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The ear of the bush-cricket Copiphora gorgonensis consists of a system of paired eardrums 

(tympana) on each foreleg. In these insects, the ear is backed by an air-filled tube, the acoustic 

trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of 

the eardrums. Both surfaces of the eardrums of this auditory system are exposed to sound, making 

it a directionally sensitive pressure-difference receiver. A key feature of the AT is its capacity to 

reduce the velocity of sound propagation and alter the acoustic driving forces at the tympanum. 

The mechanism responsible for reduction in sound velocity in the AT remains elusive, yet it is 

deemed to depend on adiabatic or isothermal conditions. To investigate the biophysics of such 

multiple input ears, we used micro-scanning laser Doppler vibrometry and micro-computed X-ray 

tomography. We measured the velocity of sound propagation in the acoustic trachea, the 

transmission gains across auditory frequencies, and the time-resolved mechanical dynamics of the 

tympanal membranes in Copiphora gorgonensis. Tracheal sound transmission generates a gain of 

~15 dB SPL, and a propagation velocity of ca. 255 m/s, a ~25% reduction from free field 

propagation. Modelling tracheal acoustic behaviour that accounts for thermal and viscous effects, 

we conclude that reduction in sound velocity within the acoustic trachea can be explained, amongst 

others, by heat exchange between the sound wave and the tracheal walls. 34 

35 

36 
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For the majority of animals endowed with tympanal ears, incident pressure waves act on the 

external surface area of thin and compliant tympanal membranes. Bush-crickets (Orthoptera, 

Ensifera, Tettigoniidaep have pairs of eardrums for each ear, located within their forelegs. Instead 

of acting only on the external surface of the eardrums membranes, sound pressure acts on both the 

external and internal surfaces [1-.I. The internal acoustic input is enhanced by an air-filled tube, 

the acoustic trachea (ATp, that conveys sound from an opening on the side of the thorax (the 

acoustic spiraclep to the internal side of the eardrums [1-A, 8]. The AT is a gradually narrowing 

pipe that extends forwards from the thorax through into the fore femoral cavity until it reaches the 

femoro-tibial joint (the kneep, whereupon it enters the tibia and divides into two branches, an 

anterior feeding the anterior tympanal membrane (ATMp and a posterior branch connected with the 

posterior tympanal membrane (PTMp (see figure 1 for relative position of the tympanap [7-9I. Each 

tracheal branch leads to one tympanal membrane, and the dorsal part of the anterior branch 

harbours the ear mechanoreceptors (known as the crista acustica, CAp [10-12]. Dorsal to this area, 

between the two tympana on both sides of the tibia, lies the auditory vesicle, a fluid-filled cavity 

that encapsulates the CA [13]. Both tracheal divisions merge again below the tympanal membranes 

where the trachea narrows and ends right beneath the ear [9]. Each eardrum is placed against the 

outer surfaces of these tracheal divisions, creating the only place in the system where both sides of 

the tracheal wall are coupled to the outside air. Hence, both internal and external surfaces of the 

tympanal membranes are readily driven by sound waves travelling through the AT and by sound 

waves reaching the membrane externally. 61 

62 

63 

64 

65 

66 

67 

It is broadly accepted that the AT is the main acoustic input of the ear of many Tettigoniidae 

species [2, 7, 14-17]. However, for the subfamily Pseudophyllinae (a large group with some 1000 

species describedp the acoustic spiracle is reduced (a character used as diagnostic for this 

subfamilyp and the bulla is replaced by a small chamber [18-20I and in some species the AT forms 

a large U-shape bend at the bulla site [6]. Although poorly understood, in Pseudophyllinae, the AT 

is unlikely to be the main acoustic input, and some authors suggest that the tympanal slits might 

play important role as waveguides [18, 20]. 68 

It is also agreed that in some species, the AT looks and functions like an exponential horn, 69 

increasing the magnitude of sound pressure acting on the internal side of the tympanal membranes 70 

[1, 5, 7, 14]. This gain-enhancing role is associated with the size of the spiracular opening and its 71 

associated bulla [5, 21]. The enhancement of the internal pressure acting on the back surface of the 72 

tympanal membranes is deemed to provide this auditory system with directional sensitivity (see 73 

below) [22, 23]. Some researchers argue that this exponential horn exhibits high-pass, high-gain 74 

characteristic to provide a broadband response necessary for acoustic reception [7]. 75 
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The AT is thought to play a vital role in the formation of the pressure difference mechanism. A 76 

pressure difference receiver relies on the interference of sound waves at either surface of the 77 

tympanal membranes [23-25]. The internal sound pressure of sound waves travelling in the AT, 78 

undergoes different degrees of attenuation or amplification and some phase shift as a result of 79 

alterations in propagation velocity [23]. Phase shifts are produced because pressure waves push the 80 

tympanic membranes externally and internally, but also by differences in the time of arrival of 81 

sound waves on both surfaces caused by alterations in propagation velocity inside the AT. These 82 

changes in the propagation velocity result from the fact that the AT seems to impose resistance to 83 

sound propagation [24], effectively slowing down sound travelling through the AT compared to 84 

the sound waves travelling in the surrounding air and reaching the external side of the tympanum 85 

[4, 5, 26]. This time delay has been observed as a gradual change in the phase of the tympanal 86 

membrane vibrations and is particularly prominent at high frequencies [5]. The internal sound 87 

propagation can also be measured in the time domain when the ear is stimulated with pure-tone 88 

pulses. The impulse mechanical response should therefore exhibit two distinct vibrational events, 89 

which reveal the sound wave arriving twice at the tympanum, once externally and once internally. 90 

The difference in time lag appears to depend on leg position with respect to the sound source [4]. 91 

In summary, in a pressure difference receiver, a combination of both phase shift and amplitude 92 

difference is likely to take place, and to affect the ipsilateral and contralateral ears differentially [4, 93 

23, 26].  94 

Researchers have had differing opinions about the AT, its role in a pressure difference receiver 95 

ear and its effect on sound propagation. Discrepancies on the AT/pressure difference receiver ear 96 

might have arisen from different approaches, and techniques used over time (some invasive and 97 

deemed less appropriate [5, 7]), and from using different species, most of which communicate with 98 

broadband calls. Low propagation velocities of sound inside the AT (about 75% of sound velocity 99 

in air) are well documented in two species of field crickets [4, 25]. Previous studies provided clear 100 

evidence that sound propagation velocity is reduced within the AT of bush-crickets [27]. Yet, to 101 

date, the biophysical mechanisms of sound propagation within the AT, its potential dimorphism, its 102 

effects on spectral auditory sensitivity and on auditory mechanics remain elusive.  103 

Here, we study Copiphora gorgonensis (Conocephalinae, Copiphorini), a neotropical bush-104 

cricket species that communicates by producing sharply-narrow-band pure-tone calls with a carrier 105 

frequency centred at 23 kHz [28]. Like most Conocephalinae, males and females possess large 106 

acoustic bullae and narrow tracheae [13, 29], suggesting that the acoustic trachea might function as 107 

an exponential horn [1], therefore enhancing the internal pressure driving the tympanal membrane. 108 

If this is the case, vibrations of the tympanal membranes of individuals placed in the acoustic free 109 

field should show pressure and temporal differences produced by pressure waves acting on both 110 

sides of the tympana. Our hypothesis is that the internal sound input is significantly delayed 111 

compared to the sound wave following the external pathway to the tympanal membranes. 112 
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Following on our previous work [13], we also test the hypothesis that the ear of C. gorgonensis 113 

works as a pressure difference receiver that is effective over a broad range of frequencies. 114 

Using micro-scanning laser Doppler vibrometry (LDV), micro-computed tomography (µ-CT), 115 

and an experimental platform permitting the controlled acoustic isolation of both internal and 116 

external inputs, we performed rigorous measurements of tympanal vibrations to quantify acoustic 117 

gain, temporal delay and spectral characteristics of sound propagation in the AT. 118 

119 

Our results demonstrate that the ear of C. gorgonensis functions as a pressure difference receiver. 120 

We show that internal sound input through the acoustic trachea is significantly delayed due to a 121 

25% reduction in the propagation velocity of sound. This tracheal input also contributes a nearly 122 

fourfold gain as compared to the external input. The gain and propagation velocity are comparable 123 

to those found in other Orthoptera. The possible mechanisms at work in acoustic trachea 124 

responsible for the decrease in propagation velocity are discussed. 125 

126 

2. METHODS127 

2.1. Experimental animals 128 

We used 21 Copiphora gorgonensis individuals (10 males, 11 females). This species is endemic to 129 

the island of Gorgona, Colombia, located off the south-western Colombian Pacific coast. Males 130 

call females in the low ultrasonic range using a pure-tone, short-duration pulse (8 ms) at 23 kHz 131 

[28]. Specimens were collected as nymphs in their natural habitat and maintained in captivity in 132 

cages at 25 °C, LD 11h: 23h and 70% RH, where they were fed on a mix of pollen and dry cat food 133 

until they reached adulthood. 134 

135 

2.2. Morphological studies of the acoustic trachea 136 

The anatomy of the bush-cricket ear and the AT was examined using X-ray µ-computed 137 

tomography (µ-CT) and 3D reconstruction using standard biomedical imaging software following 138 

the protocols of Montealegre-Z et al. [13]. Four specimens (two males and two females) were 139 

scanned with a Bruker SkyScan 1272 (Bruker microCT, Kontich, Belgium) at 100 kV, 36 µA and 140 

with a 0.5 mm thick aluminium filter, resulting in a voxel size of 11 µm. Reconstruction and 141 

automated measurements of acoustic tracheae were carried out with Amira (v. 5.4, VSG, Berlin, 142 

Germany) and results further processed in Matlab (R2014a, The MathWorks, Inc., Natick, MA, 143 

USA). In addition, tracheal lengths of 20 individual (9 males and 11 females) were measured by 144 

inserting a thin human hair from the spiracle to the middle of the tympanal area. The insertion of 145 

the hair could be easily monitored visually through the semi-transparent leg cuticle and tympanal 146 

membranes. 147 

148 

2.3. Induction of tympanal vibration 149 
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Tympanal vibration in response to sound was studied using two different approaches: 1) Both150 

surfaces of the tympanal membranes were exposed to sound by placing the specimen in the 151 

acoustic free field, and 2) the effect of multiple sound pathways was studied by generating internal 152 

and external sound inputs independent of each other. 153 

1) The specimen was mounted in a bespoke holder and placed in the acoustic free field. The154 

holder consists of a movable plate (with copper wires to secure the legs) screwed on an elbowed 155 

arm (for more details see Montealegre-Z et al. [13]). The forelegs were oriented forwards, in a 156 

position akin to the bush-cricket standing on a leaf. The holder was solidly tethered on a vibration 157 

isolation air table holding a LDV (Polytec PSV-300-F; Waldbronn, Germany). A loudspeaker 158 

(ACR, FT 17H, Fostex, Tokyo, Japan; or an ESS AMT-1, ESS Laboratory, Inc., Sacramento, CA, 159 

USA) was positioned 30 cm away, ipsilateral at 90° with respect to the body axis of the animal, 160 

playing periodic chirps in the range of 1-50 kHz. Computer controlled correction of the acoustic 161 

stimulus was used to maintain constant amplitude levels (60±1.5 dB SPL, re 20 µPa) at the 162 

tympanum across the whole frequency range. Broadband signals were generated at 512 kHz by the 163 

LDV internal data acquisition board (National Instruments PCI-4451; Austin, TX, USA), amplified 164 

(TAFE570; Sony, Tokyo, Japan) and passed to the loudspeaker. The velocity of the tympanal 165 

membrane vibrations was measured using the LDV with an OFV-056 scanning head fitted with a 166 

close-up attachment (Polytec; Waldbronn, Germany). Tympanal vibrations were analysed by 167 

simultaneously recording the vibration velocity of the tympanum, and the sound stimulus 168 

amplitude and frequency at the tympanum and at the spiracle entrance. Data quality was assessed 169 

using coherence for each data point [30]. Data were considered of sufficient quality when 170 

coherence exceeded 80%. 171 

All sound pressure measurements were carried out with two 1/8” precision pressure 172 

microphones (Bruel & Kjaer, 4138; Nærum, Denmark) and a preamplifier (Bruel & Kjaer, 2633). 173 

The microphones were calibrated using a sound level calibrator (Bruel & Kjaer, 4231). Recordings 174 

were sampled at either 512 kHz or 1 MHz. 175 

In addition to broadband stimuli, the tympana were also stimulated with 4-cycle pulses at 23 176 

kHz (50 Hz burst rate), produced by a function generator (Agilent 33120A, Agilent Technologies 177 

UK Ltd., Edinburgh, UK) synchronized with the LDV. The microphone was carefully positioned 178 

near the measured tympanum until the phase of the microphone signal and that of the tympanum 179 

displacement matched. Tympanal vibrations were recorded from both anterior and posterior 180 

tympanal membrane (ATM and PTM, respectively). The instantaneous phase of the stimuli and 181 

responses was calculated using Hilbert transform to identify any discrepancy in phase between 182 

both signals. 183 

2) Specimens were mounted on a custom-built platform, which provides acoustic isolation184 

between the two main sound inputs of the bush-cricket ear (see figure 1 and supplementary 185 

information for details).  186 
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Sound was delivered locally at the spiracle and at the tympanum [5] using a custom build probe 187 

loudspeaker (figure 1b, see [13] for details). The combination of the probe loudspeaker offering 188 

high acoustic impedance and the platform’s front panel as an acoustic barrier was sufficient to 189 

effectively attenuate high-frequency sound and allow for focal acoustic stimulation. 190 

Using this setup, tympanal vibrations in response to broadband chirps (5-50 kHz) and 23 kHz 191 

4-cycle tones broadcast by the probe loudspeaker at the spiracle were recorded from both ATM 192 

and PTM using LDV. The spectrum of the output of the probe loudspeaker was mathematically 193 

flattened using the B&K microphone as a reference placed 2 mm away from the probe tip ([13]). 194 

We calculated the FFT of the transfer function between the stimulus and tympanal response to 195 

obtain the phase spectrum. 196 

197 

2.4. The transmission gains of the trachea 198 

We calculated AT gain (as in [5]) from broadband stimulation, and from time domain recordings 199 

using 4-cycle pure-tones at specified frequencies. The response of the tympanum to both types of 200 

stimuli was measured using a focal sound source [5, 24] delivering sound at the external surface of 201 

the tympanum while isolating the tracheal input (figure 1b), and using a probe loudspeaker 202 

delivering sound at the acoustic spiracle only (figure 1c). For broadband stimulation, we adjusted 203 

the sound pressure of the output at 0.02 Pa (~60 dB SPL) as measured at 2 mm away from the 204 

probe’s tip. We then positioned the probe loudspeaker either at 2 mm away from ATM or PTM, or 205 

at 2 mm away from the spiracle. Tracheal gain was quantified as the difference in tympanal 206 

displacement (using LDV) between external and tracheal stimulation. 207 

208 

2.5. Statistics and analysis 209 

We compared differences in log tympanal tuning, tracheal time delays between tympana, across 210 

individuals, and between sexes using a restricted maximum likelihood linear mixed-effects model 211 

(LMM) in R (v.3.2.1, [31]) using the lmerTest package [32]. For a detailed description, see 212 

supplementary materials. 213 

214 

3. RESULTS215 

3.1. Anatomical measurements of acoustic trachea 216 

217 

218 

219 

220 

221 

222 

The geometry of the tracheal system was studied using µ-CT, while also evaluating tracheal 

length using an inserted human hair. The reconstructed 3D models of the acoustic trachea do not 

reveal sexual dimorphism in their general appearance. However, as an effect of body size, tracheal 

tubes are slightly, although not statistically significantly, longer in females: females (17.239± 

0.724 mm, n=22 [11 left and 11 right]), males (16.272 ± 0.7412 mm: LMM: t=-3.07, d.f.=2.87, 

p=0.058). Levine test (F=0.05, P=0.956) shows that the variability in left and right measurements 

between males and females is statistically not significantly different. There was no significant 223 
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difference between right and left trachea on its own (t=0.45, d.f.=2.84, p=0.685) or in interaction 224 

with sex (t=0.37, d.f.=2.84, p=0.735). 225 

226 

227 

228 

229 

230 

231 

232 

233 

Tracheal morphology in C. gorgonensis is typical for conocephaloid bush-crickets [2, 8, 29]. 

The oval spiracle opens into an ovoid tracheal atrium, the acoustic bulla (figure 2a, b, c). Past the 

bulla, the trachea narrows quickly into a thin tube (figure 2b, c, d). Using 3D µ-CT models, we 

measured the internal AT radii at 25 µm intervals for both left and right tracheae in 2 males and 1 

female C. gorgonensis. The radius of the trachea varies along its length, progressively narrowing 

in the first half of its length, after which it stays relatively constant until approaching the ear 

(figure 2c, e, f). The mean radii for left and right tracheae ranged from 169 µm to 185 µm (with SD 

ranging from 72 µm to 90 µm), while the median values lay between 138 µm and 151 µm (see 

figure 2e, f and supplementary material table S-1). 234 

235 

3.2. Frequency and time domain responses of the tympanal membrane in acoustic free field 236 

conditions 237 

Specimens were tethered in the acoustic isolation holder and the vibrational responses of 238 

tympana to broadband sound chirps from the ipsilateral side were recorded with the LDV. In all 239 

cases, the response frequency spectrum of both tympanal membranes was broad across the 240 

measured range. However, both tympanal membranes vibrate with higher amplitudes to 241 

frequencies around the frequency of the call (~23 kHz, figure 3a, b). Measurement quality and 242 

reliability for each measurement point was high as estimated using magnitude-squared coherence 243 

[30], in particular for frequencies around 23 kHz (Figure 3c, d). There was no difference between 244 

frequency tuning (at maximum spectral response) between ATM and PTM across all specimens 245 

(LMM: t=-0.81, df=20, p=0.4305). There was, however, a significant negative relationship 246 

between tympanal tuning and tracheal length (LMM: t=-2.73, d.f=17, p=0.014), and a trend for this 247 

pattern to sex (LMM: t=2.06, d.f=17, P= 0.055). Similarly, there were no significant differences in 248 

the tuning of the tympanal membranes between males and females (LMM: t=-2.06, df=17, 249 

p=0.055, females=22.92 kHz ± 4.18 kHz, n=22; males 24.41 kHz ± 3.874 kHz, n=20). On average, 250 

across all specimens, both tympanal membranes showed best response at 23.63 kHz ± 4.06 kHz, 251 

n=42, (figure 3a, b). 252 

Recordings of tympanal membrane vibrations were also obtained in the time domain. For these 253 

experiments, the specimens were mounted as above, and the loudspeaker placed at 30 cm 254 

ipsilateral and perpendicular to the body axis delivering 23 kHz 4-cycle tones at a constant sound 255 

pressure of 1 Pa. These experiments were designed to provide direct evidence of the pressure 256 

difference system, evaluating the ratios of the magnitudes of the sound pressures acting on the 257 

internal and external surfaces of the tympanum. Tympanal vibrations are generated by sound 258 

acting from the inner and outer sides of the tympana (figure 4). LDV recordings show that the 259 

tympanal vibration is composed of two parts, a segment of low amplitude, and a subsequent part 260 
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with high amplitude (figure 4e). The low amplitude oscillations represent the free field sound 261 

waves acting directly on the external surface of the tympanal membrane (black segment, figure 262 

4e), while the high amplitude oscillations are the response to sound waves travelling from the 263 

acoustic spiracle via the AT and acting on the internal surface of the membrane (red segment). The 264 

latter response betrays the presence of sound waves pushing the membrane in a direction opposite 265 

to that exerted by sound acting externally. Hence, this mechanical response is the result of sound 266 

acting externally in addition to the vibrations produced by sound acting internally. The exact 267 

moment of collision between the two oscillations was identified applying Hilbert transformation to 268 

the tympanal displacement to compute the phase information in the time domain [33]. Because the 269 

microphone was carefully adjusted as to have the same vertical axis as the tympanal membrane of 270 

interest, both the recorded stimulus and the vibration of the tympanal membrane exhibited similar 271 

phase during the first sound cycles (figure 4d, e and f). Some short time after stimulus onset, a 272 

clear change in phase of the mechanical response is observed (figure 4e, f, asterisk and orange 273 

dashed arrow). This phase change indicates the arrival of sound at the internal side of the tympanal 274 

membrane (see supplementary material, Video 1). After this moment, the phase of the 275 

displacement stays constant in relation to that of the stimulus until the phase difference amounts to 276 

ca. 200° (figure 4f). Because sound propagation inside the trachea is delayed, the first cycle of the 277 

stimulus signal, in phase with initial tympanal vibration (black trace 1 and 2 in figure 4e), takes 62-278 

80 µs to strike the tympanal membrane on the internal surface. Thus, the signal arrives at the 279 

tympanal membranes twice, with the second arrival delayed by tens of microseconds (figure 4f, 280 

orange dashed line). In specimens measured within a free sound field (without the sound isolation 281 

platform), the time delay varies with distance and azimuth of the sound source in relation to the 282 

spiracle and the position of the ear. Cycles of tympanal vibrations corresponding to the external 283 

sound arrival are nearly 6 times (5.53 ± 1.35, range 3.87-7.72; 14.85 dB, n=21, measured at the 284 

ATM only) quieter than their respectively shifted cycles coming from the trachea (figure 4e). 285 

These findings highlight the role the acoustic bulla and trachea play in sound amplification, in this 286 

case enhancing gain by nearly 15 dB. 287 

288 

3.3. Velocity of sound propagation in the trachea calculated from the frequency and time domains 289 

3.3.1 Calculations in the frequency domain 290 

Periodic chirps in the range of 1-50 kHz were delivered to the spiracle using a calibrated probe 291 

loudspeaker continuously monitored with a reference microphone. Acoustic phase at the spiracle 292 

and subsequently at the tympanal membrane was evaluated in response to stimulation at the 293 

spiracle. In general, phase changes linearly with frequency (figure 5). In the low frequency range 294 

(5-10 kHz), the phase at the tympanal membrane changes slowly (by less than half a cycle ~120°) 295 

with respect to the phase at the spiracle. This shows that low frequency sound propagates in the 296 

trachea with minor impediment. In contrast, at 23 kHz phase changes by nearly 500° (460°-490° in 297 
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figure 5a, b, male and female), revealing a phase shift of nearly 1.3-1.4 cycles. At 23 kHz, such 298 

shift corresponds to a time delay of approximately 60 µs. At 40 kHz, the phase change is about 299 

840°-860°, or 2.3-2.4 cycles, also corresponding to approximately 60 µs duration. Calculations in 300 

the low frequency range, such as 10 kHz, concur and show that sound propagation time is around 301 

58 to 60 µs. 302 

This analysis therefore suggests that sound velocity inside the trachea remains constant across 303 

the frequency range measured. 304 

305 

3.3.2 Calculations in the time domain 306 

The velocity of sound propagation inside the trachea was established by measuring the time lag 307 

between the onset of the stimulus delivered at the spiracle and its time of arrival at the tympanal 308 

membrane (figure 5c, d). At 23 kHz, we measured a propagation time between 60.60 and 82.00 µs, 309 

with a mean of 66.37 ± 4.79 µs (ATM, mean±SD, n=21); and 60.20-81.20 µs, mean of 65.96 ± 310 

4.59 µs (PTM; n=21) (figure 5c, d). There is no significant difference in the time of arrival at each 311 

tympanum (LMM: t=-0.48, d.f.=17.99. p=0.637). Across specimens, the propagation time 312 

calculated was not statistically different from the time lag calculated from the phase spectrum at 23 313 

kHz (LMM: t=-0.93, d.f=18.41, p=0.364). In addition, neither sex (LMM: t=-1.17, d.f=22.53, 314 

p=0.254) nor the interaction between sex and time lag were significant (LMM: t=1.19, d.f=18.45, 315 

p=0.249). At other frequencies (10, 15, 20, 30, 40 and 50 kHz), the transmission time remains 316 

constant (63.50 ± 1.36 µs, n=21, PTM only). Altogether, these results agree with the linear 317 

response between phase and frequency described in the previous section (see also figure 5a, b). 318 

Using this acoustical information and tracheal dimensions, the velocity of sound propagation 319 

was calculated as ~255 m/s and found not to differ between right and left trachea (right= 255.2 320 

m/s ± 18.5 m/s, n=21; left=255.8 m/s ± 14.9 m/s, n= 21; SE= 7.17, LMM: t=-0.51, d.f.=20.09, 321 

p=0.616). The overall average velocity of sound propagation in the trachea was 255.5 m/s (n=42). 322 

The velocity of sound propagation was slightly, but not significantly, higher in the female tracheae 323 

(261.3 ± 7.9 m/s, n=22) than in the male tracheae (249.1 ± 21.1 m/s, n=22; LMM: t=-0.53, 324 

d.f.=19.31, p=0.602).  325 

Overall, these results show that sound velocity inside the trachea is reduced in relation to that in 326 

free field conditions by a factor of 1.35, and confirms figures obtained from the frequency analysis 327 

(section 3.5), as well as early work on other species [4, 5, 27]. 328 

329 

3.4. Tracheal gain calculations 330 

Tracheal gain functions were measured using both broadband stimulation and time domain 331 

responses to 4-cycle pure-tones. The gain was determined by calculating the difference in 332 

tympanal deflection between external and tracheal stimulation. The stimulus was presented using 333 

equivalent sound pressures either at the external surface of the tympanum or at the acoustic 334 
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spiracle entrance. In response to broadband stimulation, the gain function reveals that most of the 335 

gain occurs between 15 and 35 kHz (figure 6). Within this range the gain increases from 4.2 to 336 

10.6 (i.e., 12.5 and 20.5 dB), as measured at the ATM (figure 6). This finding demonstrates that the 337 

AT performs amplification of sound pressure across a range of frequencies. 338 

339 

4. Discussion340 

4.1. The velocity of sound transmission in the acoustic trachea 341 

Sound propagates slower inside the AT (~255 m/s), a velocity comparable to those inferred in 342 

field crickets and bush-crickets (~260 m/s) [4, 27]. In field crickets, tracheal conduction was 343 

shown to enable directional hearing by imposing resistance to sound propagation with respect to 344 

sound acting on the external surface of the tympanal membrane [24, 26, 34]. In bush-crickets, 345 

species with large thoracic spiracle and large acoustic bullae, such as C. gorgonensis (figure 2) 346 

[35], the tracheal signal is amplified within a specific range of frequencies, and also incurs a time 347 

lag between sound acting on the external and internal sides of the tympanum [4, 5] (figure 6). 348 

Additionally, the size of the auditory spiracle is positively correlated with hearing sensitivity [15, 349 

19, 36]. Functionally, the progressive reduction in AT radius (figure 2) has been proposed to act 350 

like an exponential horn that enhances sound pressure at its thin end [2, 7, 14]. Our data support 351 

the exponential horn model form earlier work [5], suggesting that in bush-crickets the propagation 352 

velocity of sound can be seen as largely independent of frequency and therefore non-dispersive. 353 

The mechanism responsible for the reduction of sound propagation velocity remains, however, 354 

unknown. 355 

It has been long demonstrated that the velocity of sound in a solid tube is greatly reduced when 356 

the tube becomes narrow compared to the wavelength of sound, or frequency increases [37, 38]. 357 

Interestingly, the empirical values reported here, although in good accord with earlier results [4, 358 

27], are clearly lower than those predicted from conventional equations for the propagation of 359 

sound velocity in narrow tubes.  360 

For comparison, we used the following two different approximations of Kirchhoff’s solution on 361 

the acoustical propagation velocity v developed by Benade [37] and Zwikker & Kosten [39], 362 

respectively:   363 

� = � ∙ �1 − 1�	√2 −
� − 1�√2� (1) 

where c is the sound velocity in free field air (343 m/s), rv and rt terms for the viscous and thermal 364 

boundary layers (see supplementary material, table S-2) and γ the ratio of specific heats (1.4). 365 

Notably, the velocity term can be expressed as 366 

� = ���(Γ) (2) 

with the propagation constant Γ as 367 

Page 11 of 25

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Jonsson & Montealegre-Z, et al. 12

Γ = ���(����	)��(����	) ∙ �
�� (3) 

where J0 and J2 are Bessel functions of 0-th and 2-nd order and n constitutes a term that approaches 368 

1 for γ → 1 (see supplementary material, table S-2 for more details). 369 

Using both Benade’s (Eq. 1, [37]) and Zwikker & Kosten’s (Eq. 2 & 3, [39]) approximations 370 

with standard values for the properties of air and a median trachea radius of 150 µm at 23 kHz, one 371 

finds propagation speeds of 318 m/s and 320 m/s respectively (supplementary material, table S-2). 372 

There could be several reasons to account for the discrepancy between the results found here and 373 

in the acoustic literature. 374 

Firstly, although the equations of Benade [37] and Zwikker & Kosten [39] include the effects of 375 

viscous and thermal boundary layers (rv and rt, respectively) within the tube, the general 376 

assumption is that of an adiabatic system where no heat is exchanged with the surroundings. 377 

Interestingly, Fletcher [40] argues that the adiabatic assumption in narrow tubes is only valid for 378 

radial frequencies ω 379 

� ≫ � !� (4) 

380 

where κ is the thermal diffusivity (~1.9*10
-5

 m
2
/s) and a the tube radius and ω=2πf. Using 23 kHz 381 

as frequency f and 150 µm as tube radius in Eq. 4 results in ω being roughly 50 times bigger than 382 

the right hand side of Eq. 4. Although Fletcher does not state a definite cut-off value for the 383 

transition from isothermal to adiabatic, it is reasonable to assume a rather gradual transition from 384 

low-frequency isothermal to high-frequency adiabatic conditions. If so, the system described here 385 

could be viewed as isothermal, then a variation of Zwikker & Kosten’s equation can be used, 386 

where γ=1 [38], which changes Eq. 3 to: 387 

Γ = ���(����	)��(����	) (5) 

388 

389 

390 

391 

392 

393 

394 

395 

396 

Substituting Eq. 5 in Eq. 2 results in a propagation velocity within the tube of 276 m/s, much closer 

to our experimental values (see also table S-2:. 

A second possible explanation for our relatively low propagation speed can be found in the nature 

of the classical equations underlying the analytical approximations used here. Although basic 

properties of the medium (like density, viscosity and ratio of specific heats) and dimensions of the 

tube are taken into account, no terms for the elasticity (like Young’s modulus or bulk modulus) and 

thickness of the tube walls are considered. ]nsect tracheae are very thin and quite unlike the rigid 

structures assumed previously. Considering these additional material properties and others 

within the system (like internal pressure, changes in composition and humidity of the gas 

mixture, etc.) 

397 
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propagation inside 398 may provide more accurate understanding of isothermal and adiabatic 

sound tracheal systems.  399 

400 

4.2. The tracheal transmission gain 401 

In response to 4-cycle pure-tone stimuli, tympanal membranes undergo vibrations that are, in 402 

linear terms, 4-6 times larger for internal sound pressures than for external ones, a response that 403 

varies with frequency. Such response gains range from 12 to 16 dB, as calculated from time 404 

domain and broadband measurements. 405 

We have shown here that sound pressure amplification is a result of sound travelling inside the 406 

gradually narrowing AT. The data reveal that pressure amplification originates from internal sound 407 

pathways (figure 4) in C. gorgonensis, suggesting that each ear, working as a pressure difference 408 

receiver, can independently process directional information. Although not the scope of this study, 409 

the reported dependence of tympanal vibrations on the azimuth of sound incidence in other cricket 410 

species [22, 24] supports the presence of a similar mechanism in C. gorgonensis. Operating at 411 

ultrasonic frequencies, however, these ears may also exploit instantaneous phase relationships 412 

between the ATM and PTM within a single ear, essentially offering the possibility that each ear is 413 

directional. Ultrasonic frequencies such as that of the species calling song may generate diffractive 414 

effects around the ears and the tympanal flaps and result in differences in phase of vibration 415 

between the tympanal membranes of a single ear [42]. The functional morphology of such ears, 416 

potentially exploiting 6 distinct acoustic inputs, remains to be studied in detail, especially 417 

questioning the role of tracheal transmission and microacoustical diffraction in the biophysics of 418 

auditory directionality. 419 

420 

5. Conclusions421 

Quantifying the acoustic transmission characteristics of the AT in C. gorgonensis, we present422 

direct biophysical measurements of the mechanisms at work in an auditory pressure difference 423 

receiver. Both spectral and time-resolved measurements presented here allow for a deeper 424 

understanding of this widespread form of auditory system, the pressure-difference receiver. 425 

A pressure difference receiver relies on the interference of sound waves at both surfaces of the 426 

tympanal membranes [23-25]. We demonstrate here the existence of two pressure wave fronts -the 427 

differential pressure waves- their relative timing and effect of their superposition on tympanal 428 

vibrations. Carried out over a broad range of frequencies, the temporal analysis of these two waves 429 

demonstrates that sound travels inside the AT at a constant velocity and thus non-dispersively (as 430 

found by [27]). This behaviour does not comply with the theoretical frequency dependence of 431 

propagation velocities in narrow tubes. This deviation from theory reveals an interesting functional 432 

characteristic of this sound transmission system, as it allows for a spectrally broadly tuned system 433 
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to reliably transmit finely resolved undistorted temporal and spectral informational content to the 434 

ears’ receptive structures. Minimal dispersion in effect serves the coherent transfer of the 435 

spiracular acoustic input to the internal face of the tympanum where it interacts with the external 436 

and original version of itself. Biophysically, it is presumably advantageous for this auditory system 437 

to produce interference between signals void of frequency dependent delays of distortions. In this 438 

sense, preserving both the spectro-temporal characteristics and temporal patterns of the species-439 

specific narrow-band song may facilitate the delicate frequency decomposition process carried out 440 

by the ear of Copiphora [13]. It can be argued here that similar demands exist to preserve the 441 

coherence of multiple acoustic inputs when they originate from the environment of other signalling 442 

species. 443 

It has been suggested that pressure difference receivers operate only at low frequencies and low 444 

internal amplifications [43], with the consequence that for higher frequencies and amplification, 445 

the system would operate more like a conventional pressure receiver, yet dominated by large 446 

internal pressure input [7, 17, 44]. However, such a proposal only considers the actual 447 

amplification through tracheal propagation (12-20 dB over the frequency range from 5-50 kHz in 448 

this case) and does not take into account the additional level of mechanical amplification that 449 

results from the lever-like energy transfer between the tympanum and the tympanal plate [13]. 450 

Even minuscule tympanal displacements in response to low amplitude acoustic stimulation 451 

produce large deflections of the crista acustica surface, comparable or larger than those of the 452 

tympanum (but see fig. 5 in Montealegre-Z & Robert [29]). The increased sound pressure 453 

produced by tracheal amplification acting on the inner tympanal surface increases this effect and is 454 

most likely dependent on wave diffraction at the position of the spiracular opening. In the same 455 

way, external sound waves will be diffracted by the animal’s cuticular flaps covering the ears that 456 

will affect their impact on the vibration of the tympanal membranes. 457 

Since pressure difference receivers are inherently directional due to the differential phase and 458 

amplitude components of the two incident sound waves [24], the high amount of amplification 459 

generated by the AT suggests that Copiphora could use these differential inputs to perform 460 

accurate localization of sound sources. If this is indeed the case, the importance of diffraction at 461 

both the spiracle and the cuticular ear flaps and the sensitivity of the system to directional signals is 462 

currently still unknown. 463 
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482 

Figure caption 483 

Figure 1. Experimental setup. (a) Frontal view of the isolating platform. (b) Setup used to 484 

stimulate the ear using tracheal input only. The probe loudspeaker is placed at 2 mm away from the 485 

spiracle. The LDV records tympanal vibrations, while a microphone positioned at ear location 486 

monitors that sound from the probe loudspeaker does not cross the isolating panel. (c) Setup used 487 

to occlude tracheal input. A sound-attenuating cylinder is assembled at the posterior side of the 488 

platform, enclosing the body region containing the spiracle. A microphone is inserted inside the 489 

cylinder to monitor sound entering the chamber; a syringe needle allows balancing atmospheric 490 

pressure inside. A probe loudspeaker is positioned near the tympanum for external sound delivery. 491 

492 

Figure 2. Anatomy of the acoustic trachea measured using µCT. (a) Frontal view of a male C. 493 

gorgonensis with head, legs and thorax in transparency showing the AT. (b) Lateral view of the 494 

body in transparency showing left and right AT. (c) Close up view of the acoustic spiracle and 495 

bulla. 496 

(d) Internal view inside the acoustic trachea. (e) and (f) Quantitative relationship between tracheal 497 

diameter and length, displayed from the acoustic spiracle to the tympanal organ area in a male and 498 

a female, respectively. 499 

500 

Figure 3. Tympanal vibrations in respond to broadband stimulus in free-field conditions, shown as 501 

the average spectrum ATM (a) and PTM (b), measured across 21 individuals (10 males and 11 502 

females). (c) Coherence plots of ATM vibration. (d) Coherence plots of PTM vibration  503 

504 

Figure 4. ATM motion in response to free-field pure-tone stimulation. (a-b) Orientation image 505 

relating ear topography to the position of the scanning lattice. (c) Vibration map of the ATM 506 

response measured as displacement. Deflections are shown for different phases along the 507 
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oscillation cycles (numbers match the cycles shown in d and e. Note that the tympanal plate (as 508 

described in [13]) is not included in the scan. (d) 23 kHz 4-cycle tone played at ca. 1 Pa. (e) 509 

Tympanal vibrations recorded with LDV. Initial dashed line represents sound arriving at the 510 

exterior tympanum surface. The red trace shows tympanal motion with additional internal acoustic 511 

tracheal input. (f) Phase analysis of tympanal response. The interference between external and 512 

internal inputs results in a significant change in phase at 81 µs. This phase shift is also apparent 513 

from the change of the otherwise sinusoidal membrane displacement (red asterisk in e). The 514 

oscillation marked with number 1 in the microphone trace in d, and in the laser trace in e, 515 

corresponds to the oscillation marked with 1* in e. (g-i) Average stimulus, response, and 516 

instantaneous phase (as shown in panels d-f) measured on the left ATM across 11 females.  517 

518 

Figure 5. Tracheal sound propagation, frequency and time domain analysis. (a) ATM and PTM 519 

response to broadband stimulation for a male and a female. (b) Phase spectrum of the response 520 

highlighting the phase lag at 23 and 40 kHz. (c-d) Vibration of the tympana in response to sound 521 

(23 kHz, 4-cycle tone) travelling through the AT only. (c) Oscillograms showing the stimulus 522 

recorded at the spiracle entrance of a male and a female. (d) Mechanical response of both tympanal 523 

membranes in the same individuals. The response is notably delayed in each case (shaded areas) in 524 

relation to the microphone onset as sound propagates through AT. 525 

526 

Figure 6. Gain measurements across the spectral range. (a) ATM response in females (n=11). 527 

(b) ATM response in males (n=10). Black outline shows the tympanal response to external input 528 

only. Red trace shows tympanal response when sound is delivered at the acoustic spiracle and 529 

transmitted via the AT only. Shaded areas indicate standard deviation in both cases (n=11 530 

females). 531 

532 
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nlyFigure 1. Experimental setup. (a) Frontal view of the isolating platform. (b) Setup used to stimulate the ear 
using tracheal input only. The probe loudspeaker is placed at 2 mm away from the spiracle. The LDV records 

tympanal vibrations, while a microphone positioned at ear location monitors that sound from the probe 

loudspeaker does not cross the isolating panel. (c) Setup used to occlude tracheal input. A sound-
attenuating cylinder is assembled at the posterior side of the platform, enclosing the body region containing 
the spiracle. A microphone is inserted inside the cylinder to monitor sound entering the chamber; a syringe 
needle allows balancing atmospheric pressure inside. A probe loudspeaker is positioned near the tympanum 

for external sound delivery.  
figure 1  
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Figure 2. Anatomy of the acoustic trachea measured using µCT. (a) Frontal view of a male C. gorgonensis 
with head, legs and thorax in transparency showing the AT. (b) Lateral view of the body in transparency 

showing left and right AT. (c) Close up view of the acoustic spiracle and bulla.  

(d) Internal view inside the acoustic trachea. (e) and (f) Quantitative relationship between tracheal diameter 
and length, displayed from the acoustic spiracle to the tympanal organ area in a male and a female, 

respectively.  
figure 2  
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Figure 3. Tympanal vibrations in respond to broadband stimulus in free-field conditions, shown as the 
average spectrum ATM (a) and PTM (b), measured across 21 individuals (10 males and 11 females). (c) 

Coherence plots of ATM vibration. (d) Coherence plots of PTM vibration.  

figure 3  
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Figure 4. ATM motion in response to free-field pure-tone stimulation. (a-b) Orientation image relating ear 
topography to the position of the scanning lattice. (c) Vibration map of the ATM response measured as 
displacement. Deflections are shown for different phases along the oscillation cycles (numbers match the 

cycles shown in d and e. Note that the tympanal plate (as described in [13]) is not included in the scan. (d) 
23 kHz 4-cycle tone played at ca. 1 Pa. (e) Tympanal vibrations recorded with LDV. Initial dashed line 
represents sound arriving at the exterior tympanum surface. The red trace shows tympanal motion with 
additional internal acoustic tracheal input. (f) Phase analysis of tympanal response. The interference 

between external and internal inputs results in a significant change in phase at 81 µs. This phase shift is also 
apparent from the change of the otherwise sinusoidal membrane displacement (red asterisk in e). The 

oscillation marked with number 1 in the microphone trace in d, and in the laser trace in e, corresponds to 
the oscillation marked with 1* in e. (g-i) Average stimulus, response, and instantaneous phase (as shown in 

panels d-f) measured on the left ATM across 11 females.  
figure 4  
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Figure 5. Tracheal sound propagation, frequency and time domain analysis. (a) ATM and PTM response to 
broadband stimulation for a male and a female. (b) Phase spectrum of the response highlighting the phase 
lag at 23 and 40 kHz. (c-d) Vibration of the tympana in response to sound (23 kHz, 4-cycle tone) travelling 

through the AT only. (c) Oscillograms showing the stimulus recorded at the spiracle entrance of a male and 
a female. (d) Mechanical response of both tympanal membranes in the same individuals. The response is 
notably delayed in each case (shaded areas) in relation to the microphone onset as sound propagates 

through AT.  
figure 5  
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Figure 6. Gain measurements across the spectral range. (a) ATM response in females (n=11). (b) ATM 
response in males (n=10). Black outline shows the tympanal response to external input only. Red trace 

shows tympanal response when sound is delivered at the acoustic spiracle and transmitted via the AT only. 

Shaded areas indicate standard deviation in both cases (n=11 females).  
figure 6  
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