the particular f. contained in g., and we shall not write out 

particular cases. 

Hence one finds 

0 
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and 

N, kT 

	

oo  z2e2a2p 
(a* - jw€ ) 	jwCox.*(co)   f1  (0){j6Wii-01. 

	(2.199) 

The absolute susceptibility and the a.c. conductivity, a', are 

each given by the real parts of Eqns. (2.198) and (2.199) respectively. 

Using Eqn. (2.172) of section 2.4.4.3. the ratio ci/cd.c. is seen 

to be 

N.., 1/3 f (0) 
a 	

( u) 	
1  alfje-0 G(j4 

d.c 
	fl  (0)p  

which may be written 

ad.c. 
	j S2 G(ja 
	

(2.200) 

where 

N 1/3 K/ = (_:1) 	exp ( - W12  
N
s  

+ 	+ 
m-1,m 

(2.201) 

"and St=c0/p00  as previously defined. 

In addition the ratio of total conductivity to d.c. conductivity 

is given by 

dd 	c. + a/ a 	 a' _ 1 +  
a„ .c. 	

ad.c. d.c. u 
(2.202) 

2.4.4.6. The One Depressed Well-Pair Case  

In terms of the general treatment just given we have m = 1 and 

g2  0. Hence the d.c. conductivity is given by Eqn. (2.172) as 



G(jW) _ 	(Pil - p12)  
p00 (2p11 + p12 + jc4) 
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Ndz
2e2a2 N 

1
/3 

ad.c. 	kT 
) 	p

00 f2(0) 
 (2.203) 

There is only one equation for dgi/dt, which is Eqn. 2.182, i.e. 

dt 	- (2p11 + p12)g1 
+ 46 (p11 p12 )f1 

 (0) 

and the solution of its Laplace transform is 

(p 	- 13 11 g (s) 	46 	) 
1 	- s 	11 

 + 

 P 

 12 

sy f1(0)  12 

Hence 

N Z2e2a2 -f -(0)-  -p 
C 3c*(60) - 	kT 	00 . G(j)) (2.204) 

where 

dgi  

Using p11 = POO exp W11  and P12 = POO exp (-W12
/2) this last equation 

may be re-written 

G(jW) _ 
exp Wll exp(-W12/2) 

p00 2 exp W11 
+ exp -W 2 + ja) (2.205) 

For comparison to the isolated double well case we may write the 

combined result for E x*(40) as 

1  
Eo.x*(cA)) le 1 1 + j.c242 exp W11 exp ( -W12/2)I 

3 
(2.206) 
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where 

K1 Na
d z2e2a2  f1(0) exp W11 - exp ( W12/2)  

1 - 	kT 	• 2exp W11  exp (- W12/2)  
(2.207) 

and Eqns. (2.206) and (2.207) may be compared to Eqn. (2.156), whence 

it is seen that c has replaced K1  andayi, the value of 	at which E0X 

reaches half its final value (see Eqn. 2.159), is shifted from 2 to 

2 exp W11 -I- exp(- W12/2). Thus the relaxation frequency has been shifted 

from 2p0  by two factors; a) the different barrier height attributed 

to the central barrier and b) the influence of the jumps into the 

neighbouring wells shown by the appearance of W12  in the expression 

for 

From Eqns. (2.203) and (2.205) one may write the ratio 

a/ 	Nd 
1 
 /3 	exp W11 -  exp  (-W12/2) - 	exp 

W12 d 	Ns 	12 2exp W11 exp(-  W12/2) ja-J 

K 
[II 	exp W11 exP(- W12/2)] 2  

1 4n./2 exp Wil 
 + exp (- W12/2)] 2 

(2.208) 

where 

N 
1/3 

K = (e) 	exp W12[ exP W11 - exp  (- W12/2)] (2.209) 

which is of the form for the isolated well pair with an added d.c. 

conductivity as discussed in section 2.4.1. Curves of ai/a,/, and 

a/g,'„, were already plotted in Fig. 2.21 for the case K = 50. In this 

previous case however, K was assumed to provide an arbitrary d.c. 

conductivity not related to the model for a.c. conductivity, whereas 

with the present model the value of K also depends on the parameters 
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of the model giving the a..c. conductivity. The value of-Q
1/2 

for ci 

is shifted in just the same way as discussed above for %XI. 

For W
11 = 0, i.e. the central barrier equal in height to the 

isolated well pair barrier, the relationships between the models are seen 

very clearly, the modifications consisting entirely of extra terms in 

exp (- 
W12/2).  

As an illustrative example, a calculated curve of Eqn. (2.209) 

with W11 = 0, K = 20 and Nd
/N
s = 10-3  is shown in Fig. 2.25. These 

parameters determine exp W12  as 213.3 which corresponds to 21W12  = 

0.82 eV at T = 1500°C. 

2.4.4.7. The Two Depressed Well-Pair Case 

For this case we have m = 2 and g3  = 0 and the d.c. conductivity 

as given by Eqn. (2.172) as 

N
d 
z2e2a2 N 1/3 

a
d.c. 	kT p00 f3(0)  Nd 	3 (2.210) 

The two by two matrix equation for g1(s) and g2(s) may be solved 

by Kramer's rule to give 

gl(s) 	14ff [(P11-1312)(132141323+s)fl (0)+P21(P12.1323)f2(0)]/A  

(2.211) 

g2(s)  = 	(1312-1)23)(21311413124-s)f2(9) 	P12(1311-1312)f1(0)1441  

(2.212) 

where A. is the determinant of the matrix given by 

6  = (1)21+13231-3)(41141312+s) P21P12 
	(2.213) 

Using fipij  = fjpji  and removing the factor 4Sf1(0)/s from both g1(s) 
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and g2(s) leaves as remainders 

G1(s) 7 [(p11 p12)(p21 P23 s)  p12(p12 p23)] /A 	(2.214) 

and 

G2 (s)  [P12 (p12 12  p23) 	+3) -I- P12(P11 - P12)] /A  

(2.215) 

Using Eqn. (2.197) yields 

G(s) = G1(s) + 3G2(s) 

and hence 

N
d z

kT  

2e2a2 

Eox.* (u)) 	 f1  (0) G(j4)) 

(2.216) 

(2.217) 

By substituting for pij  in terms of Wij  and with some algebraic 

manipulation one finds that 

= s2  Xs Y 
	

(2.218) 

where X = p00[2exp W11  exp(- W12/2) + exp(W12/2) + exp(- W23/2)] 

(2.219) 

and 

W
12 Y poo  2 + 2exp W11 exp(- W23/2) + 

= 	pexp W11  exp 2  

texp( - W12/2) exp(- W23/2)] 	 (2.220) 

and that 



(A + 3C)s + B + 3D  
G(s) - 

s2 + Xs +Y 
(2.227) 
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G
1
(s) = As + B 
	

(2.221) 

where 

A  = p00[exp W
11  - exp (- 

w12/2)] 

	
(2.222) 

and 

B = po p W11 - exp 	exp (- W
12

/21 [exp (W12/2) + exp(- W23/21 L  

+ exp( - W12/2)[exp(- 
w12/2) 

 - exp(- W23/2)] 	(2.223) 

and that 

where 

and 

G
2
(s) = Cs + D 

C = p00  exp( W ) [exp (- W12/2) - exp( -W /2)1 00 	12 L 	12' 	23 j 

(2.224) 

(2.225) 

D  = POOfexP(- w12)[exP(- w12/2)  
- exp( - W23/21 [ 2 exp 

W11 + 

exp( - 
w12/2)] 

 + exp(- W12/2) [exp(W11/2) - exp( - W12/2)] 

(2.226) 

Hence we may write G(s) in the form 

We shall only consider the case where G2(s)<K G1(s), when 
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G(ja) 	BY + (XA - B)=o2  + d [(AY - BX)48- Aac31 

	

Y2 	(X2  2Y)w2  +C,64  

Hence 

z 2 2 N ze a f (0) 	2 

c216,
3 0) 	d 	1 	BY + (XA - B)0O  

kT 	• Y2 + (X2 - 2Y) w2 +(A)4 

and 
222 

c/(0)) - 
Nd z e a f1(0) 	(BX - AY)t02  + Ac4  

kT Y2  + (X2  - 2Y)U2 + 14 

(2.228) 

(2.229) 

(2.230) 

Evidently, the parameters11 W12 and W13 enter into Eqns. (2.229) 

and (2.230) in such a complex way that a general discussion would be 

very long and complex, and hardly worthwhile in view of the extreme 

simplifications which have been made to arrive at even these expressions. 

However, once values of Wil  etc. have been chosen and the numerical 

values of A, B, X and Y determined, it is possible to calculate out 

6 X/(4) or a"(4-0) on a desk calculator without too excessive a labour. 

In fact, calculations of the ratio c/(44/ad.c. were made. Using Eqns. 

(2.229) and (2.210) this is given by 

N, 1/3 	1  (BX - AY) +col+  

a 	al 	() 	exp (W12  + W13) . 
p00 12 (x

2 	
- 2Y)w2  +

441

4  

(B'Xe- 	+SZ4 
KR... 	 

Y'2+ (X'2 
	„ 2 + (X' - 2-Y"' 

(2.231) 

where 	B1  etc. are the same quantities as A, B, etc., but with the 

multiplying factors inPOO' POO etc. omitted,D. ,- (t) / ,p00  as before and 

1
/3 K 	(Nd) d) 	A/  exp (W 

'-12 + W13)  
s 

/
N
d 
/3 

=k r) exp 
(W12 + W13) [exp Wil  exp( W12/2)1 (2.232) 

d.c. 

to 



which may be compared to Eqns. (2.208) and (2.209) for the single 

depressed well-pair case. Since the numerical value of the ratio 

of polynominals in -ain Eqn. (2.230) rises from zero to 1 as S2. 

rises from 0 to o° , then K has the same significance as previously, 

and gives the ratio cfc,,/ad.c.. 

As a particular case the same values as for the single well- 

pair were taken, i.e. K = 20 and Na/Ns  = 10-3; so that exp (W12 4- W23)  

must have the value 224.8, i.e. almost the same numerical value as 

exp W12  in the previous case. At T = 1500°C this corresponds to 

W
12 

+ W
23 
 = 0.828 eV. The total depressionAW12 +AW23 was divided 

in the ratio 5:1, so 	 12 = 	
AW23- 0.166 eV. This 

 

ratio corresponds to the potential differences for a 
1/r potential 

originating at a point mid-way between sites -1 and +1. The resulting 

curves of log ogad.c.  and log (1 + e/ad.c.) against log f are plotted 

on the same axes as for the one depressed well-pair case in Fig. 2.25. 

2.4.4.8. Any Number of Equal Potential Steps 

An examination of the general theory in sections 2.4.4.4. and 

2.4.4.5. will show that a considerable algebraic simplification of the 

equations occurs for the particular case 

W
12 

:=11W
23 

-.AW 	=AWm,m+1; 

awi .= 0, i, j > m + 1; 

1 exp W
11 - 2 

--- ex ;:W12 

provided also that the spacing between sites -1 and +1 is increased to 

2a. 

Eqn. (2.172), repeated here, is immediately valid for od.c.; 



• 97 

N
d
2e2a2 N 1/3 

(T4-2) 	f
m+1

(0) p 
cd.c. 

- 	

kT 	00 d 
(2.233) 

The values of gi(s) are to be found by matrix inversion of Eqn. 

(2.193), which was 

[ f 1 = [p] {g ]  

For the present model however, writing 

1 	 (2.234) 

(2.235) 

(2.236) 

a = exp (41. 7  /2); i 

then pi,i-1 = POO, a  

and 131,1+1 = p00/a  

and the expressions for [f], [ p and [ g] become 

(a -a) f (0). 

f =
45 
s p00 

(a - '7,) 	2
(0) 

(a - 
1  fm  (0) a  

(2.237) 
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1 (a + + s 	a 	0 - 	0 
a 

 
p00 

1 
1 	1 (a + + 	-a a 	a p 	1 

00 

P  = POO 
1 	 0 
1 
1 

- a 

(2.238) 

0 - --- 1 (a  
a 	poo  

and [g] is again the column vector of the gi  with i = 1,2 ...,m-1. 

The gi(s) for the m well-pair case are thus given by 

s ) 	2c- 
m 

gi (2.239) 

wherehm is the determinant of the matrix [p] for the m pair case, and 

Mi is the determinant of this matrix modified by replacing the i th 

column by [f]; e.g. for i = 1 

(a - .--)f1(0) 	-a 	0 	0 	0 

(a  - t*)1.2(0) 	
+ 	-a 	0 
a 

 
p00 

041 445 m 
m = s POO 

- a 

(a - 2--)fm  (0) a  

 

-a (a —1 s ) 
a poo  

 

(2.240) 

The following recurrence relationships may be proven by elementary 

expansion of the determinants concerned; 

1 
1 
1 

1 
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= (a + + 2) 
1 	-POO 

A2 
= (a 

a 	
s )2 

ID 
-00 

( 63  = ka m  
P

s 
oo 

(2.241) 

m 
= (a 

1++ 
 s ) A m-1 _ A 

- Poo 	M-2  

etc. 

1 s M = (a - 4 a  f1  (0) 

and 

s Mi  = (a = 2 a) 
 f1(0)-f:A1 

1 	A A1 
s 	(a - 	f

1
(0){41

2 
+
- 	

+ 
a 

1 

(2.242) 

1 
1 

s 141  = 	Ain 1 (a - -1-) f (0)-{k + ---1----  + 	Al 	1 .... — + -1--} m 	cc 1 	m a 	m-2 m-1 a 	a 

etc. 

Hence Eqns. (2.241) and (2.242) allow the evaluation of s 41(s). 

The analysis for gm(s) with i> 1 has not been carried out. Assuming 

that gT(s) is the most important term, it follows that 



100 

N,zea 46  sMin(s) 
-.0X*(s) = "2 	7 -m-(s) 

2 2 2 	1 N
d
z e a 	M (s) 

Ndz
2e2a2 	L (s) 

(a - ) f (0) Am 	 kT 	a 1 -.m(s) 

1 where Lm(s) = - m M(s)/(a - 71) f1(0) 

kT 	 477 

(2.243) 

(2.244) 

To find an expression for a/ 	• • we may use 

a' 	Rtj Lo E0  X* ( jo 

Ndz
2e2a2 	cb-  C jW)I 

kT (a - a) f1(0) (j w)  ni o 

and hence using Eqn. (2.233) then 

1 N 1/3 (a - 	f1(0) 	
fj.  a) 1.1.1  (jW) } 

s 	Po0 	m 
a' - 	 JR, 	 ad.c. 	

N 	• f 	(0) 	Ath  (jc0 

N 1/3 , 

= 	a 
(a - .1) a2m 	

jf1-1(11  ( P)  lf 
(in) 

M 
 

where the factor 

N 1/3 

(a  - K = (-1) 	1 
a
2m 

(2.245) 

(2.246) 

(2.247) 

has the significance-of giving the ratio al/ad.c. as before. 

A calculation of ailad.c. for m = 6 with K = 20 and Nd  /Ns  = 10 3  

has been made. This requires a = 1.644 corresponding to L\W12 	= 

• =AW -1,m = 0.152 eV at a temperature T = 1500°C. The results are plotted m 

in Fig. 2.25 with these for the single and two well-pair cases.: 
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The theoretical discussion of chapter 2 showed that the conductivity 

of Al203 
depends on the ambient atmosphere and temperature. Also as 

mentioned in chapter 1, the resistivity of Al2O
3 
is very high. These 

are the important factors to consider-in the design of the apparatus 

and method of measurement. 

In order to be able to measure conductivity a as a function of 

oxygen partial pressure po2 
and temperature T at d.c. and varying 

frequency, we need a sample holder designed so that the po and T can 2  

be varied over a range but held constant at particular values for fairly 

long periods (up to some days) to allow equilibriation of the sample 

and ambient atmosphere. It must also be designed to avoid erroneous 

electrical measurements due to parallel leakage paths and other effects. 

To show how these requirements have been met, the principles involVed 

in measuring acl.c.  and aa.c.  for high resistivity materials and their 

effect on the sample holder design will be discussed. 

The construction of the sample holder will then be described, 

and finally the ambient atmosphere and temperature control arrangements 

described. 

3.1. Principles of Conductivity Measurements 

Electrical conductivity was measured using a three terminal 

method with a circuit similar to that described by Moulson and Popper 

(1968) for both the d.c. and a.c. cases. 

3.1.1. d.c. measurements  

The circuit diagram for d.c. method is shown in Fig. 3.1. A 

voltage of 1 volt (less than decomposition voltage) is applied across 

the crystal from a stabilized d.c. power supply (Fluke, Model 415B) 



Power supply 

Electrometer 
resistance 

Figure 3.1 	Circuit diagram 
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and the corresponding current measured by an electrometer type instru-

ment (Keithley Electrometer Type 602 Solid State). 

In measuring the current through the specimen at a given voltage, 

the current must be checked in different combinations of amplifier gain 

and input resistor, giving the same nominal sensitivity (Mills, 1968). 

If the same result is obtained on more than one range, then this value 

is assumed to be correct. The furnace heating current was turned 

off while making current measurements to avoid interference from 

it. 
_3.1.2. a.c. measurements 

Two sets of instruments were used for this purpose. A Wayne-Kerr 

Universal Bridge Type B221 was used to measure conductance and capacit-

ance between frequencies 70-20,000 Hz. A Wayne-Kerr Radio Frequency 

Bridge Type B601 and Source and Detector SR 268 were used to obtain 

conductance' and capacitance values between frequencies 100 KHz to 5 MHz. 

The r.m.s. value of the voltage applied was always 0.5 volt to avoid 

applying a voltage that might have a peak 	value greater than 

the decomposition voltage. The furnace was again turned off as while 

making d.c. measurements. 

An advantage of the Bridges for the present application is their 

ability to make accurate measurements even when long connecting cables 

are used. The design of the Bridges is based on the transformer ratio-

arm principle. The unknown impedance is balanced against standards 

of conductance and capacitance in parallel. Tappings on the two bridge 

transformers, connected to decade controls, permit measurements to be 

made accurately on a wide range of impedance in any quadrant of the 

complex plane. 

A simplified diagram of the circuit arrangement is shown in 

Fig. 3.2, where Zu  and Zs  are the unknown and standard impedances 
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respectively. Balance will be indicated by the detector, connected 

to the secondary of the current transformer T2, when equal currents 

flow from either end of the centre-tapped primary of T2. In this 

condition, the potential across the primary will be zero and, there-

fore, the right-hand terminals of Zu and Zs will be at a neutral 

potential. Thus the same voltage is applied to both impedances and, 

for equal currents to flow in the two halves of T2 primary, the 

resistive and reactive components of the unknown impedance must be 

equal to those of the standard. 

The transformers are so designed that very heavy shunting is 

possible without seriously affecting the accuracy of measurements. 

Components can in most instance, therefore, be measured in situ. 

3.2. Construction of the Sample Holder  

The sample holder employs a fully guarded 3-terminal electrode 

system and is similar to that of Moulson et al (1968). The sample 

holder is shown schematically in Fig. 3.3. and consists of a stainless 

steel body A, which receives the alumina furnace tube B at one end 

where it is sealed by an 0-ring C compressed by a threaded ring nut D, 

,while it is closed by an end plate E at the other end. The electrodes, 

and connecting wires are made from platinum, 10% rhodium-platinum and 

13% rhodium-platinum. 

The inner tube F (5 mm i.d. and 8 mm o.d.) carried the lead that 

makes contact with the centre electrode. The alumina guard cylinder 

G (10 mm i.d., 14 mm o.d.) is centred around the inner tube by using 

two alumina inserts; the- outer surface of this cylinderiscovered with 

10% 'rhodium-platinum foil (about 40 cm long) which makes contact with 

the guard ring on the sample. ThUs the guard ring on the sample has 

been effectively extended to a region outside the hot zone of the 



• 	 • 

Figure 3.2. 	Principle of operation 
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apparatus. The two stainless steel springs maintained the inner and 

the guard cylinder in definite contact with the specimen. The support-

ing rods H and circular alumina piece K were attached by alumina pins. 

The whole system has been designed to be vacuum tight. All leads have 

been brought out through the stainless steel base-plate via vacuum 

lead throughs (type 7D, Edwards Vacuum Components, Crawley, Sussex). 

The hot junction of a platinum : 13% rhodium-platinum thermocouple has 

been located outside of the guard cylinder, close to the specimen. 

Coaxial connections to the sample holder were made through BNC 

connectors which are attached to the base-plate. 

To maintain a proper gas flow through the sample holder, gas 

comes in through the "gas inlet", goes through tube F and then through 

the holes L and M into the space between tube F and G and finally goes 

out through the "gas outlet". 

• 
	3.3. Sample Ambient Control  

3.3.1. Gas control system  

This is shown diagrammatically in Fig. 3.4. Argon and oxygen are 

purified as follows: 

(i) Soda lime removes carbon dioxide. Since the reaction 

produces moisture, it must be placed first in the system. 

(ii) Silica gel absorbs moisture. 

(iii) Magnesium Perchlorate acts as a fine abstracter of moisture. 

(iv) The gas then flows through titanium granules that are heated 

to about 700-800°C to remove oxygen. 

Soda lime will not be used while CO/CO2 mixtures flow through the system. 

All connections are made by using glass or stainless steel tubing since 

plastic tubing is porous to moisture and oxygen. The stainless steel 

tubes were cleaned before assembly with a special treatment to get rid 

of lubricating oils remaining inside from the extrusion process used in 
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a 

manufacture. The purified gas goes through the oxygen monitor to check 

the partial pressure of oxygen. The oxygen monitor uses a solid state 

oxide electrolyte which conducts by oxide ion movement. The principle 

of such a device consists in setting up a cell of type (Steele, 1968) 

p' l Solid Oxide Electrolyte p°  
02 	 02 

in which the cell reaction at high temperature involves the transfer 

of oxygen ions from the side of the high oxygen partial pressure pi!  02  

towards the lower pi  through the movement of doubly charged vacancies. 
°2 

The oxygen partial pressure p/  and p" fix the chemical potential 02 	0
2 

given by 

= RTLap p°  
02 02 

 
o2 	o2  02  

(3.1) 

where p° is the pressure of oxygen in the standard state. The EMF 
o2  

of the cell will therefore result from the difference in chemical 

potentials ILft and IL/  which are related by 
02 	02 

v. = Alta  - 	= 4 EF 
02 
	02 	

02  
(3.2) 

where E is the electromotive force and F is Faraday's constant. The 

potential difference set up between two electrodes is given as 

RT  il n  
E = 	r0 /4131  

4F 	2 2 
(303) 

Operating with a known oxygen partial pressure on one side, the unknown 

oxygen partial pressure can be calculated from the measured potential 

difference. 
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Construction of the cell. 

The essential components of the cell are two electronically 

conducting electrodes in physical contact with a solid electrolyte, 

as shown in Fig. 3.5. Platinum is used as the electrodes because of 

its superior chemical resistance. The use of such cells is limited 

by the onset of electronic conduction in the solid electrolyte, which 

reduces the measured potential below theoretical value. The point at 
• 

which electronic conduction occurs is a function of both temperature. 

and partial pressure of oxygen. 

For this reason Zr0.85
Ca
0.15

0
1.85 

is used for which the electronic 

conduction within temperature range 600°C to 1500°C and oxygen partial 

pressure 1 <p4( 10-25  is so small that for most practical purposes 

equation (3.3) can be safely applied to provide accurate values for 

the approximate oxygen partial pressure change. 

A standard electrode of fixed oxygen activity, consisting of 

equal amounts of Fe and its oxide FeO, has been used because it exhibits 

a high degree of reversibility. 

There are four flowmeters, type 1100, manufactured by Rotameter 

Manufacturing Co. Three of the flowmeters have 15 cm long tubes and 

one has a 30 cm long tube. The partial pressure of oxygen can be adjusted 

by changing the flow rate of argon and oxygen to the calculated values. 

The accuracy of the readings depends on the length of the tube and is 

better for the longer tube: +3% of indicated flow for the 30 cm long 

tube and +4% for the 15 cm long tube. 

The oxygen monitor furnace and the titanium furnace are horizont- 

ally wound with 24 and 16 gauge Kanthal wire respectively. 

3.3.2. Sample Holder Furnace  

The experiments were performed in a horizontal molybdenum wound 
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Fe/FeO 

Pt 
electrode 

13% Rh-Pt wire 

Figure 3.5 	Oxygen monitor 

Figure 3.6 	Crystal with electrodes on 
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furnace. The heating element is a molybdenum tape 0.5 mm thick and 

3 mm wide, wound on to a recrystallized alumina tube which is about 

95 cm long and 65 mm in diameter, at approximately six turns per inch, 

giving a total resistance of just five ohms when cold. The winding 

tube is sealed into a metal container filled with alumina powder. A 

continuous flow of forming gas must be kept running all the time when 

the furnace is in use to avoid oxidation of the molybdenum wire. The 

temperature is controlled by a sheathed thermocouple (platinum : 13% 

rhodium-platinum) placed in the centre, in conjunction with an automatic 

controller (Eurotherm, PID/SCR series). The cold junction, which is 

connected in series, is kept at 0°C in a water-ice mixture. 

3.4. Samples  

The samples were of two kinds. The first kind was platelets 

grown by vapour transport from a lead fluoride flux melt in our own 

Crystal Growth Laboratory. These crystals have their c-axis perpen- 

dicular to the plane of the platelets and measurements were made on 

specimens of thickness 13 and 1711. 

The second kind of crystal was obtained from Crystals Systems 

Inc., Salem, Mass., U.S.A., and were 26011 thick. All samples were 

electroded by sputtering platinum for 1 hour at 100 w power and 311 

argon pressure in an M.R.C. sputtering unit. Under these conditions 

3000 R thick platinum layers were obtained. Pure platinum was used 

as the electrode material and has been sputtered onto the sample in 

the three-terminal electrode configuration. The electrode dimensions 

are given in Fig. 3.6. Aluminium and molybdenum masks were used to 

produce the electrode patterns. 

The way in which the measurements were organized: In the first 

and second runs c
ac
(f) was measured at two temperatures first, but after this 
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a standard procedure was adopted, i.e. the p
o2 was set and runs of 

rising and falling temperature made. At each set temperature we 

waited for constant aA 	then measured a 	(f). .c. 	a.c. 

4 



CHAPTER If 	RESULTS 

Measurements were made on a total of 5 single crystal samples 

as detailed in Table 4.1. 

Samples 1 to 4 were flux-grown platelets which proved to be very 

fragile to temperature cycling, and this restricted the amount of inform-

ation which could be obtained from them before they failed by cracking. 

The table shows the highest temperature reached and the range of a.c. 

measurements made, and if d.c. measurements were completed at the highest 

temperature. 

Mass spectrographical analysis of both flux and Czochralski grown 

crystals shows that they contain a larger amount of silicon (368 and 

267 ppm respectively) and in addition the flux grown crystal contains 

iron (1238 ppm). See tables 4.2 and 4.3. 

Samples numbers 1, 2 and If were not heated above 1050°C, which 

will be called low temperatures, and samples numbers 3 and 5 were taken 

up to 1350°C and 1500°C respectively which will be termed high temperatures. 

The a.c. conductivity versus frequency plot of Sample 1 in Fig. 4.1 

shows that 950°C and 850°C curves approach each other if the frequency 

is above 5000Hz. The measurements at 850°C were made as temperature 

reduced from 950°C which was the highest temperature for this sample 

and the highest frequency was 20 KHz. No d.c. measurements had been 

made when the crystal failed. 

Sample 2 was heated up to 1050°C, but measurements were made while 

going up for the first time and as coming down. One observes, on first 

heating to 750°C, a three orders of magnitude change in a.c. conductivity 

over the frequency range from 70 Hz to 1 MHz, but this variation reduces 

with temperature to less than one order at 1050°C. When the same measure-

ments were made on coming down from 1050°C, the a.c. conductivity changes 
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Table 4.1.  

Sample 
no. 

Thickness Type of 
growth 

Highest 
Temp. 

Maximum 
frequency 
and d.c. 

Po 2 
at. 

1 1711 flux-grown 950°C 20 KHz 1 

2 13p, 11 	ti 1050°C 1 MHz and d.c. 1 

3 1311 It 	11 1350°C 1 MHz and d.c. 1 and 10-5 

4 7.8311 it 	t, 850°C 1 MHz and d.c. 1 

5 26011 Czochralski 1500°C 1 MHz and d.c. 1,10
-1 

and 

2x10-2 
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Table 4.2 	Mass Spectrographic Analysis of Sapphire Sample 3 

Element Impurity 
concentration 
(ppm atomic) 

Element Impurity 
concentration 
(ppm atomic) 

Element Impurity 
concentration 
(ppm atomic) 

U 0.1 Ce 0.1 Cu 17 

Th 0.1 La 0.1 Ni 10 

Bi 0.1 Ba 1 Co 11 

Pb 16 Cs 3 Fe 1,238 

Tl 0.4 I 0.1 Mn 12 
Hg 0.4 Te 0.3 Cr 34 
Au 0.1 Sb 3 V 3 
Pt 10,088 Sn 1 Ti 46(3)  

Ir 0.3 In 1 Sc 3 
Os 0.4 Cd 1 Ca 340 
Re 0.2 Ag 0.2 K 32 
w 0.4 Pd 1 Cl 150 
Ta 34(1)  Rh 3,408 102 

Hf 0.4 Ru 0.7 P 30 

S 	 Lu 0.1 Mo 0.7 Si 368 

Yb 0.4 Nb 0.1 Al Matrix 
Tm 3 Zr 0.7 Mg (4) 
Er 0.3 0.3 Na 35 
Ho 0.1 Sr 	0.1 F 33 
Dy 0.4 Rb 	16 0 

Tb 0.1 Br 22 N 

Gd 0.5 Se 0.2 C 

Eu 0.2 As 11 B 423 
Sm 0.4 Ge 28 Be (5) 

Nd Ga 19(2)  Li 3 

Pr 0.1 Zn 7 

Possible contamination by so 

Possible contamination from 

High detection limit due to 

Cannot be determined due to 

Cannot be determined in the 

urce. 

previous sample. 

interference by C ions. 

interference by C ions. 

presence of Al. 



Element 1 Impurity 
concentration 

1 (ppm atomic) 

Element 	Impurity 
concentration 
(ppm atomic) 

Element Impurity 
concentration 
(ppm ratromi-c) 

0.01 

0.01 

0.5 

0.02 

0.01 

0.03 
(Counter 
• electrode 

0.03 

0.02 

0.03 

0.02 

0.03 

3
(1) 

0.03 

0.01 

0.03 

0.01 

0.03 

0.01 

0.04 

0.01 

0.04 

0.02 

0.04 

1 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.03 

0.02 

0.5 

11
(2)  

0.08 

0.3 

0.04 
( 0.3 3)  

0.03 

21 

0.01 

0.02 
( 0.2 4)  

0.01'  

0.1 

20 

0.02 

0.1 

0.1 

0.9 

0.7 

0.7 

2 

0.1 

11 

1 

0.4 

3 

23 

0.1 

10 

11 

227 

5 

10 

267 

Matrix 

170 

3 

1 

0.3 

(5) 

U 

Th 

Bi 

Pb 

Tl 

Hg 

Au 

Pt 

Ir 

Os 

Re 

w 

Ta 

Hf 

Lu 

Yb 

Tm 

Er 

Ho 

Dy 

Tb 

Gd 

Eu 

Sm 

Nd 

Pr 

Ce 

La 

Ba 

Cs 

I 

Te 

Sb 

Sn 

In 

Cd 

Ag 

Pd 

Rh 

Ru 

Mo 

Nb 

Zr 

Y 

Sr 

Rb 

Br 

Se 

As 

Ge 

Ga 

Zn 

Cu 

Ni 

Co 

Fe 

Mn 

Cr 

V 

Ti 

Sc 

Ca 

Cl 

S 

P 

Si 

Al 

Mg 

Na 

F 

0 

N 

C 

B 

Be 

Li 
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Table 4.3 
	

Mass Spectrographic Analysis of Sapphire Sample 5 

(1) Contamination from source. 

(2) Possible contamination from previous sample. 

(3) Possible contamination from source. 

(4) Possible contamination by a previous sample. 

(5) Cannot be determined in the presence of Al. 
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Figure 4.1 	Conductivity against frequency 
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within the same frequency range, became less than one order of magnitude 

at 750°C and 850°C. See Fig. 4.2 and 4.3. In conclusion one observes 

that at low temperatures, i.e. below 1050°C, one gets different a.c. 

conductivity values while making measurements with temperature increasing 

or decreasing. Not all previous work described in the literature seems 

to have taken such effects into account,as will be discussed in more 

detail in the discussion. The a.c. conductivity versus frequency curves, 

at 1050°C, 850°C, 750°C and 500°C with descending temperature in pure 

oxygen, are shown in Fig. 4.4. Corresponding d.c. measurements of 

sample 2 again in pure oxygen and the log o vs 1/T plot in Fig. 4.5, 

show an activation energy of 0.8 eV in the low temperature region. 

The a.c. conductivity versus frequency curves at 750°C and 1050°C 

at different oxygen partial pressures are plotted in Fig.,4.6. As one 

observes from these curves a.c. conductivity reduces as the partial 

pressure of oxygen reduces. The d.c. conductivity against partial 

pressure of oxygen curves are plotted at 1050°C and 750°C in Fig. 4.7. 

Sample no. 2 fractured after this amount of information had been 

obtained, before further d.c. measurements were taken. 

Sample 3 was heated up to 1350°C, and a.c. conductivity versus 

frequency curves are plotted for p = 1 at and 10 5  at. in Fig. 4.8 
02 

and 4.9. respectively. At high temperatures and low frequencies, a.c. 

conductivity does not change much as the frequency increases; but it 

'has a frequency dependence at higher frequencies of the form to0.25-0.8  

The d.c. conductivity versus temperature curves in Fig. 4.10 

have two regions. A low temperature region which has an activation 

energy of 0.95 eV for- p = 1 at, and 0.69 eV for p
o 

= 10-5  at. and a 
02 2 

high temperature region with activation energies of 3.1 eV for 

p = 1 at and 2.98 eV for p = 10-5  at., these values compare with 
02 

 02  
the activation energy of 2.9 eV of Brook et al (1971) of flux grown 

4 
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Sample 2 	750°C 	p
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2 

 

As temperature going up for the first time 

As temperature going down from 1050°C 

10 	- 10' 	10 	10' f,Hz 	10 

Figure 4.2. 	Conductivity versus frequency as temperature 
going up and down 
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Sample 2 	850°C pc)  = 1 at 
2 

(1) As temperature going up for the first time 

(2) As temperature going down from 1050°C 

Flare2112t 	Conductivity as function of frequency as temperature 
going up and down 
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0 	1 

0 
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10-6  
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10-9  
3 	4 102 	10 	10 	105 	 106 f,Hz 

Figure 4.4.  Conductivity versus frequency at various temperatures 
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Figure 4.5. Temperature dependence of d.c. electrical conductivity. 
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Figure 4.6.  Conductivity versus frequency at various oxygen partial 
pressures 



125 

Sample 2 

10 8  

10-9  

750°C 

10-10  

10-6  10-8 	10-lo  
10-12 Po2 

Figure 4.7. 	d.c. conductivity versus partial pressure of oxygen 
at various temperatures 
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Sample 3 p = 1 at 
02 

10 	10'. 	10 	10J 	10 	f,Hz 

Figure 4.8. 	Conductivity versus frequency at various temperatures 
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Sample 3 	p = 4x10-5  at 
02 

Figure 4.9.  Conductivity against frequency at different temperatures. 
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Figure 4.10. 	d.c. conductivity as a function of tempera 'are  
at various po2 
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sapphire at high temperatures. The d.c. conductivity values at 

po = 4x10 5  at, 	lower than those at p
o2 

= 1 at. From Fig. 4.11 
2 	 1 

it is clear that activation plots of a 	versus -/T where a 	is a.c. 	a.c.  

measured at a constant frequency as used by some researchers, will 

give different slopes from plots of a 	versus 
1
/T. In this figure as d.c. 

a representative example, d.c. and a.c. conductivities measured at 

f = 10 KHz at different temperatures are plotted for comparison. It 

is apparent that both the conductivity and activation energies are 

different in the two cases and one gets higher a.c. than d.c. conduct-

ivity values. The difference between the two becomes larger as the 

temperature goes down. For this sample significant changes with temp-

erature are observed in the capacitance versus frequency characteristic 

and apparent permittivity against frequency curves at different temp-

eratures and 1 at. oxygen partial pressure are drawn in Fig. 4.12 and 

at 4x10-5 at. in Fig. 4.13. 

More than two orders of magnitude capacitance variation are 

observed at 1350°C, but this difference decreases as the temperature 

goes down. The d.c. conductivity against po curves at various 2  

temperatures are plotted in Fig. 4.14. 

Sample 4, which was 7.8311 thick, was only heated up to 850°C, 

in pure oxygen before failure, hence the a.c. conductivity versus 

frequency curves are intermingled after about 3 KHz, as shown in Fig. 

4.15. 'The d.c. conductivity values compare to previous samples and 

are shown in Fig. 4.16. 

Sample 5 was a Czochralski grown crystal, obtained from Crystal 

Systems Inc., Salem,Mass., U.S.A., and was 26011 thick. Experiments 

were made at three partial pressures of oxygen to be able to investigate 

the effect of oxygen partial pressure on sapphire crystals. Analysis 

of these results shows that d.c. conductivity is oxygen partial pressure 

0 
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Figure 4.11 	Comparison of d.c. and a.c. conductivity as '(T) 
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Sample 3 D = 1 at - o
2 • 

Figure 4.12 	Permittivity versus frequency at various temperatures 
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Figure 4.13 	Permittivity against frequency at different temperatures 
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Sample 3 

Figure 4.14 	D.C. conductivity against oxygen partial pressure 
at various temperatures 
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Figure 4.16 D.C. conductivity versus temperature 
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dependent, i.e. a = a p k. In Figures 4.17, 4.18 and 4.19, plots o o2  

temperatures, which are higher than the flux grown crystals. They 

change slightly at different oxygen partial pressures, the low temp- 

erature average is about 1.5 eV and the high temperature average is 

about 4.5 eV. The a.c. conductivity versus frequency curves are plotted 

at several temperatures and three oxygen partial pressures in Figures 

4.20, 4.21 and 4.22. One again observes at high temperatures, namely 

1500°C and 1350°C, a flat region at low frequencies followed by a slow 

increase on the log a vs log f plot. This occurs at all partial press- 

ures, but with small changes in overall level. As the temperature goes 

down to 1200oC and below one cannot observe the above mentioned flat region. 

Although the lowest temperature that measurements were made at was 900°C 

in pure oxygen, as the oxygen partial pressure reduces it was not possible 

to make measurements with the Radio Frequency Bridge at this temperature 

because the conductivity becomes too low. The d.c. conductivity versus 

po2 curves at various temperatures are plotted in Fig. 4.23. 

One measures G and C with the bridges but it is possible to 

calculate R - 	 and X- 	C 	and then plot resistance 
G2  + ((C)2 	G2 + (WC)2  

versus reactance. A typical result is shown in Fig. 4.24. These 

curves show a distribution of relaxation time since the shape of the 

curves are broadened rather than being semicircular. If these curves 

are extrapolated to find the intersection with the resistance axis 

on the low frequency side, one obtains extrapolated R values. The 

approximate activation energy, corresponding to these extrapolated 

resistance values, is smaller (3.38 eV) than the d.c. value at high 

temperatures. Assuming these curves-  belong to the bulk and there 

exists another curve between the d.c. value and the extrapolated 

resistance value which belongs to electrode processes, then the 

of log o vs 1/T give activation energies, at both low and high 

a 
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Figure 4.20 	Conductivity against frequency at different temperatures 
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Figure 4.21 	Conductivity against frequency at various temperatures 
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extrapolated resistance value is the true value of the bulk. One has 

to make low frequency measurements to be able to prove this assumption. 

Permittivity versus frequency curves have been plotted at various 

temperatures and oxygen partial pressure, as shown in Figs. 4.25, 4.26 

and 4.27. Dispersion is larger at 150000 and p0 = 1 at. and gets smaller 2  

as both temperature and oxygen partial pressure go down. 

d.c. measurements generally took a long time (about 15 hours), 

since the current decayed from a high value to its steady state value 

upon application of 1 volt d.c. at a particular temperature. 

e 
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CHAPTER 5  - DISCUSSION 

   

Previous work on Alumina was only barely outlined in the 

introduction, Chapter 1, since a discussion of the critical factors 

determining procedure and equipment design was not given until 

Chapter 3. 
• 	 Hence in the first section of this chapter some general 

comments on previous work are made in the light of the discussion 

of Chapter 3 and the results of the present work presented in 

Chapter 4. 

In the second section the d.c. conductivity dependence on 

oxygen pressure and temperature, which was observed, is compared in 

detail to previous results and interpretations. 

In the third section the a.c. characteristics are discussed 

and an interpretation made in terms of an electrode effect and a bulk 

effect. The electrode effects are analysed in terms of a two layer 

model (Volger, 1960) and with the help of the Kramers-Kronig relations 

approximate values of the surface layer thickness and conductivity are 

determined and compared with previous results (Tallan and Graham, 1965) 

obtained at lower temperatures. 

The bulk effect is analysed by the general theory described in 

Chapter 2 using particular parameters appropriate to Alumina. 

5.1. Comparison to Previous Work  
• 

Pappis and Kingery (1961) carried out their conductivity measure- 

ments on single crystal Al203 
over a wide range of temperature and oxygen 

partial pressures using two- and four-terminal d.c. and a.c. (f = 104 Hz 

only) techniques, which however do not prevent surface and gaseous con-

duction. Peters et al (1964) demonstrated that for high resistance materials  
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at high temperatures above 1100°C the conductivity of the gas phase 

around the sample can be comparable to or greater than that of sample. 

Moulson and Popper (1968) have also found gas phase conduction import-

ant at relatively low temperatures. Pappis and Kingery (1961) plotted 

log conductivity versus 1/T at various p and log conductivity versus 
02 

log oxygen partial pressure at several temperatures. They also made 

thermoelectric electromotive force (Seebeck effect) measurements to 

determine the polarity of the charge carriers over a range of p but 
2 

these again are affected by surface and gaseous carriers. Champion 

(1964) has investigated the conductivity of sapphire below 1000°C and 

employed two-terminal method, which is especially susceptible to surface 

effects. The same applies to the four-probe method of Dasgupta and Hart 

(1965). Harrop and Creamer (1963) attributed the conduction to electrons 

and holes; they have used the two terminal method. 

Cohen (1959) performed the earliest review of the situation. 

Matsumura (1966) used no physical guard to eliminate gas phase conduction, 

and in addition he employed a voltage greater than the decompositions 

potential of sapphire. Ozkan and Moulson (1970) made d.c. conductivity 

measurements by a three-terminal method with a physical gaseous conduction 

guard in dry air (p
o = 0.2 atm.), i.e. with an equipment on which we 2  

based our design. However they applied 85 volts across the sample and 

the non-linear behaviour of current voltage characteristic may be due 

to application of a voltage higher than the decomposition voltage. 

Their activation energy of 4.0 eV is comparable to our result of 4.39 eV 

made at p
o = 10

1 
atm. on Czochralski grown single crystals, and the 

2 
conductivities were comparable as shown by Figure 4.17 where their 

results are plotted with ours. 

Brook, Yee and KrOger (1971) made measurements on pure and doped 

flux and Czochralski grown crystals again using a three terminal 
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physically guarded d.c. method. They proposed a defect model for 

the oxide on the basis of a combination of their work and that of 

Pappis and Kingery on the oxygen pressure dependence of conduction 

in A1203. However, since the latter involves data taken by 2 or 4-

terminal methods, which avoid contact potential but not surface 

conduction effects, confirmation of the detailed model would require 

further studies of the fully guarded type made on crystals equilibrated 

at different oxygen pressures. They concluded that the conduction in 

Al
2
0
3 

is substantially ionic with aluminum interstitial ions as charge 

carriers. A key factor in their argument is, however, the positive 

sign of the carriers deduced from thermoelectric measurements by Harrop 

and Creamer (1963) and Pappis and Kingery (1961). Both these authors 

seem confused about the relationship between the polarities of the hot 

and cold contacts and the carrier sign. The equipment used by Pappis 

and Kingery has already been criticised above. That of Harrop and 

Creamer appears to use a physical gas guard, but not an electrical guard 

ring. 

Later Yee and Kroger (1973) conducted e.m.f. measurements on a 

concentration cell using a biassed guard to eliminate thermal e.m.f. 

effects, and with gas flow arrangements especially designed to prevent 

any partial pressure gradients across the crystal face, or any mixing 

of the gas streams leading to a false po 
value. They found that single 

2 
 

crystal A1203  in 02/air has an ionic transference number of 1 up to 

1450°C;athighertemperaturest.decreases slightly, reaching a value 

of 0.8 at 1650°C. 

Tallan et al (1965) and (1963) carried out a.c. measurements over 

a temperature range and frequency range, and explained their results 

by an interfacial polarization mechanism, with a surface layer up to 

50u thick, having resistivities 5 orders of magnitude greater than 

bulk. T.P. Jones et al (1969) determined a defect diffusion coefficient 
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in single crystal aluminum oxide from 1400°  to 1850°C by measuring 

the movement of the colour boundary in a Ti3+ doped single crystal. 

Our experiments resulted in plots of the d.c. conductivity versus 

1/T at constant oxygen partial pressure; the d.c. conductivity versus 

p at constant temperature; the conductivity and permittivity versus 02  
 

frequency for several combinations of temperature and partial pressure. 

5.2. The Pressure and Temperature dependence of the d.c. conductivity 

In general the d.c. conductivity versus 1/T plots, at constant 

po , are in broad agreement with previous work, at temperatures above 
2 

investigated (1 to 2x102) suggesting that the number of mobile defects, 

but not the type, varies with p
o 

in this temperature range. 
2  

Below 1050°C activation energies become smaller, and depend on the 

p
o2

, changing between 0.8 and 1.1 eV for the flux grown crystals. Hence 

there exists a region with lower activation energy between 900bC and 

500
0 C. The corresponding low temperature region activation energy for 

Czochralski crystals is 1.5 eV which is relatively higher than that of 

flux grown crystals. 

The high temperature region activation energies and conductivity 

values of flux grown platelets, are comparable to those of Brook et al 

(1971) and those of Czochralski grown crystals are comparable to those 

of Ozkan and Moulson (1970). 

There is nothing in these results to positively contradict their 

interpretations. Brook et al proposed that the conduction in 
Al203 

is 

due to aluminum interstitial ions at high oxygen pressure. Ozkan and 

Moulson tried to interpret their results in terms of electronic conduction 

in bands, which now seems inappropriate in view of the work of Yee and 

KrOger (1973). 

1050oC. The activation energy is insensitive to po over the range 2  

• 
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The 
ad.c. versus po isotherms are rather incomplete even for 

2 
Sample 5. However, the sort of behaviour observed could be explained 

by the following  sort of model;  

In terms of real charges: 

2  02(g) + 2 Feu 	
2 Fe4.--..H. + 	V 

0 7 Al 

or the same equation in terms of effective charges may be written as 

follows, 

2 02(g) + 2 Fe ---> 2 Fex + 00  + v' 3 Al 

where the equilibrium constant is 

[Fex12  { 0 [V"1 273  0 Al  K. _ 1/
2 11,4.12 

Po2 

The charge neutrality condition is 

[Siii] 

Since 00}, [Fel and [Fel are constant, therefore 

[val 	K/ pot 	and and a 
Al 	i  0 	V

Al 
= 	[let -PC P 3/4  

	

2 	 I Ail 	°2 

this predicts a variation of log  a on log  p broadly as observed in 
02 

Fig. 4.23, but the absolute values depend'on both the density and the 
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mobility of V . 

5.3. Oxygen partial pressure and temperature dependence of the a.c.  
conductivity  

The general features of the results described in the previous 

chapter lead us to an interpretation in terms of a bulk effect and a 

contact effect. In general we attribute the slower rise in c/  at higher 

frequencies with little change in€1, to the bulk processes. The difference 

between (5.1  at 70 Hz at high temperatures and cd.c, and the considerable 

variation in eat low frequencies we attribute to the electrode effects. 

At high temperatures there is a flat region of c/ as previously remarked 

which suggests that the effect of the surface on c' is complete once f 

rises above about 70 Hz. On the other hand, as f decreases, the rise in 

e by 70 Hz becomes larger as temperature increases. This suggests that 

the characteristic frequency of the surface process rises with temperature, 

but its character is such that the total change it causes from (IA 	to 
u.c. 

some intermediate value c
m 

decreases with temperature. Even without a 

detailed model of- the surface, which we have not constructed, it is 

possible to discuss the consistency of the variation in cl(ca) and EIM 

in this region by the Kramers-Kronig equations, and this is done in the 

next sub-section. 

In the sub-section following that, the variations of 0/(W) are 

discussed in terms of the general theory of Chapter 2 in relation to the 

particular parameters one might expect for Al
2
03' 

5.3.1. Electrode (Low Frequency) Process  

Since the material has a lattice contribution J to .X*()) then 

the Kramer-Kronig relation equations (2.130) and (2.131) must be inter- 

preted as relating the increase in3(.1  above DC„„ to 	, and Xi to the 

increase in X above 36. , i.e. equations (2.130) and (2.131) are • 

replaced by 
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Po 

y l(to) 	 X"('p.) 	2  1.L  2 dp, 
- () 

and 

0. 
(XI 	 CO 

3(( 4 ) = 	 W2  — 
2 

(5.2) 

but 

a/   = WE.
o
X= 

Mot 
- a

d.c. 

Therefore multiplying both sides of eqn. (5.2) by(4)(  yields 

2E0  

	

-_   CO2 d11a
total ad.c. 	2 	2 

- 

/ 	/ 	GO 

2 ' 

2 

The integrand is the product of X.-Dc. and 	and for a high 
- 

 

enough value of cA.) al-'4,0  goes to zero before It approaches ( so that 

the product is finite. Leta) ----÷co i.e. much greater than frequency 

at which the low frequency dispersion in o is completed; and call the 

conductivity at this frequency am, then 

	

2 	5°°  am  - ad.c. 	( 	X ) d 
 

or 

om a d.c. 
(5.3) 

,/ 
The integral is the area under the E'- e,, versus frequency curve, hence 

designating the area by A(0J) we get 
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0 

a - a 	
2 e 	

A A\ 
m 	d.c. 

or since Cr) = 2nf, then 

A(f) 4 E 	(am - ad.c.)  
0 

(5.4) 

The area which should be found beneath the curve if measurements could 

be continued to lower frequencies, may be obtained by substituting the 

values of E o  , em 	u 
and aA 	in this equation. Knowing this area, a value 

.c. 

ofC
s may be estimated by linearly extrapolating the Ei- e curve towards 

lower frequencies so as to give an area A beneath the curve by the time 

f = 1 Hz is reached. Assuming E is not much greater than this value at 

1 Hz, the rest of the curve will make a negligible contribution to A. 

In all cases the extrapolated curve had a slope smaller in magnitude than 

2, which is required for physical consistency as explained below. 

Equation (5.4) has been used to obtain static permittivity at 1500°C 

and 1550°0 and at oxygen partial pressures of 1, 10-1  and 2x10-2 atm. 

An example of extrapolation is shown for T = 1500°C and po = 1 atm. in 2  

Fig. 5.1. The static permittivity is highest at p 	1 atm. at both 
02 

temperatures and reduces with po2. 

Volger (1960) has reviewed the modelling of interfacial dispersion 

by layers of different permittivity and conductivity, and gives specific 

equations for the ratios of Ef and a/  above and below the resulting dis-

persion in terms of the e and of (i = 1,2) of the two layer model. As 

is well known, this two layer .model predicts a Debye-type dispersion with 

a and E having slopes of 2 at their steepest parts which is the 

steepest slope which such a model can explain. It is seen from the 

application of the Kramer-Kronig relations just discussed that the value 

of a
m - d.c. (where am refers, for the low frequency dispersion at high 

0 
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Sample 5 

1500°C 

po = 1 at . 
2 

	 _t 
1 	10 	102 	103 	104 	103  

f, Hz 

Fig. 5.1 	El- cG versus frequency. 
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temperatures to approximately the 70 Hz value) do not require as 

steep a slope as 2 to explain them, so that it is within the bounds 

of feasibility. This also means that they cannot be explained exactly 

in terms of the 2-layer model, but that a multiple-layer model or 

graded variation in 6' and al  would have to be used. Assuming, however, 

that the two layer model applies in a qualitative fashion, it is seen 

S 
	from Volger's equations for the two-layer case that 

d
1 

+ d
2  a _ 

s d1 
d
2 — +— 

al a2 

(5.5) 

and 

 

d
l
a
l 

d
2
a
2
2  

(d + ) 	+ 
1 	2 E 2 2  

(5.6) 

 

am 2 d1 d-2  

1 2 

• 

Assuming the blocking layer has an insignificant resistance (d1p14:‹d2p2) 

but that its resistivity is so high that dip
1
2j> d2p22 then Volgers result 

for Es in this case reduces to 

Es 	d
1
p
1
2 

2  d
2
p
2 

 
(5.7 ) 

when it is assumed that 61  62  =E 

Combination of equations (5.5), (5.6) and (5.7) and making use of 

the inequalities to neglect small terms yields 

2 
1 es dl 

c
a 2 0 4(7) + 	+ (-12  - 1) 

€00  d  

where d is d
1 

+ d2, then, since C/E-
c)  .
>>1, one finds 

s c. 
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(-2  - 1)2 d
1 S  (5.8) 

Eqn. (5.7) may be rewritten in the following form 

 

62 d ES  
a
l 	

d
1 

C 

 

(5.9) 

On the other hand eqn. (5.6) may be simplified as 

am  a2 _ 
d1 

a
1 1 + 	02  

(5.10) 

by making use of d2  SY d. 

Finally eqns. (5.8), (5.9) and (5.10) have been used to calculate 

dl, a2/a
l' 

a
1 

and a
2 
at 1500°C and 1350°C at oxygen partial pressures of 

1, 10
-1 

and 2x10-2 atm. and the results are tabulated in Table 5.1. 

One observe that the thickness of the thin layer d1  increased from an 

average of about 100 R at 15000C to an average of about 5,000 R at 

1350°C, i.e. by a factor of 50. Tallan and Graham (1965) computed a thick- 

ness of surface layer of about 4011 at a temperature of 1034°C, which 

seems in reasonable agreement, if one considers the change in the layer 

thickness as the temperature goes down. 

5.3.2. Bulk (High Frequency) Process  

In Chapter 2 it was shown that a multiple well-pair model could 

predict a log a - log f characteristic of lower slope than 2, and cal- 

culated curves of log ai/a
d.c. and log(atot /ad.c. ) versus logR were  

plotted in Fig. 2.25 for the 6 well-pair case with a /ad.c.  20, which 
necessitated 11W

12 = 
0.152 eV. 



Table 5.1  

Temperatu're 1500°C 1350°C 

ID
o2

,. atm. 1 10-1  2 x 10-2 1 10-1  2 x 10-2 

as (ohm-m)-1  

cm (ohm-m)
1  

Cs F/m 

d 	' 

d1 
c270.1 

61  (ohm-m)-1  

a2  (ohm-m)-1 

2.21.x 10 4  

2.62 x 10-4 

1.3 	x 105  

260 11, 

6.88 . 

7 x 104  

3.74 x 10-9  

2.62 x 10 4  

6.21 x 10-5  

1 x 10-4  

4 x 104  

260 p. 

242 R 

	

6.6 	x 103  

	

1.5 	x 10-8  

10 4  

9.3 x 10-5  

1.13 x 10-4 

2 x 104  

260 p. 

6o .R 

8.66 x 103  

1.3 	x 10 8  

1.13 x 10 4 

2.65 x 10 5  

3.33 x 10-5 

1.27 x 103 

26Oµ, 

0.135 p. 

4.95 x 102 

6.72 x 10-8 

3.33 x 10-5 

5.43 x 106  

	

1.3 	x 10 5 

	

7 	x 103 

260 11 

0.72 p. 

5.02 x 102 

2.59 x 108 

1.3 x l05 

7.91 x 10-6  

1.43 x 105 

3 x 103 

260 p. 

0.555 p. 

3.71 x 102  

3.85 x lo-8 

1.43 x 10-5 

• 
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The experimental plots of log a vs log f show a general similarity 

to Fig. 2.25, although the slope is in general even less. However, it 

seems probable that the slope would reduce even more for higher numbers 

of well-pairs. 

If the results of the 6 well-pairs K = 20 model are assumed to be 

appropriate in order of magnitude to describe the experimental results, 

• 
	 then we can try to test the applicability of the theory to alumina. 

The model predicts (see Fig. 2.25) that a/ = 	(or rather am 

in view of our identification of am 
to the bulk conductivity in the 

last subsection) ata2
2 
= 0.22, or that atot 

2am 
at this value of.2 . 

Hence the experimental curves should pass through atot  2am  at a 

frequency 

	

60 g p 	0.22p 
2 	2 oo 	oo 

f  

	

2  2n 2n 	2n 
/ 	(5.11) 

a 
Hence to find f

2 
we need to know or estimate p oo

. One way to do 

this is to try to find poo  from am. According to Eqn. (2.233) we have 

for m = 6; 

N 
1
/3 a

m 
kT 

Poo 	(T
d
) 

N
d
z2e2a2f

7
(0) 	s 

(5.12) 

In order to find poo  from the measured am  one has therefore to find z, 

a, Nd, Ns  and f7(0). In fact f7(0) may be found from Eqn. (2.167) once 

a 
	 Nd  and Ns 

are known, using the appropriate value of AW12 
= 0.152 eV 

for the 6 well-pair case. We shall assume tentatively z = 3, the normal 

Al ion charge. 

The values of a and Ns are determined by the crystal lattice of 

A1203. Fig. 5.2 shows a unit cell of A1203, with the 0
2-  ions omitted 

for clarity, according to Pauling and Hendricks (1925). The position 
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Figure 5.2.  The arrangement of aluminium ions and holes 
in the hexagonal unit cell in sapphire 
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of holes or interstices which could also accommodate A1
3+ 

 ions are 

also marked. From the figure, the unit cell volume V is 

V = 6 a2 c tan 300 = 5.06x10-28 m3 

Hence the number of unit cells per m3  is 

N
cells 

= 1/v = 1.97x1027 . m-3 

Again from the figure, the unit cell contains 24 Al3+  ions and 

12 holes. Once a defect, e.g. V
Al , 

has been created, it is difficult 

to know if one has to consider only 24 sites available to it or all 36. 

This would depend on a calculation of the relative free energies of the 

configurations of the type described in section 2.1.3. Again, for a 

tentative calculation, 36 sites per cell will be taken. Hence 

N5  = 36 Ncells = 7.09x10
28 m-3 
	

(5.13) 

The jump distance a should not be confused with the a-dimension 

of the unit cell. Since the crystals were measured along the c-axis, 

then from Fig. 5.2 again we take 

a = c/3 = 2.16 a 

A value of Nd 
may be found from cm 

and the diffusion coefficient.  

D of the defect responsible for cm  by means of the Nernst-Einstein 

relationship 

z e D 
= kT (5.14) 
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and the conductivity - mobility relationship 

a = N
d 

which combine to give 

a T 
a kT 

2 	
13 D m 

Nd _ 	5.990x1013   
D z

2
e 

 

(5.15) 

(5.16) 

assuming am  is the appropriate value of a, as explained above. 

Values of D for Al in 
Al203 

measured by tracer techniques have 

been given by Paladino and Kingery (1962). However, if they are used 

in Eqn. (5.16) in conjunction with our results for am  the resultant 

values for Nd are greater than N. 

Jones, Coble and Mogab (1969) point out that the tracer diffusion 

coefficient actually measures a weighted sum of the diffusion coefficients 

of the individual defects contributing to the tracer diffusion. By 

observing the movement of the colour boundary in a Ti doped Al203 
crystal 

they believe they have measured D directly for an individual, but un-

identified defect. The values obtained are far higher than those of 

Paladino and Kingery in our temperature range. 

If we tentatively assume this is the defect responsible for con-

ductivity, then Eqn. (5.16) gives Nd  = 9.28x1024  at 1500°C and Nd  = 

5.4x10
24 

at 1350C at po 
= 1 atm. and the same order of magnitude 

2  

in the other p . o2- 

Using all the above factors in Eqn. (5.12) at T = 1500°C, p = o2 
 

1 atm. gives the result 

p 00 = 4.62)109 

0 
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and using Eqn. (5.11) then 

f2  = 161 MHz 

This compares with an experimental result of 

f
2 
c..! 1 MHz 

which is a disappointingly poor agreement. 

Apart from the various assumptions made above, finding the 

parameters appropriate to Alumina to use in Eqn. (5.12), the whole 

treatment may of course be criticised on account of its one-dimension-

ality. This means that every defect which travels right through the 

solid has to go down into the deeper potential wells at some stage, 

whereas in a three-dimensional crystal there will be paths through 

avoiding the deep wells. In addition, there will be a greater proportion 

of "undepressed" sites for a given Nd/Ns  and value of m (no. of well-

pairs) in a three-dimensional treatment than in a one-dimensional 

treatment. 

To test this idea a very rough three-dimensional calculation 

has been made to relate 
ad.c. 

to p 
oo
. It is based on the idea that 

the conductivity will be given by 

n
7 
z2e

2
a
2 

d.c. 	kT 	oo (5.17) 

where n7  is the number of defects in the "undepressed" wells, i.e. 

those defects at a greater distance than 6 lattice sites from an 

immobile defect. Evidently 
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n7  = N7  f7(0) 

where N
7 

is the density of such sites and f
7
(0) is the Maxwell-

Boltzmann probability factor that such a site be occupied. If C is 

the number of nearest neighbours, then it is shown in appendix 2 by 

a rough calculation that 

N
7  Ns 

- C (1 + 22  + '" + 62) N
d 
	 (5.18) 

and 

1 	1 f
7 

= C {{exp(6 W12
) - lj + 22  L r exp(5 W12  ) - 1 ] + 	 

.  

+ .... + 62 [ exp(W12
) - 1]1+ 141 

d 
(5.19) 

Combining Eqns. (5.17), (5.18) and (5.19) to give an equation 

for Doo, 	 m one finds, using the same values ofo' Nd' Ns" 
zaandAW

12 -  

as previously that the results for poo  are reduced by a factor of about 

100. 

It seems reasonable to keep the value ofS?-2  = 0.22, since this 

was deduced by a one-dimensional calculation for both 45dOc. and 0/. 

Hence values of f2 have been calculated by means of Eqn. (5.11) using 

the poo  values derived from the approximate three-dimensional cal-

culation. 

Table 5.2 tabulates the f2 values thus calculated with those 

observed for temperatures of 1500°C and 1350°C and the three oxygen 

partial pressures. - 



* 
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Table 5.2 

T (°C) 1350, 1500 

po  , atm. 1 10
-1  

2 x 102 1 10 
1 

2 x 10-2 

2 

Calculated f
2
(Hz) 1.84 x 10

6 
6.8 x 105 7.6 x 105 10.6 x 10

6 
3.7 x 10

6 
4.2 x 10

6 

Observed f
2(Hz) 

1.3 	x 105 8 x 104 5 x 104 1.3 x 10
6 

2.5 x 105 4 x 105 
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Our overall conclusion is that the variation of conductivity in 

single crystal Al205 
with temperature, po and frequency is consistent 

2 
with ionic conduction, although we have no single result which makes 

this indisputable. 

Although the results are in general agreement with previous work, 

there are some specific areas of disagreement, which will be pointed 

out in the following as they arise in connection with reviewing the 

evidence for our main conclusions. 

The most novel conclusion is that there is a bulk as well as a 

surface effect in the a.c. behaviour of Al205 crystals, and that the 

frequency dependence of the bulk effect suggests that the interaction 

between mobile charged defects and oppositely charged immobile defects 

is quite long range, i.e. significant to at least the 6th neighbour. 

The evidence for the two processes is the variation of aa.c. 
and 

at high and low temperatures as already discussed, and the evidence 

for the long range interaction is the necessity to go to a 6 well-pair 

model to give computed results for a which show a slope of 0(f) 

beginning to get down to the observed values at high frequencies and 

temperatures. Reasonable agreement has been obtained for the frequency 

at which a should start to rise with approximate calculations using 

parameters appropriate to A1203. 

However previous workers (Tallan and Graham, 1965) have concluded 

that only surface effects are important. They only went up to 1034°C 

and did not measure 0,, 	in the same rig, and did not use a physical 

guard. Moulson and Popper (1968) found that this is important_even 

at relatively low temperatures. Their results differ from ours in that 
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they still saw quite large variation (two orders of magnitude) in 

6'in the KHz region at 10340C, and the rise in a had saturated at 10 

KHz. Our results at 1050°C show relatively little dispersion in 

(a factor of 4) and a is still rising at 10 KHz and even at 106 Hz. 

This suggests that our samples have a real difference in 

properties from theirs. We believe the surface mechanism in our 

samples has moved well below 102 Hz and we still have an order of 

magnitude difference between ad.c.  and a (70 Hz) at 1050°C. 

The frequency at which interfacial dispersions occur depend 

sensitively on the a2/a1  ratios and 1/d2  ratios and the large differ-

ences between our results and Tallan and Graham's (1965) may be due to 

the accessibility of the electrode surface to the ambient gas, or to 

the equilibrating procedure. Also they useciPt paste, while we used 

sputtered Pt electrodes. However, our extrapolated results for layer 

thickness show order of magnitude agreement. Bauerle (1969) found 

that the Pt paste electrodes were quite non-porous while sputtered 

Pt electrodes were reasonably porous. He made Pt paste electrodes 

porous by passing a heavy current through them for several minutes 

at 800°C. 

Two points of practical significance from the a(f) measurements 

are:- 

i) There is not much difference between ad.c. 
and a

m 
at 

temperatures greater than 1350°C, therefore high temperature d.c. 

measurements in the literature are probably acceptable. 

ii) The activation energies, quoted in the literature, obtained 

from a 	measurements, at f = 10 KHz, are not significant. 
a.c. 

The second, but very tentative main conclusion, is that the 

'previous interpretation of Brook et al. that Al interstitials are 

the mobile defects, is not supported by this work. A factor in their 
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argument was the a 	versus p
02 dependence of Pappis and Kingery a.c. 

(1961) at high po and our work, as far as it goes, does not agree 2  

with theirs. Their slope is 0.2 and ours is 0.6. We have suggested 

an interpretation in terms of VAl, but this is only very speculative. 

The results of Pappis and Kingery may be criticised (as mentioned 

above) on the grounds that many a measurements were taken at 104 Hz, 

so that only those at 13500C and above will be close to a
d.c. values. 

The above conclusions were mainly based on the a(f) and 
ad.c.(p  ) 

2 
variations. The remaining aspect of our results is the a 	versus 

d.c. 
 

{1/T) plots but these do not lead to any very striking conclusions. 

The experimental results are in reasonable agreement with post 1968 

work (i.e. those where a physical guard was used) over the same temp-

erature range. However, at lower temperatures the results are at 

variance with those of Ozkan and Moulson (1970) in showing a new region 

of lower activation energy. Brook et al (1971) did not measure below 

1000°C. This behaviour resembles that of other ionic conductors, e.g. 

alkali halides, and is usually attributed to association. However, 

we have not attempted any detailed interpretation of this. 

Summing up, the results and discussion show that systematic 

measurements of e(f) and 
ad.c. versus T, po and further refinement 

2 
of the theory of a(f) should eventually yield valuable information about 

defect densities, barrier heights and jump frequencies and the variation 

of interaction potential with distance between oppositely charged defects, 

and indeed the present study has already suggested that this interaction 

is probably a good deal longer range than usually considered (i.e. nearest 

neighbour only in the double potential well). 

For 
A1203 single crystals, in particular, the most informative 

measurements to make next would be conductivity as a function of oxygen 

partial pressure at a p
o2 

higher than 10
-1 

atm. and at lower po with a 
2 
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sample holder where physical guard is incorporated. Conductivity 

measurements at temperatures higher than 1600°C would also be 

interesting in the light of Yee and KrOger's (1973) work showing 

that conductivity starts to become mixed. The theoretical work 

should be extended into 3-dimensions or at least numerical methods 

may be used to solve the present matrix equations in more general 

cases. 
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APPENDIX I 

Law of Mass Action  

The rate or speed of a chemical reaction is proportional to 

the concentration of each of the reactants. In the reaction between 

A and B to produce C and D 

A B-->C D 

the speed is proportional to the number of moles per litre of A. The 

speed is also proportional to the number of moles per litre of B. If 

the number of molecules of A in one litre is doubled and the number 

of B molecules is trebled, the rate will be six times faster, hence 

R oc [AJ x [ B.] 

where R is the rate of reaction, and the brackets signify "moles per 

litre" of A and B. 1 mole contains 6.02 x 10
23 molecules. 

Since the rate is also dependant upon other factors, namely, 

the nature of A and B and temperature, it is necessary to add a term 

to the proportionality so that the proportionality sign may be replaced 

by an equality sign 

R = k x [Al x [B.] 

Once the reactants have been chosen, their nature is fixed. 

Consequently, the magnitude of k for a given reaction at a given 

temperature does not change. This quantity k is referred to as the rate 
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p 

constant for the reaction. We next consider the reverse reaction 

C +D-->A + B 

The speed of this reaction is given by the expression 

R
r 	

x [C] x [D] 

The numerical value of k' cannot be the same as that of k because the 

natures of C and D differ from that of A and B. 

Now let us consider the reaction 

2A + B---).0 or A+ A+ B--->C 

In this case, the speed of reaction is proportional to the square of 

the concentration of A, for it is necessary that two molecules of A 

collide for the reaction to occur. The reaction is 

R k x [A] x CA] x [B] = k x [A]2  [B] 

At equilibrium, the speed of the forward reaction is equal to the speed 

of the reverse reaction 

Rf 	
R
r 

For the equilibrium A + B 	C + D 

Rf  = k EA] [13] 

R
r 

= ki [C] ED] 

".11."••• 
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Then at equilibrium 

k [A] [B] = k' [C] ED] 

rearranging, we get 

k 	Cc] Di  
k' ^ [A] (B] 

For a given reaction at a specific temperature, the quantities k 

and k' do not change. Hence we may replace k/k,  by the term K 

K _ Cc] Era  
CA] CB!) 

The quantity K is called the equilibrium constant. 

0 



175 

APPENDIX 2  

--- 
Approximate 3-Dimensional Calculation of N7  and f7(0) 

The derivation of Eqns. (5.18) and (5.19) for N7  and f7(0) 

on an approximate three dimensional basis is as follows. 

The site density in the crystal is Ns, and it contains defect 

density Nd, and each site has C nearest neighbours at distance a. 

Let N1, N2  ... N6  be the numbers of sites at distances a, 2a, ... 

6a from the immobile defects, and N7  the number of all the sites 

beyond distance 6a. The numbers Ni  will increase approximately as 

the volumes of shells with radii a, 2a, ... 6a, etc. Hence we can 

write 

N
1 
 = CN

d'  • N2 	22 
CNd' • .... 
	 (A.1) 

Hence N
7 
 = N

s  - 
	N2 +- .... 	N

6
) 

., i.e. N7  = Ns  - CNd  (1 + 2
2 + 	+ 02  I 

which is Eqn. (5.18). 

Again 

fi  = f71 (0) (exp w. 7  ) 

(A.2)  

(A.3)  

where w.1,7 =AW1.,7 A 	1T and AW.,7  is the energy difference between the 

bottom of the ith well and that of the 7th and other wells beyond. 

Hence 

fi  = f7(0) exp 6 w12; f2  = f7(0) exp 5  w12 ': 

	 f6  = f7(0) exp w12 
	 (A.4) 
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If n. := N.f. is the average number in wells type i then we have 

m+1 	m+1 
ni 	N.f. = Nd i=1 	i=1 

 

(A.5 ) 

 

For m = 6 and using A.1 and A.4 for Ni  and fi, one finds 

CN
d
f
7
(0) exp 6w

12 
+ 22 CN

d
f
7
(0) exp 5w12 + 	

+ 62CN
df7(0) exp w12 

+ N
s
f
7
(0) - CNdf7(0) (1 + 2

2 + 	+ 62) = Nd 

which reduces to 

f71(0) = [exp (6w12) - 1] + 22[exp 
(5w12) 1] 

N 
+ 62  [ exp(w12) -1] /-+ TIE 

  

 

(A.6) 

which is Eqn. (5.19). 
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