Imperial College of Science and Technology

7
“"(University of London)

Department of Computing and Control

SUB-OPTIMAL CONTROL OF DISCRETE STOCHASTIC PROCESSES

by

Jack David Katzberg

A Thesis Submitted For The

Degree of Doctor of Philosophy

November, 1973.



TO PAULA



0.3

ABSTRACT

The problem of selécting a state feedback controller with a
.specified structure so as to minimize the expected value of quadratic
cost for a discrete linear system disturbed by a zero—meaﬁ white
noise disturbance is posed. This problem is solved by use of an
iterative procedure. The existence properties of the solution
and the convergence properties of the procedure are established.
Npmerical examples are cohsidered to test the computational feasibility
of the proposed procedure. It is then demonstrated that problems
involving noise corrupted output feedback, problems involving
dynamic compensators with fixed and tunable parameters, and team
tﬁeoretic pyqblems can be transforméd into problems of the type

n

treated.
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CHAPTER 1

INTRODUCTION

1.1. Linear Quadratic Design, Suboptimal Controllers, and the Specific

1.1

Optimal Approach

The Linear.Quadratic approach to the design of feedback controllers

for multivariable systems is well established [1]. It can be used

for both the design of linear and of nonlinear systems. It is not,

in general, possible to obtain feedback solutions for optimal nonlinear

control problems. However, an optimal open loop control can be

determined, the nonlinear equations can be linearized about the optimal

operating point or trajectory, then by use of’the linear quadratiq
results a feedback controller can be obtained [2]. This linear state
feedback controller will ensure the behaviour of the nonlinear_ system
remains near optimal.

The linear state feedback controllers obtained by solving the
linear quadratic problem have many good features [1], guaranteed
stability, good step responses, and insensitivity to noise and plant
variations. Tﬁeir chief disadvantage is their complexity. Normally
not all the states can be measured and an estimator or observer is
" needed. For a stochastic problem the order of the estimator is that
of the system. _It is well known that by using frequency domain
techniques éne can obtain much simpler controllers which give good
response. Unnecessary complexity is particularly burdensome in
finite time problems where the time records of all the controller and
estimator gains must be stored.

Moreover, if the system being controlled is geographically
distributed, as a power system usually is, the requirements that the

measurements be transmitted to a central location where éhe control
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~ caleulations can be performed and that the control inputs be trans-
mitted from the central location to the various actuators can cause
severe telecommunications difficulties. For such systems it would be
preferable to use local feedback, that is, feedback of measurements
taken near the actuators. If such a controller could not provide
adequate ﬁerformance one might wish to try transmitting a few essential -
variables.

Thué a controller which has a worse performance, but which is easier
and less costly to implement, may be more desirable than the optimal
controller. Such controllers are termed Suboptimal Controllers. If
the suboptimal controller is obtained by choosing the parameters in a
specified controller structure optimally then’ the controller is called
a.Specific Optimal Controller. If the structure is well chosen a
‘spepific optimal controller which is easily implementable can give
.performance very near optimal. Such a design approach makes good use
of both the human designers ability to identify good controller
structures and the coﬁputer techniques for choosing parameters optimally.

Conventional nonlinear optimization techniques can be applied to the
design of specific optimal controllers when the number of parameters is
small. If the number of parameters is large then methods which take
advantage of the structure and propefties of the system must be used.

The problem considered in this thesis is that of optimally
selecting the éarameters in a linear controller of fixed structure so as
to minimize a quadratic cost. The model is assumed to be linear and
the time finite. Such problems occur when batch processes or grade
changes.are dealt with or when nonlinear trajectory optimization
problems are linearised about the optimal trajectory. These problems
can not, in general, be handled using frequency domain design

procedures and the use of nonlinear optimization techniques is difficult
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and inefficient. A discrete formulation is appropriate as a digital
implementation of the controller is necessary to cope with the
storage of the parameter trajectories.

FPirst, the problem in which only certain elements of the feedback
gain matrix are allowed to be non-zero will be solved, by use of
special structural’relations which are derived in the thesis. Then,
other linear compensator problems will be transformed into that form.

Although this thesis is primarily concerned with the finite time
problem the theoretical results produced could be app;ied to
the infinite time or steady state problem. Some brief remarks are made

“about this.problem in the section on further work.

1

l1.2. Problem Definition

Consider the linear discrete-time system

el = Axk + Buk + W ('l.l)

where X, is an n-vector termed state, and

E[xoxg] = V5 (1.2)

By definition, E[ ] is the expectation operator. o is an m-vector

termed control. W

zero mean and variance VQ. Associated with this linear system there is

is an independent n-vector white noise process with

a quadratic cost of the form

. T T
L = ¥ 5 [xiQxi + uiRui] + kxS (1.3)
i=k '

where Q, R and SN are positive semidefinite matrices. A, B, VQ,-Q and



R can be cither constant or time varying matrices. For reasons of
notational simplicity they will not be given a time index.
The expécted value of the quadratic cost over the time interval

[O,N] will be denoted
J = E{L. } (1.4)
It is well known [1] that (1.4) is minimized when

ak %, ~ (1.5)

fOI‘ k = 0’1’000¢¢,N_1, Where

-[R+BS 1B lBT* o (1.6)

]

*
e
and

* * *
Q + ATSk A - ATSk |BIR+B'S,_ Tg 18] 113T (1.7)

i+
Il

*
N = N
The policy of using the controls glven by (1 5) will be termed the

fOI‘ k = N—l,....'.,o,

OPTIMAL CONTIROL POLICY and be denoted

*

T o= [Ek’,k=o,1,.....,N-1] ' (1.8)

The value the expected cost (1.l4) takes when the Optimal Control Policy

is to be used will be termed the OPTIMAL EXPECTED COST and be written
* * :
J = E[Ly]|m] | (1.9)

Control poliéies where the control is a linear, not necessarily

.
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optimal, transformation of the state will be considered.

A LINEAR CONTROL POLICY,

T = [Gi’i.:O,o..co,N—lJ (1’10)

is the policy of using the control actions

v o= Gx ., k=O,.c...,N-1 (1.11)

The value the expected cost (1.4) assumes when a particular

Linear Control Policy, 11, is used will be denoted

’

Iy = E[1,|n] (1.12)

‘The matrix Gk is termed a STATE FEEDBACK MATRIX,

Feedback Structure

In this thesis the problem of determining fhe best Linear Control
Policy where cértain elements in the state feedback matrix are
constrained to be zero will be considered. It is thus useful to define
" the FEEDBACK STRUCTURE, ¢, as the set of co;ordinates of the unconstrained

elements in the State Feedback Matrix
o = { (g, 3000, 3)reeenn (i, jp)} (1.13)

A STRUCTURED FEEDBACK MATRIX

@ = {na.an} ' (1.1)

is a State Feedback Matrix that satisfies
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-

NG,3) = 0 it (1,3 ;li o (1.15)

where ¢ is some specified feedback structure. The notation {t:k(i,j)}
means the elements of the matrix, Gi , are Ik(i,j). The elements,
r'k(i,j), are termed gains, and those elements not constrained to be
zero are termed the unconstrained gains. Thus p, defined by (1.13),
is the total number of unconstrained gains.
A STRUCTURED CONTROL POLICY, 1°, is a Linear Control Policy (2.1)

where.all the State Feedback Matrices are Structured State Feedback

Matrices,
TI'S = [Gis ) i=o,o..-.,N-lj ! (1016)
: o
By J(m) is meant
J(rf) = EL, | '] | (1.17)

where ﬂs is a structured control policy. Thus J(ﬂs) is a scalar function
defined on the Np-dimensional Euclidean space where each of the feedback

gains in a Structured Control Policy is taken as a coordinate.

Pfoblem Statement

The principal problem dealt with in this thesis is that of finding
the Structured Control Policy (1.16) which will minimize the expected
cost (1.4). Using the notation that has been developed this may be

written

Min J(ro) (1.18)

ﬂS

This problem will be termed the STRUCTURED CONTROL PROBLEM.
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Additional Definitions

Some additional definitions are needed to solve the problem (1.18)
and to compare the results produced with those produced by other
authors.

If a structured control policy is used, (1.11) may be rewritten

[ 1- [ 1T 1—
Y &k "k

uk = uE = gETxi = Gixk (1.19)
ef %

.

where, uﬂ, is a scalar called the jth. input or control J,

xff - [gi R  (1.20)

and C; is a scalar termed state i,

j— _. ¢(j11) W(j,E) W(jsn')
}{1{ -—- [gk gk -.-..gk J J (1021)
"for J = 1,2,00000,. xi is the nj-vector of those states that may be fed
back to control j. Thus, the function Y(j,i) is a function whose domain
of definition is the parts of integers (j,i) where je{l,z,....,m} and
ie{l,z,....,nj} and whose range is the set {1,2,.....,n} . ¥(3,1) is

assumed to have the property

¥(5,1) < ¥(5,2) € eeeen. < ﬂ’(.j,nj) ' (1.22)

By definition
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£(5) = { ¥(3,1), ¢<5,a>,......,w(j,nj>} (1.23)

for J = 142y0...,m.
If iel(j) then one says state i is fed back to control j. £(j) is a list
‘containing the co-ordinates of those states that may be fed back to

control j in ascending order.

()" = [4(3,0) % (§,2)emmennn (3,003 (1.24)

for j = 1,2ye00e.,Mm.
where Yk(j,i) is the gain associated with the feedback of state i to control

j, thus

¥ (3:1) = L (3,4(5,) (1.25)

»

for j = 1,2ye0aee,m and i = 1’2"°""nj'

If the notation

A = KDY, G83,2D) e GG D) (126

is adopted then

o = {:ix!‘(:i) l:i=1,2,....,m} = [43) | 3=1,2ye..,m] (1.27)

is an alternative description of the Feedback Structure.

If it is to be emphasized that no elements of the State Feedback
Matrix are constrained to %e zero the word COMPLETE will be used (i.e.
a Complete State Feedback Matrix or a Complete Linear Control Policy).
If p =an then the Feedback Structure is Complete.

A PARTTAL STATE FEEDBACK MATRIX, Gi, is a structureg state feedback

matrix where the Feedback Structure satisfies



i) = 2()  for all i,je{l,g,.;..,m} (1.28)

Thug it is a state feedback matrix where one or more columns are
constrained to be zero.

A feedback structure which satisfies (1.28) will be termed a
PARTTAL STATE FEEDBACK STRUCTURE. A structured control policy where
the specified structure is a partial state feedback structure will be
described as a PARTIAL STATE CONTROL POLICY and be written

n = [Glf, k=0,1,....,N-1] (1.29)

The problem of determining the Partial State Control Policy to
" minimise the expected cost, J, will be termed the PARTIAL STATE

FEEDBACK PROBLEM and may be written

Min J(m) ' (1.30)
P
™

When dealing with Partial State Feedback Structures it is useful

to have the following definitions

n' = n, i=1,2,000n- ,m - (1.31)

and

X = xi i=1,2, 00000, m (1.322)

Then (1.19) may be rewritten

w = G = G | 1.33)
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G = | gt (1.34)

It is convenient to restrict the state vector to be of the form

X, = (1.35)

X
7

where xi is the n'-vector of those states that are available to be fed
back, and zi is the (n-n')-vector of those states that are'not fed
back. By introducing this resfrictibn no generality is lost. If the
state vector is not in this form one may always reorder it so
that it is.

Another problem considered in the literature is the Output Feedback

Problem. <

Assume an r-vector Vi termed the output exists and that

v, = Ox 4V, (1.36)

where Vi is an r-vector zero mean independent white noise process

with a covariance matrix, Vv' If the control uy is constrained to

satisfy

uk = Kkyk ' i (1037)



then the myr matrix, Kk’ is termed the OUTPUT FEEDBACK MATRIX, and the
problem of finding the sequence [Kk’ k=0,.....,N~1] of Output Feegback
Matrices which minimize J, (1.4), is the OUTPUT FEEDBACK PROBLEM.

The Partial State Feedback Problemg can be poéed as an Output Feed-

back Problem by setting

v, = 0 (1.39)
and_

Ve = % = Ox _ (1.39)
where

c = [I O] N ' (1.40)

-

How Output Feedback Problems can be transformed into Partial
‘State Feedback Problems will be shown in Chapter 7.
It should be noted that some authors use the word Incomplete

for Partial or Output Feedback.

1.3. Literature Survey

The method of designing controllers, by first selecting a suitable
controller structure then tuning the variable parameters to get good
behaviour, is an o0ld one. It is central to control systems design by
simulation.

During the 40{5 and 50's methods of analytically choosiﬁg-system
-parameters so as to minimize a squared error criterion were developed
for single input, single output systems. This work is summarized in the
book by Newton, Gould, and Kaiser [15].

By choosing a controller structure and taking the expectation of the

cost function, stochastic control problems can be converted into
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static optimization problemé if the controller gains are constant,
or deterministic control problems if the gains are time varying. The
resulting problems may, howevér, be very complex and require special -
techniques to solve them. A review of some recent results produced on
this topic is given by Sims and Melsa [16].

Perfprmance criteria other than expected cost have been suggested for
specific optimal control problems. The min max criterion [17] might
be preférred if poor behaviour for conditions that were unlikely to
ocecur was unacceptable. Such criteria make the analysis more difficult and
must, of course, produce a worse average behaviour than that produced
by the controller which minimizes the expected cost.

This survey will be restricted to specific optimal solutions to linear
guadratic control problems. The work that has been done in this area-
can be divided into three main categoriesg

A) Output or Partial State Feedback Control , -

B) Dynamic Linear Compensétors of Fixed Dimension

C) Structured State Feedback

A) Outpuf or Partial State Feedback Control

A problem of an output feedback type was first considered by
_AXSgter [18] . He dealt with a finite time continuous linear system with
a wﬁite noise system disturbance. The control law,
thch was seléeted to minimize the expected cost, was a time varying
linear combination of the noise free measurement vector. An algorithm
" was derived which will converge to an improved control law. Necessary
conditions for optimality were derived and an optimal solution was
proved to exist (i.e. all gains remain finite). A sufficient condition
for the algorithm to converge to the optimal solution was established.

Output feedback control of discrete regulator systems was first

considered by Cumming [3]. Under the assumption that measurement and
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"gystem'noise are independent zero-mean white noise processes, he
deriﬁed a necessary condition for an output feedback matrix to minimize
the expected cost per time interval. This necessary conditionuds used
to produce an algorithm, which,given an initial output matrix that
stabilizes the syétem, is guaraﬁteed to improve the expected cost.
Cumming also made - the interesting observation that the value of
state in the optimal coﬁtrol law is'replaced by the best estimate of
state gi&en the available measurements in the optimal output feedback
control.

Recently Ermer and Vanéelinde [4] considered the discrete output
feedback problem as described in Section 1.2 (the finite time version of
Athe Cumming problem). They showed the solution to be one of the solutions
to a two p;int boundary value problem. They suggested an algorithm
.for solving the two point boundary value problem but did not analyze its
properties. Levine and Athans [9] have considered the infinite time, time
invariant, output feedback problem for a continuous system where the
feedback‘géins are constrained to be constant. The initial state is
assumed to be tniformly distributed over a sphere in R® centered at
the origin, buf the system is otherwise undisturbed. An algorithm is produced
which will . yield an improvement in c&st at each iteration, given that
" an output feedback matrix which stabilizes the system is used as the
starting point. This approach allows a constant output feedback controller
to be designed ;ithout any knowledge of the underlying.disturbance process.
It has therefore created some appliéations interest [10]-[13].

Other publications dealing with output or partial state feedback

control of continuous systems are [1] and [19]-[36].

B) Dynamic Linear Compensators of Fixed Dimension

This problem was first treated by Johansen [37]. He produced

methods of computing solutions for stochastic finite time probléms for
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both discrete and continuous cases where the controller is time varying
and only the order of the compensator is fixed. His article contains many
computational examples.

Other authors [38]-[46] have considered various problems where a

dynamic compensator of fixed orger is to be used.

C) Structured State Feedback

A1l previous work on structured state feedback has considered constant
controllers for continuous systems which were not subject to system
or measurement noilse. -

This problem was first considered by Dabke [47] and [48]. He
considered min max cost and expected cost for a given initial state dis-
tribution. For both these costs the necessary condition -for optimality
is given as a simultaneous set of polynomial equations in the non-zero
gains. Unfortunately, he only solved these necessary conditions for
a problem involving one unconstr;ined gain and gives no means of solving
these equations in general.

Martenson [49] produced a conjugate gradient algorithm for
computing a stfuctured feedback matrix with improved performance given that
a structured feedback matrix which stabilizes the system is available as
" an initial value. The method is applied to two examples but the
properties of the algorithm are not analyzed.

Jameson [50] also considers a method of computing the
gradient of the cost function with respect to the gains in the structured
feedback matrix. The cost functions he considers are quadratic cost with
a fixed initial condition, the min max of the quadratic cost, and the
min max of the worst comparison with the optimsl control. The expression
for the gradient can be set to zero and the equations solved for a simple

example or the gradient can be used in a parameter optimization
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algorithm for more complex cases.

Fath [51] used an approach similar to that of Martenson and
Jameson, but éonsidered the problem where state alone was quadratically
costed and G, the feedback matrix, was constrained so that HG < L.

Fath miniﬁized the expected cost under the asspmption that the initial
conditions are uniformly distributed over a sphere centred at the origin.

Kosut [8] produced a necessary condition for minimizing the
expected.COSt assuming the initial condition is uniformly distributed
over a sphere centered at the origin. He further assumed that the cost of
control matrix, R, is diagonal.- Rather than using these necessary
condiéions to compute the optimal structured feedback matrix he proposed
two suboptimal design approaches terméd minimim error of excitation and
minimum nofm.

Brown and Vetter [52] expanded the expected cost function, for a
given initial state distribution, as a Taylor series in the state
feedback gains ébout the full staté feedback optimal point. A suboptimal
structured state feedback matrix was obtained by use of the second order
sensitivity term.

“Bengtsson.and Lindahl [53] proposed that the gains of the structured
feedback matrix be chosen so the modes of the resulting closed loop
" system afe close to those of the system under optimal control. This
design procedure requires that a weighting matrix, which gives a relative
importance to tﬁé modes of the optimal system, be selected. They
used this method to produce an output controller for a boiler model
(5th. order) and a local feedback controller for a power system model
(iSth. order).

Isaksen and Payne [54] developed a method for computing suboptimal
band structured feedback matrices for systems where the state transition
matrix, A, has a diagonal band structure and there is no coupling between

-

subsystems through the control or cost matrices. A suboptimal control
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is constructed for the complete system from a set of optimal controllers
calculated for subsystems which possibly overlap. The method is used
to produce a traffic responsive regulator for a 34 state model of a

freeway.

l.4. The Outline of the Thesis with a Statement of the Contributions

In this thesis the discrete finite-time structured control problem is
defined and solved. This problem has not previously been considered in the
literature. Further it is shown that many problems involving noise
corrupted outputs and dynamic compensators can be poseé as structured
control problems.

In Chapter 2 certain basic properties of linear systems controlled by
linear control policies are derived. Lemma 1 contains a well known
recursive formula for E[xkxE]. As this relation is usually deréved under
the added assumptions, that X5 be zero mean and the distributions are
Gaussian, a derivation is included to show the condition, that the system
noise be an independent white noise process, is sufficient. DTLemma 2
shows that the well known recursive relations for the eibected value
of quadratic coét associated with the optimal control policy hold"in a
slightly generalized form for any linear control policy. It is believed
‘that this result has not been previously established. ‘

Lemma 3 is the central result of the thesis. It states that the
expécted value of»quadratic cost for a linear system controlled by a
linear control policy can be expressed as a positive semidefinite
quadratic in the gains of the structured state feedback matrix to be
used on any time interval. This result is the basis for the procedures for
computing the optimal structured control policy developed in Chapter L.
Lemma L4 gives a condition under which the quadratic form of Lemma 3
will be positive definite no matter what linear control policy is used.

Lemma L4 is used to establish existence and convergence properties; Both
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the statement and the proof of Lemmaé 3 and 4 are completely original.

In Chapter 3 the rules for choosipg one structured or partial
state feedback matrix optimally are stated with conditions under
which the choice will be unique. Theorem 1, the rule for a structﬁred
‘feedback matrix follows directly from Lemma 3.7 In the proof of Theorem 2
the result of Theorem 1 is manipulated using partial state feedback
properties. Special formulae involving matrices which may be of lower
order than that of Theorem 1 result. Ermer and Vandelinde C4]
have produced a result similar to Theorem 2. However, the proof stated
_here is original. Theorem 1 and Lemmas 5 and 6 are original both in
statement and proof. .

In Chapter 4 the single replacement rules of Chapter 3 are combined
with the recursive relations for E[xkxgj and expected cost to produce
computational procedures for computing improved structured control
policies. The convergence properties of these algorithms, both in cost
and control policy, are established. The existence (in the sense
that all gains remain finite), of the optimal structured oontroi policy,
and of the limiting control policies produced by the computational
procedure, is proved. It is further shown that the optimal structured
control>policy and the limiting control policies are solutions to a
- certain two point boundary value problemy whose solutions are the set of
singular points of the cost function. Methods of selecting initial
control policiéé? that should produce convergence to the
optimal, are proposed and discussed. The first two of these are original,
the latter three are suitably modified versions of the suboptimal controls
proposed by Kosut [8]. The computational procedures, theorems, and lemmas
stated in this chap%er afe original as are all other comments not specifically
attributed to another source.

In Chapter 5 the computational suitability of the proposed procedure
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is established. Two systems are énal&zed. The results produced indicate
that a rule of decreasing marginal returns with increasing controller
complexity applies. Two heuristic methods of selecting good controller
structures are suggested and tested. All the results and observations

in this chapter are original.

In Chapter 6 the effect Vo and Vﬁ have on the optimal structured control
policy is considered, as is the related problem of how one can select a
suitable vb and Vﬁ if the actual falues are unknown. It is concluded Vb =1
and Vﬁ = I is a reasonable choice if one ﬁants a control that will have
an acceptable response for arwide variety of conditioné. A relation
between theé limiting behaviour as N - of the optimal structured
control policy and the solution to a similar discrete Levine and Athans [9]
type problem is derived. This relation strengthens the rationale
supporting both approaches. It means as well that techniques for
computing solutions to the stochastic steady state problem (Cumming
[3]) can be used for the deterministic steady state problem (Levine and
Athans [9]) or vice versa. The observation that the partial state
feedback optimal control replaces the unavailable states by the best
estimate using fhe measurements available was first made by Cumming [3].
All other observations and results produced in Chapter 6 are original.

In Chapter 7 it is shown that problems involving noise corrupted
output feedback, dynamic compensators with fixed and free parameters
and team theoretic problems can be posed as structured control problems
by suitable state and control augmentation. The problem of how to choose
the initial state of a dynamic compensator is considered as well. The
transformations and results produced in Chapter 7 are original. However
other authors, [42] and [45], have considered similar approaches for
problems where dynamic compensators of specified order are to be used.

In Chapter 8 two topics for further research are proposed and the

results of the thesis are summarized. Some of the problems that remain
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to be solved for the related steady stéte structured control problem
are mentioned and a computationally promising algorithm is stated.
Next, problems related to the choice of a good feedback structure
are briefly discussed. All results and observations produced in this

'Chapter are original.
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CHAPTER 2

PROPERTIES OF LINFAR SYSTEMS CONTROLLED BY LINEAR

STATE FEEDBACK

Three basic structural properties of Linear Systems contrélled by
ILinear Control Policies are considered in this chapter. The linear
system described by (1.1) with quadratic cost given by.(i.B) controlled
by a linear control policy (1.10) can be described as a
recursive relation for E[xkxgj in forward time and a recursive
relation for quadratic cost in backward time. Further it will be shown
that the expected cost (1.4) can be expresseq as a>quadratic function
of the unconstrained gains on any time interval. These results will
be used in lgter chapters to produce a computational procedure for
obtaining the optimal structured control policy. Finally a usgeful
'property of a matrix introduced when J is expressed as a quadratic in the

unconstrained gains on a time interval will be established.
Lemma 1:
If a linear system described by (1.1) is controlled using a linear

control policy (1.10) then

V(k+1)

[A+BG, 1V(k) [A+BGk]T £V (2.1)

where

V(k) E[xkxij = { qk(i,j) } (é.a)

fOI‘ k = O,l,--.--‘Nc

V(k) is a symmetric positive semidefinite matrix, with elements

ok(i,j).



2.2

Proof:

Substitution of (1.11) into (1.1) yields

X = [A+BGk]xk oy (2.3)

Thus

EL[(A+BG, ), +w, 1[(A+BG, )+ 171 (2.1)

il

R |
E[xll<+lxk+1]
' ' T T
= E[(A+BGk)xkxk(A+BGk) ]
T
+ E[(A+BGk)kak]
+ E[wkxi(A+BGk)T]
+ E[Wkng » : (é.5)

Note that

B[ (A+BGk)xkx$(A+BGk) T (4+36, ) E[ykxij (A+BGk)T

i T
_ = (A+BGk)V(k)(A+BGk) (2.6)
as
T
Elxx]l = V(K
by definition. As
E[(A+BG )x wi] = (A+BG )E[x v ] (2.7)
[(A+ Kk kak = + R kak . .



and W) is a zero mean white noise process which is uncorrelated with

present state

E[ikwﬁj = 0 o (2.8)

vhere O is the null matrix of appropriate size. Thus

: E[(A+BGk)ka§] = 0 (2.9)

Considering the third term in (2.5) one sees that

‘ . T.T
E[(A+BGk)kak]

B, x, (A+8G, )]

-

= 0 = O . (2.10)

From the definition of covariance matrix and the fact that wk is a zero

mean process one finds that

Blwand = V. (2.11)

" Substitution of (2.2), (2.6), (2.9), (2.10), and (2.11) into (é.5)

yields
V(k+l) = '[A+BGk]V(k)[A+BGk]T + Vw (2.1)
V(k) is obviously symmetric by its definition (2.2). Further

a'V(da = a Elxxla = Eaxxal = Ey220  (2.12)

as y = aTxk is a.scalar. Thus V(k) is positive semidefinite as well.

Q.E.D.
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Lemmg 2%
If a linear system described by (1.1) is controlled using a linear
control policy (1.10) then the expectation of the quadratic cost (1.3)

can be expressed as

N
BL] = KEx Sl +k I tr(sV )] (2.13)
i=k+1
oY
- ) N
BLJ] = XtrlS V(K)] + X% z trls. v 1 (2.14)
i=k+]
for 211 k=0,.....,N-1,
where . "
s, = Q+ GfRGi + [A+BGi]TSi+1[A+BGi] (2.15)

a.n.d i:N—l, --...n’on

Si is positive semidefinite and symmetric as Q, R, and SN are positive

_ semidefinite and symmetric.

Corollary: -
. N
- ' %
J = ktrlS V1 + ¥ trls,v ] (2.16)
i=1 '
Proof:

The proof will be by induction. Consider the case k = N-1.

Take the expectation of (1.3) with k = N-1



2.5

- S .
E[LN-]_] = E[ZXN_]_QXN_]_ + ‘kuN—lRuN-l + ’gXNSNxN] (2.17)
Substitution of (2.3) and (1.11), with k = N-1 in both these

expressions, yields

.T . .T'. T
L R R S R L V]

E[Ly_d

+,ZT(A+BGN_1)XN_1 + WN-IJTSN[(A+BGN;1)XN-1 + wN-lJ]

(2.18)

’

= gﬁ[xﬁ_l(Q + G%-IRGN-l + (A+BGN_1)TSN(A+BGN_1))xN_l]

T i o
+ E[xN_l(A+BGN_l) SNwN_l] +'ZE[WN-1SNWN;1]

(2.19)

As Wy_1 is a zero mean white noise process uncorrelated with state

Xy_1r @5 Xy q is not dependent on wy , by (1.1).

Elwy o] = © | (2.20)

where by this notation one means the conditional expectation of Wh_1
_ given xy . occurs.

Then note that

T

By

P T |
(A+BGy )8 E[ELxy_, (A+BGy, ) stN;ﬂxN_ljj

NWN-:LJ

il

T T
By o (A+BGy ;) SNE[WN_JXN-ljl

=' 0 . (2.21)
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By use of the trace identity

E[xrAx] = tr[AV] where V = E[xxT] (2.22)

and (2.11) one finds

T .
E[wN-lstN-lj = tr[SNVQ] (2.23)

The substitution of (2.15) with i = N-1, (2.21), and (2.23) into (2.19)

yields
B[L, 1 = YEDxy Sy % ] +XerISV 1 (2.2)

Thus (2.13)holds if k = N-1. - The second part of the proof is to
show that it holds for k if it holds for k+l.

Taking the expectation of (1.3) gives

N
E[4] = EI§ I (ngxi + ufRui) + gx§SNxNJ (2.25)
i=k
‘p ‘ |
= El¥x Qx_ + Yw Ru ] + E[L ] (2.26)

from (2.25) with k = k+l.

By assumption

N

- .
E[kalj = kE[x k+lsk+1xk+1J + X > tr[SiVQJ (2.27)
i=k+2

Substitution of (2.27) into (2.26) and the additive property of

expectation yields



- 2.7

.. . | N
EL ] = EDZ”‘&TQ’% * JZ'“ERuk * Jé’ﬁfskﬂxkﬂ] vk 2 wlsvI (2.28)
je=ke2

By repeating the argument used to get from equation (2.17) through

to (2.24) one can show

e T T T
Bl Qe + Ju Ry + B S %07
= %ElxSx ] + KtrlS V.1 : (2.29)
The insertion of (2.29) into (2.28) yields .

: N
o EL] = YExSx]+¥ I trlsV ] C (2.13)
“ i=k+1

-

As (2.13) holds for k = N-1 and holds for k if it holds for k+l, then
‘it holds for

k=04 e0ana N-1

" By one of the trace identities (2.22) and the definition of V(k), (2.2)

on the first term of (2.13) one finds

_ .. N
BL 1 = 3£r[skv(k)] + g‘ z e[S,V ] (2.14)
ci=k+1

The corollary is established by substituting (1.2) and

(1.4) into (2.14) with k = O.

Q.E.D.



Lemma 38
If the state feedback matrix at time k of a Iinear Control

S
Policy, m, is a Structured State Feedback matrix, G

K then the
"expected cost may be written
J(m = ZITF g+ Tg +cC (é 30)
= 2B kB t B * Oy .
where Fk’hk’ and C) depend on Gi’ i=0,.....,k—1,k+l,..;..,N—l only.
k=1 . N
: 0 . ;
o = X ¥ trlfQ + GiRGi]V(l)] +¥ = tr[Sin]
i=0 i=k+1
. T
+ %trl[Q + A'S,  ATV(0)] (2.31)

a

F, is the (pxp) positive semi-definite symmetric matrix

F = rll(k)Vll(k) rla(k)Vlz(k) ...........rlm(k)vlm(k)

T ,
rlz(k)vlz(k) rzz(k)VZZ(k) cecesaas ram(k)Vam(k)

r, (V7 (k) rm(mv'-‘z-"m(k) ceveerenees T OOV (K)

L -

(2.32)

where

2.8
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p

S ARORE I XUICH SRTER DR N CTCH I TE DRSPS 5 (¥(1,1),4(3,n,)
6 (4(5,2),9(5,1)) 0, (4(1,2),4(3,2))enrennnn 0, (¥(3,2),9(3,m,)

AR BRICEI I ACICIIDRICE IR TERRR RS

' (2.33)

and the elements ok(i;j) are defined by equation (2.2) and ¥(i,j) are

defined by (1.21). The r, j(k) are the elements of the symmetric matrix

3 '

RO = {r; 0} = R+3%, 5 (2.34)

where Sk+l is defined by (2.15). is the p-vector

&

(2.35)

el
x

i
Wmi—'

e

where g;, i=1,.....,m, are defined by (1.24) and (1.25) and hy_is the

p-vector

T 1 '
h = Vi(k)A Sk+lbl (2.36)

. T
Vz(k)A sk+lb2

T
Vin (K)A™ S+ 1bpy




wvhere

V) = | oo (4,11 g (#(1,1),2) ceeens 6, (4(3,1) ,m)
6 (¥(1,2),1) g (§(1,2),2) ceueen g (#(3,2) 1)
6 (Win ), 1) o (¥(En),2)eenen 0, (¥(i,n,),n)

| J

(2.37)

and b, i=1,2,....,m are the colums of the matrix B defined in (1.1)
thus

B = [bjb, .... b ] i (2.38)

Proof:

Substitution of (1.3) into (1.4) yields

N-1
J o= E¥ ¥ [xQc + uRul+ krSox] (2.39)
= 195 it ENCNEN .
i=0
Substitution of (1.11) into (2.3%9), the additive property of

expectation and the use of (1.3) and (2.13) produces

. N k-1
Jm) = YElxSx) +% T teSV1+X £ trllQ + GRG,IV()]
i=k+1 i=0

(2.40)

2.10



Examination of the recursive formula for Si,-(é.ls), and the
formula for V(i), (2.1), make i clear that only the first term of
(2.40) is a function of Gi. This term will now be examined.

From the additive properties of expectation and (2.15) it is

apparent that
T T T,
E[stkxk] = E[xk[Q + A Sk+lA]Xk]
ST
+ B[ G [R + B8, BIGx ]
+ E[axEATSk+1BGi3k] (2.51)

By use of the definition of matrix multiplication, (1.19) may be

. rewritten

S 1T 1 1.7 1
kak = & ¥ = (xk) O ceeseseees O B
2T 2 2,\T 2
& X 0 (Xk) I ¢ | &y
mT m m\T m
gk 0 0 sseccesns oo (xl{) gk

L . L . . .

(2.42)

For reasons of notational convenience define
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X = (xi)T 0 eeeeneenn o (2.43)
0 (xi)T ......... 0
0 O vevenvens (xi)T

Substitution of (2.35) and (2.43) into (2.42) produces

. S ’
Gx = X (2.44)
Subsftution of (2.34) and (2.44) into the second term of (2.41)
yields

T

T ST S T T
Blx G [R + B'S . BIGx ] = ng[XkE(k)Xk]gk (2.45)

From the definitions (1.20), (1.21), (2.2), (2.32), (2.33), (2.34),
(2.43), and the properties of expectation and multiplication of

" matrices it follows



~

1, 1.\T - T

E[xig(k)xk] - E

20 Te () xR T 6) eennenn

m, 1.T m, 2.T . m, m\T
Xk(xk) rlm(k) xk(xk) r2m(k) ceccccss Xk(xk) rmm(k)
= rll(k)Vll(k) rlzck)VIZ(k) cecsneacs rlm(k)Vlm(k)
D
rlz(k)VlZ(k) rzz(k)vzzgk) ceceaaes . r2m(k)V2m(k)
IR s .
rlm(k)Vim(k) er(k)VZm(k) ccecevsae rhm(k)Vﬁm(K)
= F (2.45)
§ubstitution of (2.46) into (2.45) produces
T_ST T, s i
E[x, G (R + B sk+1B]kak] = ngkgk (2.47)

Consider the variation in Fk with changes in the Iinear Control
Policy m. Note (2.3L4) and (2.15) imply that B(k) through Sk+l is a
function of G, i = k+l,.....,N-1 only. . '

Note (é.l) implies that V(k) is a function of Gi’ i=0,¢0000,k-1
only. As Vij(k), i=l,eceseymy  J=l,....,m are matrices composed of
elements of V(k), these matrices are functions of G, , i=0,0eeae k=1

only. Thus (2.3%2) implies that Fk is a function .of Gi’

i=0,e00e0,k=-1;k+1l e ,N-1 only. Fk does not depend on the value

G T (1) 2 ) Leeeenes 5 GID Ty (0)

2.13

1




2.14

chosen for Gk'

As R and Sk+l are positive semidefinite and symmetric,R(k) is
positive semidefinite and symmetric. Thus (2.47) implies Fk is positive

semidefinite. As V(k) is symmetric (2.32) and (2.33) make it apparent
that Fk is symmetric.
If equation (2.44) is substituted into the last term of (2.41) one

finds
T T ] : T T T
Bl A°S, 1 Box ] = 2BDeA™S, ,BX lg = 2d B (2.48)
where by definition

T

d = E [xEAT

Sk+1BXk] | (2.49)

Note that one may write

av = E[[(xiATSkJrlbl) , (xf{"ATskuba) eeen, (XEATSk+lbm)]XkJ

(2.50)

where the b., i=1,2,....,m are the columns of B defined in (2.38).

‘The transpose of (2.50) is

[ 1 0 | B
4 = Elixe O ... 0flGeaTs, b | = [BLgeaaTs, o (2o51)
2 T T 2. T
0 0 2
oo (9 Sygp1b) E[xkxkj‘? Siei1P2
Y o .... Xi (XEATSK+lbm) E[XiXEJATSk+lbm




2.15

Use of definitions (i.zo), (i.zl), (é.a), (é.36) and (é.37) yields

o _
a = vl(g)A Sy.11 = hk (2.52)

T
V2(k)A Sk+lb2

FJeewe

Vm(k)A Sk-t-lbm

Substitution of (2.52) into (2.48) produces

TP s i
E[2x A7, BGx ] = 2hg (2.53)

h  is a function of the control policy T through V; (k) and

Vsk+l'

Gi, i:o’.-oo,k-l Only- S iS a fmction Of Gi, i:k'*'l,.o-..,N-l

As Vi(k) is composed of elements of V(k) it is a function of

k+1
only. Thus hk is a function of Gi’ i=0,4000,k=-1 ,ktl,¢0c0.,N-1 only.

hk is not dependent on the value of Gk.

Substitution of (2.475 and (2.53) into (2.41) produces

T T T T |
Blx 8, x] = Elx[Q+ A5 Alx]+ gFe + 2yg  (2.54)

Substitution of (2.54) into (2.40) gives

, : . . N
J(m) = 2g§Fkgk + hggk +‘XE[x§[Q + ATSk+lA]£K] +% = tr[Sin]
V i=k+1
.'k-l .
+% 5 trl(Q+ G;RG,IV(i)] (2.55)

i=0



2.1¢

Define

.. N
¢ = gE[xitQ + ATSk+lA]xk] +% = tr[SiVQ]
i=k+1
k-1
+% £ tr[lQ+ GREIVDI (2.56)

i=0

Thus

N 4
¢ = ¥rllQ+A'S, ATVGO] +% & trlS.V]
' i:k&l '

’

k-1

+% 5§ trllQ + 6B TV(1)] (2.31)
i=0

by use of the trace identity (2.22).

o is a function of} Gi’ i=0,....,k=1 directly; Si’ i=k+l,....,N-1
and thus of G;, izk+l,.....,N-1; and V(i), i=0,....,k and thus of
'Gi’ i=0,.¢0e.,k=1. Thus Che is a function of Gi,i=0,....,k—1,£+l,....,N
only. ¢y is géz dependent on Gk'
Substitution of (2.31) into (2.55) produces

J(m) =»\Aﬁ££Fkgk + higk + o , (2.30)

where Fk; hk and ¢ are functions of Gi,i=0,....,k-l,k+1,....,N, and
Fk is positive semidefinite. Thus if Gi,izo,....,k-l,k+l,.....,N are
considered to be fixed, J is a quadratic form in 8y with constant
coefficients which opens upwards. Thus the minimising value(é) can be

found by differentiating (2.30) by g und setting the result equal to

Zeroe.

Q.E.D.
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Lemma 42
If R, VO and Vﬁ are positive definite then for all Linear Control

Policies,

g Fig ) )‘g g 9 i=0’-I-~’N-l (2'57)

where A is a positive constant whose value depends on the values of
R, VO’ and Vw’ only, and g is an arbitrary p-vector.
This condition can be interpreted as: the positive definiteness

of F; is bounded below.

Proof: ' .

In the proof of Lemma 3 it was established that
T T ST T S
ngkgk = E[kak [(R+B sk+iBJGk¥kJ : (2.47)

where Gﬁ is a structured feedback matrix. As Fk is not a function of Gk

'any‘structured feedback matrix Gi may be inserted into the
original Linear Control Policy without affecting Fk' Assume such a
substitution is made.

Use of the additivity of expectation produces

F g = EooooTReSx ]+ Lo BeSk ] (2.58)

As Sk+l is positive semidefinite
T ST.T S ‘
> -
E[kak B sk+lBkak] > 0 . (2.59)
Thus
T T ST__S i |
> .60
e f18 > ElgG Rl (2.60)



If k=0 use of the trace identity (2.22) produces

T ST.S
Bofg8o Z trlGy RGyV,] (2.61)

If k=1,....,N=1 then substitution of (2.3) produces

T T, ST STpsS
>
B F 8 = ElwG "Re wk] + ZE[u o RO [A+ BG> SENEA

+ E[xk 1 [A+ BG ]TGSTRGS[M»BGIE 4% 71 (2.62)

As W and X,y are uncorrelated and R is positive definite

T <STpeS y
B8 2 E[ e RG] (2.63)

Use of the trace identity (2.22) then yields

T : ST_ S '
> »
& 8 2 trEG RG,V J (2.64)

fOI‘ k:l, LN ’N_l-

2.18

As VO is a positive definite and symmetric matrix there is an orthogohald

matrix TO which reduces VO to diagonal form

. ] _

ToVoTo = Qo (2.65)
. _

TOTO = I (2.66)

where QO is the diagonal matrix which has the eigenvalues of VO as the

diagonal elements.

Similarly there is an ofthogonal matrix T% which reduces VQ to



.diagonal form

vy = 0
W W W w
o
W W

where Qw-is the diagonal matrix which has the eigenvalues of Vw as the

diagonal elements.

Note (2.65) and (2.67) may be rewritten as

4 P
_ po

Vo = T5%To

vV = Tarmr

w W W W

(2.67)

(2.68)

(2.69)

(2.70)

Substitution of (é.69) into (2.61) and (2.70) into (é.6h)

yields

T
86¥ 080

or

T ST_ .S
SO R

for 1{:—'1’ 2, soen ,N-ll

Use of the identity

tr[AB] = tr[BA]

where A and B are any two matrices so that the products are defined,

gives

3 tr[GgTRGST

-(2.71)

(2.72)

(2.73)

2.19
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LA

. _
eofoBo = trfgToGy RELT, (2.74)
or
: T ST_ S '
> 0
gEFkgk 2 trl wTka RGkTw] ) (2'75)

-

fOI‘ 1{,‘:1,2, s 0w ’N"'l-
Let.XV denote the smallest of the eigenvalues of both VO and Vw.
It Vw is time varying this can still be done as the number of

matrices to be considered is finite. As both V0 and Vw are positive

. T.T T.T
. . > . . -
definite }V O. R is positive definite thus TOGORGOTO and TwGiRGiTw

are positive definite. By using the definitibn of trace one may deduce

T T.ST._ .S ,
8foBo 2 MNtrlTLGg RGT,] (2.76)
.OI‘
T T ST_.S
>
6B 2 Aot G RGkTw] . (2.77)

for k=1,2,ee..,N=1.
Use of (2.66), (2.68) and (2.73) produces

T

glEEFkgk 2> 'kvtr[RG}s{_Gi] (2.78)

for k=0,1,....,N-1,
XR is defined to be the smallest eigen value of R. KR >0 as R is
positive definite. R is symmetric as well. Following the same line of

proof as was used to get from (2.64) to (2.78) one can show

T S, ST
ngkgk ?, xVLRtr[Gka] (2.79)

fOI‘ ho,l,noo.’N"l.



From (1.14), (1.15), (L.24), (1.25), and (é.}s) it is

m
S, ST iT i T '
trl6 671 = = g g = g8 (2.80)
i=0
If one defines

and substitutes this along with (2.80) into (2.79) one finds

gEFkgk 2 lgggk - . (2.82)

for k=0,1,....,N-1.
As the Structural Feedback Matrix can always be chosen so that

g, = 8 where g is an arbitrary p-vector.

gTFkg 2 Aeg ' (2.57)

fOI‘ k':o,l, LR ] ,N"'l.

° QIE.D.D

2.21



3.1

CHAPT 3
THE OPTIMAL CHOICE OF A SINGLE STRUCTURED

STATE FEEDBACK MATRIX

By use of Lemma 3 the problem of how to choose a single structured
state feedback matrix so as to minimize the expected cost, J, can be
easily solved. If the structure is é Partial State Feedback Structure,
then special formulae can be derived, which are similar in form to
the relations for the optimal state feedback matrix, ak' The partial
state feedback result is analogous to those of Cumming [3] and of
Ermer and Vandelinde [4]. In addition, conditions under which the optimal -
gains will be unique are considered. ' |

The following theorem may be used to compute the optimal gains

of the structured state feedback matrix.

Theorem 1:
The linear system (1.1) is assumed to be controlled by the ILinear

Control Policy, T. If the State Feedback Matrix at time k, G _, is to

k
be replaced by the Structured State Feedback Matrix, Gi, which minimises
the expected cost, J, the p unconstrained gains of Gi may be

computed by solving the p linear equations

where Fk is defined by (2.32), h, by (2.36), and the relationship between

g, and Gi by (1.24), (1.25) and (2.35).

Proof:

As F, is positive semidefinite and the Gy, i=0,1,....,k~1,k+1,...,N-1,



are considered to be fixed, J; is a constant gquadratic form in &,
which opens upwards. Thus the minimizing value(s) can be found by
differentiating (2.30) with respect to 8y and setting the result equal to

Zero.

35 T ’ '

Thus J is minimised by any By that is a solution to

Fkgk == - h]{- ' . ’ - (3-1) .

Q.E.D.

Iemma’h implies that if VO, Vw’ and R are positive definite all
the Fk's will be positive definite and thus invertible which implies '
that the Gi's which minimise J, given that only one substitution is

to be made, are‘unique. Now a less stringéntsufficient condition for

Fk to be invertable will be proved.

Lemma 5%
If V(k) and R(k) are positive definite then Fk is positive

. definite.

Proof:

Substitution of (2.34) into (2.47) produces

gEFkgk - E[xEGiTB(k)Gixk] (3.3)

Use of the trace indentity (2.22) yields

gnggk = tr[Gi?B(k)GiV(k)] (3,4)



By use of the same line of proof as that to get from (2.64) to (2.82)
one finds
T

T | P
g F 8. F  C88 where C >0 (5.57a)

¢

T - . . . N
As ngkgk > 0 foriall By {.O. Fk is Positive Definite by definition. .

Qe.E.D.

The Partial State Feedback Problem is of particular interest because
if feedbaék is eliminated from a state, that state need not be
measured or éstimated. This results in a reduction in the cost of
control. In this section the result of Theorem 1 is considered when

z

- the Structured Feedback Matrix, Gi is in fact of Partial Feedback

Form, GE.
Matrices Al of order (n x n') and G of order (n x (n-n')) are

‘defined such that

A = ala? (3.5)

Substitution of (1.35) yields

A, = Alxoe A%z ' (3.0
Let —

V() = Blxl ()] (3.7)
and

Vo ) = BLE ()] (3.8)

Then (1.35) and (2.2) imply



3.k

V(k) = Vx.(k) Vx,z.(k) (3.9
| Vz,z,(k? V1 (k)
‘where
v = EeDT o (3.10)

Theoreﬁ‘2=

Given system (l.1) controlled by a linear control policy m (1.10),
if the k—tp element of I, Gk’ is replaced by A'Partial State Feedback
Matrix, Gi’ then the feedback gain matrix Gé (i.34), that will

minimize the expected cost J is

G = ~[R+B s I lBT [A + A2YT o &k)V’l(k)]

(3.11)
provided [R + B S B] and V , (k) are invertible, where Sk 1 is defined
by (2.15).

Proof:

By comsideration of (1.20), (1.21), (1.32), (2.33) and (3.7) it
is apparent that

T

Vij(k) = E[xi(xk) ]l = Vx,(k), i,3=1,2,000,m

(3.12)

Substitution of (3.12) into (2.33) produces



3.5

F = rll(k)vx'(k) rla(k)Vi,(k) ceeaces rlm(k)Vx,(k)

rlz(k)Vx,(k) raa(k)vx,(k) cesenen r2m(k)vx.(k)

r GOV, () r GOV, () veeennn rmm(ic)vx, (k)

(3.13)
R(k) = [R + BTSk+1B] is invertible by assumption. Efl(k) is symmetric
as R(k) is symmetric, thus one may define
_1 ? '
R (k) = {tpij(k) : (3.14)
where
mij(k) = ¢ji(k) | (3.15)

As Vx'(k) is assumed invertible it may easily be verified by matrix

‘multiplication that

[ ’ .
-1, -1 ~1
F,~ = %l&ﬂkdk) %E&Nka).”.". %m&N&Jk)

1 - ~1
wla(k)v;,(k) P IV (K) aeneees P RV (k)

PO eensosnPEtssnsssavans v sevscsece ®*00ss000scosons oo

-1, S | -1
mlm(k)vx,(k) mam(k)vx,(k) ceceeen @mm(k)Vx,(k)J

(3.16)

As Fil exists Theorem 1 implies that the unconstrained gains in

Gi may be obtained by solving

& = - Filhk (3.17)



Use of (i.ao), (1.21),‘(1.32), and (2.37) yields

v, (k)
Thus

: Vi(k)

It}

Bl L) (21

[V, (&) ¥, ()]

i—":l’z’o..’m

i=1,2,---. ’m

3.6

(3.18).

(3.19)

by definition (3.7) and (3.8). Substitution of (3.19) into (2.36),

then (2.36) and (3.15) into (3.17) produces

[ -1 -1 -1
= - @11(k)Vx,(k) ¢12(k)vx,(k) ceee ¢1m(k)Vx,(k)

-1 -1 -1
@) (Vv (k) wzz(k>vx,(k) ceen ¢2m(k)Vx.(k)

-1 -1 -1
?Ln(k)vx,(k) ¢2m(k)vx,(k) ceer @GOV (K)

----------------

(3.20)

Matrix multiplication and the substitution of the definition of

g (2.35) gives

.

WUQS s 00 WUQN

1
& | 7T

r m

£ @, () IV

i=1

m

, o1 A T
5 0, WLV GV, (k))IATS, b,

i=1

m

. 1 T
T mmi(k)[g(vx,(k)vx,z,(k))JA 8y 11Ps

i=1

1 T
(k)V%.Z.(k))]A 8,103

(3.21)
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By taking the transpose of each g; in (3. 21) one finds

- m
35T
(gk)

1}

i=1

T
- X @ji(k)bis +1A I

k- : - E - (3. 22
(v, ) F0)

Substitution of (3.5) and the appropriate matrix multiplication produces

m .
5T T 1. ,2 S
()" = - = Py 0008 I+ A2, L (0) V(0]
i=1
' (3.23)
Substitution of (3.2% into (1.34) gives )
i W [ m .‘ .
g = || = - | =T e 0us I ARV, L (0)VI G0
i=1 : '
m . .
2.T T 1,2 T -1
(g)) 9, (s (A7 + A (Ve (K)TV_ 5 ()]
i=1 S
: . o
myT T 1,2 T -1
() | Z Oy (0BS5S, T+ ATV, ()Y ()]
i=1

(3.2

The rules of matrixz. multiplication and the definitions of R 1(k), (3.1k)

and B, (2.38) yield

& = - Rix)Bls

k - k+

QO+ AP, GDVWT (325)

J



Substitution of (2.34) gives

T -1.T 1 2 T -1
t — —
G = [R+BS Bl BS ,[A" +A (VK,Z,(k)) Vo (k)]

(3.11)

Q.E.D.
Sufficient conditions for the inverses in (3.11) to exist are

now examined.

Lemma 6°¢

A sufficient condition for [R + BT

S.,1B] to be invertible is that
R be positive definite. A sufficient conditiéon for V,, (k) to be

invertible is that V%l and Vi} are positive definite, where

v, = |V v;2 ~ (3.26)

and

v, = vlull vlw2 (3. 29)

(Vﬁ?)T V22

L -

The partitioning in (3.26) and (3.27) is the same as that in (3.9).

Proof:

As Sk+1 is positive semidefinite, if R is positive definite then
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[R + BTSk+1B] is positive definite and therefore invertible.

Define

—_ T
11 w12 = [A+ BGk_]_]V(k—l)[A + BGk_lj

=
I
=

(W, )™ W

12 22

(3.28)

where the partitioning is the same as in (3. 9).
As V(k-1), k=1,...,N are positive semidefinite, W is positive
semidefinite and thus wll must be positive semidefinite.

From (2.1), 3. 9), (3.27), and (3.28) one may deduce

v, (k) = A | | -(3.29)

for k=1,2,....,N-1. As wll is positive semidefinite and V‘];l is assumed

‘positive definite, Vx' (k) is positive definite for k=1,2,...,N-1.

1
V(0 = Vg (3. 30)

by (1.2), and Vél is assumed to be invertible, thus the

Vx' (k), k=0,1,....,N are positive definite and therefore invertible.



CHAPTER L

A METHOD FOR COMPUTING OPTIMAL STRUCTURED

CONTROL POLICIES

L.1. Introduction

Theorem 1 of Chapter 3 suggests a method for computing a Sequence
of Struétpred Feedback Matrices. Start with a linear control policy, .
Change this policy one State Feedback Matrix at a time to a Structured
Control Policy using Theorem 1 to evaluate which Structured Feedback
Matrices would be best. Continue to change the policy one state
feedpack matrix at a time using Theorem 1. Each time a change is made an
improvement in cost results (If the state feed£ack matrix replaced
satisfied (3.1), the improvement will be zero). As cost is bounded below
by zero, if state feedback matrices in the policy are changed in-an ordered
manner convergence in cost must occur.

It is shown that the Optimal Structured Control Polic& and the
limiting Structured Control Policy of the above computational procedure
are always composed of finite gain elements if V., Vw and R are
.pOSitive definite. The set of limiting Structured Control Policies is
shown to either consist of one element or to be an uncountable connected
set. Unfortunately, for certain systems, the limiting values produced
depend on the initial linear control policy. In these cases the
computational procedure does not always converge to the Optimal Structured
Control Policy. The algorithm converges to a solution (or set of
) éolutions) of a two point boundary value problem one of whose solutions
is the optimal. Viewed in the parameter space, where each gain in a
Structured Control Policy is a co-ordinate,the computational procedure
may converge to a local minimum or a singular point. A simple

example is given which illustrates these difficulties.
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Choice of the initial linear control policy is important fo ensure
éonvergence to the optimal and to keep the computation time low.
For Feedback structures where ﬁear optimal control is possible a good
starting point is the Optimal Complete State Feedback Policy. A |
heuristic_argument is given which explains why‘such a starting point

should provide convergence to  the optimal for such cases.

L.2. The Computational Procedures and Their Proof of Convergence

The changes in the State Feedback Matrices of the Linear Control
Policy should be organised so that the number of compﬁtations and the
computer storage requirement is minimised.

The evaluation of Gi using formula (3.1) 'of Theorem 1 requires
; and V(i). Si+l depends only on Gj,j¥i+l,i;2,...,N;l
and V(i) depends only on G,3=0,1, 0000y i1 If Control Policy

a knowledge of Si+

substitutions were made in reverse time (i:N;l,N;z,....,l,O) then V(i),
i=1,2,.. .,N-1 could be evaluated using (2.1) before a set of -
substitutions Gi,i=N;1,N—2,....,0 were made. Si could be calculated as
each new control matrix Gi,i=N¥l,N>2,....,0 was evaluated. This approach

is described precisely by Computational Procedure A.
-Definition .
The replace symhol, «— , when used in an expression such as

X «— Yy means sef the value of x equal to that of y.

Computational Procedure Al

1. Specify a linear control policy

T o= [Gi’ i=o,1'.o'o‘N—'13

(for purposes of proof k «— O and 7(0) « )
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2. Let i <— 0 and V(b)«—vd
3. V(i+l) <~ [A+BGiJV(i)[A+BGi]T £V
he i-e— i+l

5. If i < N-1 go to 3.

6. Giev—- the structured state feedback matrix with unconstrained .

gains obtained by solving
F.g. = ~h (3.1)

where Fi and hi are defined by (2132) and (2.36) and are
evaluated using the current values of V(i) and Si+1°
(for purposes of proof k « k+l mi(k) «—— 7, the Linear Control
| Policy composed of the current values of Gi,i;O,l,....,N;l)
7. S;-—Q+ GfRGi + [A+BG,1"S,  [A+BG,]
8, Ifi>0,i=— i-1 go to 6.

9. Go to 3.

For the partial state feedback case the result of Theorem 2 could
replace that of Theorem 1 in step 6.

It may be noted that the calculation of Si in reverse time followed
by the substitution of the new G? in the linear control policy in forward
-time would require only one new V(i) to be célculéted for each Gi
replaced. This approach would be equally valid and have the same
computational aévantages as the procedure previously outlined.

The preceding procedure requires the calculation of (N-1) V(i)'s
and N Si's for éach N changes in the control policy. If changes in
control policy were computed in forward time, as the new V(i? were
calculated, as well as in backward time, as the new Si were
calculated, (éN—l) changes in control policy wouid be made for the

calculation of (N-1)V(i)'s and N Si's. If the improvement in cost on doing a



forward and a backward time calculation is of the same order as doing

two backward  time calculations, this would reduce the total amount

of computer time required to find a solution. Computational Procedure

B is a method of doing such a calculation.

Computational Procedure Bt

1.

7.
8.

10.

11.

Specify a linear control policy

K = [Gi, i:-"o,l, ---,N-lj

(for purposes of proof k~<—0 m(0) <— m)

i =N V(0) <——VO

i e—i-l

S.~—Q + GTRG + [A+BG ]TS [A+BG. ]
i i i i7 i+l i
Ifri >0 go to 3.

Gi <— the structured state feedback matrix with unconstrained

gains obtained by solving

F.g. = - h, (3.1)

where Fi' and hi are. defined by (2.32) and (‘2.36) and are
evaluated by using the current values of V(i) and Si+1°
(for purposes of proof k =—k+l m(k) =— )

V(i+l) =~ [A+BGiJV(i)[A+BGiJT +

i - i+l |

If i <N-1 go to 6.

Gi -<+— the structured state feedback matrix with unconstrained

gains obtained by solving
F.g. = = h, ' (3.1)

(for purposes of proof k -=+— k+l m(k) =—m)

T T
S, =— Q+ GRG; + [A+BG,1"S, . [A+BG,]

Lok
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12, i -a—i-1
13. If i >0 go to 10.

| 14. Go to 6.

It can be seeri that C'omputational Procedure A is a simpler and
requires nmN fewer computer store locétions than Computational Procedure
B.

It will now be shown that these Computational Procedures always

produce convergence in cost.

Notation:
Let E[LE: | m(k)] mean the expected cost over the time interval

L to N given that the Linear Control Policy m(k) is used. Define
I(n(k)) = EB[L,| m(k)] , (4.1)

By Fi(k), hi(k), 'gi(k) etc. is meant the values Fi’ h., g; etc. assume

if control policy ﬂ(i{)'is used, whee & i the ool number JZ"&M JZ
G, Ghat Lose beon made Mvv:g Q«WWJPMW A 78,

Theorem 3%:

Computational Procedures A and B converge in cost. That is

Bim I(n@)) = I (4.2)
ko

is defined.

Consider any k = N. The Linear Control Policy TT’(.k) will be a
Structured Control Policy. By construction the Structured Control Policies
m(k) and m{k+l) differ only in the element Gi' This is true for both

Computational Procedures A and B. By use of (2.30) one can write the
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expected cost as

) = Y OF(R)gz(k) + (g, () + o () (4a3)
J(ﬁ(k+1)5 = kgg(k+1)Fi(k+l)gi(k+l) + hg(k+l)gi(k+l) + ci(k+1)

(4.4)

As Fi’ hf and cs depend on Gi’ i=0,1,...,k-1,k+tl,cee.,N-1 only

F.(k) = F.(k+1)
1 1 )
| hi('k) = hi(k+1) , | (4.5)
and ’ ci(k) = ci(k+1)

Thus

I(n(kel)) = e, GerDIF, (g, (k) + h; (), (k) + o, ()

(5.6)

gi(k+1) was chosen so that

Fi(k)gi(k+1) = -hi(k) ,(Lh'?)

which is the minimising value of 8; for the quadratic functions (4.3)

and (4.6). Therefore

Jemx)) > J(mk+1l))

with equality holding only if gi(k) satisfies

-

Fi(k)gi(k) = -hi(k) (4.8)



Thus J(m(k)), k=N, N+l,.... is a monotonically decreasing sequence.
The quadratic cost function L0 defined by (1.3) is positive semi-~
definite by assumption, which implies J(m(k)) is bounded below by

zero. Thus the sequence J(m(k)),k=0,1,..... must converge [5,p.47].

Q.E.D.

4.3, The Optimal Structured Control Policy

A control policy can only be implemented if the gains are finite.

Thus it is useful to have the following.

Definition: .
A linear Control Policy will be sald to EXIST if all its gains are

finite.

It VO‘ VQ ahd R are positive'definite then the optimal structured
control policy and the limiting structured control policies produced
by the computational procedure can be shown to exist. To establish
this result one needs the definition of the norm of a Linear Control
Policy.

A Linear control policy can be considered as a point in the nmN
space of gain elements. Similarly a structured control policy can be
considered a poiﬁt on the Np space of its free gain elements. It
therefore makes sense to define norm in terms of the Euclidean norm
on these spaces. That is the square root of the sum of the squares of

the gain elements.

Definition:

The NORM of a Linear Control Policy, m, (written |w]) is



N-1
] = € = tr(6G)) (4.9)

i=0

which for a Structured Control Policy may be written

N-1 -
s ' T % '
Iw| = (£ gigi) : (4.10)

i=0

This may be easily shown by use of (1.14), (1.15) (1.24), (i.25),

(2.35) and the definition of trace.

Theorem L:

If VO’ VQ and R are positive definite then the Optimal Structured

Control Policy exists.

Theorem 5:
If VO’ Vw and R are positive definite then the Control Policies

generated by Computational Procedures A and B satisfy

<

| me) | € ¢ k=0,1,2,e00nn (4.11)

vwhere C is a positive constant.

Corollarx:-
If VO’

has at least one limit point, and all limit points exist.

VQ and R are positive definite then m(k), k=N,N+1,N+2,....

These results follow directly from:

4.8
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Lemma 7:

It VO’ Vﬁ and R are positive definite then

Jm € K (4.12)

implies
|n] s ¢ ) (4.13)

wvhere K is a positive constant and C is a positive constant related to K.

Proof!
The definition of J(m), (1.12), (1.3), (1.11), and assumption

(4.12) give

. N-1
K » 3(m = B¥ » xI@GREIx +Jpase] (41

i=0

and Q and Sy are positive semi-definite
~ : )
. N-1
K » J(m) > % = E[x.GRG,x.] (4.15)
- Al R R &

i=0

Substitution of (1.1) with k=1,2,....,N-1 produces

: . N-1
. TAT

N ' T T
K 2 %E[xGyRCGyxg] +% % Elw,GRG,v.]
i=1

N-1
+ X E[w?"G?RG. [A+BG,
1 a1 1=

i=1

in_ll

1
N-1 ,
‘ T T.T

i=1
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as R is positiﬁe definite
E[x? [A+BG ]TGTRG [A+BG. .Jx. -] = O (4.17)
i-1 i-1" i i i-1""-1" 7 y

w:L is a zero mean white noise process uncorrelated with past or present
state thus
E[w?G?RG.[A+BG.
iii i-

gl = 0 | (4.18)

Thus from (4.16) one can deduce

. N-1
- T T

5 - T.T
K > Jz'E[xoGORGOXOJ +¥ I E[wiGiRGiwi] | (4.19)
i=0 '

Use of the trace identity (2.22) yields

.. .. N-1
) T . 7 .
K ; jitr[GORGOVO] +¥% % tr[GiRGiVW] '(4.20)

i=0

By use of the same argument that was used in the proof of Lemma 4

to get from equations (2.61) and (2.64) to (2.79) one finds

. : N-1 .
K 2 % N0 5 r[G6 D) (4.21)

i=0

)\R is the smallest eigenvalue of R. - XR > 0 as R is assumed positive
definite. ?»V is the smallest number in the set of eigenvalues of VO and

V . As both V., and V are assumed positive definite, )\v > 0.
w 0 W 4

-
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Substitution of (4.9) and the obvious algebraic manipulation yields

2K

jm] < [ (h22)

Define

c = & (4.23)

as K, AV and XR are all positive C is positive. As Kv and XR are both
>0, C is finite.

" Q.E.D. : -, .

Proof of Theorem 4?

Consider.any structured control policy, ﬂS, such that | ﬂ% | is
finite. Associated with this control policy is a finite expected cost
J(ﬁs). This follows directly from (2.16). The optimal structured

*
control policy, ﬁS, must satisfy

Iy < I(wd) (o 2h)

Tﬁen Lemma 7 states

S s ¢ (4.25)

If the sum of the squarés of all the gains in a control policy is

. *S
finite, then every gain must be finite. Thus m exists.

Q.E.D.



k.12

Proof of Theorem 5:

It was shown in the proof of Theorem 3 that J(m(i)), i=N,N+1,.... is

a decreasing monic sequence. Thus

I(1)) € Max  J(n(k)),  20,1,2,e... (4.26)
O<k<SN

and Lemma 7 yields

| mi) | € €, i=0,1,2,.... ‘ (4.11)

1

n(k),k:N,N+l,N+2,... is an infinite sequence of structured feedback
policies. If one considers each gain element to be a coordinate it is an
infinite sequence in an Np dimensional Euclidean space. (4.11)-implies
that it is an infinite sequence within the closed and bounded set
AR ART ]

Thus it must have at least one limit point in the set [5, p.35].
As a closed set by definition contains 21l its limit points any other
limit points must also lie within the set. Thus all limit points have
finite gains and thus satisfy the definition of existence of a Linear
.Control Policy. |

Q.E.D. .

The Optimal Structureq Control Policy exists and lies within the
same set that contains the limit points of the computational procedure.
One mighthhope that' for all Linear Control Policies with which one might
start the computational procedure there would be one limit point which
would be the Optimal Structured Control Policy. This unfortunately is

not necessarily true.
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In discussing the nature of the limit points of

the computational procedure the following definitions are useful.

Singular Point

The Structured Control Policy, ﬂl, will be termed a SINGULAR POINT
of J(r°) if
S

%&f_l 20, k=0,1,e...,N-1 (4.27)

S 1
‘l_‘T =TT.

Distance Measure

1

The definition of Norm of a Linear Control Policy (4.9) implies
a measure of the distance between two control policies. If
= [G}I{, k<0,1,...,8-1] and 7 = [GZ, k=0,1,...,N-1] then the DISTANCE

Between ﬂl and ﬂ2 is defined to be

N-1 .
| v - | = 5 ex(ie - c217re} - 621)¥ (4.28)

i=0

'e—neighbourhood

An e-NEIGHBOURHOOD (or neighbourhood) of a Linear Control Policy,
‘m, is a set Ne(ﬂ) consisting of all Linear Control Policies, T, such
that | m - «' | <e.

{From Rudin [5, p.28]);

Absolﬁte Masdmum [minimum]

The function J(ns) takes on its ABSOLUTE MAXIMUM [MINIMUM] for the

Structured Control Policy, m', if



ISy < I (4.29)
™) > Il | ~ (4.30)

for every Structured Control Policy, ﬂs.
(From Hadley [6, p.531)
Ir J(ﬂs) is a constant then J(ﬁs) takes on both its absolute

maximum and its absolute minimum for any structured control policy ﬂS.

Strong Local Maximum [Minimum]

The function J(ns) is said to have a STRONG LOCAL MAXIMUM [MINIMUM]
at m' if there exists an €, € > O such that for all structured
S
control policies, ns, where 0 < | nt -7 | < ¢ then

o) < JI(n') ' R (4.31)

-

() > I | S (h32)

(From Hadley [6, p.531)

Weak Local Maximum [Minimum]

The function J(ns) is said to have a WEAK LOCAL MAXIMUM [MINIMUM]
at ' if it does not have a strong local maximum [minimum] at ' but

there exists an € ®» O such that
s ) ‘ .
Jg(rn) € Jn") (4.33)

3>y > J(n')] (4. 34)

L1k
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for all e in the e-neighbourhood of ﬂ{, Ne(ﬁ{).
(From Hadley [6,p.54])

Ir J(ﬂs) is constant over an e-neighbourhood of T' then it has both
a weak local maximum and a weak local minimum at w'. |

It will be shown that all 1limit points of ﬁhe computational procedure are
solutions to a two poiﬁt boundary value problem of which the optimal
'étructured control policy is also a solution. All solutions to this
two point'boundary falue problem are singular points of the

function J(ns).

Theorem 6°
r

Consider the two point boundary value problem. Find a Structured

Control Policy ns = [Gi, k=0,1,...,N-1] where

V(o) = V,
V(k+l) = [A+B S1v(e)pa«BaS1T + v | (2.1)
G G w
for k=0,1,...,N=1, ‘ -
SN is given,
ST_ S S.T s
S, = Q+ G RG]+ [A+BG.17S, ,[A+BG] (2.15)

fOI‘ i=N"1,N_2, sese ‘0,

and all G?, i=0,1,...,N-1 satisfy

F.g- = - hi . o (3.1)

where F, is defined by (2.32), h, is defined by (2.36), and the relationship

between Gf and g; is defined by (1.14)‘ (1.15),'(1.24), (1.25) and (2.35).
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Then,

1. All Optimal Structured Control Policies are solutions of this
two point boundary value problem.

2. The solutions of this two point boﬁndary value problem are the
;ingular points of the function g(ﬁs).

3. No solution of this two point boundary value problem is a strong
local maximum of J(ﬁs).

L, If VO, Vﬁ and R are positive definite then solutions of this two
point boundary value problem_can not be absolute maxima nor can they

be weak local maxima.
Proof:

It was shown in the proof of Lemma 3 (following (2.47)) that Fy

is positive semidefinite. Therefore the functions ' -

I(®) = KgFe + g * o (2.30)

k=0,1,...,N-1 are convex in g_ [6, p.84]. Differentiation of (2.30)
k

yields
() T, T (4.35)
g, Bty | : .
Thus if and only if
Fg = -h, k=0,1,...,N-1 (3.1)
does
3 - -
d ,
J(n ) = O’ k=o,1,o.o’N"l ,(4027.)
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Thus as (é.l) holds for an& solufion to the two point boundary value
problem, all solutions to the two point boﬁndary value problem satisfy
(4.27) and are thus termed singular points. As all singular points must
satisfy (3.1) they are all solutions to the two pdnt boundary value
problem, 2.

The convexity of the functions (2.30) implies that if and only if

! satisfies (4.27) does J(m') satisfy

Iy € I (4.36)

for all n" € @ yhere

’ S . . . '
Q = [m ‘gizg;_a i=0,1,000yJ=1, 571 eeee,N=-13 gJ?ég;J
where je[0,1,ee..,N=1]
and g{, i=0,1,...,N-1 are the unconstrained

gain vectors, (2.35), of w' ’ ]

*
An Optimal Structured Control Policy, ns, is defined to be a

global minimum. Thus

J(;s) < J(ns) for all ns.
;S must then satisfy (4.36) which implies it satisfies (4.27), which
1mp11es it is a solution to the two point boundary value problem, 1.
Assume m' is a solution to the two point boundary value problem.
Within any e-neighbourhood of ' one can find a ﬂfen. (4.56)
contradicts (4.31). Thus a solution of the two point boundary value
problem cannot be a strong local maximum, 3.

Irv

, V and R are p051t1ve definite then the F , k.O,....,N—l are
0 'w
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positive definite by Lemma 4. Then the functions (2.30) are strictly

convex in g_ (6, p.85], which implies
J(m*) < J(m") (4.37)

for all ™ e 1, vhere 7' is a solution of the two point boundary value
problem. (4.37) contradicts (4.29) and (4.33). Thus ™' cammot be an
absolute.maximum nor can it be a weak local maxdmum, L.
Q.E.D.
i It has been shown that if V., Vw and R are positive definite then
all limit points of the computational procedure exist. It will now be shown
that either there is one limit point or the set of limit points is
ﬁncountable and connected. All linit points satisfy theé necessary

condition stated in Theorem 6.

Theorem 73
If VO’ Vw and R are positive definite, either ﬂ(k), k:N,Nfl,....,
has one limit ﬁoint or the set of limit points is an uncountable connected
set. All limit points satisfy the two point boundary value problem
" defined in Theorem 6. -

To establish this theorem a lemma is needed.

Lemma 8:

If R, Vo and Vﬁ are positive definite then

| g, - g, Gesl) | = 0 ask = o  (4.38)

-

for i=o, 1, voe ,N"'l-
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Proof:
By construction the Structured Control Policies m(k) and m(k+1)

differ only in one Structured Feedback Matrix Gi. Thus
‘gj(k) = gj(k+l) for j#i

which implies

| gj(i{)_ - gj(rk+l) | = 0 if ji _ (h-39)

To establish Lemma 8 it is only necessary to consider | gi(k) - gi(k+l) |-

Theorem 3 states that convergence in cost always occurs and

lim J(n(k)) = J (4.2)
k= '

It was also established that the sequence J(m(k)), k=N,N+1,.... is
a monotonically decreasing sequence.

Define

D = Jm(N)) -J 2 0 (14.40)

Addition and subtraction of terms and the use of the definition of J

yields
D = lim L [O(m(k)) - IJ(m(k+1))] (4.41)
i-® -
Define
6 = J'('n('k)) - J'('n('k+1)) >0 (4.h2)
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As V,, V. and R are positive definite Fi(k) is invertible. (4.7) implies

gi(k+1) = - ;l(k)hi(k)

(4.43)

Substitution of (4.43) into the expression for cost (4.6) produces

I(n(ke1)) = = YL GOF; (R, () + o (k)
Substitution of (4.3) and (4.44) into (L.42) gives -

b, = Yy GOF, (10, (1) + by (g, (k) + by ()FT (R, () ()

Define

B = g, (k) - g (lerl)
By use of (4.43} one finds

g (k) = B(0) - Fy (o), (k)
Substitution ofv(4.47) into (4.45) yields

- |
5, = ¥B (OF, (10B(K)

(Lo )

(4. 46)

(4. 17)

(4.48)

As R, Vb and Vw are positive definite Lemma 4 holds for any structured

control policy. Setting g = B(k) in (2.57) yields

BT GOR, (0BG 7 AB (K)BLK)

(4.49).



Thus

A ST
5k > > B <k)§€k)

The definition of Euclidean Norm

8 | = (Br(0)BG))%

and (i&. 46) imply

- < =
| &) - g, (ks1) | < )\ '
i
o} 2 - 6 — -
As il—:}r;]) ék_D, K Oask "o«
. k=N

~

Thus (.L;. 52) implieé

| gi(k) - gi(k+1) | - 0 ask~ o
Q.E.D.

Proof of Theorem 7:

k.21

(1.50)

(4.51)

(4-52)

(4.38)

The proof of this theorem will be divided into three parts: a

proof that either there is one limit point or the set of 1limit points is

an uncountable set; a proof that if the set of limit points is uncountzble

then it is connected; and a proof that all limit points are solutions of

the two point boundary value problem defined in Theorem 6.

A) There is one limit point or the set of limit points is uncountzble

The Corollary of Theorem 5 states that at least one limit point
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exists. It will now be shown that if more than one limit point
exists then the set of limit points is uncountable.
Define E to be the set of limit points (i.e. the subsequential limits)

of the sequence of structured control policies TM(k), k=N,N+1,....

E is a set in the space of Structured Control Policies. The

definition of the limit point of a set is [5, p.28]

Limit Point

A Structured Control Policy T is a LIMIT POINT of the set E if
every neighbourhood of T' contains a structured cohtrél policy ﬂs such
that 'rrS eE. _

Aé ﬂ(k) and m(k+1l) for all k > N differ only in one structured
state feedback matrix Gf (4.28) reduces to -

-

| 1) - med) | = | g0 - g | (hs3)

Thus Lemma 8 implies
| m0e) - mQes1) | = Oask ~ o (LS

Assume a point T'eE exists such that ' is not a limit point of
the set E and assume E contains more than one element. As m' is not
a limit point of E and & exists such that Ne(ﬂ') contains no other points
of the set E. As m' is a limit point of ﬁ(k), k:N,N+1,....,Ne/ ()
contains an infinite subsequence of m(k), k;N,N+1,...., ‘3

[101 pOL"ZQ P-llli']-

Consider the set

S & IeN(n)  (.55)
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Ne(ﬂ') contains one member of E and that member is not within S. As
S is a closed and bounded set it can only contain a finite number of
elements of m(k), k=N,N+1,..., [5, p.35]. (L.54) implies there exists

an M such that if k > M then

o) -men | < 2 (1.56)

N, (1) contains an infinite subsequence of m(k),k=M,M+1,....

/3

Let tﬁis subsequence beAﬁ(k),kzM'l,Mz,M3
It n(Mi+1)¢ N, ('), (4.56) implies ﬂ(Mi+1)€S. As m(k),k=N,N+1,.....
. 3

has only a finite mumber of points in S there exists a j such that

yeee«es vhere Ml < M2< M3< csce

ﬂ(Mi+1)eNe (m') for all i > j, ;ﬂhicil implies ‘rr(k)_eNe (') for all
k > Mj' Thgrefore:ﬁ':is the only 1imit‘p§int of ﬂ(k);k:N,N+1,..;...
Contradiction! It was assumed the set of limit points has more than one
mémber. Thus if the set of limit points, E, has more than one member
then all points m'eE are limit-points of the set E.

A set of limit points is a closed set [5, p.45]. Therefore if
E contains more than one element it must be by definition perfect
[5, p.28]. Every non-empty perfect set in & Buclidean space is
uncountable [5, p.36]. If E contains more than one point it is

uncountable.

B) If E is uncountable then it is connected

The following definitions will be needed.

By [m(k)] Ii.I) is meant the sequence m(k),k=N,N+1,... .

Interior Point [5, p.28]

A point T' is an INTERIOR POINT of E if there is a neighbourhood
N (m') such that N (n') &E.

Open Set [5, p.28]

E is OPEN if every point of E is an interior point of E.



Comnected Set [5, p.37]

A set E in a metric space é is said to be CONNECTED if there
do not exist two disjoint open subsets I and J of )ci such that I
intersects E and J intersects E, and E C I N J.

Here ej is the metric space of all Structured Control Policies.

Assume that E, the set of limit points of [ﬂ(k)]? , is not connected

and two disjoint open subsets I and J exist such that E C I UJ and

I intersects B and J intersects E. Then

EN(IUJI = (ENI)U((ENJ) (4.57)

=
i

Define

R
]

glb | w* - m | ' _ (4.58)

for all me(E N I) and we(E N J).
Select a sequence 'n]!_e(E Nn I), i=1,2,3,.... and other sequence

ﬂie(E n J), i:l,z,},..- SuCh that

lTT'2 TTzl < Qr+1/2

|“'3-“3| < ai1/y

mem o< een/t (4.59)

o2k
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[Tr:!l_]:?_) is an infinite sequence within the closed and bounded set E

(5, p.45]. Thus [n{]i’ has at least one limit point I_I'YGE (10, p.35].
(4.57) implies that either Me(E N I) or me(E N J). (E N I) and

(E N J) are disjoint as I and J are disjoint. Assume T' ¢E N J) C 4.
As all points in an open set are iz.;terior points there is a neighbourhood
of m' which contains no elements of (E N I). Thus ©' can not be a
limit point of [nj!_]f c (En I) [5, P42 & 44]. The contradiction
implies m'e(E N I). Similarly the infinite sequence [Tri];) has at
least one limit point me(E N J).

The construction of the sequence (4.59) implies  that
m-n| = « - (L. 60)

As m'el and as I is an open set there exists a neighbourbood N, (n') &1,
1

Construct the set

D = [n'LeJ(Erj:t)[“H”'*“\ < el/gjj NI
' (h.61)
D is an open set [5, p.30] and
(ENI)CDCI (4.62)

Similarly there exists a neighbourhood Ne (m) €. J. Construct the set
: 2

P = Lo teJ(E A J)[n [ n* =m| < ez(zjj NnJ

(4.63)
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P is an open set and

(E nyncrcy : (1.6L)

Note +that

@ > e + € (4.65)

If this were not true one could find a point T such that

neNe (n') €I and neNe (m) © J which would contradict the assumption
1 ‘ 2

that I and J are disjoint.

Define

d = glb | n' - w | for all m'eD and mcP (4.66)

then

(4.67)

for if this were not true one could find a n'e(E N I) and we(E N J)
such that

| m-m] < e+ e2 < « . (4.68)

1

which would violate the definition of @, (4.58). Let

Ho= [n||n|< cl (1.69)

where
C is the positive constant defined in Theorem 5.
D' the complement of D, and

P' the complement of P are closed sets.
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As H is a closed and bounded set

W=DNPANEH - (4.70)

is a closed and bounded set which by construction contains no limit points
of the sequence [ﬂ(k)]ﬁ . Therefore W contains only a finite sub-
sequence of [Tr(k)]lc\? .

Let m(k), k=M1’M yeess Where Ml <M2 <l"l3 < eeeey be the

M
172
subsequence of [n(k)]lc\? contained within D. Such an infinite subsequence

must exist because D is an open set containing limit points of

[Tr(k)]f\? . For some M, k > M implies

€ + €
| mGo) - w1y | < Lt (4.71)

o

This follows from (4.54). Thus if M, >N, ﬂ(Mi+1) A D, (4.71)
combined with (4.66) and (4.67) implies n(Mi+1)eW. As W contains a

finite subsequence of [ﬂ(k)]?\: there exists a j such that i 2 j

implies ‘n(Mi+1)'eD. This implies that the subsequence ["(k)Jg[D_ is
contained in the set D. As DCI and I and J are disjoint J :cjzan only
- contain a finite subsequence of [ﬂ(k)]?; . Thus J contains no limit
points of the sequence [n(k)]lc\?; [5, pe42]. This contradicts the
assumption thai.;A;J' intersects E, the set of limit points of [Tr(k)]lc\l; .
Thus B is a connected set.

C) A1l limit points are solutions of the two-point boundary value

problem of Theorem 6

For simplicity only computational procedure A and the reverse
time "pass" of computational procedure B will be considered.

The proof for subseyuences obtained from the forward time "pass" of
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computaticnal procedure B differs only in the order in which changes of
structured state feedback matrices occur.

Assume k is so selected that control palicies m(k) and m(k+1)

differ only in the Structured State Feedback Matrik Gfl—l' Substitution
of (_i+.l+3) into (4.52) produces

| gy (&) + Fob (i0n, (x) | < 2% (4.72)

1 Enay N-1'*/"N-1 = N y
as 6k—'0ask-" .

gy () - - Fﬁfl(k)hN_lck) ask =+ o | (4.73)
and

alk) - u(k+l) as k = ® | .  (ha5k)
Similarly

. -1 2811

| ey pCetl) + Fyo (el (kd) | < [—== (L.74)

which implies
-1 :

gN__Z(k) - - FN_2(k+1)hN_2(k+l) ask - o (4.75)
and

ﬂ(i{) - Tr(k+1) - mk+2) ask ~* ® . (-4.76)

Continuing in this fashion one finds



(ki) Ceby (i) as k= @ (h77)

EN-1-i N 1-i
3=0,1,...,N-1
and
n(kj - m(k+l) = ceeee - ﬁ(k+N—1) as k - ® (ﬁ.78)

Let m(k), k_Ml M_,M PIREED where M'.L < M < M3 < eee.. be a sub-
sequence of [ﬂ(k)]k converging to . Let Mj differ from Mj+l in Gi.
Add to the subsequence n(k),k:Mi,Mz,MB,.... the elements
n(p),p:Mj-N+1+i,....,Mj-l,Mj+1,.....,Mj+i+1 for all j=1,2,3,e0ec »
(4.78) implies the addition of these elements will not affect the
convergence of the subsequence. Let this new subsequence be

@mmdﬂm b%M %“".mwe%<M'<% ceee o

At the 1imit of this subsequence T (4.77 ) implies

B = - E;lh. . i=Nel,...,0 (4.79)

L

L.2%

_where Bis Ei and gi are the values B; Fi and hi assume if control policy

7 is used. As F. and h. are calculated using V(i) and S, . which are
= =1 =i i+l
computed using (2.1) and (2.15), 1 satisfies thé two point boundary

value problem of Theorem 6.
Q.E.D.

If the two point boundary value problem of Theorem 6 has a
unique solution then the Computational Procedure will converge to the

Optimal Structured Control Policy no matter what initial Linear
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Control Policy m(0) was used. Unfortunately this is not always the

casee.

Theorem 8:
The set of limit points of [ﬁ(k)]ﬁn » B, and the cost associated
with these limit points J, may depend on the initial control policy

n(0).

Proof:
The proof is by example. A simple system which has three solutions

to the two point boundary value problem is

System A

- - -

A = 0 -1 B = 1
1 0.544721 0

Vo = o.g - 0.5 v = 0.25 0.136180
0.5 0.75 0.136180 1
L J L
r T )

Q = 1 -2.73676 R = 1
2.73676 8
L o

52 = 3 -4 N = 2 I'EL = 1
=4 6
X i
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As N = 2, (2.16) becomes

() = BILG] = Ker(SUgl + X[S,V 1 + ¥er(S V] (4.80)

To compute J(ﬁs) one must first calculate S1 and So. As nl = 1 one maj )
define v
Gy, = [gy O] and G = [gl 0] (4.81)
Then
S. = Qe+ GWRG. + [A+BG.]7S, [A+BG.] O (4.82)
1 11 1= 2 1 *
where
A+BG, = | O 1|+ | 1| [g 01
1
. 1
1 0.544721 0 .
- '
- | & -1 (4.83)
1 0.544721
. : J

Thus



;= |2 - 2.73676 | + [g oIf1]} &y
+| & ' 1 30 b ] g -1
-1 0.544721 -4 6 1 0.544721
= | (g -8y + D ~(5.17893)g; + (4.53156)
~(5.17893)g, + (4.53156) (17.13809)
(4.84)
Similarly
T T .
Sy = Q@+ GyRG, + [A+BG,] Sl[A+BGo] (4:.85)
= 819 515 (4.86)
S12 S22

where

511

12

22

48%82 - 8glgg + 8g5 - 2(5.17893)g, 8, + 2(L.53156)g, + 18.13809

0

(4.87)

- g%, + (5.17893)g 8y - (4.53156)g, + (5.17893)g, + 2.06715

: Agi - (2.35786)g1 + 15.14835

(4.88)

(4.89)

L.32
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Thus

trlSoVol = 28%88 - Lrglgg - Lrgfgo + hgl + Bgf + (3-4105L)g, + 22.49746
(4.90)

e[S,V 1 = gl - (3.41054)g, + 20.12231 . (4.91)

tr[SZVQ] = 5566056 (4.92)

Substitution of (ﬁ.90), (4.91) and (4.92) into (4.80) produces

I = gigg - 23133 - nggo‘+ 2gg + 2g§ +»24-14017 (4.93)
yhich by (2.30) may be written
I) = (e el + hole ey + o) L (o)
or | |
I(°) = ¥F (en)ed + 1y (godey + oy (gp) | (4.95)
Thus
F,(gy) = 2gg - bgy + b (4.96) ’

which'can also be found by using the relation

[r, (1Y, (1)] | (4.97)

Fl(go)

I

hl-(-gO> = - 285 ‘ (14.98)
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which can also be found by using the relation

h(gy) = [V,(DA'S, B] ~ (4.99)
and )
cl(éo) = 2g§ + 24.14017 : ‘ (4.100)

which can also be calculated using the relation

. ‘. . V_ '. T
o (gg) = 3tr[[Q+GRG,TV(0)] + Xer(s,V 1 + Jtrl[Qe S ATV(L)]

’ (4.101)
Similarly one finds
fo(gl) = 2g° - hg) + b ' ' (A.LOa)
holg,) = - 28] ‘ (4.103)
co(gl) = 2g§ + 24.14017 | (4.104)

The singular points of J(ﬂs) may be found by taking the derivatives
of J(ns) with respect to 8o aﬁd 8y and setting the resulting expressions
equal to zero. Taking the derivative of J(ﬁs) with respect to &)
produces

33(r)
&1

28, (82 - 28y + 2) - 28 (4.105)

thus



3J¢ . o :
) oo (4.106)
when
2
o
g, = S (4.107)
80 - 280 + 2
Taking the derivative of J(nS) with respect to gy yields
)
o}
M) o0 (4.108)
. 8o | -
when
gi ’ :
& = (4.109)
gl - 281 + 2

Substitution of (4.107) into (4.109) gives
go(ed - 582 + 12g2 - 16gy + 8) = O (4.110)
which when factored becomes

go(éo - L) (gg - 2)(ég -2gy+ ) = O (4.111)

Thus the singular points occur when 8o = 0, 8o = 1, and 8y = 2

as gg - Zgo + 4 has no real roots. ©Substitution of these values into

(4.107) yields the other coordinates of the singular points.

L.35
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[go = 0, g = o], [go =1, gi = 1], [go =2, g = 2] are the singular
points of J(ﬂs). By Theorem 6 these points must be the solutions of the
two point boundary value problem stated in that theorem.

By J(ﬂs) ‘ is meant the value J(ns) assumes if a control
(8p:8,)

. S .
policy T = [GO = [go o] ; Gl = [gl 0]] is used.

Je) = 2414017

| (0,0
S .

J(m ) = 25.14017

‘ (1,1)
o _ ,

J(n") = 24.14017

‘ (2,2)

Figure 1 is a plot of J(ﬂs) along the line g, = g, from (-0.5, -0.5)
to (2.5, 2:5), which implies that (0,0) and 2,2) are minima and kl,l) is
a saddle point.

If one starts computational procedure A with an @nitial linear

control policy cf the form

m(0) = [[1 ©0l; [x OI]  (4.112)

it will converge to the limit point

= [(x 01; [ oI (4.113)

12

in one step. T is the point (1,1) in the 2-dimensional Euclidean space
where each of the feedback gains in a Structured Control Policy is taken
as a coordinate.

Taking 7w(0) as in (ﬁ.llz) and following the computational procedure

through to step 6 one finds.
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él = - Filfi)hl(i) ‘ (4.1104)

By use of (4.96) and (4.98) this becomes

'gl = =4 [-2(1)2] = 1 (4.115)

2(1)% - B(1) + 4

thus

r ol; [ ol (4.116)

i

m(1)
Then the second iteration through to step 6 yields

By = - For(Lhy(1) ' (4.117)

which evaluated by use of (4.102) and (4.103) is

8o = > L [- 2(1)4 = 1 (4.118)
2(1)° - 4(1) + 4
Thus
m(2) = L1 ©0]; [1 O]l S (h119)
" Similarly one finds
(k) ; n for k;3,4,5,.... (4.120)

For initial control policies of the form (4.112) the system does
not converge to a minimum. By suitable choices of m(0) a computer
implementation of computational procedure A [7] was made to yield all
three solutions.

One might wonder if small changes in the parameters would greatly
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alter the shape of the cost function. The values of the parameters in

the system A were rounded off to test this. The System B is

A = 0 —1-- B = [ 1
1 0.5 o
VO = 0.5 0.5 VW = 0.25
0.5 0.75 | | 0.15
SN = 3 "'Ll' Q = 1
E 6 | 3
R = 1 N = 2 I]l = 1

Using the computer implementation of computational procedure A 7] an

" absolute minimum was found at

gy = 2.015 g = 1.9687
S .
J(m) = 23.889 at this point.
A étrong local minimum was found at
gy = 0.13832 g = 0.10864

J(ﬁs) = 24,589 at this point.

Figure 2 is a plot of J(ﬂs) along the line g, = gy from (-0.5, -0.5)

to (2.5, 2.5) for system B.

4.38
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" 4.4 Choice of the Initial Linear Control Policy

Theorem 5 could be used to produce a bounded region in which the
Optimal Structured Control Policy must exist. However, the high
dimensionality of structured control policies for practical.systems
makes a thorough search of any such region impossible.

One must find an initial Linear Control Policy which produces
convergence to the Optimal Structured Control Policy in most reasonable
éases. Several possible methods of selecting an initial control policy

will now be considered and compared.

A) The Optimal Complete Sfate Feedback Policy

Ir thg féedback structure is so chosen tﬁat the performance of the
Optimal Structured Control Policy is close to the Optimal Control Policy
then it ié reasonable to assume that the sequences
[Sk]g_l and [V(k)]g will be close for both policies. If w(0) is taken
to be the Optimal Control Policy one would expect that m(N) would be
very close to the Optimal Structured Control Policy.

Computational experience [7] has shown that this starting point
" produces conve?gence to the Optimal Structured Control Policy for
k < 10N [i.e. the first six digits of J(ﬂ(k-N)) are the same as
'J(ﬁ(k)X]if the Optimal Structured Control Policy results in a system

behaviour similar to that produced by the Optimal Control Policy.

B) Compute m(0) by Assuming V(k) = V., k=0,1,...,N-1

- S
Assume V(k) = Vy for k=0,1,...,N-1 then calculate Gk’

k:-'N-l’N"Z, oe e ’O
backward in time by evaluating (3.1) and calculating 8, ok=N-1,1-2,....,1
as these evaluations are made. The sequence of Structured State

Feedback Matrices so calculated could be used as the Initial Linear

Control Policy m(0).



The calcuiation of n(b) by this &ethod would take approximately
the same amount of computing time as that required to calculate the
Optimal Control Policy. If this method is used convergence is usually
not as quick as if A is used. Thus use of the Optimal Control Policy
as m(0) is to be preferred. Use of both starting points may however
give the user greater confidence that the limiting control policy
is in fact the optimal.

R.L. Kosut [8] suggests two methods of computing Suboptimal
Structured State Feedback Matrices for the problem where the system is
continuous ana deterministic (i.e. Vﬁ = 0), Vo=1I, Ris diagonal,‘and
a steady state solution is required. The methods are termed ﬁMinimum
Normf and fMinimum Error Excitation". These approaches can be extended
to produce Suboptimal Structured Control Policies for the discrete,

stochastic finite-time problem considered here. These Suboptimal

4.40

Structured Control Policies could then be used as initial Linear Control-

Policies for the computational procedures A or B,

C) Minimum Norm

Let the initial Linear Control Policy m(0) be the Strucfured

Control Policy ﬂs that satisfies

‘min | ; - ns |
S
m

(4.121)

* ' . *
where T is the Optimal Control Policy. Obviously the projection of m

on to the pN Euclidean space of Structured Control Policies will be the
solution to (4.121). Thus m(0) is simply obtained by computing

x*
L1
*
Gk, that are constrained to be zero.

*
= [Gk,kzo,.....,N-l] and deleting those elements of the gain matrices,



o1

As the cost function is continuous in the Linear Control Policies,
nearness in norm does imply nearmness in cost. This approach works
well when the gain elements deleted are much smaller than those
retained. However, if the gains deleted are of the same order of
magnitude as those retained,the Structured Control Policy which differs
from ; the least in nofm may give very poor performance. In Chapter 5
an example is given of a stable system where the Structured Feedback
Matrices,which differ the least from the Optimal State Feedback Matrices
in norm, cause the system to become unstable. For the same system with
the same feedback structure the Optimal Structured Control Policy gives

acceptable performance.

Minimum Error Excitation

The concépt of Minimum Error Excitation for a Discrete Stochastic
System will now be developed. As in Chapter 1 the superscript '*!
(i.e. ;k) will be used to denote the value a variable (including matrices)
assumes if the Optimal Complete State Feedback Control Policy is used.

Then from (1.1) one gets

* *
Axk + Buk oW (h.122)

7

(k.123)

*0

As the linear control policy (1.8) is used
* *x  *
X1 = i(A + BGk)xk + oW (4.124)

Similarly the bransition equation associated with any structured control

. S .
policy, ™, is



hL.l2

g . s g .

Xy = A+ BGk)xk W | (4.125)
s A

XO = XO (L.126)

- *
Consider now the difference between the optimal state % and the

g ,
state % that occurs if a structured control policy is used
s *
e = X -X . (4.127)

Use of (h.lzu) and (4.125) gives ' .

&1 = (A+BG§)X£ - (A+Bak);k , | (4.128)
- (A+BG§)(x§-;k) + B(Gk_ék>;k (4.129)

Define
a, = [G-61x " (5.130)

L9 is termed the error excitation vector. It can be interpreted as the
. . Lt * :

difference between the optimal input, W and the input that would occur
*

. ' g . ) .
-1f the feedback matrixz Gk was used vhen the system was in state Xy -

Substitution of (4.127) and (4.130) into (4.129) produces

o .
e,y = (A+BG e, + By (4.131)

From (4.123) and (4.126) and the definition of o (4.127) it is apparent

that

eg = O . (4.132)
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From (4.131) and (4.132) it is apparent that if qy = 0, k=0,1,+...,N-1

then ek

if g, k=0,1,...,N-1 is kept small then e

= O for k=0,1,...,N. Further if one assumes (A+BG§) is stable,
" k=0,1,...,N will be small,
and the state trajectory using structured state feedback [xijg will be
close té the optimal [;k]g' (1.3) implies that if this éan be achieved

then the Structured Control Policy will have an expected cost J close to ~

*
the optimal expected cost J.

D) Minimum Error Excitation!the Direct Approach

A reasonable Structuréd Control Policy to use as the initial Linear
Control Policy m(0) is the one that minimizes

N-1 . .
T
Eq = E[ 2 qqu] (4.133)
k=0

Theorem 9:

The Structured Control Policy which minimizes Eq is a solution to

G0 = b 0ok <

for i=1,2,...,m and k=0,1,...,N-1 where g; is the vector of unconstrained
’ * *

gains in the i'th row of Gi defined by (l.24), Vii(k) and Vi(k) are the

values Vii(k) and Vi(k), defined by (2.33) and (2.37), assume when the

*
optimal control policy, m, is used, and

-~ -

s 1T ' '
Gk = | () (4.135)

o
(52)

am\ T
(6,)
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* s

- that ist 5; is the i'th row vector of the Optimal Complete State Feed-

*
back Matrix Gk'

Corollary:
If the Feedback Structure is a Partial State Feedback Structure,

then the Partial State Feedback Control Policy which minimizes Eq

may be obtained by solving

T% -l T*

Gﬁ = - [R BTS, B] [A +A2V (k)V l(k)] . (4.136)

%
for k=N-1,N-2,....,0, provided the required inverses exist. Sk is

A N . :
defined by .(1.7), and V#,Z,(k) and V#,(k) are the values Vx,z,(k) and

- *
Vx'(k) assume when T is used.

Note that (4.136) is (3.11) with the values S_ and V(k) assume when

k
*

the Optimal Complete State Feedbadt Control Policy, T, is used. Thus
the Partial State Feedback Control Policy which minimizes E is composed
of Partial State Feedback Matrices that are Optimal single replacements

*
in T.

Proof:

Substitution of (4.13%0) into (4.133) yields

N-1 - N=1
' T *m_ S * _T_..8 * _*T
k=0 : k=0 ’ -

S .
Each Gk’ k=0,1,¢4..,N-1 affects only one additive term of the cost function.
o)
Thus, the total cost function can be minimized by choosing each Gk to
minimize the term it affects.

Fach term can be expanded to give



****

Bloa] = E[kakaka . 2E[kakaka . E[xk(ek>TGS T (5.138)

This function is now in the form of (2.41). Therefore the same
argument as was used to get from (2.41) to (2.54) may be used. Upon

mzking the substitutions

*
}Elc e ch

T *T* .
[Q+A'S, Al = Gka in the first term of (2.41),

i . | o
R+ B Sk+lB]-‘— I in the second term of (2.41), and

T *m X - .
A"S, B =~ - G in the third term of (2.41).

(2.54) becomes

*T***

Floqd = EloGGxl+ ghie + 2(n) g, (4.139)

where g_is defined by (2.35),

- N - )
F}'{ = Vll(k) o ecs e o (L}-.lL[-O)
0 VG
: Yzz(k) coces 0
*
L 0 0 cosee me(k)

and

b.b5
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-~ -

hﬁ = - t’l(k)gi C (4.141)

T (k)82
n2 k) k

* : *
m
XCL

As (4.139) is a positive semidefinite quadratic form its minimum can be

found by setting the derivative equal to zero. Thus

3B qy q, ] - :
k ke T T : .
——sé;f—_ = 2g Tty + 2(h£) = O (h.142)

Substitution of (2.35), (4.140), (4.141) and the obvious algebraic

manipulation yields

(4. 134)

for i=1,2,ee..,m and k=0,1,...,N=1 as it must hold for every term in the
sum (4.137).

. If the feedback structure is a partial state feedback structure
and {}x' (k) is invertible for k=0,1,....,N-1, substitution of (4.134)

intou(l.BQ) and use of (3.12), (3.19), and definition (4.135) give

(4.143)

Substitution of (1.6) into (4.143) and use of (3.5) ﬁroduces
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* *
T —lBTS

: 1
1 — -
G = - [RB SkleJ k1

2XT -1
[A +‘A YX.Z,(k)vX.(k)J (4.13§)

Q.E.D.

The Structured-Control Policy that minimizes Eq is easily
obtained by first solving (1.6) and (1.7) to obtainV; and then using
(4.134) t6 obtain the unconstrained gain elements. The cost function E
costs the deviations from the optimal control strictly by their amplitude.
It would be more natural to use a cost function that céstéd deviations
in control by fhe increase in expected quadratic cost (1.4) that was

?

produced.

E) Minimum Error Excitation with Quadratic Cost

Theorem 10:

If a Linear Control Policy
' *
Tl" = [Gi 9 i=o, cecey N"'l Where Gi=Gi fOI‘ iék] (40144)

is used then

Ity - 3R = YEOol6 -G 1 [RBS_ BIG-Glx]  (h1i5)
Prooft

From (1.3) and (2.31) one obtains

S kA B .
J =. E[LO] = XE[ Z [szxi+ quui]] +‘2E[x§ka] + gE[uERuk]
i=0
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N

- 3 , |
* REDx 8 %] v Y T trls V] (4.146)

i=k+2

If the Optimal Complete State Feedback Control Policy m is used (L.146)

bécomes
k-1 o " -
% *T * *T * ) *T * *T *
J(m) = KELZ (x,@x, + wRu )] + ¥Elx Qx T + Bl Ru, ]
' i=0 o '
Co . N N
Cokmp % * - * : ’
ot JéE[Xk+lsk+lxl«:+1:I * x = tr[Sin], (4. 147)
i;k+2

If the control policy ' is used (1.1), (1.11) and (4.144)

imply
u, = ;. for i=0,1ye00e,k-1 (ﬁ.lhB)
i i
N .
u = G (4.149)
x = %, for i=0,1,....,k (1.150)
and '
*
*ke1 T

A?k + ng +;wk B i (4.151)

. Use of (4.14}4) and the substitution of (1.6) into (2.15) gives
. .
5, = S for i=N,..... Jk+1 (4.152)

By use of (4.146), (ﬁ.148), (4.150) and (4.152) one may express



k-1
) = YR GG R ]+ 4R ku:cK] + BLGa )R ]
' i=0 )
. .. N '
PR S % T+ % B trSV] (4.153)
- ‘ i=k+2

Subtraction of (L4.147) from (L4.153) produces

*T* * * *

1 ¥ R T
J(m') - J(ﬁ) = XE[ukRu Xk+1 k+1xk+1 wRye = X 51 %]

(L.154)
Substitution of (4.122) and (4.151) into (4.154) yields
* o T T 7% UL L
1 — -
J(@m) - J(m) = ZE[ukRu ukB S, -y Ry - wBS . Bu

%k T* T* *
* aka $k+1 - 2XkA Sier 1B i
¥ E[[Axk + Bu ] el [Axk * B“k] el v ]
(4.155)

**

* *
As W = kak and gk xk and xk is not correlated with vy by
assumption, the second term of (4.155) is zero. This, with the

addition and subtraction of a term gives,

J(m') - J(;) = %ﬁ[uitR + BT§k+1B]u -u [R + B'S B]uk
+ u [R + B S B]u- - u [R + BTSk 1B]uk + 2xkA

(4.156)

. 149

Btuk_i'iku
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From (1.5) and (1.6) one may obtain

R + BIS _Bln TS - Ax I3
- [R+BS ]‘fk = B S 8% 4.157)

Substitution of (4.157) into (4.156) and the combination of terms yields

a(m) - () = KE([w - IR + BT

8 B10u, -3 D) (5158)

* *x * 3k i
With the substitution of u = kak and u_= kak (4.158) becomes

J(nt) - 3w = KEGOLG, - 6 IR + B'S L BIMG - G Jx)

(4.145)
Q.E.D. .
Substitution of (4.130) into (L4.145) produces
‘ * ., T T*
J(m) - J(m) = %E(q [R+ B'S_,Blg) (4.159)

It is thus reasonable to presume that the Structured Control Policy

which minimizes

N-1 .
E = % E[o[R+BS Blg] (4.160)
QR = * U kel " .
k=0 )

will produce near optimal cohtrol if the structural constraints are such
that performance near to the Complete State Feedback Optimél can be

obtained.
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As EQ is a sum of the increase in costs produced by single
. .

replacements in T minimization of this cost function produces a

Structured Control Policy which is composed of Structured State Feedback

*
Matrices that are optimal single replacements in .

Theorem 11:
Thexunconstrained gain vectors = k=0,1,....,N-1 (defined by
(2.35)) of the Structured Control Policy that minimizes EQ may be obtained

by solving
Fg = - hk _ (4.161)

* * .
where Fk and hk are the values Fk and hk assume when the Optimal Complete

State Feedback Control Policy is used.

Corollary:
* * .
If [R + B'S, ,B] and V_,(k) are invertible for ksO;1,...,N-1 then

there is a unique Partial State Feedback Control Policy which minimizes

both E and E..
q Q

Proof:

Substitution of (4.130) into (4.160) produces

N-1 '
E = 2 E[q[R+BS .Blg]
QR ~ Y kel - Ok
k=0 -
N-1 »
= % E[x[G - GJ[R+B S,,1BI06 - G, Jx, ] (4.162)
0 ) ] R

- S )
Each Structured State Feedback Matrix, Gk’ k=0,1,...,N-1 affects
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) only one additive term of the cost. 'Thus the total cost function
can ‘be minimized by selecting each Gi to minimize the term it affects.

_ Substitution of (1.6) into a term of (4.162) yields

*
TS

‘ k+1BJ

* *
-lBTS Axk]

E[o [R + BYS _Bla.] = E[xALS _B[R + B
e ka1 Nt T L "kl et T

e T S* o S,T T% S*
+ 2E[xkA Sk+lBGkaJ + E[Xk[GkJ [R+ B Sk+lB]Qkxk]

(4.163)

(4.163) is of the form of (2.41). Replacement of the first term,

I

*
-lBTS

TE *
k+1BJ k+1AXk]

E[ngQ‘+ ATSk+lAJka-—Q-Ei;iAT§k+lB[R + B

*

* .
and the substitutions X X and S allow the argument to

: e+l Sk+1
be followed through to (2.54) which becomes

E[al[R + B'S, _Blq ] = E[xALS B[ﬁ +B%S _BTIBTS _Ax ]
% M " o Sy % Sieal k1 ke
Ty he
g F g+ 2 (1160
.

As [R + B Sk+lB] is positive semidefinite, (4.164) is a positive
semidefinite quadratic form. Its minimum may be found by taking the

derivative and setting it equal to zero.

3E [ T[R.+ BYS Blgl = 2g.F + - 0 (1.165)
s— % kel "% T B oy = .

g -

k
Therefore every unconstrained gain vector B of a Structured Control

Policy that minimizes Eb must be a solution to



S 4.53
jkgk = ~h | : (4.161)

T*

. )
If [R+ B'S,_ _B] and Vx'(k) are invertible one may follow the same

k+1
argument that was used to establish Theorem 2 to obtain (4.136).

* .
The Optimal Control Policy T is unique, thus the sequences of matrices

g 0] ; N-1 . . TE *

L k]N-l and [ (k)]o are uniquely defined. As [R+B k+lB] and_Vx,(k)
. * * -

are invertible (4.136) defines a unique GL for every Sk+l and V(k).

Thus there is one Partial State Feedback Control Policy which minimizes
both E and E..
q Q

Q.E.D.

Let n'(N) denote the value an) takes when ﬁ(b) ; ;, and let
n(EQ) denote the Structured Control Policy which minimizes EQ' ' (N)
Vand ﬂ(EQ) are computed using the same formulae and similar values. In
the computation of n(EQ) the values E , and s(k), k=0,1,....,N are used.
Aséuming Computational Procedure A is used then the computation of

. * - ’
m (N) uses V(k), k=0,1,¢e..,N-1 but the S ,k=N-1,N-2,....,1 are

Kk?
recalculated using the actual Gﬁ in the control policy ﬂ'(N). Ir
. Computational Procedure B is used then.the computation of n'(N) uses
Ek, k=1,2,¢..,N but the V(k),k=1,2,....,N-1 are calculated using the
actual Gi in the control policy m'(N). 1In either case m'(N) can bé said
0 be calculated using more information about the actual control that will
be used than does fhe calculation of ﬁ(EQ). It is then reasonable to
assume that ﬁ'(h) will have a su?erior performance to n(EQ) in most
cases.

Starting points A, C, D, and E all require the calculation of
*

*
Te As the direct use of M 1is the easiest starting point to implement

and as it is anticipated that it will give the quickest convergence to



the optimal in most cases, it is recommended. Usé of some or all of
the other starting points may give the user greater confidence that

the limiting Structured Control Policy that results is the optimal.



CHAPTER 5
EXAMPLES

5.1. Introduction

In this chapter the feasibility of the proposed computational procedure
will be established. It will be shown that simple controller .
structures can give near optimal performance. Experimental evidence-
will imply that a law of diminishing marginal returns for increasing
controller complexity exists. The problem of how to choose a good
feedback structufe will be considered, as well.

Computationél Procedure A, given in Chapter 4, is uéed to compute
Optimal Structured Control Policies for two linear systems, and many
possible feedback structures. Computational Procedure A is implemented
in one of the p;ograms'in the computer aided design package DILPAC [7].
A1l computations were done on a PDP - 15 computer with 32K of 18 bit
word core store and software multiply. Storage requirements limited thg
size of example that could be considered to seven states and fifty time
intervals. For a seventh order system computation times of ten

minutes were typical. Much bigger systems could be dealt with using larger

and faster machines.

Choice of Feedback Structures

The problem of choosing the feedback structure containing p gain
co~ordinates,which has the best performance,wiil be considered. Given
a system with n states and m inputs there are (hm)l/b!(ﬁm - p)! feedback
structures which contain p gain co-ordinates. Obviously it is
impossible to test all structures unless nm is quite small. This
problem has not been solved analytically. However, two useful

heuristic methods for selecting good feedback structures will be



evaluated. The concept of substructure is needed to present these
methods.
A feedback structure, cl, is a SUBSTRUCTURE of a feedback

structure, 02 if

(5,1) € 42(5)  for all i e {12%}

and J e {1,2,....,m } where

0‘k = [Lk(j) \ 351,25 0eeeym]
and ' .
#3) = {"wk(j,l), wk(j,z),......,ﬂ;k(j,n‘;)}
for k=1,2

Two possible ways of selecting reasonable feedback structures are:

1. Given that a Linear Control Policy having a good performance,
for example ;, is available; order the feedback gain co-ordinates (i,3)
by the magnituéés of the associated gains | Iki,j) l. Select substructures
containing p co-ordinatés associated with the larger gain magnitudes.

2. If the performance of some feedback structures containing
p+l gains are available, rank these structures by performance. Choose
the substructures of p gains common to two or more of the feedback
structures having good performance.

When selecting a set of likely feedback structures these two

approaches may of course be used in concert. The usefulness

of these methods will be determined experimentally.



" 5.2. A Stable Fourth Order System

Assume

where

kel T

0.964
-0.342
0.016

0.14L

with eigenvalues

M,z
1M, 5!

"5.4
15,1

0.991

1l

= 0.801 +

0.826

0.983 +

0.179

jO.127

jO.201

Axk + Buk + wk
0.180 0.017
0. 802 0.162
0.019 0.983
-0.163

0.019
0.179
0.181

0.820

(i.l)

(5.1)

(5.2)

(5.3)



- and

B = 0.019 0.001 (5.4)

0.180 0.019
0.005 0.019
-0.054 0.181

The numbers have been rounded to three decimals for reasons of

clarity. The value of the noise covariance matrix V& is assumed to be

vV = 0.01 -0.01 0 0
w (5.5)
-0.01 0.02 0O . -0.01
0 0 0.01 -0.01
0 -0.01 -0.01 0.025

The cost matrices §, R, and SN are chosen to be

Q = I R = 0.51I Sy = 51 (5.6)
and the number of time intervals
N = 50 5.7)

In order to test the affect of V., on the optimal structured control

0
policies two distinétly different Vb matrices will be considered.
Case A: It is assumed that no knowledge is available about the

initial state that is likely to occur. Thus

Vo = ; ) (5.8)

5.4
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\n

is selected so a good average behaviour results.

Case B: It is assumed

T .
VO = Xy¥%y + Vﬁ (5.9)
where
T
Xy = [10 0 10 0] (5.10)
and
Vo, = | 100.00  -0.00  100.0 o ] (5.11)
~0.01  0.02 0 ~0.01
100.0 0 100,01 ~ -0.01
| o -0.01 -0.01 0.025

In this case one "almost'" knows that a certain initial condition
will occur. As the magnitude of fhe initial condition Xq is much
larger than the disturbances the initial condition dominates tﬁe cost.
Feed forward control would work well. A feedforward control can bé'
generated using.the expected values of the states, therefore one would
expect any feedback structure that does not constrain all the gains in
"one row of the state feedback matrix to be zero would be near optimal.

Tables 1 and 2 contain various feedback structures and there
their performances for Case A and B respectively. Iists 4(1) and L(é)
define the feedback structure. p is the number of unconstrained gains
in the feedback structure. .It. is the number of iterations required
for convergence to the optimal étructured control policy, where an
iteration consists of N-1 evaluations of V(k), N evaluations of S, and
G i and a calculation of the expected cost.'.J is the expected cost using

. -7 71
the optimal structured control policy. T(0)= 7o DILPAC

*

. Jud o

PIO, Percentage Increase Over Optimal = : x 100%  (5.12)
J




5.6

*
vhere J is the expected cost. using the optimal control policy.

Jd ~J

PPI, Percentage of Possible Improvement = =——p x 100%
J._=J
u

‘('5.13)

where Jﬁ is the expected cost if no control is used.
Figure 3 contains the plots of PIO and PPI against the number
of gains used, p, for the feedback structures producing lowest cost.
Note the performance of the structured controllers is better for Case B
than for Case A.
In'Gase B the Structured Control Policy was calculated using
information about the initial condition that Jas likely to occur, thus
the controller was tuned to deal with this initial condition well.
One would expect the structured control policies calculated for Case B would

~

have poor performance should an initial condition distant from

T
X

0 = (10, O, 10, O] occur. In Case A the control policies are

computed assuming any initial condition on a sphere centred at the

origin has an equal probability of occurring. Thus, it is expected that

the structured control policies computed for for Case A will giveacceptable per-

formancé for any initial condiéion, tut their performance for initial condi-

tions close to xg = [10 0 10 0] will be inferior to those computed for Case B.
The presumption for Case B that all feedback structures which do

not constrain one input to be zero will be near optimal is verified.

The worst feedback structure of that type, [4(1) = 4 3 £4(2) = 4 1]

results in PIO = 15.4%, States 1 and 3 have large initial values and it

can be noted that policies that include at least one of these states

in Z(i) and in £(2) produce the structures of lowest cost for a fixed

number of unconstrained gains, p. In Case A the performance is

averaged over all initial condition directions and there is no bias



TABLE 1

TABLE OF STRUCTURED CONTROLLER COSTS FOR THE

FOURTH ORDER SYSTEM FOR CASE A

Uncontrolled Cost, J, = 56.482

Optimal Cost, J = 8.969

Ewpé 2(1) 2(2) p | I, J PIC% PPT%
Structured | 1,2,3,4 2,34 | 7| 2| 8.974 0.06 | 99.989
Structured 2,34 | 1,2,3,4,1 7 4 | 9.139 1.90 | 99.642
Structured | 1,2,4 1,23, | 7| & | 9.014 2.68 | 99.484
Structured | 1,2,3,4 | 1,3,4 7 L 9.273 3.39 | 99.360
Structured | 1,2,3 1,2,3,4b } 7 5 9.454 5.41 | 98.98
Structured | 1,2,3,4 | 1,2,4 | 7 6 9.800 9.26 | 98.25
Structured | 1,3,4 1,2,3,4 | 7 } 10 | 10,11 12.7 | 97.60
Structured | 1,2,3,4 | 1,2,3 7 | 11 | 10.15 13.2 | 97.51
Partial 245k 2,3, | 6| 4] 9.153 2.05 | 99.612
Structured 1,é,4 2,34 | 61 & 9.21% 2.76 | 99.478
Structured | 1,2,3 2,3,4 | 6 5 9.459 5.46 | 98.97
Structured | 1,2,3,4 3,161 5| 9.489 5.80 | 98.91
Structured 2,4 1,2,3,4 1 6 | 5| 9.545 644 | 98.79
Structured | 1,2,3,4 2,4 6 6 9.891 10.3 98.06
Structured | 1,3,4 2,3,4 | 6 | 11 | 10.13 1.1 | 97.56
Structured | 1,2,3,4 243 6 5 | 10.30 14.8 97.20
Partial 1,2,4 1,2,4 6 7 | 10.36 15.2 97.07
Partial 1,3,4 1,3,4 61 7 | 10.97 22.3 | 95.79
Partial 1,2,3 1,2,3 6 g | 11.78 31.3 94.08




TABLE 1 (Continued)

Type 2(1) w2 |plz | 9 p1of | PRI
Structured 2,4 2,3,4 1 5 5 9.583 6.85 | 98.71
Structured | 1,2 2434 1 5| L 9.588 6.90 | 98.70
Structured 2,3,k 3415 51 9.632 7.39 | 98.60
Structured | 1,2,4 2415 5 9.733 8.52 | 98.39
Structured 2,3 2,35,4 1 5 6 9.919 10.6 98.00
Structured 2,3,h 2,4 5 6 | 10.07 12.3 97.68
Structured 3,4 2;3,4 51 71 10.32 15.1 | 97.16
Structured | 2,34 | 2,3 | 5| 7 |00 | 17.1 | 96.78
Strucﬁured 1,4 2,34 | 51 6 |10.50 17.1 | 96.78
Structured | 1,2,4 2,1 51 9 |10.67 19.0 | 96.42
Structured | 1,2,4 2,3 5 7 | 10.76 20.0 9%.23
Structured 2 2,3, 4 | b 6 .10.07 12.3 97.7

" Structured | 1,2 3,4 1 4 5 | 10.10 12.6 97.6
Structured 2,4 3.4 1 4 6 | 10.18 13.2 97.5
Structured 2,3 .00 4 7 | 10.55 17.6 96.7
Structured L 2,34 | 4| 5 | 10.60 18.2 96.6
Structured | 1 2,34 | & 7 | 11.10 23.8 95.5
‘Structured - 1,2,3,4 | 4 1| 11.20 24.9 95.3
Structured | 1,2,3,4 - Ll 1| 11.34 26.4 | 95.0
Structured 2,3 2.4 L | 10 | 11.43 274 94.8

Partial 3., by 2.4 1 4 7 | 11.44 275 94.8
Structured 2,4 1,3 4L | 11 | 11.70 30.5 94.3
Partial 2,k o | 4|17 |11.88 | 32.0 | om0
Structured 3,4 | 1,2 4} 9 | 12.35 37.7 | 92.9
Partial 1,2 1,2 L 8 | 12.37 38.0 92.8




TABLE 1 (Continued)

PIC%

Type 4(1) w2) ||, | 9 PRI
Structured | 1,3 P L} 12 | 12.39 38.2 92.8
Partial 1,3 1,3 L1 36 26;58 196 62.9
Structured . 2 3, | 3] 6 | 10.67 19.0 | 9.4
Structured - 2,34 | 3 3 1 1l.21 25.0 95.3
Structured 2,3,k - 3| - | 1145 27.7 | 94.8
Structured | 1,2 L 1 3 8 1 11.83 31.9 94,0
Structured 2,k 3 31 9] 12.00 33.8 93.6
Structured 2 2,4 3116 15.44 38.7 92.7
Structured | 1,2,4 - 31 - | 12.50 29.4 92.6
Structured L 3,4 | 31 - | 12.66 k.2 92.2
Structured - 1,2,4 3 8 | 12.72 41.8 92.1
Structured 2,k L | 31 15 | 12.82 42.9 91.9
Structured 2,4 2 3 | 14 | 13.15 46.6 | 91.2
Structured | 1 2,k 31 12 | 13.17 46.8 | 91.2
Structured - 1,3,k > 9 | 13.41 49.5 90.7
Structured | 1,2 3 3111 13.?2 52.9 90.0
“Structured | 1,3,4 - 3| - 13,é7 5hk.6 89.7
Structured | 1,2,3 - 3 | 10 | 14.16 57.9 | 89.1°
Structured | 1 3,4 13 - | 14.18 58.1 89.0
Structured - 1,2,3 31 -~ | 15.32 70.8 86.6
Structured 2 L2} 14 | 13.63 52.0 90.2
Structured - 24k 2 | 12 13.65 52.2 90.1
Structured 2,k - 2|10 | 13.99 56.9 89.4
Structured - 3,412 7 | 14.25 58.9 88.9
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TABLE 1 (Continued)

Type £(1) 4(2) I, J PICH PPI%
Structured 3, L - 7 | 1452 61.9 88.3
Structured | 1,2 - 7 | 14.57 62.4 88.2
Structured L 2 13 | 1s.12 68.6 87.1
Structﬁred 2 3 11 | 16.19 80.5 84.8

Partial 2 2 15 | 17.34 93.4 | 82.4
Structured | 1 11 | 18.12 102 80.7
Partial L 12 | 18.15 102 80.7
Structured - 1,4 v12 18.31 104 80.3
Structuréd 1,4 - 9 | 18.58 107 79.8
Structured | 1 3 20 | 29.87 233 56.0
- Partial 1 1 26 | 31.27 | 249 53.1
Partial 3 3 78 | 16.23 | 115 21.6
Structured 2 - 9 | 19.15 | 113 78.6
Structured - 2 11 | 19.49 117 77.9
Structured - 10 | 19.96 | 123 76.9
Structured b - 11 | 20.63 130 75.5
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TABIE 2

TABLE OF STRUCTURED CONTROLLER COSTS FCR THE

FOURTH ORDER SYSTEM

FOR CASE B

Uncontrolled Cost, J, = 2172.8

*

Optimal Cost, J = 559.3
Type £(1) 4(2) p [T, | 9 PICK PPT%

Structured | 1,2,3,4 2:3,4 | 7 2 I 559.4 0.0179 | 99.993
Structured { 1,2,4 1,2,3,6 } 7| 3] 539.4 ] 0.0179 | ©9.993
Structured 2,3,4 | 1,2,3,4 | 7 3 1 559.4 0.0179 | 99.993
Structured | 1,2,3,4 | 1,3,4 7 3 | 559.5 | 0.0358 | 99.987
Structured | 1,2,3,4 | 1,2,4 7 3 | 559.6 0.0536 | 99.981
Structured | 1,2,3 1,2,3,4 | 7 3 | 559.6 0.0536 | 99.981
Structured | 1,3,4 1,2,3,4 | 7 5 } 559.9 0.107 99.962
Structured | 1,2,3,4 | 1,2,3 7 4 | 560.0 0.125 | 99.956

Partial 2+3,4 2,3,4 | 6 2 ] 559.4 0.0179 | 99.993
Structured | 1,2,4 2,34 1 6 3 | 559.4 0.0179 | 99.993
. Structured 2,34 1,36 |6 3] 559.6| 0.0536 | 99.981
Structured | 1,2 1,2,3,4 | 6 | = | 559.7 0.0715 | 99.975

Partial 1,2,4 1,2,4 6 5 1| 559.9 0.107 99.962
Structured 2,3 1,2,3,4 | 6 7 | 560.2 0.161 99.944

Partial 1,3,4 1,3,4 6| - | 560.4 0.196 99.931

Partial 1,2,3 1,2,3 6| - | 561.0 0.303 99.894
Structured | 1,2,3,4 2,4 6 6 | 578.5 3.43 98.810
Structured 2.4 1,2,3,4 | 6 5 | 582.0 4.06 98.593
Structured 2,3,k 3. | 5 3| 559.6 | 0.0536 | 99.981

5.11




TABLE 2 (Continued)

Type £(1) L(2) p | I, J PICH PPT%
Structured | 1,2 2,34} 5 3t 559.7  0.0715 | 99.975
Structured | 1,2,4 3,4 5 3 | 559.7 0.0715 | 99.975
Structured | 1,4 2,5, | 5 L | 559.9 0.107 99.962
Structured 40| 2,34 15| 5/|560.0] 0125 | 99.956
Structured | 1,2 1,2,4 5 5 | 560.1 0.143 99.950
Structured | 1,2,4 1,4 51 5 |560.2 ] 0.161L | 99.944
Structured 2,3 2,3,4 | 5| 5| 560.3 ] 0.179 | 99.938
Structured 2,3 1,3,4 51 5 |50.5}| 0.2k | 99.925
Structured | 1,2,k 2,5 |51 8|58.9] 3.50 | 98.785
Structured 2,4 2,3,4 } 5 6 | 582.0 | L4.06 98.593
Structured | 1,2 3, ) 4} - ] 559.9 0.107 99.962
Structured i,a 1,4 L 560.4 | 0.196 | 99.931
Structured 2;3 3, { 4 | 5 | 560.6 0.233 99.919
Partial 3,4 3, 4} - 560.6 0.233 99.919
Structured | 1,L4 3.4 | 4| 6]560.9 | 0.28 | 99.900
Structured 3,4 11,2 L | - }561.1 | 0.321 |} 99.888
. Partial 1,2 1,2 L | - {561.2 ) 0.321 | 99.888
Structured 3 2,5, 4 1 & 6 | 561.2 0.340 99.882
Structured 3 1,3,4 L | 9 562.7 | 0.429 | 99.789
Structured | 1 2,34 | 4 } 23 | 563.8 | 0.805 | 99.721

Partial 1,3 1,3 L | - | 5712 2.11 99.268
Structured 2,4 34 4] 7| 582.4 | k.13 98.568
Structured 2 2,34 | 4} 81} 583.3 | L.29 98.512
Structured | 1,2,3,4 - L 1 | 632.8 | 13.14 95. Ll
Structured - 1,2,3,4 | & | 1| 656.6 | 17.4 9%.969
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TABLE » (Continued)

Type (1) L(2) p | I, J - PIOP PPI%
Structured 3 30131 7 |563.1] 0.680 1} 99.764
Structured | 1,2 1 31 7| 564.1}f 0.859 | 99.702
Structured | 1,2 3 31 17 | 565.3 1.07 99.628
Structured | 1,4 3 3| 23| 565.5 | 1.11 99.615
Structured | 1 3,40 3 1 24 | 566.6 1.31 99.547
Structured | 1 1,4 3|21} 567.0] 1.38 99.522
Structured 2,3 3 3 | 16 | 567.0 1.38 99.522
Structuréd 1 2,3 3 '23 568.3 1.61 99.442
Structured | 2 3.4 | 3|10 ] 585.8 138 |o8.u81
Structured | 1 3 2| - | 578.3 3.40 98.82
Structured 3 1 2| - | 58.9} bu.22 98.54

Partial 1 1 2 | - | 581 L.26 98.52
Partial 3 3 2| - | 59%.8 6.70 97.68
Partial 2 2 2 { - | 618.8 | 10.6 96.31
Structured 2 L {2 | 16§ 621.7 | 11.2 96.13
Partial L L1221} - 645.7 | 15.4 9L4.65
Structured 3 - 1| 27 | 674.9 | 20.7 92.84
Structured | 2 - 1|11 ] 679.6 | 21.5 92.54
Structured | 1 - 1] 3] 679.8 1 21.5 92.53
Structured - 1 1} 34| 682.3 | 22.0 92.38
Structured - 3 14§70 688.1 | 23.0 92.62
Structured - 2. 1|15 | 698.6 | 24.9 91.37
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Figure 3 Plot of Performance vs. Complexity for the Fourth Order System
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toward structures including states 1 and 3, igéact’states 2 and L seem
more important. It can be concluded that the performance of a given
feedback structure in relation to other possible structures of equal
complexity is influenced by Vb.

| Figure 4 indicates that a law of diminishing marginal returns
with increasing controller complexity applies in both cases. In

Case A, 78.6% of the PPI is produced by using a c;ntroller which
requires one measurement, one actuator, amd one feedback gain to be
stored. Use of a controller with three gains produced 96.4% of the
possible improvement (PPL) and only a 19.0 PIO. | - In Case B
this law of diminishing marginal returns is even more pronounced. The
controller using one gain produced 92.94 , ' PPI and the controller
using three gains produced 99.76k4 PPIand a PIO of 0.680%.

-

Evaluation of the Heuristic Methods for Selecting Feedback Structures

In Tables 3% and &4 for Cases A and B respectively are listed:
the best structures containing a fixed number of gains, p; the gain
co-ordinates they contain ordered in terms of the associated magnitudeé
in the steady sfate optimal state feedback matrix, é; and the
ranking in terms of performance of the two best feedback structures

'containing ptl gains of which the specified structure is a substructure.

For both cases A and B

& = [ -0.392 -0.669 -0.482 = -0.634 (5.14)
" ~0.066  -0.482  -0.737  -0.767

Thus the ordering induced upon the co-ordinates of the state feedback

*
matrix by the magnitudes of the gains in G is



TABLE 3
EVALUATION OF THE HEURISTIC STRUCTURE SELECTLON

METHODS FOR CASE A

sy Gy | Orderea Gaine | 3 L ORLCE
7 | 1,2,3,4 2,3,k 1,2,3,4,5,6,7 -
6 2,34, | 2,34, | 1,2,3,4,5,6 1 and 2
5 2,4 2,3,4 1,2,3,4,6 ‘1 and 2
k 2 243,k 1,2,3,6 1 and 2
3 2 3,4 1,2,3 1 ang 2
2 2 L 1,3 1 and 4
1 2 - 3 L and 3
TABLE 4L
EVALUATION OF THE HEURISTIC STRUCTURE SELECTION
METHODS FOR CASE B
oy Ty | Omdered Gains Pl Siraohures
7 1,2,3,4 2,3,k 1,2,3,1445,6,7 -
6 2,3,k 2,34 1,2,3,4,5,6, 1 and 2
5 2,3,k 3,4 1,2,3,4,5 1 and 3
by 1,2 3,4 1,2,3,7 2 and 3
3 3 34k 1,2,5 % and 4
2 1 3 T 2,7 . 3 and L
1 3 - 2 2 and 4
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Ordering

Co-ordinates l (2,4)] (2,3) l (1,2) I (1,4) l (1,3) l ('2,2) l (1,1) l

The optimal feedback structure, Oz containing 3 free gains fa-

Case A is by Table 1

5 = W= {2} 4@ = {34}1 - {(i,é%(é,;),(a,u)}

Denoting these co-ordinates by the ordering induced upon the co-ordinates
*

63 :
The feedback structure g, is a substructure of the feedback structure

_ 3
[£(1) = { 2 } ;s L(2) = { 2,3,4} ] and the feedback structure

*
by G one says consists of the ordered gains, { 1,2,3 } .

[L(1) = { 1,2'}; L(2) = {3,4 } 1. As these feedback structures have the

o

two lowest expected costs of the structures containing 4 unconstrained

*
gains, ¢, is termed a common substructure of the feedback structures

3
containing p+1l, 4, gains ranked 1 and 2 by cost. All other entries in
Tables 3 and 4 are made in the same manner.

Table % indicates that the First Rule works reasonably well. Note,
however, the presence of gain 6,(2,2), seems to be more important than
-fhe presence of gains 4,(1,4), or 5,(1,3), (5.14) indicates these
gaiﬁs differ little in magnitude. The presence of gain 3,(1,2), seems
more important than the presence of gains 13(2,4) or 2,(é,3), again
these gains differ.little in magnitude. One can infer that the size of
the differences in gain magnitudes should be considered when choosing
structures. The results for Case B, Table 4, also indicate that states
associated with the iarger gains in E are more likely to be in the Optimal

Structure than not. Gain 7,(1,1), appears in several optimal structures

however. This can be attributed to the special nature of Vb in Case B.
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Rule two is also justified. In case A the results are
particularly striking. To use this rule successfully one must
evaluate enough feedback structures to be sure one has found the four

structures containing p+l gains that are lowest in cost.

The Optimal Structured Gain Trajectory Plots

Figures 5 and 5 contain the plots of the optimal complete state
feedback gains against time. A1l the gains settle to their steady
states within this time interval.

For Case A the ploté of the unconstrained gains vs. time for
some good feedback structures are contained in Figures 6 and 7,

Figure 8, Figure 9 , Figure 10, and Figure 11. The figures are
arranged in order of decreasing controller complexity. Since the gains
are the solution of a two boundary value problem the time variations
occur both near the starting time and near the fer%inal time. Note

the time variations‘increase as the controller complexity decreases;

The gain trajectory, depicted in Figure 11, which is associated with the

simplest feedback structure [£(1) = { 2 } 1, fails to reach a steady

state during the time interval.
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Figures 13% and 14 are the plots of the controller gain trajectories
for two good feedback structures for Case B. The effect the two different
values of VO have on the opt?'_mal structured control policy for the

feedback structure [Z-(-l) = {1,2} : 2:(2) = {3,4}] may be ascertained
| by comparing Figures 8 and 13. In Case B, Figure 13, no steady state

is reached and the gains appear periodic. This can be attributed

to thei:r.- "following" th.e expected value of state induced by the expected
initial condition. Figures 12 and 14 contaiﬁ the optimal structured control
policies for the structure [.@(i) -_-{ 1} s L(2) = { B}A] for

Cases A and B respectively. While this structure provides good
“control for Case B (i’IO = 3.4%) for Case A the PIO is 23%%. Thus VO
can have a large effect on both the gain trajectorie_s and the choice of .
feedback structure.

”

A Non-Optimal Solution to the Two Point Boundary Value Problem.

When Computational Procedure A was used with a feedback structure

[Z(i) ={3} , £(2) = { 3}] and with m(0) = :r , the procedure
\

converged in 52 iterdtions to the control policy illustrated in Figure 15.
‘The -expected cost, J, associated with this‘ Structured Control policy
is 58.28. As the uncontrolled cost, Ju , is 56.48 this control policy
is worse than no control at all. VWhen the linear control policy,
m= [G =0 | i=0,1,....,0-1], was used as the initial control policy the
computational procedure converged in 92 iterations to the structured
control policy depicted in Figure 16 . The control policy of Figure16
has an expected cost of 46.23. When Initial Condition B given in
section 4.4 was used the computational procedure converged to the
structured control policy of Figure 16in 78 iterations. It therefore
seems likely that the structured control policy of Figure 1 6is the

Optimal Structured Control Policy. The Optimal Control.Policy does not



- ' 5.19

.make a good Qtarting point for fhe étructure r { 3 } 3 { 3 } ] because
liftle control is possible using this feedback structure; Thus the
sequences [Sk]g_l and [V(k)]g associated with the optimal

structured control policy will be far different from the sequences
assoclated with ;. This result implies one must find an initial linear
control policy which results in a system behaviour near that of the
optimal.structured control policy, to énsure that the computational

procedurekwill cbnverge to the optimal structured control policy.

An Unstable Minimum Norm Controller

It was mentioned in section 4.4, Part C if the gains deleted are
of the same magnitude as those retained the ﬁerformance of the minimum
norm controller may be very poor. If the feedback structure
[4(1) = {1,3} s 2(2) =‘{1,3}-] is specified then the structured state

*
" feedback matrix that differs the least from G in Norm is

G” = -0.392 0 -0.482 © (5.15)

~-0.066 0  -0.737 0

(5.15) is obtained from (5.14) by deleting those gains constrained to be

. ) S
zero. The eigenvalues of the closed loop system, A + BG™, are

1.008

M,2

0.9802 + j 0.2356 |\ |

A

o 0.822

0.7923% + j 0.2200 |x3 4|

Thus the minimum norm controller has made a stable system unstable.
The optimal steady state structured state feedback matrix computed

using the algorithm given in Chapter 8 is



& = ~1.419 0 ~1.646 0

-1.217 © 2.572 0

The closed loop eigenvalues are

A

1,2 0.8538 + j 0.2360 ]k1’2| = 0.886

En

0.9193 + j 0.1719 ‘KB,A‘ = 0.935

5.3. An Unstable Seventh Order System

.. ... Assume _ _ _

where

A = | 0.605 0,197  0.027 0 0.002
-0.027  0.998 0,250 0 0.031
-0.197 -0,027  0.998 0 0.248
-0.002  0O.221 0.029 0.779  0.224

0 0 0 0 1.0
0 0 0 0 0.219
0 0 0 0 -0.264

--1x10'” 0.002

5.20

(5.16)

-0.002 0.029

10~ 0.002
0 0

0.755 0.193
-0.193 0.755




and

B ; 0.002
0.034
0.281
0.039
0.250
0.083

-0.009

1x10”
0.00%
0.031
0.029
0.250
0.083

~0.009

0.002

0.034

0.279

0.231

0.026

0.219

The eigenvalues of the A matrix (5.17) are

N o= L.012
M, = 1.0
13 = 0.9744
X’+ = 0.7788
A5’6 = 0.7546 + j 0.1927 |x5,
m7 = 0.6137
It is assumed
Vg = I, V = ©.1I, @ = I,

50.

and N

5l

SN

5.21

(5.18)
. (5.19)
0.778
13 R = 1I (5-20)
(5.21)

Table 5 lists the structures for which optimal structured control

policies were computed and the resulting performance. The structures

are grouped by the number of unconstrained gains they contain and

arranged in order of increasing cost. The column headings have the



TABLE 5

STRUCTURED CONTROLLER COSTS FOR A

SEVENTH ORDER SYSTEM

Uncontrolled Cost, J,; = 2637.5

5.22

Optimal Cost, J = 79.26'

p| n; 2(1) £(2) ORI N PIO% | PPTH

19 61617 1121315$617 192a31ll’9596 1$213o}+$51607 2 79-26 ~0 ~ lOO
17 55557 112$3$517 21314!5161 112939l+i55617 2 79'32 0‘0758 990997
14{5,3,6/1,2,3,5,7 2,5,6 1,2,3,4,6,7 31 79.85 0.745 [99.976
14{7,0,711,2,3,4,5,6,7 - 1,2,3,4,5,6,7| 1| 86.87 9.60 [99.702
14]7,7,001,2,3,4,5,6,7|1,2,3,4,5,6,7 - 1| on.7u| 19.5  [99.391
1410,7,7 - 1,2,3,4,5,6,7|1,2,3,4,5,6,7| 1| 95.12] 20.0  |99.380
12|4,3,5|1,2,3,5 2,5,6 1,2,3,4,7 3| 80.19 1.17 199.964
1|4, 2,5(1,2,3,5 5,6 1,2,3,4,7 4| 80.88| 2.04 199.936
913,1,5}2,3,5 5 1,2,3,4,7 31 81.35 2.6L 199.918
9 Ll"l,l'l' 1$21315 5 1121377 }'} 81081 3-22 990900
813,1,4|2,3,5 5 2,3,4,7 4] 81.95] 3.39 |99.89L
813,1,4}2,3,5 5 1,2,3,7 3| 82.02| 3.48 ]99.892
8}4,1,3{1,2,3,5 5 2,3,7 L 82.13| . 3.62 [99.887
813,2,3|2,3,5 5,6 2:3,7 Ll 82.36 3.91 [99.878
813,1,4|2,3,5 15 1,2,3,4 L| 8L.37 6.5 199.800
8{4,1,3{1,2,3,5 5 12,3,k Ll 8u.n1| 6.50 |99.798
8|4,1,3]1,2,3,5 5 1,2,3 L{ 8s.21| 7.51 [99.767
812,1,5|3,5 5 1,2,3,4,7 ni 85.58] 7.97 [99.752
8{4,1,3]1,2,3,5 5 3,4,7 L{ 8s5.65 8.06 [99.750
813,1,4{2,3,5 5 1,7,4,7 Lt 86.1L 8.68 99.731




TABLE 5 (Continued)
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p | ng 2(1) e 2(3) .| 9 PICH ?PI%
813,1,4{1,3,5 2,3,4,7 L 86.24 8.81 [99.727
813,2,3}3,5,6 5,6 3,4,7 7] 104.2 31.5 99.025
713,1,3}2,3,5 5 2,3,7 Lf 83.61 4.2% |99.869
713.1,3}2,3,5 5 2,3,k u| 8u4.78 6.96 |99.784
7|4,1,2]1,2,3,5 5 2,3 5| 85.50  7.75 {99.759
713,1,3]2,3,5 5 1,2,3 Li 85.42 7.77 199.759
713:1,312,3,5 5 3,4,7 Ll 86.29 8.87 199.725] -
712,1,4|3,5 5 2,3,4,7 5| 86.35 8.95 |99.722
712:1,4]2,3 5 2,3,4,7 5| 87.93] 10.94 |99.661
712,1,4|3,5 5 1,2,3,4 51 89.14) 12.47 }99.613
717,0,01,2,3,4,5,6,7 - - 1| 110.4 3%.29 98.78
711.2,4]2 5,6 1,3,4,7 8] 110.6 39.54 {98.77
710,7,0 - 1,2,3,4,5,6,7 - 1| 208.7 163 OL4 .94
710,0,7 - - 1,2,3,4,5,6,7] 1| 246.6 211 93.46
613,1,2}2,3,5 5 2,3 L 85.78 8.23 [99.745
6|2,1,3{3,5 5 2,3,7 y| 87.03]  9.80 |99.696
613,1,2}2,3,5 5 3,7 5| 87.05 9.83 199.695|
613,0,3|2,3,5 - 2,3,7 3| 88.82{ 12.1 199.626
6l2,1,3]2,3 5 243,7 5| 89.05 12.6 [99.617
612,1,3|3,5 5 2,3,k 5| 89.75] 13.2 [99.589
613,1,2{2,3,5 5 3,4 51 90.93| 14.7 [99.543
612,1,3[2,3 5 243,k 5| 91.03] 14.8 ]99.540
612,1,3|2,5 5 2,3,7 4| 91.57] 15.5 |99.518
6|3,1,2|2,3,5 5 2,7 5| 93.07]  17.4 |99.1460
6(2,1,313,5 5 3,4,7 7] 104.8 32.2 |99.001}"
5|2,1,2}3,5 5 2,3 5/ 90.88} 14.7 ]99.545




TABLE 5 (Continued)

524

p | ng £4(1) 4(2) £(3) .| 9 PICH PPI%
513,0,2[2,3,5 - 243 Li 92.1% 16.3 |99.496
513,1,1| 2,3,5 5 3 6| 92.17 16.3 [99.495
5(2+1,2[2,3 5 2,3 5| 92.45 16.6 }99.484
5(1:1,3]3 5 2,3,7 6] 93.18 17.6 }99.455
5{3,0,2|2,3,5 - 3,7 51 93.k2 17.9 [99.446
512,0,3{3,5 - 2435,7 51 94.77 19.6 199.393
5{2,1,2|2,3 5 3,7 5/ 95.031 19.9 |99.383
512,0,3|2,3 - 243,7 7| 124.9 57.6 |98.22
L11,1,213 5 243 5{ 97.08 22.5 199.303
412,0,2]3,5 - 2,3 99.03 2.9 ]199.227
411,1,3)|5 5 2,3 51 99.36 25.L 9§.214
412,1,1]2,3 5 3 6] 99.83 ;6.0 99.195
413,0,1}2,3,5 - 3 6] 99.85| 26.0 [99.195
k10,1,3 - 5 2,3,7 4| 100.8 27.2 ]99.158
4{3,1,0]/2,3,5 > - 4| 101.0 27.4 199.150
412,1,112,3 5 7 5| 104.0 31.2 |99.032
411,1,2{3 5 2,7 71 109.2 37.8 198.83
k12,1,113,5 5 2 91 113.6 43.3 198.66
412,0,2|3,5 - 3,7 11| 127.2 60.5 |[98.13
L11,1,2{3 5 3,7 9] 127.2 60.5 198.13
412,1,113,5 5 3 10| 128.6 62.3 |98.07
311,0,2[5 - 2,3 5] 104.8 32.2 }99.01
3(0,1,2 - 5 2,3 L1 107.3 35.4  193.90
312,1,0(2,3 |5 - 3| 110.4 39.3 198.78
313,0,0{2,3,5 - - Ll 114.1 44,0 198.64 -
3(1,1,1|3 5 2 6] 119.8 51.1 | 98.42
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TABLE 5 (Continued)
p| £(1) 2(2) 2(3) Il 9 PIO% | PPI%
311,1,113 3 6] 135.4 70.8 97.81
312,0,113,5 - 3 8 128.1 4.2 97.70
3}2,0,112,3 - 3 : 7] 139.4 75.9 97.65
311,0,2}3. - 2,3 31{ 198.9 | 151 95.32
3{0,1,2 - 2,7 23| ulh.7 | 423 86.89
2{1,0,115 - 3 9 1y1.2 | 78.1  |97.57
210,1,1 - 5 3 6| 1uk.2 | 8L.9 |97.46
211,1,0|3 - 51 146.7 85.1 97.36
212,0,0]2,% - - 5{ 163.6 | 106 96.70
212,0,013,5 - - 71 164.1 } 107 96.68
2[0,0,2 - - 2,3 6] 302.1 | 281 91.29
2{1,0,113 - 3 9| 331.4 | 318 90.1L
11,0,013 - - 71 346.7 | 337 89.55
1{0,0,1 - - 3 Li b63.4 | 485 84.98
1]/1,0,0}l5 - - 14 f1nsh {1734 46.26
1{0,1,0 - 5 - 121469 1753 45,68
-1l1,0,0]2 - - 202488 13039 5.843




TABLE 6

EVALUATION OF THE HEURISTIC STRUCTURE SELECTION

METHODS FOR A SEVENTH ORDER SYSTEM

~ Structure Gains Used Rank by Cost
p » * of p+l
n; L(1) [£(2)] £4(3) G Ordering |p=7 Ordering | Structures
813,1,42,3,4| 5 |2,3,4,7}1,2,3,4,5,6,7,11
713,030,350 5 |205.7 [1.2,3,8,5,6,7  |1,2,3,4,5,6,7] 1 and 2
6(3,1,2]2,3,5] 5 2,3  |1.2,3,4,5,6 1,2,3,6,5,6 | 1 and 2
5i2,1,2|3,5 | 5 |23 [1.2.3,4,6 1,2,3,4,6 1 and 2
{1,1,2|3 5 (2,3 |1.2,3,6 1,3,4,6 1 and 4
3]1,0,2|5 - |23 |6 1,2,6 2 and 3
__l2]1,0,1]5 - I3 1,4 1,2 1 and 7
{141,0,0}3 - - ]2 3 3 and 4
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same meaning as in Tables 1 and 2, but an extra column head n, is
included. This column contains, from left to right, the oy, 1, and n3
for each feedback structure that was used.

Figures 18, 19, and 20 contain the optimal complete state feedback
gain trajectories for inEEts one, two, and three respectively. As can
be clearly seen there is a wide variation in the magnitudes of the gains.
This suggests Method 1 can be successfully applied using the ordering
iﬁduced on the gain co-ordinates by 5. When feedback structures containing
only those p co-ordinates corresponding to the
P largest gains in the a matrix were tried it was found that with p 2 7
there was little increase in cost over the use of ;. Several likely
8 gain structures were considered to suggest other promising 7 gain
structures. Then a careful search for the best structures with
P ; 7, 6,000.,1 was made using a combination.of Methods 1 and 2.
-Figure 17 is the plot of PPI and PIO against p for these best structures
It shows that the improvement in performance obtained by use of
an extra gains decreases as the number of gains increases. The shapes of
the curves in Figure 17 are quite similar to those of Figure 3.

There seems very iittle incentive to use a controller containing
more than 7 gains. The optimal structured control policy associated
.‘w-ith the best 7 gain structure [£(1) ={2,3,5 }.; 3(2) ={ 5 };
5(3) = {2,3;?}] is plotted in Figure 21l. It produces only a.4.23% in-
crease in cost over optimal, and 99.869 of the PPI.

A controller cohtaining % gains and requiring only three measurements
and two inputs produces control which could still be termed near
optimal with a PIO %‘32.2%. The optimal gain trajectories for this
feedback $£ructure are plotted in Figure 22.

The best controller requiring 2 gains produces a 78.1% PIO. This

however is 97.57 PPI. The large PPI figure can be attributeq to. the
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uncontrolled system being unstable.
Figure 23 is the plot of the optimal controller gain trajectory
2 = n3‘= O).

for the best single gain structure, [£4(1) = { 3 }J (i.e. n
*
This results in an expected cost 337% greater than J, but it does

stabilize the system. The optimal structured state feedback matrix

when k = 20 is

. . 1
S
Gao - 0 0 -1.13 O 0 0 0
0 0 0 0 0 0 0
. 0 0 0 0 0 0 0
(5.22)

The eigenvalues of A + BGgO are

Al = 1.0

. 12,3 = 0.8292 + j 0.1239 |x213| = 0.838L
M5 = -0.7856 +-j 0:2910 |x415| = 0.8314
16 = 0.7788.
' A, = 0.5601 ’

“Thus if simple stability is all that is required a controller using one

gain, one measurement, and one actuator would suffice.

Evaluation of the Proposed Structure Selection Methods

Table 6 contains the evaluation of the proposed structure selection
methods for this example. This table is similar to tables 3 and 4 and
the entries were constructed in the same manner as those of tables 3 and

l*‘.
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In addiéion to ordering the gain co-ordinates by the ordering
implied by E they have been ordered by the magnitudes 6f the optimal
gains of the feedback structure which gives lowest expected cost for
P = 7. This ordering can be seen to be more useful than the E
ordering when p = 2. The optimal steady state feedback matrix is
[ . 7

¢ = | 0.197 -0.569 -0.780 -0.002 -0.720 -0.064 -0.150

-0.054  -0.143 0.102 -0.122 -0.730 -0.184 0.021

0.231 -0.564 -0.845 -0.163 -0.122  0.147 -0.451

(5.23)

<

The ordering induced on the gain co-ordinates is

Ordering 1 l 2 | 3 ’ 5 . 6 | 4 l 3 ’ 9 llo 'll IlZ_'l3 il4 l15 i16 l

.Co-ordinate 3,3'1,3'2,5'1,2]3,2’3,7!3,1‘1,1'2.6‘3,4]1,713,6!2,2’3,5l2,4l

Ordering |17 |18 ’19 lzo |21 \l+

Co-ordinate( 2,3 1,6}2,1|2,7|1,4["5

For the feedback structure [£(1) = {2,3,5}-; L(2) = { 5 }; L(3) = { 2,3,7}’3
* the structured state feedback matrix of the optimal structured control policy,

at time k = 20, is

Go = 0 -0.572 -0.798 0 -0.811 0 0
0 0 0 0 ~0.790 0 o}
0 -0.533 -0.824 0 0 0 -0.506

(5.24)



.The ordering induced upon the gain co-crdinates is.

Ordering l 1 I 2 l 3 l b '
>

Co-ordinate

Both‘methods of selecting feedback structures wofk well, but
Method é does not seem to work as well as Method 1 when p £ 2. It
was found that Method 2 could be usefully used in a negative sense. That
is substructures of a structure that has a high cost;need not be

tested.

An Optimal Structured Control Policy with a Periodic Behaviour

The optimal structured control policy of the feedback structure

o = = {3} ) = {23}1 .29

depicted in Figure 55, can be clearly seen to have a periodic nature.
The expected cost J associated with it is 198.9. With m(0) = ; it
took 31 iterations to converge. It has been shown that the system can
be stabilized using a constant gain feedback structure [Z(l)-; { 3 }J.
As this feedback structure is a substructure of g' the system can
be stabilized using a constant structured feedback matrix with
feedback structure g'.

This result implies that the optimal structured feedpack matrices
may not settle to steady state Qalues in the middle of a long time
interval, even when the system can be stabilized using a constant

structured feedback matrix.



" Seb. Conclusions

It can be concluded for some systems near.éptimal controls can
be obtained which require fewer gains, measurements, and actuators than
the optimal. It can be further concluded for some systems, each |
additional gain added to the compensator williproduce successively

* smaller improvement in performance. For the two systems which have been
considered, it can also be noted that the plots of PIO vs. p could be well
approximéted by a negative exponential function.

It can also be concluded that the heuristic methods of choosing
good controller structures are helpful. However, intuition and Jjudgement
are still necessary to decide how many trials should be made,in what
proportions each method should be used, and to which linear control
policy metﬁod one should be applied. Physical insight is of course
always helpful. .

‘ It can also be observed that the number of iterations necessary
to compute the éptimal structured control policy increases as the number
of gains decreases. This could be explained by the system behaviour, when

*
the optimal structured control policy, ns, is used,being increasingly

. *
different from the system behaviour when the optimal control policy, T,

N-
is used, thus producing sequences [Sk]O 1

1

and [V(k)]g increasiﬁgly
: ¥ oN- * N
" different from the sequences [Sk]O and [V(k)]O. If structures are
being evaluated by working dowﬂ from a compiex structure to a simpler one
then optimal structured control policies for feedback structures of which
the present structure is a substructure are available. The
system behaviour associated with the ;S’ of a feedback structure,
containing only one fﬁr a few) more gain(s) than the substructure, should
be similar to the system behaviour associated with the ;S of a
substructure. If such a ;S vere used as ﬂ(b) when the ;S of the
substructure was computed then,in all probability, computation time would

be reduced.
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CHAPTER 6 0

THE IMPORTANCE OF VO AND Vﬁ

6.1. Introduction

The formulae used for the computation of the optimal structured
control policy require a knowledge of VO and Vw. ~These matrices
need not be known when frequency domain techniques, or the Linear
Quadratic Optimal Approach are used to design a controller.

Vhen using frequency doméin design techniques deterministic mpdels
can be used for systems containing stochastic disturbances as these
disturbances can be handled implicitly. The frequency response of the
closed loop system is rolled off at a frequeﬁcy well below the lowest
frequency in the noise spectrum. The nature of the stochastic disturbances
or even the.band of frequencies they occupy need not be known,precisely.

There is no méans of handling disturbaﬁges impliqitly when time
domain design techniques are used. By happy circumstance the optimal
control policy for a linear system with quadratic cost is
optimal for any initial condition and any zero mean white noise
disturbance. This is not true for an optimal structured control
policy. To get the best possible performance one must have knowledge
of the disturbance processes and initial states that are likely to
occur. VO and Vﬁ can be interpreted as weighting matrices for the
initial conditions and disturbances respectively.

The need for information about Vb and Vw could be considered a
disadvantage of the design procedure proposed in this thesis. In this
chapter the problem of how V0 and Vw may be selected to produce
acceptable control when the actual VO and Vw are unknowvn will be

considered. Levine and Athans [9 ] have considered the problem of

designing partial state feedback regulators for systems where the
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initial_state is unknown. Their problem formulation will be shown to
be closely related to the infinite time version of the structured
control problem, defined by (1.18), if V,=7TI. This will suggest
Vb = VQ = I is a suitable choice for these matrices in the absence of
other information.

The effect VO and Vw have on ;S will be considered in an
heuristic manner. This will further substantiate the reasonableness
of the choice VO = VQ = I if a robust controller is desired.

In the next section the numerical problems associated with singular
Vb and V@ will be considered. It will be suggested small diagonal
terms be added to singular VO and Vw so as to make them positive
definite. This should produce a more robust'controller design as well
as solving the numerical difficulties.
| The arguments of sections 6.3 and 6.4 of this chapter are intuitive and

“are not mathematically justified. It is hoped that they will be helpful

none the less.

6.2. Disturbances Uniformly Distributed Over a Sphere

Levine and Athans [ 9] have proposed computing partial state feedback
controllers for continuous regulatory systems under the assumptions
Vo = I and V@ = O where the partial state feedback matrix is constrained
to be constant. The assumption VO = I is equivalent to assuming the
possible-initial states are uniformly distributed over a sphere in R?
centred at the origin. As all possible initial state directions are
weighted uniformly, the resulting control policy should produce
acceptable control for any initial state. The computational evidence
available [10 - 13] suggests this approach works well.

A reéult that will connect a discrete structured control problem

of the Levine and Athans type with the infinite time version of the

problem (1.18) will now be developed.



Theorem 12¢

Let problems A and B be defined as

A) Min Jt ' (6.1)
GS
where
3= B 5 xQ + wRyl (6.2)
k=0
X1 = A% +.Buk V (6.3)
. o
E[xoxoj = V : ' (6.4)
and
a = & . . (6-5)

S . .
where G~ is a constant structured feedback matrix.

* *S
Assume, GS, the solution to (6.1) exists and [A+BG ] is

asymptotically stable.

B) Min J(rN) (6.6)
P (N)

for N1,2,3,...., where

N-1 v
JP) = BlE T ox@x + wReg o+ ey (6.7)
i=0
X1 = At By vy (1.1)
T

Elxgxgl = Yy (1.2)
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S

w = Gx - : (1.19)
() = [Gi, k=0,1,.00.,N-1] (6.8)

and W is a zero mean white noise process with covariance V.

Let

. ,
no) =[G (W) k=0,1,2, .00, N-1] (6.9)
N=1,2,3,....., be the solutions to (6.6). If

lim G (N) - G (6.10)
N-w

for all k such that

JE < k < N-#N (6.11)

and [A+BG] is asymptotically stable then G is a solution to A.

Proof:
Consider problem A. As W = O implies Vw = O use of (2.16)
produces »
J* = KtrlS,V] - (6.12)

. ; .
As A+BGs is assumed asymptotically stable no new restriction is
added to problem A if it is assumed A+BGS is asymptotically stable.

This assumption and (2.15) yield

Sy = Q+ STra® + [A+BGSJTSO[A+BGS] | (6.13)



Substituting S for Sg problem A becomes

Min Jgtr[SV] (6.14)
s .
G
where
S = + 6 TRa® 4 [a+BG 1 SA + BGT (6.15)

Define the set of finite time control policies

n(N) = [Gk=55,k=o,1,....,N_1] | (6.16)

If this control policy is applied to the system of problem B the

a53001ated expected cost is by use of (2.15) and (2.16)

) . N C
J(m(N)) = %tr[SoVb] +.% Z 'tr[SkV] (6.1?)
: k=1
where
*ST _*S *S.T *S
Sk = Q + GRG + [A + Bq ] Sk+1[A + BG ] (6.18)

fOI‘ k‘—'N—l,N"‘Z, -oo-,o

6.5

Consider the solutions to problem B, (6.9). By use of (2.15) and (2.16)

the expected cost may be expressed

. . N
JP)) = ktelSVgl + Y E trlS V] | (6.19)
' _k=1
where Sy - Sy
and
5, = Q-+ G (NRE(W) + [A + BG, (0175, , (A + BG, (]

- (6.20)



fOI‘ l(:-‘N"‘l, N—2, es ooy O- Define

’ *g . .
J(m(N)) = J(m (N))
A = (6.21)

C = lim
N

*
* As TrS(N) is a solution to (6.6)

cC >0 (6.22)
Define kl and k2 to be the largest integers such that
ky § N - - (6.23)
and . .
k, € N- /N (6.24)

For N > 10, k2 > k.L thus by use of (6.17) and (6.18) one may express C

"in the form

C = H + H2 + HB + Hbr ‘ (6.25)
where
tr[S.V.] - tr[S.V.] _
H1 = lim Y T 0 ’ (6.26)
N-®» 2
, K
H2 = 1Zl\.rimw N z tr[SkV:l - tr[§kV:| (6.27)
k=1
, k2 :
. 1 .
H3 = %imco B Y tr[SkV] - tr[§kV] (6.28)
k=k1+l

and



-
' 1
= lim = I - S
HLF I]\}lmm o5 tr[8, V] - tr[8 V] (6.29)
k=k2+1

*S
As [A + BG'] is asymptotically stable tr[SoVo] is finite, thus

tr[S.V.]
lim - —_21%9— = O (6.30)
N- o :

The positive semidefiniteness of Sy and V, implies trlS,Val 2 0

therefore

tr[S.V.] ; :
lin - ——;—;—9— < 0 o (6.31)
N~
which implies that
Ho§ O - | (6.32)

* BERS
As [A + BGs] is asymptotically stable tr[SkV] is bounded zbove

by some comstant, K, thus

k

1 VT K '
lim = T 4[S V] £ lim 2= . 0 (6.33)
N~ 2N k N- o CA T

k=1

and
N
X

1im —élﬁ L tr[SV] € Lim 2“2/§ = 0 (6.34)
o losk +1 o

This with the positive semidefiniteness of -§k and V imply that

H, € 0 . (6.35)

6.7



and

H4 £ 0 ' ' ' (6.36)

As (N_kz)—» ® asN- o, ('6.18) ('6.24), and the asymptotic

*
stability of [A + BGS] imply

S, - St as N~ o ('6-37)

where k £ k. and

S' = Q4+ ESTRES + [A + BESJTS'[A + BES] (6.38)

(A6.1o), ('6°.20), (6.23), (6.24) and the asymptotic stability of

[A + BG] yield

<k <
for kl k kZ where

- s - Q-+ GTRG + [A + BG]'S[A + BG] (6.40)

By use of (6.37) and (6.39) one can deduce

H, = %(tr[S'V] - tr[SV]) (6.141)

*
As G° is known to be a solution to the problem defined by (6.14)

and (6.15)

Ltr[S'V] § Xtrlsv] (6.42)

thus

6.8
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H € 0 ‘('6.43)
(6.22), (6.25), (6.32), (6.35), (6.36), and (6.43) imply

C = O (6.44)
and

H = 0 (6.45)

for i = 1,2,3,4. Thus (6.41) implies

Ltr[S'V] = Jtr[SV] o (6.46)

. . . * .
G satisfies (6.15) which is immediate from (6.40). As e is a

solution to problem A by assumption and G produces the same expected

cost, which is apparent from (6.46) and (6.14), G is a solution to

problem A,

Q.E.D.

Corollary:

—_

J(m(N)) - IO as N- o (6.47)

This follows directly from (6.44) and the definition of C, (6.21).
ir VW = I and the solutions exhibit the required steady state
behaviour then the.steady state value of the structured state
feedback matrix will be a solution to a Levine and Athans type problem.
It is reasonable to expect such a solution will produce robust control.
This suggests that the choice, Vw = Vb = I, for the finite time problem
will probably produce a robust control policy. This choice will be

intuitively justified in the next section.
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*
6.3. The Effect of Vb and Vw on ﬂS

Examination of the equation (2.16) reveals that multiplication of both

v

0 and VQ by any constant k will result in the scaling of the expected

_cost, J, by a constant k irrespective of the linear control policy
used. Thus the structured control policy that minimizes J for a given
Vb and Vw will minimize the expected cost if E[xoxgj = ka and the
noise covariance matrix is kVQ. Therefore one may conclude: the
actual amplitude of the noise does not affect the optimal structured

*S
control policy, T .

I+t is reasonable to assume it is the cross correlation information

" .
1 that affects ﬂS. The complexity

contained in the sequence [V(k)]g"
of the expressions makes a complete analysis very difficult. The
validity of this assumption will be tested by comparing the optimal

- _controls for the complete and the partial state feedback éaseé. Both
the initial state and the disturbance will be assumed to have zero mean
Gaussian probability distributions.

Combining equations (1.33) and (3.11) produces the optimal partial

state feedback control,

T T 1. ,2,T -1
w = - [R+BS_BIBS [A+AT,  ()V 7(k)Ix

(6.148)

It Xq and [wk]g-l are uncorrelated zero mean Gaussian processes
. N .
and a linear control policy is used then [kaO are zero mean Gaussian
. N .
processes whose co-variance matrices [V(k)]o are given by (2.1). The

conditional distribution of ZL given xé has mesn

Bz /] = V00V 0% . (6.49)



and covariance matrix [16, p.29]

T

4 1 .
VZI/XI (k) = VZI (k) - Vxn 2! (k)VZ' (k)VX, " (k) (6.50)

Substitution of (6.49) into C6.48) yields

w

, = - [R+B s B] 1BT xi + ACE[ Zy / %11

(6.51)

By use of (1.5), (1.6), (1.35) and (3.5) the optimal control may

be expressed as

T*
uk = - [R+B B]

~1pT% [Alxi + A2, .3 . (6.52)

*

As 8 1
N-1

[Gijk+1 , the optimal partial state feedback control differs from the

and Sk+1 are both guadratic cost matrices dependent on

optimal control in zﬁ being replaced by its expected value given xﬁ

the available information (Cumming [3]).

6.11

From (6.50) it is apparent that the larger are the terms of VX,Z,(k),

the smaller will be the terms of V ,/x (k). (6.51) and (6.52) imply
if v ,/ (k) is small then the optlmal partial state feedback control
will be close to the optimal control, on average. From (2.1) it is
apparent that the larger the elements of V%Z énd Viz are (aefined by
(3.26) and (3.27)), the larger will be the elements of the sequence
[VZI/X,(k)]g_l and the better will be the performance of the optimal
partial state feedback control policy when compared to the optimal
control policy.

Similarly from (6.50) it is apparent if VZ.(k) << Vx,(k) then the
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terms of VZ,/X,(R) | must be comparatively small and partial state-
feedback control would work well. From CZ.l) it is apparent that the
smaller VSZ and Viz are, the smaller will be the terms in the sequence
[Vz,(k)Jg-l which implies the better will be the relative performance of
'the optimal partial state feedback control policy.

If Vb = Vﬁ = I then all disturbance directions in R" are equally

likely to occur. If Véz and Viz

are large or VSZ < Vél and Viz < Vil
then ceftain possible directions of disturbance are more likely to occur
than others.

The optimal structured control policy will be tuned to handle best
the disturbance directions which are most heavily weighed (have a
high probability of occurring) by the given VO and Vﬁ. As the
behaviour of the system when subject to a disturbance along a direction
which is lightly weighted has a small effect on the expected cost, the

.performance when such disturbances occur may be poor. If VO and Vw
were to contain errors or drift so that a disturbance direction associated
with a poor performance was given a larger probability of occurring
the system performance would be degraded.

The assuﬁption VO = Vw = I gives equal weight to all disturbance
directions thus the performance will be acceptable no matter what
disturbance occurs. The control policy so calculated will give
adequate control irrespective of the actual disturbance weightings.

It is a safe assumption to make when Vb and Vw are unknown.

6.4. Singular VO and Vw

The condition that VO and Vw be positive definite was only a part

of a sufficient condition for Fk to be invertable. For some problems

Fk will still be invertable and a unique solution for 8 will exist.

However, singular Fk presents no great problem as solutions to (3.1)

still exist. The solution



+

gk = - ‘khk (6-51-})

where F; is the pseudo inverse of Fk, is of particular interest as it is the
solution of minimum norm, l &) l. If a singnlarity exists for all Fk
on the optimal trajectory then the number of gains in the feedback
possibly )
structure may be reduced without producing any increase in expected
cost.

Singular V, and Vw mean that %, and [wk]g_l are constrained to lie
in certain subspaces of R®. If unmodelled disturbances occur with
components in the subspaces which were not weighted when ;S was
computed, poor behaviour may result. It is probably safer to add small
quantities to the diagonal elements of VO and Vw and thus ensure all

_disturbance directions are given some probability of occurring. This
will make Vb and VQ positive definite. As Vb and Vﬁ are probably only
Aknown to one or two significant figures these added quantities”could be
of the order of significance and would not affect the accuracy of the
solution. Such an addition would produce a control that would probably
be more robust than the one produced using singular VO and Vw and

would eliminate the possibility of numerical difficulties associated with

singular Fk'
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CHAPTER 7

THE USE OF STATE AND CONTROL AUGHENTATION TO STUDY

MORE GENERAL FEEDBACK STRUCTURES

7.1l. Introduction

Most problems which deal with linear quadratic systems disturbed
by white noise that are to be controlled using a linear compensator of
fixed structure can be transformed into a structured state feedback
problem by suitable augmentation of the state and control vectors.

In this chapter a set of problems of increasing complexity will be
transfofmed into structured state feedback problems concluding with a
team theoretic type problem. Both instantaneous and delayed measuremen?
.equations will be considered. To avoid repetition the simpler problems
will be discussed using only the instantaneous measurement equation.

The analysis will go no further than showing which A, B, é, R, SN;
Vb, Vﬁ and the structure on‘Gi that could be used. All these matrices
will have special structures which should be used if the specific
optimal controller is to be calculéted'efficiently.

The problem of how to choose the initial state of a dynamic compensator

optimally will also be considered.

7.2. Teedback of Noise Corrupted Outputs

Consider the Output Feedback Problem defined in Section 1.2. It will
be assumed that the measurement noise, Vies is uncorrelated with the
process noise, W e Some of the elements of Kk may be constrained to be

Zero.

Substitution of (1.1) into (1.36) produces

= ‘ - l
Vepp = Chx, + CBuk—+ Con + Vi g (7.1)



Define
x T Y%
*x
and
M = Ot Vi
Yie
As
T
E[wkvk] = 0]
by assumption. ;k
Ry = B+ B+
where
A o= 0O CA
0 A
and
B = CB
B
Define
= ~ —T
VW = E[wkwk]

Substitution of (7.3) and use of the definitions of V and V ,

combined with the fact that Vhe

is a white noise process.

i

and v

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

7.2

(1.1), (7.1) and (7.2) imply

are vhite noise processes,produces



¥V = |cvetevw cv
W W v w
v CT v
W i
Similarly define
- —
v = E [XOXO]

0

Use of (1.36) and (7.2) produces

Vi is an independent white noise vector.

This and the definition of Vj,, (1.2), imply

- T
VO = CVOC + V& CVO
T
VOC V&

If one selects

R = R
Q = 0o 0
0 Q
and
Sy = 0 0
0 S

then

(7.9

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)
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- N-1 . .
- e T Y,
Ly = % z [x;Qx, + u;Ru, ] + Ty Sy (7.16)
i=0
. N=1 . .
T T T
= X [xiQ,xi + uiRui] + JéxNSNxN
i=0
= Ly ' : (7.17)
as desired. (1.37) may be rewritten
w = Ei;&{ ' : (7.18)
where
- =8
G = X, 0] (7.19)

The computational procedures of Chapter 4 can be used to solve the
structured control problem defined by (7.5), (7.16), and (7.18) which
will yield the sequence [Kk]g_l that is the solution to the original .
output feedback problem.

In the conventional output feedback problem no elements of Ky are
constrained to be zero. This problem has been transformed into a partial
state feedback problem. In Section 1.l it was established that partial
state feedback problems can be posed as output feedback problems. Therefore

these two problems are equivalent.

7.3. TFeedback From a Predefined Dynamic Svstem

Consider a linear system defined by (1.1) and (1.36) with

associated quadratic cost (1.3). The output is fed into a compensator

defined by



-

Zypy = Dz + By (7.20)

and the control input is constrained to be of the form

% = Hz +Ky : (7.21)

where some of the elements of Hk and Kk may be constrained to be zero.
. - -
The sequences [HRJO 1 ang [Kk]g L are to be chosen to minimize J.
The case Kk = 0 is a special case of the more general problem.
However, if this case is considered directly, an augmented linear system
of lower dimension can be used. This simpler case will be dealt with

first.

Case Kk =0
(7.2i2 now becomes
w o= szk | (7.22)
It will be assumed that C is of full rank and the state has been‘
suitably transférmed so that
v = O o= ox (1.39)

where x& is defined by (1.35). '(1.35),.(1.36},.(1.39), and'(7.20)
yield
z = Dz + [E O]xk + Evk (7-23)

k+1 k

Define

X = 7). . (7.24)
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and
'Wk = Evk (7-25)
Wy
.Wk is a white noise process even if Vi and W, are correlated. Define

T ) ° -
_V§w = E[vkwk] (7.26)

By combining (1.1) and (7.23) one can write

Bq = B+ Bu+ (7.20)
whére
A = D SE:O0 - (7.28)
o) E A
and
B = 0 (7.29)
B
'Define
¥ = Elwd (7.30)
W = wkwk .

(7.25), (7.26), and the definitions of V, and V_ yield

i

=
<
t=
=
<

v (7.31)
w



Again define

T, = Elxxo] | (7.32)

Let
V(o) = E[zozg] . (7.33)

and
V_(0) = Elzpx] (73w

(1.2), (7.24)_, (7.33)_, and (7.34) allow (7.32) to be rewritten

Vo = | V(0 vV _(0) @)

T
sz(o) V0

7.7

VZ(O) and»VZX(O) may either be specified by the problem definition or

~ be treated as parameters that are to be chosen optimally. The latter

possibility will be dealt with when the transformation to a structured

state feedback problem has been completed.

The quadratic cost associated with the linear system (7.27),

. N-1 .
- ' T T e —
Ly = Jf [kuxk + ukRuk] +J§xNSNxN (7.36)
k=0
safisfies
L, = I (7.37)
when
R = R (7.33)
g =10 o (7.39)
0 Q

and
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S = |0 0 . (7.40)

Uy - kak | : (7.41)

where

-8 )
G = [B 0] (7.42)

defines the feedback structure to be used. (7.27), (7.36), (7.41)

define a structured state feedback problem whose solution will yield

the solution to the original problem defined by (1.1), (1.4), (1.3%6), (7.20)

and (7.22).

The Possible Design Parameters VZ(O) and sz(o>

The construction of the physical system (7.20) models will determine
whether VZ(O) and sz(o) are fixed or can be assigned values so as to
maximize performance. Their values are determined by Z the initial
state of the compensator system. Assume Zg is a stochastic process such

that

2 = 2+ ; (7043)

where

A

i

and z is a zero mean stochastic process with a covariance matrix
. D ‘
V; = Elzz"] (7.45)

.(7-33), (7-#3), (7.44) and (5.45) imﬁiy
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]
\0

V() = zz o+ Vs | (7.46)

Theorem 13

If the sequence of Feedback Matrices [ijg~l is used to control the

linear system defined by (1.1), (1.36), (7.20), and (7.22), the

‘selection of Zg such that
z = O (7.47)
and
5 (0)zy = -8 _(0)x (7.48)
will minimize J, defined by (1l.4), wvhere
x = Blx,] ' (7.49)

.

§6 is the cost matrix defined for the augmented linear system (7.27) by

(2.15).
S = .' . - - 0
- 55 SZ(O)_ Szx(o) (7.50)
o
SZX(O) SO
where the partitioning is that implied by (7.24).

Corollary:

If X is zero mean then Zo = O vill minimize J.

Proof:
From (2.13) it is apparent that X., and thus zy, only affects the
termlkE[Eggo;O] of the expected cost. Substitution of (7.24) and

(7.50) into this term produces
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<
&=
—/
S
o
w1
G
[ M-
|

o ., T
gE[zOSZ(O)zO + 2zoszx(0)xo + X555%0] (7.51)
Let

Xy = K+ X (7.52)

where x is defined by (7.49) and %X is a zero mean stochastic process.
Substitution of (7.43) and (7.52) into (7.51) plus the expansion
of terms yield

| - T T, o~ T ~
B[ So%,] = XE[z 5 (0)z + 22'5_(0)Z + 'S (0)3

T ' T N ~T .
+ 22 SZX(O)§ + 2z SZX§O)X + 2z SZX(O)z

~T ~ T ~T T A
+ 2z SZX(O)X + X SOE + 2% SO§ + X Sox]

(7.53)

X is a zero mean stochastic process and there is no physical means by which

can be forced to be correlated with it. Thus

N2

B(Z'S,_(0)F] = O | (7.54)

By use of this and the fact both X and % are zero mean (7.53)

becomes
—Te — 7 T ~ P 7
ZE[XOSOXO] = kz SZ(O)E + XE[z SZ(O)z] + Z SZX(O)§ + kx SQE

+ BEX 8,51 (7.55)

"~ . ' ~T "~
As z only affects the term XE[z SZ(O)zJ of the expected cost J and

Sz(O) is positive semidefinite J will be minimized if one sets
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(7.47)

MR
.
o

z only affects the term (7.55) of J which is a positive semidefinite
quadratic form in z, therefore the value of z which minimizes J can be found
by the differentiation of J by z and the setting of the derivative to

Zero.

W&

= gTsz(o) + Esgx(b) 20 (7.56)

(7.43) and (7.47) imply
-z ' (7.57)

When this is substituted in to into (7.56) and the transpose is taken

o

8 (0)zy = -5 _(0)x (7.48)
results.
Q.E.D'
If sz(o) is invertable, (7.48) yields
25 = - S°(0)S_(0)x (7.58)

Substitution of (7.49) and (7.58) into (7.33) and (7.34) yields

~1 T -1
v_(0) S (0>SZX(O)§ s,.(0)8 ~(0) (7.59)

4

V (0) = - SF0)S (0w (7.60)
zX A ZX
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Note the optimal choice of VZ(O) and V__(0) depends on Eb and thus

on the Structured Control policy. However, the optimal structured
control policy depends on Vb whose value is determined by the choice
of V (0) and V__(0).

z zZX ) o

If x = O then the optimal choice is VZ(O) = 0 and sz(o) =0
irrespective of thebvalué of [Hk]g-l. If x 4 O then aﬁ analytic

X 3 ' o N-1
solution to the problem of choosing VZ(O), Véx(O), and [HRJO
optimally does not appear possible. However, a computational procedure
can be constructed for selecting V (0), V__(0), and [HkJN;l which will

» _ Z zX 0
show an improvement in cost at each step. ‘

1. Select an initial V_(0) and'vzx(O)

2. Use one of the computational procedures of Section 4.2

to evaluate the optimal structured control policy
for (7.27)

3. Use (7.48) to compute zy- Compute an new VZ(O) and

sz(o)'

l-l-. G’O to 20

As J is bounded below by zero, convergence in cost must occur.

z = O was selected so as to give the smallest quadratic cost rather
than to produce a control that would be robust. The addition to
VZ(O) of a small term of the form €I might give the resulting control
strategy a better performance if small unmodelled disturbances should
occur. This does not imply however, that there should be any attempt

to insert a small noise vector into the actual compensator.

K £ 0 and H ¥ 0

It will now be assumed that the control, W

satisfy (7.21). To handle this case it will be necessary to include both

, 1s constrained to

z, and Vi in the augmented state vector,

k



Ek- = Z (7.61)

The combination of equations (1.1), (7.1), (7.21) and (7.61) produces

;k+1 = Axk * Buk tow (7.62)
where
A = P E O (7.63)
0 0 CA
0 0 A
B = 0 (7.64)
CB
B
and
i = 0 (7.65)
C\.‘\Ik + vk+l
Wk i

It is again necessary to restrict Wy and vy to be uncorrelated so

that W is a white zero mean stochastic process.

By definition

- - T
VQ = E[wkwk] ) (7.66)

Substitution of (7.65) into (7.66) and use of the facts v, and w

are zero mean white noise processes with covariance matrices V& and Vw

7.13
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respectively produce

V; = 0 0 0 (7.67)
0 GV Clav cv
W v v
0 v et v
W W

To.avoid degredation of controller performance should there be small
unmodelled noises in the compensator,it might be best to insert €I

in place of the top left hand zero matrix in Vw.

V, = EE§O§g] ' (7.68)

by definition. From (1.36), the definitions of Vi, V, (1.2), and

sz(o)’ (7.34), and the fact Vi is a white noise process and is gssumed

"uncorrelated with state, it follows that

T T
Blzgyg] = VY, (0)C (7.69)
E[yoyg] = CVOCT + (7.70)
and
Elygxg] = CV, (7.71)

Then (1.2), (7.33), (7.34), (7.61), (7.68), (7.69), (7.70) and

(7.71) yield

- T
Vo = VZ(O) VZX(O)C sz(o) (7.72)
T T
CVZX(O) CUC + V. cv,
T T
VZX(O) Ve Vs )
L. o




Again a similar analysis to that of Theorem 13 can be made if the

initial state of the compensator zo'can be chosen freely.

If
R = R
_ )
Q = 0 0 0
0O 0 o©
| o o q
and’
§N= o o0 o©
0O 0 ©
0o 0 8y
i i
. then
CN-1
- y ~Te T T —
Ly = Xz [Xkak + ukRukJ + xSy )
k=0
= L

Equation (7.21) may be rewritten

5
o = &%

where
=S . . —
G = M1 & ; 01

Thus the solution of the structured control problem defined by

(7.73)

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)

7.15

(7.62), (7.76), and (7.78) will yield the sequences of matrices [Hk]g-l

and [Kk]g-l whiéh will minimize J for the linear system and compensator
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defined by (1.1), (1.36), (7.20) and (7.21).
However, it may be desirable to modify Q so that the compensator
states z, are costed to ensure they remain within certain acceptable

levels.

7.4 Compensators of Fixed Structure in which Some of the Parameters may

be "Tuned"
The matrices D and E in the compensator (7.20) will now be assumed
to contain predetermined elements (constant or time varying) and other

elements which are to be chosen so as to minimize J. Thus

D = D4 Y ' (7.80)
and
E = E 4+ B : (7.81)

where Df and Ef are the matrices containing all the predetermined elements.
If there are no predetermined elements then D’ ang Ef equal zero. Eﬁ
and E; are matrices containing zeros and the elements of D and E
respectively which are to be chosen optimally.

By defining ;k as in (7.61) and using (7.80) and (7.81), (7.20) can

be rewritten

2., = F B o% 10 ® 0% (7.82)
Define
we = [ B Olg (7.8%)
and o
no= | w i (7.84)
) .
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It ;k is defined by-(7.65), equations (1.1),; (7.1), and (7.82) may be

combined to yield

§k+l = K;k + §Ek + ;k (7-85)
where
= |of £ 0 (7.86)
0 0 CA
0 0 A
and
h .
B = I 0 (7.87)
0 CB
0 B
| ]

As ;k and ;k are defined by (7.61) and (7.65) respectively Vb and

v, are given by (7.72) and (7.67) respectively and the remarks made

following these equations still apply. If

E =0 o : (7.88)

and Q and §N are defined by (7.74) and (7.75) respectively then

L N-1
SN, W - Y, .

% 2 Dol + Ry d o+ Sy (7.89)
k=0 _ |

i
i

= LO . (7090)

. Equations (?.21), (7.61), (7.83), and (7.84) may be combined to

yield
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5, = Ei;k (7.91)
where
@ = |0y = o (7.92)

BOK O

Thus equations (7.85), (7.89) and (7.91) define a structured control
problem whose solution will give the sequences of matrices
[DX]S—I , [Eljg“l, [ijg'l, and [Kkjg'l which will minimize the expected
cost (1.4) for the system defined by (1.1), (1.36), (7.20), (7.21), (7.80)
and (7.81). '

If no structure is imposed on the mgtrices Dv, EZ, Hk, and Kk thg
linear system defined by (7.20) and (7.21) will have more free parameters
- than the transfer function; thus the optimal solution will not be unique.
If the original éost function (i.h) is retained and a unique solution is
desired then the linear system equations (7.20) and (7.21) must be
constrained to be in some suitable canonical form. However, even if
D;, E;, Hk’ aﬁd Kk are conétrained to satisfy some canonical form either
the gains in D; or Eﬁ or the values of the compensator state 2z, may become
unacceptably large unless R and a are modified so that uﬂ and z, are

k

costed.

Delayed Measurement

If the output equation should be of the form

Y = ka—l + | , (7.93)

rather than the form of (1.36), then (7.93) should replace (7.1) in the

manipulations of the preceding development.
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With §£ defined by (7.61) and u, defined by (7.84), equations (1.1),

k
(7.93), and (7.82) may be combined to yield

§£+1 = KE% + EE# * ;k (7j94)
where
T = |of = o (7.95)
0 0 c
0 0 A
B = |1 0 (7.96)
0 0
|0 B
and
-— . [~ n . .
wk —] o) (7-97)
i
Ve
L J

vy is a zero mean white noise process as v, and w, are.

k k

v, and w, may be correlated. By definition

k k

¥ . mpo T
Vw = E[wkwk] (7.98)

By combining (7.26), (7.97), (7.98), and the definitions of V_ and V_

one gets
3 N
Vo= 0 0 0 (7.99)
0 v Y
v vw
0 \) Y
W %) |
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Define
T, = E[§b§g] (7.100)
. ,
sz(O) = E[zoyOJ (7.101)
' iy
v&(o) = Elzgyp] : (7.102)
and
VyX(O) = _E[yoxg] (7.103)

The combination of these and the definitions of»VZ(O), (7.33),

VZX(O), (7.34), and V., (1.2), produces

- r ' :
To = [ V,00 V0 v, (0) (7.104)
T V .
V(0 V(0) V(0
.
V(0 V. (0) v,

One can now proceed as in the instantaneous measurement case (i.e.
output equation (1.36) from equation (7.88) through the discussion that
follows (7.92). The remarks regarding a robust controller and the choice

of the initial state of the compensator are again appropriate.

7.5. Team Theoretic Problems

Assume the control vector, W is broken into a set of 4 subvectors,

Uﬁ, of dimension Mi termed subcontrols, where i = 1,2,+0..,%.

w = |0 | (7.105)
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where

)
S M = m (7.106)

1
i=1

Each subcontrol (i) has a set of measurements, yi, available to it.
The value of each sub control is determined b& the output of a
linear system of fixed structure, termed the subcontroller, into which
the available measurements are fed. The free parameters of the sub-
controllers are to be so selected that the expected cost (1.4) for the
linear system (1l.l) is minimized. This is termed a team theoretic
problem as each subcontrol can be viewed as é>p1ayer in a team.

Let

v, = COx + v, , (7.107)

i, i. oy .
-where Yy 1s an ri—vector, and v, 15 an ri-vector of zero mean white noise

. . . i i, .
processes with covariance matrix Vi, vy 1s uncorrelated with .

‘Subcontroller i is defined by

z;; = Dz« E;('y;; ” (7.108)

uo= Hgl Ky (7.109)
ﬁhere

i i i ‘

D = D;+ Dv(k) (7.110)
and

Ei - E; + Ej‘,(k) , , - (7.111)

D; and E; are fixed, possibly time varying, matrices. H;, K;,

Dt(k), and Ei(k) are structured matrices containing the parameters of

the subcontroller that are to be selected to minimize J, (1.L).



If one now defined

N
~

1t

N
Lo

RS

4 4
ettt

and

e

=*'*"*® v

x

by use of (7.107) one can obtain

- yk = ka + vk
where
- .
¢ = | ¢t
C2
CL

Vv the covariance matrix of v, can be expressed

(7.112)

(7.113)

(7.114)

-

(1.36)

(7.115)

7.22



where

yid

v

By use of (7.108)

Zk+1
where
D
and
E

N

vt vz L.
v v
12T )
(YY\—) _ \-fv R
T
T w2hT
i 5T
E[vkvk ]

one obtains

Dzk + Eyk
1
Dk O *es eSO O
2
O Dk e e oS O
O O ® 00 S0 %z

Ei O wreeenn 0
0 EE teeeees O
0o 0 et

One gets by use of (7.110)

D

where

= D

pil \'d
+ Dk

"(7.116)

(7.117)

'(7.20)

(7.118)

(7.119)

(7.80)

723



and

1

Dv(k) 0 BERIEEEE o}
200y

O Dy(k) ®sseses 0

O O sessoense Dz(k)
V.

(7.111) may be used to obtain

E

i

where

and

E

L

il

"B

Sesevsecsssnsesne e

@avsecsoes O

E'(k) O
v

0 FP(K) eevnves 0
v

®ecsserenssPOErEtresevsanns

0 0 cesccne Ez(k)
. v

By use of (7.109) one obtains -

J

(7.120)

(7.121)

(7.81)

(7.122)

(7.123) .-



where

and

i

. 0 O cecucan Hﬁ

~

Ki 0 veeeeee O

7-25

(7.21)

(7.12L)

(7.125)

The team theoretic problem has now been transformed into a problem

with a compensator of fixed structure in which some of the parameters

may be tuned.

measurement form, the problem can be transformed, in exactly the same

This problem was dealt with in section 7.L.

If equation (7.107) should be replaced by an equation of delayed

-~

manner, to the delayed measurement form of the problem dealt with in

section 7.4.
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CHAPTER 8

PROBLEMS FOR FURTHER RESEARCH AND A

SUMMARY OF RESULTS

8.1. Problems for Further Research

The topic of Specific Optimal Linear Controls for Linear Quadratic
Systems-is not yet fully developedAand many interesting problems
remain. Two of the problems,which the results of this thesis suggest,
are the computation of constant controllers for infinite time, time
invariant, systems, and the problem of choosing a "goodﬁ or the "best"

feedback structure of a given level of complexity.

A) The Infinite Time Problem

The reﬁults of Chapter 5 suggest thaf if the system is time
_invariant then the controller gains_settle'to steady staté values in the
centre of a long time interval in many cases. This concept is expressed
precisely by (6.10) and (6.11). Many long term regulatory

problems exist where the controller can be implemented easily and cheaply
if the feedback gains are constant.

The conditions under which the steady state property, stated in
(6.10) and (6.11), occurs remain to be established. An example in
Chépter 5 implied that the condition that [A+BGS] can be made stable is
not sufficient‘fo guarantee the steady state property will hold.

It would also be useful to determine the conditions under
which the infinite time problem has a solution which produces a finite
cost per interval. The conditions where the Levine and Athans type
problem has a solution but the propertyv(6.10) and (6.11) does not hold
would also be of interest. |

If it is assumed (6.10) and (6.11) hold, use of the finite time

algorithms to solve steady state problems would sﬁill be wasteful of
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computer time and store. The following algorithm has been used
successfully and produced results that were similar to those produced
by the finite time computational procedure. It seems to be quick and

requires little store.

A Computational Procedure for Computing the Steady State Structured

Feedback Matrix

1. _V - Vb, S ~ S0
_ 1

2e F rllVl1 rlZVlz........ rlmVim

T VT r V r V

1212 22'22 °°°°T°T Tom om
T

ﬁm%m r@yiw"'""%mnmj
where

= [R + BTSB]

rij =

and

V.. = | o(¥(i,1), ¥(5,1))  ol¥(i,1),9(5,2)) ... o(4(3,3),¥(3,m,)) ]

1]

where
{o‘(l,:j)} = V
T
3. h ViA Sb1
iy
VA
2 bSbZ
'j_.‘ -
VﬁA Sbm

8.2

ol¥(1,2), ¥(3,1))  ol¥(1,2),¥(3,2)) ... o(4(1,2),¥(3,n,))

.
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V. = [ o(@i,1),1)  o(9(5.1),2) eereenr o(4(i,1).0)

o(¥(i,2),1)  o(¥(8,2),2) eeeeee. o(¥(i,2),n)

o(#(1,n.),1)  o(¥(3,0,0,2) weveeen o(¥(i,n,)n)

L. G « +the structured feedback matrix with unconstrained gains,

g, obtained by solving

Fg: h

5. V « [A+ BGOJV[A + B&S]T & v

T

6. S « Q+ GRG” + [A + BG]TS[A + BG"]

7. Go to 2

The convergence properties and the nature of the GS to which thi;
computational frocedure converges remain to be established. The computational
efficiency of this procedure should be compared with that of the direct
" parameter optimization techniques and the Cumming Algorithm [3]. The
Cumminsg Algorithm was developed for the output feedback problem but
the replacement of the output feedback necessary condition by (3.1)

would allow it to be used on structured control problems.

B) Choice of Feedback Structure

Use of the heuristic structure selection methods, discussed in
Chapter 5, requires many trials and therefore a lot of computing time to
find the "best" structure for a given number of feedback gains. It

would be useful to have a more direct method of determining whether a
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given structure was good or bad.
This woﬁld probably require an understanding of the controllability
properties of a feedback structure. A method for determining whether
a system could be made stable using a given feedback structure would
" also be useful. Some method of relating controllability to specific

disturbance and cost structures would be necessary.

8.2. Summary of Results

A problem of specific optimal control, the optimal choice of a
Structured Control Policy has been treated in this thesis. Certain
basic properties of linear systems controlled by linear state feedback
were derived and used to establish a rule for choosing one structured
feedback matrix optimally.

This rule was then used in a computafional procedure for determining
~the Optimal Structured Control Policy. The convergence ﬁroperties of the
computational procedure were evaluated. It was found that not all
structured control policies that may be produced are optimal. A good
starting point is necessary to ensure convergence to the optimal and
methods of selecting suitable étarting points were discussed.

Computational results were obtained for two systems which demonstrated
that linear systems of a reasonable size can be handled. These results
also indicated that a rule of decreasing marginal returns with increasing
controller compiexity applies.

The problem of how to make a suitable choice of Vo and V_ when
there was little available information was discussed. It was demonstrated
that most probleﬁs, wﬂere é linear system is to be controlled by a
linear compensator.of fixed structure so as to minimize the expected
value of a quadratic cost, can be - posed as structured feedback problems.

Some of the design problems relating to these more general problems were

discussed.
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The relation of the finite time results to the infinite time problem
were briefly dealt with. In conclusion some unsolved problems of

structured state feedback were mentioned.
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