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ABSTRACT 

The problem of selecting a state feedback controller with a 

.specified structure so as to minimize the expected value of quadratic 

cost for a discrete linear system disturbed by a zero-mean white 

noise disturbance is posed. This problem is solved by use of an 

iterative procedure. The existence properties of the solution 

and the convergence properties of the procedure are established. 

Numerical examples are considered to test the computational feasibility 

of the proposed procedure. It is then demonstrated that problems 

involving noise corrupted output feedback, problems involving 

dynamic compensators with fixed and tunable parameters, and team 

theoretic problems can be transformed into problems of the type 

treated. 
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CHAPTER 1 

INTRODUCTION 

1.1. Linear Quadratic Design, Suboptimal Controllers, and the Specific  

Optimal Approach  

The Linear. Quadratic approach to the design of feedback controllers 

for multivariable systems is well established [l]. It can be used 

for both the design of linear and of nonlinear systems. It is not, 

in general, possible to obtain feedback solutions for optimal nonlinear 

control problems. However, an optimal open loop control can be 

determined, the nonlinear equations can be linearized about the optimal 

operating point or trajectory, then by use of the linear quadratic 

results a feedback controller can be obtained [a]. This linear state 

feedback controller will ensure the behaviour of the nonlinearn system 

remains near optimal. 

The linear state feedback controllers obtained by solving the 

linear quadratic problem have many good features [1], guaranteed 

stability, good step responses, and insensitivity to noise and plant 

variations. Their chief disadvantage is their complexity. Normally 

not all the states can be measured and an estimator or observer is 

needed. For a stochastic problem the order of the estimator is that 

of the system. It is well known that by using frequency domain 

techniques one can obtain much simpler controllers which give good 

response. Unnecessary complexity is particularly burdensome in 

finite time problems where the time records of all the controller and 

estimator gains must be stored. 

Moreover, if the system being controlled is geographically 

distributed, as a power system usually is, the requirements that the 

measurements be transmitted to a central location where the control 
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calculations can be performed and that the control inputs be trans-

mitted from the central location to the various actuators can cause 

severe telecommunications difficulties. For such systems it would be 

preferable to use local feedback, that is, feedback of measurements 

taken near the actuators. If such a controller could not provide 

adequate performance one might wish to try transmitting a few essential 

variables. 

Thus a controller which has a worse performance, but which is easier 

and less costly to implement, may be more desirable than the optimal 

controller. Such controllers are termed Suboptimal Controllers. If 

the suboptimal controller is obtained by choosing the parameters in a 

specified controller structure optimally then' the controller is called 

a. Specific Optimal Controller. If the structure is well chosen a 

specific optimal controller which is easily implementable can give 

performance very near optimal. Such a design approach makes good use 

of both the human designers ability to identify good controller 

structures and the computer techniques for choosing parameters optimally. 

Conventional nonlinear optimization techniques can be applied to the 

design of specific optimal controllers when the number of parameters is 

small. If the number of parameters is large then methods which take 

: advantage of the structure and properties of the system must be used. 

The problem considered in this thesis is that of optimally 

selecting the parameters in a linear controller of fixed structure so as 

to minimize a quadratic cost. The model is assumed to be linear and 

the time finite. Such problems occur when batch processes or grade 

changes are dealt with or when nonlinear trajectory optimization 

problems are linearised about the optimal trajectory. These problems 

can not, in general, be handled using frequency domain design 

procedures and the use of nonlinear optimization techniques is difficult 
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and inefficient. A discrete formulation is appropriate as a digital 

implementation of the controller is necessary to cope with the 

storage of the parameter trajectories. 

First, the problem in which only certain elements of the feedback 

gain matrix are allowed to be non-zero will be solved, by use of 

special structural relations which are derived in the thesis. Then, 

other linear compensator problems will be transformed into that form. 

Although this thesis is primarily concerned with the finite time 

problem the theoretical results produced could be applied to 

the infinite time or steady state problem. Some brief remarks are made 

'about this problem in the section on further work. 

1.2. Problem Definition 

Consider the linear discrete-time system 

xic4.1  = Axk  + Buk  + wk  

where xk  is an n-vector termed state, and 

E[xoxo] = 
	 (1.2) 

By definition, E[ ] is the expectation operator. uk  is an m-vector 

termed control. wk 
is an independent n-vector white noise process with 

zero mean and variance V. Associated with this linear system there is 

a quadratic cost of the form 

N-1 
= 	E  [xiQxi  + uiRui] + )ix

T
IISNxN 	(1.3) 

i=k 

where Q, R and SN 
are positive semidefinite matrices. A, B, Vw, .Q and 
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R can be either constant or time varying matrices. For reasons of 

notational simplicity they will not be given a time index. 

The expected value of the quadratic cost over the time interval 

[0,N] will be denoted 

	

J = El Lo 	 (1.4) 

It ia well known [1] that (1.1+) is minimized when 

	

uk  = Gk  xk 	 (1-5) 

for k = 0,1, 	,N-1, where 

and 

T* = -[R+B S
k+1
B] TSk+lA  (1.6) 

T* 	T* 	T* 	-1 T* 

	

S
k 

= 	+ A 
Sk+1A 

 - A S
k+1

B[R+B  S
k+1

B] B  S
k+1

A 	(1.7) 

	

for k = N-1, 	10, and SN  = SN. 

The policy of using the controls given by (1.5) will be termed the 

OPTIMAL CONTROL POLICY and be denoted 

* 	* 

= [Gic,k=0,1„N-1] 

The value the expected cost (1.4) takes when the Optimal Control Policy 

is to be used will be termed the OPTIMAL EXPECTED COST and be written 

, 
J = E [Lo  I TT (1.9) 

Control policies where the control is a linear, not necessarily 
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optimal, transformation of the state will be considered. 

A LINEAR CONTROL POLICY, 

17=[G.4-0, 	,N-1] 	 (1.10) 

is the policy of using the control actions 

uk  = Gkxk, k=0„N-1.  

The value the expected cost (1.1+) assumes when a particular 

Linear Control Policy, n, is used will be denoted 

J(7) = 	[Lo  ITr] 
	

(1.12) 

The matrix 9k  is termed a STATE FEEDBACK MATRIX. 

Feedback Structure  

In this thesis the problem of determining the best Linear Control 

Policy where certain elements in the state feedback matrix are 

constrained to be zero will be considered. It is thus useful to define 

the FEEDBACK STRUCTURE, a, as the set of co-ordinates of the unconstrained 

elements in the State Feedback Matrix 

a = 	i1), (i2, j2) ,  	 , ( 	, J.Jp) I 
	

(1.13) 

A STRUCTURED FEEDBACK MATRIX 

rk(i, ;) 	 (1.14) 

is a State Feedback Matrix that satisfies 
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0 	if 	(ill) / a 	(1.15) 

where a is some specified feedback structure. The notation { r'lc(i'j)1 

means the elements of the matrix, 	are rk(i,j). The elements, 

I'
k  (i" 

j) are termed gains, and those elements not constrained to be 

zero are termed the unconstrained gains. Thus p, defined by (1.13), 

is the total number of unconstrained gains. 

A STRUCTURED CONTROL POLICY, nS, is a linear Control Policy (2.1) 

where all the State Feedback Matrices are Structured State Feedback 

Matrices, 

[G. 	i -0, 	 ,N-1] 
1 

By J(nS) is meant 

j(TrS) Eut j  

(1.16) 

(1.17) 

where Tr
S 
 is a structured control policy. Thus J(n ) is a scalar function 

defined on the Np-dimensional Euclidean space where each of the feedback 

gains in a Structured Control Policy is taken as a coordinate. 

Problem Statement  

The principal problem dealt with in this thesis is that of finding 

the Structured Control Policy (1.16) which will minimize the expected 

cost (1.4). Using the notation that has been developed this may be 

written 

Min J(TT) 
	 (1.18) 

TT 

This problem will be termed the STRUCTURED CONTROL PROBLFM. 



1.7 

Additional Definitions  

Some additional definitions are needed to solve the problem (1.18) 

and to compare the results produced with those produced by other 

authors. 

If a structured control policy is used,(1.11) may be rewritten 

where, uk, is a 

 
and ck  is a scalar 

xk  = 

1 
uk 

2 uk  

m 
uk 

scalar 

1 
ECk 

termed 

2 
Ck 

called 

1T 1 
gk xk 

2T 2 
gk xk 

mT m 
gk xk 

state 

the 

= 	Gkxk  

jth. input or control 

i, 

ctilfc(j,nj)3  

(1.19) 

(1.20) 

(1.21) 

for j = 1,2, 	,m. xk  is the nj-vector of those states that may be fed 

back to control j. Thus, the function 11(j,i) is a function whose domain 

of definition is the parts of integers (j,i) where je11,2,....,mj and 

ie11,2,....,ni l and whose range is the set 	11,2, 	,n} . 11r(j,i) is 

assumed to have the property 

111(j,l) < 1'(j,2) < 	 < 111(j,n3 ) 	(1.22) 

By definition 
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A(j) =  	,ir(j n.) 1 
	

(1.23) 

for j = 112,....,m. 

If ieA(j) then one says state i is fed back to control j. A(j) is a list 

containing the co-ordinates of those states that may be fed back to 

control j in ascending order. 

(4c)T  = Cyk(j,1) yk(j,2) 	yk(j,ni)] 
	

(1.24) 

for j = 1,2,.....,m. 

where Yk(j,i) is the gain associated with the feedback of state i to control 

j, thus 

rk i)) 	(1.25) 

for j = 1,2, 	,m and i = 1,2,.....,n.. 

If the notation 

jx1,(j) = 	,*(3,1)), (j011(j,2)), 	 ,(j01,(j0a.))/ (1.26) 

is adopted then 

a 	= j jxL(j) ij=1,2,....,m 	= CA(j) Ij=1,2,...,m] 
	

(1.27) 

is an alternative description of the Feedback Structure. 

If it is to be emphasized that no elements of the State Feedback 

Matrix are constrained to be zero the word COMPLETE will be used (i.e. 

a Complete State Feedback Matrix or a Complete Linear Control Policy). 

If p =An then the Feedback Structure is Complete. 

A PARTIAL STATE FEEDBACK MATRIX, G, is a structured state feedback 

matrix where the Feedback Structure satisfies 
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L(i) = A(j) 
	

for all ii jc {1,2, ....1 m 	(1.28) 

Thus it is a state feedback matrix where one or more columns are 

constrained to be zero. 

A feedback structure which satisfies (1.28) will be termed a 

PARTIAL STATE FEEDBACK STRUCTURE. A structured control policy where 

the specified structure is a partial state feedback structure will be 

described as a PARTIAL STATE CONTROL POLICY and be written 

1T = IGkl k=0111....1N-1] 
	

(1.29) 

The problem of determining the Partial State Control Policy to 

• minimise the expected cost, J, will be termed the PARTIAL STATE 

FEEDBACK PROBTFM and may be written 

Min J(rP) 
	 (1.30) 

P 
rr 

When dealing -with Partial State Feedback Structures it is useful 

to have the following definitions 

n 	n. 	i=1,2, 	im 
	

(1.31) 

and 

3qc  = 
	i=1,2, 	im 

Then (1.19) may be rewritten 

uk  = G:xk 	= Gicx;c  

(1.32) 

(1.33) 



1.10 

where 

   

G' = 1T 
gk 

2T 
gk 

mT 
gk 

(1.34) 

   

It is convenient to restrict the state vector to be of the form 

 

(1.35) 

 

where 
x, 

 is the n'-vector of those states that are available to be fed 

back, and qc  is the (n-n')-vector of those states that are not fed 

back. By introducing this restriction no generality is lost. If the 

state vector is not in this form one may always reorder it so 

that it is. 

Another problem considered in the literature is the Output Feedback 

Problem. 

Assume an r-vector yk  termed the output exists and that 

v - Cx. + v k 	k (1.36) 

where vk is an r-vector zero mean independent white noise process 

with a covariance matrix, V . If the control uk  is constrained to v- 

satisfy 

uk 	Kkyk 	 (1.37.) 



• 
v = 
k 

0 	 (1.39) 

and 

then the mxr matrix, Kk, is termed the OUTPUT FEEDBACK MATRIX, and the 

problem of finding the sequence [Kr, k=0, 	 ,N-1] of Output Feedback 

Matrices which minimize J, (1.4), is the OUTPUT FEEDBACK PROBLFN. 

The Partial State Feedback Problemie can be posed as an Output Feed-

back Problem by setting 

Yk 
	

Cxk 	 (1.39) 

where 

C = [I 0] 
	

(1.40) 

How Output Feedback Problems can be transformed into Partial 

State Feedback Problems will be shown in Chapter 7. 

It should be noted that some authors use the word Incomplete 

for Partial or Output Feedback. 

1.3. Literature Survey 

The method of designing controllers, by first selecting a suitable 

Controller structure then tuning the variable parameters to get good 

behaviour, is an old one. It is central to control systems design by 

simulation. 

During the 40's and 50's methods of analytically choosing system 

parameters so as to minimize a squared error criterion were developed 

for single input, single output systems. This work is summarized in the 

book by Newton, Gould, and Kaiser [15]. 

By choosing a controller structure and taking the expectation of the 

cost function, stochastic control problems can be converted into 
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static optimization problems if the controller gains are constant, 

or deterministic control problems if the gains are time varying. The 

resulting problems may, however, be very complex and require special 

techniques to solve them. A review of some recent results produced on 

this topic is given by Sims and Melsa [16]. 

Performance criteria other than expected cost have been suggested for 

specific optimal control problems. The min max criterion [17] might 

be preferred if poor behaviour for conditions that were unlikely to 

occur was unacceptable. Such criteria make the analysis more difficult and 

musti of course, produce a worse average behaviour than that produced 

by the controller which minimizes the expected cost. 

This survey will be restricted to specific optimal solutions to linear 

quadratic control problems. The work that has been done in this area 

can be divided into three main categories: 

A) Output or Partial State Feedback Control 

B) Dynamic Linear Compensators of Fixed Dimension 

C) Structured State Feedback 

A) Output or Partial State Feedback Control  

A problem of an output feedback type was first considered by 

• Axsater [18] . He dealt with a finite time continuous linear system with 

a white noise system disturbance. The control law, 

which was selected to minimize the expected cost, was a time varying 

linear combination of the noise free measurement vector. An algorithm 

was derived which will converge to an improved control law. Necessary 

conditions for optimality were derived and an optimal solution was 

proved to exist (i.e. all gains remain finite). A sufficient condition 

for the algorithm to converge to the optimal solution was established. 

Output feedback control of discrete regulator systems was first 

considered by Cumming [3]. Under the assumption that measurement and 
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system noise are independent zero-mean white noise processes, he 

derived, a necessary condition for an output feedback matrix to minimize 

the expected cost per time interval. This necessary conditionwis used 

to produce an algorithm, whichi given an initial output matrix that 

stabilizes the system, is guaranteed to improve the expected cost. 

Cumming also made• the interesting observation that the value of 

state in the optimal control law is replaced by the best estimate of 

state given the available measurements in the optimal output feedback 

control. 

Recently Ermer and Vandelinde [4] considered the discrete output 

feedback problem as described in Section 1.2 (the finite time version of 

the Cumming problem). They showed the solution to be one of the solutions 

to a two point boundary value problem. They suggested an algorithm 

for solving the two point boundary value problem but did not analyze its 

properties. Levine and Athans PA have considered the infinite time, time 

invariant, output feedback problem for a continuous system where the 

feedback gains are constrained to be constant. The initial state is 

assumed to be uniformly distributed over a sphere in Rri  centered at 

the origin, but the system is otherwise undisturbed. An algorithm is produced 

which will 	yield an improvement in cost at each iteration, given that 

• an output feedback matrix which stabilizes the system is used as the 

starting point. This approach allows a constant output feedback controller 

to be designed without any knowledge of the underlying disturbance process. 

It has therefore created some applications interest [10]-[13]. 

Other publications dealing with output or partial state feedback 

control of continuous systems are [1] and [19]-[36]. 

B) Dynamic Linear Compensators of Fixed Dimension  

This problem was first treated by Johansen [37]. He produced 

methods of computing solutions for stochastic finite time problems for 
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both discrete and continuous cases where the controller is time varying 

and only the order of the compensator is fixed. His article contains many 

computational examples. 

Other authors [38]-[46] have considered various problems where a 

dynamic compensator of fixed order is to be used. 

C) Structured State Feedback  

All previous work on structured state feedback has considered constant 

controllers for continuous systems which were not subject to system 

or measurement noise. 

This problem was first considered by Dabke [47] and [1+8]. He 

considered min max cost and expected cost for'a given initial state dis-

tribution. For both these costs the necessary condition-for optimality 

is given as a simultaneous set of polynomial equations in the non-zero 

gains. Unfortunately, he only solved these necessary conditions for 

a problem involving one unconstrained gain and gives no means of solving 

these equations in general. 

Martenson [49] produced a conjugate gradient algorithm for 

computing a structured feedback matrix with improved performance given that 

a structured feedback matrix which stabilizes the system is available as 

an initial value. The method is applied to two examples but the 

properties of the algorithm are not analyzed. 

Jameson [50] also considers a method of computing the 

gradient of the cost function with respect to the gains in the structured 

feedback matrix. The cost functions he considers are quadratic cost with 

a fixed initial condition, the min max of the quadratic cost, and the 

min max of the worst comparison with the optimal control. The expression 

for the gradient can be set to zero and the equations solved for a simple 

example or the gradient can be used in a parameter optimization 
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algorithm for more complex cases. 

Fath [51] used an approach similar to that of Martenson and 

Jameson but considered the problem where state alone was quadratically 

costed and G, the feedback matrix, was constrained so that HG 	L. 

Fath minimized the expected cost under the assumption that the initial 

conditions are uniformly distributed over a sphere centred at the origin. 

Kosut [8] produced a necessary condition for minimizing the 

expected cost assuming the initial condition is uniformly distributed 

over .a sphere centered at the origin. He further assumed that the cost of 

control matrix, R, is diagonal. Rather than using these necessary 

conditions to compute the optimal structured feedback matrix he proposed 

two suboptimal design approaches termed minimum error of excitation and 

minimum norm. 

BroWn. and Vetter [52] expanded the expected cost function, for a 

given initial state distribution, as a Taylor series in the state 

feedback gains about the full state feedback optimal point. A suboptimal 

structured state feedback matrix was obtained by use of the second order 

sensitivity term. 

Bengtsson and Lindahl [53] proposed that the gains of the structured 

feedback matrix be chosen so the modes of the resulting closed loop 

' system are close to those of the system under optimal control. This 

design procedure requires that a weighting matrix, which gives a relative 

importance to the modes of the optimal system, be selected. They 

used this method to produce an output controller for a boiler model 

(5th. order) and a local feedback controller for a power system model 

(15th. order • 

Isaksen and Payne E54J developed a method for computing suboptimal 

band structured feedback matrices for systems where the state transition 

matrix, A, has a diagonal band structure and there is no coupling between 

subsystems through the control or cost matrices. A suboptimal control 
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is constructed for the complete system from a set of optimal controllers 

calculated for subsystems which possibly overlap. The method is used 

to produce a traffic responsive regulator for a 34 state model of a 

freeway. 

1.4. The Outline of the Thesis with a Statement of the Contributions 

In this thesis the discrete finite-time structured control problem is 

defined and solved. This problem has not previously been considered in the 

literature. Further it is shown that many problems involving noise 

corrupted outputs and dynamic compensators can be posed as structured 

control problems. 

In Chapter 2 certain basic properties of linear systems controlled by 

linear control policies are derived. Lemma 1 contains a well known 

recursive formula for E[xkxk]. As this relation is usually derived under 

the added assumptions, that xo  be zero mean and the distributions are 

Gaussian, a derivation is included to show the condition, that the system 

noise be an independent white noise process, is sufficient. Lemma 2 

shows that the well known recursive relations for the expected value 

of quadratic cost associated with the optimal control policy hold in a 

slightly generalized form for any linear control policy. It is believed 

that this result has not been previously established. 

Lemma 3 is the central result of the thesis. It states that the 

expected value of quadratic cost for a linear system controlled by a 

linear control policy can be expressed as a positive semidefinite 

quadratic in the gains of the structured state feedback matrix to be 

used on any time interval. This result is the basis for the procedures for 

computing the optimal structured control policy developed in Chapter 4. 

Lemma 4 gives a condition under which the quadratic form of Lemma 3 

will be positive definite no matter what linear control policy is used. 

Lemma 4 is used to establish existence and convergence properties. Both 
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the statement and the proof of Lemmas 3 and 4 are completely original. 

In Chapter 3 the rules for choosing one structured or partial 

state feedback matrix optimally are stated with conditions under 

which the choice will be unique. Theorem 1, the rule for a structured 

feedback matrix follows directly from Lemma 3. In the proof of Theorem 2 

the result of Theorem 1 is manipulated using partial state feedback 

properties. Special formulae involving matrices which may be of lower 

order than that of Theorem 1 result. Ermer and Vandelinde [4] 

have produced a result similar to Theorem 2. However, the proof stated 

,here is original. Theorem 1 and Lemmas 5 and 6 are original both in 

statement and proof. 

In Chapter 4 the single replacement rule6 of Chapter 3 are combined 

with the recursive relations for E[xkxk] and expected cost to produce 

computational procedures for computing improved structured control 

policies. The convergence properties of these algorithms, both in cost 

and control policy, are established. The existence (in the sense 

that all gains remain finite), of the optimal structured control policy, 

and of the limiting control policies produced by the computational 

procedure, is proved. It is further shown that the optimal structured 

control policy and the limiting control policies are solutions to a 

certain two point boundary value problem whose solutions are the set of 

singular points of the cost function. Methods of selecting initial 

control policids, that should produce convergence to the 

optimal, are proposed and discussed. The first two of these are original, 

the latter three are suitably modified versions of the suboptimal controls 

proposed by Kosut [8]. The computational procedures, theorems, and lemmas 

stated in this chap ter are original as are all other comments not specifically 

attributed to another source. 

In Chapter 5 the computational suitability of the proposed procedure 
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is established. Two systems are analyzed. The results produced indicate 

that a rule of decreasing marginal returns with increasing controller 

complexity applies. Two heuristic methods of selecting good controller 

structures are suggested and tested. All the results and observations 

in this chapter are original. 

In Chapter 6 the effect V0  and Vw  have on the optimal structured control 

policy is considered, as is the related problem of how one can select a 

suitable V and Vw if the actual values are unknown. It is concluded V = I 0 	 0 

and V
w 
= I is a reasonable choice if one wants a control that will have 

an acceptable response for a wide variety of conditions. A relation 

between the limiting behaviour as N co of the optimal structured 

control policy and the solution to a similar discrete Levine and Athans [9] 

type problem is derived. This relation strengthens the rationale 

supporting both approaches. It means as well that techniques for 

computing solutions to the stochastic steady state problem (Cumming 

[3]) can be used for the deterministic steady state problem (Levine and 

Athans [9]) or vice versa. The observation that the partial state 

feedback optimal control replaces the unavailable states by the best 

estimate using the measurements available was first made by Cumming [3]. 

All other observations and results produced in Chapter 6 are original. 

In Chapter 7 it is shown that problems involving noise corrupted 

output feedback, dynamic compensators with fixed and free parameters 

and team theoretic problems can be posed as structured control problems 

by suitable state and control augmentation. The problem of how to choose 

the initial state of a dynamic compensator is considered as well. The 

transformations and results produced in Chapter 7 are original. However 

other authors, [42] and [45], have considered similar approaches for 

problems where dynamic compensators of specified order are to be used. 

In Chapter 8 two topics for further research are proposed and the 

results of the thesis are summarized. Some of the problems that remain 
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to be solved for the related steady state structured control problem 

are mentioned and a computationally promising algorithm is stated. 

Next, problems related to the choice of a good feedback structure 

are briefly discussed. All results and observations produced in this 

Chapter are original. 
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CHAPTER 2  

PROPERTIES OF LINEAR SYSTEMS CONTROLLRD BY LINEAR 

STATE FEEDBACK 

Three basic structural properties of Linear Systems controlled by 

Linear Control Policies are considered in this chapter. The linear 

system described by (1.1) with quadratic cost given by (1.3) controlled 

by a linear control policy (1.10) can be described as a 

i recursive relation for E[xkxk] in forward time and a recursive 

relation for quadratic cost in backward time. Further it will be shown 

that the expected cost (1.4) can be expressed as a quadratic function 

of the unconstrained gains on any time interval. These results will 

be used in later chapters to produce a computational procedure for 

obtaining the optimal structured control policy. Finally a usreful 

property of a matrix introduced when J is expressed as a quadratic in the 

unconstrained gains on a time interval will be established. 

Lemma 1: 

If a linehr system described by (1.1) is controlled using a linear 

control policy (1.10) then 

V(k+1) = CA+BG0(k)[A+TiGk]
T 
+ V1.4 	(2.1) 

where 

V(k) = E[xkx ] 	ak(i,j) 	 (2.2) 

for k .= 0,1, 	,N. 

V(k) is a symmetric positive semidefinite matrix, with elements 

a (i j). 
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Proof: 

Substitution of (1.11) into (1.1) yields 

(2.3) xk+1 = [A+BGk] xk  + wk  

Thus 

- 	T  ENk+lxkia] = EE[(A+BGk)xk+wk][(A+BGk)xk+wk]T  ] 

= Er(A+BGk)xkxkT  (A+BGk)
T
] 

+ E[(A+BGk)xkwk] 

+ E[wkm
-k

(A+BGk  )
T] 

+ E[w wT] k k 

Note that 

EC(A+BGk)xkxk(A+BGk)T] = (A+BGk)E[xkxk](A+BGk)T 

= (A+BGk)V(k)(A+BGk)T 

(2.4) 

(2.5) 

(2.6) 

as 

E[xkxk] = V(k) 

by definition. As 

E[(A+BGk k  )x. k  wT] = (A+BGk)E[xkwk] (2.7) 



and wk is a zero mean white noise process which is uncorrelated with 

present state 

E[xkwk] = 0 

where 0 is the null matrix of appropriate size. Thus 

E[(A+BGk)xiwk] = 0 

Considering the third term in (2.5) one sees that 

 E[wkxk(A+BGk)T] = E[(A+BGk)xkwk]T  

(2.8) 

(2.9) 

= 0T = 0 	(2.10) 

From the definition of covariance matrix and the fact that wk is a zero 

mean process one finds that 

wk] = Vw 
	(2.11) 

Substitution of (2.2), (2.6), (2.9), (2.10), and (2.11) into (2.5) 

yields 

V(k+1) = [A+BGk]V(k)[A+BGk]T  + w (2.1) 

V(k) is obviously symmetric by its definition (2.2). Further 

a
T
V(k)a = a

T
E[xkxk]a = E[a

T 
 xkxka] = E[y2] 0 	(2.12) 

as y = a
T
xk  is a scalar. Thus V(k) is positive semidefinite as well. 

2.3 

Q.E.D. 
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Lemma 2: 

If a linear system described by (1.1) is controlled using a linear 

control policy (1.10) then the expectation of the quadratic cost (1.3) 

can be expressed as 

Eak] 

or 

= 	)g[xicSkxk] 	E 

i=k+1 

tr[SiVw] (2.13) 

N 

E[140 

for all k=0, 	 

where 

= 	litr[SkV(k)] +X 	E 

i=k+1 

,N-1, 

tr[SiVw] (2.14) 

Si 	= Q + G.RG. + [k+BG.]TS. 	[A+BGi] 
1+1 (2.15) 

and i=N-1, 	,O. 

Si is positive semidefinite and symmetric as Q, R, and SN  are positive 

semidefinite and symmetric. 

Corollary: 

J = jtr[S0V0] + 	E tr[SiVia] 
	

(2.16) 
1=1 

Proof: 

The proof will be by induction. Consider the case k = N-1. 

Take the expectation of (1.3) with k = N-1 
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TT E[LN....1] = 11-1Ox  N-1 + 111N-1'‘LIN 1 1- /21 ri \IXNj  
(2.17) 

Substitution of (2.3) and (1.11), with k = N-1 in both these 

expressions, yields 

'T 	. r2 	T J = 	Qx 	kk G A-1 	 N- N-1xN-1 

	

+g(A+BG)- 	+ w JTS [(A+BG 	+ WN-1Jj N-1 A-1 N-1 N 	N- A-1 N-1 

(2.18) 

=g[xN
T
_1(Q + GT 

N- 	+ (A+BGN-1)TS
N

(A+BGN-1))xN-1] 

4-r T 	] SNwN-1  4- r T  (A+BG 	)T 	] / 14N...]°NwN-1 E'xN-1 	N-1 

(2.19) 

As wN-1 is a zero mean white noise process uncorrelated with state 

as 	is not dependent on w 	by (1.1). 

E[wN_JxN_1] = 0 	 (2.20) 

where by this notation one means the conditional expectation of wri_i  

given xN-1  occurs. 

Then note that 

E[xN_1(A+BGN__)T
SN wN-1-  1 = E[E[y11

T
-1  (A+BGN-1)SNwv.-1xN-1fl  

-N 
T
-1 (A+BGN-1)TSNE[wN- 

	

= 0 	 (2.21) 

3 -1 ]  
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By use of the trace identity 

E[xTAx] = tr[AV] 	where V = E[xXT] 	(2.22) 

and (2.11) one finds 

[wN-1SNwN-1] = tr[SNVw] 
	

(2.23) 

The substitution of (2.15) with i = N-1, (2.21), and (2.23) into (2.19) 

yields 

E[111_1] = 	T 	+Atr[SliVw] 
	

(2.24) 

Thus (2.13)holds if k = N-1. The second part of the proof is to 

show that it holds for k if it holds for k+1. 

Taking the expectation of (1.3) gives 

N 

E[Lk] = 	E 

i=k 

.Qx. + u.Ru.) + 1p:NSNxN] 3. 3. 1 (2.25) 

T = E[ xkT  Qxlc  + liukRuk] + E[L .k.1.1] 	(2.26) 

from (2.25) with k = k+1. 

By assumption 

N 

E[Lk+1]  = 1EEx k+l
-g 
k+1 	E tr[SiVw] 

i=k+2 

(2.27) 

Substitution of (2.27) into (2.26) and the additive property of 

expectation yields 
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N 

E[Lk] = E[ixicQxk  + 	+ 	 S -1- 	
+ 	E tr ES. V 1 

k k 	XIC k1 x+1 	w- 
i=k+2 

(2.28) 

By repeating the argument used to get from equation (2.17) through 

to (2.24) one can show 

E[IlxkQX1c itikRuk i3c1cSk+lxic+1]  

= liE[ckT  Skxis] +tr[Sivialivr] 

The insertion of (2.29) into (2.28) yields 

N 
E[Lk] = ,iE[xkSkxk] +1( E tr[SiVw] 

i=k+1 

(2.29) 

(2.13) 

As (2.13) holds for k = N-1 and holds for k if it holds for k+1, then 

-it holds for 

k=0, 	,N-1 

By one of the trace identities (2.22) and the definition of V(k), (2.2) 

on the first term of (2.13) one finds 

N 

Kik] = ,ltr[SkV(k)] + 	E tr[SiVw] 

i=k+1 

The corollary is established by substituting (1.2) and 

(1.4) into (2.14) with k = 0. 

Q.E.D. 

(2.14) 
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Lemma 3: 

If the state feedback matrix at time k of a Linear Control 

Policy, r, is a Structured State Feedback matrix, k Gs ' then the 

'expected cost may be written 

J( 	T r) 	ligkFkgk  + hkgk  + ck  (2.30) 

where Fk,hk, and ck  depend on Gi, i=0, 	,k-1,k+1, 	,N -1 only. 

k -1 

ck = 	E tr[[Q G.RG.]v(i)7 + 1( E tr[Si
] 

i=0 	i=k+1 

+ litrE[Q + ATSk+1A]V(k)] (2.31) 

Fk is the (pxp) positive semi-definite symmetric matrix 

r11(k)V11(k) 	r12(k)V12
(k) 	 r1m  (k)Vlm 

 (k) 

r12 	1 
(k)V 

2 
 (k) 	r

22 
 (k)V

22 
 (k) 	 r m 

 (k)V
2m 

 (k) 

rlm (k)VT (k) 	r
2m 

 (k)VT (k) 	 rmm 
 (k)Vmm  (k) lm 	2m  

(2.32) 

• Fk  

where 



= 
13 ak  (11!(i" 1) “ ' 

	

j 1)) 	ak01(i,1),*(j,2)) 

	

ak(t(i,2),ir(1,1)) 
	

ak(41(i'2)011(j,2)) 

akOti,n,),*(J,1)) 	ak0(i,ni),t(j,2)) 

 

k 	' (t(i n.)"t(1n.) 

 

(2.33) 

and the elements ak(iA) are defined by equation (2.2) and $(i,j) are 

defined by (1.21). The r.. (k) are the elements of the symmetric matrix 

R(k) = 	r..(k)} = [R + BTS
k+1

B] 
13 

where Sk+1 is defined by (2.15). gk is the p-vector 

(2.34) 

 

1 
gk 

2 
gk 

gk 

 

(2.35) 

    

where gk' i=1, 	,m, are defined by (1.24) and (1.25) and hk  is the 

p -vector 

   

hk  V(k)A
T
Sk+1b1 

- V
2 
 (k).11.

T
Sk+1b2 

Vin(k)A2Skiabm  

(2.36) 
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where 

V.(k) = k " (*(i 1) 1) 	ak(V(i,1),2) 	 ak0(i,1),n) 

ak(t(i,2),1) 	ak(11(i,2)12) 	 ak(*(i,2),n) 

ak(*(i,ni),1) 	ak(111(i,ni),2) 	 ak(*(i,ni),n) 

(2.37) 

and b., i=1,2,....,m are the columns of the matrix B defined in (1.1) 

thus 

B = [b b 	b ] 1 2 	m 
(2.38) 

Proof: 

 

Substitution of (1.3) into (1.4) yields 

N-1 

J = 	E [xTQxi  + uTRui] + Ii4SNxN] 

i=0 

(2.39) 

Substitution of (1.11) into (2.39), the additive property of 

expectation and the use of (1.3) and (2.13) produces 

Nk -1 

J(r) = EbckT  SkxkJ 	E tr[SiVw] + Y E tr[[Q + GiRGi]V(i)] 

i=k+l 	i=0 

(2.40) 



0 0 (1,13,c.)T 1T 1 
gk xk GSm 

k 

2T 2 gk  xk  

mT m 
g xk  

0 	(x)T 	0 

0 	0 

1 
gk 

2 
gk 
• 
• 

• • 
• 
• 
IA 
gk 

2.11 

EkaminationoftherecursiveformulaforS.,(2-15), and the 

formula for V(i), (2.1), make it clear that only the first term of 

(2.40) is a function of G
s 

This term will now be examined.k. 

From the additive properties of expectation and (2.15) it is 

apparent that 

E[xkSkxk] = B[xk[Q + A
T
Sk4.1A]xic] 

+ EbckG0 + BTSkiaBNkxk] 

 + E[2xkAT  SklaBGkxk] (2.41) 

By use of the definition of matrix multiplication, (1.19) may be 

rewritten 

(2.42) 

For reasons of notational convenience define 
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xk (2.43) (c.11,c.)T 	0 
	

0 

0 

 

0 

 

0 
	

0 	 (3cn)11 

Substitution of (2.35) and (2.43) into (2.42) produces 

GS = Xkgk 
	 (2.140 

Sub4tution of (2.34) and (2.44) into the second term of (2.41) 

yields 

 T T E[xkGkT  ER + BTSki..113]Gkx0 = gkE[Xkl(k)Xk]gk  (2.45) 

From the definitions (1.20), (1.21), (2.2), (2.32), (2.33), (2.34), 

(2.43), and the properties of expectation and multiplication of 

' matrices it follows 
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1 1 	 1 2 
xk(xk)T r11(k) xk(xk)T r12(k)  

2 1  
xk(xk)T r12(k) xl2c(x)Tr22(k)  

1 m 
Xk(Xk)T r1m(k)  

2(x m Xkk)T r2m(k)  

4(4)Trim(k) x:(4)Tr2m(k) 	 x:(ximc)Trmm(k) 

r11(k)V11(k) 	r12.  (k)V12 
 (k) 	 rlm  (k)VIm  (k) 

r12(k)V12(k) 	r22 (k)V22 
 (k) 	 r2m  (k)V2m 

 (k) 

rlm 	I (k)V
T
m  (k) 	r2m  (k)V

T (k) 	 rmm(k)Vmm(k)  2m 

Fk (2.46) 

Substitution of (2.46) into (2.45) produces 

ST EbckT  GK  ER BTSklaBjGkxk] = gkFkgk (2.47) 

Consider the variation in Fk  with changes in the Linear Control 

Policy r. Note (2.34) and (2.15) imply that R(k) through Sk+, is a 

function of G1, i = k+1, 	,N-1 only. 

Note (2.1) implies that V(k) is a function of Gi, i=0, 	,k-1 

only. As V..(k), i-1, 	,m1  j=1,....,m are matrices composed of 

elementsofV00,thesematricesarefunctionsofG.,1-0, 	,k-1 

only. Thus (2.32) implies that Fk is a function of Gil  

i=0, 	,k-1,k+1,....1 N-1 only. Fk does not depend on the value 

E[X0(k)Xit] = E 
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chosen for Gk. 

As R and Ski are positive semidefinite and symmetric,R(k) is 

positive semidefinite and symmetric. Thus (2.47) implies Fk is positive 

semidefinite. As V(k) is symmetric (2.32) and (2.33) make it apparent 

that Pk is symmetric. 

If equation (2.44) is substituted into the last term of (2.41) one 

finds 

T 	 T EE2xkAT  SkiaBGkxk] = 2 ExkA
T  Sk4aBX0gk  = 2d

T
gk 	(2.48) 

where by definition 

d
T 	T T 

= E [xkATSk+1BXk] (2.49) 

Note that one may write 

d
T 	T T 	T 	T 

= EE[(xkA Skiabl),(x0 Sk4ab2),....,(xkA Skiabm)]Xk] 

(2.50) 

where the b., i=1,2,....,m are the columns of B defined in (2.38). 

The 

d 	= 	E 

transpose of (2.50) 

1 
xk 	

0 
	0 

2 0 	xk 	0 

0 	0 	.... x 

is 

T T (xkA Skiabl) 

T T 
(xkA Sk.lab2) 

T T 
(xkA SKiabm) 

1 T  E[xkx0AT  

T 	T 
E[xkx0A Skiab2  

m T T EExkx0A Sk+lbm 

(2.51) 
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Use of definitions (1.20), (1.21), (2.2), (2.36) and (2.37) yields 

    

d = V (k)ATS b 1 	k+1 1 

V2(k)ATSk+1b2 

Vm(k)A Sk+lbm 

= hk (2.52) 

    

Substitution of (2.52) into (2.48) produces 

T . E[2xkAT  SkiaBGkxk] = 2hkgk  (2.53) 

hk  is a function of the control policy 7 through Vi(k) and 

Sk+1" As V
i(k) is composed of elements of V(k) it is a function of 

	,N-1 

only. Thus hk  is a function of Gi, i=0,....,k-1,k+1, 	,N-1 only. 

hk  is not dependent on the value of Gk. 

Substitution of (2.47) and (2.53) into (2.41) produces 

E[xkSkxk] = E[xk[Q + A
TSki..1A]xk] + gkFkgk  + ghkgk 	(2.54) 

Substitution of (2.54) into (2.40) gives 

N 

J(r) = IgkFkgk  + hkgk  +;11E[xk[Q + A
TSk 	+ 	E tr[S.V ] 

W 
i=k+l 

k-1 

E tr[[Q + 
	

(2.55) 

1=0 
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Define 

 

N 

ck  = kE[xk[Q + ATSkiaA]xk] +1( E tr[SiVia] 

i=k+l 

k-1 
E tr[[Q + GTRGi]v(i)] 

i=0 

(2.56) 

Thus 

N 

ck  = IltrE[Q + A
TSkiaA]V(k)] + 	E tr[SiVw] 

i=k+l 

 

 

k-1 
+ ji E tr[[Q + GTRGiP(i)] 

i=0 

(2.31) 

by use of the trace identity (2.22). 

ck  is a function of; 	Gi, i=0,....,k-1 directly; Si, i=k+1,....,N-1 

and thus of iG., i=k+1, 	,N-1; and V(i), i=0,....,k and thus of 

G., i-0, 	 

only. ck  is not dependent on Gk. 

Substitution of (2.31) into (2.55) produces 

1"T 
J(TT) -'2

I, 
 gk

-h., 
 kgk "kgk ck (2.30) 

whene Fk, ilk  and ck  are functions of G.,i=0,....,k-1,k+1,....,N, and 

Fk  is positive semidefinite. Thus if Gi,i-O,....,k-1,k+1, 	 ,N are 

considered to be fixed, J is a quadratic form in gk  with constant 
coefficients which opens upwards. Thus the minimising value(s) can be 

found by differentiating (2.30) by gk  and setting the result equal to 

zero. 

Q.E.D. 
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Lemma 4: 

If R, V0 and Vw are positive definite then for all Linear Control 

Policies, 

gTF.g 	xgT
g , 	i=0,....,N-1 	(2.57) 

where X is a positive constant whose value depends on the values of 

R, Vo, and Vw, only, and g is an arbitrary p-vector. 

This condition can be interpreted as: the positive definiteness 

of Fi  is bounded below<. 

Proof: 

 

In the proof of Lemma 3 it was established that 

S gkFkgk  = E[xk
T 

 Gk
T  ER + BTSki.p]Gkxk] (2.47) 

where Gk  is a structured feedback matrix. As Fk  is not a function of Gk  

any structured feedback matrix G
k may be inserted into the 

original Linear Control Policy without affecting Fk. Assume such a 

substitution is made. 

Use of the additivity of expectation produces 

T 	S 	T gkFkgk  = E[x..kGkT  kx.k] + Ebc..kGkT BT SkiaBGkxit] (2.58) 

As S
k+1 

is positive semidefinite 

 
E[xkGkT B

T 
 Ski..1BGkxk] 	0 	 (2.59) 

Thus 

(2.60) 
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If k=0 use of the trace identity (2.22) produces 

[G0  r STRGS0V g0F0g0 	t 	0]  (2.61) 

If k=1,....,N-1 then substitution of (2.3) produces 

S gkFk
g
k 	E[wTGSTRGSw ] + 2E[w,T QSTR

k 	k 
G [A+BGS  ]x. kk kk 	K.K -1 x-1 

S S E[xk_i[A+BGk_i]
T  GkT  RGJA+BGk_i]xk_i] (2.62) 

As w
k and x.x-1  are uncorrelated and R is positive definite 

g
k
TF 	ENT

k
TGSTRG

k
Sw ] 

k
g 
k 	k k 

Use of the trace identity (2.22) then yields 

• 
gT
kFk gk 	

tr[GSTRGSV ] 
k k w 

(2.63) 

(2.64) 

for k=1,....,N-1. 

As V0  is a positive definite and symmetric matrix there is an orthogonal 

matrix T0  which reduces V0  to diagonal form 

TTV0 T0 	= 	0 	 (2.65) 

TTT0 
	

= 	1 	 (2.66)  

w here 00 is the diagonal matrix which has the 

diagonal elements. 

Similarly there is an orthogonal matrix Tlw which reduces Vw 
to 

eigenYalues of V0  as the 
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diagonal form 

TTV T 	= 
w  w w w (2.67) 

TTT = I 	 (2.68) w w 

where 0w is the diagonal matrix which has the eigenvalues of Vw as the 

diagonal elements. 

Note (2.65) and (2.67) may be rewritten as 

T n TT vo T
O o o 

V 	= TO TT 
w 	w w w 

(2.69) 

(2.70) 

Substitution of (2.69) into (2.61) and (2.70) into (2.64) 

yields 

g0F0g0 > trEG0STRGS0T 0 T
T] 000 (2.71) 

or 

gk
TF . 	S S tr[9kT  T k-k 	

RGk T
wnwTw]  (2.72) 

for k1,2,....,N-1. 

Use of the identity 

trEAB] = tr[BA] 	 (2.73) 

where A and B are any two matrices so that the products are defined, 

gives 
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S goFogo 	tr[ki0T0T  G0T  RG0To] 	(2.74) 

or 

g. 	›. 	T ST S gT 

. k kuk 	tr[ wTiaGic  RGkTur] (2.75) 

for k=1,2,....,N-1. 

Let 	 denote the smallest of the eigenvalues of both V0  and V. 

If V
w is time varying this can still be done as the number of 

matrices to be considered is finite. As both V0  and Vw are positive 

definite Av  > 0. R is positive definite thus TNRG0T0  and TIT,IGIRGiTur  

are positive definite. By using the definitibn of trace one may deduce 

or 

S 
goFogo 	Xvtr[ToGo

ST  RG0T0] (2.76) 

S S 
gkFkgk 	Xvtr[Tw

T 
 GkT  RGkT14] 	(2.77) 

for k=1,2,.... N-1. 

Use of (2.66), (2.68) and (2.73) produces 

gkFkgk  > yr[RGSGST] k k ( 2.78) 

for k=0,1,....,N-1. 

XR  is defined to be the smallest eigen value of R. XR  > 0 as R is 

positive definite. R is symmetric as well. Following the same line of 

proof as was used to get from (2.64) to (2.78) one can show 

S S 
gkFkgk 	XVXRtrEGkGk

T 
 (2.79) 

for k=°,1,....,N-1. 
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From (1.14), (1.15), (1.24), (1.25), and (2.35) it is 

m 
S S trEGkGkT  ] = E 	= El% 

i=0 

If one defines 

X 	XV XR 

(2.80) 

(2.81) 

and substitutes this along with (2.80) into (2.79) one finds 

. 
kF k"-k 	-k"-"

g
K (2.82) 

for k=0,1,....,N-1. 

As the Structural Feedback Matrix can always be chosen so that 

git  = g where g is an arbitrary p-vector. 

gTF
kg ? xg

Tg 	 (2.57) 

for k=0,1,....,N-1. 
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CHAPTER  

THE OPTIMAL CHOICE OF A SINGLE STRUCTURED 

STATE FEEDBACK MATRIX 

By use of Lemma 3 the problem of how to choose a single structured 

state feedback matrix so as to minimize the expected cost, J, can be 

easily solved. If the structure is a Partial State Feedback Structure, 

then special formulae can be derived, which are similar in form to 

the relations for the optimal state feedback matrix, Gk. The partial 

state feedback result is analogous to those of Cumming [3] and of 

Ermer and Vandelinde [4]. In addition, conditions under which the optimal 

gains will be unique are considered. 

The following theorem may be used to compute the optimal gains 

of the structured state feedback matrix. 

Theorem 1: 

The linear system (1.1) is assumed to be controlled by the Linear 

Control Policy, r. If the State Feedback Matrix at time k, Gk, is to 

be replaced by the Structured State Feedback Matrix, Gk, which minimises 

the expected cost, J, the p unconstrained gains of Gk 
may be 

computed by solving the p linear equations 

Fkgk  = 	hk 	 (3.1) 

where Fk  is defined by (2.32), hk  by (2.36), and the relationship between 

gk  and Gk  by (1.24), (1.25) and (2.35). 

Proof: 

As Fk  is  positive semidefinite  and the G. 1=0,1 , 	, k-1 k+1 , 	, 
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are considered to be fixed, J, is a constant quadratic form in gk  

which opens upwards. Thus the minimizing value(s) can be found by 

differentiating (2.30) with respect to gk  and setting the result equal to 

zero. 

6j = 
g-cFk hk = 0 
	

(3.2) 

Thus J is minimised by any gk  that is a solution to 

F
k
g
k 
	 (3.1) 

Q.E.D. 

Lemma '4 implies that if V0' Vw' and R are positive definite all 

the Fk's will be positive definite and thus invertible which implies 

that the Gk's which minimise J, given that only one substitution is 

to be made, are unique. Now a less stringent sufficient condition for 

F
k to be invertable will be proved. 

Lemma2: 

If V(k) and R(k) are positive definite then Fk  is positive 

• definite. 

Proof: 

Substitution of (2.34) into (2.47) produces 

ST 
-k
F  k-k = EN; G  KkR(k)G  kxk.]  (3.3) 

Use of the trace indentity (2.22) yields 

S 
gT
kFk 

g
k 	K 

= trEG.
ST  R(k)G

k 
 V(k)] (3.4) 



By use of the same line of proof as 'that to get from 2.64) to (2.82) 

one finds 

gTF g 	CgTg 
kkk 	kk where C > 0 (2.57a) 

As g
T
kFk  gk 

 > 0 for all g 1 0. Fk is Positive Definite by definition. 
Q.E.D. 

The Partial State Feedback Problem is of particular interest because 

if feedback is eliminated from a state, that state need not be 

measured or estimated. This results in a reduction in the cost of 

control. In this section the result of Theorem 1 is considered when 

the Structured Feedback Matrix, Gk 
is in fact of Partial Feedback 

Form, Gk.  

Matrices Al of order (n x n') and A2 of order (n x (n-n')) are 

defined such that 

A = kl  A2] 
	

(3.5) 

Substitution of (1.35) yields 

Axk  = Alpqc  + A2qc 	 (3.6) 

Let 

Irx,(k) = E[xqc(x;c )T] 	 (3.7) 

and 

z1(k) = E[xt(qc)T] 	 (3.8) 
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Then (1.35) and (2.2) imply 



[  
VxT  lzi(k) 	Vz1(k) 

(3. 9 ) V(k) = 	V
x
,(k) 	Vxz  ,(k) 

3.4 

where 

vz,(k) = ECzlic(qc)T] 
	

(3.10) 

Theorem 2: 

Given system (1.1) controlled by a linear control policy r (1.10), 

if the k-th element of Tr, Gk, is replaced by a Partial State Feedback 

Matrix, Gk, then the feedback gain matrix Gk (1.34), that will 

minimize the expected cost J is 

- 
G' = -[R + BSk+113]

-1BTSk+1
EA1 + A2VT z  ,(k)Vx

1  i(k)] x  

(3.11) 

provided ER + B Sk+1B]  and V l 
 (k) are invertible, where Sk+1 is defined 

x 

by (2.15). 

Proof: 

By consideration of (1.20), (1.21), (1.32), (2.33) and (3.7) it 

is apparent that 

Vij(k) = E[xitc(x;c)T] = Vxl(k), 	i,j=1,2,...,m 

(3.12) 

Substitution of (3.12) into (2.33) produces 
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F
k 

= 
r11(k)

Vx,(k) r12(k)Vxl(k) 	 rlm(k)Vx'(k)  

r12(k)Vx1 (k) 
r22(k)Vx,(k) 	 r

2m 
 (k)Vx  ,(k) 

rlm 	xl (k)V 	(k) r m(k)Vx,(k)  
r
mm 	x 
(k)V ,(k) 

(3.13) 

R(k) = ER + 
k+111] is invertible by assumption. R

-1 	i (k) is symmetric 

as R(k) is symmetric, thus one may define 

R71(k) = {Y..lj(k)1 
	

(3.14) 

where 

cp13 ..W = (PJ
.
i(k) 
	 (3.15) 

As V
x
,(k) is assumed invertible it may easily be verified by matrix 

multiplication that 

	

F-1 = T
11 

 (k)Vx1(k) 	T
12 

 (k)VI(k) 	 1m (k)Vxl1(k) 

—1  

	

y
12

(k)V
x
t(k) 	T

22
(k)V

x
l(k) 	 2m (k)V

x i
(k) 

Tlm (k)V
x 
 (k) 	2m (k)V-

x' 	m1(k) 	 T 
m
(k)V 1(k) 

(3.16) 

As F
k
1  exists Theorem 1 implies that the unconstrained gains in 

GP  may be obtained by solving 

gk = - F;ihk 
	 (3.17) 
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Use of (1.20), 1.21 	(1.32), and (2.37) yields 

Thus 

Vi(k) = EC>q,j(x;c)12(q,)11]] i=1,2,...,m (3.18) 

V.(k) = [V 1(k) V 	(k)] i=1,2,....,m 	(3.19) 

by definition (3.7) and (3.8). Substitution of (3.19) into (2.36), 

then (2.36) and (3.16) into (3.17) produces 

gk = 9 (k)V
-1(k) 

11 	xl 

9
12

(k)V 1 (k) 

Y
12

(k)V
-1  (k) 

Y
22
(k)V

x
, (k) 

000. 9
1m
(k)V

x
" 
1 
(k) 

9 )V 1(k) -1 
(k) 

2m x  

1-V.  IV 1
T 

x z 

[V I V
x 

 , 
zl
]A

T
Skiab2  

T 
EV
x'
V
x'z'

]AS
k+1

b
m 

• • • • 

9
lm  

(k)V-1(k) 	9 (k)V , 

	

-1 	
mm 

(k) .... 9 (k)V ,(k) 

	

2m x 		x 

(3.20) 

Matrix multiplication and the substitution of the definition of 

gk' 	(2.35) 

g2 

k 

• 

m 
gk 

gives 

E 

1=1 

E 

1.1 

m 

E 

i=1 

91i(k)[I(VV,-(k)Vxz i
(k))]ATSkiabi  

9 	(k)[I(V 1(k)V 	(k))]A
T
S 	b 

2i 	i 	k+1 i 

• 
• 

9 .(k)[Ik
x
V-1(k)V 	(k))]ATSk+1bi mi 	' 

(3.21) 



1 
(gk)T  

2 
(gk)T  

m T 
(gk 
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• By taking the transpose of each gk in 0.21) one finds 

   

1 

(3.22) (d)T  = - E T..(k)jS A j1 	k+1 
1=1 

 

I 

 

-1 (V 1 z1(k))T  Vx1(k) 

   

Substitution of (3.5) and the appropriate matrix multiplication produces 

m 
• j.T 	 -1 kgic) 	= 	E cp..(k)b

i
T
Sk+1 

 [A1 + A2(Vxz1(k))
T  Vx1(k)] 

i=1 
(3.23) 

Substitution of (3.23) into (1.34) gives 

m 

(f) 	
1 

(k)b.Sk+1 [A1 + A2(Vx  , z1(k))
T 

 Vx,
1  
(k)] 

1=1 

m 
-1 E 	

2i 
 (k)b.S. [A1 + A2(Vx'z'  (k))

T 
 Vx1(k)] ic+1  

1=1 

m 

E.(k)bTS 	[A1  + A2(Vx1z1(k))TV-1(k)] ml 	k+1 
1=1 

• 

awl 

(3.24) 

The rules of matrix.multiplication and the definitions of R71(k), (3.14) 

and B, (2.38) yield 

, GI 	
x = 	R-1(k)BTSk.a[A1 + A2(V , 

z1(k))
T 

 Vx
1
i lk)7 (3.25) 
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Substitution of (2.34) gives 

1, G' = - ER + B
TS
k+1

B]-1BTS[A1 A2(V
x 

 , 
z1
(k))

T 
 Vx,t1c)] 

(3.11) 

Q.E.D. 

Sufficient conditions for the inverses in (3.11) to exist are 

now examined. 

Lemma  

A sufficient condition for [R B
T
Sk+1B]  to be invertible is that 

R be positive definite. A sufficient condition for Vx,(k) to be 

invertible is that Vil  and V
11 are positive definite, where 

0 

V3 	]2 0-110. 

V22 (V]2  0- )T  Vo  

vl1 V12  w 

(V12)T v22 
w' 

and 

V w 

(3.26) 

(3. 27) 

The partitioning in (3.26)  and (3.27) is the same as that in (3- 9)- 

Proof: 

As S
k+1 

is positive semidefinite, if R is positive definite then 
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[R B
T
Sk+1B]  is positive definite and therefore invertible. 

Define 

[(W12)
T 	W

22 

W = 	W
11 	W

12 
= 	+ BGk-1  ]V(k-1)[A + BG ] 

T 

  

(3.28) 

where the partitioning is the same as in (3.9). 

As V(k-1), k=1,...,N are positive semidefinite, W is positive 

semidefinite and thus W11 must be positive semidefinite. 

From (2.1),(3.9), (3.27), and (3.28) one may deduce 

V (k) 1 	= W11 V11  (3.29 ) 

for k=1,2,....,N-1. As W11 is positive semidefinite and V
11 is assumed 

positive definite, Vx,(k) is positive definite for k=1,2,...,N-1. 

vx, (o) = 11- 1 	 (3.30) 

by (1.2), and 01  is assumed to be invertible, thus the 

V
xl(k), k=0,1,....,N are positive definite and therefore invertible. 
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CHAPTER  

A METHOD FOR COMPUTING OPTIMAL STRUCTURED 

CONTROL POLICIES 

4.1. Introduction  

Theorem 1 of Chapter 3 suggests a method for computing a sequence 

of Structured Feedback Matrices. Start with a linear control policy, Tr. 

Change this policy one State Feedback Matrix at a time to a Structured 

Control Policy using Theorem 1 to evaluate which Structured Feedback 

Matrices would be best. Continue to change the policy one state 

feedback matrix at a time using Theorem 1. Each time a change is made an 

improvement in cost results (If the state feedback matrix replaced 

satisfied (3.1), the improvement will be zero). As cost is bounded below 

by zero, if state feedback matrices in the policy are changed inan ordered 

manner convergence in cost must occur. 

It is shown that the Optimal Structured Control Policy and the 

limiting Structured Control Policy of the above computational procedure 

are always composed of finite gain elements if Vo, Vw  and R are 

positive definite. The set of limiting Structured Control Policies is 

shown to either consist of one element or to be an uncountable connected 

set. Unfortunately, for certain systems, the limiting values produced 

depend on the initial linear control policy. In these cases the 

computational procedure does not always converge to the Optimal Structured 

Control Policy. The algorithm converges to a solution (or set of 

solutions) of a two point boundary value problem one of whose solutions 

is the optimal. Viewed in the parameter space, where each gain in a 

Structured Control Policy is a co-ordinate,the computational procedure 

may converge to a local minimum or a singular point. A simple 

example is given which illustrates these difficulties. 



Choice of the initial linear control policy is important to ensure 

convergence to the optimal and to keep the computation time low. 

For Feedback structures where near optimal control is possible a good 

starting point is the Optimal Complete State Feedback Policy. A 

heuristic argument is given which explains why such a starting point 

should provide convergence to the optimal for such cases. 

4.2. The Computational Procedures and Their Proof of Convergence  

The changes in the State Feedback Matrices of the Linear Control 

Policy should be organised so that the number of computations and the 

computer storage requirement is minimised. 

TheevaluationofGi using formula (3.1) Of Theorem 1 requires 

a knowledge of Si+1 
and V(i). 

S. 	
depends only on G.,j=i+1,d+2,...,N-1 

andVWdependsonlyonG.,j=0,1,....,i-1. If Control Policy 

substitutions were made in reverse time (i=N-1,N-2,....,1,0) then V(i), 

i=1,2,.. .,N-1 could be evaluated using (2.1) before a set of- 

substitutions eremade.Si could be calculated as 

eachnewcontrolmatrixGvi=N-1,N-2,....,0 was evaluated. This approach 

is described precisely by Computational Procedure A. 

.Definition  

The replace symbol, 	, when used in an expression such as 

Y means set the value of x equal to that of y. 

Computational Procedure A: 

1. Specify a linear control policy 

IT = [G., l=0,1,....,N-1] 

(for purposes of proof k 4-- 0 and (0) 4-- n) 

4.2 



4.3 

2. Let i 	0 and V(0) --t-- Vo  • 

3. V(i+l) [.A.4,BGi]V(i)[A+BGi]
T Vw  

4. i-4.-- i+1 

5. If i < N-1 go to 3. 

6. G. 	the structured state feedback matrix with unconstrained 

gains obtained by solving 

F
i
g
i 

= - h
l 
	 (3.1) 

where F. and h. are defined by (2.32) and (2.36) and are 

evaluated using the current values of V(i) and Sila. 

(for purposes of proof k 	k+1 	7, the Linear Control 

Policy composed of the current values of 

7.  

8.  

9.  

Q 

If i > 

Go to 3. 

G.RG. + D.+BG.
13
T
S.+1  [.A.+BGi] 

6. i-1 	go to 

For the partial state feedback case the result of Theorem 2 could 

replace that of Theorem 1 in step 6. 

It may be noted that the calculation of Si  in reverse time followed 

bythesubstitutionofthenewG.in the linear control policy in forward 

.time would require only one new V(i) to be calculated for each G. 

replaced. This approach would be equally valid and have the same 

computational advantages as the procedure previously outlined. 

The preceding procedure requires the calculation of (N-1) V(i)'s 

and N S.'s for each N changes in the control policy. If changes in 

control policy were computed in forward time, as the new V(i) were 

calculated, as well as in backward time, as the new S. were 

calculated, (2N-1) changes in control policy would be made for the 

oalculatiorrof(N-1)VW i sancINS.1I s. If the improvement in cost on doing a 



forward and a backward time calculation is of the same order as doing 

two backward time calculations, this would reduce the total amount 

of computer time required to find a solution. Computational Procedure 

B is a method of doing such a calculation. 

Computational Procedure B: 

1. Specify a linear control policy 

n = 	i=0,1,...,N-1] 

(for purposes of proof k-*---0 7(0)-0-- 7) 

2. i 	N V(0)-*---Vo  

3. i -1 

4. + GiRGi  + [A+BGi
]
T
Sila[A+BGi] 

5. If i> 0 go to 3. 

6. G. -*-- the structured state feedback matrix with unconstrained 1 

gains obtained by solving 

F.g. = - h. 
3. 3. 	 1 (3.1) 

where F. and h. are defined by (2.32) and (2.36) and are 

evaluated by using the current values of V(i) and Siia. 

' (for purposes of proof k 	n(k) --- 7) 

7. V(i+i) 	[A+BGi]V(i)[A+BGi]
T + Vw  

8. i i+1 

9. If i <E1-1 go to 6. 

10.G.-4-the structured state feedback matrix with unconstrained 
1 

gains obtained by solving 

F.g. = - h. 
3. 

(for purposes of proof k 	k+1 n(k) 

11. 	Q GiRGi  +
TSila[A+BGi] 

(3.1) 
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12. i i-1 

13. If i > 0 go to 10. 

14. Go to 6. 

It can be seen that Computational Procedure A is a simpler and 

requires nmN fewer computer store locations than Computational Procedure 

B. 

It iaill now be shown that these Computational Procedures always 

produce convergence in cost. 

Notation: 

Let E[L I  rr(k)] mean the expected cost over the time interval 

to N given that the Linear Control Policy rr(k) is used. Define 

J(Ti(k)) = E[L0 I  rr(k)] 	(4.1) 

By F.(k), 	g.(k) etc. is meant the values F., h., gi  etc. assume 

if control policy rr(k) is used, Ade k ,;3t4441)0,14krtiti- 41/uea.ce"-e+4 ,11 
aa.t- A-44e, teu,L- ma,A, A44;* Gfrtladatim," Pe-en-awe- AVoIKB. 

Theorem 3: 

Computational Procedures A and B converge in cost. That is 

dim J(rr(k)) = J 
	 (4.2) 

1V-410D 

is defined. 

Proof 

Consider any ic;: N. The Linear Control Policy u(k) will be a 

Structured Control Policy. By construction the Structured Control Policies 

n(k) and r(k+1) differ only in the element Gi. This is true for both 

Computational Procedures A and B. By use of (2.30) one can write the 
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expected cost as 

J(rr(k)) = ligI(k)FpOg(k) + hT_(k)gi(k) + ci(k) 	(4.3) 

J(r(k+1)) = 1T(k+1)Fi(k+l)gi(k+1) + h1(k+l)gi(k+1) + ci(k+1) 

(4.4) 

As 'F., h. and c. depend on G., i=0,1,...,k-1,k+1,....,N-1 only 
1 1 

F.00 = F.(k+l) 
1 	i 

h.(k) = h.(k+1) 	. 	 (4.5) 
1 	1 

ci(k) = ci(k+1) 

gri(k+1))==lig.(k+1)F.(k)g.(ki-1) -1- 111.(10g1..(k4a) -1- c1.(1c ) 

(4.6) 

gi(k+1) was chosen so that 

F.(k)g.(k+1) 	(c) 
1 1 (4.7) 

which is the minimising value of gi  for the quadratic functions (4.3) 

and (4.6). Therefore 

J(rr(k)) > J(r(k+1)) 

with equality holding only if gi(k) satisfies 

F. (10g- 1 (4.8) 

and 

Thus 



Thus J(.17(k)), k=N, N+1,.... is a monotonically decreasing sequence. 

The quadratic cost function Lo  defined by (1.3) is positive semi-

definite by assumption, which implies gn(k)) is bounded below by 

zero. Thus the sequence J(17(k)),k=0,1, 	 must converge C5,p.477. 

Q.E.D. 

4.3. The Optimal Structured Control Policy  

A control policy can only be implemented if the gains are finite. 

Thus it is useful to have the following. 

Definition: 

A linear Control Policy will be said to EXIST if all its gains are 

finite. 

If V0, w  V and R are positive definite then the optimal structured 

control policy and the limiting structured control policies produced 

by the computational procedure can be shown to exist. To establish 

this result one needs the definition of the norm of a Linear Control 

Policy. 

A Linear control policy can be considered as a point in the nmN 

space of gain elements. Similarly a structured control policy can be 

considered a point on the Np space of its free gain elements. It 

therefore makes sense to define norm in terms of the Euclidean norm 

on these spaces. That is the square root of the sum of the squares of 

the gain elements. 

Definition: 

The NORM of a Linear Control Policy, 7, (written Irr I) is 

1+.7 
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N-1 

( E tr(GiGi
T  )) 
	

(4.9) 
i=0 

which for a Structured Control Policy may be written 

N-1 

= ( E g.
T  
g.) a. 

i=0 

(4.10) 

This may be easily shown by use of (1.14), (1.15) (1.24)1 1.25), 

(2.35) and the definition of trace. 

Theorem 4: 

If V0, w  V and R are positive definite then the Optimal Structured 

Control Policy exists. 

Theorem 5:  

If V0, Vw  and R are positive definite then the Control Policies 

generated by Computational Procedures A and B satisfy 

1 7(k) I 	c 	k=0,1,2, 	(4.11) 

where C is a positive constant. 

Corollary: 

If V0, Vw  and R are positive definite then r(k), 

has at least one limit point, and all limit points exist. 

These results follow directly from: 



Lemma 7: 
If V0, w  V and R are positive definite then 
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J(7) < K 

implies 

(4.12) 

 

1 Tr 1 	c 	 (4.13 ) 

where K is a positive constant and C is a positive constant related to K. 

Proofs 

The definition of J(7), (1.12), (1.3), (1.11), and assumption 

(4.12) give 

'2-11-NxN: K 	J(7) = ELV E 4[Q+GTRGi]xi  leyTS 1 	(4.14) 

1=0 

and Q and SN are positive semi-definite 

N-1 

K ,>.> J(7) 	E E[xTGTRGixi] 
	(4.15) 

i=0 

Substitution of (1.1) with k=1,2,....,N-1 produces 

N-1 

K > 1kE[xoT  GoT  RGoxo] + 	E E[wiT  GiT  RGiwi] 

1=1 

N-1 
T  + E E[w G.T  RG.[A+BC. 3x. i 	1-1 2.-1 

1=1 

N-1 

E E[xi-1[A+BGi_i]
T  GiRGi[A+BGi_13xi_i] 

1=1 

(4.16) 
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as R is positive definite 

E[ 	A+BG. ]
T  G.T  RG.[A+BG. ]x. 	> 0 

1-1 1i 	I-1 1-1 (4.17) 

w. is a zero mean white noise process uncorrelated with past or present 

state thus 

T T Kw.G.RG.CAABG. 3x.1-1 
 ] = 0 

1 	1-1  

Thus from (4.16) one can deduce 

. N-1 

K > olgExoT  GoT  RG0x03 	E E[wi
T 
 Gi
T  
RGiwi] 

1=0 

Use of the trace identity (2.22) yields 

K > litr[GoRGoVo] 	E tr[GiRGiVw] 

1=0 

(4.18) 

(4.19) 

(4.20) 

By use of the same argument that was used in the proof of Lemma 4 

to get from equations (2.61) and (2.64) to (2.79) one finds 

N-1 

K  > XVXR( E tr[GiGT]) 
	

(4.21) 

i=0 

XR  is the smallest eigenvalue of R. -XR  > 0 as R is assumed positive 

definite. Xv  is the smallest number in the set of eigenvalues of V0  and 

V
w 

As both Vo  and V
w 
are assumed positive definite, Xv  > 0. 
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Substitution of (4.9) and the obvious algebraic manipulation yields 

(4.22) 

Define 

C 
	

(4.23) 

as K, X. and x are all positive C is positive. As 	and 	areboth 

> 0, C is finite. 

Q.E.D. 

Proof of Theorem 4: 

Consider any structured control policy, 7 , such that 1 TT I is 

finite. Associated with this control policy is a finite expected cost 

JOT ). This follows directly from (2.16). The optimal structured 

control policy, t
S 
 , must satisfy 

J(W) 	J(TTS) 
	 (4.24) 

Then Lemma 7 states 

f ir 1 = C 	 (4.25) 

If the sum of the squares of all the gains in a control policy is 

S 
finite, then every gain must be finite. Thus 7 exists. 

Q.E.D. 
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Proof of Theorem 5: 

It was shown in the proof of Theorem 3 that J(17(1)), i=N,N+1,.... is 

a decreasing monic sequence. Thus 

J(rr(i)) E Max J(7(k)), 	i=0,1,2,.... 	(4.26) 
0:5,4c.,5„ N 

and Lemma 7 yields 

n(i) 1 < C, (4.11) 

n(k),k=N,N1-1,N+2,... is an infinite sequence of structured feedback 

policies. If one considers each gain element to be a coordinate, it is an 

infinite sequence in an Np dimensional Euclidean space. (4.11)°iAplies 

that it is an infinite sequence within the closed and bounded set 

S •  [ Tr . 	S 1 < c]. 
Thus it must have at least one limit point in the set [5, p.35]. 

As a closed set by definition contains all its limit points any other 

limit points must also lie within the set. Thus all limit points have 

finite gains and thus satisfy the definition of existence of a Linear 

Control Policy. 

Q.E.D. 

The Optimal Structured Control Policy exists and lies within the 

same set that contains the limit points of the computational procedure. 

One might hope that'for all Linear Control Policies with which one might 

start the computational procedure there would be one limit point which 

would be the Optimal Structured Control Policy. This unfortunately is 

not necessarily true. 
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In discussing the nature of the limit, points of 

the computational procedure the following definitions are useful. 

Singular Point  

The Structured Control Policy, r1, will be termed a SINGULAR POINT 

of J(n
s
) if 

= 0, 	k=0,1,....,N-1 	(4.27) 

S 1 
'IT =TT 

Distance Measure 

The definition of Norm of a Linear Control Policy (4.9) implies 

a measure of the distance between two control policies. If 

w1 = [Gk, k=0,1,...,N-1] and n2 = [Gk, k=0,1,...,N-1] then the DISTANCE 

between 111  and n2  is defined to be 

N-1 

r1  - r2 	= ( E traG1 - GJT[G.1 - G]))%  I I 
i= 0 

(4.28) 

0-neighbourhood  

An 0-NEIGHBOURHOOD (or neighbourhood) of a Linear Control Policy, 

'n, is a set Ne(17) consisting of all Linear Control Policies, 11', such 

that In - yl 1 < e. 

(From Rudin [5, P.28]); 

Absolute Maximum [minimum]  

The function J(TTS) takes on its ABSOLUTE MAXIMUM [MINIMUM] for the 

Structured Control Policy, nt, if 
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J(n. ) < grit) 
	

(4.29) 

N(118) > J(Tr')] 	 (4.30) 

for every Structured Control Policy, u . 

(From Hadley [6, p.337) 

If J(11 ) is a constant then J(u ) takes on both its absolute 

maximum and its absolute minimum for any structured control policy 7 . 

Strong Local Maximum [Minimum]  

The function J(TTS) is said to have a STRONG LOCAL MAXIMUM [MINIM] 

at Ti' if there exists an e, e > 0 such that for all structured 

control policies, MIS,  where 0 < j rt - 7 1 < C then 

gr ) < J(ri  ) 
	

(4.31) 

[J(nS) > J(W)] 
	

(4.32) 

(From Hadley [6, p.53]) 

Weak Local Maximum [Minimum]  

The function J(TTS) is said to have a WEAK LOCAL MAXIMUM [MINIMUM] 

at n' if it does not have a strong local maximum [minimum] at n' but 

there exists an C > 0 such that 

J(TTS) 45. J(rT') 
	

(4.33) 

CJ(ns) > J(111 )3 	 (4.34) 
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for all r7S  in the e-neighbourhood of 71  NG  (70). 

(From Hadley [6,p.54]) 

If grr ) is constant over an e-neighbourhood of 71  then it has both 

a weak local maximum and a weak local minimum at TO. 

It will be shown that all limit points of the computational procedure are 

solutions to a two point boundary value problem of which the optimal 

structured control policy is also a solution. All solutions to this 

two point boundary value problem are singular points of the 

function J(7
s
). 

Theorem 6: 

Consider the two point boundary value problem. Find a Structured 

Control Policy rr5  = [Gk, k=0,1,...,N-1] where 

V(0) = V0  

ic3T  + V V(k+1) = [A+BGIc]V(k)[A+BG  

for k=0,1,...,N-1, 

SN is given, 

Si  = Q + GRG.
S  + 	

ST
3. 

S.+1 [A+BGi] 
3. 	1  

for i=N-1,N-2,....,0, 

and all G., i=0,1,...,N-1 satisfy 

F.g. = - h. 
I 1 

(2.1) 

(2.15) 

(3.1) 

whereF.isdefinedbY(2.30i/L1 
 is defined by (2.36), and the relationship 

betweenG.and.is defined by (1.14)1., (1.15), (1.24), (1.25) and (2.35). 
1 
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Then, 

1. All Optimal Structured Control Policies are solutions of this 

two point boundary value problem. 

2. The solutions of this two point boundary value problem are the 

singular points of the function J(rI ). 

3. No solution of this two point boundary value problem is a strong 

local maximum of JOT ). 

4. If V0, Vw  and R are positive definite then solutions of this two 

point boundary value problem can not be absolute maxima nor can they 

be weak local maxima. 

Proof:  

It was shown in the proof of Lemma 3 (following (2.47)) that Fk  

is positive semidefinite. Therefore the functions 

, 	InT 
-‘7Ts\ 
	1 
= '2g1c

Tv
'kgk "kgk ck (2.30) 

k=0,1,...,N-1 are convex in gk  [6, p.84]. Differentiation of (2.30) 

yields 

agrr ) 	gkFk  hk 	 (4.35) 

Thus if and only if 

Fkgk  = - hk, 	 (3.1) 

does 

aJ(rr ) 

gk 
0, 	k=0,1,...,N-1 	(4.27) 
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Thus as (3.1) holds for any solution to the two point boundary value 

problem, all solutions to the two point boundary value problem satisfy 

(4.27) and are thus termed singular points. As all singular points must 

satisfy (3.1) they are all solutions to the two paint boundary value 

problem, 2. 

The convexity of the functions (2.30) implies that if and only if 

TT' satisfies (4.27) does gr') satisfy 

J(TO) 	J(n") 	 (4.36) 

for all TT" e n where 

n = [ rs  I g.=g!, i=0,1,...1 j-1,j+1,....,N-1; 
J. J 

where je[0,1,....,11-1] 

and g!, i=0,1,...,N-1 are the unconstrained 

gain vectors, (2.35), of TO 

An Optimal Structured Control Policy, n
S  , is defined to be a 

global minimum. Thus 

J(rt ) < J(rr ) 	for all r
s
. 

8 r must then satisfy (4.36) which implies it satisfies (4.27), which 

implies it is a solution to the two point boundary value problem, 1. 

Assume rl is a solution to the two point boundary value problem. 

Within any c-neighbourhood of rl one can find a Toen. (4.36) 

contradicts (4.31). Thus a solution of the two point boundary value 

problem cannot be a strong local maximum, 3. 

If V0, Vw  and R are positive definite then the Fie  k=0,....,1171 are 
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positive definite by Lemma 4. Then the functions (2.30) are strictly 

convex in gk  [6, p.85], which implies 

J(rr' ) < J(Tr) 	 (4.37) 

for all rr" e n, where TT' is a solution of the two point boundary value 

problem. (4.37) contradicts (4.29) and (4.33). Thus 71  cannot be an 

absolute maximum nor can it be a weak local maximum, 4. 

Q.E.D. 

It has been shown that if V0' w V and R are positive definite then 

all limit points of the computational procedur=.e exist. It will now be shown 

that either there is one limit point or the set of limit points is 

uncountable and connected. All litit points satisfy the necessary 

condition stated in Theorem 6. 

Theorem 7: 

If V0, Vw  and R are positive definite, either 7(k), k=N,N+1,...., 

has one limit point or the set of limit points is an uncountable connected 

set. All limit points satisfy the two point boundary value problem 

defined in Theorem 6. 

To establish this theorem a lemma is needed. 

Lemma 8: 

If R, V0  and Vw  are positive definite then 

I gi(k) - gi(k+1) I 	0 as k 	co 	(4.38) 

for i=0,1,...,N-l. 
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Proof: 

By construction the Structured Control Policies 77(k) and 7(k+1) 

differonlyinoneStructuredFeedbacklqatrixG..Thus 

gJ 
.(k) = g.(k+1) 	for jAi 

which implies 

IgJ 
.(k) - g.(k+1) I = 0 

	
if jAi 	(4.39) 

To establish Lemma 8 it is only necessary to consider I gi(k) - gi(k+1) I. 

Theorem 3 states that convergence in cost always occurs and 

lim J(rr(k)) = J 	 (4.2) 
lc-. co 

It was also established that the sequence J(rr(k)), k=N,N+1,.... is 

a monotonically decreasing sequence. 

Define 

D = J(rr(N)) - J 	0 	(4.40) 

Addition and subtraction of terms and the use of the definition of J 

yields 

D = lim 	E 	[J(rr(k)) - J(Tr(k+1))] 
	

(4.41) 
1- c0 1c=N 

Define 

6 = J(u(k)) - J(nCk+1)) > 0 
	

(4.42). 



4.20 

As V0, VW  andRarepositivedefiniteF.(10 is invertible. (4.7) implies 

- gi(k+1) = - :F.1  1 (k)h. (k) (4.43) 

Substitution of (4.45) into the expression for cost (4.6) produces 

J(rr(k+l)) = 	T 	-1 (k)hi(k) + ci(k) 
	

(4.44) 

Substitution of (4.3) and (4.44) into (4.42) gives 

T. 	T.  . 	T' -1 
8=2)ig.(10F.(10g.(10 4- 11-00g.(k)+VI-(1:0-(10/1.(c) (4.45) kill 	3. 	a. 

Define 

0(k) = gi(k) - gi(k+1) 	(4.46) 

By use of (4.43) one finds 

gi(k) = 0(k) - F 1(k)h.(k) 	(4.47) 

Substitution of (4.47) into (4.45) yields 

dk  = 1,0T(k)Fi(k)0(k) 	(4.48) 

As R, VD  and VW are, positive definite Lemma 4 
holds for any structured 

control policy. Setting g = 0(k) in (2.57) yields 

p (km(k)p(k) 	X0
T
(k)060 
	

(4.49) 
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Thus 

X 
6k 	2 

> — 13 (k)13(k) 

The definition of EUclidean Norm 

o(k) i = 67(k)ock»'i 

(4.50) 

(4.51) 

and (4.46) imply 

I gi(k) - gi(k+1) I (4.52) 

As lim E 8
k  - D'  8k  0 as k 03. 

k=N 

Thus (4.52) implies 

I gi(k) - gi(k+1) I 	0 as k 	co 	(4.38) 

Q.E.D. 

Proof of Theorem 7: 

The proof of this theorem will be divided into three parts: a 

proof that either there is one limit point or the set of limit points iS 

an uncountable set; a proof that if the set of limit points is uncountable 

then it is connected; and a proof that all limit points are solutions of 

the two point boundary value problem defined in Theorem 6. 

A) There is one limit point or the set of limit points is uncountable  

The Corollary of Theorem 5 states that at least one limit point 
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exists. It will now be shown that if more than one limit point 

exists then the -Set of limit points is uncountable. 

Define E to be the set of limit points (i.e. the subsequential limits) 

of the sequence of structured control policies u(k), k=N,N+1,.... 

E is a set in the space of Structured Control Policies. The 

definition of the limit point of a set is [5, p.28] 

Limit Point  

A Structured Control Policy 71  is a LIMIT POINT of the set E if 

every neighbourhood of n' contains a structured control policy u such 

that 7 sE. 

As r(k) and u(k+1) for all k > N differ Only in one structured 

statefeedbackmatrix0.
S 
 (4.28) reduces to 

1 r(k) - 7(k+1) I . 1 gi(k) - gi(k+1) I 	(4.53) 

Thus Lemma 8 implies 

1 r(k) 	u(k+1) 1 	0 as k 	ao 	(4.54) 

Assume a point 7t GE exists such that u' is not a limit point of 

the set E and assume E contains more than one element. As 7' is not 

a limit point of E and s exists such that Ne(71 ) contains no other points 

of the set E. As rr' is a limit point of r(k), (71) 
e/3 

contains an infinite subsequence of ¶1(k), k=N,N+1,...., 

[10, p.421  p.44]. 

Consider the Set 

S 	[TTS  I ! 
3 

rS I <]cNe(70). 	(4.55) 
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Ne(7') contains one member of E 
	

and that member is not within S. As 

S is a closed and bounded set it can only contain a finite number of 

elements of r(k), k=N,N1-1,..., [5, p.35]. (4.54) implies there exists 

an M such that if k > M then 

I r(k) - 17(k+1) I < 
	 (4.56) 

N (u') contains an infinite subsequence of u(k),k=M,M+1,.... 
e/3 /3 

Let this subsequence be u(k),k=MI,M2,M3,.... where MI  <:M2<:M3< 

If u(M.+1)(.1 N 	Cu'), (4.56) implies u(M.1-1)eS. As u(k),k=N,Ni-1, 	 
e/3 

has only a finite number of points in S there exists a j such that 

IT(M.+1)eN
e/3

(W) for all i > j, which implies u(k)eNe/3  (u') for all 

k > M.. Therefore Tr'. is the only limit point of 17(k),k=N,N+1, 	 

Contradiction! It was assumed the set of limit points has more than one 

member. Thus if the set of limit points, E, has more than one member 

then all points r'eE are limit points of the set E. 

A set of limit points is a closed set [5, p.45]. Therefore if 

E contains more than one element it must be by definition perfect  

[5, p.28]. Every non-empty perfect set in J.-  Euclidean space is 

uncountable [5, p.36]. If E contains more than one point it is 

uncountable. 

B) If E is uncountable then it is connected 

The following definitions will be needed. 

By Ert(k)4 is meant the sequence r(k),k=N,N+1,... . 

Interior Point  [5, p.28] 

A point TO is an INTERIOR POINT of E if there is a neighbourhood 

Ne(71 ) such that Ne(171 ) CE. 

Open Set  [5, p.28] 

E is OPEN if every point of E is an interior point of E. 
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Connected Set  [5, p.37] 

A set E in a metric space 	is said to be CONNECTED if there 

do not exist two disjoint 	open subsets I and J of 4 such that I 

intersects E and J intersects E, and E C I (1 J. 

Here ,e4,1 is the metric space of all  Structured Control Policies. 

Assume that E, the set of limit points of [7(k)]1  , is not connected 

and two disjoint open subsets I and J exist such that E C I U J and 

I intersects E and J intersects E. Then 

E = E fl (I U J) = (E fl I) U (E 	J) 	(4.57) 

Define 

a = glb 1 7! - 7 I 	 (4!58) 

for all 7!e(E 11 I) and Tre(E fl J). 

Select a sequence 71c(E fl I), i=1,2,3,.... and other sequence 

.a.e(E fl J), i=1,2,3,..• such that 

• 

1 7! - 7. I 	< a + 1/2i-1  (4.59) 
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[u!]1 ap 	is an infinite sequence within the closed and bounded set E 

[5, p.45]. Thus En!3(11I  has at least one limit point TricE [10, p.35]. 

(4.57) implies that either n'e(E (1 I) or 7'e(E (1 J). (E 	I) and 

(E ( J) are disjoint as I and J are disjoint. Assume 7'e(E (1 J) C J. 

As all points in an open set are interior points there is a neighbourhood 

of n' which contains no elements of (E 	I). Thus n' can not be a 

limit point of [71]i C: (E n  I) [5, p.42 & 44]. The contradiction 

implies Trie(E (I I). Similarly the infinite sequence [7.]co  has at 1 

least one limit point ne(E 	J). 

The construction of the sequence (4.59) implies that 

7' - 7 I = a 	 (4.60) 

As nleI and as I is an open set there exists a neighbourbood N (71 )C I. 
61 

Construct the set 

D = 	
Err' c(E r) IP 11 71  - 	1 < ei/2]] /A I 

(4.61) 

• D is an open set [5, p.30] and 

(E (N ) CL D CI 
	

(4.62) 

Similarly there exists a neighbourhood Ne  (7) CL J. Construct the set 
2 

P = 	
Er' Lej(E () J)[TT  11 71  - 7  I < e2/23] 11 J 

(4.63) 



then 

el e2 d > 2 (4.67) 
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P is an open set and 

(E(1J) C P CJ 
	

(4.64) 

Note that 

a > el + e2 
	 (4.65) 

If this were not true one could find a point rr such that 

neN (n') C I and neN (n) C J which would contradict the assumption el - 	 e2 - 
that I and J are disjoint. 

Define 

d = glb I 71  - 7 1 for all TrIeD and uCP 	(4.66) 

for if this were not true one could find a nIe(E a I) and re(E (% J) 

such that 

I 71  -11I <  el 	e2 	
a 	 (4.68) 

which would violate the definition of a, (4.58). Let 

H= [1-1 II 7 I 4■ G3 	 (4.69) 

where 

C is the positive constant defined in Theorem 5. 

DI the complement of D, and 

P' the complement of P are closed sets. 
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As H is a closed and bounded set 

W = D, 	P' (\ H 	 (4.70) 

is a closed and bounded set which by construction contains no limit points 

of the sequence [7(k)]/7. Therefore W contains only a finite sub-

sequence of [17(k)]N  

Let n(k), k=M1,M2,M3,..., where MI  < M
2 

< M
3 

< ' be the 

co 
subsequence of Eri(k)]N  contained within D. Such an infinite subsequence 

must exist because D is an open set containing limit points of 

[7(k)]Nc°  . For some M, k > M implies 

r(k) - Tr(k+1) 	< el 
	e2 

2 
(4.71) 

This follows from (4.54). Thus if Mi  > M, r(Mi+1) A D, (4.71) 

combined with (4.66) and (4.67) implies r(Mi+1)64. As W contains a 

finite subsequence of [r(k)]7there exists a j such that i .?;-j 

implies r(Mi+l)eD. This implies that the subsequence Ur(k)444)  is 

contained in the set D. As D CI and I and J are disjoint J can only 

'contain a finite subsequence of [n(k)]N  . Thus J contains no limit 

points of the sequence [7(k)]7, [5, p.42]. This contradicts the 

assumption that J intersects E, the set of limit points of Ur(k)41). 

Thus E is a connected set. 

C) All limit points are solutions of the two-point boundary value  

problem of Theorem 6  

For simplicity only computational procedure A and the reverse 

time "pass" of computational procedure B will be considered. 

The proof for subsequences obtained from the forward time "pass" of 
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computational procedure B differs only in the order in which changes of 

structured state feedback matrices occur. 

Assume k is so selected that control policies n(k) and r(k+1) 

differ only in the Structured State Feedback Matrix N-1. Substitution 

of (4.43) into (4.52) produces 

I gN_1(k) + Fi11(k)hN_1(k) I4.5 (4.72) 

as dk 0 as k 	a). 

pN-1 (k) 	- F-11 (k)hN-1  (k) as k °   (4.73) 

and 

n(k) 	17(k+1) as k 	m 	 (4.54) 

Similarly 

245 1  1 gm.2(k4.1) + F;12(k+1)hm.2(k+1) 1 < 	X 
k+ 	(4.74) 

which implies 

RN-2 	- (k) *4 	F-1 2 (k+l)hN-2 (k+1) as k 	03 - N 	" 	• (4.75) 

and 

w(k) 	Tr(k+1) -4 11(k+2) as k 	co 	 (4.76) 

Continuing in this fashion one finds 
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gN-1-i(k+i) 	- F a .(k+l)hN-1 (k+i) as k 	op 
	

(4.77) 

1=0,1,...,N-1 

and 

n(k) -4 11(k4-1) -4 	 -4 Tr  k+N-1) as k 	OD 	 (4.78) 

Let rr(k), k=M1,M2,M3,.... where Mi  < M2  < M3  < 	 be a sub- 

sequence of [IT(k)31T converging to Tr. Let N. differ from Mj+, in G. 

Add to the subsequence Tr(k),k7-411,M2,M3,.... the elements 

	,M +i+1 for all j=1,2,3,.... • 
J 	3 	3 

(4.78) implies the addition of these elements will not affect the 

convergence of the subsequence. Let this new subsequence be 

denoted Tr(k), k=141,1S,M,.... where Mi < M
2  
I < M' < 	. 

3 

At the limit of this subsequence 7 (4.77 ) implies 

gi  = - Ftlhi  , 	i=Nw1,...,0 
	

(4.79) 

.wherek,F.andh.J.  arethevaluesgI3.  ,F.andh.1 
 assume if control policy . 

--  

Tr is used. As F. . and h.1 
 are calculated using V(i) and Si+1 which are  

computed using (2.1) and (2.15), Tr satisfies the two point boundary 

value problem of Theorem 6. 

Q.E.D. 

If the two point boundary value problem of Theorem 6 has a 

unique solution then the Computational Procedure will converge to the 

Optimal Structured Control Policy no matter what initial Linear 
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Control Policy 7(0) was used. Unfortunately this is not always the 

case. 

Theorem 8: 

co 
The set of limit points of [u(k)]N  , E and the cost associated, 

with these limit points J, may depend on the initial control policy 

r(0). 

Proof: 

The proof is by example. A simple system which has three solutions 

to the two point boundary value problem is 

System A 

A = 0 -1 B = 1 

1 0.544721 0 

V0 - - 0.5 0.5 V 0.25 	0.136180 

0.5 0.?5 0.136180 	1 

Q 1 —2.73676 1 

—2.73676 8 

    

S
2 

3 

—4 

ti 1 
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As N = 2, (2.16) becomes 

J(r 	= BEN)] = Jitr[Seo] + Ji[SiVw] + litr[S2Va] 
	

(4.80) 

S TocomputsJ(TT)oriernustarstcalculateS
1  and S0. As 

	= _ 10ne may 

define 

G0  = 	[go 	0] 	G, 	= 	[gi  0] (4.81) 

Then 

where 

S1- 1 
= 	Q+ GTRG1 	+ [A+BG

1
]TS

2
[A+BG

1
] (4.82) 

A+BG1  0 	-1 1 g 0 
1 

1 	0.544721 0 

1 	-1 (4.83) 

1 	0.544721  
L 

Thus 
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Si  1 

-2.73676 

- 2.73676 

8 

[g1  0][1] gi  
0 

 

      

   

gi  

	

1 	3 	-4 

	

0.544721 	-4 	6 
L 

gl 	-1 

1 	0.544721 

  

(44 - 8g1  + 7) 

-(5.17893)g1  + (4.53156) 

-(5.17893)g1  + (4.53156) 

(17.15809) 

(4.84) 

Similarly 

S0 	0 = Q + GTRG0  + [A+BG0
TS
1 
 [A+BG0  ] 

= 

(4:85) 

611 	612 

812 	622 

(4.86) 

  

where 

611 	444 -1°0 
8,2  
b0 

,2 	- 2(5.17893)g1  g0  + 2(4.53156)g1 18.13809 

(4.87) 

s12 	- 44g0  (5.17893)glg0  - (4.53156)g0  + (5.17893)g1  + 2.06715 

(4.88) 

s22  =. 4g1
2   - (2.35786)g1  + 15.14835 
	

(4.89) 
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Thus 

tr[S0V0] = 2g2g2 - 4g g - 4g2g0  + 4g0
2  + 3g2 + (3.41054)g + 22.49746 

0
2 

 

(4.90) 

trES1V14] = gl - (5.41054)g1  20.12231 
	

(4,91) 

trES2 
w  
V ] = 5.66056 
	 (4.92) 

Substitution of (4.90), (4.91) and (4.92) into (4.80) produces 

T1  S, 	 2 	2 
okr I = g2g0 

2 - 2g1  g0 
2 - 2g1

2  g0  + 2g0 2g1 + 24.14017 1  

which by (2.30) may be written 

2 
j(71  ) = r0(gl)g0 h0(gl)g0 c0(g1)  

or 

S\  Jo.  ) = rl( go)g,2   hl(g0)g1  cl(go) 

Thus 

(g0  ) = 2g0
2  
- 4g0  + 

which can also be found by using the relation 

F1  g0  ) = [r11  (1)V11  (1)] 

(4.93) 

(4.94) 

(4.95) 

(4.96) 

(4.97) 

2 
h
1  g0

) = - 2g0 (4.98) 
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which can also be found by using the relation 

hi(go) = [Vi()ATS2 13] 
	

(4.99) 

and 

c
1
(g0) = 2g

2 -I- 24.14017 
	 (4.10o) 

which can also be calculated using the relation 

ci(go) = litrE[Q4RVIT(0)] litr[S2Vw] ;trEEW.TS2Ajl/(1)7 

(4.101) 

Similarly one finds 

F0(g1 

h0(g1) 

c0(gi)  

= 

' 

2g1
2  
	4g1 	4  

2g
2  
1 

2gi -I-  24.14017 

(4.102) 

(4.103) 

(4.104) 

The singular points of J(nS) may be found by taking the derivatives 

of J(rrS) with respect to go  and gl  and setting the resulting expressions 

equal to zero. Taking the derivative of J(rS) with respect to gi  

produces 

agn
S 
 ) 	2 	2 

= 2g1(g0 2g0 2)  - 28-0-  
gl 

(4.105) 

thus 



when 

2 
80  

81 - 2 
80 - 2g0  2 

(4.1o7) 

11.35 

aJ(r ) 	0 	 (4.106) 

Taking the derivative of Jer with respect to g0  yields 

agrr  
ago  ° 

(4.108) 

when 

go - 
2 
gl  (4.109) 

  

g - 2g1  + 2 

Substitution of (4.107) into (4.109) gives 

2 go(go4  5go3  + 12g0  - 16g0  + 8) = 0 

which when factored becomes 

(4.11o) 

Ne 

80(80 - 1)(80 - 2)k80 - 2g0 4)  = 0 

Thus the singular points occur when g0  = 0, g0  = 1, and g0  = 2 

as go  - 2g0  + 4 has no real roots. Substitution of these values into 

(4.107) yields the other coordinates of the singular points. 
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gi=g0  for System A. 
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[g0  = 0, gl  = 0], Ego  = 1, gl  = 1], [g0  = 2, gl  = 	are the singular 

points of gn ). By Theorem 6 these points must be the solutions of the 

two point boundary value problem stated in that theorem. 

By gnS)is meant the value J(n ) assumes if a control 

1(gO'gl)  

policy Ti
s 
= [G0  = [g0  0] ; Gi  = [gl  03] is used. 

J(rS) 	= 24.14017 
I (0,0) 

I (1,1) = 25.14017 

J(n ) 	= 24.14017 
I (2,2) 

Figure 1 is a plot of J(n ) along the line gl  = g0  from (-0.5, -0.5) 

to (2.5, 2.5), which implies that (0,0) and 2,2) are minima and (1,1) is 

a saddle point. 

If one starts computational procedure A with an initial linear 

control policy of the form 

	

n(0) = [Cl 0] ; [x 0]] 	(4.112) 

it will converge to the limit point 

IF = [C1 	0] ; 	0]] 	(4.113) 

in one step. r is the point (1,1) in the 2-dimensional Euclidean space 

where each of the feedback gains in a Structured Control Policy is taken 

as a coordinate. 

Taking 11(0) as in (4.112) and following the computational procedure 

through to step 6 one finds. 
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gl  = - F11(1)h1(1) 	 (4.114) 

By use of (4.96) and (4.98) this becomes 

- 1  
C-2(1)2] = 

2(1)2 - 4(1) + If 

(4.115) 

thus 

7(1) = CE1 	3 ; [1 	0]] 	(4.116) 

Then the second iteration through to step 6 yields 

F-1(1)h (1) go 	- 0 	0 
(4a17) 

which evaluated by use of (4.102) and (4.103) is 

Thus 

- 1  

g°  - 2(1)2  - 4(1) 4- If 
[- 2(1)23 = 1 	(4.118) 

7(2) = 	0] ; 	0]] 	(4.119) 

• Similarly one finds 

n(k) = r 	for k=3,4,5,.... 	(4.120) 

For initial control policies of the form (4.112) the system does 

not converge to a minimum. By suitable choices of r(0) a computer 

implementation of computational procedure A [7] was made to yield all 

three solutions. 

One might wonder if small changes in the parameters would greatly 
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(2,2) gi=go  

Figure 2: Plot of J(nS) for System B 

(The numbers on the vertical axis have been rounded to two figures) 
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alter the shape of the cost function. The values of the parameters in 

the system A were rounded off to test this. The System B is 

R = 1 	N = 2 	ni  = 

Using the computer implementation of computational procedure A [7] an 

absolute minimum was found at 

g0 = 2.015 
	gi  = 1.9687 

J(TT
s
) = 23.889 	at this point. 

A strong local minimum was found at 

go  = 0.13832 
	g  = 0.10864 

, S 
JOT ) = 24.589 at this point. 

Figure 2 is a plot of girS) along the line gl  = go  from (-0.5, -0.5) 

to (2.5, 2.5) for system B. 
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4.4. Choice of the Initial Linear Control Policy  

Theorem 5 could be used to produce a bounded region in which the 

Optimal Structured Control Policy must exist. However, the high 

dimensionality of structured control policies for practical systems 

makes a thorough search of any such region impossible. 

One must find an initial Linear Control Policy which produces 

convergence to the Optimal Structured Control Policy in most reasonable 

cases. Several possible methods of selecting an initial control policy 

will now be considered and compared. 

A) The Optimal Complete State Feedback Policy  

If the feedback structure is so chosen that the performance of the 

Optimal Structured Control Policy is close to the Optimal Control Policy 

then it is reasonable to assume that 	the sequences 

[S
k N-1 	0 

 
and [V(k)]

N 
will be close for both policies. If n(0) is taken 

to be the Optimal Control Policy one would expect that r(N) would be 

very close to the Optimal Structured Control Policy. 

Computational experience [7] has shown that this starting point 

produces convergence to the Optimal Structured Control Policy for 

k <10N [i.e. the first six digits of J(7(k-N)) are the same as 

J(r(k))lif the Optimal Structured Control Policy results in a system 

behaviour similar to that produced by the Optimal Control Policy. 

B) Compute 7(0) by Assuming V(k) = V0, 	 

Assume V(k) 	V
0 
for k=0,1,...,N-1 then calculate G

k' 
k=N-1,N-2,...,0 

backward in time by evaluating (3.1) and calculating Sk,k=N-1,N-2,....,1 

as these evaluations are made. The sequence of Structured State 

Feedback Matrices so calculated could be used as the Initial Linear 

Control Policy n(0). 



4.40 

The calculation of 7(0) by this method would take approximately 

the same amount of computing time as that required to calculate the 

Optimal Control Policy. If this method is used convergence is usually 

not as quick as if A is used. Thus use of the Optimal Control Policy 

as 7(0) is to be preferred. Use of both starting points may however 

give the user greater confidence that the limiting control policy 

is in fact the optimal. 

R.L. Kosut [8] suggests two methods of computing Suboptimal 

Structured State Feedback Matrices for the problem where the system is 

continuous and deterministic (i.e. V
w 
= 0), Vo  = I, R is diagonal, and 

a steady state solution is required. The methods are termed "Minimum 

Norm" and "Minimum Error Excitation". These approaches can be extended 

to produce Suboptimal Structured Control Policies for the discrete, 

stochastic finite-time problem considered here. These Suboptimal 

Structured Control Policies could then be used as initial Linear Control* 

Policies for the computational procedures A or B. 

C) Minimum Norm  

Let the initial Linear Control Policy 7(0) be the Structured 

Control Policy nS  that satisfies 

, * 	
S min I 7 r 1 

S 
7 

(4.121) 

* 	 * 
where n is the Optimal Control Policy. Obviously the projection of r 

on to the pN Euclidean space of Structured Control Policies will be the 

solution to (4.121). Thus 7(0) is simply obtained by computing 

n = [G
k'
k=0, 	 N-1] and deleting those elements of the gain matrices, 

10- 
Gk, that are constrained to be zero. 
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As the cost function is continuous in the Linear Control Policies, 

nearness in norm does imply nearness in cost. This approach works 

well when the gain elements deleted are much smaller than those 

retained. However, if the gains deleted are of the same order of 

magnitude as those retained,the Structured Control Policy which differs 

from 7 the least in norm may give very poor performance. In Chapter 5 

an example is given of a stable system where the Structured Feedback 

Matrices,which differ the least from the Optimal State Feedback Matrices 

in norm, cause the system to become unstable. For the same system with 

the same feedback structure the Optimal Structured Control Policy gives 

acceptable performance. 

Minimum Error Excitation 

The concept of Minimum Error Excitation for a Discrete Stochastic 

System will now be developed. As in Chapter 1 the superscript '" 

(i.e. xk) will be used to denote the value a variable (including matrices) 

assumes if the Optimal Complete State Feedback Control Policy is used. 

Then from (1.1) one gets 

* 	 * 	* 
xkla 	Axk + Buk  + wk 	(4.122) 

* 
xO  = xO 	 (4.123) 

As the linear control policy (1.8) is used 

A + Bcxk  + wk 	(4.124) 

Similarly the transition equation associated with any structured control 

S 

 

S. 
policy, 7 I S 
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S 	 S S 
A + BG )m + w xk+1 = 	k 	k 

xs 0 = X0  

(4.125) 

(4.126) 

Consider now the difference between the optimal state xk  and the 

state x,K  that occurs if a structured control policy is used 

S 	* 
= Xk  - Xk  

Use of (4.124) and (4.125) gives 

S 	* 	* 

	

ek+1 	
= 	(A+BG

k 
 )mS  - (A+BGk)xk  

S 	S * 	* 	* 
= 	(A+B9k)(xk-xk) + B(Gk-Gk)xic  

Define 

S * 	* 

	

qk 	= 	EC7k-Gic]xk 

(4.127) 

(4.128 ) 

(4.129) 

(4.130) 

. qk  is termed the error excitation vector. It can be interpreted as the 

difference between the optimal input, uk, and the input that would occur 

if the feedback matrix GS  was used when the system was in state xk. 

Substitution of (4.127) and (4.130) into (4.129) produces 

ek+1 
= (A+BG)e

k 
+ Bq

k 
	 (4.131) 

From (4.123) and (4.126) and the definition of e0  (4.127) it is apparent 

that 

e0 	0 	 (4.132) 
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From (4.131) and (4.132) it is apparent that if qk  = 0, k=0,1,....,N-1 

then ek  0 for k=0,1,...,N. Further if one assumes (A+BG
k) is stable 

if qk, k=0,1,...,N-1 is kept small then ek, k=0,1,...,N will be small, 

and the state trajectory using structured state feedback Exkjo
N 
 will be 

 
close to 	the optimal Ex00

N 
 . (1.3) implies that if this can be achieved 

then the Structured Control Policy will have an expected cost J close to 

the optimal expected cost J. 

D) Minimum Error Excitation the Direct Approach  

A reasonable Structured Control Policy to use as the initial Linear 

Control Policy r(0) is the one that minimizes 

N-1  

= E[ E , 
q 

k=0 

(4.133) 

Theorem 9:  

The Structured Control Policy which minimizes E is a solution to 
q . 

*- 
V..(k)gi  = V.(k)8I  
3.1 	k 	1 	k (4.134) 

.for i=1,2,...,m and k=0,1,...,N-1 where glic  is the vector of unconstrained 

gains in the i'th row of Gk  defined by (1.24), Vii(k) and Vi(k) are the 

valuesV(k)andV.W, defined by (2.33) and (2.37), assume when the 

optimal control policy, r, is used, and 

(4.135) 
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*i  
that is 8k 

is the i'th row vector of the Optimal Complete State Feed- 

back Matrix Gk. 

Corollary:  

If the Feedback Structure is a Partial State Feedback Structure, 

then the Partial State Feedback Control Policy which minimizes E 
q 

may be obtained by solving 

T* 	-1 T* 	1 2* 	- G' = - R+B Sk+113]  B S [A +A VT  (k)Vx
1(k)] 

k+1 	x'z' 	' (4.136) 

for k=N-1,N-2,....,0, provided the required inverses exist. Sk  is 

defined by .(1.7), and Vxlzi(k) and X1(k) are the values Vx,z,(k) and 

V.3c1(k) assume 	when Tr is used. 

Note that (4.136) is (3.11) with the values Sk  and V(k) assume when 

the Optimal Complete State Feedback Control Policy, Tr, is used. Thus 

the Partial State Feedback Control Policy which minimizes E is composed 

of Partial State Feedback Matrices that are Optimal single replacements 

in Tr. 

Proof: 

Substitution of (4.130) into (L1-.133) yields 

N-1 	N-1 
T S 	T S 	*T 

E E[cikqk] 
 = E E[xic[Clk  - GO [Gk  - GOxk] (4.137) 

q 
k7... 0 

Each Gk, k=0,1,....,N-1 affects only one additive term of the cost function. 

Thus, the total cost function can be minimized by choosing each G to 

minimize the term it affects. 

Each term can be expanded to give 
• 



r 
= V11

(k) 0 0 

0 V
22
(k) 	 0 

* 
0 0   	Vmm (k) 

F' (4.140) 
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*TT * 	*T*T S* 	*T S S*T 
E[cikqk] = E[xkGkGkxk] - 2E[xkGkGkxkj + E[xk(Gk kxk3 (4.138) 

This function is now in the form of (2.41). Therefore the same 

argument as was used to get from (2.41) to (2.54) may be used. Upon 

making the substitutions 

* 

xk f X. 

*T* 

	

[Q + TS
k+1

A] 	G
k 
Gk 	

in the first term of (2.41), 

in the second term Of (2.41), and ER + B Sk+1B3 -4— I  

	

A Sk4aB 	- 	in the third term of (2.41). 

(2.54) becomes 

rr 	rr714. 	Tvi 	T 
"'Lqkcik4  = .-Lxk-k-kxkJ 	gkLkgk 2(hk) gk (4.139 ) 

where gk  is defined by (2.35), 

and 
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* 	*1 V
1
(k)05k  

2 V
2• 
(k)8 

k 
• 

* 

• 

*rn  
Vk(k)8k  

(4.141) 

r 

As (4.139) is a positive semidefinite quadratic form its minimum can be 

found by setting the derivative equal to zero. Thus 

aE[qkqkj , 
- 2gkq + a )T = 0 (4.142) 

Substitution of (2.35),  (4.140), (4.141) and the obvious algebraic 

manipulation yields 

* 	*. 
V..(k)gik 	1 = Vi(k)8 II  

(4.134) 

for i=1,2,....,m and k=0,1,...,N-1 as it must hold for every term in the 

sum (4.137). 

If the feedback structure is a partial state feedback structure 

and X1(k) is invertible for k=0,1,....,N-1, substitution of (4.134) 

into (1.34) and use of (3.12), (3.19), and definition (4.135) give 

C7k = 

I  

i'IT 	(kk(k)  
x'z' 	x' 

[ 

(4.143) 

Substitution of (1.6) into (4.143) and use of (3.5) produces 
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 * 	*- Gk = • - [R+BT S
k+1

B]-1 BTSk+1[A1  +A2VT, 
z1
(k)V

x1
1  (k)] 

x  (4.136) 

Q.E.D. 

The Structured-Control Policy that minimizes E is easily 

obtained by first solving (1.6) and (1.7) to obtain 7 and then using 

(4.134) to obtain the unconstrained gain elements. The cost function Eq  

costs the deviations from the optimal control strictly by their amplitude. 

It would be more natural to use a cost function that costed deviations 

in control by the increase in expected quadratic cost (1.4) that was 

produced. 

E) Minimum Error Excitation with Quadratic Cot  

Theorem 10: 

Control Policy 

[G., i=0
' 	

where G.G. for iAk] 
•  

T 	T* 	* 	* 
= 	E[xit[Gk-Gkj

T 
 [R+B SklaB][Gk Gk]xkj 

(4.144) 

(4.145) 

If a Linear 

n' 	= 

is used then 

J(114) - J(;) 

Proof: 

From (1.3) and (2.31) one obtains 

k-1 

J =. E[L0] = 	E [xIQxj+ uffRui]] 	Qxid + 5E[uRuk] 

i=0 



4.48 

N 

1kB[xk+1Sk+lxk+1] 	
E tr[SiVw] 
	

(4.146) 

i=k+2 

If the Optimal Complete State Feedback Control Policy r is used (4.146) 

becomes 

k-1 

	

* 	*T * 	*T * 	*T * 	*T 
J(r) = Ig[ E (xiQxi  + uiRui)] + )0bc..k.Qx.k] + Ig[ukRuk] 

	

'.. 	' 

N 
1,-mr*T  * * 
	* 

4.  l xic-FlSk+lxk+13 -1.1 	E 	
tr[S.V ] 

1 w 
i=k+2 

(4.147) 

If the Control policy TO is used (1.1), (1.11) and (4.144) 

imply 

i=0 

(4.148) 

(4.149) 

(4.150) 

ui 	u. 	for i=0,11....,k-1 
 1 

uk = Gkxk 

x. = x. 	for i=0,1,....,k 

and 
* 

xic+1 = Axic Buk wk (4.151) 

Use of (4.144) and the substitution of (1.6) into (2.15) gives 

S
k 

= 	for i=N„k+1 	(4.152) 

By use of (4.146), (4.148), (4.150) and (4.152) one may express 
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k-1 
T 

J(771 ) = 	(xT. 	+ u.Ru.)j + IgExkltixkJ + EE(u )TRu i I 	k k 
i=0 

N 
T * 

- 	1E5ck+1Sk+lxk+13 	tr[S.V ] 
I w 

i=k+2 

(4.153) 

Subtraction of (4.147) from (4.153) produces 

*T.12: 	*T 	* 
gni) - gn) = ligukRu. + 

	

-1L-I-1Sk+fC+1 	XiCia"k-FiX.k4.1"/  

(4.154) 

Substitution of (4.122) and (4.151) into (4.154) yields 

T T* 	*T * 	*T T* 	 * 
j(r1) 	= '‘FEukRUk ukB  Sk+1Buk ukRuk  u kB Sk+l-puk 

* T* 	*T T* 	*
- ?x0 "Sk+1Buk 2xkA Skl.,Bukj 

* T* 
+ E[EAxk + B uk k+lwk 	A + Bukj Ski.awk] 

(4.155) 

* 	* * 
As uk  = Gkxk  and'uk  = Gkxk  and xk  is not correlated with wk  by 

assumption, the second term of (4.155) is zero. This, with the 

addition and subtraction of a term gives, 

T 	* 
J(W) - J(7 	PE ) = 	EukER BT Sk+1 Bjuk 	k - uTER + BT 

S
k+1Bjuk 2  

*T 	T* 	*T 	T* 	*T T* 
+ ukER + B Sk+1k  Bju- - uk  ER + B Sk+1k  B]u_ + 2xkA.Sk+1B[uk-uk]3 

(4.156) 
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From (1.5) and (1.6) one may obtain 

T* 	T* - [R B Sk1.2E]u = B Sk+1Axk  (4.157) 

SUbstitution of (4.157) into (4.156) and the combination of terms yields 

* 	 * J(r0) - J(n) =E([uk uk]T  [R BT Sk4.2][uk  - uk]) (4.158) 

* 	* * 
With the substitution of uk  = Gkxk  and uk  = C,xk  (4.158) becomes 

, 	* * 
J(n') J(n) = lg(xk

T  [Gk  - Gk][R BT  Ski.,B3[Gk  - Ok]xk) 

(4.145) 

Q.E.D. 

Substitution of (4.130) into (4.145) produces 

J(7) - J(7) = 1E(qk[R BT Sk+1B]qk) 
	

(4.159) 

It is thus reasonable to presume that the Structured Control Policy 

which minimizes 

N-1 

E
Q 
 = E Ealk[R BT  Sk+1B].cik] 
	

(4.160) 

k=0 

will produce near optimal control if the structural constraints are such 

that performance near to the Complete State Feedback Optimal can be 

obtained. 
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As EQ  is a sum of the increase in costs produced by single 

replacements in 17 minimization of this cost function produces a 

Structured Control Policy which is compbsed of Structured State Feedback 
* 

Matrices that are optimal single replacements in r. 

Theorem 11: 

The unconstrained gain vectors gk, k=0,1,....,N-1 (defined by 

(2.35)) of the Structured Control Policy that minimizes EQ  may be obtained 

by solving 

F
k
g
k 

= 	 (4.161) 

where Fk  and hk  are the values Fk  and hk  assume when the Optimal Complete 

State Feedback Control Policy is used. 

Corollary: 

T* If [R + B S
k+1B]  and  Vxl 

 (k) are invertible for k=0;1,...,N-1 then 

there is a unique Partial State Feedback Control Policy which minimizes 

both Eq  and E . 

Proof: 

Substitution of (4.130) into (4.160) produces 

N-1 

EQ  = E E[clicER + B
T  SkiaB 

k=0 

N-1 
*T S * 	S * * 

= E EExk[Gk  Gic]
T  ER + B

T*  SkiaBJEGk  - Gic3x0 

k=0 

(4.162) 

Each Structured State Feedback Matrix, Gk, k=0,11...I N-1 affects 
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only one additive term of the cost. 'Thus the total cost function 

can'be minimized by selecting  each Gk 
to minimize the term it affects. 

Substitution of (1.6) into a term of (4.162) yields 

* 	*T  	T* E[chp + BT SkiaB]qk] = E[xkA
T  SkiaBER + BT  SkiaB -1B SkiaAxk] 

*T T* 	S* 	*T S T 	T* 	S* 
+ 2EDckA S BG 	+ E[x. CG [R + B S k+1 k x 	x k 	k+1 k 

(4.163) 

(4.163) is of the form of (2.41). Replacement of the first term, 

T 	*T * 	* 	* 	* Ebck[Q + AT SkiaA]xk]-4*-E[xkA
T 

 SkiaB[R + B
T 
 Sk+1B]-1 BT SkiaAxk] 

and the substitutions 	Dck  and Sk+1-4— Sk+l allow the argument to 

be followed through to (2.54) which becomes 

T* 	*T T* 	T* 	-1 T* 	* E[qTTR + B 	BIci 	E [xkA Sk+1B  [R B ÷ Bj B S Ax. 
x+1 k 	k 1 	k+1 

gk kgk 2"kgk 
	

(4.164) 

As [R + BT S
k+1B] is positive semidefinite, (4.164) is a positive 

semidefinite quadratic form. Its minimum may be found by.taking  the 

derivative and setting  it equal to zero. 

k 	
* 	T* 	*T 

oE Eq
T[R + BT Sk+1

B]
qk = 2gkFk  + 2hk  = 0  

gk 

(4.165) 

Therefore every unconstrained gain vector gk  of a Structured Control 

Policy that minimizes EQ  must be a solution to 
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F
k
g
k 

= - hk 	 (4.161) 

T* If [R + B 
Sk+1B] 

 and V
xt
(k) are invertible one may follow the same 

argument that was used to establish Theorem 2 to obtain (4.136). 
* 

The Optimal Control Policy 7 is unique, thus the sequences of matrices 

[S
k
]
N-1 

and [V(k)]N 1  are uniquely defined. 0 

are invertible (4.136) defines a unique GI 

T* As [R+B 
Sk+1B]  and_Vf(k) 
* 
k+1 and V(k). for every S 

Thus there is one Partial State Feedback Control Policy which minimizes 

both Eq  and E . 

Q.E.D. 

* 
Let n' (N) denote the value 7(N) takes when 7(0) = 7, and let 

n(EQ) denote the Structured Control Policy which minimizes EQ. rr'(N) 

and Tr(EQ) are computed using the same formulae and similar values. In 

the computation of 7(EQ) the values Sk, and V(k), k=0,1,....,N are used. 

Assuming Computational Procedure A is used then the computation of 

TO(N) uses V(k), k=0,1,....,N-1 but the Sk,k=N-1,N-2,....,1 are 

 
recalculated using the actual Gk  in the control policy rr'(N). If 

Computational Procedure B is used then.the computation of rr'(N) uses 

Sk, k=1,2,...,N but the V(k),k=1,2,....,N-1 are calculated using the 

actual Gk 
in the control policy rr'(N). In either case rr'(N) can be said 

to be calculated using more information about the actual control that will 

be used than does the calculation of 7(Eq). It is then reasonable to 

assume that 7'(N) will have a superior performance to 7(EQ) in most 

cases. 

Starting points A, C, D, and E all require the calculation of 

* 	 * 
r. As the direct use of r is the easiest starting point to implement 

and as it is anticipated that it will- give the quickest convergence to 
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the optimal in most cases, it is recommended. Use of some or all of 

the other starting points may give the user greater confidence that 

the limiting Structured Control Policy that results is the optimal. 
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CHAPTER 5 

EXAMPLES 

5.1. Introduction  

In this chapter the feasibility of the proposed computational procedure 

will be established. It will be shown that simple controller 

structures can give near optimal performance. Experimental evidence 

will imply that a law of diminishing marginal returns for increasing 

controller complexity exists. The problem of how to choose a good 

feedback structure will be considered, as well. 

Computational Procedure A, given in Chapter 4, is used to compute . 

Optimal Structured Control Policies for two linear systems, and many 

possible feedback structures. Computational Procedure A is implemented 

in one of the programs in the computer aided design package DILPAC [7]. 

All computations were done on a PDP - 15 computer with 32K of 18 bit 

word core store and software multiply. Storage requirements limited the 

size of example that could be considered to seven states and fifty time 

intervals. For a seventh order system computation times of ten 

minutes were typical. Much bigger systems could be dealt with using larger 

and faster machines. 

Choice of Feedback Structures 

The problem of choosing the feedback structure containing p gain 

co-ordinates,which has the best performance,will be considered. Given 

a system with n states and m inputs there are (nm):/p1.(nm - p): feedback 

structures which contain p gain co-ordinates. Obviously it is 

impossible to test all structures unless nm is quite small. This 

problem has not been solved analytically. However, two useful 

heuristic methods for selecting good feedback structures will be 
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evaluated. The concept of substructure is needed to present these 

methods. 

A feedback structure, a
1, is a SUBSTRUCTURE of a feedback 

. structure, a2  If 

*1(j,i) e 12(j)  for all i e {1,2, .... ,n1. 
J 

and 	j e f1,2,....,m 11. 	where 

k = [Lk(j) j=1,2,....,m] 

J,1 	(j,2), 	 ,irk(j1/11” J ) 

for k=1,2 

Two possible ways of selecting reasonable feedback structures are: 

1. Given that a Linear Control Policy having a good performance, 

for example 7, is available order the feedback gain co-ordinates (i,j) 

by the magnitudes of the associated gains I '4,j)  I. Select substructures 

containing p co-ordinates associated with the larger gain magnitudes. 

2. If the performance of some feedback structures containing 

p+1 gains are available, rank these structures by performance. Choose 

the substructures of p gains common to two or more of the feedback 

structures having good performance. 

When selecting a set of likely feedback structures these two 

approaches may of course be used in concert. The usefulness 

of these methods will be determined experimentally. 

and 

= {- 
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5.2. A Stable Fourth Order System 

Assume 

= Axk + Buk  + wk  

where 

   

    

 

A .= 0.964 0.180 0.017 0.019 

-0.342 0.802 0.162 0.179 

0.016 0.019 0.983 0.181 

0.144 0.179 -0.163 0.820 

(5.1) 

    

    

with eigenvalues 

X1,2 = 
0.983 + j0.127 
	

(5:2) 

= 0.991 

and 

x3,4  = 0.801 + j0.201 
	 (5.3) 

113,4 1 = 0.826 
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and 

B = 

	

0.019 	0.001 

	

0.180 	0.019 

	

0.005 	0.019 

	

-0.054 	0.181 

(5.4) 

   

The numbers have been rounded to three decimals for reasons of 

clarity. The value of the noise covariance matrix V
w is assumed to be 

V 
w 

0.01 -0.01 0 0 (5.5) 
...0.01 0.02 0 -0.01 

0 0 0.01 -0.01 

0 -0.01 -0.01 0.025 

The cost matrices Q, R, and SN are chosen to be 

Q = I 	R = 0.51 
	

SN  = 51 	(5.6) 

and the number of time intervals 

N = 50 
	

(5.7) 

In order to test the affect of V0  on the optimal structured control 

policies two distinctly different V0  matrices will be considered. 

Case A: 	It is assumed that no knowledge is available about the 

initial state that is likely to occur. Thus 

(5.8) 



is selected so a good average behaviour results. 

Case B: It is assumed 

V 0 = 	xoxo 	VW  (5.9) 

where 

xo = 	[10 	0 10 0] (5.10) 

and 

vo 100.01 -0.01 100.0 0 (5.11) 

-0.01 0.02 0 _0.01 

100.0 0 100.01 ' -0.01 

0 -0.01 -0.01 0.025 

In this case one "almost" knows that a certain initial condition 

will occur. As the magnitude of the initial condition x0  is much 

larger than the disturbances the initial condition dominates the cost. 

Feed forward control would work well. A feedforward control can be 

generated using the expected values of the states, therefore one would 

expect any feedback structure that does not constrain all the gains in 

'one row of the state feedback matrix to be zero would be near optimal. 

Tables 1 and 2 contain various feedback structures and there 

their performances for Case A and B respectively. Lists 2,(1) and 1(2) 

define the feedback structure. p is the number of unconstrained gains 

in the feedback structure. I
t 

is the number of iterations required 

for convergence to the optimal structured control policy, where an 

iteration consists of N-1 evaluations of V(k), N evaluations of . and 

G i  and a calculation of the expected cost. J is the expected cost using 

the optimal structured control policy. 77-C°)=5" -  DiLrlic L 7J 
* 

PIO, Percentage Increase Over Optimal = 
JxJ

x 1046 (5.12) 
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where J is the expected cost using the optimal control policy. 

J -J 
PPI, Percentage of Possible Improvement - -11 T x 100% 

Ju-J 

(5.13) 

where ja  is the expected cost if no control is used. 

Figure 3 contains the plots of PIO and PPI against the number 

of gains used, p, for the feedback structures producing lowest cost. 

Note the performance of the structured controllers is better for Case B 

than for Case A. 

In Gase B the Structured Control Policy was calculated using 

information about the initial condition that was likely to occur, thus 

the controller was tuned to deal with this initial condition well. 

One would expect the structured control policies calculated for Case B would 

have poor performance should an initial condition distant from 

xo  = [10, 0, 10, 0] occur. In Case A the control policies are 

computed assuming any initial condition on a sphere centred at the 

origin has an equal probability of occurring. Thus, it is expected that 

the structured control policies computed for for Case A will give acceptable per- 

formance for any initial condition, but their performance for initial condi- 

tions close to xo  = [10 0 10 0] will be inferior to those computed for Case B. 

The presumption for Case B that all feedback structures which do 

not constrain one input to be zero will be near optimal is verified. 

The worst feedback structure of that type, [/(1) = 4 ; 1,(2) = 	4 3 

results in PIO = 15.0. States 1 and 3 have large initial values and it 

can be noted that policies that include at least one of these states 

in gl) and in L(2) produce the structures of lowest cost for a fixed 

number of unconstrained gains, p. In Case A the performance is 

averaged over all initial condition directions and there is no bias 
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TABLE 1  

TABLE OF STRUCTURED CONTROLLER COSTS FOR THE 

FOURTH ORDER SYSTEM FOR CASE A  

Uncontrolled Cost, Ju  = 56.482 

Optimal Cost, J = 8.969 

Type 2,(1) 1(2) p It  J PIO% PP15 

Structured 1,2,3,4 2,3,4 7 2 8.974 0.06 99.989 

Structured 2,3,4 1,2,3,4, 7 4 9.139 1.90 99.642 

Structured 1,2,4 1,2,3,4 7 4 9.214 2.68 99.484 

Structured 1,2,3,4 1,3,4 7 4 9.273 3.39 99.360 

Structured 1,2,3 1,2,3,4 7 5 9.454 5.41 98.98 

Structured 1,2,3,4 1,2,4 s? 6 9.800 9.26 98-25 

Structured 1,3,4 1,2,3,4 7 10 10.11 12.7 97.60 

Structured 1,2,3,4 1,2,3 7 11 10.15 13.2 97.51 

Partial 2,3,4 2,3,4 6 4 9.153 2.05 99.612 

Structured 1,2,4 2,3,4 6 4 9.217 2.76 99.478 

Structured 1,2,3 2,3,4 6 5 9.459 5.46 98.97 

Structured 1,2,3,4 3,4 6 5 9.489 5.8o 98.91 

Structured 2,4 1,2,3,4 6 5 9.545 6.44 98.79 

Structured 1,2,3,4 2,4 6 6 9.891 10.3 98.06 

Structured 1,3,4 2,3,4 6 11 10.13 14.1 97.56 

Structured 1,2,3,4 2,3 6 5 10.30 14.8 97.20 

Partial 1,2,4 1,2,4 6 7 10.36 15.2 97.07 

Partial 1,3,4 1,3,4 6 7 10.97 22.3 95.79 

Partial 1,2,3 1,2,3 6 8 11.78 31.3 94.08 
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TABLT1 1 (Continued) 

Type L(1) 2(2) p It  J PIO% PP] 

Structured 2,4 2,3,4 5 5 9.583 6.85 98.71 

Structured 1,2 2,3,4 5 4 9.588 6.90 98.70 

Structured 2,3,4 3,4 5 5 9.632 7.39 98.60 

Structured 1,2,4 3,4 5 5 9.733 8.52 98.39 

Structured 2,3 2,3,4 5 6 9.919 10.6 98.00 

Structured 2,3,4 2,4 5 6 10.07 12.3 97.68 

Structured 3,4 2,3,4 5 7 10.32 15.1 97.16 

Structured 2,3,4 2,3 5 7 10.50 17.1 96.78 

Structured 1,4 2,3,4 5 6 10.50 17.1 96.78 

Structured 1,2,4 2,4 5 9 10.67 19.0 96.42 

Structured 1,2,4 2,3 5 7 10.76 20.0 96.23 

Structured 2 2,3,4 4 6 10.07 12.3 97.7 

Structured 1,2 3,4 4 5 10.10 12.6 97.6 

Structured 2,4 3,4 4 6 10.18 13.2 97.5 

Structured 2,3 3,4 4 7 10.55 17.6 96.7 

Structured 4 2,3,4 4 5 10.60 18.2 96.6 

Structured 1 2,3,4 4 7 11.10 23.8 95.5 

Structured - 1,2,3,4 4 1 11.20 24.9 95.3 

Structured 1,2,3,4 4 1 11.34 26.4 95.0 

Structured 2,3 2,4 4 10 11.43 27.4 94.8 

Partial 3,4 3,4 4 7 11.44 27.5 94.8 

Structured 2,4 1,3 4 11 11.70 30.5 94.3 

Partial 2,4 2,4 4 17 11.84 32.0 94.0 

Structured 3,4 1,2 4 9 12.35 37.7 92.9 

Partial 1,2 1,2 4 8 12.37 38.0 92.8 
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TABLE 1 (Continued) 

Type L(1) L(2) p It  J PIO% pprs 

Structured 1,3 2,4 4 12 12.39 38.2 92.8 

Partial 1,3 1,3 4 36 26.58 196 62.9 

Structured 2 3,4 3 6 10.67 19.0 96.4 

Structured - 2,3,4 3 3 11.21 25.0 95.3 

Structured 2,3,4 - 3 - 11.45 27.7 94.8 

Structured 1,2 4 3 8 11.83 31.9 94.0 

Structured 2,4 3 3 9 12.00 33.8 93.6 

Structured 2 2,4 3 16 12.44 38.7 92.7 

Structured 1,2,4 - 3 - 12.50 39.4 92.6 

Structured 4 3,4 3 - 12.66 41.2 92.2 

Structured - 1,2,4 3 8 12.72 41.8 92.1 

Structured 2,4 4 3 15 12.82 42.9 91.9 

Structured 2,4 2 3 14 13.15 46.6 91.2 

Structured 1 2,4 3 12 13.17 46.8 91.2 

Structured - 1,3,4 3 9 13.41 49.5 90.7 

Structured 1,2 3 3 11 13.72 52.9 90.0 

Structured 1,3,4 - 3 - 13.87 54.6 89.7 

Structured 1,2,3 - 3 10 14.16 57.9 89.1 

Structured 1 3,4 3 - 14.18 58.1 89.0 

Structured - 1,2,3 3 - 15.32 70.8 86.6 

Structured 2 4 2 14 13.63 52.0 90.2 

Structured - 2,4 2 12 13.65 52.2 90.1 

Structured 2,4 - 2 10 13.99 56.9 89.4 

Structured - 3,4 2 7 14.25 58.9 88.9 
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TABLE 1 (Continued) 

Type L(1) L(2) p It  J PIO%•  PPI% 

Structured 3,4 - 2 7 14.52 61.9 88.3 

Structured 1,2 - 2 7 14.57 62.4 88.2 

Structured 4 2 2 13 15.12 68.6 87.1 

Structured 2 3 2 11 16.19 80.5 84.8 

Partial 2 2 2 15 17.34 93.4 82.4 

Structured 1 4 2 11 18.12 102 80.7 

Partial 4 4 2 12 18.15 102 80.7 

Structured - 1,4 2 12 18.31 104 80.3 

Structured 1,4 - 2 9 18.58 107 79.8 

Structured 1 3 2 20 29.87 233 56.0 

-Partial 1 1 2 26 31.27 249 53.1 

Partial 3 3 2 78 46.23 415 21.6 

Structured 2 - 1 9 19.15 113 78.6 

Structured - 2 1 11 19.49 117 77.9 

Structured - 4 1 10 19.96 123 76.9 

Structured 4 - 1 11 20.63 130 75.5 
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TABTR 2 

TABLE OF STRUCTURED CONTROLLER COSTS FOR THE 

FOURTH ORDER SYSTEM 

FOR CASE B  

Uncontrolled Cost, Ju  = 2172.8 
* 

Optimal Cost, J = 559.3 

Type A(1) L(2) p It 
J PIO% PPI% 

Structured 1,2,3,4 2,3,4 7 2 559.4 0.0179 99.993 

Structured 1,2,4 1,2,3,4 7 3 559.4 0.0179 99.993 

Structured 2,3,4 1,2,3,4 7 3 559.4 0.0179 99.993 

Structured 1,2,3,4 1,3,4 7 3 559.5 0.0358 99.987 

Structured 1,2,3,4 1,2,4 7 3 559.6 0.0536 99.981 

Structured 1,2,3 1,2,3,4 7 3 559.6 0.0536 99.981 

Structured 1,3,4 1,2,3,4 7 5 559.9 0.107 99.962 

Structured 1,2,3,4 1,2,3 7 4 560.0 0.125 99.956 

Partial 2,3,4 2,3,4 6 2 559.4 0.0179 99.993 

Structured 1,2,4 2,3,4 6 3 559.4 0.0179 99.993 

Structured 2,3,4 1,3,4 6 3 559.6 0.0536 99.981 

Structured 1,2 1,2,3,4 6 - 559.7 0.0715 99.975 

Partial 1,2,4 1,2,4 6  5 559.9 0.107 99.962 

Structured 2,3 1,2,3,4 6 7 560.2 0.161 99.944 

Partial 1,3,4 1,3,4 6 - 560.4 0.196 99.931 

Partial 1,2,3 1,2,3 6 - 561.0 0.303 99.894 

Structured 1,2,3,4 2,4 6 6 578.5 3.43 98.810 

Structured 2,1+ 1,2,3,4 6 5 582.0 4.06 98.593 

Structured 2,3,4 3,4 5 - 559.6 0.0536 99.981 
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TABLE 2 (Continued) 

Type 4(1) 2(2) p It  J PIO% Ppl% 

Structured 1,2 2,3,4 5 3 559.7 0.0715  99.975 

Structured 1,2,4 3,4 5 3 559.7 0.0715 99.975 

Structured 1,4 2,3,4 5 If 559.9 0.107 99.962 

Structured 3,4 2,3,4 5 5 560.0 0.125 99.956 

Structured 1,2 1,2,4 5 5 560.1 0.143 99.950 

Structured 1,2,4 1,4 5 5 560.2 0.161 99.944 

Structured 2,3 2,3,4 5 5 560.3 0.179 99.938 

Structured 2,3 1,3,4 5 5 560.5 0.214 99.925 

Structured 1,2,4 2,4 5 8 578.9 3.50 98.785 

Structured 2,4 2,3,4 5 6 582.0 4.06 98.593 

Structured 1,2 3,4 4 - 559.9 0.107 99.962 

Structured 1,2 1,4 If 5 560.1+ 0.196 99.931 

Structured 2,3 3,4 4 5 560.6 0.233 99.919 

Partial 3,4 3,4 4 - 560.6 0.233 99.919 

Structured 1,4 3,4 4 6 560.9 0.286 99.900 

Structured 3,4 1,2 4 - 561.1 0.321 99.888 

Partial 1,2 1,2 4 - 561.1 0.321 99.888 

Structured 3 2,3,4 4 6 561.2 0.340 99.882 

Structured 3 1,3,4 4 9 562.7 0.429 99.789 

Structured 1 2,3,4 4 23 563.8 0.805 99.721 

Partial 1,3 1,3 4 - 571.1 2.11 99.268 

Structured 2,4 3,4 4 7 582.4 4.13 98.568 

Structured 2 2,3,4 4 8 583.3 4.29 98.512 

Structured 1,2,3,4 - 4 1 632.8 13.14 95.444 

Structured - 1,2,3,4 4 1 656.6 17.4 93.969 
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TABLE 2 (Continued) 

Type L(1) L(2) p It  J PIS PPri,  

Structured 3 3,4 3 7 563.1 0.680 99.764 

Structured 1,2 1 3 7 564.1 0.859 99.702 

Structured 1,2 3 3 17 565.3 1.07 99.628 

Structured 1,4 3 3 23 563.3 1.11 99.615 

Structured 1 3,4 3 24 566.6 1.31 99.547 

Structured 1 1,4 3 21 567.0 1.38 99.522 

Structured 2,3 3 3 16 567.0 1.38 99.522 

Structured 1 2,3 3 23 568.3 1.61 99.442 

Structured 2 3,4 3 10  583.8  4.38 98.481 

Structured 1 3 2 - 578.3 3.40 98.82 

Structured 3 1 2 - 582.9 4.22 98.54 

Partial 1 1 2 - 583.1 4.26 98.52 

Partial 3 3 2 - 596.8 6.70 97.68 

Partial 2 2 2 - 618.8 10.6 96.31 

Structured 2 4 2 16 621.7 11.2 96.13 

Partial 4 4 2 - 645.7 15.4 94.65 

Structured 3 - 1 27 674.9 20.7 92.84 

Structured 2 - 1 11 679.6 21.5 92.54 

Structured 1 - 1 31 679.8 21.5 92.53 

Structured - 1 1 34 682.3 22.0 92.38 

Structured - 3 1 70 688.1 23.0 92.02 

Structured - 2 15 698.6 24.9 91.37 
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toward structures including states 1 and 3, ilikact states 2 and 4 seem 

more important. It can be concluded that the performance of a given 

feedback structure in relation to other possible structures of equal 

complexity is influenced by V0. 

Figure 4 indicates that a law of diminishing marginal returns 

with increasing controller complexity applies in both cases. In 

Case A, 78.6% of the PPI is produced by using a controller which 

requires one measurement, one actuator, and one feedback gain to be 

stored. Use of a controller with three gains produced 96.4% of the 

possible improvement (PPI) and only a i9.Ct PIO. 	In Case B 

this law of diminishing marginal returns is even more pronounced. The 

controller using one gain produced 92.94, 	PPI and the controller 

using three gains produced 99.764, 	PPI and a PIO of 0.680%. 

Evaluation of the Heuristic Methods for Selecting Feedback Structures  

In Tables 3 and 4 for Cases A and B respectively are listed: 

the best structures containing a fixed number of gains, p ; the gain 

co-ordinates they contain ordered in terms of the associated magnitudes 

in the steady state optimal state feedback matrix, G; and the 

ranking in terms of performance of the two best feedback structures 

containing pia gains of which the specified structure is a substructure. 

For both cases A and B 

 

G = 	-0.392 	-0.669 	-0.482 	_0.634 	(5.14)  
* 	

[ 
-0.066 -0.482 -0.737 -0.767 

Thus the ordering induced upon the co-ordinates of the state feedback 
* 

matrix by the magnitudes of the gains in G is 
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TABLE 3  

EVALUATION OF THE HEURISTIC STRUCTURE SFT.FCTION 

METHODS FOR CASE A  

Structure 
2(1) 	2(2) 

Ordered Gains Rank by Cost of 
Pia 	Structures 

7 1,2,3,4 2,3,4 1,2,3,4,5,6,7 - 

6 2,3,4, 2,3,4, 1,2,3,4,5,6 1 and 2 

5 2,4 2,3,4 1,2,3,4,6 1 and 2 

4 2 2,3,4 1,2,3,6 1 and 2 

3 2 3,4 1,2,3, 1 and 2 

2 2-  4 1,3 1 and 4 

1 2 - 3 land 3 

TABLE 4 

EVALUATION OF THE HEURISTIC STRUCTURE SELECTION 

METHODS FOR CASE B 

Structure 
2(1) 	2(2) 

Ordered Gains Rank by Cost of 
Pia 	Structures 

7 1,2,3,4 2,3,4 1,2,3,4,5,6,7 - 

6 2,3,4 2,3,4 1,2,3,4,5,6, 1 and 2 

5 2,3,4 3,4 1,2,3,4,5 1 and 3 

4 1,2 3,4 1,2,3,7 2 and 3 

3 3 3,4 1,2,5 3 and 4 

2 1 3 2,7  3 and 4 

1 	1 
3 - 2 	M 

2 and 4 
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Ordering 1 2 3 4 5 6 7 8 

Co-ordinates 2,4) (2,3) (1,2) (1,4) (1,3) (2,2) (1,1) (2,1) 

The optimal feedback structure, 0.3, containing 3 free gains kr 

Case A is by Table 1 

cr3  = g(1) = { 2 	; 4(2) = 	3,41] = 	(1,2),(2,3),(2,4)} 

Denoting these co-ordinates by the ordering induced upon the co-ordinates 

by G one says a
3 

consists of the ordered gains, 	1,2,3 } . 

The feedback structure a3  is a substructure of the feedback structure 

g(1) = / 2 ; Z(2) = 2,3,41 ] and the feedback structure 

[4(1) = 1 1,2 1; L(2) = {3,4 } ]. As these feedback structures have the 

two lowest expected costs of the structures containing 4 unconstrained 

gains, a3  is termed a common substructure of the feedback structures 

containing p+1, 4, gains ranked 1 and 2 by cost. All other entries in 

Tables 3 and 4 are made in the same manner. 

Table 3 indicates that the First Rule works reasonably well. Note, 

however, the presence of gain 6,(2,2), seems to be more important than 

-the presence of gains 4,(1,4), or 5,(1,3), (5.14) indicates these 

gains differ little in magnitude. The presence of gain 3,(1,2), seems 

more important than the presence of gains 1,(214) or 2,(2,3), again 

these gains differ little in magnitude. One can infer that the size of 

the differences in gain magnitudes should be considered when choosing 

structures. The results for Case B, Table 4, also indicate that states 

associated with the larger gains in G are more likely to be in the Optimal 

Structure than not. Gain 7,(1 1), appears in several optimal structures 

however. This can be attributed to the special nature of 1/0  in Case B. 
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Figure The Optimal Complete State Feedback Gains of the Fourth 

Order System for Input One. 

(In this and all following gain plots the numbers shown on the vertical 

axis are rounded off to two figures) 
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Order System for Input Two. 
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of the Fourth Order System for Case A with 
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Of The Fourth Order System for Case A with 

= [1,(1) = 	2,3,4 ; 4(2) = 	2,3,41] 
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System for Case A with 
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Figure 10: The Optimal Structured Feedback Gains of the Fourth Order 
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System for Case A with 
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Figure 13: The.Optimal Structured Feedback Gains of the Fourth Order 

System for Case B With 

a.  = [L(1) = {1,2}; A(2) = {3,4-} 
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System for Case B With 

a = [2(1) {1} 	; 2(2) = 313 
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Rule two is also justified. In case A the results are 

particularly striking. To use this rule successfully one must 

evaluate enough feedback structures to be sure one has found the four 

structures containing p+1 gains that are lowest in cost. 

5.17 

The Optimal Structured Gain Trajectory Plots 

Figures 4 and 5 contain the plots of the optimal complete state 

feedback gains against time. All the gains settle to their steady 

'states within this time interval. 

For Case A the plots of the unconstrained gains vs. time for 

some good feedback structures are contained in Figures 6 and 7, 

Figure 8, Figure 9 , Figure 10, and Figure 11. The figures are 

arranged in order of decreasing controller complexity. Since the gains 

are the solution of a two boundary value problem the time variations 

occur both near the starting time and near the terminal time. Note 

the time variations increase as the controller complexity decreases. 

The gain trajectory, depicted in Figure 11, which is associated with the 

simplest feedback structure [/(1) = { 2 ], fails to reach a steady 

state during the time interval. 
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Figures 13 and 14 are the plots of the controller gain trajectories 

for two good feedback structures for Case B. The effect the two different 

values of V0  have on the optimal structured control policy for the 

feedback structure [A(1) = I  1,21 ; A(2) = {3,4} ] may be ascertained 

by comparing Figures 8 and 13. In Case B, Figure 13, no steady state 

is reached and the gains appear periodic. This can be attributed 

to their "following" the expected value of state induced by the expected 

initial condition. Figures 12 and 14 contain the optimal structured control 

policies for the structure [A(1) ={ 11 ; A(2) = 313 for 

Cases A and B respectively. While this structure provides good 

control for Case B (PIO = 3.4%) for Case A the PIO is 233. Thus VID  

can have a large effect on both the gain trajectories and the choice of 

feedback structure. 

A Non-Optimal Solution to the Two Point Boundary Value Problem. 

When Computational Procedure A was used with a feedback structure 

CAW ={ 3 } , /(2) 	313 and with Tr(0) = Tr , the procedure 

donvefted in 52-iterations to-the control-policy illu6trated in Figure 15• 

The expected cost, J, associated with this Structured Control policy 

is 58.28. As the uncontrolled cost, u, is 56.48 this control policy 

is worse than no control at all. When the linear control policy, 

Tr=[G...0 I i=0,1,....,N-1], was used as the initial control policy the 

computational procedure converged in 92 iterations to the structured 

control policy depicted in Figure 16. The control policy of Figure 16 

has an expected cost of 46.23. When Initial Condition B given in 

section 4.4 was used the computational procedure converged to the 

structured control policy of Figure 16 in 78 iterations. It therefore 

seems likely that the structured control policy of Figure 1 6 is the 

Optimal Structured Control Policy. The Optimal Control Policy does not 
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make a good starting point for the structure [ 3 ; { 3 } ] because 

little control is possible using this feedback structure. Thus the 

sequences [SIJN..1  and [V(k)]0  associated with the optimal 

structured control policy will be far different from the sequences 

associated with TT. This result implies one must find an initial linear 

control policy which results in a system behaviour near that of the 

optimal structured control policy, to ensure that the computational 

procedure will converge to the optimal structured control policy. 

An Unstable Minimum Norm Controller  

It was mentioned in section 4.4, Part C if the gains deleted are 

of the same magnitude as those retained the performance of the minimum 

norm controller may be very poor. If the feedback structure 

E/(1) = {1,3} ; L(2) = {1,3} is specified then the structured state 

feedback matrix that differs the least from G in Norm is 

[

GS  = 	-0.392 	0 	-0.482 	0 	(5.15) 

(5.15) is obtained from (5.14) by deleting those gains constrained to be 

zero. The eigenvalues of the closed loop system, A BGS, are 

?,2 = 0.9802 j 0.2356 PL, 	= 1.008 

X3,4  = 0.7923 ± J 0.2200 I k34  I = 0.822 

Thus the minimum norm controller has made a stable system unstable. 

The optimal steady state structured state feedback matrix computed 

using the algorithm given in Chapter 8 is 

-0.066 0 -0.737 0 
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GS = F -1.419 	0 	-1.646 	0 

-1.217 0 2.572 0 

The closed loop eigenvalues are 

X1 2 = 0.8538 + j 0.2360 11/41,21 = 0.886 

= 0.9193 X
3,4 	

j 0.1719 IX3,41 = 0.935 

5.3. An Unstable Seventh Order System 

Assume 

= 
	+ Bu

k 
+ w

k 

where 

(5.16) 

A = 0.604 0.197 0.027 0 

-0.027 0.998 0.250 0 

-0.197 -0.027 0.998 	0 

-0.002 0.221 0.029 0.779 

O 0 	0 	0 

O 0 	0 	0 

O 0 	0 	0 

0.002 -1x104 0.002 

0.031 -0.002 0.029 

0.248 -0.026 0.219 

0.224 -1x10 4 0.002 

1.0 0 0 

0.219 0.755 0.193 

-0.264 -0.193 0.755 

(5.17) 
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0.002 1a04 0.002 

0.034 0.003 0.034 

0.281 0.031 0.279 

0.039 0.029 0.231 

0.250 0.250 0 

0.083 0.083 0.026 

-0.009 -0.009 0.219 

and 

r 

B = (5.18) 

The eigenvalues of the A matrix (5.17) are 

= 1.012 

X
2 

= 1.0 

(5.19) 

x3  = 0.9744 

X
4 

= 0.7788 

X
5,6  = 0.7546 

	j 0.1927 1x5,61 = 0.778 

= 0.6137 

It is assumed 

V
0 
 = I, v = 	Q = I, SN = I, R = I 	(5.20) 

and N = 50. 
(5.21) 

Table 5 lists the structures for which optimal structured control 

policies were computed and the resulting performance. The structures 

are grouped by the number of unconstrained gains they contain and 

arranged in order of increasing cost. The column headings have the 
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TABLE 5 • 

STRUCTURED CONTROLLER COSTS FOR A 

SEVENTH ORDER SYSTEM 

Uncontrolled Cost, Ju  = 2637.5 
Optimal Cost, 5-  = 79.26 

p ni  A(1) L(2) A(3) It J PIe,  PPS 

19 6,6,7 1,2,3,5,6,7 1,2,3,4,5,6  1,2,3,4,3,6,7 2 79.26 - 0 - 100 

17 5,5,7 1,2,3,5,7 2,3,4,5,6, 1,2,3,4,5,6,7 2 79.32 0.0758 99.997 

14 5,3,6 1,2,3,5,7 2,5,6 1,2,3,4,6,7 3 79.85 0.745 99.976 

14 7,0,7 1,2,3,4,5,6,7 1,2,3,4,5,6,7 1 86.87 9.60 99.702 

14 7,7,0  1,2,3,4,5,6,7 1,2,3,4,5,6,7 - 1 94.74 19.5 99.394 

14 0,7,7 - 1,2,3,4,5,6,7 1,2,3,4,5,6,7 1 95.12 20.0 99.380 

12 4,3,5 1,2,3,5 2,5,6 1,2,3,4,7 3 80.19 1.17 99.964 

11 4,2,5 1,2,3,5 5,6 1,2,3,4,7 if  80.88 2.04 99.936 

9 3,1,5 2,3,5 5 1,2,3,4,7 3 81.35 2.64 99.918 

9 4,1,4 1,2,3,5 5 1,2,3,7 4 81.81 3.22 99.900 

8 3,1,4 2,3,5 5 2,3,4,7 4 81.95 3.39 99.894 

8 3,1,4 2,3,5 5 1,2,3,7 3 82.02 3.48 99.892 

8 4,1,3 1,2,3,5 5 2,3,7 4 82.13 3.62 99.887 

8 3,2,3 2,3,5 5,6 2,3,7 4 82.36 3.91 99.878 

8 3,1,4 2,3,5 5 1,2,3,4 4 84.37 6.45 99.800 

8 4,1,3 1,2,3,5 5 2,3,4 4 84.41 6.5o 99.798 

8 4,1,3 1,2,3,5 5 1,2,3 4 85.21 7.51 99.767 

8 2,1,5 3,5 5 1,2,3,4,7 4 85.58 7.97 99.752 

8 4,1,3 1,2,3,5 5 3,4,7 4 85.65 8.06 99.750 

8 3,1,4 2,3,5 5 1,3,4,7 4 86.14 8.68 99.731 
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TABLE 5 (Continued) 

p . 2(1) 2(2) 2(3) It  J PIO% PPS 

8 3,1,4 1,3,5 5 2,3,4,7 4 86.24 8.81 99.727 

8 3,2,3 3,5,6 5,6 3,4,7 7 104.2 31.5 99.025 

7 3,1,3 2,3,5 5 2,3,7 4 83.61 4.23 99.869 

7 3,1,3 2,3,5 5 2,3,4 4 84.78 6.96 99.784 

7 4,1,2 1,2,3,5 5 2,3 4 85.40 7.75 99.759 

7 3,1,3 2,3,5 5 1,2,3 4 85.42 7.77 99.759 

7 3,1,3 2,3,5 5 3,4,7 4 86.29 8.87 99.725 

7 2,1,4 3,5 5 2,3,4,7 5 86.35 8.95 99.722 

7 2,1,4 2,3 5 2,3,4,7 5 87.93 10.94 99.661 

7 2,1,4 3,5 5 1,2,3,4 5 89.14 12.47 99.613 

7 7,0,0 1,2,3,4,5,6,7 - - 1 110.4 39.29 98.78 

7 1,2,4 2 5,6 1,3,4,7 8 110.6 39.54 98.77 

7 0,7,0 - 1,2,3,4,5,6,7 - 1 208.7 163 94.94 

7 0,0,7 - - 1,2,3,4,5,6,7 1 246.6 211 93.46 

6 3,1,2 2,3,5 5 2,3 4 85.78 8.23 99.745 

6 2,1,3 3,5 5 2,3,7 4 87.03 9.8o 99.696 

6 3,1,2 2,3,5 5 3,7 5 87.05 9.83 99.695 

6 3,0,3 2,3,5 - 2,3,7 3 88.82 12.1 99.626 

6 2,1,3 2,3 5 2,3,7 5 89.05 12.6 99.617 

6 2,1,3 3,5 5 2,3,4 5 89.75 13.2 99.589 

6 3,1,2 2,3,5 5 3,4 5 90.93 14.7 99.543 

6 2,1,3 2,3 5 2,3,4 5 91.03 14.8 99.540 

6 2,1,3 2,5 5 2,3,7 4 91.57 15.5 99.518 

6 3,1,2 2,3,5 5 2,7 5 93.07 17.4 99.460 

6 2,1,3 3,5 5 3,4,7 7 104.8 32.2 99.001 

5 2,1,2 3,5 5 2,3 5 90.88 14.7 99.545 
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TABLE 5 (Continued) 

p . /(1) L(2) L(3) It  J PIO% ppV6 

7 
5 3,0,2 2,3,5 - 2,3 4 92.14 16.3 99.496 

5 3,1,1 2,3,5 5 3 6 92.17 16.3 99.495 

5 2,1,2 2,3 5 2,3 5 92.45 16.6 99.484 

5 1,1,3 3 5 2,3,7 6 93.18 17.6 99.455 

5 3,0,2 2,3,5 - 3,7 5 93.42 17.9 99.446 

5 2,0,3 3,5 - 2,3,7 5 94.77 19.6 99.393 

5 2,1,2 2,3 5 3,7 5 95.03 19.9 99.383 

5 2,0,3 2,3 - 2,3,7 7 124.9 57.6 98.22 

4 1,1,2 3 , 2,3 97.08 22.5 99.303 

4 2,0,2 3,5 - 2,3 6 99.03 24.9 99.227 

4 1,1,3 5 5 2,3 5 99.36 25.4 99.214 

4 2,1,1 2,3 5 3 6 99.83 26.0 99.195 

4 3,0,1 2,3,5 - 3 6 99.85 26.0 99.195 

4 0,1,3 - 5 2,3,7 4 100.8 27.2 99.158 

4 3,1,0 2,3,5 5 - 4 101.0 27.4 99.150 

4 2,1,1 2,3 5 7 5 104.0 31.2 99.032 

4 1,1,2 3 5 2,7 7 109.2 37.8 98.83 

4 2,1,1 3,5 5 2 9 113.6 43.3 98.66 

4 2,0,2 3,5 - 3,7 11 127.2 60.5 98.13 

4 1,1,2 3 5 3,7 9 127.2 60.5 98.13 

4 2,1,1 3,5 5 3 10 128.6 62.3 98.07 

3 1,0,2 5 - 2,3 5 104.8 32.2 99.01 

3 0,1,2 - 5 2,3 4 107.3 35.4 98.90 

3 2,1,0 2,3 5 - 3 110.4 39.3 98.78 

3 3,0,0  2,3,5 - - 4 114.1 44.0 98.64 

3 1,1,1 3 5 2 6 119.8 51.1 98.42 
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TABLE 5 (Continued) 

p ni  
2(1) A(2) 2(3) It  J PIO% P101% 

3 1,1,1 3 5 3 6 135.4 70.8 97.81 

3 2,0,1 3,5 - 3 8 138.1 74.2 97.70 

3 2,0,1 2,3 - 3 7 139.4 75.9 97.65 

3 1,0,2 3 - 2,3 31 198.9 151 95.32 

3 0,1,2 - 5 2,7 23 414.7 423 86.89 

2 1,0,1 5 - 3 9 141.2 78.1 97.57 

2 0,1,1 - 5 3 6 144.2 81.9 97.46 

2 1,1,0 3 5 - 	, 5 146.7 85.1 97.36 

2 2,0,0 2,3 - - 5 163.6 106 96.70 

2 2,0,0 3,5 - - 7 164.1 107 96.68 

2 0,0,2 - - 2,3 6 302.1 281 91.29 

2 1,0,1 3 - 3 9 331.4 318 90.14 

1 1,0,0 3 - - 7 346.7 337 89.55 

1 0,0,1 - - 3 4 463.4 485 84.98 

1 1,0,0 5 - - 14 1454 1734 46.26 

1 0,1,0 - 5 - 12 1469 1753 45.68 

1 1,0,0 2 - - 20 2488 3039 5.843 

• . 
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TABLE 6  

EVALUATION OF THE HEURISTIC STRUCTURE SELECTION 

METHODS FOR A SEVENTH ORDER SYSTEM 

Structure Gains Used Rank by Cost 
of pia 

Structures n. /(1) A(2) £(3) 
* 
G Ordering p=7 Ordering 

8 3,1,4 2,3,4 5 2,3,4,7 1,2,3,4,5,6,7,11 

7 3,1,3 2,3,5 5 2,3,7 1,2,3,4,5,6,7 1,2,3,4,5,6,7 1 and 2 

6 x,1,2 2,3,5 5 2,3 1,2,3,4,5,6 1,2,3,4,5,6 1 and 2 

5 2,1,2 3,5 5 2,3 1,2,3,4,6 1,2,3,4,6 1 and 2 

4 1,1,2 3 5 2,3 1,2,3,6 1,3,4,6 1 and 4 

3 1,0,2 5 - 2,3 1,4,6 1,2,6 2 and 3 

2 1,0,1 5 _ 3 1,4 1,2 1 and 7 

1 1,0,0 3 - 2 3 3 and 4 



P 

Figure 17: Plot of PPI and PIO Against p For The Best Feedback 

Structures of the Seventh Order System. 
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samemeaningasinTablesland2,butanextracolumnheadn.is 

included. This column contains, from left to right, the n1, n2, and n
3 

for each feedback structure that was used. 

Figures 18, 19, and 20 contain the optimal complete state feedback 

gain trajectories for inputs one, two, and three respectively. As can 

be clearly seen there is a wide variation in the magnitudes of the gains. 

This suggests Method 1 can be successfully applied using the ordering 

induced on the gain co-ordinates by G. When feedback structures containing 

only those p co-ordinates corresponding to the 

p largest gains in the G matrix were tried it was found that with p > 7 
* 

there was little increase in cost over the use of 7. Several likely 

8 gain structures were considered to suggest other promising 7 gain 

structures. Then a careful search for the best structures with 

p = 7, 6,....,1 was made using a combination of Methods 1 and 2. 

Figure 17 is the plot of PPI and PIO against p for these best structures 

It shows that the improvement in performance obtained by use of 

an extra gains decreases as the number of gains increases. The shapes of 

the curves in Figure 17 are quite similar to those of Figure 3. 

There seems very little incentive to use a controller containing 

more than 7 gains. The optimal structured control policy associated 

with the best 7 gain structure [/(1) = {2,3,5 }.; 1(2) =4 5 )1 

£(3) ={2,3,713 is plotted in Figure 21. It'produces only a 4.25g in- 

crease in cost over optimal, and 99.869 of the PPI. 

A controller containing 3 gains and requiring only three measurements 

and two inputs produces control which could still be termed near 

optimal with a PIO = 32.2%. The optimal gain trajectories for this 

feedback structure are plotted in Figure 22. 

The best controller requiring 2 gains produces a 78.1% PIO. This 

however is 97.57 
	

PPI. The large PPI figure can be attributed to. the 
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uncontrolled system being unstable. 

Figure 23 is the plot of the optimal controller gain trajectory 

for the best single gain structure, g(1) = j 3 I] (i.e. n2  = n3. 0). 

This results in an expected cost 337% greater than J, but it does 

stabilize the system. The optimal structured state feedback matrix 

when k = 20 is 

G 
 
S 
20 

= O 0 -1.136 0 	0 	0 	0 

O 0 	0 	0 	0 	0 	0 

O 0 	0 	0 	0 	0 	0 

  

(5.22) 

The eigenvalues of A + 20 are 

1.0 

x2,3 
= 0.8292 + j 0.1239 IX

2,3 
= 0.8384 

x4,5 = 0.7856 j 0.2910 1X4,51 = 0.8314 

A
6 
	= 0.7788 

= 0.5601 

-Thus if simple stability is all that is required a controller using one 

gain, one measurement, and one actuator would suffice. 

Evaluation of the Proposed Structure Selection Methods  

Table 6 contains the evaluation of the proposed structure selection 

methods for this example. This table is similar to tables 3 and 4 and 

the entries were constructed in the same manner as those of tables 3 and 

4. 
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In addition to ordering the gain co-ordinates by the ordering 

implied by G they have been ordered by the magnitudes Of the optimal 

gains of the feedback structure which gives lowest expected cost for 

p 7. This ordering can be seen to be more useful than the G 

ordering when p = 2. The optimal steady state feedback matrix is 

0.197 -0.569 -0.780 -0.002 -0.720 -0.064 -0.150 

-0.054 -0.143 0.102 -0.122 -0.730 -0.184 0.021 

0.231 -0.564 -0.845 -0.163 -0.122 0.147 -0.451 

(5.23) 

The ordering induced on the gain co-ordinates is 

Ordering 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 

Co-ordinate 3,3 1,3 2,5 1,2 3,2 3,7 3,1 1,1 2,6 3,4 1,7 3,6 2,2 3,5 2,4 

Ordering 17 18 19 20 21 4- 

Co-ordinate 2,3 1,62,1 2,7 1,4 1,  

For the feedback structure [Z(1) = {213,5}; £(2) = { 5 1; £(3) = j 2,3,713 

• the structured state feedback matrix of the optimal structured control policy, 

at time k = 20, is 

GS 
20 

= 0 

0 

0 

-0.572 

0 

-0.533 

-0.798 

0 

-0.824 

0 

0 

0 

-0.811 

-0.790 

0 

0 

0 

0 

0 

0 

-0.506 

G = 

(5.24) 
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The ordering induced upon the gain co-ordinates is. 

Ordering 1 2 3 4 5 6 

Co-ordinate 3,3 1,5 1,3 2,5 1,2 3,2 3,71  

Both methods of selecting feedback structures work well, but 

Method 2 does not seem to work as well as Method 1 when p 2. It 

was found that Method 2 could be usefully used in a negative sense. That 

is substructures of a structure that has a high cost, need not be 

tested. 

An Optimal Structured Control Policy with a Periodic Behaviour 

The optimal structured control policy of the feedback structure 

a' = EZ(1) = 	3 	1(3) = 	2,3} ] 
	

(5.25) 

depicted in Figure 20 can be clearly seen to have a periodic nature. 

The expected cost J associated with it is 198.9. With 7(0) = 7 it 

took 31 iterations to converge. It has been shown that the system can 

. be stabilized using a constant gain feedback structure [2,(1) = j 31]. 

As this feedback structure is a substructure of a' the system can 

be stabilized using a constant structured feedback matrix with 

feedback structure 

This result implies that the optimal structured feedback matrices 

may not settle to steady state values in the middle of a long time 

interval, even when the system can be stabilized using a constant 

structured feedback matrix. 
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5.4. Conclusions  

It can be concluded for some systems near optimal controls can 

be obtained which require fewer gains, measurements, and actuators than 

the optimal. It can be further concluded for some systems, each 

additional gain added to the compensator will produce successively 

'smaller improvement in performance. For the two systems which have been 

considered, it can also be noted that the plots of PIO vs. p could be well 

approximated by a negative exponential function. 

It can also be concluded that the heuristic methods of choosing 

good controller structures are helpful. However, intuition and judgement 

are still necessary to decide how many trials should be made, in What 

proportions each method should be used, and to which linear control 

policy method one should be applied. Physical insight is of course 

always helpful. 

It can also be observed that the number of iterations necessary 

to compute the optimal structured control policy increases as the number 

of gains decreases. This could be explained by the system behaviour, when 

* 	. 
the optimal structured control pblicy, 7

S 
 I , is used,being increasingly 

* 
different from the system behaviour when the optimal control policy, 7, 

is used, thus producing sequences [Sk ]
N-1 

and EV(k)]
N 
increasingly 0 	0 

N  
' different from the sequences [Sk 0 	0 ]-1 and [V(k)]

N
. If structures are 

being evaluated by working down from a complex structure to a simpler one 

then optimal structured control policies for feedback structures of which 

the present structure is a substructure are available. The 

system behaviour associated with the nS, of a feedback structure, 

containing only one (or a few) more gain(s) than the substructurei should 

* 
be similar to the system behaviour associated with the 7

S 
 of a 

*s 	 *s 
substructure. If such a 7 were used as n(0) when the 7 of the 

substructure was computed thens in all probability, computation time would 

be reduced. 
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CHAPTER 6 

THE IMPORTANCE OF V0  AND V 

6.1. Introduction 

The formulae used for the computation of the optimal structured 

control policy require a knowledge of Vo  and V. These matrices 

need not be known when frequency domain techniques, or the Linear 

Quadratic Optimal Approach are used to design a controller. 

When using frequency domain design techniques deterministic models 

can be used for systems containing stochastic disturbances as these 

disturbances can be handled implicitly. The frequency response of the 

closed loop system is rolled off at a frequency well below the lowest 

frequency in the noise spectrum. The nature of the stochastic disturbances 

or even the band of frequencies they occupy need not be known, precisely. 

There is no means of handling disturbances implicitly when time 

domain design techniques are used. By happy circumstance the optimal 

control policy for a linear system with quadratic cost is 

optimal for any initial condia6n and any zero mean white noise 

disturbance. This is not true for an optimal structured control 

policy. To get the best possible performance one must have knowledge 

of the disturbance processes and initial states that are likely to 

occur. V0  and Vw 
can be interpreted as weighting matrices for the 

initial conditions and disturbances respectively. 

The need for information about V0  and Vw 
could be considered a 

disadvantage of the design procedure proposed in this thesis. In this 

chapter the problem of how Vo  and Vw  may be selected to produce 

acceptable control when the actual Vo  and Vw 
are unknown will be 

considered. Levine and Athans [9 3 have considered the problem of 

designing partial state feedback regulators for systems where the 
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initial state is unknown. Their problem formulation will be shown to 

be closely related to the infinite time version of the structured 

control problem, defined by (1.18), if V = I. This will suggest 

V
0 
 = V. = I is a suitable choice for these matrices in the absence of 
 w 

other information. 
* 

The effect V0  and whave on 7
s 
 will be considered in an 

heuristic manner. This will further substantiate the reasonableness 

of the choice V0  = Vw  = I if a robust controller is desired. 

In the next section the numerical problems associated with singular 

V0  and Vw 
will be considered. It will be suggested small diagonal 

terms be added to singular Vo  and VII  so as to make them positive 

definite. This should produce a more robust controller design as well 

as solving the numerical difficulties. 

The arguments of sections 6.3 and 6.4 of this chapter are intuitive and 

are not mathematically justified. It is hoped that they will be helpful 

none the less. 

6.2. Disturbances Uniformly Distributed Over a Sphere  

Levine and Athans 9 have proposed computing partial state feedbadk 

controllers for continuous regulatory systems under the assumptions 

V
0 
 = I and V = 0 where the partial state feedback matrix is constrained 

to be constant. The assumption Vo  = I is equivalent to assuming the 

possible initial states are uniformly distributed over a sphere in Rn  

centred at the origin. As all possible initial state directions are 

weighted uniformly, the resulting control policy should produce 

acceptable control for any initial state. The computational evidence 

available [10 - 	suggests this approach works well. 

A result that will connect a discrete structured control problem 

of the Levine and Athans type with the infinite time version of the 

problem (1.18) will now be developed. 
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Theorem 12: 

Let problems A and B be defined as 

A) Min 
	 (6.1) 

GS 

where 

J' = 	xkQxk  ukRuk] 

k=0 

xkia  = Axk + Buk  

E[xoxo] = V 

(6.2) 

(6.3) 

(6.1+) 

and 

uk  = GSxk 	 (6.5) 

where GS  is a constant structured feedback matrix. 

* 	 S 
Assume, G

8 
 , the solution to (6.1) exists and [A+BG ] is 

asymptotically stable. 

B) Min J(TPU)) 	 (6.6) 

(N) 

for N=1,2,3,...., where 

li.-1 
- 	 ' 

J(17
S 
 (N)) = E[I E xiT  Qxi  + uiT  Rui  + 11x1l1SNxN] 

1=0 

(6.7) 

xk4.1  = Axk + Buk + k 

E[x0x0] = V0 
	 (1.2) 



u = GS 
k 	kxlc  

(1.19) 

6.4 

rS(N) = [Gk, k=0,1,....,N-1] 
	(6.8) 

and wk is a zero mean white noise process with covariance V. 

Let 

S 
7 (N) = [G (N) k=0 1 2 . 	N-1] k 	 1 	711••• 1 

N=1,2,3, 	, be the solutions to (6.6). If 

lim G
k
(N) 

co 

for all k such that 

< k < N - WTI 

(6.9) 

(6.1o) 

(6.11) 

and EA+BGJ is asymptotically stable then ,G is a solution to A. 

Proof: 

Consider problem A. As wk  = 0 implies Vw  = 0 use of (2.16) 

produces 

= litr[S0V] 
	

(6.12) 

As A+BGS  is assumed asymptotically stable no new restriction is 

added to problem A if it is assumed A+BGS  is asymptotically stable. 

This assumption and (2.15) yield 

S
o 

= Q + GSTRGS  + [A+BG
S]TSoEA+BG

s 	
(6.13) 
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Substituting S for S0  problem A becomes 

(6.14) Min 11trESN3 
S 

where 

S = Q + GST  RGS  +
S]TS[A + BGS] 

Define the set of finite time control policies 

r(N) = [Gk  = GS,k=0,1,....,N-1] 

(6.15) 

(6.16) 

If this control policy is applied to the system of problem B the 

associated expected cost is by use of (2.15) and (2.16) 

N 

J(r(N)) = 11tr[S0V0] +.12 E tr[SkV] 

k=1 

where 

S
k 

= Q + GST  RGS  + [A + BGS ]T Sk+1
[A + BGS  ] 

(6.17 ) 

(6.18) 

for k=N-1,N-2,....,0 

• Consider the solutions to problem B, (6.9). By use of (2.15) and (2.16) 

the expected cost may be expressed 

S J(TT (N)) = itr[S0V.00] + .111: E tr[SkV] 

k=1 

(6.19) 

where 

and 

S = S N 	N 

Sk  = Q + 
	(N)RGk

(N) + [A + BGk
(N)]T

Sk+1 
 [A + BGk(N)] 

• (6.20) 
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for k=N-1,N-2,....,0. Define 

C = 	lim 
J(u(N)) - J(;S(N))  

N-4co 

As n (N) is a solution to (6.6) 

C 	0 

Define k1  and k2 
to be the largest integers such that 

and 

k
2 	

N - afTT 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

For N > 10, 

in the form 

C 	= 

where 

H1 	= 

H2 = 

H3 =  

k2  > 	thus by use of (6.17) and (6.18) 

+H2 	+H3 
	
+ H 

tr[Solio] - tr[SoVo] 

one may express C 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

lim 2N N-+ 00 

k
1  

lim 	— 	E 	tr[SkV] - tr[SkV] 2 
1
N  N--,co k=1 

k
2 

lim 	E 	tr[SkV] - tr[SkV] 

N-4 co 	k=k1+1 

and 
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E tr[SkVJ - tr[SkVJ 

N 

H4 	Ja = 
 

N-4  GD 	k=k2+1 

(6.29) 

6.7 

As [A BG
s 

 ] is asymptotically stable tr[S0V0] is finite, thus 

tr[SoVn] 
lim 	2N 
	 _ 0 

N-■ CO 

(6.30) 

The positive semidefiniteness of So  and V0  implies tr[SoVo] 	0 

therefore 

tr[Solfo] 
lim - 	2N 	

< 0 (6.31) 
14..4 GO 

which implies that 

0 	 (6.32) 

As [A + BGS
is asymptotically stable tr[SkV] is bounded above 

by some constant, K, thus 

and 

k1 	 Arg:K N 1 E tr[SkV] 	Ni,  lim
GD 

Tfi N 2N = co  
k=1. 

0 	 (6.33) 

N 
. 	1 	 lliK 
lim 	1 	E 	trES V] < l im a ---- k ' 	2N - 0 	(6.34) 
N--,  oz) c" 	 N-4 co k=k

2
+1 

This with the positive semidefiniteness of Sk  and V imply that 

H 	0 2 (6.35) 
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H < 0 
	 (6.36) 

As (N-k2)- co as N 	op, (6.18) (6.24), and the asymptotic 

stability of [A + BP] imply 

S
k SI as N 	 (6.37) 

where k < k2 
and 

* * 	* 	* 
S' 	+ GST  RGS  + [A + BGS ]T  SI[A + BGS  ] (6.38) 

(6.10), (6.20), (6.23), (6.24) and the asymptotic stability of 

[A + BG] yield 

as N OD 	 (6.39) 

for k1 < k < k2 
where 

S = Q + GTRG + [A + BG]TS[A + BG] 
	(6.40) 

By use of (6.37) and (6.39) one can deduce 

H
3 

= 	(tr[SIV] - trESV3) 
	 (6.41) 

As GS  is known to be a solution to the problem defined by (6.14) 

and (6.15) 

:,1 -tr[S' V] 	istr[SV] 
	

(6.42) 

thus 
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3 

(6.22), (6.25), (6.32), (6.35), (6.36), and (6.43) imply 

C = 0 

and 

Hi  = 0 

for i = 1,2,3,4. Thus (6.41) implies 

(6.43) 

(6.44) 

(6.45) 

6.9 

Jitr[SIV] = Iltr[SV] 	 (6.46) 

0,3  
G satisfies (6.13) which is immediate from (6.40). As G is a 

solution to problem A by assumption and G produces the same expected 

cost, which is apparent from (6.46) and (6.14), G is a solution to 

problem A. 

Q.E.D. 

Corollary: 

J(7(N)) 	J(;S(N)) 	as N co 	(6.47) 

This follows directly from (6.44) and the definition of C, (6.21). 

If V
w 
= I and the solutions exhibit the required steady state 

behaviour then the steady state value of the structured state 

feedback matrix will be a solution to a Levine and Athans type problem. 

It is reasonable to expect such a solution will produce robust control. 

This suggests that the choice, Vw  = V0  = I, for the finite time problem 

will probably produce a robust control policy. This choice will be 

intuitively justified in the next section. 
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6.3. The Effect of VV and Vw 
on IT 

E&amination of the equation (2.16) reveals that multiplication of both 

V0  and Vw by any constant k will result in the scaling of the expected 

cost, J, by a constant k irrespective of the linear control policy 

used. Thus the structured control policy that minimizes J for a given 

v and-v udn ndrosdze theexpected costifKxx ,„IcV and the 0 	 0 03  0 

noise covariance matrix is kV
w. Therefore one may conclude: the 

actual amplitude of the noise does 	not affect the optimal structured 

S 
control policy, Tr. 

It is reasonable to assume it is the cross correlation information 

contained in the sequence [V(k)]0
-1 

 that affects r
S 
 . The complexity 

of the expressions makes a complete analysis very difficult. The 

validity of this assumption will be tested by comparing the optimal 

controls for the complete and the partial state feedback cases. Both 

the initial state and the disturbance will be assumed to have zero mean 

Gaussian probability distributions. 

Combining equations (1.33) and (3.11) produces the optimal partial 

state feedback control, 

uk 
	- [R + B

T
SkiaB D

T
Sk+1[A1  + A2  VxT  ,zt(k)Vxt

1 
 (k)]x;c  

(6.48) 

N-1 
If x0  and [Wk]0 are uncorrelated zero mean Gaussian processes 

and a linear control policy is used then Exic30  are zero mean Gaussian 

processes whose co-variance matrices v(k)]
N
0  are given by (2.1). The 

conditional distribution of z' given xl"c  has mean 

/ 
k 

x! = V E r zt 	1 	
T 
11 

L 	
x'z()V 1  z1(k)Ylc • , (6.49) 
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and covariance matrix [16, p.29] 

Vzi/x,(k) = Vz,(k) - V:lz,(k)V-z1(k)Vx,z1(k) 	(6.50) 

Substitution of (6.49) into (6.48) yields 

uk = - [R + B
TSk+1)3]  -1BTS

k+1
[A1x1 	A2E[ z' /3 

4 

(6.51) 

By use of (1.5), (1.6), (1.35) and (3.5) the optimal control may 

be expressed as 

uk 	
- [R + BT Sk+1Bj-1  BT  Sk+1 [Almx 

	k- ' + A2z1 1 - (6.52) 

As S
k+1 and Sk+1 are both quadratic cost matrices dependent on 

[Gi 
]
k+1 , N-1 the optimal partial state feedback control differs from the 

optimal control in zilc  being replaced by its expected value given xilc  

the available information (Cumming [3]). 

From (6.50) it is apparent that the larger are the terms of Vx 1 z
,(k), 

the smaller will be the terms of V z i 1 / 1(k). (6.51) and (6.52) imply 

if V z i 1_/  x 1
(k) is small then the optimal partial state feedback control 

will be close to the optimal control, on average. From (2.1) it is 

apparent that the larger the elements of V-1162  and V12  are (defined by 

(3.26) and (3.27)), the larger will be the elements of the sequence 

[Vzi/xl(k)]0-1  and the better will be the performance of the optimal 

partial state feedback control policy when compared to the optimal 

control policy. 

Similarly from (6.50) it is apparent if Vz1(k) << Uxi(k) then the 
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terms of Vz,/xl(k) 	must be comparatively small and partial state 

feedback control would work well. From (2.1) it is apparent that the 

smaller V0
22 and V22 are, the smaller will be the terms in the sequence 

EVz'(k)3
N-1
0  which implies the better will be the relative performance of 

the optimal partial state feedback control policy. 

If V0  - Vw  = I then all disturbance directions in 0 are equally 

12 	12 	22 	11 	22 < v11 likely to occur. If Vo  and Vw  are large or Vo  < Vo  and Vw  

then certain possible directions of disturbance are more likely to occur 

than others. 

The optimal structured control policy will be tuned to handle best 

the disturbance directions which are most heavily weighed (have a 

high probability of occurring) by the given V0  and Vw. As the 

behaviour of the system when subject to a disturbance along a direction 

which is lightly weighted has a small effect on the expected cost, the 

performance when such disturbances occur may be poor. If V0  and Vw 

were to contain errors or drift so that a disturbance direction associated 

with a poor performance was given a larger probability of occurring 

the system performance would be degraded. 

The assumption Vo  = V
w 
= I gives equal weight to all disturbance 

directions thus the performance will be acceptable no matter what 

' disturbance occurs. The control policy so calculated will give 

adequate control irrespective of the actual disturbance weightings. 

It is a safe assumption to make when Vo  and V
w 
are unknown. 

6.4. Singular V0  and Vw  

The condition. that V0  and Vw 
be positive definite was only a part 

of a sufficient condition for Fk to be invertable. For some problems 

F
k 

will still be invertable and a unique solution for gk 
will exist. 

However, singular Fk  presents no great problem as solutions to (3.1) 

still exist. The solution 
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g
k = - F;2.1k 	 (6.54) 

where Fk is the pseudo inverse of Fk, is of particular interest as it is the 

solution of minimum norm, 1 gk  I. If a singularity exists for all Fk  

on the optimal trajectory then the number of gains in the feedback 
posta4,1 

structure maybe reduced without producing any increase in expected ' 

cost. 

Singular V0  and Vw  mean that xo  and [wk]0
-1 
 are constrained to lie 

in certain subspaces of 0. If unmodelled disturbances occur with 

components in the subspaces which were not weighted when 7
s 
 was 

computed, poor behaviour may result. It is probably safer to add small 

quantities to the diagonal elements of V0  and V and thus ensure all 

.disturbance directions are given some probability of occurring. This 

will make V0  and V positive definite. As V0  and V are probably only 

known to one or two significant figures these added quantities could be 

of the order of significance and would not affect the accuracy of the 

solution. Such an addition would produce a control that would probably 

be more robust than the one produced using singular V0  and Vw  and 

would eliminate the possibility of numerical difficulties associated with 

singular Fk. 
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CHAPTER 7 

THE USE OF STATE AND CONTROL AUGMENTATION TO STUDY  

MORE GENERAL FEEDBACK STRUCTURES  

7.1. Introduction  

Most problems which deal with linear quadratic systems disturbed 

by white noise that are to be controlled using a linear compensator of 

fixed structure can be transformed into a structured state feedback 

problem by suitable augmentation of the state and control vectors. 

- In this chapter a set of problems of increasing complexity will be 

transformed into structured state feedback problems concluding with a 

team theoretic type problem. Both instantaneous and delayed measurement 

,equations will be considered. To avoid repetition the simpler problems 

will be discussed using only the instantaneous measurement equation. 

The analysis will go no further than showing which A, B, Q, R, SN, 

170, Vw  and the structure on Gk  that could be used. All these matrices 

will have special structures which should be used if the specific 

optimal controller is to be calculated efficiently. 

The problem of how to choose the initial state of a dynamic compensator 

optimally will also be considered. 

7.2. -Feedback of Noise Corrupted Outputs  

Consider the Output Feedback Problem defined in Section 1.2. It will 

be assumed that the measurement noise, vk'  is uncorrelated with the 

process noise, wk. Some of the elements of Kk  may be constrained to be 

zero. 

Substitution of (1.1) into (1.36) produces 

Y 	
- CAxk 	

-k Cwk v10-1 
	(7.1) 
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Define 

xk (7.2) 

wk 
Cw
k 
+ v

k+1 

wk 

(7.3) 

   

As 

EE wkvk3 = 
0 
	 (7.1+) 

by assumption. 

xkia  

where 

T = 

and 

E = 

Define 

V = 

wk is 

= 	Axk  

0 

0 

CB 

B 
[ 

--T E[w w 
k k 

a white noise process. 	(1.1), (7.1) and (7.2) imply 

— 	— 
+ Buk  + wk 	 (7.5) 

CA 	 (7.6) 
A 

(7.7) 

(7.8) 

Substitution of (7.3) and use of the definitions of V and Vv' 

combined with the fact that wk and vk 
are white noise processes, produces 
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Vw  

Similarly define 

V V0 	= - 

Use of (1.36) 

V
0 
 = 

vk is an independent 

This and the 

V0 	
= 

If one selects 

= 

Q 	= 

and 

TN  = 

E 

R 

[0 

EG-c. X.T] 

and 

definition 

CV C
T 
+ 

CT  

0 0 

(7.2) 

Cx
0  + 

x0  

CV-  0T  + 

VOLT 

0 	0 0 	Q  

0 

0 	S
N 

white 

V
v 

v0 

of 

V 

produces 

noise 

CV
W  

V 

0 [x
T
C
T 

V0, 	(1.2), 

CV 

V
V 

vector. 

+ v
T 
0 	0 xl 

imply 

(7.9 ) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

then 
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17,0  = 

= 

N-1 
r 

i=0 

N-1 

),1 	E  

1=0 

T- Ex -T--Qx. + u.Ru.3 2 	; NN-N 

[xiQxi  + uiRui] + AxNsNxN  

(7.16) 

= L0  (7.17) 

as desired. (1.37) may be rewritten 

uk 

where 

= 
-S-
Gkxk (7.18) 

Gk = EiCk 0] (7.19) 

The computational procedures of Chapter 4 can be used to solve the 

structured control problem defined by (7.5), (7.16), and (7.18) which 

will yield the sequence ElLk]o
N-1  

that is the solution to the original 

output feedback problem. 

In the conventional output feedback problem no elements of Kk  are 

constrained to be zero. This problem has been transformed into a partial 

state feedback problem. In Section 1.1 it was established that partial 

state feedback problems can be posed as output feedback problems. Therefore 

these two problems are equivalent. 

7.3. Feedback From a Predefined Dynamic System  

Consider a linear system defined by (1.1) and (1.36) with 

associated quadratic cost (1.3). The output is fed into a compensator 

defined by 
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zk+1 
= Dz

k 
Ey
k 
	 (7.20) 

and the control input is constrained to be of the form 

= Hz +Icy 
kk k k (7.21) 

where some of ..he elements of Hk  and Kk  may be constrained to be zero. 

The sequences ElIkjo
N-1 

 and [Kk]o
N-1  are to be chosen to minimize J. 

The case Kk  = 0 is a special case of the more general problem. 

However, if this case is considered directly, an augmented linear system 

of lower dimension can be used. This simpler case will be dealt with 

first. 

Case Kk  = 0 

(7.21) now becomes 

uk = k k 
	 (7.22) 

It will be assumed that C is of full rank and the state has been 

suitably transformed so that 

= Cxk  = x;c  

where x! is defined by (1.35). (1.35), (1.36), 

yield 

zk+1 
= Dzk 

+ [E 	O]xk  Evk  

Define 

xi( 
	

zk 

(1.39) 

1.39), and (7.20) 

(7.23) 

(7.24) 

Xk 



  

7.6 

Evk 

wk 

(7.25) 

 

   

,W'lc 	is a white noise process even if vk and wk are correlated. 	Define 

vw 
V 	= 	E[vkwk] 	 (7.26) 

By combining (1.1) and (7.23) one can write 

xk+1 	= 	17ck 	Bil
k 
	/7/k 

where 

(7.27) 

X 	= D. 	E 	0 (7.28) 

and 

0 	A 

B (7.29) 

Define 

— —T 
E 	k]  

(7.30) 

(7.25), (7.26), and the definitions of Vv 
and Vw yield 

V 
w 

EV E
T 	EV 

vw 
(7:31) 

V
T ET 	V 

 vw 



Again define 

- -T E[xoxo] (7.32) 

7.7 

Let 

V (0) = E[z zT] 0 (7.33) 

and 

V zx(0) = E[zoo] 
	

(7.34) 

(1.2), (7.24), (7.33), and (7.34) allow (7.32) to be rewritten 

	

V0  = 	(0) 	V zx(0) 

	

- 	17.  

VT (0) 	V 
zx 	0 

(7.35) 

  

(0) and .V (0) may either be specified by the problem definition or z 
 

zx 

be treated as parameters that are to be chosen optimally. The latter 

possibility will be dealt with when the transformation to a structured 

state feedback problem has been completed. 

The quadratic cost associated with the linear system (7.27), 

N-1 
-T— T- 

1;0 = )i E [xkQxk uk2uk] ÷ AxNSNxN (7.36) 

satisfies 

o - Lo 	 (7.37) 

when 

= R 
	 (7.38) 

Q. 

 

(7.39) 

   

   

and 
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EN = o 	o 

0 S
N 

(7.40) 

 

    

The combination of (7.22) and (7.24) produces 

S- 
uk = " 7IxIc 	 (7.41) 

where 

Gk = 	
0] 
	

(7.42) 

defines the feedback structure to be used. (7.27), (7.36), (7.41) 

define a structured state feedback problem whose solution will yield 

the solution to the original problem defined by (1.1), (1.4), (1.36), (7.20) 

and (7.22). 

The Possible Design Parameters Vz(0) and Vzx(0) 

The construction of the physical system (7.20) models will determine 

whether V
z
(0) and V zx(0)  are fixed or can be assigned values so as to 

maximize performance. Their values are determined by z0  the initial 

state of the compensator system. Assume z0  is a stochastic process such 

. that 

(7.43) 

where 

z = E[z0] 	 (7.44) 

and z is a zero mean stochastic process with a covariance matrix 

--T 
V— = E[zz ] (7.45) 

(7.33), (7.43), (7.44) and (7.45) imply 



V (0) = zzT  + z — z (7.46) 

7.9 

Theorem 13 

If the sequence of Feedback Matrices mo0-1  is used to control the 

linear system defined by (1.1), (1.36), (7.20), and (7.22), the 

selection of z0  such that 

= 0 	 (7.47) 

and 

Sz(0)z
0 
 = - s 

zx
(0)x 

will minimize J, defined by (1.4), where 

x = E[x0] 

(7.48) 

(7.49) 

S
0 is the cost matrix defined for the augmented linear system (7.27) by 

(2.15). 

s
z
(0) 	s zx(0) (7.50) 

S
T 
(0) 

zx 	0 

 

  

  

where the 	partitioning is that implied by (7.24). 

Corollary: 

If x0  is zero mean then i0  = 0 will. minimize J. 

Proof: 

From (2.13) it is apparent that x0, and thus z0, only affects the 

T- 
term Vrx0Soxoj of the expected cost. Substitution of (7.24) and 

(7.50) into this term produces 
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10Ezosz(0)z0  2„szx(0).0  .0s0x0] (7.51) 

Let 

0 = x x 
	 (7.52) 

where x is defined by (7.49) and x is a zero mean stochastic process. 

Substitution of (7.43) and (7.52) into (7.51) plus the expansion 

of terms yield 

—T— —  )0   5(S0x0] = 	+ 2z
T  Sz(0)z zT Sz(0)z 

— 
+ 2z

T
Szx()x + 2z

T 
 szx(o)R*  2z

T 
 szxmx 

— 
+ 2z S zx  (0)X + a

T
sox 2x

TS ox x SoX] 

(7.53) 

x is a zero mean stochastic process and there is no physical means by which 

z can be forced to be correlated with it. Thus 

T E[z S zx
(0);*'] = 0 	 (7.54) 

By use of this and the fact both x and Z are zero mean (7.53) 

becomes 

iE[ —T—x S x ] = )a7Sz(0)z +;;g[z
T  S (0)z] + z

TS (0)x + 
T 

0 0 0 	z 	zx 	
Sox, 

(7.55) 

As z only affects the term 11E[ZTSz(0)z] of the expected cost J and 

S
z
(0) is positive semidefinite J will be minimized if one sets 
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Z = 0 
	

(7.47) 

z only affects the term (7.55) of J which is a positive semidefinite 

quadratic form in z, therefore the value of z which minimizes J can be found 

by the differentiation of J by z and the setting of the derivative to 

zero. 

aj 
r = z

T
S (0) + xS

T ( 
uz 	zx 

0 	 (7.56) 

(7.43) and (7.47) imply 

zo = z 	 (7.57) 

When this is substituted in to into (7.56) and the transpose is taken 

S z  (0)z0  = - S zx(0)x 

results. 

Q.E.D. 

If z(0) is invertable, (7.48) yields 

zo = - S-1(0)S 
zx
(0)x 
 — 

(7.48) 

(7.58) 

Substitution of (7.49) and (7.58) into (7.33) and (7.34) yields 

-1 
V(0) = S 1(0)S (0)xx

TS (0)S-1(0) 
z 

 
zx zx z 

(7.59) 

V (0) = - S
z
1(0)S

zx
(0)xx

T 
zx 

(7.60) 
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Note the optimal choice of Vz(0) and Vzx(0) depends on S0  and thus 

on the Structured Control policy. However, the optimal structured 

control policy depends on V0  whose value is determined by the choice 

of V(0) and V (0). 
z 

 
zx 

If x = 0 then the optimal choice is Vz(0) = 0 and Vzx(0) = 0 

irrespective of the value of 	If If x 0 then an analytic 

solution to the problem of chooing Vz(0), Vzx(0), and EHO0-1  

optimally does not appear possible. However, a computational procedure 

can be constructed for selecting Vz(0), Vzx(0), and [Hk]0
-1 
 which will 

show an improvement in cost at each step. 

1. Select an initial V
z
(0) and V

zx 
 (0) 

2. Use one of the computational procedUres of Section 4.2 

to evaluate the optimal structured control policy 

for (7.27) 

3. Use (7.48) to compute z0. Compute an new Vz(0) and 

Vzx (0). 

4. Go to 2. 

As J is bounded below by zero, convergence in cost must occur. 

z = 0 was selected so as to give the smallest quadratic cost rather 

than to produce a control that would be robust. The addition to 

• V (0) of a small term of the form eI might give the resulting control 

strategy a better performance if small unmodelled disturbances should 

occur. This does not imply however, that there should be any attempt 

to insert a small noise vector into the actual compensator. 

Kk  / 0 and Hic  / 0 

It will now be assumed that the control, uk, is constrained to 

satisfy (7.21). To handle this case it will be necessary to include both 

zk and yk 
in the augmented state vector, 
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zk (7.61) 

 

   

The combination of equations (1.1), 	(7.1), (7.21) and (7.61) produces 

xk+1 = 	Axk 	17uk 1/k (7.62) 

where 

A = D 	E 0 (7.63) 

0 	0 CA 

0 	0 A 

= 0 (7,64) 

CB 

B 

and 

W
k  = 0 (7.65) 

Cwk 	vk+1 

wk 

It is again necessary to restrict wk and vk 
to be uncorrelated so 

that wk 
is a white zero mean stochastic process. 

By definition 

w 
— —T 

= E[w
k
w
k
j (7.66 ) 

Substitution of (7.65) into (7.66) and use of the facts vk  and wk 

are zero mean white noise processes with covariance matrices Vv 
and V

w 
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respectively produce 

w 
0 

0 

0 

0 

CV C +V 
w 	v 

V
w
C 

0 

CV 

V 

(7.67) 

To avoid degredation of controller performance should there be small 

unmodelled noises in the compensator, it might be best to insert cI 

in place of the top left hand zero matrix in 714. 

— —T 
VO  = E[x0  x ] (7.68) 

by definition. From (1.36), the definitions of Vv, Vo  (1.2), and 

V
zx
(0)
' 
(7.34), and the fact vk is a white noise process and is assumed 

uncorrelated with state, it follows that 

E[zoyo] = V 
zx
(0)CT 

Kyoyo] = cvoc
T + v 

and 

E[yoxo] = CVO  

Then (1.2), (7.33), (7.34), (7.61), (7.68), (7.69), 

(7.71) yield 

(7.69) 

(7.70) 

(7.71) 

7.70) and 

V (0) 	V (0)CT 	V (0) 
zx 	zx 

CV
T (0) CVO C

T + V
w 	

CV 
zx 	0 

VT  (0) V C 	V 
zx 	0 	0 

(7.72) 
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Again a similar analysis to that of Theorem 13 can be made if the 

initial state of the compensator z0  can be chosen freely. 

If 

= 	R 

= o o 0 

o 

o 

0 

0 

0 

and 

o 0 0 

o o o 

0 0 SN 

then 

N-1 

LO 
= 	E 	+ ukRukJ + xlISNxN) 

k=0 

LO  

• Equation (7.21) may be rewritten 

= 

where 

Gk  	Kk  

(7.73) 

( 7 . 7 1+ ) 

(7.75) 

(7.76) 

'(7.77) 

(7.78) 

(7.79) 

Thus the solution of the structured control problem defined by 

(7.62), (7.76), and (7.78) will yield the sequences of matrices [Hk4-1  

N-1  
and [K00  which will minimize J for the linear system and compensator 
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defined by (1.1), (1.36), (7.20) and (7.21). 

However, it may be desirable to modify Q so that the compensator 

states zic  are costed to ensure they remain within certain acceptable 

levels. 

7.4 Compensators of Fixed Structure in which Some of the Parameters may 

be "Tuned"  

The matrices D and E in the compensator (7.20) will now be assumed 

to contain predetermined elements (constant or time varying) and other 

elements which are to be chosen so as to minimize J. Thus 

and 

D = Df Dv 

E = Ef  + Ek 

where D
f 
and  Ef are the matrices containing all the predetermined elements. 

If there are no predetermined elements then Df and E
f 
equal zero. Dv  

and Ek are matrices containing zeros and the elements of D and E 

respectively which are to be chosen optimally. 

By defining xic  as in (7.61) and using (7.80) and (7.81), (7.20) can 

be rewritten 

z
k+1 

= [Df Ef  0]
xk 

+ I[D 	
E
ivc 0]

7(k 

	
(7.82) 

Define 

=[DE 
	0]Tcic 	 (7.83) 

and 

Uk  (7.84) 
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If Wk is defined by (7.65), equations (1.1 
	

(7.1), and (7.82) may be 

combined to yield 

where 

;lc+, = 	ATck  + Buk  + ;lc  (7.85) 

A = D
f Ef 	0 (7.86) 

0 0 	CA 

0 0 	A 

and 

B = I 0 (7.87) 

0 CB 

0 

As xk  and wk  are defined by (7.61) and (7.65) respectively V0  and 

17
id 

are given by (7.72) and (7.67) respectively and the remarks made 

following these equations still apply. If 

= 	0 	0 
	 (7.88) 

0. 	R 

and Q and EN  are defined by (7.74) and (7.75) respectively then 

N-1 
-T-- -T-- 

) E ExkQx 	. k ukRuk3 xNSNxN 
k=0 

L0 

(7.89) 

(7.90) 	- 

. Equations (7.21), (7.61), (7.83), and (7.84) may be combined to 

yield 
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where 

uk 
= -S-Gkxk  

Dv  
k 

Hk  Kk  

0 

o 

(7.91) 

(7.92) 

Thus equations (7.85), (7.89) and (7.91) define a structured control 

problem whose solution will give the sequences of matrices 

v N-1 	v N-1 	N-1 	N-1 	. [DJ 	, [E]0  , [1100  , and [K00 	which will minimize the expected 
0 

cost (1.4) for the system defined by (1.1), (1.36), (7.20), (7.21), (7.80) 

and (7.81). 

If no structure is imposed on the matrices Divc, 217c, Hk, and 	the 

linear system defined by (7.20) and (7.21) will have more free parameters 

than the transfer function: thus the optimal solution will not be unique. 

If the original cost function (1.4) is retained and a unique solution is 

desired then the linear system equations (7.20) and (7.21) must be 

constrained to be in some suitable canonical form. However, even if 

k' 	, Hk, and Kk  are constrained to satisfy some canonical form either 

the gains in eiTc  or Ek or the values of the compensator state zic  may become 

unacceptably large unless 1/ and Q are modified so that uk and zk are 

costed. 

Delayed Measurement 

If the output equation should be of the form 

Yk exic-1 vk 
	 (7.93) 

Dv  EiVc  

rather than the form of (1.36), then (7.93) should replace (7.1) in the 

manipulations of the preceding develOpment. 
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With 	defined by (7.61) and uk  defined by 7.84), equations (1.1), 

(7.93), and (7.82) may be combined to yield 

7(k+1 = 	
Axk

171k 	17/k (7.94) 

where 

A = Df 	Ef 	0 (7.95) 

0 	0 

0 	0 	A 

B = I 	0 (7.96) 

0 	0 

0 

and 

wk 
0 

vk 

wk 

(7.97) 

wk is a zero mean white noise process as vk and wk are. 

• vk and wk may be correlated. By definition 

7w = ECIT/gc] 	 (7.98) 

By combining (7.26), (7.97), (7.98), and the definitions of Vir  and Vw  

one gets 

Vw 0 0 0 (7.99) 

0 V V 
V VW 

0 V 
vw 

V 
w 



Define 

and 

VO  = E[0743 

Vzy (0) = E[zoyo] 

V (0) = E[zoyo] 

V 
x
(0) = E[yoxo] 

y 

(7.100) 

(7.101) 

(7.102) 

(7.103) 

7.20 

The combination of these and the definitions of V (0), (7.33), 

V 
zx  (0), (7.34), and V

0, (1.2), produces 

V
z
(0) 	V

zy 
 (0) 	V

zx 
 (0) 

VT y(0) 	
V (0) 	(0). 	V 

Yx 
 (0) 

z  

VT (0) 	VT  () 	V 
zx 	yx 	0 

(7.104) 

One can now proceed as in the instantaneous measurement case (i.e. 

output equation (1.36) from equation (7.88) through the discussion that 

follows (7.92). The remarks regarding a robust controller and the choice 

of the initial state of the compensator are again appropriate. 

7.5. Team Theoretic Problems  

Assume the control vector, uk, is broken into a set of A subvectors, 

Uofdimensionlq.termed subcontrols, where i = 1,2,....,A. 

r 
u
k 

= (7.105) 



7.21 

where 

ENI.=m 	 (7.106) 

1=1 

Each subcontrol (i) has a set of measurements, yk' available to it. 

The value of each sub control is determined by the output of a 

linear system of fixed structure, termed the subcontroller, into which 

the available measurements are fed. The free parameters of the sub-

controllers are to be so selected that the expected cost (1.4) for the 

linear system (1.1) is minimized. This is termed a team theoretic 

problem as each subcontrol can be viewed as a player in a team. 

Let 

y
k 

= C xk  vk 	 (7.107) 

where yic  is an r.- 1 vector, and vk is an r.-vector of zero mean white noise 

i . 
processes with covariance matrix Vi  vk  is uncorrelated with wk

. 

Subcontroller i is defined by 

where 

and 

i Di i  
kzk 

= 11-czt + kyk 

D = Di 	i + D(k) D£ 
 

E
f
+ E'(k) 
 v 

(7.108) . 

(7.109) 

(7.110) 

Di and 	are fixed, possibly time varying,matrices. Hk, K, 

D(k)
' 

and E'(k) are structured matrices containing the parameters of 

the subcontroller that are to be selected to minimize J, (1.4). 
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If one now defined 

zk 	= 1 zk 

2 
zk 

(7.112) 

2 
zk 

Yk = 
1 
Yk 

(7.113) 

2 
Yk 

A 
Yk 

and 

vk vI 

v2 

v2  

(7.114) 

by use of (7.107) one can obtain 

where 

Yk = Cxk vk 
(1.36 ) 

(7.115) 

C2  

CI  

Vv 
the covariance matrix of vk can be expressed 
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V 
V 

where 

	

Vi j 	= 

By use of (7.108) one 

	

Zk+1 	= 

where 

	

D 	= 

and 

One gets by use 

	

D 	= 	 D
f  

V
v
1 	

V12 

(V12)T 
	V2 

,v 

(V- )
T 	

(V
v 

)
T 

 
v 	. 

E[vi
k
vj
k
T] 

obtains 

Dzk 	Ebrk 

D
1 	

0 	 

0 	D2 

0 	0 	 

„ 	0 	 

0 	Ek 	 

0 	0 	 

of (7.110) 

+ D
v 

	

 	0 

DiAc 

0 

0 

Ek 

ViA  

V22 

VI  

(7.116) 

(7.117) 

(7.20) 

(7.118) 

(7.119) 

(7.80) 

where 
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Df 

and 

Dv  

(7.111) may be used 

E = 

where 

Ef 

and 

EArc 

D1 	0 	 

0 	D2 	 

00 	 

D1(k) 	0 

0 	D2(k) 	 

0 

to obtain 

Ef  + 2irc  

Ef 	0 	 

0 	E2 	 

0 	0 	 

E1(k) 	0 

0 	E2(k) 	 

0 	0 

• 

0 

0 

D,e,  

0 

0 

.¢, Ef 

0 

0 

A D (k) v. 

0 

0 

E(k) 

(7.120) 

(7.121) 

(7.81) 

(7.122) 

(7.123) 

By use of (7.109) one obtains 



= 	likzk KkYk (7.21) 

0 (7.124) 

0 0 

0 0 	 

0 	 0 (7.125) 

o 0 

0 0 	 

uk 

where 

Hk 

and 
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The team theoretic problem has now been transformed into a problem 

with a compensator of fixed structure in which some of the parameters 

may be tuned. This problem was dealt with in section 7.4. 

If equation (7.107) should be replaced by an equation of delayed 

measurement forms -the problem can be transformed, in exactly the same 

manner, to the delayed measurement form of the problem dealt with in 

section 7.4. 
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CHAPTER 8  

PROBLEMS FOR FURTHER RESEARCH AND A 

SUMMARY OF RESULTS  

8.1. Problems for Further Research  

The topic of Specific Optimal Linear Controls for Linear Quadratic 

Systems is not yet fully developed and many interesting problems 

remain. Two of the problems, which the results of this thesis suggest, 

are the computation of constant controllers for infinite time, time 

invariant, systems, and the problem of choosing a "good" or the "best" 

feedback structure of a given level of complexity. 

A) The Infinite Time Problem  

The results of Chapter 5 suggest that if the system is time 

.invariant then the controller gains settle to steady statd values in the 

centre of a long time interval in many cases. This concept is expressed 

precisely by (6.10) and (6.11). Many long term regulatory 

problems exist where the controller can be implemented easily and cheaply 

if the feedback gains are constant. 

The conditions under which the steady state property, stated in 

' (6.10) and (6.11), occurs remain to be established. An example in 

Chapter 5 implied that the condition that CA-FEG
s
j can be made stable is 

not sufficient to guarantee the steady state property will hold. 

It would also be useful to determine the conditions under 

which the infinite time problem has a solution which produces a finite 

cost per interval. The conditions where the Levine and Athans type 

problem has a solution but the property (6.10) and (6.11) does not hold 

would also be of interest. 

If it is assumed (6.10) and (6.11) hold, use of the finite time 

algorithms to solve steady state problems would still be wasteful of 
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computer time and store. The following algorithm has been used 

successfully and produced results that were similar to those produced 

by the finite time computational procedure. It seems to be quick and 

requires little store. 

A Computational Procedure for Computing, the Steady State Structured  

Feedback Matrix 

S 	so 1. 

	

r
11

V
11 	

r
12

V
12 
	 r V 

lm lm 

r V
T 

r
22

V
22 
	 r V 

	

12 12 	2m 2m 

T 
r VT 	 

rlmVlm 	
r V 

2m 2m 	mm mm 

2. 
	F 

where 

r.. 	= [R t B
T
SB] 

1j 

v.. (($(i,1), 	t0,1)) a0(i,1),S(j,2)) a(*(11T),M,/y) 

a0(i,2), 	V(j,1)) cr0(i,2),M,2)) a(*(i,2),*(i,np) 

a(*(i,ni),*(j,1)) 	a(gi,ni)011(j,2))... a0(i,ni),*(joii)) 

and 

where 

3. V
1
A
T
Sb
1 

V A Sb 
2 'I 2 

V AllSb 
m m 
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where 

a(V ( i,l),l) 

u('(i,2),1) 

a(Vi,1),2) 	 a(V(1,1),n) 

c(V(i,2),2) 	 (70(i,2),n) 

a(*(i,ni),1) 	a(V(i,ni),2) 	 a(*(i,ni),n) 

If. G 	the structured feedback matrix with unconstrained gains, 

g, obtained by solving 

Fg = h 

5. V 	[A + BGs]VEA + BGSJT + V
W 

6. 
GSTRGS [A BGS

]
T
S[A + BGS] 

7. Go to 2 

The convergence properties and the nature of the G to which this 

computational procedure converges remain to be established. The computational 

efficiency of this procedure should be compared with that of the direct 

parameter optimization techniques and the Cumming Algorithm [3]. The 

Cumming Algorithm was developed for the output feedback problem but 

the replacement of the output feedback necessary condition by (3.1) 

would allow it to be used on structured control problems. 

B) Choice of Feedback Structure  

Use of the heuristic structure selection methods, discussed in 

Chaloter 5, requires many trials and therefore a lot of computing time to 

find the "best" structure 	for a given number of feedback gains. It 

would be useful to have a more direct method of determining whether a 
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given structure was good or bad. 

This would probably require an understanding of the controllability 

properties of a feedback structure. A method for determining whether 

a system could be made stable using a given feedback structure would 

'also be useful. Some method of relating controllability to specific 

disturbance and cost structures would be necessary. 

8.2. Summary of Results  

A problem of specific optimal control, the optimal choice of a 

Structured Control Policy has been treated in this thesis. Certain 

basic properties of linear systems controlled by linear state feedback 

were derived and used to establish a rule for choosing one structured 

feedback matrix optimally. 

This rule was then used in a computational procedure for determining 

the Optimal Structured Control Policy. The convergence properties of the 

computational procedure were evaluated. It was found that not all 

structured control policies that may be produced are optimal. A good 

starting point is necessary to ensure convergence to the optimal and 

methods of selecting suitable starting points were discussed. 

Computational results were obtained for two systems which demonstrated 

• that linear systems of a reasonable size can be handled. These results 

also indicated that a rule of decreasing marginal returns with increasing 

controller complexity applies. 

The problem of how to make a suitable choice of Vo  and Vw  when 

there was little available information was discussed. It was demonstrated 

that most problems, where a linear system is to be controlled by a 

linear compensator of fixed structure so as to minimize the expected 

value of a quadratic cost, can be 	posed as structured feedback problems. 

Some of the design problems relating to these more general problems were 

discussed. 
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The relation of the finite time results to the infinite time problem 

were briefly dealt with. In conclusion some unsolved problems of 

structured state feedback were mentioned. 
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